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Symmetriebre
hung im Hubbardmodell

Ein Bosonisierungsansatz

Zusammenfassung

Die meisten bekannten Ho
htemperatursupraleiter geh�oren zur Sto�klasse der

Kuprate, die si
h gut dur
h das zweidimensionale Hubbardmodell bes
hreiben

lassen. Um das Zusammenspiel vers
hiedener Eigens
haften wie Antiferromag-

netismus und Supraleitung zu verstehen, bere
hnet man das Phasendiagramm

des Hubbardmodells als Funktion der Ladungsdi
hte und Temperatur. F�ur diese

Re
hnung eignen si
h insbesondere exakte Renormierungsgruppenglei
hungen,

die wir im Formalismus der mittleren e�ektiven Wirkung verwenden. Zu diesem

Zwe
k leiten wir eine �aquivalente Formulierung des Hubbardmodells her, die die

Form einer Yukawatheorie besitzt und aus der Informationen �uber langrei
h-

weitige Ordnung in vers
hiedenen Kan�alen dur
h die Bere
hnung bosonis
her

Erwartungswerte gewonnen werden k�onnen. Es gelingt uns, die wesentli
hen

Eigens
haften des Phasendiagramms von Ho
htemperatursupraleitern zu repro-

duzieren. Au�erdem zeigt unsere Untersu
hung, wie das Mermin-Wagner Theo-

rem mit der Existenz antiferromagnetis
her Ordnung bei ni
htvers
hwindender

Temperatur zu vereinbaren ist und wie si
h die Ber�u
ksi
htigung vers
hiedener

bosonis
her Fluktuationen auf das Phasendiagramm auswirkt.

Symmetry breaking in the Hubbard model

A bosonization approa
h

Abstra
t

Almost all known high temperature super
ondu
tors are 
uprates, whi
h 
an be

suitably modelled by the two dimensional Hubbard model. To understand the

interplay of various long range properties as antiferromagnetism and super
on-

du
tivity, one 
an 
al
ulate the phase diagram of the Hubbard model in the


harge density-temperature plane. This analysis is 
onveniently 
arried out by

means of exa
t renormalization group equations that we apply in the formalism of

the e�e
tive average a
tion. For this purpose, we derive an equivalent version of

the Hubbard model that takes the form of a Yukawa theory. From this modi�ed

model long range order in various 
hannels 
an be extra
ted by simple 
al
ulation

of bosoni
 expe
tation values. We are able to reprodu
e the main features of the

phase diagram of high temperature super
ondu
tors. Furthermore, our analysis

shows how the Mermin-Wagner theorem 
an be re
on
iled with the existen
e of

antiferromagneti
 long range order at non vanishing temperature and how the

in
lusion of di�erent kinds of bosoni
 
u
tuations a�e
t the phase diagram.
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Chapter 1

Introdu
tion

Tomorrow by the end of the day we shall 
ome to a mountain

of bla
k stone hight the Magnet Mountain, for thither the 
urrents


arry us willy-nilly. As soon as we are under its lea, the ship's sides

will open and every nail in plank will 
y out and 
leave fast to the

mountain, for that Almighty Allah hath gifted the loadstone with a

mysterious virtue and a love for iron, by reason whereof all whi
h is

iron traveleth toward it. And on this mountain is mu
h iron, how

mu
h none knoweth save the Most High, from the many vessels whi
h

have been lost there sin
e the days of yore.

From: The Arabian Nights, The Third Kalandar's Tale, translated

by Sir Ri
hard Burton (1850)

The investigation of ele
tromagneti
 properties of 
ondensed matter systems

is one of the oldest bran
hes of physi
s. Even the an
ients knew about the

mysterious magneti
 for
e exerted by 
ertain materials, and during the middle

ages, magnetism was one of the most popular subje
ts of al
hemi
al spe
ula-

tion. Over the last two 
enturies, the fast progress in physi
s greatly enri
hed

our knowledge of possible ele
tromagneti
 properties of di�erent materials. The

long known magnetism is now interpreted as only one possible type of long range

order, 
alled ferromagnetism. Other long range stru
tures, like antiferromag-

neti
 or ferrimagneti
 ordering were dis
overed. On the other hand, materials


an be 
lassi�ed with respe
t to their 
ondu
tivity: Condu
tors, semi
ondu
tors

and insulators are known. More re
ently, the dis
overy of super
ondu
tors led

to 
ompletely new developments | both theoreti
ally and experimentally with

interesting appli
ations.

Although many of these properties are understood in prin
iple, many unsolved

problems remain. One of these problems is even the qualitative understanding of

1
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PSfrag repla
ements

AF

SC

Doping

T

e

m

p

e

r

a
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u

r

e

Figure 1.1: The generi
 phase diagram for a p-doped 
uprate super
ondu
-

tor. By AF we denote regions of antiferromagneti
, by SC regions of d-wave-

super
ondu
ting behavior. The origin 
orresponds to zero temperature and no

doping.

the phase diagram of high temperature super
ondu
tors (�g. (1.1)). This work

is devoted to develop a formalism to deal with su
h systems exhibiting many

di�erent ways of symmetry breaking and | in the framework of this formalism

| to shed some light on the origin of the di�erent phases.

As for all physi
al problems, we fa
e two kinds of problems:

1. The question of modeling: The typi
al high temperature super
ondu
-

tor possesses a rather 
ompli
ated 
hemi
al stru
ture. The question is how

mu
h information about this stru
ture we are allowed to negle
t without

loosing anything signi�
ant giving rise to the phase diagram we want to

explain. By redu
ing the amount of 
omplexity, we a
hieve two goals: We

hopefully end up with a model whi
h 
an be treated by standard 
al
ulation

methods and that furthermore 
ontains the essential information about the

a
tual system in a very 
ondensed form. This should free us from 
om-

pli
ations obs
uring our view on the true nature of the physi
al properties

under investigation. Fortunately, su
h a model exists, the Hubbard model.

2. The question of 
al
ulation te
hnique: Suppose the Hubbard model

a
tually 
ontains enough information to des
ribe high temperature super-
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ondu
tors. However, it is far from 
lear how to extra
t this information,

given the fa
t that for nearly forty years the Hubbard model has su

ess-

fully resisted any attempt to being solved. The main obsta
les in doing so

are

(a) the di�erent nature of antiferromagneti
 and super
ondu
ting behav-

ior, both of whi
h nevertheless should be treated on equal footing in

our formalism. Besides, we see that for example ferromagneti
 or s-

wave-super
ondu
ting behavior is not present in the phase diagram

of 
uprates. Our formalism should not only provide an answer to

the question why the antiferromagneti
 and d-wave-super
ondu
ting

phases are where they are, but also why other phases are not present.

We atta
k this problem by a bosonization pro
edure. The idea is to

arti�
ially introdu
e additional \parti
les" into the des
ription of the

model 
orresponding to physi
al degrees of freedom like antiferromag-

neti
 ordering et
. This allows to dis
uss antiferromagneti
, super
on-

du
ting and other properties in terms of expe
tation values of bosoni


�elds | a very 
onvenient method to dis
uss these phenomena in one


ommon language.

(b) the strong 
oupling between the ele
trons. This prevents us from using

perturbation theory to derive our results. Non-perturbative methods

are needed. Parti
ularly suitable for this kind of problem are renor-

malization group te
hniques, whi
h we will apply in the setting of the

e�e
tive average a
tion.

The fo
us of this work will be on the bosonization pro
edure. A lot of re
ent

work has been devoted to analyze the Hubbard model in the framework of purely

fermioni
 models. We hope to 
onvin
e the reader that partial bosonization of the

Hubbard model | giving interesting physi
al degrees of freedom a parti
le inter-

pretation | greatly improves our physi
al intuition 
on
erning this 
ompli
ated

system, whi
h simpli�es the motivation of approximation s
hemes.

One key ingredient in the formalism to des
ribe antiferromagnetism and su-

per
ondu
tivity in the same formal language will be a 
ertain viewpoint we adopt:

We interprete both phenomena as spontaneously broken symmetries of the under-

lying model. Whereas this perspe
tive is quite natural for antiferromagnetism,

it deserves some explanation in the super
ondu
ting 
ase. The usual textbook

approa
h to super
ondu
tivity is by starting with a mi
ros
opi
 model, motivat-

ing it by 
al
ulating properties of the model and 
omparing them to experiment.

To emphasize our point, we will show how the usual properties of a super
on-

du
tor follow merely from the breakdown of U(1)-symmetry of some underlying

model that we will not further spe
ify. This topi
 will be 
overed in the following

se
tion of this introdu
tion. The last two se
tions will dis
uss high temperature

super
ondu
tors in general and our model for them, the Hubbard model. After
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a rather formal 
hapter introdu
ing our starting point, the partition fun
tion of

the Hubbard model, we will des
ribe our bosonization pro
edure. A mean �eld


al
ulation already reveals the main features of the phase diagram. After that, we

des
ribe our renormalization group pro
edure and investigate properties of the

system beyond mean �eld | parti
ularly impli
ations of the Mermin-Wagner

theorem and the in
uen
e of 
harge density and antiferromagneti
 
u
tuations

on the super
ondu
ting behavior of the model.

1.1 Antiferromagnetism and super
ondu
tivity

as spontaneously broken symmetries

Ele
trons are 
onveniently des
ribed by �eld operators  (x), where  (x) is a

basis for irredu
ible linear representations of

1. SU(2) in the sense that  (x) = ( 

"

(x);  

#

(x))

T

and the elements of SU(2)

are represented by U(

~

�) = exp(i~�

~

�) and of

2. U(1) in the sense that  (x) =  

1

(x) + i 

2

(x) and the elements of U(1) are

represented by U(�(x)) = exp(i�(x)).

Here

~

� and �(x) are used to parameterize the elements of the Lie groups and ~�

is the usual set of Pauli matri
es. The two dimensional spa
e spanned by  

"

(x)

and  

#

(x) will be 
alled the spinor spa
e. Note that we 
onsider global SU(2)-,

but lo
al U(1)-transformations. The reason will be
ome 
lear below.

1.1.1 The SU(2)-symmetry

From rotational invarian
e in spinor spa
e, we expe
t the Lagrangian of our the-

ory to be 
omposed of s
alars with respe
t to SU(2)-transformations. This means

that the Lagrangian itself is invariant under SU(2)-transformations. The SU(2)-

symmetry is broken, if for example the (spa
e dependent) expe
tation value of

the operator f(x) 

y

(x)~� (x) does not vanish, where f(x) is an arbitrary non

vanishing s
alar fun
tion. In this 
ase, one speaks of the spontaneous symmetry

breakdown from SU(2) to U(1).

Ferromagneti
 and antiferromagneti
 behavior 
an be inferred from the spa
e

dependen
e of f(x). Assume the ele
trons are strongly lo
ated at the sites of a

quadrati
 or 
ubi
 latti
e, so that the above operator expe
tation value hf

i

 

y

i

~� 

i

i

is taken at dis
rete latti
e sites i. In the 
ase that hf

i

 

y

i

~� 

i

i is independent of i,

we have ferromagneti
 behavior if f

i

= f

j

8i; j, and antiferromagneti
 behavior

if f

i

= �f

j

, where i and j label nearest neighbor latti
e sites.

Sin
e ferromagneti
 or antiferromagneti
 properties already follow dire
tly

from the operator expe
tation value breaking the global SU(2)-symmetry, we do

not have to bother dealing with the 
ompli
ations of lo
al symmetries.
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1.1.2 The U(1)-symmetry

In 
ontrast to the SU(2)-
ase we here 
onsider lo
al transformations. This is

ne
essary sin
e the de�ning properties of a super
ondu
tor do not follow dire
tly

from the form of the symmetry breaking operator expe
tation value. Instead,

many properties (like the Meissner e�e
t) are 
onne
ted to the U(1)-gauge �eld

A

�

(x). We therefore assume our Lagrangian to be invariant under the U(1)-gauge

transformation

A

�

(x)! A

�

(x) + �

�

�(x);

 (x)! exp(�ie�(x)) (x);

(1.1)

where we repla
ed �(x) by the more 
ommon�e�(x) with the ele
tron 
harge �e.

�(x) is an arbitrary fun
tion, but with �(x) and �(x)� 2�n=e, n 2 Z regarded

as identi
al. We will now show how the typi
al properties of a super
ondu
tor


an be derived by assuming spontaneous symmetry breaking of this U(1)-gauge

symmetry. This dis
ussion follows [1℄.

The symmetry is broken if operators like f(x) 

T

(x)i�

2

 (x) develop a non van-

ishing expe
tation value (the i�

2

between the ele
tron �elds is needed sin
e due

to the anti
ommutation rules for fermioni
 �elds an operator like f(x) 

T

(x) (x)

would be equal to zero identi
ally). In this 
ase, the symmetry U(1) is bro-

ken down to Z

2

. Z

2


orresponds to the transformations  (x) ! � (x) (with

�(x) = 0 or �(x) = ��=e) whi
h leave f(x) 

T

(x)i�

2

 (x) invariant. A

ording

to the spatial symmetry of the fun
tion f(x) we distinguish s-wave-, p-wave-,

d-wave, et
. U(1)-symmetry breaking. Instead of 
onsidering the transformation

properties of  

1

(x) and  

2

(x) in  (x) =  

1

(x) + i 

2

(x) it is more 
onvenient to

write

 (x) = exp(�ie�(x))�(x): (1.2)

We de�ne �(x) to be periodi
 in �=e (not in 2�=e as one would expe
t from this

notation that resembles the de
omposition into an absolute value and a phase

fa
tor). Then �(x) serves as a basis for U(1)=Z

2

and �(x) for Z

2

(if we had taken

�(x) to be periodi
 in 2�=e, �(x) would have 
orresponded to U(1) and �(x) to

the trivial group). By this de�nition, we obtain two �elds, one of whi
h belongs

to the broken U(1)=Z

2

- and one to the unbroken Z

2

-symmetry. For U(1)=Z

2

we

have the transformation properties

A

�

(x)! A

�

(x) + �

�

�(x); �(x)! �(x) + �(x); �(x)! �(x) (1.3)

(�(x) + �(x) is understood to be taken modulo �=e) and for Z

2

A

�

(x)! A

�

(x) + �

�

�(x); �(x)! �(x); �(x)! ��(x): (1.4)

Sin
e no mass term  

y

(x) (x) = �

y

(x)�(x) in the Lagrangian involves �(x), �(x)

is a massless mode of our theory, the well known Goldstone boson. If we are well

within the symmetry breaking regime, the dynami
s of the system is dominated
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by this Goldstone boson. In a �rst approximation, we may negle
t the quantum


u
tuation 
ontributions of the massive modes altogether. Then �(x) plays the

role of some �xed external �eld and enters the Lagrangian as a parameter. In

this 
ase, we end up with a Lagrangian for the ele
tromagneti
 and Goldstone

boson 
ontent

L = �

1

4

Z

d

3

xF

��

F

��

+ L

s

[A

�

� �

�

�℄; (1.5)

whi
h is valid in the region of symmetry breaking and not too 
lose to the point

where the broken symmetry be
omes unbroken. The exa
t form of the fun
tional

L

s

is not known to us; however, the dependen
e on A

�

��

�

� is di
tated by gauge

invarian
e. Classi
ally, �L

s


an be interpreted as a potential for our theory. We

will assume that this potential possesses a minimum for vanishing external �elds

A

�

(i.e. the system is stable if external ele
tromagneti
 �elds are absent) and

vanishing Goldstone �elds, whi
h means that the minimum o

urs in A

�

��

�

� =

0. This is all we need to derive the main properties of super
ondu
tors.

We see immediately that if the potential possesses a minimum in A

�

��

�

� = 0,

we have A

�

= �

�

�, so that the magneti
 �eld vanishes:

~

B = rot

~

A = 0. This is

the famous Meissner e�e
t: Deep within a super
ondu
tor we have no magneti


�eld. Closer to the point where the broken symmetry be
omes unbroken, i.e.


loser to the spatial border of the region of super
ondu
tivity, A

�

��

�

� no longer

vanishes. To des
ribe the behavior of the super
ondu
tor near the border of the

super
ondu
ting region, we may expand the energy to se
ond order in j

~

A�

~

r�j

around j

~

A�

~

r�j = 0. The linear term vanishes sin
e we assumed the energy to

possess a minimum at this point. The quadrati
 term has the form

�E

pen

= �

1

2

Z

d

3

x

Æ

2

L

s

Æj

~

A(~x)�

~

r�(~x)j

2

�

�

�

�

�

j

~

A�

~

r�j=0

j

~

A(~x)�

~

r�(~x)j

2

� j

~

A�

~

r�j

2

L

3

=�

2

;

(1.6)

where L

3

is the volume of the super
ondu
tor, � is some length depending on the

material and in the se
ond line j

~

A�

~

r�j

2

is some average value of j

~

A(~x)�

~

r�(~x)j

2

over the region of integration. �E

pen

des
ribes the energy 
ost for allowing a

magneti
 �eld to penetrate the super
ondu
tor. Sin
e j

~

A�

~

r�j is of order BL,

B being the magneti
 �eld, we have

�E

pen

�

B

2

L

5

�

2

: (1.7)

On the other hand, the magneti
 �eld 
arries an energy density of order B

2

, thus

the energy 
ost to expel the magneti
 �eld from the super
ondu
tor is

�E

ex

� B

2

L

3

(1.8)
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The magneti
 �eld will be expelled from the super
ondu
tor, if the energy 
ost

to expel the weak magneti
 �eld from the super
ondu
tor is mu
h smaller

1

than

the energy 
ost we have to pay if the magneti
 �eld is to penetrate the super
on-

du
tor: �E

ex

� �E

pen

or in other words �� L. This means that in materials

with small � the super
ondu
ting region from whi
h the magneti
 �eld is expelled

is large and vi
e versa. For this reason, � is 
alled the penetration depth of the

super
ondu
tor.

Similarly we 
an see that super
ondu
tivity is destroyed, if the magneti
 �eld

B is larger than some 
riti
al magneti
 �eld B




. The fa
t that some material

be
omes a super
ondu
tor means that the super
ondu
ting state is energeti
ally

favored in 
omparison to the normal state, say by the energy L

3

�, where � is

the energy density gap between the super
ondu
ting and normal state. As we

have argued above, the energy 
ost to expel a magneti
 �eld from the super
on-

du
tor is of order B

2

L

3

. If the energy 
ost to expel the magneti
 �eld is larger

than what we energeti
ally win by favoring the super
ondu
ting state, B >

p

�,

the material will no longer remain to be a super
ondu
tor. The 
riti
al mag-

neti
 �eld is then given by B




�

p

�. However, note that this is only true for

uniform super
ondu
tors. Espe
ially high temperature super
ondu
tors are able

to tolerate mu
h larger magneti
 �elds than one would expe
t from these simple


onsiderations without losing their super
ondu
ting properties. This is due to the

fa
t that these materials form magneti
 
ux vorti
es, tiny tubes of non vanishing

magneti
 �elds that traverse the super
ondu
tor. By this me
hanism the energy


ost for expelling the magneti
 �eld is redu
ed, allowing the material to remain

super
ondu
ting for large magneti
 �elds (\type II super
ondu
tor").

We will now 
ome to the most signi�
ant property of a super
ondu
tor, the

fa
t that the resistan
e equals zero. Imagine a wire made of super
ondu
ting

material with L� �, where L is the radial dimension of the wire. Bend the wire

into a 
losed ring. Then we know that well inside the wire j

~

A�

~

r�j vanishes. We

therefore 
an �nd a 
losed 
urve C (following the linear dimension of the wire)

along whi
h j

~

A �

~

r�j always vanishes. Now start at some point P on C with

the �elds given at this point by

~

A

P

and �

P

. Going around the ring following C

until we rea
h our starting point Q = P of the 
losed 
urve, the �elds are

~

A

Q

and �

Q

. Sin
e P and Q are equal, we should have

~

A

Q

=

~

A

P

. However, sin
e �(x)

is periodi
 in �=e, we may have �(x)

Q

= �(x)

P

+ n�=e, n 2 Z, all of whi
h are

equivalent. Therefore the magneti
 
ux surrounded by our wire is

Z

F

~

B

~

n̂ dF =

I

C

~

Ad~x =

I

C

~

r� d~x = n�=e; (1.9)

where F is the area surrounded by the wire,

~

n̂ is a unit ve
tor perpendi
ular to

this area and C is the 
losed 
urve 
onne
ting P and Q = P . This result tells

us that the magneti
 
ux is quantized. A given magneti
 
ux with n 6= 0 is

1

\Mu
h" to be on the safe side with all our approximations.
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maintained by 
urrents 
owing in the super
ondu
tor. Sin
e there is no way to

smoothly 
hange the magneti
 
ux, these 
urrents 
annot smoothly de
ay, whi
h

means that the resistan
e of the super
ondu
tor is zero.

The last e�e
t we would like to dis
uss o

urs if two pie
es of super
ondu
ting

material 1 and 2 are brought together. Let F be the area of the jun
tion. Then

the Lagrangian des
ribing the system near the jun
tion is

L

j

=

Z

F

Z

2

1

dx

~

G[

~

A(x); �

1

(x); �

2

(x)℄: (1.10)

The integral over x goes over some short line perpendi
ular to the surfa
e of the

jun
tion, 
onne
ting two points 1 and 2 situated inside the two di�erent materials.

�

1

and �

2

are the Goldstone modes in the two materials. If we assume that no

gradients of Goldstone �elds and no 
omponents of magneti
 �elds parallel to the

surfa
e of the jun
tion are present, we may simply write

L

j

= FG[

~

A; �

1

; �

2

℄; (1.11)

where we have absorbed the integration over x into G. Gauge invarian
e tells

us that G = G[�

A

� =

R

2

1

dx

~

n̂(

~

r� �

~

A)℄,

~

n̂ being a unit ve
tor perpendi
ular

to the surfa
e of the jun
tion. The integral is ne
essary to guarantee the 
orre
t

behavior in the 
ase of vanishing ve
tor potential. In this 
ase

�

A=0

� =

Z

2

1

dx

~

n̂

~

r� = �

2

� �

1

� �� (1.12)

so that we end up with a gauge invariant expression as it should be. We want to


al
ulate the 
urrent 
owing through the jun
tion. The 
urrent density is given

by

~

J =

ÆL

j

Æ

~

A

= G

0

(�

A

�)F

Æ�

A

�

Æ

~

A

= �G

0

(�

A

�)

~

n̂ (1.13)

and in the 
ase of vanishing ve
tor potential

~

J = �G

0

(��)

~

n̂: (1.14)

The next step is to express �� by the voltage between the two materials. For

this purpose, note that the 
harge density is given by

J

0

(x) =

ÆL

j

ÆA

0

(x)

= �

ÆL

j

Æ

_

�(x)

; (1.15)

so that �J

0

(x) is the 
anoni
al 
onjugate to

_

�(x). In the Hamiltonian formula-

tion, this yields

_

�(x) =

ÆH

j

Æ(�J

0

(x))

: (1.16)
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The voltage V (x) is nothing else than the 
hange of energy density per 
hange of


harge density, so that

_

�(x) = �V (x): (1.17)

As a side remark, note that this shows that for some super
ondu
tor in a station-

ary state for whi
h

_

�(x) = 0 we have V (x) = 0 whi
h is again the zero resistan
e

property of a super
ondu
tor. If we now assume that our two super
ondu
tors

are kept at a 
onstant voltage and the voltage di�eren
e is given by �V , we get

�� = ��V t + 
onst. (1.18)

Using this result in (1.14), we have

~

J = �G

0

(��V t+ 
onst)

~

n̂: (1.19)

Sin
e �� is periodi
 in �=e, this shows that the 
urrent os
illates with frequen
y

� = e j�V j =�: (1.20)

This is the Josephson e�e
t. It allows high pre
ision measurements of e=~ (if we

had bothered not taking ~ to be unity), sin
e frequen
ies and voltages 
an be

measured very a

urately.

We would like to re
all that all the results we derived in this se
tion were solely

based on the assumption of a broken U(1)-symmetry. No expli
it dynami
al

model (as the Ginzburg-Landau- or BCS-Lagrangian) was needed to �nd the

main properties of a super
ondu
tor. This point of view allows us to dire
tly

identify regions of broken U(1)-symmetry in the Hubbard model (whi
h is the

dynami
al model we will use) with regions of super
ondu
ting behavior in mu
h

the same way as we naturally identify regions of broken SU(2)-symmetry with

regions of ferromagneti
 or antiferromagneti
 behavior.

1.2 High temperature super
ondu
tors

We showed in the last se
tion that super
ondu
ting properties 
an be derived

by assuming U(1)-symmetry breaking of a gauge theory. In this se
tion we re-

view the history of super
ondu
tivity and espe
ially that of the dis
overy of high

temperature super
ondu
tors. For a re
ent and more 
omplete overview, see [2℄.

In 1911, Heike Kamerlingh Onnes found the �rst material exhibiting super-


ondu
tivity by 
ooling down a mer
ury wire to 4K. Nowadays we know that

super
ondu
tivity 
an be observed for many 
ondu
tors and semi
ondu
tors at

low temperature. However, until 1986 the wide range of materials found to ex-

hibit super
ondu
ting properties had in 
ommon that their 
riti
al temperature

T




(the maximum temperature for whi
h super
ondu
tivity o

urs) did not ex-


eed 20K. In 1986, the �rst high temperature super
ondu
tor (LaBa)

2

CuO

4

with
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a 
riti
al temperature of 35K was found by Bednorz and M�uller [3℄. The following

years witnessed a series of re
ords of 
riti
al temperatures for high temperature

super
ondu
tors. The material with the 
urrently highest 
riti
al temperature

known is HgBa

2

Ca

2

Cu

3

O

8

with T




= 134K [4℄.

Many of the re
ently found high temperature super
ondu
tors are so 
alled


uprates, materials with a very anisotropi
 stru
ture. In 
ontrast to the super-


ondu
tors known before and to what is usually dis
ussed in dynami
al models

like the BCS-theory, the super
ondu
tivity in 
uprates has d

x

2

�y

2

-wave-symmetry

[5℄. The 
uprates 
onsist of two dimensional CuO

2

-layers and La-, Sr-, Ba-atoms

between these layers. For La-interlayer atoms, one e�e
tively �nds one ele
tron

per latti
e site of the CuO

2

-layers. By repla
ing La bei Sr or Ba, one removes

ele
trons from the CuO

2

-layers, whi
h is 
alled p-doping. Most of the ele
troni


dynami
s is 
onstrained to the layers. We will exploit this fa
t by modeling a

high temperature super
ondu
tor by a two dimensional model, negle
ting the

weak 
oupling between di�erent layers.

Experimentally, the phase diagram of a 
uprate is qualitatively shown in �g.

(1.1). From inelasti
 neutron s
attering experiments it is known that although

the antiferromagneti
 long range order disappears for strong doping, antiferro-

magneti
 
u
tuations are present even in the super
ondu
ting domain. There are

spe
ulations that these 
u
tuation have an important impa
t on the super
on-

du
ting order. Furthermore, a whole variety of quantum 
u
tuations in di�erent


hannels that do not 
orrespond to any long ranged order is under dis
ussion to

explain the phase diagram. This dis
ussion is additionally fed by the dis
overy

of a so 
alled pseudo energy gap below some temperature T

�

. It is not known

if this pseudo energy gap is 
onne
ted to any kind of long range order (as the

energy gap � dis
ussed in the last se
tion is 
onne
ted to super
ondu
ting long

range order), but it is strongly suspe
ted that the key to an explanation of high

temperature super
ondu
tivity lies in the understanding of this pseudo energy

gap.

All in all, at the present our understanding of the phase diagram is very

limited. We hope to 
onvin
e the reader that the bewildering variety of degrees of

freedom dis
ussed for the 
uprates to explain their properties 
alls for a formalism

whi
h is able to in
lude all these degrees of freedom in a transparent and uni�ed

way and that with our bosonized version of the Hubbard model we are able to

provide su
h a formalism.

1.3 The Hubbard model

The Hubbard model has been proposed independently by Hubbard, Kanamori

and Gutzwiller [6℄ in 1963 as a model for strongly intera
ting ele
trons on a

latti
e. There is a wide range of ele
tromagneti
 properties of 
ondensed matter

systems that were or are under investigation by modeling them by the Hubbard
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model: Ferromagnetism, antiferromagnetism, 
ondu
tor-insulator transitions and

| more re
ently | high temperature super
ondu
tivity. The large spe
trum of

physi
al properties that are tried to be understood by means of this model is

a

ompanied by an equally large spe
trum of di�erent 
al
ulational te
hniques

used to approximately solve it. An exa
t solution of the model is only known

in one dimension [7℄. For two or more dimensions, in general approximations or

numeri
al methods have to be used. Unfortunately, the results are not stable

against 
hoi
e of the method: A lot of 
ontradi
ting results have been published

during the last de
ades. This is the reason why exa
t solutions for parti
ular

values of the parameters of the model play an important role as tests that any

reliable approximation has to pass.

The de�ning features of the Hubbard model are:

� The ele
trons are strongly lo
ated at the atoms of the latti
e. This means

that the ele
tron �eld operator is given by  

i

, where i label the latti
e sites,

instead of some 
ontinuous operator  (x).

� The Coulomb intera
tion between ele
trons at di�erent latti
e sites is ne-

gle
ted. Any ele
tron intera
ts only with a possible se
ond ele
tron at

the same latti
e site. Due to the Pauli prin
iple, only two ele
trons with

opposite spin at one latti
e site are allowed.

� The ele
trons have the ability to hop between latti
e sites.

For our purposes, we will additionally make the following assumptions:

� The latti
e is two dimensional and quadrati
. This is motivated by the

a
tual 
hemi
al stru
ture of the 
uprates that we want to provide a model

for. We 
ompletely negle
t the weak interlayer 
oupling and the slight

distortion of the latti
e stru
ture away from the ideal quadrati
 stru
ture.

� Ele
tron hopping o

urs only between nearest neighbor latti
e sites. This

should be the dominating e�e
t, sin
e the ele
tron hopping amplitude be-


omes smaller with the distan
e of the latti
e sites between whi
h hopping

may o

ur. Furthermore, we assume that the hopping amplitude is the

same for all nearest neighbor pairs.

With these preliminaries in mind, we 
an write down the Hamiltonian for the

Hubbard model

^

H =

X

ij�

T

ij

a

+

i�

a

j�

+

1

2

U

X

i�

a

+

i�

a

i�

a

+

i(��)

a

i(��)

: (1.21)

a

+

i�

and a

i�

are the 
reation- and annihilation operators for an ele
tron at latti
e

site i with spin �. The �rst term des
ribes the hopping between di�erent latti
e
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sites. With our assumptions

T

ij

=

(

�t , if i and j are nearest neighbors

0 , else.

(1.22)

The sign in front of t is purely 
onventional. In parti
ular, we will not assume

that t > 0 (and indeed there is no simple argument to de
ide whi
h is the 
orre
t

sign of t). As we will see, we do not have to bother with this question sin
e all

our results only depend on t

2

. The se
ond term of the Hamiltonian des
ribes the

lo
al Coulomb intera
tion between ele
trons at the same latti
e site. We take

U > 0 to have a repulsive intera
tion (U > 0 raises the energy of pla
ing two

ele
trons on the same latti
e site, whi
h 
orresponds to a repulsive for
e).

The parameters of the model are obviously U and t. If we de
ide to measure

all quantities with respe
t to U , the Hamiltonian may be written as

^

H=U =

X

ij�

(T

ij

=U)a

+

i�

a

j�

+

1

2

X

i�

a

+

i�

a

i�

a

+

i(��)

a

i(��)

: (1.23)

Introdu
ing new variables that are dimensionless and measured with respe
t to

U , we �nally have

^

H =

X

ij�

T

ij

a

+

i�

a

j�

+

1

2

X

i�

a

+

i�

a

i�

a

+

i(��)

a

i(��)

: (1.24)

This trans
ription is unusual in the 
ontext of analyzing the Hubbard model in

this form by means of the renormalization group, as in this 
ase one is mostly

interested in investigating the 
ow of the four fermion 
oupling 
onstants. How-

ever, in our new approa
h that we present in this work we will not 
onsider the


ow of the four fermion 
oupling, so that this trans
ription is 
onvenient.

Another parameter that should be �xed for the model is the number of ele
-

trons on the latti
eN

e

. If the number of latti
e sites is N

s

, we have 0 � N

e

� 2N

s

.

The 
ase N

e

= N

s

is 
alled half �lling and it is espe
ially interesting, sin
e exa
t

results are available for it (at least in the limit of large U). Furthermore, half

�lling 
orresponds to the undoped 
uprate (where be
ause of the 
hemi
al stru
-

ture ea
h atom provides one free ele
tron to the system) whereas doping 
hanges

the number of ele
trons away from half �lling. In 
ontrast to t, the �xed ele
tron

number does not enter dire
tly into the model as a parameter. We will have to

in
lude it by spe
ifying a sour
e for the ele
tron 
harge density

2

, dynami
ally

varying this sour
e to keep the expe
tation value of the 
harge density 
onstant.

The last parameter is temperature. It enters our des
ription when writing

down the partition fun
tion for the Hubbard model as a statisti
al quantity. We

will 
ome to the details.

2

This sour
e is nothing else than the 
hemi
al potential.
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As we mentioned before, rigorous results are important to test approxima-

tions. For a review, see e.g. [8℄. One of these exa
t results is the fa
t that the

Hubbard model has an antiferromagneti
 ground state at temperature T = 0,

suÆ
iently large U and for half �lling in agreement with what is experimentally

found for 
uprates (
f. �g. (1.1)). For T > 0 another exa
t result (the Mermin-

Wagner theorem) forbids the existen
e of an antiferromagneti
 ground state in

two dimensions. This is somewhat disturbing, be
ause we would like to predi
t

antiferromagneti
 order exa
tly in the region of the phase diagram where it is for-

bidden by the theorem. A possible explanation would be to argue that although

the 
oupling between the layers of a 
uprate is weak, it 
annot be negle
ted when

applying the Mermin-Wagner theorem | for three dimensions, antiferromagneti


order is allowed by the theorem. One of the subje
ts of the last 
hapter, where

we analyze the properties of the model using our formalism, is to show that

it is possible to re
on
ile the Mermin-Wagner theorem with the o

urren
e of

antiferromagneti
 long range order for T > 0 even in two dimensions.

Over the last years, e�orts have been made to investigate the properties of

the Hubbard model numeri
ally by renormalization group te
hniques [18℄. In all

of these approa
hes the 
ow of various four fermion intera
tions was 
al
ulated,


on�rming the main symmetry breaking instabilities of antiferromagnetism and

d-wave super
ondu
tivity in the Hubbard model. These instabilities are inferred

from the divergen
e of the four fermion 
ouplings. The divergen
e of 
ouplings

at the onset of spontaneous symmetry breaking prevents these approa
hes from

following the 
ow into the broken phase and is one reason for 
onstru
ting the

alternative formalism presented in this work, whi
h is more suitable for this task.
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Chapter 2

The partition fun
tion of the

Hubbard model

The starting point of this work will be the partition fun
tion of the Hubbard

model. In this 
hapter the general method to derive the partition fun
tion on
e

the Hamiltonian is given in se
ond quantized form is presented. Mu
h of the

material in this 
hapter 
an be found in textbooks 
overing statisti
al �eld theory

(
f. e.g. [9℄) and will be known to the experien
ed reader. However, the last topi


of this 
hapter, the formulation of the partition fun
tion via 
oherent states,

deserves some explanation. We restri
t ourselves to fermioni
 systems.

2.1 Many parti
le systems

The two ingredients for a quantum theory are states and operators. We will

generalize these 
on
epts from the one parti
le system to the many parti
le system

in this se
tion. First we 
over the generalization of state kets.

Consider a system with N identi
al fermioni
 parti
les. The Hilbert spa
e for

one parti
le be H. Then the Hilbert spa
e for the N -parti
le system is given by

H

N

= H
H
 : : :
H

| {z }

N times

: (2.1)

If fj�

i

ig is an orthonormal basis for the one parti
le Hilbert spa
e H of parti
le

i, we 
an de�ne a basis for H

N

by

j�

1

: : : �

N

) = j�

1

i 
 : : :
 j�

N

i : (2.2)

Orthonormality and 
ompleteness dire
tly 
arry over from the one parti
le basis

of H to this basis of H

N

:

(�

1

: : : �

N

j �

0

1

: : : �

0

N

) = h�

1

j �

0

1

i : : : h�

N

j �

0

N

i = Æ

�

1

�

0

1

: : : Æ

�

N

�

0

N

X

�

1

:::�

N

j�

1

: : : �

N

) (�

1

: : : �

N

j =

X

�

1

j�

1

i h�

1

j : : :

X

�

N

j�

N

i h�

N

j = 1:

(2.3)

15
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For systems with identi
al fermions, any physi
al state has to be antisymmetri


under parti
le ex
hange. We therefore de�ne the totally antisymmetri
 basis

j�

1

: : : �

N

i =

1

p

N !

X

P

sgn(P)

�

�

�

P(1)

: : : �

P(N)

�

; (2.4)

where the sum runs over all permutations of the parti
les. The s
alar produ
t

now reads

h�

1

: : : �

N

j �

0

1

: : : �

0

N

i =

X

P

sgn(P) h�

1

j �

0

P(1)

�

: : : h�

N

j �

0

P(N)

�

=

8

>

<

>

:

1 , if the permutation transferring �

1

: : : �

N

into �

0

1

: : : �

0

N

is even,

�1 , if the permutation transferring �

1

: : : �

N

into �

0

1

: : : �

0

N

is odd,

0 , else.

(2.5)

The 
ompleteness relation is

X

�

1

:::�

N

j�

1

: : : �

N

i h�

1

: : : �

N

j = N ! (2.6)

We now 
ome to the se
ond ingredient of a quantum theory, the operators.

Suppose we are given a basis fjU

i

ig of a one parti
le (labeled with i) Hilbert

spa
e whi
h 
onsists of eigenstates to some operator

^

U

i

^

U

i

jU

i

i = U

i

jU

i

i ; (2.7)

where U

i

is the eigenvalue to

^

U

i

. A one parti
le operator

^

U in the many parti
le

system with a general basis fj�

i

ig for the ith parti
le is then de�ned to be

^

U j�

1

: : : �

N

) =

N

X

i=1

^

U

i

j�

1

: : : �

N

) ; (2.8)

where

^

U

i

only a
ts on the j�

i

i-part of j�

1

: : : �

N

). For example for non intera
ting

parti
les, if we take

^

U to be the energy operator and fj�

i

ig to be the energy

eigenbasis for the ith parti
le, this means that the energy of the many parti
le

system is the sum of the single parti
le energies. The matrix elements of a one

parti
le operator are given by

(�

1

: : : �

N

j

^

U j�

1

: : : �

N

) =

N

X

i=1

Y

k 6=i

h�

k

j �

k

i h�

i

j

^

U j�

i

i : (2.9)

Similarly, we de�ne the two parti
le operator

^

V by

^

V j�

1

: : : �

N

) =

1

2

X

1�i;j�N;i 6=j

^

V

ij

j�

1

: : : �

N

) (2.10)
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with the matrix elements

(�

1

: : : �

N

j

^

V j�

1

: : : �

N

) =

1

2

X

i 6=j

Y

k 6=i;j

h�

k

j �

k

i (�

i

�

j

j

^

V j�

i

�

j

) : (2.11)

2.2 Creation and annihilation operators

Up to now we 
onsidered N -parti
le systems, where N was some �xed number.

In quantum �eld theory however, the number of parti
les may 
hange. Instead of

an N -parti
le Hilbert spa
e H

N

the underlying spa
e is the Fo
k spa
e F , whi
h

is the dire
t sum of all N -parti
le Hilbert spa
es

F =

1

M

N=0

H

N

: (2.12)

It is very 
onvenient to introdu
e 
reation and annihilation operators on this Fo
k

spa
e and to express states and operators by means of these. Sin
e basis kets

belonging to Hilbert spa
es with di�erent N are orthogonal, the 
ompleteness

relation simply reads

j0i h0j+

1

X

N=1

1

N !

X

�

1

:::�

N

j�

1

: : : �

N

i h�

1

: : : �

N

j = 1: (2.13)

The 
reation operator a

+

�

is de�ned by

a

+

�

j�

1

: : : �

N

i = j��

1

: : : �

N

i ; (2.14)

transforming a state in H

N

to one in H

N+1

. Remember that we only treat the

fermioni
 
ase. For bosoni
 systems, additional fa
tors appear in this de�nition

to guarantee normalization. As a 
onsequen
e, any state may be written as

j�

1

: : : �

N

i = a

+

�

1

: : : a

+

�

N

j0i ; (2.15)

where j0i is the va
uum state. Using (2.4) and (2.14), we �nd the anti
ommuta-

tion relation

�

a

+

�

; a

+

�

	

= 0: (2.16)

The annihilation operator a

�

is de�ned by

a

�

= (a

+

�

)

y

: (2.17)

From (2.16) we immediately �nd

fa

�

; a

�

g = 0: (2.18)
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By using (2.13), (2.17), (2.14) and (2.5) we show that

a

�

j�

1

: : : �

N

i =

(

(�1)

(i�1)

j�

1

: : : �

i�1

�

i+1

: : : �

N

i , if the ith parti
le is in state j�i;

0 , if no parti
le is in state j�i.

(2.19)

(2.14) and (2.19) yield the last anti
ommutation relation

�

a

�

; a

+

�

	

= Æ

��

: (2.20)

In the same way we 
an show that the operator n̂

�

= a

+

�

a

�


ounts the number of

parti
les in the state �:

n̂

�

j�

1

: : : �

N

i =

N

X

i=1

Æ

��

i

j�

1

: : : �

N

i : (2.21)

Of 
ourse for fermioni
 systems, this number is either 1 or 0. The operator

^

N =

X

�

n̂

�

(2.22)


ounts the total number of parti
les in the system.

Note that basis 
hanges from a one parti
le basis fj�ig to another one parti
le

basis fj~�ig are easily implemented on the 
reation and annihilation operators.

From

j~�i =

X

�

h�j ~�i j�i (2.23)

we �nd

a

+

~�

=

X

�

h�j ~�i a

+

�

;

a

~�

=

X

�

h~�j �i a

�

:

(2.24)

One and two parti
le operators are usually expressed by 
reation and annihi-

lation operators. For a one parti
le operator

^

U , we have with (2.4) and (2.9)

h�

1

: : : �

N

j

^

U j�

1

: : : �

N

i =

N

X

i=1

U

i

h�

1

: : : �

N

j �

1

: : : �

N

i ; (2.25)

where we have assumed that fj�

i

ig is an eigenbasis of

^

U

i

. By using the identity

N

X

i=1

U

i

=

X

�

U

�

n

�

; (2.26)
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where the sum over � goes over all possible one parti
le states and n

�

is the

number of parti
les present in the state �, we 
on
lude that

^

U =

X

�

U

�

a

+

�

a

�

: (2.27)

In a general basis (not ne
essarily an eigenbasis of

^

U

i

) we �nd by using (2.24)

^

U =

X

��

U

��

a

+

�

a

�

(2.28)

with �, � labeling basis kets of the general basis and

U

��

=

X

�

h�j �iU

�

h�j �i : (2.29)

In mu
h the same way, but somewhat more involved, we 
an repeat these steps

to derive the desired form of the two parti
le operator

^

V =

1

2

X

����

V

��;��

a

+

�

a

+

�

a

�

a

�

: (2.30)

Re
alling the Hamiltonian of the Hubbard model (1.21), we do now under-

stand the spe
i�
 form of the terms. The hopping term des
ribes the one parti
le

hopping from one latti
e site to another, and t is a matrix element giving the

transition amplitude. The se
ond term is a two parti
le Coulomb intera
tion term

(therefore two 
reation and annihilation operators) and U des
ribes the strength

of this intera
tion.

2.3 Coherent states

Up to now, most of our results do not depend on the 
hoi
e of the basis. We

will exploit this fa
t by spe
ifying a very spe
ial basis that is useful to derive

the partition fun
tion in the next se
tion. This basis is 
omposed of 
oherent

state kets. A 
oherent state j i is de�ned to be an eigenstate of the annihilation

operator:

a

�

j i =  

�

j i : (2.31)

 

�

is the eigenvalue to the annihilation operator a

�

. Note that sin
e the annihi-

lation operators for fermions anti
ommute, the same is true for the eigenvalues.

This means that the  

�

are Grassmann numbers. If j i is an eigenket to a

�

, then

h j is an eigenbra to a

+

�

. We 
all the 
orresponding eigenvalue  

�

�

:

h j a

+

�

= h j 

�

�

: (2.32)
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Of 
ourse, the  

�

�

are also Grassmann numbers, sin
e the 
reation operators for

fermions anti
ommute. Additionally, we demand the properties

f 

�

;  

�

�

g = 0; f 

�

; a

�

g = 0: (2.33)

The full set f 

�

;  

�

�

g 
ontains the elements of the Grassmann algebra of all eigen-

values of 
oherent states. Note that not only the 
oherent states j i no longer


orrespond to states of some de�nite parti
le number, but also these states do

not belong to the Fo
k spa
e introdu
ed in the last se
tion. Instead, a 
oherent

state is a superposition of di�erent kets from this Fo
k spa
e with Grassmann

valued 
oeÆ
ients.

We 
an now pro
eed to 
onstru
t 
oherent states from the va
uum state, 
al-


ulating s
alar produ
ts, 
ompleteness relations and operator expe
tation values

using 
oherent states as we did in the last se
tion for ordinary Fo
k spa
e states.

Coherent state kets 
an be 
onstru
ted from the va
uum ket by

j i =

Y

�

(1�  

�

a

+

�

) j0i : (2.34)

To prove that this is 
onsistent, apply an annihilation operator to both sides:

a

�

j i = a

�

Y

�

(1�  

�

a

+

�

) j0i

=

Y

� 6=�

(1�  

�

a

+

�

)a

�

(1�  

�

a

+

�

) j0i

=

Y

� 6=�

(1�  

�

a

+

�

) 

�

(1�  

�

a

+

�

) j0i

=  

�

Y

�

(1�  

�

a

+

�

) j0i

=  

�

j i :

(2.35)

In the same way, we 
an show that we 
an 
onstru
t 
oherent state bras from the

va
uum bra by

h j = h0j

Y

�

(1 +  

�

�

a

�

): (2.36)

It is now straightforward to 
al
ulate the s
alar produ
t of two 
oherent states

h j  

0

i =

Y

�

(1 +  

�

�

 

0

�

): (2.37)

The proof of the 
ompleteness relation

Z

Y

�

d 

�

�

d 

�

Y

�

(1�  

�

�

 

�

) j i h j = 1 (2.38)
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is equally simple, but more lengthy. One pro
eeds by taking the matrix elements

of both sides with respe
t to two N -parti
le states in the ordinary Fo
k spa
e,

expressing all states by annihilation and 
reation operators applied to the va
uum

state. The integral is the usual one for Grassmann numbers

Z

d 1 =

Z

d 

�

1 = 0;

Z

d  =

Z

d 

�

 

�

= 1; (2.39)

and for multiple integrals the innermost integration is performed �rst.

For the partition fun
tion we will need the tra
e of an operator in 
oherent

state representation. This tra
e is given by

TrA =

Z

Y

�

d 

�

�

d 

�

Y

�

(1�  

�

�

 

�

) h� jA j i : (2.40)

To prove this, start with the tra
e in some arbitrary orthonormal basis, insert the


ompleteness relation for 
oherent states and use the 
ompleteness of the original

basis. One also needs that

Z

d 

�

d h�j  i h j �i =

Z

d 

�

d h� j �i h�j  i : (2.41)

The minus sign 
omes from the ex
hange of the integration variables hidden in

the 
oherent state kets and bras (
f. (2.34) and (2.36)).

The last equation we will need in the next se
tion is the expe
tation value of

a normal ordered operator A(a

+

�

; a

�

)

h jA(a

+

�

; a

�

) j 

0

i =

Y

�

(1 +  

�

�

 

0

�

)A( 

�

�

;  

0

�

): (2.42)

It follows immediately from the normal ordered form of A and (2.37).

2.4 The partition fun
tion

The grand 
anoni
al partition fun
tion is

Z = Tr e

��(

^

H��

^

N)

: (2.43)

� is the inverse temperature � = 1=T , � is the 
hemi
al potential,

^

N is the total

number operator introdu
ed in (2.22)

^

N =

X

�

a

+

�

a

�

; (2.44)

and

^

H is some Hamiltonian expressed by 
reation and annihilation operators.

Again, we work on a latti
e with sites labeled by i. With � being the spin-3-


omponent of the ele
tron (� 2 f"; #g), we use the 
olle
tive index � with � = i�.
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We assume

^

H to be given in normal ordered form. In parti
ular, for the Hubbard

model we have

^

H =

X

ij�

T

ij

a

+

i�

a

j�

�

1

2

X

i�

a

+

i�

a

+

i(��)

a

i�

a

i(��)

: (2.45)

From (2.40) we have

1

Z =

Z

Y

�

d 

�

�

d 

�

e

�

P




 

�




 




h� j e

��(

^

H��

^

N)

j i : (2.46)

We 
annot apply (2.42) dire
tly, sin
e the exponential is not normal ordered.

To 
ure this problem, we pro
eed as usual in the derivation of path integral

expressions by dividing � intoM small \time sli
es" �, so that � =M� and write

e

��(

^

H��

^

N)

= e

��(

^

H��

^

N)

� � � e

��(

^

H��

^

N)

| {z }

M times

: (2.47)

Between all of these fa
tor we insert the 
ompleteness relation (2.38) in the form

Z

Y

�

0

d 

�

�

0

;k

d 

�

0

;k

e

�

P




0

 

�




0

;k

 




0

;k

j 

k

i h 

k

j = 1; (2.48)

where k = 1; : : : ;M � 1 labels the inserted states. By setting  

M

= � ,  

0

=  ,

 

�

M

= � 

�

and  

�

0

=  

�

, we have

Z =

Z

Y

�

d 

�

�

d 

�

e

�

P




 

�




 




Z

 

M�1

Y

k=1

Y

�

0

d 

�

�

0

;k

d 

�

0

;k

!

 

M�1

Y

k=1

e

�

P




0

 

�




0

;k

 




0

;k

!

M

Y

k=1

h 

k

j e

��(

^

H��

^

N)

j 

k�1

i

=

Z

 

M

Y

k=1

Y

�

d 

�

�;k

d 

�;k

!

e

�

P




P

M

k=1

 

�


;k

 


;k

 

M

Y

k=1

h 

k

j e

��(

^

H��

^

N)

j 

k�1

i

!

:

(2.49)

Sin
e

^

H and

^

N are normal ordered, the same is true for e

��(

^

H��

^

N)

, if � is small.

Then we 
an use (2.42) to 
al
ulate the expe
tation value

h 

k

j e

��(

^

H��

^

N)

j 

k�1

i = e

P

�

 

�

�;k

 

�;k�1

e

��(H( 

�

�;k

; 

�;k�1

)��

P

�

 

�

�;k

 

�;k�1

)

; (2.50)

where

H( 

�

�;k

;  

�;k�1

) =

^

H(a

+

�

!  

�

�;k

; a

�

!  

�;k�1

): (2.51)

1

Re
all that for Grassmann numbers 1 �

P




 

�




 




= exp(�

P




 

�




 




). The exponential

notation is more 
onvenient in the derivation of the partition fun
tion.
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Inserting this result in (2.49) yields

Z =

Z

 

M

Y

k=1

Y

�

d 

�

�;k

d 

�;k

!

exp

 

��

M

X

k=1

 

X

�

 

�

�;k

�

 

�;k

�  

�;k�1

�

� � 

�;k�1

�

+H( 

�

�;k

;  

�;k�1

)

!!

:

(2.52)

Taking the 
ontinuum limit, we get a fun
tional integral expression for the par-

tition fun
tion:

Z =

Z

 

�

(�)=� 

�

(0);  

�

�

(�)=� 

�

�

(0)

D 

�

�

(�)D 

�

(�)

exp

 

�

Z

�

0

d�

 

X

�

 

�

�

(�)

�

�

��

� �

�

 

�

(�) +H( 

�

�

(�);  

�

(�))

!!

:

(2.53)

Parti
ularly for the Hubbard model, we have

Z =

Z

 

�

(�)=� 

�

(0);  

�

�

(�)=� 

�

�

(0)

D 

�

�

(�)D 

�

(�)

exp

�

�

Z

�

0

d�

�

X

ij�

 

�

i�

(�)

�

�

��

� �+ T

�

ij

 

j�

(�)

�

1

2

X

i�

 

�

i�

(�) 

�

i(��)

(�) 

i�

(�) 

i(��)

(�)

��

;

(2.54)

where

�

�

��

� �

�

ij

=

�

�

��

� �

�

Æ

ij

: (2.55)

Note that the \derivative"

�

��

is a purely formal trans
ription of the dis
rete

version

� 

�

(�)

��

= lim

�!0

 

�

(�)�  

�

(� � �)

�

(2.56)

sin
e the di�eren
e between  

�;k

and  

�;k�1

(whi
h are Grassmann valued) is not

\small" in any sense. When we have to a
tually 
al
ulate su
h a \derivative",

we will return to the dis
rete version.

A remarkable feature of the path integral expression for the partition fun
tion

is the antiperiodi
 boundary 
ondition  

�

(�) = � 

�

(0). If we tra
e ba
k our

steps, we see that the anti-periodi
ity is 
aused by the minus sign in h� j in eq.

(2.40) that followed from the fa
t that the  

�

are Grassmann valued. Therefore

the anti-periodi
ity is typi
al for fermioni
 systems. If we repeat all the steps in

this 
hapter for a bosoni
 system, we would �nd periodi
 boundary 
onditions
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for the fun
tional integral. The anti-periodi
ity has important impli
ations for

the properties of a fermioni
 system and we will dis
uss it in more detail in the

last se
tion of this 
hapter.

Finally, we 
lean up our notation by de�ning spinors

 

i

(�) =

�

 

i"

(�)

 

i#

(�)

�

;  

y

i

(�) =

�

 

�

i"

(�);  

�

i#

(�)

�

: (2.57)

Using

X

�

 

�

i�

(�) 

�

i(��)

(�) 

i�

(�) 

i(��)

(�) = � 

y

i

(�) 

i

(�) 

y

i

(�) 

i

(�); (2.58)

the partition fun
tion be
omes

Z =

Z

 

�

(�)=� 

�

(0);  

�

�

(�)=� 

�

�

(0)

D 

�

�

(�)D 

�

(�)

exp

�

�

Z

�

0

d�

�

X

ij

 

y

i

(�)

�

�

��

� �+ T

�

ij

 

j

(�)

+

1

2

X

i

 

y

i

(�) 

i

(�) 

y

i

(�) 

i

(�)

��

:

(2.59)

2.5 Matsubara sums

The anti-periodi
ity 
onditions  

�

(0) = � 

�

(�) and  

�

�

(0) = � 

�

�

(�) tell us that

 

�

(�) and  

�

�

(�) may be expanded as a series

 

�

(�) =

1

X

n=�1

T 

�;n

exp(i(2n+ 1)�T�);

 

�

�

(�) =

1

X

n=�1

T 

�

�;n

exp(�i(2n + 1)�T�)

(2.60)

with � -independent 
oeÆ
ients, where T = 1=� is the temperature and the fa
tor

T in front of the expansion 
oeÆ
ients is 
onventional. These sums are 
alled

Matsubara sums and one usually introdu
es the Matsubara frequen
ies

!

F

n

= (2n+ 1)�T (2.61)

so that

 

�

(�) =

1

X

n=�1

T 

�;n

exp(i!

F

n

�);

 

�

�

(�) =

1

X

n=�1

T 

�

�;n

exp(�i!

F

n

�):

(2.62)
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The index F for the Matsubara frequen
ies indi
ates that these are fermioni


frequen
ies. In the bosoni
 
ase, we would have had periodi
 boundary 
onditions

for the fun
tional integral and a Matsubara sum of the same form as for fermions,

but with !

F

n

repla
ed by

!

B

n

= 2n�T: (2.63)

One remarkable di�eren
e between fermioni
 and bosoni
 system is that for T > 0

we have !

F

n

> 0 8n, whi
h is not the 
ase for !

B

n

, sin
e !

B

n

= 0 if n = 0. We will

use this positivity property when spe
ifying a regularization s
heme for fermioni


propagators.

By using

Z

�

0

d� exp(�i(!

F

n

� !

F

m

)�) = �Æ

nm

(2.64)

and

Z

�

0

 

�

�

(�)

�

��

 

�

(�) = lim

�!0

Z

�

0

d�  

�

�

(�)

 

�

(�)�  

�

(� � �)

�

= lim

�!0

1

X

n;m=�1

T

2

 

�

�;n

 

�;m

Z

�

0

d� e

�i(!

F

n

�!

F

m

)�

1� exp(�i!

F

m

�)

�

=

1

X

n=�1

T 

�

�;n

i!

F

n

 

�;n

;

(2.65)

we �nd for the partition fun
tion of the Hubbard model

Z =

Z

 

�

(�)=� 

�

(0);  

�

�

(�)=� 

�

�

(0)

D 

�

�

(�)D 

�

(�)

exp

�

�

�

1

X

n=�1

T

X

ij

 

y

in

�

i!

F

n

� �+ T

�

ij

 

jn

+

1

2

1

X

n

1

:::n

4

=�1

T

4

(�Æ

n

1

+n

2

;n

3

+n

4

)

X

i

 

y

in

1

 

in

3

 

y

in

2

 

in

4

��

:

(2.66)

One important feature of this expression is the behavior in the high and

low temperature limit. First note that the Matsubara frequen
y a
ts as some

kind of mass term in the fermioni
 propagator of this theory. The mass term

is proportional to temperature. This means that in the high temperature limit

modes with large n are suppressed. The dynami
s of the system is then dominated

by the Matsubara modes with n = 0 and n = �1, whi
h yield !

F

n

= ��T .

For our model, it follows that the system is 
ompletely two dimensional. As

opposed to this, in the low temperature limit the modes tend to form a 
ontinuum

around the zero mode. In this 
ase, the Matsubara sum 
an be approximately

repla
ed by an integral. This renders the system e�e
tively three dimensional.
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The dimensional de
rease from T = 0 to T > 0 is 
alled dimensional redu
tion and

has an important impa
t on the qualitative properties of the system. For example,

the Mermin-Wagner theorem shows that in two dimensions no antiferromagneti


long range order 
an exist. However, in three dimensions this is not true. Be
ause

of dimensional redu
tion, this means that for T = 0 antiferromagneti
 long range

order is allowed in our two dimensional model, and indeed there are rigorous

results proving the existen
e of an antiferromagneti
 phase for zero temperature

in the two dimensional Hubbard model [8℄.



Chapter 3

Partial bosonization

The partition fun
tion of the Hubbard model des
ribes a purely fermioni
 model.

Information about spontaneously broken symmetries is en
oded in the renormal-

ization group 
ow of the quarti
 
ouplings. In prin
iple it is possible to extra
t

this information by analyzing the size and momentum stru
ture of these quarti



ouplings. However, the momentum dependen
e not only re
e
ts interesting de-

grees of freedom, but also arises from 
ompli
ated short range 
u
tuations, whi
h

we would like to ignore in a simple trun
ation s
heme for solving the renormaliza-

tion group equations. The aim of this 
hapter is to expli
itly extra
t interesting

quarti
 terms and the relevant momentum stru
ture of their 
ouplings by arti�-


ially introdu
ing bosoni
 \parti
les" 
orresponding to them. We 
all this new

model the \
olored Hubbard model". The momentum dependen
e of the 
ou-

plings in this new theory no longer 
ontains essential information about the long

range behavior of the system, and we will negle
t this momentum dependen
e

in 
al
ulations. We will introdu
e these approximations later on; in this 
hapter

everything is exa
t, and the \
olored Hubbard model" as introdu
ed here is an

equivalent trans
ription of the original Hubbard model.

3.1 The Fermi surfa
e

To gain a better understanding of the terms appearing in the partition fun
tion

of the Hubbard model, 
onsider the theory with no Coulomb intera
tion and at

T � 1

1

. In this 
ase, the a
tion of the simpli�ed model 
an be read o� from

(2.66)

S �

1

X

n=�1

T

X

xy

 

y

xn

(��+ T )

xy

 

yn

; (3.1)

1

It is perfe
tly possible to a
tually set T = 0. In this 
ase the Matsubara sum in (3.1) takes

the form of an integral. However, we will never need this trans
ription expli
itly, so that we do

not bother to write it down here. For our purpose, it suÆ
es to think of T to be in�nitesimally

small.

27
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3

Figure 3.1: Equipotential lines of the fun
tion � 
os q

1

�
os q

2

. The lines 
orre-

spond to states of the same energy. This plot may be read as a plot of the Fermi

energies for di�erent values of the 
hemi
al potential.

where we negle
ted i!

F

n

whi
h is / T . We repla
ed the abstra
t index i for the

latti
e sites by a two dimensional ve
tor x labeling the latti
e sites by two integer

values for the two spatial dire
tions. By Fourier transforming the �elds

 

xn

=

Z

�

��

d

2

q

(2�)

2

 

n

(q) exp(ixq);

 

y

xn

=

Z

�

��

d

2

q

(2�)

2

 

y

n

(q) exp(�ixq)

(3.2)

we �nd

S =

1

X

n=�1

T

Z

�

��

d

2

q

(2�)

2

 

y

n

(q) (��� 2t(
os q

1

+ 
os q

2

)) 

n

(q): (3.3)

For T � 1, we know that the 
hemi
al potential is equal to the Fermi energy

� = E

F

and all energy states are �lled up to this energy. The se
ond term in

(3.3) des
ribes the one parti
le energies E(q) (note that the model has a simple

one band stru
ture). We 
on
lude that an ele
tron state with energy E(q) is

o

upied, if �2t(
os q

1

+
os q

2

) < �. A 
ontour plot of E(q) is given in �g. (3.1).

The equipotential line of quadrati
 shape 
orresponds to �2t(
os q

1

+
os q

2

) = 0.

As is evident from the plot, this is nothing else than the half �lling 
ase. We
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therefore identify � = 0 with half �lling. � 6= 0 des
ribes the doping of the

system away from the undoped half �lling state.

3.2 The 
olored Hubbard model

The starting point of the trans
ription will be

Z =

Z

^

 

�

(�)=�

^

 

�

(0);

^

 

�

�

(�)=�

^

 

�

�

(0)

D

^

 

�

�

(�)D

^

 

�

(�) exp (�S

F

� S


oup

� S

j

)

(3.4)

with

S

F

=

1

X

n=�1

T

X

xy

^

 

y

xn

�

i!

F

n

+ T

�

xy

^

 

yn

;

S


oup

=

1

2

1

X

n

1

:::n

4

=�1

T

4

(�Æ

n

1

+n

2

;n

3

+n

4

)

X

x

^

 

y

xn

1

^

 

xn

3

^

 

y

xn

2

^

 

xn

4

:

(3.5)

We have introdu
ed a \hat" ^ to indi
ate �elds. Symbols without ^ will denote

expe
tation values of these �elds. Additionally, we have introdu
ed a sour
e term

S

j

for fermion �elds and fermion bilinears to be able to use Z as a generating

fun
tional. We will spe
ify S

j

later when we need it. Also note that the term

involving the 
hemi
al potential (whi
h has the form of a sour
e term) is now

in
luded in S

j

, serving as a sour
e for the 
harge density. It is quite natural to

do so, sin
e we know that the 
harge density is essentially 
ontrolled by doping,

rendering it a quantity 
ontrolled by external 
onditions on the system. The �rst

step in the bosonization pro
edure is to realize that the most interesting degrees

of freedom of the Hubbard model have to be implemented non lo
ally. This means

that if we want to de
ide whether a system exhibits e.g. antiferromagnetism, we

have to 
ompare ele
tron spins at di�erent latti
e sites. In the same way, we are

not able to de
ide whether a system exhibits s- or d-wave super
ondu
tivity, if we

do not take into a

ount the relative sign of ele
tron pair expe
tation values at

di�erent latti
e site pairs. The idea to deal with this 
ompli
ation is to introdu
e

a 
oarse latti
e whi
h 
onsists of plaquettes. Ea
h plaquette 
ontains four sites

of the original latti
e (
f. �g. 3.2). The plaquettes | or equivalently the latti
e

sites of the 
oarse latti
e | are labeled by a two dimensional ve
tor n, whi
h

takes integer values. The latti
e sites belonging to a given plaquette are numbered


lo
kwise. We will 
all these four labels 
olors. Instead of

^

 

xn

, where x labels

the sites of the original latti
e, we have now

^

 

nan

, where n labels the sites of the


oarse latti
e, a is the 
olor label with a 2 f1; 2; 3; 4g and in both 
ases n is the

Matsubara mode. Expli
itly, we have

^

 

n1n

=

^

 

(x

1

;x

2

)n

;

^

 

n2n

=

^

 

(x

1

+1;x

2

)n

;

^

 

n4n

=

^

 

(x

1

;x

2

�1)n

;

^

 

n3n

=

^

 

(x

1

+1;x

2

�1)n

(3.6)
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PSfrag repla
ements
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Figure 3.2: Labeling of the sites in the 
olored Hubbard model. The labels of

the original model are given in parentheses. The 
oarse latti
e sites of the 
olored

model are indi
ated by a �.

with n = x=2, x = (x

1

; x

2

).

The advantage of this trans
ription is that we 
an now write down fermion

bilinears des
ribing antiferromagneti
 or super
ondu
ting behavior that are lo
al

on the 
oarse latti
e. Before we do so, we repeat the dis
ussion of se
. 3.1 in this

new language.

3.2.1 Fourier transforms

In a �rst step, we de�ne Fourier transforms of the spinors as we did in se
. 3.1.

The naive way is to simply de�ne

^

 

nan

=

Z

�

��

d

2

q

(2�)

2

^

 

an

(q) exp(inq);

^

 

y

nan

=

Z

�

��

d

2

q

(2�)

2

^

 

y

an

(q) exp(�inq)

(3.7)

in mu
h the same way as before. However, in this 
ase phase fa
tors arise in

the Fourier transformed expressions in the a
tion, sin
e we negle
ted the spatial

dependen
e en
oded in the 
olor index in these transforms. The elegant way to
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perform the Fourier transforms is to de�ne

^

 

nan

=

Z

�

��

d

2

q

(2�)

2

^

 

an

(q) exp(i(n+ z

a

)q);

^

 

y

nan

=

Z

�

��

d

2

q

(2�)

2

^

 

y

an

(q) exp(�i(n + z

a

)q)

(3.8)

with

z

1

= (�1=4; 1=4) z

2

= (1=4; 1=4)

z

4

= (�1=4;�1=4) z

3

= (1=4;�1=4):

(3.9)

Then no phase fa
tors arise in the Fourier transformed expressions of the a
tion.

Note that the phase fa
tors in this de�nition are no longer periodi
 in 2�, whi
h

means that the same is true for

^

 

an

(q), sin
e the integrand must be periodi
 in

2� as a whole.

This is a good pla
e to 
lean up our notation with regard to Fourier trans-

forms. We de�ne

Q = (!

n

; q); X = (�;n);

QX = !

n

� + nq;

X

X

=

Z

�

0

d�

X

n

;

X

Q

= T

1

X

n=�1

Z

�

��

d

2

q

(2�)

2

;

Æ(Q�Q

0

) = �Æ

n;n

0

(2�)

2

Æ(q � q

0

);

Æ(X �X

0

) = Æ(� � �

0

)Æ

n;n

0

:

(3.10)

Note that Æ(q�q

0

) is periodi
 in 2� and that Æ(�) is periodi
 in � for bosons and

antiperiodi
 for fermions. The de�nitions hold for !

n

in the bosoni
 (!

n

= !

B

n

)

as well as in the fermioni
 (!

n

= !

F

n

) 
ase. We 
an now write

^

 

nan

=

^

 

a

(X),

^

 

an

(q) =

^

 

a

(Q) and similarly for

^

 

�

.

With these abbreviations, the 
omplete Fourier transforms read

^

 

a

(X) =

X

Q

^

 

a

(Q) exp(i(QX + z

a

q));

^

 

y

a

(X) =

X

Q

^

 

y

a

(Q) exp(�i(QX + z

a

q)):

(3.11)

Furthermore, we will often use the notation

^

 (Q) for the ve
tor with 
ompo-

nents

^

 

a

(Q). Note that sin
e the

^

 

a

(Q) themselves are two dimensional spinors,

this means that the obje
ts

^

 (Q) live in the produ
t spa
e of spin and 
olor and

have 8 
omponents altogether.

Another notation we will use 
on
erns in�nite sums like

P

X

1. Note that

(mathemati
ians hopefully forgive this)

X

X

=

X

Q

X

X

Æ(Q) exp(iQX) =

X

Q

Æ(Q)Æ(Q) = Æ(Q = 0): (3.12)
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We de�ne

V =

X

X

= Æ(Q = 0); (3.13)

whi
h 
an be interpreted as the two dimensional volume of the system (that we

assume to be large) divided by temperature.

3.2.2 The Fermi surfa
e

We 
an now repeat the 
al
ulation of se
. 3.1, taking U = 0, T � 1 and all

sour
es ex
ept � equal to zero, so that we end up with

S = S

F

+ S


oup

+ S

j

=

X

Q

^

 

y

(Q) (��� 2t (
os(q

1

=2)A

1

+ 
os(q

2

=2)B

1

))

^

 (Q):

(3.14)

A

1

and B

1

are 4� 4-matri
es in 
olor spa
e and are de�ned in the appendix A.2.

This result should be 
ompared to (3.3). The �rst di�eren
e to be observed is that

the 
osines are no longer periodi
 in 2�, but in 4�, whi
h is a dire
t 
onsequen
e

of our Fourier transform. This means that all the 
osines are positive in the

interval of integration.

To see how the Fermi surfa
e emerges in this pi
ture, we temporarily swit
h to

�elds

^

	(Q), for whi
h the fermioni
 propagator term in (3.14) be
omes diagonal.

For these �elds, the a
tion reads

S =

X

Q

^

	

y

(Q)D

^

	(Q) (3.15)

with

D =

0

B

B

�

��+ 2t(


1

+ 


2

) 0 0 0

0 �� + 2t(


1

� 


2

) 0 0

0 0 ��� 2t(


1

� 


2

) 0

0 0 0 ��� 2t(


1

+ 


2

)

1

C

C

A

;

(3.16)




i

= 
os(q

i

=2):

We 
an immediately read o� the (
ross shaped) Fermi surfa
e for half �lling

from this result (�g. 3.3).

The reason why we are so interested in the shape of the Fermi surfa
e is the

following. Note that the matrix D is nothing else than the propagator matrix

of four distin
t fermion modes (keep in mind that the 
hemi
al potential will be

absorbed in a sour
e term and is not regarded as part of the propagator). Zeroes

of the propagator are a well known problem in any quantum �eld theory 
al
ula-

tion for massless parti
les, sin
e they lead to divergen
ies. These zeroes appear
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Figure 3.3: The Fermi surfa
e for half �lling in the Hubbard (dashed line) and

the 
olored Hubbard model (full line).
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in our 
ase on the Fermi surfa
e. The usual way to deal with the divergen
ies

is to de�ne a regularization s
heme. This is not that diÆ
ult in simple theories

where the propagator (in a Eu
lidean formulation) is proportional to the squared

momentum | any positive mass like term added to the propagator will 
ure the

divergen
y problem. However, given the 
ompli
ated (
ross shaped) momentum

stru
ture of the Fermi surfa
e we fa
e in our formalism, momentum 
uto�s be-


ome tedious to de�ne and to work with. We will pursue a di�erent way by noting

that if we do not negle
t i!

F

n

in the a
tion above, we end up with a propagator

of the form i!

F

n

+D, whi
h does not vanish for all T > 0. We exploit this fa
t by

using a regularization s
heme that uses temperature as a 
owing 
uto� fun
tion.

By de�ning some (unphysi
al) temperature T

k

as a fun
tion of a parameter k,

lim

k!1

T

k

=1, lim

k!0

T

k

= T , we 
an lower T

k

starting with some large k and

letting k ! 0 in a 
ontrolled way until we rea
h the physi
al temperature T of the

system. The 
ow of the system with k will be des
ribed by exa
t renormalization

group equations. We will 
ome to this later.

Another aspe
t 
on
erns the motivation of approximations. For the bosoni


propagators (introdu
ed in the next 
hapter), we will be able to expand trigono-

metri
 fun
tions to quadrati
 order. This is very 
onvenient, sin
e one a
hieves

formal agreement with known theories (e.g. the propagator of a boson 2(2 �


os(q

1

)� 
os(q

2

)) be
omes � q

2

in quadrati
 order). However, it is not possible,

even in prin
iple, to expand the trigonometri
 fun
tions in the fermioni
 
ase for

low temperature without loosing signi�
ant information, sin
e the dynami
s is

dominated by modes with energy 
lose to the Fermi surfa
e, not just by modes

with zero momentum. The main 
ompli
ations of 
al
ulations we are about to at-

ta
k are that we are for
ed to keep these trigonometri
 fun
tions in the fermioni


se
tor.

3.2.3 Symmetries

In this se
tion we dis
uss the various symmetries of the 
olored Hubbard model.

As already dis
ussed in the introdu
tion, we have the U(1)-symmetry

 (X)! exp(i�) (X);  

y

(X)!  

y

(X) exp(�i�) (3.18)

and the SU(2)-symmetry

 (X)! exp(i~�

~

�) (X);  

y

(X)!  

y

(X) exp(�i~�

~

�): (3.19)

Note that now we only 
onsider global U(1)-transformations, sin
e no gauge

bosons are present in our theory (the reason being that these are \integrated

out" under the assumption of negligible intera
tion of ele
trons at di�erent latti
e

sites, giving rise to the Hubbard model as an e�e
tive purely fermioni
 model).

Furthermore, the model possesses the symmetries of the underlying latti
e.

These may be 
omposed from translations, rotations and re
e
tions. We restri
t
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ourselves to the translation T

x

by one latti
e site in the positive 1-dire
tion,

the 
ounter
lo
kwise rotation R by 90

Æ

around the origin (at the 
enter of a

plaquette!) and the re
e
tion I at the the 2-axis 
ontaining the origin. All

other latti
e symmetries 
an be built up by produ
ts of these three symmetries

(for example, the translation T

y

along the 2-dire
tion 
an be 
omposed by a

translation T

x

and a rotation R).

In position spa
e, these symmetries a
t as

T

x

:
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!
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!
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>

>
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<

>

>

>

>
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>

>
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<

>

>

>

>
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!
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(�n
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;n
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)3n
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(3.20)

The same applies for

^

 

�

. Fourier transforming yields

T

x

:

(

^

 (Q)! A

1

^

 (Q) exp(iq

1

=2)

^

 

y

(Q)!

^

 

y

(Q)A

1

exp(�iq

1

=2)

;

R :

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>
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; q
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�
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C
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n
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)
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;
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; q
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^

 

n

(�q

1

; q

2

)

^

 

y

n

(q

1

; q

2

)!

^

 

y

n

(�q

1

; q

2

)A

1

:

(3.21)

Again A

1

is one of the matri
es de�ned in the appendix A.2.
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It is interesting to 
onsider a transformation like

L

A

1

:

(

^

 (Q)! A

1

^

 (Q)

^

 

y

(Q)!

^

 

y

(Q)A

1

(3.22)

whi
h is also a symmetry of the a
tion. This transformation does not possess

an interpretation in position spa
e by means of latti
e symmetries as one would

expe
t. Instead, it re
e
ts our freedom in 
hoosing how to label the sites. For

example, formally translating this transformation ba
k to position spa
e, we end

up with e.g.  

(n

1

;n

2

)1n

!  

(n

1

�1=2;n

2

)2n

. We may read this as the identity trans-

formation, written by merely 
hoosing another origin of the 
oarse latti
e, shifted

one latti
e site of the original latti
e to the left. This 
lass of symmetries is there-

fore new in the 
olored formulation and 
orresponds to the unity transformation

in the original theory. We 
all this kind of symmetry relabeling symmetry. In the

same way we 
an de�ne the relabeling symmetry transformations L

A

0

, L

B

0

and

L

B

1

, whi
h are derived from L

A

1

by repla
ing the matrix A

1

by A

0

, B

0

and B

1

respe
tively. These four relabeling symmetries 
orrespond to the four di�erent

ways to assign 
olor labels by 
hoosing a di�erent origin of the 
oarse latti
e. As

in the 
ase of L

A

1

we see that by multiplying with appropriate momentum phase

fa
tors these additional relabeling symmetries 
orrespond to a translation in the

2-dire
tion for L

B

1

, a translation along the diagonal 
onne
ting 
olor sites 1 and

3 for L

B

0

and no translation at all for L

A

0

.

The last symmetries we mention are reminis
ent of time reversal symmetries.

They are realized by

^

 

n

(q)!M

i

^

 

�n

(q);

^

 

�

n

(q)! �M

i

^

 

�

�n

(q); �! ��; (3.23)

where M

i

2 fA

2

; B

2

; B

3

g and are denoted by T

A

2

, T

B

2

and T

B

3

.

3.3 Partial bosonization

3.3.1 De�nitions of fermion bilinears

Using the 
olor notation, we are now able to de�ne fermion bilinears 
orrespond-

ing to interesting degrees of freedom in a simple way. In parti
ular, we want to

in
lude bilinears des
ribing the 
harge density, antiferromagneti
 order as well

as s- and d-wave super
ondu
tivity. After de�ning these bilinears, we try to de-


ompose the four fermion a
tion of the 
olored Hubbard model with respe
t to

these bilinears. We see that this de
omposition is not possible until a whole set

of additional bilinears is added. We de�ne this set in this se
tion and dis
uss the

de
omposition of the four fermion intera
tion of the Hubbard model with respe
t

to this set in the next se
tion.
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We start by de�ning

~�

ab

(X) =

^

 

y

b

(X)

^

 

a

(X)

~

~'

ab

(X) =  

y

b

(X)~�

^

 

a

(X)

~�

ab

(X) =

^

 

T

b

(X)i�

2

^

 

a

(X)

~�

�

ab

(X) = �

^

 

y

b

(X)i�

2

^

 

�

a

(X):

(3.24)

The operators ~�

ab

(X) are un
harged spin singlet operators,

~

~'

ab

(X) un
harged

spin triplet operators and ~�

ab

(X), ~�

�

ab

(X) 
harged spin singlet operators. Note

that ~�

ab

(X) = ~�

ba

(X) and ~�

�

ab

(X) = ~�

�

ba

(X). For sake of simpli
ity, we do not

take into a

ount 
harged operators in the spin triplet.

Suppressing the X-dependen
e, we now de�ne the 
omposite bilinears
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(3.25)

The bilinears that we wanted to in
lude in our formalism are the 
harge

density ~�, the antiferromagneti
 spin density

~

~a, the super
ondu
ting s-wave ~s

and d

x

2

�y

2

-wave

~

d. In order to make the before mentioned de
omposition of the

four fermion intera
tion into these bilinears possible, the rest of the bilinears has

to be additionally in
luded. This set is minimal and 
annot be further redu
ed.

However, by 
on
entrating on ~�,

~

~a and

~

d (that is, dropping ~s from the list of

bilinears we want to in
lude), we may redu
e this set by dropping ~s, ~
 and

~

t

x=y

.

Many of the bilinears we 
onsidered only in order to be able to perform the

de
omposition in the next se
tion have a simple physi
al interpretation. For

example

~

~m des
ribes the ferromagneti
 spin density, and the various 
harged


omposite bilinears 
orrespond to d

xy

-waves (~
), extended s-wave (~e) or p-waves

(~v

x=y

).
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3.3.2 De
omposition of the four fermion intera
tion

The four fermion intera
tion in the 
olored Hubbard model reads

S


oup

=

1

2

X

X

X

a

^

 

y

a

(X)

^

 

a

(X)

^

 

y
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1
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X

X

X
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~�

aa

(X)

2

:

(3.26)

S


oup

may be de
omposed into our fermion bilinears by use of the identities

4
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�
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�
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�
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�
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~v

y
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(3.27)

To prove this, note that
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�

ab

~�


d

= ~�


a
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~

~'
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ab
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d

� 2~�

ad

~�


b

:

(3.28)

The 
lue of (3.27) is that this list of possibilities to write down 
ombinations of

fermion bilinears to either give a multiple of

P

a

~�

2

aa

or 0 is exhaustive. No other

independent 
ombinations of fermion bilinears 
an be found to give

P

a

~�

2

aa

or 0.

3.3.3 The partial bosonization

Consider the fermioni
 partition fun
tion of the 
olored Hubbard model
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(3.29)
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We already know the kineti
 and the 
oupling term. Additionally, now we have

spe
i�ed an expli
it form of the sour
e term. In this term, we in
luded sour
es

l




2 fl

�

= l

0

�

+ �; l

p

; l

q

x=y

; l
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g

(3.30)

for all the bilinears introdu
ed in (3.25) with

~w




2 f~�; ~p; ~q

x=y

;

~

~m;

~

~a;

~

~g

x=y

g

~u

�

2 f~s; ~
;

~

t

x=y

; ~e;

~

d; ~v

x=y

g

(3.31)

so that ~w




denote the un
harged and ~u

�

the 
harged bilinears. We also added

terms quadrati
 in the sour
es. Sin
e physi
al properties are not a�e
ted by these

quadrati
 terms (whi
h only give rise to a �eld independent fa
tor to the partition

fun
tion), we have the freedom to do so. Note that the 
hemi
al potential is now

part of one of the sour
es, as we dis
ussed at the beginning of se
tion 3.2. In

the 
ase of vanishing sour
es ex
ept for the 
hemi
al potential �, we demand the

only term to survive to be the one linear in �. This demand gives rise to the

quadrati
 term in � we added (and wrote as an exponential fa
tor in front of

the partition fun
tion) to 
an
el the 
ontribution quadrati
 in � from the term

2�

2

h

2




l




(X)

2

. The quantities h

�

, h




are arbitrary at the moment. We will 
ome to

them soon. Additionally, S

j


ontains a sour
e term S

F

j

for the fermions.

We de�ne the partially bosonized partition fun
tion by
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�

(X) + 2�

2

X




ŵ
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(3.32)

In this partition fun
tion, we have a fermioni
 kineti
 term S

F

whi
h 
oin
ides

with the 
orresponding term in the Hubbard model. In the remaining terms we

introdu
ed bosoni
 �elds û, û

�

and ŵ




, one for ea
h fermioni
 bilinear ~u, ~u

�

and

~w




. S

B

is a mass term for these �elds. S

Y

des
ribes a Yukawa like 
oupling of
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the bosoni
 �elds to the 
orresponding fermioni
 bilinears with Yukawa 
ouplings

h

�

, h




. The sour
e term now provides sour
es for the bosoni
 �elds.

The next step is to prove that this partially bosonized partition fun
tion is

equivalent to (3.29) for appropriate values of the Yukawa 
ouplings. We realize

that sin
e the a
tion is quadrati
 in the bosons, the bosoni
 fun
tional integral 
an

be performed as a simple Gaussian integral. Re
all that Gaussian integrals 
an

be evaluated by evaluating the exponent at its stationary value. Sin
e the bosoni


propagators are mass like, we 
an negle
t the 
onstant pre-fa
tor altogether and

only have to insert the stationary values
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ŵ
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(3.33)

into the exponential of the partially bosonized partition fun
tion in order to

perform the bosoni
 fun
tional integrals. We see that the sour
e term redu
es to

the sour
e term of (3.29). S

B

+S

Y

gives a quarti
 fermioni
 
oupling term of the

form

S

int

= �

X

X

 

X
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h

2
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2

~u
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�

(X)~u

�

(X) +

X
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(X)

2

!

: (3.34)

If (3.29) and (3.32) are equivalent, we must have
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=
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(X)
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: (3.35)

This equation should be read as a 
ondition on the Yukawa 
ouplings h

�

, h




. At

this point the identities (3.27) 
ome in handy. We 
an use them to parameterize

the solutions of (3.35). The general solution is further restri
ted by the fa
t

that we demand the 
ouplings to be real. Then the general solution is (with

h

2

�

=

�

2

3

H

�

, h

2
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�

2
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� �

3
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= 3(�
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= 2�

1
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� 3�

3

+ 1

H

q

x=y

= 3�

2

H

~g

x=y

= 2�

1

+ �
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+ 1;

(3.36)

H

s

= H




= H

t

x=y

=

3

2

�

1

; 2H

e

= 2H

d

= H

v

x=y

= 6�

3

: (3.37)

The parameters �

i

obey

�

i

> 0 8i

�

2

> �

3

2�

1

+ �

2

+ 1 > 3�

3

(3.38)
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to guarantee that the 
ondition h

�

; h




2 R is ful�lled.

For any 
hoi
e of the parameters �

i

meeting these 
onditions, the partially

bosonized partition fun
tion is equivalent to the fermioni
 partition fun
tion of

the Hubbard model we started from. This means that the 
hoi
e of the Yukawa


ouplings 
ontains a lot of arbitrariness | whi
h does not matter in the exa
t

trans
ription we used here, sin
e all 
hoi
es are equivalent to the original Hubbard

model. However, if we use approximations in 
al
ulations, the results 
an and

will depend on the initial 
hoi
es of the 
ouplings. This 
an serve as a test for

approximation s
hemes | an approximation is regarded as well justi�ed, if the

results do not depend on the initial 
hoi
e of the 
ouplings. However, this problem

will remain a disturbing one and is the weakness of our theory that we traded in

for the possibility to investigate the properties of a system by dire
t 
al
ulation

of expe
tation values of bosoni
 �elds.

Note that is not possible to bosonize the theory without taking into a

ount

the spin triplet bilinears (due to the signs in (3.35) and (3.27)).

3.3.4 Symmetries

Most of the symmetries dis
ussed in se
. 3.2.3 
an be easily implemented in the

partially bosonized version of the 
olored Hubbard model. As we know how the

fermioni
 �elds transform under the symmetry transformations, we 
an derive the

transformation behavior of the fermion bilinears involved in the Yukawa 
oupling

terms in (3.32). Sin
e we know that (3.32) and (3.29) are equivalent, they should

have the same symmetries and we de�ne the behavior of the bosoni
 �elds un-

der symmetry transformations su
h that the partially bosonized a
tion be
omes

invariant.

In parti
ular, we �nd for the U(1)-symmetry (3.18)

ŵ




! ŵ




; û

�

! exp(2i�)û

�

; û

�

�

! exp(�2i�)û

�

�

: (3.39)

Similarly, for the SU(2)-symmetry we obviously have invarian
e of all spin singlet

bosons. The spin triplet bosons transform as three dimensional ve
tors under

SO(3)-rotations around the

~

�-axis with rotation angle 2j

~

�j.

The rotation R, re
e
tion I and translation T

2

x

are also implemented in an

obvious way. However, simple translations T

x


annot be de�ned in our present

formulation, sin
e these translations 
orrespond to shifting the �eld by half a

latti
e site of the 
oarse latti
e and the bosons are de�ned on the 
oarse latti
e

only. To preserve invarian
e under translations T

x

, we de�ne a 
olor label a for

the bosons and bilinears and set

ŵ


1

(X) = T

y

T

�1

x
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(X); ŵ
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(X) = T

y
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(X);
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ŵ
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(3.40)
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(X); ~w
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(X) = T
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(X);

(3.41)
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and similarly for the bosons û

�

, û

�

�

and the boson and bilinear sour
es. The trans-

lations T

x

are now simply implemented by e.g. T

x

ŵ


1

(X) = ŵ


2

(X), T

x

ŵ


2

(X) =

ŵ


1

(X+e

1

) et
. Note that with these de�nitions, the latti
e symmetry operations

may be written in a way 
ompletely analogous to (3.20), sin
e the bosoni
 �elds

also live on a 
oarse latti
e with the same latti
e spa
ing as the fermions, with

four 
olor labeled �elds atta
hed to ea
h 
oarse latti
e site. One 
onsequen
e

is that for the same reason as in the fermioni
 
ase we introdu
e an additional

relabeling symmetry that a
ts in the same way on the bosoni
 
olor spa
e as

it did on the fermioni
 
olor spa
e. Again, these relabeling transformations all


orrespond to the identity transformation in the un
olored formulation.

To implement bosoni
 
olor into our partially bosonized partition fun
tion,

we write

Z = exp
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(3.42)

instead of (3.32) and realize that the same 
al
ulation that we performed to show

that (3.32) and (3.29) are equivalent also goes through here.

3.3.5 The 
olored partition fun
tion

We �nally summarize our results for the partition fun
tion. In position spa
e, we

have
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(3.43)

We have rede�ned the sour
es by setting

J
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2

h
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(X); J
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l
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(X): (3.44)

The partition fun
tion 
an be used as a generating fun
tional for the bosoni


n-point fun
tions. In parti
ular, we have
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� hû
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(3.45)

for the expe
tation values of the bosoni
 �elds

2

. If we rewrite (3.29) using 
olored

bilinears and insert the resulting partition fun
tion in the right hand side of

(3.45), we �nd the relation between expe
tation values of bilinears and bosons
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:

(3.46)

These relations show that for vanishing sour
es the expe
tation values of the

bilinears and the 
orresponding bosons are equal up to a fa
tor. This is the reason

why our formalism makes sense: We know (by 
onstru
tion) that the bilinears

des
ribe interesting properties of the fermioni
 system. The expe
tation value of

the bilinears tell us whether the system exhibits e.g. antiferromagneti
 behavior.

This is the 
ase if h

~

~a

a

i is non vanishing, whi
h in turn means that also the bosoni


expe
tation value ~a

a

does not vanish. We therefore 
an analyze the properties of

the system by merely 
al
ulating expe
tation values of bosoni
 �elds in a Yukawa

2

Note that L

�


a

(X) = L


a

(X), but L

�


a

(Q) = L


a

(�Q) in momentum spa
e. If we write

(3.45) as we did here, the equations hold true both in position and momentum spa
e.
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like theory. In prin
iple, all 
al
ulations in this work are dedi
ated to do exa
tly

this, and to interprete the results by means of the underlying fermioni
 theory.

Again we stress the spe
ial role of the 
harge density ~�

a

. The sour
e of the


harge density 
ontains the 
hemi
al potential and will in general not vanish.

The bosoni
 expe
tation value of �̂

a

is
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: (3.47)

Using the Fourier transforms (3.11) for the fermions and de�ning û

�

and ŵ




to

have the same Fourier transform as

^

 , and û
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�

to have the same Fourier transform

as
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, we 
an write down the partition fun
tion in momentum spa
e
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(3.48)

The vertex fa
tors V

ab;


in the 
oupling term are given in appendix B.



Chapter 4

A mean �eld 
al
ulation

Before 
ontinuing to improve our formalism, we want to give a �rst impression of

the power of our formalism even in a very simple mean �eld like approximation.

The results of this 
hapter have been published in [11℄. The main ingredients of

this approximation are the following:

� The bosoni
 �elds a
t as 
onstant ba
kground �elds, so that the bosoni


fun
tional integrals 
an be trivially performed by simply setting all bosoni


�elds to these 
onstant ba
kground values.

� The bosoni
 ba
kground �elds are homogeneous in the sense that they do

not possess any spatial dependen
e.

� All ba
kground �elds ex
ept the 
harge density �̂, the antiferromagneti


spin density

~

â and the super
ondu
ting d-wave

^

d vanish.

We pro
eed by deriving an expression for the e�e
tive a
tion in this approx-

imation, whi
h depends on the values of the three non vanishing ba
kground

�elds. For given temperature and 
harge density, we then look for minima of

the e�e
tive potential with respe
t to the expe
tation values of

~

â and

^

d. If the

minimum o

urs at non vanishing expe
tation values of the antiferromagneti
 or

super
ondu
ting �elds, we 
on
lude that the system exhibits antiferromagneti


or super
ondu
ting behavior at the given temperature and 
harge density.

4.1 The e�e
tive potential

Using (3.45), we de�ne the e�e
tive a
tion as the Legendre transform of the log

of the partition fun
tion

�[u

�a

; u

�

�a

; w


a

℄ = � lnZ[J

�a

; J

�

�a

; L


a

℄

45
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(4.1)

where the sour
es on the right hand side are fun
tionals of the expe
tation values

u

�a

, u

�

�a

, w


a

,  and  

�

. The usual properties of a Legendre transform tell us

that
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= L

�


a

: (4.2)

For vanishing sour
es these equations are formally nothing else than the 
lassi
al

a
tion prin
iple | therefore the name e�e
tive a
tion. They may be regarded

as the equations of motion for the �eld expe
tation values, taking quantum 
or-

re
tions into a

ount. Assuming that the fermions have been integrated out (we

will do this expli
itly below) and that the bosoni
 �eld expe
tation values do not

have any spatial dependen
e, the e�e
tive a
tion may be written as
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; w
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℄; (4.3)

where U serves as the e�e
tive potential for our theory. U is �nite (apart from

a T -dependent additive 
onstant) and position independent. (4.2) tells us that

| for vanishing sour
es | the system favors the state for whi
h the e�e
tive

potential as a fun
tion of the expe
tation values be
omes stationary, and it 
an

be shown that not only stationary, but even minimal [10℄.

To realize our mean �eld 
onditions, we introdu
e a fa
tor
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under the fun
tional integral of (3.48). This sets the bosoni
 �elds to 
on-

stant ba
kground �elds, negle
ting all bosoni
 
u
tuations. The momentum Æ-

fun
tions implement our 
ondition that these 
onstant ba
kground �elds should

be homogeneous. Our partition fun
tion then be
omes

Z

mf

= exp

�

�

2�

2

V�

2

h

2

�

�

Z

D

^

 

�

D

^

 exp(�S

F

� S

B

� S

Y

� S

J

)

S

F

=

X

Q

^

 

y

(Q)

�

i!

F

n

� 2t (
os(q

1

=2)A

1

+ 
os(q

2

=2)B

1

)

�

^

 (Q)

S

B

= V

X

a

 

�

2

X

�

u

�

�a

u

�a

+

�

2

2

X




w


a

w


a

!

S

Y

= �

X

ab


X

Q

�

X




w





^

 

y

a

(Q)V

w




ab;


(Q;Q)

^

 

b

(Q)



4.1. The e�e
tive potential 47
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Using the same approximations in (4.1) and inserting (4.5), by using (4.3) we

arrive at
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As it must be, U 
an be written as the 
lassi
al potential terms (whi
h are

pure mass terms in our theory) and a 
orre
tion �U des
ribing the in
uen
e of

fermioni
 
u
tuations. We must now 
al
ulate the fun
tional integral in �U .

The easiest way to do so is to de�ne the ve
tor

~

 (Q) =

�

^

 (Q)

^

 

�

(�Q)

�

: (4.8)

Note that this ve
tor has 16 
omponents (2 expli
itly, 4 in 
olor and 2 in spinor

spa
e). By aid of this ve
tor, we may rewrite S

�

in the form

S

�

=

1

2

X

Q

~

 

T

(�Q)P (Q)

~

 (Q) (4.9)

and perform the Gaussian integration to obtain

�U = �

1

2

X

Q

ln detP (Q): (4.10)
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In general, P (Q) 
ontains 
ontributions from all bosoni
 �elds. From now on, we

will set all �elds ex
ept �, ~a and d equal to zero. For the remaining �elds, we set

w

�1

= w

�2

= w

�3

= w

�4

= �

w

~a1

= �w

~a2

= w

~a3

= �w

~a4

= ~a

u

d1

= u

d2

= u

d3

= u

d4

= d

u

�

d1

= u

�

d2

= u

�

d3

= u

�

d4

= d

�

: (4.11)

The expli
it expression for P (Q) follows by inserting the vertex fa
tors from

appendix B in (4.7) and 
olle
ting terms. One obtains

P (Q) =

�

0 i!

F

n

+ 2t

~

T

i!

F

n

� 2t

~

T 0

�

� h

�

�

�

0 �A

0

A

0

0

�

� h

a

~a

�

0 �A

3


 ~�

T

A

3


 ~� 0

�

� h

d

(
os(q

1

=2)A

1

� 
os(q

2

=2)B

1

)


�

d

�

0

0 �d

�


 i�

2

(4.12)

with

~

T = 
os(q

1

=2)A

1

+ 
os(q

2

=2)B

1

. By using the identity

ln detA =

1

2

ln det

�

A

�

0 1

1 0

�

A

T

�

0 1

1 0

��

(4.13)

it is possible to diagonalize P (Q) in the two dimensional spa
e of the two 
om-

ponents of

~

 , so that the determinant redu
es to one over a matrix of dimension

8:

�U = �

1

2

X

Q

ln det

8

�

(!

F

n

)

2

+ (2t

~

T + h

�

�)

2

+ h

2

a

~a

2

+ 2h

�

h

a

�~aA

3


 ~� + h

2

d

d

�

d(
os(q

1

=2)A

1

� 
os(q

2

=2)B

1

)

2

�

: (4.14)

The determinant 
an be further diagonalized in spinor spa
e, yielding

~a~� ! j~aj�

3

: (4.15)

With f

~

T ;A

3

g = 0 and de�ning Æ = d

�

d, � = ~a

2

, we �nd

�U = �

1

2

X

Q

ln det

�

(!

F

n

)

2

+ (2t

~

T + h

�

� + h

a

p

�A

3


 �

3

)

2

+ h

2

d

Æ (
os(q

1

=2)A

1

� 
os(q

2

=2)B

1

)

2

�

: (4.16)

We pro
eed by evaluating the remaining determinant by brute for
e. In the

resulting expression, the Matsubara sum 
an be performed using the produ
t

expansion [13℄


osh(�z) =

Y

n2N

0

�

1 +

4z

2

(2n+ 1)

2

�

; z 2 C: (4.17)
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Up to a temperature dependent divergent 
onstant, the �nal result for the e�e
-

tive potential is

U = 2�

2

�

2

+ 2�

2

� + 4�

2

Æ +

2�

2

�

2

h

2

�

+�U (4.18)

�U = �2T

Z

�

��

d

2

q

(2�)

2

X

�

1

;�

2

2f�1;1g

ln 
osh

 

1

2T

r

�

h

�

�+ �

2

p

4t

2

(


1

+ �

1




2

)

2

+ h

2

a

�

�

2

+ h

2

d

Æ(


1

� �

1




2

)

2

!

with 


i

= 
os(q

i

=2).

4.2 Dis
ussion of the e�e
tive potential

We will now dis
uss our result for the e�e
tive potential (4.18) and 
al
ulate the

phase diagram.

First note that for large temperature �U vanishes and U is given by U =

2�

2

�

2

+ 2�

2

� + 4�

2

Æ +

2�

2

�

2

h

2

�

. In this 
ase, the minimum of U with respe
t to

� and Æ o

urs at � = Æ = 0 for all �. Therefore for large temperature, no

symmetry breaking, i.e. no antiferromagnetism or super
ondu
ting behavior is

present. If T is lowered, the minimum may be destabilized by the 
ontribution of

�U . However, note that (as 
an be seen by expanding �U for � � 1) U grows

as � for large �, whi
h means that even for low temperature the minimum always

o

urs at �nite �. The same argument holds for Æ.

A suÆ
ient 
ondition for the minimum to o

ur at non vanishing � or Æ is

that the masses

M

2

a

= 2

�U

��

�

�

�

�

�=Æ=0

; M

2

d

=

�U

�Æ

�

�

�

�

�=Æ=0

(4.19)

be
ome negative. If e.g. the mass M

2

a

be
omes negative, the e�e
tive potential

possesses a lo
al maximum in � = 0. Sin
e for large � the potential U in
reases

/ �, the minimum must o

ur in � > 0 and the symmetry is spontaneously

broken. Again, the same argument holds for Æ. The masses 
an be 
al
ulated

from (4.18) and we �nd

M

2

a

= 4�

2

� h

2

a

Z

�

��

d

2

q

(2�)

2

X

�

1

;�

2

2f�1;1g

tanh

�

1

2T

(h

�

�+ 2t�

2

(


1

+ �

1




2

))

�

2t�

2

(


1

+ �

1




2

)

= 4�

2

� h

2

a

Z

�

��

d

2

q

(2�)

2

X

�

1

2f�1;1g

sinh

2t(


1

+�

1




2

)

T

t(


1

+ �

1




2

)

�


osh

h

�

�

T

+ 
osh

2t(


1

+�

1




2

)

T

�

M

2

d

= 4�

2

�

1

2

h

2

d

Z

�

��

d

2

q

(2�)

2

X

�

1

;�

2

2f�1;1g

tanh

�

1

2T

(h

�

� + 2t�

2

(


1

+ �

1




2

))

�
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Figure 4.1: For high temperature, the potential minimum o

urs in � = 0.

By lowering the temperature, phase transitions of �rst or se
ond order 
an ap-

pear. Only for phase transitions of se
ond order the temperature where the mass


hanges sign 
oin
ides with the temperature of the phase transition.

�

(


1

� �

1




2

)

2

h

�

�+ 2t�

2

(


1

+ �

1




2

)

: (4.20)

In the expression for M

2

a

we performed the sum over �

2

to show that the right

hand side is �nite for 


1

+ �

1




2

! 0 and T > 0. We see that for Æ, the mass


orre
tion arising from �U always tends to destabilize the symmetri
 minimum,

sin
e its 
ontribution to the mass is always negative. The same holds true for �.

Whether the mass a
tually be
omes negative or not depends on the 
hoi
e of the

Yukawa 
ouplings. By in
reasing the strength of the 
ouplings, we ne
essarily �nd

negative masses and therefore spontaneous symmetry breaking. It is 
lear from

this qualitative point of view that our numeri
al results for the phase diagrams

in this approximation will 
ru
ially depend on the initial 
hoi
e of the 
ouplings.

In the frame of the mean �eld approximation, there is no way to de
ide whi
h


hoi
e is the 
orre
t one (remember that without any approximations, any 
hoi
e

of the 
ouplings respe
ting (3.36) will be viable and physi
ally equivalent).

We stress that the 
ondition of vanishing masses is suÆ
ient, but not ne
essary

for a phase transition to take pla
e. To understand this, we 
onsider the 
hange

of the e�e
tive potential with temperature as a fun
tion of � for �xed Æ (�g. 4.1).
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For high temperature, we know that the minimum o

urs in � = 0. Suppose for

low temperature the symmetry is broken. The phase transition into the state of

broken symmetry 
an take pla
e in two di�erent ways:

� The minimum of the potential remains at � = 0, until the massM

2

a


hanges

its sign. Then, as a fun
tion of temperature, the minimum moves away

from � = 0 to some �nite �. The order parameter � for this kind of phase

transition starts at zero in the symmetri
 phase and 
ontinuously moves

away from zero in the broken phase. The phase transition is therefore


ontinuous or of se
ond order.

� At some temperature, the potential builds up a lo
al minimum at some

�nite �. The value of the e�e
tive potential at this minimum de
reases,

until the minimum be
omes global. M

2

a

remains positive during this pro-


ess. In this 
ase the order parameter � 
hanges dis
ontinuously from zero

to some �nite value, so that we fa
e a dis
ontinuous phase transition (or

equivalently a phase transition of �rst order).

This dis
ussion shows that one has to be 
areful when analyzing the properties

of the e�e
tive potential. For example, if we have found that say M

2

Æ

is negative

and M

2

�

is positive, we 
annot immediately 
on
lude that the system exhibits

super
ondu
ting behavior, sin
e it is possible that the global minimum o

urs in

� > 0, Æ = 0, if we happen to have the 
ase of a �rst order phase transition in

the antiferromagneti
 
hannel. The main diÆ
ulties of numeri
ally �nding the

minima of (4.18) are rooted in these possibilities of �rst order phase transitions.

However, even without expli
itly 
al
ulating the minima of the e�e
tive poten-

tial, it is possible to gain further insight into the possibility of �rst order phase

transitions. First 
onsider the 
ase that the minimum o

urs in � = 0, Æ > 0.

Then this minimum must obey

�U

�Æ

�

�

�

�

�=0

= 0: (4.21)

This equation may be rewritten in the form

M

2

d

=

1

2

h

2

d

Z

�

��

d

2

q

(2�)

2

X

�

1

;�

2

(


1

� �

1




2

)

2

(4.22)
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1




2
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+ h

2
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� �

1




2
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�
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�

1

2T

(h

�

�+ 2t�
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1

+ �

1




2
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�

h

�

�+ 2t�

2

(


1

+ �

1




2

)

�

By using

tanh a

a

>

tanh

p

a

2

+ x

2

p

a

2

+ x

2

8x 6= 0; a; (4.23)
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a
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= 10 with symmetri


(SYM), antiferromagneti
 (AF) and super
ondu
ting (SC) phase. In the region

marked by the bold line the phase transition into the antiferromagneti
 phase is

of �rst order; all other phase transitions are of se
ond order.

we see that the right hand side is stri
tly negative. Therefore solutions with Æ > 0

are possible only for M

2

d

< 0, whi
h in turn means that the phase transition is of

se
ond order. In other words: The phase transition between the symmetri
 phase

and the super
ondu
ting phase is always of se
ond order. The same argument

holds for �, if � is not too large. For large �, we may (and will) en
ounter �rst

order phase transitions into the antiferromagneti
 phase.

The parameters of our theory are T , �, t and the Yukawa 
ouplings. The


hemi
al potential has been removed from the list of free parameters by the

Legendre transform (4.1) and 
an be inferred from (4.2) to be

� =

h

�

4�

2

�U

��

: (4.24)

Parti
ularly, we expli
itly see by inserting (4.18) that � = 0 gives � = 0, so that

� = 0 
orresponds to the 
ase of half �lling as it must.

4.3 Numeri
al results

In what follows, we set t = 1, �x the value of the Yukawa 
ouplings and minimize

U numeri
ally with respe
t to � and Æ for a large number of (�; T )-pairs, whi
h

yields a 
omplete pi
ture of the phase diagram in this approximation. We present

results for four di�erent 
hoi
es of the Yukawa 
ouplings.
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 (AF) and super
ondu
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marked by the bold line the phase transition into the antiferromagneti
 phase is

of �rst order; all other phase transitions are of se
ond order.
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Some remarks 
on
erning the numeri
s: To evaluate the momentum integrals

in the e�e
tive potential numeri
ally, we used a very simple self written Rie-

mannian sum like method on a grid. This works well for the kind of fun
tions

en
ountered here and is faster than more sophisti
ated methods. The sear
h for

the minimum is performed by using the Broyden-Flet
her-Goldfarb-Shanno vari-

ant of the Davidon-Flet
her-Powell minimization. This method is implemented

in the Numeri
al Re
ipes routine dfpmin (
f. [14℄). To be sure that the method

does not return a lo
al minimum, we repeat the 
al
ulation several times for ea
h

point of the phase diagram with random initial values of � and Æ. To identify

phase transitions of �rst order, we additionally 
al
ulate M

2

a

in every step and


he
k whether for non vanishing minimum M

2

a

is positive or negative.

The results for di�erent 
hoi
es of the Yukawa 
ouplings are presented in the

�gures. Note that the 
hoi
e of h

�

does not 
hange the qualitative shape of the

phases, sin
e h

�

only enters as a fa
tor for � and therefore does nothing else

than to res
ale the �-axis. For equal values of h

d

and h

a

(�gs. 4.2 and 4.3),

we �nd phase diagrams that already resemble the phase diagram �g. 1.1 of a

high temperature super
ondu
tor. It is interesting that no region exists where

the minimum of the e�e
tive a
tions o

urs for both � > 0 and Æ > 0. An

expe
tation value of the antiferromagneti
 �eld tends to suppress spontaneous

symmetry breaking in the super
ondu
ting 
hannel and vi
e versa. Additionally,

we �nd a �rst order phase transition into the antiferromagneti
 phase for large

�, whi
h is in agreement with our dis
ussion on analyti
al grounds in the last
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se
tion.

If we in
rease either the antiferromagneti
 
oupling h

a

or the super
ondu
ting


oupling h

d

, the antiferromagneti
 or super
ondu
ting phase dominates respe
-

tively. This feature is illustrated in �gs. 4.4 and 4.5. In �g. 4.6 we plotted the

value of Æ where the e�e
tive potential be
omes minimal as a fun
tion of � and

T . The 
hoi
e for the Yukawa 
ouplings is the same as in �g. 4.4 (h

2

d

= 40,

h

2

a

= 10), so that only the super
ondu
ting phase is present. We did the same

in �g. 4.7 for � with Yukawa 
ouplings as in �g. 4.5, in whi
h 
ase symmetry

breaking always takes pla
e in the antiferromagneti
 
hannel. This plot 
learly

shows the o

urren
e of a �rst order phase transition into the antiferromagneti


phase for large �.

We 
on
lude that even the mean �eld approximation presented here gives a

rough pi
ture of the phase diagram of high temperature super
ondu
tors. How-

ever, the drawba
k is also apparent: Di�erent 
hoi
es of the Yukawa 
ouplings

lead to di�erent phase diagrams, although the original theory was invariant un-

der this 
hoi
e. The strong dependen
e on the 
ouplings is unphysi
al, and we

are not able to remove this dependen
e in the framework of the mean �eld ap-

proximation. To resolve this problem and to build up a more reliable pi
ture of

the phase diagram, we have to in
lude bosoni
 
u
tuations that we 
ompletely

negle
ted in our mean �eld approa
h. However, the in
lusion of bosoni
 
u
tu-

ations is highly non trivial and 
an no longer be treated by a simple 
al
ulation

of an e�e
tive potential as we did here. The method of 
hoi
e to deal with them

is a renormalization group analysis of the e�e
tive potential and the 
ouplings.

In the next 
hapter we will present the renormalization group formalism that we

will use in this work. After that, we further transform our partition fun
tion of

the 
olored Hubbard model into a form more suitable for a renormalization group

analysis.
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Renormalization group equations

and the e�e
tive average a
tion

One loop 
al
ulations in quantum �eld theory are usually plagued by divergen-


ies, whi
h appear as unbounded loop momentum integrals. Two sour
es of

these divergen
ies are possible. For theories de�ned on a spatial 
ontinuum (as

the usual theories de�ning the standard model), we fa
e ultraviolet divergen
ies

whi
h o

ur be
ause the integrals over the loop momenta extend to arbitrarily

large momenta. This kind of divergen
ies is not present in our 
ase, sin
e the

spa
ing of the underlying latti
e provides a physi
al UV-
uto� for momentum

integrals, 
onstraining them to some �nite interval (in our 
ase to the inter-

val [��; �℄). Another sour
e of divergen
ies is the presen
e of massless modes.

These infrared divergen
ies do emerge in our theory on the latti
e and have to

be regularized. Whatever regularization s
heme we use, this regularized theory

will depend on some unphysi
al regularization parameter | an arti�
ially intro-

du
ed mass, a momentum 
uto�, or whatever. The aim of any regularization

pro
edure is to be able to 
al
ulate the loop integrals in the regularized theory

and to remove the regulator afterwards to arrive at physi
al results. Renormal-

ization group equations are a well established tool to des
ribe the 
hange of a

given theory in
luding quantum 
u
tuations with some 
ow parameter k, where

k parameterizes the regulator. We will assume that k = 0 
orresponds to a van-

ishing regulator. The ultimate goal then is to solve the 
ow equation, whi
h gives

the regularized theory as a fun
tion of k and to go to the limit k ! 0 yielding

the physi
al theory in
luding quantum 
u
tuations.

In this 
hapter we des
ribe the renormalization group formalism that we will

use to further investigate the properties of the 
olored Hubbard model. How-

ever, the treatment of the formalism presented here is rather general and applies

to any system with fermioni
 and bosoni
 degrees of freedom. The 
on
ept of

investigating the 
ow of the e�e
tive average a
tion has been introdu
ed in [15℄

and has been used to treat a wide range of problems in quantum �eld theory and

statisti
al physi
s (for a review, see [16℄).
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5.1 Generalized �elds and regularization

We 
onsider a theory with a fermioni
 �eld

^

 

�

,

^

 , a real bosoni
 �eld ŵ and a


omplex bosoni
 �eld û, û

�

. The generalization to several �elds is straightforward.

We use generalized matrix notation by regarding the �elds as ve
tors with a

dis
rete label � (e.g. 
olor, spin) and a position label X or momentum label Q.

In the same way, we introdu
e generalized matri
es. We then use generalized

matrix multipli
ation e.g. in the form

^

 

y

A

^

 =

X

Q;Q

0

X

�

^

 

�

�

(Q)A

��

(Q;Q

0

)

^

 

�

(Q

0

)

(AB)

��

(Q

1

; Q

2

) =

X

Q

X




A

�


(Q

1

; Q)B


�

(Q;Q

2

) (5.1)

Similarly, Tr denotes a generalized tra
e.

Now de�ne the generalized �elds

�̂ =

0

B

B

B

B

�

û

û

�

ŵ

�

^

 

^

 

�

1

C

C

C

C

A

; �̂

y

=

�

û

y

; û

T

; ŵ

y

;

^

 

y

;

^

 

T

�

(5.2)

and the generalized sour
es

K =

0

B

B

B

B

�

J

J

�

L

�

�

�

1

C

C

C

C

A

; K

y

=

�

J

y

; J

T

; L

y

; ��

y

; �

T

�

: (5.3)

� and �

�

are fermioni
 sour
es (these sour
es enter S

F

j

in (3.48), if we had bothered

to expli
itly write it out). Note that in general ŵ 6= ŵ

�

, although we introdu
ed

ŵ as a real boson. But sin
e our notation applies to both position and momentum

spa
e, we have to take 
are of the fa
t that ŵ

�

(X) = ŵ(X), but ŵ

�

(Q) = ŵ(�Q)!

The same applies to the real sour
e L.

The general partition fun
tion we want to 
onsider is

Z = N (T )

Z

D

^

 

�

D

^

 Dû

�

DûDŵ exp(�S � S

j

); (5.4)

where N (T ) is some temperature dependent 
onstant, S is the a
tion without

sour
es and S

j

is a sour
e term, whi
h 
an be written in our matrix notation as

S

j

= �J

y

û� J

T

û

�

� L

y

ŵ � �

y

^

 � �

T

^

 

�

= �K

y

�̂ = �K

T

�̂

�

: (5.5)
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We regularize the theory by introdu
ing a 
uto� fun
tion �S

k

[�̂℄ so that

S[�̂℄! S[�̂℄ + �S

k

[�̂℄: (5.6)

In the simple 
ase of a theory with IR-divergen
ies only, the 
uto� fun
tion 
ould

be a 
orre
tion to the propagator terms in S, giving a k-dependent mass to the

troublesome massless mode. For k ! 0, we would then demand that this k-

dependent mass vanishes, so that in this limit we re
over the physi
al theory

des
ribed by S and a possible sour
e term only. Spe
i�
ally, we de�ne the 
uto�

fun
tion by

�S

k

[�̂℄ =

1

2

Tr (R

k

�̂�̂

y

): (5.7)

R

k

is a 
uto� matrix, and again we stress that this equation has to be read in the

sense of generalized matrix notation. Note that the right hand side is not equal

to

1

2

Tr (�̂

y

R

k

�̂) due to the fermioni
 �elds 
ontained in �̂. We assume that R

k

is

diagonal in the spa
e of �elds, so that we 
an set

R

k

= diag (R

C

k

; (R

C

k

)

T

; R

R

k

; R

F

k

; (R

F

k

)

T

): (5.8)

R

C

k

serves as a 
uto� matrix for the 
omplex bosoni
 �eld, R

R

k

for the real bosoni


�eld and R

F

k

for the fermioni
 �eld. With this simpli�
ation, we 
an write (5.7)

as

�S

k

[�̂℄ = Tr

�

û

y

R

C

k

û+

1

2

ŵ

y

R

R

k

ŵ +

^

 

y

R

F

k

^

 

�

: (5.9)
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tive average a
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The regularized partition fun
tion now be
omes

Z

k

= N (T )

Z

D

^

 

�

D

^

 Dû

�

DûDŵ exp(�S[�̂℄��S

k

[�̂℄ +K

y

�̂) (5.10)

and we de�ne

W

k

= lnZ

k

: (5.11)

The (k-dependent) expe
tation values of the �elds are then given by

� = h�̂i =

ÆW

k

ÆK

y

; �

y

= h�̂

y

i =

ÆW

k

ÆK

: (5.12)

We 
an now de�ne

~

�

k

[�℄ = �W

k

+K

y

�

�

k

[�℄ = �W

k

+K

y

���S

k

[�℄: (5.13)

Note that these de�nitions are 
ompletely analogous to those we presented in

(4.1) ex
ept the last for �

k

[�℄. The reason why we subtra
ted �S

k

[�℄ in the
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last of these de�nitions will be
ome 
lear in a moment. For

~

�

k

[�℄, whi
h is the

Legendre transform of W

k

, we have

Æ

~

�

k

[�℄

Æ�

= K

y

M;

Æ

~

�

k

[�℄

Æ�

y

=MK (5.14)

with M = diag (1; 1; 1;�1;�1).

Some remarks are in order 
on
erning the interpretation of �

k

[�℄. This quan-

tity is 
alled the e�e
tive average a
tion. We will now assume that

lim

k!0

R

k

= 0; lim

k!�

R

k

=1; (5.15)

where � is either a natural UV-
uto� of the theory (in our 
ase something pro-

portional to the inverse latti
e spa
ing) or 1 for theories with UV-divergen
ies.

It is 
lear that then

lim

k!0

�

k

[�℄ = �[�℄; (5.16)

where �[�℄ is the full e�e
tive a
tion, sin
e by letting R

k

! 0, we remove the


uto� fun
tion that 
auses �

k

to di�er from �. In (4.1) we already dis
ussed the

interpretation of the full e�e
tive a
tion: The e�e
tive a
tion yields | by use

of the 
lassi
al a
tion prin
iple | the equations of motion for the expe
tation

values of the �elds of the theory with all quantum 
u
tuations in
luded.

We now turn our attention to the limit k ! �. We start by rewriting (5.10)

in the form

exp(��

k

[�℄) = N (T )

Z

D

^

 

�

D

^

 Dû

�

DûDŵ

exp

�

�K

y

�+�S

k

[�℄� S[�̂℄ +K

y

�̂�

1

2

Tr (R

k

�̂�̂

y

)

�

; (5.17)

where on the right hand side the sour
es are understood to be fun
tions of �.

Expli
itly, we �nd by starting from (5.14) that

K

y

=

Æ�

k

Æ�

M + �

y

R

k

M: (5.18)

Inserting this in (5.17) and rearranging terms, we �nd

exp(��

k

[�℄) = N (T )

Z

D

^

 

�

D

^

 Dû

�

DûDŵ

exp

�

�S[�̂℄ +

Æ�

k

Æ�

M(�̂� �)

�

exp

�

�

1

2

(�̂

y

� �

y

)R

k

M(�̂� �)

�

:

(5.19)

The se
ond exponential vanishes for R

k

!1 unless �̂ = �, so that it e�e
tively

a
ts as a Æ-fun
tion and we obtain

lim

k!�

exp(��

k

[�℄) = 
onst. � N (T ) exp(�S[�℄): (5.20)
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Up to some irrelevant 
onstants, we �nd that �

k

[�℄ approa
hes the 
lassi
al a
tion

S[�℄ with the �elds repla
ed by their expe
tation values as k ! �. Note that

to a
hieve this ni
e property of �

k

[�℄ it was ne
essary to subtra
t �S

k

[�℄ in the

de�nition of �

k

[�℄.

In 
on
lusion, the e�e
tive average a
tion interpolates between the known


lassi
al a
tion and the unknown e�e
tive a
tion. Neither the initial value �

k!�

nor the �nal value �

k!0

depends on how we 
hose to de�ne R

k

| it suÆ
es that

R

k

meets the 
onstraints (5.15). However, it is 
lear that the interpretation of

�

k

for some �nite k depends on the spe
i�
 form of R

k

.

One very illuminating 
hoi
e of the 
uto� fun
tion is a simple sharp momen-

tum 
uto� R

k

� k

2

�(k

2

�q

2

). This ansatz meets the 
onditions (5.15) for �!1.

This kind of 
uto� does not in
uen
e the momentum modes with q

2

> k

2

, but

gives a mass k

2

to the momentum modes with q

2

< k

2

. The propagation of these

low momentum modes is suppressed by the mass, so that in �

k

quantum 
u
tua-

tions of the high momentum modes only are integrated out, yielding an e�e
tive

theory at s
ale k for the propagation of the low momentum modes. In position

spa
e, this means that by lowering k we average over larger and larger regions,

integrating out the short range 
u
tuations and building up a an e�e
tive theory

for long range 
u
tuations only.

It is a well known feature of the e�e
tive a
tion that it preserves the symme-

tries of the original a
tion in the sense that the same symmetry operations a
ting

on the �elds in the original a
tion applied to the �eld expe
tation values leave

the e�e
tive a
tion invariant, if these symmetry transformations are linear. This

is the 
ase for all the symmetries we 
onsider here, so that we expe
t the e�e
tive

a
tion to respe
t the same symmetries we dis
ussed before for the a
tion of the

Hubbard model. However, whether �

k

[�℄ respe
ts these symmetries depends on

the 
hoi
e of �S

k

[�℄. It is 
onvenient to 
hoose �S

k

[�℄ su
h that it also respe
ts

the symmetries of the theory. Then �

k

[�℄ is invariant under the symmetry trans-

formations for all k. The advantage of �

k

being invariant under the symmetry

transformations is that we will have to write down an ansatz for �

k

to solve the


ow equation 
al
ulated in the next se
tion. During the 
ow an in�nite number

of terms 
ontributing to �

k

will be generated, so that we need some guidan
e

in sele
ting terms that we in
lude in our trun
ation. The fa
t that only terms

respe
ting the symmetries of the original theory are allowed in �

k


onstrains the

number of terms we may or may not in
lude in our ansatz, whi
h makes the

motivation of trun
ation s
hemes mu
h easier. Another reason for demanding

invarian
e of �

k

is that we are often interested in symmetry breaking properties

of the theory at some s
ale k and not only in the limit k ! 0. Of 
ourse, if

�

k

breaks the symmetries at �nite k expli
itly, spontaneous symmetry breaking

properties are 
ompletely obs
ured.
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5.3 The 
ow equation for the e�e
tive average

a
tion

In this se
tion we derive an exa
t 
ow equation for �

k

[�℄ that 
an be used to


al
ulate the e�e
tive average a
tion.

We start by noting that

Æ

2

W

k

ÆK

y

ÆK

=




�̂�̂

y

�

� h�̂i




�̂

y

�

; (5.21)

whi
h is the 
onne
ted 2-point fun
tion, and

Æ

2

W

k

ÆK

y

ÆK

=M

 

Æ

2

~

�

k

Æ�

y

Æ�

!

�1

: (5.22)

Re
all that in our notation, expressions like

Æ

2

W

k

ÆK

y

ÆK

are matri
es. The derivation

of the 
ow equation is now straightforward:

d

dk

~

�

k

=

d

dk

(�W

k

+K

y

�) = ��

k

W

k

�

dK

y

dk

ÆW

k

ÆK

y

+

dK

y

dk

� = ��

k

W

k

= h�

k

�S

k

[�℄i =

1

2

Tr ((�

k

R

k

)




�̂�̂

y

�

)

=

1

2

Tr

�

(�

k

R

k

)

�

Æ

2

W

k

ÆK

y

ÆK

+ ��

y

��

(5.23)

so that

d

dk

�

k

=

1

2

Tr

 

(�

k

R

k

)M

�

Æ

2

�

k

Æ�

y

Æ�

+R

k

�

�1

!

: (5.24)

This is our master equation for deriving all the 
ow equations we need. The

ultimate goal is to solve this equation with an initial 
ondition given by the


lassi
al a
tion. In general it is not possible to �nd an exa
t solution to the 
ow

equation. However, the fa
t that we know that �

k

equals the 
lassi
al a
tion at

the beginning of the 
ow k ! � allows to motivate sensible trun
ation s
hemes

for possible solutions.

We have to stress that up to this point no approximations entered the 
al
u-

lation, so that the result is exa
t. This is parti
ularly interesting if one 
ompares

it to the perturbative one loop 
al
ulation of the e�e
tive a
tion, whi
h yields

d

dk

�

k

=

1

2

Tr

 

(�

k

R

k

)M

�

Æ

2

S[�℄

Æ�

y

Æ�

+R

k

�

�1

!

: (5.25)

This is 
ompletely the same, ex
ept that the exa
t propagator is repla
ed by the


lassi
al propagator here. The simple repla
ement of the 
lassi
al propagator by
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the exa
t propagator in the one loop 
orre
tion to the e�e
tive average a
tion

renders this equation exa
t, in
luding arbitrary high loop orders and genuinely

non perturbative e�e
ts. The formal similarity to perturbative one loop expres-

sions allows to use well known 
al
ulation te
hniques and leads to results that


an be simply interpreted in a diagrammati
 language. For further dis
ussion,

appli
ations and referen
es, see [16℄.
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Chapter 6

Diagonalization of the

propagator matrix

At this point, we are in prin
iple done with the preparations to extra
t the prop-

erties of the Hubbard model. We have derived a partition fun
tion (3.48), whi
h


ontains the interesting degrees of freedom in an expli
it way, and we have pre-

sented the formalism of renormalization group equations for the e�e
tive average

a
tion, whi
h we 
an use to derive the e�e
tive a
tion. However, as we already

stated, (5.24) 
annot be solved exa
tly. Instead, we have to invent some trun-


ation for the e�e
tive average a
tion, whi
h 
onsists of terms respe
ting the

symmetries of our theory 
ontaining k-dependent variables (masses, 
ouplings,

wave fun
tion renormalization 
onstants et
.). Sin
e our theory is non renor-

malizable, it is 
lear that one 
annot avoid approximations at this point. The

question is: Whi
h terms should be in
luded in our trun
ation without making

the trun
ation error too large? As we mentioned in the 
ourse of dis
ussing sym-

metries of �

k

, it is 
lear that the smaller the number of terms allowed by exa
t

symmetries, the smaller the trun
ation error that we make by dis
arding terms.

Unfortunately, in the present formulation of our theory (3.48), a huge number

of terms in the e�e
tive a
tion are allowed, all of whi
h are of the same order of

magnitude. Parti
ularly, 
onsider the propagator terms of the form

X

QQ

0

u

�

�a

(Q)P

��

0

;ab

(Q;Q

0

)u

�

0

b

(Q

0

); (6.1)

X

QQ

0

w


a

(Q)P





0

;ab

(Q;Q

0

)w




0

b

(Q

0

): (6.2)

We know that | due to U(1)-invarian
e | propagator terms mixing 
omplex

and real bosons will not o

ur in the e�e
tive average a
tion. Similarly, the spin

singlet bosons and spin triplet bosons will not mix due to SU(2)-invarian
e. To

keep things simple, we will set �

1

! 0, whi
h be
ause of (3.36) is equivalent to

dis
arding the bosons ŝ, 
̂ and

^

t

x=y

from our theory. Then we have three sets of

65
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bosons (real bosons in the spin singlet, real bosons in the spin triplet and 
omplex

bosons) with four boson spe
ies ea
h. Every boson spe
ies o

urs in 4 di�erent


olors. This means that we fa
e 3(4 � 4)

2

= 768 boson propagator matrix entries,

non of whi
h vanish due to symmetries. Of 
ourse, it is 
ompletely hopeless to

in
lude so many terms in any useful trun
ation s
heme, but on the other hand,

by 
onsidering only some of the terms and negle
ting all others, we introdu
e

large trun
ation errors.

The problem that we fa
e here is rooted in the fa
t that we are not able to

make use of the additional latti
e symmetries (translations, rotations and re
e
-

tions) to narrow down the number of allowed terms, sin
e the bosons mix under

these transformations. If we were given a set of bosons belonging to di�erent

inequivalent representations of these latti
e symmetries, it would be 
lear that

mixing between these di�erent bosons 
ould not happen. In this 
ase, most of

the terms of the propagator matrix vanish due to exa
t symmetries. The idea

of this 
hapter is to �nd linear 
ombinations of the existing bosons to make the


orresponding states eigenstates of the symmetry transformations. Trun
ation

s
hemes are then proposed for a theory whi
h is written in terms of these new

bosons.

The simplest way we found to atta
k this problem is to expli
itly 
al
ulate the

oneloop 
orre
tions to the bosoni
 propagators perturbatively and to diagonalize

the resulting one loop improved propagator matrix. As a byprodu
t, we gain

some information about the propagation of bosoni
 modes that will be useful

when we de�ne trun
ation s
hemes. Although we diagonalized the perturbative

expressions only, it will turn out that the propagator matrix remains diagonal

to all orders in perturbation theory and that in fa
t this trans
ription leads to

bosoni
 states whi
h are eigenstates of symmetries of our theory. Finally, we

will be able to write down a partition fun
tion of our model with a new set of

bosons that all belong to di�erent inequivalent representations of translational

symmetries and therefore do not mix. Mu
h of the material in this 
hapter has

been published in [12℄.

6.1 The diagonalization pro
edure

6.1.1 The oneloop 
al
ulation

Our starting point is (3.48). We want to 
al
ulate the one loop 
orre
tions to the

bosoni
 propagators. It is 
lear that these one loop 
orre
tions 
orrespond to the
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diagrams

�

KK

Q

K +Q

w w

V V

and

�

KK

Q

K �Q

u

u

�

V V

where the solid lines denote fermions and the dashed lines bosons. Thus only

fermioni
 
u
tuations enter these one loop 
orre
tions. To 
al
ulate these, we

expand the �elds around their expe
tation values

û

�a

(Q)! u

�a

(Q); û

�

�a

(Q)! u

�

�a

(Q); ŵ


a

(Q)! w


a

(Q)

^

 (Q)!  (Q) + Æ (Q);

^

 

�

(Q)!  

�

(Q) + Æ 

�

(Q) (6.3)

and �nd for the a
tion S = S

F

+ S

B

+ S

Y

+ S

J

S[û; û

�

; ŵ;

^

 ;

^

 

�

℄ = S[u; u

�

; w;  ;  

�

℄

| {z }

=S

0

+S[u; u

�

; w; Æ ; Æ 

�

℄

| {z }

=S

2

: (6.4)

The e�e
tive a
tion (with bosoni
 
u
tuations negle
ted) is then given by

�[u; u

�

; w;  ;  

�

℄ =

2�

2

V�

2

h

2

�

+ S

0

� S

J

� ln

Z

DÆ 

�

DÆ exp(�S

2

): (6.5)

Note the similarity to the mean�eld 
al
ulation of 
hapter 4. The only di�eren
e

is that our bosoni
 ba
kground �elds are not assumed to be homogeneous, and

we will only 
onsider 
orre
tions to the propagator (whi
h, in the mean �eld 
ase,
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would 
orrespond to expanding the e�e
tive potential up to quadrati
 order in

the �elds). A similar trans
ription as in 
hapter 4

~

 (Q) =

�

Æ (Q)

Æ 

�

(Q)

�

(6.6)

allows to perform the fun
tional integral in (6.5) and we get

�[u; u

�

; w;  ;  

�

℄ =

2�

2

V�

2

h

2

�

+ S

0

� S

J

�

1

2

ln det

~

P [u; u

�
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=��

(6.7)

with

~

P [u; u

�

; w℄(Q;Q

0

) =

�

0 �(P

 

)

T

P

 

0

�

| {z }

=

~

P

0

�

�

C �A

T

A B

�
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(6.8)
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) = (i!

n

� 2t(
os(q

1
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1

+ 
os(q

2

=2)B

1

))Æ(Q�Q

0

) (6.9)

A =

X
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V

w




;
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0
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(Q�Q

0

)

B = 2

X

�
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V

u

�
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)
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�
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V
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�

�
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)u

�
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(Q+Q

0

):

(6.10)

Re
all that the vertex fa
tors V

;


are matri
es in 
olor and spinor spa
e with


omponents V

ab;


in 
olor spa
e.

We 
an now expand �� in numbers of bosoni
 �elds

�� = �

1

2

Tr ln

~

P = �

1

2

Tr ln(

~

P

0

(1�

~

P

�1
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�
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= �
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�
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~
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2

Tr (

~
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�1

0

�

~

P )

2

+ � � �

�

: (6.11)

Only the third term of this expansion 
ontributes to the propagator 
orre
tions

we want to 
al
ulate. Note that the tra
e involves summation over 
olor, spin

and generalized momentum.

More expli
itly, we have for ��

2

= 1=4Tr(

~

P

�1

0

�

~

P )

2

��

2

=
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u
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)

T
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V

u

�

�

0

;


0
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o

u

�

0




0

(K)

i

: (6.12)
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Note that we have written out the momentum sums, so that the tra
e only sums

over 
olor and spin.

From (5.22) we know that the inverse propagator is simply given by the se
-

ond derivative of � with respe
t to the �eld expe
tation values. The one loop


orre
tions to the inverse propagators are therefore given by

��

(2)

w





w




0




0

(K)

=

X

Q

Tr

n

(P

 

)

�1

(Q)V

w




;


(Q;K +Q)(P

 

)
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w
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;


0

(K +Q;Q)

o

��

(2)

u

�


u

�

0




0

(K) (6.13)

= �2

X

Q

Tr

n

(P

 

)

�1

(Q)V

u

�

;


(Q;K �Q)((P

 

)

�1

)

T

(K �Q)V

u

�

�

0

;


0

(K �Q;Q)

o

where ��

(2)

w





w




0




0

(K) denotes the se
ond derivative of ��

2

with respe
t to the

�eld expe
tation values.

The one loop 
al
ulations will be simpli�ed if we make a slight 
hange to our

bosonization pres
ription. We repla
e the fermion bilinears ~e and

~

d by

~e

y

=

1

2

(~e +

~

d); ~e

x

=

1

2

(~e�

~

d) (6.14)

The bosonization pro
edure gives the same result as before with the following

modi�
ations: Repla
e ê, h

e

by ê

y

, h

e

y

and

^

d, h

d

by ê

x

, h

e

x

everywhere. In (3.36)

we have to repla
e 2H

e

= 2H

d

= H

v

x=y

= 6�

3

by H

e

x=y

= H

v

x=y

= 6�

3

. The

vertex fa
tors are given by V

e

y

= 1=2(V

e

+ V

d

) and V

e

x

= 1=2(V

e

� V

d

).

In prin
iple one 
ould now insert the vertex fa
tors and fermioni
 propagators

and pro
eed by 
al
ulating the tra
es for all possible 768 propagator matrix

entries (we a
tually did that, but it is not very illuminating to present it here).

However, a simple transformation renders the propagator matrix diagonal in 
olor

spa
e. We will dis
uss this transformation in the following se
tion and present

the results for the one loop 
orre
tions afterwards.

6.1.2 Diagonalization in 
olor spa
e

The idea to diagonalize the propagator matrix in 
olor spa
e is to note that for

homogeneous �elds, translations 
an be easily applied by 
olor transformations.

Parti
ularly, we have

T

x

b

a

=

X

b

(A

1

)

ab

b

b

; T

y

b

a

=

X

b

(B

1

)

ab

b

b

; (6.15)

where b

a

is any of our bosons with 
olor a. It is 
lear that T

2

x=y

= 1 in this 
ase and

A

1

and B

1


ommute. The group of transformations 
onsisting of 1, T

x

, T

y

and
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T

x

T

y

is therefore isomorphi
 to G = Z

2

�Z

2

, where Z

2

is the 
y
li
 group of order

2. G is Abelian and possesses therefore 4 
lasses. The number of inequivalent

irredu
ible representations of any group is equal to the number of 
lasses of the

group, so that we have four inequivalent irredu
ible representations, whi
h are

ne
essarily one dimensional. A basis for these irredu
ible representations is easy

to de�ne. Simply take

�

b

1

=

1

4

(b

1

+ b
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4
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=
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): (6.16)

The representations of the elements of G

�

=

f1; T

x

; T

y

; T

x

T

y

g in this basis are

f1; 1; 1; 1g for

�

b

1

, f1;�1;�1; 1g for

�

b

2

, f1; 1;�1;�1g for

�

b

3

and f1;�1; 1;�1g for

�

b

4

. Sin
e we demand all terms in the e�e
tive a
tion to respe
t the translation

symmetries, it follows that all propagator matrix entries mixing di�erent 
olors

have to vanish. For example,

�
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�

1

P

�
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�
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= 0; (6.17)

if P

�

b

�

1

�

b

2

is the propagator matrix element 
oupling the bosons

�

b

�

1

and

�

b

2

.

If we write (6.16) in the form
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b

, we have the inversion b
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. Inserting this in (3.48), we �nd that as fun
tionals of the new bosons
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where the new vertex fa
tors V

�

b

;a

are given by V

�

b

;a

=

P

b

M

ab

V

b

;b

.

The above argument only applies to homogeneous �elds. In general, the

propagator matrix elements for di�erent 
olors will not vanish for non vanishing

momentum. However, by 
hoosing the Fourier transforms for the original bosoni


�elds as in (A.2), we 
an show | by expli
itly 
al
ulating the propagator matrix

entries | that indeed the transition to the �elds

�

b renders the propagator matrix

diagonal in 
olor spa
e for arbitrary bosoni
 momentum.
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6.1.3 Color diagonal one loop results

We present our results for the one loop 
orre
tions to the bosoni
 propagators of

the new bosons

�

b whi
h 
an be derived from (6.13).
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, where

a = 1; : : : ; 4 is the 
olor index. All propagator matrix elements 
onne
ting bosons

belonging to di�erent sets vanish (due to U(1)- and SU(2)-invarian
e and diago-

nalization in 
olor spa
e). The full propagator matrix is then blo
k diagonal with

the blo
ks given by 12 4 � 4 matri
es. We 
all the one loop 
orre
tions to the

4� 4-propagator matrix blo
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with 
s

i

= 
os(k

i

=4), sn

i

= sin(k
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=4) and �s
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(6.21)

whi
h depend on m, k and q. The upper sign applies to real bosons (r) and the

lower sign for 
omplex bosons (
) (we will use it later when we write down the
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one loop results for the 
omplex bosons). The sums S

1

and S

2

are
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For the arguments of S
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For the real bosons in the spin triplet, we get the same results with h
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with 
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Figure 6.1: The se
ond derivative of the one loop 
orre
tion to the bosoni
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tive a
tion of ~a

2

for high temperature T = 1. We have
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6.1.4 Dis
ussion of the one loop expressions

As a byprodu
t of the diagonalization pro
edure of the propagator matrix we have

at hand the expli
it one loop 
orre
tions to the bosoni
 kineti
 terms. We here

dis
uss the generalized momentum dependen
e of the one loop expressions given
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Figure 6.2: The se
ond derivative of the one loop 
orre
tion to the bosoni


kineti
 term in the e�e
tive a
tion of ~a

2

for low temperature T = 0:01. We have

set t = 1; the Yukawa 
ouplings are at their Hubbard model values (6.46) with

h

2

a

= 10. We have plotted the Matsubara mode m = 0.

by (6.19) and (6.28). As the generi
 
ase, we show plots of these expressions as

fun
tions of the bosoni
 momentum for high and low temperature for the boson

~a

2

. The most remarkable features of the one loop expressions are the following:

� The one loop expressions are periodi
 in 4�, not in 2� as one would naively

expe
t from the boundaries of the integrations. In fa
t, even if one takes

into a

ount the periodi
ity properties of the bosoni
 �elds, it turns out

that no single bosoni
 propagator term in the e�e
tive a
tion is periodi
 in

2�. This leads to interesting 
onsequen
es dis
ussed in the last se
tion of

this 
hapter.

� The plots show that the one loop 
orre
tion be
omes minimal at k = 0,

whi
h holds true for any temperature. Sin
e the 
lassi
al propagators are

momentum independent, the momentum dependen
e of the one loop 
or-

re
ted propagator is given by the one loop 
orre
tion term and our result

means that the propagation of momentum modes near vanishing momen-

tum is fa
ilitated in 
omparison to the higher momentum modes. The zero

momentum mode 
orresponds to a spatially homogeneous �eld. We 
on-


lude that an approximation of the e�e
tive a
tion that mainly keeps the

dependen
e on spatially homogeneous �elds will be justi�ed, as the dynam-

i
s of the system is dominated by these homogeneous �elds.
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� For high temperature the momentum dependen
e is quite simple. It is

mainly given by �(
os(k

1

=4) 
os(k

2

=4))

2

in the 
ase of ~a

2

. For low tem-

perature, the momentum dependen
e be
omes more 
ompli
ated. Note the

appearan
e of the 
ross shaped region in �g. (6.2), where the momen-

tum dependen
e be
omes non analyti
al for low temperature. This 
ross

exa
tly 
orresponds to the Fermi surfa
e in the 
olored Hubbard model,

whi
h makes perfe
t sense.

The high temperature limit of the one loop expression 
an be easily 
al
ulated

analyti
ally. To do this, we 
an expand the one loop expressions with respe
t to

1=T . Using

g

r

�

3

(�
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; �
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) =
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3

(2T )
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+O(1=T

4

) (6.29)

we see that in this limit the momentum dependen
e of the propagators is 
om-

pletely dominated by the m = 0-Matsubara mode. For low temperature, where

we expand the sums S

1

and S

2

with respe
t to T , we note that m enters only

via the produ
t (mT )

2

, so that the �rst m-dependent term in the expansion with

respe
t to T is / m

2

.

6.1.5 The �nal diagonalization step

Although we have greatly redu
ed the number of non vanishing propagator matrix

entries, we 
an do even better by diagonalizing the remaining 4�4-matri
es (6.20)

and (6.27). De�ne the transformation matri
es
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render the one loop propagator matri
es diagonal for the real bosons and blo
k

diagonal for the 
omplex bosons. More expli
itly, we have
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for the real bosons and
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for the 
omplex bosons.

The next step is to de�ne the set of bosons 
orresponding to the transforma-

tions we performed in order to diagonalize the propagator matrix and to express

the partition fun
tion with respe
t to these new bosons. De�ne the new bosons

R

a

, ~s

a

and �

a

by
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��; �p; �q
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(K): (6.35)



6.2. The �nal form of the partition fun
tion 77

Here the new bosons R

a

, ~s

a

and �

a

are ve
tors with four 
omponents for ea
h


olor a. We have written these transformation rules for the expe
tation values,

but the same applies for the �elds

^

R

a

,

^

~s

a

and �̂

a

. Then the one loop 
orre
tion

to the propagator matrix for these new bosons has the form 
al
ulated above. In

analogy to the 
olor transformation in the last se
tion, the vertex fa
tors of the

theory with the new bosons are given by linear 
ombinations of the old vertex

fa
tors
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B
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1

C
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(6.36)

and similarly for

^

~s

a

and �̂

a

. Again, be aware of the notation: For any �xed 
olor

a, the old vertex fa
tors V

��

;a

, et
. are 4� 4-matri
es in 
olor spa
e. The di�erent

vertex fa
tors for ��, �p and �q

y=x

are linearly 
ombined by the matrix (U

r

a

)

T

to give

the new vertex fa
tors V

R

a

i

, whi
h are again 4 � 4-matri
es. The vertex fa
tors


an be 
al
ulated expli
itly, and it turns out that

V

R

a

2

= V

R

a

3

= V

R

a

4
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2

= V
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3

= V

�

a

4

= 0 8a: (6.37)

This leads to a great simpli�
ation of our formalism, sin
e all the bosons with

vanishing vertex fa
tors de
ouple from the fermioni
 se
tor of the theory and 
an

be integrated out! The theory depends only on the remaining set of bosons, i.e.

on four real bosons in the spin singlet, four real bosons in the spin triplet and

eight 
omplex bosons. For ea
h ve
tor R

a

with �xed a, one boson remains that

we again 
all R

a

, but R

a

now understood to represent exa
tly one boson. In the

same way, ~s

a

will denote one boson for ea
h a, and �

a

denotes a ve
tor with

two bosons for ea
h a. We will present the 
omplete expression for the partition

fun
tion with the new bosons in the following se
tion.

6.2 The �nal form of the partition fun
tion

In the last se
tion we diagonalized the propagator matrix in two steps, �rst in


olor spa
e, and then in the spa
es of boson spe
ies blo
ks for ea
h 
olor. We

now present our �nal form of the partition fun
tion that we will a
tually use for

renormalization group 
al
ulations. Sin
e the stepwise diagonalization pro
edure

is very error prone, we show that by starting with our �nal form of the partition

fun
tion, we 
an reprodu
e the Hubbard model by integrating out the bosons

and inserting the Hubbard model values for the Yukawa 
ouplings. The rest of

this se
tion will dis
uss the partition fun
tion and the one loop expressions.
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6.2.1 The partition fun
tion

Our �nal version of the partition fun
tion is

Z = N (T )
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The real �elds

^

R,

^

~s as well as the 
omplex �elds
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are understood to 
arry a 
olor-index a = 1 : : : 4. The terms of the a
tion read
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The propagator matri
es are (B stands for R, ~s or �)
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for the real bosons and
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for the 
omplex bosons. P
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a

(K), P
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(K) and P

y
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(K) for a = 2 : : : 4 are given by

the expressions for a = 1 with the repla
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es for the real bosons read
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For the 
omplex bosons, the verti
es are
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The matri
es A

�

, B

�

, C

�

and D

�

are de�ned in the appendix (A.2).

6.2.2 Equivalen
e to the Hubbard model

In this se
tion we will show that our new partition fun
tion (6.38) is equivalent to

the one of the Hubbard model, if we set the Yukawa 
ouplings to their Hubbard

model values a

ording to
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In this 
ase, the propagators simplify to

P
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The solution of the �eld equation for

^
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(K) is

^
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(6.49)

Inserting this in the a
tion, we see that only the sour
e independent part of this

solution 
ontributes to the four fermion term in the purely fermioni
 theory. We

will therefore set the sour
es equal to zero from now on (it is a simple task to


he
k that the sour
e dependent terms produ
e the 
orre
t sour
e dependent

terms of (3.29)). The 
ontribution from the R-bosons to the four fermion term

in the a
tion is

S

R
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X
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(6.50)

where we use the short hand notation
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y

a
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^

 

d
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�

Q

0

): (6.51)

We pro
eed similarly for the ~s-bosons. To bring S

~s

4

into a form whi
h 
an easily

be 
ompared with (6.50), we use the identity
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(6.52)
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Here [ab
d℄ is de�ned as in (6.51) and [ab
d℄

ij

is equal to [ab
d℄ with the momenta

of the i-th and j-th �eld ex
hanged. We �nd
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For the �-bosons, we use the identity
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to 
al
ulate
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From this we �nd
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whi
h is exa
tly the four fermion Coulomb term of the Hubbard model in the

form of (3.29).

6.3 Dis
ussion

The last two se
tions were very formal and it is time to get some physi
al insight

into the properties of our new formulation. In this se
tion we will address the

following issues:

� When �rst partially bosonizing the Hubbard model, we introdu
ed the orig-

inal bosons to be able to express physi
al degrees of freedom by expe
tation

values of bosoni
 �elds. Although we simpli�ed our formalism analyti
ally,

we seem to have lost the intuitive grip on the physi
al signi�
an
e of the

bosons. However, we will show that in the 
ase of homogeneous �elds our

new bosons really des
ribe the physi
al degrees of freedom we want to in-

vestigate.
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� The new formalism is based on a perturbative one loop 
al
ulation. It is

not yet 
lear that the full propagator matrix with all quantum 
u
tuations

in
luded remains diagonal beyond one loop. We will show that this is

indeed the 
ase and what we a
tually have done is to swit
h to a set of

bosons that belong to di�erent irredu
ible representations of translations,

so that mixing of the bosons is prevented by translational invarian
e.

� The one loop expressions o�er a �rst insight into the way quantum 
u
-

tuations are in
luded into bosoni
 propagators. They give some valuable

information for the motivation of trun
ation s
hemes, e.g.: Whi
h momen-

tum modes are favored in propagation? How does the bosoni
 Matsubara

frequen
y enter the propagators? How do the propagators behave as fun
-

tions of temperature?

� The last topi
 of this se
tion will be the periodi
ity properties of the new

�elds, whi
h will also turn out to play an important role in the de�nition

of trun
ation s
hemes.

6.3.1 Homogeneous �elds

The renormalization group analysis we present in the following 
hapter will be fo-


used on the investigation of the properties of the e�e
tive potential. The e�e
tive

potential is a fun
tion of 
onstant bosoni
 �elds, b(X) = b = 
onst. in position

spa
e or respe
tively b(Q) = Æ(Q)b in momentum spa
e. The interpretation of

our new bosoni
 �elds in this limit is therefore of great interest to understand

what the e�e
tive potential tells us about the physi
al degrees of freedom of the

theory.

For homogeneous �elds, the bosoni
 kineti
 term reads
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The Yukawa 
oupling term be
omes
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We see that in this limit the bosons

^

R and

^

~s 
ouple to the same fermioni
 bilinears

as the original bosons �̂, p̂ et
. This means that for homogeneous �elds, we 
an

interprete

^

R

1

as the 
harge density,

^

~s

1

as the magneti
 spin density,

^

~s

2

as the

antiferromagneti
 spin density et
.

The interpretation of the 
omplex bosons is not so simple. To understand the


oupling terms of the 
omplex bosons, we translate them to position spa
e. For

example, this yields for the �rst 
omponent of �̂
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(X)):

We represent this result as a pi
torial expression in �g. 6.3. The plaquette

with position label X is indi
ated by a dashed line. The results for the other


omplex bosons are given in the same way by the remaining diagrams in �g.

6.3. Parti
ularly we see that �̂

1

1

� �̂

1

2

des
ribes a d-wave. Similarly, bosons

with di�erent spatial symmetry properties 
an be built up by simple inspe
tion

of these diagrams.

In 
on
lusion, we have found that despite the transformations we performed

to diagonalize the propagator matrix, the physi
al interpretation of the boson is

as simple as for the original bosons in the most interesting 
ase of homogeneous

�elds.

6.3.2 Symmetries

Sin
e our �nal form of the partition fun
tion is equivalent to the original Hubbard

model for the Hubbard values of the Yukawa 
ouplings, it is 
lear that it should

respe
t the latti
e symmetries as well as U(1)- and SU(2)-symmetry of the origi-

nal model. In prin
iple we 
ould infer the symmetry transformation properties of

the new bosons from the known transformation behavior of the bilinears (under

the assumption that the a
tion should be invariant). However, there is no need to

do this with one important ex
eption: The behavior with respe
t to translations.

As we have mentioned in the dis
ussion following (3.22), the translations T

x

, T

y

and T

x

T

y

a
t as
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Figure 6.3: The 
omplex bosons 
ouple to fermion bilinears that have a position

spa
e stru
ture as shown.
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For 
ompleteness, we also wrote down the identity transformation 1. Then, to

guarantee translational invarian
e, we have
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The same transformations apply to

^

~s

a

and �̂

a

. This tells us that the bosons

^

R

a

belong to inequivalent irredu
ible one dimensional representations of the transla-

tion group! The same reasoning holds for

^

~s

a

and �̂

a

. In other words, to preserve

translational invarian
e the full propagator matrix (not only the one loop 
or-

re
ted one) has to be diagonal in the same sense in whi
h the one loop 
orre
ted

propagator matrix is diagonal (whi
h means diagonal ex
ept for the 2� 2-blo
ks

for the 
omplex bosons). In 
on
lusion, U(1)-invarian
e tells us that the real and


omplex bosons 
annot mix, SU(2)-invarian
e forbids mixing of bosons from the

spin singlet and triplet, and �nally translational invarian
e ex
ludes mixing of

bosons with di�erent a. Note that these invarian
e arguments do not only hold

for the propagator matrix, but 
an also be used to narrow down the possible

form of arbitrary n-point fun
tions. We will exploit this when writing down a

trun
ation of the e�e
tive a
tion in the following 
hapter.

Translations leave ea
h term of the a
tion separately invariant. This is not

the 
ase for rotations. Although we know that the a
tion as a whole is invariant

under rotations, this is not the 
ase for single terms in the a
tion. For example,

if we only 
onsider the terms in the original a
tion 
ontaining the boson q̂

y

and

translate these terms ba
k into the purely fermioni
 theory (as we did in (3.33)),

we �nd that these terms give rise to a four fermion intera
tion term � (

^

 

y
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1

+

^

 

y

2

^

 

2

�

^

 

y

3

^

 

3

�

^

 

y

4

^

 

4

)

2

. This term breaks rotational invarian
e. However, the


onditions for the Yukawa 
ouplings guarantee that these symmetry breaking

terms 
an
el ea
h other, but only, if all terms are taken into a

ount. To preserve

rotational invarian
e during the 
ow, we must keep in mind that during the
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renormalization group 
ow the individual terms we wrote down in our a
tion

will not develop wave fun
tion renormalization 
onstants or 
ouplings that are

independent from ea
h other. For example, the 
ondition that h

q

x

= h

q

y

at

the beginning of the 
ow remains true during the whole 
ow due to rotational

invarian
e. In the same way, the ratio of wave fun
tion renormalization 
onstants

for say R

1

and R

i

, i 2 f2; 3; 4g will always be 
onstant, if we trun
ate the wave

fun
tion renormalizations to be momentum independent. However, symmetry


onsiderations do not keep mass terms or 
ouplings in the e�e
tive potential from


owing independently, sin
e the e�e
tive potential is a fun
tion of homogeneous

�elds. For homogeneous �elds, the new bosons 
oin
ide with the original ones,

and symmetry transformations do no longer mix di�erent terms.

The last symmetry we want to dis
uss is the \time reversal" (3.23). In the

limit of spatially homogeneous bosoni
 �elds

^

R

an

(q = 0) et
. the 
orresponding

symmetry transformations for the bosons are simply

T

A

2

^

R

n

(0) = diag(�1; 1;�1; 1)

^

R

�n

(0)

T

B

2

^

R

n

(0) = diag(�1; 1; 1;�1)

^

R

�n

(0)

T

B

3

^

R

n

(0) = diag(�1;�1; 1; 1)

^

R

�n

(0): (6.61)

Parti
ularly,

T

A

2

T

B

2

T

B

3

^

R

an

(0) = �

^

R

a(�n)

(0) 8a: (6.62)

The last equation also holds if

^

R is repla
ed by

^

~s or �̂. We 
an use this sym-

metry to argue that in any term of the e�e
tive a
tion that only depends on

homogeneous �elds R

a(n=0)

(q = 0), et
. the number of bosoni
 �elds must be

even.

6.3.3 Dis
ussion of the momentum dependen
e

Before our �nal diagonalization step 
arried out in se
. 6.1.5, the bosoni
 prop-

agator terms in the a
tion (as fun
tionals of the original bosoni
 �elds or of the

�elds

�

b

i

) were pure mass terms. The momentum dependen
e emerged at one loop

level as dis
ussed in se
. 6.1.4. However, in our �nal form of the theory, already

the 
lassi
al propagators (6.42), (6.43) are momentum dependent. For high tem-

perature, this momentum dependen
e of the 
lassi
al propagators dominates over

the momentum dependen
e indu
ed by quantum 
orre
tions.

In the trun
ation for the e�e
tive a
tion that we will use in this work, we

will keep the Yukawa 
ouplings 
onstant at their initial values. If we insert

the initial Hubbard values for the Yukawa 
ouplings, the propagators redu
e to

(6.47). Then the momentum dependen
e of the propagators for R

1

and ~s

2

goes

as � 
os(k

1

=2) � 
os(k

2

=2), whi
h takes its minimum at

~

k = 0. The propagator

matrix for �

1

be
omes diagonal and momentum independent. To see how the

momentum dependen
e emerges for �

1

, we investigate the one loop 
orre
tion
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to the diagonal elements of the propagator matrix of �

1

in the 
ase that the

Yukawa 
ouplings are set to their Hubbard model values (we will negle
t the

o� diagonal elements in our trun
ation). The results are shown in �gs. 6.4,

6.5. In both 
ases, the minimum of the propagator 
orre
tion again o

urs in

~

k = 0. Thus we �nd that the dominating momentum dependen
e of the bosoni


propagators of our �nal theory exhibits minima at

~

k = 0 for the bosons des
ribing

the 
harge density, antiferromagnetism and d-wave super
ondu
tivity in the limit

of homogeneous �elds. We will use this fa
t to argue that the propagation of

momentum modes 
lose to

~

k = 0 is fa
ilitated, so that we 
an approximate these

�elds homogeneously by their

~

k = 0-mode.

6.3.4 Periodi
ities

The bosoni
 integrals extend over the range [��; �℄. This range originated in

the periodi
ity of the integrand in our de�nitions of the Fourier transforms. It

is interesting to analyze the periodi
ity properties of our new bosons and to see

how the periodi
ity of the integrand is maintained.

The periodi
ity behavior of the new bosons 
an be inferred from the known

behavior of the original bosons, whi
h follows dire
tly from the form of the Fourier

transforms. By applying all the transformations we performed to arrive at our

new bosons, we �nd after a tedious but straightforward 
al
ulation

^

R(K + 2�ne

i

) = (�1)

n=2

^

R(K)

�̂(K + 2�ne

i

) = (�1)

n=2

�̂(K) (6.63)

for n even, i 2 f1; 2g and

^

R(K + 2�ne

1

) = i(�1)

(n+1)=2

B

1

^

R(K);

^

R(K + 2�ne

2

) = �i(�1)

(n+1)=2

B

0

^

R(K);

�̂

a

1

(K + 2�ne

1

) =

X

b

(B

1

)

ab

�̂

b

1

(K)

�̂

a

1

(K + 2�ne

2

) = i(�1)

(n+1)=2

X

b

(B

0

)

ab

�̂

b

1

(K)

�̂

a

2

(K + 2�ne

1

) = i(�1)

(n+1)=2

X

b

(B

1

)

ab

�̂

b

2

(K)

�̂

a

2

(K + 2�ne

2

) =

X

b

(B

0

)

ab

�̂

b

2

(K) (6.64)

for n odd. The equations for

^

R also hold respe
tively for

^

~s. Apart from a possible

phase fa
tor, the �elds are periodi
 in 4�. They are not periodi
 in uneven

multiples of 2�, but transform into ea
h other. Thus it is 
lear that no single
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term in the bosoni
 part of the a
tion is periodi
 in 2�. However, periodi
ity of

the integrand is restored when 
onsidering sums of terms. For example, whereas

1

2

^

R

1

(�K)P

R

11

^

R

1

(K) (6.65)

is not periodi
 in 2�, the sum

1

2

X

ab

^

R

a

(�K)P

R

ab

^

R

b

(K) (6.66)

is periodi
 in 2�.

The interesting thing about this behavior is that it is possible to write terms

as higher momentum modes of other terms. For example, we 
an write

1

2

T

X

n

Z

�

��

d

2

k

(2�)

2

X

ab

^

R

a

(�K)P

R

ab

^

R

b

(K) =

1

2

T

X

n

Z

2�

�2�

d

2

k

(2�)

2

^

R




(�K)P

R





^

R




(K)

(6.67)

for any 
 2 f1; 2; 3; 4g. We have shown that the same property holds for the

propagator terms of the 
omplex bosons, as well as for the 
oupling terms. One

possible equivalent trans
ription of the bosoni
 terms in (6.40) that we will use

is

S

B

kin

=

X

K

h

1

2

^

R

1

(�K)P

R

11

(K)

^

R

1

(K) +

1

2

^

~s

2

(�K)P

~s

22

(K)

^

~s

2

(K)

+ �̂

y

1

(K)P

�

11

(K)�̂

1

(K)

i

;

S

Y

= �

X

KQQ

0

X

ab

h

Æ(K �Q +Q

0

)

�

^

R

1

(K)

^

 

y

a

(Q)V

R

ab;1

(K)

^

 

b

(Q

0

)

+

^

~s

2

(K)

^

 

y

a

(Q)V

~s

ab;2

(K)

^

 

b

(Q

0

)

�

+ Æ(K �Q�Q

0

)

�

�̂

y

1

(K)

^

 

T

a

(Q)V

�

�

ab;1

(Q;Q

0

)

^

 

b

(Q

0

)

+ �̂

T

1

(K)

^

 

y

a

(Q)V

�

ab;1

(Q;Q

0

)

^

 

�

b

(Q

0

)

�i

;

(6.68)

where it is understood that bosoni
 momentum integrals extend over the interval

[�2�; 2�℄ (that is,

P

K

= T

P

n

R

2�

�2�

d

2

k

(2�)

2

, ifK denotes the momentum of a boson)

and fermioni
 integrals over [��; �℄. The Æ-fun
tion is assumed to be periodi
 in

2� for Q, Q

0

and in 4� for K. Only the physi
ally interesting bosons

^

R

1

,

^

~s

2

and

�̂

1

enter our formulation in this trans
ription. The other bosons are in
luded as

higher momentum modes of these three bosons.
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Chapter 7

Renormalization group analysis

The history of renormalization group approa
hes to the Hubbard model is a short

one [18℄. Up to now all these investigations were performed in the framework of

the purely fermioni
 model. In this se
tion we will see how to apply the renormal-

ization group formalism developed in 
hapter 5 to our �nal partially bosonized

form of the partition fun
tion (6.38), where the a
tion terms are given by (6.40).

If 
onvenient, we may rewrite the a
tion terms by using (6.68). The �rst task is

then to write down a suitable trun
ation for the e�e
tive a
tion. This trun
ation

ansatz is then to be inserted in (5.24), from whi
h we 
an derive the 
ow equa-

tions for masses, 
ouplings and wave fun
tion renormalization 
onstants. Our

renormalization group analysis will be fo
used on the properties of the bosoni


e�e
tive potential, and the trun
ations proposed in the �rst se
tion will be ad-

justed to this aim.

7.1 The trun
ation

Sin
e (5.24) 
annot be solved exa
tly, we propose an ansatz for its solution, whi
h

is a trun
ated version of the e�e
tive average a
tion. The guidelines for doing so

are the following:

� Due to the property lim

k!�

�

k

= S the e�e
tive average a
tion will resemble

the 
lassi
al a
tion as a fun
tion of expe
tation values of the �elds at the

beginning of the 
ow. The trun
ation will therefore in
lude terms that

look like the 
orresponding terms of the 
lassi
al a
tion and systemati


generalizations of these.

� The generalizations are limited by the fa
t that they should respe
t the

symmetries of the theory.

� We only keep terms that seem to be absolutely ne
essary to des
ribe the

behavior of quantities we want to 
al
ulate (in our 
ase bosoni
 masses and

quarti
 
ouplings).

91
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It is 
lear that by trun
ating the e�e
tive average a
tion we introdu
e errors

due to the approximation. The most diÆ
ult part in a su

essful renormalization

group analysis is to de
ide whi
h terms to in
lude in the trun
ation. This requires

physi
al intuition, some systemati
 expansion of the terms whi
h possibly appear

in the e�e
tive average a
tion and a trial and error pro
edure | at last, the

only reliable way to estimate trun
ation errors is to in
lude more terms in the

systemati
 expansion and to see how they 
hange the results. We want to stress

that for theories with strong 
ouplings (so that no perturbative expansion with

respe
t to some small quantity is possible) there is no way to 
ir
umvent these

approximation problems. One large advantage of the method of the e�e
tive

average a
tion we present here is that the property lim

k!�

�

k

= S enhan
es our

intuitive grip on possible trun
ation s
hemes.

In general, the e�e
tive average a
tion 
an be written in the form

�

k

= �

B

k

+ �

F

k

+ �

BF

k

; (7.1)

where �

B

k


ontains only bosoni
 �elds, �

F

k

only fermioni
 �elds and �

BF

k


oupling

terms between bosoni
 and fermioni
 �elds. Sin
e we are mostly interested in the

properties of the e�e
tive potential, whi
h is part of �

B

k

, we propose the following

simple ansatz for �

F

k

and �

BF

k

:

�

F

k

= S

F

kin

; �

BF

k

= S

Y

: (7.2)

The reasoning behind this approximation is that we are mainly interested in the


ow of the e�e
tive potential. Terms with more than two fermioni
 �elds do not


ontribute to the 
ow of the e�e
tive potential. However, they do 
ontribute to

the 
ow of the Yukawa 
ouplings | that we keep 
onstant in our trun
ation (see

below). For 
onstant 
ouplings we 
an therefore ignore all terms with more than

two fermioni
 �elds. This leaves one fermioni
 propagator term whi
h is part of

�

F

k

and 
oupling terms of two fermioni
 �elds to an arbitrary number of bosoni


�elds in �

BF

k

. The propagator term 
an be written as the 
lassi
al propagator

term times a momentum dependent wave fun
tion renormalization 
onstant. To

arrive at (7.2), we additionally make the following approximations:

� The fermioni
 wave fun
tion renormalization 
onstant Z

F

k

is kept 
onstant

at its initial value Z

F

k

= 1.

� All terms with two fermions and more than one boson are negle
ted.

� The Yukawa 
ouplings are kept 
onstant. This approximation would not be

too good for most simpler theories, where the initial values of the 
ouplings

are known. It is even worse in our 
ase, sin
e the many di�erent 
hoi
es of

the initial values of the 
ouplings (although equivalent if everything is exa
t)

lead to di�erent results if approximations are made, as we already saw in

the mean �eld 
ase. However, to get a �rst impression of the properties of
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the e�e
tive potential, we will nevertheless take the Yukawa 
ouplings as

parameters and dis
uss the results as fun
tions of these parameters. The

in
lusion of the 
ow of the 
ouplings into the renormalization group analysis

is subje
t to 
urrent work [17℄.

Again re
all that with all these approximations the e�e
tive average a
tion terms

involving fermioni
 �elds ne
essarily 
oin
ide with the 
orresponding terms of the


lassi
al a
tion due to the property lim

k!�

�

k

= S.

We now turn our attention to �

B

k

. �

B

k

is a fun
tional of the bosoni
 �elds

b

i

2 fR

a

; ~s

a

; �

a

; �

�

a

g with a 2 f1; 2; 3; 4g. A systemati
 general expansion of �

B

k

in powers of the �elds reads

�

B

k

[b

i

℄ =

X

K

1

X

i

1




i

1

;k

(K

1

)b

i

1

(K

1

)

+

X

K

1

K

2

X

i

1

i

2




i

1

i

2

;k

(K

1

; K

2

)b

i

1

(K

1

)b

i

2

(K

2

)

+

X

K

1

K

2

K

3

X

i

1

i

2

i

3




i

1

i

2

i

3

;k

(K

1

; K

2

; K

3

)b

i

1

(K

1

)b

i

2

(K

2

)b

i

3

(K

3

)

+ � � � (7.3)

with k-dependent 
oeÆ
ients (k is the 
ow parameter from 
hapter 5). Ea
h


oeÆ
ient 
ontains a momentum 
onserving Æ-fun
tion. From (6.63) we know

that

b

i

(K) = �b

i

(k + 4�e

1=2

) (7.4)

whi
h implies




i

1

:::i

n

;k

(K

1

; : : : ; K

j

+ 4�e

1=2

; : : : ; K

n

) = (�1)

n




i

1

:::i

n

;k

(K

1

; : : : ; K

n

) (7.5)

to preserve the periodi
ity of the integrands. This tells us that we 
an expand ea
h


oeÆ
ient 


i

1

:::i

n

;k

(K

1

; : : : ; K

n

) with respe
t to the fun
tions (K

j

= ((!

B

m

)

j

;k

j

),

k

j

= ((k

j

)

1

; (k

j

)

2

))

f1; 
os(m

j

(k

j

)

1

=2)�1; 
os(m

j

(k

j

)

2

=2)�1; sin(m

j

(k

j

)

1

=2); sin(m

j

(k

j

)

2

=2)g (7.6)

for n even and

f
os((2m

j

+1)(k

j

)

1

=4); 
os((2m

j

+1)(k

j

)

2

=4); sin((2m

j

+1)(k

j

)

1

=4); sin((2m

j

+1)(k

j

)

2

=4)g

(7.7)

for n odd and withm 2 N (we have 
hosen to expand with respe
t to 
os(mk

1=2

=2)�

1 instead of 
os(mk

1=2

=2) to a
hieve that all momentum dependent terms for even

n vanish for k = 0). The 
oeÆ
ients ~


m;k

of this new expansion with respe
t to

trigonometri
 fun
tions only depend on the Matsubara frequen
y and the 
ow

parameter k.
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In our trun
ation of �

B

k

we in
lude a momentum dependent propagator term

(more on this later) and a se
ond term 
ontaining all other bosoni
 terms

�

B

k

= �

B

kin;k

+ U

k

: (7.8)

We simplify the 
oeÆ
ients ~


m;k

by negle
ting their Matsubara mode dependen
e.

Furthermore, for homogeneous �elds we have K

i

= 0 8i. Then (6.62) tells us that

all terms of the e�e
tive a
tion with an odd number of �elds have to vanish

to preserve \time reversal"-invarian
e

1

. For the remaining terms with an even

number of �elds, only the terms with momentum independent 
oeÆ
ients survive,

so that we trun
ate U

k

in the form

U

k

[b

i

℄ = U

0

V +

X

K

1

K

2

X

i

1

i

2




i

1

i

2

;k

b

i

1

(K

1

)b

i

2

(K

2

)Æ(: : :)

+

X

K

1

K

2

K

3

K

4

X

i

1

i

2

i

3

i

4




i

1

i

2

i

3

i

4

;k

b

i

1

(K

1

)b

i

2

(K

2

)b

i

3

(K

3

)b

i

4

(K

4

)Æ(: : :)

+ � � � (7.9)

with homogeneous �elds b

i

(K) = b

i

Æ(K), 
oeÆ
ients that only depend on the


ow parameter k and appropriate momentum 
onserving Æ-fun
tions Æ(: : :).

Due to U(1)- and SU(2)-symmetry the e�e
tive potential U

k


an only depend

on the invariants

�

ab

(K

1

; K

2

) =

1

2

R

a

(K

1

)R

b

(K

2

)

�

ab

(K

1

; K

2

) =

1

2

~s

a

(K

1

)~s

b

(K

2

)

�

ai;bj

(K

1

; K

2

) = �

�

a

i

(K

1

)�

b

j

(K

2

): (7.10)

By use of (6.68) we 
an write the e�e
tive potential as a fun
tion of �

11

, �

22

and

�

11;11

, �

11;12

, �

12;11

, �

12;12

only. To simplify the notation, we write �

ab

:= �

1a;1b

.

Re
all that all other bosons are in
luded as higher momentum modes of the

bosons expli
itly present in our trun
ation as dis
ussed after (6.68). This means

that although we will only 
onsider homogeneous modes of the invariants �

11

,

�

22

and �

11

, �

12

, �

21

, �

22

as external lines, the ex
hange of all virtual bosons

is in
luded as we also integrate over the higher virtual boson momentum modes

representing the bosons not expli
itly present in the boson set we sele
ted.

1

Note the tri
ky part of this argument: The symmetry transformation (6.62) lived in the

spa
e of bosoni
 �elds, whi
h are all independent. If we swit
h to the e�e
tive a
tion, the

(linear) symmetry transformation 
arries over to the expe
tation values of the �elds, ex
ept

for the 
harge density R

1

(0) / �. The 
harge density expe
tation value � is regarded as a

parameter 
ontrolled by the sour
e � that is no longer expli
itly present in the e�e
tive a
tion.

The transformation � ! �� does not follow from the transformation behavior of �̂, sin
e it is

no longer a free �eld, but from �! �� in (3.23) and (4.24).
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The momentum dependent term in �

B

kin;k

is trun
ated to a propagator term

only:

�

B

kin;k

=

X

KK

0

h

1

2

^

R

1

(K)P

R

11;k

(K;K

0

)

^

R

1

(K

0

) +

1

2

^

~s

2

(K)P

~s

22;k

(K;K

0

)

^

~s

2

(K

0

)

+ �̂

y

1

(K)P

�

11;k

(K;K

0

)�̂

1

(K

0

)

i

: (7.11)

For the real bosons we set

P

R

11;k

(K;K

0

) = (2�)

2

Z

R

k

(P

R

1

(K)� P

R

1

(K = 0) + (m�T )

2

)Æ(K +K

0

)

P

~s

22;k

(K;K

0

) = (2�)

2

Z

~s

k

(P

~s

2

(K)� P

~s

2

(K = 0) + (m�T )

2

)Æ(K +K

0

): (7.12)

This has to be 
ompared to the 
lassi
al a
tion propagators

P

R

11

(K;K

0

) = (2�)

2

P

R

1

(K)Æ(K +K

0

)

P

~s

22

(K;K

0

) = (2�)

2

P

~s

2

(K)Æ(K +K

0

): (7.13)

First note that the terms P

R

1

(K = 0) and P

~s

2

(K = 0) are momentum independent

and therefore 
an be 
ompensated by adjusting the 
oeÆ
ients in the e�e
tive

potential U

k

, so that we are free to add them. If we note that the propagators

P

R

1

(K) and P

~s

2

(K) (for the Hubbard model values of the Yukawa 
ouplings)

be
ome minimal in K = 0, we see that (for m = 0) the advantage of this addition

is to make the propagator vanish at zero momentum and positive otherwise. This

allows to de�ne simple trun
ation s
hemes for the bosoni
 propagators.

As we will see below, we use a temperature like 
uto� in the fermioni
 se
tor.

This means that during the beginning of the 
ow the system behaves as in the high

temperature limit. The interesting physi
s emerges gradually as the temperature


uto� is lowered.

The last term we added involving the Matsubara frequen
y m is needed to

make loop Matsubara sums �nite (sin
e we will keep the Yukawa 
ouplings 
on-

stant, the 
omplete m-dependen
e of loops will be provided by the propagators).

By adding a term � m

2

, we mimi
 the low temperature behavior of the one

loop result as dis
ussed in se
tion 6.1.4. We �t our trun
ation to the original

a
tion term by 
omparing the m = 0-Matsubara mode (in the high temperature

limit, this is the only one 
ontributing in the one loop 
al
ulation). We therefore

set Z

R

k

= 1 at the beginning of the 
ow, where k is large. Note that we have

trun
ated Z

R

k

, Z

~s

k

to be momentum independent.

In prin
iple there is nothing that prevents us from repla
ing (m�T )

2

by




k

(m�T )

2

, where 


k

is a k-dependent quantity. We have 
he
ked numeri
ally

that su
h a fa
tor only has a small e�e
t on our results, so that we set it equal

to unity.

For the 
omplex bosons, there is no 
lassi
al propagator that 
an be used as

the main ingredient of the trun
ation, sin
e for the Hubbard model values of the
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ouplings the 
lassi
al propagator of the 
omplex bosons is momentum indepen-

dent. We therefore propose a simple ansatz taking into a

ount the �rst Fourier

term in a general expansion of the e�e
tive a
tion with respe
t to momentum

P

�

11;k

(K;K

0

) = (2�)

2

Z

�

k

�

1

2

�

3

(2� 
os(k

1

=2)� 
os(k

2

=2)) + (m�T )

2

�

Æ(K �K

0

):

(7.14)

Sin
e we know that the �rst momentum dependent 
ontributions to the propa-

gators of the 
omplex bosons emerge at one loop level in O(1=T

4

) (
f. (6.29)),

and our regularization s
heme in the fermioni
 se
tor (as dis
ussed below) will

repla
e m�T by m�T

k

= m�(T + k

2

), the momentum dependen
e develops as

O(1=k

8

). We therefore approximately set Z

�

k=�

= 1=�

8

as the initial value of the

wave fun
tion renormalization 
onstant.

In 
on
lusion, our trun
ation for the e�e
tive average a
tion reads

�

k

= �

F

k
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(7.15)

with
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� 2t(
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(7.16)

and the verti
es given by (6.44) and (6.45).
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7.2 The 
ow of the e�e
tive potential

7.2.1 The se
ond derivative of �

k

We will now start to derive the 
ow equations for the e�e
tive potential. In

general, the 
ow equations for any interesting quantity 
an be derived from our

master equation (5.24) for some parti
ular trun
ation (in our 
ase (7.15)). As we

see, we need the se
ond derivative of �

k

with respe
t to the �elds. Expli
itly, we

need
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(7.17)

where �

(2)

k

(K;K

0

) denotes the matrix of se
ond derivatives o

urring in (5.24)

(we use this notation to avoid 
onfusion between the 
omplex bosoni
 �elds � we

use here and the generalized �elds � in (5.24)).

In our trun
ation, the kineti
 terms yield
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where we have used that the propagator matri
es are symmetri
.

The 
ontributions of the 
oupling terms are

Æ

2

�

BF

k

Æ 

y

a

(K)Æ�(K

0

)

= �

X

Q

X

b

Æ(K �K

0

+Q)

~

V

�

ab;1

(K;Q) 

�

b

(Q)

Æ

2

�

BF

k

Æ�

T

(K)Æ 

�

a

(K

0

)

= �

X

Q

X

b

Æ(K �K

0

�Q)

~

V

�

ab;1

(K

0

; Q) 

y

b

(Q)

Æ

2

�

BF

k

Æ 

T

a

(K)Æ�

�

(K

0

)

= �

X

Q

X

b

Æ(K �K

0

+Q)

~

V

�

�

ab;1

(K;Q) 

b

(Q)



98 Chapter 7. Renormalization group analysis

�

Æ

2

�

BF

k

Æ�

y

(K)Æ 

a

(K

0

)

=

X

Q

X

b

Æ(K �K

0

�Q)

~

V

�

�

ab;1

(K

0

; Q) 

T

b

(Q)

Æ

2

�

BF

k

Æ 

y

a

(K)Æw




(K

0

)

= �

X

Q

X

b

Æ(K �K

0

�Q)V

w




ab

(K

0

) 

b

(Q)

Æ

2

�

BF

k

Æw

T




(K)Æ 

�

a

(K

0

)

= �

X

Q

X

b

Æ(K �K

0

+Q)V

w




ab

(K) 

T

b

(Q)

Æ

2

�

BF

k

Æ 

T

a

(K)Æw




(K

0

)

=

X

Q

X

b

Æ(K +K

0

�Q) 

�

b

(Q)V

w




ba

(K

0

)

�

Æ

2

�

BF

k

Æw

T




(K)Æ 

a

(K

0

)

= �

X

Q

X

b

Æ(K +K

0

�Q) 

�

b

(Q)V

w




ba

(K)

�

Æ

2

�

BF

k

Æ 

y

a

(K)Æ 

b

(K

0

)

= �

X

Q

X




Æ(K �K

0

�Q)V

w




ab

(Q)w




(Q)

�

Æ

2

�

BF

k

Æ 

T

a

(K)Æ 

b

(K

0

)

= �

X

Q

Æ(K +K

0

�Q)�

y

1

(Q)

~

V

�

ab;1

(K;K

0

)

Æ

2

�

BF

k

Æ 

y

a

(K)Æ 

�

b

(K

0

)

=

X

Q

Æ(K +K

0

�Q)�

T

1

(Q)

~

V

�

ab;1

(K;K

0

)

Æ

2

�

BF

k

Æ 

T

a

(K)Æ 

�

b

(K

0

)

= �

X

Q

X




Æ(K �K

0

+Q)V

w




ba

(Q)w




(Q) (7.19)

with

~
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0
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0

)� V

T
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; K) (7.20)

and w
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g.

The e�e
tive potential U

k

depends only on the invariants �

11

, �

22

, �

ij

. It

is therefore 
onvenient to express the derivatives with respe
t to the �elds by

derivatives with respe
t to the invariants. Let
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Then we 
an write (generalized matrix notation!)

U

(2)

k

= diag(D

�

; D

T

�

; D

�

; D

�

; 0; 0)U

k

(7.22)
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7.2.2 The 
ow of the e�e
tive potential

In this se
tion we will derive the 
ow of the e�e
tive potential from (5.24) or

equivalently, the 
ow of the 
oeÆ
ients 


i

1

:::i

n

in (7.9). In general, there is an

in�nite number of 
oeÆ
ients. To be able to 
al
ulate anything, there are two

possible ways to render the number of 
ow equations �nite:

� Trun
ate the e�e
tive potential at some �nite power of the �elds, e.g. at

quarti
 order in the �elds. This yields a �nite set of 
ow equations for the

remaining 
oeÆ
ients.

� Instead of 
onsidering the 
ow of the 
oeÆ
ients, 
onsider the 
ow of the

full potential as a fun
tion of dis
retized homogeneous �elds. For example,

if U [�℄ is an e�e
tive potential depending on the (
ontinuous valued) �eld

�, one 
ould analyze the 
ow of the potential at given points U [� = �

0

℄,

U [� = �

1

℄, U [� = �

2

℄ et
. A �nite number of points yields a �nite number

of 
ow equations.

Both methods have their advantages and drawba
ks. The �rst method is easier to

apply, more stable and faster in the numeri
al treatment, but has the drawba
k

that | sin
e it is nothing else than a polynomial series expansion around some

given point to a given order | the possible solutions for the e�e
tive potential are

reliable only 
lose to the point around whi
h we expand. Usually, one expands

around the minimum of the e�e
tive potential. Physi
al properties that 
an be

inferred by looking at the 
ow of the potential 
lose to this minimum 
an be well

understood by this approa
h. However, phase transitions of �rst order typi
ally


an not be derived from properties of the 
ow of the potential near the minimum

(
f. �g. (4.1)).

The se
ond method does not have this kind of problem and any possible

shape of the potential 
an be des
ribed by it | not only those 
orresponding to

some �nite power expansion in the �elds. But on the other hand the numeri
al

implementation of this se
ond method is far from trivial. The reason for this is

that we need the se
ond derivatives of the e�e
tive potential on the right hand

side of the 
ow equation. If we dis
retize the region the e�e
tive potential is

de�ned on, these derivatives also have to be dis
retized. As is already known

from more simple systems, it is a formidable task to a
hieve this dis
retization

in a stable way. We will therefore use the �rst method, keeping in mind that we
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possibly fa
e diÆ
ulties with �rst order phase transitions and postpone the more

general treatment by the se
ond method to future work. The implementation

of the �rst method requires an expli
it trun
ation of the e�e
tive potential. We

will investigate di�erent trun
ation s
hemes for the e�e
tive potential later on.

In this se
tion, we will derive the 
ow equations as far as possible without �xing

some spe
i�
 trun
ation.

The idea to extra
t the 
ow of the e�e
tive a
tion from (5.24) is to note that

lim

 ; 

�

!0

lim

b

i

(Q)!b

i

Æ(Q)

�

k

= U

k

(7.23)

so that

d

dk

U

k

=

1

2

lim

 ; 

�

!0

lim

b

i

(Q)!b

i

Æ(Q)

Tr

�

(�

k

R

k

)M

�

�

(2)

k

+R

k

�

�1

�

: (7.24)

From the results of the last se
tion, we have

lim

 ; 

�

!0

�

(2)

k

=

�

B 0

0 F

�

(7.25)

with

B = diag(P

�
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�
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�
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�
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�

U

k

D

�

(R

1

�

T

)D

T

�

U

k

D

�
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�
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�
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�

(~s

2

�

y

)D

�
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�
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�
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�
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k
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�
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2
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T

2
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�

U

k

1

C

C

A
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0
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+

0

B

B

B

B

�

�

P

Q
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�
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1
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C
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: (7.26)

We see that lim

 ; 

�

!0

�

(2)

k

is blo
k diagonal in the bosoni
 and fermioni
 se
tor.

With

~

R

B

k

= diag(R

�

k

; (R

�

k

)

T

; R

w




k

);

~

R

F

k

= diag(R

F

k

; (R

F

k

)

T

) (7.27)

the 
ow equation now reads

d

dk

U

k

=

1

2

lim

b

i

(Q)!b

i

Æ(Q)

�
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�
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~
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�
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)

�
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~

R
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�
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��
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(7.28)
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We separate the 
ow equation by U

k

= U

B

k

+ U

F

k

, so that

d

dk

U

B

k

=

1

2

lim

b

i

(Q)!b

i

Æ(Q)

Tr
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d
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i
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F
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)
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F
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�

�1

�

: (7.29)

The right hand side of the 
ow equation for U

F

k

does not depend on U

k

, so that

we 
an further 
al
ulate it without spe
ifying a trun
ation for U

k

.

It is very instru
tive to rewrite the 
ow equation for U

F

k

as

d

dk

U

F

k

= �

1

2

lim

b

i

(Q)!b

i

Æ(Q)

~

�

k

ln det(F +

~

R

F

k

); (7.30)

where

~

�

k

=

�

~

R

F

k

�k

�

�

~

R

F

k

: (7.31)

If the right hand side depended on k only via

~

R

F

k

, we 
ould repla
e

~

�

k

by

d

dk

and

immediately integrate the equation to get U

k

as a fun
tion of k. For k ! 0, we

know that

~

R

F

k

vanishes. In this 
ase we have

U

F

k=0

= U

F

k!�

�

1

2

lim

b

i

(Q)!b

i

Æ(Q)

ln detF (7.32)

whi
h is nothing else than the one loop 
orre
ted potential we 
al
ulated in our

mean �eld analysis (
f. (4.10)) | besides the fa
t that we used a di�erent set of

bosons there.

The 
al
ulation mainly goes through as in the mean �eld 
ase. We set

R

F

k

(K) = i(2n+ 1)�k

2

(7.33)

and �nally arrive at

d
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with 


i

= 
os(q

i

=2), T

k

= T + k

2

and

�

�(�

1

) = h
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e
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�
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For �

ij

= 0, this reprodu
es the mean �eld result (4.18) with Æ = 0, if we set

R

1

= �=h

�

, ~s

2

= ~a=h

a

and assume that the right hand side depends on k only via

T

k

. This was to be expe
ted from 
omparing the original 
oupling term in (3.48)

with (6.58) in the limit of homogeneous �elds. The term involving the 
omplex

bosons looks somewhat di�erent, whi
h is due to our rede�nition of the 
omplex

�elds in (6.14). The original �eld e 
orresponds to �

1

+ �

2

, whereas the d-wave


orresponds to �

1

� �

2

. The 
orresponding invariants are

e : (�

�
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+ �

�

2

)(�
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+ �
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� �

�

2

)(�

1

� �

2

) = �

11

��

12

��

21

+�

22

: (7.36)

If we assume that the original boson ê always has a vanishing expe
tation value,

we 
an set �

12

+ �

21

= ��

11

� �

22

. If we further assume that rotational

invarian
e is not broken in the sense that �

11

6= �

22

, we 
an set

� = 2�

11

= 2�

22

: (7.37)

Sin
e we keep all 
ouplings at their Hubbard values, we additionally have h

2

e

x

=

h

2

e

y

= 2h

2

d

, so that

�

�(�

1

) = 2h

4

d

�(


1

� �

1




2

): (7.38)

With these assumptions, we therefore are in 
omplete agreement with the mean

�eld result, if we additionally set Æ = 2h

2

d

�.

7.3 The 
ow of the bosoni
 wave fun
tion renor-

malization 
onstant

In the following se
tion we will also need the 
ow of the wave fun
tion renor-

malization 
onstant Z

~s

k

. We will derive the 
orresponding 
ow equation in this

se
tion and show that it 
an be analyti
ally solved in our trun
ation.

First note that Z

~s

k


an be extra
ted from our trun
ation of the e�e
tive a
tion

by

Z
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k

=
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�
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(7.39)

in the symmetri
 phase and

Z
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=
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(7.40)

in the broken phase, where ~s

0

k

denotes the minimum of the e�e
tive potential,K =

(!

B

m

;k) and by � we denote some small momentum j�j � 1. Note that the method

of extra
ting Z

~s

k

is not uniquely determined by our trun
ation. Parti
ularly, the
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limits ~s ! 0 and ~s ! ~s

0

k

are introdu
ed only to yield more 
onsistent equations

when deriving the 
ow of Z

~s

k

from (5.24). By substituting the momentum k by �,

expansions of the trigonometri
 fun
tions with respe
t to � be
ome possible. This

is very 
onvenient, sin
e the quadrati
 expansion of lim

k!�

(


1

+


2

) is rotationally

invariant and a fun
tion of j�j only.

From (5.24) we immediately have

�

k
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~s

k

= O

symm/brok
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�

1

2

Tr((�

k

R

k

)M(�
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k
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�1

)

�

: (7.41)

7.3.1 The symmetri
 phase

As we already dis
ussed, the 
ow equation for the e�e
tive average a
tion has

the form of a one loop equation. The one loop ~s

2

-propagator term 
orre
tions

have the diagrammati
al form

�

KK

Q

K +Q

~s

2

~s

2

for 
u
tuations in the fermioni
 se
tor and

�

KK

~s

2

~s

2

for 
u
tuations in the bosoni
 se
tor. A
ting with O

symm

Z

on these expressions,

the external legs are amputated. Sin
e we have to di�erentiate with respe
t to j�j

(whi
h is nothing else than a small external momentum) and the loop momentum

does not depend on K in the se
ond diagram, we 
on
lude that in the symmetri
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phase we do not have any 
ontribution to the 
ow of Z

~s

k

from the bosoni
 se
tor.

The 
ow equation therefore reads

�

k

Z

~s

k

= �O

symm
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�
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2

Tr((�

k
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F
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)(F +R
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�1
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�

; (7.42)

where we have already performed the limit  ;  

�

! 0. Inserting F on the right

hand side, performing the tra
e and all limits and derivatives, a lengthy but

straightforward 
al
ulation yields
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=2): (7.44)

Sin
e in our trun
ation the right hand side of the 
ow equation depends on k via

T

k

only, we have

~

�

k

= �

k

, so that we 
an dire
tly integrate the 
ow equation to

get

Z

~s

k

= 1 +

h

2

a

�
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From (7.43) and (7.45), we immediately �nd the anomalous dimension

�

k

= �k�

k

lnZ

~s

k

= �

k�

k

Z

~s

k

Z

~s

k

: (7.46)

7.3.2 The broken phase

In the broken phase, an additional diagram 
ontributes to the one loop 
orre
tion

of the bosoni
 propagator term.

�
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~s

2

~s
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2
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2

~s
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2
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Here we have the possibility of a 
oupling to a non vanishing external �eld ~s

0

2

, so

that we have a 
ontribution from the bosoni
 se
tor in 
ontrast to the symmetri



ase. The broken phase appears for small values of k. Sin
e the 
ow in the

fermioni
 se
tor goes as k�

k

Z

~s

k

/ k

2

, it is a good approximation to negle
t the


ontribution from the fermioni
 se
tor in the broken phase. Furthermore, as we

will see when dis
ussing the 
ow equations for the e�e
tive potential below, only

the Matsubara mode m = 0 and momenta q 
lose to zero 
ontribute to the 
ow

at small k. This means that | with regard to the 
ow of Z

~s

k

| we e�e
tively

fa
e a two dimensional bosoni
 theory, whi
h 
an be mapped to a simple O(3)-

model in two dimensions. But for the O(3)-model the 
ow of the wave fun
tion

renormalization 
onstant has already been 
al
ulated [20℄ to be
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=

16v

2

2

�
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where v

2

= 1=(8�) and m

2
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(2�
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�
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22;k

; 0) is a so 
alled threshold fun
tion whose

exa
t form depends on the 
hoi
e of the 
uto� fun
tion R

~s

k

(again, for more details

we refer to [20℄). If we 
hoose R

~s

k

(q) = Z

~s

k

(k

2

� q

2

)�(k

2

� q

2

), the threshold

fun
tion simply reads [19℄

m

2

2;2

(2�

�

k

�

0

22;k

; 0) =

1

(1 + 2�
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: (7.48)

With some minor adjustments re
e
ting di�erent 
onstant fa
tors in our formu-

lation as 
ompared to the treatment of the O(3)-model in [20℄, the anomalous

dimension �nally reads

�
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=

4T
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Z

~s

k


an then be derived from �

k

Z

~s

k

= �Z

~s

k

�

k

by numeri
al integration.

7.4 Results for di�erent trun
ations of the ef-

fe
tive potential

A lot of interesting questions 
an be addressed by the formalism we developed so

far. We will restri
t our attention to two aspe
ts:

� The Mermin-Wagner theorem [21℄ tells us that in two dimensions at non

vanishing temperature no long range order is present. However, in the mean

�eld 
ase we observed phase transitions for non vanishing temperature.

Furthermore, in the e�e
tively two dimensional 
uprates antiferromagneti


and super
ondu
ting behavior is a
tually being observed. In a very simple

setting (half �lling, only antiferromagneti
 degrees of freedom taken into

a

ount) we will see that this puzzle is solved by the renormalization group

analysis.
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� Mean �eld 
al
ulations tend to overemphasize symmetry breaking. It is

interesting to study the in
uen
e of bosoni
 
u
tuations on the phase di-

agram to better understand the basi
 me
hanisms of the interplay of the

di�erent degrees of freedom.

7.4.1 Antiferromagneti
 behavior at half �lling

At half �lling, we have � = �

11

= 0. Furthermore, we set � = 0, sin
e we are

only interested in the antiferromagneti
 behavior.

Fermioni
 
ontribution to the 
ow

In this trun
ation, the 
ow equation for U

F

k

reads
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We have repla
ed h

a

by

^

h

a

to indi
ate that this 
oupling is not renormalized.

Trun
ation of the potential

We work with a simple quarti
 trun
ation of the potential. We set
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in the symmetri
 phase and
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in the broken phase. For homogeneous �elds, these equations be
ome
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�

k

�

2

22

�

(7.54)
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and

U

k

=

1

2

V

^

�

�

k

(�

22

� �̂

0

22;k

)

2

(7.55)

m̂

�

k

plays the role of a k-dependent mass, �̂

0

22;k

is the minimum of the potential

if the symmetry is spontaneously broken and

^

�

�

k

is the quarti
 bosoni
 
oupling.

Bosoni
 
ontribution to the 
ow

For our trun
ation, the matrix B in (7.26) be
omes

B+

~

R

B

k

= diag(P

�

11;k

+R

�

k

; (P

�

11;k

+R

�

k

)

T

; P

R

11;k

+R

R

k

; P

~s

22;k

+R

~s

k

+(D

�

+D

�

(~s

2

~s

T

2

)D

�

)U

k

)

(7.56)

If we negle
t all terms in

d

dk

U

B

k

=

1

2

~

�

k

lim

b

i

(Q)!b

i

Æ(Q)

Tr ln

�

B +

~

R

B

k

�

(7.57)

that do not depend on �elds, we get

d

dk

U

B

k

=

1

2

~

�

k

lim

b

i

(Q)!b

i

Æ(Q)

Tr ln

�

P

~s

22;k

+R

~s

k

+ (D

�

+D

�

(~s

2

~s

T

2

)D

�

)U

k

�

: (7.58)

If we now insert our trun
ation for U

k

and perform the tra
e, we arrive at

d

dk

U

B

k

=

1

2

V

~

�

k

X

i

T

X

m

Z

2�

�2�

d

2

q

(2�)

2

ln(P

~s

22;k

(Q) +R

~s

k

(Q) + 


i

k

); (7.59)

where Q = (!

B

m

; q) and

~


k

=

(

((m̂

�

k

)

2

+ 3

^

�

�

k

�

22

; (m̂

�

k

)

2

+

^

�

�

k

�

22

; (m̂

�

k

)

2

+

^

�

�

k

�

22

); for the symmetri
 phase

^

�

�

k

(3�

22

� �̂

0

22;k

; �

22

� �̂

0

22;k

; �

22

� �̂

0

22;k

); for the broken phase.

(7.60)

Choi
e of the 
uto� fun
tion

We de�ne the 
uto� fun
tion R

~s

k

(Q) by

R

~s

k

(Q) = (2�)

2

�

2

Z

~s

k

�

k

2

�

1

2

�

3

(2� 


1

� 


2

)�m

2

T

2

�

�

�

k

2

�

1

2

�

3

(2� 


1

� 


2

)�m

2

T

2

�

(7.61)

where �(x) is the usual step fun
tion

2

. This 
uto� fun
tion respe
ts (5.15) and is

therefore a viable 
hoi
e. The step fun
tion 
uts o� large Matsubara frequen
ies

2

Expli
itly, it is given by

�(x) =

�

0 for x < 0,

1 for x � 0.

(7.62)
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and momenta. By lowering k, we average over larger and larger regions in position

spa
e. For this 
uto�, we therefore 
an relate properties of the e�e
tive a
tion at

some given value of k with long range order properties of the theory in position

spa
e at s
ales of order 1=k. This will be
ome important when interpreting the

results of the renormalization group analysis with respe
t to the Mermin-Wagner

theorem puzzle. Note however that from a purely numeri
al standpoint our


hoi
e of the 
uto� fun
tion is not optimal, sin
e the 
uto� for the Matsubara

sum is momentum dependent, so that the Matsubara sum 
annot be 
arried out

analyti
ally. In the next se
tion, where we 
onsider a di�erent trun
ation and

are not dependent on the position spa
e interpretation of the 
ow, we will use a

di�erent 
uto� for whi
h the Matsubara sum 
an be evaluated analyti
ally.

Inserting the 
uto� fun
tion into (7.59), we �nally arrive at

d

dk

U

B

k

=

2TV

k

X

i

M

X

m=�M

Z

�

d

2

q

(2�)

2

��

k

(k

2

�

1

2

�

3

(2� 
os(q

1

=2)� 
os(q

2

=2))� (mT )

2

) + 2k

2

k

2

+




i

k

(2�)

2

�

2

Z

~s

k

; (7.63)

where M = maxfm 2 Njm < k=Tg and the momentum integration

R

�

runs over

ffq

1

; q

2

gjq

i

2 [0; 2�℄; k

2

� (�

3

=2)(2 � 


1

� 


2

) � m

2

T

2

> 0g. �

k

= �k�

k

lnZ

~s

k

is

the anomalous dimension.

Extra
tion of the 
oeÆ
ients

The 
ow equations for the 
oeÆ
ients follow from the 
ow equations of the ef-

fe
tive potential by

�

k

(m̂

�

k

)

2

=

1

V

lim

�

22

!0

d

d�

22

�

d

dk

U

k

�

�

k

^

�

�

k

=

1

V

lim

�

22

!0

d

2

d�

2

22

�

d

dk

U

k

�

(7.64)

for the symmetri
 phase and

�

k

�̂

0

22;k

= �

1

V

^

�

�

k

lim

�

22

!�̂

0

22;k

d

d�

22

�

d

dk

U

k

�

�

k

^

�

�

k

=

1

V

lim

�

22

!�̂

0

22;k

d

2

d�

2

22

�

d

dk

U

k

�

(7.65)

for the broken phase. Note that if we set �

22

= 0 in the symmetri
 phase

expression of ~


k

, we see that ~


k

! ((m̂

�

k

)

2

; (m̂

�

k

)

2

; (m̂

�

k

)

2

) des
ribes three modes

with equal mass. In 
ontrast to this, if we set �

22

= �̂

0

22;k

in the broken phase
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expression of ~


k

, we �nd ~


k

= (2

^

�

�

k

�̂

0

22;k

; 0; 0), that is, one massive mode and

two massless modes. Of 
ourse, the massless modes are nothing else than the

Goldstone modes whi
h have to appear when breaking SU(2) down to U(1).

Introdu
tion of res
aled, renormalized quantities

It is very 
onvenient to introdu
e res
aled, renormalized quantities de�ned by

(m

�

k

)

2

=

(m̂

�

k

)

2

Z

~s

k

k

2

; �

0

22;k

= Z

~s

k

�̂

0

22;k

; �

�

k

=

^

�

�

k

(Z

~s

k

)

2

k

2

; h

2

a

=

^

h

2

a

p

Z

~s

k

: (7.66)

The advantage of rewriting the 
ow equations in terms of these variables is that

they (at least for small k) no longer depend on Z

~s

k

and k expli
itly.

The 
ow equations

Using (7.64) and (7.65), we 
an derive the 
ow equations for the res
aled and

renormalized quantities (7.66) (ex
ept for the 
oupling h

a

that as we said will be

kept 
onstant) from (7.50) and (7.63). They read

�

t

(m

�

k

)

2

=

2Th

4

a
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3
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�
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(0)

+
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k

)

�

t

�

�

k

=

Th

8

a

2T

5

k

X

�

1

Z

�

��

d

2

q

(2�)

2

�

f

�

1
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�
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) (7.67)

in the symmetri
 phase and

�

t

�

0

22;k

= �

2Th

4

a

T

3

k

�

�

k

X

�

1

Z

�

��

d

2
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(�
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+

1
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(�
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!

+
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q

(2�)

2

1
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��
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�
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�
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(2�)

2

�

2

�

2

3

7

5



110 Chapter 7. Renormalization group analysis

� �

0
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1
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2
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(2�)
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(1� �
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) (7.68)

in the broken phase with �

t

= k�

k

(that is, t = ln(k=�)), T

k

= T + k

2

, M =

maxfm 2 Njm < k=Tg, 


i

= 
os(q

i

=2), �

k

= �k�

k

lnZ

~s

k

,

f

�

1

(�

22

) = 1=(2T

k

)

p

2h

4

a

�

22

+ 4t
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2

)

2

; (7.69)

and the integration runs over

ffq

1

; q

2

gjq

i

2 [0; 2�℄; k

2

� (�

3

=2)(2� 


1

� 


2

)�m

2

T

2

> 0g: (7.70)

The initial 
onditions are (m

�

�

)

2

= ((2�)

2

h

2

a

)=�

2

, where � is the initial value of

k, �

�

�

= 0 and Z

~s

�

= 1. We did not write down a 
ow equation for Z

~s

k

, sin
e Z

~s

k

and the anomalous dimension �

k


an be 
al
ulated analyti
ally in our trun
ation

as we saw in se
 7.3.

Remarks

For small k, we have T

k

� T and the integral in the bosoni
 se
tor

Z

�

d

2

q

1

k

2

�

2� �

k

�

1�

�

3

2k

2

(2� 


1

� 


2

)� (mT=k)

2

��

(7.71)


an be evaluated analyti
ally. First note that for small k we have M = 0, so that

only the m = 0-mode 
ontributes to this integral. The integration region is then

given by

ffq

1

; q

2

gjq

i

2 [0; 2�℄; k

2

� (�

3

=2)(2� 


1

� 


2

) > 0g: (7.72)

Thus for small k, only momenta 
lose to q = 0 
ontribute, and we 
an expand

the trigonometri
 fun
tions to quadrati
 order around q = 0. It is then simple

to perform the integration and to see that all expli
it k-dependen
es 
an
el. For

small k, the right hand sides of the 
ow equations therefore indeed do not depend

expli
itly on k. This is a very ni
e property, sin
e it allows to extend the numeri
al

investigation to very small values of k without the 
ompli
ations usually arising

when dealing with very small numbers in numeri
al 
al
ulations.
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The possible zeroes in the denominators of the terms from the fermioni
 se
tor

do not pose any problems, sin
e they have the form

lim

x!0

tanh x

x

= 1; lim

x!0

x� sinh x 
osh x

x

3

= �

2

3

: (7.73)

Note that the emergen
e of the two di�erent terms in the bosoni
 se
tor

in the broken phase en
losed by the square bra
kets, one with denominator 1

and one with denominator (1 + 2�

�

k

�

0

22;k

=((2�)

2

�

2

))

n

, is a 
onsequen
e of the

Goldstone bosons appearing in the broken phase. The �rst term stems from the

two Goldstone modes and the se
ond from the massive mode.

It is illuminating to dis
uss qualitatively the 
ow in the broken phase. In the

broken phase k is very small. As 
an be numeri
ally 
on�rmed, the anomalous

dimension �

k

is also small. In the 
ow equation for �

�

k

in the broken phase, we


an therefore approximate (1��

k

) � 1 and 2��

k

(: : :) � 2. The quarti
 
oupling

be
omes large, so that

9

(1+�

�

k

(:::))

3

� 0. If we keep

^

h

a

�xed, then (sin
e Z

~s

k

be
omes

large) h

a

be
omes very small, so that we 
an negle
t the 
ontributions from the

fermioni
 se
tor. In this 
ase, the 
ow equation for �

�

k

is

�

t

�

�

k

= (�

�

k

)

2

(: : :)� 2�

�

k

: (7.74)

This means that for de
reasing k and initially in
reasing �

�

k

, we eventually rea
h

some value of k where the right hand side vanishes, whi
h means that we have

rea
hed a �xed point of �

�

k

. Assuming that this �xed point has been rea
hed, we


an regard �

�

k

as 
onstant with regard to the other 
ow equations. For small k

(so that the momentum integral 
an be performed), small �

k

and large �

�

k

�

0

22;k

(�

�

k

at its �xed point), the 
ow equation for the potential minimum reads

�

t

�

0

22;k

= 2 �

T

�

3

�

5

� �

0

22;k

�

k

(7.75)

We emphasize the fa
tor 2 to indi
ate its origin from the presen
e of 2 Goldstone

modes. Inserting �

k

from (7.49), we �nd

�

t

�

0

22;k

= 2 �

T

�

3

�

5

�

T

�

3

�

5

=

T

�

3

�

5

: (7.76)

The anomalous dimension 
orre
tion exa
tly 
an
els the 
ontribution of one of

the two Goldstone modes! This is a well known feature whi
h has already been

dis
ussed in the 
ontext of O(N)-models in [20℄. The right hand side of the 
ow

equation in this simple approximation is positive. Thus the 
ow tends to lower

�

0

22;k

for de
reasing k. If �

0

22;k

be
omes too small, our approximation �

�

k

�

0

22;k

� 1

breaks down. However, if the minimum goes to zero, we 
an expe
t the system

to return to the symmetri
 phase for small k. We will see that the numeri
al

results 
on�rm this expe
tation.
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Figure 7.1: The 
ow of the mass (m

�

k

)

2

, the quarti
 
oupling �

�

k

, the wave

fun
tion renormalization Z

�

k

and the anomalous dimension �

k

in the symmetri


regime for the antiferromagneti
 boson ~s

2

at half �lling and temperature T =

0:15. The Yukawa 
oupling is h

2

a

= 10. In this plot we keep the unrenormalized

Yukawa 
oupling �xed.

The above dis
ussion was based on �xing the unrenormalized 
oupling

^

h

a

.

Instead, we 
an �x the renormalized 
oupling h

a

. In this 
ase, the fermioni



u
tuations will not be suppressed in the broken phase. As in the mean �eld


ase, the fermioni
 
ontributions will stabilize the symmetry breaking. We expe
t

that in this 
ase we will have true symmetry breaking and do not return to the

symmetri
 phase even for very small k. Again, this expe
tation is 
on�rmed by

our numeri
al results.

Numeri
al results

We solve the 
ow equations (7.67) and (7.68) numeri
ally. We set h

2

a

= 10 and

�

3

= h

2

a

=�

2

at the beginning of the 
ow k = �. We 
hoose � large, so that the

results no longer depend on the a
tual 
hoi
e of � in the limit k ! 0. One �nds

that it a
tually suÆ
es to set � = 10. The Yukawa 
ouplings are kept �xed.

There are two ways to do so: Either we �x the unrenormalized 
oupling

^

h

a

or

the renormalized 
oupling h

a

. We give the results for both 
ases. We �nd that

the 
riti
al temperature T




that des
ribes the onset of symmetry breaking for

T < T




is slightly de
reased in 
omparison to the mean �eld 
ase (T




� 0:2 here).

In �gs. 7.1{7.4 we plot the results for the 
owing variables at �xed temperature

T = 0:15. For this temperature, we �nd spontaneous symmetry breaking if k is

suÆ
iently small. In �gs. 7.1 and 7.2 we plot the 
ow of the mass (m

�

k

)

2

, the

quarti
 
oupling �

�

k

, the wave fun
tion renormalization Z

~s

k

and the anomalous
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Figure 7.2: The 
ow of the mass (m

�

k

)

2

, the quarti
 
oupling �

�

k

, the wave

fun
tion renormalization Z
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k

and the anomalous dimension �

k

in the symmetri


regime for the antiferromagneti
 boson ~s

2

at half �lling and temperature T =

0:15. The Yukawa 
oupling is h

2

a

= 10. In this plot we keep the renormalized

Yukawa 
oupling �xed.
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and the

wave fun
tion renormalization Z
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in the regime of broken symmetry for the
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 boson ~s

2

at half �lling and temperature T = 0:15. The Yukawa


oupling is h

2
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= 10. In this plot we keep the unrenormalized Yukawa 
oupling

�xed.
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magneti
 boson ~s

2

at half �lling and temperature T = 0:15. The Yukawa 
oupling

is h

2

a

= 10. In this plot we keep the renormalized Yukawa 
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dimension �

k

. We see that the mass be
omes large if k is lowered, rea
hing

some maximum value and then drops to zero, indi
ating the phase transition.

Note that we plotted 10

�3

(m

�

k

)

2

, so that the initial value of the mass (whi
h is

(m

�

�

)

2

= (2�)

2

h

2

a

=�

2

) is not distinguishable from zero in the plot. The quarti



oupling �

�

k

also rea
hes a maximum during the 
ow in the symmetri
 phase and

begins to de
ay if k is lowered towards the value where the phase transition o

urs.

Sin
e the bosoni
 
u
tuations (whi
h enter the 
ow equation for the mass as a

term/ �

�

k

) tend to prevent the phase transition, this behavior was to be expe
ted.

The wave fun
tion renormalization be
omes large and remains large at the phase

transition. This behavior will be important to explain the apparent 
ontradi
tion

to the Mermin-Wager theorem. In the symmetri
 phase the qualitative behavior

of all quantities is independent of whether we �x the unrenormalized or the

renormalized 
oupling. This is quite di�erent in the broken phase. In �g. 7.3

and �g. 7.4 we show the 
ow of the minimum �

0

22;k

, the quarti
 
oupling �

�

k

and

the wave fun
tion renormalization Z

~s

k

in the two 
ases. In both 
ases, the quarti



oupling rea
hes some �xed point and Z

~s

k

diverges if k is lowered. If we keep

^

h

a

�xed, the minimum rea
hes some maximum value and returns to zero. If we

keep h

a

�xed, the maximum 
onverges to some �nite value. Both results are in

agreement with our expe
tations based on analyti
al reasoning.

In the 
ase of �xing the unrenormalized 
oupling, no 
ontradi
tion to the

Mermin-Wagner theorem appears, sin
e for k ! 0 the symmetry be
omes again

unbroken. The symmetry breaking in some �nite range of k 
an then be in-

terpreted as an antiferromagneti
 order on large 
lusters that disappears if we

average over even larger s
ales. Note the s
ale at whi
h the broken symmetry

be
omes again unbroken. t = �180 
orresponds to k = �exp(�180), whi
h is

extremely small, so that the symmetry be
omes unbroken only when averaging

over extremely large s
ales. For any probe of realisti
 size to be examined ex-

perimentally, we will �nd antiferromagneti
 properties. In this interpretation,

antiferromagneti
 properties of super
ondu
tors do not 
ontradi
t the Mermin-

Wagner theorem, sin
e they are �nite size e�e
ts that would disappear if the

probes were made large enough.

However, if we �x the unrenormalized 
oupling, the symmetry remains bro-

ken for k ! 0. To see how this 
an be re
on
iled with the Mermin-Wagner

theorem, we have to be 
areful in distinguishing the renormalized and unrenor-

malized minimum of the potential. The Mermin-Wagner theorem states that the

unrenormalized minimum has to vanish for k ! 0. But we have analyzed the


ow of the renormalized minimum, and sin
e the wave fun
tion renormalization

diverges for k ! 0, �̂

0

22;k

= �

0

22;k

=Z

~s

k

a
tually vanishes in 
omplete agreement with

Mermin and Wagner. In fa
t, this is the me
hanism how phase transitions 
an

a
tually appear even in the 
ase where they are forbidden by Mermin-Wagner

(Kosterlitz-Thouless type phase transitions [22℄).

In �gs. 7.5, 7.6 we show how the 
ow of the minimum 
hanges as a fun
tion of
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temperature. For �xed unrenormalized 
oupling, we see that the strength of the

symmetry breaking and the s
ale at whi
h the broken symmetry be
omes unbro-

ken in
reases if the temperature is lowered. This is what we intuitively expe
t,

sin
e the antiferromagneti
 
lusters should be larger for small temperature. For

�xed renormalized 
oupling, the maximum value of the minimum also be
omes

larger for smaller temperature. Note that all the 
urves 
onverge, but those for

low T on mu
h larger s
ales than shown in the plot. Fig. 7.7 enlarges the region

of small �t from 7.6, whi
h is a
tually a

essible by experiments. We see that

the temperature dependen
e is weak in this region.

In the framework of our trun
ation, we 
annot de
ide whi
h of the two possi-

bilities of re
on
iling the o

urren
e of spontaneous symmetry breaking with the

Mermin-Wagner theorem is realized. To do this, we have to in
lude the 
ow of

the Yukawa 
ouplings.

7.4.2 Charge density 
u
tuations and super
ondu
tivity

In this se
tion we will investigate the in
uen
e of 
harge density 
u
tuations on

the super
ondu
ting properties of the theory. We set �

22

= 0 and keep all wave

fun
tion renormalizations 
onstant.

Fermioni
 
ontribution to the 
ow

The 
ow equation for U

F

k

reads

d

dk

U

F

k

= �2TV

~

�

k

X

�

1

;�

2

Z

�

��

d

2

q

(2�)

2

ln 
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^
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(�;�) (7.77)

with

f

�

1

;�

2

(�;�) =

1

2T

k

r

�

q

2h

4

�

�

11

+ 2t�

2

(


1

+ �
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2

)

�

2

+ 2

^

h

4

d

�(


1

� �

1




2

)

2

: (7.78)

Although we keep all wave fun
tion renormalization 
onstants �xed, we write

^

h

d

instead of h

d

, sin
e the initial value of Z

�

k

6= 1.
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Trun
ation of the potential

Our trun
ation for the potential reads

U
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= VU
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in the symmetri
 phase. For homogeneous �elds this be
omes

U

k

= V

�

(m̂

Æ

k
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�+

1

2

^

�

�

k

�

2

+

1

2

^

�

�

k

(�

11

� �

0

11

)

2

+

1

2

�̂

k

�(�

11

� �

0

11

)

2

�

: (7.80)

We in
luded terms up to quadrati
 order in � just as in the antiferromagneti



ase. Additionally, we expanded �

11

around the minimum �

0

11

. Re
all that this

minimum is not k-dependent, sin
e the 
harge density is an external parameter


ontrolled by the doping. The term / �̂

k

indu
es an intera
tion between the


harge density and �.

We will restri
t our attention to the 
ow in the symmetri
 regime, so that we

do not write down a trun
ation for the potential in the broken phase.

Bosoni
 
ontribution to the 
ow

In mu
h the same way as in the antiferromagneti
 
ase we �nd

d

dk
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where

P

�

k

= P

�

11;k

+R

�

k

+ (m̂

�

k

)

2

;

�

P

R

k

= P

R

11;k

+R

R

k

: (7.82)
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Choi
e of the 
uto� fun
tions

We de�ne the 
uto� fun
tions to be

1

Z

�

k

R

�

k

(Q) = R

R

k

(Q) = (2�)

2

�

2

(k

2

� (mT )

2

)�(k

2

� (mT )

2

): (7.83)

In 
ontrast to the momentum dependent 
uto� we 
hose in the last se
tion,

this 
uto� allows to perform the Matsubara sum analyti
ally, whi
h speeds up

the numeri
al 
al
ulation signi�
antly. The drawba
k is that we 
an no longer

interprete the 
ow as an averaging pro
ess over larger and larger 
lusters, but

sin
e in this se
tion we will be mainly interested in whether a phase transition

takes pla
e for some temperature and �

0

11

, we do not need this interpretation.

Instead of inserting the 
uto� fun
tion into (7.81) immediately, it is more


onvenient to �rst extra
t the 
ow equations for the 
ouplings and masses.

Extra
tion of the 
oeÆ
ients

From the 
ow of the potential we 
an obtain the 
ow equations
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Introdu
tion of res
aled quantities

The res
aled quantities read
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The 
ow equations

The 
ow equations are
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with M = maxfm 2 Njm < k=Tg,
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where �

0

11

= �

2

=(2h

2

�

). The initial 
onditions are (m

�

�

)

2

= 8�

2

h

2

d

=�

2

and �

�
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=

�

�

= 0. Z
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= 1=�

8

is kept �xed. The initial 
ondition for �

�

k

is set to �

�

�

= 1=�

8

,
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sin
e the one loop 
orre
tion to this 
oupling is of this order (we do not set �

�

�

= 0

in order to have a potential minimum in �

0

11

).

Remarks

As in the antiferromagneti
 
ase, the zeroes of the denominators of the fermioni



ontributions to the 
ow do not 
ause any problems, sin
e they 
an be 
an
eled

against numerator zeroes.

Note that the 
ontributions in the bosoni
 se
tor have a simple diagrammati


interpretation. To see this, note that in our 
ow equations the derivatives

~

�

k

have been 
arried out on the right hand side (whi
h is of 
ourse ne
essary for

the numeri
al investigation). For the diagrammati
al interpretation, it is more

useful to 
onsider the expressions before taking the derivative. For example, the

bosoni
 
ontribution to the 
ow of (m

�

k

)

2

is

1

2

~

�

k

T

X

m

Z

2�

�2�

d

2

q

(2�)

2

�

6�

�

k

P

�

k

+

2�

k

�

0

11

P

R

k

�

: (7.88)

and similarly for the other variables. The diagrammati
 interpretation is then

m

�

k

:

�

+

�

�

�

k

:

�

+

	

; �

�

k

:




+

�

�

k

:

�

+




+

Æ

+

�

(7.89)

where the dashed line represents the propagation of �, the solid line the prop-

agation of R

1

and the double line the 
oupling to the external 
harge density

�

0

11

.

Numeri
al results

We have solved the 
ow equations numeri
ally for di�erent temperatures, 
harge

densities and Yukawa 
ouplings h

�

. We set h

2

d

= 20. We follow the 
ow of (m

�

k

)

2

until it either rea
hes zero or diverges. The �rst 
ase indi
ates an instability in

the d-wave super
ondu
ting 
hannel (this should be taken with a grain of salt,

sin
e we know from our mean �eld dis
ussion that phase transitions of �rst order

render this 
riterion untrustworthy. However, in the super
ondu
ting regime we

expe
t no phase transitions of �rst order to o

ur if no antiferromagneti
 order is
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Figure 7.8: Dependen
e of the super
ondu
ting region (in
luding �- and �-


u
tuations) on the Yukawa 
oupling h

�

. We take h

2

d

= 20.

present). In �g. 7.8 we show the borders of the regions where the mass happens to

vanish during the 
ow. The 
omparison between di�erent values of h

�

shows that

a strong 
harge density 
oupling tends to enlarge the region of super
ondu
tivity.

Note that we use the parameter h

�

� on the horizontal axis instead of � in the

mean �eld 
ase. Re
all that in the mean �eld 
ase the results depended on h

�

only via h

�

�. This means that if we ignored the bosoni
 
u
tuations (whi
h

would redu
e our 
ow equations to the mean �eld 
ase), no di�eren
e between

the phase borders for di�erent h

�

would appear in our plot (a 
omparison of the

mean �eld results and the results for the in
lusion of various bosoni
 
u
tuations


an be found in the next se
tion). The di�eren
es are 
onsequen
es only of the

in
lusion of bosoni
 
u
tuations. The 
hoi
e of the 
ouplings in our plot is rather

extreme; in the mean �eld 
ase 
hanging h

2

a

or h

2

d

only by a fa
tor 2 had a strong

e�e
t on the phase diagram. By 
hanging h

2

�

by a fa
tor of 2 (not 20 as in the

plot), we see that the e�e
t of 
harge density 
oupling is relatively small. We

will see in the next se
tion that | in 
ontrast to the 
harge density | the phase

diagram is very sensitive to the strength of antiferromagneti
 
u
tuations.
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7.4.3 Antiferromagneti
 
u
tuations and super
ondu
tiv-

ity

In this se
tion, we will analyze the e�e
t of antiferromagneti
 
u
tuations on the

phase diagram. The derivation of the 
ow equations is very similar to the 
ase

of in
luding 
harge density 
u
tuations in the 
ow. We set �

11

= �

0

11

(that is, we

do not 
onsider 
harge density 
u
tuations in this se
tion).

Fermioni
 
ontribution to the 
ow

The 
ow equation for U

F

k

reads

d

dk

U

F

k

=

4kTV

T

k

X

�

1

�

2

Z

�

��

d

2

q

(2�)

2

f

�

1

;�

2

(�

22

;�) tanh f

�

1

;�

2

(�

22

;�) (7.90)

with

f(�

22

;�) =

1

2T

k

r

�

h

�

�+ �

2

p

2h

4

a

�

22

+ 4t

2

(


1

+ �

1




2

)

2

�

2

+ 2h

4

d

�(


1

� �

1




2

)

2

:

(7.91)

Trun
ation of the potential

We trun
ate the potential as

U

k

= U

0

V +

X

K

1

K

2

(m̂

�

k

)

2

�(K
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K
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)Æ(K

1

+K

2

)

+

1

2

X

K

1

K

2

K

3

K
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; K

2
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3

; K
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1
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2
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3

+K

4

): (7.92)

This is an expansion up to quadrati
 order in �

22

and �. Again, we restri
t our

attention to the symmetri
 phase.
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Bosoni
 
ontribution to the 
ow

The 
ow of the potential in the bosoni
 se
tor is given by

d

dk

U

B

k

=

3

2

V

~

�

k

T

X

m

Z
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�2�

d

2

q
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�

k

�+ 


k

�

22

)(P

~s

k

+ 3�

�

k

�

22

+ 


k

�)

�

� 4


2

k

��

22

�

(7.93)

where

P

�

k

= P

�

11;k

+R

�

k

+ (m̂

�

k

)

2

; P

~s

k

= P

~s

22;k

+R

~s

k

+ (m̂

�

k
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2

: (7.94)

Choi
e of the 
uto� fun
tion

We 
hoose the same 
uto� fun
tion as in the last se
tion

1

Z

�

k

R

�

k

(Q) = R

~s
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(Q) = (2�)

2

�

2
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� (mT )
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): (7.95)

Extra
tion of the 
oeÆ
ients

From the 
ow of the e�e
tive potential we obtain

�
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Introdu
tion of res
aled quantities

The res
aled quantities read
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The 
ow equations

We �nd the 
ow equations
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with M = maxfm 2 Njm < k=Tg,
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The initial 
onditions are (m

�

�

)

2

= 8�

2

h

2

d

=�

2

, (m

�

�

)
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= 4�
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=�

2

, �
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= �
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�

=

�

�

= 0.

Remarks

Again the 
ow equations seem to be ill de�ned for f

�

1

�

2

! 0 and again all these

denominator zeroes are 
an
eled by 
orresponding numerator zeroes. However,

we additionally fa
e possible singularities in the 
ow equations whi
h involve

derivatives with respe
t to �

22

in (7.96) for 
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+ �
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! 0. These singularities
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el if the sums over �

j

are performed. For example,
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for 


1

+ �

1




2

! 0, whi
h is perfe
tly �nite. In the same way, the sum over �

2

in

the 
ow equations for �

�

k

and 


k


an be 
arried out in the limit 


1

+ �

1




2

! 0.

Note that as in the last se
tion, the 
ontributions in the bosoni
 se
tor have

simple diagrammati
 interpretations:

m

�

k

:

�
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; �

�
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;
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�

; �
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�
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�

;




�
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�

+

�
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�

: (7.101)

The dashed line represents the propagation of �, whereas the solid line the prop-

agation of ~s.
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ting region for the mean �eld 
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u
tuations, �- and �-
u
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u
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Numeri
al results

In �g. 7.9 we 
ompare the e�e
t of in
luding di�erent kinds of bosoni
 
u
tuations

into the 
ow with the mean �eld result. The plot for �- and �-
u
tuations has

been generated by using the 
ow equations of this se
tion, the plot for �- and

�-
u
tuations by using (7.86). By setting (m

�

k

)

2

= (m

�

�

)

2

, �

�

k

= 0 in (7.98) we

get the plot for the in
lusion of �-
u
tuations only. We set h

2

�

= 20, h

2

a

= 10

and h

2

d

= 20. For this 
hoi
e of the Yukawa 
ouplings only the super
ondu
ting

phase is present in the mean �eld result. The same is true if bosoni
 
u
tuations

are in
luded, but 
ompared to the mean �eld 
ase, the super
ondu
ting region

be
omes smaller. This was to be expe
ted, sin
e the fermioni
 
u
tuations favor

the phase transition, whereas bosoni
 
u
tuations have the opposite e�e
t. In

the mean �eld approximation we ignore the bosoni
 
u
tuations, so that we

overestimate the symmetry breaking behavior, whi
h leads to a larger region

of broken symmetry in the phase diagram. For this spe
ial 
hoi
e of Yukawa


ouplings, the boundaries of the super
ondu
ting region approximately 
oin
ide.

As we have seen in the last se
tion, the phase boundary is not very sensitive

to 
hanges in h

�

. However, �g. 7.10 shows that we have a strong dependen
e

on h

a

| as we already had in the mean �eld 
ase. In so far, the in
lusion of

bosoni
 
ouplings do not qualitatively alter the mean �eld results. The interesting

feature of the plot is that the super
ondu
ting region is shifted to the right

if h

a

is in
reased. Of 
ourse, this is a feature not present in the mean �eld

approximation, sin
e there h

a

entered only via the 
ombination h

2

a

�, so that

outside the antiferromagneti
 phase (where � = 0) varying h

a


ould not have

any e�e
t on the boundary of the super
ondu
ting region. This means that

strong antiferromagneti
 
oupling tends to enlarge the super
ondu
ting region

by means of antiferromagneti
 
u
tuations, even if there is no antiferromagneti


order present! In fa
t, it is suspe
ted that antiferromagneti
 
u
tuations are


ru
ial for the understanding why 
uprates remain in the super
ondu
ting state

even for large temperature.

Also note that | as in the last se
tion | the phase boundaries have been

inferred from an analysis of the masses only. Therefore our results have to be

taken with some 
are | possible phase transitions of �rst order will shift the

phase boundaries. This is parti
ularly true for the left boundaries of the super-


ondu
ting regions in �g. 7.10, where the super
ondu
ting region is bordered

by a region of antiferromagneti
 behavior, sin
e in our mean �eld 
al
ulation we

found phase transitions of �rst order exa
tly at this boundary. However, at the

right boundaries no phase transitions of �rst order appeared in the mean �eld

approximation, so that hopefully our interpretation remains inta
t even for the

more general 
ase 
onsidered here.
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7.4.4 Final remark

Although many questions remain and a lot of work has to be invested to free our-

selves from the limits of the problem of the 
oupling ambiguity and the possibility

of �rst order phase transitions, the point we want to make is that we see that our

formalism is in prin
iple suitable for analyzing the properties of the model both

in the symmetri
 and in the broken phase. Renormalization group approa
hes so

far have been limited to the investigation of the 
ow in the symmetri
 phase and

were not able to des
ribe features of the 
ow beyond the point of spontaneous

symmetry breaking. The problems we fa
e in our analysis so far are not intrinsi


to our formalism and 
an be 
ured by more re�ned trun
ation s
hemes (parti
-

ularly in
luding the 
ow of the 
ouplings and some more general trun
ation for

the e�e
tive potential). A systemati
al enhan
ement of the trun
ation s
heme is

straightforward and will be atta
ked in the future:

� In our approa
h so far, we approximated the e�e
tive potential by a polyno-

mial in the �elds, whi
h raises the problem of dealing with phase transitions

of �rst order. Cal
ulations in
luding the 
ow of the full potential are possi-

ble and have already been 
arried out su

essfully for a number of systems

(
f. e. g. [16℄).

� The phase diagrams we 
al
ulated in this 
hapter depend on the 
hoi
e of

the initial values of the Yukawa 
ouplings that we kept 
onstant. To get

rid of this dependen
e, we have to in
lude the 
ow of the Yukawa 
oupling

into our sets of 
ow equations. This task is already worked on [17℄.

� One qualitative feature of the phase diagram of high temperature super-


ondu
tors �g. 1.1 is the separation of the antiferromagneti
 and super-


ondu
ting region at low temperature and intermediate doping. In our


al
ulations, the super
ondu
ting region is always bounded by the anti-

ferromagneti
 region towards small �. The reason for this short
oming is

our oversimpli�ed homogeneous treatment of the 
harge density [23℄. More

realisti
ally, the 
harge density 
aused by doping is not homogeneously dis-

tributed, but forms stripe shaped regions of alternating high and low 
harge

density. The width of the stripes depend on doping, and it turns out that

for some intermediate doping the alternating 
harge density indu
es the

formation of parallel spin ladders that de
ouple from ea
h other. The e�e
t

is that long range order is lost, and antiferromagneti
 order o

urs only in

the ladders. The material then be
omes paramagneti
ally over large s
ales.

This behavior should be reprodu
ible with our formalism if we give up

the assumption of homogeneous 
harge density and generalize it to stripe

stru
tures.

� Although we introdu
ed a large set of bosons in the formalism, we 
on
en-

trated on only a small subset of them in our 
al
ulations. The 
hoi
e of
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this subset was motivated by experiment: We know that high temperature

super
ondu
tors exhibit antiferromagneti
 and d-wave super
ondu
ting be-

havior and therefore 
hose exa
tly those bosons representing these proper-

ties. It is interesting to see whether a more unbiased 
hoi
e, that is, taking

into a

ount more bosons representing e.g. s-wave super
ondu
tivity or fer-

romagnetism, 
on�rms that we have 
hosen those bosons a
tually leading

to spontaneous symmetry breaking.

Some words are in order 
omparing our formalism to the renormalization

group approa
hes in [18℄. As already mentioned, all these 
al
ulations were per-

formed in the purely fermioni
 theory. The authors basi
ally investigate the 
ow

of quarti
 fermioni
 
ouplings in di�erent 
hannels. The 
onventional way of

these approa
hes was to introdu
e a regularization s
heme that 
ut o� momenta

near the Fermi surfa
e. In this s
heme, following the 
ow to small k 
orresponds

to the in
lusion of momentum modes in
reasingly 
lose to the Fermi surfa
e.

More re
ently, temperature 
uto�s resembling the regularization s
heme used in

our work have been applied (Honerkamp, Salmhofer and Ri
e 2002 in [18℄). In-

dependent of the regularization s
heme, the 
ow of quarti
 fermioni
 
ouplings

indi
ates instabilities in 
ertain 
hannels by the emergen
e of divergen
ies of the


orresponding 
ouplings. This means that in these approa
hes it is only possible

to follow the 
ow until the point of symmetry breaking is rea
hed, and no infor-

mation about the behavior in the broken phase is available. By the bosonization

and the investigation of the e�e
tive potential in this work, it be
omes possible

to analyze the 
ow in the broken phase. However, in 
ontrast to [18℄, our formal-

ism is plagued by the problem of the 
oupling ambiguity, and its su

ess will be

ultimately measured by our 
apability to over
ome this 
ompli
ation.

It should have be
ome 
lear in the 
ourse of the expli
it 
al
ulations presented

over the last se
tions that our formalism provides an elegant and suitable starting

point for the investigation of the Hubbard model and the properties of high

temperature super
ondu
tors, and is also easily implemented for investigations of

the behavior inside the broken phase. At this point, we have reprodu
ed the gross

qualitative features of the phase diagram of high temperature super
ondu
tors,

with 
orre
tly pla
ed regions of antiferromagneti
 and super
ondu
ting behavior.

We understand how the Mermin-Wagner theorem 
an be re
on
iled with the

existen
e of antiferromagneti
 long range order for non vanishing temperature,

and we took a �rst glimpse on how antiferromagneti
 
u
tuations 
an enlarge

regions of super
ondu
tivity. All these results let us suspe
t that we are on the

right way and we hope to provide more insights into the nature of the Hubbard

model and high temperature super
ondu
tors in the future.



Con
lusion

High temperature super
ondu
tors have a two dimensional layer stru
ture with

small interlayer 
oupling. They 
an be modeled by the two dimensional Hubbard

model on a square latti
e. This model des
ribes ele
trons on a quadrati
 latti
e

that experien
e a lo
al Coulomb intera
tion and are able to hop to adja
ent latti
e

sites. The partition fun
tion for this model depends on the 
hemi
al potential

(or equivalently the 
harge density), the temperature and the relative strength of

Coulomb intera
tion and hopping amplitude. To 
ompare the predi
tions of the

model with experimental results for high temperature super
ondu
tors, one has

to 
al
ulate the phase diagram of the model in the 
harge density-temperature

plane.

Our way to ta
kle this task is to identify the most prominent degrees of

freedom of high temperature super
ondu
tors, whi
h are antiferromagnetism and

d-wave super
ondu
tivity, and to de�ne a set of bosoni
 \parti
les", so that every

parti
le 
orresponds to one degree of freedom of the model. We found an exa
t

trans
ription of the partition fun
tion, whi
h des
ribes a Yukawa-like theory. The

expe
tation values of the bosons in this rewritten theory indi
ate a possible long

range order in the 
hannel (antiferromagneti
, d-wave super
ondu
ting, et
.) to

whi
h the bosons 
orrespond.

A mean �eld 
al
ulation in this partially bosonized theory, negle
ting all

bosoni
 
u
tuations and integrating out the fermions, already reveals the main

features of the phase diagram of high temperature super
ondu
tors.

More re�ned 
al
ulations 
an be performed by means of exa
t renormalization

group equations. We use the e�e
tive average a
tion method. To simplify the

de�nition of trun
ation s
hemes and to minimize the error indu
ed by approxi-

mations, we rewrite the partially bosonized theory as a fun
tion of bosons whi
h

are eigenstates of translations on the latti
e. Due to the latti
e symmetries, these

bosons are no longer mixed in the full e�e
tive a
tion (e.g. the full propagator

matrix be
omes diagonal).

We use this modi�ed theory as a starting point for a renormalization group

analysis. This analysis shows how the Mermin-Wagner theorem 
an be re
on-


iled with the existen
e of antiferromagneti
 long range order for non vanishing

temperature and indi
ates that antiferromagneti
 
u
tuations tend to favor su-

per
ondu
ting behavior in 
ertain regions of the phase diagram.
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The drawba
k of the present analysis is mainly the arbitrariness of the Yukawa


ouplings. Current work is dedi
ated to this problem. However, the 
ure is basi-


ally an improved trun
ation s
heme for the e�e
tive a
tion and does not intrinsi-


ally limit our formalism. Planned future work in
ludes a more general treatment

of the e�e
tive potential with spe
ial regard to �rst order phase transitions and

the in
lusion of more bosons in the trun
ation s
heme, allowing to test whether

e.g. super
ondu
ting 
hannels other than that with spatial d-wave symmetry

play a role.

In 
on
lusion, we hope to have provided a formalism whi
h is easy to imple-

ment for renormalization group studies, whi
h introdu
es a 
onvenient interpreta-

tion of non lo
al fermioni
 order parameters as lo
al expe
tation values of bosoni


�elds and that will 
ontinue to help investigating the ri
h and beautiful spe
trum

of properties of the Hubbard model and high temperature super
ondu
tors.



Appendix A

Conventions

We use units for whi
h ~ = 
 = k

B

= 1. Bold symbols (n, x, q, et
.) denote two

dimensional ve
tors. Symbols with arrow (~a, ~m, et
.) denote three dimensional

ve
tors. Generalized momenta are 
alled Q, P and K, whereas X, Y and Z are

generalized positions (see below for the de�nition of generalized quantities). By

a ^ we indi
ate �elds. The same symbol without ^ is the expe
tation value of the


orresponding �eld. ~ is used to indi
ate fermion bilinears (to distinguish them

from their bosoni
 
ounterparts).

A.1 Fourier transforms

We de�ne

Q = (!

n

; q); X = (�;n);

QX = !

n

� + nq;

X

X

=

Z

�

0

d�

X

n

;

X

Q

= T

1

X

n=�1

Z

�

��

d

2

q

(2�)

2

;

Æ(Q�Q

0

) = �Æ

n;n

0

(2�)

2

Æ(q � q

0

);

Æ(X �X

0

) = Æ(� � �

0

)Æ

n;n

0

:

(A.1)

The Fourier transforms for both fermioni
 and bosoni
 �elds are given by

�̂

a

(X) =

X

Q

�̂

a

(Q) exp(i(QX + z

a

q));

�̂

�

a

(X) =

X

Q

�̂

�

a

(Q) exp(�i(QX + z

a

q));

(A.2)

where �̂ stands for

^

 , ŵ




or û

�

, whereas �̂

�

stands for

^

 

�

or û

�

�

and the z

a

are

given by

z

1

= (�1=4; 1=4) z

2

= (1=4; 1=4)

z

4

= (�1=4;�1=4) z

3

= (1=4;�1=4):

(A.3)
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A.2 Matri
es

f�

i

g, i 2 f1; 2; 3g is the usual set of Pauli matri
es. Additionally, we identify �

0

with the unity matrix. We then de�ne the matri
es �

�


 �

�

by

A

�

=

�

�

�

0

0 �

�

�

; B

�

=

�

0 �

�

�

�

0

�

; C

�

=

�

0 �i�

�

i�

�

0

�

; D

�

=

�

�

�

0

0 ��

�

�

(A.4)

where � 2 f0; 1; 2; 3g. The matri
es A

�

and B

�

have the properties

fA

i

; B

j

g = 2Æ

ij

B

0

; fA

i

; A

j

g = fB

i

; B

j

g = 2Æ

ij

;

[A

i

; B

j

℄ = 2i�

ijk

B

k

; [A

i

; A

j

℄ = [B

i

; B

j

℄ = 2i�

ijk

A

k

;

B

0

A

�

= A

�

B

0

= B

�

; B

0

B

�

= B

�

B

0

= A

�

(A.5)

with i 2 f1; 2; 3g.

A.3 Fermion bilinears

~�
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(X) =

^

 

y

b

(X)

^

 

a

(X)

~

~'

ab
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y
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(X)~�
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�
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(A.6)
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Vertex fa
tors for the Hubbard

model

The verti
es V

w

(Q

0

; Q

00

) for the bosons �̂, p̂, q̂

x;y

depend only on the momentum

Q = Q

0

�Q

00

. With e

x

= (1; 0), e

y

= (0; 1) and z

a

, a = 1 : : : 4, given in appendix

A.1, they 
an be written in the form

V

w

ab;


(Q

0

; Q

00

) = V

w

ab;


(Q) =

h

w

4

e

�iz

a

q

e

iz




q

M

w

ab;


(Q)
 1

spin

2

; (B.1)

The 
olor matri
es M

w




(with matrix elements M

w

ab;


) read

M

�
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; e
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�
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�

4

(Q) = diagf1; e
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�
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y
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�
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�
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�
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�
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(B.2)

The same 
an be obtained for the bosons with spin index, ~m;~a;~g

x;y

, by substi-

tuting 1

spin

2

! ~�

spin

.

For the bosons s; 
; t

x;y

one �nds similarly:
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(B.3)

while d; e; v

x;y

are a bit more 
ompli
ated. Let us de�ne e

ij

= e

i(z

i

q

0

+z

j

q

00

)

and

a �-produ
t C = A � B by C

ij

:= A

ij

B

ij

(no sum over indi
es here!). One then
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obtains
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