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Symmetriebrehung im Hubbardmodell

Ein Bosonisierungsansatz

Zusammenfassung

Die meisten bekannten Hohtemperatursupraleiter geh�oren zur Sto�klasse der

Kuprate, die sih gut durh das zweidimensionale Hubbardmodell beshreiben

lassen. Um das Zusammenspiel vershiedener Eigenshaften wie Antiferromag-

netismus und Supraleitung zu verstehen, berehnet man das Phasendiagramm

des Hubbardmodells als Funktion der Ladungsdihte und Temperatur. F�ur diese

Rehnung eignen sih insbesondere exakte Renormierungsgruppengleihungen,

die wir im Formalismus der mittleren e�ektiven Wirkung verwenden. Zu diesem

Zwek leiten wir eine �aquivalente Formulierung des Hubbardmodells her, die die

Form einer Yukawatheorie besitzt und aus der Informationen �uber langreih-

weitige Ordnung in vershiedenen Kan�alen durh die Berehnung bosonisher

Erwartungswerte gewonnen werden k�onnen. Es gelingt uns, die wesentlihen

Eigenshaften des Phasendiagramms von Hohtemperatursupraleitern zu repro-

duzieren. Au�erdem zeigt unsere Untersuhung, wie das Mermin-Wagner Theo-

rem mit der Existenz antiferromagnetisher Ordnung bei nihtvershwindender

Temperatur zu vereinbaren ist und wie sih die Ber�uksihtigung vershiedener

bosonisher Fluktuationen auf das Phasendiagramm auswirkt.

Symmetry breaking in the Hubbard model

A bosonization approah

Abstrat

Almost all known high temperature superondutors are uprates, whih an be

suitably modelled by the two dimensional Hubbard model. To understand the

interplay of various long range properties as antiferromagnetism and superon-

dutivity, one an alulate the phase diagram of the Hubbard model in the

harge density-temperature plane. This analysis is onveniently arried out by

means of exat renormalization group equations that we apply in the formalism of

the e�etive average ation. For this purpose, we derive an equivalent version of

the Hubbard model that takes the form of a Yukawa theory. From this modi�ed

model long range order in various hannels an be extrated by simple alulation

of bosoni expetation values. We are able to reprodue the main features of the

phase diagram of high temperature superondutors. Furthermore, our analysis

shows how the Mermin-Wagner theorem an be reoniled with the existene of

antiferromagneti long range order at non vanishing temperature and how the

inlusion of di�erent kinds of bosoni utuations a�et the phase diagram.
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Chapter 1

Introdution

Tomorrow by the end of the day we shall ome to a mountain

of blak stone hight the Magnet Mountain, for thither the urrents

arry us willy-nilly. As soon as we are under its lea, the ship's sides

will open and every nail in plank will y out and leave fast to the

mountain, for that Almighty Allah hath gifted the loadstone with a

mysterious virtue and a love for iron, by reason whereof all whih is

iron traveleth toward it. And on this mountain is muh iron, how

muh none knoweth save the Most High, from the many vessels whih

have been lost there sine the days of yore.

From: The Arabian Nights, The Third Kalandar's Tale, translated

by Sir Rihard Burton (1850)

The investigation of eletromagneti properties of ondensed matter systems

is one of the oldest branhes of physis. Even the anients knew about the

mysterious magneti fore exerted by ertain materials, and during the middle

ages, magnetism was one of the most popular subjets of alhemial speula-

tion. Over the last two enturies, the fast progress in physis greatly enrihed

our knowledge of possible eletromagneti properties of di�erent materials. The

long known magnetism is now interpreted as only one possible type of long range

order, alled ferromagnetism. Other long range strutures, like antiferromag-

neti or ferrimagneti ordering were disovered. On the other hand, materials

an be lassi�ed with respet to their ondutivity: Condutors, semiondutors

and insulators are known. More reently, the disovery of superondutors led

to ompletely new developments | both theoretially and experimentally with

interesting appliations.

Although many of these properties are understood in priniple, many unsolved

problems remain. One of these problems is even the qualitative understanding of

1
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Figure 1.1: The generi phase diagram for a p-doped uprate superondu-

tor. By AF we denote regions of antiferromagneti, by SC regions of d-wave-

superonduting behavior. The origin orresponds to zero temperature and no

doping.

the phase diagram of high temperature superondutors (�g. (1.1)). This work

is devoted to develop a formalism to deal with suh systems exhibiting many

di�erent ways of symmetry breaking and | in the framework of this formalism

| to shed some light on the origin of the di�erent phases.

As for all physial problems, we fae two kinds of problems:

1. The question of modeling: The typial high temperature superondu-

tor possesses a rather ompliated hemial struture. The question is how

muh information about this struture we are allowed to neglet without

loosing anything signi�ant giving rise to the phase diagram we want to

explain. By reduing the amount of omplexity, we ahieve two goals: We

hopefully end up with a model whih an be treated by standard alulation

methods and that furthermore ontains the essential information about the

atual system in a very ondensed form. This should free us from om-

pliations obsuring our view on the true nature of the physial properties

under investigation. Fortunately, suh a model exists, the Hubbard model.

2. The question of alulation tehnique: Suppose the Hubbard model

atually ontains enough information to desribe high temperature super-
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ondutors. However, it is far from lear how to extrat this information,

given the fat that for nearly forty years the Hubbard model has suess-

fully resisted any attempt to being solved. The main obstales in doing so

are

(a) the di�erent nature of antiferromagneti and superonduting behav-

ior, both of whih nevertheless should be treated on equal footing in

our formalism. Besides, we see that for example ferromagneti or s-

wave-superonduting behavior is not present in the phase diagram

of uprates. Our formalism should not only provide an answer to

the question why the antiferromagneti and d-wave-superonduting

phases are where they are, but also why other phases are not present.

We attak this problem by a bosonization proedure. The idea is to

arti�ially introdue additional \partiles" into the desription of the

model orresponding to physial degrees of freedom like antiferromag-

neti ordering et. This allows to disuss antiferromagneti, superon-

duting and other properties in terms of expetation values of bosoni

�elds | a very onvenient method to disuss these phenomena in one

ommon language.

(b) the strong oupling between the eletrons. This prevents us from using

perturbation theory to derive our results. Non-perturbative methods

are needed. Partiularly suitable for this kind of problem are renor-

malization group tehniques, whih we will apply in the setting of the

e�etive average ation.

The fous of this work will be on the bosonization proedure. A lot of reent

work has been devoted to analyze the Hubbard model in the framework of purely

fermioni models. We hope to onvine the reader that partial bosonization of the

Hubbard model | giving interesting physial degrees of freedom a partile inter-

pretation | greatly improves our physial intuition onerning this ompliated

system, whih simpli�es the motivation of approximation shemes.

One key ingredient in the formalism to desribe antiferromagnetism and su-

perondutivity in the same formal language will be a ertain viewpoint we adopt:

We interprete both phenomena as spontaneously broken symmetries of the under-

lying model. Whereas this perspetive is quite natural for antiferromagnetism,

it deserves some explanation in the superonduting ase. The usual textbook

approah to superondutivity is by starting with a mirosopi model, motivat-

ing it by alulating properties of the model and omparing them to experiment.

To emphasize our point, we will show how the usual properties of a superon-

dutor follow merely from the breakdown of U(1)-symmetry of some underlying

model that we will not further speify. This topi will be overed in the following

setion of this introdution. The last two setions will disuss high temperature

superondutors in general and our model for them, the Hubbard model. After
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a rather formal hapter introduing our starting point, the partition funtion of

the Hubbard model, we will desribe our bosonization proedure. A mean �eld

alulation already reveals the main features of the phase diagram. After that, we

desribe our renormalization group proedure and investigate properties of the

system beyond mean �eld | partiularly impliations of the Mermin-Wagner

theorem and the inuene of harge density and antiferromagneti utuations

on the superonduting behavior of the model.

1.1 Antiferromagnetism and superondutivity

as spontaneously broken symmetries

Eletrons are onveniently desribed by �eld operators  (x), where  (x) is a

basis for irreduible linear representations of

1. SU(2) in the sense that  (x) = ( 

"

(x);  

#

(x))

T

and the elements of SU(2)

are represented by U(

~

�) = exp(i~�

~

�) and of

2. U(1) in the sense that  (x) =  

1

(x) + i 

2

(x) and the elements of U(1) are

represented by U(�(x)) = exp(i�(x)).

Here

~

� and �(x) are used to parameterize the elements of the Lie groups and ~�

is the usual set of Pauli matries. The two dimensional spae spanned by  

"

(x)

and  

#

(x) will be alled the spinor spae. Note that we onsider global SU(2)-,

but loal U(1)-transformations. The reason will beome lear below.

1.1.1 The SU(2)-symmetry

From rotational invariane in spinor spae, we expet the Lagrangian of our the-

ory to be omposed of salars with respet to SU(2)-transformations. This means

that the Lagrangian itself is invariant under SU(2)-transformations. The SU(2)-

symmetry is broken, if for example the (spae dependent) expetation value of

the operator f(x) 

y

(x)~� (x) does not vanish, where f(x) is an arbitrary non

vanishing salar funtion. In this ase, one speaks of the spontaneous symmetry

breakdown from SU(2) to U(1).

Ferromagneti and antiferromagneti behavior an be inferred from the spae

dependene of f(x). Assume the eletrons are strongly loated at the sites of a

quadrati or ubi lattie, so that the above operator expetation value hf

i

 

y

i

~� 

i

i

is taken at disrete lattie sites i. In the ase that hf

i

 

y

i

~� 

i

i is independent of i,

we have ferromagneti behavior if f

i

= f

j

8i; j, and antiferromagneti behavior

if f

i

= �f

j

, where i and j label nearest neighbor lattie sites.

Sine ferromagneti or antiferromagneti properties already follow diretly

from the operator expetation value breaking the global SU(2)-symmetry, we do

not have to bother dealing with the ompliations of loal symmetries.
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1.1.2 The U(1)-symmetry

In ontrast to the SU(2)-ase we here onsider loal transformations. This is

neessary sine the de�ning properties of a superondutor do not follow diretly

from the form of the symmetry breaking operator expetation value. Instead,

many properties (like the Meissner e�et) are onneted to the U(1)-gauge �eld

A

�

(x). We therefore assume our Lagrangian to be invariant under the U(1)-gauge

transformation

A

�

(x)! A

�

(x) + �

�

�(x);

 (x)! exp(�ie�(x)) (x);

(1.1)

where we replaed �(x) by the more ommon�e�(x) with the eletron harge �e.

�(x) is an arbitrary funtion, but with �(x) and �(x)� 2�n=e, n 2 Z regarded

as idential. We will now show how the typial properties of a superondutor

an be derived by assuming spontaneous symmetry breaking of this U(1)-gauge

symmetry. This disussion follows [1℄.

The symmetry is broken if operators like f(x) 

T

(x)i�

2

 (x) develop a non van-

ishing expetation value (the i�

2

between the eletron �elds is needed sine due

to the antiommutation rules for fermioni �elds an operator like f(x) 

T

(x) (x)

would be equal to zero identially). In this ase, the symmetry U(1) is bro-

ken down to Z

2

. Z

2

orresponds to the transformations  (x) ! � (x) (with

�(x) = 0 or �(x) = ��=e) whih leave f(x) 

T

(x)i�

2

 (x) invariant. Aording

to the spatial symmetry of the funtion f(x) we distinguish s-wave-, p-wave-,

d-wave, et. U(1)-symmetry breaking. Instead of onsidering the transformation

properties of  

1

(x) and  

2

(x) in  (x) =  

1

(x) + i 

2

(x) it is more onvenient to

write

 (x) = exp(�ie�(x))�(x): (1.2)

We de�ne �(x) to be periodi in �=e (not in 2�=e as one would expet from this

notation that resembles the deomposition into an absolute value and a phase

fator). Then �(x) serves as a basis for U(1)=Z

2

and �(x) for Z

2

(if we had taken

�(x) to be periodi in 2�=e, �(x) would have orresponded to U(1) and �(x) to

the trivial group). By this de�nition, we obtain two �elds, one of whih belongs

to the broken U(1)=Z

2

- and one to the unbroken Z

2

-symmetry. For U(1)=Z

2

we

have the transformation properties

A

�

(x)! A

�

(x) + �

�

�(x); �(x)! �(x) + �(x); �(x)! �(x) (1.3)

(�(x) + �(x) is understood to be taken modulo �=e) and for Z

2

A

�

(x)! A

�

(x) + �

�

�(x); �(x)! �(x); �(x)! ��(x): (1.4)

Sine no mass term  

y

(x) (x) = �

y

(x)�(x) in the Lagrangian involves �(x), �(x)

is a massless mode of our theory, the well known Goldstone boson. If we are well

within the symmetry breaking regime, the dynamis of the system is dominated
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by this Goldstone boson. In a �rst approximation, we may neglet the quantum

utuation ontributions of the massive modes altogether. Then �(x) plays the

role of some �xed external �eld and enters the Lagrangian as a parameter. In

this ase, we end up with a Lagrangian for the eletromagneti and Goldstone

boson ontent

L = �

1

4

Z

d

3

xF

��

F

��

+ L

s

[A

�

� �

�

�℄; (1.5)

whih is valid in the region of symmetry breaking and not too lose to the point

where the broken symmetry beomes unbroken. The exat form of the funtional

L

s

is not known to us; however, the dependene on A

�

��

�

� is ditated by gauge

invariane. Classially, �L

s

an be interpreted as a potential for our theory. We

will assume that this potential possesses a minimum for vanishing external �elds

A

�

(i.e. the system is stable if external eletromagneti �elds are absent) and

vanishing Goldstone �elds, whih means that the minimum ours in A

�

��

�

� =

0. This is all we need to derive the main properties of superondutors.

We see immediately that if the potential possesses a minimum in A

�

��

�

� = 0,

we have A

�

= �

�

�, so that the magneti �eld vanishes:

~

B = rot

~

A = 0. This is

the famous Meissner e�et: Deep within a superondutor we have no magneti

�eld. Closer to the point where the broken symmetry beomes unbroken, i.e.

loser to the spatial border of the region of superondutivity, A

�

��

�

� no longer

vanishes. To desribe the behavior of the superondutor near the border of the

superonduting region, we may expand the energy to seond order in j

~

A�

~

r�j

around j

~

A�

~

r�j = 0. The linear term vanishes sine we assumed the energy to

possess a minimum at this point. The quadrati term has the form

�E

pen

= �

1

2

Z

d

3

x

Æ

2

L

s

Æj

~

A(~x)�

~

r�(~x)j

2

�

�

�

�

�

j

~

A�

~

r�j=0

j

~

A(~x)�

~

r�(~x)j

2

� j

~

A�

~

r�j

2

L

3

=�

2

;

(1.6)

where L

3

is the volume of the superondutor, � is some length depending on the

material and in the seond line j

~

A�

~

r�j

2

is some average value of j

~

A(~x)�

~

r�(~x)j

2

over the region of integration. �E

pen

desribes the energy ost for allowing a

magneti �eld to penetrate the superondutor. Sine j

~

A�

~

r�j is of order BL,

B being the magneti �eld, we have

�E

pen

�

B

2

L

5

�

2

: (1.7)

On the other hand, the magneti �eld arries an energy density of order B

2

, thus

the energy ost to expel the magneti �eld from the superondutor is

�E

ex

� B

2

L

3

(1.8)
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The magneti �eld will be expelled from the superondutor, if the energy ost

to expel the weak magneti �eld from the superondutor is muh smaller

1

than

the energy ost we have to pay if the magneti �eld is to penetrate the superon-

dutor: �E

ex

� �E

pen

or in other words �� L. This means that in materials

with small � the superonduting region from whih the magneti �eld is expelled

is large and vie versa. For this reason, � is alled the penetration depth of the

superondutor.

Similarly we an see that superondutivity is destroyed, if the magneti �eld

B is larger than some ritial magneti �eld B



. The fat that some material

beomes a superondutor means that the superonduting state is energetially

favored in omparison to the normal state, say by the energy L

3

�, where � is

the energy density gap between the superonduting and normal state. As we

have argued above, the energy ost to expel a magneti �eld from the superon-

dutor is of order B

2

L

3

. If the energy ost to expel the magneti �eld is larger

than what we energetially win by favoring the superonduting state, B >

p

�,

the material will no longer remain to be a superondutor. The ritial mag-

neti �eld is then given by B



�

p

�. However, note that this is only true for

uniform superondutors. Espeially high temperature superondutors are able

to tolerate muh larger magneti �elds than one would expet from these simple

onsiderations without losing their superonduting properties. This is due to the

fat that these materials form magneti ux vorties, tiny tubes of non vanishing

magneti �elds that traverse the superondutor. By this mehanism the energy

ost for expelling the magneti �eld is redued, allowing the material to remain

superonduting for large magneti �elds (\type II superondutor").

We will now ome to the most signi�ant property of a superondutor, the

fat that the resistane equals zero. Imagine a wire made of superonduting

material with L� �, where L is the radial dimension of the wire. Bend the wire

into a losed ring. Then we know that well inside the wire j

~

A�

~

r�j vanishes. We

therefore an �nd a losed urve C (following the linear dimension of the wire)

along whih j

~

A �

~

r�j always vanishes. Now start at some point P on C with

the �elds given at this point by

~

A

P

and �

P

. Going around the ring following C

until we reah our starting point Q = P of the losed urve, the �elds are

~

A

Q

and �

Q

. Sine P and Q are equal, we should have

~

A

Q

=

~

A

P

. However, sine �(x)

is periodi in �=e, we may have �(x)

Q

= �(x)

P

+ n�=e, n 2 Z, all of whih are

equivalent. Therefore the magneti ux surrounded by our wire is

Z

F

~

B

~

n̂ dF =

I

C

~

Ad~x =

I

C

~

r� d~x = n�=e; (1.9)

where F is the area surrounded by the wire,

~

n̂ is a unit vetor perpendiular to

this area and C is the losed urve onneting P and Q = P . This result tells

us that the magneti ux is quantized. A given magneti ux with n 6= 0 is

1

\Muh" to be on the safe side with all our approximations.
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maintained by urrents owing in the superondutor. Sine there is no way to

smoothly hange the magneti ux, these urrents annot smoothly deay, whih

means that the resistane of the superondutor is zero.

The last e�et we would like to disuss ours if two piees of superonduting

material 1 and 2 are brought together. Let F be the area of the juntion. Then

the Lagrangian desribing the system near the juntion is

L

j

=

Z

F

Z

2

1

dx

~

G[

~

A(x); �

1

(x); �

2

(x)℄: (1.10)

The integral over x goes over some short line perpendiular to the surfae of the

juntion, onneting two points 1 and 2 situated inside the two di�erent materials.

�

1

and �

2

are the Goldstone modes in the two materials. If we assume that no

gradients of Goldstone �elds and no omponents of magneti �elds parallel to the

surfae of the juntion are present, we may simply write

L

j

= FG[

~

A; �

1

; �

2

℄; (1.11)

where we have absorbed the integration over x into G. Gauge invariane tells

us that G = G[�

A

� =

R

2

1

dx

~

n̂(

~

r� �

~

A)℄,

~

n̂ being a unit vetor perpendiular

to the surfae of the juntion. The integral is neessary to guarantee the orret

behavior in the ase of vanishing vetor potential. In this ase

�

A=0

� =

Z

2

1

dx

~

n̂

~

r� = �

2

� �

1

� �� (1.12)

so that we end up with a gauge invariant expression as it should be. We want to

alulate the urrent owing through the juntion. The urrent density is given

by

~

J =

ÆL

j

Æ

~

A

= G

0

(�

A

�)F

Æ�

A

�

Æ

~

A

= �G

0

(�

A

�)

~

n̂ (1.13)

and in the ase of vanishing vetor potential

~

J = �G

0

(��)

~

n̂: (1.14)

The next step is to express �� by the voltage between the two materials. For

this purpose, note that the harge density is given by

J

0

(x) =

ÆL

j

ÆA

0

(x)

= �

ÆL

j

Æ

_

�(x)

; (1.15)

so that �J

0

(x) is the anonial onjugate to

_

�(x). In the Hamiltonian formula-

tion, this yields

_

�(x) =

ÆH

j

Æ(�J

0

(x))

: (1.16)
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The voltage V (x) is nothing else than the hange of energy density per hange of

harge density, so that

_

�(x) = �V (x): (1.17)

As a side remark, note that this shows that for some superondutor in a station-

ary state for whih

_

�(x) = 0 we have V (x) = 0 whih is again the zero resistane

property of a superondutor. If we now assume that our two superondutors

are kept at a onstant voltage and the voltage di�erene is given by �V , we get

�� = ��V t + onst. (1.18)

Using this result in (1.14), we have

~

J = �G

0

(��V t+ onst)

~

n̂: (1.19)

Sine �� is periodi in �=e, this shows that the urrent osillates with frequeny

� = e j�V j =�: (1.20)

This is the Josephson e�et. It allows high preision measurements of e=~ (if we

had bothered not taking ~ to be unity), sine frequenies and voltages an be

measured very aurately.

We would like to reall that all the results we derived in this setion were solely

based on the assumption of a broken U(1)-symmetry. No expliit dynamial

model (as the Ginzburg-Landau- or BCS-Lagrangian) was needed to �nd the

main properties of a superondutor. This point of view allows us to diretly

identify regions of broken U(1)-symmetry in the Hubbard model (whih is the

dynamial model we will use) with regions of superonduting behavior in muh

the same way as we naturally identify regions of broken SU(2)-symmetry with

regions of ferromagneti or antiferromagneti behavior.

1.2 High temperature superondutors

We showed in the last setion that superonduting properties an be derived

by assuming U(1)-symmetry breaking of a gauge theory. In this setion we re-

view the history of superondutivity and espeially that of the disovery of high

temperature superondutors. For a reent and more omplete overview, see [2℄.

In 1911, Heike Kamerlingh Onnes found the �rst material exhibiting super-

ondutivity by ooling down a merury wire to 4K. Nowadays we know that

superondutivity an be observed for many ondutors and semiondutors at

low temperature. However, until 1986 the wide range of materials found to ex-

hibit superonduting properties had in ommon that their ritial temperature

T



(the maximum temperature for whih superondutivity ours) did not ex-

eed 20K. In 1986, the �rst high temperature superondutor (LaBa)

2

CuO

4

with
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a ritial temperature of 35K was found by Bednorz and M�uller [3℄. The following

years witnessed a series of reords of ritial temperatures for high temperature

superondutors. The material with the urrently highest ritial temperature

known is HgBa

2

Ca

2

Cu

3

O

8

with T



= 134K [4℄.

Many of the reently found high temperature superondutors are so alled

uprates, materials with a very anisotropi struture. In ontrast to the super-

ondutors known before and to what is usually disussed in dynamial models

like the BCS-theory, the superondutivity in uprates has d

x

2

�y

2

-wave-symmetry

[5℄. The uprates onsist of two dimensional CuO

2

-layers and La-, Sr-, Ba-atoms

between these layers. For La-interlayer atoms, one e�etively �nds one eletron

per lattie site of the CuO

2

-layers. By replaing La bei Sr or Ba, one removes

eletrons from the CuO

2

-layers, whih is alled p-doping. Most of the eletroni

dynamis is onstrained to the layers. We will exploit this fat by modeling a

high temperature superondutor by a two dimensional model, negleting the

weak oupling between di�erent layers.

Experimentally, the phase diagram of a uprate is qualitatively shown in �g.

(1.1). From inelasti neutron sattering experiments it is known that although

the antiferromagneti long range order disappears for strong doping, antiferro-

magneti utuations are present even in the superonduting domain. There are

speulations that these utuation have an important impat on the superon-

duting order. Furthermore, a whole variety of quantum utuations in di�erent

hannels that do not orrespond to any long ranged order is under disussion to

explain the phase diagram. This disussion is additionally fed by the disovery

of a so alled pseudo energy gap below some temperature T

�

. It is not known

if this pseudo energy gap is onneted to any kind of long range order (as the

energy gap � disussed in the last setion is onneted to superonduting long

range order), but it is strongly suspeted that the key to an explanation of high

temperature superondutivity lies in the understanding of this pseudo energy

gap.

All in all, at the present our understanding of the phase diagram is very

limited. We hope to onvine the reader that the bewildering variety of degrees of

freedom disussed for the uprates to explain their properties alls for a formalism

whih is able to inlude all these degrees of freedom in a transparent and uni�ed

way and that with our bosonized version of the Hubbard model we are able to

provide suh a formalism.

1.3 The Hubbard model

The Hubbard model has been proposed independently by Hubbard, Kanamori

and Gutzwiller [6℄ in 1963 as a model for strongly interating eletrons on a

lattie. There is a wide range of eletromagneti properties of ondensed matter

systems that were or are under investigation by modeling them by the Hubbard
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model: Ferromagnetism, antiferromagnetism, ondutor-insulator transitions and

| more reently | high temperature superondutivity. The large spetrum of

physial properties that are tried to be understood by means of this model is

aompanied by an equally large spetrum of di�erent alulational tehniques

used to approximately solve it. An exat solution of the model is only known

in one dimension [7℄. For two or more dimensions, in general approximations or

numerial methods have to be used. Unfortunately, the results are not stable

against hoie of the method: A lot of ontraditing results have been published

during the last deades. This is the reason why exat solutions for partiular

values of the parameters of the model play an important role as tests that any

reliable approximation has to pass.

The de�ning features of the Hubbard model are:

� The eletrons are strongly loated at the atoms of the lattie. This means

that the eletron �eld operator is given by  

i

, where i label the lattie sites,

instead of some ontinuous operator  (x).

� The Coulomb interation between eletrons at di�erent lattie sites is ne-

gleted. Any eletron interats only with a possible seond eletron at

the same lattie site. Due to the Pauli priniple, only two eletrons with

opposite spin at one lattie site are allowed.

� The eletrons have the ability to hop between lattie sites.

For our purposes, we will additionally make the following assumptions:

� The lattie is two dimensional and quadrati. This is motivated by the

atual hemial struture of the uprates that we want to provide a model

for. We ompletely neglet the weak interlayer oupling and the slight

distortion of the lattie struture away from the ideal quadrati struture.

� Eletron hopping ours only between nearest neighbor lattie sites. This

should be the dominating e�et, sine the eletron hopping amplitude be-

omes smaller with the distane of the lattie sites between whih hopping

may our. Furthermore, we assume that the hopping amplitude is the

same for all nearest neighbor pairs.

With these preliminaries in mind, we an write down the Hamiltonian for the

Hubbard model

^

H =

X

ij�

T

ij

a

+

i�

a

j�

+

1

2

U

X

i�

a

+

i�

a

i�

a

+

i(��)

a

i(��)

: (1.21)

a

+

i�

and a

i�

are the reation- and annihilation operators for an eletron at lattie

site i with spin �. The �rst term desribes the hopping between di�erent lattie
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sites. With our assumptions

T

ij

=

(

�t , if i and j are nearest neighbors

0 , else.

(1.22)

The sign in front of t is purely onventional. In partiular, we will not assume

that t > 0 (and indeed there is no simple argument to deide whih is the orret

sign of t). As we will see, we do not have to bother with this question sine all

our results only depend on t

2

. The seond term of the Hamiltonian desribes the

loal Coulomb interation between eletrons at the same lattie site. We take

U > 0 to have a repulsive interation (U > 0 raises the energy of plaing two

eletrons on the same lattie site, whih orresponds to a repulsive fore).

The parameters of the model are obviously U and t. If we deide to measure

all quantities with respet to U , the Hamiltonian may be written as

^

H=U =

X

ij�

(T

ij

=U)a

+

i�

a

j�

+

1

2

X

i�

a

+

i�

a

i�

a

+

i(��)

a

i(��)

: (1.23)

Introduing new variables that are dimensionless and measured with respet to

U , we �nally have

^

H =

X

ij�

T

ij

a

+

i�

a

j�

+

1

2

X

i�

a

+

i�

a

i�

a

+

i(��)

a

i(��)

: (1.24)

This transription is unusual in the ontext of analyzing the Hubbard model in

this form by means of the renormalization group, as in this ase one is mostly

interested in investigating the ow of the four fermion oupling onstants. How-

ever, in our new approah that we present in this work we will not onsider the

ow of the four fermion oupling, so that this transription is onvenient.

Another parameter that should be �xed for the model is the number of ele-

trons on the lattieN

e

. If the number of lattie sites is N

s

, we have 0 � N

e

� 2N

s

.

The ase N

e

= N

s

is alled half �lling and it is espeially interesting, sine exat

results are available for it (at least in the limit of large U). Furthermore, half

�lling orresponds to the undoped uprate (where beause of the hemial stru-

ture eah atom provides one free eletron to the system) whereas doping hanges

the number of eletrons away from half �lling. In ontrast to t, the �xed eletron

number does not enter diretly into the model as a parameter. We will have to

inlude it by speifying a soure for the eletron harge density

2

, dynamially

varying this soure to keep the expetation value of the harge density onstant.

The last parameter is temperature. It enters our desription when writing

down the partition funtion for the Hubbard model as a statistial quantity. We

will ome to the details.

2

This soure is nothing else than the hemial potential.
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As we mentioned before, rigorous results are important to test approxima-

tions. For a review, see e.g. [8℄. One of these exat results is the fat that the

Hubbard model has an antiferromagneti ground state at temperature T = 0,

suÆiently large U and for half �lling in agreement with what is experimentally

found for uprates (f. �g. (1.1)). For T > 0 another exat result (the Mermin-

Wagner theorem) forbids the existene of an antiferromagneti ground state in

two dimensions. This is somewhat disturbing, beause we would like to predit

antiferromagneti order exatly in the region of the phase diagram where it is for-

bidden by the theorem. A possible explanation would be to argue that although

the oupling between the layers of a uprate is weak, it annot be negleted when

applying the Mermin-Wagner theorem | for three dimensions, antiferromagneti

order is allowed by the theorem. One of the subjets of the last hapter, where

we analyze the properties of the model using our formalism, is to show that

it is possible to reonile the Mermin-Wagner theorem with the ourrene of

antiferromagneti long range order for T > 0 even in two dimensions.

Over the last years, e�orts have been made to investigate the properties of

the Hubbard model numerially by renormalization group tehniques [18℄. In all

of these approahes the ow of various four fermion interations was alulated,

on�rming the main symmetry breaking instabilities of antiferromagnetism and

d-wave superondutivity in the Hubbard model. These instabilities are inferred

from the divergene of the four fermion ouplings. The divergene of ouplings

at the onset of spontaneous symmetry breaking prevents these approahes from

following the ow into the broken phase and is one reason for onstruting the

alternative formalism presented in this work, whih is more suitable for this task.
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Chapter 2

The partition funtion of the

Hubbard model

The starting point of this work will be the partition funtion of the Hubbard

model. In this hapter the general method to derive the partition funtion one

the Hamiltonian is given in seond quantized form is presented. Muh of the

material in this hapter an be found in textbooks overing statistial �eld theory

(f. e.g. [9℄) and will be known to the experiened reader. However, the last topi

of this hapter, the formulation of the partition funtion via oherent states,

deserves some explanation. We restrit ourselves to fermioni systems.

2.1 Many partile systems

The two ingredients for a quantum theory are states and operators. We will

generalize these onepts from the one partile system to the many partile system

in this setion. First we over the generalization of state kets.

Consider a system with N idential fermioni partiles. The Hilbert spae for

one partile be H. Then the Hilbert spae for the N -partile system is given by

H

N

= H
H
 : : :
H

| {z }

N times

: (2.1)

If fj�

i

ig is an orthonormal basis for the one partile Hilbert spae H of partile

i, we an de�ne a basis for H

N

by

j�

1

: : : �

N

) = j�

1

i 
 : : :
 j�

N

i : (2.2)

Orthonormality and ompleteness diretly arry over from the one partile basis

of H to this basis of H

N

:

(�

1

: : : �

N

j �

0

1

: : : �

0

N

) = h�

1

j �

0

1

i : : : h�

N

j �

0

N

i = Æ

�

1

�

0

1

: : : Æ

�

N

�

0

N

X

�

1

:::�

N

j�

1

: : : �

N

) (�

1

: : : �

N

j =

X

�

1

j�

1

i h�

1

j : : :

X

�

N

j�

N

i h�

N

j = 1:

(2.3)

15
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For systems with idential fermions, any physial state has to be antisymmetri

under partile exhange. We therefore de�ne the totally antisymmetri basis

j�

1

: : : �

N

i =

1

p

N !

X

P

sgn(P)

�

�

�

P(1)

: : : �

P(N)

�

; (2.4)

where the sum runs over all permutations of the partiles. The salar produt

now reads

h�

1

: : : �

N

j �

0

1

: : : �

0

N

i =

X

P

sgn(P) h�

1

j �

0

P(1)

�

: : : h�

N

j �

0

P(N)

�

=

8

>

<

>

:

1 , if the permutation transferring �

1

: : : �

N

into �

0

1

: : : �

0

N

is even,

�1 , if the permutation transferring �

1

: : : �

N

into �

0

1

: : : �

0

N

is odd,

0 , else.

(2.5)

The ompleteness relation is

X

�

1

:::�

N

j�

1

: : : �

N

i h�

1

: : : �

N

j = N ! (2.6)

We now ome to the seond ingredient of a quantum theory, the operators.

Suppose we are given a basis fjU

i

ig of a one partile (labeled with i) Hilbert

spae whih onsists of eigenstates to some operator

^

U

i

^

U

i

jU

i

i = U

i

jU

i

i ; (2.7)

where U

i

is the eigenvalue to

^

U

i

. A one partile operator

^

U in the many partile

system with a general basis fj�

i

ig for the ith partile is then de�ned to be

^

U j�

1

: : : �

N

) =

N

X

i=1

^

U

i

j�

1

: : : �

N

) ; (2.8)

where

^

U

i

only ats on the j�

i

i-part of j�

1

: : : �

N

). For example for non interating

partiles, if we take

^

U to be the energy operator and fj�

i

ig to be the energy

eigenbasis for the ith partile, this means that the energy of the many partile

system is the sum of the single partile energies. The matrix elements of a one

partile operator are given by

(�

1

: : : �

N

j

^

U j�

1

: : : �

N

) =

N

X

i=1

Y

k 6=i

h�

k

j �

k

i h�

i

j

^

U j�

i

i : (2.9)

Similarly, we de�ne the two partile operator

^

V by

^

V j�

1

: : : �

N

) =

1

2

X

1�i;j�N;i 6=j

^

V

ij

j�

1

: : : �

N

) (2.10)
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with the matrix elements

(�

1

: : : �

N

j

^

V j�

1

: : : �

N

) =

1

2

X

i 6=j

Y

k 6=i;j

h�

k

j �

k

i (�

i

�

j

j

^

V j�

i

�

j

) : (2.11)

2.2 Creation and annihilation operators

Up to now we onsidered N -partile systems, where N was some �xed number.

In quantum �eld theory however, the number of partiles may hange. Instead of

an N -partile Hilbert spae H

N

the underlying spae is the Fok spae F , whih

is the diret sum of all N -partile Hilbert spaes

F =

1

M

N=0

H

N

: (2.12)

It is very onvenient to introdue reation and annihilation operators on this Fok

spae and to express states and operators by means of these. Sine basis kets

belonging to Hilbert spaes with di�erent N are orthogonal, the ompleteness

relation simply reads

j0i h0j+

1

X

N=1

1

N !

X

�

1

:::�

N

j�

1

: : : �

N

i h�

1

: : : �

N

j = 1: (2.13)

The reation operator a

+

�

is de�ned by

a

+

�

j�

1

: : : �

N

i = j��

1

: : : �

N

i ; (2.14)

transforming a state in H

N

to one in H

N+1

. Remember that we only treat the

fermioni ase. For bosoni systems, additional fators appear in this de�nition

to guarantee normalization. As a onsequene, any state may be written as

j�

1

: : : �

N

i = a

+

�

1

: : : a

+

�

N

j0i ; (2.15)

where j0i is the vauum state. Using (2.4) and (2.14), we �nd the antiommuta-

tion relation

�

a

+

�

; a

+

�

	

= 0: (2.16)

The annihilation operator a

�

is de�ned by

a

�

= (a

+

�

)

y

: (2.17)

From (2.16) we immediately �nd

fa

�

; a

�

g = 0: (2.18)
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By using (2.13), (2.17), (2.14) and (2.5) we show that

a

�

j�

1

: : : �

N

i =

(

(�1)

(i�1)

j�

1

: : : �

i�1

�

i+1

: : : �

N

i , if the ith partile is in state j�i;

0 , if no partile is in state j�i.

(2.19)

(2.14) and (2.19) yield the last antiommutation relation

�

a

�

; a

+

�

	

= Æ

��

: (2.20)

In the same way we an show that the operator n̂

�

= a

+

�

a

�

ounts the number of

partiles in the state �:

n̂

�

j�

1

: : : �

N

i =

N

X

i=1

Æ

��

i

j�

1

: : : �

N

i : (2.21)

Of ourse for fermioni systems, this number is either 1 or 0. The operator

^

N =

X

�

n̂

�

(2.22)

ounts the total number of partiles in the system.

Note that basis hanges from a one partile basis fj�ig to another one partile

basis fj~�ig are easily implemented on the reation and annihilation operators.

From

j~�i =

X

�

h�j ~�i j�i (2.23)

we �nd

a

+

~�

=

X

�

h�j ~�i a

+

�

;

a

~�

=

X

�

h~�j �i a

�

:

(2.24)

One and two partile operators are usually expressed by reation and annihi-

lation operators. For a one partile operator

^

U , we have with (2.4) and (2.9)

h�

1

: : : �

N

j

^

U j�

1

: : : �

N

i =

N

X

i=1

U

i

h�

1

: : : �

N

j �

1

: : : �

N

i ; (2.25)

where we have assumed that fj�

i

ig is an eigenbasis of

^

U

i

. By using the identity

N

X

i=1

U

i

=

X

�

U

�

n

�

; (2.26)
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where the sum over � goes over all possible one partile states and n

�

is the

number of partiles present in the state �, we onlude that

^

U =

X

�

U

�

a

+

�

a

�

: (2.27)

In a general basis (not neessarily an eigenbasis of

^

U

i

) we �nd by using (2.24)

^

U =

X

��

U

��

a

+

�

a

�

(2.28)

with �, � labeling basis kets of the general basis and

U

��

=

X

�

h�j �iU

�

h�j �i : (2.29)

In muh the same way, but somewhat more involved, we an repeat these steps

to derive the desired form of the two partile operator

^

V =

1

2

X

����

V

��;��

a

+

�

a

+

�

a

�

a

�

: (2.30)

Realling the Hamiltonian of the Hubbard model (1.21), we do now under-

stand the spei� form of the terms. The hopping term desribes the one partile

hopping from one lattie site to another, and t is a matrix element giving the

transition amplitude. The seond term is a two partile Coulomb interation term

(therefore two reation and annihilation operators) and U desribes the strength

of this interation.

2.3 Coherent states

Up to now, most of our results do not depend on the hoie of the basis. We

will exploit this fat by speifying a very speial basis that is useful to derive

the partition funtion in the next setion. This basis is omposed of oherent

state kets. A oherent state j i is de�ned to be an eigenstate of the annihilation

operator:

a

�

j i =  

�

j i : (2.31)

 

�

is the eigenvalue to the annihilation operator a

�

. Note that sine the annihi-

lation operators for fermions antiommute, the same is true for the eigenvalues.

This means that the  

�

are Grassmann numbers. If j i is an eigenket to a

�

, then

h j is an eigenbra to a

+

�

. We all the orresponding eigenvalue  

�

�

:

h j a

+

�

= h j 

�

�

: (2.32)
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Of ourse, the  

�

�

are also Grassmann numbers, sine the reation operators for

fermions antiommute. Additionally, we demand the properties

f 

�

;  

�

�

g = 0; f 

�

; a

�

g = 0: (2.33)

The full set f 

�

;  

�

�

g ontains the elements of the Grassmann algebra of all eigen-

values of oherent states. Note that not only the oherent states j i no longer

orrespond to states of some de�nite partile number, but also these states do

not belong to the Fok spae introdued in the last setion. Instead, a oherent

state is a superposition of di�erent kets from this Fok spae with Grassmann

valued oeÆients.

We an now proeed to onstrut oherent states from the vauum state, al-

ulating salar produts, ompleteness relations and operator expetation values

using oherent states as we did in the last setion for ordinary Fok spae states.

Coherent state kets an be onstruted from the vauum ket by

j i =

Y

�

(1�  

�

a

+

�

) j0i : (2.34)

To prove that this is onsistent, apply an annihilation operator to both sides:

a

�

j i = a

�

Y

�

(1�  

�

a

+

�

) j0i

=

Y

� 6=�

(1�  

�

a

+

�

)a

�

(1�  

�

a

+

�

) j0i

=

Y

� 6=�

(1�  

�

a

+

�

) 

�

(1�  

�

a

+

�

) j0i

=  

�

Y

�

(1�  

�

a

+

�

) j0i

=  

�

j i :

(2.35)

In the same way, we an show that we an onstrut oherent state bras from the

vauum bra by

h j = h0j

Y

�

(1 +  

�

�

a

�

): (2.36)

It is now straightforward to alulate the salar produt of two oherent states

h j  

0

i =

Y

�

(1 +  

�

�

 

0

�

): (2.37)

The proof of the ompleteness relation

Z

Y

�

d 

�

�

d 

�

Y

�

(1�  

�

�

 

�

) j i h j = 1 (2.38)
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is equally simple, but more lengthy. One proeeds by taking the matrix elements

of both sides with respet to two N -partile states in the ordinary Fok spae,

expressing all states by annihilation and reation operators applied to the vauum

state. The integral is the usual one for Grassmann numbers

Z

d 1 =

Z

d 

�

1 = 0;

Z

d  =

Z

d 

�

 

�

= 1; (2.39)

and for multiple integrals the innermost integration is performed �rst.

For the partition funtion we will need the trae of an operator in oherent

state representation. This trae is given by

TrA =

Z

Y

�

d 

�

�

d 

�

Y

�

(1�  

�

�

 

�

) h� jA j i : (2.40)

To prove this, start with the trae in some arbitrary orthonormal basis, insert the

ompleteness relation for oherent states and use the ompleteness of the original

basis. One also needs that

Z

d 

�

d h�j  i h j �i =

Z

d 

�

d h� j �i h�j  i : (2.41)

The minus sign omes from the exhange of the integration variables hidden in

the oherent state kets and bras (f. (2.34) and (2.36)).

The last equation we will need in the next setion is the expetation value of

a normal ordered operator A(a

+

�

; a

�

)

h jA(a

+

�

; a

�

) j 

0

i =

Y

�

(1 +  

�

�

 

0

�

)A( 

�

�

;  

0

�

): (2.42)

It follows immediately from the normal ordered form of A and (2.37).

2.4 The partition funtion

The grand anonial partition funtion is

Z = Tr e

��(

^

H��

^

N)

: (2.43)

� is the inverse temperature � = 1=T , � is the hemial potential,

^

N is the total

number operator introdued in (2.22)

^

N =

X

�

a

+

�

a

�

; (2.44)

and

^

H is some Hamiltonian expressed by reation and annihilation operators.

Again, we work on a lattie with sites labeled by i. With � being the spin-3-

omponent of the eletron (� 2 f"; #g), we use the olletive index � with � = i�.
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We assume

^

H to be given in normal ordered form. In partiular, for the Hubbard

model we have

^

H =

X

ij�

T

ij

a

+

i�

a

j�

�

1

2

X

i�

a

+

i�

a

+

i(��)

a

i�

a

i(��)

: (2.45)

From (2.40) we have

1

Z =

Z

Y

�

d 

�

�

d 

�

e

�

P



 

�



 



h� j e

��(

^

H��

^

N)

j i : (2.46)

We annot apply (2.42) diretly, sine the exponential is not normal ordered.

To ure this problem, we proeed as usual in the derivation of path integral

expressions by dividing � intoM small \time slies" �, so that � =M� and write

e

��(

^

H��

^

N)

= e

��(

^

H��

^

N)

� � � e

��(

^

H��

^

N)

| {z }

M times

: (2.47)

Between all of these fator we insert the ompleteness relation (2.38) in the form

Z

Y

�

0

d 

�

�

0

;k

d 

�

0

;k

e

�

P



0

 

�



0

;k

 



0

;k

j 

k

i h 

k

j = 1; (2.48)

where k = 1; : : : ;M � 1 labels the inserted states. By setting  

M

= � ,  

0

=  ,

 

�

M

= � 

�

and  

�

0

=  

�

, we have

Z =

Z

Y

�

d 

�

�

d 

�

e

�

P



 

�



 



Z

 

M�1

Y

k=1

Y

�

0

d 

�

�

0

;k

d 

�

0

;k

!

 

M�1

Y

k=1

e

�

P



0

 

�



0

;k

 



0

;k

!

M

Y

k=1

h 

k

j e

��(

^

H��

^

N)

j 

k�1

i

=

Z

 

M

Y

k=1

Y

�

d 

�

�;k

d 

�;k

!

e

�

P



P

M

k=1

 

�

;k

 

;k

 

M

Y

k=1

h 

k

j e

��(

^

H��

^

N)

j 

k�1

i

!

:

(2.49)

Sine

^

H and

^

N are normal ordered, the same is true for e

��(

^

H��

^

N)

, if � is small.

Then we an use (2.42) to alulate the expetation value

h 

k

j e

��(

^

H��

^

N)

j 

k�1

i = e

P

�

 

�

�;k

 

�;k�1

e

��(H( 

�

�;k

; 

�;k�1

)��

P

�

 

�

�;k

 

�;k�1

)

; (2.50)

where

H( 

�

�;k

;  

�;k�1

) =

^

H(a

+

�

!  

�

�;k

; a

�

!  

�;k�1

): (2.51)

1

Reall that for Grassmann numbers 1 �

P



 

�



 



= exp(�

P



 

�



 



). The exponential

notation is more onvenient in the derivation of the partition funtion.
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Inserting this result in (2.49) yields

Z =

Z

 

M

Y

k=1

Y

�

d 

�

�;k

d 

�;k

!

exp

 

��

M

X

k=1

 

X

�

 

�

�;k

�

 

�;k

�  

�;k�1

�

� � 

�;k�1

�

+H( 

�

�;k

;  

�;k�1

)

!!

:

(2.52)

Taking the ontinuum limit, we get a funtional integral expression for the par-

tition funtion:

Z =

Z

 

�

(�)=� 

�

(0);  

�

�

(�)=� 

�

�

(0)

D 

�

�

(�)D 

�

(�)

exp

 

�

Z

�

0

d�

 

X

�

 

�

�

(�)

�

�

��

� �

�

 

�

(�) +H( 

�

�

(�);  

�

(�))

!!

:

(2.53)

Partiularly for the Hubbard model, we have

Z =

Z

 

�

(�)=� 

�

(0);  

�

�

(�)=� 

�

�

(0)

D 

�

�

(�)D 

�

(�)

exp

�

�

Z

�

0

d�

�

X

ij�

 

�

i�

(�)

�

�

��

� �+ T

�

ij

 

j�

(�)

�

1

2

X

i�

 

�

i�

(�) 

�

i(��)

(�) 

i�

(�) 

i(��)

(�)

��

;

(2.54)

where

�

�

��

� �

�

ij

=

�

�

��

� �

�

Æ

ij

: (2.55)

Note that the \derivative"

�

��

is a purely formal transription of the disrete

version

� 

�

(�)

��

= lim

�!0

 

�

(�)�  

�

(� � �)

�

(2.56)

sine the di�erene between  

�;k

and  

�;k�1

(whih are Grassmann valued) is not

\small" in any sense. When we have to atually alulate suh a \derivative",

we will return to the disrete version.

A remarkable feature of the path integral expression for the partition funtion

is the antiperiodi boundary ondition  

�

(�) = � 

�

(0). If we trae bak our

steps, we see that the anti-periodiity is aused by the minus sign in h� j in eq.

(2.40) that followed from the fat that the  

�

are Grassmann valued. Therefore

the anti-periodiity is typial for fermioni systems. If we repeat all the steps in

this hapter for a bosoni system, we would �nd periodi boundary onditions
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for the funtional integral. The anti-periodiity has important impliations for

the properties of a fermioni system and we will disuss it in more detail in the

last setion of this hapter.

Finally, we lean up our notation by de�ning spinors

 

i

(�) =

�

 

i"

(�)

 

i#

(�)

�

;  

y

i

(�) =

�

 

�

i"

(�);  

�

i#

(�)

�

: (2.57)

Using

X

�

 

�

i�

(�) 

�

i(��)

(�) 

i�

(�) 

i(��)

(�) = � 

y

i

(�) 

i

(�) 

y

i

(�) 

i

(�); (2.58)

the partition funtion beomes

Z =

Z

 

�

(�)=� 

�

(0);  

�

�

(�)=� 

�

�

(0)

D 

�

�

(�)D 

�

(�)

exp

�

�

Z

�

0

d�

�

X

ij

 

y

i

(�)

�

�

��

� �+ T

�

ij

 

j

(�)

+

1

2

X

i

 

y

i

(�) 

i

(�) 

y

i

(�) 

i

(�)

��

:

(2.59)

2.5 Matsubara sums

The anti-periodiity onditions  

�

(0) = � 

�

(�) and  

�

�

(0) = � 

�

�

(�) tell us that

 

�

(�) and  

�

�

(�) may be expanded as a series

 

�

(�) =

1

X

n=�1

T 

�;n

exp(i(2n+ 1)�T�);

 

�

�

(�) =

1

X

n=�1

T 

�

�;n

exp(�i(2n + 1)�T�)

(2.60)

with � -independent oeÆients, where T = 1=� is the temperature and the fator

T in front of the expansion oeÆients is onventional. These sums are alled

Matsubara sums and one usually introdues the Matsubara frequenies

!

F

n

= (2n+ 1)�T (2.61)

so that

 

�

(�) =

1

X

n=�1

T 

�;n

exp(i!

F

n

�);

 

�

�

(�) =

1

X

n=�1

T 

�

�;n

exp(�i!

F

n

�):

(2.62)
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The index F for the Matsubara frequenies indiates that these are fermioni

frequenies. In the bosoni ase, we would have had periodi boundary onditions

for the funtional integral and a Matsubara sum of the same form as for fermions,

but with !

F

n

replaed by

!

B

n

= 2n�T: (2.63)

One remarkable di�erene between fermioni and bosoni system is that for T > 0

we have !

F

n

> 0 8n, whih is not the ase for !

B

n

, sine !

B

n

= 0 if n = 0. We will

use this positivity property when speifying a regularization sheme for fermioni

propagators.

By using

Z

�

0

d� exp(�i(!

F

n

� !

F

m

)�) = �Æ

nm

(2.64)

and

Z

�

0

 

�

�

(�)

�

��

 

�

(�) = lim

�!0

Z

�

0

d�  

�

�

(�)

 

�

(�)�  

�

(� � �)

�

= lim

�!0

1

X

n;m=�1

T

2

 

�

�;n

 

�;m

Z

�

0

d� e

�i(!

F

n

�!

F

m

)�

1� exp(�i!

F

m

�)

�

=

1

X

n=�1

T 

�

�;n

i!

F

n

 

�;n

;

(2.65)

we �nd for the partition funtion of the Hubbard model

Z =

Z

 

�

(�)=� 

�

(0);  

�

�

(�)=� 

�

�

(0)

D 

�

�

(�)D 

�
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(2.66)

One important feature of this expression is the behavior in the high and

low temperature limit. First note that the Matsubara frequeny ats as some

kind of mass term in the fermioni propagator of this theory. The mass term

is proportional to temperature. This means that in the high temperature limit

modes with large n are suppressed. The dynamis of the system is then dominated

by the Matsubara modes with n = 0 and n = �1, whih yield !

F

n

= ��T .

For our model, it follows that the system is ompletely two dimensional. As

opposed to this, in the low temperature limit the modes tend to form a ontinuum

around the zero mode. In this ase, the Matsubara sum an be approximately

replaed by an integral. This renders the system e�etively three dimensional.
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The dimensional derease from T = 0 to T > 0 is alled dimensional redution and

has an important impat on the qualitative properties of the system. For example,

the Mermin-Wagner theorem shows that in two dimensions no antiferromagneti

long range order an exist. However, in three dimensions this is not true. Beause

of dimensional redution, this means that for T = 0 antiferromagneti long range

order is allowed in our two dimensional model, and indeed there are rigorous

results proving the existene of an antiferromagneti phase for zero temperature

in the two dimensional Hubbard model [8℄.



Chapter 3

Partial bosonization

The partition funtion of the Hubbard model desribes a purely fermioni model.

Information about spontaneously broken symmetries is enoded in the renormal-

ization group ow of the quarti ouplings. In priniple it is possible to extrat

this information by analyzing the size and momentum struture of these quarti

ouplings. However, the momentum dependene not only reets interesting de-

grees of freedom, but also arises from ompliated short range utuations, whih

we would like to ignore in a simple trunation sheme for solving the renormaliza-

tion group equations. The aim of this hapter is to expliitly extrat interesting

quarti terms and the relevant momentum struture of their ouplings by arti�-

ially introduing bosoni \partiles" orresponding to them. We all this new

model the \olored Hubbard model". The momentum dependene of the ou-

plings in this new theory no longer ontains essential information about the long

range behavior of the system, and we will neglet this momentum dependene

in alulations. We will introdue these approximations later on; in this hapter

everything is exat, and the \olored Hubbard model" as introdued here is an

equivalent transription of the original Hubbard model.

3.1 The Fermi surfae

To gain a better understanding of the terms appearing in the partition funtion

of the Hubbard model, onsider the theory with no Coulomb interation and at

T � 1

1

. In this ase, the ation of the simpli�ed model an be read o� from

(2.66)

S �

1

X

n=�1

T

X

xy

 

y

xn

(��+ T )

xy

 

yn

; (3.1)

1

It is perfetly possible to atually set T = 0. In this ase the Matsubara sum in (3.1) takes

the form of an integral. However, we will never need this transription expliitly, so that we do

not bother to write it down here. For our purpose, it suÆes to think of T to be in�nitesimally

small.

27
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Figure 3.1: Equipotential lines of the funtion � os q

1

�os q

2

. The lines orre-

spond to states of the same energy. This plot may be read as a plot of the Fermi

energies for di�erent values of the hemial potential.

where we negleted i!

F

n

whih is / T . We replaed the abstrat index i for the

lattie sites by a two dimensional vetor x labeling the lattie sites by two integer

values for the two spatial diretions. By Fourier transforming the �elds

 

xn

=

Z

�

��

d

2

q

(2�)

2

 

n

(q) exp(ixq);

 

y

xn

=

Z

�

��

d

2

q

(2�)

2

 

y

n

(q) exp(�ixq)

(3.2)

we �nd

S =

1

X

n=�1

T

Z

�

��

d

2

q

(2�)

2

 

y

n

(q) (��� 2t(os q

1

+ os q

2

)) 

n

(q): (3.3)

For T � 1, we know that the hemial potential is equal to the Fermi energy

� = E

F

and all energy states are �lled up to this energy. The seond term in

(3.3) desribes the one partile energies E(q) (note that the model has a simple

one band struture). We onlude that an eletron state with energy E(q) is

oupied, if �2t(os q

1

+os q

2

) < �. A ontour plot of E(q) is given in �g. (3.1).

The equipotential line of quadrati shape orresponds to �2t(os q

1

+os q

2

) = 0.

As is evident from the plot, this is nothing else than the half �lling ase. We
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therefore identify � = 0 with half �lling. � 6= 0 desribes the doping of the

system away from the undoped half �lling state.

3.2 The olored Hubbard model

The starting point of the transription will be

Z =

Z

^
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(�)=�

^

 

�

(0);

^
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(�)=�

^
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(0)

D

^

 

�

�

(�)D
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(�) exp (�S
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oup
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j

)

(3.4)

with

S
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=
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T
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xn
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xn
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:

(3.5)

We have introdued a \hat" ^ to indiate �elds. Symbols without ^ will denote

expetation values of these �elds. Additionally, we have introdued a soure term

S

j

for fermion �elds and fermion bilinears to be able to use Z as a generating

funtional. We will speify S

j

later when we need it. Also note that the term

involving the hemial potential (whih has the form of a soure term) is now

inluded in S

j

, serving as a soure for the harge density. It is quite natural to

do so, sine we know that the harge density is essentially ontrolled by doping,

rendering it a quantity ontrolled by external onditions on the system. The �rst

step in the bosonization proedure is to realize that the most interesting degrees

of freedom of the Hubbard model have to be implemented non loally. This means

that if we want to deide whether a system exhibits e.g. antiferromagnetism, we

have to ompare eletron spins at di�erent lattie sites. In the same way, we are

not able to deide whether a system exhibits s- or d-wave superondutivity, if we

do not take into aount the relative sign of eletron pair expetation values at

di�erent lattie site pairs. The idea to deal with this ompliation is to introdue

a oarse lattie whih onsists of plaquettes. Eah plaquette ontains four sites

of the original lattie (f. �g. 3.2). The plaquettes | or equivalently the lattie

sites of the oarse lattie | are labeled by a two dimensional vetor n, whih

takes integer values. The lattie sites belonging to a given plaquette are numbered

lokwise. We will all these four labels olors. Instead of

^

 

xn

, where x labels

the sites of the original lattie, we have now

^

 

nan

, where n labels the sites of the

oarse lattie, a is the olor label with a 2 f1; 2; 3; 4g and in both ases n is the

Matsubara mode. Expliitly, we have

^
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=
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(3.6)
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Figure 3.2: Labeling of the sites in the olored Hubbard model. The labels of

the original model are given in parentheses. The oarse lattie sites of the olored

model are indiated by a �.

with n = x=2, x = (x

1

; x

2

).

The advantage of this transription is that we an now write down fermion

bilinears desribing antiferromagneti or superonduting behavior that are loal

on the oarse lattie. Before we do so, we repeat the disussion of se. 3.1 in this

new language.

3.2.1 Fourier transforms

In a �rst step, we de�ne Fourier transforms of the spinors as we did in se. 3.1.

The naive way is to simply de�ne

^

 

nan

=

Z

�

��

d

2

q

(2�)

2
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an

(q) exp(inq);

^

 

y

nan
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��

d

2

q

(2�)

2

^

 

y

an

(q) exp(�inq)

(3.7)

in muh the same way as before. However, in this ase phase fators arise in

the Fourier transformed expressions in the ation, sine we negleted the spatial

dependene enoded in the olor index in these transforms. The elegant way to
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perform the Fourier transforms is to de�ne
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(3.8)

with

z

1

= (�1=4; 1=4) z

2

= (1=4; 1=4)

z

4

= (�1=4;�1=4) z

3

= (1=4;�1=4):

(3.9)

Then no phase fators arise in the Fourier transformed expressions of the ation.

Note that the phase fators in this de�nition are no longer periodi in 2�, whih

means that the same is true for

^

 

an

(q), sine the integrand must be periodi in

2� as a whole.

This is a good plae to lean up our notation with regard to Fourier trans-

forms. We de�ne

Q = (!

n

; q); X = (�;n);

QX = !
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� + nq;
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(3.10)

Note that Æ(q�q

0

) is periodi in 2� and that Æ(�) is periodi in � for bosons and

antiperiodi for fermions. The de�nitions hold for !

n

in the bosoni (!

n

= !

B

n

)

as well as in the fermioni (!

n

= !

F

n

) ase. We an now write

^

 

nan

=

^

 

a

(X),

^

 

an

(q) =

^
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(Q) and similarly for
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.

With these abbreviations, the omplete Fourier transforms read
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(Q) exp(�i(QX + z
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q)):

(3.11)

Furthermore, we will often use the notation

^

 (Q) for the vetor with ompo-

nents

^

 

a

(Q). Note that sine the

^

 

a

(Q) themselves are two dimensional spinors,

this means that the objets

^

 (Q) live in the produt spae of spin and olor and

have 8 omponents altogether.

Another notation we will use onerns in�nite sums like

P

X

1. Note that

(mathematiians hopefully forgive this)

X

X

=

X

Q

X

X

Æ(Q) exp(iQX) =

X

Q

Æ(Q)Æ(Q) = Æ(Q = 0): (3.12)
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We de�ne

V =

X

X

= Æ(Q = 0); (3.13)

whih an be interpreted as the two dimensional volume of the system (that we

assume to be large) divided by temperature.

3.2.2 The Fermi surfae

We an now repeat the alulation of se. 3.1, taking U = 0, T � 1 and all

soures exept � equal to zero, so that we end up with

S = S

F

+ S

oup

+ S

j

=

X

Q

^

 

y

(Q) (��� 2t (os(q

1

=2)A

1

+ os(q

2

=2)B

1

))

^

 (Q):

(3.14)

A

1

and B

1

are 4� 4-matries in olor spae and are de�ned in the appendix A.2.

This result should be ompared to (3.3). The �rst di�erene to be observed is that

the osines are no longer periodi in 2�, but in 4�, whih is a diret onsequene

of our Fourier transform. This means that all the osines are positive in the

interval of integration.

To see how the Fermi surfae emerges in this piture, we temporarily swith to

�elds

^

	(Q), for whih the fermioni propagator term in (3.14) beomes diagonal.

For these �elds, the ation reads

S =

X

Q
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y

(Q)D
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	(Q) (3.15)
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) 0
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C

C

A

;

(3.16)



i

= os(q

i

=2):

We an immediately read o� the (ross shaped) Fermi surfae for half �lling

from this result (�g. 3.3).

The reason why we are so interested in the shape of the Fermi surfae is the

following. Note that the matrix D is nothing else than the propagator matrix

of four distint fermion modes (keep in mind that the hemial potential will be

absorbed in a soure term and is not regarded as part of the propagator). Zeroes

of the propagator are a well known problem in any quantum �eld theory alula-

tion for massless partiles, sine they lead to divergenies. These zeroes appear
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Figure 3.3: The Fermi surfae for half �lling in the Hubbard (dashed line) and

the olored Hubbard model (full line).
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in our ase on the Fermi surfae. The usual way to deal with the divergenies

is to de�ne a regularization sheme. This is not that diÆult in simple theories

where the propagator (in a Eulidean formulation) is proportional to the squared

momentum | any positive mass like term added to the propagator will ure the

divergeny problem. However, given the ompliated (ross shaped) momentum

struture of the Fermi surfae we fae in our formalism, momentum uto�s be-

ome tedious to de�ne and to work with. We will pursue a di�erent way by noting

that if we do not neglet i!

F

n

in the ation above, we end up with a propagator

of the form i!

F

n

+D, whih does not vanish for all T > 0. We exploit this fat by

using a regularization sheme that uses temperature as a owing uto� funtion.

By de�ning some (unphysial) temperature T

k

as a funtion of a parameter k,

lim

k!1

T

k

=1, lim

k!0

T

k

= T , we an lower T

k

starting with some large k and

letting k ! 0 in a ontrolled way until we reah the physial temperature T of the

system. The ow of the system with k will be desribed by exat renormalization

group equations. We will ome to this later.

Another aspet onerns the motivation of approximations. For the bosoni

propagators (introdued in the next hapter), we will be able to expand trigono-

metri funtions to quadrati order. This is very onvenient, sine one ahieves

formal agreement with known theories (e.g. the propagator of a boson 2(2 �

os(q

1

)� os(q

2

)) beomes � q

2

in quadrati order). However, it is not possible,

even in priniple, to expand the trigonometri funtions in the fermioni ase for

low temperature without loosing signi�ant information, sine the dynamis is

dominated by modes with energy lose to the Fermi surfae, not just by modes

with zero momentum. The main ompliations of alulations we are about to at-

tak are that we are fored to keep these trigonometri funtions in the fermioni

setor.

3.2.3 Symmetries

In this setion we disuss the various symmetries of the olored Hubbard model.

As already disussed in the introdution, we have the U(1)-symmetry

 (X)! exp(i�) (X);  

y

(X)!  

y

(X) exp(�i�) (3.18)

and the SU(2)-symmetry

 (X)! exp(i~�

~

�) (X);  

y

(X)!  

y

(X) exp(�i~�

~

�): (3.19)

Note that now we only onsider global U(1)-transformations, sine no gauge

bosons are present in our theory (the reason being that these are \integrated

out" under the assumption of negligible interation of eletrons at di�erent lattie

sites, giving rise to the Hubbard model as an e�etive purely fermioni model).

Furthermore, the model possesses the symmetries of the underlying lattie.

These may be omposed from translations, rotations and reetions. We restrit
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ourselves to the translation T

x

by one lattie site in the positive 1-diretion,

the ounterlokwise rotation R by 90

Æ

around the origin (at the enter of a

plaquette!) and the reetion I at the the 2-axis ontaining the origin. All

other lattie symmetries an be built up by produts of these three symmetries

(for example, the translation T

y

along the 2-diretion an be omposed by a

translation T

x

and a rotation R).

In position spae, these symmetries at as
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(3.20)

The same applies for

^

 

�

. Fourier transforming yields
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(3.21)

Again A

1

is one of the matries de�ned in the appendix A.2.
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It is interesting to onsider a transformation like

L

A

1

:

(

^

 (Q)! A

1

^

 (Q)

^

 

y

(Q)!

^

 

y

(Q)A

1

(3.22)

whih is also a symmetry of the ation. This transformation does not possess

an interpretation in position spae by means of lattie symmetries as one would

expet. Instead, it reets our freedom in hoosing how to label the sites. For

example, formally translating this transformation bak to position spae, we end

up with e.g.  

(n

1

;n

2

)1n

!  

(n

1

�1=2;n

2

)2n

. We may read this as the identity trans-

formation, written by merely hoosing another origin of the oarse lattie, shifted

one lattie site of the original lattie to the left. This lass of symmetries is there-

fore new in the olored formulation and orresponds to the unity transformation

in the original theory. We all this kind of symmetry relabeling symmetry. In the

same way we an de�ne the relabeling symmetry transformations L

A

0

, L

B

0

and

L

B

1

, whih are derived from L

A

1

by replaing the matrix A

1

by A

0

, B

0

and B

1

respetively. These four relabeling symmetries orrespond to the four di�erent

ways to assign olor labels by hoosing a di�erent origin of the oarse lattie. As

in the ase of L

A

1

we see that by multiplying with appropriate momentum phase

fators these additional relabeling symmetries orrespond to a translation in the

2-diretion for L

B

1

, a translation along the diagonal onneting olor sites 1 and

3 for L

B

0

and no translation at all for L

A

0

.

The last symmetries we mention are reminisent of time reversal symmetries.

They are realized by

^

 

n

(q)!M

i

^

 

�n

(q);

^

 

�

n

(q)! �M

i

^

 

�

�n

(q); �! ��; (3.23)

where M

i

2 fA

2

; B

2

; B

3

g and are denoted by T

A

2

, T

B

2

and T

B

3

.

3.3 Partial bosonization

3.3.1 De�nitions of fermion bilinears

Using the olor notation, we are now able to de�ne fermion bilinears orrespond-

ing to interesting degrees of freedom in a simple way. In partiular, we want to

inlude bilinears desribing the harge density, antiferromagneti order as well

as s- and d-wave superondutivity. After de�ning these bilinears, we try to de-

ompose the four fermion ation of the olored Hubbard model with respet to

these bilinears. We see that this deomposition is not possible until a whole set

of additional bilinears is added. We de�ne this set in this setion and disuss the

deomposition of the four fermion interation of the Hubbard model with respet

to this set in the next setion.



3.3. Partial bosonization 37

We start by de�ning

~�

ab

(X) =

^

 

y

b

(X)

^
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(X)

~

~'
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(X) =  
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b

(X)~�
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(X) = �

^

 

y
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(X)i�

2

^

 

�

a

(X):

(3.24)

The operators ~�

ab

(X) are unharged spin singlet operators,

~

~'

ab

(X) unharged

spin triplet operators and ~�

ab

(X), ~�

�

ab

(X) harged spin singlet operators. Note

that ~�

ab

(X) = ~�

ba

(X) and ~�

�

ab

(X) = ~�

�

ba

(X). For sake of simpliity, we do not

take into aount harged operators in the spin triplet.

Suppressing the X-dependene, we now de�ne the omposite bilinears
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(3.25)

The bilinears that we wanted to inlude in our formalism are the harge

density ~�, the antiferromagneti spin density

~

~a, the superonduting s-wave ~s

and d

x

2

�y

2

-wave

~

d. In order to make the before mentioned deomposition of the

four fermion interation into these bilinears possible, the rest of the bilinears has

to be additionally inluded. This set is minimal and annot be further redued.

However, by onentrating on ~�,

~

~a and

~

d (that is, dropping ~s from the list of

bilinears we want to inlude), we may redue this set by dropping ~s, ~ and

~

t

x=y

.

Many of the bilinears we onsidered only in order to be able to perform the

deomposition in the next setion have a simple physial interpretation. For

example

~

~m desribes the ferromagneti spin density, and the various harged

omposite bilinears orrespond to d

xy

-waves (~), extended s-wave (~e) or p-waves

(~v

x=y

).
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3.3.2 Deomposition of the four fermion interation

The four fermion interation in the olored Hubbard model reads

S
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:

(3.26)

S

oup

may be deomposed into our fermion bilinears by use of the identities
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(3.27)

To prove this, note that
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�
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� 2~�
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:

(3.28)

The lue of (3.27) is that this list of possibilities to write down ombinations of

fermion bilinears to either give a multiple of

P

a

~�

2

aa

or 0 is exhaustive. No other

independent ombinations of fermion bilinears an be found to give

P

a

~�

2

aa

or 0.

3.3.3 The partial bosonization

Consider the fermioni partition funtion of the olored Hubbard model
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(3.29)
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We already know the kineti and the oupling term. Additionally, now we have

spei�ed an expliit form of the soure term. In this term, we inluded soures

l
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= l
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(3.30)

for all the bilinears introdued in (3.25) with

~w



2 f~�; ~p; ~q
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;

~

~m;
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~a;
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~g
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�

2 f~s; ~;

~
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; ~e;

~

d; ~v

x=y

g

(3.31)

so that ~w



denote the unharged and ~u

�

the harged bilinears. We also added

terms quadrati in the soures. Sine physial properties are not a�eted by these

quadrati terms (whih only give rise to a �eld independent fator to the partition

funtion), we have the freedom to do so. Note that the hemial potential is now

part of one of the soures, as we disussed at the beginning of setion 3.2. In

the ase of vanishing soures exept for the hemial potential �, we demand the

only term to survive to be the one linear in �. This demand gives rise to the

quadrati term in � we added (and wrote as an exponential fator in front of

the partition funtion) to anel the ontribution quadrati in � from the term

2�

2

h

2



l



(X)

2

. The quantities h

�

, h



are arbitrary at the moment. We will ome to

them soon. Additionally, S

j

ontains a soure term S

F

j

for the fermions.

We de�ne the partially bosonized partition funtion by
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(3.32)

In this partition funtion, we have a fermioni kineti term S

F

whih oinides

with the orresponding term in the Hubbard model. In the remaining terms we

introdued bosoni �elds û, û

�

and ŵ



, one for eah fermioni bilinear ~u, ~u

�

and

~w



. S

B

is a mass term for these �elds. S

Y

desribes a Yukawa like oupling of
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the bosoni �elds to the orresponding fermioni bilinears with Yukawa ouplings

h

�

, h



. The soure term now provides soures for the bosoni �elds.

The next step is to prove that this partially bosonized partition funtion is

equivalent to (3.29) for appropriate values of the Yukawa ouplings. We realize

that sine the ation is quadrati in the bosons, the bosoni funtional integral an

be performed as a simple Gaussian integral. Reall that Gaussian integrals an

be evaluated by evaluating the exponent at its stationary value. Sine the bosoni

propagators are mass like, we an neglet the onstant pre-fator altogether and

only have to insert the stationary values
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ŵ



(X) =

h



4�

2

~w



(X) +

l



(X)

h



(3.33)

into the exponential of the partially bosonized partition funtion in order to

perform the bosoni funtional integrals. We see that the soure term redues to

the soure term of (3.29). S

B

+S

Y

gives a quarti fermioni oupling term of the

form
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If (3.29) and (3.32) are equivalent, we must have
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This equation should be read as a ondition on the Yukawa ouplings h

�

, h



. At

this point the identities (3.27) ome in handy. We an use them to parameterize

the solutions of (3.35). The general solution is further restrited by the fat

that we demand the ouplings to be real. Then the general solution is (with
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(3.36)

H
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3
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1

; 2H
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= 2H

d
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: (3.37)

The parameters �

i

obey

�
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> 0 8i
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2

> �

3
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1
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2

+ 1 > 3�

3

(3.38)
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to guarantee that the ondition h

�

; h



2 R is ful�lled.

For any hoie of the parameters �

i

meeting these onditions, the partially

bosonized partition funtion is equivalent to the fermioni partition funtion of

the Hubbard model we started from. This means that the hoie of the Yukawa

ouplings ontains a lot of arbitrariness | whih does not matter in the exat

transription we used here, sine all hoies are equivalent to the original Hubbard

model. However, if we use approximations in alulations, the results an and

will depend on the initial hoies of the ouplings. This an serve as a test for

approximation shemes | an approximation is regarded as well justi�ed, if the

results do not depend on the initial hoie of the ouplings. However, this problem

will remain a disturbing one and is the weakness of our theory that we traded in

for the possibility to investigate the properties of a system by diret alulation

of expetation values of bosoni �elds.

Note that is not possible to bosonize the theory without taking into aount

the spin triplet bilinears (due to the signs in (3.35) and (3.27)).

3.3.4 Symmetries

Most of the symmetries disussed in se. 3.2.3 an be easily implemented in the

partially bosonized version of the olored Hubbard model. As we know how the

fermioni �elds transform under the symmetry transformations, we an derive the

transformation behavior of the fermion bilinears involved in the Yukawa oupling

terms in (3.32). Sine we know that (3.32) and (3.29) are equivalent, they should

have the same symmetries and we de�ne the behavior of the bosoni �elds un-

der symmetry transformations suh that the partially bosonized ation beomes

invariant.

In partiular, we �nd for the U(1)-symmetry (3.18)
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! exp(2i�)û
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: (3.39)

Similarly, for the SU(2)-symmetry we obviously have invariane of all spin singlet

bosons. The spin triplet bosons transform as three dimensional vetors under

SO(3)-rotations around the

~

�-axis with rotation angle 2j

~

�j.

The rotation R, reetion I and translation T

2

x

are also implemented in an

obvious way. However, simple translations T

x

annot be de�ned in our present

formulation, sine these translations orrespond to shifting the �eld by half a

lattie site of the oarse lattie and the bosons are de�ned on the oarse lattie

only. To preserve invariane under translations T

x

, we de�ne a olor label a for

the bosons and bilinears and set
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ŵ



(X); ŵ
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(3.40)
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(3.41)
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and similarly for the bosons û

�

, û

�

�

and the boson and bilinear soures. The trans-

lations T

x

are now simply implemented by e.g. T

x

ŵ

1

(X) = ŵ

2

(X), T

x

ŵ

2

(X) =

ŵ

1

(X+e

1

) et. Note that with these de�nitions, the lattie symmetry operations

may be written in a way ompletely analogous to (3.20), sine the bosoni �elds

also live on a oarse lattie with the same lattie spaing as the fermions, with

four olor labeled �elds attahed to eah oarse lattie site. One onsequene

is that for the same reason as in the fermioni ase we introdue an additional

relabeling symmetry that ats in the same way on the bosoni olor spae as

it did on the fermioni olor spae. Again, these relabeling transformations all

orrespond to the identity transformation in the unolored formulation.

To implement bosoni olor into our partially bosonized partition funtion,

we write
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(3.42)

instead of (3.32) and realize that the same alulation that we performed to show

that (3.32) and (3.29) are equivalent also goes through here.

3.3.5 The olored partition funtion

We �nally summarize our results for the partition funtion. In position spae, we

have

Z = exp

�

�

2�

2

V�

2

h

2

�

�

Z

D

^

 

�

D

^

 Dû
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(3.43)

We have rede�ned the soures by setting

J
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(X): (3.44)

The partition funtion an be used as a generating funtional for the bosoni

n-point funtions. In partiular, we have
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(3.45)

for the expetation values of the bosoni �elds

2

. If we rewrite (3.29) using olored

bilinears and insert the resulting partition funtion in the right hand side of

(3.45), we �nd the relation between expetation values of bilinears and bosons
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(3.46)

These relations show that for vanishing soures the expetation values of the

bilinears and the orresponding bosons are equal up to a fator. This is the reason

why our formalism makes sense: We know (by onstrution) that the bilinears

desribe interesting properties of the fermioni system. The expetation value of

the bilinears tell us whether the system exhibits e.g. antiferromagneti behavior.

This is the ase if h

~

~a

a

i is non vanishing, whih in turn means that also the bosoni

expetation value ~a

a

does not vanish. We therefore an analyze the properties of

the system by merely alulating expetation values of bosoni �elds in a Yukawa

2

Note that L

�

a

(X) = L

a

(X), but L

�

a

(Q) = L

a

(�Q) in momentum spae. If we write

(3.45) as we did here, the equations hold true both in position and momentum spae.
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like theory. In priniple, all alulations in this work are dediated to do exatly

this, and to interprete the results by means of the underlying fermioni theory.

Again we stress the speial role of the harge density ~�

a

. The soure of the

harge density ontains the hemial potential and will in general not vanish.

The bosoni expetation value of �̂

a

is
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: (3.47)

Using the Fourier transforms (3.11) for the fermions and de�ning û

�

and ŵ



to

have the same Fourier transform as

^

 , and û
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to have the same Fourier transform
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, we an write down the partition funtion in momentum spae
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(3.48)

The vertex fators V

ab;

in the oupling term are given in appendix B.



Chapter 4

A mean �eld alulation

Before ontinuing to improve our formalism, we want to give a �rst impression of

the power of our formalism even in a very simple mean �eld like approximation.

The results of this hapter have been published in [11℄. The main ingredients of

this approximation are the following:

� The bosoni �elds at as onstant bakground �elds, so that the bosoni

funtional integrals an be trivially performed by simply setting all bosoni

�elds to these onstant bakground values.

� The bosoni bakground �elds are homogeneous in the sense that they do

not possess any spatial dependene.

� All bakground �elds exept the harge density �̂, the antiferromagneti

spin density

~

â and the superonduting d-wave

^

d vanish.

We proeed by deriving an expression for the e�etive ation in this approx-

imation, whih depends on the values of the three non vanishing bakground

�elds. For given temperature and harge density, we then look for minima of

the e�etive potential with respet to the expetation values of

~

â and

^

d. If the

minimum ours at non vanishing expetation values of the antiferromagneti or

superonduting �elds, we onlude that the system exhibits antiferromagneti

or superonduting behavior at the given temperature and harge density.

4.1 The e�etive potential

Using (3.45), we de�ne the e�etive ation as the Legendre transform of the log

of the partition funtion

�[u

�a

; u

�

�a

; w

a

℄ = � lnZ[J

�a

; J

�

�a

; L

a

℄
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(4.1)

where the soures on the right hand side are funtionals of the expetation values

u

�a

, u

�

�a

, w

a

,  and  

�

. The usual properties of a Legendre transform tell us

that
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: (4.2)

For vanishing soures these equations are formally nothing else than the lassial

ation priniple | therefore the name e�etive ation. They may be regarded

as the equations of motion for the �eld expetation values, taking quantum or-

retions into aount. Assuming that the fermions have been integrated out (we

will do this expliitly below) and that the bosoni �eld expetation values do not

have any spatial dependene, the e�etive ation may be written as
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; u
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; w
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℄ = VU [u
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; u
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; w
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℄; (4.3)

where U serves as the e�etive potential for our theory. U is �nite (apart from

a T -dependent additive onstant) and position independent. (4.2) tells us that

| for vanishing soures | the system favors the state for whih the e�etive

potential as a funtion of the expetation values beomes stationary, and it an

be shown that not only stationary, but even minimal [10℄.

To realize our mean �eld onditions, we introdue a fator
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�a

(Q)� u

�a

Æ(Q)) Æ(û

�

�a

(Q)� u

�

�a

Æ(Q)) Æ(ŵ
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under the funtional integral of (3.48). This sets the bosoni �elds to on-

stant bakground �elds, negleting all bosoni utuations. The momentum Æ-

funtions implement our ondition that these onstant bakground �elds should

be homogeneous. Our partition funtion then beomes
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Using the same approximations in (4.1) and inserting (4.5), by using (4.3) we

arrive at
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As it must be, U an be written as the lassial potential terms (whih are

pure mass terms in our theory) and a orretion �U desribing the inuene of

fermioni utuations. We must now alulate the funtional integral in �U .

The easiest way to do so is to de�ne the vetor
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^

 (Q)

^

 

�

(�Q)
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: (4.8)

Note that this vetor has 16 omponents (2 expliitly, 4 in olor and 2 in spinor

spae). By aid of this vetor, we may rewrite S

�

in the form
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and perform the Gaussian integration to obtain
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In general, P (Q) ontains ontributions from all bosoni �elds. From now on, we

will set all �elds exept �, ~a and d equal to zero. For the remaining �elds, we set
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The expliit expression for P (Q) follows by inserting the vertex fators from

appendix B in (4.7) and olleting terms. One obtains
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it is possible to diagonalize P (Q) in the two dimensional spae of the two om-

ponents of

~

 , so that the determinant redues to one over a matrix of dimension

8:
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The determinant an be further diagonalized in spinor spae, yielding
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: (4.15)
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We proeed by evaluating the remaining determinant by brute fore. In the

resulting expression, the Matsubara sum an be performed using the produt

expansion [13℄
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n2N
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2
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; z 2 C: (4.17)
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Up to a temperature dependent divergent onstant, the �nal result for the e�e-

tive potential is

U = 2�
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Æ +
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=2).

4.2 Disussion of the e�etive potential

We will now disuss our result for the e�etive potential (4.18) and alulate the

phase diagram.

First note that for large temperature �U vanishes and U is given by U =

2�

2

�

2

+ 2�

2

� + 4�

2

Æ +

2�

2

�

2

h

2

�

. In this ase, the minimum of U with respet to

� and Æ ours at � = Æ = 0 for all �. Therefore for large temperature, no

symmetry breaking, i.e. no antiferromagnetism or superonduting behavior is

present. If T is lowered, the minimum may be destabilized by the ontribution of

�U . However, note that (as an be seen by expanding �U for � � 1) U grows

as � for large �, whih means that even for low temperature the minimum always

ours at �nite �. The same argument holds for Æ.

A suÆient ondition for the minimum to our at non vanishing � or Æ is

that the masses
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(4.19)

beome negative. If e.g. the mass M

2

a

beomes negative, the e�etive potential

possesses a loal maximum in � = 0. Sine for large � the potential U inreases

/ �, the minimum must our in � > 0 and the symmetry is spontaneously

broken. Again, the same argument holds for Æ. The masses an be alulated

from (4.18) and we �nd
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PSfrag replaements

T � 1

U

U

U

U

U

�

�

�

�

�

PH I

PH II

Figure 4.1: For high temperature, the potential minimum ours in � = 0.

By lowering the temperature, phase transitions of �rst or seond order an ap-

pear. Only for phase transitions of seond order the temperature where the mass

hanges sign oinides with the temperature of the phase transition.
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� �

1
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2

h
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�+ 2t�

2
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: (4.20)

In the expression for M

2

a

we performed the sum over �

2

to show that the right

hand side is �nite for 

1

+ �

1



2

! 0 and T > 0. We see that for Æ, the mass

orretion arising from �U always tends to destabilize the symmetri minimum,

sine its ontribution to the mass is always negative. The same holds true for �.

Whether the mass atually beomes negative or not depends on the hoie of the

Yukawa ouplings. By inreasing the strength of the ouplings, we neessarily �nd

negative masses and therefore spontaneous symmetry breaking. It is lear from

this qualitative point of view that our numerial results for the phase diagrams

in this approximation will ruially depend on the initial hoie of the ouplings.

In the frame of the mean �eld approximation, there is no way to deide whih

hoie is the orret one (remember that without any approximations, any hoie

of the ouplings respeting (3.36) will be viable and physially equivalent).

We stress that the ondition of vanishing masses is suÆient, but not neessary

for a phase transition to take plae. To understand this, we onsider the hange

of the e�etive potential with temperature as a funtion of � for �xed Æ (�g. 4.1).
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For high temperature, we know that the minimum ours in � = 0. Suppose for

low temperature the symmetry is broken. The phase transition into the state of

broken symmetry an take plae in two di�erent ways:

� The minimum of the potential remains at � = 0, until the massM

2

a

hanges

its sign. Then, as a funtion of temperature, the minimum moves away

from � = 0 to some �nite �. The order parameter � for this kind of phase

transition starts at zero in the symmetri phase and ontinuously moves

away from zero in the broken phase. The phase transition is therefore

ontinuous or of seond order.

� At some temperature, the potential builds up a loal minimum at some

�nite �. The value of the e�etive potential at this minimum dereases,

until the minimum beomes global. M

2

a

remains positive during this pro-

ess. In this ase the order parameter � hanges disontinuously from zero

to some �nite value, so that we fae a disontinuous phase transition (or

equivalently a phase transition of �rst order).

This disussion shows that one has to be areful when analyzing the properties

of the e�etive potential. For example, if we have found that say M

2

Æ

is negative

and M

2

�

is positive, we annot immediately onlude that the system exhibits

superonduting behavior, sine it is possible that the global minimum ours in

� > 0, Æ = 0, if we happen to have the ase of a �rst order phase transition in

the antiferromagneti hannel. The main diÆulties of numerially �nding the

minima of (4.18) are rooted in these possibilities of �rst order phase transitions.

However, even without expliitly alulating the minima of the e�etive poten-

tial, it is possible to gain further insight into the possibility of �rst order phase

transitions. First onsider the ase that the minimum ours in � = 0, Æ > 0.

Then this minimum must obey

�U

�Æ

�

�

�

�

�=0

= 0: (4.21)

This equation may be rewritten in the form

M

2

d

=

1

2

h

2

d

Z

�

��

d

2

q

(2�)

2

X

�

1

;�

2

(

1

� �

1



2

)

2

(4.22)

�

tanh

�

1

2T

p

(h

�

� + 2t�

2

(

1

+ �

1



2

))

2

+ h

2

d

Æ(

1

� �

1



2

)

2

�

p

(h

�

� + 2t�

2

(

1

+ �

1



2

))

2

+ h

2

d

Æ(

1

� �

1



2

)

2

�

tanh

�

1

2T

(h

�

�+ 2t�

2

(

1

+ �

1



2

))

�

h

�

�+ 2t�

2

(

1

+ �

1



2

)

�

By using

tanh a

a

>

tanh

p

a

2

+ x

2

p

a

2

+ x

2

8x 6= 0; a; (4.23)
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Figure 4.2: The �-T phase diagram for h

2

�

= h

2

a

= h

2

d

= 10 with symmetri

(SYM), antiferromagneti (AF) and superonduting (SC) phase. In the region

marked by the bold line the phase transition into the antiferromagneti phase is

of �rst order; all other phase transitions are of seond order.

we see that the right hand side is stritly negative. Therefore solutions with Æ > 0

are possible only for M

2

d

< 0, whih in turn means that the phase transition is of

seond order. In other words: The phase transition between the symmetri phase

and the superonduting phase is always of seond order. The same argument

holds for �, if � is not too large. For large �, we may (and will) enounter �rst

order phase transitions into the antiferromagneti phase.

The parameters of our theory are T , �, t and the Yukawa ouplings. The

hemial potential has been removed from the list of free parameters by the

Legendre transform (4.1) and an be inferred from (4.2) to be

� =

h

�

4�

2

�U

��

: (4.24)

Partiularly, we expliitly see by inserting (4.18) that � = 0 gives � = 0, so that

� = 0 orresponds to the ase of half �lling as it must.

4.3 Numerial results

In what follows, we set t = 1, �x the value of the Yukawa ouplings and minimize

U numerially with respet to � and Æ for a large number of (�; T )-pairs, whih

yields a omplete piture of the phase diagram in this approximation. We present

results for four di�erent hoies of the Yukawa ouplings.
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Figure 4.3: The �-T phase diagram for h

2

�

= h

2

a

= h

2

d

= 40 with symmetri

(SYM), antiferromagneti (AF) and superonduting (SC) phase. In the region

marked by the bold line the phase transition into the antiferromagneti phase is

of �rst order; all other phase transitions are of seond order.
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Figure 4.4: The �-T phase diagram for h

2

�

= h

2

d

= 40, h

2

a

= 10 with symmetri

(SYM) and superonduting (SC) phase. All phase transitions are of seond

order.
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Figure 4.5: The �-T phase diagram for h

2

�

= h

2

a

= 40, h

2

d

= 10 with symmetri

(SYM) and antiferromagneti (AF) phase. In the region marked by the bold line

the phase transition into the antiferromagneti phase is of �rst order; all other

phase transitions are of seond order.
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Some remarks onerning the numeris: To evaluate the momentum integrals

in the e�etive potential numerially, we used a very simple self written Rie-

mannian sum like method on a grid. This works well for the kind of funtions

enountered here and is faster than more sophistiated methods. The searh for

the minimum is performed by using the Broyden-Flether-Goldfarb-Shanno vari-

ant of the Davidon-Flether-Powell minimization. This method is implemented

in the Numerial Reipes routine dfpmin (f. [14℄). To be sure that the method

does not return a loal minimum, we repeat the alulation several times for eah

point of the phase diagram with random initial values of � and Æ. To identify

phase transitions of �rst order, we additionally alulate M

2

a

in every step and

hek whether for non vanishing minimum M

2

a

is positive or negative.

The results for di�erent hoies of the Yukawa ouplings are presented in the

�gures. Note that the hoie of h

�

does not hange the qualitative shape of the

phases, sine h

�

only enters as a fator for � and therefore does nothing else

than to resale the �-axis. For equal values of h

d

and h

a

(�gs. 4.2 and 4.3),

we �nd phase diagrams that already resemble the phase diagram �g. 1.1 of a

high temperature superondutor. It is interesting that no region exists where

the minimum of the e�etive ations ours for both � > 0 and Æ > 0. An

expetation value of the antiferromagneti �eld tends to suppress spontaneous

symmetry breaking in the superonduting hannel and vie versa. Additionally,

we �nd a �rst order phase transition into the antiferromagneti phase for large

�, whih is in agreement with our disussion on analytial grounds in the last
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setion.

If we inrease either the antiferromagneti oupling h

a

or the superonduting

oupling h

d

, the antiferromagneti or superonduting phase dominates respe-

tively. This feature is illustrated in �gs. 4.4 and 4.5. In �g. 4.6 we plotted the

value of Æ where the e�etive potential beomes minimal as a funtion of � and

T . The hoie for the Yukawa ouplings is the same as in �g. 4.4 (h

2

d

= 40,

h

2

a

= 10), so that only the superonduting phase is present. We did the same

in �g. 4.7 for � with Yukawa ouplings as in �g. 4.5, in whih ase symmetry

breaking always takes plae in the antiferromagneti hannel. This plot learly

shows the ourrene of a �rst order phase transition into the antiferromagneti

phase for large �.

We onlude that even the mean �eld approximation presented here gives a

rough piture of the phase diagram of high temperature superondutors. How-

ever, the drawbak is also apparent: Di�erent hoies of the Yukawa ouplings

lead to di�erent phase diagrams, although the original theory was invariant un-

der this hoie. The strong dependene on the ouplings is unphysial, and we

are not able to remove this dependene in the framework of the mean �eld ap-

proximation. To resolve this problem and to build up a more reliable piture of

the phase diagram, we have to inlude bosoni utuations that we ompletely

negleted in our mean �eld approah. However, the inlusion of bosoni utu-

ations is highly non trivial and an no longer be treated by a simple alulation

of an e�etive potential as we did here. The method of hoie to deal with them

is a renormalization group analysis of the e�etive potential and the ouplings.

In the next hapter we will present the renormalization group formalism that we

will use in this work. After that, we further transform our partition funtion of

the olored Hubbard model into a form more suitable for a renormalization group

analysis.



Chapter 5

Renormalization group equations

and the e�etive average ation

One loop alulations in quantum �eld theory are usually plagued by divergen-

ies, whih appear as unbounded loop momentum integrals. Two soures of

these divergenies are possible. For theories de�ned on a spatial ontinuum (as

the usual theories de�ning the standard model), we fae ultraviolet divergenies

whih our beause the integrals over the loop momenta extend to arbitrarily

large momenta. This kind of divergenies is not present in our ase, sine the

spaing of the underlying lattie provides a physial UV-uto� for momentum

integrals, onstraining them to some �nite interval (in our ase to the inter-

val [��; �℄). Another soure of divergenies is the presene of massless modes.

These infrared divergenies do emerge in our theory on the lattie and have to

be regularized. Whatever regularization sheme we use, this regularized theory

will depend on some unphysial regularization parameter | an arti�ially intro-

dued mass, a momentum uto�, or whatever. The aim of any regularization

proedure is to be able to alulate the loop integrals in the regularized theory

and to remove the regulator afterwards to arrive at physial results. Renormal-

ization group equations are a well established tool to desribe the hange of a

given theory inluding quantum utuations with some ow parameter k, where

k parameterizes the regulator. We will assume that k = 0 orresponds to a van-

ishing regulator. The ultimate goal then is to solve the ow equation, whih gives

the regularized theory as a funtion of k and to go to the limit k ! 0 yielding

the physial theory inluding quantum utuations.

In this hapter we desribe the renormalization group formalism that we will

use to further investigate the properties of the olored Hubbard model. How-

ever, the treatment of the formalism presented here is rather general and applies

to any system with fermioni and bosoni degrees of freedom. The onept of

investigating the ow of the e�etive average ation has been introdued in [15℄

and has been used to treat a wide range of problems in quantum �eld theory and

statistial physis (for a review, see [16℄).

57
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5.1 Generalized �elds and regularization

We onsider a theory with a fermioni �eld

^

 

�

,

^

 , a real bosoni �eld ŵ and a

omplex bosoni �eld û, û

�

. The generalization to several �elds is straightforward.

We use generalized matrix notation by regarding the �elds as vetors with a

disrete label � (e.g. olor, spin) and a position label X or momentum label Q.

In the same way, we introdue generalized matries. We then use generalized

matrix multipliation e.g. in the form

^

 

y

A

^

 =

X

Q;Q

0

X

�

^

 

�

�

(Q)A

��

(Q;Q

0

)

^

 

�

(Q

0

)

(AB)

��

(Q

1

; Q

2

) =

X

Q

X



A

�

(Q

1

; Q)B

�

(Q;Q

2

) (5.1)

Similarly, Tr denotes a generalized trae.

Now de�ne the generalized �elds

�̂ =

0

B

B

B

B

�

û

û

�

ŵ

�

^

 

^

 

�

1

C

C

C

C

A

; �̂

y

=

�

û

y

; û

T

; ŵ

y

;

^

 

y

;

^

 

T

�

(5.2)

and the generalized soures

K =

0

B

B

B

B

�

J

J

�

L

�

�

�

1

C

C

C

C

A

; K

y

=

�

J

y

; J

T

; L

y

; ��

y

; �

T

�

: (5.3)

� and �

�

are fermioni soures (these soures enter S

F

j

in (3.48), if we had bothered

to expliitly write it out). Note that in general ŵ 6= ŵ

�

, although we introdued

ŵ as a real boson. But sine our notation applies to both position and momentum

spae, we have to take are of the fat that ŵ

�

(X) = ŵ(X), but ŵ

�

(Q) = ŵ(�Q)!

The same applies to the real soure L.

The general partition funtion we want to onsider is

Z = N (T )

Z

D

^

 

�

D

^

 Dû

�

DûDŵ exp(�S � S

j

); (5.4)

where N (T ) is some temperature dependent onstant, S is the ation without

soures and S

j

is a soure term, whih an be written in our matrix notation as

S

j

= �J

y

û� J

T

û

�

� L

y

ŵ � �

y

^

 � �

T

^

 

�

= �K

y

�̂ = �K

T

�̂

�

: (5.5)
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We regularize the theory by introduing a uto� funtion �S

k

[�̂℄ so that

S[�̂℄! S[�̂℄ + �S

k

[�̂℄: (5.6)

In the simple ase of a theory with IR-divergenies only, the uto� funtion ould

be a orretion to the propagator terms in S, giving a k-dependent mass to the

troublesome massless mode. For k ! 0, we would then demand that this k-

dependent mass vanishes, so that in this limit we reover the physial theory

desribed by S and a possible soure term only. Spei�ally, we de�ne the uto�

funtion by

�S

k

[�̂℄ =

1

2

Tr (R

k

�̂�̂

y

): (5.7)

R

k

is a uto� matrix, and again we stress that this equation has to be read in the

sense of generalized matrix notation. Note that the right hand side is not equal

to

1

2

Tr (�̂

y

R

k

�̂) due to the fermioni �elds ontained in �̂. We assume that R

k

is

diagonal in the spae of �elds, so that we an set

R

k

= diag (R

C

k

; (R

C

k

)

T

; R

R

k

; R

F

k

; (R

F

k

)

T

): (5.8)

R

C

k

serves as a uto� matrix for the omplex bosoni �eld, R

R

k

for the real bosoni

�eld and R

F

k

for the fermioni �eld. With this simpli�ation, we an write (5.7)

as

�S

k

[�̂℄ = Tr

�

û

y

R

C

k

û+

1

2

ŵ

y

R

R

k

ŵ +

^

 

y

R

F

k

^

 

�

: (5.9)

5.2 The e�etive average ation

The regularized partition funtion now beomes

Z

k

= N (T )

Z

D

^

 

�

D

^

 Dû

�

DûDŵ exp(�S[�̂℄��S

k

[�̂℄ +K

y

�̂) (5.10)

and we de�ne

W

k

= lnZ

k

: (5.11)

The (k-dependent) expetation values of the �elds are then given by

� = h�̂i =

ÆW

k

ÆK

y

; �

y

= h�̂

y

i =

ÆW

k

ÆK

: (5.12)

We an now de�ne

~

�

k

[�℄ = �W

k

+K

y

�

�

k

[�℄ = �W

k

+K

y

���S

k

[�℄: (5.13)

Note that these de�nitions are ompletely analogous to those we presented in

(4.1) exept the last for �

k

[�℄. The reason why we subtrated �S

k

[�℄ in the
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last of these de�nitions will beome lear in a moment. For

~

�

k

[�℄, whih is the

Legendre transform of W

k

, we have

Æ

~

�

k

[�℄

Æ�

= K

y

M;

Æ

~

�

k

[�℄

Æ�

y

=MK (5.14)

with M = diag (1; 1; 1;�1;�1).

Some remarks are in order onerning the interpretation of �

k

[�℄. This quan-

tity is alled the e�etive average ation. We will now assume that

lim

k!0

R

k

= 0; lim

k!�

R

k

=1; (5.15)

where � is either a natural UV-uto� of the theory (in our ase something pro-

portional to the inverse lattie spaing) or 1 for theories with UV-divergenies.

It is lear that then

lim

k!0

�

k

[�℄ = �[�℄; (5.16)

where �[�℄ is the full e�etive ation, sine by letting R

k

! 0, we remove the

uto� funtion that auses �

k

to di�er from �. In (4.1) we already disussed the

interpretation of the full e�etive ation: The e�etive ation yields | by use

of the lassial ation priniple | the equations of motion for the expetation

values of the �elds of the theory with all quantum utuations inluded.

We now turn our attention to the limit k ! �. We start by rewriting (5.10)

in the form

exp(��

k

[�℄) = N (T )

Z

D

^

 

�

D

^

 Dû

�

DûDŵ

exp

�

�K

y

�+�S

k

[�℄� S[�̂℄ +K

y

�̂�

1

2

Tr (R

k

�̂�̂

y

)

�

; (5.17)

where on the right hand side the soures are understood to be funtions of �.

Expliitly, we �nd by starting from (5.14) that

K

y

=

Æ�

k

Æ�

M + �

y

R

k

M: (5.18)

Inserting this in (5.17) and rearranging terms, we �nd

exp(��

k

[�℄) = N (T )

Z

D

^

 

�

D

^

 Dû

�

DûDŵ

exp

�

�S[�̂℄ +

Æ�

k

Æ�

M(�̂� �)

�

exp

�

�

1

2

(�̂

y

� �

y

)R

k

M(�̂� �)

�

:

(5.19)

The seond exponential vanishes for R

k

!1 unless �̂ = �, so that it e�etively

ats as a Æ-funtion and we obtain

lim

k!�

exp(��

k

[�℄) = onst. � N (T ) exp(�S[�℄): (5.20)
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Up to some irrelevant onstants, we �nd that �

k

[�℄ approahes the lassial ation

S[�℄ with the �elds replaed by their expetation values as k ! �. Note that

to ahieve this nie property of �

k

[�℄ it was neessary to subtrat �S

k

[�℄ in the

de�nition of �

k

[�℄.

In onlusion, the e�etive average ation interpolates between the known

lassial ation and the unknown e�etive ation. Neither the initial value �

k!�

nor the �nal value �

k!0

depends on how we hose to de�ne R

k

| it suÆes that

R

k

meets the onstraints (5.15). However, it is lear that the interpretation of

�

k

for some �nite k depends on the spei� form of R

k

.

One very illuminating hoie of the uto� funtion is a simple sharp momen-

tum uto� R

k

� k

2

�(k

2

�q

2

). This ansatz meets the onditions (5.15) for �!1.

This kind of uto� does not inuene the momentum modes with q

2

> k

2

, but

gives a mass k

2

to the momentum modes with q

2

< k

2

. The propagation of these

low momentum modes is suppressed by the mass, so that in �

k

quantum utua-

tions of the high momentum modes only are integrated out, yielding an e�etive

theory at sale k for the propagation of the low momentum modes. In position

spae, this means that by lowering k we average over larger and larger regions,

integrating out the short range utuations and building up a an e�etive theory

for long range utuations only.

It is a well known feature of the e�etive ation that it preserves the symme-

tries of the original ation in the sense that the same symmetry operations ating

on the �elds in the original ation applied to the �eld expetation values leave

the e�etive ation invariant, if these symmetry transformations are linear. This

is the ase for all the symmetries we onsider here, so that we expet the e�etive

ation to respet the same symmetries we disussed before for the ation of the

Hubbard model. However, whether �

k

[�℄ respets these symmetries depends on

the hoie of �S

k

[�℄. It is onvenient to hoose �S

k

[�℄ suh that it also respets

the symmetries of the theory. Then �

k

[�℄ is invariant under the symmetry trans-

formations for all k. The advantage of �

k

being invariant under the symmetry

transformations is that we will have to write down an ansatz for �

k

to solve the

ow equation alulated in the next setion. During the ow an in�nite number

of terms ontributing to �

k

will be generated, so that we need some guidane

in seleting terms that we inlude in our trunation. The fat that only terms

respeting the symmetries of the original theory are allowed in �

k

onstrains the

number of terms we may or may not inlude in our ansatz, whih makes the

motivation of trunation shemes muh easier. Another reason for demanding

invariane of �

k

is that we are often interested in symmetry breaking properties

of the theory at some sale k and not only in the limit k ! 0. Of ourse, if

�

k

breaks the symmetries at �nite k expliitly, spontaneous symmetry breaking

properties are ompletely obsured.
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5.3 The ow equation for the e�etive average

ation

In this setion we derive an exat ow equation for �

k

[�℄ that an be used to

alulate the e�etive average ation.

We start by noting that

Æ

2

W

k

ÆK

y

ÆK

=




�̂�̂

y

�

� h�̂i




�̂

y

�

; (5.21)

whih is the onneted 2-point funtion, and

Æ

2

W

k

ÆK

y

ÆK

=M

 

Æ

2

~

�

k

Æ�

y

Æ�

!

�1

: (5.22)

Reall that in our notation, expressions like

Æ

2

W

k

ÆK

y

ÆK

are matries. The derivation

of the ow equation is now straightforward:

d

dk

~

�

k

=

d

dk

(�W

k

+K

y

�) = ��

k

W

k

�

dK

y

dk

ÆW

k

ÆK

y

+

dK

y

dk

� = ��

k

W

k

= h�

k

�S

k

[�℄i =

1

2

Tr ((�

k

R

k

)




�̂�̂

y

�

)

=

1

2

Tr

�

(�

k

R

k

)

�

Æ

2

W

k

ÆK

y

ÆK

+ ��

y

��

(5.23)

so that

d

dk

�

k

=

1

2

Tr

 

(�

k

R

k

)M

�

Æ

2

�

k

Æ�

y

Æ�

+R

k

�

�1

!

: (5.24)

This is our master equation for deriving all the ow equations we need. The

ultimate goal is to solve this equation with an initial ondition given by the

lassial ation. In general it is not possible to �nd an exat solution to the ow

equation. However, the fat that we know that �

k

equals the lassial ation at

the beginning of the ow k ! � allows to motivate sensible trunation shemes

for possible solutions.

We have to stress that up to this point no approximations entered the alu-

lation, so that the result is exat. This is partiularly interesting if one ompares

it to the perturbative one loop alulation of the e�etive ation, whih yields

d

dk

�

k

=

1

2

Tr

 

(�

k

R

k

)M

�

Æ

2

S[�℄

Æ�

y

Æ�

+R

k

�

�1

!

: (5.25)

This is ompletely the same, exept that the exat propagator is replaed by the

lassial propagator here. The simple replaement of the lassial propagator by
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the exat propagator in the one loop orretion to the e�etive average ation

renders this equation exat, inluding arbitrary high loop orders and genuinely

non perturbative e�ets. The formal similarity to perturbative one loop expres-

sions allows to use well known alulation tehniques and leads to results that

an be simply interpreted in a diagrammati language. For further disussion,

appliations and referenes, see [16℄.
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Chapter 6

Diagonalization of the

propagator matrix

At this point, we are in priniple done with the preparations to extrat the prop-

erties of the Hubbard model. We have derived a partition funtion (3.48), whih

ontains the interesting degrees of freedom in an expliit way, and we have pre-

sented the formalism of renormalization group equations for the e�etive average

ation, whih we an use to derive the e�etive ation. However, as we already

stated, (5.24) annot be solved exatly. Instead, we have to invent some trun-

ation for the e�etive average ation, whih onsists of terms respeting the

symmetries of our theory ontaining k-dependent variables (masses, ouplings,

wave funtion renormalization onstants et.). Sine our theory is non renor-

malizable, it is lear that one annot avoid approximations at this point. The

question is: Whih terms should be inluded in our trunation without making

the trunation error too large? As we mentioned in the ourse of disussing sym-

metries of �

k

, it is lear that the smaller the number of terms allowed by exat

symmetries, the smaller the trunation error that we make by disarding terms.

Unfortunately, in the present formulation of our theory (3.48), a huge number

of terms in the e�etive ation are allowed, all of whih are of the same order of

magnitude. Partiularly, onsider the propagator terms of the form

X

QQ

0

u

�

�a

(Q)P

��

0

;ab

(Q;Q

0

)u

�

0

b

(Q

0

); (6.1)

X

QQ

0

w

a

(Q)P



0

;ab

(Q;Q

0

)w



0

b

(Q

0

): (6.2)

We know that | due to U(1)-invariane | propagator terms mixing omplex

and real bosons will not our in the e�etive average ation. Similarly, the spin

singlet bosons and spin triplet bosons will not mix due to SU(2)-invariane. To

keep things simple, we will set �

1

! 0, whih beause of (3.36) is equivalent to

disarding the bosons ŝ, ̂ and

^

t

x=y

from our theory. Then we have three sets of

65
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bosons (real bosons in the spin singlet, real bosons in the spin triplet and omplex

bosons) with four boson speies eah. Every boson speies ours in 4 di�erent

olors. This means that we fae 3(4 � 4)

2

= 768 boson propagator matrix entries,

non of whih vanish due to symmetries. Of ourse, it is ompletely hopeless to

inlude so many terms in any useful trunation sheme, but on the other hand,

by onsidering only some of the terms and negleting all others, we introdue

large trunation errors.

The problem that we fae here is rooted in the fat that we are not able to

make use of the additional lattie symmetries (translations, rotations and ree-

tions) to narrow down the number of allowed terms, sine the bosons mix under

these transformations. If we were given a set of bosons belonging to di�erent

inequivalent representations of these lattie symmetries, it would be lear that

mixing between these di�erent bosons ould not happen. In this ase, most of

the terms of the propagator matrix vanish due to exat symmetries. The idea

of this hapter is to �nd linear ombinations of the existing bosons to make the

orresponding states eigenstates of the symmetry transformations. Trunation

shemes are then proposed for a theory whih is written in terms of these new

bosons.

The simplest way we found to attak this problem is to expliitly alulate the

oneloop orretions to the bosoni propagators perturbatively and to diagonalize

the resulting one loop improved propagator matrix. As a byprodut, we gain

some information about the propagation of bosoni modes that will be useful

when we de�ne trunation shemes. Although we diagonalized the perturbative

expressions only, it will turn out that the propagator matrix remains diagonal

to all orders in perturbation theory and that in fat this transription leads to

bosoni states whih are eigenstates of symmetries of our theory. Finally, we

will be able to write down a partition funtion of our model with a new set of

bosons that all belong to di�erent inequivalent representations of translational

symmetries and therefore do not mix. Muh of the material in this hapter has

been published in [12℄.

6.1 The diagonalization proedure

6.1.1 The oneloop alulation

Our starting point is (3.48). We want to alulate the one loop orretions to the

bosoni propagators. It is lear that these one loop orretions orrespond to the
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diagrams

�

KK

Q

K +Q

w w

V V

and

�

KK

Q

K �Q

u

u

�

V V

where the solid lines denote fermions and the dashed lines bosons. Thus only

fermioni utuations enter these one loop orretions. To alulate these, we

expand the �elds around their expetation values

û

�a

(Q)! u

�a

(Q); û

�

�a

(Q)! u

�

�a

(Q); ŵ

a

(Q)! w

a

(Q)

^

 (Q)!  (Q) + Æ (Q);

^

 

�

(Q)!  

�

(Q) + Æ 

�

(Q) (6.3)

and �nd for the ation S = S

F

+ S

B

+ S

Y

+ S

J

S[û; û

�

; ŵ;

^

 ;

^

 

�

℄ = S[u; u

�

; w;  ;  

�

℄

| {z }

=S

0

+S[u; u

�

; w; Æ ; Æ 

�

℄

| {z }

=S

2

: (6.4)

The e�etive ation (with bosoni utuations negleted) is then given by

�[u; u

�

; w;  ;  

�

℄ =

2�

2

V�

2

h

2

�

+ S

0

� S

J

� ln

Z

DÆ 

�

DÆ exp(�S

2

): (6.5)

Note the similarity to the mean�eld alulation of hapter 4. The only di�erene

is that our bosoni bakground �elds are not assumed to be homogeneous, and

we will only onsider orretions to the propagator (whih, in the mean �eld ase,
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would orrespond to expanding the e�etive potential up to quadrati order in

the �elds). A similar transription as in hapter 4

~

 (Q) =

�

Æ (Q)

Æ 

�

(Q)

�

(6.6)

allows to perform the funtional integral in (6.5) and we get

�[u; u

�

; w;  ;  

�

℄ =

2�

2

V�
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h

2

�

+ S

0

� S

J

�

1

2

ln det

~

P [u; u

�

; w℄

| {z }

=��

(6.7)

with

~

P [u; u

�

; w℄(Q;Q

0

) =

�
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P
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�
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=

~

P
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�

�
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A B

�
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(6.8)
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n
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+ os(q

2

=2)B

1

))Æ(Q�Q
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A =

X
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V

w



;

(Q;Q

0

)w



(Q�Q

0

)

B = 2

X
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X



V

u
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(Q;Q
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�
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0
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(6.10)

Reall that the vertex fators V

;

are matries in olor and spinor spae with

omponents V

ab;

in olor spae.

We an now expand �� in numbers of bosoni �elds

�� = �

1

2
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: (6.11)

Only the third term of this expansion ontributes to the propagator orretions

we want to alulate. Note that the trae involves summation over olor, spin

and generalized momentum.

More expliitly, we have for ��

2

= 1=4Tr(
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6.1. The diagonalization proedure 69

Note that we have written out the momentum sums, so that the trae only sums

over olor and spin.

From (5.22) we know that the inverse propagator is simply given by the se-

ond derivative of � with respet to the �eld expetation values. The one loop

orretions to the inverse propagators are therefore given by

��

(2)

w



w



0



0

(K)

=

X

Q

Tr

n

(P

 

)

�1

(Q)V

w



;
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= �2
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Q
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(Q)V
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(Q;K �Q)((P
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�

0

;

0

(K �Q;Q)
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where ��

(2)

w



w



0



0

(K) denotes the seond derivative of ��

2

with respet to the

�eld expetation values.

The one loop alulations will be simpli�ed if we make a slight hange to our

bosonization presription. We replae the fermion bilinears ~e and

~

d by

~e

y

=

1

2

(~e +

~

d); ~e

x

=

1

2

(~e�

~

d) (6.14)

The bosonization proedure gives the same result as before with the following

modi�ations: Replae ê, h

e

by ê

y

, h

e

y

and

^

d, h

d

by ê

x

, h

e

x

everywhere. In (3.36)

we have to replae 2H

e

= 2H

d

= H

v

x=y

= 6�

3

by H

e

x=y

= H

v

x=y

= 6�

3

. The

vertex fators are given by V

e

y

= 1=2(V

e

+ V

d

) and V

e

x

= 1=2(V

e

� V

d

).

In priniple one ould now insert the vertex fators and fermioni propagators

and proeed by alulating the traes for all possible 768 propagator matrix

entries (we atually did that, but it is not very illuminating to present it here).

However, a simple transformation renders the propagator matrix diagonal in olor

spae. We will disuss this transformation in the following setion and present

the results for the one loop orretions afterwards.

6.1.2 Diagonalization in olor spae

The idea to diagonalize the propagator matrix in olor spae is to note that for

homogeneous �elds, translations an be easily applied by olor transformations.

Partiularly, we have

T

x

b

a

=

X

b

(A

1

)

ab

b

b

; T

y

b

a

=

X

b

(B

1

)

ab

b

b

; (6.15)

where b

a

is any of our bosons with olor a. It is lear that T

2

x=y

= 1 in this ase and

A

1

and B

1

ommute. The group of transformations onsisting of 1, T

x

, T

y

and
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T

x

T

y

is therefore isomorphi to G = Z

2

�Z

2

, where Z

2

is the yli group of order

2. G is Abelian and possesses therefore 4 lasses. The number of inequivalent

irreduible representations of any group is equal to the number of lasses of the

group, so that we have four inequivalent irreduible representations, whih are

neessarily one dimensional. A basis for these irreduible representations is easy

to de�ne. Simply take

�
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): (6.16)

The representations of the elements of G

�

=

f1; T
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; T

y

; T

x

T

y

g in this basis are

f1; 1; 1; 1g for

�
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�

b

2

, f1; 1;�1;�1g for

�

b

3

and f1;�1; 1;�1g for

�

b

4

. Sine we demand all terms in the e�etive ation to respet the translation

symmetries, it follows that all propagator matrix entries mixing di�erent olors

have to vanish. For example,
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if P

�

b

�

1

�

b

2

is the propagator matrix element oupling the bosons

�

b

�

1

and

�

b

2

.

If we write (6.16) in the form
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where the new vertex fators V

�

b

;a

are given by V

�

b

;a

=

P

b

M

ab

V

b

;b

.

The above argument only applies to homogeneous �elds. In general, the

propagator matrix elements for di�erent olors will not vanish for non vanishing

momentum. However, by hoosing the Fourier transforms for the original bosoni

�elds as in (A.2), we an show | by expliitly alulating the propagator matrix

entries | that indeed the transition to the �elds

�

b renders the propagator matrix

diagonal in olor spae for arbitrary bosoni momentum.
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6.1.3 Color diagonal one loop results

We present our results for the one loop orretions to the bosoni propagators of

the new bosons

�

b whih an be derived from (6.13).

Consider the 12 sets f��; �p; �q
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, where

a = 1; : : : ; 4 is the olor index. All propagator matrix elements onneting bosons

belonging to di�erent sets vanish (due to U(1)- and SU(2)-invariane and diago-

nalization in olor spae). The full propagator matrix is then blok diagonal with

the bloks given by 12 4 � 4 matries. We all the one loop orretions to the
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with s

i

= os(k

i

=4), sn

i

= sin(k
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=4) and �s
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whih depend on m, k and q. The upper sign applies to real bosons (r) and the

lower sign for omplex bosons () (we will use it later when we write down the
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one loop results for the omplex bosons). The sums S

1

and S

2

are

S

1

(m; a; b) :=

X

n2Z

1

[(2n + 1)

2

+ a

2

℄[(2(n+m) + 1)

2

+ b

2

℄

=

�

2

b(4m

2

� a

2

+ b

2

) tanh(

�a

2

) + a(4m

2

+ a

2

� b

2

) tanh(

�b

2

)

ab[4m

2

+ (a+ b)

2

℄[4m

2

+ (a� b)

2

℄

; (6.22)

S

2

(m; a; b) :=

X

n2Z

(2n+ 1)(2(n+m) + 1)

[(2n + 1)

2

+ a

2

℄[(2(n+m) + 1)

2

+ b

2

℄

=

�

2

a(4m

2

+ a

2

� b

2

) tanh(

�a

2

) + b(4m

2

� a

2

+ b

2

) tanh(

�b

2

)

[4m

2

+ (a+ b)

2

℄[4m

2

+ (a� b)

2

℄

: (6.23)
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For the real bosons in the spin triplet, we get the same results with h
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Figure 6.1: The seond derivative of the one loop orretion to the bosoni

kineti term in the e�etive ation of ~a

2

for high temperature T = 1. We have

set t = 1; the Yukawa ouplings are at their Hubbard model values (6.46) with

h

2
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= 10. We have plotted the Matsubara mode m = 0.
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6.1.4 Disussion of the one loop expressions

As a byprodut of the diagonalization proedure of the propagator matrix we have

at hand the expliit one loop orretions to the bosoni kineti terms. We here

disuss the generalized momentum dependene of the one loop expressions given
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Figure 6.2: The seond derivative of the one loop orretion to the bosoni

kineti term in the e�etive ation of ~a

2

for low temperature T = 0:01. We have

set t = 1; the Yukawa ouplings are at their Hubbard model values (6.46) with

h

2

a

= 10. We have plotted the Matsubara mode m = 0.

by (6.19) and (6.28). As the generi ase, we show plots of these expressions as

funtions of the bosoni momentum for high and low temperature for the boson

~a

2

. The most remarkable features of the one loop expressions are the following:

� The one loop expressions are periodi in 4�, not in 2� as one would naively

expet from the boundaries of the integrations. In fat, even if one takes

into aount the periodiity properties of the bosoni �elds, it turns out

that no single bosoni propagator term in the e�etive ation is periodi in

2�. This leads to interesting onsequenes disussed in the last setion of

this hapter.

� The plots show that the one loop orretion beomes minimal at k = 0,

whih holds true for any temperature. Sine the lassial propagators are

momentum independent, the momentum dependene of the one loop or-

reted propagator is given by the one loop orretion term and our result

means that the propagation of momentum modes near vanishing momen-

tum is failitated in omparison to the higher momentum modes. The zero

momentum mode orresponds to a spatially homogeneous �eld. We on-

lude that an approximation of the e�etive ation that mainly keeps the

dependene on spatially homogeneous �elds will be justi�ed, as the dynam-

is of the system is dominated by these homogeneous �elds.
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� For high temperature the momentum dependene is quite simple. It is

mainly given by �(os(k

1

=4) os(k

2

=4))

2

in the ase of ~a

2

. For low tem-

perature, the momentum dependene beomes more ompliated. Note the

appearane of the ross shaped region in �g. (6.2), where the momen-

tum dependene beomes non analytial for low temperature. This ross

exatly orresponds to the Fermi surfae in the olored Hubbard model,

whih makes perfet sense.

The high temperature limit of the one loop expression an be easily alulated

analytially. To do this, we an expand the one loop expressions with respet to

1=T . Using
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we see that in this limit the momentum dependene of the propagators is om-

pletely dominated by the m = 0-Matsubara mode. For low temperature, where

we expand the sums S

1

and S

2

with respet to T , we note that m enters only

via the produt (mT )

2

, so that the �rst m-dependent term in the expansion with

respet to T is / m

2

.

6.1.5 The �nal diagonalization step

Although we have greatly redued the number of non vanishing propagator matrix

entries, we an do even better by diagonalizing the remaining 4�4-matries (6.20)
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render the one loop propagator matries diagonal for the real bosons and blok

diagonal for the omplex bosons. More expliitly, we have
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for the omplex bosons.

The next step is to de�ne the set of bosons orresponding to the transforma-

tions we performed in order to diagonalize the propagator matrix and to express

the partition funtion with respet to these new bosons. De�ne the new bosons
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Here the new bosons R

a
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and �
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are vetors with four omponents for eah

olor a. We have written these transformation rules for the expetation values,

but the same applies for the �elds
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. Then the one loop orretion

to the propagator matrix for these new bosons has the form alulated above. In

analogy to the olor transformation in the last setion, the vertex fators of the
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fators
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and similarly for

^

~s

a

and �̂

a

. Again, be aware of the notation: For any �xed olor

a, the old vertex fators V

��

;a

, et. are 4� 4-matries in olor spae. The di�erent

vertex fators for ��, �p and �q

y=x

are linearly ombined by the matrix (U

r

a

)

T

to give

the new vertex fators V

R

a

i

, whih are again 4 � 4-matries. The vertex fators

an be alulated expliitly, and it turns out that
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This leads to a great simpli�ation of our formalism, sine all the bosons with

vanishing vertex fators deouple from the fermioni setor of the theory and an

be integrated out! The theory depends only on the remaining set of bosons, i.e.

on four real bosons in the spin singlet, four real bosons in the spin triplet and

eight omplex bosons. For eah vetor R

a

with �xed a, one boson remains that

we again all R

a

, but R

a

now understood to represent exatly one boson. In the

same way, ~s

a

will denote one boson for eah a, and �

a

denotes a vetor with

two bosons for eah a. We will present the omplete expression for the partition

funtion with the new bosons in the following setion.

6.2 The �nal form of the partition funtion

In the last setion we diagonalized the propagator matrix in two steps, �rst in

olor spae, and then in the spaes of boson speies bloks for eah olor. We

now present our �nal form of the partition funtion that we will atually use for

renormalization group alulations. Sine the stepwise diagonalization proedure

is very error prone, we show that by starting with our �nal form of the partition

funtion, we an reprodue the Hubbard model by integrating out the bosons

and inserting the Hubbard model values for the Yukawa ouplings. The rest of

this setion will disuss the partition funtion and the one loop expressions.
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6.2.1 The partition funtion

Our �nal version of the partition funtion is

Z = N (T )

Z
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The real �elds

^

R,

^

~s as well as the omplex �elds
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are understood to arry a olor-index a = 1 : : : 4. The terms of the ation read
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The propagator matries are (B stands for R, ~s or �)

P

 

ab

(Q) = [i!

n

� 2t (os(q

1

=2)A

1

+ os(q

2

=2)B

1

)℄

ab

;

P

B

ab

(K) = (2�)

2

P

B

a

(K)Æ

ab

(6.41)

with
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for the real bosons and
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for the omplex bosons. P

R

a

(K), P
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(K) and P

y

a

(K) for a = 2 : : : 4 are given by

the expressions for a = 1 with the replaements sin(k
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The verties for the real bosons read
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For the omplex bosons, the verties are
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The matries A

�

, B

�

, C

�

and D

�

are de�ned in the appendix (A.2).

6.2.2 Equivalene to the Hubbard model

In this setion we will show that our new partition funtion (6.38) is equivalent to

the one of the Hubbard model, if we set the Yukawa ouplings to their Hubbard

model values aording to
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In this ase, the propagators simplify to
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The solution of the �eld equation for
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Inserting this in the ation, we see that only the soure independent part of this

solution ontributes to the four fermion term in the purely fermioni theory. We

will therefore set the soures equal to zero from now on (it is a simple task to

hek that the soure dependent terms produe the orret soure dependent

terms of (3.29)). The ontribution from the R-bosons to the four fermion term

in the ation is
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where we use the short hand notation
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We proeed similarly for the ~s-bosons. To bring S
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into a form whih an easily

be ompared with (6.50), we use the identity
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Here [abd℄ is de�ned as in (6.51) and [abd℄

ij

is equal to [abd℄ with the momenta

of the i-th and j-th �eld exhanged. We �nd
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For the �-bosons, we use the identity
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to alulate
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From this we �nd
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whih is exatly the four fermion Coulomb term of the Hubbard model in the

form of (3.29).

6.3 Disussion

The last two setions were very formal and it is time to get some physial insight

into the properties of our new formulation. In this setion we will address the

following issues:

� When �rst partially bosonizing the Hubbard model, we introdued the orig-

inal bosons to be able to express physial degrees of freedom by expetation

values of bosoni �elds. Although we simpli�ed our formalism analytially,

we seem to have lost the intuitive grip on the physial signi�ane of the

bosons. However, we will show that in the ase of homogeneous �elds our

new bosons really desribe the physial degrees of freedom we want to in-

vestigate.
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� The new formalism is based on a perturbative one loop alulation. It is

not yet lear that the full propagator matrix with all quantum utuations

inluded remains diagonal beyond one loop. We will show that this is

indeed the ase and what we atually have done is to swith to a set of

bosons that belong to di�erent irreduible representations of translations,

so that mixing of the bosons is prevented by translational invariane.

� The one loop expressions o�er a �rst insight into the way quantum u-

tuations are inluded into bosoni propagators. They give some valuable

information for the motivation of trunation shemes, e.g.: Whih momen-

tum modes are favored in propagation? How does the bosoni Matsubara

frequeny enter the propagators? How do the propagators behave as fun-

tions of temperature?

� The last topi of this setion will be the periodiity properties of the new

�elds, whih will also turn out to play an important role in the de�nition

of trunation shemes.

6.3.1 Homogeneous �elds

The renormalization group analysis we present in the following hapter will be fo-

used on the investigation of the properties of the e�etive potential. The e�etive

potential is a funtion of onstant bosoni �elds, b(X) = b = onst. in position

spae or respetively b(Q) = Æ(Q)b in momentum spae. The interpretation of

our new bosoni �elds in this limit is therefore of great interest to understand

what the e�etive potential tells us about the physial degrees of freedom of the

theory.

For homogeneous �elds, the bosoni kineti term reads

1

V

S

B

kin

= 2�

2

(h

2

�

^

R

2

1

+ h

2

p

^

R

2

2

+ h

2

q

y

^

R

2

3

+ h

2

q

x

^

R

2

4

)

+ 2�

2

(h

2

m

^

~s

2

1

+ h

2

a

^

~s

2

2

+ h

2

g

y

^

~s

2

3

+ h

2

g

x

^

~s

2

4

)

+ 4�

2

(�̂

y

1

diag(h

2

e

y

; h

2

e

x

)�̂

1

+ �̂

y

2

diag(h

2

v

y

; h

2

v

x

)�̂

2

+ �̂

y

3

diag(h

2

v

y

; h

2

e

x

)�̂

3

+ �̂

y

4

diag(h

2

e

y

; h

2

v

x

)�̂

4

): (6.57)

The Yukawa oupling term beomes
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+ �̂

y

3

�

�h

2

v

y

os(q

1

=2)D

1

h

2

e

x

sin(q

2

=2)C

1

�

i�

2

+ �̂

y

4

�

�h

2

e

y

sin(q

1

=2)D

2

�h

2

v

x

os(q

2

=2)C

2

�

i�

2

�

^

 (Q)

+ (

^

 !

^

 

�

; sin! � sin; i�

2

! �i�

2

; �̂

y

! �̂

T

)

�

: (6.58)

We see that in this limit the bosons

^

R and

^

~s ouple to the same fermioni bilinears

as the original bosons �̂, p̂ et. This means that for homogeneous �elds, we an

interprete

^

R

1

as the harge density,

^

~s

1

as the magneti spin density,

^

~s

2

as the

antiferromagneti spin density et.

The interpretation of the omplex bosons is not so simple. To understand the

oupling terms of the omplex bosons, we translate them to position spae. For

example, this yields for the �rst omponent of �̂

1

�

1

2

h

2

e

y

�̂

�

1

1

X

X

(

^

 

1

(X)i�

2

^

 

2

(X) +

^

 

1

(X)i�

2

^

 

2

(X � e

1

)

+

^

 

3

(X)i�

2

^

 

4

(X) +

^

 

3

(X � e

1

)i�

2

^

 

4

(X)):

We represent this result as a pitorial expression in �g. 6.3. The plaquette

with position label X is indiated by a dashed line. The results for the other

omplex bosons are given in the same way by the remaining diagrams in �g.

6.3. Partiularly we see that �̂

1

1

� �̂

1

2

desribes a d-wave. Similarly, bosons

with di�erent spatial symmetry properties an be built up by simple inspetion

of these diagrams.

In onlusion, we have found that despite the transformations we performed

to diagonalize the propagator matrix, the physial interpretation of the boson is

as simple as for the original bosons in the most interesting ase of homogeneous

�elds.

6.3.2 Symmetries

Sine our �nal form of the partition funtion is equivalent to the original Hubbard

model for the Hubbard values of the Yukawa ouplings, it is lear that it should

respet the lattie symmetries as well as U(1)- and SU(2)-symmetry of the origi-

nal model. In priniple we ould infer the symmetry transformation properties of

the new bosons from the known transformation behavior of the bilinears (under

the assumption that the ation should be invariant). However, there is no need to

do this with one important exeption: The behavior with respet to translations.

As we have mentioned in the disussion following (3.22), the translations T

x

, T

y

and T

x

T

y

at as

0

B

B

�

1

T

x

T

y

T

x

T

y

1

C

C

A

^

 (Q) =

0

B

B

�

A

0

A

1

exp(iq

1

=2)

B

1

exp(iq

2

=2)

B

0

exp(i(q

1

+ q

2

)=2)

1

C

C

A

^

 (Q): (6.59)
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For ompleteness, we also wrote down the identity transformation 1. Then, to

guarantee translational invariane, we have

0

B

B

�

1

T

x

T

y

T

x

T

y

1

C

C

A

^

R

1

(Q) =

0

B

B

�

1

exp(iq

1

=2)

exp(iq

2

=2)

exp(i(q

1

+ q

2

)=2)

1

C

C

A

^

R

1

(Q)

0

B

B

�

1

T

x

T

y

T

x

T

y

1

C

C

A

^

R

2

(Q) =

0

B

B

�

1

� exp(iq

1

=2)

� exp(iq

2

=2)

exp(i(q

1

+ q

2

)=2)

1

C

C

A

^

R

2

(Q)

0

B

B

�

1

T

x

T

y

T

x

T

y

1

C

C

A

^

R

3

(Q) =

0

B

B

�

1

exp(iq

1

=2)

� exp(iq

2

=2)

� exp(i(q

1

+ q

2

)=2)

1

C

C

A

^

R

3

(Q)

0

B

B

�

1

T

x

T

y

T

x

T

y

1

C

C

A

^

R

4

(Q) =

0

B

B

�

1

� exp(iq

1

=2)

exp(iq

2

=2)

� exp(i(q

1

+ q

2

)=2)

1

C

C

A

^

R

4

(Q): (6.60)

The same transformations apply to

^

~s

a

and �̂

a

. This tells us that the bosons

^

R

a

belong to inequivalent irreduible one dimensional representations of the transla-

tion group! The same reasoning holds for

^

~s

a

and �̂

a

. In other words, to preserve

translational invariane the full propagator matrix (not only the one loop or-

reted one) has to be diagonal in the same sense in whih the one loop orreted

propagator matrix is diagonal (whih means diagonal exept for the 2� 2-bloks

for the omplex bosons). In onlusion, U(1)-invariane tells us that the real and

omplex bosons annot mix, SU(2)-invariane forbids mixing of bosons from the

spin singlet and triplet, and �nally translational invariane exludes mixing of

bosons with di�erent a. Note that these invariane arguments do not only hold

for the propagator matrix, but an also be used to narrow down the possible

form of arbitrary n-point funtions. We will exploit this when writing down a

trunation of the e�etive ation in the following hapter.

Translations leave eah term of the ation separately invariant. This is not

the ase for rotations. Although we know that the ation as a whole is invariant

under rotations, this is not the ase for single terms in the ation. For example,

if we only onsider the terms in the original ation ontaining the boson q̂

y

and

translate these terms bak into the purely fermioni theory (as we did in (3.33)),

we �nd that these terms give rise to a four fermion interation term � (

^

 

y

1

^

 

1

+

^

 

y

2

^

 

2

�

^

 

y

3

^

 

3

�

^

 

y

4

^

 

4

)

2

. This term breaks rotational invariane. However, the

onditions for the Yukawa ouplings guarantee that these symmetry breaking

terms anel eah other, but only, if all terms are taken into aount. To preserve

rotational invariane during the ow, we must keep in mind that during the
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renormalization group ow the individual terms we wrote down in our ation

will not develop wave funtion renormalization onstants or ouplings that are

independent from eah other. For example, the ondition that h

q

x

= h

q

y

at

the beginning of the ow remains true during the whole ow due to rotational

invariane. In the same way, the ratio of wave funtion renormalization onstants

for say R

1

and R

i

, i 2 f2; 3; 4g will always be onstant, if we trunate the wave

funtion renormalizations to be momentum independent. However, symmetry

onsiderations do not keep mass terms or ouplings in the e�etive potential from

owing independently, sine the e�etive potential is a funtion of homogeneous

�elds. For homogeneous �elds, the new bosons oinide with the original ones,

and symmetry transformations do no longer mix di�erent terms.

The last symmetry we want to disuss is the \time reversal" (3.23). In the

limit of spatially homogeneous bosoni �elds

^

R

an

(q = 0) et. the orresponding

symmetry transformations for the bosons are simply

T

A

2

^

R

n

(0) = diag(�1; 1;�1; 1)

^

R

�n

(0)

T

B

2

^

R

n

(0) = diag(�1; 1; 1;�1)

^

R

�n

(0)

T

B

3

^

R

n

(0) = diag(�1;�1; 1; 1)

^

R

�n

(0): (6.61)

Partiularly,

T

A

2

T

B

2

T

B

3

^

R

an

(0) = �

^

R

a(�n)

(0) 8a: (6.62)

The last equation also holds if

^

R is replaed by

^

~s or �̂. We an use this sym-

metry to argue that in any term of the e�etive ation that only depends on

homogeneous �elds R

a(n=0)

(q = 0), et. the number of bosoni �elds must be

even.

6.3.3 Disussion of the momentum dependene

Before our �nal diagonalization step arried out in se. 6.1.5, the bosoni prop-

agator terms in the ation (as funtionals of the original bosoni �elds or of the

�elds

�

b

i

) were pure mass terms. The momentum dependene emerged at one loop

level as disussed in se. 6.1.4. However, in our �nal form of the theory, already

the lassial propagators (6.42), (6.43) are momentum dependent. For high tem-

perature, this momentum dependene of the lassial propagators dominates over

the momentum dependene indued by quantum orretions.

In the trunation for the e�etive ation that we will use in this work, we

will keep the Yukawa ouplings onstant at their initial values. If we insert

the initial Hubbard values for the Yukawa ouplings, the propagators redue to

(6.47). Then the momentum dependene of the propagators for R

1

and ~s

2

goes

as � os(k

1

=2) � os(k

2

=2), whih takes its minimum at

~

k = 0. The propagator

matrix for �

1

beomes diagonal and momentum independent. To see how the

momentum dependene emerges for �

1

, we investigate the one loop orretion
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to the diagonal elements of the propagator matrix of �

1

in the ase that the

Yukawa ouplings are set to their Hubbard model values (we will neglet the

o� diagonal elements in our trunation). The results are shown in �gs. 6.4,

6.5. In both ases, the minimum of the propagator orretion again ours in

~

k = 0. Thus we �nd that the dominating momentum dependene of the bosoni

propagators of our �nal theory exhibits minima at

~

k = 0 for the bosons desribing

the harge density, antiferromagnetism and d-wave superondutivity in the limit

of homogeneous �elds. We will use this fat to argue that the propagation of

momentum modes lose to

~

k = 0 is failitated, so that we an approximate these

�elds homogeneously by their

~

k = 0-mode.

6.3.4 Periodiities

The bosoni integrals extend over the range [��; �℄. This range originated in

the periodiity of the integrand in our de�nitions of the Fourier transforms. It

is interesting to analyze the periodiity properties of our new bosons and to see

how the periodiity of the integrand is maintained.

The periodiity behavior of the new bosons an be inferred from the known

behavior of the original bosons, whih follows diretly from the form of the Fourier

transforms. By applying all the transformations we performed to arrive at our

new bosons, we �nd after a tedious but straightforward alulation

^

R(K + 2�ne

i

) = (�1)

n=2

^

R(K)

�̂(K + 2�ne

i

) = (�1)

n=2

�̂(K) (6.63)

for n even, i 2 f1; 2g and

^

R(K + 2�ne

1

) = i(�1)

(n+1)=2

B

1

^

R(K);

^

R(K + 2�ne

2

) = �i(�1)

(n+1)=2

B

0

^

R(K);

�̂

a

1

(K + 2�ne

1

) =

X

b

(B

1

)

ab

�̂

b

1

(K)

�̂

a

1

(K + 2�ne

2

) = i(�1)

(n+1)=2

X

b

(B

0

)

ab

�̂

b

1

(K)

�̂

a

2

(K + 2�ne

1

) = i(�1)

(n+1)=2

X

b

(B

1

)

ab

�̂

b

2

(K)

�̂

a

2

(K + 2�ne

2

) =

X

b

(B

0

)

ab

�̂

b

2

(K) (6.64)

for n odd. The equations for

^

R also hold respetively for

^

~s. Apart from a possible

phase fator, the �elds are periodi in 4�. They are not periodi in uneven

multiples of 2�, but transform into eah other. Thus it is lear that no single
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term in the bosoni part of the ation is periodi in 2�. However, periodiity of

the integrand is restored when onsidering sums of terms. For example, whereas

1

2

^

R

1

(�K)P

R

11

^

R

1

(K) (6.65)

is not periodi in 2�, the sum

1

2

X

ab

^

R

a

(�K)P

R

ab

^

R

b

(K) (6.66)

is periodi in 2�.

The interesting thing about this behavior is that it is possible to write terms

as higher momentum modes of other terms. For example, we an write

1

2

T

X

n

Z

�

��

d

2

k

(2�)

2

X

ab

^

R

a

(�K)P

R

ab

^

R

b

(K) =

1

2

T

X

n

Z

2�

�2�

d

2

k

(2�)

2

^

R



(�K)P

R



^

R



(K)

(6.67)

for any  2 f1; 2; 3; 4g. We have shown that the same property holds for the

propagator terms of the omplex bosons, as well as for the oupling terms. One

possible equivalent transription of the bosoni terms in (6.40) that we will use

is

S

B

kin

=

X

K

h

1

2

^

R

1

(�K)P

R

11

(K)

^

R

1

(K) +

1

2

^

~s

2

(�K)P

~s

22

(K)

^

~s

2

(K)

+ �̂

y

1

(K)P

�

11

(K)�̂

1

(K)

i

;

S

Y

= �

X

KQQ

0

X

ab

h

Æ(K �Q +Q

0

)

�

^

R

1

(K)

^

 

y

a

(Q)V

R

ab;1

(K)

^

 

b

(Q

0

)

+

^

~s

2

(K)

^

 

y

a

(Q)V

~s

ab;2

(K)

^

 

b

(Q

0

)

�

+ Æ(K �Q�Q

0

)

�

�̂

y

1

(K)

^

 

T

a

(Q)V

�

�

ab;1

(Q;Q

0

)

^

 

b

(Q

0

)

+ �̂

T

1

(K)

^

 

y

a

(Q)V

�

ab;1

(Q;Q

0

)

^

 

�

b

(Q

0

)

�i

;

(6.68)

where it is understood that bosoni momentum integrals extend over the interval

[�2�; 2�℄ (that is,

P

K

= T

P

n

R

2�

�2�

d

2

k

(2�)

2

, ifK denotes the momentum of a boson)

and fermioni integrals over [��; �℄. The Æ-funtion is assumed to be periodi in

2� for Q, Q

0

and in 4� for K. Only the physially interesting bosons

^

R

1

,

^

~s

2

and

�̂

1

enter our formulation in this transription. The other bosons are inluded as

higher momentum modes of these three bosons.
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Chapter 7

Renormalization group analysis

The history of renormalization group approahes to the Hubbard model is a short

one [18℄. Up to now all these investigations were performed in the framework of

the purely fermioni model. In this setion we will see how to apply the renormal-

ization group formalism developed in hapter 5 to our �nal partially bosonized

form of the partition funtion (6.38), where the ation terms are given by (6.40).

If onvenient, we may rewrite the ation terms by using (6.68). The �rst task is

then to write down a suitable trunation for the e�etive ation. This trunation

ansatz is then to be inserted in (5.24), from whih we an derive the ow equa-

tions for masses, ouplings and wave funtion renormalization onstants. Our

renormalization group analysis will be foused on the properties of the bosoni

e�etive potential, and the trunations proposed in the �rst setion will be ad-

justed to this aim.

7.1 The trunation

Sine (5.24) annot be solved exatly, we propose an ansatz for its solution, whih

is a trunated version of the e�etive average ation. The guidelines for doing so

are the following:

� Due to the property lim

k!�

�

k

= S the e�etive average ation will resemble

the lassial ation as a funtion of expetation values of the �elds at the

beginning of the ow. The trunation will therefore inlude terms that

look like the orresponding terms of the lassial ation and systemati

generalizations of these.

� The generalizations are limited by the fat that they should respet the

symmetries of the theory.

� We only keep terms that seem to be absolutely neessary to desribe the

behavior of quantities we want to alulate (in our ase bosoni masses and

quarti ouplings).

91
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It is lear that by trunating the e�etive average ation we introdue errors

due to the approximation. The most diÆult part in a suessful renormalization

group analysis is to deide whih terms to inlude in the trunation. This requires

physial intuition, some systemati expansion of the terms whih possibly appear

in the e�etive average ation and a trial and error proedure | at last, the

only reliable way to estimate trunation errors is to inlude more terms in the

systemati expansion and to see how they hange the results. We want to stress

that for theories with strong ouplings (so that no perturbative expansion with

respet to some small quantity is possible) there is no way to irumvent these

approximation problems. One large advantage of the method of the e�etive

average ation we present here is that the property lim

k!�

�

k

= S enhanes our

intuitive grip on possible trunation shemes.

In general, the e�etive average ation an be written in the form

�

k

= �

B

k

+ �

F

k

+ �

BF

k

; (7.1)

where �

B

k

ontains only bosoni �elds, �

F

k

only fermioni �elds and �

BF

k

oupling

terms between bosoni and fermioni �elds. Sine we are mostly interested in the

properties of the e�etive potential, whih is part of �

B

k

, we propose the following

simple ansatz for �

F

k

and �

BF

k

:

�

F

k

= S

F

kin

; �

BF

k

= S

Y

: (7.2)

The reasoning behind this approximation is that we are mainly interested in the

ow of the e�etive potential. Terms with more than two fermioni �elds do not

ontribute to the ow of the e�etive potential. However, they do ontribute to

the ow of the Yukawa ouplings | that we keep onstant in our trunation (see

below). For onstant ouplings we an therefore ignore all terms with more than

two fermioni �elds. This leaves one fermioni propagator term whih is part of

�

F

k

and oupling terms of two fermioni �elds to an arbitrary number of bosoni

�elds in �

BF

k

. The propagator term an be written as the lassial propagator

term times a momentum dependent wave funtion renormalization onstant. To

arrive at (7.2), we additionally make the following approximations:

� The fermioni wave funtion renormalization onstant Z

F

k

is kept onstant

at its initial value Z

F

k

= 1.

� All terms with two fermions and more than one boson are negleted.

� The Yukawa ouplings are kept onstant. This approximation would not be

too good for most simpler theories, where the initial values of the ouplings

are known. It is even worse in our ase, sine the many di�erent hoies of

the initial values of the ouplings (although equivalent if everything is exat)

lead to di�erent results if approximations are made, as we already saw in

the mean �eld ase. However, to get a �rst impression of the properties of
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the e�etive potential, we will nevertheless take the Yukawa ouplings as

parameters and disuss the results as funtions of these parameters. The

inlusion of the ow of the ouplings into the renormalization group analysis

is subjet to urrent work [17℄.

Again reall that with all these approximations the e�etive average ation terms

involving fermioni �elds neessarily oinide with the orresponding terms of the

lassial ation due to the property lim

k!�

�

k

= S.

We now turn our attention to �

B

k

. �

B

k

is a funtional of the bosoni �elds
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with k-dependent oeÆients (k is the ow parameter from hapter 5). Eah

oeÆient ontains a momentum onserving Æ-funtion. From (6.63) we know

that

b

i

(K) = �b

i

(k + 4�e

1=2

) (7.4)

whih implies
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to preserve the periodiity of the integrands. This tells us that we an expand eah

oeÆient 

i
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) with respet to the funtions (K
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for n even and

fos((2m

j

+1)(k

j

)

1

=4); os((2m

j

+1)(k

j

)

2

=4); sin((2m

j

+1)(k

j

)

1

=4); sin((2m

j

+1)(k

j

)

2

=4)g

(7.7)

for n odd and withm 2 N (we have hosen to expand with respet to os(mk

1=2

=2)�

1 instead of os(mk

1=2

=2) to ahieve that all momentum dependent terms for even

n vanish for k = 0). The oeÆients ~

m;k

of this new expansion with respet to

trigonometri funtions only depend on the Matsubara frequeny and the ow

parameter k.
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In our trunation of �

B

k

we inlude a momentum dependent propagator term

(more on this later) and a seond term ontaining all other bosoni terms

�

B

k

= �

B

kin;k

+ U

k

: (7.8)

We simplify the oeÆients ~

m;k

by negleting their Matsubara mode dependene.

Furthermore, for homogeneous �elds we have K

i

= 0 8i. Then (6.62) tells us that

all terms of the e�etive ation with an odd number of �elds have to vanish

to preserve \time reversal"-invariane

1

. For the remaining terms with an even

number of �elds, only the terms with momentum independent oeÆients survive,

so that we trunate U

k

in the form
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with homogeneous �elds b

i

(K) = b

i

Æ(K), oeÆients that only depend on the

ow parameter k and appropriate momentum onserving Æ-funtions Æ(: : :).

Due to U(1)- and SU(2)-symmetry the e�etive potential U

k

an only depend

on the invariants

�
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): (7.10)

By use of (6.68) we an write the e�etive potential as a funtion of �

11

, �

22

and

�

11;11

, �

11;12

, �

12;11

, �

12;12

only. To simplify the notation, we write �

ab

:= �

1a;1b

.

Reall that all other bosons are inluded as higher momentum modes of the

bosons expliitly present in our trunation as disussed after (6.68). This means

that although we will only onsider homogeneous modes of the invariants �

11

,

�

22

and �

11

, �

12

, �

21

, �

22

as external lines, the exhange of all virtual bosons

is inluded as we also integrate over the higher virtual boson momentum modes

representing the bosons not expliitly present in the boson set we seleted.

1

Note the triky part of this argument: The symmetry transformation (6.62) lived in the

spae of bosoni �elds, whih are all independent. If we swith to the e�etive ation, the

(linear) symmetry transformation arries over to the expetation values of the �elds, exept

for the harge density R

1

(0) / �. The harge density expetation value � is regarded as a

parameter ontrolled by the soure � that is no longer expliitly present in the e�etive ation.

The transformation � ! �� does not follow from the transformation behavior of �̂, sine it is

no longer a free �eld, but from �! �� in (3.23) and (4.24).
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The momentum dependent term in �

B

kin;k

is trunated to a propagator term

only:
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For the real bosons we set
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This has to be ompared to the lassial ation propagators

P
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First note that the terms P

R

1

(K = 0) and P

~s

2

(K = 0) are momentum independent

and therefore an be ompensated by adjusting the oeÆients in the e�etive

potential U

k

, so that we are free to add them. If we note that the propagators

P

R

1

(K) and P

~s

2

(K) (for the Hubbard model values of the Yukawa ouplings)

beome minimal in K = 0, we see that (for m = 0) the advantage of this addition

is to make the propagator vanish at zero momentum and positive otherwise. This

allows to de�ne simple trunation shemes for the bosoni propagators.

As we will see below, we use a temperature like uto� in the fermioni setor.

This means that during the beginning of the ow the system behaves as in the high

temperature limit. The interesting physis emerges gradually as the temperature

uto� is lowered.

The last term we added involving the Matsubara frequeny m is needed to

make loop Matsubara sums �nite (sine we will keep the Yukawa ouplings on-

stant, the omplete m-dependene of loops will be provided by the propagators).

By adding a term � m

2

, we mimi the low temperature behavior of the one

loop result as disussed in setion 6.1.4. We �t our trunation to the original

ation term by omparing the m = 0-Matsubara mode (in the high temperature

limit, this is the only one ontributing in the one loop alulation). We therefore

set Z

R

k

= 1 at the beginning of the ow, where k is large. Note that we have

trunated Z

R

k

, Z

~s

k

to be momentum independent.

In priniple there is nothing that prevents us from replaing (m�T )

2

by



k

(m�T )

2

, where 

k

is a k-dependent quantity. We have heked numerially

that suh a fator only has a small e�et on our results, so that we set it equal

to unity.

For the omplex bosons, there is no lassial propagator that an be used as

the main ingredient of the trunation, sine for the Hubbard model values of the
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ouplings the lassial propagator of the omplex bosons is momentum indepen-

dent. We therefore propose a simple ansatz taking into aount the �rst Fourier

term in a general expansion of the e�etive ation with respet to momentum

P
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(7.14)

Sine we know that the �rst momentum dependent ontributions to the propa-

gators of the omplex bosons emerge at one loop level in O(1=T

4

) (f. (6.29)),

and our regularization sheme in the fermioni setor (as disussed below) will

replae m�T by m�T

k

= m�(T + k

2

), the momentum dependene develops as

O(1=k

8

). We therefore approximately set Z

�

k=�

= 1=�

8

as the initial value of the

wave funtion renormalization onstant.

In onlusion, our trunation for the e�etive average ation reads
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and the verties given by (6.44) and (6.45).
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7.2 The ow of the e�etive potential

7.2.1 The seond derivative of �

k

We will now start to derive the ow equations for the e�etive potential. In

general, the ow equations for any interesting quantity an be derived from our

master equation (5.24) for some partiular trunation (in our ase (7.15)). As we

see, we need the seond derivative of �

k

with respet to the �elds. Expliitly, we
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where �

(2)

k

(K;K

0

) denotes the matrix of seond derivatives ourring in (5.24)

(we use this notation to avoid onfusion between the omplex bosoni �elds � we

use here and the generalized �elds � in (5.24)).

In our trunation, the kineti terms yield
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where we have used that the propagator matries are symmetri.

The ontributions of the oupling terms are
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with

~

V (K;K

0

) = V (K;K

0

)� V

T

(K

0

; K) (7.20)

and w



2 fR

1

; ~s

2

g.

The e�etive potential U

k

depends only on the invariants �

11

, �

22

, �

ij

. It

is therefore onvenient to express the derivatives with respet to the �elds by

derivatives with respet to the invariants. Let

D
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ij
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: (7.21)

Then we an write (generalized matrix notation!)

U

(2)

k

= diag(D

�

; D

T

�

; D

�

; D

�

; 0; 0)U

k

(7.22)
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7.2.2 The ow of the e�etive potential

In this setion we will derive the ow of the e�etive potential from (5.24) or

equivalently, the ow of the oeÆients 

i

1

:::i

n

in (7.9). In general, there is an

in�nite number of oeÆients. To be able to alulate anything, there are two

possible ways to render the number of ow equations �nite:

� Trunate the e�etive potential at some �nite power of the �elds, e.g. at

quarti order in the �elds. This yields a �nite set of ow equations for the

remaining oeÆients.

� Instead of onsidering the ow of the oeÆients, onsider the ow of the

full potential as a funtion of disretized homogeneous �elds. For example,

if U [�℄ is an e�etive potential depending on the (ontinuous valued) �eld

�, one ould analyze the ow of the potential at given points U [� = �

0

℄,

U [� = �

1

℄, U [� = �

2

℄ et. A �nite number of points yields a �nite number

of ow equations.

Both methods have their advantages and drawbaks. The �rst method is easier to

apply, more stable and faster in the numerial treatment, but has the drawbak

that | sine it is nothing else than a polynomial series expansion around some

given point to a given order | the possible solutions for the e�etive potential are

reliable only lose to the point around whih we expand. Usually, one expands

around the minimum of the e�etive potential. Physial properties that an be

inferred by looking at the ow of the potential lose to this minimum an be well

understood by this approah. However, phase transitions of �rst order typially

an not be derived from properties of the ow of the potential near the minimum

(f. �g. (4.1)).

The seond method does not have this kind of problem and any possible

shape of the potential an be desribed by it | not only those orresponding to

some �nite power expansion in the �elds. But on the other hand the numerial

implementation of this seond method is far from trivial. The reason for this is

that we need the seond derivatives of the e�etive potential on the right hand

side of the ow equation. If we disretize the region the e�etive potential is

de�ned on, these derivatives also have to be disretized. As is already known

from more simple systems, it is a formidable task to ahieve this disretization

in a stable way. We will therefore use the �rst method, keeping in mind that we
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possibly fae diÆulties with �rst order phase transitions and postpone the more

general treatment by the seond method to future work. The implementation

of the �rst method requires an expliit trunation of the e�etive potential. We

will investigate di�erent trunation shemes for the e�etive potential later on.

In this setion, we will derive the ow equations as far as possible without �xing

some spei� trunation.

The idea to extrat the ow of the e�etive ation from (5.24) is to note that

lim

 ; 

�

!0

lim

b

i

(Q)!b

i

Æ(Q)

�

k

= U

k

(7.23)

so that

d
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�

�1

�

: (7.24)

From the results of the last setion, we have
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B 0

0 F

�

(7.25)
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We see that lim

 ; 

�

!0

�

(2)

k

is blok diagonal in the bosoni and fermioni setor.
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the ow equation now reads
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We separate the ow equation by U

k

= U

B

k

+ U

F

k

, so that

d
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The right hand side of the ow equation for U

F

k

does not depend on U

k

, so that

we an further alulate it without speifying a trunation for U

k

.

It is very instrutive to rewrite the ow equation for U

F

k

as

d

dk

U

F

k

= �

1

2
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i

(Q)!b

i
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where

~
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=
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~
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k
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F
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: (7.31)

If the right hand side depended on k only via

~

R

F

k

, we ould replae

~

�

k

by

d

dk

and

immediately integrate the equation to get U

k

as a funtion of k. For k ! 0, we

know that

~

R

F

k

vanishes. In this ase we have

U

F

k=0

= U
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k!�

�

1

2

lim

b
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(Q)!b

i

Æ(Q)

ln detF (7.32)

whih is nothing else than the one loop orreted potential we alulated in our

mean �eld analysis (f. (4.10)) | besides the fat that we used a di�erent set of

bosons there.

The alulation mainly goes through as in the mean �eld ase. We set

R

F

k

(K) = i(2n+ 1)�k
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(7.33)

and �nally arrive at
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with 
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For �

ij

= 0, this reprodues the mean �eld result (4.18) with Æ = 0, if we set

R

1

= �=h

�

, ~s

2

= ~a=h

a

and assume that the right hand side depends on k only via

T

k

. This was to be expeted from omparing the original oupling term in (3.48)

with (6.58) in the limit of homogeneous �elds. The term involving the omplex

bosons looks somewhat di�erent, whih is due to our rede�nition of the omplex

�elds in (6.14). The original �eld e orresponds to �

1

+ �

2

, whereas the d-wave

orresponds to �

1

� �

2

. The orresponding invariants are

e : (�
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)(�
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: (7.36)

If we assume that the original boson ê always has a vanishing expetation value,

we an set �

12

+ �

21

= ��

11

� �

22

. If we further assume that rotational

invariane is not broken in the sense that �

11

6= �

22

, we an set

� = 2�

11

= 2�

22

: (7.37)

Sine we keep all ouplings at their Hubbard values, we additionally have h

2

e
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=
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2

e
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= 2h

2

d

, so that
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� �
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2

): (7.38)

With these assumptions, we therefore are in omplete agreement with the mean

�eld result, if we additionally set Æ = 2h

2

d

�.

7.3 The ow of the bosoni wave funtion renor-

malization onstant

In the following setion we will also need the ow of the wave funtion renor-

malization onstant Z

~s

k

. We will derive the orresponding ow equation in this

setion and show that it an be analytially solved in our trunation.

First note that Z

~s

k

an be extrated from our trunation of the e�etive ation

by

Z
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in the symmetri phase and

Z
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in the broken phase, where ~s

0

k

denotes the minimum of the e�etive potential,K =

(!

B

m

;k) and by � we denote some small momentum j�j � 1. Note that the method

of extrating Z

~s

k

is not uniquely determined by our trunation. Partiularly, the
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limits ~s ! 0 and ~s ! ~s

0

k

are introdued only to yield more onsistent equations

when deriving the ow of Z

~s

k

from (5.24). By substituting the momentum k by �,

expansions of the trigonometri funtions with respet to � beome possible. This

is very onvenient, sine the quadrati expansion of lim

k!�

(

1

+

2

) is rotationally

invariant and a funtion of j�j only.

From (5.24) we immediately have

�
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Tr((�
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: (7.41)

7.3.1 The symmetri phase

As we already disussed, the ow equation for the e�etive average ation has

the form of a one loop equation. The one loop ~s

2

-propagator term orretions

have the diagrammatial form

�

KK

Q

K +Q

~s

2

~s

2

for utuations in the fermioni setor and

�

KK

~s

2

~s

2

for utuations in the bosoni setor. Ating with O

symm

Z

on these expressions,

the external legs are amputated. Sine we have to di�erentiate with respet to j�j

(whih is nothing else than a small external momentum) and the loop momentum

does not depend on K in the seond diagram, we onlude that in the symmetri
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phase we do not have any ontribution to the ow of Z

~s

k

from the bosoni setor.

The ow equation therefore reads
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; (7.42)

where we have already performed the limit  ;  

�

! 0. Inserting F on the right

hand side, performing the trae and all limits and derivatives, a lengthy but

straightforward alulation yields
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Sine in our trunation the right hand side of the ow equation depends on k via

T

k

only, we have

~

�

k

= �

k

, so that we an diretly integrate the ow equation to

get
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From (7.43) and (7.45), we immediately �nd the anomalous dimension
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= �k�
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k

Z
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: (7.46)

7.3.2 The broken phase

In the broken phase, an additional diagram ontributes to the one loop orretion

of the bosoni propagator term.
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Here we have the possibility of a oupling to a non vanishing external �eld ~s

0

2

, so

that we have a ontribution from the bosoni setor in ontrast to the symmetri

ase. The broken phase appears for small values of k. Sine the ow in the

fermioni setor goes as k�

k

Z

~s

k

/ k

2

, it is a good approximation to neglet the

ontribution from the fermioni setor in the broken phase. Furthermore, as we

will see when disussing the ow equations for the e�etive potential below, only

the Matsubara mode m = 0 and momenta q lose to zero ontribute to the ow

at small k. This means that | with regard to the ow of Z

~s

k

| we e�etively

fae a two dimensional bosoni theory, whih an be mapped to a simple O(3)-

model in two dimensions. But for the O(3)-model the ow of the wave funtion

renormalization onstant has already been alulated [20℄ to be
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16v
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where v

2

= 1=(8�) and m
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; 0) is a so alled threshold funtion whose

exat form depends on the hoie of the uto� funtion R
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k

(again, for more details

we refer to [20℄). If we hoose R
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k
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: (7.48)

With some minor adjustments reeting di�erent onstant fators in our formu-

lation as ompared to the treatment of the O(3)-model in [20℄, the anomalous

dimension �nally reads

�

k

=

4T

�

5

�

3

(�

�

k

)

2

�

0

22;k

1

((2�)

2

�

2

+ 2�

�

k

�

0

22;k

)

2

: (7.49)

Z

~s

k

an then be derived from �

k

Z

~s

k

= �Z

~s

k

�

k

by numerial integration.

7.4 Results for di�erent trunations of the ef-

fetive potential

A lot of interesting questions an be addressed by the formalism we developed so

far. We will restrit our attention to two aspets:

� The Mermin-Wagner theorem [21℄ tells us that in two dimensions at non

vanishing temperature no long range order is present. However, in the mean

�eld ase we observed phase transitions for non vanishing temperature.

Furthermore, in the e�etively two dimensional uprates antiferromagneti

and superonduting behavior is atually being observed. In a very simple

setting (half �lling, only antiferromagneti degrees of freedom taken into

aount) we will see that this puzzle is solved by the renormalization group

analysis.
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� Mean �eld alulations tend to overemphasize symmetry breaking. It is

interesting to study the inuene of bosoni utuations on the phase di-

agram to better understand the basi mehanisms of the interplay of the

di�erent degrees of freedom.

7.4.1 Antiferromagneti behavior at half �lling

At half �lling, we have � = �

11

= 0. Furthermore, we set � = 0, sine we are

only interested in the antiferromagneti behavior.

Fermioni ontribution to the ow

In this trunation, the ow equation for U

F

k

reads

d

dk

U

F

k

= �2TV

~

�

k

X

�

1

;�

2

Z

�

��

d

2

q

(2�)

2

ln osh

�

1

2T

k

�

2

q

2

^

h

4

a

�

22

+ 4t

2

(

1

+ �

1



2

)

2

�

=

8kTV

T

k

X

�

1

Z

�

��

d

2

q

(2�)

2

f

�

1

(�

22

) tanh(f

�

1

(�

22

)) (7.50)

with

f

�

1

(�

22

) =

1

2T

k

q

2

^

h

4

a

�

22

+ 4t

2

(

1

+ �

1



2

)

2

: (7.51)

We have replaed h

a

by

^

h

a

to indiate that this oupling is not renormalized.

Trunation of the potential

We work with a simple quarti trunation of the potential. We set

U

k

= VU

0

+

X

K

1

K

2

(m̂

�

k

)

2

�

22

(K

1

; K

2

)Æ(K
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+K

2

)

+

1

2

X

K

1

K

2

K

3

K

4

^

�

�

k

�

22

(K

1

; K

2

)�

22

(K

3

; K

4

)Æ(K

1

+K

2

+K

3

+K

4

) (7.52)

in the symmetri phase and

U

k

=

1

2

X

K

1

K

2

K

3

K

4

^

�

�

k

Æ(K

1
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2

+K

3

+K

4

)

(�
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(K

1

; K

2

)� �̂

0

22;k

Æ(K

1

)Æ(K

2

))(�

22

(K

3

; K

4

)� �̂

0

22;k

Æ(K

3

)Æ(K

4

)) (7.53)

in the broken phase. For homogeneous �elds, these equations beome

U

k

= V

�

U

0

+ (m̂

�

k

)

2

�

22

+

1

2

^

�

�

k

�

2

22

�

(7.54)
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and

U

k

=

1

2

V

^

�

�

k

(�

22

� �̂

0

22;k

)

2

(7.55)

m̂

�

k

plays the role of a k-dependent mass, �̂

0

22;k

is the minimum of the potential

if the symmetry is spontaneously broken and

^

�

�

k

is the quarti bosoni oupling.

Bosoni ontribution to the ow

For our trunation, the matrix B in (7.26) beomes

B+

~

R

B

k

= diag(P

�

11;k

+R

�

k

; (P

�

11;k

+R

�

k

)

T

; P

R

11;k

+R

R

k

; P

~s

22;k

+R

~s

k

+(D

�

+D

�

(~s

2

~s

T

2

)D

�

)U

k

)

(7.56)

If we neglet all terms in

d

dk

U

B

k

=

1

2

~

�

k

lim

b

i

(Q)!b

i

Æ(Q)

Tr ln

�

B +

~

R

B

k

�

(7.57)

that do not depend on �elds, we get

d

dk

U

B

k

=

1

2

~

�

k

lim

b

i

(Q)!b

i
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~s
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~s

k

+ (D

�

+D

�

(~s

2

~s

T

2

)D

�

)U

k

�

: (7.58)

If we now insert our trunation for U

k

and perform the trae, we arrive at

d

dk

U

B
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2

V

~
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k

X

i

T

X

m

Z
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�2�
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q
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(Q) +R
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i
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); (7.59)

where Q = (!

B

m

; q) and

~

k

=

(

((m̂
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�
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2

+

^
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�
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); for the symmetri phase

^
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(3�
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; �
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� �̂
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; �
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); for the broken phase.

(7.60)

Choie of the uto� funtion

We de�ne the uto� funtion R

~s

k

(Q) by

R

~s

k

(Q) = (2�)

2

�

2

Z

~s

k

�

k

2

�

1
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�

3

(2� 
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�
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)�m

2
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2
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(7.61)

where �(x) is the usual step funtion

2

. This uto� funtion respets (5.15) and is

therefore a viable hoie. The step funtion uts o� large Matsubara frequenies

2

Expliitly, it is given by

�(x) =

�

0 for x < 0,

1 for x � 0.

(7.62)
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and momenta. By lowering k, we average over larger and larger regions in position

spae. For this uto�, we therefore an relate properties of the e�etive ation at

some given value of k with long range order properties of the theory in position

spae at sales of order 1=k. This will beome important when interpreting the

results of the renormalization group analysis with respet to the Mermin-Wagner

theorem puzzle. Note however that from a purely numerial standpoint our

hoie of the uto� funtion is not optimal, sine the uto� for the Matsubara

sum is momentum dependent, so that the Matsubara sum annot be arried out

analytially. In the next setion, where we onsider a di�erent trunation and

are not dependent on the position spae interpretation of the ow, we will use a

di�erent uto� for whih the Matsubara sum an be evaluated analytially.

Inserting the uto� funtion into (7.59), we �nally arrive at

d

dk

U

B

k

=

2TV

k

X

i

M

X
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�
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(2� os(q
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=2))� (mT )
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i
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2

Z

~s

k

; (7.63)

where M = maxfm 2 Njm < k=Tg and the momentum integration

R

�

runs over

ffq

1

; q

2

gjq

i

2 [0; 2�℄; k

2

� (�

3

=2)(2 � 

1

� 

2

) � m

2

T

2

> 0g. �

k

= �k�

k

lnZ

~s

k

is

the anomalous dimension.

Extration of the oeÆients

The ow equations for the oeÆients follow from the ow equations of the ef-

fetive potential by

�

k
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(7.64)

for the symmetri phase and
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(7.65)

for the broken phase. Note that if we set �

22

= 0 in the symmetri phase

expression of ~

k

, we see that ~

k

! ((m̂

�

k

)

2

; (m̂

�

k

)

2

; (m̂

�

k

)

2

) desribes three modes

with equal mass. In ontrast to this, if we set �

22

= �̂

0

22;k

in the broken phase
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expression of ~

k

, we �nd ~

k

= (2

^

�

�

k

�̂

0

22;k

; 0; 0), that is, one massive mode and

two massless modes. Of ourse, the massless modes are nothing else than the

Goldstone modes whih have to appear when breaking SU(2) down to U(1).

Introdution of resaled, renormalized quantities

It is very onvenient to introdue resaled, renormalized quantities de�ned by
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Z
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: (7.66)

The advantage of rewriting the ow equations in terms of these variables is that

they (at least for small k) no longer depend on Z

~s

k

and k expliitly.

The ow equations

Using (7.64) and (7.65), we an derive the ow equations for the resaled and

renormalized quantities (7.66) (exept for the oupling h

a

that as we said will be

kept onstant) from (7.50) and (7.63). They read
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in the symmetri phase and
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� �
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in the broken phase with �
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= k�

k

(that is, t = ln(k=�)), T
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, M =
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and the integration runs over

ffq

1

; q

2

gjq

i

2 [0; 2�℄; k
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The initial onditions are (m

�

�

)

2

= ((2�)

2

h

2

a

)=�

2

, where � is the initial value of

k, �

�

�

= 0 and Z

~s

�

= 1. We did not write down a ow equation for Z

~s

k

, sine Z

~s

k

and the anomalous dimension �

k

an be alulated analytially in our trunation

as we saw in se 7.3.

Remarks

For small k, we have T

k

� T and the integral in the bosoni setor
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an be evaluated analytially. First note that for small k we have M = 0, so that

only the m = 0-mode ontributes to this integral. The integration region is then

given by

ffq

1

; q

2

gjq

i

2 [0; 2�℄; k

2

� (�

3

=2)(2� 

1

� 

2

) > 0g: (7.72)

Thus for small k, only momenta lose to q = 0 ontribute, and we an expand

the trigonometri funtions to quadrati order around q = 0. It is then simple

to perform the integration and to see that all expliit k-dependenes anel. For

small k, the right hand sides of the ow equations therefore indeed do not depend

expliitly on k. This is a very nie property, sine it allows to extend the numerial

investigation to very small values of k without the ompliations usually arising

when dealing with very small numbers in numerial alulations.
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The possible zeroes in the denominators of the terms from the fermioni setor

do not pose any problems, sine they have the form

lim

x!0

tanh x

x

= 1; lim

x!0

x� sinh x osh x

x

3

= �

2

3

: (7.73)

Note that the emergene of the two di�erent terms in the bosoni setor

in the broken phase enlosed by the square brakets, one with denominator 1

and one with denominator (1 + 2�

�

k

�

0

22;k

=((2�)

2

�

2

))

n

, is a onsequene of the

Goldstone bosons appearing in the broken phase. The �rst term stems from the

two Goldstone modes and the seond from the massive mode.

It is illuminating to disuss qualitatively the ow in the broken phase. In the

broken phase k is very small. As an be numerially on�rmed, the anomalous

dimension �

k

is also small. In the ow equation for �

�

k

in the broken phase, we

an therefore approximate (1��
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) � 1 and 2��
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�xed, then (sine Z
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beomes very small, so that we an neglet the ontributions from the

fermioni setor. In this ase, the ow equation for �
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is
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This means that for dereasing k and initially inreasing �

�

k

, we eventually reah

some value of k where the right hand side vanishes, whih means that we have

reahed a �xed point of �

�

k

. Assuming that this �xed point has been reahed, we

an regard �

�

k

as onstant with regard to the other ow equations. For small k

(so that the momentum integral an be performed), small �
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and large �
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at its �xed point), the ow equation for the potential minimum reads
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We emphasize the fator 2 to indiate its origin from the presene of 2 Goldstone

modes. Inserting �

k

from (7.49), we �nd
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: (7.76)

The anomalous dimension orretion exatly anels the ontribution of one of

the two Goldstone modes! This is a well known feature whih has already been

disussed in the ontext of O(N)-models in [20℄. The right hand side of the ow

equation in this simple approximation is positive. Thus the ow tends to lower

�

0

22;k

for dereasing k. If �

0

22;k

beomes too small, our approximation �

�

k

�

0

22;k

� 1

breaks down. However, if the minimum goes to zero, we an expet the system

to return to the symmetri phase for small k. We will see that the numerial

results on�rm this expetation.
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Figure 7.1: The ow of the mass (m

�

k

)

2

, the quarti oupling �

�

k

, the wave

funtion renormalization Z

�

k

and the anomalous dimension �

k

in the symmetri

regime for the antiferromagneti boson ~s

2

at half �lling and temperature T =

0:15. The Yukawa oupling is h

2

a

= 10. In this plot we keep the unrenormalized

Yukawa oupling �xed.

The above disussion was based on �xing the unrenormalized oupling

^

h

a

.

Instead, we an �x the renormalized oupling h

a

. In this ase, the fermioni

utuations will not be suppressed in the broken phase. As in the mean �eld

ase, the fermioni ontributions will stabilize the symmetry breaking. We expet

that in this ase we will have true symmetry breaking and do not return to the

symmetri phase even for very small k. Again, this expetation is on�rmed by

our numerial results.

Numerial results

We solve the ow equations (7.67) and (7.68) numerially. We set h

2

a

= 10 and

�

3

= h

2

a

=�

2

at the beginning of the ow k = �. We hoose � large, so that the

results no longer depend on the atual hoie of � in the limit k ! 0. One �nds

that it atually suÆes to set � = 10. The Yukawa ouplings are kept �xed.

There are two ways to do so: Either we �x the unrenormalized oupling

^

h

a

or

the renormalized oupling h

a

. We give the results for both ases. We �nd that

the ritial temperature T



that desribes the onset of symmetry breaking for

T < T



is slightly dereased in omparison to the mean �eld ase (T



� 0:2 here).

In �gs. 7.1{7.4 we plot the results for the owing variables at �xed temperature

T = 0:15. For this temperature, we �nd spontaneous symmetry breaking if k is

suÆiently small. In �gs. 7.1 and 7.2 we plot the ow of the mass (m

�

k

)

2

, the

quarti oupling �

�

k

, the wave funtion renormalization Z

~s

k

and the anomalous
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Figure 7.2: The ow of the mass (m

�

k

)

2

, the quarti oupling �

�

k

, the wave

funtion renormalization Z

�

k

and the anomalous dimension �

k

in the symmetri

regime for the antiferromagneti boson ~s

2

at half �lling and temperature T =

0:15. The Yukawa oupling is h

2

a

= 10. In this plot we keep the renormalized

Yukawa oupling �xed.
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Figure 7.3: The ow of the minimum �

0k

, the quarti oupling �

�

k

and the

wave funtion renormalization Z

�

k

in the regime of broken symmetry for the

antiferromagneti boson ~s

2

at half �lling and temperature T = 0:15. The Yukawa

oupling is h

2

a

= 10. In this plot we keep the unrenormalized Yukawa oupling

�xed.
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Figure 7.4: The ow of the mass �

0k

, the quarti oupling �

�

k

and the wave

funtion renormalization Z

�

k

in the regime of broken symmetry for the antiferro-

magneti boson ~s

2

at half �lling and temperature T = 0:15. The Yukawa oupling

is h

2

a

= 10. In this plot we keep the renormalized Yukawa oupling �xed.
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Figure 7.5: The ow of the minimum �

0k

in the regime of broken symmetry

for the antiferromagneti boson ~s

2

at half �lling for di�erent temperatures. The

Yukawa oupling is h

2

a

= 10. In this plot we keep the unrenormalized Yukawa

oupling �xed.
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Figure 7.6: The ow of the minimum �

0k

in the regime of broken symmetry

for the antiferromagneti boson ~s

2

at half �lling for di�erent temperatures. The

Yukawa oupling is h

2

a

= 10. In this plot we keep the renormalized Yukawa

oupling �xed.
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Figure 7.7: The same plot as in �g. 7.6, but for smaller �t.
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dimension �

k

. We see that the mass beomes large if k is lowered, reahing

some maximum value and then drops to zero, indiating the phase transition.

Note that we plotted 10

�3

(m

�

k

)

2

, so that the initial value of the mass (whih is

(m

�

�

)

2

= (2�)

2

h

2

a

=�

2

) is not distinguishable from zero in the plot. The quarti

oupling �

�

k

also reahes a maximum during the ow in the symmetri phase and

begins to deay if k is lowered towards the value where the phase transition ours.

Sine the bosoni utuations (whih enter the ow equation for the mass as a

term/ �

�

k

) tend to prevent the phase transition, this behavior was to be expeted.

The wave funtion renormalization beomes large and remains large at the phase

transition. This behavior will be important to explain the apparent ontradition

to the Mermin-Wager theorem. In the symmetri phase the qualitative behavior

of all quantities is independent of whether we �x the unrenormalized or the

renormalized oupling. This is quite di�erent in the broken phase. In �g. 7.3

and �g. 7.4 we show the ow of the minimum �

0

22;k

, the quarti oupling �

�

k

and

the wave funtion renormalization Z

~s

k

in the two ases. In both ases, the quarti

oupling reahes some �xed point and Z

~s

k

diverges if k is lowered. If we keep

^

h

a

�xed, the minimum reahes some maximum value and returns to zero. If we

keep h

a

�xed, the maximum onverges to some �nite value. Both results are in

agreement with our expetations based on analytial reasoning.

In the ase of �xing the unrenormalized oupling, no ontradition to the

Mermin-Wagner theorem appears, sine for k ! 0 the symmetry beomes again

unbroken. The symmetry breaking in some �nite range of k an then be in-

terpreted as an antiferromagneti order on large lusters that disappears if we

average over even larger sales. Note the sale at whih the broken symmetry

beomes again unbroken. t = �180 orresponds to k = �exp(�180), whih is

extremely small, so that the symmetry beomes unbroken only when averaging

over extremely large sales. For any probe of realisti size to be examined ex-

perimentally, we will �nd antiferromagneti properties. In this interpretation,

antiferromagneti properties of superondutors do not ontradit the Mermin-

Wagner theorem, sine they are �nite size e�ets that would disappear if the

probes were made large enough.

However, if we �x the unrenormalized oupling, the symmetry remains bro-

ken for k ! 0. To see how this an be reoniled with the Mermin-Wagner

theorem, we have to be areful in distinguishing the renormalized and unrenor-

malized minimum of the potential. The Mermin-Wagner theorem states that the

unrenormalized minimum has to vanish for k ! 0. But we have analyzed the

ow of the renormalized minimum, and sine the wave funtion renormalization

diverges for k ! 0, �̂

0

22;k

= �

0

22;k

=Z

~s

k

atually vanishes in omplete agreement with

Mermin and Wagner. In fat, this is the mehanism how phase transitions an

atually appear even in the ase where they are forbidden by Mermin-Wagner

(Kosterlitz-Thouless type phase transitions [22℄).

In �gs. 7.5, 7.6 we show how the ow of the minimum hanges as a funtion of
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temperature. For �xed unrenormalized oupling, we see that the strength of the

symmetry breaking and the sale at whih the broken symmetry beomes unbro-

ken inreases if the temperature is lowered. This is what we intuitively expet,

sine the antiferromagneti lusters should be larger for small temperature. For

�xed renormalized oupling, the maximum value of the minimum also beomes

larger for smaller temperature. Note that all the urves onverge, but those for

low T on muh larger sales than shown in the plot. Fig. 7.7 enlarges the region

of small �t from 7.6, whih is atually aessible by experiments. We see that

the temperature dependene is weak in this region.

In the framework of our trunation, we annot deide whih of the two possi-

bilities of reoniling the ourrene of spontaneous symmetry breaking with the

Mermin-Wagner theorem is realized. To do this, we have to inlude the ow of

the Yukawa ouplings.

7.4.2 Charge density utuations and superondutivity

In this setion we will investigate the inuene of harge density utuations on

the superonduting properties of the theory. We set �

22

= 0 and keep all wave

funtion renormalizations onstant.

Fermioni ontribution to the ow

The ow equation for U

F

k

reads

d

dk

U

F

k

= �2TV

~

�

k

X

�

1

;�

2

Z

�

��

d

2

q

(2�)

2

ln osh

 

1

2T

k

r

�
q

2h

4

�

�

11

+ 2t�

2

(

1

+ �

1



2

)

�

2

+ 2

^

h

4

d

�(

1

� �

1



2

)

2

!

=

4kTV

T

k

X

�

1

�

2

Z

�

��

d

2

q

(2�)

2

f

�

1

;�

2

(�;�) tanh f

�

1

;�

2

(�;�) (7.77)

with

f

�

1

;�

2

(�;�) =

1

2T

k

r

�

q

2h

4

�

�

11

+ 2t�

2

(

1

+ �

1



2

)

�

2

+ 2

^

h

4

d

�(

1

� �

1



2

)

2

: (7.78)

Although we keep all wave funtion renormalization onstants �xed, we write

^

h

d

instead of h

d

, sine the initial value of Z

�

k

6= 1.
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Trunation of the potential

Our trunation for the potential reads

U

k

= VU
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)) (7.79)

in the symmetri phase. For homogeneous �elds this beomes

U

k

= V

�

(m̂

Æ

k

)

2

�+

1

2

^

�

�

k

�

2

+

1

2
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�

�
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(�

11

� �

0

11

)

2

+

1

2

�̂

k

�(�

11

� �

0

11

)

2

�

: (7.80)

We inluded terms up to quadrati order in � just as in the antiferromagneti

ase. Additionally, we expanded �

11

around the minimum �

0

11

. Reall that this

minimum is not k-dependent, sine the harge density is an external parameter

ontrolled by the doping. The term / �̂

k

indues an interation between the

harge density and �.

We will restrit our attention to the ow in the symmetri regime, so that we

do not write down a trunation for the potential in the broken phase.

Bosoni ontribution to the ow

In muh the same way as in the antiferromagneti ase we �nd

d

dk
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; (7.81)

where

P

�

k

= P

�

11;k

+R

�

k

+ (m̂

�

k

)

2

;

�

P

R

k

= P

R

11;k

+R

R

k

: (7.82)
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Choie of the uto� funtions

We de�ne the uto� funtions to be

1

Z

�

k

R

�

k

(Q) = R

R

k

(Q) = (2�)

2

�

2

(k

2

� (mT )

2

)�(k

2

� (mT )

2

): (7.83)

In ontrast to the momentum dependent uto� we hose in the last setion,

this uto� allows to perform the Matsubara sum analytially, whih speeds up

the numerial alulation signi�antly. The drawbak is that we an no longer

interprete the ow as an averaging proess over larger and larger lusters, but

sine in this setion we will be mainly interested in whether a phase transition

takes plae for some temperature and �

0

11

, we do not need this interpretation.

Instead of inserting the uto� funtion into (7.81) immediately, it is more

onvenient to �rst extrat the ow equations for the ouplings and masses.

Extration of the oeÆients

From the ow of the potential we an obtain the ow equations
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Introdution of resaled quantities

The resaled quantities read
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The ow equations

The ow equations are

�

t

(m

�

k

)

2

=

Th

4

d

T

3

k

X

�

1

�

2

Z

�

��

d

2

q

(2�)

2

(

1

� �

1



2

)

2

�

seh

2

f

�

1

�

2

+

tanh f

�

1

�

2

f

�

1

�

2

�

� (2�)

2

T (2M + 1)

Z

2�

0

d

2

q

k

2

�

6Z

�

k

�

�

k

(P

�

k

)

2

+

2�

k

�

0

11

(P

R

k

)

2

�

� 2(m

�

k

)

2

�

t

�

�

k

=

Th

8

d

4T

5

k

X

�

1

�

2

Z

�

��

d

2

q

(2�)

2

(

1

� �

1



2

)

4

 

seh

2

f

�

1

�

2

f

2

�

1

�

2

�

(1 + 2f

2

�

1

�

2

seh

2

f

�

1

�

2

) tanh f

�

1

�

2

f

3

�

1

�

2

!

+ (2�)

2

T (2M + 1)

Z

2�

0

d

2

q

k

2

�

24Z

�

k

(�

�

k

)

2

(P

�

k

)

3

+

8�

2

k

(�

0

11

)

2

(P

R

k

)

3

�

� 2�

�

k

�

t

�

�

k

=

Th

8

�

(h

�

�)

2

T

3

k

X

�

1

�

2

Z

�

��

d

2

q

(2�)

2

 

seh

2

f

�

1

�

2

�

(1 + 2f

2

�

1

�

2

seh

2

f

�

1

�

2

) tanh f

�

1

�

2

f

�

1

�

2

!

+ (2�)

2

T (2M + 1)

Z

2�

0

d

2

q

k

2

�

18(�

�

k

)

2

(P

R

k

)

3

�

4Z

�

k

�

k

(P

�

k

)

2

�

� 2�

�

k

�

t

�

k

=

Th

4

d

h

8

�

4(h

�

�)

2

T

5

k

X

�

1

�

2

Z

�

��

d

2

q

(2�)

2

(

1

� �

1



2

)

2

 

�

3 + 2f

2

�

1

�

2

seh

2

f

�

1

�

2

f

2

�

1

�

2

osh

2

f

�

1

�

2

+

3 tanh f

�

1

�

2

f

3

�

1

�

2

+ 4seh

2

f

�

1

�

2

tanh

2

f

�

1

�

2

!

+ (2�)

2

T (2M + 1)

Z

2�

0

d

2

q

k

2

�

12Z

�

k

�

�

k

�

k

(P

�

k

)

3

+

36�

�

k

�

k

(P

R

k

)

3

�

108(�

�

k

)

2

�

k

�

0

11

(P

R

k

)

4

+

8Z

�

k

�

2

k

�

0

11

(P

�

k

)

2

P

R

k

+

8�

2

k

�

0

11

P

�

k

(P

R

k

)

2

�

� 2�

k

(7.86)

with M = maxfm 2 Njm < k=Tg,
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where �

0

11

= �

2

=(2h

2

�

). The initial onditions are (m

�

�

)

2

= 8�

2

h

2

d

=�

2

and �

�

�

=

�

�

= 0. Z

�

k

= 1=�

8

is kept �xed. The initial ondition for �

�

k

is set to �

�

�

= 1=�

8

,
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sine the one loop orretion to this oupling is of this order (we do not set �

�

�

= 0

in order to have a potential minimum in �

0

11

).

Remarks

As in the antiferromagneti ase, the zeroes of the denominators of the fermioni

ontributions to the ow do not ause any problems, sine they an be aneled

against numerator zeroes.

Note that the ontributions in the bosoni setor have a simple diagrammati

interpretation. To see this, note that in our ow equations the derivatives

~

�

k

have been arried out on the right hand side (whih is of ourse neessary for

the numerial investigation). For the diagrammatial interpretation, it is more

useful to onsider the expressions before taking the derivative. For example, the

bosoni ontribution to the ow of (m

�

k

)

2

is

1

2

~

�

k

T

X

m

Z

2�

�2�

d

2

q

(2�)

2

�

6�

�

k

P

�

k

+

2�

k

�

0

11

P

R

k

�

: (7.88)

and similarly for the other variables. The diagrammati interpretation is then

m

�

k

:

�

+

�

�

�

k

:

�

+

	

; �

�

k

:




+

�

�

k

:

�

+



+

Æ

+

�

(7.89)

where the dashed line represents the propagation of �, the solid line the prop-

agation of R

1

and the double line the oupling to the external harge density

�

0

11

.

Numerial results

We have solved the ow equations numerially for di�erent temperatures, harge

densities and Yukawa ouplings h

�

. We set h

2

d

= 20. We follow the ow of (m

�

k

)

2

until it either reahes zero or diverges. The �rst ase indiates an instability in

the d-wave superonduting hannel (this should be taken with a grain of salt,

sine we know from our mean �eld disussion that phase transitions of �rst order

render this riterion untrustworthy. However, in the superonduting regime we

expet no phase transitions of �rst order to our if no antiferromagneti order is
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Figure 7.8: Dependene of the superonduting region (inluding �- and �-

utuations) on the Yukawa oupling h

�

. We take h

2

d

= 20.

present). In �g. 7.8 we show the borders of the regions where the mass happens to

vanish during the ow. The omparison between di�erent values of h

�

shows that

a strong harge density oupling tends to enlarge the region of superondutivity.

Note that we use the parameter h

�

� on the horizontal axis instead of � in the

mean �eld ase. Reall that in the mean �eld ase the results depended on h

�

only via h

�

�. This means that if we ignored the bosoni utuations (whih

would redue our ow equations to the mean �eld ase), no di�erene between

the phase borders for di�erent h

�

would appear in our plot (a omparison of the

mean �eld results and the results for the inlusion of various bosoni utuations

an be found in the next setion). The di�erenes are onsequenes only of the

inlusion of bosoni utuations. The hoie of the ouplings in our plot is rather

extreme; in the mean �eld ase hanging h

2

a

or h

2

d

only by a fator 2 had a strong

e�et on the phase diagram. By hanging h

2

�

by a fator of 2 (not 20 as in the

plot), we see that the e�et of harge density oupling is relatively small. We

will see in the next setion that | in ontrast to the harge density | the phase

diagram is very sensitive to the strength of antiferromagneti utuations.



7.4. Results for di�erent trunations of the e�etive potential 123

7.4.3 Antiferromagneti utuations and superondutiv-

ity

In this setion, we will analyze the e�et of antiferromagneti utuations on the

phase diagram. The derivation of the ow equations is very similar to the ase

of inluding harge density utuations in the ow. We set �

11

= �

0

11

(that is, we

do not onsider harge density utuations in this setion).

Fermioni ontribution to the ow

The ow equation for U

F

k

reads

d

dk
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F

k

=
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Trunation of the potential

We trunate the potential as
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This is an expansion up to quadrati order in �

22

and �. Again, we restrit our

attention to the symmetri phase.
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Bosoni ontribution to the ow

The ow of the potential in the bosoni setor is given by
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Choie of the uto� funtion

We hoose the same uto� funtion as in the last setion
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Extration of the oeÆients

From the ow of the e�etive potential we obtain
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Introdution of resaled quantities

The resaled quantities read
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The ow equations

We �nd the ow equations
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with M = maxfm 2 Njm < k=Tg,
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The initial onditions are (m
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Remarks

Again the ow equations seem to be ill de�ned for f

�

1

�

2

! 0 and again all these

denominator zeroes are aneled by orresponding numerator zeroes. However,

we additionally fae possible singularities in the ow equations whih involve
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for 
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! 0, whih is perfetly �nite. In the same way, the sum over �

2

in

the ow equations for �

�

k

and 

k

an be arried out in the limit 
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! 0.

Note that as in the last setion, the ontributions in the bosoni setor have

simple diagrammati interpretations:
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: (7.101)

The dashed line represents the propagation of �, whereas the solid line the prop-

agation of ~s.
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Numerial results

In �g. 7.9 we ompare the e�et of inluding di�erent kinds of bosoni utuations

into the ow with the mean �eld result. The plot for �- and �-utuations has

been generated by using the ow equations of this setion, the plot for �- and

�-utuations by using (7.86). By setting (m

�

k

)

2

= (m

�

�

)

2

, �

�

k

= 0 in (7.98) we

get the plot for the inlusion of �-utuations only. We set h

2

�

= 20, h

2

a

= 10

and h

2

d

= 20. For this hoie of the Yukawa ouplings only the superonduting

phase is present in the mean �eld result. The same is true if bosoni utuations

are inluded, but ompared to the mean �eld ase, the superonduting region

beomes smaller. This was to be expeted, sine the fermioni utuations favor

the phase transition, whereas bosoni utuations have the opposite e�et. In

the mean �eld approximation we ignore the bosoni utuations, so that we

overestimate the symmetry breaking behavior, whih leads to a larger region

of broken symmetry in the phase diagram. For this speial hoie of Yukawa

ouplings, the boundaries of the superonduting region approximately oinide.

As we have seen in the last setion, the phase boundary is not very sensitive

to hanges in h

�

. However, �g. 7.10 shows that we have a strong dependene

on h

a

| as we already had in the mean �eld ase. In so far, the inlusion of

bosoni ouplings do not qualitatively alter the mean �eld results. The interesting

feature of the plot is that the superonduting region is shifted to the right

if h

a

is inreased. Of ourse, this is a feature not present in the mean �eld

approximation, sine there h

a

entered only via the ombination h

2

a

�, so that

outside the antiferromagneti phase (where � = 0) varying h

a

ould not have

any e�et on the boundary of the superonduting region. This means that

strong antiferromagneti oupling tends to enlarge the superonduting region

by means of antiferromagneti utuations, even if there is no antiferromagneti

order present! In fat, it is suspeted that antiferromagneti utuations are

ruial for the understanding why uprates remain in the superonduting state

even for large temperature.

Also note that | as in the last setion | the phase boundaries have been

inferred from an analysis of the masses only. Therefore our results have to be

taken with some are | possible phase transitions of �rst order will shift the

phase boundaries. This is partiularly true for the left boundaries of the super-

onduting regions in �g. 7.10, where the superonduting region is bordered

by a region of antiferromagneti behavior, sine in our mean �eld alulation we

found phase transitions of �rst order exatly at this boundary. However, at the

right boundaries no phase transitions of �rst order appeared in the mean �eld

approximation, so that hopefully our interpretation remains intat even for the

more general ase onsidered here.
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7.4.4 Final remark

Although many questions remain and a lot of work has to be invested to free our-

selves from the limits of the problem of the oupling ambiguity and the possibility

of �rst order phase transitions, the point we want to make is that we see that our

formalism is in priniple suitable for analyzing the properties of the model both

in the symmetri and in the broken phase. Renormalization group approahes so

far have been limited to the investigation of the ow in the symmetri phase and

were not able to desribe features of the ow beyond the point of spontaneous

symmetry breaking. The problems we fae in our analysis so far are not intrinsi

to our formalism and an be ured by more re�ned trunation shemes (parti-

ularly inluding the ow of the ouplings and some more general trunation for

the e�etive potential). A systematial enhanement of the trunation sheme is

straightforward and will be attaked in the future:

� In our approah so far, we approximated the e�etive potential by a polyno-

mial in the �elds, whih raises the problem of dealing with phase transitions

of �rst order. Calulations inluding the ow of the full potential are possi-

ble and have already been arried out suessfully for a number of systems

(f. e. g. [16℄).

� The phase diagrams we alulated in this hapter depend on the hoie of

the initial values of the Yukawa ouplings that we kept onstant. To get

rid of this dependene, we have to inlude the ow of the Yukawa oupling

into our sets of ow equations. This task is already worked on [17℄.

� One qualitative feature of the phase diagram of high temperature super-

ondutors �g. 1.1 is the separation of the antiferromagneti and super-

onduting region at low temperature and intermediate doping. In our

alulations, the superonduting region is always bounded by the anti-

ferromagneti region towards small �. The reason for this shortoming is

our oversimpli�ed homogeneous treatment of the harge density [23℄. More

realistially, the harge density aused by doping is not homogeneously dis-

tributed, but forms stripe shaped regions of alternating high and low harge

density. The width of the stripes depend on doping, and it turns out that

for some intermediate doping the alternating harge density indues the

formation of parallel spin ladders that deouple from eah other. The e�et

is that long range order is lost, and antiferromagneti order ours only in

the ladders. The material then beomes paramagnetially over large sales.

This behavior should be reproduible with our formalism if we give up

the assumption of homogeneous harge density and generalize it to stripe

strutures.

� Although we introdued a large set of bosons in the formalism, we onen-

trated on only a small subset of them in our alulations. The hoie of
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this subset was motivated by experiment: We know that high temperature

superondutors exhibit antiferromagneti and d-wave superonduting be-

havior and therefore hose exatly those bosons representing these proper-

ties. It is interesting to see whether a more unbiased hoie, that is, taking

into aount more bosons representing e.g. s-wave superondutivity or fer-

romagnetism, on�rms that we have hosen those bosons atually leading

to spontaneous symmetry breaking.

Some words are in order omparing our formalism to the renormalization

group approahes in [18℄. As already mentioned, all these alulations were per-

formed in the purely fermioni theory. The authors basially investigate the ow

of quarti fermioni ouplings in di�erent hannels. The onventional way of

these approahes was to introdue a regularization sheme that ut o� momenta

near the Fermi surfae. In this sheme, following the ow to small k orresponds

to the inlusion of momentum modes inreasingly lose to the Fermi surfae.

More reently, temperature uto�s resembling the regularization sheme used in

our work have been applied (Honerkamp, Salmhofer and Rie 2002 in [18℄). In-

dependent of the regularization sheme, the ow of quarti fermioni ouplings

indiates instabilities in ertain hannels by the emergene of divergenies of the

orresponding ouplings. This means that in these approahes it is only possible

to follow the ow until the point of symmetry breaking is reahed, and no infor-

mation about the behavior in the broken phase is available. By the bosonization

and the investigation of the e�etive potential in this work, it beomes possible

to analyze the ow in the broken phase. However, in ontrast to [18℄, our formal-

ism is plagued by the problem of the oupling ambiguity, and its suess will be

ultimately measured by our apability to overome this ompliation.

It should have beome lear in the ourse of the expliit alulations presented

over the last setions that our formalism provides an elegant and suitable starting

point for the investigation of the Hubbard model and the properties of high

temperature superondutors, and is also easily implemented for investigations of

the behavior inside the broken phase. At this point, we have reprodued the gross

qualitative features of the phase diagram of high temperature superondutors,

with orretly plaed regions of antiferromagneti and superonduting behavior.

We understand how the Mermin-Wagner theorem an be reoniled with the

existene of antiferromagneti long range order for non vanishing temperature,

and we took a �rst glimpse on how antiferromagneti utuations an enlarge

regions of superondutivity. All these results let us suspet that we are on the

right way and we hope to provide more insights into the nature of the Hubbard

model and high temperature superondutors in the future.



Conlusion

High temperature superondutors have a two dimensional layer struture with

small interlayer oupling. They an be modeled by the two dimensional Hubbard

model on a square lattie. This model desribes eletrons on a quadrati lattie

that experiene a loal Coulomb interation and are able to hop to adjaent lattie

sites. The partition funtion for this model depends on the hemial potential

(or equivalently the harge density), the temperature and the relative strength of

Coulomb interation and hopping amplitude. To ompare the preditions of the

model with experimental results for high temperature superondutors, one has

to alulate the phase diagram of the model in the harge density-temperature

plane.

Our way to takle this task is to identify the most prominent degrees of

freedom of high temperature superondutors, whih are antiferromagnetism and

d-wave superondutivity, and to de�ne a set of bosoni \partiles", so that every

partile orresponds to one degree of freedom of the model. We found an exat

transription of the partition funtion, whih desribes a Yukawa-like theory. The

expetation values of the bosons in this rewritten theory indiate a possible long

range order in the hannel (antiferromagneti, d-wave superonduting, et.) to

whih the bosons orrespond.

A mean �eld alulation in this partially bosonized theory, negleting all

bosoni utuations and integrating out the fermions, already reveals the main

features of the phase diagram of high temperature superondutors.

More re�ned alulations an be performed by means of exat renormalization

group equations. We use the e�etive average ation method. To simplify the

de�nition of trunation shemes and to minimize the error indued by approxi-

mations, we rewrite the partially bosonized theory as a funtion of bosons whih

are eigenstates of translations on the lattie. Due to the lattie symmetries, these

bosons are no longer mixed in the full e�etive ation (e.g. the full propagator

matrix beomes diagonal).

We use this modi�ed theory as a starting point for a renormalization group

analysis. This analysis shows how the Mermin-Wagner theorem an be reon-

iled with the existene of antiferromagneti long range order for non vanishing

temperature and indiates that antiferromagneti utuations tend to favor su-

peronduting behavior in ertain regions of the phase diagram.
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The drawbak of the present analysis is mainly the arbitrariness of the Yukawa

ouplings. Current work is dediated to this problem. However, the ure is basi-

ally an improved trunation sheme for the e�etive ation and does not intrinsi-

ally limit our formalism. Planned future work inludes a more general treatment

of the e�etive potential with speial regard to �rst order phase transitions and

the inlusion of more bosons in the trunation sheme, allowing to test whether

e.g. superonduting hannels other than that with spatial d-wave symmetry

play a role.

In onlusion, we hope to have provided a formalism whih is easy to imple-

ment for renormalization group studies, whih introdues a onvenient interpreta-

tion of non loal fermioni order parameters as loal expetation values of bosoni

�elds and that will ontinue to help investigating the rih and beautiful spetrum

of properties of the Hubbard model and high temperature superondutors.



Appendix A

Conventions

We use units for whih ~ =  = k

B

= 1. Bold symbols (n, x, q, et.) denote two

dimensional vetors. Symbols with arrow (~a, ~m, et.) denote three dimensional

vetors. Generalized momenta are alled Q, P and K, whereas X, Y and Z are

generalized positions (see below for the de�nition of generalized quantities). By

a ^ we indiate �elds. The same symbol without ^ is the expetation value of the

orresponding �eld. ~ is used to indiate fermion bilinears (to distinguish them

from their bosoni ounterparts).

A.1 Fourier transforms

We de�ne

Q = (!

n

; q); X = (�;n);

QX = !

n

� + nq;

X

X

=

Z

�

0

d�

X

n
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X

Q

= T

1

X

n=�1

Z

�

��

d

2

q

(2�)

2

;

Æ(Q�Q

0
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0

(2�)

2

Æ(q � q

0

);

Æ(X �X

0

) = Æ(� � �

0

)Æ

n;n

0

:

(A.1)

The Fourier transforms for both fermioni and bosoni �elds are given by

�̂

a

(X) =

X

Q

�̂

a

(Q) exp(i(QX + z

a

q));

�̂

�

a

(X) =

X

Q

�̂

�

a

(Q) exp(�i(QX + z

a

q));

(A.2)

where �̂ stands for

^

 , ŵ



or û

�

, whereas �̂

�

stands for

^

 

�

or û

�

�

and the z

a

are

given by

z

1

= (�1=4; 1=4) z

2

= (1=4; 1=4)

z

4

= (�1=4;�1=4) z

3

= (1=4;�1=4):

(A.3)
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A.2 Matries

f�

i

g, i 2 f1; 2; 3g is the usual set of Pauli matries. Additionally, we identify �

0

with the unity matrix. We then de�ne the matries �

�


 �

�
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�
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�

�

�

0
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�

; B

�

=

�

0 �

�

�

�

0

�

; C

�

=

�

0 �i�

�

i�

�

0

�

; D

�

=

�

�

�

0
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�
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(A.4)

where � 2 f0; 1; 2; 3g. The matries A

�

and B

�

have the properties
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with i 2 f1; 2; 3g.

A.3 Fermion bilinears
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Appendix B

Vertex fators for the Hubbard

model

The verties V

w

(Q

0

; Q

00

) for the bosons �̂, p̂, q̂

x;y

depend only on the momentum

Q = Q

0

�Q

00

. With e

x

= (1; 0), e

y

= (0; 1) and z

a

, a = 1 : : : 4, given in appendix

A.1, they an be written in the form
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The same an be obtained for the bosons with spin index, ~m;~a;~g
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while d; e; v

x;y

are a bit more ompliated. Let us de�ne e

ij

= e

i(z

i

q

0

+z

j

q

00

)

and

a �-produt C = A � B by C

ij

:= A
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B
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(no sum over indies here!). One then
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obtains
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With the aid of the �-produt the other verties an now be obtained from these
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