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Summary		
Angiopoietin	 (Angpt)/Tie	 signaling	 in	 microvascular	 endothelial	 cells	 (EC)	 controls	 vascular	

development,	 remodeling	 and	maturation1,2.	 Biomarker	 studies	 also	 imply	 a	 role	 of	macrovascular	

Angpt/Tie	 signaling	 in	 the	 pathogenesis	 of	 hypertension	 and	 atherosclerosis354-356.	 Importantly,	

experimental	 studies	 on	 the	 role	 of	 the	 Angpt	 ligands	 and	 the	 Tie	 receptors	 in	 hypertension	 and	

atherosclerosis	have	yielded	conflicting	results	suggesting	spatiotemporally	context-dependent	pro-	

and	anti-atherosclerotic/hypertensive	functions	in	different	experimental	settings.		

Reports	 of	 scattered	 observations	 have	 shown	 Tie2	 expression	 by	 vascular	 smooth	 muscle	 cells	

(VSMC)370-372.	VSMC	contribute	to	hypertension	and	atherosclerosis	progression	either	through	VSMC	

hypertrophy	 and/or	 switching	 from	 a	 contractile	 quiescent	 to	 a	 synthetic	 and	 activated	

phenotype248,302.	 Yet,	 the	 functional	 role	 of	 VSMC-expressed	 Tie2	 during	 these	 pathological	

conditions	has	not	been	analyzed.	Therefore,	 in	 this	 study	Tie2	was	 conditionally	deleted	 in	VSMC	

(Tie2SMC-KO)	 using	 a	 mural	 cell-specific	 Sm22α-Cre	 driver	 line.	 These	 mice	 were	 crossed	 with	

atherosclerosis-prone	ApoE-deficient	mice	(ApoEKO	Tie2SMC-KO).	VSMC	marker	expression	did	not	differ	

in	freshly	isolated	and	lysed	aortas,	mesenteric	and	femoral	arteries	from	Tie2+/+	and	Tie2SMC-KO	mice.	

Transcriptionally,	 cultivated	 Tie2-deficient	 VSMC	 show	 an	 increased	 contractile	 and	 reduced	

synthetic	 phenotype-specific	 gene	 expression,	 suggesting	 that	 VSMC	 from	 Tie2SMC-KO	 mice	 fail	 to	

switch	towards	a	synthetic	phenotype	upon	activation.	Correspondingly,	migration	and	proliferation	

was	significantly	reduced	 in	Tie2-deficient	cultured	VSMC.	Long-term	telemetric	 tracing	 identified	

significantly	reduced	basal	systolic	blood	pressure	(SBP)	in	Tie2SMC-KOmice,	indicative	of	a	baseline	

cardiac	phenotype	that	is	 independent	of	Sm22α-driven	Tie2	deletion	in	VSMC.	Tie2SMC-KO	mice	also	

display	a	significantly	reduced	 left	ventricular	posterior	wall	 thickness	 (LVPWT)	and	 interventricular	

septum	 (IVS),	which	 is	 in	 line	with	a	 reduced	cardiomyocyte	 (CM)	 cross-sectional	 area	observed	 in	

these	mice.	Notably,	 GFP-positive	 cardiomyocytes	 (CMs)	 and	GFP-positive	 VSMC	were	 detected	 in	

heart	and	aortic	tissue,	respectively,	obtained	from	adult	Tie2MCM	x	Rosa26YFP	mice,	suggesting	that	

Tie2	 may	 be	 deleted	 in	 CMs	 in	 the	 time	 frame	 of	 Sm22α	 expression	 in	 these	 cells	 during	

embryonic	development.	Furthermore,	DOCA-salt-induced	hypertension	experiments	revealed	a	

significant	 decrease	 in	 cardiac	 size	 with	 a	 slightly	 reduced	 blood	 pressure	 in	 Tie2SMC-KO	mice.	

Moreover,	AngII-treated	Tie2SMC-KO	mice	demonstrated	a	decrease	in	heart	rate	(HR),	cardiac	output	

(CO)	and	stroke	volume	(SV)	that	was	compensated	over	time.	Thus,	the	baseline	cardiac	phenotype	

in	Tie2SMC-KO	mice	transiently	compromises	an	adequate	cardiac	response	upon	hypertension.		

Next,	 ApoEKO	Tie2SMC-KO	mice	were	 fed	 a	Western-type	 diet	 for	 14	weeks	 and	 showed	 significantly	

reduced	 atherosclerotic	 lesion	 progression	with	 less	 VSMC	 content.	 Additionally,	 serum	Angpt2	 as	

well	 as	 the	 Angpt2/Angpt1	 ratio	 were	 significantly	 increased	 in	ApoEKO	Tie2SMC-KO	mice.	 Consistent	

with	the	increased	systemic	Angpt2	levels	and	the	reduced	atherosclerosis	in	ApoEKO	Tie2SMC-KO	mice,	

a	pro-	atherosclerotic	phenotype	was	observed	in	ApoEKO	Angpt2KO	double	knockout	(KO)	mice. 	
The	data	propose	a	remarkable	role	of	Tie2	receptor	 in	regulating	cardiac	size	and	blood	pressure,	
which	 is	 most	 likely	 a	 consequence	 of	 Sm22α-driven	 Tie2	 deletion	 in	 CMs.	 Moreover,	 the	 data	
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identified	 a	 cell	 autonomous	 function	 of	 VSMC-specific	 Tie2	 in	 controlling	 VSMC	 phenotype	 and	

function.	 In	 the	 context	 of	 atherosclerosis,	 the	 data	 expand	 and	 revise	 the	 endotheliocentric	 Tie2	

signaling	 concept	 to	 show	 that	 mural	 cell-expressed	 Tie2	 is	 involved	 in	 regulating	 macrovascular	

functions.	VSMC-expressed	Tie2	acts	pro-atherosclerotic	to	control	the	phenotypic	switch	towards	a	

proliferative	 and	 migratory	 synthetic	 VSMC	 phenotype.	 The	 Tie2	 ligand	 Angpt2	 acts	 anti-

atherosclerotic,	which	is	compatible	with	an	antagonistic	mode	of	action	of	Angpt2	on	Tie2.	 
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Zusammenfassung	
Der	 Angiopoietin	 (Angpt)/Tie	 Signalweg	 steuert	 die	 vaskuläre	 Entwicklung	 und	 Reifung	

mikrovaskulärer	 Endothelzellen	 (EC)1,2.	 Biomarker-Studien	 bringen	 den	 Angpt/Tie-

Signalwegs	 auch	 im	 Kontext	 makrovaskulärer	 Gefäße	 in	 Zusammenhang	 mit	 der	

Pathogenese	von	Hypertonie	und	Atherosclerose354-356.	Experimentelle	Studien	zur	Rolle	der	

Angpt-Liganden	 und	 der	 Tie-Rezeptoren	 bei	 Hypertonie	 und	 Atherosklerose	 haben	 zu	

widersprüchlichen	 Ergebnissen	 geführt,	 was	 auf	 kontextabhängige	 pro-	 und	 anti-

atherosklerotische/hypertensive	 Funktionen	 in	 verschiedenen	 experimentellen	 Aufbauten	

schließen	lässt.	

Vereinzelte	 Studien	 haben	 gezeigt,	 dass	 Tie2	 in	 vaskulären	 glatten	 Muskelzellen	 (VSMC)	

produziert	wird370-372.	VSMC	tragen	zur	Entwicklung	von	Bluthochdruck	und	Arteriosklerose	

bei,	 entweder	 durch	 VSMC-Hypertrophie	 und/oder	 durch	 den	 Wechsel	 von	 einem	

kontraktilen	 ruhenden	 Zustand	 zu	 einem	 synthetischen	 und	 aktivierten	 Phänotypen248,302.	

Die	 funktionelle	 Rolle	 von	 VSMC-exprimiertem	 Tie2	 während	 dieser	 pathologischen	

Zustände	wurde	 jedoch	 noch	 nicht	 analysiert.	 Daher	wurde	 in	 dieser	 Arbeit	 Tie2	 in	 VSMC	

unter	der	Verwendung	einer	muralzellenspezifischen	Sm22α-Cre-Linie	konditionell	deletiert	

(Tie2SMC-KO).	 Diese	 Mäuse	 sind	 mit	 Atherosklerose-anfälligen	 ApoE-defizienten	 Mäusen	

(ApoEKO	 Tie2SMC-KO)	 gekreuzt	 worden.	 Unterschiede	 in	 der	 Markergenexpression	 in	 frisch	

isolierten	 VSMC	 aus	 Aorta,	 Mesenterial	 und	 Femoralarterie	 von	 Tie2+/+-	 und	 Tie2SMC-KO-

Mäusen	sind	nicht	festgestellt	worden.	Jedoch	zeigen	auf	transkriptionaler	Ebene	kultivierte	

Tie2-defiziente	 VSMC	 eine	 verstärkte	 kontraktile	 und	 reduzierte	 synthetische	 Phänotyp-

spezifische	Genexpression,	was	darauf	hindeutet,	dass	VSMC	aus	Tie2SMC-KO-Mäusen,	sobald	

sie	aktiviert	sind,	nicht	zu	einem	synthetischen	Phänotyp	wechseln.	Dementsprechend	sind	

Migration	und	Proliferation	 in	Tie2-defizienten	kultivierten	VSMC	signifikant	reduziert.	Eine	

längerfristige	 telemetrische	 Kontrolle	 ergab	 einen	 signifikant	 reduzierten	 basalen	

systolischen	 Blutdruck	 (SBP)	 in	 Tie2SMC-KO-Mäusen,	 was	 auf	 einen	 kardialen	

Ausgangsphänotyp	 hinweist,	 der	 unabhängig	 von	 der	 Sm22α-gesteuerten	 Tie2-Deletion	 in	

VSMC	 ist.	 Tie2SMC-KO-Mäuse	 zeigen	 auch	 eine	 signifikant	 reduzierte	 Dicke	 der	 linken	

ventrikulären	posterioren	Wand	(LVPWT)	und	des	interventrikulären	Septums	(IVS),	was	mit	

einer	 reduzierten	 Kardiomyozyten	 (CM)-	Querschnittsfläche	 übereinstimmt,	 die	 bei	 diesen	

Mäusen	 beobachtet	 wird.	 Bemerkenswerterweise	 wurden	 GFP-positive	 Kardiomyozyten	

(CMs)	 und	 GFP-positive	 VSMC	 in	 Herz-	 und	 Aortengewebe	 von	 erwachsenen	 Tie2MCM	 x	

Rosa26YFP-Mäusen	nachgewiesen,	was	nahelegt,	dass	Tie2	in	CMs	im	Zeitrahmen	der	Sm22α-

Expression	 in	 diesen	 Zellen	 während	 der	 embryonalen	 Entwicklung	 deletiert	 sein	 könnte.	

Darüber	 hinaus	 zeigten	 DOCA-Salz-induzierte	 Hypertonie-Experimente	 eine	 signifikante	

Abnahme	der	Herzgröße	sowie	eine	Tendenz	 zu	einem	reduzierten	Blutdruck	 in	Tie2SMC-KO-

Mäusen.	 Zudem	 zeigten	 AngII-behandelte	 Tie2SMC-KO-Mäuse	 eine	 Verringerung	 der	

Herzfrequenz	 (HR),	 des	 Herzzeitvolumens	 (CO)	 und	 des	 Schlagvolumens	 (SV),	 welche	 im	
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Laufe	der	Zeit	ausgeglichen	wurden.	Somit	führt	der	Herz-Phänotyp	in	Tie2SMC-KO-Mäusen	zu	

einer	transienten	Beeinträchtigung	einer	adäquate	Herzreaktion	bei	Bluthochdruck.	

Als	 nächstes	 erhielten	 ApoEKO	Tie2SMC-KO-Mäuse	 14	Wochen	 lang	 eine	 „Western“-Diät	 und	

zeigten	anschließend	eine	signifikant	verringerte	atherosklerotische	Läsionsprogression	mit	

einem	 geringeren	 VSMC-Anteil.	 Darüber	 hinaus	 waren	 im	 Serum	 von	 ApoEKO	 Tie2SMC-KO-

Mäusen	 der	 Angpt2-Spiegel	 sowie	 das	 Angpt2/Angpt1-Verhältnis	 signifikant	 erhöht.	 In	

Übereinstimmung	 mit	 den	 erhöhten	 systemischen	 Angpt2-Spiegeln	 und	 reduzierter	

Atherosklerose	bei	ApoEKOTie2SMC-KO-Mäusen	wurde	ein	proatherosklerotischer	Phänotyp	 in	

ApoEKOAngpt2KO-Doppel-Knockout	(KO)-Mäusen	beobachtet.	

Diese	 Daten	 zeigen	 eine	 fundamentale	 Rolle	 des	 Tie2-Rezeptors	 in	 der	 Regulierung	 der	

Herzgröße	und	des	Blutdruck,	was	höchstwahrscheinlich	eine	Folge	der	Sm22α-gesteuerten	

Tie2-Deletion	in	CMs	ist.	Darüber	hinaus	identifizierten	sie	eine	zellautonome	Funktion	des	

VSMC-spezifischen	Tie2	bei	dessen	Kontrolle	von	VSMC	Phänotyp	und	Funktion.	Im	Rahmen	

der	 Atherosklerose	 erweitern	 und	 korrigieren	 diese	 Daten	 das	 endothelzellenzentrische	

Tie2-Signalgebungskonzept,	 und	 zeigen,	 dass	 muralzellenproduziertes	 Tie2	 an	 der	

Regulation	 makrovaskulärer	 Funktionen	 beteiligt	 ist.	 VSMC-spezifisches	 Tie2	 wirkt	

proatherosklerotisch	und	kontrolliert	den	phänotypischen	Wechsel	 zu	einem	proliferativen	

und	 migratorischen	 synthetischen	 VSMC-Phänotypen.	 Der	 Tie2-Ligand	 Angpt2	 hingegen	

wirkt	anti-atherosklerotisch,	was	kompatibel	mit	einer	antagonistischen	Wirkungsweise	von	

Angpt2	auf	Tie2	ist.	
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1 Introduction	

1.1 The	vascular	system	

The	vertebrate	vascular	system	is	comprised	of	two	highly	branched,	tree-like	tubular	networks:	the	

blood	vessels	and	a	blind-ended	network	of	lymphatic	vessels.	Both	are	formed	by	endothelial	cells	

(EC)	and	are	crucial	in	regulating	tissue	fluid	homeostasis3.	The	vascular	system	consists	of	the	heart	

and	 a	 hierarchical	 architecture	 of	 arteries,	 arterioles,	 capillaries,	 venules	 and	 veins.	 Capillaries,	

arterioles	and	venules	are	the	smaller	vessels,	whereas	veins	and	arteries	are	larger	vessels.	Arteries	

transport	 O2-	 and	 nutrient-rich	 blood	 from	 the	 heart	 to	 capillaries,	 where	 exchange	 from	 gases,	

nutrients	and	waste	between	the	blood	vasculature	and	adjacent	tissues	occurs4.	Deoxygenated	CO2-

rich	blood	and	metabolic	waste	products	are	removed	via	venous	capillary	beds	and	returned	to	the	

heart	by	venules	and	veins.	 In	contrast,	 lymphatic	vessels	drain	excessive	 interstitial	 fluid,	proteins	

and	macromolecules	 from	the	periphery	 through	a	conduit	system	of	capillaries,	collecting	vessels,	

lymph	nodes,	lymphatic	trunks	and	ducts	back	into	the	blood	vasculature3,5,6.	Lymphatic	vessels	also	

play	an	essential	role	in	immune	surveillance	and	the	uptake	of	dietary	fatty	acids.	About	75	%	of	all	

deaths	 are	 directly	 or	 indirectly	 associated	 with	 dysfunctions	 of	 the	 vascular	 system,	 including	

diabetes,	aneurysm,	atherosclerosis,	myocardial	infarction,	stroke,	neurodegenerative	disorders	and	

cancer,	underlying	its	importance7,8.		

	

1.1.1 Architecture	and	function	of	blood	vessels		

The	 inner	 lining	 of	 a	 blood	 vessel,	 called	 tunica	 intima,	 is	 formed	 by	 a	 single	 cobble-stone-like	

monolayer	 of	 EC6.	 Although	 EC	 share	 common	 functional	 and	 morphological	 features,	 they	 show	

remarkable	 heterogeneity	 and	 display	 site-specific	 functions	 in	 different	 organs9.	 Three	 different	

organ-specific	 endothelia	 are	 described	 as	 adaptation	 to	 meet	 the	 anatomical	 and	 physiological	

demands	 of	 the	 underlying	 tissue:	 continuous,	 fenestrated	 and	 discontinuous	 endothelium10.	

Continuous	endothelia,	embedded	 in	an	elaborate	basement	membrane	(BM),	can	be	found	 in	the	

brain	 and	 maintains	 the	 blood	 brain	 barrier	 through	 specialized	 tight	 junctions.	 Fenestrated	

endothelia	are	characterized	by	intercellular	gaps	and	a	continuous	BM	and	are	found	in	organs	with	

high	fluid	exchange	 like	kidney	and	 intestine.	The	discontinuous	sinusoidal	endothelium	is	 found	 in	

organs,	 such	 as	 liver,	 spleen	 and	 bone	 marrow	 that	 require	 extensive	 cell	 trafficking	 and	 fluid	

exchange.	The	discontinuous	sinusoidal	endothelium	in	these	organs	is	characterized	by	even	larger	

gaps	and	a	lack	of	BM10.		

EC	of	the	microvasculature	(capillaries,	small	arterioles	and	venules)	are	loosely	covered	by	pericytes.	

Pericytes	are	mural	cells	that	are	embedded	in	the	BM	to	directly	interact	with	EC	thereby	exerting	

vessel-stabilizing	functions.	In	contrast,	the	tunica	intima	in	large	caliber	blood	vessels	is	covered	by	

two	additional	 layers,	 namely	 the	 tunica	media	 and	 tunica	externa/adventitia.	 The	 tunica	media	 is	

separated	 from	 the	 intima	 by	 a	 dense	 elastic	 membrane	 (internal	 elastic	 lamina)	 and	 contains	

vascular	smooth	muscle	cells	(VSMC)	(along	with	pericytes	called	mural	cells),	proteoglycans,	elastin	
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fibers	and	collagen.	The	 tunica	adventitia,	 separated	 from	the	media	by	 the	eternal	elastic	 lamina,	

consists	of	 a	mixture	of	 extracellular	matrix	 (ECM),	 fibroblasts,	 and	nerve	 cells6,10.	Arteries	 contain	

the	highest	mural	cell	(VSMC	and	pericytes)	and	fiber	coverage,	which	is	necessary	for	tight	control	

of	 blood	 flow	 and	 pressure.	 Veins,	 on	 the	 other	 hand,	 contain	 specialized	 valves	 to	 ensure	 the	

directional	blood	flow	from	the	periphery	back	to	the	heart4,6,11.		

	

1.1.2 Vascular	development	

The	 cardiovascular	 system	 is	 the	 first	 functional	 organ	 that	 develops	 during	 vertrebate	

embryogenesis	and	 is	critical	 for	nutrients	and	O2	supply	to	the	embryo12.	Vascular	development	 in	

vertebrates	 occurs	 via	 two	 distinct	 processes:	 vasculogenesis	 and	 angiogenesis13.	 During	

vasculogenesis,	blood	vessels	develop	by	the	de	novo	 formation	of	a	primitive	vascular	plexus	from	

angioblast	 progenitors.	 The	 angioblasts	 in	 the	 periphery	 of	 blood	 islands	 give	 rise	 to	 EC,	 whereas	

hematopoietic	progenitor	cells	 located	 in	 the	center	of	 these	blood	 islands	give	 rise	 to	blood	cells.	

These	 islands	 subsequently	 fuse	 into	 cord-like	 structures	 and	 give	 rise	 to	 a	 primitive	 luminized	

vascular	plexus	in	the	yolk	sac	and	embryo13.	Upon	formation	of	the	primary	vascular	plexus,	blood	

vessels	undergo	arterial	or	venous	specification.	The	Notch	pathway	is	essential	in	regulating	arterial	

differentiation,	 whereas	 the	 orphan	 nuclear	 receptor	 chicken	 ovalbumin	 upstream	 promoter-

transcription	 factor	 II	 (Coup-TFII)	 regulates	 venous	 differentiation14.	 Subsequently,	 the	 primitive	

vascular	 plexus	 remodels	 into	 a	 mature	 vascular	 network	 during	 angiogenesis	 and	 requires	 the	

recruitment	of	mural	cells	to	mediate	vascular	stabilization4,15.	

	

1.1.3 Physiological	angiogenesis		

Angiogenesis	is	a	fundamental	biological	process	leading	to	the	formation	of	new	blood	vessels	from	

preexisting	vessels13,16.	In	the	embryo,	angiogenesis	is	essential	for	organ	development	and	continues	

to	 contribute	 to	 organ	 growth	 after	 birth13,16,17.	 However,	 the	 adult	 vasculature	 remains	 quiescent	

and	angiogenesis	is	limited	to	the	cycling	ovary	and	the	placenta	during	pregnancy.	Yet,	quiescent	EC	

maintain	a	high	plasticity	to	sense	and	respond	to	(patho-)physiological	stimuli,	such	as	hypoxia,	and	

angiogenesis	 is	 reactivated	 during	 wound	 healing	 and	 repair13,16,17.	 In	 contrast,	 inadequate	

angiogenesis	or	excessive	angiogenesis	contributes	to	pathological	diseases	such	as	cancer,	diabetic	

retinopathy,	 obesity-associated	 disorders,	 ischemic	 heart	 diseases,	 and	 atherosclerosis15,18.	 Thus,	

adequate	formation	of	new	blood	vessels	demands	to	be	tightly	regulated15.	

	

1.1.3.1 Phases	of	angiogenesis		

The	recruitment	of	new	blood	vessels	is	mainly	triggered	by	hypoxia,	a	reduction	in	the	normal	tissue	

oxygen	levels.	Initially,	hypoxia	inducible	factor	1	(HIF1)	is	stabilized,	which	leads	to	upregulation	of	

vascular	endothelial	growth	factor-a	(VEGFA)19,20.	VEGFA/VEGFR2	signaling	activates	the	endothelium	

and	primes	selected	EC	to	become	tip	cells,	the	guiding	cells	of	newly	forming	sprouts.	VEGFA	further	

induces	internalization	of	the	junctional	molecule	vascular	endothelial	(VE)-cadherin,	which	leads	to	
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weakening	of	EC	 junctions.	Moreover,	VEGFA	promotes	 the	secretion	of	matrix	metalloproteinases	

(MMPs)	 from	 EC	 to	 facilitate	 EC	 liberation.	 By	 inducing	 filopodia	 formation	 in	 tip	 cells,	 VEGFA	

facilitates	 a	 coordinated	 tissue	 invasion	 of	 tip	 cells	 towards	 the	 angiogenic	 stimulus	 and	 vessel	

sprouting	 into	 avascular	 areas3,15,21,22.	 The	 tip	 cells	 are	 followed	by	 the	 stalk	 cells,	which	 are	more	

proliferative	thereby	promoting	sprout	extension.	Stalk	cells	form	a	lumen	in	newly	formed	vessels15,	

produce	the	BM,	shape	EC	junctions	and	associate	with	mural	cells	to	ensure	sprout	integrity15.	The	

onset	 of	 perfusion,	 oxygen	 and	 nutrient	 delivery	 inhibits	 VEGF	 signaling	 and	 shifts	 the	 active	 EC	

behavior	towards	a	quiescent	phenotype15.	Junctions	of	the	quiescent	EC	(phalanx	cells)	are	further	

strengthened	and	vessels	are	stabilized	by	 the	 recruitment	of	mural	cells15,23.	Finally,	a	hierarchical	

vascular	network	is	formed	by	regulating	vessel	density,	either	through	the	formation	of	new	vessel	

sprouts	 or	 by	 formation	 of	 an	 immature	 vasculature,	 which	 leads	 to	 selective	 regression	 of	

redundant	branches24,25.		

	

1.1.3.2 Signaling	pathways	in	angiogenesis		

The	 VEGF	 family	 consist	 of	 VEGFA,	 VEGFB,	 VEGFC,	 VEGFD,	 placental	 growth	 factor	 (PIGF),	

parapoxvirus	VEGFE	and	snake	venom	VEGFF19.	The	 importance	of	VEGFA	 in	vascular	development	

was	 demonstrated	 by	 employing	 genetic	models	 in	which	 the	 loss	 of	 one	 allele	 of	Vegfa	 leads	 to	

embryonic	 lethality	due	to	impaired	vasculogenesis	and	angiogenesis26.	VEGF	was	first	described	as	

vascular	 permeability	 factor,	 due	 to	 its	 ability	 to	 induce	 vascular	 leakage19,27-29.	 VEGFA	 promotes	

proliferation,	 migration	 and	 survival	 of	 EC30-32.	 Binding	 of	 VEGFA	 to	 VEGFR2	 leads	 to	 receptor	

dimerization	 and	 auto-phosphorylation	 and	 subsequent	 activation	 of	 mitogen-activated	 protein	

kinase	 (MAPK),	 phosphoinositide	3-kinase	 (PI3K)/AKT,	 phospholipase	Cγ	 (PLCγ),	 Src,	 focal	 adhesion	

kinase	(FAK)	and	small	GTPase	downstream	signaling33.	Neuropillin	 (NRP)	1	and	2,	the	co-receptors	

for	 VEGFA,	 facilitate	 VEGFA-induced	 VEGFR2	 signaling	 by	 increasing	 the	 affinity	 to	 VEGFR234.	

However,	NRP1	is	able	to	signal	independently	of	VEGFR235.	VEGFA	also	binds	to	VEGFR1,	which	has	

only	weak	kinase	activity	but	higher	affinity	for	VEGFA	than	VEGFR2.	Hence,	VEGFR1	as	well	as	the	

inactive	 soluble	 isoform	 of	 VEGFR1	 act	 as	 VEGFA	 trap	 antagonizing	 VEGFR2	 signaling36,37.	 While	

VEGFR1	and	VEGFR2	are	predominantly	expressed	 in	EC,	 lymphangiogenesis	 is	mainly	 regulated	by	

VEGFC	binding	to	VEGFR3	and	primarely	expressed	by	lymphatic	EC38.		

The	Notch	pathway	mediates	tip	cell	versus	stalk	cell	fate,	which	is	of	major	importance	for	effective	

sprouting	and	network	formation.	EC	express	four	different	Notch	receptors,	Notch1	to	Notch439,40,	

and	corresponding	Notch	ligands	Delta-like	1	(DLL1),	DLL4,	JAG1	and	JAG241,42.	While	tip	cells	mainly	

express	DLL4,	stalk	cells	express	JAG1.	DLL4	activates	the	Notch	receptor	in	neighboring	cells,	which	

leads	to	the	induction	of	the	stalk	cell	phenotype	by	downregulation	of	VEGFR2	and	upregulation	of	

VEGFR12,43.	JAG1	interacts	with	Notch	receptors	on	tip	cells	to	suppress	the	Notch-induced	stalk	cell	

phenotype	in	tip	cells44.		

The	 Angiopoietin	 (Angpt)/Tie	 system	 is	 another	 important	 signaling	 pathway	 involved	 in	

angiogenesis.	This	signaling	pathway	will	be	discussed	in	more	detail	in	the	next	chapter	1.2.			
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1.2 Angpt/Tie	system	

The	Angpt/Tie	system	is	the	second	major	EC	specific	ligand	receptor	signaling	system.	The	Angpt/Tie	

system	 is	 comprised	 of	 two	 receptor	 tyrosine	 kinases,	 Tie1	 (Tie)	 and	 Tie2	 (Tek),	 and	 four	 Angpt	

ligands;	 Angpt1-Angpt445-49.	 This	 system	 is	 essential	 for	 embryonic	 lymphatic	 and	 cardiovascular	

development50.	 The	 Angpt/Tie	 system	 also	 controls	 postnatal	 angiogenesis,	 vascular	 remodeling,	

vascular	 permeability	 and	 inflammation	 to	 retain	 vessel	 homeostasis	 in	 adult	 physiology1.	

Dysregulation	 of	 the	 Angpt/Tie	 system	 is	 associated	 with	 the	 pathogenesis	 of	 several	 human	

diseases.		

	

1.2.1 Structure	of	Tie	receptors	and	Angpt	ligands		

Tie1	and	Tie2,	whose	acronym	Tie	stands	for	tyrosine	kinase	with	immunoglobin	and	EGF	homology,	

belong	to	a	distinct	family	of	tyrosine	kinase	receptors17,47.	They	are	single	transmembrane	molecules	

with	an	extracellular	 ligand-binding	domain	and	a	split	 intracellular	Tyrosine	kinase	domain	 (Figure	

1).	 Tie1	 and	 Tie2	 show	 a	 high	 degree	 of	 structural	 homology,	 sharing	 33%	 similarity	 in	 their	

extracellular	 domain	 and	 76%	 in	 their	 intracellular	 domain1,17,51.	 The	 extracellular	 domain	 is	

composed	of	two	immunoglobuline	(Ig)-like	domains,	followed	by	three	EGF-like	domains,	a	third	Ig-

like	domain	and	three	fibronectin	type	III	repeats	that	are	adjacent	to	the	transmembrane	domain.	

The	intracellular	domain	harbors	tyrosine	kinase	domains	including	a	number	of	phosphorylation	and	

protein	interaction	sites.	

Angiopoietins	(Angpts)	are	secreted	glycoproteins	that	function	as	ligands	for	Tie21,17,51.	Angpt1	and	

Angpt2	are	the	best	characterized	ligands	for	Tie2	and	share	60%	amino	acid	sequence	homology.	In	

contrast,	 less	 is	 known	about	Angpt3	 (the	mouse	orthologue	of	Angpt4)	 and	Angpt4.	Angpts	 have	

opposing	actions	 in	EC.	While	Angpt1	and	Angpt4	act	as	agonist	of	Tie2,	Angpt2	and	Angpt3	act	as	

context-dependent	 antagonists.	 Structurally,	 angiopoietins	 consist	 of	 an	 N-terminal	 domain	 that	

promotes	 high-order	 clustering	 of	 the	molecules,	 followed	 by	 a	 coiled-coiled	 domain	 required	 for	

multimerization,	a	linker	peptide,	and	a	carboxyl-terminal	fibrinogen	homology	domain	that	contains	

the	Tie2	binding	site	(Figure	1)52,53.	Moreover,	the	short	N-terminal	region	forms	ring-like	structures	

that	 serve	 to	 cluster	 dimers	 into	 variable	 oligomers.	 Electron	 microscopy	 experiments	 of	 Angpt	

proteins	 have	 demonstrated	 that	 Angpt1	 and	Angpt2	 form	heterogenous	multimers	with	 trimeric,	

tetrameric	and	pentameric	oligomers1.	Angpt1	primarily	forms	tetramer	or	higher	order	multimers54,	

whereas	Angpt2	exists	mostly	as	dimers1,2,51.	The	oligomerization	status	of	these	ligands	may	have	a	

direct	functional	 impact	on	the	receptor	binding	and	activation.	 In	particular,	multimeric	structures	

of	Angpt1	can	bind	to	both	ligand-binding	sites	of	extracellular	Tie2	homodimers	and	in	turn	induce	

potent	Tie2	receptor	activation55.	On	the	other	hand,	Angpt2	dimers	fail	to	bridge	the	receptors	and	

therefore	 limit	 dimerization	 and	 Tie2	 receptor	 activation.	 Hence,	 Angpt2	 acts	 as	 antagonist	 of	

Angpt1-mediated	Tie2	signaling.	However,	it	can	also	act	as	partial	agonist55.		
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Figure	1.	Structure	of	Tie	receptors	and	angiopoietins	
A,	The	Tie	receptors	are	transmembrane	receptor	Tyr	kinases,	sharing	a	similar	overall	domain	structure.	Their	
extracellular	ligand-binding	domain	consist	of	two	immunoglobuline	(Ig)-like	domains,	followed	by	three	EGF-
like	domains,	a	 third	 Ig-like	domain	and	three	 fibronectin	 type	 III	 repeats.	The	carboxy-	 terminal	 intracellular	
domain	 is	 composed	of	a	 split	Tyrosine	kinase	domain.	 B,	The	Angpt	 ligands	are	 secreted	glycoproteins	 that	
comprise	of	an	amino-terminal	coiled-coiled	domain	and	a	carboxyl-terminal	fibrinogen	homology	domain.	Ang	
ligand-monomers	oligomerize	via	the	parallel	coiled-coil	domain	and	the	superclustering	domain	to	form	higher	
order	multimers.	Angpt1	primarily	forms	tetramer	or	higher	order	multimers,	whereas	Angpt2	exists	mostly	as	
dimers.		

	

1.2.2 Expression	of	Tie	receptors	and	Angpt	ligands	

The	Tie	 receptors	are	almost	exclusively	expressed	by	blood	vascular	and	 lymphatic	EC50.	 Tie1	and	

Tie2	are	ubiquitously	expressed	 in	EC	during	embryonic	development56,57.	Tie2	expression	was	 first	

detected	 in	EC	at	E7.5	and	continues	 to	be	expressed	 in	 these	cells	 throughout	development.	Tie1	

expression	 is	 detected	 at	 a	 slightly	 later	 embryonic	 day	 E8.058.	 Tie2	 plays	 important	 roles	 during	

vascular	 development,	 remodeling	 and	maturation1.	 It	 exerts	 its	 angiogenesis-regulating	 functions	

through	its	EC-specific	expression.	Yet,	Tie2	is	not	exclusively	expressed	by	EC.	Hematopoietic	stem	

cells	 (HSC)	express	Tie2	controlling	HSC	dormancy59,60.	Tie2	 is	also	expressed	by	a	subpopulation	of	

monocytes,	 which	 exert	 important	 pro-tumorigenic	 functions61-64.	 Moreover,	 Tie2	 has	 been	

suggested	to	control	satellite	cell	function65,	neural	cell	behaviour66,	and	growth-promoting	functions	

of	tumor	cells67,68.	Recently,	pericyte-expressed	Tie2	has	been	shown	to	regulate	vessel	maturation69.	

In	 the	 adult	 endothelium,	 Tie2	 is	 uniformly	 expressed	 and	 constitutively	 activated	 in	 stalk	 and	

phalanx	cells.	However,	it	is	transcriptionally	downregulated	following	EC	activation	in	sprouting	tip	

cells1,70.	 Moreover,	 Tie2	 cell	 surface	 presentation	 in	 tip	 cells	 is	 counter-regulated	 by	 Tie1	

expression71.		

Tie1	 remains	 an	 orphan	 receptor	without	 any	 specific	 ligand.	 Yet,	 studies	 have	 reported	 that	 Tie1	

heterodimerizes	 with	 Tie2,	 upon	 Angpt1	 stimulation,	 and	 in	 turn	 regulates	 its	 activity72-74.	 In	

particular,	the	agonistic	actions	of	Angpt1	and	Angpt2	promote	a	direct	interaction	of	Tie1	and	Tie2,	

which	 is	 mediated	 by	 integrin	 β175.	 Tie1	 expression	 has	 also	 been	 detected	 in	 megakaryocytes,	

hematopoietic	stem	cells	and	osteoblast	in	the	bone	marrow	niche1,76.	
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The	Angpt	ligands	have	a	distinct	expression	pattern.	Angpt1	is	critical	for	cardiac	development	and	

for	 correct	 organization	 and	maturation	of	 newly	 formed	 vessels.	 Following	 maturation,	 Angpt1	

maintains	the	quiescence	and	stability	of	the	mature	vasculature.	Angpt1	is	abundantly	expressed	in	

the	 myocardium,	 while	 Tie2	 is	 expressed	 in	 the	 developing	 epicardium	 and	 endocardium	 during	

cardiac	development77.	Myocardial	Angpt1	mediates	the	developing	epicardium	and	endocardium	in	

a	paracrine	manner77.	Furthermore,	Angpt1	 is	expressed	by	perivascular	cells	 (pericytes,	VSMC	and	

fibroblast)	 as	 well	 as	 tumor	 cells78,79.	 In	 healthy	 adults,	 Angpt1	 is	 constitutively	 produced	 and	

released	by	mural	cells	and	activates	Tie2	receptor	in	a	paracrine	manner.	Unlike	Angpt2,	Angpt1	is	

incorporated	 into	 the	 ECM	 through	 its	 linker	 peptide	 region80.	 In	 contrast,	 the	 autocrine-acting	

Angpt2,	 is	 produced	 in	 EC,	 stored	 in	 the	Weibel-Palade	bodies	 and	 interferes	 antagonistically	with	

constitutive	 Angpt1/Tie2	 signaling	 to	 destabilize	 the	 endothelium	 and	 prime	 it	 to	 respond	 to	

exogenous	 cytokines81.	However,	 as	 a	partial	 agonist,	Angpt2	has	 also	been	 shown	 to	 contextually	

activate	Tie2	either	 in	 the	absence	of	Angpt1	or	 in	 stressed	EC82-84.	Under	physiological	 conditions,	

Angpt2	 expression	 is	 restricted	 to	 sites	 of	 vascular	 remodeling	 (e.g.	 placenta,	 ovaries	 and	 uterus).	

However,	Angpt2	expression	is	dramatically	increased	in	many	inflammatory	and	angiogenic	diseases	

such	as	 tumor	angiogenesis,	malaria	and	sepsis85.	Angpt2	 is	 rapidly	 released	 from	the	endothelium	

upon	 inflammatory	 stimuli,	 providing	 fast	 responses	 to	 inflammation,	 permeability	 and	

coagulation86,87.	 Numerous	 factors	 like	 shear	 stress,	 VEGF	 and	 hypoxia	 transcriptionally	 regulate	

Angpt2	expression.	Importantly,	laminar	flow	regulated	transcription	factor	(TCF)	kruppel-like	factor	

2	(KLF2)	negatively	regulates	Angpt2	expression,	which	contributes	to	endothelial	quiescence88.		

	

1.2.3 Angpt/Tie	system:	Loss-and	gain-of	function	studies	

Several	 studies	 have	 demonstrated	 the	 functional	 role	 of	 the	 Angpt/Tie	 system	 through	 the	

generation	 of	 knockout	 (KO)	 and	 overexpression	mice	 for	 Angpt	 ligands	 and	 Tie	 receptors.	 These	

studies	 have	 highlighted	 the	 important	 biological	 functions	 of	 Tie1	 and	 Tie2	 receptors	 as	 well	 as	

Angpt1	and	Angpt2	during	physiological	angiogenesis.	

Tie2	deficiency	leads	to	embryonic	lethality	and	the	mice	die	between	E10.5	and	12.5	due	to	severe	

cardiac	defects,	hemorrhage	and	other	vascular	defects89,90.	 These	mice	proceed	 through	 the	early	

steps	 of	 primary	 capillary	 plexus	 formation.	 However,	 the	 plexus	 fails	 to	 remodel	 or	 mature	 and	

remains	 poorly	 organized	 with	 fewer	 EC	 and	 branches89.	 Additionally,	 Tie2-deficient	 mice	 show	 a	

pronounced	lack	of	pericytes	and	VSMC89.	Further	studies	have	demonstrated	that	Tie2	also	plays	an	

essential	 role	 in	hematopoiesis	and	cardiac	development91.	By	contrast,	a	constitutively	active	Tie2	

mutant,	 resulting	 from	a	missense	mutation	 in	 the	 kinase	domain	of	 the	 receptor	 tyrosine	 kinase,	

causes	venous	malformations	with	enlarged	veins,	pronounced	EC	proliferation,	and	irregular	VSMC	

coverage92.	 Moreover,	 overexpression	 of	 Tie2	 in	 EC	 and	 keratinocytes	 causes	 a	 psoriasis-like	

phenotype	characterized	by	epidermal	hyperplasia,	altered	dermal	angiogenesis	and	inflammation93.		

Tie1-deficient	 embryos	 show	 no	 significant	 perturbations	 in	 the	 initial	 steps	 of	 developmental	

angiogenesis,	but	they	die	between	E13.5	and	postnatal	day	1	(P1)	due	to	loss	of	EC	integrity	thereby	

resulting	in	edema	and	hemorrhage90,94.	Unlike	Tie2-deficient	mice,	hematopoiesis	is	not	disturbed	in	
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Tie1-deficient	mice95.	 The	 double	 KO	of	 Tie1	 and	 Tie2	 resembles	 the	 phenotype	 observed	 in	 Tie2-

deficient	mice,	highlighting	the	essential	role	of	Tie2	in	the	endocardium94.		

Angpt1-deficient	 mice	 phenocopy	 Tie2-deficient	 mice	 and	 gene	 targeting	 of	 Angpt1	 leads	 to	

embryonic	 lethality	 at	 E12.577.	 These	 mice	 have	 growth-retarded	 hearts	 with	 poorly	 developed	

ventricular	 trabeculae.	The	endocardium	 is	 retracted	 from	the	myocardial	wall	and	 the	endothelial	

lining	 in	 the	atria	 is	 collapsed.	Moreover,	 the	atria	display	a	 lack	of	 trabeculae.	 The	 importance	of	

Angpt1	 during	 heart	 development	 was	 further	 demonstrated	 by	 Angpt1	 gain-of-function	 studies.	

Myocardial	overexpression	of	Angpt1	led	in	90%	of	the	cases	to	embryonic	 lethality	between	E12.5	

and	E15.5	as	a	result	of	cardiac	haemorrhage96.	The	remaining	ten	percent	of	the	mice	survives	with	

cardiac	hypertrophy	and	a	dilated	right	atrium.	Thus,	Angpt1	overexpression	has	a	dramatic	 impact	

on	 early	 heart	 development.	 Furthermore,	 Angpt1-deficient	 mice	 also	 exhibit	 defects	 in	 vascular	

development.	 The	 mice	 show	 a	 poorly	 formed	 and	 less	 complex	 vascular	 network	 and	

periendothelial	 cells	 appear	 to	be	dissociated	 from	endothelial	 cells77.	However,	 overexpression	of	

Angpt1	 in	 the	 skin	 leads	 to	 hypervascularization	 with	 larger,	 highly	 branched	 vessels,	 which	 are	

excessively	covered	by	pericytes97	and	decreased	vessel	permeability98.		

Angpt2-deficient	mice	are	born	phenotypically	normal,	but	develop	chylous	ascites	soon	after	birth99,	

suggesting	 that	 Angpt2	 is	 dispensable	 for	 normal	 embryonic	 development.	Nevertheless,	 the	mice	

show	defects	in	vascular	sprouting	and	remodeling	during	postnatal-retinal	angiogenesis	with	a	lack	

of	hyaloid	vessel	regression99.	Furthermore,	depending	on	the	genetic	background,	Angpt2-deficient	

mice	have	defects	in	their	lymphatic	vasculature99.	Angpt2	overexpression,	on	the	other	hand,	leads	

to	 mid-gestational	 lethality	 similar	 to	 Angpt1	 and	 Tie2-deficiency,	 supporting	 the	 antagonistic	

function	of	Angpt2	on	Angpt1/Tie2	signaling100.	

In	summary,	Angpt/Tie	system	acts	as	a	gatekeeper	to	control	the	quiescent	EC	phenotype	in	adults	

and	plays	a	key	role	in	remodeling	and	maturation	of	blood	vessels	during	active	angiogenesis.		

	

1.2.4 Angpt1-induced	Tie2	signaling	

In	the	quiescent	adult	endothelium,	Angpt1	is	constitutivily	secreted	by	mural	cells	and	binds	to	Tie2	

receptor	 thereby	 inducing	 its	dimerization	and	phosphorylation.	Angpt1-bound	Tie2	 is	 translocated	

to	cell-cell	junctions	and	forms	trans-endothelial	complexes	with	other	Tie2	molecules	from	adjecent	

EC	(Figure	2).	Tie2	activation	by	Angpt1	leads	to	the	recruitment	of	adaptor	proteins	such	as	growth	

factor	 receptor-bound	protein	 2	 (GRB2),	 and	 the	p85	 regulatory	 subunit	 PI3K,	which	 subsequently	

activates	 the	 AKT	 pathway1,101-104.	 AKT	 signaling,	 in	 turn,	 activates	 survival-promoting	 pathways	

including	 endothelial	 nitric	 oxide	 synthase	 (eNOS)	 and	 survivin,	 while	 suppressing	 pro-apoptotic	

molecules	 such	 as	 Bad	 and	 caspase	 9.	 Furthermore,	 Angpt1/Tie2-mediated	 AKT	 signaling	 also	

represses	 Angpt2	 expression	 by	 phosphorylation	 of	 the	 TCF	 forkhead	 box	 protein	 O1	 (FOXO1)	

resulting	in	its	nuclear	exclusion,	ubiquitination	and	degradation105.		

In	 contrast,	 inhibition	 of	 the	 AKT	 survival	 pathway	 activates	 FOXO1	 and	 promotes	 its	 nuclear	

translocation,	which	 leads	 to	 increased	 production	 of	 Angpt2	 and	 consequently	 drives	 endothelial	
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destabilization106.	 Thus	 Angpt1/Tie2	 signaling	 controls	 the	 quiescent	 endothelium	 by	 negatively	

regulating	 Angpt2	 expression.	 Angpt1-induced	 Tie2	 is	 also	 directly	 involved	 in	 limiting	 EC	

permeability	 by	 mediating	 the	 sequestering	 of	 the	 non-receptor	 Tyr	 kinase	 Src107.	 Moreover,	 the	

formation	 of	 Tie2	 trans-complexes	 at	 cell-cell	 junctions	 is	 accompanied	 by	 vascular	 endothelial	

phosphoTyr	 phosphatase	 (VE-PTP),	 which	 signals	 via	 AKT	 to	 eNOS	 thereby	 inhibiting	 paracellular	

permeability.	 Conversely,	 in	 non-resting	 EC	 (in	 the	 absence	 of	 EC	 junctions),	 Angpt1	 controls	 EC	

migration	and	proliferation.	This	process	seems	to	be	dependent	on	the	receptor	presentation	on	the	

cell	 surface.	 In	 particular,	 Angpt1-mediates	 translocation	 of	 Tie2	 to	 cell-substratum	 contacts,	

triggering	DOK-R,	ERK1/2	and	FAK	signaling,	which	are	all	involved	in	EC	migration108.	Lastly,	Angpt1-

induced	Tie2	stimulation	exerts	anti-inflammatory	effects	via	the	recruitment	of	intracellular	protein	

ABIN2,	which	interferes	with	the	nuclear	factor	κB	(NF-κB)	pathway109,110.	

	

	
Figure	2.	Angiopoietin-Tie	signaling	in	resting	endothelial	cells	
Angpt1	mediated	phosphorylation	of	Tie2	leads	to	translocation	of	Tie2	to	inter-endothelial	cell	junctions.	Tie2	
trans-complexes	 are	 established	by	Angpt1,	which	 also	 contains	VE-PTP.	Angpt1-induced	phosphorylation	of	
Tie2	leads	to	the	recruitment	of	adaptor	proteins,	such	as	GRB2	and	the	p85	regulatory	subunit	PI3K	resulting	
in	 the	 activation	 of	 AKT	 signaling.	 AKT	 activates	 survival-promoting	 pathways	 while	 suppressing	 apoptotic	
genes.		

	

The	Angpt1/Tie2	signaling	pathway	is	involved	in	the	recruitment	of	mural	cells,	which	surround	the	

vessel	wall	and	play	an	important	role	 in	vessel	maturation,	stabilization	and	quiescence.	However,	

the	mechanism	involved	in	the	recruitment	of	mural	cells	remains	poorly	understood.	One	possible	

mechanims	of	mural	cell	recruitment	is	via	heparin	binding	EGF-like	growth	factor	(HB-EGF).	HB-EGF	

expression	in	EC	is	upregulated	by	Angpt1-mediated	Tie2	signaling,	albeit	only	in	close	contact	with	

mural	 cells.	 Consequently,	 HB-EGF-mediated	 receptor	 activation,	 through	 the	 epidermal	 growth	

factor	 receptors	 ERBB1	 and	 ERBB2,	 induces	 VSMC	 migration111.	 There	 is	 also	 evidence	 that	

hepatocyte	growth	factor	(HGF)	leads	to	Angpt1-mediated	VSMC	recruitment	to	the	endothelium112.	

In	 addition,	 serotonin	 has	 also	 been	 implicated	 to	 play	 a	 role	 in	 Angpt1/Tie2-mediated	 VSMC	
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recruitment	 to	 the	 vasculature113.	 In	 contrast,	 transforming	 growth	 factor	 beta	 (TGFβ)-mediated	

downregulation	of	Angpt1	is	required	for	VSMC	differentiation	and	to	restore	the	vasculature	in	 its	

quiescent	state114.	Up	to	date,	no	molecular	evidence	has	been	established	for	a	possible	crosstalk	

between	 the	 Angpt1/Tie2	 and	 platelet	 derived	 growth	 factor	 b	 (PDGFB)/platelet	 derived	 growth	

factor	receptor	β	(PDGFRβ)	pathway.		

Angpt1	 signaling	 has	 also	 been	 described	 to	 exert	 its	 functions	 independent	 of	 Tie2.	 It	 stimulates	

fibronectin	production	via	astrocyte-expressed	αvβ5	intergrin,	thereby	promoting	EC	migration	in	the	

developing	 retinal	 vasculature115.	 In	 EC,	 αvβ5	 intergrin	 is	 crucial	 for	 Angpt1-induced	 formation	 of	

Tie1-Tie2	 receptor	 complexes	 at	 the	 EC-EC	 junctions	 as	 well	 as	 Tie2	 phosphorylation	 and	

downstream	FOXO1	phoshorylation75.	

	

1.2.5 Angpt2-mediated	Tie2	signaling:	Agonist	vs.	antagonist	paradox	

As	 opposed	 to	 Angpt1,	 Angpt2-mediated	 Tie2	 signaling	 promotes	 vessel	 destabilization,	 sprouting	

angiogenenesis,	 remodeling	 and	 vessel	 regression87.	 In	 the	 prescence	 of	 proangiogenic	 stimuli,	

Angpt2	binds	to	Tie2	and	exerts	antagonistic	effects	by	blocking	the	ability	of	Angpt1	to	activate	Tie2	

in	EC100.	However,	in	the	abscence	of	pro-angiogenic	stimuli	Angpt2	contributes	to	vessel	regression.	

Angpt2-mediated	 vessel	 stabilization	 induces	 complex	 formation	 between	 Tie2,	 αvβ3	 and	 FAK	

followed	by	internalization	and	degradation	of	αvβ3,	which	primes	EC	for	apoptosis92.	Nevertheless,	

in	 stressed	 EC	 Angpt2	 has	 been	 reported	 to	 function	 as	 Tie2	 agonist81,82,102.	 Angpt2	 production,	

rapidly	 induced	 by	 FOXO1,	 can	 activate	 Tie2/AKT	 signaling,	 which	 leads	 to	 the	 negative	 feedback	

regulation	 of	 FOXO1-mediated	 transcription	 and	 apoptosis.	 Correspondingly,	 Angpt2	 has	 been	

reported	to	play	a	protective	role	in	tumor	endothelial	cells116.	Other	studies	have	shown	that	Angpt2	

overexpression	 (using	 different	 administration	 methods)	 reduced	 atherosclerosis	 progression	 in	

Apolipoprotein	E	KO	 (ApoEKO)	mice117,118.	More	 recent	 studies	have	underlined	 the	agonistic	 versus	

antagonistic	role	in	basal	and	inflammatory	conditions75,84.	In	pathogen-free	conditions,	Angpt2	acts	

as	a	Tie2	agonist	and	promotes	high	phosphorylation	of	Tie2,	 low	nuclear	FOXO1	activation	and	no	

leakage.	 The	 agonistic	 action	 of	 Angpt2	 on	 Tie2	 requires	 the	 presence	 of	 Tie1.	 In	 contrast,	 upon	

inflammation,	 the	 cleavage	 of	 Tie1	 prevents	 Angpt2	 agonistic	 activity	 and	 instead	 favors	 Angpt2	

antagonism	 of	 Tie2	 and	 thereupon	 vessel	 destabilization75,84.	 Thus,	 like	 Angpt1,	 Angpt2-mediated	

Tie2	 signaling	 stabilizes	 the	 vasculature	 under	 physiological	 conditions,	 whereas	 Angpt2	 promotes	

vessel	destabilization	and	remodeling	in	pathological	settings.		

Angpt2	is	also	known	to	exert	vascular	effects	in	a	Tie2-independent	manner.	Endothelial	tip	cells	of	

sprouting	vessels	express	high	levels	of	Angpt2	and	integrins	and	low	levels	of	Tie270,119.	In	this	Tie2-

low	scenario,	Angpt2	binds	to	αvβ3,	αvβ5	and	α5β1	integrins	and	stimulates	FAK	phosphorylation	on	

Tyr	 397	 via	 integrins,	 thereby	 promoting	 cell	 migration	 and	 sprouting	 angiogenesis	 at	 the	 tip	 cell	

front	via	Rac	activation70.	Angpt2	also	plays	a	central	role	in	promoting	pericyte	dropout	in	diabetic	

mouse	retina,	associated	with	loss	of	integrity	of	the	retinal	vasculature,	endothelial	hyperplasia	and	

increased	 vascular	 permeability120,121.	 Correspondingly,	 Angpt2	 is	 described	 to	 induce	 pericyte	

apoptosis	via	α3β1	integrin	under	high	glucose	conditions121.		
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1.3 Vascular	smooth	muscle	cells		

In	1967,	Robert	Wissler	postulated	 that	VSMC	of	 the	arterial	media	 represent	a	 single	 cell	 type122.	

Before	this	time,	many	histology	textbooks	stated	that	both	VSMC	and	fibroblast	exist	in	the	arterial	

media.	Yet,	it	was	already	in	1960	that	Pease	and	Paule	provided	evidence	for	this	unicellular	concept	

using	electron	microscopy123.	VSMC	are	highly	specialized	and	differentiated	cells	in	adult	mammals.	

They	 are	 located	 in	 the	wall	 of	 larger	 vessels	 and	 their	main	 function	 is	 to	 regulate	 vascular	 tone	

thereby	controlling	blood	pressure	and	blood	flow.	Under	healthy	vascular	physiology,	VSMC	exhibit	

a	quiescent	contractile	phenotype	characterized	by	an	unique	repertoire	of	contractile	VSMC-specific	

markers	and	an	extremely	low	synthetic	activity	and	proliferation	rate124-126.	Like	pericytes,	VSMC	are	

classified	 as	 mural	 cells	 because	 of	 their	 perivascular	 basal	 membrane	 embedded	 position127.	

Moreover,	 both	 cell	 types	are	 involved	 in	 the	 formation	and	 stabilization	of	mature	blood	vessels,	

thereby	maintaining	vessel	integrity.	Although	VSMC	and	pericytes	are	distinct	cell	types,	they	show	

overlapping	similarities	in	origin,	location,	marker	expression	and	function.		

	

1.3.1 Origin	

VSMC	 progenitors	 originate	 from	 different	 embryonic	 sources	 including	 neural	 crest,	 somatic	

mesoderm	(lateral	plate	mesoderm	derivative),	proepicardium	(lateral	plate	mesoderm	derivative),	

splanchnic	mesoderm,	and	other	embryonic	cell	types.	As	such,	the	variation	in	VSMC	population	can	

in	 part	 be	 explained	 by	 the	 diverse	 embryological	 origins	 of	 VSMC128,129.	 VSMC	 of	 the	 ascending	

aorta,	 the	 aortic	 arch,	 and	 pulmonary	 trunk	 are	 neural	 crest-derived130,	 whereas	 VSMC	 of	 the	

descending	aorta	arise	from	somatic	mesoderm131.	Coronary	VSMC	have	been	reported	to	originate	

from	progenitors	 found	 in	 the	 proepicardium132.	 Furthermore,	 VSMC	at	 the	 base	 of	 the	 aorta	 and	

pulmonary	trunk	develop	from	the	second	heart	field133,134.	Other	VSMC	precursors	such	as	Nkx2.5+	

and	 IsI1+	 cardiovascular	 progenitors	 are	 able	 to	 differentiate	 into	 mature	 VSMC135.	 Moreover,	

pericytes	 have	 been	 described	 to	 differentiate	 into	 VSMC	 or	 vice	 versa	 during	 vessel	 growth	 and	

remodeling.	 Finally,	 Sca1+	 and	 Flk1+	 progenitor	 cells	 have	 also	 been	 shown	 to	 differentiate	 into	

VSMC	via	PDGFRβ-mediated	signaling136	and	culture	on	collagen	IV137,138.		

	

1.3.2 Location	and	morphology	

The	 distribution	 of	 VSMC	 in	 the	 vessel	 wall	 is	 not	 stochastic.	 Large	 vessels,	 like	 the	 aorta,	 have	

multiple	 layers	 of	 VSMC	 intertwined	 with	 an	 elaborate	 elastin	 and	 collagen-based	 matrix	 that	 is	

required	 to	 withstand	 the	 higher	 blood	 pressure	 of	 the	 circulatory	 system127.	 Veins,	 on	 the	 other	

hands,	serve	as	a	low-pressure	reservoir,	are	irregularly	covered	by	VSMC	and	pericytes,	facilitate	the	

return	of	blood	from	the	organs	and	contain	valves	to	prevent	the	backflow	of	blood.	The	smallest	

vessels,	 the	capillaries,	have	 limited	pericyte	coverage,	with	EC	that	are	highly	permeable,	 to	allow	

gas	 exchange	 and	 nutrient	 delivery	 to	 cells	 via	 tiny	 pores	 or	 fenestrations6,10.	 Nevertheless,	 the	

differential	distribution	of	pericytes	and	VSMC	is	not	absolute.	Mural	cells	that	share	characteristics	
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with	both	VSMC	and	pericytes	have	been	reported	to	cover	intermediate-size	vessels,	arterioles	and	

venules127,139,140.	

VSMC	 are	 heterogeneous	 and	 exhibit	 distinct	 morphological	 and	 functional	 properties	 within	 the	

same	blood	vessel,	as	well	as	in	different	types	of	vessels,	e.g.	arteries	and	veins141-145.	Unlike	skeletal	

or	 cardiac	 muscle	 cells,	 VSMC	 are	 not	 terminally	 differentiated	 and	 exhibit	 a	 diversity	 of	 VSMC	

phenotypes	 ranging	 from	 a	 contractile	 to	 a	 synthetic	 phenotype.	 Environmental	 cues,	 including	

biochemical	factors,	ECM	components	and	physical	forces	(stretch	and	shear	stress)	modulate	VSMC	

phenotype	 from	a	contractile	 to	a	 synthetic	 (proliferative)	 state,	or	vice	versa,	a	process	known	as	

phenotypic	 modulation/switching.	 Due	 to	 phenotypic	 switching,	 synthetic	 VSMC	 can	 take	 part	 in	

long-term	maintenance	 and	 vascular	 repair,	 while	 contractile	 VSMC	 are	 the	major	 phenotype	 for	

short-term	regulation	of	the	vessel	diameter.	As	such,	this	plasticity	of	VSMC	could	be	regarded	as	a	

survival	 advantage,	 which	 enables	 blood	 vessels	 to	 withstand	 changes	 in	 the	 circulatory	 system.	

Contractile	 or	 differentiated	VSMC	 are	 characterized	 by	 an	 elongated	 spindle-shaped	morphology,	

with	a	high	concentration	of	contractile	filaments	and	a	low	proliferation	rate	(Figure	3).	Moreover,	

these	cells	display	 increased	expression	of	contractile	VSCM	markers,	collagen	 I	and	 IV	and	several	

integrin’s	 such	 α1β1	 and	 α7β1,	 which	 all	 contribute	 to	 the	 quiescent	 contractile	 phenotype	 of	

VSMC125,126,145.	 Synthetic	 VSMC,	 on	 the	 other	 hand,	 acquire	 a	 rhomboid	 morphology	 and	 display	

decreased	 expression	 of	 contractile	 VSMC	 markers	 with	 concomitant	 increase	 in	 synthetic	 VSMC	

markers	 (Figure	 3).	 Other	 characteristics	 of	 synthetic	 VSMC	 include	 increased	 proliferative	 and	

migratory	 activity,	 increased	 ECM	 deposition,	 increased	 cell	 size	 and	 increased	 expression	 of	

α4β1125,126,145.	 VSMC	 undergoing	 phenotypic	 switching	 can	 also	 acquire	 macrophage	 markers	 and	

properties.		

	

	
Figure	3.	Phenotypic	modulation	of	VSMC	
Contractile	 VSMC	 are	 characterized	 by	 an	 elongated	 spindle-shape	 morphology,	 a	 low	 prolifertation	 rate,	
increased	expression	of	contractile	VSMC	markers,	collagens	(I	and	IV)	and	integrins	(α1β1	and	α7β1).	Synthetic	
VSMC	 exhibit	 a	 rhomboid	 morphology	 and	 these	 cells	 lose	 the	 expression	 of	 contractile	 VSMC	 marker	
expression	 while	 expressing	 synthetic	 VSMC	 markers.	 These	 cells	 also	 display	 increased	 proliferative	 and	
migratory	activity,	increased	ECM	deposition	includings	MMPs	and	increased	expression	of	α4β1	integrin.	
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1.3.3 Molecular	signature	of	VSMC	

Since	there	is	no	definitive	marker	for	VSMC,	a	large	repertoire	of	VSMC-selective	marker	genes	are	

available	to	characterize	VSMC	differentiation124-126,146.	PDGFRβ	is	a	well-established	receptor	marker	

for	 mural	 cells,	 which	 include	 VSMC.	 VSMC-contraction	 markers	 include	 myosin	 heavy	 chain	 11	

(MYH11),	myosin	 light	chain	9	 (MYL9)	and	tropomyosin	1	 (TPM1).	 In	addition,	differentiated	VSMC	

express	a	number	of	proteins	that	are	part	of	the	cytoskeleton	and	are	involved	in	the	regulation	of	

the	differentiated	VSMC	phenotype	such	as	alpha	smooth	muscle	actin	2	(αSMA/ACTA2),	smoothelin	

(SMTN),	 transgelin	 (SM22α/TAGLN),	 calponin	 (CNN1),	 caldesmon	 (CALD1).	 Most	 of	 the	 VSMC	

markers,	except	MYH11,	can	also	be	expressed	in	non-VSMC	under	certain	conditions.	In	particular,	

MYH11	 is	 the	 only	 marker	 protein	 that	 is	 VSMC-specific	 during	 embryogenesis124,126,147.	 Thus,	 a	

combination	 of	 several	 VSMC	 markers	 is	 state-of-the-art	 to	 identify	 VSMC.	 Furthemore,	 myosin	

heavy	chain	10	(MYH10),	retinol-binding	protein	1	(RBP1),	vimentin	(VIM),	matrix	g1a	protein	(MGP)	

and	tropomyosin	4	(TPM4)	are	described	as	suitable	synthetic	VSMC	markers	since	these	proteins	are	

markedly	 upregulated	 in	 proliferating	VSMC148,149.	 As	 such,	 assessment	 of	 the	 differentiated	VSMC	

phenotype	depends	on	the	analysis	of	multiple	marker	genes,	including	the	analysis	of	proliferation	

marker	 genes.	 Yet,	 it	 has	 been	 reported	 that	 differentiation	 and	 proliferation	 are	 not	 necessarily	

mutually	 exclusive	 and	 other	 factors	 than	 the	 VSMC	 proliferation	 status	 may	 influence	

differentiation126,150.	

	

PDGFRβ	

PDGFRβ	 is	an	essential	 receptor	expressed	 in	VSMC.	The	 interplay	of	PDGFB,	expressed	by	EC,	and	

PDGFRβ,	 expressed	 on	 mural	 cells,	 is	 an	 important	 process	 for	 mural	 cell	 recruitment	 during	

angiogenesis16,151-154.	 KO	 of	 PDGFB-	 and	 PDGFRβ	 leads	 to	 mural	 cell	 deficiency	 and	 embryonic	

lethality155-157.	 PDGFRβ	 is	 expressed	 by	mesenchymal	 cells,	myofibroblasts,	 pericytes	 and	 neuronal	

progenitor	cells157,158.	Despite	the	fact	that	PDGFRβ	is	expressed	by	other	cells,	 it	 is	considered	as	a	

suitable	marker	for	mural	cells.		

	

αSMA	

αSMA	 is	a	contractile	protein	of	 the	cell	 cytoskeleton.	 It	 is	mainly	expressed	 in	smooth	muscle	cell	

lineages	and	myofibroblasts159.	αSMA	was	first	detected	in	the	heart	at	E8.0	and	gradually	decreased	

after	E10.5160.	Its	expression	was	detected	in	skeletal	muscle	at	9.5	and	gradually	increased	to	a	high	

level	 by	 E15.5.	 Furthermore,	αSMA	expression	 is	 also	 expressed	 in	VSMC	between	E9.5	 and	E10.5	

and	 continues	 to	 be	 expressed	 into	 adulthood.	 αSMA	 is	 the	 first	 known	 marker	 of	 VSMC	

differentiation	during	development,	 and	 is	highly	 selective	 for	mature	VSMC	or	VSMC-related	cells	

such	as	pericytes161,162.	Moreover,	 it	 is	 involved	in	the	regulation	of	vascular	contractility	and	blood	

pressure163.	 αSMA	 is	 by	 far	 the	 single	most	 abundant	 protein	 in	mature	 fully	 differentiated	 VSMC	

making	up	to	40%	total	cell	protein	and	over	70%	of	the	total	actin164.		
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SM22α/TAGLN	

SM22α,	 like	αSMA,	 is	part	of	the	cell	cytoskeleton	and	 is	abundantly	expressed	 in	VSMC.	 It	 is	a	22-

kDa	calponin-related	protein	that	interacts	with	other	contraction-associated	proteins	such	as	F-actin	

and	tropomyosin165,166.	SM22α	is	considered	to	be	a	VSMC-specific	protein	and	is	one	of	the	earliest	

markers	of	differentiated	VSMC.	However,	its	expression	has	also	been	shown	in	a	portion	of	myeloid	

cells	 including	neutrophils,	monocytes	and	macrophages	(MΦ)167.	SM22α	is	known	to	co-localize	to	

actin	filament	bundle	and	stress	fibers168.	Moreover,	purified	SM22α	protein	can	even	bind	directly	

to	 actin	 filaments	 at	 a	 ratio	 of	 1:6	 actin	monomers,	 suggesting	 that	 it	may	 serve	 to	 organize	 the	

spatial	relationships	of	actin	filaments	in	VSMC166,169,170.	Correspondingly,	SM22α	gene	expression	is	

dramatically	 downregulated	 when	 VSMC	 acquire	 a	 synthetic	 phenotype,	 which	 also	 involves	

cytoskeletal	 rearrangements171,172.	 There	 is	 also	 evidence	 that	 SM22α	 mediates	 calcium	 (Ca2+)-

independent	vascular	contractility173.	During	embryonic	development,	SM22α	is	expressed	in	VSMC	

at	E9.5	and	continues	to	be	expressed	in	all	SMC	into	adulthood160.	SM22α	is	also	expressed	in	the	

heart	and	skeletal	muscle	in	the	early	stages	of	development,	however	only	transiently	between	E8.0	

and	E12.5.		

	

MYH11	

MYH11,	also	known	as	smooth	muscle	myosin	heavy	chain	(SMMHC),	is	a	smooth	muscle	myosin	that	

belongs	to	the	myosin	heavy	chain	family174.	It	is	a	major	component	of	the	contractile	apparatus	in	

VSMC	involved	in	VSMC	contraction	and	the	conversion	of	chemical	energy	into	mechanical	energy	

via	ATP	hydrolysis174.	Unlike	αSMA	and	SM22α,	MYH11	is	expressed	in	VSMC	at	a	later	stage	during	

embryonic	development,	E10.5,	and	is	not	expressed	in	cardiac	or	skeletal	muscle	cells147,160.		

	

1.3.4 Endothelial-VSMC	interaction	

The	 interaction	between	EC	and	VSMC	 is	essential	 for	maintaining	vascular	 tone	 in	mature	vessels.	

Communication	 between	 the	 two	 cell	 types	 is	 critical	 during	 embryonic	 development	 and	 for	

physiological	angiogenesis	in	the	adult,	which	is	required	for	tissue	repair	and	remodeling	processes.	

During	 late	embryonic	development,	 the	 formation	of	mature	 and	 fully	 functional	 vessels	 requires	

the	 recruitment	and	differentiation	of	VSMC,	which	 is	 tightly	 regulated	by	growth	 factor	 gradients	

and	 tissue	hypoxia175-177.	 In	mature	 vessels,	 developmental	 signals	 continue	 to	 be	 required	 for	 the	

maintanance	 of	 blood	 vessels,	 but	 additional	 communication	 also	 takes	 place	 to	 regulate	 vascular	

tone	 and	 blood	 pressure178,179.	 There	 are	 several	 key	 regulators	 involved	 in	 EC	 and	 VSMC	

communication	and/or	VSMC	differentiation,	which	can	be	devided	into	two	categories:	i)	those	that	

demand	physical	contact	between	the	two	cell	types	(e.g.	gap	junctions,	myoendothelial	 junctions),	

and	ii)	those	that	occur	via	a	soluble	or	secreted	molcule	(e.g.	PDGFB,	TGFβ,	Angiotensin	II	[AngII]).		

PDGF	was	first	identified	as	a	serum	growth	factor	for	fibroblasts,	glia	cells	and	VSMC180-182.	The	PDGF	

family	consists	of	four	ligands,	PDGFA,	PDGFB,	PDGFC	and	PDGFD.	While	PDGFC	and	PDGFD	are	able	

to	 form	homodimers,	 PDGFA	and	PDGFB	build	 either	 homodimers	 or	 heterodimers183.	 PDGFs	bind	
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and	signal	via	two	cell	surface	receptor	tyrosine	kinases,	PDGFRα	and	PDGFRβ.	PDGFRβ	binds	PDGFB	

and	 PDGFD,	 whereas	 PDGFRα	 binds	 PDGFA,	 PDGFB	 and	 PDGFC183.	 Binding	 of	 the	 ligand	 leads	 to	

autophosphorylation	and	subsequent	activation	and	signaling	of	downstream	intracellular	pathways	

including	RAS-MAPK,	PI3K,	FAK	and	PLCγ.	PDGFB	 is	able	 to	 form	a	concentration	gradient,	which	 is	

sensed	 by	 surrounding	 mural	 cells	 through	 the	 PDGFRβ	 and	 is	 critical	 for	 their	 recruitment	 and	

proliferation	for	blood	vessel	maintenance.	The	expression	of	PDGFB	 is	mainly	 induced	by	hypoxia,	

thrombin	 and	 various	 growth	 factors184.	 During	 angiogenesis,	 PDGFB	 is	 expressed	 by	 tip	 cells	 and	

binds	 to	 heparin-sulfate	 proteoglycans	 through	 its	 C-terminal	 retention	 motifs,	 composed	 of	 a	

stretch	 of	 positively	 charged	 amino	 acid	 residues140,185.	 Subsequently,	 PDGFRβ-positive	mural	 cells	

proliferate	 and	 migrate	 along	 new	 angiogenic	 sprouts	 through	 a	 temporal	 and	 spatial	 PDGFB	

gradient151.	Deletion	of	either	Pdgfb	or	Pdgfrβ	 causes	embryonic	 lethality	 resulting	 from	mural	 cell	

dysfunction	 and	 vascular	 dysfunction,	 including	 micro-aneurysms,	 vascular	 leakage	 and	

hemorrhage155,156,186.	Correspondingly,	deletion	of	the	retention	motif	leads	to	partial	detachment	of	

mural	cells187.	Moreover,	EC-specific	deletion	of	PDGFB	results	in	pericyte	deficiency,	proving	that	EC	

provide	 the	 major	 source	 of	 PDGFB	 and	 that	 PDGFB	 is	 critical	 for	 mural	 cell	 coverage	 of	 the	

vasculature188.	Furthermore,	the	crosstalk	of	PDGFB/PDGFRβ	signaling	with	other	signaling	pathways	

may	alter	the	response	of	VSMC	to	EC-secreted	PDGFB.	In	particular,	the	ratio	between	PDGFB	and	

VEGF	plays	a	critical	 role	during	blood	vessel	growth	and	maturation.	VEGF	signaling	 interacts	with	

PDGFB/PDGFRβ	 signaling	 through	 regulation	 of	 PDGFB	 expression	 and	 suppression	 of	 PDGFRβ	

signaling.	 Intriguingly,	 a	 positive	 feedback	 loop	 between	 VEGFC/VEGFR3	 and	 PDGFB/	 PDGFRβ	

regulates	 vessel	 maturation	 through	 the	 induction	 of	 PDGFB189.	 VEGFA,	 on	 the	 other	 hand,	 is	

described	to	be	a	negative	regulator	of	vessel	maturation.	VEGFR2	and	PDGFRβ	assemble	a	receptor	

complex	 in	 mural	 cells	 upon	 VEGFA	 stimulation,	 which	 leads	 to	 the	 suppression	 of	 PDGFRβ	

signaling190.	Additionally,	specific	blocking	of	VEGFA	and	PDGFB	in	age-related	macular	degeneration	

suppresses	subretinal	neovascularization	and	might	be	a	potential	therapeutic	approach191.	

In	the	adult	vasculature,	the	communication	between	EC	and	VSMC	is	established	through	secreted	

or	diffusible	factors.	EC-derived	factors	including	nitric	oxide	(NO),	prostacyclin,	and	hyperpolarizing	

agents	diffuse	to	VSMC	to	cause	vasodilation178,179,192.	Similarly,	EC-derived	vasoactive	agents	such	as	

endothelin	1	(ET1)	and	AngII	act	on	VSMC	to	increase	vascular	tone178,179,192.	Thus,	both	the	secreted	

developmental	 factors	 as	 well	 as	 the	 cell-cell	 contact	 mediators	 seem	 to	 function	 in	 the	 adult	

vasculature	to	control	blood	vessel	function.	

	

1.3.5 Regulators	of	VSMC	phenotype	

There	 are	 several	 factors	 and	 signaling	 pathways	 that	 determine	 the	 contractile	 or	 synthetic	

phenotypic	fate	of	VSMC	(Figure	4).	PDGFB/PDGFRβ	signaling	is	described	to	have	a	negative	effect	

on	 mature	 VSMC,	 and	 induces	 profound	 suppression	 of	 contractile	 VSMC	 marker	 genes	 such	 as	

Myh11	 and	 αSMA	 and	 Tagln/Sm22α193.	 In	 particular,	 PDGFB	 binds	 to	 a	 cis-acting	 DNA	 sequence	

known	as	CArG	box	(CC(A/T6GG),	which	is	located	in	the	regulatory	regions	of	VSMC	specific	genes,	

to	 antagonize	 myocardin	 (MYOCD)-serum	 response	 factor	 (SRF)	 induced	 differentiation	 of	 VSMC.	
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Conversely,	TGFβ-induced	Smad2	and	Smad3	signaling	promotes	the	contractile	phenotype	of	adult	

VSMC	by	 increased	 expression	 of	αSMA,	Myh11	 and	Cnn1194.	 Importantly,	 Smad2	 and	 Smad3	 also	

interact	 with	 SMC-specific	 promoters	 at	 putative	 Smad	 binding	 elements	 (SBE)195.	 The	 vasoactive	

agent	 AngII	 exerts	 a	 dual	 role	 regulating	 both	 the	 contractile	 and	 synthethic	 VSMC	 phenotype	

depending	on	cell-context	and	 location	within	the	artery.	 In	particular,	AngII	has	been	described	to	

promote	 the	 contractile	 VSMC	 via	 L-type	 Ca2+	 channels	 (LTCCs)	 and	 Prx196,197	 and	 the	 synthetic	

phenoype	 of	 VSMC	 by	 inducement	 of	 authophagy198.	 Furthermore,	 AngII	 is	 also	 responsible	 for	

mediating	VSMC	contraction199,200.	

	

	
Figure	4.	Regulators	of	VSMC	phenotype		
Schematic	model	 illustrating	 important	molecular	pathways	that	control	VSMC	growth	or	differentiation.	The	
MYOCD-SRF-CarG-axis	 plays	 an	 essential	 role	 in	 maintaining	 the	 contractile	 VSMC	 phenotype.	 Its	 activity	 is	
antagonized	 by	 PDGFB	 and	 Notch	 via	 the	 action	 of	 the	 repressor	 factors,	 Hey’s,	 KLF4	 and	 ELK1,	 thereby	
promoting	the	synthetic	VSMC.	TGFβ,	Notch	and	AngII	exert	dual	effects	on	VSMC	phenotype	and	depending	
on	the	environmental	stimuli	they	can	either	promote	the	contractile	VSMC	phenotype	or	the	synthetic	VSMC.	
The	ECM	has	a	major	 impact	on	VSMC	phenotype	and	promotes	VSMC	differentiation	 through	 the	 integrin-
RhoA-ROCK-mediated	 signaling	 pathway.	 AngII	 also	 regulates	 VSMC	 contraction	 by	 promoting	 downstream	
signaling,	 via	 IP3	 and	 PKC,	 the	 release	 of	 intracellular	 Ca

2+,	 followed	 by	 the	 phosphorylation	 of	myosin	 light	
chain	 (MLC)	 and	 subsequent	 cytoskeletal	 reorganization.	 Many	 of	 these	 molecular	 pathways	 are	 also	
implicated	in	cardiovascular	diseases,	and	contribute	to	the	synthetic	VSMC	phenotype	and/or	contraction.		
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Transcription	 factors	 (TCFs)	 also	 play	 key	 roles	 in	 regulating	 phenotypic	 switching	 of	 VSMC.	 In	

quiescent	and	mature	VSMC,	 the	expression	of	contractile	VSMC-specific	genes	 is	 regulated	by	 the	

increased	expression	of	 SRF	and	 its	VSMC-	and	 cardiomyocyte	 (CM)-specific	 cofactors	MYOCD	and	

myocyte	enhancer	factor	2	(MEF2).	This	complex	binds	to	the	CArG	box,	to	promote	gene	activation	

and	expression	of	contractile	VSMC	markers195,201-203.	Moreover,	the	two	MYOCD-related	TCFs,	MRTA	

and	 MRTB	 have	 similar	 transcriptional	 properties	 to	 MYOCD	 and	 induce	 VSMC	 differentiation	 by	

binding	to	SRF.	These	TCFs	are	mediated	by	the	RhoA/Rho-associated	coiled-coil	containing	protein	

kinase	(ROCK)	signaling	pathways204.	

KLF4,	which	is	normally	not	detected	in	quiescent	VSMC,	is	rapidly	upregulated	upon	vascular	inury.	

KLF4	is	 induced	by	PDGFB	stimulation	and	functions	as	a	transcriptional	repressor	to	prevent	gene-

activation	of	contractile	VSMC	markers	through	the	inhibition	of	MYOCD	expression	and	inhibition	of	

SRF	binding	to	intact	chromatin205-207.	Like	PDGFB,	KLF4	is	able	to	inhibit	SRF	binding	to	CArG	boxes,	

thereby	 downregulating	 transcription	 of	 VSMC	 contractile	 genes126.	 Additionally,	 the	 TCF	 ELK1	 (a	

ternary	 complex	of	 Ets	domain	proteins)	 also	 suppresses	 transcription	of	 contractile	VSMC	marker	

genes	 by	 inhibiting	 the	 binding	 of	 MYOCD-SRF	 complexes	 to	 CArG	 boxes193,208.	 ELK1	 is	

phosphorylated	 by	 PDGFB	 stimulation	 and	 signals	 downstream	 via	 a	 MAPK	 signaling	 cascade,	

ultimately	cleaving	MYOCD-SRF.	

The	 ECM,	 in	 which	 VSMC	 are	 embedded,	 plays	 a	 pivotal	 role	 in	 mediating	 VSMC	 differentiation,	

proliferation,	migration,	 survival,	 and	 cytoskeletal	 organization209.	Modulation	 of	 VSMC	phenotype	

by	 ECM	 components	 seems	 to	 be	 regulated	 by	 their	 binding	 to	 specific	 integrin	 receptors145.	 The	

medial	 ECM	 is	 predominantly	 composed	 of	 collagen	 isoforms	 (type	 I,	 III	 and	 IV),	 elastin,	 and	

proteoglycans.	 Among	 those,	 the	 proteoglycan	 heparin	 has	 proven	 to	 be	 an	 essential	 ECM	

component	 for	 the	 regulation	 of	 VSMC	 phenotype	 by	 promoting	 the	 contractile	 phenotype	 and	

detaining	 VSMC	 proliferation210.	 In	 contrast,	 the	 proteoglycan	 fibronectin	 promotes	 modulation	

towards	 a	 synthetic	 VSMC	 phenotype211.	 Other	 ECM	 components	 such	 as	 fibrillar	 collagen	 type	 I	

promote	 the	 contractile	 phenotype	 of	 VSMC,	whereas	monomeric	 collagen	 type	 I	 activates	 VSMC	

proliferation212.	Just	like	fibrillar	collagen	type	I,	collagen	type	IV	and	laminin	have	been	shown	to	be	

important	for	the	induction	of	the	contractile	VSMC	phenotype.		

Finally,	VSMC	within	the	vessel	wall	are	continuously	exposed	to	mechanical	stretch	and	shear	stress	

resulting	from	blood	pressure	and	blood	flow,	respectively.	While	shear	stress	is	mainly	sensed	by	EC,	

mechanical	 stretch	 affects	 all	 cell	 types	 in	 the	 vessel	 wall	 including	 VSMC213.	 Mechanical	 stress	

modulates	 cell	 shape,	 cellular	 organization	 and	 intracellular	 processes	 resulting	 in	 migration,	

proliferation	or	contraction214.	As	such,	both	mechanical	stretch	and	shear	stress	induce	vessel	wall	

remodeling	 by	 changing	 VSMC	 phenotype,	 thereby	 maintaining	 vascular	 tone	 and	 homeostasis.	

Mechanical	 stretch	 has	 been	 reported	 to	 increase	 the	 expression	 of	 ECM	 components	 as	 well	 as	

contractile	 VSMC	 marker	 genes	 by	 VSMC	 within	 the	 vessel	 wall215,216.	 However,	 in	 response	 to	

excessive	mechanical	stretch	as	a	consequence	of	high	blood	pressure,	the	expression	of	contractile	

VSMC	marker	 genes	 diminishes	 while	 VSMC	 undergo	 phenotypic	 remodeling	 towards	 a	 synthetic	

phenotype.	 Hence,	 these	 cells	 loose	 their	 ability	 to	 contract.	 Consequently,	 VSMC	 secrete	 growth	
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factors	(e.g.	PDGFB;	VEGF,	basic	fibroblast	growth	factor	[bFGF],	AngII),	which	act	in	an	autocrine	or	

paracrine	loop	to	influence	VSMC	and	EC	growth	and	function217-219.	This	process	further	stimulates	

medial	VSMC	hypertrophy	and/or	intimal	hyperplasia	of	the	arterial	walls.	The	response	of	VSMC	to	

shear	 stress	 is	 coordinated	 by	 EC	 as	 these	 cells	 recognize	 and	mediate	 the	 effects	 of	 this	 type	 of	

mechanical	 stress.	 This	 occurs	 not	 only	 via	 the	 production	 of	 NO	 but	 also	 through	 direct	 cell-cell	

interactions210.		

Phenotypic	switching	of	VSMC	is	associated	with	proliferation	and	migration	of	these	cells.	After	the	

transition	 from	a	 contractile	 to	 a	 synthetic	VSMC	phenotype,	VSMC	migrate	 and	proliferate	 in	 the	

vascular	 wall	 to	 promote	 healing	 following	 vessel	 injury.	 This	 process	 is	 regulated	 by	 growth	

promoting	 factors	 such	 as	 PDGFB146,220,	 bFGF146,221	 and	 AngII199,222	within	 the	 injured	 vascular	wall,	

which	 regulate	 downstream	 signal	 transduction	 in	 VSMC.	 Moreover,	 VSMC	 proliferation	 and	

migration	 are	 two	 important	 processess	 in	 the	 pathogenesis	 of	 atherosclerosis,	 which	 will	 be	

discussed	in	more	detail	in	section	1.6.		

	

1.3.6 VSMC	function:	From	cardiovascular	health	to	disease	

Quiescent,	 contractile	 VSMC	 alter	 the	 luminal	 diameter	 by	 vasoconstriction	 and	 dilation,	 which	

enables	 blood	 vessels	 to	 maintain	 an	 appropriate	 blood	 pressure223.	 VSMC	 of	 resistance	 arteries	

mainly	participate	in	the	regulation	of	blood	pressure,	while	conduit	arteries	supply	blood	to	visceral	

organs	and	limbs224,225.	VSMC	contraction	and	dilation	are	regulated	by	two	main	signaling	pathways:	

i)	 Ca2+-dependent	 signaling	pathways	 via	 Phospholipase	C	(PLC),	 and	 inositol	 trisphosphate	 (IP3),	 ii)	

Ca2+-independent	signaling	pathways	through	diacylglycerol	(DAG)	and	protein	kinase	C	(PKC)	(Figure	

4)223.	Binding	of	vasoactive	agents,	such	as	AngII	or	ET1,	to	their	respective	receptors	on	VSMC	leads	

to	PLC	activation226-228.	In	turn,	PLC	cleaves	the	membrane	lipid	phosphoinositide	4,	5-	bisphosphate	

(PIP2),	 resulting	 in	 the	 generation	of	 IP3	and	DAG.	 Subsequently,	 IP3	increases	 Ca2+	release	 into	 the	

cytosol	from	the	sacroplasmatic	reticulum	by	binding	to	ryanodine	receptors.	Ca2+	forms	complexes	

with	 calmodulin,	 which	 is	 then	 able	 to	 activate	 myosin	 light	 chain	 kinase	 (MLCK),	 resulting	 in	

phosphorylation	of	myosin	light	chain	(MLC),	allowing	myosin	to	interact	with	actin,	and	subsequent	

contraction	 of	 VSMC.	 Furthermore,	 activated	 RhoA	 leads	 to	 activation	 of	 ROCK,	 which	 in	 turn	

phosphorylates	and	 inhibits	 the	 regulatory	myosin-binding	 subunit	of	myosin	phosphatase	 (MLCP).	

On	the	contrary,	removal	of	Ca2+	from	cytosol	leads	to	relaxation.	In	pathological	cases,	deregulated	

Ca2+	levels	triggers	constricted	vessels	and	sustained	blood	pressure	levels223.		

	

In	 summary,	 VSMC,	 located	 in	 the	 walls	 of	 blood	 vessels,	 exert	 multiple	 functions	 to	 maintain	

vascular	 tone,	 homeostasis	 and	 integrity.	 However,	 VSMC	 do	 not	 only	 play	 important	 roles	 in	 the	

physiological	scenario,	but	are	also	described	in	various	pathological	conditions	such	as	hypertension	

and	atherosclerosis,	which	will	be	discussed	in	the	following	chapters,	1.4	-	1.6.	
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1.4 Cardiovascular	diseases		

Cardiovascular	diseases	(CVD)	encompass	a	range	of	pathological	conditions	including	hypertension,	

atherosclerosis	 and	 myocardial	 infarction,	 and	 nowdays	 still	 constitute	 the	 major	 cause	 of	 death	

globally.	As	reported	by	the	World	Health	Organization	(WHO),	more	people	die	annually	from	CVD	

than	from	any	other	cause.	In	2015,	17.7	million	people	died	from	CVD	representing	31%	of	all	global	

deaths.	Of	these	deaths	7.4	million	were	due	to	coronary	heart	diseases	and	6.7	million	were	due	to	

stroke.	Coronary	heart	disease,	also	known	as	ischaemic	heart	disease,	causes	46%	of	cardiovascular	

deaths	 in	 men	 and	 38%	 in	 women.	 Cerebrovascular	 disease	 is	 the	 form	 of	 CVD	 with	 the	 second	

highest	 mortality,	 leading	 to	 34%	 of	 cardiovascular	 deaths	 in	 men	 and	 37%	 in	 women.	 Despite	

progress,	 the	 overall	 mortality	 of	 CVD	 is	 estimated	 to	 rise	 to	 23.6	 million	 by	 2030	

(http://www.who.int/cardiovascular_diseases/about_cvd/en/).		

	

1.4.1 EC	dysfunction	and	reactive	oxygen	species	

Endothelial	dysfunction	is	an	early	event	that	signals	the	onset	of	CVD.	This	alteration	in	endothelial	

function	 is	 characterized	 by	 decreased	 vasodilation,	 decreased	 production/	 availability	 of	 NO,	 and	

increased	proinflammatory	and	prothrombotic	activity	of	the	EC.	NO	is	generated	by	eNOS	(found	in	

EC	and	CMs),	neuronal	nitric	oxide	(nNOS,	found	in	CM)	and	inducible	NO	synthase	(iNOS),	found	in	

VSMC,	 EC,	 CM	 and	macrophages229-231.	 eNOS	 and	 nNOS	 are	 expressed	 under	 normal	 physiological	

conditions,	whereas	iNOS	is	induced	by	stress	or	inflammatory	cytokines.	Under	normal	physiological	

conditions,	NO	exerts	multiple	effects	that	are	essential	for	maintenance	of	vessel	wall	homeostasis	

and	 cardiac	 function.	 These	 include	 vasodilation	 of	 VSMC,	 inhibition	 of	 VSMC	 proliferation	 and	

migration,	and	down	regulation	of	 inflammatory	and	adhesion	molecules231,232.	Similarly,	NO	 in	 the	

heart	 affects	 the	 onset	 of	 ventricular	 relaxation,	 which	 is	 required	 for	 a	 precise	 optimization	 of	

cardiac	pump	function.	Under	pathological	stress,	risk	factors	for	CVD	induce	oxidative	stress,	which	

plays	a	critical	role	in	endothelial	dysfunction.	Moreover,	eNOS	and	nNOS	promote	the	production	of	

reactive	oxygen	species	(ROS)	due	to	malfunctioning	of	the	substrate	L-arginine	or	cofactors	such	as	

tetrahydrobiopterin	 (BH4)233-235.	 This	 process	 is	 called	 ‘‘NOS	 uncoupling’’	 and	 implies	 that	 the	

physiological	 activity	of	 the	enzyme	 for	NO	production	 is	decreased	and	 switch	 to	NOS-dependent	

(O2
-)	generation.	Moreover,	endothelial-induced	injury	can	either	activate	VSMC	proliferation	and/or	

hypertrophy,	 a	 phenomenon	 found	 in	 hypertension	 or	 VSMC	 migration	 and	 proliferation,	 a	

phenomenon	found	in	atherosclerosis.		

ROS	 are	 ubiquitous,	 highly	 diffusible	 and	 reactive	 derivatives	 of	 O2	 metabolism	 (as	 a	 result	 of	

reduction	 of	 molecular	 oxygen),	 such	 as	 hydrogen	 peroxide	 (H2O2),	 superoxide	 anion	 (�O2-),	

hydroxyl	radical	(�HO-)	and	reactive	nitrogen	species	peroxynitrite	(ONOO-)236,237.	ROS	play	a	critical	

role	in	the	initiation	and	progression	of	CVD231,232,238.	They	are	produced	in	controlled	manners	at	low	

concentrations	and	 function	as	 signaling	molecules	controlling	vascular	constriction,	 relaxation	and	

growth.	In	contrast,	under	pathological	conditions,	such	as	hypertension	and	atherosclerosis,	ROS	are	

produced	at	 levels	 that	cannot	be	controlled	by	usual	protective	antioxidant	mechanism	employed	



Introduction	

23	

by	the	cells,	which	in	turn	promote	a	state	of	oxidative	stress.	Major	sources	of	ROS	include	xanthine	

oxidase,	 uncoupled	 endothelial	 NO	 synthase,	 NAPD(P)H	 oxidase,	 and	 cyclooxygenase	 (COX)231,237.	

ROS	signaling	between	cardiac	EC	and	CM	occurs	in	three	ways:	i)	via	direct	diffusion	of	ROS	and	NO,	

ii)	 through	 changes	 in	 ECM	 composition,	 which	 in	 turn	 affects	 CM	 function239,	 and	 iii)	 via	 ROS-

dependent	alteration	of	paracrine	release	of	multiple	cytokines	and	growth	factors	from	EC240.		

	

1.5 Hypertension	

Hypertension	 is	 a	 complex	 multifactorial	 disease	 that	 involves	 alterations	 in	 cardiac	 function	 and	

blood	vessels241.	It	results	from	the	intricate	interactions	between	genetic	and	environmental	factors,	

many	of	which	are	not	completely	understood242.	Hypertension	remains	a	major	health	problem	and	

a	significant	risk	factor	for	coronary	heart	disease	and	stroke,	the	leading	causes	of	death	worldwide.	

It	 is	described	as	a	chronic	 increase	 in	systolic	blood	pressure	(BP,	≥140mmHg)	or	diastolic	BP	(≥90	

mmHg)126.	 Hypertension	 is	 associated	 with,	 pressure	 overload-induced	 concentric,	 left	 ventricular	

hypertrophy	(LVH),	which	normally	occurs	as	a	compensatory	mechanism	to	maintain	wall	stress243.	

However,	 sustained	 pressure-overload	 can	 ultimately	 lead	 to	 maladaptive	 LVH,	 which	 is	

accompanied	 by	 cardiac	 remodeling243.	 Hence,	 remodeling	 of	 arterial	 resistance	 vessels	 with	

increased	 peripheral	 vascular	 resistance	 is	 an	 independent	 risk	 factor	 for	 established	

hypertension244,245.	 Furthermore,	although	hypertension	 is	 considered	 to	be	a	major	 contributor	 to	

coronary	heart	diseases,	 the	 fundamental	disturbance	 in	coronary	disease	 is	atherosclerosis,	which	

will	be	discussed	later246,247.		

	

1.5.1 VSMC	remodeling	in	hypertension	

The	 predominant	 hemodynamic	 alteration	 in	 hypertension	 is	 increased	 peripheral	 vascular	

resistance,	 which	 is	 primarily	 determined	 by	 enhanced	 VSMC-mediated	 constriction	 in	 resistance	

arteries	(<	500µm)	and	arterioles	and	VSMC	remodeling248.	At	physiological	pressures,	these	vessels	

typically	 exhibit	 a	 level	 of	 contraction	 (myogenic	 tone)	 independent	 of	 neurohormonal	 influences,	

and	 are	 able	 to	 mediate	 autoregulation	 of	 blood	 flow	 and	 stabilize	 capillaries	 pressure249.	 In	

hypertension,	 VSMC	 is	 attributable	 to	 arterial	 remodeling	 through	 various	 processes,	 including	

hyperplasia	 (increase	 in	 cell	 number),	 hypertrophy	 (increase	 in	 cell	 size),	 apoptosis,	 elongation	 of	

cells,	 reorganization	 of	 cells	 and/or	 altered	 ECM	 composition.	 According	 to	 Poiseuille’s	 law,	 flow	

resistance	 is	 inversely	proportional	 to	 the	 fourth	power	of	vessel	 radius250-252.	Consequently,	minor	

decreases	in	the	lumen	of	resistance	arteries	will	significantly	increase	peripheral	resistance	leading	

to	 the	 development	 of	 hypertension.	 In	 hypertension,	 the	 resistance	 arteries	 undergo	 vascular	

remodeling	 characterized	 by	 reduced	outer	 and	 lumen	diameters,	 unaltered	media	 cross-sectional	

area,	and	increased	media	to	lumen	(M/L)	ratio	(Figure	5).	Although	the	media	cross-sectional	area	is	

maintained,	 VSMC	 rearrange	 around	 a	 smaller	 lumen,	 which	 leads	 to	 an	 increase	 in	 media	 and	

subsequently	 to	 an	 increased	 M/L	 ratio	 without	 precipitating	 hypertrophy245,249,250.	 This	 type	 of	

remodeling	 is	 known	 as	 eutrophic	 inward	 remodeling.	 In	 experimental	 animal	 models,	 eutrophic	
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inward	 remodeling	 is	 often	 observed	 in	 hypertension	 associated	 with	 involvement	 of	 the	 renin-

angiotensin	 system	 (RAS).	 In	 other	 types	 of	 hypertension	 such	 as	 renovascular	 hypertension,	 the	

remodeling	process	is	characterized	by	increased	media	cross-sectional	area	(VSMC	hypertrophy	and	

possible	 hyperplasia).	 In	 turn,	 VSMC	 growth	 encroaches	 on	 the	 lumen	 to	 increase	 the	 M/L	 ratio	

(Figure	5).	This	process	is	referred	to	as	hypertrophic	remodeling.	Hypertrophic	remodeling	is	often	

seen	 in	 hypertension	 induced	 by	 administration	 of	 deoxycorticosterone	 acetate	 (DOCA)244,252,253.	

Conduit	arteries	 (large	elastic	arteries)	do	not	 contribute	 to	peripheral	 vascular	 resistance,	but	are	

important	 in	 damping	 the	 pulsatile	 flow	 created	 by	 the	 heart241.	 In	 hypertension,	 the	 diameter	 of	

conduit	 arteries,	 such	 as	 aorta	 or	 carotid	 artery,	 is	 increased.	 There	 is	 also	 an	 increase	 in	 wall	

thickness	 and	 VSMC	 may	 undergo	 phenotypic	 switching	 towards	 a	 synthetic/proliferative	

phenotype254.	The	 increase	 in	vessel	diameter	 is	most	 likely	passive	as	a	 result	of	 the	 rise	 in	blood	

pressure	 that	 distends	 the	 vessel	 while	 the	 increase	 in	 wall	 thickness	 normalizes	 media	 stress241.	

Furthermore,	 activation	 of	 transcriptional	 regulatory	 pathways	 triggers	 alterations	 in	 the	

components	 of	 the	 cytoskeleton,	 contractile	 apparatus	 and	 ECM,	 ultimately	 leading	 to	 VSMC	

stiffness.	 The	 structural	 vascular	 changes	 in	 resistance	 and	 conduit	 arteries	with	 increased	 arterial	

stiffness	 leads	 to	 increased	 wave	 reflection	 and	 blood	 pressure,	 which	 ultimately	 promote	 the	

development	of	LVH241.	

	

	
Figure	5.	Types	of	vascular	remodeling	in	hypertension		
Hypertension	 is	 associated	 with	 structural	 changes	 of	 resistance	 arteries.	 These	 arteries	 undergo	 inward	
eutrophic	and/or	hypertrophic	remodeling.	Inward	eutrophic	remodeling	is	characterized	by	reduced	outer	and	
lumen	 diameters,	 unaltered	 media	 cross-sectional	 area	 and	 increased	 M/L	 ratio.	 In	 inward	 hypertrophic	
remodeling,	medial	growth,	due	to	VSMC	hyperplasia	and/or	hypertrophy	and	ECM	deposition,	encroaches	on	
the	lumen	to	increase	M/L	ratio.	

	

1.5.1.1 Left	ventricular	hypertrophy		

The	myocardium	has	three	morphological	compartments:	i)	the	muscular	compartment	composed	of	

cardiomyocytes	(CMs),	the	dominant	type	occupying	approximately	50%	of	the	heart	weight,	ii)	the	

interstitial	 compartment	 formed	by	 fibroblast	 and	 collagen	and	 iii)	 the	vascular	 compartment	with	

VSMC	and	EC255.	LVH	is	a	major	maladaptive	response	to	chronic	pressure	overload	and	an	important	
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risk	 factor	 in	 patients	 with	 hypertension255,256.	 LVH	 is	 associated	 with	 cardiac	 remodeling	

characterized	 by	 endothelial	 dysfunction,	 interstitial	 fibrosis,	 and	 alterations	 in	 sarcomere	

organization	and	CMs.	Complications	of	LVH	 include	atrial	 fibrillation,	diastolic	dysfunction,	systolic	

dysfunction,	and	sudden	death255,256.	Both	early	recognition	and	a	better	understanding	of	LVH	may	

lead	to	more	effective	therapeutic	measures	for	this	cardiovascular	risk	factor256.	

	

1.5.1.2 Cardiomyocytes	

CMs	 are	mainly	 responsible	 for	 generating	 contractile	 force	 in	 the	 heart	 and	 their	 proliferation	 is	

important	 for	 development,	 function,	 and	 regeneration	 of	 the	 heart257-259.	 CMs	 rapidly	 proliferate	

during	 fetal	 life,	 but	 exit	 the	 cell	 cycle	 irreversibly	 soon	 after	 birth	 in	 mammals.	 During	 fetal	

development,	 heart	 growth	 is	 mediated	 by	 CM	 proliferation	 and	 they	 respond	 to	 increased	

hemodynamic	 load	 of	 the	 developing	 cardiovascular	 system	 by	 undergoing	 hypertrophic	 growth,	

remodeling	and	contractility	accompanied	by	activation	of	the	immediate	early	genes	(c-JUN,	c-MYC,	

c-FOS),	and	 fetal	genes	 (atrial	natriuretic	 factor	 (ANF/ANP),	beta-myosin	heavy	chain	 (β-MHC),	and	

skeletal	 alpha	 actin	 (SKA)258,260.	 During	 cardiac	 injury,	 the	 same	 adaptive	 hypertrophic	 response	

occurs	in	adult	CM,	leading	to	the	notion	that	CM	respond	to	pressure-overload	by	calling	upon	the	

fetal	 hypertrophic	 growth	 program	 to	 provide	 compensatory	 growth	 and	 increased	 contractility.	

However,	 adult	 CMs	 fail	 to	 re-enter	 the	 cell	 cycle,	 which	 is	 considered	 to	 be	 the	 primary	 limiting	

factor	in	restoring	function	to	the	damaged	heart258,260.	Therefore	the	generation	of	novel	CMs	within	

the	cardiac	milieu	 to	 replace	 the	 injured	myocardium	 is	warranted	to	design	adequate	 therapeutic	

applications	for	patients	with	heart	failure	and	limited	treatment	options261.	An	increasing	number	of	

studies	 have	 reported	 induction	 of	 CM	 proliferation	 and	 cardiac	 regeneration,	 either	 by	 fetal	 or	

neonatal	 CM	 transplantation,	 skeletal	 myoblast	 transplantation	 or	 stem	 cell	 transplantation262-265.	

However,	the	improvements	are	minor	and	may	be	only	transient266,267.	Hence,	it	is	still	disputed	to	

what	extent	CM	proliferation	can	be	 induced	and	whether	 it	 can	be	utilized	 therapeutically.	Other	

studies	have	reported	that	adult	zebrafish	and	newts	regenerate	their	hearts	after	cardiac	injury,	and	

in	both	cases	regeneration	is	based	on	CM	proliferation268-270.	Yet,	the	mechanism	that	drives	cardiac	

proliferation	in	zebrafish	and	newts	is	still	under	investigation.		

	

1.5.2 Regulators	of	CM	and	VSMC	remodeling	in	hypertension	

Hypertension	 is	 associated	 with	 cardiac	 remodeling	 and	 vascular	 remodeling.	 The	 mechanism	

regulating	these	processes	 involves	multiple	signaling	cascades	and	downstream	TCFs	that	function	

in	a	coordinated	fashion	to	activate	genes	involved	in	the	regulation	of	growth,	apoptosis	and	ECM	

metabolism.	These	signaling	cascades	are	activated	by	different	stimuli	 including	mechanical	 stress	

(shear	 stress	 or	 stretch),	 ROS,	 neurohormonal	 factors,	 growth	 factors	 and	 cytokines,	 and	 are	 also	

critically	involved	in	pathological	cardiac	remodeling	and	vascular	remodeling231,249.	While	stretch	of	

the	vessel	wall	acts	on	all	layers	of	the	vessel	wall,	stretch	on	the	myocardium	predominantly	acts	on	

CM271.	Moreover,	 shear	 stress	 affects	 primarily	 the	 endothelium	 in	 response	 to	 changes	 in	 blood	
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flow213.	 Integrin’s	and	respective	downstream	signaling	are	 important	regulators	during	adaptive	as	

well	 as	 maladaptive	 cardiac	 and	 VSMC	 remodeling.	 The	 ECM-integrin-cytoskeleton	 axis	 enables	

VSMC	to	detect	and	respond	to	changes	 in	 intraluminal	pressure	allowing	remodeling	of	resistance	

arteries	 during	 hypertension231,271-273.	 In	 the	 heart,	 this	 axis	 is	 also	 able	 to	 promote	 hypertrophic	

growth	 of	 CMs	 in	 hypertension.	 Substantial	 evidences	 indicate	 that	 ablation	 of	 β3	 or	 β1	 integrin	

inhibits	 pressure-induced	 hypertrophic	 signaling,	 thereby	 resulting	 in	 reduced	 cardiac	 output	 with	

increased	 mortality	 and	 heart	 failure274,275.	 Furthermore,	 anti-α5-	 or	 anti-β1-integrin	 antibodies	

significantly	inhibited	the	capacity	of	arterioles	to	contract	in	response	to	increments	in	intraluminal	

pressure276.		

The	MAPK	pathway	is	the	primary	signaling	mechanism	by	which	mechanical	stress,	neurohormonal	

factors	and	ROS	regulate	expression	of	genes	 involved	 in	growth	and	remodeling.	Activation	of	the	

three	 major	 subfamilies	 of	 MAPKs	 (ERK1/2,	 JNK,	 p38MAPK)	 have	 been	 demonstrated	 in	 animal	

models	of	 cardiac	 injury	as	well	 as	 in	humans	with	heart	 failure277-279.	 In	addition,	 increased	AngII-

stimulated	MAPK	activity	has	also	been	observed	in	VSMC	derived	from	spontaneously	hypertensive	

rats	(SHR)	compared	to	those	from	normotensive	(WKY)	controls280.	

Structural	 changes	 in	 CMs	 and	 VSMC	 are	 mediated	 not	 only	 by	 mechanical	 stress	 but	 also	 by	

neurohormonal	factors	such	as	RAS,	Aldosterone	and	ET1.	ET1	is	a	potent	vasoconstrictor	produced	

and	 released	 by	 EC,	 CMs	 and	 VSMC281-284.	 In	 the	 myocardium,	 ET1	 may	 act	 in	 an	 autocrine	 and	

paracrine	fashion,	where	it	binds	to	ETB	receptors	on	cardiac	EC	and	ETA	receptors	on	CMs.	Binding	of	

ET1	 to	 ETB	 receptors	 leads	 to	 the	 release	 of	 other	 signaling	molecules	 (NO	 and	 prostaglandin	 I2),	

which	regulate	vasodilation.	In	contrary,	when	binding	to	the	ETA	receptors	on	CMs,	ET1	causes	CM	

constriction	and	hypertrophic	actions.	Similarly,	ETA	and	ETB	receptors	mediate	the	vasoconstrictive,	

proliferative	and	hypertrophic	effects	of	ET1	in	VSMC281,282,284.	

AngII	 is	 the	 active	 component	 of	 the	RAS,	 formed	 from	enzymatic	 cleavage	 of	 angiotensinogen	 to	

angiotensin	 1	 (AngI)	 by	 aspartyl	 preotease	 renin,	 with	 subsequent	 conversion	 of	 AngI	 to	 AngII	 by	

angiotensin	 converting	 enzyme	 (ACE)285-287.	 It	 is	 produced	 both	 systemically	 and	 locally	 via	 tissue-

specific	renin-angiotensin	systems285.	AngII	is	involved	in	the	regulation	of	blood	pressure	and	plasma	

volume	 via	 aldosterone-regulated	 sodium	 excretion,	 and	 sympathetic	 nervous	 system	

activation285,288,289.	Furthermore,	it	contributes	to	the	regulation	of	several	cellular	processes	such	as	

proliferation,	 differentiation,	 regeneration	 and	 apoptosis285.	 The	 multiple	 actions	 of	 AngII	 are	

mediated	 via	 specific,	 highly	 complex,	 intracellular	 signaling	 pathways	 that	 are	 stimulated	 upon	

receptor	 binding;	 AngII	 type	 1	 receptor	 and	 AngII	 type	 2	 receptor285,288,289.	 The	 importance	 of	 the	

RAS,	 and	 the	 benefit	 of	 its	 inhibition,	 in	 cardiac	 and	 vascular	 remodeling	 are	 well-established290.	

Numerous	 studies	 have	 shown	 that	 activation	 of	 the	 (local)	 RAS	 contributes	 to	 myocardial	

hypertrophy,	fibrosis,	and	dysfunction291,292.	Accordingly,	a	large	number	of	animal	experiments293-296	

and	clinical	trials	in	humans297,298	have	documented	the	beneficial	effects	of	AngII	receptor	blockade	

or	 ACE	 blockade	 in	 preventing	 or	 reversing	 ventricular	 remodeling	 in	 patients	 with	 heart	 failure.	

Increasing	 evidence	 suggest	 a	 direct	 link	 between	 the	 RAS	 and	 TGFβ,	 indicating	 that	 TGFβ	 acts	

downstream	 of	 AngII.	 AngII	 stimulation	 induces	 TGFβ	 expression	 in	 CMs	 and	 cardiac	 fibroblast,	 in	
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turn	promoting	CM	hypertrophy	 and	 fibrosis,	 respectively.	 In	 addition,	 TGFβ1-overexpressing	mice	

displayed	significant	cardiac	hypertrophy	accompanied	by	interstitial	fibrosis290.	RAS	also	contributes	

to	vessel	remodeling	in	the	aorta	and	other	vascular	beds	in	hypertension299.	AngII	causes	systemic	

vasoconstriction	 by	 activation	 of	 AngII	 type	 1	 receptors	 in	 VSMC.	 Along	 with	 vasoconstriction,	

Binding	 of	 AngII	 to	 its	 respective	 receptor	 may	 also	 stimulate	 growth	 and	 hypertrophy	 of	 VSMC,	

thereby	directly	contributing	to	vascular	remodeling	 in	hypertension300.	Moreover,	the	AngII	type	1	

receptor	anatagonist	Losartan	reversed	vascular	remodeling	in	patients	with	hypertension300.	

	

1.6 Atherosclerosis		

Atherosclerosis	 is	 a	 chronic	 inflammatory	disease	of	 the	 arterial	wall	 that	 is	 responsible	 for	 nearly	

50%	of	all	deaths	in	the	Western	world301.	The	major	clinical	complications	of	atherosclerosis,	such	as	

myocardial	 infarction	and	stroke,	are	the	consequences	of	thrombotic	events	associated	with	acute	

rupture	or	erosion	of	an	unstable	plaque302.	Atherosclerosis	plaques	are	characterized	by	asymmetric	

focal	 thickening	 of	 the	 intima,	 the	 innermost	 layer	 of	 the	 artery,	 that	 encroach	 on	 the	 lumen	 of	

medium-sized	 and	 large	 arteries303.	 These	 plaques	 contain	 lipids,	 inflammatory	 cells,	 VSMC,	

connective-tissue	 elements,	 and	 debris303.	 Atherosclerosis	 can	 remain	 asymptomatic	 for	 decades,	

highlighting	the	need	for	preventive	cardiology	in	the	early	stage	of	life.	In	humans,	arterial	stiffness	

and	atherosclerosis	can	start	as	early	as	childhood.	There	are	a	number	of	genetic	and	environmental	

risk	 factors	 for	 atherosclerosis301.	 The	 genetic	 factors	 include	 hypertension,	 obesity	 and	 diabetes,	

whereas	 the	 environmental	 factors	 include	 life-style	 (smoking,	 lack	 of	 exercise,	 high-fat	 diet),	

infectious	agents	and	low	antioxidant	levels.		

	

1.6.1 Phases	of	atherosclerosis		

The	 earliest	 changes	 that	 precede	 atherosclerosis	 formation	 take	 place	 in	 the	 endothelium,	 with	

resultant	 endothelial	 dysfunction	 triggered	 by	 high	 levels	 of	 low-density	 lipoprotein	 (LDL),	 in	

particular	oxidized	 low-density	 lipoprotein	 (oxLDL),	 low	 levels	of	high-density	 lipoprotein	 (HDL)	and	

low	 levels	of	NO	 (Figure	6)303-307.	 Endothelial	dysfunction	allows	 circulating	 LDL	 infiltration	 into	 the	

vascular	 intima,	 which	 subsequently	 leads	 to	 formation	 on	 oxLDL	 through	 enzymatic	 and	 non-

enzmatic	 oxidation303-307.	 Additionally,	 oxLDL	 activates	 endothelial	 cells	 and	 resident	 immune	 cells	

leading	to	the	expression	of	chemokines	(e.g.	M-CSF,	MCP1,	CCL5	(RANTES),	CX3CL1)	and	adhesion	

molecules	(e.g.	VCAM1,	PCAM1	and	ICAM1,	E-selectin,	P-selectin)	that	attract	circulating	monocytes	

and	lymphocytes	to	the	vessel	wall.	This	process	supports	 infiltration	of	these	inflammatory	cells	 in	

the	 intima	 through	 adhesion,	 rolling,	 and	 transendothelial	 migration.	 Once	 in	 the	 intima,	 M-CSF	

stimulates	 entering	 monocytes	 to	 differentiate	 into	 MΦ.	 Subsequently,	 MΦ	 ingest	 oxLDL	 and	

transform	into	foam	cells,	which	eventually	leads	to	fatty	streak	formation308.		
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Figure	6:	Onset	and	progression	of	atherosclerosis	
A,	The	normal	artery	consists	of	three	layers:	the	tunica	intima,	tunica	media	and	the	adventitia.	The	inner	
layer,	the	tunica	intima,	 is	the	monolayer	of	EC	that	are	in	contact	with	blood	flow.	In	contrast	to	many	
mammals,	the	human	intima	contains	resident	VSMC.	The	middle	layer,	the	tunica	media,	contains	VSMC	
embedded	 in	an	 intricate	ECM	made	up	of	 (mostly)	elastin	between	the	VSMC,	which	gives	elasticity	to	
the	 vessel.	 The	 adventitia,	 the	 outer	 layer	 of	 the	 vessel	 wall,	 consists	 of	 mast	 cells,	 fibroblasts,	 nerve	
endings	 and	 microvessels.	 B,	 At	 early	 stages	 of	 atherosclerosis	 progression,	 leukocytes	 adhere	 to	 the	
activated	endothelial	monolayer,	migrate	into	the	intima	and	mature	into	MΦ.	Subsequently,	MΦ	ingest	
oxLDL	and	 transform	 into	 foam	cells.	C,	 Progression	of	atherosclerotic	 lesions	 involves	 the	migration	of	
VSMC	from	the	media	to	the	 intima.	The	 intimal	VSMC	proliferate	and	synthesize	ECM	macromolecules	
such	 as	 collagen,	 elastin	 and	 proteoglycans.	 In	 addition	 to	 all	 these	 events,	 MΦ	 and	 VSMC	 die	 and	
generate	apoptotic	bodies	 in	advancing	plaques.	Extracellular	 lipids	derived	 from	dead	cells	accumulate	
and	 form	a	 lipid	or	necrotic	 core.	Cholesterol	 crystals	and	microvessels	are	also	 found	 in	 the	advancing	
plaques.	D,	Thrombosis	is	often	the	ultimate	complication	of	atherosclerosis	due	to	rupture	of	the	fibrous	
cap.	Reprinted	with	permission306.	

	

Along	 with	 excessive	 lipid	 accumulation,	 uncontrolled	monocyte	 infiltration	 and	 phagocytosis	

results	 in	 MΦ	 apoptosis	 and,	 when	 not	 adequately	 disposed	 of,	 necrosis.	 This	 progressively	

promotes	the	formation	of	a	necrotic	atherosclerotic	plaque	core,	which	is	surrounded	by	a	cap	

of	 VSMC	 and	 collagen-rich	 matrix,	 in	 advanced	 stages	 of	 lesion	 progression303,308.	 The	

inflammatory	response	of	EC	promotes	migration	and	proliferation	of	VSMC,	from	the	media	to	

the	 intima,	 which	 in	 turn	 become	 intermixed	 with	 the	 area	 of	 inflammation	 to	 form	 an	

intermediate	 lesion	progression303.	These	responses	proceed	uninhibited	and	are	accompanied	

by	 production	 and	 accumulation	 of	 synthesized	 ECM	 and	 inflammatory	 chemokines	 by	

VSMC309,310.	VSMC	are	essential	in	the	pathogenesis	of	atherosclerosis	and	plaque	rupture302,303.	

The	 stability	 of	 the	 atherosclerotic	 plaque	 relies	 on	 the	 thickening	 of	 the	 fibrous	 cap	 and	 the	

A	 B	

C	 D	
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degree	of	cap	inflammation302,303.	VSMC	in	advanced	atherosclerotic	plaques	exhibit	a	very	low	

rate	of	proliferation	and	produce	high	amounts	of	 collagen	 leading	 to	a	 stable	atherosclerotic	

plaque.	In	contrary,	plaque	instability	is	associated	with	cap	thinning	characterized	by	increased	

MΦ	accumulation	and	VSMC	death	in	the	shoulder	area	of	the	plaque.	Moreover,	MΦ	are	able	

to	 sensitize	VSMC	 to	apoptosis	by	 secreting	different	 cytokines	 (IL1β,	 TNFα	and	 IFNy)311-313.	 In	

addition,	activated	T-cells	stimulate	MΦ	to	produce	MMPs,	which	degrade	the	fibrous	cap	and	

support	plaque	 instability	ultimately	 leading	to	plaque	rupture.	Apoptotic	VSMC	are	evident	 in	

advanced	 human	 plaques,	 supporting	 the	 notion	 that	 VSMC	 apoptosis	 in	 advanced	

atherosclerotic	plaques	may	promote	plaque	rupture303.	Thus,	the	balance	of	VSMC	proliferation	

and	 migration	 versus	 VSMC	 apoptosis	 and	 senescence	 determines	 the	 population	 of	 VSMC	

within	the	atherosclerotic	plaque	and	stability	of	the	plaque302.		

The	phases	of	atherosclerosis	have	been	studied	in	detail	in	animal	models	including	genetically	

modified	mouse	models301,304.	Mice	deficient	in	ApoE	or	low-density	lipoprotein	receptor	(LDLR)	

develop	advanced	lesions	and	are	the	models	of	choice	to	explore	the	role	of	inflammatory	cells,	

VSMC	and	EC,	and	their	complex	interactions,	during	atherosclerosis	progression301,304.		

	

1.6.2 EC	dysfunction	and	atherosclerosis	

Diabetes	 mellitus,	 hypertension,	 modified	 LDL	 and	 other	 injuries	 to	 the	 EC	 monolayer	 initiate	 a	

chronic	 inflammatory	 response	 of	 the	 vessel	wall.	 The	 earliest	 step	 of	 atherosclerosis	 progression	

occurs	 in	 an	 injured	 endothelium,	 resulting	 in	 increased	 infiltration	of	 immune	 cells,	 LDL	particles,	

leukocyte	 adhesion	and	 thrombotic	potential310,314.	Moreover,	 injury	 to	 the	endothelium	 limits	 the	

bioavailability	 of	 eNOS.	 Numerous	 oxidative	 stress	 biomarkers	 show	 strong	 associations	 with	 the	

development	and	progression	of	coronary	artery	disease	(CAD)	and	predict	cardiovascular	events315.	

In	particular,	oxLDL	is	part	of	the	‘downstream	markers’	of	oxidative	stress.	It	has	been	reported	that	

the	oxLDL/LDL	cholesterol	ratio	may	be	the	best	indicator	of	the	risk	associated	with	oxLDL	levels316.	

Several	 studies	 have	 confirmed	 endothelial	 dysfunction	 to	 be	 an	 early	 stage	 event	 of	

atherosclerosis317,318.	 The	 study	 of	 Ludmer	 and	 colleagues	 provided	 the	 first	 line	 of	 evidence,	 in	

humans,	of	impaired	endothelium-dependent	vasodilation	in	the	presence	of	atherosclerosis319.	They	

observed,	upon	acetylcholine	administration,	paradoxical	constriction	in	the	arteries	of	patient	with	

mild	CAD	as	well	as	in	those	with	advanced	CAD,	indicating	that	endothelial	dysfunction	is	present	in	

the	 early	 stages	 of	 atherosclerosis319.	 Moreover,	 in	 studies	 using	 either	 acetylcholine	

administration320	or	flow-mediated	dilation317	endothelial	dysfunction	was	detected	in	both	conduit	

and	 microvascular	 vessels	 of	 patients	 with	 coronary	 risk	 factor.	 However,	 no	 angiographic	 or	

ultrasound	evidence	of	structural	CAD	was	observed,	confirming	that	endothelial	dysfunction	occurs	

in	the	preclinical	stage	of	atherosclerosis.		
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1.6.3 Inflammatory	cells	and	atherosclerosis	

The	 complex	 interaction	 of	 inflammatory	 cells	 with	 VSMC	 and	 EC	 promotes	 atherosclerosis	

progression	 and	 its	 clinical	 complications.	Monocytes	MΦ	exert	 pro-inflammatory	 functions	 in	 the	

atherosclerotic	 plaque.	 They	 are	 able	 to	 secrete	 ROS	 that	 oxidizes	 LDL,	 which	 in	 turn	 boost	 the	

inflammatory	milieu321,322.	They	also	produce	IL1β	and	TNFα,	thereby	promoting	leukocyte	adhesion	

to	EC323	and	VSMC	apoptosis311-313.	Furthermore,	MΦ	secrete	monocyte	chemotactic	protein	(MCP1)	

that	 increases	 leukocytes	 infiltration	 into	 the	 intima324.	 In	 addition,	 they	 degrade	 collagen	 by	

producing	 MMPs.	 Moreover,	 MΦ	 express	 procoagulant	 activity,	 which	 contributes	 to	 fibrin	

formation	and	subsequently	mediates	 leukocyte	adhesion	and	 trafficking325.	Along	with	monocytes	

and	MΦ	other	 immunce	cells	cells	such	as	 lymphocytes,	mast	cells,	T	cells	and	dendritic	cells	enter	

into	the	intima.		

	

Taken	together,	immune	cells	influence	the	behavior	of	EC	and	VSMC	and	create	a	positive	feedback-

loop	leading	to	further	recruitment	of	these	cells	into	the	atherosclerotic	lesion,	thereby	promoting	

the	 onset	 and	 progression	 of	 atherosclerosis.	 Hence,	 regulators	 of	 immune	 cell	 accumulation	 and	

trafficking	play	a	key	role	during	atherosclerosis.		

	

1.6.4 VSMC	remodeling	and	atherosclerosis	

Endothelial	 dysfunction	 and	 immune	 cell	 accumulation	 mark	 the	 initial	 stages	 of	 atherosclerosis,	

whereas	 the	 later	 stages	 of	 disease	 progression	 are	 highly	 dependent	 on	 synthetic	 VSMC	

characterized	 by	 enhanced	 migration,	 proliferation	 and	 ECM	 deposition306.	 VSMC	 phenotypic	

switching	plays	a	key	role	during	atherosclerosis	progression	and	ultimately	determines	the	 fate	of	

plaque	stability	in	advanced	atherosclerotic	lesions.		

Under	 normal	 physiological	 conditions,	 VSMC	 express	 contractile	 genes,	 however	 during	

atherosclerosis	 progression	 these	 genes	 are	 temporarily	 silenced	 while	 the	 synthetic	 genes	 are	

active326-328.	In	the	initial	stages	of	atherosclerosis	VSMC	lose	their	contractile	phenotype	and	switch	

towards	a	synthetic	phenotype	with	increased	proliferation,	migration	and	ECM	production124,126.	In	

contrary,	VSMC	at	later	stages	of	disease	progression	show	reduced	proliferation,	migration	and	ECM	

synthesis	 in	vulnerable	 lesions.	The	ability	of	VSMC	to	 switch	back	 to	a	contractile	 state	correlates	

with	 lesion	 stabilization	 at	 advanced	 stages	 of	 atherosclerosis	 progression.	 Regulation	 of	 VSMC	

phenotypic	 switching	has	been	extensively	 studied	and	 inhibiting	 this	 switch	might	be	beneficial	 in	

advanced	atherosclerosis126,329-332.	More	specifically,	MYOCD	 is	 regarded	as	a	promising	therapeutic	

target	for	atherosclerosis.	It	exerts	several	anti-atherosclerotic	functions	by	abolishing	lipid	uptake	of	

VSMC,	 inflammation	 in	 the	 vessel	 wall,	 macrophage	 interaction	 and	 chemotaxis126,329-332,333.	

Furthermore,	 there	 is	also	evidence	demonstrating	the	 involvement	of	VSMC-expressed	PDGFRβ	 in	

atherosclerosis	 progression.	 Blockade	of	 the	 PDGFB/	PDGFRβ	 signaling	pathway,	 using	neutralizing	

antibodies	or	chemical	inhibitors,	reduced	VSMC	participation	in	atherosclerosis334,335.	Another	study	
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demonstrated	that	VSMC-specific	overexpression	of	PDGFRβ	in	ApoEKO	mice,	on	a	high-fat	diet,	leads	

to	increased	atherosclerosis	and	macrophage	accumulation336.		

The	synthesis	and	degradation	of	the	ECM	in	advanced	atherosclerotic	plaques	play	a	critical	role	in	

plaque	 stabilization337.	 While	 large	 amounts	 of	 ECM	 are	 produced	 in	 the	 fibrous	 cap,	 with	 the	

characteristics	of	a	stable	plaque,	ECM	degradation	is	enhanced	in	the	 lipid	core,	 leading	to	plaque	

vulnerability337.	 Plaque	 vulnerability	 in	 turn	 may	 predispose	 to	 plaque	 rupture.	 Importantly,	

degradation	of	 the	ECM	by	 the	actions	of	Mmps	derived	 from	MΦ	prompts	VSMC	to	 interact	with	

interstitial	matrix	proteins	(collagen	I,	collagen	III,	fibronectin,	ostepontin)	that	facilitates	the	switch	

towards	 a	 synthetic	 phenotype145,338.	 Increased	 collagen	 I	 in	 plaques	 leads	 to	 the	 release	 of	

monomeric	 collagen	 1.	 While	 collagen	 IV	 and	 polymerized	 collagen	 I	 inhibit	 VSMC	 growth	 and	

promote	the	contractile	VSMC	phenotype,	monomeric	collagen	I	reduces	the	contractile	phenotype	

and	promotes	VSMC	proliferation339.	

VSMC	 are	 also	 actively	 involved	 in	 propagating	 inflammation,	 through	 their	 regulation	 of	 cytokine	

secretion	and	membrane	receptors,	during	atherosclerosis	progression340.	Studies	have	shown	that	

endothelial	 dysfunction,	 inflammatory	 cytokines	 (TNFα,	 IL1β	 and	 IL8)	 and	 oxLDL	 promote	 the	

transition	of	VSMC	toward	a	proinflammatory	phenotype341-344.		

	

1.6.5 Link	between	hypertension	and	atherosclerosis		

Hypertension	 and	 atherosclerosis	 are	 distinct	 diseases	 that	 cause	 similar,	 yet	 distinguishable	

biochemical	and	pathological	alterations	in	arteries345,346.	Atherosclerosis	predominantly	affects	large	

and	 medium-sized	 vessels,	 whereas	 hypertension	 is	 primarily	 a	 disease	 of	 small	 arteries	 and	

arterioles.	 However,	 hypertension	 can	 also	 affects	 large	 vessels.	 Atherosclerosis,	 when	 associated	

with	 hypertension	 may	 also	 involve	 small	 arteries	 like	 those	 in	 the	 brain	 or	 heart.	 One	 major	

discrepancy	 between	 the	 two	 diseases	 is	 the	 accumulation	 of	 lipids	 that	 is	 only	 observed	 in	

atherosclerotic	 lesions345,346.	 Epidemiology	 studies	 and	 clinical	 trials	 have	 shown	 that	 hypertension	

contributes	 significantly	 to	 atherosclerosis	 progression305,347-349.	 In	 particular,	 these	 studies	 have	

reported	that	atherosclerosis	of	the	aorta,	coronary	artery,	cerebral	arteries	and	other	major	vessels	

is	more	severe	 in	hypertensive	as	compared	to	normotensive	subjects349.	The	mechanism	by	which	

hypertension	 accelerates	 atherosclerosis	 are	 not	 fully	 explored.	 However,	 several	 possibilities	 are	

discussed	in	literature:	i)	serum	lipids	are	carried	into	the	vessel	wall	by	ultrafiltration	via	the	arterial	

intima.	As	such,	an	increase	in	filtration	pressure	during	hypertension	will	alter	the	equilibrium	across	

the	intimal	surface	to	favour	a	greater	lipid	deposition345,350,351,	ii)	experimental	coarction	of	the	aorta	

leads	to	an	increase	in	mucopolysaccharides	in	the	wall	of	the	aorta	prior	to	lipid	accumulation345,	iii)	

increasing	 evidence	 indicate	 that	 hypertension,	 through	 the	 vasoactive	 peptides	 ET1	 and	 AngII,	

promotes	 atherosclerosis	 progression	 through	 inflammatory	 mechanisms352,353.	 Hence,	 these	

possibilities,	interrelated	or	not,	may	serve	as	a	bridge	linking	hypertension	and	atherosclerosis.	
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1.7 Angpt/Tie	system	in	cardiovascular	diseases		

Growing	 evidence	 implicates	 the	 involvement	 of	 the	 Angpt/Tie	 system	 in	 hypertension	 as	 well	 as	

atherosclerosis.	Interestingly,	controversial	roles	of	Angpt1	and	Angpt2	have	been	reported	for	both	

pathological	conditions.			

	

1.7.1 Angpt/Tie	system	during	hypertension	

Biomarker	 studies	 imply	 a	 role	 of	 Angpt/Tie	 signaling	 in	 the	 pathogensis	 of	 hypertension.	 These	

studies	 reported	 increased	 Angpt2	 concentrations	 in	 the	 serum	 of	 patients	 with	 essential	

hypertension354-356,	 particularly	 those	 associated	 with	 atherosclerosis355.	 Correspondingly,	 elevated	

Angpt2	 levels	 in	 these	 patients	 correlate	with	 inflammation	 and	 adhesion	molecules	 (IL6,	 VCAM1,	

and	 ICAM1)355.	 Interestingly,	 next	 to	 Angpt2	 plasma	 levels,	 levels	 of	 Angpt1	 and	 sTie2	 were	 also	

increased	in	hypertensive	patients354.	In	addition,	plasma	levels	of	Angpt1,	Angpt2	and	Tie2	are	also	

increased	 in	 patients	 with	 pulmonary	 arterial	 hypertension	 (PAH)357.	 There	 is	 evidence	 that	

overexpression	of	Angpt1	 in	 rodents	 leads	to	a	PAH-like	phenotype358,359.	 In	contrast,	other	studies	

have	shown	that	the	Angpt1-Tie2	signaling	protects	against	PAH360,361.	

	

1.7.2 Angpt/Tie	system	during	atherosclerosis	

The	 Ang/Tie	 system	 has	 been	 proposed	 to	 play	 essential	 roles	 in	 the	 pathogenesis	 of	

atherosclerosis362-367.	 Biomarker	 studies	 suggest	 a	 role	 of	 the	 Ang/Tie	 system	 in	 macrovascular	

functions	related	to	atherosclerosis.	Elevated	levels	of	circulating	Angpt2,	have	been	associated	with	

hypertension	and	atherosclerosis362,365.	Moreover,	LDLR-/-	mice	vaccinated	against	Tie2	significantly	

reduced	 atherosclerotic	 plaque	 formation	 in	 carotid	 arteries	 and	 aortic	 root,	 supporting	 a	 pro-

atherosclerotic	 role	of	Tie2364.	Additionally,	adventitial	angiogenesis	was	reduced	significantly	upon	

vaccination	against	Tie2,	suggesting	a	possible	mechanism	via	which	vaccination	against	Tie2	inhibits	

lesion	formation.	Like	Angpt2,	Tie1	has	shown	to	be	expressed	at	regions	of	non-laminar	flow	in	the	

mouse	 aorta368.	 Tie1	 plays	 an	 essential	 role	 in	 endothelial	 cell	 activation	 associated	 with	

inflammation368.	Overexpression	of	Tie1,	 in	vitro,	 increased	the	expression	of	inflammatory	markers	

such	 as	 of	 VCAM1,	 ICAM1	 and	 E-selectin,	 potentially	 through	 a	 p38-dependent	 mechanism368.	 In	

addition,	partial	deletion	of	Tie1	reduced	the	number	of	atherosclerotic	plaques	and	MΦ	in	the	distal	

aorta	 in	 a	 mouse	model	 of	 atherosclerosis367,	 supporting	 that	 Tie1	mediates	 inflammation	 during	

atherosclerosis	progression.	The	role	of	Angpt1	and	Angpt2	in	atherosclerosis	remains	controversial.	

Angpt1	has	been	shown	to	protect	against	atherosclerosis369	and	Angpt2	blocking	antibodies	reduce	

early	atherosclerotic	 lesion	formation366.	Likewise,	adenoviral	systemic	overexpression	of	Angpt2	or	

recombinant	 Angpt2	 protein	 have	 in	 two	 independent	 studies	 been	 shown	 to	 act	

atheroprotective117,118.	 These	 apparently	 conflicting	 results	 likely	 suggest	 that	 Angpt/Tie	 signaling	

during	 atherosclerosis	 exerts	 spatiotemporally	 context-dependent	 pro-	 and	 anti-atherosclerotic	
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effects	that	cannot	exclusively	be	explained	by	the	stabilizing	effects	of	Angpt1	and	the	destabilizing	

effects	of	Angpt2	on	EC.	

	

1.7.3 Angpt/Tie	system	in	VSMC		

Tie2	 expression	 has	 also	 been	 reported	 in	 VSMC370-372.	 There	 is	 evidence	 that	 Angpt1	 induces	

migration	 of	 mural	 precursor	 cells	 in	 a	 Tie2-dependent	 manner370.	 Moreover,	 MCF-7	 cells	

overexpressing	 Angpt1	 in	 a	 tumor	 xenograft	 led	 to	 reduced	 tumor	 growth,	 by	 recruiting	 VSMC	

expressing	Tie2372.	Another	study	compared	normal	and	arthritic	synovial	tissues	and	observed	high	

levels	of	Tie2	in	VSMC	from	rheumatoid	arthritis	patients	as	compared	to	normal	synovial	tissue371.	

Although	these	scattered	observations	have	reported	Tie2	expression	by	VSMC,	the	functional	role	of	

VSMC-expressed	Tie2	has	not	been	investigated.	

	

1.8 Aim	of	the	study	

The	 tyrosine	 kinase	 receptor	 Tie2	 (Tek)	 plays	 important	 roles	 during	 vascular	 development,	

remodeling	 and	maturation1,2.	 Tie2	 exerts	 its	 angiogenesis-regulating	 functions	 through	 its	 almost	

exclusive	 EC-specific	 expression.	 In	 fact,	 EC-specific	 deletion	 of	 Tie2	 phenocopies	 the	 embryonic	

lethal	phenotype	of	globally	Tie2-deficient	mice,	which	die	during	midgestation	(E10.5)	as	a	result	of	

perturbed	 vessel	maturation69.	 Yet,	 Tie2	 is	 not	 solely	 expressed	 by	 EC59,60,62,64-68.	 Scattered	 reports	

have	 suggested	 that	 VSMC	 may	 also	 express	 Tie2370-372.	 However,	 a	 functional	 role	 of	 VSMC-

expressed	 Tie2	 has	 not	 yet	 been	 established.	 Importantly,	 Angpt/Tie	 signaling	 has	 also	 been	

implicated	in	the	pathogenesis	of	cardiovascular	diseases	including	hypertension	and	atherosclerosis.	

Therefore,	 the	 aim	 of	 the	 study	 is	 to	 i)	 investigate	 the	 role	 of	 VSMC-expressed	 Tie2	 in	 regulating	

blood	pressure	and	cardiac	function	 in	hypertension	and	 ii)	 investigate	the	role	of	VSMC-expressed	

Tie2	in	regulating	phenotypic	remodeling	of	VSMC	during	atherosclerosis	progression.		
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2 Results	
	

2.1 VSMC-specific	expression	of	Tie2		

In	order	to	confirm	previous	reports	on	the	expression	of	Tie2	 in	VSMC370-372,	Tie2	(TEK)	expression	

was	 comparatively	 assessed	 in	 cultured	 human	 aortic	 smooth	 muscle	 cells	 (HAoSMC),	 human	

umbilical	artery	smooth	muscle	cells	(HUaSMC),	human	aortic	endothelial	cells	(HAoEC)	and	human	

umbilical	vein	endothelial	cells	(HUVEC).	Real-time	quantitative	PCR	(RT-qPCR)	and	semi-quantitative	

PCR	 revealed	 low,	 but	 consistently	 detectable	 levels	 of	 Tie2	 (TEK)	 in	 HAoSMC	 and	 HUaSMC	 as	

compared	 to	 HAoEC	 and	 HUVEC	 (Figure	 7A	 and	 7B).	Moreover,	 HAoSMC	 and	 HUaSMC	 expressed	

ANGPT1,	 but	 not	 the	 EC-specific	 markers	ANGPT2	 and	VEGFR2	 (Figure	 7B).	Western	 blot	 analysis	

confirmed	 Tie2	 along	with	 Tagln	 and	 a	 lack	 of	 Vegfr2	 expression	 on	 protein	 level	 in	 HAoSMC	 and	

HUaSMC	(Figure	7C).		

	

The	detectable	but	comparatively	lower	expression	of	Tie2	in	VSMC	raised	the	question	whether	the	

receptor	 is	 functional	 and	 plays	 a	 role	 in	 cell	 signaling.	 The	 Angpt1	 ligand	 is	 the	most	 prominent	

inducer	of	 Tie2,	which	 is	 known	 to	bind	 to	 the	extracellular	domain	of	Tie2,	 thereby	 leading	 to	 its	

dimerization	and	consequent	phosphorylation101.	Therefore,	 the	 functional	 capability	of	 the	VSMC-

expressed	Tie2	receptor	was	validated	by	stimulation	of	HuASMC	with	recombinant	human	Angpt1	

for	 20	min.	HUVEC	were	used	as	 a	positive	 control.	 To	detect	 Tie2	 recepter	phosphorylation,	 Tie2	

was	 immunoprecipitated	 from	 protein	 extracts	 and	 detected	 by	 western	 blotting	 using	 a	 pan-

phosphotyrosine	antibody.	Angpt1	stimulation	led	to	a	significant	increase	in	Tie2	phosphorylation,	

	

	
Figure	7.	Vascular	smooth	muscle	cells	express	Tie2	
A,	Gene	expresssin	analyses	by	RT-qPCR	of	Tie2	(TEK)	in	HAoSMC,	HUaSMC,	HAoEC	and	HUVEC.	B,	Tie2	(TEK),	
ANGPT1,	ANGPT2,	VEGFR2	and	GAPDH	expression	in	HAoSMC,	HUaSMC,	HAoEC	and	HUVEC	were	detected	by	
semi-quantitative	PCR.	C,	Tie2,	Vegfr2,	Tagln	(transgelin/Sm22α)	and	Tubulin	expression	in	HAoSMC,	HUaSMC,	
HAoEC	 and	 HUVEC	 were	 detected	 by	 Western	 blot.	 Cells	 were	 analyzed	 at	 passage	 2	 (n=3).	 Expression	 is	
normalized	to	B2m	mRNA	expression.	Data	are	shown	as	mean	±	S.D.		
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Figure	8.	Vascular	smooth	muscle	cells	express	functional	Tie2	receptor	
A-D,	Representative	Western	blots	and	corresponding	densitometric	analyses	of	pTie2	and	Tie2	in	HUaSMC	(A-
B)	and	HUVEC	(B-C)	stimulated	with	or	without	recombinant	human	Angpt1	(400	ng/ml)	for	20	min.	Cell	lysates	
were	 immunoprecipitated	with	anti-Tie2	antibody	and	 immunoblotted	sequentially	with	anti-phophotyrosine	
(pTie2)	 and	 anti-Tie2	 (Tie2)	 antibodies.	 Tie2	 phosphorylation	 represents	 the	 ratio	 of	 phosphorylated	 Tie2	 to	
total	 Tie2,	 normalized	 to	 unstimulated	 controls.	 E-H,	 Representative	 Western	 blots	 and	 corresponding	
densitometric	 analyses	 of	 pAkt	 and	 Akt	 in	 HUaSMC	 (E-F)	 and	 HUVEC	 (G-H)	 stimulated	 with	 or	 without	
recombinant	 human	 Angpt1	 (400	ng/ml)	 for	 20	 min.	 Akt	 phosphorylation	 represents	 the	 ratio	 of	
phosphorylated	Akt	to	total	Akt	normalized	to	unstimulated	controls	(n=3-4).	Data	are	shown	as	mean	±	S.D.	of	
3-4	independent	experiments.	*p	<	0.05,	**p	<	0.001,	***p	<	0.0001.	Student´s	t-test.	

	

albeit	Tie2	phosphorylation	was	less	 in	HUaSMC	(Figure	8A	and	8B)	compared	to	HUVEC	(Figure	8C	

and	 8D).	 Correspondingly,	 Angpt1	 induced	 phosphorylation	 of	 the	 Tie2	 downstream	 effector	 Akt	

(Figure	8E-8H),	which	are	important	pathways	controlling	cell	survival	and	proliferation.	

	

To	 assess	 VSMC-specific	 Tie2	 expression	 in	 vivo,	 Sm22α-Cre	 mice	 were	 crossed	 to	 Rosa26	 yellow	

fluorescent	protein	(YFP)	reporter	(Rosa26YFP)	mice373	and	CD31-CD45-YFP+	and	CD31+CD45-YFP-	cells	

were	 isolated	 from	 the	heart	 for	 subsequent	 gene	expression	 analysis.	 Therefore,	 hearts	 from	12-

weeks-old	adult	mice	were	resected	and	digested	for	single	cell	suspensions.	Cells	were	resuspended	

in	 ACK-lysis	 buffer	 and	 subsequently	 labelled	 for	 the	 EC	 and	 leukocyte	 marker	 CD31	 and	 CD45,	

respectively.	 Dead	 cells	 were	 excluded	 by	 staining	 with	 FxCycle.	 Viable	 CD31-	 CD45-	 YFP+	 and	

CD31+CD45-YFP-	cells	 were	 isolated	 using	 fluorescent-activated	 cell	 sorting	 (FACS)	 (Figure	 9A).	 RT-

qPCR	 analyses	 demonstrated	 that	 Sm22α-positive	 cells	 expressed	 Tie2	 (Tek)	 and	 were	 devoid	 of	

Pecam1	expression	(Figure	9B	and	9C).		
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Figure	9.	Tie2	expression	in	isolated	mouse	aortic	vascular	smooth	muscle	cells	
A,	 Representative	 FACS	 sorting	 scheme	 for	 the	 isolation	 of	 viable	 Sm22α-positive	 cells	 from	 the	 heart	 of	
Sm22α-Cre	x	Rosa26YFP	mice.	B-C,	CD31-	CD45-	YFP+	and	CD31+	CD45-	YFP-	cells	were	 isolated	from	the	heart	of	
Sm22α-Cre	 x	 Rosa26YFP	mice	 for	 gene	 expression	 analysis	 (n=3-4).	 RT-qPCR	 analysis	 of	 Tie2	 (Tek)	 (B)	 and	
Pecam1	 (C)	 in	 isolated	 CD31-	CD45-	YFP+	 and	 CD31+	CD45-	YFP-	cells.	 Expression	 is	 normalized	 to	B2m	 mRNA	
expression.	Data	are	shown	as	means	±	S.D.	

	

2.2 SMC-specific	deletion	of	Tie2	

To	 investigate	 the	 functional	 role	of	VSMC-expressed	Tie2	 in	 vivo,	Tie2flox/flox	mice	were	 crossed	 to	

Sm22α-Cre	 driver	 mice	 to	 generate	 mice	 with	 constitutively	 deleted	 Tie2	 in	 SMC	 (Tie2SMC-KO).	

Tie2flox/flox	(Tie2+/+)	mice	were	used	as	controls.	As	described	previously,	mice	with	a	global	deletion	of	

Tie2	or	EC-specific	deletion	of	Tie2	die	within	the	first	10.5	days	postpartum69,374.	Notably,	Tie2SMC-KO	

mice	 are	 born	 phenotypically	 normal	 and	 according	 to	Mendelian	 ratio. To	 explore	 the	 impact	 of	

VSMC-specific	 Tie2	 deletion	 on	 vessel	 growth	 and	 morphology	 during	 physiological	 angiogenesis,	

developing	 retinal	vessels	at	postnatal	day	4	 (P4)	were	analysed	 in	Tie2SMC-KO	and	Tie2+/+	mice. The	
retinal	 vasculature	was	 stained	using	 isolectin	B-4	 (IB-4),	Desmin	 (for	 PC	 coverage)	 and	αSMA	 (for	

VSMC	 coverage)	 antibodies	 (Figure	 10A).	 Images	 were	 obtained	 using	 confocal	 microscopy	 and	

analyzed	 using	 Fiji	 software.	 Analysis	 of	 P4	 retinas	 identified	 no	 significant	 alterations	 in	 vessel	

structure,	 smooth	muscle	 cell	 or	 pericyte	 coverage	 in	Tie2SMC-KO	mice	 (Figure	 10B-10D),	 suggesting	

that	VSMC-specific	Tie2	deletion	does	not	alter	postnatal	retinal	angiogenesis	or	mural	cell	coverage.		

	

To	study	the	efficiency	of	VSMC-specific	Tie2	deletion,	VSMC	were	isolated	from	the	aorta	of	Tie2+/+	

and	Tie2SMC-KO	mice	and	maintained	in	short-term	culture.	Tie2	deletion	was	confirmed	by	RT-qPCR	in	

short-term	cultured	aortic	VSMC	from	Tie2+/+	and	Tie2SMC-KO	mice	 (Figure	11A).	Tie2	high-expressing	

MS1	cells	(immortalized	mouse	endothelial	cell	line)	and	low-expressing	NIH3T3	cells	(fibroblast	cell	

line)	were	 used	 as	 positive	 and	 negative	 controls,	 respectively.	 Correspondingly,	 semi-quantitative	

PCR	revealed	Tie2	(Tek)	deletion	in	short-term	cultured	aortic	VSMC	from	Tie2SMC-KO	mice	(Figure	11B)	

as	 well	 as	 in	 femoral	 arteries,	mesenteric	 arteries,	 aortas	 and	 hearts	 from	 Tie2SMC-KO	mice	 (Figure	

11C).		
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Figure	10.	Characterization	of	retinal	vascularization	and	mural	cell	coverage	in	Tie2+/+	and	Tie2SMC-

KO	mice	
A,	 Representative	 images	of	 the	 total	 retinal	 vasculature	 (P4)	of	 Tie2+/+	and	Tie2SMC-KO	mice	 stained	with	 IB-4	
(green),	 αSMA	 (red)	 and	 Desmin	 (violet).	 Scale	 bar:	 200	μm.	 B-D,	 Quantitative	 analyses	 of	 vessel	 area	 (B)	
αSMA-positive	coverage	(VSMC	coverage)	(C)	Desmin-positive	coverage	(pericyte	coverage)	(D)	in	retinas	from	
Tie2+/+	and	Tie2SMC-KO	mice;	n=6.	Data	are	shown	as	mean	±	S.D.	Student´s	t-test.	ns=non-significant.	

	

The	 purity	 of	 VSMC	was	 analyzed	 at	 passage	 1	 by	 gene	 expression	 analysis.	 EC	 and	 fibroblast	 are	

possible	contaminations	during	VSMC	isolation.	Therefore,	MS1	(pancreatic	islet	endothelial	cell	line)	

and	NIH3T3	cells	(mouse	embryomic	fibroblast	cell	 line)	were	used	as	positive	controls.	Pdgfrβ	and	

Desmin	(Des)	are	mural	cell	markers,	whereas	Pecam1	and	S100a4	are	abundantly	expressed	by	EC	

or	 fibroblast,	 respectively.	 The	purity	 of	 VSMC	was	 confirmed	by	 abundant	Pdgfrβ	and	Des	mRNA	

expression	 and	 consistently	 low	 levels	 of	 EC-specific	 Pecam1	 transcripts	 and	 fibroblast	 transcript	

S100a4	 (Figure	12A-12C).	These	data	confirm	the	homogeneity	and	purity	of	 isolated	aortic	VSMC.	

Hence,	isolation	of	aortic	VSMC	is	applicable	to	study	the	functional	role	of	VSMC-expressed	Tie2.		
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Figure	11.	Tie2	expression	in	isolated	mouse	aortic	vascular	smooth	muscle	cells	
A-B,	Tie2	(Tek)	expression	in	isolated	aortic	VSMC	from	Tie2+/+	and	Tie2SMC-KO	mice	detected	by	quantitative	RT-
qPCR	 (A)	 (n=4)	 and	 semi-quantitative	 PCR	 (B)	 (n=3).	 C,	 Semi-quantitative	 PCR	 analysis	 of	 isolated	 femoral	
arteries	(FA),	mesenteric	arteries	(MA),	total	aorta	(AO)	and	heart	(HE)	from	Tie2+/+	and	Tie2SMC-KO	mice	for	Tie2	
deletion;	n=3.	Tie2	del	indicates	Tie2	deletion	in	FA,	MA,	AO	and	HE	of	Tie2SMC-KO	mice.	+/+	is	used	as	symbol	for	
Tie2+/+	and	-/-	for	Tie2SMC-KO	mice.	p/d	is	used	as	control	for	a	floxed	homozygous	sample	with	deletion	via	Cre,	
and	+/p	as	control	 for	a	floxed	heterozygous	sample	without	deletion.	Mouse	EC	 line	MS1	and	fibroblast	cell	
line	NIH3T3	were	used	as	controls	to	exclude	possible	contaminations	(n=4).	Data	are	shown	as	means	±	S.D.	of	
3-4	independent	experiments.	***p	<	0.0001.	Student´s	t-test.		

	

	
Figure	12.	Purity	of	isolated	aortic	VSMC	
A,	Gene	expression	analysis	of	mural	cell-specific	genes	Pdgfrβ	and	Des.	B-C,	Pecam1	(EC-specific	marker)	gene	
expression	 (B)	 and	S100a4	 (fibroblast-marker)	 gene	 expression	 (C)	 in	 isolated	VSMC	of	Tie2+/+	and	Tie2SMC-KO	
mice.	Expression	 is	normalized	 to	B2m	mRNA	expression.	Mouse	EC	 line	MS1	and	 fibroblast	cell	 line	NIH3T3	
were	 used	 as	 controls	 to	 exclude	 possible	 contaminations	 (n=4).	 Data	 are	 shown	 as	 means	 ±	 S.D.	 of	 3-4	
independent	experiments.		

	

To	determine	whether	 EC-specific	 Tie2	 expression	 remained	unaffected	 in	 Tie2SMC-KO	mice,	 lung	 EC	

were	isolated	and	analyzed	for	relative	marker	gene	expression.	Lungs	from	adult	mice	(8-12	weeks	

old)	 were	 resected	 and	 digested	 for	 preparation	 of	 single	 cell	 suspensions.	 Cells	 were	 stained	 for	

CD45	 (leukocytes),	 Ter119	 (erythrocytes),	 Lyve1	 (lymphatic	 endothelial	 cells),	 Podoplanin,	 ([Pdpn],	

alveolar	epithelial	cells)	for	depletion	by	magnetic	beads.	Dead	cells	were	excluded	by	staining	with	

FxCycle.	 EC	 were	 labelled	 by	 co-staining	 for	 CD31	 (Figure	 13A).	 Relative	 gene	 expression	 analysis	
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identified	no	alterations	in	EC-	specific	Pecam1,	Cdh5	and	Tie2	(Tek)	expression	between	Tie2+/+	and	

Tie2SMC-KO	mice	(Figure	13B),	suggesting	that	EC-specific	Tie2	expression	was	unaffected	in	Tie2SMC-KO	

mice.	 Correspondingly,	 expression	 levels	 of	 VSMC-markers	 Tagln/Sm22,	 Cnn1	 and	 Pdgfrβ	 and	 the	

fibroblast	marker	S100a4	were	hardly	detected	in	the	two	EC	populations	(Figure	13B).	Futhermore,	

gene	expression	analysis	revealed	Tagln	mRNA	expression	levels	in	isolated	peritoneal	macrophages	

from	Tie2+/+	and	Tie2SMC-KO	mice,	whereas	Tie2	 (Tek)	mRNA	 levels	were	undetected	 (Figure	13C).	 In	

conclusion,	these	findings	demonstrate	an	efficient	and	specific	deletion	of	VSMC-expressed	Tie2	in	

Tie2SMC-KO	mice.		
	

	
Figure	 13.	 Evaluation	 of	 Tie2	 expression	 in	 isolated	 lung	 EC	 and	 peritoneal	 macrophages	 from	
Tie2+/+	and	Tie2SMC-KO	mice	
A,	Representative	FACS	sorting	scheme	for	the	isolation	of	viable	 lung	EC.	B,	Gene	expression	analysis	by	RT-
qPCR	of	FACS-sorted	CD45-Ter119-Lyve1-Pdpn-CD31+	cells	for	Tie2	(Tek),	Pecam1	(EC-specific	marker),	and	Cdh5	
(EC-specific	 marker,	 Tagln,	 Cnn1,	 Pdgfrβ	 (VSMC-specific	 markers)	 and	 S100a4	 (fibroblast	 marker);	 n=5.	 C,	
Quantitative	analyses	of	Tagln,	Tek,	F4/80	and	CD45	in	isolated	peritoneal	macrophages;	n=3.	Data	are	shown	
as	mean	±	S.D.	Student´s	t-test.	ns=non-significant.		

	

2.3 VSMC-expressed	Tie2	regulates	phenotypic	modulation	of	

activated	VSMC		

To	 study	 whether	 VSMC-specific	 Tie2	 deletion	 affects	 VSMC	 phenotype	 and	 function,	 gene	

expression	 profiling	was	 performed	 on	 isolated,	 short-term	 cultured	 aortic	 VSMC	 from	 Tie2+/+	and	

Tie2SMC-KO	 mice.	 Short-term	 cultured	 aortic	 VSMC	 from	 Tie2+/+	 and	 Tie2SMC-KO	 mice	 showed	 only	 a	

minor	 subset	 of	 differentially	 expressed	 genes	 (Figure	 14A).	 Therefore,	 the	 Gene	 Set	 Enrichment	

Analysis	 (GSEA)	 was	 employed	 to	 elucidate	 which	 gene	 sets	 were	 significantly	 associated	 with	
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changes	 in	 VSMC	 phenotypes.	 GSEA	 confirmed	 a	 downregulation	 of	 Tie2	 (Tek)	 in	 Tie2SMC-KO	 mice	

(Figure	14B).		

	

	
Figure	14.	Gene	expression	analysis	in	isolated	aortic	VSMC	from	Tie2+/+	and	Tie2SMC-KO	mice	
A,	 Identification	of	differential	gene	expression	in	isolated	aortic	VSMC	(passage	1)	from	Tie2+/+	and	Tie2SMC-KO	

mice,	 represented	as	 log2	 fold-change.	B,	Heatmap	showing	the	downregulation	of	Angpt1	 in	 the	absence	of	
VSMC-expressed	Tie2	(n=3).	

	

GSEA	revealed	that	downregulated	Tie2	(Tek)	and	Angpt1	expression	(Figure	14B)	in	Tie2SMC-KO	mice	

significantly	correlated	with	upregulated	contractile	VSMC-specific	gene	expression	of	Actn4	(actinin	

4),	 Rock1,	 Smtn,	 Cald1,	 Tagln	 and	 VSMC	 contraction-related	 gene	 expression	 of	 Myl9,	 Lmod1	

(leiomodin	 1),	Mylk	 (myosin	 light	 chain	 kinase) and	Myl6	 (Figure	 15A	 and	 15B).	 In	 contrast,	 the	

proliferation-related	gene	Pcna	(proliferating	cell	nuclear	antigen)	was	downregulated	in	VSMC	from	

Tie2SMC-KO	mice	as	compared	to	Tie2+/+	mice	(Figure	15C).		

	

	
Figure	15.	Contractile	VSMC	markers	increased	in	isolated	aortic	VSMC	from	Tie2SMC-KO	mice	
A-C,	Heatmap	showing	the	upregulation	of	contractile	VSMC	marker	genes	(Actn4,	Rock1,	Smtn,	Cald1,	Tagln)	
(A)	and	VSMC-contraction	related	genes	(Myl9,	Lmod1,	Mylk,	Myl6)	(B)	and	the	downregulation	of	proliferation	
genes	(Pcna)	(C)	in	the	absence	of	VSMC-expressed	Tie2	(n=3,	ES	stands	for	Enrichment	Score).		

	

Validation	 of	 the	 GSEA	 findings	 by	 RT-qPCR	 confirmed	 a	 significant	 increase	 in	 contractile	 VSMC	

markers	of	Cnn1,	Tagln,	Smtn,	Cald1,	Acta2	(αSMA),	Myh11	and	Myl9	in	aortic	VSMC	in	the	absence	

of	Tie2	 (Tek)	 (Figure	16A	and	16B).	Angpt1	as	well	as	Pcna	and	the	synthetic	VSMC	markers	genes	
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Rbp1,	 Vim	 and	Mgp1	 were	 significantly	 downregulated	 (Figure	 16A-16C).	 The	 expression	 of	 other	

synthetic	VSMC-specific	genes	Myh10	and	Tpm4	was	not	altered	(Figure	16C).	

	

	
Figure	16.	Tie2	deficiency	in	VSMC	impairs	VSMC	activation	
A,	 Gene	 expression	 analysis	 by	 RT-qPCR	 of	 Tie2	 (Tek)	 and	Angpt1	 in	 isolated	 aortic	 VSMC	 from	 Tie2+/+	and	
Tie2SMC-KO	mice.	 B,	 Expression	 of	 contractile	 VSMC-specific	 marker	 genes	 Cnn1,	 Tagln,	 Smtn,	 Cald1,	 Acta2,	
Myocd	and	VSMC-contraction-related	genes	Myh11	and	Myl9	by	RT-qPCR	(n=3-5).	C,	Gene	expression	analysis	
by	RT-qPCR	of	Pcna	and	synthetic	VSMC	markers	Rbp1,	Vim,	Mgp1,	Tpm4	and	Myh10.	n=5-6.	Data	are	shown	
as	mean	±	S.D.	of	3	independent	experiments.	*p	<	0.05,	**p	<	0.001,	***p	<	0.0001.	Student´s	t-test.	ns=non-
significant.		

	

2.4 VSMC-specific	Tie2	deletion	does	not	affect	baseline	in	vivo	VSMC	

phenotype		

In	 order	 to	 analyze	 VSMC	 phenotype	 in	 vivo,	 cross-section	 of	 mesenteric	 arteries	 and	 femoral	

arteries	 were	 stained	 for	 EC	markers	 (CD31)	 and	 contractile	 VSMC	markers	 (αSMA	 and	 Calponin)	

(Figure	19	A	and	19C).	Mesenteric	arteries	(Figure	17A	and	17B)	and	femoral	arteries	(Figure	17C	and	

17D)	 from	Tie2+/+	and	Tie2SMC-KO	mice	 did	 not	 reveal	 changes	 in	αSMA-	 and	Calponin-positive	 area.	

Correspondingly,	 protein	 levels	 of	 αSMA	 and	 Calponin	 were	 not	 altered	 in	 mesenteric	 arteries,	

femoral	 arteries	 and	 aortas	 from	 Tie2+/+	 and	 Tie2SMC-KO	 mice	 (Figure	 17E-17G).	 These	 results	

demonstrate	that	the	baseline	 in	vivo	VSMC	phenotype	was	not	altered	among	the	groups	and	the	

changes	 observed	 in	 vitro	 in	 aortic	 VSMC	 from	 Tie2+/+	mice	 were	 most	 likely	 due	 to	 an	 activated	

status	of	these	cells	upon	culture.	Indeed,	it	has	been	reported	that	cultured	VSMC	fail	to	maintain	

their	contractile	quiescent	phenotype	and	shift	towards	a	synthetic	VSMC	phenotype	in	response	to	

serum,	 a	 process	 known	 as	 phenotypic	 modulation	 to	 acquire	 characteristics	 found	 in	 vascular	

lesions375,376.		
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Figure	 17.	 In	 vivo	 analysis	 of	 contractile	 VSMC	 marker	 expression	 in	 arteries	 from	 Tie2+/+	 and	
Tie2SMC-KO	mice	
A,	B,	Isolated	mesenteric	arteries	(MA)	stained	and	quantified	for	αSMA-positive	area	for	VSMC	content.	C,	D,	
Isolated	 femoral	 arteries	 (FA)	 stained	and	quantified	 for	αSMA-positive	area	 for	VSMC	content;	n=4-6.	 Scale	
bar:	50	μm.	E-G,	Representative	Western	blots	of	Tagln,	αSMA	and	Tubulin	protein	expression	in	isolated	MA	
(E),	FA	(F)	and	total	aortas	(AO)	(G);	n=3-5.	Data	are	shown	as	mean	±	S.D.	Student´s	t-test.	ns=non-significant.	

	

2.5 VSMC-specific	Tie2	deletion	leads	to	enhanced	contractile	

capactity	of	femoral	arteries	upon	pressure-controlled	perfusion	

To	 determine	 whether	 the	 phenotype	 observed	 in	 in	 vitro	 activated	 VSMC	 holds	 true,	 an	 ex	 vivo	

perfusion	model	mimicking	 hypertension	was	 employed.	 Isolated	mesenteric	 arteries	 and	 femoral	

arteries	 were	 subjected	 to	 increasing	 intraluminal	 pressure,	 and	 hence	 passively	 distended.	 It	 is	

known	that	arterioles	 (e.g.	mesenteric	arteries)	and	arteries	 (e.g.	 femoral	arteries)	compensate	 for	

such	 a	 pressure-dependent	 distenstion	 through	 active	 constriction	 and	 to	 pressure	 reduction	with	

dilation.	 This	 myogenic	 response	 is	 crucial	 in	 mesenteric	 arteries	 as	 they	 are	 involved	 in	 the	

regulation	of	arterial	blood	pressure377.	Mesenteric	arteries	and	femoral	arteries	from	Tie2SMC-KO	mice	

displayed	a	decrease	in	vessel	diameter	upon	increasing	intraluminal	pressure,	 indicating	a	(hyper-)	

contractile	 phenotype	 (Figure	 18A	 and	 18B).	 However,	 the	 differential	 response	 was	 more	
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pronounced	 in	 femoral	 arteries	 from	 Tie2SMC-KO	 as	 compared	 to	 mesenteric	 arteries.	 From	 a	

functional	 and	morphological	 point	 of	 view	 the	mesenteric	 arteries	 and	 femoral	 arteries	 are	 very	

distinct,	leading	to	the	rationale	that	mesenteric	arteries	are	from	itself	more	adaptive	to	changes	in	

blood	 pressure.	 In	 conclusion,	 the	 data	 suggest	 that	 VSMC-specific	 Tie2	 control	 the	 contractile	

response	of	mesenteric	arteries	and	femoral	arteries.		

	

	
Figure	18.	Hypercontractile	response	of	isolated	blood	vessels	from	Tie2SMC-KO	mice	upon	increasing	
intraluminal	pressure	
A-B,	Relative	increase	in	diameter	of	mesenteric	arteries	(A)	and	femoral	arteries	(B)	segments	from	Tie2+/+	

and	Tie2SMC-KO	mice	 subjected	 to	 increasing	 intraluminal	 pressure;	 n=3	 (4-7	 segments	were	 used	 per	 group).	
Diameter	 of	 unchallenged	 arteries	 was	 set	 to	 100%.	 60	 to	 40	 mmHg	 represents	 a	 physiological	 pressure	
gradient.	 120	 to	 100	 mmHg	 represents	 a	 supra-physiological	 (hypertensive)	 pressure	 gradient.	 ΔP	 is	 the	
pressure	difference	at	which	segments	were	perfused.	Data	are	shown	as	mean	±	S.D.	*p	<	0.05.	Student´s	t-
test.	ns=non-significant.	

	

2.6 Sm22α-driven	Tie2	deletion	affects	baseline	blood	pressure		

To	evaluate,	in	vivo,	whether	VSMC-specific	Tie2	deletion	affects	baseline	blood	pressure,	12	weeks-

old	Tie2+/+	and	Tie2SMC-KO	mice	were	subjected	to	blood	pressure	measurement	using	radio-telemetry.	

The	 use	 of	 radio-telemtry	 is	 considered	 to	 be	 a	 ‘state	 of	 the	 art’	 technique	 and	 the	most	 reliable	

cardiovascular	measurement378,379.	The	radio-telemetry	system	consists	of	two	primary	components;	

i)	 a	 blood	 pressure	 sensor	 (BPS)	 that	 is	 made	 up	 of	 a	 catheter	 and	 a	 transmitter	 device,	 which	

transfers	 the	data	wirelessly	 to	a	nearby	 (ii)	 receiver	 (Figure	19).	The	 receiver	 in	 turn	converts	 the	

telemetry	information	into	a	form	readily	accessible	by	a	computerized	data	acquisition	system.	The	

RTS	was	 implanted	 into	Tie2+/+	and	Tie2SMC-KO	mice	via	catherization	of	 the	carotid	artery.	The	mice	

were	allowed	to	recover	for	7	days	from	transmitter	implantation	surgery	to	return	cardiac	function	

and	 animal	 activity	 to	 normal.	 Thereafter,	 baseline	 systolic	 blood	 pressure	 (SBP),	 diastolic	 blood	

pressure	(DBP),	mean	arterial	pressure	(MAP)	and	heart	rate	(HR)	were	recorded	for	7	days.		
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Figure	19.	Radiotelemetric	tracing	of	blood	pressure	and	heart	rate	
Schematic	representation	of	the	experimental	model:	A	catheter	was	implanted	into	Tie2+/+	and	Tie2SMC-KO	mice	
by	cannulating	the	carotid	artery.	The	transmitter	device	was	impanted	subcutaneously	into	the	right	flank	of	
the	 mice.	 Mice	 were	 subsequently	 allowed	 to	 recover	 for	 7	 days	 from	 transmitter	 implantation	 surgery.	
Baseline	 systolic	 blood	 pressure	 (SBP),	 diastolic	 blood	 pressure	 (DBP),	 heart	 rate	 (HR)	 and	 mean	 arterial	
pressure	(MAP)	was	monitored	for	7	days.		

	

The	SBP	reading	 is	defined	as	the	pressure	 in	the	arteries	when	the	heart	beats,	and	pushes	blood	

through	the	arteries	to	perfuse	the	rest	of	the	body380.	The	DBP	reading	indicates	the	pressure	in	the	

arteries	when	the	heart	 relaxes	between	beats380.	The	SBP	depends	on	 the	 frequency	and	 force	of	

heart	 contractions,	whereas	 the	DBP	 is	 dependend	 on	 the	 resistance	 of	 the	 peripheral	 arteries381.	

Comparitive	 analysis	of	 resting	 (day-time)	 and	active	 (night-time)	 conditions,	 revealed	a	 significant	

decrease	 in	 SBP	 in	 resting	 and	 active	 Tie2SMC-KO	mice	 as	 compared	 to	 their	 Tie2+/+	controls	 (Figure	

20A),	suggesting	a	possible	heart	dysfunction	in	Tie2SMC-KO	mice.	During	physical	activity	(comparison	

of	resting	mice	vs	active	mice),	SBP	was	 increased	in	Tie2+/+	as	well	as	Tie2SMC-KO	mice.	 Interestingly,	

DBP	did	not	differ	between	resting	Tie2+/+	and	Tie2SMC-KO	mice	(Figure	20B),	which	corresponds	with	

the	 observation	 that	 VSMC-specific	 Tie2	 deletion	 does	 not	 affect	 VSMC	 function	 at	 baseline.	

However,	a	significant	decrease	was	observed	in	DBP	in	active	Tie2SMC-KO	mice	as	compared	to	active	

Tie2+/+	mice.	Similar	results	were	observed	for	HR	in	Tie2SMC-KO	mice	(Figure	20C).	While	no	significant	

differences	were	observed	in	HR	between	resting	Tie2+/+	and	resting	Tie2SMC-KO	mice,	active	Tie2SMC-KO	

mice	 displayed	 a	 significantly	 lower	HR	 as	 compared	 to	 active	Tie2+/+	mice.	Moreover,	 both	Tie2+/+	

and	 Tie2SMC-KO	 mice	 displayed	 a	 significant	 increase	 in	 DBP	 and	 HR	 during	 physical	 activity.	 The	

significant	decrease	in	DBP	and	HR	in	active	Tie2SMC-KO	mice	could	be	the	result	of	i)	adaptation	of	the	

cardiac	outflow	to	increased	peripheral	resistance	and/or	to	the	central	nervous	effects	and	ii)	to	the	

adaptive	 response	 of	 VSMC	 in	 response	 to	 NO	 and/or	 more	 rapid	 responses382,383.	 Furthermore,	

baseline	 MAP	 was	 significantly	 reduced	 in	 resting	 Tie2SMC-KO	 mice	 as	 compared	 to	 Tie2+/+	 controls	

(Figure	20D).	Similary,	MAP	was	significantly	reduced	in	active	Tie2SMC-KO	mice	as	compared	to	their	

controls.	 Concordingly,	 MAP	 was	 increased	 in	 Tie2+/+	 as	 well	 as	 Tie2SMC-KO	 mice	 during	 physical	

activity.	 Taken	 together,	 the	 data	 suggest	 that	 the	 baseline	 blood	 pressure	 phenotype	might	 be	 a	

consequence	of	Sm22α-driven	Tie2	deletion	in	the	heart	that	is	independent	from	Sm22α-driven	Tie2	

deletion	in	VSMC.		
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Figure	20.	Sm22α-driven	Tie2	deletion	reduces	baseline	blood	pressure		
A-D,	 Radiotelemetric	 tracing	 and	 quantitative	 analyses	 of	 systolic	 blood	 pressure	 (SBP)	 (A),	 diastolic	 blood	
pressure	(DBP)	(B),	heart	rate	(HR)	(C),	and	mean	arterial	pressure	(MAP)	(D)	in	resting	(day-time)	and	active	
(night-time)	Tie2+/+	and	Tie2SMC-KO	mice,	assessed	by	7	days	radiotelemetric	system;	n=8-11.	Data	are	shown	as	
mean	±	S.D.	*p	<	0.05,	**p	<	0.001,	***p	<	0.0001.	Student´s	t-test.	ns=non-significant.	

	

2.7 Sm22α-driven	Tie2	deletion	affects	cardiac	size		

Morphometric	 analysis	 of	 the	 heart	 was	 performed	 by	 measuring	 heart	 weight	 (HW)	 and	 heart	

weight	 to	 tibia	 length	 (HW/TL)	 in	 Tie2+/+	 and	 Tie2SMC-KO	 mice	 at	 baseline.	 No	 differences	 were	

observed	 in	 body	weight	 (BW)	 between	Tie2+/+	and	Tie2SMC-KO	mice	 (Figure	 21A).	 Interestingly,	 HW	

and	HW/TL	were	 significantly	 lower	 in	Tie2SMC-KO	mice	as	 compared	 to	Tie2+/+	mice	 (Figure	21B	and	

21C),	which	correlates	with	the	reduced	BP	in	these	mice.	
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Figure	21.	Sm22α-driven	Tie2	deletion	reduces	cardiac	size		
A-C,	Quantitative	analyses	of	body	weight	(BW),	heart	weight	(HW)	and	heart	weight	to	tibia	length	(HW/TL)	in	
Tie2+/+	and	Tie2SMC-KO	mice;	n=8-11.	Data	are	shown	as	mean	±	S.D.	**p	<	0.001,	***p	<	0.0001.	Student´s	t-test.	
ns=non-significant.	

	

2.8 Sm22α-driven	Tie2	deletion	reduces	left	ventricular	wall-	and	

interventricular	septum	thickness	

To	assess	 function	 in	 vivo,	 echocardiography	was	performed	on	12	weeks-old	Tie2+/+	and	Tie2SMC-KO	

mice	(Figure	22A-22C).	The	motion-mode	(M-mode)	imaging	was	utilized	to	capture	an	image	of	the	

left	ventricle	in	one	dimension	over	time	(Figure	22C).	Subsequently,	the	Vevo	2100-imaging	system	

software	was	applied	to	allow	various	measurements	including	left	ventricular	posterior	wall	(LVPW)	

thickness,	interventricular	septum	(IVS)	thickness,	left	ventricular	internal	diameter	(LVID)	at	diastole	

and	systole.	Echocardiographic	recordings	at	baseline	demonstrated	a	significant	reduction	in	LVPWd	

and	IVSd	in	Tie2SMC-KO	mice	as	compared	to	Tie2+/+	mice	(Figure	22D	and	22E).	Hence,	Tie2SMC-KO	mice	

may	not	be	able	to	increase	force	as	much	as	Tie2+/+	mice.	Furthermore,	no	obvious	differences	were	

detected	for	LIVDd	between	the	two	groups	(Figure	22F).		

	

To	test	whether	 the	reduced	cardiac	size	was	also	present	on	the	cellular	 level,	CM	cross-sectional	

lenght,	width	and	area	was	analysed	in	heart	sections	from	Tie2+/+	and	Tie2SMC-KO	mice	(Figure	23A).	

No	 significant	 differences	 were	 obtained	 in	 fibrotic	 area	 between	 Tie2+/+	 and	 Tie2SMC-KO	 mice,	 by	

quantification	of	Picro-sirius	red	area	(Figure	23B).	Furthermore,	CM	width	was	significantly	reduced	

in	 the	 hearts	 of	 Tie2SMC-KO	 mice	 as	 compared	 to	 Tie2+/+	 mice,	 whereas	 CM	 length	 did	 not	 differ	

between	the	two	groups	(Figure	23C	and	23D).	As	a	result	CM	area	was	significantly	decreased	in	the	

hearts	of	Tie2SMC-KO	mice	(Figure	23E).		
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Figure	 22.	 Sm22α-driven	 Tie2	 deletion	 reduces	 left	 ventricular	wall-	 and	 interventricular	 septum	
thickness	
A,	Representative	HE	 images	showing	 the	cross-sectional	dimensions	of	 the	mouse	heart,	 including	 the	 right	
ventricle,	 left	ventricle,	 lateral,	septal,	anterior	and	posterior	wall.	The	septal	wall	separates	the	left	ventricle	
from	the	right	ventricle.	Scale	bar=500	μm.	B,	 Interventricular	septum	(IVS),	 left	ventricular	internal	diameter	
(LVID)	and	left	ventricular	wall	thickness	(LVPW)	were	examined	at	baseline	in	both	Tie2+/+	and	Tie2SMC-KO	mice.	
C,	Representative	M-mode	echocardiographic	recordings	 illustrate	the	assessement	of	 IVS,	LVID	and	LVPW	at	
diastole	and	systole	in	Tie2+/+	and	Tie2SMC-KO	mice	(right).	D-F,	Quantitative	baseline	echocardiographic	analysis	
of	LVPWd	(C),	IVSd	(D)	LVIDd	(E)	at	diastole;	n=6-9.	Data	are	shown	as	mean	±	S.D.	*p	<	0.05.	Student´s	t-test.	
ns=non-significant.	
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Figure	23.	Sm22α-driven	Tie2	deletion	reduces	cardiomyocyte	dimensions	
A,	Representative	 image	of	heart	sections	from	Tie2+/+	and	Tie2SMC-KO	mice	stained	with	Picro-sirius	red.	Scale	
bar=	 20	 μm.	 B,	 Quantitative	 analyses	 of	 fibrotic	 area	 in	 the	 hearts	 of	 Tie2+/+	 and	 Tie2SMC-KO	 mice.	 C-D,	
Quantitative	 analyses	 of	 cardiomyocyte	 (CM)	 length	 (C),	 CM	 width	 (D)	 and	 CM	 area	 (E)	 in	 the	 left	 heart	
chamber	 of	 Tie2+/+	 and	 Tie2SMC-KO	 mice;	 n=5-7.	 Data	 are	 shown	 as	 mean	 ±	 S.D.	 *p	 <	 0.05.	 Student´s	 t-test.	
ns=non-significant.	

	

2.9 Tie2	is	expressed	in	adult	cardiomyocytes		

To	 determine	 the	 time	 frame	 in	which	 the	 baseline	 heart	 phenotype	 takes	 place,	 HW	and	HW/TL	

were	analysed	in	Tie2+/+	and	Tie2SMC-KO	mice	at	the	age	of	4,	6	and	12	weeks.	While	6-week-	(Figure	

24B	and	24E)	and	12-week-old	(Figure	24C	and	24F)	Tie2SMC-KO	mice	displayed	a	significant	reduction	

in	HW	and	HW/TL	as	compared	to	Tie2+/+	mice,	4-week-old	(Figure	24A	and	24D)	Tie2SMC-KO	mice	did	

not	differ	significantly	 from	Tie2+/+	mice,	suggesting	that	Sm22α-driven	Tie2	deletion	affects	cardiac	

growth/development	between	the	age	of	4	and	6	weeks.	
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Figure	24.	Sm22α-driven	Tie2	deletion	reduces	cardiac	size	in	mice	after	4	weeks	of	age	
A-C,	 Quantitative	 analyses	 of	 heart	 weight	 (HW)	 in	 4-week-old	 Tie2+/+	 and	 Tie2SMC-KO	 mice	 (A),	 6-week-old	
Tie2+/+	and	 Tie2SMC-KO	mice	 (B)	 and	 12-week-old	 Tie2+/+	and	 Tie2SMC-KO	mice	 (C).	D-F,	 Quantitative	 analyses	 of	
heart	 weight	 to	 tibia	 length	 (HW/TL)	 in	 4-week-old	 Tie2+/+	 and	 Tie2SMC-KO	 mice	 (D),	 6-week-old	 Tie2+/+	 and	
Tie2SMC-KO	mice	(E)	and	12-week-old	Tie2+/+	and	Tie2SMC-KO	mice	(F).	n=5-9.	Data	are	shown	as	mean	±	S.D.	*p	<	
0.05,	**p	<	0.001.	Student´s	t-test.	ns=non-significant.	

	

To	 determine	whether	 the	 decrease	 in	 cardiac	 size	 was	 associated	witch	 changes	 in	 cell	 number,	

proliferation	and	apoptosis	was	assessed	in	heart	sections	of	6-week-old	Tie2+/+	and	Tie2SMC-KO	mice.	

Comparitive	analysis	of	heart	 sections	 stained	 for	Ki67	or	Cleaved	Caspase	3	 (Figure	25A	and	25C)	

revealed	 that	 neither	 proliferation	 nor	 apoptosis,	 respectively,	 were	 significantly	 altered	 in	 in	 the	

hearts	of	6-week-old	Tie2+/+	and	Tie2SMC-KO	mice	(Figure	25B	and	25D).	These	results	suggest	that	the	

decrease	 in	cardiac	size	was	most	 likely	not	 the	cause	of	a	decrease	 in	cell	number,	but	rather	 the	

result	of	poor	development	of	the	heart.		
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Figure	25.	Sm22α-driven	Tie2	deletion	does	not	affect	proliferation	or	apoptosis		
A,	 C,	Heart	sections	 form	6-week-old	Tie2+/+	and	Tie2SMC-KO	mice	stained	 for	 the	proliferation	marker	Ki67	 (A)	
and	the	apoptosis	marker	Cleaved	Caspase	3	 (C).	Scale	bar=	20	μm	B,	D,	Quantitative	analyses	of	Ki67+	cells	
normalized	to	total	nuclei	(B),	and	Cleaved	Caspase	3+	area,	normalized	to	total	area	(D),	in	the	hearts	of	Tie2+/+	

and	Tie2SMC-KO	mice;	n=3-5.	Data	are	shown	as	mean	±	S.D.	Student´s	t-test.	ns=non-significant.	

	

CMs	are	 the	major	 components	of	 the	heart	and	are	 responsible	 for	 their	 contractile	 force384.	 The	

heart	also	consist	of	several	other	cell	types	including,	fibroblast,	EC	and	VSMC.	Since	EC-specific	Tie2	

expression	was	unaltered	in	 lungs	of	Tie2+/+	and	Tie2SMC-KO	mice	and	since	primary	mouse	fibroblast	

showed	almost	undetectable	levels	of	Tie2,	these	cells	could	be	excluded	as	potential	candidates	for	

the	observed	baseline	heart	phenotype.	Moreover,	VSMC	phenotype	was	not	altered	at	baseline	in	

Tie2+/+	and	 Tie2SMC-KO	 mice,	 leading	 to	 the	 rationale	 that	 Tie2	might	 be	 deleted	 in	 CMs	 under	 the	

control	of	the	Sm22α-promoter.	This	rationale	further	prompted	the	investigation	of	Tie2	expression	

in	CMs.	During	embryonic	development,	Sm22α	is	only	transiently	expressed	in	CMs	(between	E8.0-

E12.5)160.	After	E12.5,	its	expression	is	not	observed	in	skeletal	and	cardiac	muscle	from	adult	mouse	

tissue,	but	is	instead	localized	to	the	vasculature.	As	such,	the	impaired	cardiac	function	at	baseline	

may	be	a	consequence	of	Sm22α-driven	Tie2	deletion	in	CMs	during	embryonic	development.		

	

To	study	the	expression	pattern	of	Sm22α	in	aortic	and	heart	tissue,	sections	from	adult	Sm22α-Cre	x	

mT/mG	mice	were	co-stained	with	anti-GFP	and	CD31	antibodies	(Figure	26).	Once	the	Cre	is	active	
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in	Sm22α-positive	cells,	the	GFP	protein	is	switched	on	and	proceeds	to	be	expressed	in	all	daughter	

cells385.	 In	 the	 aorta,	 GFP	 expression	was	 restricted	 to	 VSMC	 in	 the	 tunica	media,	 whereas	 CD31-

positive-GFP-negative	 cells	 (EC)	 were	 localized	 in	 the	 tunica	 intima.	 Furthermore,	 the	 overall	

expression	 pattern	 in	 the	 tunica	 media	 was	 similar	 to	 the	 expression	 of	 endogenous	 Sm22α	 and	

αSMA.	 In	 the	 heart,	 CD31	 was	 found	 in	 close	 proximity	 to	 GFP-positive	 cells	 (Figure	 26),	 which	

defines	 the	 vasculature	 covered	 by	 mural	 cells.	 However,	 GFP	 expression	 was	 also	 abundantly	

expressed	in	CD31-negative	cells,	hinting	that,	next	to	mural	cells,	Cre-mediated	recombination	also	

occurred	in	other	cell-types	in	the	heart.	Moreover,	only	a	subset	of	GFP-positive	cells	truly	express	

endogenous	Sm22α	in	the	adult	heart.	The	diminished	expression	of	endogenous	Sm22α	in	the	adult	

heart	was	most	 likely	 the	 result	 of	 the	 transient	 nature	 of	 Sm22α-expression	 in	 CMs.	 Endogenous	

αSMA	expression	was	restricted	to	the	cardiac	macrovasculature	VSMC.		

	

In	order	to	trace	Tie2	expression	in	aortic	and	heart	tissue	from	Tie2MerCreMer	(MCM)	x	Rosa26YFP	

mice,	 5	 consecutive	 doses	 of	 tamoxifen	 (1	mg)	 were	 administered	 intraperitoneally	 in	 6	 week-old	

mice386.	 This	model	provides	permanent	 YFP-tagging	of	 Tie2-positive	 cells	 that	 exist	 at	 the	 time	of	

tamoxifen	 injection.	Aortic	 sections	 from	Tie2MCM	 x	Rosa26YFP	mice	were	stained	with	anti-GFP	and	

αSMA	antibody	(Figure	27).	In	the	aorta,	GFP	expression	was	detected	in	the	tunica	media	and	tunica	

intima,	while	endogenouse	αSMA	expression	was	restricted	to	VSMC	in	the	tunica	media.	Moreover,	

αSMA	 immunostaining	 colocalized	 with	 GFP	 expression	 in	 the	 tunica	 media.	 Furthermore,	 heart	

sections	 stained	 with	 anti-GFP	 antibody	 demonstrated	 GFP	 expression	 in	 the	 CMs	 (Figure	 27),	

identified	 by	 the	 sarcomere	 arrangement.	 However,	 the	 GFP	 expression	 in	 the	 heart	 is	 lower	 as	

compared	 to	 the	 aorta.	 In	 conclusion,	 CMs	 and	 VSMC	 from	 6-week-old	 Tie2MCM	 x	 Rosa26YFP	 mice	

undergo	recombination,	which	confirms	that	the	Tie2MCM	transgene	is	expressed	by	these	cells,	and	

that	tamoxifen	administration	efficiently	leads	to	DNA	recombination	in	these	cells.	
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Figure	26.	Tracing	Sm22α	expression	using	a	Sm22α	knockin	fate-tracing	mouse	model  
Representative	images	of	GFP	staining	(green)	in	heart	and	aortic	cryosections	from	Sm22α/Tagln-Cre	x	mT/mG	
mice	 co-stained	with	 CD31,	 SM22α	 and	 αSMA	 (red);	 n=	 3.	 Scale	 bar=	 25	 µm.	 This	 experiment	was	 done	 in	
cooperation	with	Annegret	Holm,	DKFZ.		
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Figure	27.	Tracing	Tie2	expression	in	the	aorta	using	a	Tie2	knockin	fate-tracing	model	
Tie2	expression	was	analyzed	in	aortic	tissue	derived	from	6-week-old	Tie2MCM	x	Rosa26YFP	mice,	which	are	Tie2	
knock	in	reporter	mice.	Upon	tamoxifen	induction,	promoter	activity	of	Tie2	induces	Cre-mediated	excision	of	
the	 floxed-stop	cassette	 resulting	 in	YFP	expression	at	 the	Rosa26	 locus.	YFP	expression	permits	 tracing	Tie2	
expression.	Aortic	cryosections	were	stained	for	GFP	(green)	and	αSMA	(red).	Arrows	show	Tie2	expression	in	
medial	VSMC.	Arrowheads	 show	Tie2	expression	 in	 intimal	 EC;	n=	3.	 Scale	bar=	25	µm.	Aortic	 samples	 from	
Tie2MCM	x	Rosa26YFP	were	provided	by	Dr.	Katrin	Busch	and	Prof.	Dr.	Hans-Reimer	Rodewald,	DKFZ. 
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Figure	28.	Tracing	Tie2	expression	in	the	heart	using	a	Tie2	knockin	fate-tracing	model	
Tie2	 expression	 was	 analyzed	 in	 heart	 tissue	 derived	 from	 6	 week-old	 Tie2MCM	 x	 Rosa26YFP	 mice.	 Heart	
cryosections	were	stained	for	GFP	(green).	Arrowheads	show	the	sarcomere	arrangement	of	CMs;	n=	3.	Scale	
bar=	25	µm.	Heart	 samples	 from	Tie2MCM	x	Rosa26YFP	were	provided	by	Dr.	Katrin	Busch	and	Prof.	Dr.	Hans-
Reimer	Rodewald,	DKFZ.	

	

To	 determine	 whether	 Tie2	 is	 expressed	 by	 CMs,	 CMs	 were	 isolated	 from	 8-week-old	 Tie2+/+	and	

Tie2SMC-KO	mice.	 Isolated	CMs	 from	Tie2+/+	and	Tie2SMC-KO	mice	expressed	high	mRNA	 levels	of	Tnnt2	

(Troponin	2,	CM-specific	marker)	 (Figure	29A),	whereas	 the	mRNA	expression	of	Sm22α/Tagln	 and	

Tie2	 (Tek)	 was	 at	 almost	 undetectable	 levels	 in	 isolated	 CMs	 from	 Tie2+/+	 and	 Tie2SMC-KO	 mice	 as	

compared	to	non-CMs	from	Tie2+/+	and	Tie2SMC-KO	mice	(Figure	29B	and	29C).	The	 isolated	non-CMs	

from	Tie2+/+	and	Tie2SMC-KO	mice	represent	other	cell-types	present	in	the	heart	such	as	EC,	VSMC	and	

fibroblast.	Correspondingly,	Western	blot	analysis	confirmed	undetectable	 levels	of	Tie2	 in	 isolated	

CMs	from	Tie2+/+	and	Tie2SMC-KO	(Figure	29D).	Together,	the	data	indicate	that	Tie2	is	not	expressed	in	

CMs	from	8-week-old	mice,	hinting	that	Tie2	might	be	required	at	an	earlier	 time-point	 for	normal	

development	of	the	heart.		
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Figure	29.	Tie2	is	not	expressed	in	cardiomyocytes	from	8-week-old	Tie2+/+	and	Tie2SMC-KO	mice		
A-C,	Gene	expression	analyses	by	RT-qPCR	of	Tnnt2	(A),	Tagln	(B)	and	Tek	(C)	in	isolated	adult	cardiomyocytes	
(CMs)	and	non-cardiomyocytes	 (non-CMs)	 from	Tie2+/+	and	Tie2SMC-KO	mice;	n=3.	Expression	 is	normalized	 to	
B2m	mRNA	expression.	D,	Representative	Western	blots	of	Tie2	and	Tubulin	in	isolated	adult	cardiomyocytes	
(CMs)	 and	non-cardiomyocytes	 (non-CMs)	 from	Tie2+/+	and	Tie2SMC-KO	mice;	 n=3.	Data	 are	 shown	as	mean	±	
S.D.	 Student´s	 t-test.	 ns=non-significant.	 CM	 isolation	 was	 done	 in	 collaboration	 with	 Dr.	 Lorenz	 Lehmann,	
University	of	Heidelberg.		

	

2.10 Sm22α-driven	Tie2	deletion	does	not	have	a	major	impact	on	

blood	pressure	upon	DOCA-salt	treatment		

To	 explore	 the	 role	 of	 Sm22α-driven	 Tie2	 deletion	 upon	 hypertension,	 the	 DOCA-induced	

hypertension	model	was	employed.	DOCA	pellets	were	 implanted	 subcutaneously	 into	 the	back	of	

the	mice	(Figure	30).	Subsequently,	the	mice	received	drinking	water	containing	1%	NaCl.	Changes	in	

arterial	 blood	 pressure	 and	 HR	 were	 monitored	 over	 a	 period	 of	 10	 days	 following	 DOCA-salt	

administration.		
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Figure	30.	Experimental	protocol	for	DOCA-induced	hypertension		
Deoxycorticosterone	acetate	(DOCA)	pellets	were	implantated	subqutaneously	at	the	back	of	the	mice.	At	the	
same	 day	 mice	 received	 isotonic	 saline	 water	 (1%	 NaCl).	 SBP,	 DBP,	 HR	 and	 MAP	 were	 monitored	 by	
radiotelemtry	for	10	days	following	DOCA-implantation.		

	

Upon	DOCA-salt	treatment,	SBP,	DPB	and	MAP	were	significantly	increased	in	resting	Tie2+/+	mice	as	

compared	 to	 untreated	 resting	 controls	 (Figure	 31A-31C).	 Correspondingly,	 active	 Tie2+/+	 mice	

displayed	marked	increase	in	SBP,	DPB	as	well	as	MAP	upon	DOCA-salt	treatment	in	comparison	to	

untreated	 active	 control	 mice	 (Figure	 31A-31C).	 Collectively,	 the	 data	 established	 a	 successful	

induction	of	hypertension	upon	DOCA-salt	treatment.		

	

	
Figure	31.	Analysis	of	SBP,	DBP	and	MAP	in	Tie2+/+	mice	upon	DOCA-salt	treatment	
A-C,	Quantitative	analyses	of	SBP	(A),	DBP	(B)	and	MAP	(C)	in	resting	(day-time)	and	active	(night-time)	Tie2+/+	

mice,	assessed	by	10	days	 radiotelemetric	system	(n=6-11).	Data	are	shown	as	mean	±	S.D.	*p	<	0.05,	**p	<	
0.001,	***p	<	0.0001.	Student´s	t-test.	ns=non-significant.	

	

Comparative	 analysis	 of	 resting	 and	 active	 Tie2+/+	 and	 Tie2SMC-KO	 mice	 upon	 DOCA-salt	 treatment	

revealed	 no	 significant	 differences	 in	 SBP	 in	 resting	Tie2SMC-KO	mice	 as	 compared	 to	 resting	 Tie2+/+	

mice	(Figure	32A).	However,	a	slightly	lower	SBP	was	observed	in	active	Tie2SMC-KO	mice	upon	DOCA-

salt	treatment	in	comparison	to	Tie2+/+	mice.	Similarly,	DBP	did	not	differ	 in	resting	active	Tie2SMC-KO	

mice	 as	 compared	 to	 resting,	 whereas	 active	 Tie2SMC-KO	mice	 demonstrated	 a	 reduction	 in	 DBP	 as	

compared	 to	 active	 Tie2+/+	mice	 following	 DOCA-salt	 treatment	 (Figure	 32B).	 Furthermore,	 resting	

and	active	Tie2SMC-KO	mice	did	not	differ	in	HR	upon	DOCA-salt	treatment	as	compared	to	resting	and	

active	Tie2+/+	mice	 (Figure	32C).	While	 resting	Tie2SMC-KO	mice	displayed	no	significant	differences	 in	
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MAP	in	comparison	to	resting	Tie2+/+	mice	upon	DOCA-salt	treatment,	active	Tie2SMC-KO	mice	showed	

a	 slight	 reduction	 in	 MAP	 compared	 to	 active	 Tie2+/+	 mice	 (Figure	 32D),	 albeit	 not	 significant.	

Moreover,	DOCA-salt	treatment	induced	a	significant	increase	in	SBP,	DBP,	MAP	and	HR	in	Tie2+/+	and	

Tie2SMC-KO	mice	during	physical	activity	(Figure	32A-32D).		

	

	
Figure	 32.	 Sm22α-driven	 Tie2	 deletion	 does	 not	 have	 a	major	 impact	 on	 blood	 pressure	 during	
hypertension	
A-D,	Quantitative	analyses	of	SBP	(A),	DBP	(B),	HR	(C)	and	MAP	(D)	in	resting	(day-time)	and	active	(night-time)	
Tie2+/+	and	Tie2SMC-KO	mice,	 assessed	by	10	days	 radiotelemetric	 system	 (n=6-11).	Data	are	 shown	as	mean	±	
S.D.	**p	<	0.001,	***p	<	0.0001.	Student´s	t-test.	ns=non-significant.	
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2.11 Sm22α-driven	Tie2	deletion	affects	cardiac	size	upon	DOCA-salt	

treatment	

Morphometric	 analysis	 of	 the	 heart	 was	 performed	 by	 measuring	 HW	 and	 HW/TL	 in	 Tie2+/+	 and	

Tie2SMC-KO	 mice	 at	 baseline	 and	 following	 DOCA-salt	 treatment.	 HW	 and	 HW/TL	 were	 significantly	

lower	 in	 untreated	 Tie2SMC-KO	 mice	 as	 compared	 to	 untreated	 Tie2+/+	mice	 (Figure	 33A	 and	 33B).	

Analysis	of	 cardiac	hyperthrophy	upon	DOCA-salt	 treatment	demonstrated	a	 significant	 increase	 in	

HW	and	HW/TL	 in	Tie2+/+	mice	as	compared	to	untreated	Tie2+/+	controls.	 In	contrast,	no	significant	

differences	 were	 observed	 in	 HW	 and	 HW/TL	 in	 Tie2SMC-KO	 mice	 upon	 DOCA-salt	 treatment	 as	

compared	 to	 their	 untreated	 Tie2SMC-KO	 controls	 (Figure	 33A	 and	 33B).	Moreover,	 HW	 and	 HW/TL	

were	markedly	reduced	in	Tie2SMC-KO	mice	upon	DOCA-salt	treatment	when	compared	to	Tie2+/+	mice.	

Kidney	 weight	 (KW)	 was	 analyzed	 in	 Tie2+/+	 and	 Tie2SMC-KO	 mice	 upon	 DOCA-salt	 treatment	 as	 an	

additional	 measurement	 for	 the	 induction	 of	 hypertension.	 Tie2+/+	 and	 Tie2SMC-KO	 mice	 showed	

significantly	greater	KW	upon	DOCA-salt	treatment	as	compared	to	their	untreated	controls,	whereas	

a	significantly	reduced	KW	was	observed	in	Tie2SMC-KO	mice	upon	DOCA-salt	treatment	as	compared	

to	 the	 Tie2+/+	 mice	 (Figure	 33C).	 Taken	 together,	 the	 reduced	 BP	 at	 baseline	 in	 Tie2SMC-KO	 mice	

dampens	the	hypertrophic	cardiac	response	in	Tie2SMC-KO	mice	upon	DOCA-salt	treatment.		

	

Immunohistochemical	analysis	of	Picro-sirius	red	stained	fibrotic	area	revealed	a	significant	increase	

in	 fibrosis	 in	 the	 hearts	 of	 Tie2+/+	 and	 Tie2SMC-KO	 mice	 upon	 DOCA-salt	 treatment.	 However,	 the	

fibrotic	area	is	less	pronounced	in	the	hearts	of	DOCA-salt	treated	Tie2SMC-KO	as	compared	to	DOCA-

salt	treated	Tie2+/+	mice	(Figure	34A	and	34B).	To	coroborate	these	findings,	gene-expression	analysis	

was	perfomed	on	heart	 samples	 from	untreated	Tie2+/+	and	Tie2SMC-KO	mice,	 and	DOCA-salt-treated	

Tie2+/+	and	Tie2SMC-KO	mice.	Indeed,	Collagen	1	(Col	1)	and	Mmp2	mRNA	expression	levels	where		

	

	
Figure	33.	Sm22α-driven	Tie2	deletion	reduces	cardiac	size	upon	DOCA-salt	treatment	
A-C,	 Quantitative	 analyses	 of	 heart	 weight	 (HW)	 (A),	 heart	 weight	 to	 tibia	 length	 (HW/TL)	 (B),	 and	 kidney	
weight	(KW)	(C)	in	Tie2+/+	and	Tie2SMC-KO	mice	at	baseline	and	following	DOCA-salt	treatment;	n=5-11.	Data	are	
shown	as	mean	±	S.D.	**p	<	0.001,	***p	<	0.0001.	Student´s	t-test.	ns=non-significant.	
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significantly	 higher	 in	 Tie2+/+	 mice	 upon	 DOCA-salt	 treatment	 as	 compared	 to	 their	 untreated	

controls,	whereas	no	significant	differences	were	observed	between	untreated	Tie2SMC-KO	and	DOCA-

salt-treated	Tie2SMC-KO	mice	(Figure	34C	and	34D).	Morover,	Col	1	and	Mmp2	expression	levels	were	

markedly	 reduced	 in	 the	 hearts	 of	 Tie2SMC-KO	 mice	 as	 compared	 to	 Tie2+/+	mice	 upon	 DOCA-salt	

treatment	(Figure	34C	and	34D).	In	conlusion,	the	hindered	cardiac	remodeling	response	in	Tie2SMC-KO	

mice	upon	DOCA-salt	 treatment	most	 likely	originates	 from	 the	 reduced	baseline	heart	phenotype	

(decrease	in	cardiac	size,	and	BP).		

	

	
Figure	34.	Sm22α-driven	Tie2	deletion	reduces	cardiac	fibrosis	upon	DOCA-salt	treatment	
A,	Representative	image	of	heart	sections	derived	from	untreated	and	DOCA-salt	treated	Tie2+/+	and	Tie2SMC-KO	

mice	and	stained	with	Picro-sirius	red	for	the	assessment	of	fibrosis.	B,	Quantitative	analyses	of	fibrotic	area	in	

heart	sections	of	Tie2+/+	and	Tie2SMC-KO	mice.	Fibrotic	area	was	normalized	to	total	area;	n=5-8.	Scale	bar:	20	μm	

C-D,	Collagen	 1	 (Col1)	 (C)	 and	matrix	metalloproteinase	 2	 (Mmp2)	 (D)	 gene	 expression	 in	 isolated	 hearts	 of	

untreated	and	DOCA-salt	treated	Tie2+/+	and	Tie2SMC-KO	mice;	n=3-8.	Data	are	shown	as	mean	±	S.D.	*p	<	0.05,	

**p	<	0.001,	***p	<	0.0001.	Student´s	t-test.	ns=non-significant.	

	

2.12 Sm22α-driven	Tie2	deletion	affects	VSMC	phenotype	and	function	

upon	DOCA-salt	treatment	

To	investigate	changes	in	VSMC	phenotype	in	DOCA-salt	mice,	mesenteric	arteries	were	isolated	and	

stained	 for	 the	distinct	VSMC-markers	αSMA	and	Calponin,	 and	 for	 the	proliferation	marker	PCNA	
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(Figure	 35A).	No	 differences	were	 detected	 in	 αSMA-	 and	Calponin-positive	 area	 or	 PCNA-positive	

nuclei	between	untreated	Tie2+/+	and	Tie2SMC-KO	mice	(Figure	35A-35D).	

	

	

Figure	 35.	 VSMC-specific	 Tie2	 deletion	 maintains	 the	 contractile	 VSMC	 phenotype	 in	 DOCA-salt	
treated	arteries		
A,	B,	Isolated	mesenteric	arteries	(MA),	from	untreated	and	DOCA-treated	Tie2+/+	and	Tie2SMC-KO	mice,	stained	
and	quantified	for	αSMA-positive	area	for	VSMC	content.	A,	C,	Isolated	MA,	from	untreated	and	DOCA-treated	
Tie2+/+	and	Tie2SMC-KO	mice,	stained	and	quantified	 for	Calponin-positive	area	for	VSMC	content;	Scale	bar:	50	
μm.	A,	D,	Isolated	MA,	from	untreated	and	DOCA-treated	Tie2+/+	and	Tie2SMC-KO	mice,	stained	and	quantified	for	
PCNA-positive	VSMC	nuclei;	 n=4-7.	Data	 are	 shown	as	mean	±	 S.D.	 Student´s	 t-test.	 *p	 <	 0.05,	 **p	 <	 0.001,	
***p	<	0.0001.	Student´s	t-test.	ns=non-significant.	
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Mesenteric	 arteries	 derived	 from	 Tie2+/+	 mice	 displayed	 a	 significant	 decrease	 in	 αSMA-	 and	

Calponin-positive	 area	 as	 compared	 to	 Tie2+/+	mice	 upon	 DOCA-salt	 treatment	 (Figure	 35A-35C),	

supporting	 an	 active	 vascular	 remodeling	 process.	 Interestingly,	 no	 differences	 were	 observed	

between	untreated	mesenteric	arteries	from	Tie2SMC-KO	mice	and	DOCA-salt	treated	Tie2SMC-KO	mice.	

In	addition,	a	significant	increase	in	PCNA	expression	was	observed	in	mesenteric	arteries	of	DOCA-

salt-treated	Tie2+/+	and	Tie2SMC-KO	mice	as	compared	to	their	untreated	controls	(Figure	35D),	whereas	

Tie2SMC-KO	mice	displayed	a	reduction	in	PCNA	expression	as	compared	to	Tie2+/+	mice	upon	DOCA-salt	

treatment.	Hence,	the	data	suggest	that	the	effect	of	VSMC-expressed	Tie2	is	cell	autonomous.	

	

2.13 Sm22α-driven	Tie2	deletion	affects	the	compensatory	potential	of	

the	heart	upon	AngII-induced	hypertension		

To	 validate	 cardiac	 function	 in	 a	 second	 hypertension	 model	 targeting	 cardiac	 hypertrophy,	 the	

AngII-induced	hypertension	model	was	applied.	Osmotic	minipumps	were	implanted	subcutaneously	

into	the	back	of	Tie2+/+	and	Tie2SMC-KO	mice	to	infuse	AngII	(1.5	mg/	kg/	day)	(Figure	36A).	The	short-

term	effect	of	AngII-treatment	on	 cardiac	hypertrophy	was	examined	on	day	4	 and	day	7.	BP	was	

non-invasively	measured	by	tail	cuff	method	before	pump	implantation	and	at	endpoint.	On	infusion	

of	 AngII,	 blood	 pressure	 increased	 in	 both	 Tie2+/+	 and	 Tie2SMC-KO	 mice	 as	 compared	 to	 untreated	

controls,	 indicative	 of	 a	 successful	 induction	 of	 hypertension	 by	 AngII	 (Figure	 36B).	 However,	 no	

differences	 were	 observed	 in	 blood	 pressure	 between	 Tie2+/+	 and	 Tie2SMC-KO	 mice	 upon	 AngII	

treatment.	

	

	
Figure	36.	Experimental	protocol	for	Angiotensin	II-induced	hypertension		
A,	 Schematic	 representation	 of	 the	 experimental	model:	 Baseline	 (BL)	 echocardiography	was	 performed	 on	
Tie2+/+	and	Tie2SMC-KO	mice	 2	 days	 prior	 to	 Angiotensin	 II	 (AngII)	 treatment	 and	 4	 and	 7	 days	 following	 AngII	
treatment.	SBP	was	measured	by	tail	cuff	method	at	baseline	and	at	endpoint.	Osmotic	minipumps	containing	
AngII	 (1.5	mg/	kg/	day)	were	 implanted	subcutaneously	at	 the	back	of	Tie2+/+	and	Tie2SMC-KO	mice.	Mice	were	
sacrificed	 at	 day	 7	 following	 AngII	 treatment.	 B,	 Quantitative	 analyses	 of	 SBP	 in	 Tie2+/+	and	 Tie2SMC-KO	mice	
before	and	after	AngII	treatment;	n=4-7.	Data	are	shown	as	mean	±	S.D.	Student´s	t-test.	**p	<	0.001.	Student´s	
t-test.	ns=non-significant.	
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HW	and	HW/TL	were	significantly	increased	in	untreated	Tie2+/+	and	Tie2SMC-KO	mice	(Figure	37A	and	

37B),	which	is	 in	agreement	with	previous	observations.	Analysis	of	cardiac	hypertrophy	revealed	a	

reduction,	although	not	significant,	in	HW	and	HW/TL	in	AngII-treated	Tie2SMC-KO	mice	in	comparison	

to	untreated	mice.	While	LVPW	thickness	was	decreased	in	untreated	Tie2SMC-KO	mice	as	compared	to	

untreated	Tie2+/+	mice	at	baseline	(Figure	37C),	no	gross	differences	were	detected	in	heart	rate	(HR),	

stroke	volume	(SV),	and	cardiac	output	(CO)	between	the	two	untreated	groups	(Figure	38A-38C).		

	

	
Figure	37.	Sm22α-driven	Tie2	deletion	delays	the	compensatory	potential	of	the	heart	upon	AngII-
induced	hypertension	
A-B,	Quantitative	analyses	of	HW	(A)	and	HW/TL	 (B)	 in	untreated	Tie2+/+	and	Tie2SMC-KO	mice	at	baseline	 (BL)	
and	after	AngII	treatment;	n=3-7.	C,	Quantitative	analyses	of	left	ventricular	posterior	wall	thickness	(LVPWT)	in	
Tie2+/+	and	Tie2SMC-KO	mice	at	BL	and	after	AngII	treatment;	n=3.	Data	are	shown	as	mean	±	S.D.	*p	<	0.05,	**p	<	
0.001,	***p	<	0.0001.	Student´s	t-test.	ns=non-significant.	

	

	
Figure	 38.	 Sm22α-driven	 Tie2	 deletion	 delays	 an	 increase	 in	 cardiac	 output	 upon	 AngII-induced	
hypertension	
A,	 Quantitative	 analyses	 of	 heart	 rate	 (HR)	 in	 untreated	 and	 AngII-treated	 Tie2+/+	 and	 Tie2SMC-KO	 mice.	 B,	
Quantitative	 analyses	 of	 stroke	 volume	 (SV)	 in	 untreated	 and	 AngII-treated	 Tie2+/+	 and	 Tie2SMC-KO	 mice.	 C,	
Quantitative	 analyses	 of	 cariac	 output	 (CO)	 in	 untreated	 and	 AngII-treated	 Tie2+/+	 and	 Tie2SMC-KO	mice;	 n=3.	
Data	are	shown	as	mean	±	S.D.	*p	<	0.05,	**p	<	0.001.	Student´s	t-test.	ns=non-significant.	

	

On	 day	 4	 and	 day	 7	 following	 AngII	 treatment,	 HR	 was	 significantly	 increased	 in	 Tie2+/+	mice	 as	

compared	 to	 untreated	 controls,	 whereas	 no	 differences	 were	 detected	 in	 HR	 between	 AngII-	

treated	 Tie2SMC-KO	 mice	 and	 their	 untreated	 controls	 (Figure	 38A).	 Furthermore,	 Tie2SMC-KO	 mice	
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revealed	a	reduced	LVPW,	HR,	SV	and	CO	as	compared	to	Tie2+/+	mice	upon	day	4	of	AngII	 infusion	

(Figure	 37C	 and	 38A-38C).	 However,	 the	 reduction	 in	 LVPW,	 HR,	 SV	 and	 CO	 in	 Tie2SMC-KO	 mice	 is	

compensated	at	day	7	of	AngII	 treatment.	Thus,	Tie2SMC-KO	mice	exhibit	a	delay	 in	adaptive	 cardiac	

responses	upon	AngII-induced	hypertension.	

	

2.14 VSMC-expressed	Tie2	regulates	phenotypic	modulation	of	

activated	VSMC		

Phenotypic	 modulation	 of	 activated	 VSMC	 is	 an	 important	 process	 during	 atherosclerosis	

progression375,376.	Since	phenotypic	modulation	is	associated	with	changes	in	VSMC	proliferation	and	

migration,	it	was	investigated	whether	VSMC-specific	Tie2	deletion	could	attenuate	these	processes	

in	 isolated	 short-term	 cultured	 VSMC.	 Indeed,	 FACS	 analysis	 of	 5-ethynyl-2ʹ-deoxyuridine-(EdU)-

positive	cells	showed	significantly	reduced	proliferation	of	isolated,	short-term	cultured	aortic	VSMC	

from	Tie2SMC-KO	mice	as	compared	to	Tie2+/+	mice	(Figure	39A).	Similar	results	were	obtained	in	Tie2-

silenced	 HAoSMC,	 using	 two	 siRNA	 constructs	 as	 compared	 to	 non-silenced	 controls	 (NS)	 (Figure	

39B).	 Tie2	 (Tek)	 deletion	 in	 isolated	 aortic	 VSMC	 was	 confirmed	 by	 RT-qPCR	 (Figure	 39C).	

Comparative	analysis	of	HAoSMC	migratory	activity	in	lateral	scratch	wound	assays	demonstrated	a	

significant	reduction	in	migration	of	Tie2-silenced	HAoSMC	as	compared	to	control	siRNA	(Figure	40A	

and	40B).	Taken	together,	these	data	highlight	the	importance	of	Tie2	in	controlling	proliferation	and	

migration	of	activated	VSMC.	

	

	
Figure	39:	Reduced	proliferation	of	Tie2-deficient	and	Tie2-silenced	aortic	VSMC		
A,	EdU-FACS	analysis	of	 isolated	aortic	VSMC	 from	Tie2+/+	and	Tie2SMC-KO	mice;	n=5-6.	B,	EdU-FACS	analysis	of	
Tie2-silenced	 (transfected	 with	 either	 siRNA#1	 or	 siRNA#2)	 and	 non-silenced	 HAoSMC;	 n=7-8.	 C,	 Tie2	 (Tek)	
expression	analyzed	by	RT-qPCR	of	Tie2-silenced	and	non-silenced	HAoSMC;	n=4.	Data	are	shown	as	mean	±	
S.D.	of	3	independent	experiments.	*p	<	0.05,	**p	<	0.001,	***p	<	0.0001.	Student´s	t-test.	
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Figure	40.	Reduced	migration	of	HAoSMC	upon	Tie2	silencing	
A,	Representative	images	of	Tie2-silenced	and	non-silenced	HAoSMC	at	the	beginning	(t=0	h)	and	end	(t=6	h)	of	
time-lapse	microscopy	 (3	 regions	per	wound)	during	 lateral-scratch	wound	assay.	 Scale	bar:	 200	μm.	B,	 The	
migration	of	HAoSMC	transfected	with	either	siRNA#1,	siRNA#2	or	NS	was	determined	as	the	ratio	of	filled	area	
with	migrated	cells	to	total	wounded	area	normalized	to	NS	controls.	NS	=	non-silenced;	n=4.	Data	are	shown	
as	mean	±	S.D.	*p	<	0.05,	**p	<	0.001.	Student´s	t-test.	
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2.15 VSMC-specific	Tie2	deletion	reduces	atherosclerosis	progression		

Since	VSMC	proliferation	and	migration	are	two	important	processes	for	atherosclerosis,	the	role	of	

VSMC-expressed	 Tie2	 on	 atherosclerosis	 progression	 was	 investigated.	 To	 this	 end,	 constitutive	

ApoEKO	Tie2SMC-KO	double	KO	and	ApoEKO	Tie2+/+	(ApoEKO)	control	mice	were	generated.	ApoE	null	mice	

spontaneously	 develop	 atherosclerosis	 and	 feeding	 them	 a	 cholesterol-rich	 diet	 accelerates	 the	

development	of	lesions387.	

Male	ApoE	KO	and	ApoE	KO	Tie2SMC-KO	mice,	at	the	age	of	10	weeks,	were	fed	a	Western-type	diet	for	14	

weeks.	VSMC-specific	 Tie2	deletion	did	not	 alter	 body	weight,	 plasma	 cholesterol,	 and	 triglyceride	

profile	in	ApoE	null	mice.	Analysis	of	Oil	red	O	(ORO)-positive	area	revealed	a	significant	reduction	in	

atherosclerotic	lesions	in	aortic	sinus	of	ApoE	KO	Tie2SMC-KO	mice	(Figure	41A	and	41B).		

	

	
Figure	41.	Tie2	deficiency	in	VSMC	reduces	atherosclerosis	in	mice	
A-B,	 Representative	 images	 (A)	 and	 quantification	 (B)	 of	ORO-stained	 aortic	 sinus	 from	24-week-old	ApoEKO	
and	ApoEKO	Tie2SMC-KO	mice	fed	a	Western-type	diet	 for	14	weeks,	n=5.	Dashed	 lines	mark	the	atherosclerotic	
lesions	within	the	intima.	Scale	bar:	200	μm.	Data	are	shown	as	mean	±	S.D.	*p	<	0.05.	Student´s	t-test.	
	

To	investigate	the	contribution	of	VSMC-expressed	Tie2	on	macrophage	infiltration	in	atherosclerotic	

lesions,	 aortic-sinus	 sections	 were	 stained	 with	 anti-Mac3	 antibody	 (Figure	 42A	 and	 42B).	ApoEKO	

Tie2SMC-KO	 mice	 showed	 no	 significant	 differences	 in	 Mac3+	 area	 as	 compared	 to	 ApoEKO	 mice,	
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suggesting	 that	 VSMC-expressed	 Tie2	 has	 no	 major	 effect	 on	 macrophage	 infiltration	 into	 the	

atherosclerotic	 lesions.	 Furthermore,	 atherosclerotic	 lesions	 from	ApoEKO	 Tie2SMC-KO	mice	 showed	a	

marked	decrease	 in	αSMA+	smooth	muscle	cell	 area	as	 compared	 to	ApoEKO	mice	 (Figure	42A	and	

42C),	suggesting	that	VSMC-specific	Tie2	deletion	attenuated	VSMC	content	in	the	lesions.	Morover,	

analysis	of	ORO-positive	area	also	demonstrated	a	significant	reduction	in	atherosclerotic	 lesions	in	

total	aorta	of	ApoE	KO	Tie2SMC-KO	mice	(Figure	42D	and	42E).	

	

	
Figure	42.	Tie2	deficiency	in	VSMC	reduces	atherosclerosis	in	mice	
A,	 Representative	 images	 of	 Mac3-	 and	 αSMA-stained	 aortic	 sinus	 from	 24-week-old	 ApoEKO	 and	 ApoEKO	

Tie2SMC-KO	mice	fed	a	Western-type	diet	for	14	weeks.	Dashed	lines	mark	the	border	between	media	(M)	and	
intima	(I).	Scale	bar:	10	μm.	B-C,	Quantification	of	Mac3+	area	(B)	and	αSMA+	area	(C)	in	the	aortic	sinus	of	24-
week-old	ApoEKO	and	ApoEKO	Tie2SMC-KO	mice	fed	a	Western-type	diet	for	14	weeks.	D-E,	Representative	images	
(D)	 and	 quantification	 (E)	 of	 ORO-stained	 aortas	 from	 24-week-old	ApoEKO	 and	 ApoEKO	Tie2SMC-KO	mice	 fed	 a	
Western-type	diet	for	14	weeks.	The	ORO-positive	lesion	area,	αSMA+	area	and	Mac3+	area	were	quantified	as	
percentage	 of	 total	 area	 normalized	 to	 ApoEKO	 littermates.	 Scale	 bar:	 1	 mm.	 Black	 arrows	 indicate	
atherosclerotic	 lesions.	 Data	 are	 shown	 as	 mean	 ±	 S.D.	 *p	<	0.05,	 **p	 <	 0.001.	 Student´s	 t-test.	 ns=non-
significant.	
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To	 further	 validate	 these	 findings,	 mRNA	 expression	 of	 contractile	 VSMC	 markers	 and	 synthetic	

VSMC	markers	was	analyzed	 in	 isolated,	short-term	cultured,	aortic	VSMC	from	ApoEKO	and	ApoEKO	

Tie2SMC-KO	 mice	 fed	 a	 Western-type	 diet	 for	 14	 weeks.	 Tie2	 (Tek)	 and	 Angpt1	mRNA	 levels	 were	

significantly	 reduced	 in	 ApoEKO	 Tie2SMC-KO	 mice	 (Figure	 43A).	 The	 expression	 of	 contractile	 VSMC	

markers	 Tagln,	 Acta2	 and	Myl9	was	 significantly	 increased	 in	 VSMC	 from	ApoEKO	 Tie2SMC-KO	 mice,	

whereas	synthetic	VSMC	markers	Rbp1,	Vim	and	Myh10	were	significantly	decreased	(Figure	43B	and	

43C),	thereby	supporting	the	GSEA	data	(Figure	14	and	15).	No	significant	differences	were	detected	

for	 Cnn1	 and	Myh11	 (Figure	 43B).	 In	 conclusion,	 these	 data	 suggest	 that	 VSMC-expressed	 Tie2	

regulates	VSMC	phenotypic	modulation	during	atherosclerosis	progression,	thereby	promoting	VSMC	

content	in	the	lesions.	

	

	
Figure	43.	Characterization	of	isolated	aortic	VSMC	from	ApoEKO	and	Tie2SMC-KO	mice	
A-C,	 Gene	 expression	 analysis	 by	 RT-qPCR	 of	 Tie2	 (Tek)	 and	 Angpt1	 (A),	 contractile	 VSMC-specific	 markers	
Tagln,	Myl9,	Acta2,	Cnn1,	Myh11	 (B)	and	synthetic	markers	Rbp1,	Vim	and	Myh10	 (C)	 in	 isolated	VSMC	from	
ApoEKO	and	ApoEKOTie2SMC-KO	mice	fed	a	Western-type	diet	for	14	weeks;	n=	4-6.	Data	are	shown	as	mean	±	S.D.	
**p	<	0.05,	**p<	0.001,	***p	<	0.0001.	Student´s	t-test.	ns=non-significant.	
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2.16 Angiopoietin	2-deficient	mice	display	increased	atherosclerosis		

To	 trace	 possible	 systemic	 effects	 of	 VSMC-expressed	 Tie2	 in	 atherosclerosis,	 a	 proteome	 profiler	

array	was	performed	using	serum	samples	of	ApoEKO	and	ApoEKO	Tie2SMC-KO	mice	fed	a	Western-type	

diet	for	14	weeks.	The	array	revealed	slightly	increased	Angpt1	and	Angpt2	expression	in	the	serum	

from	ApoEKO	Tie2SMC-KO	as	compared	to	ApoEKO	mice	(Figure	44A).	Validation	of	these	findings	by	ELISA	

confirmed	a	significant	increase	in	circulating	levels	of	Angpt2	from	ApoEKO	Tie2SMC-KO	mice,	whereas	

levels	of	Angpt1,	the	constitutive	agonist	of	Tie2,	were	unaltered	among	the	groups	(Figure	44B	and	

44C).	As	a	result	Angpt2	to	Angpt1	ratio	was	significantly	increased	in	ApoEKO	Tie2SMC-KO	as	compared	

to	ApoEKO	mice	(Figure	44D).		

	

	
Figure	44.	Angpt2	serum	concentrations	are	increased	in	the	absence	of	VSMC-expressed	Tie2		
A,	Representative	 scans	of	 the	proteome	profiler	array	performed	on	serum	samples	of	24-week-old	ApoEKO	
and	ApoEKOTie2SMC-KO	mice	fed	a	Western-type	diet	for	14	weeks	showing	Angpt1	and	Angpt2	proteins.	Serum	
samples	were	pooled	from	4	ApoEKO	mice	and	4	ApoEKOTie2SMC-KO	mice,	respectively.	Quantification	was	based	
on	 signal	 intensity	 measured	 on	 gray	 levels	 using	 FIJI	 imaging	 software.	 B-C,	 Quantification	 of	 circulating	
Angpt2	(B)	and	Angpt1	(C)	by	ELISA	in	serum	samples	of	24-weeks-old	ApoE-/-	Tie2+/+	and	ApoE-/-	Tie2ΔSMC	mice	
fed	a	Western-type	diet	for	14	weeks;	n=8-9.	D,	Quantification	of	Angpt2	to	Angpt1	ratio	from	B	and	C	(n=8-9).	
Data	are	shown	as	mean	±	S.D.	*p	<	0.05,	**p	<	0.001,	***p	<	0.0001.	Student´s	t-test.	
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Systemic	adenoviral	Angpt2	overexpression	has	previously	been	shown	to	act	atheroprotective117.	In	

turn,	Angpt2	blocking	antibodies	have	been	shown	to	particularly	reduce	early	atherosclerotic	lesion	

formation366.	 In	 order	 to	 shed	 further	 light	 on	 the	 role	 of	 Angpt2	 in	 atherosclerosis,	 constitutive	

ApoE-/-	Angpt2-/-	(ApoEKO	Angt2KO)	double	KO	and	ApoEKO	littermate	control	mice	were	generated	and	

atherosclerosis	experiments	were	performed	by	 feeding	a	Western-type	diet	 for	14	weeks.	ApoEKO	

Angpt2KO	mice	had	no	altered	body	weight,	cholesterol	or	triglyceride	levels	compared	to	ApoE	null	

mice.	 ApoEKO	Angpt2KO	 mice	 showed	 a	 significant	 increase	 in	 atherosclerotic	 lesion	 area	 in	 sinus	

(Figure	45A	and	45B),	as	demonstrated	by	ORO	staining.	Analysis	of	Mac3+	and	αSMA+	area	revealed	

a	 significant	 increase	 in	 macrophage	 and	 VSMC	 content	 (Figure	 46A-46C).	 Moreover,	 analysis	 of	

ORO-positive	area	also	demonstrated	a	significant	increase	in	atherosclerotic	lesions	in	total	aorta	of	

ApoEKO	Angpt2KO	mice	(Figure	46D	and	46E).	

	

	
Figure	45.	Angpt2	deficiency	promotes	atherosclerosis	in	ApoE	null	mice	
A-B,	 Representative	 images	 (A)	 and	 quantification	 (B)	 of	ORO-stained	 aortic	 sinus	 from	24-week-old	ApoEKO	
and	ApoEKO	Angpt2KO	mice	 fed	a	Western-type	diet	 for	14	weeks;	n=5.	Dashed	 lines	mark	 the	atherosclerotic	
lesions	within	the	intima.	Scale	bar:	200	μm.	Data	are	shown	as	mean	±	S.D.	***p	<	0.001.	Student´s	t-test.	
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Figure	46.	Angpt2	deficiency	promotes	atherosclerosis	in	ApoE	null	mice	
A,	 Representative	 images	 of	 Mac3-	 and	 αSMA-stained	 aortic	 sinuses	 from	 24-week-old	 ApoEKO	 and	
ApoEKOAngpt2KO	mice	fed	a	Western-type	diet	for	14	weeks.	Dashed	lines	mark	the	border	between	media	(M)	
and	intima	(I).	Scale	bar:	10	μm.	B-C,	Quantification	of	Mac3+	(B)	and	αSMA+	area	(C)	in	the	aortic	sinus	of	24-
week-old	ApoEKO	and	ApoEKO	Angpt2KO	mice	fed	a	Western-type	diet	for	14	weeks.	D-E,	Representative	 images	
(D)	 and	 quantification	 (E)	 of	 ORO-stained	 aortas	 from	 24-week-old	 ApoEKO	 and	 ApoEKO	Angpt2KOmice	 fed	 a	
Western-type	diet	for	14	weeks.	The	ORO-positive	lesion	area,	αSMA+	area	and	Mac3+	area	were	quantified	as	
percentage	 of	 total	 area	 normalized	 to	 ApoEKO	 littermates.	 Scale	 bar:	 1	 mm.	 Black	 arrows	 indicate	
atherosclerotic	 lesions.	 Data	 are	 shown	 as	 mean	 ±	 S.D.	 *p	<	0.05,	 **p	 <	 0.001.	 Student´s	 t-test.	 ns=non-
significant.	
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3 Discussion		
	

The	study	was	aimed	at	deciphering	i)	the	role	of	VSMC-expressed	Tie2	in	regulating	blood	pressure	

and	 cardiac	 function	 during	 hypertension	 and	 ii)	 the	 role	 of	 VSMC-expressed	 Tie2	 in	 regulating	

phenotypic	 remodeling	 of	 VSMC	 during	 atherosclerosis	 progression.	 Hypertension	 and	

atherosclerosis	are	the	most	common	risk	factors	for	CVD,	which	still	constitute	the	major	cause	of	

death	globally126,388,389.	

	

3.1 VSMC-expressed	Tie2	controls	the	balance	between	the	contractile	

and	synthetic	VSMC	phenotype		

Scattered	 reports	 have	 demonstrated	 Tie2	 expression	 in	 VSMC370-372.	 In	 agreement	 with	 these	

findings,	 primary	 mouse	 and	 human	 VSMC	 express	 lower,	 but	 consistently	 detectable	 levels	 of	

functional	 Tie2	 as	 compared	 to	 EC.	 Therefore,	 VSMC-specific	 Tie2-deficient	mice	 (Tie2SMC-KO)	 were	

generated,	using	a	mural	cell-specific	Sm22α-Cre	driver	line.	Tie2	deletion	efficiency	was	confirmed	in	

mesenteric	 arteries,	 femoral	 arteries,	 hearts,	 aortas	 and	 short-term	 cultured	 aortic	 VSMC	 isolated	

from	Tie2SMC-KO	mice.	EC-specific	deletion	of	Tie2	has	been	shown	to	phenocopy	the	embryonic	lethal	

phenotype	 of	 globally	 Tie2-deficient	 mice,	 which	 die	 during	 midgestation	 (E10.5)	 as	 a	 result	 of	

perturbed	vessel	maturation374,390.	 In	contrast,	Tie2SMC-KO	mice	were	born	phenotypically	normal	and	

according	 to	 the	Mendelian	 ratio.	Moreover,	 VSMC-specific	 Tie2	 deletion	 did	 not	 affect	 postnatal	

retinal	angiogenesis	or	mural	cell	coverage.	

VSMC	 express	 a	 repertoire	 of	 proteins	 involved	 in	 contractility	 including	 calcium	 regulatory	 and	

contractile	 proteins,	 receptors,	 ion	 channels,	 and	 signal	 transduction	 molecules124.	 However,	

expression	of	a	single	contractile	VSMC	marker	gene	alone	 is	not	sufficient,	and	the	assessment	of	

VSMC	 phenotype	 has	 to	 be	 conducted	 by	 a	 combination	 of	 various	 marker	 genes126.	 Therefore,	

multiple	 contractile	 (e.g.	Sm22α,	αSMA,	Cnn1,	Myh11,	Myl9,	 Cald1)	 and	 synthetic	 (e.g.	Rbp1,	Vim,	

Myh10,	 Tpm4)	 VSMC-specific	 markers	 were	 analysed	 in	 the	 presence	 and	 absence	 of	 Tie2.	 Gene	

expression	 analysis	 of	 isolated	 short-term	 cultured	 aortic	 VSMC	 from	 Tie2SMC-KO	mice	 identified	 an	

upregulation	of	 contractile	 and	a	downregulation	of	 synthetic	VSMC	markers,	 suggesting	 that	Tie2	

controls	 the	 phenotypic	 switch	 of	 VSMC.	 VSMC	 remodeling	 is	 associated	 with	 an	 increased	

proliferative	and	migratory	rate307,309.	These	cells	migrate	into	the	intima	and	change	their	phenoyte	

from	a	contractile	to	a	proliferative	state.	The	reduced	migration	and	proliferation	in	Tie2-deficient	

cultured	 VSMC	 in	 the	 present	 study	 supports	 a	 contractile,	 quiescent	 phenotype	 rather	 than	 a	

synthetic	 VSMC	 phenotype.	 However,	 in	 vivo,	 VSMC-specific	 Tie2	 deletion	 did	 not	 result	 in	 any	

structural	alterations	 in	 isolated	mesenteric	arteries,	 femoral	arteries,	or	aortas	at	baseline.	Hence,	

Tie2	gene	disruption	 in	VSMC	alone	 is	not	sufficient	to	 induce	gross	structural	abnormalities	 in	the	

vessels,	 suggesting	 that	 additional	 triggers	 are	 needed	 to	 induce	 the	 VSMC-phenotype	 observed	

upon	 culture.	 Indeed,	 ex	 vivo	 cultured	 isolated	mesenteric	 arteries	 and	 femoral	 arteries	 obtained	
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from	Tie2SMC-KO	mice	 showed	 a	 decrease	 in	 vessel	 diameter	 upon	 increasing	 intraluminal	 pressure,	

indicating	 a	 (hyper-)	 contractile	 phenotype,	 which	 is	 in	 line	with	 the	 contractile	 VSMC	 phenotype	

observed	 in	vitro.	Previous	studies	have	also	described	that	upon	culture	VSMC	acquire	a	synthetic	

phenotype,	which	resemble	an	activated	status	upon	vascular	injury375,376.					

	

3.2 Sm22α-driven	Tie2	deletion	in	the	heart	affects	baseline	blood	

pressure	and	cardiac	size	

The	 principal	 role	 of	 VSMC	 is	 to	 regulate	 vasoconstriction	 and	 dilation	 of	 blood	 vessels,	 thereby	

regulating	vascular	tone,	blood	flow	and	blood	pressure388,391.	Importantly,	αSMA-null	mice	displayed	

significantly	lower	baseline	blood	pressure163.	Therefore,	the	relative	importance	of	VSMC-expressed	

Tie2	 on	 baseline	 blood	 pressure	 was	 evaluated	 in	 Tie2+/+	 and	 Tie2SMC-KO	mice.	 Telemetric	 tracing	

identified	 significantly	 reduced	 basal	 SBP	 in	 resting	 Tie2SMC-KO	 mice,	 whereas	 no	 differences	 were	

observed	in	DBP	and	HR.	The	findings	indicate	that	Tie2SMC-KO	mice	are	dealing	with	a	baseline	heart	

phenotype.	Wang	and	 colleagues	demonstrated	distinct	 roles	of	 vascular	 EC-	 and	VSMC-expressed	

peroxisome	 proliferators-activated	 receptor-γ	 (PPARγ)	 in	 regulating	 blood	 pressure	 and	 vascular	

tone392.	Another	study	showed	that	loss	of	epidermal	growth	factor	receptor	(EGFR)	in	CMs	as	well	as	

VSMC	leads	to	hypotension	and	cardiac	hypertrophy393.	These	examples	emphasize	that	a	‘yin-yang’	

relationship	 might	 exist	 in	 blood	 vessels	 to	 maintain	 vascular	 homeostasis.	 However,	 VSMC	

phenotype	 was	 not	 affected	 at	 baseline	 in	 Tie2SMC-KO	 mice,	 suggesting	 that	 the	 baseline	 heart	

phenotype	is	independent	of	Sm22α-driven	Tie2	deletion	in	VSMC.			

The	MAP	 is	 defined	as	 the	 average	pressure	 in	 arteries	during	one	 cardiac	 cycle,	 and	 is	 calculated	

from	 SBP	 and	 DBP	 (MAP=	 SBP	 +	 2	 (DBP)/3)394.	 The	MAP	 is	 considered	 to	 be	 a	 better	 alternative	

measurement	than	SBP	as	 it	serves	as	 indicator	of	 tissue	and	organ	perfusion394.	Moreover,	SBP	or	

DBP	 alone	 do	 not	 suffice	 as	 predictors	 for	 this	 critical	 cardiovascular	 parameter. Comparative	

analysis	of	baseline	MAP	revealed	a	 significant	 reduction	 in	 resting	Tie2SMC-KO	mice	as	compared	 to	

resting	Tie2+/+	mice,	 indicating	 that	perfusion	may	be	 reduced	 in	 these	mice.	Active	Tie2SMC-KO	mice	

and	 Tie2+/+	mice	 displayed	 a	 significant	 increase	 in	 SBP,	 DBP,	 HR	 and	MAP	 upon	 physical	 activity.	

Furthermore,	SBP,	DBP,	HR	and	MAP	were	notably	decreased	in	active	Tie2SMC-KO	mice	as	compared	

to	 active	 Tie2+/+	mice.	 The	 significant	 decrease	 in	 DBP	 and	 HR	 in	 active	 Tie2SMC-KO	 mice	 could	 be	

explained	 by	 the	 fact	 that	 physical	 activity	 causes	 a	 beneficial	 adaptive	 response	 of	 the	

cardiovascular	 system,	 that	 is	 more	 prominent	 in	 the	 Tie2SMC-KO	 mice382,383.	 Furthermore,	 HW	 and	

HW/TL	 were	 measured	 in	 Tie2+/+	 and	 Tie2SMC-KO	 mice.	 HW	 were	 normalized	 to	 TL	 and	 used	 as	

measurement	 for	 cardiac	 size	 as	 TL	 remains	 constant	 after	maturity,	 whereas	 BW	 fluctuates	with	

aging,	 therefore	 making	 HW/BW	 an	 unreliable	 reference	 for	 normalizing	 HW395.	 The	 findings	

demonstrated	 that	 the	 decrease	 in	 blood	 pressure	 correlated	with	 a	 decrease	 in	 HW	 and	HW/TL,	

stating	 that	 Tie2SMC-KO	 mice	 have	 a	 reduced	 blood	 pressure	 as	 well	 as	 a	 reduced	 cardiac	 size.	

Echocardiographic	 recordings	 supported	 a	 significant	 reduction	 in	 LVPW	 and	 IVS	 thickness	 in	 the	

heart	of	Tie2SMC-KO	mice.	Further	analysis	of	CM	size	revealed	a	sharp	decrease	in	CM	width	and	area	
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in	Tie2SMC-KO	mice	with	no	differences	in	CM	length.	These	findings	suggest	that	cardiac	development	

is	 impaired	 in	 Tie2SMC-KO	 mice.	 The	 decrease	 in	 cardiac	 size	 in	 Tie2SMC-KO	 mice	 could	 also	 be	 a	

consequence	 of	 a	 reduction	 in	 cell	 number.	 CMs	 in	 the	mammalian	 heart	 loose	 their	 capacity	 to	

proliferate	soon	after	birth,	meaning	that	any	differences	in	proliferation	that	occurs	in	the	heart	will	

be	 due	 to	 proliferation	 in	 other	 cell-types	 present	 in	 the	 heart,	 such	 as	 VSMC,	 fibroblasts	 and	

EC258,260.	Proliferation	(Ki67+	nuclei)	and	apoptosis	(Cleaved	Caspase	3+	area)	did	not	differ	between	

Tie2+/+	and	Tie2SMC-KO	mice,	indicating	that	the	decrease	in	cardiac	size	is	supposedly	not	the	cause	of	

decreased	cell	number	in	the	heart,	but	rather	the	result	of	poor	development	of	CMs,	which	is	most	

likely	the	cause	of	Sm22α-driven	Tie2	deletion	in	CMs.	

	

3.3 Tie2	expression	in	cardiomyocytes	

Analysis	 of	 HW	 and	HW/TL	 implies	 that	 cardiac	 size	 is	 affected	 between	 4	 and	 6	weeks	 of	 age	 in	

Tie2SMC-KO	mice,	suggesting	that	Tie2	might	be	required	in	this	time	frame	for	normal	development	of	

the	heart.	Previous	studies	have	reported	that	Sm22α	is	only	transiently	expressed	in	CMs,	between	

E8.5	and	12.5	during	embryonic	development160.	In	adult	CMs,	Sm22α	expression	is	restricted	to	the	

vasculature.	Hence,	Sm22α-driven	Tie2	deletion	in	CMs	during	embryonic	development	might	lead	to	

the	reduction	 in	BP	and	cardiac	size	observed	 in	adult	Tie2SMC-KO	mice.	Cre-mediated	recombination	

was	observed	in	VSMC	in	the	media	layer	of	the	aorta	as	well	as	 in	CMs	from	6-week-old	Tie2MCM	x	

Rosa26YFP	mice,	indicating	that	Tie2	is	expressed	by	VSMC	and	CMs.	In	contrast,	Tie2	expression	was	

not	detected	in	isolated	CMs	from	8-week-old	Tie2+/+	and	Tie2SMC-KO	mice	by	gene	expression	analysis	

or	Western	blot,	hinting	that	Tie2	might	be	required	at	an	earlier	time-point	for	normal	development	

of	the	heart.	Further	studies	are	needed	to	exploit	the	expression	pattern	of	Tie2	in	CMs,	particularly	

during	the	transient	expression	of	Sm22α	in	CMs	during	embryonic	development	and	in	young	adults	

(6-week-old	mice).	Overall,	Sm22α-driven	Tie2	deletion	in	the	heart	did	not	impair	blood	pressure	or	

heart	 development	 to	 a	 life-threatening	 condition.	 It	 could	 be	 that	 Sm22α	 targets	 only	 a	 small	

proportion	of	CMs,	without	affecting	other	CMs	that	develop	normally	and	express	Tie2.	This	would	

explain	 why	 the	mice	 survive	 but	 still	 experience	 an	 impaired	 heart	 function.	 Importantly,	Myh6,	

Desmin	and	Nkx2.5	are	also	expressed	 throughout	 the	heart	 from	E7.5396-398.	While	Desmin,	Myh6	

and	 Sm22α	play	 an	 important	 role	 in	maintaining	 the	 integrity	 of	 the	 contractile	 apparatus	 of	 the	

heart,	Nkx2.5	is	essential	for	cardiac	development.		

	

3.4 Sm22α-driven	Tie2	deletion	delays	an	adaptive	cardiac	response	

upon	hypertension		

The	 treatment	with	DOCA-salt,	 a	 synthetic	mineralocorticoid	 derivative,	 is	 a	widely	 used	model	 in	

various	animals,	 including	mice,	 to	 induce	heart	 failure	mediated	by	 volume	overload399,400.	DOCA-

salt	 treatment	 mimics	 the	 effects	 of	 aldosteron	 by	 promoting	 salt	 retention	 and	 an	 increase	 in	

circulating	blood	 volumes.	 Consequent	 salt	 retention	ultimately	 gives	 rise	 to	hypertension,	 cardiac	
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hypertrophy	 and	 vascular	 remodeling.	 The	 DOCA-induced	 hypertension	 model	 is	 regarded	 as	 an	

angiotensin-independent	 model	 as	 DOCA-salt	 treated	 animals	 show	 a	 markedly	 depressed	 renin-

angiotensin	system.	In	the	present	study,	DOCA-salt	treatment	did	not	have	a	major	impact	on	SBP,	

DBP,	MAP	and	HR	 in	 resting	Tie2+/+	and	Tie2SMC-KO	mice,	whereas	a	delay	was	observed	 in	SBP,	DBP	

and	MAP	in	active	Tie2SMC-KO	mice	as	compared	to	active	Tie2+/+	mice,	which	could	be	a	result	of	the	

prominent	baseline	reduction	observed	in	active	Tie2SMC-KO	mice.	In	hypertension,	the	heart	responds	

to	 increased	 hemodynamic	 stimuli	 by	 inititiating	 adaptive	 remodeling	 processes	 including	 cardiac	

hypertrophy	 and	 fibrosis255,256.	While	 Sm22α-driven	 Tie2	 deletion	 in	 the	 heart	 did	 not	 significantly	

reduce	 blood	 pressure	 upon	 DOCA-salt	 treatment,	 it	 significantly	 attenuated	 fibrotic	 area.	 This	

correlated	with	 a	 decrease	 in	Col1	 and	Mmp2	mRNA	 levels,	 evaluated	 as	markers	 of	 extracellular	

cardiac	matrix	turnover.	Hence,	DOCA-salt	treatment	did	not	markedly	promote	fibrosis	in	Tie2SMC-KO	

mice,	 indicating	a	 limited	remodeling	or	a	 lower	response	due	to	the	reduced	blood	pressure	level.	

Likewise,	DOCA-salt	treatment	did	not	elevate	HW	and	HW/TL	in	Tie2SMC-KO	mice.		

Induction	of	hypertension	leads	to	structural	changes	of	arteries	that	include	VSMC	remodeling	and	

thus	 the	 transition	 from	a	 contractile	 to	a	 synthetic	and	proliferative	VSMC	phenotype249,401.	Upon	

DOCA-salt	 treatment,	 the	contractile	VSMC	phenotype	was	maintained	 in	mesenteric	arteries	 from	

DOCA-salt	 treated	 Tie2SMC-KO	 mice	 as	 compared	 to	 DOCA-salt	 treated	 Tie2+/+	mice.	 The	 contractile	

VSMC	phenotype	 in	arteries	of	DOCA-treated	Tie2SMC-KO	mice	and	 the	hypercontractile	 response	of	

arteries	 upon	 intraluminal	 pressure	 could	 be	 responsible	 for	 the	 increases	 observed	 in	 blood	

pressure	upon	DOCA-salt	treatment.		

These	 findings	were	 recapitulated	 in	 the	AngII-induced	hypertension	model.	 This	 is	 another	widely	

used	model	of	experimental	hypertension	 in	which	 increased	blood	pressure	 is	mediated	by	 ligand	

stimulation	of	AT1	receptors.	This	leads	to	end-organ	damage,	including	cardiac	hypertrophy402.	CO,	

SV	and	HR	were	analysed	as	parameters	for	cardiac	function	in	Tie2+/+	and	Tie2SMC-KO	mice	before	and	

after	 AngII-treatment.	 CO	 is	 described	 as	 the	 volume	 of	 blood	 that	 is	 pumped	 by	 the	 heart	 per	

minute.	It	is	a	product	of	HR,	which	is	the	number	of	beats	per	minute	and	SV,	which	is	the	amount	

of	blood	pumped	by	each	heart	beat403,404.	 Interestingly,	Tie2SMC-KO	mice	displayed	a	delay	in	SV,	HR	

and	CO	at	day	4	 following	AngII	 treatment.	As	such,	AngII	 treatment	did	not	elevate	CO	and	HR	 in	

Tie2SMC-KO	mice	while	 elevating	 blood	 pressure,	 indicating	 an	 impaired	 cardiac	 response.	However,	

the	reduced	SV,	HR	and	CO	at	day	4	and	the	subsequent	normalization	at	day	7	suggest	that	these	

changes	 might	 be	 only	 transient.	 A	 limitation	 of	 this	 part	 of	 the	 study	 is	 that	 a	 relatively	 small	

number	 of	 mice	 (n=3	 per	 group,	 trial	 experiment)	 were	 included	 for	 the	 AngII-treated	 groups.	

Moreover,	 ‘state	of	 the	 art’	 radiotelemetry	 should	be	 applied	 instead	of	 tail-cuff	 system	 to	detect	

small	 and	 accurate	 changes	 in	 blood	 pressure.	 Future	 studies	 are	 required	 to	 investigate	 cardiac	

function	in	Tie2+/+	and	Tie2SMC-KO	mice	in	more	detail	upon	AngII	treatment.		

Since	both	CMs	and	VSMC	are	targets	of	DOCA-	and	AngII-induced	hypertension,	it	is	recommended	

to	 investigate	 Tie2	 function	 on	 blood	 pressure	 in	 either	 a	 VSMC-specific	 (αSMA,	 Myh11)	 mouse	

model	or	a	CM-specific	mouse	model	(Nkx2.5,	Myh6).		
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3.5 Models:	Sm22α-driven	Tie2	deletion	in	the	heart	and	arteries		

Taken	together,	the	findings	reveal	that	Sm22α-driven	Tie2	deletion	in	the	heart	i)	reduces	baseline	

blood	pressure	ii)	reduces	HW,	HW/TL,	LVPW	thickness,	IVS	thickness,	CM	size	and	thus	cardiac	size	

iii)	with	no	 changes	 in	 cell	 number.	 The	data	proposes	CM-expressed	 Tie2	 as	 a	 regulator	 of	 blood	

pressure	and	cardiac	size.	Upon	hypertension,	Sm22α-driven	Tie2	deletion	delays	the	compensatory	

potential	of	the	heart	(Figure	47A).	Furthermore,	the	data	also	identified	a	cell	autonomous	function	

of	 VSMC-expressed	 Tie2	 (Figure	 47B).	 VSMC-specific	 Tie2	 deletion	 does	 not	 affect	 baseline	 VSMC	

phenotype	and	function.	However,	VSMC-specific	Tie2	deletion	limits	the	transition	of	VSMC	towards	

a	 synthetic,	 proliferative	phenotype	 in	 an	 activated	 status.	Upon	hypertension,	VSMC-specific	 Tie2	

deletion	maintains	 the	contractile	VSMC	phenotype.	 In	conclusion,	VSMC-expressed	Tie2	promotes	

phenotypic	modulation	of	activated	VSMC.	

	

	
Figure	47.	Sm22α-driven	Tie2	deletion	in	the	heart	and	arteries	
A,	At	baseline,	Sm22α-driven	Tie2	deletion	in	the	heart	reduces	HW,	HW/TL,	LVPW	thickness,	IVS	thickness	and	
thus	cardiac	size	with	no	changes	 in	proliferation	and	apoptosis.	Additionally,	blood	pressure	 is	also	reduced	
upon	 Sm22α-driven	 Tie2	 deletion	 in	 the	 heart.	 Upon	 hypertension,	 Sm22α-driven	 Tie2	 deletion	 delays	 the	
compensatory	potential	of	the	heart.	B,	VSMC-specific	Tie2	deletion	does	not	affect	baseline	VSMC	phenotype	
and	 function.	 In	 an	 activated	 status,	 VSMC-specific	 Tie2	 deletion	 limits	 the	 transition	 of	 VSMC	 towards	 a	
synthetic,	proliferative	phenotype.	Upon	hypertension,	VSMC	specific	Tie2	deletion	maintains	 the	contractile	
VSMC	phenotype.	
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3.6 Function	of	VSMC-expressed	Tie2	during	atherosclerosis	

progression		

The	use	of	atherosclerosis	prone	mouse	models	via	genetic	and/or	diet	modifications	over	the	past	

decades	 has	 helped	 to	 decipher	 the	 molecular	 and	 cellular	 mechanisms	 that	 give	 rise	 to	

atherosclerotic	 lesion	 progression405.	 The	 use	 of	 ApoE-	 and	 LDLR-deficient	 mice,	 the	 two	 mouse	

models	 best	 used,	 allows	 the	 study	 of	 relatively	 large	 number	 of	 animals	 under	 different	

environmental	 and	 diet	 condition.	 Most	 importantly,	 these	 models	 can	 be	 used	 to	 study	 the	

similarity	 between	 mouse	 lesion	 progression	 and	 human	 lesions.	 Atherosclerosis	 progression	 can	

also	be	 studied	 from	 fatty	 streak	 to	 advanced	 lesions	within	 some	weeks	 in	 the	 above	mentioned	

mouse	models.	Lesion	progression	in	these	genetically	modified	mouse	models	can	first	be	detected	

at	the	aortic	sinus,	and	as	atherosclerosis	progresses,	lesions	begin	to	appear	in	the	ascending	aorta,	

followed	by	the	descending	aorta406.	Although	the	two	experimental	mouse	models	have	similarities	

in	 lesion	 progression,	 ApoE-deficient	 mice	 on	 a	 chow	 diet	 develop	 more	 severe	 atherosclerotic	

lesions	 than	 LDLR-deficient	 mice406,407.	 Therefore,	 ApoE-deficient	 mice	 (ApoEKO)	 were	 used	 in	 this	

study	 as	 atherosclerotic	 model	 and	 ApoEKO	 Tie2SMC-KO	 mice	 were	 generated	 on	 a	 C57Bl/6N	

background.		

ApoEKO	Tie2SMC-KO	mice	had	a	 significant	delay	of	atherosclerotic	 lesion	 formation	 in	 the	aortic	 sinus	

(and	 the	 aorta)	 with	 a	 reduction	 of	 αSMA+	 VSMC	 area.	 This	 was	 in	 line	with	 an	 increased	mRNA	

expression	of	contractile	VSMC-specific	markers	in	isolated	aortic	VSMC	from	ApoEKO	Tie2SMC-KO	mice,	

whereas	 the	 expression	 of	 synthetic	 VSMC-specific	 makers	 was	 markedly	 reduced.	 The	 findings	

establish	a	role	of	VSMC-expressed	Tie2	in	controlling	the	shift	towards	a	proliferative	and	migratory	

VSMC	phenotype	and	thereby	atherosclerosis	progression.	Hypercholesterolemia	plays	a	critical	role	

in	the	progression	of	atherosclerosis	and	is	induced	by	the	accumulation	of	MΦ	and	the	formation	of	

foam	 cells	 in	 early	 lesions408,409.	 As	 a	 result,	 there	 is	 an	 increased	 adhesion	 of	 monocytes	 to	 the	

endothelium	 and	 infiltration	 of	 MΦ.	 Along	 with	 hypercholesterolemia,	 EC	 dysfunction	 and	

inflammation,	phenotypic	modulation	of	VSMC	contributes	 to	 the	development	and	progression	of	

atherosclerosis409-411.	Since	plasma	lipid	 levels	and	body	weights	were	not	affected	by	the	presence	

or	absence	of	VSMC-expressed	Tie2,	Tie2	deficiency	 in	VSMC	slowed	atherosclerosis	progression	 in	

ApoEKO	Tie2SMC-KO	mice	in	other	ways	than	through	regulation	of	lipid	catabolism. 

	

3.7 Function	of	Angpt2	during	atherosclerosis	progression		

The	 loss	 of	 VSMC-expressed	 Tie2	was	 associated	with	 a	 significant	 increase	 of	 circulating	 levels	 of	

Angpt2	 in	ApoEKO	mice.	 Angpt2	 is	 almost	 exclusively	 produced	 by	 EC1,412.	 Angpt2	 has	 an	 autocrine	

mode	of	action	as	partial	agonist,	i.e.,	it	inhibits	Tie2	activation	in	the	presence	of	the	strong	agonist	

Angpt1	 but	 it	 weakly	 activates	 Tie2	 in	 the	 absence	 of	 Angpt184,413. Angpt2-mediated	 inhibition	 of	

Angpt1/Tie2	 signaling	 leads	 to	 vascular	 destabilization	 and	 primes	 activated	 EC	 for	 other	 EC	

activating	 growth	 factors,	 including	 angiogenesis-	 and	 inflammation-inducing	 cytokines1,84,412. EC	
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destabilization	 would	 be	 expected	 to	 promote	 atherosclerosis.	 Concordingly,	 Angpt2	 neutralizing	

antibodies	have	been	shown	to	inhibit	 its	progression366.	Yet,	the	reported	inhibiting	effects	appear	

to	be	transient	and	are	mostly	restricted	to	early	stages	of	atherosclerosis366.	In	contrast,	long-term	

systemic	 adenoviral	 overexpression	 of	 Angpt2	 has	 been	 shown	 to	 exert	 anti-atherosclerotic	

effects117.	Given	the	vascular	destabilizing	effects	of	Angpt2	on	resting	EC,	this	protective	phenotype	

is	indeed	mechanistically	difficult	to	relate	to	the	current	concepts	of	endothelial	Angpt/Tie	signaling.	

Employing	 a	 genetic	model	 of	 constitutive	Angpt2	 deficiency,	 this	 study	 could	 in	 principle	 be	 fully	

compatible	with	the	earlier	findings	of	an	atheroprotective	effect	of	increased	circulating	Angpt2	by	

showing	 that	ApoEKO	Angpt2KO	mice	are	not	protected	 from	atherosclerosis,	but	have	 in	 fact	a	pro-

atherosclerotic	 phenotype.	 Above	 counterintuitive	 findings	 on	 the	 role	 of	 Angpt2	 during	

atherosclerosis	 suggest	 that	 Angpt/Tie	 signaling	 in	 EC	 alone	 is	 not	 sufficient	 to	 account	 for	 the	

complexity	of	Angpt/Tie	signaling	during	atherosclerosis.	A	transient	pro-atherosclerotic	effect	of	EC	

Angpt2	 destabilization	 may	 be	 compatible	 with	 the	 blocking	 antibody	 experiments	 during	 early	

atherosclerosis366,	but	the	atheroprotective	effects	of	increased	circulating	Angpt2	as	well	as	the	pro-

atherosclerotic	 effect	 of	 ApoEKO	Angpt2KO	mice	 are	 likely	 due	 to	 other,	 possibly	 non-endothelial	

mechanisms.	

In	contrast	to	the	findings	in	ApoEKO	Angpt2KO	mice,	VSMC-specific	Tie2	deletion	did	not	significantly	

attenuate	macrophage	infiltration	within	the	lesions	of	the	aortic	sinus.	This	may	be	due	to	the	fact	

that	inflammation	in	developing	atherosclerotic	lesions	is	not	only	regulated	by	VSMC	but	also	by	the	

complex	 interaction	 of	 EC	 and	 inflammatory	 cells,	 leading	 to	 accelerated	 atherosclerosis	

progression409,411.	In	EC,	Angpt2	is	solidly	established	as	a	pro-inflammatory	mediator87,414.	

	

3.8 Model:	The	role	of	VSMC-expressed	Tie2	on	VSMC	phenotype	and	

function	during	atherosclerosis	progression		

In	 the	 context	 of	 atherosclerosis,	 the	 findings	 revealed	 that	 (i)	 VSMC-expressed	 Tie2	 supports	 the	

synthetic	 VSMC	 phenotype,	 thereby	 enhancing	 migration,	 proliferation	 and	 VSMC	 content	 within	

atherosclerotic	 lesions,	 (ii)	 VSMC-specific	 Tie2	 deletion	 shifts	 the	 ratio	 of	 circulating	 Angpt2	 to	

Angpt1	 towards	 Angpt2	 in	 ApoEKO	 mice,	 and	 (iii)	 constitutively	 ApoEKO	Angpt2KO	mice	 have	 a	 pro-

atherosclerotic	 phenotype.	 Together,	 the	 data	 establish	 a	 role	 of	 VSMC-expressed	 Tie2	 in	 the	

pathogenesis	 of	 atherosclerosis,	 thereby	 expanding	 and	 revising	 the	 endotheliocentric	 model	 of	

Angpt/Tie	signaling	towards	a	bi-directional	signaling	system	involving	EC	and	VSMC	(Figure	48).	
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Figure	 48.	 Model	 demonstrating	 the	 role	 of	 VSMC-expressed	 Tie2	 on	 VSMC	 phenotype	 and	
function	during	atherosclerosis	progression	
Upon	 atherosclerosis	 progression,	 VSMC-expressed	 Tie2	 shifts	 the	 balance	 from	 a	 contractile	 to	 a	 synthetic	
VSMC	phenotype	resulting	 in	decreased	contractile	markers,	 increased	migration	and	proliferation	as	well	as	
an	 increase	 in	 the	 number	 of	 VSMC	within	 the	 intima.	 In	 addition,	 VSMC-expressed	 Tie2	 attenuates	Angpt2	
release	by	EC	thereby	sustaining	atherosclerosis.	

	

3.9 Cross-talk	between	VSMC-expressed	Tie2	and	Angpt2-producing	

EC		

Angpt2	exerts	atheroprotective	functions	by	inhibiting	atherosclerosis	via	the	activation	of	eNOS	and	

release	of	NO,	leading	to	reduced	LDL	oxidation117.	The	protective	effect	of	Angpt2	was	abolished	by	

Tie2-neutralizing	 antibodies	 and	 a	 Tie2-blocking	 peptide,	 confirming	 that	 Angpt2	 acts	 in	 a	 Tie2-

dependent	manner.	 Furthermore,	 Angpt2	 stimulated	 NO	 release	without	 promoting	 inflammatory	

cell	 recruitment,	 giving	 it	 the	 characteristics	 of	 an	 atheroprotective	 factor.	 Yu	 and	 colleagues	

demonstrated	 that	 administration	of	 recombinant	Angpt2	 reduces	 atherosclerosis	 progression	 and	

angiotensin	II-induced	aortic	aneurysm	by	i)	restricting	 inflammatory	egress	from	the	bone	marrow	

and	ii)	regression	of	neovascularization118.	Future	work	will	need	to	unravel	the	mechanistic	crosstalk	

between	Tie2-expressing	VSMC	and	Angpt2-producing	EC	and	the	contribution	of	Angpt2-mediated	

EC	 destabilization	 towards	 atherosclerosis.	 The	 feedback	 loop	 between	 Tie2-expressing	 VSMC	 and	

increased	Angpt2	production	in	EC	suggests	that	Angpt2	may	contribute	to	confer	atheroprotection	

in	 VSMC-specific	 Tie2-deficient	 mice.	 Moreover,	 this	 feedback	 loop	 is	 fully	 compatible	 with	 an	

antagonistic	mode	of	action	of	EC-derived	Angpt2	on	VSMC	expressed	Tie2100,415.	
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3.10 Plaque	composition	in	the	presence	and	absence	of	VSMC-

expressed	Tie2	

The	stability	of	atherosclerotic	lesions	is	considered	as	important	as	the	actual	degree	of	stenosis416.	

About	 75%	 of	 coronary	 thrombosis	 events	 originate	 from	 rupture	 of	 weakened	 atherosclerotic	

lesions.	 The	 importance	 of	 VSMC	 in	 plaque	 stability	 is	 based	 on	 the	 criteria	 that	 formation	 of	 a	

fibrous	 cap	over	 the	plaques	necrotic	 core	by	proliferating	and	migrating	VSMC	 lessens	 the	 risk	of	

plaque	 rupture	and	 the	underlying	acute	events	 such	myocardial	 infarction	and	 stroke410,417.	VSMC	

apoptosis	 is	 also	 linked	 to	 weakening	 of	 the	 plaque,	 resulting	 in	 plaque	 rupture	 and	 thrombosis.	

Furthermore,	adventitial	and	plaque	angiogenesis	are	associated	with	enhanced	atherosclerosis	and	

less	 stable	 lesions364.	 Therefore,	 plaque	 composition	 should	 be	 analysed	 in	more	 detail	 in	 lesions	

from	 Tie2+/+	 and	 Tie2SMC-KO	 mice	 to	 unravel	 whether	 VSMC-expressed	 Tie2	 is	 indeed	 ‘pro-

atherosclerotic’	or	not.	Notably,	a	decreased	lesion	size	characterized	by	reduced	VSMC	content	and	

collagen	deposition	is	considered	to	be	more	prone	to	plaque	rupture.		

	

3.11 Tie2	signaling	in	VSMC		

Angpt1-mediated	Tie2	signaling	 is	essential	 for	EC	survival	and	quiescence2.	 In	vitro	experiments	 in	

this	 study	 demonstrated	 Angpt1-induced	 Tie2	 phosphorylation	 in	 HUaSMC.	 Additionally,	 Angpt1	

stimulation	led	to	the	activation	of	Akt,	which	is	an	important	downstream	effector	pathway	of	Tie2	

activation.	 Future	 studies	 are	 required	 to	 unravel	 the	 mechanistic	 role	 of	 Angpt/Tie2	 signaling	 in	

regulating	VSMC	phenotype	 and	 to	 investigate	which	 possible	 downstream	effectors	 are	 involved.	

The	role	of	RhoA	for	the	regulation	of	VSMC	phenotype	and	tone	has	been	well	described204,226-228.	

Likewise,	the	transcription	factor	Myocd	plays	a	pivotal	role	in	the	regulation	of	the	contractile	VSMC	

phenotype,	whereas	Elk1	promotes	the	synthetic	VSMC	by	inhibiting	Myocd	markers195,201-203.	Angpt1	

exert	 vascular	 protective	 effect	 by	 maintaining	 EC	 integrity	 and	 limiting	 permeability,	 which	 is	

mediated	 in	 a	 RhoA-dependent	 manner1,	 highlighting	 the	 link	 between	 Angpt/Tie2	 and	 RhoA.	

Furthermore,	Anpt1/Tie2	dependent	activation	of	Rac1	and	RhoA	 is	 involved	 in	EC	motilitiy	during	

vascular	work	assembly	and	angiogenesis418.	

	

3.12 Tie2	as	a	therapeutic	target	and	future	directions	
In	summary,	Tie2	signaling	exerts	beneficial,	vasoprotective	functions	contributing	to	maintaining	the	

non-proliferative,	quiescent	phenotype	of	the	resting	vasculature1,412.	In	contrast,	the	present	study	

revealed	 a	 disease-promoting	 role	 of	 Tie2	 in	 VSMC	 during	 hypertension	 and	 atherosclerosis	

progression.	 Future	 work	 will	 need	 to	 address	 the	 physiological	 role	 of	 Angpt/Tie2	 singnaling	 in	

VSMC.	 Gene	 expression	 analyses	 and	 cellular	 experiments	 in	 the	 present	 study	 revealed	 a	 role	 of	

VSMC-expressed	 Tie2	 in	 controlling	 the	 balance	 between	 the	 contractile	 and	 the	 synthetic	 VSMC	

phenotype.	 This	 contributed	 under	 hypertensive	 conditions	 (i.e.	 DOCA-salt	 treatment,	 ex	 vivo	

perfusion	assay)	and	pro-atherogenic	conditions	(i.e.,	Western	diet	in	ApoE	null	mice) towards	a	less	
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contractile	and	more	 synthetic,	proliferative	VSMC	phenotype.	Under	physiological	 conditions,	 this	

may	possibly	translate	into	a	role	of	VSMC-expressed	Tie2	in	the	control	of	vascular	tone	and	thereby	

indirectly	 to	 blood	 pressure	 regulation.	 Future	work	will	 need	 to	 validate	 if	 Tie2	 could	 serve	 as	 a	

therapeutic	 target	 for	 either	 hypertension	 or	 atherosclerosis.	 In	 fact,	 COMP-Angpt1	 effectively	

prevents	hypertension	and	ends	organ	damage	in	SHR	by	binding	to	its	endothelial	Tie2	receptor419.	

More	precisely,	Tie2+/-	mice	displayed	a	significant	elevation	in	pulmonary	arterial	pressures	induced	

with	 either	 5-HT	 or	 IL6	 as	 compared	 to	WT	mice361.	 Furthermore,	 LDLR-deficient	mice	 vaccinated	

against	Tie2	have	been	reported	to	display	significantly	reduced	atherosclerotic	 lesion	formation	 in	

the	 carotid	 arteries	 and	 the	 aortic	 root364.	 In	 turn,	 Angpt2	 blocking	 antibodies	 are	 presently	 in	

development	 in	 the	 field	of	 oncology	 and	 it	 consequently	 remains	 to	be	 seen	 if	 long	 term	Angpt2	

antibody	inhibition	could	turn	out	as	a	pro-atherogenic	risk	factor.	

	

3.13 Conclusion	
In	 conclusion,	 the	 current	work	 proposes	 that	 Tie2	 regulates	 blood	 pressure	 and	 cardiac	 size	 in	 a	

manner	 that	 is	 independent	 from	VSMC-expressed	Tie2,	and	most	 likely	a	consequence	of	Sm22α-

driven	 Tie2	 deletion	 in	 CMs.	 The	 work	 further	 demonstrated	 a	 cell	 autonomous	 effect	 of	 VSMC-

expressed	Tie2	in	the	regulation	of	VSMC	remodeling	from	a	contractile	to	a	synthetic	phenotype	in	

hypertension.	 The	 study	 also	 established	 a	 surprising	 and	 mechanistically	 challenging	 pro-

atherosclerotic	function	of	VSMC-expressed	Tie2.	The	genetic	data	expand	and	revise	the	established	

concept	 of	 endothelial	 Angpt/Tie	 signaling	 towards	 a	 complex	 bi-directional	 signaling	 network	

involving	 EC	 as	 well	 as	 VSMC.	 The	 data	 reconcile	 for	 some	 of	 the	 apparent	 discrepancies	 in	 the	

published	literature	and	will	stimulate	important	future	avenues	of	mechanistic	and	potentially	also	

translational	research.	
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4 Methods	
	

4.1 Animals	

4.1.1 Animal	welfare	

Mice	were	bred	on	a	C57Bl/6N	background.	Tie2flox/flox	mice	were	generated	by	 Ingenious	targeting	

Laboratories	 (Ronkonkoma,	 NY,	 USA)	 as	 previously	 described71.	 Tie2flox/flox	mice	were	 crossed	with	

Sm22α-Cre	mice	(The	Jackson	Laboratory,	Bar,	Harbor,	ME,	USA)	for	Tie2	deletion	in	smooth	muscle	

cells.	 Angpt2-deficient	 mice	 crossbred	 into	 a	 C57Bl/6N	 background	 were	 used	 as	 previously	

described87.	 Sm22a-Cre	 mice	 were	 crossed	 to	 Rosa26	 yellow	 fluorescent	 protein	 (YFP)	 reporter	

(Rosa26YFP)	mice373	for	isolation	of	Sm22α-positive	smooth	muscle	cells	by	fluorescence-activated	cell	

sorting	 (FACS).	Heart	 and	aortic	 samples	 from	Tie2MerCreMer	 x	Rosa26YFP	were	 kindly	provided	by	Dr.	

Katrin	Busch	and	Prof.	Hans-Reimer	Rodewald,	DKFZ.	Mice	were	injected	daily	on	5	consecutive	days	

with	1	mg	tamoxifen	intraperitoneally386.	

For	DOCA-induced	and	AngII-induced	hypertension	experiments,	twelve-week-old	Tie2+/+	and	Tie2SMC-

KO	 mice	 were	 transferred	 to	 a	 mouse	 room	 at	 the	 Institute	 of	 Physiology	 and	 Pathophysiology,	

Heidelberg,	 Germany,	 and	 subsequently	 housed	 singly	 per	 cage.	 For	 atherosclerosis	 experiments,	

eight-	 to	 ten-week-old	 ApoEKO	Tie2SMC-KO,	 ApoEKO	Angpt2KO	 and	 their	 respective	 littermate	 controls	

were	 fed	 a	 Western-type	 diet	 (41%	 of	 calories	 from	 fat,	 43%	 from	 carbohydrate,	 and	 17%	 from	

protein	 (diet	 D12079B	 [Research	 Diets,	 New	 Brunswick,	 NJ,	 USA])	 for	 14	 weeks	 to	 induce	

atherosclerosis	as	decribed	previously420.		

Animals	 were	 housed	 in	 individually	 ventilated	 cages	 under	 sterile	 and	 temperature-controlled	

conditions.	Mice	 had	 free	 access	 to	 autoclaved	 food	 and	water	 and	were	 kept	 in	 a	 12h	 light-dark	

cycle.	Mutant	 and	 control	 littermates	were	 used	 for	 all	 experiments.	 All	 animal	 experiments	were	

approved	according	to	the	ethical	guidelines	of	the	local	animal	welfare	committee	(Bezirkregierung	

Karlsruhe,	Germany;	permit	number	G77/14).		

	

4.1.2 Radiotelemetry	system		

In	order	to	monitor	baseline	blood	pressure	over	a	time-course	of	7	days,	the	mouse	radiotelemetry	

system	 (DSI	 PhysioTel®	 PA-C10,	 The	 Netherlands)	 was	 utilized	 according	 to	 the	 manufacturer's	

instructions.	Briefly,	the	pressure	sensor	catheter	was	inserted	by	cannulating	the	carotid	artery	and	

the	transmitter	device	was	placed	subcutaneously	in	the	right	flank	of	12-	week-old	male	Tie2+/+	and	

Tie2SMC-KO	mice.	 The	mice	 were	 allowed	 to	 recover	 for	 7	 days.	 Thereafter,	 systolic	 blood	 pressure	

(SBP),	 diastolic	 blood	 pressure	 (DBP),	 heart	 rate	 (HR)	 and	 mean	 arterial	 pressure	 (MAP)	 were	

monitored	for	7	days.	SBP,	DBP,	MAP	and	HR	were	compared	between	the	day-time	resting	period	

and	 the	 night-time	 active	 period	 of	 Tie2+/+	 and	 Tie2SMC-KO	 mice.	 Physical	 activity	 was	 defined	 by	

comparison	of	resting	versus	active.		
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4.1.3 Echocardiography	

Mice	were	anesthesized	with	isoflurane	and	maintained	at	37°C	on	a	heating-pad.	The	localization	of	

the	 left	 ventricle	 was	 obtained	 in	 M-mode.	 Cardiac	 function	 was	 measured	 by	 transthoracic	

echocardiograpy	under	anesthesia	(isoflurane	1.5-2%	in	1	Lpm	O2	using	OxyCare	EverFlo	oxygenator)	

using	the	VisualSonics	Vevo	2100	(VisualSonics,	Toronto,	Ontario,	Canada)	equipped	with	a	MS550D	

linear	 transducer	 (40	Mhz).	 Electrocardiograms	 (ECGs)	were	obtained	using	built-in	ECG	electrode-

contact	 pads	 (VisualSonics).	The	 Vevo	 2100-imaging	 sytem	 software	 was	 applied	 to	 acquire	 left	

ventricular	wall	thickness	(LVPW),	interventricular	septum	(IVS)	and	left	ventricular	internal	diameter	

(LVID)	 at	 diastole	and	 systole.	 Imaging	 and	quantification	was	performed	by	 Felix	 Trogisch	 and	Dr.	

Oliver	Drews,	Institute	of	Physiology	and	Pathophysiology,	Heidelberg,	Germany.		

	

4.1.4 DOCA-induced	hypertension	model	

Hypertension	was	induced	by	subcutaneously	implanting	DOCA-salt	slow-release	pellets	(Innovative	

Research	of	America,	Sarasota,	FL,	USA)	in	12-week-old	male	Tie2+/+	and	Tie2SMC-KO	mice	according	to	

the	manufacturer's	instructions	under	anesthesia	(isoflurane	3%,	v/v)	and	providing	1%	(w/v)	sodium	

chloride	in	the	drinking	water.	Adequate	anesthesia	was	monitored	by	controling	the	footpad	reflex.	

Blood	pressure	and	HR	was	monitored	7	days	prior	and	10	days	post	DOCA-salt	treatment,	using	the	

mouse	 radiotelemetry	 system	 (DSI	 PhysioTel®	 PA-C10,	 The	 Netherlands)	 according	 to	 the	

manufacturer’s	 instructions.	 Untreated	 and	 DOCA-treated	 animals	were	 euthanized	 after	 10	 days.	

Mice	were	anesthetized	and	hearts	were	perfused	with	PBS,	weighted,	and	fixed	in	zinc-fixation	for	

further	 processing.	 Kidneys	 were	 excised	 and	 weighted	 and	 isolated	 arteries	 were	 prepared	 for	

histological	examination.	Surgery,	DOCA	 implantation	and	analysis	were	done	 in	collaboration	with	

Dr.	Caroline	Arnold	and	Prof.	Thomas	Korff,	Institute	of	Physiology	and	Pathophysiology,	Heidelberg,	

Germany.	The	Rout	test	was	used	to	exclude	possible	outliers.		

	

4.1.5 Angiotensin-induced	hypertension	model	

Cardiac	hypertension	and	hypertrophy	was	induced	in	Tie2+/+	and	Tie2SMC-KO	mice	by	AngII-treatment	

(Sigma-Aldrich).	 Micro-osmotic	 pumps	 (alzet,	 model	 1002),	 which	 release	 AngII	 at	 a	 rate	 of	 1.5	

mg/kg/day,	 were	 implanted	 subcutaneously	 at	 the	 back	 of	 the	 mice.	 Body	 temperature	 was	

maintained	 at	 37°C	 using	 temperature	 controlled	 heat	 pads.	 Systolic	 blood	 pressure	 (SBP)	 was	

measured	before	treatment	and	7	days	after	 treatment	by	using	a	computerized,	noninvasive,	 tail-

cuff	 system	 (NIBP,	NIBPchart	 software;	 Panlab/Harvard	 apparatus,	Holliston,	MA,	USA).	Mice	were	

anesthetized	 and	 hearts	 were	 perfused	 with	 PBS,	 weighted	 and	 fixed	 in	 zinc-fixation	 for	 further	

processing.	 Imaging	was	 performed	 by	 Felix	 Trogisch	 and	Dr.	Oliver	Drews,	 Institute	 of	 Physiology	

and	Pathophysiology,	Heidelberg,	Germany.		
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4.1.6 Ex-vivo	perfusion	of	mesenteric	and	femoral	arteries	

Perfusion	 of	 isolated	 arteries	 was	 performed	 as	 previously	 described401.	 Briefly,	 animals	 were	

sacrificed	by	 cervical	dislocation.	 Subsequently,	mesenteric	and	 femoral	 arteries	were	 isolated	and	

inserted	 into	 the	 chamber	 of	 a	 myograph	 (Culture	Myograph,	 DMT,	 Copenhagen,	 Denmark).	 The	

chambers	 were	 placed	 in	 an	 incubator	 at	 37°C	 and	 5%	 CO2,	 and	 the	 arteries	 were	 continuously	

perfused	with	DMEM	medium	 (Invitrogen,	Darmstadt,	Germany)	 containing	 15%	 FCS	 at	 increasing	

intravascular	pressure	levels.	The	arteries	were	exposed	to	a	supra-physiological	transmural	pressure	

gradient	of	110	mmHg	or	to	the	physiological	pressure	gradient	of	60	mmHg.		

	

4.1.7 VSMC	isolation		

VSMC	were	 isolated	 from	Tie2+/+	 and	Tie2SMC-KO	mice,	 as	 described	 previously420.	 In	 brief,	 the	 right	

atrium	of	24-week-old	atherosclerotic	mice	was	punctured.	HBSS	 (5	ml)	was	perfused	 through	 the	

left	 ventricle	 to	 flush	 out	 blood.	Whole	 aortas	 were	 excised	 and	 adventitia	 was	 removed.	 Aortas	

were	 digested	 at	 37°C	 for	 45	 min	 using	 filtered	 10	 μg/ml	 collagenase	 type	 I	 (Sigma,	 C9891-1G).	

DMEM	culture	media,	supplemented	with	15%	FCS	and	1%	Penicillin/	Streptomycin	(P/S),	was	added	

to	the	cell	suspension	to	stop	the	digestion	process	and	subsequently	centrifuged	at	200	g	for	5	min	

at	4°C.	The	cell	suspension	was	then	plated	and	cultured	at	37°C	with	complete	DMEM	culture	media	

in	5%	CO2	and	high	humidity.		

	

4.1.8 Characterization	of	isolated	aortic	VSMC	

RNA	 isolated	 from	 cultured	 aortic	 VSMC	 at	 passage	 1	 was	 tested	 for	 the	 VSMC-specific	 makers	

(Pdgfrβ	 and	Des),	 endothelial	 cell-specific	 (Pecam1	 and	 Cdh5),	 and	 fibroblast-marker	 (S100a4)	 by	

qRT-PCR	 with	 the	 according	 TaqMan	 probes	 (Table	 17).	 HUVEC	 and	 NIH3T3	 cells	 were	 used	 as	

positive	and	negative	controls,	respectively.		

	

4.1.9 Macrophage	isolation		

Peritoneal	macrophages	were	obtained	by	 flushing	 the	peritoneal	 cavity	with	pre-warmed	Roswell	

Park	 Memorial	 Institute	 medium	 (RPMI)	 (Life	 Technologies).	 Cells	 were	 plated	 in	 RPMI	 medium	

supplemented	with	10%	FCS	and	1%	P/S	at	37	°C	and	5%	CO2	for	45	min.	After	45	min,	cultures	were	

washed	three	times	with	PBS	to	remove	non-adherent	cells	and	left	in	culture	media	overnight.			

	

4.2 Immunohistochemical	methods	

4.2.1 Preparation	of	zinc-fixed	paraffin-embedded	sections		

Following	mouse	dissection,	hearts	and	arteries	were	 fixed	 in	zinc-fixative	overnight.	The	next	day,	

samples	were	washed	with	 VE-water	 and	 further	 processed	 automatically	with	 the	 spin	 processor	
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STP120	including	incubations	in	graded	ethanol	series	(70-85-96%),	twice	in	isopropanol	(Iso),	twice	

in	xylol,	and	stored	in	paraffin	(Table	1).	Subsequently,	samples	were	manually	embedded	in	paraffin	

blocks.	 10	μm	 tissue	 sections	were	prepared	using	 the	 rotary	microtome	HM355S.	 Sectioning	was	

performed	from	at	least	three	different	regions	of	the	tissue	sample.		

	

Table	1:	Paraffin	section	preparation		
Procedure	 		Reagent	 Time	

1	 70%	ethanol	 2h	
2	 85%	ethanol	 1	h	45	min	
3	 99%	ethanol	 1	h	45	min	
4	 isopropanol	 1	h	45	min	
5	 isopropanol	 1	h	45	min	
6	 xylol	 1	h	45	min	
7	 xylol	 1	h	45	min	
8	 paraffin	 2	h	
9	 paraffin	 1	h	45	min	

	

4.2.1.1 Deparaffinization	and	rehydration	of	paraffin	

Zinc-fixated,	paraffin	 sections	 (10	μm)	were	deparaffinized,	dehydrated	and	 rehydrated	by	passing	

them	through	graded	alcohols.	

	

Table	2:	Deparaffinization	and	rehydration	of	paraffin	
Procedure 			Reagent Time 
1 Histo-Clear	II 2	min 
2 Histo-Clear	II 2	min 
3 99%	ethanol 1	min 
4 80%	ethanol 10	sec 
5 70%	ethanol 10	sec 
6 VE-water 1	min 

	

4.2.1.2 Hematoxylin	and	eosin	(H&E)	staining	of	paraffin-embedded	sections		

Heart	 sections	 were	 stained	 with	 H&E	 for	 routine	 histological	 examination.	 Hematoxylin	 stains	

basophilic	components	 including	cell	nuclei	and	ribosomal	rough	ER	 in	blue,	whereas	eosin	detects	

eosinophilic	 structures	 such	 are	 cytoplasmic	 proteins,	 mitochondria,	 smooth	 ER,	 keratin,	

erythrocytes	and	collagen	in	red.	Sections	were	stained	with	filtered	hemalaun	for	4	min.	The	slides	

were	washed	with	 running	 tap	water	 for	up	 to	10	min,	and	 then	counterstained	with	2%	ethanoic	

eosin	 for	 1	 min.	 Subsequently,	 sections	 were	 washed	 three	 times	 with	 VE-water	 followed	 by	

dehydration	via	a	graded	series	of	alcohol	(10	sec	70%,	10	sec	80%,	10	sec	90%	and	1	min	Iso)	and	

cleared	by	xylol.	Before	mounting	with	histomount,	sections	were	treated	with	histoclear	for	90	sec.	

Bright	field	images	were	obtained	with	the	Zeiss	Axio	Scan	(20x	objective).		
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4.2.1.3 Immunohistochemistry	(IHC)	

Antigen-retrieval	of	deparaffinized,	de-	and	rehydrated	sections	was	achieved	by	boiling	the	sections	

for	20	min	in	0.01	M	pH	6.0	citrate	target	retrieval	buffer	followed	by	cooling	in	VE-water	for	20	min.	

In	order	 to	block	 the	background	activity	of	 endogenous	peroxidases,	 slides	were	 treated	with	3%	

H2O2	for	 15	min	 and	washed	2x	 5	min	with	 PBS-T	or	 TBS-T.	Unspecific	 binding	 sites	were	blocked	

with	 10%	 rabbit	 serum	 for	 1	 h	 at	 room	 temperature	 (RT).	 Afterwards,	 slides	 were	 incubated	

overnight	at	4°C	with	primary	antibody	in	the	appropriate	buffer	(Table	26).	The	next	day,	slides	were	

washed	3x	5	min	with	TBS-T	and	 incubated	with	 the	 respective	 secondary	antibody	 in	 the	primary	

antibody	buffer	for	30	min	at	room	temperature	(Table	27).	Slides	were	washed	3x	5	min	with	TBS-T.	

Detection	 was	 performed	 using	 a	 biotin-peroxidase	 complex,	 in	 form	 of	 Vectastain	 ABC	 solution	

according	 to	manufacturers’	protocol.	To	sum	up,	1	drop	of	 solution	A	was	mixed	 into	2.5	ml	PBS,	

followed	by	adding	1	drop	of	solution	B,	further	mixing	and	incubation	in	the	dark	for	20	min	at	RT.	

The	mix	was	added	to	sections	for	40	min	at	RT.	After	40	min,	sections	were	rinsed	with	TBS-T	for	3x	

5	min,	followed	by	diaminobenzidine	substrate	(DAB)	treatment	for	2-5	min.	Sections,	briefly	washed	

with	tap	water,	were	counterstained	with	Hematoxylin	for	2	min,	rinsed	with	running	tap	water	for	

10	min,	dehydrated	through	99%	ethanol	and	Iso,	treated	with	Histoclear	for	2x	2	min	and	mounted	

with	Histomount.	Bright	field	images	were	taken	at	the	Zeiss	Axio	Scan	(20x	objective).	Ki67-positive	

nuclei	 (as	 percentage	 of	 total	 nuclei)	 and	 Cleaved	 Caspase	 3-positive	 area	 (as	 percentage	 of	 total	

area)	were	analysed	with	Fiji	software.		

	

4.2.1.4 Immunofluorescence	of	paraffin-embedded	arteries		

Paraffin	cross-sections	of	mesenteric	arteries	and	femoral	arteries	were	deparaffinized	in	xylene	and	

passed	through	graded	alcohols.	Antigen	retrieval	was	performed	with	8	μg/ml	Proteinase	K	in	Tris-

EDTA	 (TE)	buffer	 (10	mM	Tris,	1	mM	EDTA,	pH	8.0)	 for	10	min	at	37°C.	The	sections	were	blocked	

with	 10%	normal	 goat	 serum	 (Life	 Technologies)	 for	 1	 h	 at	 RT,	 and	 stained	with	 CD31,	 αSMA	and	

Desmin	antibodies	(Table	26)	overnight	at	4°C.	The	sections	were	subsequently	washed	3x	5	min	with	

TBS-T	and	incubated	with	the	appropriate	secondary	antibody	(Table	27)	for	1	h	at	RT.	Pictures	were	

taken	with	a	Zeiss	LSM	700	(40x	objective)	and	analyzed	with	Fiji	software.	For	analysis,	the	αSMA-	

and	Calponin-positive	area	was	quantified	and	normalized	to	the	total	area.		

	

4.2.1.5 Picro	Sirius	red	staining	

Picro-sirius	 red	 staining	 was	 used	 to	 detect	 the	 deposited	 collagen	 fibers	 type	 I	 and	 III	 in	 the	

extracellular	space.	Picrosirius	red	stains	were	performed	according	to	the	manufacturer’s	protocol	

(Poly	 Science).	 In	 brief,	 after	 dewaxing,	 de-	 and	 rehydration,	 sections	 were	 placed	 in	 Sirius	 red	

staining	 solution	A	 for	 2	min,	 followed	by	VE-water	 rinse.	Next,	 sections	were	 placed	 in	 Sirius	 red	

solution	 B	 for	 60	 min	 and	 additionally	 for	 2	 min	 in	 Sirius	 red	 solution	 C.	 Finally,	 sections	 were	

gradually	dehydrated	and	mounted	with	Histomount.	Bright	field	 images	were	taken	with	the	Zeiss	
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Axio	 Scan	 (20x	 objective).	 Fibrotic	 area	was	 analysed	with	 Fiji	 software	 by	 assessing	 the	 positively	

stained	area	normalized	to	total	area.		

Sirius	red	solution	A:	Phosphomolybdic	acid	hydrate	in	water		

Sirius	red	solution	B:	Direct	Red80	and	2,4,6-Trinitrophenol	in	water		

Sirius	red	solution	C:	0.1	N	hydrochloride	acid	 
	

4.2.1.6 Oil	Red	O	(ORO)	staining	of	whole	mount	aorta	

Whole	mount	 aortas	 were	 fixed	 in	 4%	 paraformaldehyde	 (PFA)	 overnight.	 Aorta’s	 were	 placed	 in	

absolute	 1,2	 Propanediol	 solution	 for	 2-5	 min	 and	 stained	 in	 prewarmed	 ORO	 solution	 (Sigma-

Aldrich)	 for	8-10	min	at	60°C.	Next,	aorta’s	were	 incubated	 in	85%	1,2-Propanediol	solution	for	2-5	

min,	 followed	 by	 2x	 washing	 with	 VE-water.	 The	 ORO-stained	 aorta’s	 were	 counterstained	 with	

Hematoxylin	for	30	s	and	further	developed	by	washing	thoroughly	 in	running	tap	water	for	3	min.	

The	mounting	was	done	with	Aquatex.		Bright	field	images	were	taken	with	the	Cell	Observer	(ZEISS),	

objective	 10x	 and	 analyzed	with	 Fiji	 software.	Quantification	 of	ORO-positive	 area	 is	 expressed	 as	

percentage	of	total	lesion	area	normalized	to	littermate	average.	

	

4.2.2 Preparation	of	cryoblocks	and	sections		

Immediately	 after	 mouse	 dissection	 heart	 tissues	 were	 fixed	 overnight	 in	 4%	 PFA	 at	 4°C. Heart	
sections	 and	 aortic	 sections	 from	 Tie2MerCreMer	 x	Rosa26	 YFP	were	 fixed	 overnight	 in	 4%	 PFA	 at	 4°C,	

followed	 by	 an	 additional	 overnight	 incubation	 in	 sucrose	 (30%	 sucrose	 in	 PBS)	 at	 4°C.	 After	

overnight	incubation,	the	samples	were	placed	in	cryomold	immersed	in	O.C.T	Cryo-medium	on	dry	

ice,	and	stored	at	-80°C.	Sections	(10	μm)	were	cut	using	the	cryo	microtome	Hyrax	C50	followed	by	

drying	for	few	minutes.	The	frozen	sections	were	stored	at	-80	°C.		

	

4.2.2.1 Immunofluorescence	staining		

Heart	sections,	aortic	sections	and	aortic	sinus	sections	were	permeabilized	and	blocked	with	Ready-
to-use-Zymed	(Life	Technologies)	or	PBS	supplemented	with	10%	goat	serum	and	0.5%	Triton	X-100	
for	1	h	at	RT.	Slides	were	incubated	overnight	at	4°C	with	primary	antibody	in	the	appropriate	buffer	
(Table	26).	The	next	day,	slides	were	washed	2x	10	min	with	PBS-T	and	incubated	with	the	respective	
secondary	antibody	 in	the	primary	antibody	buffer	for	1	h	at	room	temperature	(Table	27).	 Images	
were	 taken	with	a	Zeiss	 LSM	700	 (40x	objective)	and	analyzed	with	Fiji	 software.	Quantification	of	
Mac3-	 and	 αSMA-positive	 area	 is	 expressed	 as	 percentage	 of	 total	 lesion	 area	 normalized	 to	
littermate	average.	
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4.2.2.2 Whole	mount	retina	staining		

For	analysis	of	 the	 retinal	vasculature,	mice	were	sacrificed	by	decapitation	at	P4	and	 the	eyeballs	

were	isolated	using	a	stereo	microscope.	The	eyes	were	fixed	in	methanol	at	-20°C	overnight	or	in	4%	

or	2%	PFA/PBS	for	1h	at	RT.	Long	term	storage	of	methanol	fixed	eyes	was	in	methanol	at	-20°C	and	

PFA	 fixed	eyes	were	kept	 in	PBS	at	4°C.	After	 isolation	of	 the	 retinas,	whole	mount	 retina	 staining	

was	performed	to	visualize	the	vasculature	and	related	structures.	Therefore,	retinas	were	blocked	

and	permeabilized	with	retina	blocking	buffer	for	1h	at	RT.	The	retinal	vasculature	was	stained	with	

FITC-conjugated	IB-4	(1:100)	and	the	denoted	primary	antibodies	(Table	26)	overnight	at	4°C	in	retina	

antibody	 dilution	 buffer	 followed	 by	 three	washing	 steps	with	 0.2%	 Tween/PBS	 for	 5min.	 Retinas	

were	then	incubated	with	the	appropriate	fluorescently	 labelled	secondary	antibodies	(Table	27)	 in	

retina	 antibody	 dilution	 buffer	 for	 1h	 at	 RT	 and	 subsequently	 washed	 three	 times	 with	 0.2%	

Tween/PBS	 for	 5min.	 Afterwards,	 retinas	 were	 flattened	 on	 glass	 slides	 by	 making	 four	 radial	

incisions	and	then	mounted	with	Fluoromount	G	mounting	medium.	Pictures	of	retinas	were	taken	

with	 the	 confocal	microscopes	 Zeiss	 LSM700	 (10x	objective)	 and	 image	 analysis	was	 accomplished	

with	Fiji	software.	The	relative	vessel	area	was	calculated	as	IB-4+	area	per	retina	area.	Pericyte	and	

VSMC	 coverage	 was	 determined	 by	 measuring	 the	 desmin-positive	 and	 αSMA-positive	 area	

associated	with	the	vasculature,	and	correlating	it	to	the	vessel	area.	

	

4.2.2.3 Staining	of	atherosclerotic	lesion	size	

Heart	 sections	 (10	µm)	were	 stained	with	ORO	and	 counterstained	with	hematoxylin	 (see	4.2.1.6).	

The	stained	sections	were	imaged	using	Cell	Observer	(ZEISS),	objective	10x,	and	quantified	using	Fiji	

software.	Quantification	of	ORO-positive	 lesion	area	 is	expressed	as	percentage	of	total	 lesion	area	

normalized	to	littermate	average.			

	

4.3 Cell	culture	methods	

4.3.1 Cell	culture	maintenance	

Cells	 were	 cultured	 at	 37°C,	 5%	 CO2	 and	 100%	 humidity.	 Human	 aortic	 smooth	 muscle	 cells	

(HAoSMC)	 and	 human	 umbilical	 artery	 smooth	 muscle	 cells	 (HUaSMC)	 were	 purchased	 from	

PromoCell	and	cultured	in	Smooth	Muscle	Cell	Growth	Medium	2	kit,	the	corresponding	supplement-

mix	 and	 1%	 Penicilin/Streptomycin	 (P/S).	 HAoEC	 were	 purchased	 from	 PromoCell	 and	 grown	 in	

Endothelial	 Cell	 Growth	 Medium	 MV,	 the	 corresponding	 supplement-mix	 and	 1%	 P/S.	 HUVEC	

(PromoCell)	and	MS1	(ATCC)	were	cultured	in	Endopan	3	medium	(PAN	Biotech)	supplemented	with	

3%	FCS,	the	corresponding	supplement-mix	and	1%	P/S.	NIH3T3	were	a	kind	provided	by	the	Clinic	

for	Tumor	Biology,	Freiburg	and	cultured	in	DMEM	with	10%	FCS	and	1%	P/S. 
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4.3.2 Cryopreservation	and	thawing	of	cells	

Cells	 were	 resuspended	 in	 cell-type	 specific	 medium,	 containing	 10%	 DMSO	 and	 20%	 FCS.	 Cell	

suspension	 was	 transferred	 into	 cryostatic	 vials	 (1	 ml/vial).	 The	 vials	 were	 slowly	 frozen	 in	 an	

isopropanol-containing	 container	 at	 -80°C	 overnight	 and	 then	 stored	 in	 a	 liquid	 nitrogen	 tank.	 For	

thawing,	cells	were	placed	in	a	water	bath	for	2	min	at	37°C.	Slightly	thawed	cells	were	immediately	

mixed	with	pre-heated	medium	and	centrifuged	at	1000	rpm	for	3	min.	Pellet	was	 resuspended	 in	

fresh	media	and	transferred	into	tissue	culture	plates.	The	medium	was	replaced	with	fresh	medium	

the	next	day.		

	

4.3.3 Transfection	with	small	interfering	RNA	(siRNA)		

For	 siRNA-mediated	 Tie2	 silencing,	 1x106	cells	were	 seeded	 in	 6-well	 plates.	 After	 24	 h,	 cells	were	

transfected	with	 200	 nM	Silencer	 select/Silencer	 siRNA	or	 control	 siRNA	 (Thermo	 Fisher	 Scientific,	

#s224719	(#1)	and	#s13984	(#2)	(Table	20)	using	Oligofectamine	(Life	Technologies)	in	Opti-MEM	I	+	

GlutaMAX-I	(Life	Technologies)	according	to	manufacturer’s	instructions.	Medium	was	exchanged	to	

smooth	muscle	cell	medium	after	4	h.	Gene	expression	and	protein	expression	were	analyzed	after	

48	 h.	 For	 EdU	 incorporation	 experiments,	 EdU	 was	 added	 to	 subconfluent	 cells	 at	 a	 final	

concentration	 of	 10	 μM	 for	 6	 h.	 Harvesting,	 fixation,	 permeabilization	 and	 staining	 of	 cells	 were	

performed	using	the	Click-iTTM	EdU	Alexa	488	Flow	Cytometry	Assay	Kit	(Life	Technologies)	according	

to	the	manufacturer’s	protocol.	

	

4.3.4 Stimulation	assays	

For	 stimulation	 assays,	 cells	 were	 starved	 overnight	 with	 media	 containing	 0.5%	 FCS.	 Prior	 to	

stimulation,	medium	was	changed	to	basal	medium	without	supplements.	Cells	were	stimulated	with	

recombinant	human	Angpt1,	400	ng/ml	(R&D	Systems)	for	20	min	at	37°C.		

	

4.4 Cellular	assays	

4.4.1 Scratch	wound	assay		

Cells	were	 seeded	 in	 fibronectin-coated	 (10μg/ml,	PromoCell)	 24	well	 plates	and	grown	overnight.	

The	 next	 day,	 cells	 were	 transfected	 with	 either	 NS,	 siRNA#1	 or	 #2	 using	 Oligofectamine	 (Life	

Technologies)	 in	 Opti-MEM	 I	 +	 GlutaMAX-I	 (Life	 Technologies)	 according	 to	 manufacturer’s	

instructions.	Medium	was	exchanged	to	smooth	muscle	cell	medium	after	4	h.	After	48	h,	cells	were	

treated	with	10	μg/ml	Mitomycin	C	(Sigma)	for	2	h	prior	to	scratching	the	monolayer	to	prevent	cell	

proliferation.	 Pictures	were	 taken	automatically	 every	30	min	 (at	 least	3	wells	 and	3	positions	per	

well)	 at	 an	 Olympus	 Cell	 R	 Microscope	 with	 cell	 incubation	 chamber	 conditioned	 in	 a	 humid	

environment	at	37°C	and	5%	CO2.	Images	were	analyzed	using	Fiji	software.		
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4.5 Molecular	biology	methods		

4.5.1 Genotyping	PCR	

Genotyping	of	mice	was	carried	out	by	PCR	of	genomic	DNA	extracted	from	mouse	tails.	Tails	(~0.5	

cm)	were	lysed	in	200	μl	Direct	PCR	Lysis	Reagent	with	10	μg	Proteinase	K	at	55°C	overnight.	The	next	

day,	tails	were	heated	to	95°C	for	15	min	to	inactivate	Proteinase	K.	The	lysate	was	centrifuged	for	10	

sec,	and	supernatant	was	used	for	subsequent	PCRs.		

	

4.5.1.1 PCR-Polymerase	chain	reaction		

PCR	was	performed	 to	analyse	 the	genotype	of	Tie2	wildtype	and	knockout	mice.	Tie2	 genotyping	

generated	a	wild-type	band	of	320	bp,	a	floxed	band	of	389	bp	and	a	mutant	band	of	526	bp.	In	case	

of	Sm22α-Cre	genotyping,	a	band	approving	Cre	expression	was	detected	at	350	bp,	and	the	control	

band	 at	 300	bp.	ApoE	 genotyping	 generated	 an	ApoE-/-	 band	of	 245	bp	 and	 an	ApoE+/+	 of	 155	bp.	

Angpt2	genotyping	generated	an	Angpt2-/-	band	of	259	bp	and	an	Angpt2+/+	of	400	bp.	The	following	

pipetting	scheme	was	used	for	the	PCR	reaction	mix:		

	

Table	3.	Tie2fl/fl	PCR	reaction	mix	
Reagent	 		1x	

Q-solution	 5.0	µl	
H2O	(nuclease-free)	 13.8	µl	
10x	buffer	 2.5	µl	
MgCl2	 1.0	µl	
dNTPs	(5	mM)	 0.5µl	
Primer	TEKI3	(10	µM)	 0.5	µl	
Primer	SDL2	(10	µM)	 0.5	µl	
Primer	VERI	(10	µM)	 0.5	µl	
Taq	polymerase	 0.2	µl	
Template	(1	µg/µl)	 1.0	µl	

	

Table	4.	Sm22α-Cre	PCR	reaction	mix	
Reagent	 		1x	

H2O	(nuclease-free)	 5.6	µl	
10x	buffer	 1.2	µl	
MgCl2	 1.1	µl	
dNTPs	(5	mM)	 1.1	µl	
Primer	MB183F	(10	µM)	 0.7	µl	
Primer	MB183R	(10	µM)	 0.7	µl	
Primer	MB182R	(Actin)	(10	µM)	 0.7	µl	
Primer	MB182F	(Actin)	(10	µM)	 0.7	µl	
Taq	polymerase	 0.2	µl	
Template	(1	µg/µl)	 1.0	µl	

	

	

Table	5.	Angpt2	PCR	reaction	mix	
Reagent		 		1x	

H2O	(nuclease-free)	 6.5	µl	
RedTaq	Mix	 12.5	µl	
MgCl2	 0.5	µl	
Primer	mL2-5`GTD	(10	
µM)	 2.00	µl	

mL2-intron1US1	(10	µM)	 2.00	µl	
Primer	neo3`ds85	(10	µM)	 1.00	µl	
Template	(1	µg/µl)	 1.0	µl	

	

Table	6.	ApoE	PCR	reaction	mix	
Reagent	 		1x	

H2O	(nuclease-free)	 9.15	µl	
10x	buffer	 1.25	µl	
MgCl2	 0.5	µl	
dNTPs	(5	mM)	 0.25	µl	
Primer	Neo19		 0.25	µl	
Primer	Anti-S	20	 0.25	µl	
Primer	Sense	21	 0.25	µl	
Taq	polymerase	 0.1	µl	
Template	(1	µg/µl)	 1.0	µl	
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The	 PCR	 was	 performed	with	 an	 Applied	 Biosystems	 thermocycler	 according	 to	 the	 PCR	 program	

depicted	here:		

		

Table	7.	Sm22α-Cre	and	ApoE	genotyping	PCR	program		
Step	 Temp°C	(Sm22α-Cre)	 Time	(Sm22α-Cre)	 Temp°C	(ApoE)	 	Time	(ApoE)	

1	 94°C	 2	min	 94°C	 4	min	
2	 94°C	 30	sec	 94°C	 30	sec	
3	 58°C	 45	sec	 58°C	 30	sec	
4	 72°C	 2	min	 72°C	 30	min	
5	 72°C	 2	min		 72°C	 5	min		
6	 4°C	 forever	 4°C	 forever	

	

Table	8.	Tie2fl/fl	and	Angpt2	genotyping	PCR	program		
Step	 Temp°C	(Tie2fl/fl)	 Time	(Tie2fl/fl)	 Temp°C	(Angpt2)	 	Time	(Angpt2)	

1	 95°C	 30	sec	 98°C	 4	min	
2	 61°C	 1	min	 98°C	 30	sec	
3	 72°C	 1	min	 98°C	 5	sec	
4	 72°C	 10	min	 63°C	 10	sec	
5	 15°C	 forever	 72°C	 5	sec	
6	 	 	 72°C	 1	min	
7	 	 	 72°C	 forever	

	

The	 amplified	DNA	was	 analysed	 directly	 by	 1%	 agarose	 gel	 electrophoresis	 or	 stored	 at	 4°C	 until	

analysis.		

	

4.6.1.2	 Agarose	gel	electrophoresis		

1%	(w/v)	agarose	was	dissolved	 in	0.5x	TBE	buffer	by	heating.	Ethidium	bromide	(5	μl/100	ml)	was	

added	and	the	solution	was	poured	into	a	cast	tray	for	solidification.	Samples	were	loaded	onto	the	

gel,	which	run	at	140	V	for	45	min.	The	100	bp	Generuler	Plus	DNA-Ladder	(7	μl/well)	was	used	as	a	

size	reference.	DNA	was	visualized	under	UV-light	and	the	band	size	was	determined	relative	to	the	

DNA	ladder.		

	

4.5.2 RNA	isolation		

RNA	from	cells	was	isolated	using	Rneasy	Mini	Kit	(Qiagen)	according	to	the	manifacturer’s	protocol.	

The	 RNeasy	 spin	 column	 placed	 in	 a	 2	ml	 collection	 tube	 was	 loaded	with	 700	 μl	 of	 the	 sample,	

centrifuged	at	10000	rpm	for	15	sec	and	flow	through	was	discarded.	The	column	was	washed	with	

700	μl	of	RW1	wash	buffer,	 followed	by	centrifugation	at	10000	rpm	for	15	sec	 (flow-through	was	

discarded).	Further	washing	was	performed	by	adding	500	μl	of	RPE	and	centrifugation	at	10000	rpm	

for	 15	 sec	 (flow-through	 was	 discarded).	 This	 step	 was	 repeated	 and	 sample	 was	 centrifuged	 at	

10000	 rpm	for	2	min	 (flow-through	was	discarded).	The	column	was	dried	by	centrifugation	at	 full	

speed	for	1	min.	RNA	was	eluted	from	the	column	after	adding	30	μl	of	RNase-free	H2O,	incubation	

35x 

39x 
35x 
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for	 1	min,	 and	 centrifugation	 at	 10000	 rpm	 for	 1	min.	 Concentration	 and	purity	was	measured	by	

analysing	1	μl	of	sample	with	the	RNA	program	of	the	Nanodrop.	A	260/280	ratio	of	≥2	represented	

protein-free	RNA.	Purified	RNA	was	stored	at	-80°C	or	used	directly	for	cDNA	preparation.		

RNA	of	FACS-sorted	mouse	EC	and	CD31-CD45-YFP+	and	CD31+CD45-YFP-	cells	was	 isolated	with	 the	

Arcturus	PicoPure	RNA	Isolation	Kit.	Cells	were	centrifuged	at	500	g	and	4°C	for	5	min	and	the	pellet	

was	 resuspended	 in	 50	 µl	 Arcturus	 PicoPure	 extraction	 buffer.	 RNA	 was	 isolated	 according	 to	

manufacturer´s	instructions.	RNA	was	eluted	in	11	µl	RNase	free	H2O	and	RNA	concentrations	were	

measured	using	NanoPhotometer®	N60.		

	

4.5.3 cDNA	generation	

cDNA	 generation	 was	 performed	 with	 the	 Quantitect®	 Reverse	 Transcription	 Kit	 from	 Qiagen	

according	to	manufacturer’s	instructions.	Template	RNA	was	thawed	on	ice	and	1	μg	was	mixed	with	

2	μl	 of	 gDNA	Wipeout	buffer.	 To	 reach	 a	 total	 volume	of	 14	μl	 RNase-free	water	was	 added.	 This	

reaction	was	incubated	for	2	min	at	42°C	and	immediately	placed	on	ice	afterwards.		 
	

Table	9.	cDNA	reaction	mix	
Component	 		Volume	 Final	concentration	

Reverse-transcription	master	mix	 	 		
Quantiscript	Reverse	Transcriptase	 1	µl	 		
Quantiscript	RT	Buffer,	5x	 4	µl	 1x	
RT	Primer	Mix	 1	µl	 		
Template	RNA	 	 		
Entire	genomic	DNA	elimination	reaction	 14	µl	 		
Total	volume	 20	µl	 		

	

To	 start	 the	 transcription	 reaction	 from	RNA	 into	 cDNA,	 the	 reaction	was	 incubated	 for	 30	min	 at	

42°C.	In	order	to	achieve	inactivation	of	the	Quantiscript	Reverse	Transcriptase	the	reaction	tube	was	

then	incubated	for	3	min	at	95°C.	cDNA	was	stored	at	-20	°C.		

cDNA	 of	 FACS-sorted	 EC,	 CD31-CD45-YFP+	 and	 CD31+CD45-YFP-	cells	was	 amplified	with	QuantiTect	

Whole	Transcriptome	Kit	(Qiagen)	according	to	to	manufacturer’s	instructions	and	cDNA	was	diluted	

in	RNAse-free	water	1:250.	cDNA	was	stored	at	-20	°C.	

	

4.5.4 Quantitative	realtime-PCR	(qRT-PCR)	

Relative	gene	expression	analysis	was	performed	using	qRT-PCR.	The	Taqman	mono-color	hydrolysis	

probe	 method	 (Applied	 Biosystems)	 was	 used	 to	 detect	 differences	 in	 the	 amount	 of	 mRNA	

transcription	 levels.	 This	 method	 is	 based	 on	 probes	 that	 are	 labelled	 with	 a	 fluorophore	 (6-

carboxyfluorescein,	FAM)	at	 the	5	́end	and	a	 fluorescence	quencher	at	 the	3	́end.	The	exonuclease	

activity	 of	 the	 Taq	 polymerase	 cleaves	 the	 probe	 and	 thereby	 allows	 detection	 of	 the	 FAM	
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fluorescence.	 Reactions	 were	 performed	 in	 a	 96	 or	 384-well	 plate.	 One	 reaction	 contained	 the	

following	components:		

	

Table	10.	Taqman	qRT-PCR	reaction	mix	
Reagent	 		Volume	

Taqman	FAST	Universal	Master	Mix	(ABI)	 5	µl	
Taqman	Probe/Primer	 0.5	µl	
H2O	(nuclease-free)	 1.5	µl	
Total	 7	µl	
+	cDNA	(1:10	diluted)	 3	µl	
Total	 10	µl	

	

Each	 reaction	 was	 performed	 in	 technical	 triplicates.	 The	 qRT-PCR	 was	 performed	 using	 the	

Lightcycler®	480	System	(for	the	384-well	plates)	or	the	StepOnePlus	Real-Time	PCR	System	(for	the	

96-well	plates)	with	the	following	temperature	profile:		

	

Table	11.Taqman	qRT-PCR	program	
Step 		Temperature 
Pre-denaturation 95°C 
Denaturation 95°C 
Amplification 60°C 

	

For	analysis,	 the	∆∆Ct	method	was	applied	as	described	previously421.	This	was	done	by	comparing	

the	Ct	values	of	the	samples	of	interest	with	a	control.	The	Ct	values	of	both	the	control	sample	and	

the	 samples	 of	 interest	 were	 normalized	 to	 a	 housekeeping	 gene	 (∆Ctgene	 of	 interest	 =	 Ctgene	 of	 interest-

Cthousekeeping	gene).	Here	 B2m	was	 used	 as	 housekeeping	 genes.	Next,	 internally	 normalized	Ct	 values	

were	further	normalized	to	the	mean	value	of	all	controls	(Tie2+/+	animals,	or	siNS	samples)	resulting	

in	∆∆Ct	values.	Respective	fold	changes	(FC)	were	calculated	as	follows:	FC	=	2-∆∆Ctgene	of	interest
	

.	

	

4.5.5 Microarray	

For	 gene	 expression	 analysis	 of	 isolated	 short-term	 cultured	 aortic	 VSMC,	 microarrays	 were	

performed	 by	 the	 DKFZ	 Genomics	 and	 Proteomics	 core	 facility	 (Heidelberg).	 In	 brief,	 RNA	 was	

isolated	with	RNeasy	Mini	Kit	(Qiagen)	and	RNA	quantity	and	quality	were	checked	using	the	Agilent	

RNA	6000	Pico	Kit	on	an	Agilent	2001	Bioanalyzer.	RNA	was	reverse	transcribed	into	cDNA	and	cDNA	

was	amplified	according	to	the	NuGen	SPIA	(Single	Primer	Isothermal	Amplification)	technology.	Only	

RNA	samples	with	a	RIN	value	of	>	6.0	were	eligible	for	microarray	analysis.	cDNA	was	hybridized	on	

Illumina	 Mouse	 Sentrix-6	 arrays	 according	 to	 the	 manufacturer’s	 protocol.	 Microarray	 data	 were	

normalized	 and	 analyzed	 with	 the	 Chipster	 software.	 Only	 genes	 with	 a	 significantly	 differential	

expression	 (p	≤	0.05)	were	considered	 for	 further	analysis.	Analysis	was	performed	using	Gene	Set	

45x 



Methods	

93	

Enrichment	Analysis	(GSEA)	software.	The	raw	microarray	data	are	accessible	through	GEO	accession	

number	GSE100364.		

	

4.6 Protein	chemical	methods	

4.6.1 Preparation	of	protein	lysates	

Cells	and	isolated	arteries	(femoral	and	mesenteric	arteries	and	aorta)	were	lysed	on	ice	using	RIPA	

buffer	 (1%	NP-40,	 0.1%	 sodium	dodecyl	 sulphate,	 0.5%	 sodium	deoxycholate,	 10%	glycerol,	 5	mM	

EDTA)	 supplemented	 with	 protease-inhibitor	 mix	 G	 (Serva)	 and	 2	 mM	 sodium	 orthovanadate	

(Na3VO4)	 (Sigma).	 Samples	 were	 incubated	 on	 ice	 for	 20	 min.	 To	 sediment	 cellular	 debris,	 cell	

suspension	was	centrifuged	for	5	min	at	14,000	rpm	at	4°C.	The	cleared	lysate	was	stored	at	-80°C.		

	

4.6.2 Protein	concentration	measurements	

Exact	protein	concentrations	were	determined	by	using	the	BCA-assay	(Pierce).		

	

4.6.2.1 BCA-assay	

The	BCA-assay	 from	Pierce®	with	a	working	 range	 from	20-200	μg/ml	was	performed	according	 to	

manufacturer’s	instructions	for	microplate	formats.	For	the	preparation	of	the	working	reagent	(WR),	

50	parts	of	reagent	A	were	mixed	with	1	part	of	BCA	reagent	B,	resulting	 in	a	mixture	of	50:1.	The	

reaction	in	the	microplate	was	prepared	as	follows:	25	μl	of	standard	or	sample	were	mixed	with	200	

μl	WR	and	shaken	for	30	sec.	The	covered	microplate	was	 incubated	for	30	min	at	37°C.	After	that	

time,	the	microplate	was	measured	at	λ	=	562	nm	using	a	Photometer.	Standard	values	with	known	

concentrations	were	plotted	in	a	graph	and	a	standard	curve	was	generated	by	linear	extrapolation	

of	 the	plotted	standard	values.	The	unknown	concentration	of	 the	samples	was	 then	calculated	as	

the	following:	x	=	(y-b)/a).		

	

4.6.3 Immunoprecipitation	and	immunoblotting	

For	 immunoprecipitation,	 cell	 lysates	 were	 incubated	 with	 protein	 G-sepharose	 beads	 (GE	

Healthcare)	 and	 3	 μg	 Tie2	 antibody	 (Supplementary	 Table	 2)	 overnight	 at	 4°C	 on	 a	 rotator.	 Beads	

were	washed	by	centrifugation	at	100	g,	4°C	for	2	min	with	lysis	buffer	containing	2	mM	Na3VO4	and	

boiled	 with	 2x	 protein	 sample	 buffer	 at	 95°C	 for	 10	 min.	 Immunoprecipitates	 or	 lysates	 were	

separated	 on	 10%	 or	 12%	 polyacrylamide	 SDS	 gels	 and	 blotted	 on	 nitrocellulose	 membranes.	

Membranes	were	blocked	with	3%	BSA	for	1	h	at	RT	and	subsequently	 incubated	 in	1%	BSA/PBS-T	

with	 the	 indicated	 primary	 antibodies	 (Table	 26)	 at	 4°C	 overnight.	 Horseradish	 peroxidase-

conjugated	 secondary	 antibodies	 (Table	 27)	 were	 used	 for	 chemiluminescence	 detection.	 Signals	

were	detected	by	exposing	the	membrane	to	a	Fuji	X-ray	film.	Tubulin	was	used	as	loading	control.	
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4.6.4 Proteome	profiler	array	

Mouse	proteome	profiler	array	(R&D	Systems)	was	performed	with	serum	obtained	from	ApoEKO	(4-	

pooled	 serum	 samples)	 and	ApoEKO	 Tie2SMC-KO	(4-pooled	 serum	 samples)	mice,	 fed	 a	Western-type	

diet	 for	 14	 weeks,	 according	 to	 the	 manufacturer’s	 instructions.	 Spots	 were	 quantified	 using	 Fiji	

software	after	background	subtraction.		

	

4.6.5 Measurement	of	plasma	lipid	content	

Plasma	was	 separated	 by	 centrifugation	 and	 stored	 at	 -80°C	 until	 further	 use.	 Lipoprotein	 profiles	

were	 determined	 after	 5	 weeks	 or	 14	 weeks	 of	 Western	 diet	 feeding	 using	 enzymatic	 methods	

(Diagnostic	Center	of	Heidelberg	University,	Heidelberg).		

	

4.6.6 Enzyme-linked	immunosorbent	assay	(ELISA)	

Plasma	concentrations	of	Angpt1	(MyBioSource)	and	Angpt2	(R&D	Systems)	were	measured	by	ELISA	

according	to	the	manufacturer’s	instructions.	 
	

4.6.7 Fluorescence	activated	cell	sorting	(FACS)		
	

4.6.7.1 Lung	endothelial	cell	isolation	

EC	 isolation	was	performed	as	described	previously422.	Briefly,	mice	were	sacrificed	and	 lungs	were	

surgically	 removed	and	 cut	 into	 small	 pieces.	 Lung	pieces	were	digested	with	Dulbecco’s	Modified	

Eagle’s	medium	 (DMEM,	Gibco),	 containing	 1.25	mM	CaCl2,	 200	U/ml	 Collagenase	 I	 and	 10	 μg/ml	

DNaseI	 (Roche)	at	37°C	for	1	h.	Single-cell	suspensions	were	prepared	by	passing	the	digestion	mix	

through	 18G	 and	 19G	 cannula	 syringes	 and	 filtering	 through	 a	 100	 μm	 cell	 strainer.	 Cells	 were	

stained	for	negative	markers	CD45,	Ter119,	Lyve1	and	podoplanin	(Pdpn)	(Table	26)	for	30	min	at	4°C	

in	 PBS/5%	 fetal	 calf	 serum	 (FCS).	 Negative	 stained	 cells	 were	 depleted	 by	 incubating	 them	 with	

magnetic	Dynabeads	 (Life	 Technologies)	 in	750	μl	 PBS/5%	FCS	 for	30	min	at	4°C	on	a	 rotator.	 The	

remaining	cells	were	positively	stained	with	a	CD31	antibody	(Table	26)	in	PBS/5%FCS	for	30	min	at	

4°C	on	the	rotator.	CD45-Ter119-Lyve1-Pdpn-CD31+	cells	were	sorted	with	a	BD	Biosciences	FACS	Aria	

Cell	Sorter.		

	

4.6.7.2 Sm22α-positive	cell	isolation		

Mice	were	sacrificed	and	hearts	were	surgically	removed	and	cut	into	small	pieces.	Heart	pieces	were	

digested	 with	 DMEM	 (Gibco),	 containing	 1.25	 mM	 CaCl2,	 200	 U/ml	 Collagenase	 I	 and	 10	 μg/ml	

DNaseI	 (Roche)	at	37°C	 for	30	min.	Single-cell	 suspensions	were	prepared	by	passing	 the	digestion	

mix	 through	 a	 19G	 cannula	 syringe	 and	 filtering	 through	 a	 100	 μm	 cell	 strainer.	 Cells	 were	

resuspended	in	ACK-lysis	buffer	and	incubated	at	RT	for	2-3	min.	Cells	were	stained	with	CD31	and	
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CD45	antibodies	(Table	26)	in	PBS/5%FCS	for	20	min	at	4°C.	CD31-CD45-YFP+	and	CD31+CD45-YFP-	cells	

were	sorted	with	a	BD	Biosciences	FACS	Aria	Cell	Sorter.		

	

4.7 Statistical	analysis		

All	data	are	presented	as	mean	±	S.D.	Statistical	significance	was	determined	by	two-tailed	Student’s	

t-test.	 For	 in	 vitro	experiments,	 n	 represents	 the	 number	 of	 independent	 experiments.	 For	mouse	

experiments,	 n	 represents	 the	 number	 of	 independent	 mice	 analyzed	 per	 group.	 Statistical	

comparisons	 were	 performed	 using	 GraphPad	 Prism	 5	 software.	 A	 p-value	 of	 less	 than	 0.05	 was	

considered	statistically	significant	and	marked	by	asterisks	(*p<0.05,	**p<0.01,	***p<0.001).	 
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5 Materials		
	

5.1 Chemicals		

Bulk	chemicals	were	purchased	from	the	following	companies:		

• AppliChem	(www.applichem.com)	 	

• Carl	Roth	(www.carl-roth.de)	 	

• Gerbu	(www.gerbu.de)	 	

• Merck	(www.merck.de)	 	

• Roche	(www.roche-applied-science.com)	 	

• Serva	(www.serva.de)	 	

• Sigma-Aldrich	(www.sigmaaldrich.com)	 

	

5.2 Cells	

Table	12.	List	of	cells	used	in	this	study	
Primer	 Sequence	

Human	aortic	smooth	muscle	cells	(HAoSMC)	 PromoCell	

Human	umbilical	artery	smooth	muscle	cells	(HUaSMC)	 PromoCell	

Human	aortic	endothelial	cells	(HAoEC)	 PromoCell		

Human	umbilical	vein	artery	endothelial	cells	(HUVEC)	 PromoCell	

Mouse	embryonic	cell	line	(NIH3T3)	 Clinic	for	Tumor	Biology	

Pancreatic	islet	endothelial	cells	(MS1)	 ATCC	

	

5.3 Cell	culture	and	reagents		

Table	13.	List	of	cell	culture	media		

Medium	 		Cell	type		 Company	

Smooth	Muscle	Cell	Growth	Medium	2	kit	 HAoSMC,	HUaSMC	 PromoCell	
Endothelial	Cell	Growth	Medium	MV	 HAoEC	 PromoCell	
Endopan	3	 HUVEC,	MS1	 Pan	Biotech	
Dulbecco’s	modified	eagle	medium	(DMEM)	Glutamax1		 NIH3T3,	#mAoVSMC	 Gibco	
Opimem	+	Glutamax		 HAoSMC	 Life	Technologies	
Roswell	Park	Memorial	Institute	medium	(RPMI)	 #mPerit.	macrophages	 Life	Technologies	

#	m	stands	for	mouse,	Perit.	stands	for	peritoneal	
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Table	14.	List	of	reagents	used	in	cell	culture			

Reagent	 Company		

Accutase,	10x		 PAA	Laboratories	
Dimethylsufoxide	(DMSO)		 Sigma-Aldrich	
Dulbecco’s	phosphate	buffered	saline	(PBS)	 PAA	Laboratories	
Fetal	calf	serum	(FCS),	heat	inactivated		 PAA	Laboratories	
Penicillin/streptomycin	(PS),	100x		 PAA	Laboratories	

		Trypan	blue		 PAA	Laboratories	
Trypsin-EDTA	solution,	10x		 PAA	Laboratories	
Mitomycin	 Sigma	Aldrich	
Oligofectamine		 Life	technology	

	

5.4 PCR	and	qRT-PCR	reagents		

Table	15.	PCR	and	qRT-PCR	reagents	

Component	 Company	

100	bp	DNA	Ladder	plus Fermentas 
10	x	Coral	Load	PCR	buffer	 Qiagen 
Direct	PCR	Lysis	Reagent	 PeqLab 
DNase/RNase	free	H2O	 Gibco 
dNTP	mix	(10mM	each)	 Fermentas 
Ethidium	bromide Roth 
MgCl2	(25mM)	 Qiagen 
6x	Orange	DNA	Loading	Dye	Solution	 Fermentas 
Taq	DNA	polymerase	(5U/μl)	 Qiagen 
TaqMan	Fast	Advanced	PCR	Master	Mix	 Applied	Biosystems 
Trizol	 Sigma-Aldrich 
	

5.5 	Western	blot	reagents		

Table	16.	Western	blot	reagents		

Reagent	 Company	

Bovine	Serum	Albumine	(BSA)	 PAA	laboratories	
Nitrocellulose	membrane	

	

GE	Healthcare	

	Orthovanadate	 Sigma-Aldrich	

PageRulerTM	Prestained	Protein	Ladder	

	

Thermo	Scientific	

	Pierce	ECL	Western	blotting	substrate	

	

Thermo	Scientific	

	Immobilon-P	PVDF	membrane	 Millipore	

ReBlot	Plus	Strong	Solution	 Merck	

Rotiphorese	Gel	30	 Carl-Roth	

Super	RX	X-ray	films	

	

	

	

Fuji	

	SuperSignal™	West	Dura	Extended	Duration	Substrate	 Thermo	Fisher	Scientific	
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5.6 Primers	

All	Taqman	probes	were	purchased	from	Applied	Biosystems	

Table	17.	Taqman	probes	for	qRT-PCR	
Mouse	probes	 Ordering	number	 Human	probes	 Ordering	number	

Tie2	(Tek)	 Mm00443254_m1	 Tie2	(TEK)	 Hs00945146_m1	

Pecam1		 Mm01242584_m1	 TAGLN	 Hs01038777_g1	

Pdgfrβ	 Mm00435546_m1	 MYL9	 Hs00697086_m1	

Des	 Mm00802455_m1	 CALD	 Hs00921982_m1	

S100a4	 Mm00803372_g1	 PECAM1	 Hs00169777_m1	

Angpt1	 Mm00456503_m1	 CDH5	 Hs00901463_m1	

Cnn1	 Mm00487032_m1	 ANGPT1	 Hs00375822_m1	

Tagln	 Mm00441661-g1		 ANGPT2	 Hs01048042_m1	

Smtn	 Mm00449973_m1	 TIE1	 Hs00892696_m1	

Cald1	 Mm00513996_m1	 B2M	 Hs00984230_m1	

Acta2	 Mm00725412_s1	 	 	

Myocd	 Mm00455051_m1	 	 	

Myh11	 Mm00443013_m1	 	 	

Myl9	 Mm01251442_m1	 	 	

Pcna	 Mm00448100_g1	 	 	

Rbp1	 Mm00441119_m1	 	 	

Vim	 Mm01333430_m1	 	 	

Mgp1	 Mm00485009_m1	 	 	

Tpm4	 Mm01245304_g1	 	 	

Myh10	 Mm00805131_m1	 	 	

B2m	 Mm00437762_m1	 	 	

Tnnt2	 Mm01290256_m1	 	 	

Genotyping	primers	were	purchased	from	MWG	Biotech	(www.mwg-biotech.com)	
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Table	18.	Mouse	genotyping	primers	

Primer	 Sequence	

*TEKI3	 5’	CAGGCTATCACTGTGACACTGGTAC	3’	
*SDL2	 5’AAATACGCAGTTTCAG	GGCTGGGA	3’	
*VERI	 5’	ACCAATTCGGGGAATCCTATGGCA	3’	
MB183	F	(Sm22α-Cre)	 5’	CAGGGTGTTATAAGCAATCCC	3’	
MB183	R	(Sm22α-Cre)	 5’	CCTGGAAAATGCTTCTGTCCG	3’	
MB182R	(Actin)	 5’	CAATGGTAGGCTCACTCTGGGAGATGATA	3’	
MB182F	(Actin)	 5’	GCCTAGCCGAGGGAGAGCCG	3’	
mROSA-YFP_1	HL15	 5’	AAG	ACC	GCG	AAG	AGT	TTG	TCC	3’	
mROSA-YFP_2	HL54	 5’	TAA	GCC	TGC	CCA	GAA	GAC	TCC	3’	
mROSA-YFP_3	HL152	 5’	AAG	GGA	GCT	GCA	GTG	GAG	TA	3’	
mL2-5`GTD	(Angpt2)	 5’	CTG	GGA	TCT	TGT	CTT	GGC	C	3’	
mL2-intron1US1	(Angpt2)	 5’	CTT	CTC	TCT	GTG	ACT	GCT	TTG	C	3’	
neo3`ds85	(Angpt2)	 5’	GAG	ATC	AGC	AGC	CTC	TGT	TTC	3’	

*	Primers	for	genotyping	Tie2-floxed	mice	

	

Table	19.	Human	RT-qPCR	primers	

Primer	 Sequence	

TEK	F	 5’	CTCTTCACCTCGGCCTTCAC	3’	
TEK	R	 5’	GACTTGCATCCCTCTTGTCC	3’	
ANGPT1	F	 5’	GGATGTCAATGGGGGAGGTT	3’	
ANGPT1	R	 5’	AGGGGCCACAAGCATCAAA	3’	
ANGPT2	F	 5’	TTGCCGGCTGTCCCTGTAAGTC	3’	
ANGPT2	R	 5’	GACCCCACTGTTGCTAAAGAAGAA	3’	
VEGFR2	F	 5’	AGCGGGGCATGTACTGACGATTAT	3’	
VEGFR2	R	 5’	CTCTCCTCTCCCGACTTTGTTGAC	3’	
GAPDH	F	 5’	GACGCCTGCTTCACCACCTTCTTG	3’	
GAPDH	R	 5’	GGGGAGCCAAAAGGGTCATCATC	3’	

	

5.7 siRNA	

All	Silencer®	Select	siRNAs	were	purchased	from	Life	technologies		

Table	20.	siRNA	used	in	this	study	

Enzymes	 Company	

(#1)	s224719		 4392422	
(#2)	s13984	 4390826	
NS	 4390847	
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5.8 Growth	factors,	proteins	and	emzymes		

Table	21.	Growth	factors,	proteins	and	enzymes		

Growth	factors,	proteins	and	enzymes	 Company	

Collagenase	I		 Sigma-Aldrich	
DNase	I		 Roche	
Proteinase	K	 Gerbu	
RNase	free	DNAse	 Qiagen	
Recombinant	Angpiopietin	1		 R&D	Systems	
Angiotensin	II	 Sigma-Aldrich	

	

5.9 	Kits		

Table	22.	Kits	

Reagent	 Company	

Arcturus	PicoPure	RNA	Isolation	Kit	 Life	Technologies	
Pierce	Bicinchoninic	acid	(BCA)	Protein	Assay	Kit	 Thermo	Fischer	
Quantitect	Reverse	Transcription	Kit	for	cDNA	Synthesis	 Qiagen	
RNeasy	Mini	Kit	 Qiagen	
Angpt1	ELISA	 MyBioSource	
Angpt1	ELISA		 R&D	systems	

	

5.10 Miscellaneous	

Table	23.	Miscellaneous	

Reagent	 Company		

Bepanthen	eye	cream	 Roche	
Betadine	 MundiPharma	
Ketavet		 Pfizer	
Paraffin	(low	melting	56°C)		 Merck	
Rompun		 Bayer	
Tissue	freezing	medium	(Tissue	TEK)		 Sakura	
DOCA-pellets			 Innovative	Research	of	America,	USA	
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5.11 Consumables		

Table	24.	Consumables		
Consumables		 		Company		

6-well	plates		 Beckton	Dickinson	
Cannula	(18G,	19G,	27G)		 BD	
Cell	culture	dishes	(5cm,	10cm)		 TPP	
Cryotubes		 Carl-Roth	
Embedding	cassettes		 Medim	Histotechnologie	
FACS	tubes		 BD	Falcon	
Filter	containing	pipette	tips		 Biozym	
Freezing	box		 Thermo	Scientific	
Insulin	syringe		 BD	
Microscope	cover	glasses		 VWR	international	
Microscope	glass	slides		 Menzel-Gläser	
Pipette	tips		 Nerbe	
PDVF	filter	(0.22	µm,	0.45	µm)	 Millipore	
Polyamid	suture	(4.0)	 ETHICON/ETHILON	
Polyamid	suture	(5.0)		 ETHICON/ETHILON	
qPCR	plates	(96-well)		 Biozyme	
qPCR	plates	(384-well)		 Roche	
Reaction	tubes	(0.5ml,	1.5ml,	2ml)		 Eppendorf	
Reaction	tubes	(15ml,	50	ml)		 Greiner	
Round	bottom	96	well	plate		 Greiner	
Sealing	foil		 Applied	Biosystems	
Sterile	pipettes		 Corning	
Sterile	filters		 Renner	
Suture	clip	 Braun	
Syringes		 Dispomed	
Tissue	cultures	6-well	plates		 Greiner	
Transwell	permeable	supports	6.5mm,	8.0µm	 Costar	

			

5.12 Equipment	

Table	25.	Equipment	

Product		 		Company		

Agarose	gel	documentation	system		 Peqlab	
Axio	Scan	 Zeiss	
Canto	FACS	Analyzer		 BD	
Cell	culture	hood		 Thermo	Scientific	
Cell	culture	incubator		 Thermo	Scientific	
Cell	Observer		 Zeiss	
Centrifuge		 Beckman	Coulter	
Countess	Automated	Cell	Counter		 Invitrogen	
Cryotome		 Zeiss	
Elisa	reader	(Multiskan)		 Thermo	Scientific	
Freezing	box		 Thermo	Scientific	
Heating	block		 Eppendorf	
Heating	mat	 ThermoLux	
Inverted	fluorescence	microscope	IX71		 Olympus	
Light	cycler	480		 Roche	
Microm	HM3555		 Thermo	Scientific	
Multistep	pipette		 Eppendorf	
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Product		 		Company		

Nanodrop	1000	spectrophotometer		 Thermo	Scientific	
Neubauer	Cell	Counting	Chamber		 Marienfeld	
Pipettes		 ErgoOne	
Power	supply		 BioRad	
Cauter	set	 F-con	
Table	centrifuge	(5417R)		 Eppendorf	
Thermocycler		 Applied	Biosystems	
UV	transluminator		 Intas	
Vortex		 Neolab	
Water	bath		 Julabo	

	

5.13 Antibodies		

5.13.1 	Primary	antibodies		

Table	26.	Primary	antibodies		

Antigen	 Reactivity	 Species	 Dilution	 Conjugate	 Company	 		Cat.	number		

Tie2	 human	 rabbit	 	 1:500	(WB)	 Santa	Cruz	 sc-324	
p-Tyr	 -	 mouse	 	 1:1000	(WB)	 Millippore	 05-321	
pAkt	 human	 rabbit	 	 1:1000	(WB)	 Cell	Signaling	 4060S	
Akt	 human	 rabbit	 	 1:1000	(WB)	 Cell	Signaling	 9272S	
CD45	 mouse	 rat	 PE	 1:200	(FACS)	 BD	Pharmingen	 561087	
Tyr119	 mouse	 rat	 FITC	 1:200	(FACS)	 BD	Pharmingen	 561032	
Lyve1	 mouse	 rat	 FITC	 1:250	(FACS)	 e-bioscience	 53-0443	
Pdpn	 mouse	 hamster	 Alexa-488	 1:100	(FACS)	 e-bioscience	 53-5381-82	
CD31	 mouse	 rat	 	 1:100	(FACS)	 BD	Pharmingen	 551262	

CD34	 mouse	 rat	 Pacific-
Blue	

1:50	(FACS)	 BD	Pharmingen	 560230	

Vegfr2	 human	 rabbit	 	 1:1000	(WB)	 Cell	signaling	 2479	
Tagln	 human	 rabbit	 	 1:1000	(WB)	 Protein	Tech	Group	 10493-1-AP	
Mac3	 mouse	 rat	 	 1:100	(IF)	 BD	Pharmingen	 550292	
αSMA	 -	 mouse		 Cy3	 1:250	(IF)	 Sigma-Aldrich	 C6198-2ML	
CD31	 mouse	 rat	 	 1:100	(IF)	 BD	Pharmingen	 553370	
Calponin	 mouse	 rabbit	 	 1:100	(IF)	 Millipore		 04-589	
GFP		 mouse	 rabbit	 	 1:100	(IF)	 Life	Technology	 A11122	

Tubulin	 mouse	 mouse	 	 1:5000	(WB)	 Sigma	 T8203	
Des	 mouse	 rabbit	 	 1:100	(IF)	 Abcam	 Ab15200-1	

WB=	Western	blot,	IF=	Immunofluorescence,	FACS=	Fluorescence	activated	cell	sorting	
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5.13.2 	Secondary	antibodies		
Table	27.	Secondary	antibodies		
Reactivity	 Host	 Conjugate	 Dilution	 Application	 Source	&	Cat.	no.		

Mouse	IgG	 Rabbit	 HRP	 1:1000	 WB	
DAKO	
P0260	

Rabbit	IgG	 Goat	 AF	647	 1:500	 IF	
Life	Technologies	
A21246	

Rabbit	IgG	 Goat	 HRP	 1:5000	 WB	
DAKO	
P0448	

Rat	IgG	 Goat	 AF546	 1:500	 IF	
Life	Technologies	
A11081	

Rat	IgG	 Goat	 AF488	 1:500	 IF	 Life	Technologies	A11006	

	

5.14 	Additional	staining	reagents		
Table	28.	Staining	reagents		
Antigen	 		Reactivity	

Avidin/Biotin	blocking	solution	 DAKO	
BSA		 Gerbu	
Eosin	Y	solution		 Sigma-Aldrich	
Fluorescent	mounting	medium		 DAKO	
Histomount	 Invitrogen	
Hoechst	Dye	33258,	1mg/ml		 Sigma-Aldrich	
Liquid	DAB	Substrate	Chromogen	System	 DAKO	
Mayer’s	Hematoxylin	solution		 Sigma-Aldrich	
Normal	goat	serum		 DAKO	
Normal	goat	serum	ready-to-use	(10%)		 Zymed	
Roti-Histofix	4%	(pH	7)		 Carl	Roth	

	

5.15 Solutions	and	buffers	
Solutions	and	buffers	for	agarose-gels,	FACS	and	Western	blotting	were	prepared	according	to	

standard	methods.	

	

Table	29.	Solutions	and	buffers	
Antigen	 		Reactivity	 Species	

Blotting	buffer	(1x)		 192mM		 Glycine	
	 25mM		 Trizma	Base	
Digestion	mix	 150mg	 Collagenase	1A	
	 0.20%	 DNaseI	
	 50mL	 serum	free	medium	
FACS																																																																									5%FCS	 FCS	in	PBS	

	

	

	



Materials	

	 104	

Antigen	 		Reactivity	 Species	

Modified	RIPA	lysis	buffer	 50mM	T	 Tris-HCl	pH	7.5	
	
	

150mM		 NaCl	

	 1mM		 EDTA	

	 1%	 NP-40	

	 0.25%	 Na-deoxycholate	

	 100mM		 Na-orthovanadate	

PBS-T	 		1x		 Protease	inhibitor	Mix	G	

	 1%	[v/v]		 Tween-20	in	1x	PBS	
Running	buffer	(1x)		 192mM		 Glycine	
	 25mM		 Trizma	Base	

	 0.10%	 SDS	
Tris-Borate-EDTA	buffer	(TBE)		 89mM		 Tris/HCl,	pH	8.0	
	 89mM		 H3BO3	

	 1mM		 EDTA	
Tris-Buffered	Saline	Tween-20	(TBS-T)	 10mM		 Tris/HCl,	pH	7.5	
	 100mM		 NaCl	
	 0.10%	 Tween-20	
Zinc	fixative		 3mM		 Ca(C2H3O2)2	

	 2.2mM		 Zn(C2H3O2)2	

	 3.6mM		 ZnCl2	

	 0.1M		 Tris-HCl	(pH	7.4)	

	

5.16 	Software		
Table	30.	Software		
Software		 		Company	

Fiji		 ImageJ	
FlowJo		 Miltenyi	Biotec	
Light	Cycler	480	software		 Roche	
Living	Image	software	4.0		 PerkinElmer	
ZEN	blue		 Zeiss	
Molecular	Signature	Database	 http://software.broadinstitute.org/gsea/index.jsp	

Genepattern	 http://software.broadinstitute.org/cancer/software/genepat
tern/	

Vevo	2100	 VisualSonics	
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6 Abbreviations	
	

ACE	 Angiotensin	converting	enzyme		

Angpt1	 Angoipoietin	1	

Angpt2	 Angiopoietin	2	

AngI	 Angiotensin	1		

AngII	 Angiotensin	2		

ANF/ANP	 Atrial	natriuretic	factor		

ApoEKO	 Apolipoprotein	E	KO		

AO	 Aortas		

αSMA/ACTA2	 Smooth	muscle	actin	2		

bFGF	 Basic	fibroblast	growth	factor		

BM	 Basement	membrane		

β-MHC	 Beta-myosin	heavy	chain		

BP	 Blood	pressure		

Ca2+	 Calcium		

CAD	 Coronary	artery	disease		

CALD1	 Caldesmon		

CArG	box	 CC(A/T6GG	

CM	 Cardiomyocyte		

CMs	 Cardiomyocytes	

CNN1	 Calponin	

COX	 Cyclooxygenase		

CVD	 Cardiovascular	diseases		

Col	1	 Collagen	1		

CO	 Cardiac	Output		

Coup-TFII	 Chicken	ovalbumin	upstream	promoter-transcription	factor	II	

DAG	 Diacylglycerol		

DBP	 Diastolic	blood	pressure		

Des	 Desmin		

DMEM	 Dulbecco’s	Modified	Eagle’s	medium		

DLL1	 Delta-like	1	

DOCA	 Deoxycorticosterone	acetate		

EC	 Endothelial	cells		

ECM	 Extracellular	matrix		
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ECG	 Echocardiography		

EdU	 5-ethynyl-2ʹ-deoxyuridine	

EGFR	 Epidermal	growth	factor	receptor		

eNOS	 Endothelial	nitric	oxide	synthase		

ET1	 Endothelin	1		

FACS	 Fluorescent-activated	cell	sorting		

FAK	 Focal	adhesion	kinase		

FA	 Femoral	arteries		

FOXO1	 Forkhead	box	protein	O1		

GRB2	 Receptor-bound	protein	2		

GSEA	 Gene	Set	Enrichment	Analysis		

H2O2	 Hydrogen	peroxide		

HAoEC	 Human	aortic	endothelial	cells		

HAoSMC	 Human	aortic	smooth	muscle	cells		

HB-EGF	 Heparin	binding	EGF-like	growth	factor		

HDL	 Low	levels	of	high-density	lipoprotein		

HE	 Hearts		

H&E	 Hematoxylin	and	eosin		

HGF	 Hepatocyte	growth	factor		

HIF1	 Hypoxia	inducible	factor	1		

�HO-	 Hydroxyl	radical		

HSC	 Hematopoietic	stem	cells		

HUaSMC	 Human	umbilical	artery	smooth	muscle	cells		

HR	 Heart	rate		

HUVEC	 Human	umbilical	vein	endothelial	cells		

HW	 Heart	weight	

IB-4	 Isolectin	B-4		

Ig	 Immunoglobuline		

IHC	 Immunohistochemistry		

IP3	 Inositol	trisphosphate		

IVS	 Interventricular	septum		

KO	 Knockout		

KW	 Kidney	weight	

LDL	 Low-density	lipoprotein		

LDLR	 Low-density	lipoprotein	receptor		
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LMOD1	 Leiomodin	1	

LTCCs	 L-type	Ca2+	channels		

LVH	 Left	ventricular	hypertrophy		

LVID	 Left	ventricular	internal	diameter		

LVPW	 Left	ventricular	posterior	wall		

MΦ	 Macrophages	

MA	 Mesenteric	arteries		

MAP	 Mean	arterial	pressure		

MAPK	 Mitogen-activated	protein	kinase		

MCM	 MerCreMer	

MCP	 Monocyte	chemotactic	protein	

MEF2	 Myocyte	enhancer	factor	2		

MGP	 Matrix	g1a	protein		

M/L	 Media	to	lumen		

MLC	 Myosin	light	chain		

MLCP	 Myosin	phosphatase		

MLCK	 Myosin	light	chain	kinase		

M-mode	 Motion-mode		

MMPs	 Matrix	metalloproteinases		

MYH10	 Myosin	heavy	chain	10		

MYH11	 Myosin	heavy	chain	11		

Myl6	 Myosin	light	chain	6	

MYL9	 Myosin	light	chain	9		

MYOCD	 Myocardin		

NF-κB	 Nuclear	factor	κB		

nNOS	 Neuronal	nitric	oxide		

iNOS	 Inducible	NO	synthase		

NO	 Nitric	oxide		

�O2
-	 Superoxide	anion		

ORO	 Oil	red	O		

oxLDL	 Oxidized	low-density	lipoprotein	

P1	 Postnatal	day	1		

PAH	 Pulmonary	arterial	hypertension		

Pcna		 Proliferating	cell	nuclear	antigen	

PDGFRβ	 Platelet	derived	growth	factor	receptor	β		
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PFA	 Paraformaldehyde		

PIP2	 Phosphoinositide	4,	5-	bisphosphate	

PI3K	 Phosphoinositide	3-kinase		

PKC	 Protein	kinase	C		

PLCγ	 Phospholipase	Cγ		

PLC	 Phospholipase	C			

RAS	 Renin	angiotensin	system		

ROS	 Reactive	oxygen	species		

RBP1	 Retinol-binding	protein	1	

RPMI	 Roswell	Park	Memorial	Institute	medium		

SM22α/TAGLN	 Transgelin			

SBE	 Smad	binding	elements		

SBP	 Baseline	systolic	blood	pressure		

SKA	 Skeletal	alpha	actin		

SMMHC	 Smooth	muscle	myosin	heavy	chain		

SMTN	 Smoothelin		

SRF	 Serum	response	factor		

SV	 Stroke	volume		

TCFs	 Transcription	factors		

TE	 Tris-EDTA		

TGFβ	 Transforming	growth	factor	beta		

TL	 Tibia	lenght	

Tnnt2	 Troponin	2	

TPM1	 Tropomyosin	1		

TPM4	 Tropomyosin	4		

VE-cadherin	 Vascular	endothelial	cadherin	

VEGFA	 Vascular	endothelial	growth	factor-a		

VIM	 Vimentin	

VE-PTP	 PhosphoTyr	phosphatase		

VSMC	 Vascular	smooth	muscle	cells		

WHO	 World	Health	Organization		

YFP	 Yellow	fluorescent	protein		
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