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Zusammenfassung

Aufgrund der jüngsten Verbesserungen der experimentellen Genauigkeit sowie den Fort-
schritten bei Techniken der Laserfeldgenerierung wurden neue Phänomenen in der Stark-
feld-Laserionisation beobachtet. Die Erklärung der neuen Phänomene basiert auf bisher
unidentifizierten Auswirkungen des Coulombfeldes des Atomkerns auf das ionisierte Elek-
tron und auf der Wechselwirkung zwischen dem Coulomb Feld und den Non-Dipole-
Effekten.
Diese Doktorarbeit verfolgt zwei Ziele. Erstens entwickeln wir analytische Methoden

für die genauere Beschreibung der Starkfeld-Laserionisation unter besonderer Berück-
sichtigung der Non-Dipole-Effekte. Diese Methoden basieren auf der genaueren Behand-
lung der Dynamik des ionisierten Elektrons im Laserfeld und Coulombfeld des Atomk-
erns. Zweitens verwenden wir die entwickelten analytischen Methoden zusammen mit
der üblichen theoretischen Maschinerie der Starkfeld-Ionisationsphysik für die Erklärung
von Ergebnissen der gegenwärtigen und weiterlaufenden Experimente, die der Wech-
selwirkung zwischen dem Coulombfeld and den Non-Dipole-Effekten in der Starkfeld-
Laserionisation mit linear oder elliptisch polarisierten mittinfraroten Laserfeldern gewid-
met sind. Ebenso verwenden wir unsere Methoden für die Erweiterung von Techniken
der Starkfeld-Holographie auf das Non-Dipole-Regime. Im Rahmen des ersten Zieles er-
weitern wir die Coulomb-korrigierte “Starkfeld-Näherung” (Strong-field approximation),
indem wir die höheren Terme in der Reihenentwicklung der Kontinuums-Wellenfunktion
des Elektrons im Laser- und Coulombfeld (der sogenannten Eikonal-Volkov-Approxi-
mation) berücksichtigen. Dank der Erweiterung ermitteln wir eine nicht-adiabatische
Verschiebung des Photoelektronimpulses. Des Weiteren entwickeln wir die klassische
Theorie für die Beschreibung von mehrfachen Kollisionen des ionisierten Elektrons mit
dem Atomkern, welche die Ursache für den sogenannten Effekt der Coulombfokussierung
(Coulomb focusing) sind. Die Hauptidee ist die Beschränkung der Coulombwechsel-
wirkung auf unterscheidbare und wohl definierte Rekollisionspunkte an der klassischen
Trajektorie des Elektrons. Diese Beschränkung führt zu analytischen Einschätzungen
von Impulsübertragungen an diesen Punkten und schließlich zur Einschätzung der to-
talen Coulombimpulsübertragung für jedes bei beliebiger Phase getunneltes Elektron.
Obwohl wir das Coulombfeld wie eine Störung in der Nähe der Kollisionen behandeln,
scheint es die globale Dynamik durch mehrfache Kollisionen wesentlich zu stören.
Es werden die von der klassischen Theorie abgeleiteten analytischen Formeln für die

Coulombimpulsübertragung verwendet, um ein besseres Verständnis von Eigenschaften
der Coulombfokussierung in verschiedenen Feldkonfigurationen zu bekommen. Konkret
liefern wir die Erklärung und Skalierung der nicht intuitiven Beugung der zentralen
und vertikalen Coulombfokussierungspitze, die in gegenwärtigen Experimenten mit linear
polarisiertem mittinfrarotem Laserfeld beobachtet wurde und zeigen die Abhängigkeit der
Beugung von der Photoelektronenergie. Auch erklären wir die Beobachtung von einer
scharfen, aus niederenergetischen Elektronen bestehenden Spitze in der experimentellen
Photoelektron-Impulsverteilung im Laserfeld mit elliptischer Polarisation, und zeigen wie
sie mit der von den Non-Dipole-Effekten verursachten Verschiebung der Photoelektron-
Impulsverteilung gegen die Propagationsrichtung des Lasers zusammenhängt.
Zum Schluss bieten wir eine Interpretation der Messungen im Rahmen der Starkfeld-



Holographie im Non-Dipole-Regime. Wir verwenden drei unterschiedliche theoretischen
Modelle für die Berechnung des Interferenzmusters: Coulomb-korrigierte “Starkfeld-
Näherung”, Quantum-Trajektorie Monte-Carlo-Simulation und (simple-man’s) Dreischritt-
modell, um die Auswirkung der Non-Dipole-Effekte auf die Interferenzmaxima zu be-
schreiben. Wir analysieren die Signatur der Atomsorte in den Interferenzmustern der
Photoelektron-Impulsverteilung und diskutieren zwei Fälle im Detail: Xenon, sowie das
Sauerstoffmolekül.
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Abstract
Due to recent advancements in measurement precision and in laser field generation tech-
niques, new phenomena were observed in strong-field ionization physics. It appeared that
the explanation of new phenomena were based on the previously unidentified Coulomb
field effects of the atomic core on the ionized electron, and on the interrelations of the
Coulomb field and nondipole effects.
The aim of this thesis is two fold. Firstly, we develop analytical methods for more

accurate description of the strong-field ionization process, which is based on a more ac-
curate treatment of the electron dynamics in the laser and Coulomb field of the atomic
core, with an emphasize on nondipole effects. Secondly, we apply the developed analyt-
ical methods, along with the common theoretical machinery of strong-field physics, for
explanation of the results of recent and ongoing experiments devoted to the interplay
of the Coulomb and nondipole effects in strong-field ionization process in mid-infrared
laser fields of linear and elliptical polarization, as well as for extension of the strong-field
holography technique into the nondipole regime.
Within the first aim, we advance the quantum theory of the Coulomb-corrected strong-

field approximation, calculating the high-order correction terms to the electron contin-
uum wave function in the laser and Coulomb fields using the eikonal-Volkov approxima-
tion and describe nonadiabatic momentum shifts for photoelectrons. Further, we develop
a classical theory for the description of multiple recollisions of the ionized electron with
the atomic core, which is the basis for understanding of the, so-called, Coulomb focusing
phenomenon. The key point is a restriction of the interaction to well specified and de-
fined rescattering points along the electron classical trajectory, which leads to analytical
estimates for the momentum transfer at these points and, subsequently, for the total
momentum transfer to any electron tunneled at any arbitrary phase of the laser field.
Although, the Coulomb field is treated as a perturbation near each scattering point, it
appears to disturb the global dynamics significantly via multiple recollisions.
The derived analytical formulas for the Coulomb momentum transfer of the classical

theory are employed to gain a deeper insight into the features of Coulomb focusing in
different field configurations. In particular, we provide an explanation and scaling for the
counterintuitive negative shift of the Coulomb focusing cusp in a recent experiment with
a linearly polarized mid-infrared laser field, and show its dependence on the photoelectron
energy. Further, we explain the appearance of the sharp ridge of low-energy electrons in
the experimental photoelectron momentum distribution in an elliptically polarized laser
field, and show how it is related to the shift of photoelectron momentum distribution
against the laser propagation direction due to nondipole effects.
Finally, we give an interpretation of the experimental results on strong-field photo-

electron holography in the nondipole regime. We employ three different theoretical
techniques for calculation of interference patterns: Coulomb-corrected strong-field ap-
proximation, Quantum-Trajectory Monte Carlo simulations and Simple-man’s three-step
model, and provide a description of the nondipole features of the interference fringes. We
analyze the signature of atomic species for the interferometric holography pattern in the
photoelectron distribution, discussing the cases of a xenon atom and an O2 molecule.
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Introduction

For the last fifty years, the dominant analytical theory used in strong-field ionization
physics was the strong-field approximation (SFA) [1–3]. Although SFA in its simplest
form omits the influence of the Coulomb field on the ionized wave packet, it celebrated
a triumph and became the workhorse in the strong-field physics as it was successful
in the explanation of many strong-field phenomena, e.g., the above-threshold ionization
(ATI) [4,5] as a special case of multiphoton ionization [6], high-order harmonic generation
(HHG) [7–10], and nonsequential double ionization (NSDI) [11–14].
For intuitive understanding of strong-field phenomena, the two-step model (also called

the simple-man’s or three-step model) [15] has been put forward. The model is based
on the classical propagation of the electron in the ionizing laser field, while neglecting
the Coulomb interaction, and introducing the recollision concept when the laser driven
electron returns to the atomic core. Upon recollision the electron may scatter off the
atomic core absorbing additional photons from the laser field (ATI), or kick out the
second electron at the rescattering (NSDI), or recombine with the atom emitting the
excess of energy as a high energy photon (HHG). The simple three-step model provides an
excellent framework for investigation and understanding of many strong-field phenomena,
because it catches the main essence of the processes - the recollisions.
The SFA in its simplest form is based on calculation of the transition amplitude be-

tween the atomic bound state and the Volkov wave function of a free electron in an
external laser field [16]. Because of the neglected Coulomb potential of the atomic core,
the SFA is strongly speaking suitable only for description of ionization processes of neg-
ative ions. In this respect, the approximation of the atomic potential as a short-range
or a zero-range potential has been applied [17, 18]. The deficiency of SFA is that the
transition amplitude is not gauge invariant and a proper choice of the gauge appears to
be crucial for a good agreement with the experiments [19–23].
Although SFA describes qualitatively correct the features of strong-field phenomena,

it does not provide the correct ionization rates for neutral atoms. This was well known
since the seminal works of Perelomov, Popov, Terent’ev (PPT) [24–29] that the ionization
rate of the atom in a strong laser field can be significantly disturbed by the Coulomb
field of the atomic core and therefore by the Coulomb interaction during the ionization
should not be neglected. The Coulomb-corrected rates of strong-field ionization in the
quasistatic regime are given by the Ammosov-Delone-Krainov theory (ADK) [30, 31].
Nevertheless, the results of ADK are already contained in PPT theory in the limit of of
zero-frequency field and both theories coincide for mid-IR wavelengths.
Recently, several extensions to the SFA incorporating the Coulomb effects on the

ionizing electron were proposed: Coulomb-corrected SFA (CCSFA) [32–34] generalized
also for the relativistic regime [34–36], more rigorous Analytical R-matrix theory (ARM)
[37–39], or the Coulomb-corrected quantum-orbit based SFA (CQSFA) [40] including the

1



Introduction

Coulomb interaction for the quantum-orbits [41].
In this thesis we are going to address the CCSFA more closely in Chap. 1. We will

explain the basic idea behind the SFA in Sec. 1.1 and to explain the inclusion of the
Coulomb potential via first-order corrections obtained from eikonal expansion of the
electron wave function in the continuum Sec. 1.2. We will repeat the calculation from [34,
42] avoiding the Coulomb singularity via saddle-point approximation and show that the
first-order correction leads to reproduction of the PPT tunneling rate. The contribution
of this thesis to the topic of strong-field ionization physics is analysis of the higher-order
correction terms in the eikonal expansion, which are neglected in the standard CCSFA.
We are going to identify quasiclassical and quantum contributions in the second-order
correction and discuss their influence for the nonadiabatic momentum shift [43–45] in 1D
case and discuss the implications for the 3D case in the Sec. 1.3.
Nowadays, improvements in the molecular imaging and the molecular tomography

techniques based on the strong-field phenomena with molecules, triggered interest for
theoretical description of such processes. Molecules unlike atoms do not manifest spheri-
cal symmetry due to their complex spatial structure and their orientation with respect to
the linearly polarized ionizing laser field plays role for the measured photoelectron mo-
mentum distribution (PMD) [46–49]. The main difference to the ionization of an atom
is the alignment-dependent ionization rate [50,51] arising due to the multi-core interfer-
ence [52], since the tunneled electron can originate from proximity of any atomic core.
This interference also plays a role for phase structure of the tunneled wave packet and can
influence the structure of the PMD [49, 53] as we will discus later. The first theoretical
approach to the ionization of molecules was described by extension of the ADK theory
for molecules MO-ADK [54] which can explain the orientation dependent ionization rate,
but does not account for the phase of the tunneled wave packet. The latter issue can be
addressed with the molecular strong-field approximation (MO-SFA) [46, 55–58]. Never-
theless, the MO-SFA suffers under the same issues as the atomic SFA. Recently, a new
method of partial-Fourier-transformation (MO-PFT) was proposed [59–61]. This method
relies on partial transformation of the bound electron wave function, which reduces the
ionization process to a 1D tunneling problem in the zero-range potential. MO-PFT was
able to reproduce the ADK tunneling rates for atoms [59] and explain the alignment-
dependent ionization rate for CO2 [62].
In the Sec. 1.5, we are going to generalize the tunneling rate and phase structure of the

tunneled electron packet for any arbitrary orientation of the O2 molecule from [60]. We
will analyze how both features depend on the alignment and also on the initial transversal
momentum of the tunneled electron. These results will be used in the last chapter of the
thesis, where we will address their influence on the measured PMD.
As we already mentioned, it has been known for a long time that the Coulomb effects

influence the ionization process and have to be accounted for properly. Nevertheless,
later it has been realized that the Coulomb field of the atomic core also imprints specific
signatures on the momentum distribution of photoelectrons [63] during the electron’s ex-
cursion in the laser field after the release (tunneling) from the bound state. The Coulomb
field effect on the electron dynamics is conspicuous, first of all, near the tunnel exit [64],
and further during rescatterings [65]. While the first effect exists at any polarization of
the laser field, the rescattering is mostly efficient in the case of linear polarization. Al-
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though even in a laser field of elliptical plarization rescattering and consequent Coulomb
effects can take place [66–73].
Hard rescatterings with a small impact parameter induce well-known processes of ATI,

HHG, and NSDI. In contrast to that, due to multiple forward scattering of ionized elec-
trons by the atomic core at large impact parameters during oscillation in the laser field,
the electrons with large transverse momentum at the ionization tunnel exit finally ap-
pear with low transverse momentum. Accordingly, the large initial transverse momentum
space at the tunnel exit is squeezed into the asymptotic small one, i.e., the Coulomb field
focuses electrons in the momentum space along the laser polarization direction which
is termed as Coulomb focusing (CF) [63, 74, 75]. In early experiments the traces of
CF were observed as cusps and humps in the photoelectron momentum distribution
(PMD) [76–79]. Recently, due to advancements of mid-infrared laser technique [80],
the interest for CF has been significantly increased with observation of rich structures
in PMD near the ionization threshold in long wavelength laser fields, the, so-called,
low-energy structures (LES) [81–83], very-low-energy structures [84,85], and zero-energy
structures [86–91]. The origin of LES has been traced to multiple forward scattering by
the Coulomb field, which induces transverse and longitudinal bunching of the electron
momentum space [92–99]. LES are well resolved in mid-infrared laser fields, when the
Keldysh parameter is small, the interaction is essentially in the tunneling regime, and
when classical features of the three-step model [65] are evident.
The theories as CCSFA and ARM contain a quantum and nonperturbative description

of the Coulomb field effects. The CCSFA approximation has been successfully applied
for explanation of LES structures [94] and the more systematic ARM theory was also
extended to treat recollisions in the continuum [100,101].
It appeared that the perturbative SFA is also able to account for LES [102–107], when

appropriate trajectories with soft recollisions [97] are included. However, this description
is only qualitative, because for a correct quantitative description the effect of multiple
recollisions should be taken into account.
In mid-infrared laser fields, the electron dynamics after tunneling is mainly classical,

because the characteristic energies of the process, namely the ionization and ponderomo-
tive potentials, greatly exceed the photon energy in this regime. Therefore the classical-
trajectory Monte Carlo (CTMC) method [108–110] has been successful in explaining LES
features, see e.g., [83, 93, 98, 111, 112]. Although both CCSFA and CTMC successfully
predict the existence of LES, they deliver only little insight into the underlying physics as
they both employ classical trajectories via numerical calculations which hide the physical
picture of the transformation of the electron’s initial momentum space at the tunnel exit
into the asymptotic one at the detector.
CF arises due to the long range Coulomb interaction between the tunneled electron

and its parent ion. This interaction is conspicuous at rescattering points when the tun-
neled electron revisits the atomic core during its excursion driven by the laser field.
Usually the momentum transfer during high-order rescattering events is decreasing with
its order. However, the decrease is not monotonous and the accurate description requires
accounting also for high-order rescatterings [96,111,113].
Moreover, recent experiment with linearly polarized mid-infrared lasers [114] have

shown that CF is significantly modified in the nondipole regime. The breakdown of
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Introduction

the dipole approximation was firstly observed in the case of linear polarization of the
laser field [114], as a counterintuitive shift of the PMD peak opposite to the laser prop-
agation direction which was attributed to the interaction of the tunneled electron with
the Coulomb field of the parent ion. Further numerical calculations of time-dependent
Schrödinger equation (TDSE) have shown that the PMD shift with respect to the dipole
approximation case is not uniform but momentum dependent [115]. The same conclusion
has been drawn from the classical [116], SFA [117], and CCSFA calculations [118] and
corresponds to the interrelation of the CF and the magnetically induced drift as noted
in [119]. However, the intuitive explanation of the nondipole features of PMD is still
missing.
In course of this thesis, we will develop a classical analytical theory for the description of

CF in linearly polarized laser fields with respect to the underlying momentum transfer due
to the Coulomb interaction in Chap. 2. We will include nondipole effects, accounting for
the laser magnetic field induced drift of the ionized electron along the laser propagation
direction during the excursion in the laser field. The Coulomb field of the atomic core will
be treated as a perturbation to the laser driven trajectory near the recollision point. The
latter is well justified for forward-scattering of the recolliding electrons. In Sec. 2.1 we will
discuss the key assumptions of our perturbative nondipole model and its applicability.
Further, we are going to introduce a classification of recollision points as fast or slow with
respect to the electron velocity at the recollision in Sec. 2.2. Once we will have seized
the Coulomb interaction by two types of recollisions, we are going to derive analytical
formulas for the Coulomb momentum transfer to the recolliding electron at these points
in Sec. 2.3. The scaling of the Coulomb momentum transfer at the recollision (R-CMT)
with respect to the rescattering parameters (momentum and impact parameter) as well
as with respect to the laser intensity and wavelength will be also derived in the section
and further analyzed for characteristic trajectories in global perturbation approach in
Sec. 2.4 for dipole case. Furthermore, we will provide high-order corrections to the
known formula for the initial Coulomb momentum transfer (I-CMT) which is necessary
for keeping the overall precision of our model in Sec. 2.5.
Once we will have captured the Coulomb interaction through I-CMT and R-CMT,

we are going to estimate the total Coulomb momentum transfer and derive the final
PMD in Chap. 3 in the dipole regime. Firstly, we will discus the generalization of the
recollision points for any electron trajectory and suitability of the R-CMT formulas in
Sec.3.1. In Sec. 3.2, two methods will be proposed and compared: the fully perturbative
and step-by-step method. While in the first method the Coulomb effect is assumed
to be a perturbation with respect to the laser driven global electron trajectory, in the
second method the trajectory is adjusted after each recollision. Special attention will be
devoted to the contribution of high-order rescattering events, and to the derivation of
the effective number of rescatterings. The two methods will be used to derive the PMD
via modified CTMC simulations in Sec. 3.3 and shown to be able of reproduction of the
main CF features. Further, in Sec. 3.4 we are going to propose an alternative way of
PMD derivation, where we will approach the CF as transformation of the momentum
phase space undisturbed by the Coulomb interaction.
Finally, we will return to the nondipole case in Chap. 4 and employ our analytical

framework for investigation of the counterintuitive energy-dependent bend of the cusp
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in the PMD. We will discuss the modification of rescatterings and hence of CF due to
the magnetic force in Sec. 4.1. Moreover, with extending the three-step model we are
going to reveal a fine interplay of the nondipole and Coulomb field effects responsible
for the energy-dependent bend of the cusp. The role of the higher-order recollisions
will be addressed in Sec. 4.2, where we will find a direct relationship between multiple
recollisions and the fine structure of the cusp.
The breakdown of the dipole limit can be attributed to the increase of the electron

pondermotive energy due to its quadratic scaling with respect to the laser wavelength.
Because of this, the magnetic v×B-term in the Lorentz force becomes significant [120,121]
and the magnetic field has to be included [122–126] for longer wavelengths. Due to the
scaling law, application of the mid-IR lasers increases the pondermotive energy to such an
extent that, e.g., HHG of coherent soft x-rays becomes possible [127], but the nondipole
effects are still small enough (in terms of the Lorentz deflection parameter [128,129]) that
the recollisions are not suppressed unlike in the cases discussed in [123–126,130–133]. The
Lorentz force along the propagation direction is responsible for the photon’s momentum
transfer to electrons observed in [134], for the momentum partition between the ion and
the electron during ionization [117,135–138] and for the already mentioned modification
of the Couloomb focusing (CF) [114]. The breakdown of the dipole limit manifests also in
the case of elliptically polarized laser fields and similar nondipole effects on the CF as in
the linear polarization case should take place. The latter holds since recollisions exist also
for the elliptical polarization laser as mentioned above. CF and related caustic structures
due to multiple recollisions of the electrons [96,113,139] carry important information on
the rescattering dynamics [85, 88, 99–101, 116, 140, 141]. Nevertheless, there were no ob-
servations of the CF caustics until recently [142], because the rescattered electrons are
embedded within a large background of direct photoelectrons. The measurements pre-
sented in [142] presented first observation of CF caustics in elliptical polarization and
even allowed experimental separation of the direct and rescattered electrons. Moreover,
the experiment triggered our curiosity by observation of nondipole effects acting differ-
ently on direct and rescattered electrons leading to ellipticity-dependent transition of the
momentum peak offset from negative to positive values with increasing ellipticity.
In the course of this thesis, we are going to address the newly observed features with

our analytical framework in Chap. 5. Firstly, the extension of our perturbative model
will be presented in Sec. 5.1 for dipole and nondipole case where we will expose the
similarity of the drift along opposite direction to the minor axis of the polarization
ellipse induced by the ellipticity and the magnetically induced drift due to the nondipole
effects. In the following section 5.2, we are going to analyze the PMD in the dipole
regime by CTMC simulations and reproduce the observed central cusp and reveal its
inner structure. We will divide the central cusp into three parts with respect to number
of recollisons experienced by the underlying trajectories and address each part with our
analytical framework. The nondipole effects will be included and analyzed in Sec. 5.3,
where the role of the CF and of the ellipticity for the measured transition of the peak
offset will be revealed. Our understanding will be used to estimate the averaged size
of CF and the width of the tunneled wave-packet from the experimental data yielding
agreement with the simulations.
There are further positive aspects of the high ponderomotive energies attained by
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the photoelectrons in the mid-IR laser fields except of the discussed classical behavior.
Namely, the de Broglie wavelength of the tunneled electrons becomes comparable to the
internuclear distances in molecules and hence increases the resolution of laser-induced
electron diffraction imaging [143–145]. Furthermore, the excursion of the laser-driven
electrons in the continuum is given by the amplitude of the quiver motion, which can
greatly exceed the recollision impact parameter even for long wavelengths at relatively
small intensities of the applied laser field, leading to the description where the recollision
concept is well defined.
All three aspects are crucial for strong-field time-resolved photoelecton holography as

presented in [146, 147]. The holography patterns exhibits spider-like structure with in-
terference fringes that arise as multi-path interference of direct (i.e., “reference”) and
forward-scattered (i.e., “signal”) electrons originating at a singular point of the tunnel
exit (as we will discuss in greater detail in Chap. 6). The advantage of the holography over
the diffraction imaging is that the hologram encodes both the magnitude and phase of the
scattering amplitude [148] carrying the information about the parent ion and the electron
dynamics with high spatial and temporal resolution (femtosecond resolution for the ion
and attosecond resolution for the electron [147]). The strong-field photoelectron hologra-
phy is a subcycle phenomenon and the individual features of the interferometric structure
can be related to interference of electrons originating from particular parts of the laser
cycle [149–152]. Interestingly, the holographic structure does not disappear when ap-
plying lasers of shorter near-infrared wavelengths [153] as long as the ponderomotive
energy greatly exceeds the energy of the laser photons. Nevertheless, in such parameter
region the above-threshold ionization starts to dominate over the tunnel ionization and
back-scatterings becomes more favorable. The numerical analysis via TDSE indicated
existence of holographic pattern created by the back-scattered electrons [47, 154, 155],
which was later also found in the experiment [48]. The advantage of high-energetic back-
scattered electrons is their sensitivity to the molecular target allowing investigation of
ultrafast molecular dynamic with attosecond resolution [46,156,157]. The orientation of
the molecule was shown to leave unique imprint in the spectrum of the back-scattered
electrons in [46–48, 145, 158] and in the spectrum of forward-scattered electrons in [49]
opening new paths in high-resolution imaging of sub-Ångström and sub-femtosecond
structural dynamics in molecules. This was recently manifested by simultaneous imag-
ing of purely electronic valence-shell dynamics via strong-field photoelectron holography
and observation of electronic-rotation dynamics via laser-induced diffraction [159].
The spider-like pattern in the mid-IR holography is contributed to the interference

of direct and forward-scattered electrons. The “spider legs” exhibit a nontrivial shape
which can be associated with specific number of times the electron is driven past its
parent ion before rescattering significantly [111].
A simple three-step model based on qualitative analysis of the holographic pattern pre-

sented in [147] neglects Coulomb potential and excludes higher-order recollisons. How-
ever, the Coulomb potential modifies the interference pattern with respect to the three-
step model severely and has to be taken into account [152]. As we already discussed,
the numerical CTMC simulations are able to incorporate the Coulomb interaction fully
and provide an invaluable tool for investigation of CF. The CTMC simulation can be
extend to account also for the interference by computation of the phase accumulated
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by the electrons along the classical trajectory which we now call quantum trajectories.
These trajectories are the basis of Quantum-trajectory Monte Carlo (QTMC) simulation
which was developed in [160] and shown to be in good agreement with photoangular
momentum distribution for ATI. Nevertheless, the QTMC should be corrected by the
inclusion of the non-adiabatic effects in the case of near-IR wavelength [161]. Further
improvements to the quantum trajectory yielding better correspondence to the TDSE
results were presented in [162].
We should also note, that further analysis of the interferometric spider-like pattern

was made via CQSFA [151, 163, 164] and resulted in good agreement with the TDSE
solutions in the ATI regime.
To complete our listing, the recent progress in development of Siegert state [165] based

adiabatic ionization theory [166] offers a possibility to determine the phase of scattering
amplitude in the near-forward rescattering photoelectron holography and opens a new
channel for extraction of structural information of ultrafast processes with highly time-
resolved imaging [167]. Nevertheless, this theory can be solved only numerically and can
be used only for finite-range potentials which restricts its possible implementations.
As we have seen, the topic of forward-scattering strong-field photoelectron holography

is new and an unsettled branch of strong-field physics. Our contribution to the field
will be presented in Chap. 6. Our main aim will be the nondipole effects and their role
for the spider-like holographic structure. The nondipole effects arise inevitably in the
tunneling regime with mid-infrared wavelengths and breakdown of dipole approximation
is to be expected as in the classical case [114]. In Sec. 6.1, we will briefly introduce
our ionization setup. In Sec. 6.2, we will derive a quantum description via perturbative
SFA. We will show that the “spider legs” arise already in the second-order perturbative
SFA along with the overall shift against the propagation direction of the laser field.
Further, we are going to include the Coulomb interaction fully via CCSFA in Sec. 6.3
and show that the Coulomb potential of the parent ion plays an essential role for the
position of the interference maxima. We will discuss the influence of the higher-order
rescatterings on the number of interfering paths and hence on the holographic pattern
at the end. In the following Sec. 6.4, we are going to revise the QTMC simulation. We
will show that the QTMC simulation can reproduce all typical interferometric structures
arising from multi-cycle ionization and also the spider-like holographic structure arising
due to intracycle interference [149]. In addition, we are going to investigate the role of
the target on the spider-like structure via restricted QTMC simulations (RQTMC) in
Sec. 6.5. Especially, we are going to address the difference between the photoelectron
holography of atoms and diatomic molecules represented by atomic xenon and molecular
oxygen, respectively. Moreover, we will investigate how the polarizability of the target
changes the interferometric structure via quadratic Stark shift and induced electric dipole
moment for both the atom and the molecule by RQTMC. We will also address the multi-
electron effects and their role on the interference in the case of xenon. As mentioned
above, the molecule has an alignment-dependent tunneling rate and phase structure of
the diatomic molecules as mentioned above. We will analyze this in greater detail and
find a suitable orientation representing the expected holographic pattern created by an
unaligned molecule in the experiment. These results will be used in QCMT simulations
comparing the difference of the holographic patterns of xenon and unaligned molecular
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oxygen. Finally, we are going to investigate the scaling of the characteristic features of
the strong-field holography with the three-step model in the nondipole regime in Sec. 6.6.
We will find that the main maximum of the interferometric spider-like structure is shifted
against the laser propagation direction by the same amount as in the discussed classical
case of CF and establish the connection between the classical and the quantum CF in
the nondipole regime.
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Chapter 1

Strong-field ionization

In this chapter, we are going to address the topic of strong-field ionization in atomic and
molecular physics. First of all, we are going to introduce the famous strong-field approx-
imation (SFA) and its Coulomb-correction version (CCSFA) in the first two sections. In
order to illustrate the main ideas behind the SFA and CCSFA, we are going to repeat the
calculations from [42] in the first and in the second section of this chapter, respectively.
In the third section, we will analyze the role of the high-order Coulomb-correction terms
and their implication for the tunneling time delay (this part will be based on [168]). Fur-
thermore, we are going to briefly discuss various strong-field ionization theories and their
advantages and drawbacks. In the last section, we will briefly discuss various analytical
approaches to the strong-field ionization of diatomic molecules in the last section. We
are going to put forward the Partial Fourier-transformation method for its straightfor-
ward application and generalize the results from [60] for tunnel ionization of O2 with any
arbitrary orientation of its molecular orbital.

1.1 SFA
The SFA is a quantum theory and operates with wave functions and transition ampli-
tudes. In order to introduce the theory to the reader, let us take a small step back and
start with the Schrödinger equation which fully describes the dynamics of a quantum
system:

i}
∂

∂t
|ψ(t)〉 = H |ψ(t)〉 , (1.1)

where |ψ(t)〉 is the wave function and the H is the Hamiltonian.
The dynamics of an electron in the combined Coulomb potential V (r) of a hydrogen-

like atom and an external laser field E(t) is described by the Hamiltonian of the form

H = H0 +Hint, (1.2)

with atomic system described by

H0 ≡
p̂2

2 + V (r), (1.3)

with the momentum operator p̂ and coordinate vector r. The interaction Hamiltonian
includes only the interaction with the electric component of the laser field as

Hint(t) ≡ r ·E(t), (1.4)

9



Chapter 1 Strong-field ionization

where we applied the length gauge (i.e., with the scalar potential φ = −r · E(t)). The
choice of the gauge is important at this point as it not only simplifies the calculation but
later also delivers good agreement with experiments [20] as the gauge invariance will be
broken by further approximations.
There exist exact solutions for each of the two Hamiltonians separately. The ground

state of the atomic Hamiltonian H0 has oscillatory part due to the ionization potential
Ip and the wave function solving the Schrödinger equation can be written as

|φ(t)〉 = |0〉 eiIpt, (1.5)

where |0〉 obtains the spatial component of the wave-function.
On the other hand, the free electron of the asymptotic momentum p in the laser field

E(t) is governed only by the Hamiltonian Hint and the solution to Eq. (1.1) yields the
Volkov wave-function [16]

∣∣∣ψVp (t)
〉

= |p + A(t)〉 e−i
∫ t
−∞

[p+A(t)]2
2 dt′

, (1.6)

with the standard definition of the vector potential A(t) = −
∫ t
−∞E(t′)dt′. The Volkov

solution can be expressed in the coordinate space as〈
r
∣∣∣ψVp (t)

〉
= 1

(2π)3/2 e
iS

(0)
0 (r,t), (1.7)

with the classical action of an electron in a laser field in the length gauge:

S
(0)
0 (r, t) = [p + A(t)] · r +

∞∫
t

[p + A(t′)]2

2 dt′. (1.8)

The SFA is based on sewing the two solutions together yielding the matrix element for
the laser-induced ionization from the ground state of the atom into the Volkov continuum
state as

Mp = −i
∞∫
−∞

dt
〈
ψVp (t)

∣∣∣Hint(t) |φ(t)〉 . (1.9)

The matrix element can be evaluated with Eqs. (1.5) and (1.7) as

Mp = −i
∞∫
−∞

dt 〈p + A(t)|Hint(t) |0〉 e−iS̃(t), (1.10)

with

S̃(t) ≡
∞∫
t

dt′
{

[p + A(t′)]2

2 + κ2

2

}
, (1.11)

with atomic momentum κ =
√

2Ip. When the laser frequency ω is smaller than the
ground-state energy Ip and the ponderomotive potential Up ≡ E2

0/4ω2 ( i.e., the cycle-
averaged energy of a free electron in the oscillatory laser field of the amplitude E0 [169]),
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1.2 Coulomb-corrected SFA

one can solve the integration over time with the saddle-point method (SPM); see, e.g.,
[170] yielding

Mp = −i
∑
s

√
2π

i ¨̃S(ts)
〈p + A(ts)|Hint(ts) |0〉 e−iS̃(ts), (1.12)

where we sum over so-called saddle points of the function in the exponential defined as
˙̃S(ts) = 0 and the dot denotes derivative with respect to time t. The transition operator
can be transformed from Hint to V (r) via partial integration in Eq. (1.10) as

Mp = −i
∑
s

√
2π

i ¨̃S(ts)
〈p + A(ts)|V (r) |0〉 e−iS̃(ts). (1.13)

The differential tunneling rate can be determined via the matrix element as

dw
d3p = ω

2π |Mp|2, (1.14)

where we sum only over the saddle-points within one laser period in Eq. (1.13).
The SFA derives excellent results for ionization of negative ions as the potential bound-

ing the extra electron resembles the zero-range potential, which was effectively used in
the derivation of Eq. (1.10). The differential tunneling rate in the case of zero-range
potential yields [171]

dw(z)

d3p = ω

2π2E0
exp

[
−2

3
E0
Ea
− κ

E0
p2
⊥ −

κ3ω2

3E3
0
p2
E

]
, (1.15)

and leads to the total ionization rate

w(z) =
√

3
π

E
3/2
0

2κ5/2 exp
[
− 2κ3

3E0

]
. (1.16)

1.2 Coulomb-corrected SFA

Nevertheless, the ionization of neutral atoms poses more challenging issue as the resulting
ion exhibits long range Coulomb potential, which is felt by the electron promoted into
the continuum. The SFA theory can be improved by taking into account the Coulomb
field effect of the ionic core by replacing the Volkov function by the eikonal wave function
instead. The Volkov function given by Eq. (1.7) and the action in Eq. (1.8) is identical to
the zero-order WKB approximation of the electron wave function in the laser field. Let us
note that WKB stands for the famous Wentzel-Kramers-Brillouin method as explained,
e.g., in Chap. 6 of [172]. A systematic improvement of the Volkov function can be
achieved by inclusion of the electron into the combined laser field E(t) and Coulomb
potential V (C)(r) = − κ

|r| into the Schrödinger equation [168]

i}
∂

∂t
ψ = −}2

2 ∆ψ + V (C)ψ + r ·E(t)ψ, (1.17)

11



Chapter 1 Strong-field ionization

which can be transformed by the ansatz of ψ(t) = eiS(t)/} into

− Ṡ = (OS)2

2 + V (C) + r ·E(t) + }
i

∆S
2 . (1.18)

By using the WKB expansion S = S0 + }
iS1 + . . ., we obtain the equations(}

i

)0
: −Ṡ0 = (OS0)2

2 + V (C) + r ·E(t), (1.19)

with the S0 being the classical action of an electron in the laser field and the Coulomb
potential of an atomic ion. In the eikonal approximation of Eq. (1.19), the solution can
be found as perturbatively taking into account the atomic potential as a perturbation
and expand the action as S0 = S

(0)
0 +S(1)

0 . The S(0)
0 is then again equivalent to the action

of free electron in the laser field from Eq. (1.8). The novelty comes with the second term
proportional to the atomic potential yielding

S
(1)
0 (r, t) =

∞∫
t

dt′V (C)(r(t′)), (1.20)

with the trajectory of the free electron in the laser field r(t′) = r +
t′∫
t

dt′′p(t′′) and

p(t) ≡ p + A(t). The time t and the coordinate r can be interpreted as the time and
the coordinate of the ionization, respectively. At this point one has to be careful, as the
eikonal S(1)

0 can be singular at the atomic core r→ 0. Unfortunately, this can be avoided
by saddle-point integration also over the spatial coordinate. The latter actually set the
matching of the two wave solutions to the saddle point which is located sufficiently far
away from the core.
Therefore, we can write the approximative wave function, so-called eikonal-Volkov

wave function, in the non-relativistic regime as

ψ
(C)
p (r, t) = 1

(2π)3/2 e
iS

(0)
0 (r,t)+iS(1)

0 (r,t). (1.21)

This wave-function accounts for the Coulomb potential of the atomic core right after the
ionization and can be included in the SFA amplitude of Eq. (1.9).
Let us note at this point that we have neglected the high-order correction terms in

Eq. (1.21), which also include the perturbation atomic potential. Unfortunately, it is
not mathematically feasible to compute them in general and we will have to restrict the
calculation to 1D. We will address the role of the high-order correction later, but for now
we will stick to the eikonal-Volkov function.
Nevertheless, further simplifications are needed in order to calculate the matrix element

Mp. The problem poses the additional term S
(1)
0 in the transition amplitude and we

simplify its time derivative as

∂tS
(1)
0 (r, t) ≈ −V (C)

(
r +

∫ ∞
t

dt′p(t′)
)
≈ 0. (1.22)

12



1.2 Coulomb-corrected SFA

Which is a reasonable assumption because the electron at the infinite time will be far
away from the ion and its potential energy will be negligible (when we do not consider
any recollision). Then, the additional term S

(1)
0 leaves the saddle points unchanged and

only changes the preexponential factor in Eq. (1.9) as

M
(C)
p = −i

+∞∫
−∞

dt 〈p + A(t)|Hint(t)e−S
(1)
0 (r,t)

∣∣∣0(C)
〉
e−iS̃(t) (1.23)

where
∣∣∣0(C)

〉
denotes the electron ground state bound in the Coulomb potential.

The last challenge that remains is the evaluation of the preexponential factor at saddle
point times ts. The term S

(1)
0 can be viewed as the sum over all potential energies that

the electron possessed along its trajectory from ionization till distant future. As we do
not assume that the electron will return to the atomic core, we are interested only in the
short period of time after the ionization moment and once the electron recedes far enough
from its parent ion, we can neglect further contributions to the term S

(1)
0 . Therefore, we

can expand the trajectory up to the second order around the saddle point ts as

r(t′) = r + p(t′ − ts)−
E(ts)

2 (t′ − ts)2. (1.24)

Let us note that this approximation is well valid in the tunneling adiabatic regime of
small Keldysh parameter (e.i., γ = κ ω

E0
� 1). Under the assumption of adiabaticity, we

can simplify the three dimensional trajectory even further to a single dimension as the
electron will be accelerated by the laser against the orientation of the laser field at the
ionization instance ts given by the unit vector −ê. For instance, for the linearly polarized
laser field, the electron would be accelerated along or against the axis of polarization with
respect to the orientation of the laser electric field at the ionization ts. Therefore, we
can set p = pE ê and p(ts) = iκê. The standard picture for tunnel ionization [173]
predicts ionization happening also around the laser polarization axis and hence we can
write r = rE ê. In this light, we can simplify the Coulomb potential term in Eq. (1.20)
for our case of 1D motion as

1
r(t′) = 1

|rE + pE(ts)(t′ − ts)− E(ts)(t′ − ts)2/2| , (1.25)

where E(ts) ≡ ê · E(ts) = E0 cosωts. The first evolution from the saddle point to the
tunnel exit is parallel to the imaginary axis in the time towards the real axis, where also
the trajectory becomes real. Thanks to this complex trajectory, we are not interested
in the contribution of the term S

(1)
0 after the electron has reached the tunnel exit as it

would contribute only with some overall phase to the matrix element M (C)
p . Therefore,

we can restrict the integration to the interval between the ionization coordinate and the
location of the tunnel exit which is reached at time t0 given by the condition

ωt0 = − arcsin
(
pEω

E0

)
. (1.26)
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The integral from Eq. (1.20) can be under the upper assumptions easily evaluated and
leads to

e−iS
(1)(r,t)
0 =

(
1 +
√

1 + 4λ
−1 +

√
1 + 4λ

) 1√
1+4λ

≈ 1
λ

+O(λ), (1.27)

with the small quantity λ = −r·E(ts)
2κ2 , which is of the order

√
E0
Ea

. If the eikonal approx-
imation should be valid, the correction term has to be much smaller than the unper-
turbed Volkov action, i.e., S(1)

0 � S̃. One can estimate the terms as S(1)
0 � S̃ ∼ 1 and

S̃ ∼ Ea/E0 with atomic field Ea = κ3 (see [34]) leading to the condition

E0
Ea
� 1, (1.28)

which is well fulfilled in tunneling ionization regimes.
We can conclude that the Coulomb-corrected SFA ionization amplitude in the nonrel-

ativistic regime differs by the factor

Qnr = − 4Ip
r ·E(ts)

, (1.29)

from the standard SFA. The transition amplitude can be then easily evaluated from
Eq. (1.23) as

M
(C)
p = 4iIp

∞∫
−∞

dt
〈
p + A(t)

∣∣∣0(C)
〉
e−iS̃(t), (1.30)

as the dipole term r ·E(ts) cancels with the interaction Hamiltonian at the saddle point
ts. The preexponential factor can be evaluated as

〈
p + A(t)

∣∣∣0(C)
〉

= 1
π

2
√

2κ5/2{
κ2 + [p + A(t)]2

}2

≈ −κ2
1

πE(ts)2 (t− ts)2 , (1.31)

where we kept in the last step only the leasing term in E0/Ea. As we can see, the pre-
exponential factor is singular at the saddle point and the Eq. (1.30) has to be calculated
via the modified SPM while taking into account the pole during the integration. When
we compare the present result to the case of the zero-range potential M (Z) from [34], we
arrive at

M (C)

M (Z) = 23/2Ea
|E(t0)| . (1.32)

This correction is known from the imaginary-time method [25] but was also reproduced
with the SFA techniques in [34].
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In this way, we arrive from the CCSFA to the known ADK [30] (or equivalently PPT
[25]) differential ionization rates including Coulomb corrections:

dw(C)

d3p = 4
π2
ωκ6

E3
0

exp
[
−2

3
E0
Ea
− κ

E0
p2
⊥ −

κ3ω2

3E3
0
p2
E

]
, (1.33)

and the total ionization rate

w(C) = 4
√

3
π

κ7/2

E
1/2
0

exp
[
− 2κ3

3E0

]
. (1.34)

The maximum of the ionization is for the electrons ionized at the peak of the laser field
and hence with pE = 0. The width of the tunneled wave packet is

∆‖ =
√
E0
Ea

E0
ω
, (1.35)

∆⊥ =
√
E0
Ea

κ, (1.36)

along the laser polarization axis and in the transversal direction, respectively.

1.3 The role of higher-order correction terms
In the previous section, we have seen derivation of the Coulomb-corrected strong-field
theory (CCSFA) based on the replacement of the Volkov wave function for free elec-
tron in laser field by the eikonal Volkov function taking into account also the Coulomb
interaction. This was done by the insertion of the Coulomb potential into the eikonal
equation Eq. (1.18) and by solving this equation in a perturbative manner of the WKB
approximation. Even the zero-order solution of the WKB expansion demanded further
simplification and we were forced to address the Coulomb interaction term as a pertur-
bation to the unperturbed Volkov solution while ignoring the higher-order terms [see
Eq. (1.19) and discussion below]. On the one hand, we have shown that the correc-
tion term is small with respect to the Volkov classical action in the tunneling regime of
Eq. (1.28), but on the other hand we did not address the importance of the higher-order
terms properly. Let us note that we will follow [168] and return to this matter in this
section.
For simplicity, we will restrict ourselves to one dimension along the polarization of the

laser field and to atomic units through this section. Eq. (1.18) simplifies then as

− i∂tS = (∂x)2

2 − xF + α

[
V (x)− i∂xxS2

]
, (1.37)

with the eikonal function S from ansatz on the 1D eikonal Volkov wave function ψp(x, t) =
eiS(x,t)/

√
2π, a small artificial perturbative parameter α, Coulomb force F ≡ −Ex(t) on

the electron and 1D Coulomb potential of an atom with nucleas charge Z:

V (x) = − Z

|x|
. (1.38)
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Let us also note that we will use half-cycle laser pulse defined via the acting force

F (t) =
{
E0 cos (ωt) for |ωt| < π/2,

0 for |ωt| ≥ π/2, (1.39)

where the recollisions are excluded explicitly.
As our aim is to develop higher-order CCSFA and its further extension to 3D, we will

not consider the very deeply bound state of a 1D atom [174, 175], we assume the first
excited state with the Rydberg-like eigenenergy, Ip = κ2/2, and with the following wave
function [176]:

〈x|φ(t)〉 = κ(2κx)Z/κ√
2ZΓ

(
2Z
κ

)
≡ cae

Sa(x,t), (1.40)

Sa(x, t) = −κ|x|+ iIpt+ Z

κ
ln (2κx), (1.41)

ca = κ√
2Γ
(

2Z
κ

) . (1.42)

Let us also note that the ground-state wave function in a 1D soft-core potential has the
same asymptotic form for x � 1/κ, which correspond to the region relevant for our
calculations.
While minding the small artificial parameter α (corresponding to the expansion pa-

rameter }/i in the previous section) which we will set later to one, we can expand the
action with the ansatz as

S = S0 + αS1 + α2S2, (1.43)

which leads after insertion into Eq. (1.37) to the zeroth-, first-, and second-order equa-
tions

α0 : −∂tS0 = (∂xS0)2

2 − xF, (1.44)

α1 : −∂tS1 = ∂xS0∂xS1 + V − i∂xxS0
2 , (1.45)

α2 : −∂tS2 = (∂xS1)2

2 + ∂xS0∂xS2 − i
∂xxS1

2 . (1.46)

The zeroth-order equation represents free electron in electric field and was already solved
in previous chapter in Eq. (1.8), which yields in 1D

S0(x, t) = [p+A(t)]x+
tf∫
t

dt′ [p+A(t)]2

2 . (1.47)
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1.3 The role of higher-order correction terms

The first- and second-order equations can be solved with the method of characteristics

S1(x, t) =
tf∫
t

dt′V (x(t′)), (1.48)

S2(x, t) =
tf∫
t

dt′
[∫ tf
t′ dt′′∂xV (x(t′′))

]2
2 − i

tf∫
t

dt′
tf∫
t′

dt′′∂xxV (x(t′′))
2 ,

(1.49)

with the electron classical trajectory x(t′) = x +
∫ t′
t ds[p + A(s)], where the electron is

driven solely by the vector potential A(t) =
∫ t
−∞ dt′F (t′). The term S1 is the correction

due to the Coulomb interaction to the ionizing electron along the laser-driven trajectory
as in the previous section. The real improvement comes with the first term of S2 which
introduces corrections to the potential Coulomb energy of the ionizing atom due to the
perturbation of the trajectory by the Coulomb field. The second summand in S2 is a
quantum term in order of }0, whereas all the other terms are classical and of order 1/}.
The quantum term is a special feature of the 1D system and does not appear in the 3D
Coulomb field because ∆V (r) = 0 for |r| > 0.
Now, we can insert all expressions into the Eq. (1.9) which reduces to a double integral

over time and space

M(p) = − ica√
2π

∫∫
dtdx e−iS∗(x,t)+ln[xF (t)]+Sa(x,t), (1.50)

where ∗ indicates complex conjugation. The two-dimensional integration can be carried
out by the method of the SPM as in the previous section. The saddle points has now
two coordinates (ts, xs) defined via equations

dζ(x, t)
dt

∣∣∣∣
(t,x)=(ts,xs)

= 0, (1.51)

dζ(x, t)
dx

∣∣∣∣
(t,x)=(ts,xs)

= 0, (1.52)

with ζ(x, t) = −iS∗(x, t) + ln[xF (t)] +Sa(x, t). The equations are not solvable in the full
form, but we can make use of the expansion of S(x, t) and solve the equation perturba-
tively. Thereby, we can expand the saddle point as

ts = t(0)
s + αt(1)

s + α2t(2)
s , (1.53)

xs = x(0)
s + αx(1)

s + α2x(2)
s . (1.54)

In such case we obtain equations

α0 : ζ0(x, t) = −iS0(x, t) + ln[xF (t)] + Sa,0(x, t), (1.55)
α1 : ζ1(x, t) = −iS1(x, t) + Sa,1(x), (1.56)
α2 : ζ2(x, t) = −iS∗2(x, t), (1.57)

(1.58)
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Chapter 1 Strong-field ionization

with Sa,0(x, t) = −κx+iIpt, Sa,1(x) = Z/κ ln[2κx]. The zero-order saddle-point equation
yields then

−∂tS0(x, t) = −Ip + i
F ′(t)
F (t) (1.59)

∂xS0(x, t) = i

(
κ− 1

x

)
, (1.60)

where prime denotes derivation with respect to time. These equation have to be solved
numerically in order to arrive at (t(0)

s , x
(0)
s ), but we may estimate the zeroth-order solution

for a cosine-electric field as t(0)
s ∼ arcsin[iκω/E0]/ω− i/

√
κEs and x(0)

s ∼
√
κ/Es, which

corresponds to the case of the short-range potential.
The saddle point coordinate xs can be viewed as a point, where the two wave function

are sewed together. Importantly, for any value of the Keldysh parameter γ, the saddle
point is under the barrier (i.e., xs � xe, where xe is the tunnel exit [168]). Moreover,
the saddle point is also sufficiently far away from the atomic core, so the eikonal term
S1(xs, t) is not singular (i.e., xsκ �1 [168]). The ionization happens then under the
barrier but far away from the exit, 1/κ� xs � xe. Which is in analogy to the analytical
R-matrix (ARM) theory that fulfills the same condition (we will briefly introduce ARM
in Sec. 1.4).
The derivation of the high-order correction to the saddle point is straightforward but

rather cumbersome. Therefore, we will just show the structure of the first-order solution
of the (ts, xs) saddle point,

t(1)
s = −∂xtζ0∂xζ1 + ∂tζ1∂xxζ0

∂xtζ2
0 − ∂ttζ0∂xxζ0

∣∣∣∣
(x,t)=(x(0)

s ,t
(0)
s )

, (1.61)

x(1)
s = ∂ttζ0∂xζ1 − ∂tζ1∂xtζ0

∂xtζ2
0 − ∂ttζ0∂xxζ0

∣∣∣∣
(x,t)=(x(0)

s ,t
(0)
s )

. (1.62)

The structure of the SFA amplitude is as the following up to the second-order:

M(p) ≈ −ica

√
2π

det ζ exp
[(
ζ0 + αζ1 + α2ζ2

+ α2∂xxζ0∂tζ
2
1 − 2∂xζ1∂xtζ0∂tζ1 + ∂ttζ0∂xζ

2
1

2
(
∂xtζ2

0 − ∂ttζ0∂xxζ0
) )∣∣∣∣∣

(x(0)
s ,t

(0)
s )

 , (1.63)

with the Van Vleck-Pauli-Morette [177] determinant of the matrix formed by the second
derivatives as

det ζ = det
(
∂xxζ ∂xtζ
∂txζ ∂ttζ

)
. (1.64)

The prefactor of 2π/
√

det ζ arises from the SPM and can be interpret intuitively as the
typical size of the volume element dxdt.
Finally, we can determine the maximum of the photoelectron momentum diagram via

the extremum condition:
∂w(p)
∂p

∣∣∣∣
p=pm

= 0, (1.65)
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1.3 The role of higher-order correction terms

which can be once again solved perturbatively, pm = p
(0)
m + p

(1)
m + p

(2)
m , and provides the

maximum of the probability SFA amplitude

M(pm) ∼ exp(ζ)√
det ζ

∣∣∣∣
p=pm

, (1.66)

where we expand the function in the exponent up to the second order. Furthermore, we
will discuss the results obtained by the n-th order expansion and refer to them as Sn
CCSFA.

S0 CCSFA

The inization amplitude in the zeroth-order yields

M(p) ∼ exp(ζ0)√
det ζ0

, (1.67)

which corresponds to the standard SFA from Eq. (1.13) with zero-range potential with
Z � κ. As our integration method SPM is only an approximative method, we have to
check its accuracy. Therefore, we calculate analytically the S0 CCSFA amplitude for a
cosine-laser pulse and compare it to the PPT result [25]. We can estimate the saddle
point for the most probable final momentum analytically, in an approximation where the
higher-order terms in E0/Ea are dropped as

x(0)
s ≈

√
κ

Es
(1.68)

t(0)
s ≈ arcsin[iγ]

ω
− i√

κEs
. (1.69)

The PMD distribution for ionization from a short-range potential in the leading terms
in E0/Ea reads as

w(p) = πκ2

eEs
exp

−κ3
(
−
√
γ2 + 1γ + 2γ2 sinh−1 γ + sinh−1 γ

)
2γ3E0

− (p− p(0))2

∆2

 ,
where

p(0) =
∞∫
0

dtF (t) = E0
ω

(1.70)

is the most probable momentum, Es = E0
√

1 + γ2, and the width of the distribution

∆ =
√
Es√

κ
[√

1 + 1/γ2 sinh−1(γ)− 1
] . (1.71)

The derived amplitude differs from the PPT result for a short-range potential by a
constant overall factor of π/e ≈ 1.16, which we contribute to the difference between
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Chapter 1 Strong-field ionization

the approximate integration over x with the SPM and the exact integration in PPT.
Unfortunately, this will be also the case for the higher-order CCSFA terms. Luckily,
the PSI does not change the overall scaling of the probability with respect to the laser
field and atomic parameters but gives only approximated overall factor (for more details
please see p. 4 in [168]).
Moreover, one could improve the saddle-point approximation in time while including

the third-order term ∂tttζ0(x(0)
s , t

(0)
s )(t − t(0)

s )/6 in the integration at the saddle point.
Nevertheless, this term has no influence on the momentum distribution of the ionized
electron and its contribution to the ionization probability is minor due to its relative
smallness ∼ (E0/Ea)/72.

S1 CCSFA

The Coulomb field effect on the PMD is included in the first-order correction term to
the eikonal wave function. This correction yields a qualitative change to the case of the
short-range potential by the correction term in the exponent

exp(ζ0 + ζ1)√
det ζ0

. (1.72)

Let us note that the preexponential term det ζ1 is small in comparison to the leading
term in the order of E0/Ea and will be included in in the wave function of the next order
and discussed in S2 CCSFA. The Coulomb-correction term exp(ζ1) in the S1 CCSFA has
two consequences. Firstly, it changes the magnitude of the ionization probability due to
the following factor

∣∣∣∣ caca, 0 exp
[
ζ1
(
x(0)
s , t(0)

s

)]∣∣∣∣2 ≈
4Z/κ

(
4
√
γ2 + 1

√
f
)− 2Z

κ

Γ
(

2Z
κ + 1

)
× exp

{
4Z
κ

coth−1
[√

γ2 + 1− 1
γ

]

× coth
(

sinh−1(γ)
2 − γ

√
f

2 4
√
γ2 + 1

)}
. (1.73)

The upper expression contains higher-order E0/Ea terms which should be neglected
within the S1 SFA. This leads to the result in leading order:

∣∣∣∣ caca, 0 exp
[
ζ1
(
x(0)
s , t(0)

s

)]∣∣∣∣2 =
16Z/κ

(
E0
κ3

)− 2Z
κ

Γ
(

2Z
κ + 1

) , (1.74)

where ca,0 =
√
κ/2π. Let us note that the amplitude of S0 CCSFA given by Eq. (1.70)

corrected by the factor from Eq. (1.74) is the 1D equivalent to the Eq. (1.34) and also
reproduces the PPT-ionization rate [27].
Secondly, ζ1 yields a shift of the momentum distribution via the initial Coulomb mo-

mentum transfer (I-CMT) right after the electron leaves the tunnel exit (we still do not
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1.3 The role of higher-order correction terms

Figure 1.1: We carried out the Coulomb momentum shift vs the laser field strength E0 in
the panel (a) for the quasistatic regime of γ = 0.1 and Z/κ = 1 obtained by four methods:
quasiclassical S1 CCSFA (solid line), the quasiclassical S2 CCSFA (dashed line), the quantum
S2 CCSFA (dotted line), and the ARM theory (dot-dashed line) which coincides exactly
with the line obtained by the S1 CCSFA. The ratio of the ionization rate at the peak of the
momentum distribution to the corresponding ARM-ionization rate in the same quasistatic
regime are plotted with respect to the field strengt E0 in panel (b) for the quasiclassical S1
(solid line), the quasiclassical S2 CCSFA (dashed line), and the quantum S2 CCSFA (dotted
line). The dots in both panels were obtained by heuristic quasiclassical method (see [168]).

consider any recollisions). This momentum shift derived from the condition on the ex-
tremum of M(p) stated in Eq. (1.65) with S1 CCSFA is shown in Fig. 1.1. Moreover, we
can also give the analytical estimation on the momentum shift via ∂xζ1 consisting of two
terms: ∆p(1)

C arising during the motion in the half-cycle of the laser pulse from Eq. (1.39)
and ∆p(2)

C arising during the motion of the electron in the field-free time region after the

21



Chapter 1 Strong-field ionization

Figure 1.2: This figure is analogous to Fig. 1.1 except that we carried out the dependency
of the Coulomb momentum shift [in panel (a)] and of the ratio of the ionization with respect
to the ARM-ionization yield [in panel (b)] on the Keldysh parameter γ in the nonadiabatic
regime of ω = 0.02 and Z/κ = 1. The black dots display again the results of the heuristic
quasiclassical method.

laser pulse,

∆p(1)
C = E0Z

2
√

1 + γ2κ3

[
πγ2 − 2(γ2 + 1) tan−1(γ) + 2(γ2 + 1) tan−1

(
γ − i√
γ2 + 1

)

+2(γ2 + 1) tan−1
(

γ + i√
γ2 + 1

)
+ 2γ + π

]

∆p(2)
C = E0Zγ

3√
1 + γ2κ3 , (1.75)
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1.3 The role of higher-order correction terms

which can be simplified in the static regime (i.e., γ � 1) as

∆p(1)
C ≈ πZE0

κ3 ,

∆p(2)
C = 0, (1.76)

and in the nonadiabatic regime (i.e., γ � 1) as

∆p(1)
C ≈ πZE0

κ3

(
γ

2 + 1
4γ + 2

π

)
,

∆p(2)
C = γ2ZE0

κ3 . (1.77)

For the latter, we can assume that the trajectory x(t) ≈ xe + E0t/ω can be used as the
drift introduced during t < π/(2ω) is small in comparison to the tunnel exit xe. We can
separate the I-CMT from the further Coulomb effects when ∆p(2)

C � ∆p(1)
C (i.e., γ . 2).

We plotted the estimated Coulomb momentum shift estimated by Eqs. (1.76) and
(1.77) in Figs. 1.1(a) and 1.2(a), respectively. The Coulomb momentum shift relative
to the characteristic photoelectron momentum in the laser field, E0/ω, can be derived
from the values in the Figs. 1.1(a) and 1.2(a) by multiplication by a factor of πZω/κ3.
The Coulomb momentum shift almost exactly corresponds to the prediction by the ARM
theory. Physically, we can interpret this result as a verification of the simple-man model
[15], where electron appears at the tunnel exit instantaneously and propagates further
classically in the continuum with Coulomb induced momentum shift

∆pC ≈ −
∫ ∞

0
dt∂xV (x(t)). (1.78)

This expression gives Eqs. (1.76) and (1.77) when the trajectory x(t) is used along with
position of the adiabatic and nonadiabatic tunnel exit, respectively. The role of the
initial Coulomb momentum transfer is larger in the nonadiabatic case, since the tunnel
exit is located closer to the atom than in the adiabatic case. The S1 CCSFA is physically
equivalent to the ARM theory with the only difference being how the Coulomb singularity
is treated. As we will show later, the ARM theory is more rigorous as it is based on
wave functions matching but also including further simplifications. Nevertheless, both
the S1 CCSFA and the ARM theory are of the same accuracy explainign the agreement
in Figs. 1.1 and 1.2 (see Sec. VI in [168]).
Let us note that the S1 CCSFA reproduces the correction factor as given in Eq. (1.32)

leading to agreement with the PPT tunneling theory discussed in the previous section.
On the other hand, S1 CCSFA does not reproduce the exact tunneling rate given by
the recently calculated nonadiabatic PPT theory [178]. This is due to the fact that
the Coulomb potential is neglected in the continuum leading to omition of frustrated
ionization [179,180] where ionized electron does not have enough kinetic energy to escape
from the potential well of its parent ion. Nevertheless, we can estimate the fraction of such
electrons from Eq. (1.70) and derive a correction factor ≈

(
2γ
e

)−2Z/κ
yielding agreement

with the PPT theory (for more details see Sec. VII in [168]).
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Chapter 1 Strong-field ionization

S2 CCSFA

Up to now, the S1 CCSFA was able to reproduce the results of the PPT and ARM
theories avoiding necessity of wave function matching. The coincidence of the result is
given by the convenient location of the saddle point which as far from the atomic core
but still under the tunnel exit. In this part, we are going to address the higher-order
corrections in our CCSFA approach, which will take us beyond the PPT and CCSFA
theories.

As we already disscussed, S2 CCSFA contains a quasiclassical correction term (∼ 1/})
as well as two quantum correction terms (∼ }0). In the latter, also the small term from
the S1 CCSFA is included (see Eq. (1.72)). From no on, we are going to address the
terms individually: the quasiclassical S2 CCSFA will contain only the quasiclassical term
and the quantum S2 CCSFA will contain all three correction terms.
The second order corrections to the ionization amplitude are small and the change to

the momentum distribution is only quantitative. The shift of the peak of PMD and the
change of the probability at the peak of the momentum distribution due to the new terms
are shown in Fig. 1.1 for quasistatic regime and in Fig. 1.2 for nonadiabatic regime. In
both cases, the second-order correction terms do not change the ionization probability
significantly, but rather increase the Coulomb momentum shift when compared to the
S1 CCSFA results.

A physical interpretation can be found for every single term. The second order term in
quasiclassical S2 CCSFA decrease the ionization probability and increase the momentum
shift, which both can be contributed to the effective decrease of the potential barrier
formed by the Coulomb field of the atomic core and the laser field. The position of the
tunnel exit can be found from the relation

− Ip = −E0x−
Z

|x|
, (1.79)

which one can solve exactly in x. The expansion of this solution in E0/Ea gives

xe ≈
Ip
E0

(
1− 4ZE0

κEa

)
. (1.80)

Whereas the S1 CCSFA contains only the simple-man exit xe ≈ Ip/E0, the S2 CCSFA
incorporates also the higher-expansion term of the order E0/Ea while effectively increas-
ing the Coulomb interaction and hence also the momentum shift via Eq. (1.78). To be
more exact, the tunneling probability decreases because of the large damping from the
tunneling exponent exp(−

∫
|x|dx), where p(x) = i

√
2(Ip − xE0 + Z/|x|). The latter can

be deduced from SFA directly and poses no surprise.
The decrease in the tunneling rate is mainly due to the next-to-leading order correction

factor neglected in the S1 CCSFA (the second term in the bracket):∣∣∣∣∣ caca,0 exp
[
ζ1
(
x(0)
s , t(0)

s

)]∣∣∣∣∣
2

≈ 1
2

(
4κ3

E0
− 2κx(0)

s

) 2Z
κ

. (1.81)

This formula shows how the Coulomb correction factor decreases with an increasing
saddle point coordinate, which fits to the intuitive picture discussed above.
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1.4 Further theories

The quantum correction to S2 increases the tunneling probability, which corresponds
to an intuitive picture of barrier lowering. As a matter of fact, the quantum correction
term −i∂xxS/2 ∼ −ip′(x) in Eq. (1.37) is equivalent to an additional term in the effective
potential Veff = V − xF (t)− i∂xxS/2 causing its decrease and hence the decrease of the
tunnel exit. As we see, the quantum correction increase ionization probability and the
Coulomb momentum shift in the continuum via decrease of the barrier.

The role of Coulomb-correction terms on ionization time delay

Let us investigate the role of the different Coulomb quantum correction terms for the
ionization amplitude, i.e., the quantum term in S2 and the correction higher-order term
obtained from S1. As we can see from Figs. 1.1(a) and 1.2(a), the quasiclassical S2
and quantum S2 curves are very close meaning that the quantum corrections almost
compensate for each other. The quantum term in S2 increases the momentum shift,
whereas the quantum term stemming from the determinant of S1 decreases it, giving an
approximately net zero change. We further clarify the role of the quantum correction due
to the determinant in Fig. 1.3. We can deduce from the figure, that the compensation is
different in the quasistatic and the nonadiabatic regime. While in the first, the overall
momentum shift is positive (the determinant term contribution is less important), in the
latter, the net momentum corrections are negative (the determinant term contribution
is more obvious).
The momentum shift can interpreted as a time delay at the detector as measured in

the attoclock experiments [44] with respect to the simple-man prediction. The quantum
correction term in S2 introduces a positive time delay and the determinant term intro-
duces a negative time delay of the same order with respect to the simple-man prediction
given by the quasiclassical S2 CCSFA. Let us also stress that the introduced time delay
due to the Coulomb quantum corrections is an additional effect on top of the Wigner
delay time [181] at tunneling ionization [182], which is not described by the CCSFA.
As we already mentioned, the quantum correction term of S2 vanishes in the more

realistic 3D case due to ∆V (r) = 0 in Eq. (1.46). Then, the overall delay time connected
to the Coulomb quantum corrections will be negative in the 3D case. Moreover, one can
show that for the negative delay time the time derivatives of S(x, t) in the determinant are
dominant and the spatial derivatives play only minor role. Therefore, we can anticipate
that the negative delay time is not connected to the spatial uncertainty of the bound state
but rather to the effects due to the Coulomb quantum corrections for the continuum state.
Moreover, one can see from the Fiq. 1.1 that the time delay effect is most dominant in
the near-threshold regime of large E0/Ea, but insignificant in the deep-tunneling regime.
This is in correspondence to the specific properties of the tunneling ionization delay
time [182].

1.4 Further theories

The SFA was also applied in the nondipole regime [183] and even reformulated fully
relativistically in [184, 185]. The application of the CCSFA for the nondipole regime
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Chapter 1 Strong-field ionization

Figure 1.3: The dependency of the Coulomb momentum shift of the final momentum
on the laser field strength E0 in the quasistatic regime with γ = 1 is obtained by several
methods and plotted in panel (a). In the panel (b), we plotted the dependency of the shift
on the Keldysh parameter γ in the nonadiabatic regime with ω = 0.02. The methods used
are: classical S2 CCSFA (dashed line), quantum S2 CCSFA with both quantum corrections
(solid line), and quantum SFA where the quantum corrections in the exponent are dropped
(dotted line).

also followed in [186] along with its relativistic reformulation in [187] accounting for spin
effects in the above-threshold ionization [188].
Nowadays, there exist two alternative approaches to the strong-field ionization be-

side the discussed CCSFA approximation. In fact, all these theories are based on the
eikonal approximation and differ mainly in the treatment of the singularity introduced
by the Coulomb potential in the eikonal expansion. The first theory was formulated
quite recently in [189] and is based on the quantum-orbit strong-field approximation
(see [40, 41]) while taking into account the Coulomb interaction in the quantum-orbits.
The second theory called the analytical R-matrix theory (ARM). ARM is based on the
powerful idea describing the scattering and ionization in multielectron systems embedded
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1.5 Strong-field ionization of diatomic molecules

into the R-matrix method: partition of the space into outer anid inner regions and was
systematically developed in [37–39]. This partition allows us to address different types
of underlying dynamics of two interacting systems individually. For example, the ion
and the liberated electron in the case of one-electron ionization in the inner region and
freed electron in the simplified description of the electron-core interaction in the outer
region (e.g., neglecting electron exchange). The dynamics in the inner region could be
very complex but the limited volume of the region makes its description manageable by
the already developed theoretical techniques developed for bound states of multielectron
systems. Another advantage of this partition is the natural division of the rescatterings
into hard and soft with respect if they happen in the inner or the outer region, respec-
tively. Moreover, the ARM preserves the gauge invariance unlike the SFA, where both
wave functions are approximations and contribute to the breakdown of the invariance.

1.5 Strong-field ionization of diatomic molecules

The strong-field ionization of diatomic molecules and its understanding is the next step
on our journey to investigation of more complex molecules.
Unlike the separate atoms, the diatomic molecules introduce breaking to the spherical

symmetry due to the dual atomic centers. This poses new features for the strong-field
ionization as dependency on the orientation of the molecule and multicenter interference.
Whereas the first is well described by the Ammosov-Delone-Krainov theory for molecules
(MO-ADK) [54], the latter can be addressed only by the molecular strong-field approx-
imation (MO-SFA) [46, 55–58]. Nevertheless, MO-SFA suffers as well as the SFA form
the gauge noninvariance and suffers from the absence of the Coulomb potential as dis-
cussed in the Sec. 1.2. For our later convenience, the MO-ADK would be beneficial for
us as we plan to use the equivalent of the CTMC simulations for analysis of the PMD
for the molecule of O2 in the tunneling regime. Unfortunately, the lack of the multicore
interference seem to play a crucial role and has to be accounted for [49,52,53].
Fortunately, a new method of partial-Fourier-transformation for molecules (MO-PFT)

was developed recently [59–61]. This method [59] was able to reproduce the ADK tun-
neling rates for atoms and even to explain the alignment-dependent ionization rate of
CO2 [62]. Moreover, the MO-PFT incorporating both effects and describes also the phase
structure of the tunneled wave packet at the tunnel exit, which is making this theory
very convenient for our later use.
We will generalize the procedure from [60] for arbitrary orientation of the highest

occupied molecular orbital (HOMO) 1πg of the O2 molecule consisting of two p-orbitals
in anti-bonding formation as shown in Fig. 1.4. The orientation of HOMO and the
interatomic distance |R| will be considered fixed during the strong-field ionization and
the later evolution in the continuum as most of the important dynamics takes place
on timescales ∼ 1-10 femtoseconds for mid-IR lasers, which are much smaller than the
timescales associated with vibrations or rotations of molecules (i.e., 100 femtoseconds for
vibrations and 100 picoseconds for rotations [190]).
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Figure 1.4: Orientation of HOMO 1πg of the molecule O2 with respect to the axes. The
1πg consist of two anti-bonding p-orbitals. The position of the atoms is given by the vectors
±R

2 . The alignment of HOMO is described by polar angle θM , azimuthal angle ϕM and
angle ϕP giving the orientation of the p-orbitals with respect to the y-axis.

The PFT method can be briefly introduced via Hamiltonian in the length gauge

H = p̂2

2 + E0x, (1.82)

where E0 is the quasistatic field strength of the laser linearly polarized along x-axis and
where we replaced the Coulomb potential by the zero-range potential.
The key to the PFT method is the mixed representation defined as

Φatom(x, py, pz) = 1
2π

∫∫
dy dz e−iypy−izpzψatom(x, y, z), (1.83)

where the wave function in the mixed representation depends on two momentum vari-
ables perpendicular to the polarization axis and one coordinate variable parallel to the
polarization axis. Thanks to the mixed from, we can simplify the three-dimensional
Schrödinger equation as

− ∂2Φatom(x, py, pz)
∂x2 = 2

(
E′ − E0x

)
Φatom(x, py, pz), (1.84)

with E′ = −(Ip + p2
y/2 + p2

z/2) and ionization potential Ip. The form of the Schrödinger
equation is familiar and allows us to use WKB approximation leading to the solution of
the form

Φatom(x, py, pz) = C√
px(x)

eiS(x,py ,pz), (1.85)

where S(x, py, pz) is the classical action and px = |∂xS(x, py, pz)| is the kinetic momen-
tum along the polarization axis. The crucial step is finding such x0 in the classically
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1.5 Strong-field ionization of diatomic molecules

forbidden region that x0 � 1 and x0 � xe. The first ensures that we can use the asymp-
totic form of the field-free wave function and the latter that the the point is far away
from the tunnel exit xe ≡ −Ip/E0 so the field is still small compared to the Coulomb po-
tential. The WKB solution should match with the field-free wave-function at this point.
The constant C can be determined by the matching procedure and the wave function at
the tunnel exit is given as a limit x→ xe yielding

Φatom(x→ xe, py, pz) = Φatom(x0, py, pz)
√

κ

px(x)e
i[S(x,py ,pz)−S(x0,py ,pz)] (1.86)

where Φatom(x0, py, pz) is the field-free wave function and κ =
√

2Ip is the momentum of
the bound state.
The molecular orbital of a homonuclear diatomic molecule is given as a bonding or

anti-bonding superposition of two atomic orbitals, one at each atomic center,

Ψmolecule(r) = 1√
2± 2SOI

[Φatom(r−R/2)± Φatom(r + R/2)] , (1.87)

where SOI is the overlap integral and the R points from one atomic center to the other.
As the HOMO of the O2 molecule is the anti-bonding configuration of two 2p-orbitals

(lets say of two py orbitals). We can write the wave function as

ΨO2(r) = 1√
2

sin θP e−iϕPΨ211(r)− 1√
2

sin θP e−iϕPΨ21−1(r)− cos θPΨ210(r), (1.88)

which can be expressed in the mixed representation as

ΨO2(xe, py, pz) = 1√
2

sin θP e−iϕPΦ211(xe, py, pz)

− 1√
2

sin θP e−iϕPΦ21−1(xe, py, pz)− cos θPΦ210(xe, py, pz).

We can substitute for the mixed wave functions from [60] while keeping all three orienta-
tion angles as a free parameters instead of fixing one particular angle as in the reference.
The wave function at the tunnel exit then yields

ΦO2(xe, pyi, pzi) = Ck1√
πpx(xe)

√
3

2

(
2κ3

3|E(t)|

)2Z/κ

×
{

exp[−ig(pyi, pzi)] exp
[
κ
R

2 cos θM
]

− exp[+ig(pyi, pzi)] exp
[
−κR2 cos θM

]}
×
(

sin θM + i cos θM
p⊥i · ep

κ

)
exp

{(
− κ3

3|E(t)| −
κp2
⊥i

2|E(t)|

)}
,

(1.89)

g(pyi, pzi) ≡ pyi
R

2 sin θM cosϕP + pzi
R

2 sin θM sinϕP . (1.90)
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Chapter 1 Strong-field ionization

With charge of the resulting ion Z, κ =
√

2Ip(E(t)), 2D-vectors: denoting orientation
of the two p-orbitals ep = (cosϕP , sinϕP ) and the initial transversal momentum p⊥i =
(pyi, pzi), and distance of the atoms R = 2.282. The orientation of the anti-bonding
orbital 1πg is described by polar angle θM , azimuthal angle ϕM and orientation of the
orbitals ϕP as indicated in Fig. 1.4.
The total ionization rate at instantaneous field E(t) can be written as Γ =

(
3E(t)
πκ3

)1/2
=∫∫

dpyidpzipx(xe)|ΦO2(xe, pyi, pzi)|2 which leads to partial tunnel ionization rate

wO2(pyi, pzi) ≡
∂2Γ

∂pyi∂pzi

=
( 3

2π

)3/2
|Ck1|2

(
2κ3

|E(t)|

) 2Z
κ
− 1

2

× exp


− 2κ3

3|E(t)| −
κ
(
p2
yi + p2

zi

)
|E(t)|

 a2(pyi, pzi),

(1.91)

a2(pyi, pzi) = 4
[
cosh2

(
κ
R

2 cos θM
)
− cos2 (g(pyi, pzi))

]
×
(

sin2 θM + cos2 θM
(pyi cosϕP + pzi sinϕP )2

κ2

)
.

(1.92)

In the latter expression defines the structural factor a2(pyi, pzi) which incorporates all
the angular dependency of the tunnel ionization. Interestingly, the structural factor
reproduces the structural factor from SFA [53] in the limit of 2Ip � p2

⊥.
The phase at the tunnel exit is given as tan [φin(pyi, pzi)] := Im[ΦO2 (pyi,pzi)]

Re[ΦO2 (pyi,pzi)] yielding

tan (φin) = A cos θM cosB sinhC − sin θM sinB coshC
sin θM cosB sinhC −A cos θM sinB coshC , (1.93)

A ≡ pyi cosϕP + pzi sinϕP
κ

(1.94)

B ≡ pyi
R

2 cosϕM + pzi
R

2 sinϕM , (1.95)

C ≡ κ
R

2 cos θM . (1.96)

As we can see, both tunnel ionization rate and the initial phase are strongly dependent
on the orientation of the molecule θM , ϕM and the orbitals ϕP and depend also on the
initial momenta pyi and pzi.

1.5.1 Ionization rates

The ionization rate depends strongly on orientation as we can see in Figs. 1.5-1.8 for
various pzi where we have also taken into account quadratic Stark shift (we will address
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1.5 Strong-field ionization of diatomic molecules

this in more detail in Sec. 6.5). Since the tunneled electron can originate from both of the
atoms, interference pattern appears which manifests in the alignment dependent figures
as four lobes at angles θ(max)

M = 42.368◦ and 137.632◦. The other two angles correspond
to the obvious symmetry of the problem.
The orientation of the HOMO orbital along with the orientation of the molecule is

encoded in the structural factor given in Eq. (1.92) which determines the shape of the
radiation diagrams in Fig. 1.5-1.8. The investigated orientation give more or less the
same radiation diagram with the most dominant angles of radiation preserved. The only
difference can be found in the thickness of the lobes and whether the radiation vanishes
simultaneously at the angle 0◦ and 90◦ for all values of pzi as can be seen in Fig. 1.5 and
1.7 or only at the angle 90◦ but not at angle 0◦ for large values of pzi as in the Fig. 1.6 or
for none of those angles as can be seen on the green or red curve in Fig. 1.8. Nevertheless,
the effect of the orientation of the HOMO on the radiation diagram is present mainly in
the regions of suppressed radiation and, moreover, very small so we will not consider it
any further.
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Figure 1.5: Dependence of the tunnel ionization rate wMO−PFT (0, pzi) on alignment angle
θM for fixed angles ϕM = 0 and ϕP = 0 and several values of pzi. Maximum of radiance
has four lobes and their position is at θM ∼ 42.368◦, 137.632◦, 222.368◦ and 263.632◦. The
radiance vanishes for angles θM = 0◦, 90◦, 180◦ and 270◦ for all values of pzi.
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Figure 1.6: Dependence of the tunnel ionization rate wMO−PFT (0, pzi) on alignment angle
θM for fixed angles ϕM = 0 and ϕP = π/2 and several values of pzi. Maximum of radiance
has four lobes as in the previous case in Fig. 1.5. The radiance vanishes for angles θM =
90◦ and 270◦ for all values of pzi, but for large transversal momenta pzi does not vanish at
θM = 0◦ and 180◦.
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Figure 1.7: Dependence of the tunnel ionization rate wMO−PFT (0, pzi) on alignment angle
θM for fixed angles ϕM = π/2 and ϕP = 0 and several values of pzi. Maximum of radiance
has four lobes as in the previous cases. The radiance vanishes for angles θM = 0◦ and 90◦ for
all values of pzi, but for large transversal momenta pzi does not vanish at θM = 90◦ and 270◦
which is exactly the opposite case than in the previous figure Fig. 1.6.
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Figure 1.8: Dependence of the tunnel ionization rate wMO−PFT (0, pzi) on alignment angle
θM for fixed angles ϕM = π/2 and ϕP = π/2 and several values of pzi. Maximum of radiance
has four lobes as in the previous cases. The radiance vanishes for angles θM = nπ/2 with
integer n for small values of pzi, but for large transversal momenta pzi does not go completely
to zero at those angles and large pzi survive and dominate over small pzi in the holographic
structure.

1.5.2 Initial phase structure

The tunneled electron can carry some nontrivial initial phase Φin(pyi, pzi) as given by
Eq. (1.93). This is due to the fact that the origin of the tunneled electron cannot be
tracked to the individual atomic orbitals but is a superposition of both of these two
ionization paths. The initial phase is alignment dependent and we analyze it in the
Figs. 1.9 for the various orientations of the molecule and orbitals with respect to the
initial momentum pzi. The initial phase strongly depends on the orientation of the
molecule and has to be taken into account our further investigation of the photoelectron
holography in the Chap. 6.

1.6 Summary

This chapter was concentrating on various theoretical approaches in the strong-field ion-
ization. In the first section we introduced the basic idea behind the most used workhorse
of the strong-field ionization physics: SFA and discussed its limits due to the neglecting
of the Coulomb potential. In the second section, we have introduced the CCSFA which
accounts for the Coulomb potential under the barrier via eikonal Volkov wave function
which is found perturbatively. The CCSFA approach leads to correction factor for the
tunneling rate yielding agreement with the prediction of the PPT theory. As the main
contribution of this work, the role of the higher-order terms of the eikonal Volkov func-
tion and their role for the measured delay times is discussed in the third section for 1D
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Chapter 1 Strong-field ionization

(a) ϕM = 0 and ϕP = 0 (b) ϕM = 0 and ϕP = π/2

(c) ϕM = π/2 and ϕP = 0 (d) ϕM = π/2 and ϕP = π/2

Figure 1.9: Dependence of the initial phase Φin(0, pzi) on the initial transversal momentum
pzi for various alignments of the molecule θM and for fixed ϕM and ϕP as given in sublabels.
In the Fig. 1.9(a) Φin(0, pzi) = 0 which corresponds to the symmetry of ionization rate in
Fig. 1.5. For other orientations, we can see a clear dependence of the initial phase on the
alignment. The phase dependency on the momentum pzi is rather moderate for the maximal
ionization rates θM = 45◦ ≈ 42.4◦, but strongly varies for special alignment of θM = nπ/2
and integer n which will have influence on the holographic pattern.

case and its implication for the 3D leading to negative delay times. In the fourth section,
we briefly discussed the another ionization models as ARM theory or relativistic CCSFA.
In the fifth section, we have addressed the strong-field ionization of the diatomic

molecule O2 via the MO-PFT theory predicting dependency of the tunnel ionization
rate on the alignment of the molecule and also a nontrivial phase structure of the tun-
neled wave packet in contrast to the symmetric case of single atoms. Moreover, we have
generalized the known results for any arbitrary orientation of the ionized molecular or-
bital and we are going to apply these results later in Chap. 6 for strong-field ionization
holography.

34



Chapter 2

Analytical model

In this chapter we are going to introduce our analytical perturbative model for treatment
of the Coulomb interaction between the tunnel ionized electron and its parent ion along
with the key assumption. We will follow the electron along its classical trajectories
and analyze Coulomb momentum transfer (R-CMT) while restricting the interaction
to specific points of rescattering on the trajectory. In this chapter we will introduce
unique classes of rescattering points (RP): peak-like and plateau-like RP and estimate
the R-CMT at these points. This chapter is based on the paper [191].

2.1 Introducing the model

In order to avoid complications introduced by the non-adiabatic effects during tunneling
and, more importantly, during recollision, we consider such a regime of the tunneling
ionization for an atom in a strong laser field where the Keldysh parameter [1] is small,
i.e. , γ ≡

√
Ip/2Up � 1, with the ionization potential Ip and the ponderomotive potential

Up = E2
0/4ω2.

For simplicity, we also assume linearly polarized laser field:

E(u) = E0e cosu,
B(u) = n×E(u), (2.1)

where u = ω(t − z/c) is the laser phase, B(u) is the laser magnetic field, E0 and ω are
the amplitude and the angular frequency of the laser field, respectively, c is the speed of
light, e = (1, 0, 0) and n = (0, 0, 1) are the unit vectors along the laser polarization and
propagation directions, respectively.
In our analytical model, we are going to investigate classical trajectories starting at

the tunnel exit and evolving with the laser pulse. Asymptotic properties of any tun-
neled electron can be estimated analytically once the laser pulse has passed. The initial
conditions for the classical trajectory at tunnel exit are given by the PPT theory which
provides exact position of the tunnel exit and initial longitudinal momentum, but only
restrictions on the ionization time ti and initial transversal momentum p⊥. The latter
two parameters are therefore consider throughout this manuscript to be free parame-
ters that determine fully the shape of the trajectory. Let us just recall that the initial
transversal momentum is not represented uniformly in the final distribution, but with a
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Chapter 2 Analytical model

weight given in [27] as

w(p⊥, ti) ∝ exp
(
− p2

⊥
∆2
⊥(ti)

)
, (2.2)

where ∆⊥(ti) = |E(ti)|1/2/(2Ip)1/4.

2.1.1 Restrictions and key assumptions

In our model, we will consider the nondipole regime of interaction and will keep in
the solution of the equations of motion (EOM) only leading terms with respect to 1/c.
Those terms describe the laser magnetic field induced drift of the electron in the laser
propagation direction. We are not going to address the fully relativistic regime in this
manuscript since we will initially assume that v/c � 1 in later introduced expansion.
This is not only a pragmatic choice leading to simplification of calculations via subsequent
disentanglement of EOM, but also a suitable choice for practical purposes as ongoing
experiments operate in the nondipole tunneling regime delivering novel results [114,142].
The physical condition of the applied 1/c-expansion can be also understood as the

smallness of the laser induced drift distance during the laser period d ∼ λξ2/2 [120] with
respect to the recollision impact parameter ρ ∼ 2πp⊥/ω: d � ρ, where ξ = E0/(cω)
is the invariant laser field parameter, λ is the laser wavelength, p⊥ =

√
p2
y + p2

z is the
electron transverse momentum, p⊥ ∼ 2∆⊥ = 2κ

√
E0/Ea, κ =

√
2Ip is the atomic

momentum, Ip is the ionization potential, and Ea = κ3 is the atomic field. Note that the
introduced small parameter ε ≡ d/ρ, in fact, is directly related to the Lorentz deflection
parameter [128,129]:

ΓR = ε2 = κcξ3

16ω . (2.3)

The magnetically induced drift cannot be improvidently ignored as it changes the
impact parameter of recollisions and therefore modifies CF. However, we stress that
during the brief recollision time δt the effect of the magnetically induced drift is negligible,
because the change of the impact parameter due to drift during the recollision time, which
can be estimated as δρ ∼ (λξ2)(ωδt), is much smaller than the impact parameter itself.
In fact, we estimate the recollision time as δt ∼ ρ/v‖, with the electron longitudinal
velocity at the recollision v‖ ∼ E0/ω, and the ratio δρ/ρ ∼ εγ

√
E0/Ea. We consider

the tunneling regime when the Keldysh parameter is small γ � 1, and the field is too
small to hinder the over-the-barrier ionization, i.e., E0/Ea � 1. The latter means that
δρ/ρ, the change of the impact parameter due the drift during the recollision time, has
an additional smallness in addition to the small parameter ε and, consequently, can be
neglected in our discussion.
Our aim is to find an analytical expression for the CMT from the parent ion to the tun-

neled electron. For this purpose, we assume that the Coulomb field effect can be neglected
along the most part of the trajectory, but is essential at well restricted recollision points
and near the tunnel exit, where it is treated as a perturbation with respect to the laser
field. The latter assumptions are valid if, firstly, the Coulomb force is small with respect
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to the laser field at the recollision point and at the tunnel exit: Z/r2
r , Z/x

2
e � E0, the

charge of the atomic core Z, the recollision and the tunnel exit coordinates rr ∼ ∆⊥/ω,
and xe ∼ Ip/E0, respectively, and secondly, if the quiver amplitude of the electron in the
laser field greatly exceeds the distances of recollision and of tunnel exit E0/ω

2 � rr , xe.
The first pair of these conditions reads

Z

κ
γ2 � 1, (2.4)

Z

κ

E0
Ea

� 1, (2.5)

and the second pair gives

γ

√
E0
Ea

� 1, (2.6)

γ2 � 1. (2.7)

Let us remark that these conditions are generally well fulfilled in the tunneling regime.

2.1.2 Expansions of equations of motions

The dynamics of the tunneled electron in the continuum is governed by Newton equations

dp
dt

= −E− v
c
×B− Zr

r3 , (2.8)

where v is the electron velocity. The Coulomb field of the atomic core will be treated by
perturbation theory during the recollision and we expand the momentum and coordinate
as

p = p0 + p1 + . . . ,

r = r0 + r1 + . . . . (2.9)

The unperturbed trajectory r0(u) is determined by the laser field

dp0
dt = −E

(
1− n · v0

c

)
− nv0 ·E

c
. (2.10)

Momentum transfer due to the Coulomb field at the recollision is described by the tra-
jectory in the first- and the second-order of perturbation

dp1
dt = −Zr0

r3
0
, (2.11)

dp2
dt = −Zr

2
0 r1 − 3Z [r0 · r1] r0

r5
0

, (2.12)

with r0 = |r0| and r1 being the first-order correction to the trajectory. Taking into
account that du/dt = ω(t − vz/c), and that the integral of motion in a plane laser field
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Λ0 ≡ ε0(u) − cp0z(u) = const, with the electron energy ε0, Eq. (2.10) are integrated,
providing the laser driven momentum evolution

p0x(u) = pxr + [Ax(u)−Ax(ur)] ,
p0y(u) = pyr, (2.13)
p0z(u) = pzr + pzd(u, ur),

with the laser vector-potential Ax(u) = −(E0/ω) sin u. The initial conditions are defined
at the recollision point with the recollision phase ur, and the recollision momentum
pr = (pxr, pyr, pzr), aiming at application of the solution near the recollision point. Here,
the drift momentum induced by the laser magnetic field is

pzd(u, ur) ≡
pxr
c

[Ax(u)−Ax(ur)] + 1
2c [Ax(u)−Ax(ur)]2 ,

(2.14)

where the integral of motion is approximated by Λ0 ≈ c2, to keep the leading term in
1/c expansion. The unperturbed electron trajectory near the recollision point is

x0(u) = E0
ω2 [cosu− cosur + (u− ur) sin ur] + pxr

ω
(u− ur) + xr.

y0(u) = pyr
ω

(u− ur) + yr, (2.15)

z0(u) = pzr
ω

(u− ur) + zd(u) + zr,

with the recollision coordinate rr = (xr, yr, zr), and the laser magnetically induced drift
coordinate

zd(u) =
∫ u

ur
pzd(u′, ur)du′. (2.16)

Once the zero-order equations are solved, the momentum transfer due to the Coulomb
field at the recollision can be derived as the first-order correction

p1 = −Z
ω

ur+δ∫
ur−δ

r0(u′)
r3

0(u′)
du′, (2.17)

where r0(u) = (x0(u), y0(u), z0(u)). The value of the parameter δ is coupled to the
properties of the recollision and will be discussed in the next section.
In the discussion above, the Coulomb field effect is accounted for only near recollision

points and near the tunnel exit, where it is treated as a perturbation with respect to
the laser field. Still Eq. (2.17) for the Coulomb momentum transfer (CMT) includes
nonperturbative Coulomb effects via dependence on the recollision parameters, i.e., the
electron momentum pr and coordinate rr at the recollision point. In fact, the multiple
recollisions preceding the currently discussed one can have significant contribution to the
considered pr and rr, although the Coulomb field is considered to be only a perturbation
at every single one of them. Nevertheless, we will concentrate only on the single recollision
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for now and return to the role of multiple recollisions in Chap. 3 where we address their
role in the total Coulomb momentum transfer.
One may apply also a less accurate description by assuming that the Coulomb field

is considered as a perturbation globally, i.e, at any moment the difference between the
exact and laser driven trajectories is a perturbation. In this description the unperturbed
electron trajectory is given by Eqs. (2.13)-(2.16), replacing the recollision phase ur by
the ionization phase ui, and the recollision coordinate rr, and momentum pr by the
coordinate and momentum at the tunnel exit: ri = (xi, 0, 0), and pi = (0, pyi, pzi)
leading to

p0x(u) = Ax(u)−Ax(ui),
p0y(u) = pyi, (2.18)
p0z(u) = pzi + pzd(u, ui),

which can be solved as

x0(u) = E0
ω2 [cosu− cosui + (u− ui) sin ui] + xi.

y0(u) = pyi
ω

(u− ui), (2.19)

z0(u) = pzi
ω

(u− ui) + zdi(u),

with the tunnel exit xi = −Ip/E(ui), and the laser magnetically induced drift coordinate

zdi(u) =
∫ u

ui

pzd(u′, ui)du′. (2.20)

Although generally we do not apply dipole approximation, we will check the accuracy
of our method in Sec. 2.4 in the dipole approximation case.

2.2 Classification of recollisions
For estimation of R-CMT we first need to classify recolliding trajectories. There are
two characteristic recolliding trajectories: 1) when the electron’s longitudinal velocity is
vanishing at the recollision point, xr = 0 and pxr = 0, and 2) when the electron has the
highest velocity at the recollision point, xr = 0, |pr| 6= 0 and E(ur) = 0. We will call
the above-mentioned types of recollisions as a slow recollision (SR), and a fast recollision
(FR), respectively. The first type of recollision corresponds to the peak of the momentum
transfer in dependence on the initial ionization phase, and the second type corresponds
to the plateau of the momentum transfer, as discussed in [96]. Let us remark that the
SR is also known in the literature as “soft recollision” (e.g., [97]).

2.2.1 Slow recollision

In the case of the global perturbation for the Coulomb field, one uses the zero-order
solutions Eqs. (2.19), and finds the recollision phases. The SR phase us is determined

39



Chapter 2 Analytical model

x
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k = 1
l = 2
k = 2

Figure 2.1: Green (dot-dashed) and blue (dashed) trajectories correspond to SR with k = 1
and k = 2 (yellow circles), respectively. Yellow trajectory corresponds to FR with l = 2 (blue
square).

by the conditions

x0(us) = 0,
x′0(us) = 0,
x′′0(us) 6= 0, (2.21)

where prime denotes derivative with respect to the phase u.
The middle condition x′0(u) = 0 for the kth-SR leads to

u(k)
s = (−1)k+1ui + π(k + 1), k ∈ N. (2.22)

Odd values of k correspond to trajectories approaching the ion from below, whereas even
values to trajectories returning to the ion from above, see Fig. 2.1. The ionization phase
u

(k)
i,s leading to the kth-SR is derived from Eq. (2.21):

E0
ω2 sin ui [π(k + 1)] + xi = 0, for k odd, (2.23)

E0
ω2 {−2 cosui + [−2ui + π(k + 1)] sin ui}+ xi = 0, for k even.

(2.24)

Note that the tunnel exit xi(ui) also depends on the ionization phase via E(ui). Taking
into account that the ionization is most likely to take place near the maximum of the
field ui ≈ 0, we expand Eqs. (2.23) and (2.24) over ui � 1, which leads us to the solution

u
(k)
i,s ≈ γ2

2π (k + 1) , for k odd,

u
(k)
i,s ≈ 4 + γ2

2π (k + 1) , for k even,

(2.25)
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2.3 Momentum transfer during recollisions

where we used xi = −Ip/E0 and the definition of the Keldysh parameter γ. The γ2

term for even values of k can be neglected with respect to the leading term in the deep
tunnelling regime and hence u(k)

i,s ≈ 2
π(2k−1) .

2.2.2 Fast recollision

FR phase uf fulfills:

x0(uf ) = 0,
x′0(uf ) 6= 0,
x′′0(uf ) = 0. (2.26)

The phase of FR is derived from the last condition x′′0(uf ) = 0:

u
(l)
f = π/2 + πl, l ∈ N (2.27)

A direct substitution into the first condition of Eqs. (2.26) yields

E0
ω

[
− cosui + sin ui

(2l + 1
2 π − ui

)]
+ xi = 0, (2.28)

which can be again solved in the approximation of small ionization phase, giving us the
initial ionization phase u(l)

i,f and leading to the lth-FR

u
(l)
i,f ≈

2
π(2l + 1)

(
1− xiω

2

E0

)
≈ 2 + γ2

π (2l + 1) , (2.29)

We compare our estimations of the ionization phase ui from Eqs. (2.25), (2.29) with
the exact numerical solutions in Fig. 2.2. All errors are well behaved and do not exceed
5% when the γ2 terms are taken into account. These parameters correspond to cur-
rently accessible mid-IR lasers and lead to relatively large Keldysh parameter, γ ≈ 0.33,
justifying the preservation of γ2 terms in Eqs. (2.25), (2.29). With the current setup,
the relative error does not exceed 6% even when the terms are omitted. Nevertheless,
there is a saturation of the error with increasing k at ≈ 5% for even-valued SR and
with increasing l at ≈ 3% for all FR. The saturated values correspond roughly to the
proportionality of the leading and correction terms. Moreover, the precision for u(k)

i,s is
even greater (by three orders of magnitude) for odd k which originates in the overall
smallness of the ionization phase u(k)

i,s → 0 for this type of recollision. In conclusion we
can say that the relative error of our estimation gets smaller as the ionization phases
ui,s/f approach the peak of the laser field with increasing order of rescattering k or l.

2.3 Momentum transfer during recollisions
The momentum transfered to the recolliding electron by the Coulomb field of the atomic
core at the kth recollision event is given by Eq. (2.17). As the main contribution to the
integrals comes from the regions near the recollision points, we expand the trajectory
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Figure 2.2: Analysis of estimated ionization phase u(k)
i,s and u(l)

i,f given by Eqs. (2.25) and
(2.29), respectively. We compare the estimated values with the exact numerical results for
even-valued SR and all FR in panel (a) and for odd-valued SR in panel (b). The correspond-
ing relative errors are shown in panels (c) and (d), respectively. Parameters used for this
comparison are E0 = 0.041, ω = 0.0134 and Ip = 0.5.

near the recollision phase where R-CMT takes place. The trajectory of the electron of
Eq. (2.15) at the recollision point (xr, yr, zr), with the recollision momentum (pxr, pyr, pzr)
can be approximated near the recollision phase ur as an expansion in σ = u− ur, up to
the σ2-order:

x0(σ) ≈ xr + pxr
ω
σ − E(ur)

2ω2 σ2

y0(σ) ≈ yr + pyr
ω
σ, (2.30)

z0(σ) ≈ zr + pzr
ω
σ − pxrE(ur)

2cω2 σ2,

because zd(ur) = 0, and z′d(ur) = pzd(ur) = 0.

2.3.1 Slow recollisions

In the case of SR pxr = 0, consequently, the trajectory in the leading order is

x0(σ) ≈ xr −
E(ur)
2ω2 σ2, y0(σ) ≈ yr, z0(u) ≈ zr. (2.31)

In the latter we have neglected p⊥σ/ω terms with respect to the recollision coordinate ρ ∼
p⊥/ω, because the effective value of σ, derived from the condition E0σ

2/ω2 ∼ ρ ∼ p⊥/ω is

42



2.3 Momentum transfer during recollisions

σ ∼
√
p⊥ω/E0 ∼

√
γ
√
E0/Ea � 1, and the transversal motion near the recollision point

can be neglected for SR. In general, the rescattering parameter xr neither has to vanish
at rescattering recollision nor has to be small. This assumption leads to generalization of
the SR recollision for a larger class of recollisions with vanishing velocity. On the other
hand, the extension to non-vanishing xr requires more caution and will be discussed in
further details in Chap. 3.
From Eqs. (2.17), we calculate R-CMT for SR along the the trajectory approximated

by Eqs. (2.31) while extending the integration limits to infinity, i.e., δ →∞, which leads
to integrals

p1x,s = −Z
ω

+∞∫
−∞

xr − E(ur)
2ω2 σ2[

E2(ur)
4ω4 σ4 − xrE(ur)

ω2 σ2 + r2
r

]3/2 dσ, (2.32)

p1y,s = −Z
ω

+∞∫
−∞

yr[
E2(ur)

4ω4 σ4 − xrE(ur)
ω2 σ2 + r2

r

]3/2 dσ, (2.33)

p1z,s = −Z
ω

+∞∫
−∞

zr[
E2(ur)

4ω4 σ4 − xrE(ur)
ω2 σ2 + r2

r

]3/2 ,dσ. (2.34)

with rr =
√
x2
r + y2

r + z2
r . The extension of the limits is well justified since large values of

σ correspond to large deviation of the phase from the recollision point, yielding negligible
contribution to the integration.
The analytical solution of the above integrals can be found for our problem in all

generality. The first step is the following substitution

χ ≡ |E(ur)|
2ω2rr

σ2, (2.35)

with corresponding differentials yielding

dχ = |E(ur)|σ
ω2rr

dσ, (2.36)

dσ =
√

ω2rr
2|E(ur)|χ

dχ. (2.37)

Let us note that the substitution (2.35) is suitable since all integrated functions are even
and hence we can restrict the limits of integration to 0 and +∞. Further, when we
replace the variable σ with χ in integrals in Eqs. (2.32)-(2.34), we obtain simplified form
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of the integrals as

p1x,s = −Z
√

2
|E(ur)|r5

r

+∞∫
0

xrχ
−1/2 + sign [−E(ur)]rrχ1/2{

χ2 + 2xrr−1
r sign [−E(ur)]χ+ 1

}3/2 dχ, (2.38)

p1y,s = −Z
√

2
|E(ur)|r5

r

+∞∫
0

yrχ
−1/2{

χ2 + 2xrr−1
r sign [−E(ur)]χ+ 1

}3/2 dχ, (2.39)

p1z,s = −Z
√

2
|E(ur)|r5

r

+∞∫
0

zrχ
−1/2{

χ2 + 2xrr−1
r sign [−E(ur)]χ+ 1

}3/2 dχ. (2.40)

We have brought the integrals to suitable form corresponding to the tabular integral [192]

∞∫
0

xµ−1dx
(1 + 2x cos t+ x2)ν =

( 2
| sin t|

)ν−1/2
Γ
(
ν + 1

2

)
×B(µ, 2ν − µ)P 1/2−ν

µ−ν−1/2(cos t), (2.41)

where Γ(x) stands for the Gamma function, B(x, y) for the Beta function, Pµν (x) for the
Legendre function of the first kind and −π < t < π, 0 < Re(µ) < Re(2ν).
Once we identify cos t ≡ − sign [E(ur)]xrrr , we can easily find the general solutions to

Eqs. (2.38)-(2.40) as

p1x,s = −πZ√
23|E(ur)|(y2

r + z2
r )rr

{
3xr
rr
P−1
− 3

2

(
− sign [E(ur)]

xr
rr

)
− sign [E(ur)] P−1

− 1
2

(
− sign [E(ur)]

xr
rr

)}
, (2.42)

p1y,s = − 3πZyr√
23|E(ur)| (y2

r + z2
r ) r3

r

P−1
− 3

2

(
− sign [E(ur)]

xr
rr

)
, (2.43)

p1z,s = − 3πZzr√
23|E(ur)| (y2

r + z2
r ) r3

r

P−1
− 3

2

(
− sign [E(ur)]

xr
rr

)
, (2.44)

where Pµν (η) is the Legendre function of the first kind which emerges during the integra-
tion as shown in Eq. (2.41).
For illustration, we show the behavior of the Legendre functions in Fig 2.3. Both

functions diverge for η → −1, which is, however, out of the region of our interest since
the condition xr .

√
y2
r + z2

r is fulfilled at the recollision and leads to the restriction on
the argument of the Legendre function

∣∣∣sign [E(ur)]xrrr
∣∣∣ . 1√

2 . The other possible case of
xr �

√
y2
r + z2

r along with E(ur)xr > 0 does not belong to the class of soft recollisions.
It corresponds to the hard recollision case with a large R-CMT which is beyond our
present treatment.
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Figure 2.3: The Legendre functions within the valid range given by Eqs. (2.42)-(2.44).
Distinct values are P−1

−3/2(0) ≈ 0.787 and P−1
−1/2(0) ≈ 1.08. Both functions diverge at η →

−1, which is out of the region of our interest since physically relevant cases correspond to
|η| < 1/

√
2.

In the case of the commonly used SR with xr → 0, we have an approximate formula
for R-CMT:

p1x,s(ur) ≈ Z
sign [E(ur)]
3
√
|E(ur)|

23/2P1

r
3/2
r

. (2.45)

p1y,s(ur) ≈ −Z 23/2P2yr√
|E(ur)|r5/2

r

, (2.46)

p1z,s(ur) ≈ −Z 23/2P2zr√
|E(ur)|r5/2

r

, (2.47)

where P1 = 3πP−1
−1/2(0)/8 ≈ 1.27, and P2 = 3πP−1

−3/2(0)/8 ≈ 0.927 (for more details see
Appendix A of [191]).

2.3.2 Fast recollisions

In the case of generalized FR we assume xr = 0 and relax the condition on acceleration
to E(ur) ≈ 0. In estimating R-CMT, the electron trajectory near the recollision point in
the leading order can be then approximated by

x0(σ) ≈ pxr
ω
σ,

y0(σ) ≈ yr + pyr
ω
σ, (2.48)

z0(σ) ≈ zr + pzr
ω
σ,
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which, when substituted into Eq. (2.17), yield

p1x,f = −ωZ
σ2∫
σ1

pxrσ[
p2
xrσ

2 + (pyrσ + ωyr)2 + (pzrσ + ωzr)2
]3/2 dσ, (2.49)

p1y,f = −ωZ
σ2∫
σ1

pyrσ + ωyr[
p2
xrσ

2 + (pyrσ + ωyr)2 + (pzrσ + ωzr)2
]3/2 dσ, (2.50)

p1z,f = −ωZ
σ2∫
σ1

pzrσ + ωzr[
p2
xrσ

2 + (pyrσ + ωyr)2 + (pzrσ + ωzr)2
]3/2 dσ, (2.51)

where we have replaced the lower and upper limit of integration by σ1 and σ2, respectively.
The integrals are trivial to solve giving

p1x,f ≈ Z

 pxr [(yrpyr + zrpzr)σ + ωrr][
p2
xrr

2
r + (yrpzr − zrpyr)2

]√
p2
xrσ

2 + (pyrσ + ωyr)2 + (pzrσ + ωzr)2


σ2

σ1

,

(2.52)

p1y,f ≈ Z

 −yrp2
xrσ − (yrpzr − zrpyr) (ωzr + pzrσ)[

p2
xrr

2
r + (yrpzr − zrpyr)2

]√
p2
xrσ

2 + (pyrσ + ωyr)2 + (pzrσ + ωzr)2


σ2

σ1

,

(2.53)

p1z,f ≈ Z

 −zrp2
xrσ − (yrpzr − zrpyr) (ωyr + pyrσ)[

p2
xrr

2
r + (yrpzr − zrpyr)2

]√
p2
xrσ

2 + (pyrσ + ωyr)2 + (pzrσ + ωzr)2


σ2

σ1

.

(2.54)

While relation yrpzr = zrpyr holds due to symmetry in the dipole limit, in the nondipole
case yrpzr − zrpyr ≈ yr[pzd(ur, ui) − 1

ur−ui
∫ ur
ui
pzd(u, ui)du] ∼ yr cξ

2. The terms propor-
tional to (yrpzr − zrpyr)2 in the denominators in Eqs. (2.52)-(2.54) are ξ2 times smaller
with respect to the leading term [in estimation we use pxr ∼ cξ] and can be therefore
neglected with respect to the expansion parameter ε of Eq. (2.3) which can be rewritten
as ε ∼ (ξ/γ)

√
Ea/E0. Under assumption of pxrσ/ω ∼ yr ∼ zr, one can show that the

contributions of the magnetic drift terms with respect to the leading one in numerators
of Eqs. (2.53) and (2.54) is smaller by factor of ξ and therefore can be neglected.
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Thus, after neglecting the discussed terms, we have

p1x,f ≈ Z

 p⊥rσ + ω

pxrrr

√
p2
xrσ

2 + (pyrσ + ωyr)2 + (pzrσ + ωzr)2

σ2

σ1

,

(2.55)

p1y,f ≈ Z

 −σyr
r2
r

√
p2
xrσ

2 + (pyrσ + ωyr)2 + (pzrσ + ωzr)2

σ2

σ1

, (2.56)

p1z,f ≈ Z

 −σzr
r2
r

√
p2
xrσ

2 + (pyrσ + ωyr)2 + (pzrσ + ωzr)2

σ2

σ1

, (2.57)

with σ1 and σ2 being the lower and upper limits of integration, respectively and p⊥r =√
p2
yr + p2

zr.
In the rescattering picture, the limits σ1 and σ2 can be set to ±∞, yielding for FR

p1x,f ≈ 2Zp⊥r
rrpxrpr

, (2.58)

p1y,f ≈ −2Zyr
r2
rpr

, (2.59)

p1z,f ≈ −2Zzr
r2
rpr

, (2.60)

where pr =
√
p2
xr + p2

yr + p2
zr.

For high-order FR, the recollision picture may break down, which means that the
Coulomb momentum transfer (although being rather small) is not decreasing sharply
when the electron leaves the recollision point. In this case the Eqs. (2.58)-(2.60) do not
provide good approximation. Our analysis shows that better approximation is achieved
with σ1 = −Mod(ur, π) and σ2 = π −Mod(ur, π), which corresponds to the integration
between the surrounding turning points of the trajectory. For FR (i.e., with vanishing
laser field E(ur) ≈ 0) and beyond the recollision picture, we can set σ1 = −σ2 = −π/2
in Eqs. (2.55)- (2.57) yielding for FR in the leading term

p1x,fb ≈
2πZp⊥r

pxrrr
√
p2
rπ

2 + 4ω2r2
r

, (2.61)

p1y,fb ≈ − 2πZyr
r2
r

√
p2
rπ

2 + 4ω2r2
r

, (2.62)

p1z,fb ≈ − 2πZzr
r2
r

√
p2
rπ

2 + 4ω2r2
r

. (2.63)

Let us estimate conditions when the recollision picture is violated. This is the case
once the transversal distance at FR is comparable or greater than the amplitude of the
quiver motion. There is also a restriction on the longitudinal momentum pxr, which
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can be derived assuming Eqs. (2.46)-(2.47) and (2.59)-(2.60) to yield comparable results
R-CMT. These conditions read

rr &
|E(ur)|
ω2 , (2.64)

pxr .

√
|E(ur)|rr

2 . (2.65)

The R-CMT formulas for SR Eqs. (2.42)-(2.44)[or simplified Eqs. (2.45)-(2.47)], and
for FR Eqs. (2.58)-(2.60) [or Eqs. (2.61)-(2.63) when the recollision picture fails] are
expressed via parameters (coordinate and momentum) of the recollision and are valid even
in the case when the global electron trajectory is significantly disturbed by the Coulomb
field with respect to the laser driven one. The nondipole effects in these formulas are
accounted for in the parameters zr and pzr.

2.3.3 Simple-man estimations

The leading scaling of R-CMT in Eqs. (2.45)-(2.47), (2.58)-(2.60) can be explained from
the following intuitive consideration. The transverse R-CMT can be estimated as the
transversal force F⊥r ∼ 1/r2

r acting during the recollision:

p1⊥ ∼ F⊥rτr, (2.66)

where τr is the duration of the recollision. We define half of the recollision duration as
a time when the electron longitudinal distance from the core reaches the value of the
recollision distance, i.e., x(τr/2) = rr. In the case of SR x(t) ≈ −E(ur)t2/2, and

τr,s ∼ 2
√

2rr/|E(ur)|, (2.67)

while for FR xF (t) ≈ pxrt, and

τr,f ∼ 2zr/pxr. (2.68)

Thus, from Eqs. (2.66)-(2.68), we find estimations for the transverse R-CMT,

p1⊥,s ∼ − 23/2Z

r
3/2
r

√
|E(ur)|

, (2.69)

p1⊥,f ∼ − 2Z
rrpxr

. (2.70)

The longitudinal R-CMT at SR is easily estimated from the longitudinal force F‖ r ∼
−xr(t)/z3

r via

p1‖,s ∼
∫ τr,s/2

−τr,s/2
F‖ rdt ∼ −

2Z
r3
r

∫ τr,s/2

0
xs(t)dt =

ZE(ur)τ3
r,s

233r3
r

,

which yields

p1‖,s ∼
23/2Z

3
√
|E(ur)|r3/2

r

. (2.71)
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For estimation of the longitudinal R-CMT at the FR one has to take into account that
there is a compensation of R-CMT stemming from trajectories before and after the
recollision which can be incorporated by a re-establishment of the time-dependence of
zr(τ) = zr + p⊥rτ in F‖ r and in the limit of p‖r � p⊥r:

p1‖,f ∼ −Z
∫ τr,f/2

0

[
pxrτ

(zr + p⊥rτ)3 −
pxrτ

(zr − p⊥rτ)3

]
dτ ≈

Zpxrp⊥rτ
3
r,f

22z4
r

.

Once substituted from Eq. (2.68), we obtain the final formula

p1‖,f ∼
2Zp⊥r
zrp2

xr

. (2.72)

Thus, by the applied simple estimations the leading scaling of R-CMT from Eqs. (2.58)-
(2.60) are reproduced in the limit of p⊥r � pxr.

2.4 Global perturbation approach for the Coulomb field

Formulas for R-CMT in Subsecs. 2.3.1 and 2.3.2 depend on the recollision parameters:
momentum and coordinate. These parameters can be derived explicitly when one adopts
global perturbation approach for the Coulomb field of the atomic core. In this approach
the analytical description of the recolliding trajectories are provided in Sec. 2.2. We have
defined two types of characteristic recolliding trajectories along with analytical descrip-
tion of the recolliding and ionization phase. Once inserted into the general formulas,
we can investigate the direct scaling of R-CMT with respect to the laser parameters for
those trajectories. For simplicity we will assume in this subsection dipole approximation
and will set pyi = 0 and pzi = p⊥i.

By employing yr = 0 and zr = p⊥i(ur−ui)/ω, the relation between the ionization and
recollision phases ur given by Eq. (2.22), and ui by Eq. (2.25) into the Eqs. (2.45)-(2.47),
we obtain for SR:

p
(k)
1‖,s = Z

(−1)k+1P1
3
√
E0

[ 2ω
p⊥i(k + 1)π

]3/2
{

1 +
[
1 + (−1)k

] 7 + 2γ2

2π(k + 1)2 +O
(

γ4

(k + 1)2

)}
,

(2.73)

p
(k)
1⊥,s = −Z P2√

E0

[ 2ω
p⊥i(k + 1)π

]3/2
{

1 +
[
1 + (−1)k

] 7 + 2γ2

2π(k + 1)2 +O
(

γ4

(k + 1)2

)}
,

(2.74)

where we expanded over small parameter 1
k+1 in order to show the scaling dependencies

in a lucid way.
At usual FR, one has pxr � p⊥r. The zero-order laser driven trajectory is pxr =

Ax(ur)−Ax(ui). For FR using ur from Eq. (2.27), and ui by Eq. (2.29), in the formulas
of Eqs. (2.58)-(2.60), we have
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p
(l)
1‖,f ≈ (−1)l+14Zω3

E2
0π(2l + 1)

{
1− p2

⊥iω
2

2E2
0

+ (−1)l 4 + 2γ2

π(2l + 1) + 16 + 14γ2

π2(2l + 1)2 +O
(

γ4

(2l + 1)2

)}
,

(2.75)

p
(l)
1⊥,f ≈ − 4Zω2

E0p⊥iπ(2l + 1)

{
1− p2

⊥iω
2

2E2
0

+ (−1)l 2 + γ2

π(2l + 1) + 8 + 6γ2

π2(2l + 1)2 +O
(

γ4

(2l + 1)2

)}
,

(2.76)

where we employed expansion with expansion parameter 1
2l+1 to manifest the roles of

individual parameters.
For the FR, when the recollision picture begins to break down, we derive from Eqs. (2.61)-

(2.63):

p
(l)
1‖,fb = (−1)l+14Zω3

E2
0π(2l + 1)

√[
1 + (−1)l+1 2+γ2

π(2l+1)

]2
+ p2

⊥iω
2

E2
0

(2l + 1)2

×
{

1 + (−1)l 2 + γ2

π(2l + 1) + 8 + 6γ2

π2(2l + 1)2 +O
(

γ4

(2l + 1)2

)}
,

(2.77)

p
(l)
1⊥,fb = − 4Zω2

E0p⊥iπ(2l + 1)
√[

1 + (−1)l+1 2+γ2

π(2l+1)

]2
+ p2

⊥iω
2

E2
0

(2l + 1)2

×
{

1 + 4 + 2γ2

π2(2l + 1)2 +O
( 1

(2l + 1)4

)}
.

(2.78)

The R-CMT estimations of this subsection are applicable in the case when the Coulomb
field treated as a global perturbation. They provide us with the scaling of the R-CMT
with respect to the laser parameters, the electron initial transverse momentum, and the
order of the rescattering k or l.
Until this point, we have derived estimations for R-CMT at very specific recollision:

Slow and Fast defined in the sets of Eqs. (2.21) and Eqs.(2.26), respectively, while consid-
ering the perturbation being global to the zero-order trajectory. Nevertheless, it would
be appropriate to address the question of validity of the derived expressions since several
approximations were made during their derivation.
The accuracy of the expressions from Eqs. (2.73), (2.74) for SF is analyzed in the

left column of Fig. 2.4, where a comparisons with the exact numerical results and with
the simple man formulas from Eqs. (2.69),(2.71) are given. The longitudinal and also
the transverse R-CMT are described well, both with an accuracy . 20% up to the 10th
recollision when R-CMT is decreased by an order of magnitude with respect to the first
recollsion. From the analysis one can even deduce that the R-CMT estimation is more
accurate when P2 = 1 in the corresponding equations.
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Figure 2.4: Analysis of accuracy of R-CMT estimations at the kth SR is in the in the
left column: (brown circles) estimations via Eqs. (2.73), (2.74); (red crosses) simplified esti-
mations via Eqs. (2.69), (2.71); (blue triangles) the exact numerical calculations. Analysis
of accuracy of R-CMT estimations at the lth FR is in the right column: (brown circles)
estimations via Eqs. (2.77), (2.78); (red crosses) estimations via (2.75), (2.76). Panels (a),
(b), (e) and (f) deal with the longitudinal R-CMT; (c), (d), (g) and (h) with the transverse
R-CMT. Panels (b), (d), (f) and (h) show the relative errors with respect to the numerical
values. The parameters are Ip = 0.5 a.u., p⊥i = 0.2 a.u. and used cosinusoidal field had
E0 = 0.041 a.u., ω = 0.0134 a.u.

The analytical results for FR from Eqs. (2.77), (2.78) are compared with the exact
numerical calculations and even with the simpler formulas from Eqs. (2.75), (2.76) in the
right column of Fig. 2.4. As we can see, simple Eqs. (2.75), (2.76) are more accurate
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Chapter 2 Analytical model

for several first rescatterings (up to the 3th for the longitudinal and 5th for transversal)
where the recollision picture holds. Meanwhile, the formulas (2.77), (2.78) provide better
accuracy for high-order recollisions where the rescattering picture breaks down.
Note that the breakdown of the recollision picture can be observed also for SR. In

fact, in Fig. 2.4 the accuracy of the longitudinal momentum transfer estimation starts
to increase at 11th SR. However, the deviation from the exact numerical calculation is
not as large as in the FR case. The reason is that the decay of the argument under the
integrals in Eq. (2.17) is much weaker in the case of FR than in the case of SR, which is
due to the different orders of leading terms in Eqs. (2.31) and (2.48).
At this point, it would also be appropriate to conduct a similar analysis for CMT given

by Eqs. (2.42)-(2.44) for the generalized SR and by Eqs. (2.58)-(2.63) for the generalized
FR. Nevertheless, we will omit such analysis here since we already have a good indications
in favor of our results. The question of the overall accuracy will be addressed in a more
general setup in next chapter where we will convince ourselves that the error is small
and does not deviate significantly from the analyzed case in general.
The main advantage of the derived formulas in Eqs. (2.42)-(2.44) and in Eqs. (2.58)-

(2.63) is their past-free nature and generalization for any relevant type of recollision. Our
main goal is to use these formulas in order to estimate the total R-CMT for any arbitrary
trajectory. However, before the implementation of this task, we need an estimate for I-
CMT as accurate as that of R-CMT, which is carried out in the next section.

2.5 Initial Coulomb momentum transfer

For the analytical estimation of I-CMT, we have to calculate the Coulomb momentum
transfer to the electron which takes place immediately after the leaving of the tunnel
exit by using Eq. (2.17). The electron is at the tunnel exit xi at ionization phase ui
with a transversal momentum p⊥i and is furher accelerated by the laser field E(ui) in
longitudinal direction. We assume that the transversal motion is much smaller than the
longitudinal one and expand the denominator of Eq. (2.17):

1
[x2(u) + y2(u) + z2(u)]3/2

≈ 1
|x(u)|3

[
1− 3

2
y2(u) + z2(u)

x2(u)

]
.

(2.79)

Taking into account that y = pyiσ/ω and z = (pzi + pzd)σ/ω, the second term in the
bracket can be estimated as

y2(u) + z2(u)
x2(u) ∼ p2

⊥iσ
2(

xi − E0
2ω2σ2

)2
ω2

+ 2p⊥ipzdσ2(
xi − E0

2ω2σ2
)2
ω2
. (2.80)

The first term in Eq. (2.80) is dominant over the second one by a factor of ε. The order
of magnitude of the first term is ∼ E0/Ea � 1, which justifies the expansion above. We
estimated the effective region of σ ≡ u− ui from the relation E0σ

2/ω2 ∼ xi.
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2.5 Initial Coulomb momentum transfer

2.5.1 The first-order approximation

The first order approximation for I-CMT uses the unperturbed trajectory

x0(σ) ≈ xi −
E(ui)
2ω2 σ2, (2.81)

z0(σ) ≈ p⊥i
ω
σ, (2.82)

with the coordinate z0(σ) along the initial transverse momentum with corresponding
momentum corrections:

p1‖(u) = −Z
ω

u∫
ui

sign (x0(u))
x2

0(u)
du, (2.83)

p1⊥(u) = −Z
ω

u∫
ui

z0(u)
|x3

0(u)|
du, (2.84)

The integrals can be easily evaluated for xi < 0 as

p1‖(u) = Zσ

2x2
iω [1 + σ2/γ2(ui)]

+ Zγ(ui) arctan [σ/γ(ui)]
2x2

iω
,

p1⊥(u) = Zp⊥i
2E(ui)x2

i

{
1

[1 + σ2/γ2(ui)]2
− 1

}
, (2.85)

with γ(ui) =
√

2Ipω/|E(ui)|, which at σ →∞ yields I-CMT formulas as derived in [193]
reading

p1‖,in = Zπ√
23|xi|3|E(ui)|

= ZπE(ui)
(2Ip)3/2 , (2.86)

p1⊥,in = − Zp⊥
2x2

i |E(ui)|
= −2Zp⊥|E(ui)|

(2Ip)2 , (2.87)

2.5.2 The second-order corrections

For calculation of the second-order I-CMT we need the first-order correction to the
trajectory, which is found integrating Eqs. (2.85):

x1(σ) = Zσγ(ui)
2x2

iω
2 arctan

(
σ

γ(ui)

)
≈ Zσ2

2ω2x2
i

, (2.88)

z1(σ) ≈ −Zp⊥iσ
3

6ω3|x3
i |
, (2.89)

where we keep only the leading terms in the expansion over the small σ. The correction to
I-CMT is calculated using the first-order correction to the x-coordinate of the trajectory,
but neglecting the correction to the z-coordinate, as it is small (determined by the small
initial transverse momentum).
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The second-order correction is given by the integral in Eq. (2.12) which can be written
for individual components as

p2‖(u) = Z

ω

u∫
ui

3x0(u)z2
0(u) + 4x2

0(u)x1(u) + 6z0(u)x0(u)z1(u)− 2z2
0(u)x1(u)

2|x0(u)|5 du,

(2.90)

p2⊥(u) = Z

ω

u∫
ui

3z3
0(u)− 2x2

0(u)z1(u) + 6x0(u)z0(u)x1(u) + 4z2
0(u)z1(u)

2|x0(u)|5 du,

(2.91)

where the first terms correspond to the correction due to the transversal motion from the
expansion in Eq. (2.79), and the remaining terms are the proper second-order correction.
The last terms in both integrals can be omitted because of their smallness. We can
estimate their size with respect to the first term as

x1(u)
x0(u) ≈ x1(σ)

x0(σ) ≈ lim
σ→∞

x1(σ)
x0(σ) = Z

|E0(u)|x2
i

� 1, (2.92)

z1(u)
z0(u) ≈ p1⊥(u)

p0⊥(u) ≈
p1⊥,in
p⊥i

= Z

2|E(ui)|x2
i

� 1, (2.93)

thanks to the small expansion parameter 1/(|E(ui)|x2
i ) ∼ E0/Ea.

The integrals (2.90), (2.91) can be easily solved once we substitute for u from σ ≡ u−ui,
for the zero order trajectory from Eqs. (2.81), (2.82), for the first-order correction from
the expanded solutions in Eqs. (2.88), (2.89) and send the upper limit of integration
to infinity. By combining the first- and the second-order momentum corrections, and
expanding over the small parameter 1/(|E(ui)|x2

i ) ∼ E0/Ea, we arrive at the following
expressions for the corrected I-CMT:

p2‖,in = πZ sign (E(ui))√
23|E(ui)x3

i |

[
1 + 4Z − 3p2

⊥i|xi|
8|E(ui)|x2

i

+O
(

1
x4
iE

2
0

)]
,

(2.94)

p2⊥,in = − Zp⊥i
2|E(ui)|x2

i

[
1 + 4Z − 3p2

⊥i|xi|
6|E(ui)|x2

i

+O
(

1
x4
iE

2
0

)]
, (2.95)

which in the quasistatic regime with xi = −Ip/E(ui) read:

p2‖,in = ZπE(ui)
(2Ip)3/2

[
1 + 2Z|E(ui)|

Ea
√

2Ip
− 3p2

⊥i
8Ip

+O
(
E2

0
E2
a

)]
, (2.96)

p2⊥,in = −2Zp⊥i|E(ui)|
(2Ip)2

[
1 + 8Z|E(ui)|

3Ea
√

2Ip
− p2

⊥i
2Ip

+O
(
E2

0
E2
a

)]
.

(2.97)

Let us note that it is easy to identify the term ∼ Z in the expansions in Eqs. (2.94)-
(2.97) as the second-order momentum correction and the term ∼ p2

⊥i as the correction
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Figure 2.5: Estimation of I-CMT vs ionization phase: (a), (d) transverse I-CMT; (b), (e)
longitudinal I-CMT; (c), (f) relative error with respect to the exact numerical simulations, for
the transverse I-CMT (red), and for the longitudinal I-CMT (blue). The initial transversal
momentum p⊥i = 0.05 was considered in the left panels whereas the initial momentum
p⊥i = 0.2 was used in the right panels. In (a), (b), (d) and (e) blue triangles correspond
to numerical simulations, green squares and circles to first-order I-CMT, and red pluses
and crosses to the corrected I-CMT. The remaining parameters were chosen as E0 = 0.041,
ω = 0.0134 and Ip = 0.5.

in the first-order due to the transversal motion. Moreover, we can now clearly see that
the neglect of the last terms in the integrals of Eqs. (2.90), (2.91) was well justified as
they would contribute to the next order.

We compare our results for I-CMT with numerical calculation results in Figs. 2.5 for
p⊥i = 0.05 and p⊥i = 0.2. As we can see the next-to-leading order corrections to I-CMT
significantly decrease the error of the estimation in both cases. The corrected formulas
manifest relative errors less than 5% near the peak of the laser field, where the I-CMT
effect is most significant.
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2.6 Summary
One of the main results of this chapter is the thorough analysis showing that the trans-
verse R-CMT for both of the recollisions can be represented in a unified form

p1⊥ ≈ −Zτr
rr
r3
r

, (2.98)

with an appropriate duration of recollision τr, different for SR and FR.
To summarize this chapter, we have developed an analytical model for quantitative de-

scription of CF effects in laser induced strong-field ionization. Under the assumption that
the Coulomb field effect is a perturbation for the near recollision laser driven trajectory,
we have derived past-free analytical formulas for the Coulomb momentum transfer at
recollisions which depend on the local recollision coordinate and momentum. Moreover,
for an effective treatment of Coulomb momentum transfer we classify the recollisions into
two types: slow- and fast-recollisions. The obtained formulas for the momentum trans-
fer at slow recollisions, Eqs. (2.42)-(2.44), and for fast recollisions Eqs. (2.58)-(2.60) are
applied even in the case when the Coulomb field is not a perturbation to the global tra-
jectory. In this case the recollision parameters can be derived either by the step-by-step
method, or via exact numerical trajectory. The nondipole effects are shown to be negligi-
ble during the brief time of the recollision, however they are indirectly incorporated in the
theory via the recollision coordinate and momentum. Within the same model we derived
essential higher-order corrections to the known expressions for the initial Coulomb mo-
mentum transfer at the tunnel exit [193]. Furthermore, by applying perturbation theory
for the Coulomb field globally with respect to the laser driven trajectory, the Coulomb
momentum transfer has been expressed via the ionization phase and the initial transverse
momentum at the tunnel exit for very special (but widely discussed in the literature)
classes of recollisions while exposing scaling dependencies of the laser field parameters.
The derived analytical formulas for the Coulomb momentum transfer, employed along

with numerical simulations, can help to gain insight into the detailed features of the CF
effect in different laser field setups. In particular, they allow for estimation of the role of
each particular rescattering event, which is usually hidden in the fully numerical CTMC
simulation, but can be very helpful in developing an intuitive picture of CF. In this
context, we have proven by our analytical approach (see Fig. 2.4) that assuming single
rescattering may not be sufficient in order to quantitatively describe CF in mid-infrared
laser fields and that the contribution of high-order rescatterings should not be neglected.
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Total Coulomb momentum transfer

In this section we illustrate the usefulness of our analytical approach by providing es-
timation of the final momenta for any arbitrary ionization phase ui, initial transversal
momentum p⊥i. Once we master estimation on Coulomb momentum transfer for ar-
bitrary trajectory, we derive the asymptotic photoelectron momentum diagram (PMD)
via a modified Classical-trajectory Monte-Carlo simulation (CTMC). The latter will be
a good check on whether the derived analytical formulas for R-CMT and I-CMT can
provide physically relevant results and can help to gain greater insight into the evolution
of the tunneled wave packet in the continuum. Since the evolution of the electrons is non-
trivial in the combined laser and Coulomb fields, we consider two different approaches:
the straightforward zero-order trajectory approach, and the more elaborate step-by-step
approach. Let us note at this point, that for simplicity the dipole approximation is
applied and Z = 1 throughout this chapter. This chapter is based on [191].

3.1 Rescattering points in the general setup

The real trajectory of a photoelectron in the continuum is in general nontrivial as the
photoelectron can be driven back to the parent ion several times due to the oscillatory
laser field. The closest distance at each of this returns, also called the impact parameter,
can vary significantly with respect to the photoelectron’s initial conditions at the tunnel
exit, while yielding various R-CMT at every single return. The total CMT therefore
consists not only of I-CMT but also of multiple R-CMT at every single recollision.
Moreover, in some cases a single R-CMT can be even so large that it can no longer be
considered as a perturbation to the trajectory which gets significantly distorted. When
this happens, the subsequent returns can yield even larger R-CMT and hence distort
the trajectory even further leading to a nontrivial form of the trajectory which strongly
depends on the initial conditions of the photoelectron. We are not going to engage this
problem at this point as it will be address in the next section. The aim of this section is
to find the best way to break down a general photoelectron trajectory into pieces each
containing only one single rescattering event, which will make it possible to estimate the
total CMT measured on the detector.
In Chap. 2, we have analyzed the CMT at very specific recollison events: SR defined by

Eqs. (2.21) and FR defined by Eqs. (2.26). Those recollision events are unique and may
not even occur for a general trajectory as they are very sensitive to the initial conditions.
Moreover, even when such recollision event appears in a some trajectory, it happen only
at one recollision and not at other rescatterings in a general cosinusoidal laser field.
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For this purpose, we will start with the generalized conditions on the recollisions yield-
ing

x0(us) 6= 0,
x′0(us) = 0,
x′′0(us) 6= 0, (3.1)

for the generalized SR and

x0(uf ) = 0,
x′0(uf ) 6= 0,
x′′0(uf ) 6= 0. (3.2)

for generalized FR. Let us stress that these conditions are not new since we already used
them in Sec. 2.3 in order to derive the formulas for R-CMT in the case of SR and FR.
Now, we have two candidates for a rescattering event yielding Coulomb momentum

transfer. We ilustrate this situation in Fig. 3.1(a), where we plotted the zero-order
positions x(u), z(u) from Eqs. (2.19) and the distance r(u) ≡

√
x2(u) + z2(u) of the

tunneled electron with respect to the parent ion. For simplicity, we assume only two
dimensional motion in the x-z plane, which is a reasonable simplification due to the
cylindrical symmetry brought by the dipole approximation. We can use the already
derived general formulas from Subsecs. 2.3.1 and 2.3.2 for estimation of the R-CMT at
every single event as we did in the second panel of the figure and the relative error of the
estimations is given in the last panel of the figure (see Fig. 3.1(b) and (c)). Obviously,
we cannot take all three rescattering events at u ≈ 2nπ for n ∈ N as this would lead to a
severe overestimation of the CMT. On the other hand, the results obtained for the slow
rescattering by the Eq. (2.44) seem to deliver precise estimation even for large range of
xr > 0, where one would expect that the separation into two FRs should deliver more
precise results. The reason behind this could be tracked down to the approximations
applied in the Sec. 2.3 for derivation of the used formulas.

The first-order transversal momentum correction given in Eq. (2.17) poses a non-
trivial problem to solve. We plotted the absolute value of the integral argument by a
blue solid line in the Fig. 3.2. The approximation for SR given by Eqs. (2.31) simplifies
the argument severely. We plotted the absolute value of the simplified argument from
Eq. (2.34) with a yellow dotted line in the figure. Every SR is surrounded by two fast
recollisions which use approximation from Eqs. (2.48). The corresponding absolute values
of the arguments from Eq. (2.51) are carried out by green dashed line for the first FR
and by green dash-dotted line for the second FR in the figure. In the Fig. 3.2, we also
marked the rescattering phase of the SR and FRs points by yellow dots and blue squares,
respectively.
The numerical estimation of R-CMT in the Fig. 3.1(b) corresponds to the area below

the blue solid curve on the graphs in Fig. 3.2, the value for R-CMT at SR corresponds to
the area under the yellow dotted curve, and the result of R-CMT at FRs to areas under
the green dashed(-dotted) lines. The limits of the integration correspond to the closest
turning points and hence to the limits of the plot’s range for the numerical estimation.
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Figure 3.1: The position of the tunneled electron along with all candidates for generalized
SRs and FRs are plotted in panel (a). Panel (b) shows the estimated CMTs obtained for
the appropriate half-cycle of the laser field: numerically (by blue triangles), from Eq. (2.44)
for the SR (by red circles), and as a sum of two CMTs at the two closest FRs from the
Eqs. (2.60), (2.63) while regarding the conditions in Eqs.(2.64)-(2.65) (by gray crosses and
line segments separating the individual contributions). The relative errors of our estimations
are carried out in the last panel (c). Used parameters were: E0 = 0.041, ω = 0.0134,
ui = 0.75ω pyi = 0 and pzi = p⊥i = 0.065.

The limits of integration extend to ±∞ for SR and FR within rescattering picture. The
rescattering picture breaks down as the argument does not vanish sufficiently fast at the
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Figure 3.2: Graphical analysis of the deviation of the argument for the first-order momen-
tum correction with respect to the approximations underlying the recollision events SR and
FR. For more details see the text.

turning points, which can be seen in panels (e) and (f) in Fig. 3.1. In the latter case, the
integration is applied only in the π/2 neighborhood of the fast rescattering.

In Fig. 3.1(c), we can see a discontinuous jump in the relative error for the FRs.
This abrupt change is caused by the conditions given by Eqs. (2.64)-(2.65), which assure
an application of the formulas for the case when the recollision picture does not hold
anymore. Interestingly, the relative error before this jump approaches the relative error
of the formula for SR and after the jump the precision increases significantly. We can
understand such behavior when we look at the arguments in the Fig. 3.2, the yellow curve
approximates the exact argument very well, although it misses the asymmetry due to
the omission of the transversal motion. The largest discrepancy is found in the last two
panels (e) and (f), where the approximation fails to reproduce the turning points. On
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3.2 Estimation of the total Coulomb momentum transfer

the other hand, the arguments for two FRs have the trouble that they usually account
twice for the small mutual area at the center of the plots, which does not matter much
when the two FRs get sufficiently spacially separated.
As we have seen, the error given by the formula for SR is bound and well behaved.

Therefore, we will handle rescattering with small distance xr(ur,s) as a single SR before
separating it into two FRs. Our analysis from Fig. 3.1 suggests that this procedure
delivers good accuracy for actually quite large distances:

xr(ur,s) ≈
1
5 (amplitude of the quiver motion) . (3.3)

Otherwise, we will separate the interaction into two FRs and account for the two R-CMT
separately.
Before we start applying the results of this section for a general electron trajectory, let

us remark one last thing: the separation method showed here is not the best, but rather
the simplest way to obtain reasonable precision for any arbitrary trajectory. For some
type of recollision or special values of the laser field, the separation into two FRs can
actually provide more precise results than assumption of a single SR even for xr(ur,s)�
1
5 (amplitude of the quiver motion). Moreover, further improvement can be achieved by
application of the preciser formulas from Eqs. (2.55)-(2.57) with integration limits given
in the following text as σ1 = −Mod(ur, π) and σ2 = π−Mod(ur, π) evaluated individually
for every FR. Nevertheless, for the sake of simplicity we will abolish any further attempts
in this direction in order to keep the theory simple and accessible as our final goal is not
to avoid inaccuracies but to reproduce the features of the Coulomb focusing on a large
ensemble of trajectories.

3.2 Estimation of the total Coulomb momentum transfer

In the previous section, we have discussed the best ways how to apply our analytical
formulas for R-CMT on an arbitrary electron trajectory. Now, we have to apply these
formulas and estimate the total Coulomb momentum transfer. There are basically two
straightforward schemes: zero-order and step-by-step approach. In this section we are
going to introduce these schemes and discussed their difference.

3.2.1 Zero-order trajectory approach

For now, we are going to treat the Coulomb field of the atomic core as a global pertur-
bation. Then, the zero-order trajectory describes the trajectory of the electron solely in
the laser field. The total Coulomb effect mostly amounts to I-CMT and R-CMT (there
is also a small asymptotic contribution after the laser pulse is switched off, which will
be discussed below). For estimation of R-CMT we use the zero-order trajectory, find the
rescattering points and for each rescattering event apply our R-CMT formulas derived in
the previous sections. The I-CMT distorts the zero-order trajectory significantly which
can have an essential impact on the rescattering points. Therefore, we include the I-CMT
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Figure 3.3: An illustrative trajectory demonstrating two different types of recollisions: SR
(by orange dots) and FR (by blue squares). We keep the SR points if |xr| < E0/(5ω2) for
xrẍr < 0, otherwise we find the closest FR points. We also keep those SR with xrẍr > 0
but neglect any SR points with ẍr < E0/10.

in the zero-order trajectory via modification of the initial momentum:

x̃0(u) = E0
ω2 [cosu− cosui + (u− ui) sin ui] + (u− ui)

p2‖,in
ω

+ xi,

(3.4)

ỹ0(u) = pyi + p2y,in
ω

(u− ui), (3.5)

z̃0(u) = pzi + p2z,in
ω

(u− ui), (3.6)

with p2y,in and p2z,in being projections of the transversal I-CMT p2⊥,in
(
ui,
√
p2
yi + p2

zi

)
on y− and z−direction, respectively.
The final momentum is obtained by including the contribution of all R-CMT into the

momentum transfer, yielding

p(ui,p⊥i) = p0(ui,p⊥i) + p2,in(ui,p⊥i) +
N∑
j=1

p(j)
1 (ui, p̃⊥i),

(3.7)

where N is the total number of effective rescatterings, p0(ui) = (−A(ui), pyi, pzi) the
zero-order asymptotic momentum, p⊥i = (0, pyi, pzi) the initial transverse momentum,
p2,in (ui,p⊥i) ≡ p2‖,in(ui, |p⊥i|)e − |p2⊥,in (ui, |p⊥i|)|

p⊥i
|p⊥i|

the initial momentum correc-
tion, p̃⊥i ≡ p⊥i−|p2⊥,in (ui, |p⊥i|)|

p⊥i
|p⊥i|

the distorted initial transversal momentum, and
p(j)

1 (ui, p̃⊥i) the R-CMT at the jth recollision given by the formulas discussed in the
previous sections, corresponding to the specific type of this recollision.
We treat a recollision as SR in two cases: when ẋr = 0 and xrẍr > 0, as well as those

when ẋr = 0, xrẍr < 0 and |xr| < xthresh = E0/(5ω2). For the estimation of R-CMT we
use Eqs. (2.42)-(2.44) in both cases. All SR with |ẍr| < xthresh = E0/(5ω2) are neglected
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Figure 3.4: Total CMT vs. ionization phase ui is analyzed for the zero-order method
in the left column and for the step-by-step method in the right column. The longitudinal
momentum transfer is shown in panels (a) and (d); the transverse momentum transfer in
(b) and (e); the corresponding relative errors in panels (c) and (f). Numerical simulations
are shown with triangles, the estimation (see the text) with red crosses, I-CMT with green
double arrow. The contribution of each R-CMT is shown by a line segment: SR - red, FR
- blue. The contributions are added to I-CMT and to the previous R-CMTs, as long as it
is larger than 5% of total numerical estimate of CMT. This restriction was applied for the
sake of graphical simplicity only.

because such recollisions happen at the end of the laser pulse and have negligible R-
CMT, see Fig. 3.3. For some electrons this is not true, however most of them are further
trapped in the Rydberg states.
Finally, we treat the remaining rescatterings as FR with Eqs. (2.58)-(2.60) or Eqs. (2.61)-

(2.63), depending on the conditions given by Eqs. (2.64)-(2.65). The only exceptions are
the FR closest to any SR with xrẍr < 0 and |xr| < xthresh, which we neglect since the
R-CMT is already taken into account via the SR (see an exemplary SR at ur ∼ 13π
replacing two closest FR in Fig. 3.3).
We compare results of our analytical estimations with numerical simulations in the left

column of Fig. 3.4 (in the latter a smooth switch-off of the laser pulse is used). For ui > 0,
a very good agreement with the numerical simulations is achieved. The error is bound
and peaks at the phases where two methods are switching, namely the single SR forks
into two FRs. There is a discrepancy for ui < 0, since decreasing ui tilts the electron’s
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Chapter 3 Total Coulomb momentum transfer

quivering trajectory down and hence the first recollision becomes slow which generally
yields larger momentum transfer than FR. For some particularly small and specially
negative ui, the momentum transfer is so large that the whole zero-order trajectory is
not a valid approximation anymore and our present approach fails. The accuracy issue
will be discussed below in Subsec. 3.3.

3.2.2 Step-by-step approach

When the electron is ionized near the peak of the laser field, its drift velocity is small,
and rescattering can happen with a small impact parameter, inducing large distortion
of the laser driven trajectory. The same can happen when the electron is ionized with
a small transverse momentum at other ionization phases. It is understandable that the
zero-order approximation by Eqs. (3.4)-(3.6) fails in this case. However, we can improve
our estimations by taking into account R-CMT at each recollision during propagation
in the laser field, which will be the aim of this section. For the obvious reasons, the
electron will be propagated by the laser field only step-by-step from the ionization phase
ui till the end of the laser pulse over all the rescattering events, and by correcting the
electron momentum by the estimated R-CMT at every single recollision point. This
approach is expected to give more precise results, with a wider range of applicability of
ionization phases and initial transverse momenta. Moreover, this approach would allow
us to incorporate also the, so-called, long trajectories in our model.
Although the laser driven trajectory is disturbed due to R-CMT at the recollisions,

the R-CTM itself can be still calculated using perturbation theory because the latter
is always applicable at least during the short time of the recollision. This allows us to
use the same formulas for R-CMT as in the previous subsection. The only difference
is that the zero-order trajectory is replaced by several step-by-step evolved zero-order
trajectories.
The drift momentum after the nth-recollision depends on the R-CMT received at all

previous recollisions and can be iteratively defined as

p(n) (ui,p⊥i) = p(n−1) (ui,p⊥i) + p(n)
1

(
ui,p(n−1) (ui,p⊥i)

)
,

(3.8)

where we have, for simplicity, redefined the I-CMT as zero-order R-CMT: p(0)
1 (ui,p⊥i) ≡

p2‖,in(ui, |p⊥i|)e−|p2⊥,in (ui, |p⊥i|)|
p⊥i
|p⊥i|

, The iteration starts at n = −1 with p(−1)(ui, p⊥i) :=
−Ax(ui)e + p⊥i. Let us note that n = 0 corresponds to the momentum after tunneling
but before the first rescattering event which happens at n = 1. The properties of the n-th
rescattering can be determined from the zero-order trajectory evolved from the (n− 1)th
event with the p(n−1)(ui, p⊥i) momentum yielding

x
(n)
0 (u) = 1

ω

∫ u

uin

(
p(n)
x (ui, p⊥i) +Ax(u)

)
du+ x

(n−1)
0 (uin), (3.9)

y
(n)
0 (u) = p

(n)
yi (ui, p⊥i)

(
u− uin
ω

)
+ y

(n−1)
0 (uin), (3.10)

z
(n)
0 (u) = p

(n)
zi (ui, p⊥i)

(
u− uin
ω

)
+ z

(n−1)
0 (uin), (3.11)
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Figure 3.5: The electron trajectories in different approaches: (solid, gray) numerical solu-
tion, (dashed, orange) zero-order approach, (dot-dashed, multi-color) step-by-step approach.
Rescattering points are noted by black triangles. All trajectories match well for the first
half-period but start to differ after the first rescaterring event. The used parameters are
E0 = 0.041, ω = 0.0134, ui = −π/100 and p⊥i = 0.2.

where we set uin = ur for the n-th rescattering. The tunnel exit enters the iteration as
x

(−1)
0 = xi, y(−1)

0 = z
(−1)
0 = 0, and for n = 0 we have uin = ui.

Trajectories obtained with the step-by-step and the zero-order approaches are com-
pared with the numerical simulation for ui = −π/100 in Fig. 3.5. As we can see, the
trajectories do not differ from each other for the first half-period which is achieved by
taking the initial momentum correction into account. The difference starts to manifest
during the second half-period of the laser field (i.e., after the first rescattering), however,
the step-by-step zero-order trajectory approach provides a rather good approximation
for the exact numerical trajectory.
We plotted the resulting CMT for various ionization phases and fixed p⊥i = 0.2 a.u.

in the right column of Fig. 3.4. The relative error does not change much for the positive
phases where only few rescatterings take place. For the negative phases we can actually
see an increase in the precision which is a good indication that our step-by-step approach
could deliver much better results.
We underline an important message of Fig. 3.4, which has been enabled by our ana-

lytical approach. A single rescattering is not sufficient to describe the CMT. The con-
tribution of high-order rescatterings to the total CMT is significant and should not be
neglected for a good quantitative description.
Although the procedure of finding the right rescattering points seems to be straightfor-

ward, we need a quite good algorithm selecting them automatically in order to automatize
the methods. The algorithms for selection of the proper rescattering point can be found
in appendix C of [191].

3.2.3 Comparing the methods

Let us compare the accuracy of both methods over the whole valid parameter space.
For a special class of initial conditions, the components of the final momentum can
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Figure 3.6: Relative error of the estimated asymptotic momentum of the photoelectron
within the zero-order trajectory approach in the left column and within the step-by-step
approach in the right column. The longitudinal momentum is shown in panels (a), (c) and
the transverse momentum in the panels (b), (d).

be vanishing, leading to an artificial enhancement of the relative error. Therefore, we
re-define the relative error as follows:

δp‖ =

∣∣∣∣∣∣
p‖(ui, p⊥i)− p

(num)
‖ (ui, p⊥i)

max
[
p‖(ui, p⊥i), p‖(ui, p⊥i)− p0‖(ui)

]
∣∣∣∣∣∣ 100%, (3.12)

δp⊥ =
∣∣∣∣∣ p⊥(ui, p⊥i)− p

(num)
⊥ (ui, p⊥i)

max
[
p⊥(ui, p⊥i), p⊥(ui, p⊥i)− p0⊥(ui)

] ∣∣∣∣∣ 100%, (3.13)

with p‖/⊥ (ui, p⊥i) being the proper component of the electron’s final momentum given
by Eq. (3.7) or by Eq. (3.8) at n = N for zero-order or step-by-step method, respectively.
The superscript “(num)” denotes the corresponding value obtained numerically and sub-
script “0” marks the value obtained from zero-order trajectory neglecting Coulomb inter-
action. The newly defined relative error is well behaved meaning that it is not singular
for the vanishing final momentum where the momentum is replaced with the total CMT
instead. We show the re-defined error for valid ranges of the ionization phase ui, and the
initial transversal momentum for our zero-order trajectory method and for the step-by-
step method in the left and right column of the Fig. 3.6, respectively.
Obviously, the initial momentum p⊥i plays a crucial role. With decreasing p⊥i the first

rescattering has smaller impact parameter and, therefore, induces larger CMT, which
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Figure 3.7: PMD: (a) numerical CTMC simulation; (b) via the zero-order trajectory
method, and (c) via the step-by-step method.

will introduce discrepancy to the zero-order trajectory. Thus, our method for analytical
estimation of CMT is not applicable for ionized electrons with small initial transverse
momenta and at small ionization phases (i.e., near the peak of the laser field). The
vertical lobes indicate the ionization phases with underlying SR. The error rises there,
since the CMT at such recollision is much larger than the CMT at fast recollisions and
even a small relative error has a large total contribution.
Finally, let us note that the white areas arise due to several effects: such as chaotic

dynamics, hard recollisions, and the trapping of electrons in Rydberg states. Since
such effects are not expected to play a significant role for Coulomb focusing, we are not
concerned by the white spots at this point. The role of the errors of the present analytical
approach for the description of the final PMD is going to be discussed in the next section.

3.3 Photoelectron momentum distribution

In the previous section we have seen that our analytical methods allow us to determine the
photoelectron asymptotic momentum during the laser driven excursion in the continuum
in the field of atomic core. However, since the accuracy is not acceptable in the whole
range of the ionization phases or in the initial transverse momenta, a question arises
as how accurately can be the final PMD described by our methods? In this section we
compare results of fully numerical CTMC simulation of the final PMD with those of our
analytical methods. In order to do this, we performed CTMC simulations in 2D due
to the symmetry of the problem in the dipole approximation. Every 2D trajectory of
the initial transversal momentum p⊥i is weighted with the PPT transverse momentum
distribution wPPT(p⊥i) and with an additional factor of 2πp⊥i. The latter accounts
for the fully 3D initial phase space whose two transversal dimensions can be mapped
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Figure 3.8: (a) Photoelectron energy distribution; (b) Photoelectron longitudinal momen-
tum distribution: numerical CTMC simulation (solid, blue), via the zero-order trajectory
method (dashed, red), via the step-by-step method (dash-dotted, green). We show also dis-
tributions while restricting trajectories to those with an error greater than 100% in at least
one directions: via the zero-order trajectory method (dashed, magenta), via the step-by-step
method (dash-dotted, cyan). The curves are shifted vertically for visibility while keeping the
same shift for the same methods in individual panels.

onto a single dimension due to the symmetry via d2p⊥i = 2πp⊥idp⊥i. With the electron
asymptotic distribution function wsim(p‖, p⊥) provided by the 2D CTMC simulation, one
restores the real final 3D PMD:

d3f

d3p
∝
wsim(p‖, p⊥)

2πp⊥
, (3.14)

where we have restored the second transversal dimension via the relation d2p⊥ = 2πp⊥dp⊥
for the final transversal momentum p⊥.

We performed three different CTMC simulations with 107 trajectories to determine the
PMD at the end of the laser pulse: one is fully numerical, the second uses our zero-order
trajectory method, and the last uses the step-by-step method. The resulting PMDs are
compared in Fig. 3.7.
As we can see, both methods reproduce the central vertical cusp as shown by the

CTMC simulation. However, the width of the cusp reproduced by the step-by-step
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method is more correct. On one hand, the horizontal fringes appear already by the
zero-order method, which can be understood as a manifestation of the fine role of the
SRs (so called, longitudinal bunching [97]). On the other hand, the step-by-step method
has reconstructed even the right thickness and location of the fringes and thus concludes
as a better investigative tool. Unfortunately, both simulated PMDs exhibit additional
horizontal lines (e.g., at px ≈ 0.61 a.u.). Such lines can be attributed to an “artificial"
longitudinal bunching effect which arises when one SR is replaced by two FR yielding a
slightly greater total CMT. Because of this artifact, an additional horizontal line appears
underneath each SR regular fringe which demonstrates then as a twofold line in the
PMDs. Luckily, the utility of the results is not jeopardized since the artificial fringe is
much weaker than the real effect and can be therefore easily disclosed.

The numerical PMD possesses a half-circle fringe of radius ∼ 0.08 a.u. (center at the
origin) with a prominent peak structure inside. This structure is created by electrons
with low transverse momenta near the peak of the laser pulse, for which the error of
our analytical methods are large, see white area in Fig. 3.6. Although both analytical
methods reproduce the peak, they fail to predict the correct structure of it. This is due
to the fact that these electrons undergo multiple recollisions with large CMT and never
really gain substantial distance from the ion during the whole laser pulse and are strongly
influenced by the Coulomb field even when the pulse is long gone. For such behavior,
the perturbative recollision picture does not hold and our methods fail.

Since the first observation of the LES was carried out in the photoelectron energy
spectra [81], we show in Fig. 3.8 how our analytical methods reproduce the spectra and
the longitudinal momentum distribution obtained by the CTMC simulations where we
separated the contributions of the electrons creating the PMDs in Fig. 3.7 and of those
which were not taken into account due to significant errors. As we see, the excluded
contributions are negligible in the energy domain; especially, for non-vanishing energies.
However, two features manifesting as sharp peaks can be found at px ≈ 0.65 a.u. and at
px ≈ 0.075 a.u., which can be discerned clearly in Fig. 3.7. As we can see, already the
zero-order trajectory method captures the positions of the peaks in the energy distribu-
tion quite correctly. Nevertheless, the peak at the vanishing longitudinal momentum is
misplaced which is corrected by the more precise step-by-step method.

We can conclude that our analytical approach is able to predict correctly many features
of PMD, in particular, width of the vertical cusp, the peaks along it, and the position
of the horizontal caustic fringes due to the longitudinal bunching. Our approach fails
only at very low momenta px . 0.05 a.u. While predicting the existence of the lowest
momentum peak, neither of our methods provides its correct structure. The reason is that
the trajectories with a large error (white areas in Figs. 3.6(a)-(d)) mostly contribute to
this prominent peak at low momenta which explains the noticeable discrepancy between
the numerics and our results in this region. On the bright side, the white areas contribute
to the momentum peaks at larger energies only negligibly and do not threaten the utility
of our approach to CF for the largest part of the PMD, see Fig. 3.8(b).
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Figure 3.9: We illustrate the transformation of the initially tunneled electron distribution
(on the left side) into the final distribution at the end of the laser pulse (on the right side)
due to the action of Coulomb focusing (red arrow). The momentum space is divided into bins
of small size with their centers located on each intersection of the grid lines as illustrate by
orange squares in the left plot. In ideal case, the analytical description of Coulomb focusing
predicts how the bins shift and deform due to the evolution of in the combined laser and
Coulomb field, which we indicated in the right plot.

3.4 Coulomb focusing as a transformation

In the previous sections, we have calculated analytically the total momentum transfer
to any tunneled electron due to multiple rescatterings during its excursion in the laser
field. Moreover, we have demonstrated in the last section our ability to derive the
whole asymptotic photoelectron momentum distribution analytically within the semi-
classical approximation capturing all the important features of the Coulomb focusing
despite all the introduced errors. Nevertheless, there are several serious drawbacks to
our approach as we showed barely the feasibility of the analytical approach burden with
errors to reproduce the final distribution, but we still relay on a rather extensive classical
trajectory Monte-Carlo simulations with large number of trajectories. This also means
that we have not really gained any deep insight into the Coulomb Focusing itself as
its effect are still rather concealed by the large numbers of now analytically described
trajectories.
On the other hand, we have now all the tools necessary for a complete analytical

description of Coulomb focusing. Let us assume that the Coulomb interaction between
the tunneled electrons driven by the external laser field and its parent ion acts like
a transformation on the tunneled wave function. We illustrate this in Fig. 3.9: the
initial distribution is plotted in the left plot and shows what we would measure when the
Coulomb interaction is switched off directly after tunneling; the transformed distribution
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at the end of the laser pulse is shown in the right plot and demonstrates the strong
influence of the Coulomb focusing on the tunneled wave packet. We can significantly
reduce the number of necessary trajectories when we do not sample the transformation
by randomly distributed electrons as in previous section, but rather place single electrons
in intersections of the grid lines and assign a small bin to them as shown demonstrated
in Fig. 3.9 by two orange bins. The center of the bin will change its position focusing and
its shape due to Coulomb. Whereas the first can be determined by the already derived
methods, the latter has to be still addressed.
For this purpose, we will assume that the initial distribution is in the (px, pz) space

only. This can be done once we assume that the longitudinal momenta is connected to
the ionization time ti via the zero-order trajectory

px(ti) ≡ −Ax(ti), (3.15)
dpx = Ex(ti)dti, (3.16)

leading to modification of the ADK distribution for the distribution in px as

wADK(ti)dti = wADK(ti(px))
|Ex(ti(px))| dpx, (3.17)

where we understand ti(px) as the inversion of Eq. (3.15). Let us note that we also
assumed that the transformation in Eq. (3.15) is an injective function, which is well
fulfilled for any general sinusoidal pulse while handling its half-cycles separately as we
do in our analysis. However, this may not be true for a specially tailored laser pulse
and has to be accounted for. A possible bypass could provide a further division of the
ionization regions in order to avoid any surjective mapping by Eq. (3.15). If fulfilled, we
can distribute the electrons on the equidistant intersection of the grid lines (px, pz) in
Fig. 3.9 and assign them the weights from the right hand side of Eqs. (3.17) and from
the standard ADK transversal distribution.
Furhter, we can define the action of the Coulomb focusing as a transformation of the

unperturbed zero-order final momentum space (px, pz) due to the Coulomb focusing,
which is given by a function p̄ (px, pz) as

(px, pz)
CF−−→ p̄ = p̄ (px, pz) = p̄ (ui, pz) . (3.18)

Thanks to the to the one-to-one relation between the momentum px and the ionization
phase ui, we can apply the results from the previous sections estimating the electron’s
final momentum while taking into account the total CMT; namely, the results from the
zero-order and step-by-step method given in Eqs. (3.7) and (3.8), respectively.
The center of the bin is placed at some particular coordinates

(
p

(b)
x , p

(b)
z

)
, and it can

be easily estimated how its position changes when we apply the transformation from
Eq. (3.18) and one of the analytical methods and find the new coordinates

(
p̄

(b)
x , p̄

(b)
z

)
.

On the other side, the bin is not a single point and we have to define its size by two small
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quantities dp(b)
x and dp(b)

z which stretch the bin’s four vertexes relatively to its center as

v1 ≡
(
+dp(b)

x ,+dp(b)
z

)
,

v2 ≡
(
−dp(b)

x ,+dp(b)
z

)
,

v3 ≡
(
−dp(b)

x ,−dp(b)
z

)
,

v4 ≡
(
+dp(b)

x ,−dp(b)
z

)
. (3.19)

It would be unwise to sample the bin with additional points and follow the change of
their position under the transformation, since we would return to the CTMC simulation
described in the the previous section 3.3. Let us therefore take another approach. If
the size of the bin and hence the values dp(b)

x and dp(b)
z is sufficiently small, we can

estimate the position of vertexes of the transformed bin via the Jacobian matrix of the
transformation in Eq. (3.18) yielding in our case

J(px, pz) ≡

 ∂p̄x(px,pz)
∂px

∂p̄x(px,pz)
∂pz

∂p̄z(px,pz)
∂px

∂p̄z(px,pz)
∂pz

 , (3.20)

where the bared values denotes the components of the final vector p̄ = (p̄x, p̄z) of equiv-
alently

J(ui, pz) =

 ω
Ex(ui)

∂p̄x(ui,pz)
∂ui

∂p̄x(ui,pz)
∂pz

ω
Ex(ui)

∂p̄z(ui,pz)
∂ui

∂p̄z(ui,pz)
∂pz

 (3.21)

where we applied Eq. (3.16) along with ui ≡ ωti.
Now, when we have the bin and its vertexes defined, we can easily estimate the change

of its vertexes due to the Coulomb focusing as

v̄i = J(p(b)
x , p(b)

z ) · vi, for i = 1, 2, 3, 4. (3.22)

Eventually, we have to deal with the transformed and most likely deformed bin. For
simplicity, we assume that the electron density given by the ADK weights is uniformly
distributed within the bin and we divide it into the grid cells accordingly to areas of their
intersection with the bin. (E.g., the upper bin (by dark orange) in Fig. 3.9 has non-zero
intersection with four grid cells but the lower bin (by orange) only with three cells). We
repeat the whole procedure for every single bin from the initial phase space and keep
adding the transformed electron densities corresponding grid cells till we reconstruct the
final photoelectron distribution.
After this rather theoretical introduction, let us take a deeper look on the individual

methods and see how the Jacobian matrix looks like.

3.4.1 Zero-order method

The advantage of our approach is that we successfully separated the Coulomb interaction
into few rescattering points allowing an individual treatment. We can do the same for
the transformation by Eq. (3.18) and also for the Jacobian matrix by Eq. (3.21) while
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3.4 Coulomb focusing as a transformation

taking into account the definition of the method from Eq. (3.7). The Jacobian matrix
yields

J(N)(ui, pzi) =

 1 + ω
Ex(ui)

∑N
n=0

∂p
(n)
1x (ui,pz)
∂ui

∑N
n=0

∂p
(n)
1x (ui,pz)
∂pz

ω
Ex(ui)

∑N
n=0

∂p
(n)
1z (ui,pz)
∂ui

1 +
∑N
n=0

∂p
(n)
1z (ui,pz)
∂pz

 , (3.23)

where N denotes the number of recollisions for the zero-order trajectory as given by
Eqs. (3.4)-(3.6), and p

(n)
1x and p

(n)
1z correspond to the Coulomb momentum transfers as

defined in Eq. (3.7).

3.4.2 Step-by-step method

The step-by-step approach yields difficulties because of the iterative dependency on the
initial conditions in Eq. (3.8). Nevertheless, the derivation is trivial and the result can
be written in a quite compact form as a product of N + 1 two-by-two matrices:

J(N)(pxi, pzi) =
0∏

n=N

 1 +
∂p

(n)
1x

(
p

(n−1)
x , p

(n−1)
z

)
∂px

∂p
(n)
1x

(
p

(n−1)
x , p

(n−1)
z

)
∂pz

∂p
(n)
1z

(
p

(n−1)
x , p

(n−1)
z

)
∂px

1 +
∂p

(n)
1z

(
p

(n−1)
x , p

(n−1)
z

)
∂pz

 . (3.24)

where p
(n)
1x and p

(n)
1z correspond to the Coulomb momentum transfers as defined in

Eq. (3.8). Let us stress that the order of the matrices in the product is reversed, which
is fairly easy to understand when we think of the n-th matrix as of the transformation of
the phase space introduced only by the n-th recollision event and by the corresponding
R-CMT only. The subsequent transformation is then given by the (n + 1)-th matrix
placed on the left hand side of the n-th matrix in agreement with the matrix notation of
transformations.

3.4.3 Comparison

As we have seen, there are ways how to construct the Jacobian matrix with both ana-
lytical methods, since we have provided differentiable formulas for p(n)

1x and p
(n)
1z in the

previous chapter and we can basically construct the transformation matrix for every
single electron trajectory. Nevertheless, this course of action is rather tedious then com-
plicated so we do not pursuit it any further at this moment as we expect it to be a
research topic on its own.
On the other hand, it would be appropriate to demonstrate at least the feasibility

of such complex task. For that purpose we resumed to our modified numerical CTMC
simulation from the previous section 3.3, where we implemented the proper derivatives
of the I-CMT and R-CMT and the transformation of the phase space given by the
Jacobian matrices from Eq. (3.23) and (3.24) for the zero-order and step-by-step method,
respectively. We have divided the initial phase into bins of size 0.00125 × 0.00125 and
followed the procedure described above in this section. The collected electron densities
are plotted in the Fig. 3.10; we show for comparison the standard numerical CTMC
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Figure 3.10: We compare our PMDs obtained by phase space transformation from
Eq. (3.22) to the numerical results in (a). The zero-order trajectory method yields PMD
plotted in (b) and the step-by step-method gives the PMD in (c).

simulation in the panel (a), the result of the zero-order method in the panel (b), and the
result of the step-by-step method in the panel (c). As we can see, the transformation
of the phase space provides very good agreement with the numerical simulation giving
us hope for future applicability of the transformation for investigation of the Coulomb
focusing. As expected, the step-by-step method performs slightly better, especially at
the small longitudinal momenta. There are some slight drawbacks: a grading of the
cusps (e.g., at px ≈ 0.74 and pz ≈ 0 in panels (b) and (c)) or appearance of distinct
vertical lines. Whereas the first could be avoided by a better coverage of the initial
momentum space, the latter is the result of errors introduced by the approximation
under which we have derived the analytical formulas. Nevertheless, the latter could
be also diminished by a better choice of coverage (e.g., a double coverage of the initial
phase space by two layers of mutually shifted bins). We plotted the projections of the
energy and longitudinal momenta in the same manner as in previous section in Fig. 3.11.
The energy spectra exhibit oscillations (primarily for the high energies) which can be
contributed to the vertical lines in the PMD of Fig. 3.10. This we conclude from the fact
that these oscillations are absent in the spectrum of the longitudinal momentum meaning
that once we suppress the vertical lines (e.g., by a better coverage) the oscillations should
vanish or be at least suppressed strongly. Finally, it is not a surprise that the step-by-step
method provides again better results than the zero-order method.

3.4.4 Initial momentum correction and its properties

Interestingly, the forms of the Jacobi matrices in Eqs. (3.23)-(3.24) allows us to cut off
the momentum transfer at any arbitrary recollision and investigate the transformation of
the initial phase space taken place up to this recollision. By taking this to the extreme,
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Figure 3.11: Comparison of Photoelectron energy distribution in (a); and Photoelectron
longitudinal momentum distribution (b): obtained by numerical CTMC simulation (solid,
blue), via transformation of the initial phase space by the zero-order trajectory method
(dashed, red), via the step-by-step method (dash-dotted, green). The oscillations in the
energy spectrum are caused by the error of the underlying analytical formulas and can be
connected to the vertical lines in Fig. 3.10.

we can analyze the role of the I-CMT by itself as we omit all rescattering events. Not
surprisingly, both methods yield the same formula:

J(0)(ui, pz) =

 1 + ω
Ex(ui)

∂p2x,in(ui, pz)
∂ui

∂p2x,in(ui, pz)
∂pz

ω
Ex(ui)

∂p2z,in(ui, pz)
∂ui

1 + ∂p2z,in(ui, pz)
∂pz

 . (3.25)

Let us for simplicity use only the first-order I-CMT formulas in the form including the
ionization potential Ip from Eqs. (2.86)-(2.87) leading to

J(0)(ui, pz) =

 1 + Zπω
Ea

E′x(ui)
Ex(ui) 0

−2Zpz
κEa

E′x(ui)
|Ex(ui)| 1− 2Z|Ex(ui)|

κEa

 , (3.26)
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where the prime denoted derivative with respect to ui. The properties of the transfor-
mation can be obtained from the determinant of the Jacobian matrix giving

det J(0)(ui, pz) = 1− 2Z|E(ui)|
κEa

+ Zπω

Ea

(
E′x(ui)
Ex(ui)

)(
1− 2Z|E(ui)|

πκEa

)
, (3.27)

where the second term is always positive. The second term in the brackets can be
neglected with respect to one due to the condition from Eq. (2.5) and we can write the
determinant for Ex(ui) = E0 cosui as

det J(0)(ui, pz) ≈ 1− 2Z|E(ui)|
κEa

[
1 + sin ui

cosui
πγ(ui)

]
, (3.28)

The term in the square brackets is always positive for rescattered electrons with ui ∈
[0, π/2) yielding det J(0) < 1 and could be negative for the direct electrons with ui ∈
(−π/2, 0) meaning det J(0) > 1. Nevertheless, the bracket is still positive for reasonable
values of γ < 1 as most of the ionization happens at the peak of the laser field ui ∼ 0
and hence the most direct electrons will be also focused. Let us note that, although one
could find such large ui ensuring defocusing of the direct part of tunneled wave packet,
the ionization phase would be quite small (i.e., ui ≈ −π/4 for the parameters E0 = 0.041,
ω = 0.0134 and Ip = 0.5) leading not only to suppression of the tunneling rate but also
to questioning of the validity of I-CMT in Eqs. (2.86)-(2.87) as the laser field changes
rapidly at these phases (i.e., dE(u)

du ∝ sin(u)) and the approximation of the constant
electric field may not be valid any more. Therefore, the Eq. (3.28) should be handled
with caution for the ionization phases distant from the peaks of the laser field.

3.5 Summary
We have analyzed the accuracy of our analytical approach in the case of dipole approxi-
mation, estimating the total Coulomb momentum transfer during multiple recollisions by
two different methods. Besides the simplest zero-order laser driven trajectory method,
we put forward also the step-by-step method, where the electron’s momentum is revised
at each recollision by the Coulomb momentum transfer and the revision is also taken into
account for the electron’s trajectory. Both methods were used to derive the final pho-
toelectron momentum distribution. We showed that they both satisfactory describe the
asymptotic photoelectron momentum distribution in a large range of momentum space,
with the step-by-step method describing more closely the fine features of Coulomb fo-
cusing. However, the accuracy of our approach fails at very low photoelectron energies,
where both methods correctly predict existence of low-energy peak, but do not deliver
its correct structure.
Finally, we presented an outlook for further application of our results for further inves-

tigation of Coulomb focusing: redefinition of the Coulomb focusing as a transformation of
the initial, by Coulomb effects unperturbed, momentum distribution. Moreover, we have
found the Jacobian matrix of this transformation and demonstrated the feasibility of this
approach by modified classical trajectory Monte-Carlo simulation, and as an example we
have analyzed the properties if the I-CMT within this formalism and have shown that
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3.5 Summary

the electrons will be focused by the Coulomb interaction already as they departure from
the parent ion.
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Chapter 4

Nondipole effects in linear polarization

In this chapter, we demonstrate a practical application of the analytical formulas derived
in the previous chapters as we employ them in order to gain insight into the process of
Coulomb focusing in the nondipole regime. In particular, we present an explanation for
the observed counterintuitive energy-dependent shift of the central vertical cusp in PMD
against the propagation direction of the laser field as firstly reported in [114].
The existence of the shift is a manifestation of nondipole effects. It is contributed to

the magnetic component of the Lorentz force, and is to be expected. Puzzling is rather
the nature of the shift having negative sign when one would expect positive offset as the
magnetic force on the tunneled electrons acts only along the propagation direction of
the laser field. Additionally, extensive TDSE simulations have even shown that the shift
of the cusp is not constant and the central cusp bends depending on the longitudinal
momenta [115]. Let us also mention that the observation of the nondipole effects in
the mid-IR regime of the relativistic parameter ξ ≡ E0

cω = 0.025 � 1 is a praise on
extremely high precision of the now-a-days spectrometers and opens new possibilities for
measurement techniques.
Finally, as there are no other interactions others than the Coulomb and the magnetic

forces present, this effect is a perfect candidate for the first application of our model.
This chapter is based on [191].

4.1 Rescattering in the nondipole regime

Our aim is to investigate of the shift in the nondipole regime and to explain its nontrivial
shape. The central cusp is shifted along the laser propagation direction by a value that
varies with respect to the asymptotic longitudinal momentum. This can be seen in our
CTMC simulation of PMD presented in Fig. 4.1. In the simulation, we have used the
classical Newton equations from Eq. (2.8) including also the magnetic component of
the Lorentz force stemming from the laser field and given in Eqs. (2.1). For practical
reasons, we have used a Gaussian envelope f(t) = exp

(
u2

2(uD)2

)
with uD = 3π assuring

rather short pulse.
As the CTMC simulation suggests, the shift is not uniform and varies with the value of

the longitudinal momenta (in agreement with [115]). The shift is positive for large lon-
gitudinal momenta, as expected, because of the positive drift momentum of the electron
in the laser field along the propagation direction. Meanwhile, the shift becomes negative
for small longitudinal momenta, but tends to zero at vanishing longitudinal momenta
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Figure 4.1: In the left panel, we present a cut with |py| < 0.6 a.u. of final PMD obtained
by CTMC simulation in the nondipole regime. The central cusp is striking and manifests
a clear bend towards positive pz-momenta as long as the longitudinal momentum is & 1.6,
which is in agreement with expectations. On the other hand, a counterintuitive shift towards
negative pz-momenta appears at smaller longitudinal momenta, reaches its maximum along
the opposite axis at px ≈ 0.4, and goes towards zero at vanishing longitudinal momenta
again. The horizontal gray lines correspond to trajectories with slow recollision given by
the Eqs. (2.21) and hence with an even number of recollisions. The gray lines separate the
spectrum into regions with odd number of recollisions as marked by the Roman numbers.
The typical trajectories from each of the regions can be found in the left column of the
figure. The red crosses correspond to our predictions for single recollision from Eq. (4.7) and
manifest excellent agreement in the region I with the transition of the offset.

again. Such complex dependence on the longitudinal momentum (or equivalently, on the
electron’s energy) is intriguing and demands further investigation.
The CTMC simulation can be used for investigation of the electrons that end on the

shifted cusp. We looked for electrons which end in a small bin of size 0.01× 0.01× 0.01
whose center is placed at the cusp in the region of negative shift. Consequently, we
plotted the initial momentum space in the Fig. 4.2 revealing two interesting phenomena:
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Figure 4.2: Momentum space of the initial electron distribution at the tunnel exit: the
part that finally ends in the final momentum bin at px = 0.588 a.u. and pz = −0.0157 a.u.
The value of the longitudinal momentum corresponds to the first soft recollision. We stress
that the ring is shifted to the negative pz direction.

the electrons creating the cusp originate from a ring of radius ≈ 0.75 a.u., and the center
of the ring is shifted towards negative pzi momenta.

The creation of the ring can be easily understood as the Coulomb focusing pulling
all the electrons placed originally at the tunnel exit with initial transversal momenta
distributed over the whole (py, pz)-transversal plane to a single point (or rather a bin)
in the final momentum phase space. Noticeably, the circle has a rather small thickness
leading to the conclusion that only distinguished electrons can be focused to the center.
This along with the rotational symmetry of the ring allows us to identify the radius
as the total transverse R-CMT obtained by the cusp electrons. The shift of the circle
can be understood as compensation for the drift induced by the magnetic component of
the laser field. Every part of the ring is shifted uniformly since all the electrons have
tunneled at the same ionization phase ui and rescattered at the same rescattering phase
ur yielding the identical drift momentum pzd(ur, ui) from Eq. (2.14). We firstly presented
these results in [142].

In order to investigate the underlying physics, we employ the famous three-step model
[15] separating the process into three steps: Ionization, Propagation and Rescattering.
We will slightly modify the propagation to incorporate the nondipole effects. Since the
cusp electrons originate on a circle, we have quite a large freedom of choice for the initial
conditions. Let us pick one very special electron with pyi > 0 and pzi = 0 and follow its
evolution as we demonstrate in Fig. 4.3. The rescattering parameter zr will be positive
due to the induced magnetic drift, which guarantees negative momentum transfer due
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Figure 4.3: Schematic sketch of the mechanism behind the creation of the bend. The
atom (red ball at the origin) is placed in the external laser field, whose electric component
E(u) and magnetic component B(u) are marked as red sinusoid along the x-axis and as blue
sinusoid along the y-axis, respectively. At some ionization phase, the electron appears at
the tunnel exit (1) at yi = zi = 0 and with nonzero initial transversal momentum pyi + δpyi
only along the y-axis as marked by magenta arrow. Then, the electron propagates in the
combined Coulomb and laser field as marked by the blue trajectory (2) and loses part of
its initial momenta δpyi due to I-CMT. Projection of the blue trajectory on the y-z plane
is depicted as green curve and its bending manifests the action of the drift induced by the
magnetic field leading to a nonzero rescattering parameter zr > 0 at the recollision point (3).
Due to the positive rescattering parameter zr, the electron obtains a negative momentum
kick at the recollision leading to the final negative momentum pz at the detector.

to R-CMT at the recollision. Already this intuitive picture explains the origin behind
the negative offset and reveals an intriguing interplay between the Coulomb focussing
and magnetic drift. We have to be careful as we have only presented a rough scheme
so far and we cannot be certain that the R-CMT will be sufficient to counteract the
magnetic drift measured. The final momentum pzd can be obtained from the zero order
trajectory pz0(u → ∞) from Eq. (2.18) corrected by the Coulomb momentum transfer
at rescattering δpz yielding

pzf ≡
A2(ui)

2c − δpz, (4.1)

where we substituted A(u)→ f(u)A(u) and obtained the asymptotic drift momentum at
the detector as a limit lim

u→∞
pzd(u, ui) = f2(ui)A2(ui)

2c ≈ A2(ui)
2c while omitting the negligible

role of envelope for the central half-cycle of our pulse.
Let us also note at this point that the size of the nondipole effects matters as they

could potentially drive the tunneled electron wave packet far away and no rescattering
would happen in the first place. Fortunately, this situation is described with the Lorentz
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deflection parameter from Eq. (2.3), which is sufficiently small for our present parameters
and we do not have to worry about the tunneled wave packet missing the ion.
Let us, for the sake of clarity, neglect the envelope f(u) for the following analytical

derivations as its role is rather insignificant for the three central half-cycles of the laser
field, which will be our main interest. The three-step-model described in Fig. 4.3 and
used thorough this section can be summarize as follows:

1. Ionization
Let us assume that the electron appears at the tunnel exit at ionization phase ui
with:

xi = − Ip
E0 cosui

< 0,

yi = zi = 0,
pyi > 0,
pzi = 0. (4.2)

2. Propagation
Then, the electron propagates in the continuum driven only by the laser field.
We assume that the electrons receives I-CMT δpxi and δpyi at the beginning of
the propagation and we can write its position at the end of propagation tr (or
equivalently by ur) as

xr = E0
ω2 [cosur − cosui + (ur − ui) sin ui] + δpxi (ur − ui) + xi = 0,

yr = (pyi + δpyi)(tr − ti) > 0,

zr = 1
2c

tr∫
ti

[A(t)−A(ti)]2 dt > 0, (4.3)

where the first equation uniquely defines the first rescattering point for any ioniza-
tion phase ui. The nondipole effects are included in the last equation.

3. Rescattering
The electron obtains Coulomb momentum transfers at the rescattering in the
transversal plane:

δpy ≈ − 2
|yrpxr|

< 0,

δpz ≈ − 2zr
y2
r |pxr|

< 0, (4.4)

where we have taken the formulas for FR from Eqs. (2.59)-(2.60) under the as-
sumption of zr � yr and pyi � pxr.

Up to this point, we have described a large class of tunneled electrons with initial
pzi = 0 and have to be more specific, if we want to identify the cusp electrons. Further
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restriction can be made by a simple condition assuming that the transversal momentum
pyi + δpyi at the recollision point cancels due to the negative R-CMT δpy. The condition
can be written as

δpy = −(pyi + δpyi). (4.5)

The cancelation of py momenta for the cusp electrons follows from the discussion of the
Coulomb focusing and clearly identifies the electron with initial transverse momentum
corresponding to the intersection of the circle with the positive part of the pyi-axis.
At this point we can employ the formulas for I-CMT from Eq. (2.87) and derive the

value of the pyi from the condition on cancellation as

pyi =
√

2√
|pxr|(tr − ti)

[
1−

(
2x2

iE0 cosui
)−1

] . (4.6)

Once we have found the trajectory of this one particular cusp electron, we can derive the
value for the R-CMT δpz from Eqs. (4.4) and determine the final pzf momentum of this
cusp electron from Eq. (4.1) as

pzf = A2(ui)
2c − 1

2c(tr − ti)

tr∫
ti

[A(t)−A(ti)]2 . (4.7)

The final formula is astonishing for two reasons. Firstly, it reveals an intriguing interplay
between the magnetically induced momentum drift represented by the first positive term
and the R-CMT received at the rescattering represented by the second positive term.
Secondly, it is independent of the initial transversal momentum pyi showing that the
final momenta pzf will be the same for all electrons starting on the ring of Fig. 4.2.
We calculated the values of pzf for several different ionization phases (and hence final
longitudinal momenta) and marked the results in the right panel of Fig. 4.1 by red crosses.
As we can see, the agreement with the simulation is excellent, especially in the region
I, where only single rescattering happens. This is also the region where the transition
from positive to negative shift happens meaning that the R-CMT exactly compensates
the drift induced by the magnetic field and our formula captures this momentum well.
The discrepancy grows with the number of recollisions suggesting that we have take

them into account as well. We are going to address the role of high-order recollisions in
the next section.

4.2 The role of high-order rescatterings
As we have seen in the previous section, the effect of the high-order recollision cannot be
omitted and is most likely the cause behind the discrepancy between our estimates from
Eq. (4.7) and the simulation at intermediate and vanishing values of the longitudinal
momenta presented in Fig. 4.1.
Before we generalize the derivation of the previous section to also take into account

the high-order rescatterings, we point out that the overall picture of Coulomb focusing of
the cusp electrons to a single point on the bend ridge also holds for multiple recollisions
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(or equivalently along the whole bend cusp). In fact, the initial phase space in Fig. 4.2
corresponds to the gray line separating the regions I and III in Fig. 4.1 and hence to the
class of trajectories with two rescatterings: the first being FR and the second being SR.
Therefore, we can assume that the cusp electron will always originate on a circle in the
initial phase momentum space. The radius of the circle or the offset of its center may
vary with respect to the longitudinal momenta px, but the cusp electrons will always
tend to originate on a circle. In case of doubts, we kindly ask the reader to wait until
the next chapter, where we will present more data showing the rings in the case of linear
polarization for three distinct values of the longitudinal momenta.
Thus, let us start and follow one more time the electron starting at the tunnel exit

with pzi ≈ 0 and pyi 6= 0, and ending at the cusp. According to Eq. (2.14), the final
z-component of the photoelectron momentum reads:

pzf ≈ p1z + A2(ui)
2c − pxiA(ui)

c
, (4.8)

where p1z is the total R-CMT for the considered electron, which was ionized at the laser
phase ui. The laser pulse was polarized in the x-direction and propagated along the z-
axis, and is polarized. While the magnetic field modifies the electron dynamics only along
the z-axis in this setup, the electron dynamics in y-direction stays similar to the dipole
case and we can again assume that the final y-component of the electron momentum is
vanishing and rewrite the condition from Eq. (4.5) as

pyf = pyi + p2y,in + p1y ≈ 0, (4.9)

where pyi, p2y,in and p1y are the y-components of the electron initial momentum, of I-
RMT, and of the total R-CMT, respectively. Under the assumption that the electron
rescatters N times, Eq. (4.9) reads

pyi + p2y,in +
N∑
n=1

p
(n)
1y ≈ 0, (4.10)

where p(n)
1y is the R-CMT at the nth recollision. Further, we will make use of the simple-

man’s approach to the R-CMT (as discussed in Subsec. 2.3.3) and estimate the R-CMT as
products of the acting forces during the recollisions and the durations of the recollisions
τn:

p
(n)
1y ≈ −Z

yn
r3
n

τn. (4.11)

Later we can apply the derived analytical formulas Eqs. (2.43)-(2.44), (2.56)-(2.57) and
(2.62)-(2.63) to estimate the recollision duration τn precisely.

How the final momentum p1z changes due to the Coulomb interaction can be estimated
as the sum of R-CMTs reading:

p1z =
N∑
n=1

p
(n)
1z = −Z

N∑
n=1

zn
r3
n

τn. (4.12)
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Figure 4.4: The breakdown of the dipole approximation in PMD: CTMC simulation for an
atom of Hydrogen in an intense linearly polarized laser pulse with E0 = 0.0407, ω = 0.012
and the laser pulse duration 15.7/ω. The peak of the cusp was determined from the first
term of Eq. (4.23), pzf = −T (1)

zd (black, solid), further via the full Eq. (4.23) (red, dashed),
and finally calculated as a sum of the I-CMT and the all R-CMTs at every single recollision
by the analytical formulas from Sec. 2.3 (green, dotted). In the left panel, we present the
results obtained at the end of the laser pulse and, additionally, we take the Coulomb field
effect after switching off the laser pulse into account in the right panel. The difference is
mostly visible at small longitudinal momenta.

As the recollision time τn and the recollision distance rn figure in both Eqs. (4.10) and
(4.12), we may use the first to simplify the relation for p1z. For the latter, we need to find
the impact parameters yn and zn. We can determine them stepwise from one recollision
to the next as

y1 = (pyi + p2y,in) (t1 − t0) ,

y2 = (pyi + p2y,in) (t2 − t0)− Z y1
r3

1
τn (t2 − t1) ,

...

yN = (pyi + p2y,in) (tN − t0)− Z
N−1∑
n=1

yn
r3
n

τn (tN − tn) , (4.13)
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where t0 is the ionization time, and tn is the recollision time of the nth for n ≥ 1. The
above relations can be inserted into Eq. (4.10) yielding

pyi + p2y,in = Z
N∑
n=1

τn
r3
n

(pyi + p2y,in) (tn − t0)

−Z2
N∑
n=1

τn
r3
n

n−1∑
k=1

yk
r3
k

τk (tn − tk) , (4.14)

where the first sum and the second iterative sum on the right-hand-side of the equa-
tion correspond to the first order corrections and to the next-order corrections to the
zero-order trajectory, respectively. When neglecting higher than second-order correction
terms, which are proportional to ∼

(
τn/r

3
n

)2, after a rearrangement, we obtain:

Z
N∑
n=1

τn
r3
n

(tn − t0) ≈ 1 + Z2
N∑
k<n

τnτk
r3
nr

3
k

(tn − tk) (tk − t0) . (4.15)

The impact parameter zr along the laser propagation direction depends on the magnet-
ically induced drift momentum of the photoelectron of pzi = 0:

z1 = p
(1)
zd (t1 − t0) ,

z2 = p
(2)
zd (t2 − t0)− Z z1

r3
1
τn (t2 − t1) ,

...

zN = p
(N)
zd (tN − t0)− Z

N−1∑
n=1

zn
r3
n

τn (tN − tn) , (4.16)

where we used the magnetic drift from Eq. (2.14) to define the averaged drift momentum
as

p
(n)
zd ≡

1
tn − t0

tn∫
t0

{
pxi
c

[Ax(t)−Ax(t0)] + 1
2c [Ax(t)−Ax(t0)]2

}
dt. (4.17)

Although the initial momentum is zero (i.e., pxi = 0) in the tunneling regime, we embody
the I-CMT of Eq. (2.94) into pxi and set pxi = p2‖,in(ui, pyi). When we substitute
Eq. (4.16) into Eq. (4.12), we obtain

p1z = −Z
N∑
n=1

p
(n)
zd

τn
r3
n

(tn − t0)

+Z2
N∑
n=1

τn
r3
n

n−1∑
k=1

zk
r3
k

τk (tn − tk) , (4.18)

where the first sum corresponds again to the first-order correction for the unperturbed
trajectory and the second iterative sum to the next-order corrections. When neglecting
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the higher than the second-order corrections (∼
(
Zτn/r

3
n

)2) and employing the relation-
ship of Eq. (4.15), we arrive at

p1z ≈ −p(1)
zd + Z

N∑
n=1

(
p

(1)
zd − p

(n)
zd

) τn (tn − t0)
r3
n

.

(4.19)
The first term in the equation describes R-CMT at the first recollision and the sum
emerges only due to multiple recollisions.
The presented cumbersome derivation becomes transparent in the case of a single

recollision:
p1z = −Z z1

r3
1
τ1 = −z1

y1
p1y = − z1

t1 − t0
= −p(1)

zd , (4.20)

saying that the z-component of R-CMT is equal to the averaged drift momentum in the
laser propagation direction evaluated between the ionization and recollision time.

Another intuitive perspective to Eq. (4.20) for the single recollision case arises during
investigation of the nondipole cusp electron’s dynamics. Let us assume that the cusp
electron has an initial momentum only along the propagation direction of the laser (i.e.,
pi = (0, 0, piz)), and compare it to the dipole case. The electron’s dynamics can be con-
sidered similar in the nondipole and in the dipole case, when the recollision coordinates
are the same zr = z

(0)
r , where the upper index (0) indicates the dipole case. The impact

parameter in the nondipole case is zr = (pzi + pzd)(t1− t0) and in the dipole case simply
z

(0)
r = p

(0)
zi (t1 − t0). Thus, we can consider the electron’s dynamics similar in both cases

when pzi = p
(0)
zi −pzd, i.e., whether the electron in the nondipole case possesses additional

initial momentum opposite to the magnetically induced drift. In particular, the similar
dynamics yields also the similar R-CMT: p1z ≈ p

(0)
1z . Because the cusp is located in the

nondipole case at the vanishing momentum, i.e., p(0)
zi + p

(0)
1z ≈ 0, we derived the relation

p1z = −pzi − pzd, which corresponds to Eq. (4.20) with pzi ≈ 0. The procedure connects
the averaged drift momentum before the first rescattering directly to the asymptotic
momentum of the cusp electrons. Now, we can derive the asymptotic momentum from
Eq. (4.8) as

pzf = pzi + p1z + A2(ui)
2c ≈ −pzd + A2(ui)

2c . (4.21)

In the last relation, we reproduced the results from Eq. (4.7) together with the intriguing
interplay between the R-CMT and the magnetically induced drift leading to negative and
positive shifts, respectively.
In general, we derive the asymptotic momentum from Eq. (4.19) in the case of multiple

recollisions as

pzf ≈
A2(ui)

2c − pxiA(ui)
c

− p(1)
zd + Z

N∑
n=1

(
p

(1)
zd − p

(n)
zd

) τn (tn − t0)
r3
n

, (4.22)

where summation takes place over all N -recollisions. We can simplify the equation, when
we combine the first three terms yielding

pzf ≈ −T
(1)
zd + Z

N∑
n=1

(
p

(1)
zd − p

(n)
zd

) τn (tn − t0)
r3
n

, (4.23)
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Figure 4.5: The averaged magnetically induced drift momentum p
(n)
zd obtained between the

ionization time ti = 4.087 a.u. and the nth rescattering time for the ionization time. The
electron has final longitudinal momentum px ≈ 0.3 a.u. and experiences four rescatterings.

where

T
(1)
zd ≡

1
u1 − u0

∫ u1

u0

[
pxfA(u)

c
+ A2(u)

2c

]
du, (4.24)

with u0 = ui and with the asymptotic longitudinal momentum pxf ≡ −A(ui) + pxi. We
point out the unobvious coincidence of the term −T (1)

zd with the single rescattering of
case of Eq. (4.21).
We compare our results with the CTMC simulations in Fig. 4.4. Let us note that

throughout this section we have determined all rescattering parameters from the numer-
ically found trajectories.
The main contribution to the negative shift of the cusp is given by the first term in

Eq. (4.23), −T (1)
zd , which originates from the first recollision and coincides with the result

of Ref. [116]. This term also captures well the peak of the cusp for large longitudinal mo-
menta (px & 0.52), leading only to a single recollision of the tunneled electron. However,
at intermediate momenta a noticeable disagreement shows and even grows for vanishing
momenta where the negative shift of the cusp decreases and tends to zero. The horizontal
fringes correspond to the soft recollision condition and separate regions with respect to
number of rescatterings. While crossing the horizontal line towards lower energies, the
number of recollisions increases by one.
When the electron undergoes more than one rescattering, which is the case for px .

0.52 in Fig. 4.4, the nondipole dynamics cannot be considered similar to the dipole case
any longer. In fact, it is not possible to adjust the single parameter (i.e., the initial
transverse momentum) and ensure that all the recollision parameters of the electron’s
multiple revisit will correspond to the parameters in the dipole case. The influence of the
multiple recollisions is described by the second term in Eq. (4.23) expressed as a sum.
We carried out the averaged magnetically induced drift momentum at all four recollisions
of a particular trajectory in Fig. 4.5. As we can see, the averaged drift momentum is
decreasing with the order of the recollision n meaning that the elements in the sum are
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Figure 4.6: The evolution of the electron’s momentum compensated by the vector-potential,
i.e., p(t) +A(t), which shows the history of the Coulomb momentum transfer. The example
shows the electron originating at ti = −1.25 with pyi = 0.116 and pzi = 0 and ending at the
PMD cusp. Panel (a) shows that the py momentum changes significantly even at the end
of the laser pulse (t ≈ 2200). Panel (b) shows negative total Coulomb momentum transfer
on the pz momentum at the end of the laser pulse. We also isolated the contribution of the
time-dependent Coulomb momentum transfer and plotted it by yellow dashed line.

positive or zero. Thus, the sum yields the decrease of the negative shift of the cusp in
the intermediate and low energy part of the PMD.
Whereas the positive offset of the bend cusp at large longitudinal energies can be

connected to the magnetically induced drift pzd = A2(ui)/2c, the negative offset can be
explained as the interplay between the Coulomb momentum transfer p1z and magneti-
cally induced drift pzd(u, ui). The electron moves in the positive z-coordinate direction
because of the magnetically induced drift, acquires positive impact parameter zr and
hence negative Coulomb momentum transfer against the propagation direction of the
laser at the rescattering. For decreasing longitudinal momenta, the recollision phase
grows, which leads to increase of the acquired impact parameter zr and therefore of the
R-CMT in the opposite direction. Thus, the bend cusp undergoes a transition from
positive to negative shifts.
Such simple picture is true for relatively large longitudinal momenta leading to single

recollision. Nevertheless, the simulations manifest a bend of the cusp towards the zero
momentum at lower longitudinal momenta again, which we assigned to increasing number
of recollisions. In the case of multiple recollisions, the averaged effective drift decreases
with the recollision’s order n as p(n)

zd < p
(1)
zd , which yields a consequent decrease of the
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total R-CMT in z-direction.
Another reason can be given for the PMD cusp to shift towards vanishing momentum

at very low energies. Namely, the low energetic electrons are more likely to be still
close to the atomic core at the end of the laser pulse. At this point and later on, the
focusing properties of the Coulomb field dominate and the close electrons will be dragged
towards the atomic core, which decreases their momentum even further, see an example
in Fig. 4.6. Fig. 4.6(a) shows the py momentum changing significantly even at the tail of
the laser pulse. In such situation, the recollision picture breaks down and the condition
given in Eq. (4.10) cannot be applied any longer. Part (b) shows nontrivial behavior of
the negative CMT on the pz momentum at the end of the laser pulse. Our analytical
perturbative framework is not suitable for description of the electron’s dynamics at the
end of the laser pulse as the decreasing intensity leads to breakdown of the recollision
picture. Because of the recollision picture breakdown, we cannot apply our analytical
model at the end of the laser pulse. At least, we can take into account the additional
role of the Coulomb potential for the photoelectron’s momentum when the laser pulse
is gone. This we do in Fig. 4.4, where we determined the position of all the electrons
from asymptotic Kepler formula. The asymptotic Kepler formula will be introduced
in greater detail in Sec. 6.4 of the last chapter and for now, we just have to know only
that it uses the position and the momentum of a photoelectron placed in the conservative
Coulomb potential to compute the electron’s asymptotic momentum at infinity (which we
would measure with a detector). These parameters can be obtained from the numerical
trajectories and the momenta via the Eqs. (4.21), (4.23). From the figure we can see that
only the low-energetic photoelectrons near the low longitudinal momenta are appreciably
effected by the Coulomb field resulting in better agreement with the simulation in this
low energy region.

4.3 Summary

In this chapter, we have addressed the recently observed nondipole effect of energy-
dependent bend central cusp with the famous three-step-model within our classical an-
alytical framework derived in Chap. 2. We explained the seemingly counterintuitive
transition of the bend to the negative transversal momentum pz as the result of an in-
terplay between the momentum drift induced by the magnetic component of the laser
field and the Coulomb focusing represented by the Coulomb momentum transfer at the
first recollision in Sec. 4.1 while deriving analytical expression leading to the excellent
agreement with the CTMC simulation for large and intermediate values of longitudinal
momenta with only one rescattering.
Further, the discrepancy for the small values of longitudinal momenta between our

model and the simulation was explained as the influence of the high-order rescattering
events in Sec. 4.2, where we achieved improvement of our estimations once we had taken
the high-order recollisions into account.
Eventually, the discrepancy for vanishing longitudinal momentum, where the bend cusp

tends towards the zero transversal momentum, was contributed to the breakdown of the
recollision picture and to further non-negligible Coulomb interaction after disappearance
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of the laser pulse.
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Chapter 5

Nondipole effects in elliptical
polarization
So far, we have analyzed the modification of the Coulomb focusing due to the nondipole
effects in linearly polarized laser fields. The modifications were traced back to the drift
momentum induced by the magnetic field of the laser which alters the initial conditions
of the cusp electrons manifesting as the shift of the Coulomb focused rings in initial
phase space as discussed in the previous chapter. This shift assures compensation for
the magnetically induced drift momentum leading to the same or similar R-CMT as in
the dipole case. A similar situation can be induced by the introduction of ellipticity to
the ionizing laser field, where additional drift momentum arises due to the laser driven
evolution also in the one, so far, symmetrical transversal direction. Therefore, we can
effectively stage a situation with two perpendicular momentum drifts of the tunneled
electrons in the transversal plane (with respect to the major axis of polarization) and see
how they modify the Coulomb focusing.
We would like to point out at this point that the results of this chapter were obtained in

an extensive and fruitful collaboration with Dr. Jochen Maurer and his student Benjamin
Willenberg from the experimental group of professor Ursula Keller at the ETH Zürich
leading to several publications [142,194] on which this chapter is based.
Before we start with analytical search for trajectories of tunneled electrons in elliptical

polarized laser field beyond the dipole limit in Sec. 5.1, let us show the results of the
experiment that has motivated our research. In the measurements, our collaborators
measured how the photoelectron momentum spectrum (PMD) of gaseous Xe changes
under variation of the ellipticity of the ionizing laser pulse while keeping the overall
intensity of the pulse constant. The results can be found in Fig. 5.1 (taken from [194])
for laser pulse of peak intensity 6 · 1013 W/cm2, 50 fs duration, central wave-length 3400
nm, major axis of polarization along x-axis and propagation direction along z-axis. The
results manifest two prominent features: two main lobes and a thin central spot along
the major axis of polarization at low ellipticities. The central cusp fades and vanishes
once the two lobes get spatially separated at ε ≈ 0.11 . . . 0.15. The structure was related
to rescattered electrons (called type B electrons) and it is present along with the two
lobes of direct electrons (called type A electrons). This is true also in the dipole limits
as we will show in Sec. 5.2.
The nondipole effects were also observed in this experiment and measured as the peak

offset of measured pz, which was obtained from the projections of the full 3D PMDs
onto single dimension, namely, the pz axis. The case of zero ellipticity corresponds
to the case of the previous chapter and the negative sign of the offset is therefore no
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Figure 5.1: We show the PMDs in the polarization plane observed at laser field peak
intensity of 6 · 1013 W/cm2 for the ellipticities 0.0, 0.03, 0.07, 0.11, 0.15, 0.19, 0.23, 0.26, in
(a) to (h), respectively. The central spot was cut out for illustration purposes as it stems for
Rydberg states. More accurately, the PMDs are projections of the cuts limited by the range
|pz| < 0.06 a.u. onto the laser polarization plane. A sharp line structure emerges in the
PMDs at ellipticities of ε = 0.07 and ε = 0.11 and disappears at larger ellipticities ε ≥ 0.15.
The central panel (j) in the bottom shows how we separate the PMD into the two lobes
of type A electrons and into the central structure of type B electrons at ε = 0.07. CTMC
simulations have revealed that the typical trajectory of type B electrons manifest at least one
rescattering (exemplary trajectories shown in panel (i)) whereas type A electron are direct
and hence without any recollisions as expected (exemplary trajectories shown in panel (k)).
(This figure shows experimental and simulation results obtained by our collaborators and
was published in our paper [194].)

longer surprising. On the other hand, the experiment has shown that the peak offset is
not constant and depends on the ellipticity. Even to such an extent that it exhibits a
transition from negative to positive values with increasing ellipticity as shown in Fig. 5.2
(taken from [194]). We will address the nondipole effects in the Sec. 5.3, where we will
also show how our deeper understanding of the two drifts can help us to get a better
insight into the dynamics of the tunneled wave packet in the continuum and offer new
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Figure 5.2: We carried out the pz-position of the peak of the complete projection of the
measured PMDs onto the beam propagation axis (pz) as a function of ellipticity for constant
intensity. A transition from negative to positive values of pz with a zero crossing at ε ≈
0.12 can be observed. The results obtained by CTMC simulations with varying CEP phase
and ionization along whole laser pulse are carried out by blue points. The results reproduce
the transition and are in overall agreement with the experimental data. We attribute the
discrepancy to the focal averaging, which was omitted in the simulation. (This figure shows
experimental and simulation results obtained by our collaborators and was published in our
paper [194].)

possibilities for its experimental investigations.

5.1 Tunneled electrons in elliptically polarized laser fields

In this section, we are going to generalize our analytical model from Sec. 2 for elliptically
polarized lasers. Then, the trajectory of a recolliding electron can be found as the solution
of the classical equations of motion in an elliptically polarized laser field, while treating
the Coulomb field effect as a perturbation which affects the electron trajectory near
the tunnel exit and at recollisions. Nevertheless, we will assume thorough this chapter
that the ellipticity does not disturb the recollisions severly our analytical formulas from
Secs. 2.3 and 2.5 can still be applied. This may not be true for large values of ellipticity
close to 1, but it is well justified for small values of ellipticity which will be of our main
concern here.
The electric field of the laser field is

Ex = E0 cos η
Ey = εE0 sin η, (5.1)

with the phase of the laser field η = ω(t − z/c), the ellipticity 0 ≤ ε ≤ 1, the laser field
amplitude E0, the frequency ω, and the speed of light c. The envelope of the pulse is
neglected. Atomic units are used throughout.
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For the electron dynamics in the plane laser field the canonical momentum in the
polarization plane is conserved

px −Ax(η) = const
py −Ay(η) = const, (5.2)

with the electron kinetic momentum components px,y in the polarization plane, and the
laser vector-potential A(η) = (Ax(η), Ay(η), 0):

Ax(η) = −E0
ω

sin η

Ay(η) = ε
E0
ω

cos η. (5.3)

The electron momentum in the laser polarization plane after the ionization is

px = −E0
ω

(sin η − sin ηi) + pxi (5.4)

py = ε
E0
ω

(cos η − cos ηi) + pyi. (5.5)

where ηi is the ionization phase, pi = (pxi, pyi, pzi) are the components of the initial
electron momentum.
After leaving the tunnel exit a momentum transfer arises due to the Coulomb force

δpCi = (δpCxi, δpCyi, δpCzi). For a simplified analysis we include this into the initial conditions
of the laser driven electron trajectories:

pi = pe + δpCi , (5.6)

where pe = (pex, pey, pez) is the electron momentum at the tunnel exit. At the tunnel
exit the electron momentum is transverse to the laser field polarization direction: p⊥e =
pe − p||e, with a vanishing component along the polarization p||e = ê(pe · ê) = 0. Here,
the laser polarization vector is

ê = (cosφ, sinφ, 0)

=
(

cos ηi√
cos2 ηi + ε2 sin2 ηi

,
ε sin ηi√

cos2 ηi + ε2 sin2 ηi
, 0
)
, (5.7)

with tanφ = ε tan ηi.
For the electron dynamics in a plane laser field there is a third integral of motion,

besides the transverse canonical momentum of Eq. (5.2), due to the space-time translation
symmetry:

Λ ≡ ε− cpz
c2 = const, (5.8)

with the electron energy ε = c
√
p2
x + p2

y + p2
z + c2.
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The electron momentum along the laser propagation direction can be found from
Eq (5.8):

pz =
p2
x + p2

y + c2(1− Λ2)
2cΛ . (5.9)

As c2(1− Λ2)/(2cΛ) = pzi − (p2
xi + p2

yi)/(2cΛ), we have for the longitudinal momentum

pz = pzi +
(p2
x + p2

y)− (p2
xi + p2

yi)
2cΛ . (5.10)

As the ionized electron appears at the tunnel exit with a velocity much smaller than
the speed of light, one has Λ ≈ 1 − pzi/c ≈ 1, and in the order of 1/c the longitudinal
momentum is

pz ≈ pzi + 1
2c [A(η)−A(ηi)]2 + pi

c
· [A(η)−A(ηi)] . (5.11)

From Eqs. (5.4),(5.5) and (5.11), the electron relativistic equations of motion in the
laser field read:

Λωdx
dη

= −E0
ω

(sin η − sin ηi) + pxi (5.12)

Λωdy
dη

= ε
E0
ω

(cos η − cos ηi) + pyi, (5.13)

Λωdz
dη

= 1
2c [A(η)−A(ηi)]2 + pi

c
· [A(η)−A(ηi)] + pzi.

(5.14)

which is derived using the relation (ε/c2)dη/dt = ωΛ. The solution of the latter is

x = E0
ω2 (cos η − cos ηi) +

[
pxi + E0

ω
sin ηi

] (η − ηi)
ω

+ xi,

(5.15)

y = ε
E0
ω2 (sin η − sin ηi) +

[
pyi − ε

E0
ω

cos ηi
] (η − ηi)

ω
+ yi,

(5.16)

z = 1
2c

∫ η

ηi

[
A(η′)−A(ηi)

]2 dη′
ω

+ pzi
(η − ηi)

ω
+ zi

+ 1
c

∫ η

ηi

pi ·
[
A(η′)−A(ηi)

] dη′
ω
, (5.17)

where the initial coordinates at the ionization phase ηi correspond to the tunnel exit:

xi ≈ −IpEx(ηi)
E2(ηi)

= − Ip
E0

cos ηi
cos2 ηi + ε sin2 ηi

,

yi ≈ −IpEy(ηi)
E2(ηi)

= − Ip
E0

ε sin ηi
cos2 ηi + ε sin2 ηi

, (5.18)

zi ≈ 0.
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Chapter 5 Nondipole effects in elliptical polarization

Recollisions in an elliptically polarized laser field

Recollisions can happen not only in a linearly polarized laser field but also in a laser
field of elliptical polarization. At least for small ellipticities, we can still assume that the
motion along the major axis of polarization is dominant and therefore determines the
rescattering points in the same way as disscussed in the Chapter 2.
In this subsection we are going to derive the conditions under which the recollision

dynamics (recollision parameters) for elliptical polarization are similar to those in the
case of a linear polarization, which will play a crucial role in understanding the observed
features.

Linear polarization within dipole approximation

Let us consider the electron contributing to the ridge structure in the case of linear
polarization with the dipole approximation, when the final transverse momentum of the
electron is vanishing

p
(0)
yf ≈ p

(0)
zf ≈ 0. (5.19)

The electron contributing to the ridge structure with an initial momentum pi = (p(0)
xi , p

(0)
yi , p

(0)
zi )

has the following recollision coordinates

x(0)
r = 0 (5.20)

y(0)
r = p

(0)
yi

ηr − ηi
ω

, (5.21)

z(0)
r = p

(0)
zi

ηr − ηi
ω

, (5.22)

where ηr is the recollision phase, and Eq. (5.20) defines the recollision. The momentum
transfer upon recollision due to the Coulomb field is δpC(0)

r , and the final transverse
momentum of the electron is vanishing in the case of linear polarization when it ends up
at the ridge:

p
(0)
yf = p

(0)
yi + δpC(0)

yr = 0,

p
(0)
zf = p

(0)
zi + δpC(0)

yr = 0. (5.23)

Consequently, the initial momentum components transverse to the laser polarization are
determined by the Coulomb momentum transfer at recollision:

p
(0)
yi = −δpC(0)

yr ,

p
(0)
zi = −δpC(0)

zr . (5.24)

Elliptical polarization with dipole treatment

When ellipticity is introduced, the motion of the tunneled electron changes mainly along
the minor axis of polarization as given by Eq. (5.16). The recollision point in the (y, z)-
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5.1 Electrons in ell. polarized laser

transversal plane lies at

y(ε)
r = ε

E0
ω2 (sin ηr − sin ηi) +

(
p

(ε)
yi − ε

E0
ω

cos ηi
) (ηr − ηi)

ω
+ yi, (5.25)

z(ε)
r = p

(ε)
zi

ηr − ηi
ω

, (5.26)

with initial transversal momenta p(ε)
yi and p(ε)

zi and the superscript (ε) indicating the case
of elliptical polarization.
Let us investigate, when the Coulomb momentum transfer will be similar to the linear

case (i.e., δpC(ε)
yr = δp

C(0)
yr and δpC(ε)

zr = δp
C(0)
zr ). This can be easy to find out, when we

assume only one dominant rescattering. The Coulomb momentum will be the same as
the linear case when the recollision coordinates will be the same in both cases:

y(ε)
r = y(0)

r , (5.27)
z(ε)
r = z(0)

r . (5.28)

The second equation is trivially fulfilled when p(ε)
zi = p

(0)
zi . However, the first equation is

non-trivial and leads to expression:

p
(ε)
zi = p

(0)
zi + ε

E0
ω

cos ηi − ε
E0
ω

(sin ηr − sin ηi
ηr − ηi

)
− yiω

ηr − ηi
,

≈ p
(0)
zi + ε

E0
ω

cos ηi (5.29)

where we assumed that the last term is small due to the long wavelength and small
ellipticity. The next to the last term has decreasing contribution with increasing ηr and
is suppressed for dominant rescatterings of higher-order. The result of Eq. (5.29) shows
that the Coulomb momentum transfer will be similar to the linear case, when the electron
starts with positive offset in the p(ε)

zi momentum which is compensating for the elliptical
drift.

Elliptical polarization with nondipole treatment

According to Eq. (5.16), the electron transverse coordinates (with respect to the major
axis of the polarization ellipse) at the recollision in the case of elliptical polarization are

y(ε)
r = ε

E0
ω2 (sin ηr − sin ηi) +

(
p

(ε)
yi − ε

E0
ω

cos ηi
) (ηr − ηi)

ω
+ yi,

(5.30)

z(ε)
r = 1

2c

∫ ηr

ηi

[
A(η′)−A(ηi)

]2 dη′
ω

+ p
(ε)
zi

(ηr − ηi)
ω

+ 1
c

∫ ηr

ηi

p(ε)
i ·

[
A(η′)−A(ηi)

] dη′
ω
, (5.31)

where superscript (ε) indicates the case of elliptical polarization and the initial momenta
are compactly written as a vector p(ε)

i ≡
(
p

(ε)
xi , p

(ε)
yi , p

(ε)
zi

)
.
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Chapter 5 Nondipole effects in elliptical polarization

The recollision dynamics, i.e. the momentum transfer during recollision, in the case of
elliptical polarization will be the same as in the case of linear polarization, i.e.,

δpC(ε)
yr = δpC(0)

yr ,

δpC(ε)
zr = δpC(0)

zr , (5.32)

if the impact parameter is the same

y(ε)
r = y(0)

r

z(ε)
r = z(0)

r . (5.33)

The latter, using Eqs. (5.21)-(5.22) and (5.30)-(5.31), reads:

ε
E0
ω2 (sin ηr − sin ηi) +

[
p

(ε)
yi − ε

E0
ω

cos ηi
] (ηr − ηi)

ω
+ yi

≈ p(0)
yi

(ηr − ηi)
ω

, (5.34)

1
2c

∫ ηr

ηi

[
A(η′)−A(ηi)

]2 dη′
ω

+ p
(ε)
zi

(ηr − ηi)
ω

+ 1
c

∫ ηr

ηi

p(ε)
i ·

[
A(η′)−A(ηi)

] dη′
ω
≈ p(0)

zi

(ηr − ηi)
ω

(5.35)

We consider slow recollisions (e.g., points B2 and B4 introduced in the next section)
when the longitudinal velocity is vanishing prx = 0. This according to Eq. (5.4) reads

E0
ω

(sin ηr − sin ηi) = p
(ε)
xi . (5.36)

Then, we can derive from Eqs. (5.34)-(5.36)

p
(ε)
yi = p

(0)
yi + ε

E0
ω

cos ηi −
εp

(ε)
xi + yiω

ηr − ηi
≈ p(0)

yi + ε
E0
ω

cos ηi,

(5.37)

p
(ε)
zi = p

(0)
zi −

1
2c(ηr − ηi)

∫ ηr

ηi

[
A(η′)−A(ηi)

]2
dη′

− 1
c(ηr − ηi)

∫ ηr

ηi

p(ε)
i ·

[
A(η′)−A(ηi)

]
dη′ (5.38)

We estimated the last term in the first equality of Eq. (5.37) to be rather small. In
fact, |p(ε)

xi | = |δpC(ε)
xi | ≈ πE(ηi)/(2Ip)3/2, and ηr − ηi ∼ 3π at the first soft recollision,

and |εp(ε)
xi /(ηr − ηi)| ∼ 10−3, at ε ∼ 0.1, ω = 0.013 (the laser wavelength of 3400 nm),

E0 = 0.04 (the laser intensity of 5.8 × 1013 W/cm2). The ratio |yiω/εp(ε)
xi | ∼ sin ηi is

also small at the same values of parameters, justifying dropping the last term in the first
equality of Eq. (5.37).
We can conclude that the recollision dynamics in an elliptically polarized laser field

is similar to the case of linear polarization with the dipole approximation, if the initial
momentum fulfills the conditions of Eqs. (5.37) and (5.38), i.e., the electrons with appro-
priately shifted initial momenta at the tunnel exit will create a ridge structure similar to
the linear polarization scenario.
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5.1 Electrons in ell. polarized laser

Asymptotic momenta of recolliding electrons

The final momentum of the slow recolliding electrons which create the ridge structure in
an elliptically polarized laser field can be found using Eqs. (5.5), (5.11) and (5.37)(5.38).
The electron momentum before the recollision is

p(ε−)
ry = p

(ε)
yi + ε

E0
ω

(cos ηr − cos ηi), (5.39)

p(ε−)
rz = p

(ε)
zi + 1

2c [A(ηr)−A(ηi)]2 + p(ε)
i

c
· [A(ηr)−A(ηi)] .

The recollision induces the momentum transfer δpC(ε)
r , and the electron momentum after

the recollision is

p(ε+)
ry = p

(ε)
yi + δpC(ε)

ry + ε
E0
ω

(cos ηr − cos ηi),

p(ε+)
rz = p

(ε)
zi + δpC(ε)

rz + 1
2c [A(ηr)−A(ηi)]2

+ p(ε)
i

c
· [A(ηr)−A(ηi)] . (5.40)

Then, the final photoelectron momentum is

p
(ε)
yf = p(ε+)

ry − εE0
ω

cos ηr,

p
(ε)
zf = p(ε+)

rz + A2(ηr)
2c − p(ε)

r

c
·A(ηr), (5.41)

which after inserting Eq. (5.40) yields

p
(ε)
yf = p

(ε)
yi + δpC(ε)

ry − εE0
ω

cos ηi,

p
(ε)
zf = p

(ε)
zi + δpC(ε)

rz + A2(ηi)
2c − p(ε)

i

c
·A(ηi), (5.42)

where we have used that p(ε)
rx = Ax(ηr)−Ax(ηi)− pxi, and p(ε)

ry = Ay(ηr)−Ay(ηi)− pyi.
Now we apply the initial conditions of Eqs. (5.37)-(5.38), which results in

p
(ε)
yf = p

(0)
yi + δpC(ε)

ry ,

p
(ε)
zf = p

(0)
zi + δpC(ε)

rz + A2(ηi)
2c − p(ε)

i

c
·A(ηi)

− 1
2c(ηr − ηi)

∫ ηr

ηi

[
A(η′)−A(ηi)

]2
dη′. (5.43)

− 1
c(ηr − ηi)

∫ ηr

ηi

p(ε)
i ·

[
A(η′)−A(ηi)

]
dη′

Taking into account the conditions of Eqs. (5.24) and (5.32), i.e., δpC(ε)
ry,rz ≈ δpC(0)

ry,rz ≈ p(0)
yi,zi,

we obtain the final momentum:
p

(ε)
yf ≈ 0,

p
(ε)
zf ≈ − 1

ηr − ηi

∫ ηr

ηi

Tz(p(ε)
i , η′)dη′ (5.44)
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where

Tz(p(ε)
i , η) ≡ A2(η)

2c +
[
p(ε)
i −A(ηi)

]
· A(η)

c
, (5.45)

is the drift momentum along the laser propagation direction.
Our conclusion from Eq. (5.45) is that the ridge position for the slow recolliding elec-

trons in the ellipically polarized laser field is not shifted along the minor axis of polariza-
tion, but it is shifted opposite the laser propagation direction by the value corresponding
to the average drift momentum during the recollision.

Estimation of the momentum shift

We may estimate the momentum shift against the laser propagation direction from
Eq. (5.44) as

p
(ε)
zf ∼ −

{
A2(η̃)

2c +
[
p(ε)
i −A(ηi)

]
· A(η̃)

c

}
, (5.46)

with the effective phase during the excursion η̃, p(ε)
xi = δpCxi = πE0 cos ηi/(2Ip)3/2, and

p
(ε)
yi −Ay(ηi) = δpCr . Thus,

p
(ε)
zf ∼ −

{
E0
cω

[(
πE0 cos ηi
(2Ip)3/2 + E0

ω
sin ηi

)
sin η̃ + δpCr ε cos η̃

]

+ A2(η̃)
2c

}
.

(5.47)

The value of δpCr ∼ 0.1 can be read off from the Fig. 5.4 while E0/ω ∼ 3, and πE0/(2Ip)3/2 ∼
0.1.

For the final low longitudinal momenta pxf → 0, ηi → 0, the first term in the square-
brackets is small and

p
(ε)
zf ∼ −

A2(η̃)
2c . (5.48)

Whereas when the final momentum pxf is large and rescattering is negligible, the peak
of the momentum distribution shifts along the laser propagation direction:

p
(ε)
zf ≈

A2(ηi)
2c . (5.49)

A rough estimate of

A2(η̃)
2c ∼ A2(ηi)

2c ∼ E2
0

4cω2 ≈ 0.017, (5.50)

fits by an order of magnitude the experimental observation shown in Fig. 5.2. Moreover,
we can see from our analysis that the rescattering plays an essential role for the sign
of the peak offset, which shifts from negative to positive values as the recollisons get
suppressed by the ellipticity.
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5.2 The role of the drift induced by the ellipticity

5.2 The role of the drift induced by the ellipticity

As we already mentioned early in this chapter, the creation of the central structure is
connected to the momentum drift induced by the ellipticity and not to the nondipole
effects. In order to get better insight, we ran several CTMC simulations with the laser
pulse corresponding to the experiment in the dipole approximation (i.e., neglecting the
magnetic component B(u)) based on the two-step model of strong-field ionization. The
electron trajectories are obtained as a solution of the Newton’s classical equations of
motion given by Eq. (2.8) in the combined electric field of the laser and the Coulomb
potential of the parent ion. The initial conditions are taken from the adiabatic tunnel
ionization theory in parabolic coordinate [195] and from the ADK theory. Moreover, we
have fixed the CEP phase and restricted the ionization only to the central half-cycle of
the laser field in order to remove any possible CEP effects. This also breaks the symmetry
of the two side-lobe of the PMD, which now exhibits only one side-lobe of direct electrons
that makes the created cusp at the center more visible. We show our results in Fig.5.3
for three different ellipticities: ε = 0, 0.07 and 0.11, where clear manifestation of the
central vertical cusp can be found.
Since the features of the PMD are well understood in the case of linear polarization

in the terms of laser-driven classical trajectories recolliding with the parent ion, let us
concentrate on this case for now. Due to the nature of the Coulomb interaction, a
bunching of electrons appears and is imprinted on the PMD in the form of caustics,
see Fig. 5.3 for ε = 0. There are two kinds of caustics: horizontal and vertical. Each
horizontal caustic line in PMD corresponds to a certain kind of rescattered trajectory
when the longitudinal momentum (with respect to the major polarization axis of the
laser field) of the electron at the recollision is vansihing (the soft recollision condition
depending on the ionization phase), which leads to the longitudinal bunching of electrons.
On the other hand, the central vertical cusp is caused by Coulomb focusing (CF) and is
observable for all ionization phases.
In order to get a better insight into the creation of the vertical cusp, we analyzed

the initial transverse momentum distribution at the tunnel exit with momentum bins of
0.01×0.01×0.01 dimensions placed at characteristic points of the PMD. We compare the
phase spaces of corresponding points in linearly and elliptically polarized cases in Fig. 5.4.
The cusp originates as the contraction of the transverse phase space. In the linearly
polarized laser field the electrons contributing to the cusp are ionized with a nonvanishing
transverse momentum at the tunnel exit and finally appear with the vanishing transverse
momentum. Their initial distribution is a ring in (py, pz)-transverse phase space, see
Fig. 5.4, left column. In the case of linearly polarized laser field, the electrons which
are distributed inside the ring in the transversal phase space, undergo hard recollisions
and contribute mostly to the high energy region of the PMD (i.e., with energy larger
than 2Up, , where Up is the ponderomotive potential). Let us note that this region is
not shown in Fig.5.3. However, there are exceptional electrons with specific trajectories
originating from the inner rings in Figs. 5.4(a)-(c). The electrons from the inner rings
also end at the center of the ridge, but, unlike the electron from the outer ring, this
happens due to well-balanced role of multiple rescatterings. We used the term well
balanced since the Coulomb momentum transfer to the electron switches its sign in the
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Chapter 5 Nondipole effects in elliptical polarization

Figure 5.3: Comparison of PMD cuts with |pz| < 0.06 obtained by CTMC simulations
with fixed CEP phase and ionization restricted only to the central half-cycle for different
ellipticities: ε = 0, ε = 0.07 and ε = 0.11, respectively. We pointed out the characteristic
points depending on the specific longitudinal momenta and marked them as Bn, where n
stands for the number of recollisions in the case of linear polarization. Since the case of
small ellipticities is similar to linear polarization, we can also find corresponding points in
the central and right panel as marked. Point A stands for the center of the side-lobe and
is originates from recollision-free trajectories. The points B2 and B4 correspond to the soft
recollision condition (pxr = 0), which manifests itself as visible horizontal caustics passing
through B2 and B4. Moreover, the vertical caustic appears to be strongly dependent on the
ellipticity as it deforms for ε = 0.07 and even splits for ε = 0.11 at intermediate longitudinal
momenta as pointed out by point B3. The bend of the cusp above B2 is also ellipticity
dependent as the changing transversal position of B1 in panels (a)-(c) shows. Moreover, we
can see a suppression of its visibility with increasing ellipticity.

consecutive rescatterings and since the underlying trajectory strongly depends on the
initial conditions of the electron. The balance is strongly distorted when the ellipticity
is introduced. This can be concluded from the suppression and eventual vanishing of the
inner rings in Figs. 5.4(d)-(j).
In the case of the laser field with small elliptical polarization, this picture holds and

we can still identify analogous points for the ellipticities ε = 0.07 and ε = 0.11 as
shown in Fig. 5.3, which manifest the deformation of the PMD via increasing ellipticity,
leading to a split of the central cusp at the point B3 for ε = 0.11. Nevertheless, we
can identify two modifications to this picture. First of all, Coulomb focusing acts on
such electrons which are originally distributed on a shifted ring in the initial phase
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Figure 5.4: The initial momentum space distribution for trajectories ending in the momen-
tum bins of 0.01×0.01×0.01 dimensions at the asymptotic values of longitudinal momentum
px: (a) 0.62, (b) 0.44 and (c) 0.3 a.u., corresponding to the points B2, B3, B4 of Fig. 5.3,
respectively. The laser field is linearly polarized in (first column), and elliptically polarized:
with ε = 0.07, in (second column), and ε = 0.11, in (last two columns). Notice the positive
offset in the pyi of the structures in the right column due to the ellipticity. For ε = 0.11
the ridge splits into two parts, represented by points B3(l) and B3(r) in panels (h) and
(i), respectively. The pronounced left branch in (h) consists of electrons following linear-like
trajectories, whereas the faint right branch comes from trajectories strongly influenced by
the ellipticity. The points PT , PD, PL, PR are discussed in the text. In the CTMC simula-
tions the dipole approximation is used along with fixed CEP phase and the ionization being
restricted to the central half-cycle of the laser pulse.
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space. This is similar to the case of nondipole effects in linear polarization and holds
for small ellipticities, which we define in in Eq. (5.58) below. The shift is in the of the
ring along the negative pyi momentum and the prediction made by Eq. (5.29) agrees
with the simulations in Fig. 5.4(d)-(j). The Coulomb focusing is indicated by the ring
form of the initial distribution. The ring is not altered much in case of small elliptical
polarization meaning that Coulomb focusing for is qualitatively the same. The electrons
distributed on the shifted ring contribute to the line-shaped ridge observed in the PMD
with elliptically polarized laser fields. The electrons with slow recollision contribute to
the points B2 and B4 in Fig. 5.3. Interestingly, the position of these points in the PMDs
does not change with the introduction of the ellipticity, which points out to similarity
the similarity of the underlying trajectories.
Secondly, type A electrons with vanishing initial transverse momentum do not ex-

perience any recollisions for non-negligible ellipticities and the only momentum change
happens through the initial Coulomb momentum transfer when the electron recedes from
the tunnel exit. This type of electrons contributes to the two lobes in the final (px, py)-
distribution. Unlike type B electrons, type A electrons originate on a point in the initial
momentum space, see Fig. 5.5, indicating the absence of Coulomb focusing (the initial
and the final phase space are the same).
A new type of recolliding trajectories ending at point B2 can be seen for ε = 0.07 and

ε = 0.11. They manifest as small rectangle-like distributions placed inside the rings of
the initial momentum distributions for B2. Nevertheless, the number of these trajectories
is not high and we do not expect them to influence the PMD.

The shift of the initial momentum space of the ridge electrons.

We investigate the sharp ridge structure at the center of the PMD and is properties in
this section. First of all, we have to find the electron initial momenta at the tunnel exit
contributing to the ridge. The cusp electrons originate on a ring in the initial trans-
verse momentum space (pyi, pzi), whose radius corresponds to the transverse momentum
change due to Coulomb focusing [142]. The ridge is centered in the final PMD, in the
case of linearly polarized laser field, at py = 0, pz = 0 and the initial momentum ring is
at the center of the transversal plane p(0)

yi = 0, p(0)
zi = 0. The ellipticity induces a momen-

tum shift along the minor axis of the polarization ellipse (i.e., along the y-axis), and the
nondipole effects induce momentum shift of the cusp structure along the negative z-axis.
In order to find these shifts let us follow two electrons from opposite parts of the initial
PMD-ring, which finally end up at the cusp with the same asymptotic momentum. For
illustration, we mark such electrons in Fig. 5.4(f). At the beginning, we choose the left
electron PL with p−yi, pzi = 0 and the right electron PR with p+

yi, pzi = 0, both of which
have the same vanishing final momentum at the cusp:

p−yf = p+
yf . (5.51)

We can use the solution to the electron’s motion in the laser field given by Eq. (5.5),
and account for the Coulomb momentum transfer at the tunnel exit δpC±yi and at the
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recollisions δpC±yr , yielding the final momentum

p±yf = −εE0
ω

cos ηi + p±yi + δpC±yi + δpC±yr , (5.52)

with pyi, ηi and ε being the electron momentum at the tunnel exit, the ellipticity of the
laser and the ionization phase, respectively. It follows, from Eq. (5.51) that the radius
Rpyi of the ring in the initial momentum distribution is given by the total Coulomb
momentum transfer:

Rpyi ≡
p+
yi − p

−
yi

2 ≈
δpC−yr − δpC+

yr

2

(
1 + 2E(ηi)

(2Ip)2

)
≈ δpC−yr . (5.53)

where we used δpC±yi ≈ −2p±yiE(ηi)/(2Ip)2 from Eq. (2.87), E(ηi) � Ea, and δpC+
yr ≈

−δpC−yr . Under assumption that the center of the ridge is at pyf ≈ 0, we can find the
initial momenta of the ridge electrons

p±yi = ε
E0
ω

cos ηi − δpC±yi − δp
C±
yr . (5.54)

The center of the ring depends on the ellipticity as

p
(ε)
yi ≡

p+
yi + p−yi

2 ≈ εE0
ω

cos ηi

(
1 + 2E(ηi)

(2Ip)2

)
≈ εE0

ω
cos ηi. (5.55)

Thus, in the case of elliptical polarization the ring of the initial momentum distribution
for the sharp ridge electrons is shifted due to the elliptical drift momentum along the
minor axis of polarization. Similar to the ring radius Rpyi , the initial momenta of the
ridge electrons can be expressed via the Coulomb momentum transfer at the recollisions:

p±yi = p
(ε)
yi ±Rpyi ≈

(
ε
E0
ω

cos ηi ± δpC−yr
)(

1 + 2E(ηi)
(2Ip)2

)
(5.56)

The indicator of CF is the radius of the ring Rpyi in the initial transverse phase space
distribution, which according to Eq. (5.53) is determined by the Coulomb momentum
transfer at recollisions. Therefore, the radii of the rings ( corresponding to the total
momentum transfer and hence the CF) are also the same.
The comparison with the linear polarization case reveals, that the ellipticity induced

shift of the initial momentum distribution corresponding to the ridge electrons dominates
over the nondipole induced shift in the considered parameter regime, see Fig. 5.4.
The sharp ridge arises due to recollisions and exists as long as the required initial

transverse momentum of type B electrons according to Eq. (5.54) is present within the
tunneled electron wave packet. The width of the wave packet in the momentum space is
given by ∆⊥, leading to condition:

ε
E0
ω

. ∆⊥. (5.57)
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Figure 5.5: The initial momentum space distribution of direct electrons without Coulomb
focusing which are ending in the center of the main lobe, point A in Fig. 5.3.

When we substitute for the width from Eq. 1.36, we conclude that the ridge in the PMD
can exist up to ellipticities

ε .
ω√

E0(2Ip)1/4 ≈ 0.07. (5.58)

Nevertheless, the ellipticity introduces a complex modification of the rescattering tra-
jectories, which cannot be easily compensated by adjustment of the initial transversal
momentum. For this reason, ellipticity modifies also the rings as we can see in Fig. 5.4.
The strongest modification is found at the point B3, which is split as ε = 0.11. In the
next section we are going to investigate the electron trajectories for the influence of the
ellipticity. We note that there exist inner rings in the linear case in Fig. 5.4(a)-(c), which
correspond to trajectories with multiple rescattering events yielding similar absolute val-
ues and various signs of the individual R-CMT. Nevertheless, such trajectories strongly
depend on the initial conditions of the electrons and thus are strongly suppressed when
ellipticity is introduced as we can see in Fig. 5.4(d)-(j).

The structure of the sharp ridge

Let us analyze the modifications of the central ridge as a function of ellipticity in terms
of underlying trajectories. For the points B2 and B4 and for linear polarization the
main Coulomb momentum transfer during recollision takes place at the slow recollision,
pxr = 0. This corresponds to the second recollision for B2, and the fourth near B4.
Although there are two recollision points with xr = 0 for B2 and even four for B4
(see Fig. 5.6), the Coulomb momentum transfer is the largest in both cases at the last
revisit yielding slow recollision. We have calculated the Coulomb momentum transfer
numerically for specific trajectories in Fig. 5.6. It is determined by the difference of the
exact numerical solution for the momentum component pnumy (η) and the solution in the
laser field, given by Eq. 5.5:

δpCy (η) ≡ pnumy (η)− [Ay(η)−Ay(ηi) + pyi] , (5.59)

with the ionization phase ηi, and the corresponding initial momentum pyi.
As we can see the Coulomb momentum transfer at recollisions for all three points B2,

B3, B4, is approximately the same as in the case of linear polarization demonstrating
the similarity of both cases.
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In the elliptical polarization case, the Coulomb focusing for the trajectory coming from
the left part of the ring resembles the linear case, since the slow recollision has the same
impact parameter and the same Coulomb momentum transfer during recollision.
The slow recollision is dominant over the other (fast) recollisions due to the magnitude

of the R-CMT also in the case of elliptic polarization as we can see in Fig. 5.6. The
dominance is even enhanced by the ellipticity because the impact parameters for the
fast recollisions are larger than in the linear case due to the oscillating part of the y-
coordinate, but the impact parameters for the slow recollision remain similar. Therefore,
the total Coulomb momentum transfer represented by the radius of the left half-ring in
Fig. 5.4 remains nearly the same for linear and elliptical polarizations, thereby creating
the central ridge in the PMD in both cases.
In contrast, the trajectory from the right part of the ring at B2 in the elliptical polariza-

tion case differs from the linear one, see Fig. 5.6, upper right panel. The first rescattering
for this trajectory, in addition to the slow recollision, takes place with smaller impact
parameter than in the linear case due to the oscillating part of the y-component, resulting
in an increase of the total Coulomb momentum transfer. This explains the larger radius
of the right half-cycle of the ring structure at B2 in Fig. 5.4. The right-type trajectories
are more sensitive to the initial conditions and, consequently, the width of the right part
of the ring is significantly smaller. On the other hand, the rescatterings leading to the
point B4 start to resemble the linear case again as the ring in Fig. 5.4(f) closes. We can
notice that the right part of the ring is narrower and fainter than the left part. The latter
is caused by the larger initial momenta of the ionized electrons needed to compensate the
elliptic drift along with the Coulomb focusing. This also explains why the central ridge
becomes less pronounced with increasing ellipticity as the rings shift to larger values of
transversal momenta of decreasing abundance in the tunneled wave packet.
Therefore, let us divide the central cusp into three regions with respect to the longi-

tudinal momenta: the longitudinal momenta above point B2 will be considered as large,
the longitudinal momenta between B2 and B4 as intermediate, and we will consider the
momenta below B4 as small. As in each of these regions the electrons have similar dy-
namics with the same number of recollisions, we can carry out our further investigation
for each region individually.

At large longitudinal momenta: deflection

Above the point B2, when the photoelectrons rescatter only once, the ridge is bent (or
rather deflected towards the positive nonvanishing py momenta), see Fig. 5.7(a), (b).
One can deduce this by looking at the left trajectory for point B1 in Fig. 5.7(c). We can
ignore the role of the second rescattering, since its importance diminishes with increase
of the final longitudinal momentum, and assume the first rescattering only. For the single
rescattering trajectories above the point B2, the rescattering coordinate is very similar to
the linear polarization case. In the example presented in Fig. 5.7, the electrons from both
sides of the initial momentum distribution ring ionized with the same phase ηi recollide
at the same phase ηr and with the same impact parameter, i.e.,

y(ε)−
r = −y(ε)+

r . (5.60)
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Figure 5.6: Typical photoelectron trajectories in a laser field with ε = 0.07, as well as
initial Coulomb momentum transfer and Coulomb momentum transfer during recollision.
The trajectories originate on the left (left panels) and right part (right panels) of the initial
transverse momentum distribution ring with pzi = 0 and end up at the same point B2 (upper
group), B3 (middle group), and B4 (bottom group). The middle panels show trajectories
in the case of linear polarization. The slow recollisions are the second one in B2, and the
fourth one in in B4. In the left panels the slow recollisions have the same impact parameters
(y-coordinate) as in the linear polarization case (middle panel).
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Figure 5.7: The bent central ridge above the point B2: the comparison of the CTMC
simulations with the estimates of the deflected momentum p

(ε)
yf from Eq. (5.62) for (a) ε = 0.07

and (b) ε = 0.11, respectively; (c) Typical photoelectron trajectories in a laser field with
ε = 0.07, as well as the initial and recollision Coulomb momentum transfer. The trajectories
originate on the left (left panels) and right part (right panels) of the initial transverse phase
space distribution ring with pzi = 0 and end up at the same point B1. The middle panel of
trajectories shows the case of a linear polarization.
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Figure 5.8: The initial transversal phase spaces for ε = 0, ε = 0.07, and ε = 0.11 respec-
tively, resulting in trajectories with a single rescattering event at B1. The ellipticity shifts
the initial transverse momentum ring in the py-direction and causes a slight deformation.

The latter is ensured by proper values of p(ε)−
yi and p(ε)+

yi which can compensate for the
transversal dynamic introduced by the ellipticity and hence lead to the same absolute
value of Coulomb momentum transfer for the opposite trajectories with analogy to the
linear case. From the condition of Eq. (5.60), and by using Eq. (5.30) with yi = 0, we
derive the momentum of the center of the initial momentum ring of the ridge electrons
presented in Fig. 5.8:

p
(ε)
y0 ≡

p
(ε)−
yi + p

(ε)+
yi

2 = δp̄
C(ε)
yi + ε

E0
ω

(
cos ηi −

sin ηr − sin ηi
ηr − ηi

)
, (5.61)

where we have defined the averaged initial Coulomb momentum transfer for the ring’s
center as δp̄C(ε)

yi ≡ 1
2

(
δp
C(ε)−
yi + δp

C(ε)+
yi

)
. The final momentum of the ridge in this case

is:

p
(ε)
yf = p

(ε)
y0 − ε

E0
ω

cos ηi − δp̄C(ε)
yi = −εE0

ω

(sin ηr − sin ηi
ηr − ηi

)
. (5.62)

The estimates of p(ε)
yf is plotted in Fig. 5.7 and shows agreement with the simulations.

A slight discrepancy appears near the point B2 which is caused by the omission of the
second recollision which yields additional momentum transfer further diminishing p(ε)

yf .
Moreover, p(ε)

yf is positive for all single recollision trajectories and vanishes for linear
polarization as expected.

At intermediate longitudinal momenta: bend and branching

The ring of the initial momenta of point B3 is deformed in a stronger way than that
of B2. The deformation is due to the fact that both left and right trajectories are
strongly perturbed with respect to the linear polarization case because of the quiver
motion in the transversal y-direction. The perturbed trajectories are more sensitive to
the initial conditions, which results in a variable width of the ring in the initial momentum
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5.2 The role of the drift induced by the ellipticity

distribution. Moreover, the recollision coordinates for both left and right trajectories are
different. Therefore, the Coulomb momentum transfer during recollision for the left
and right trajectories are not symmetric which leads to a bend of the central ridge.
Furthermore, at larger ellipticities, e.g. ε = 0.11, the central ridge at B3 is split, when
the left- and right-side trajectories yield different ridges B3(r) and B3(l), respectively,
see Fig. 5.4(h)-(i). However, this splitting is not visible in the experimental data due to
focal volume averaging, CEP averaging and the laser pulse envelope.
The trajectory analysis behind point B3 in Fig. 5.6 demonstrates the complexity of

CF introduced by the ellipticity, inducing the fine splitting of the cusp, see Fig. 5.3 for
ε = 0.11. Let us firstly address the right branch of the split cusp. From Fig. 5.4 one
can see that the main contribution to this branch comes from electrons which initially
have large momentum pzi, transverse to the polarization plane. In the linear polarization
case this type of trajectories acquire CMT only in the z-direction, creating the cusp at
final vanishing transverse momentum pyf = pzf = 0. We expect that the same type of
trajectories (the total R-CMT is mostly in the z-direction, i.e., the y-component of the
R-CMT is almost vanishing) create the cusp at low ellipticity values.
We analyzed the transversal trajectory with pzi 6= 0 and pyi = py0 = (p−yi + p+

yi)/2
(the center of the initial transverse momentum distribution) for the case of ε = 0.11 in
Fig. 5.9(c). These trajectories are 3D and their transversal part along the laser prop-
agation axis resembles the linear case. Interestingly, these trajectories receive several
Coulomb momentum transfers in the py direction, which compensate for each other
yielding the same δpCy before the first and after the second rescattering, as shown by the
red curve in the lowest plot in Fig. 5.9(c). Moreover, the R-CMT at the third recollision
in the y-direction can be omitted due to its smallness leaving effectively only the I-CMT
imprinted on the electron’s momentum.
Let us make use of this new feature: cancellation of R-CMT at the first and second

rescaterring, yielding

δpCyr,1 = δpCyr,2. (5.63)

In order to estimate these R-CMT, we need to find the underlying trajectory. The motion
along the major axis is still dominantly governed by Eq. (5.15) whose roots give us the
recollision phases ηr,1 and ηr,2. The transversal motion can be described before the first
rescattering as

y1(η) = ε
E0
ω2 (sin η − sin ηi)

+
[
pyi − δpCyi − ε

E0
ω

cos ηi
]

(t− ti), (5.64)

z1(η) = (pzi − δpCzi)(t− ti), (5.65)

and after first rescattering ηr,1 as

y2(η) = y1(ηr,1) + ε
E0
ω2 (sin η − sin ηr,1)

+
[
pyi − δpCyi − ε

E0
ω

cos ηr + δpCyr,1

]
(t− tr,1), (5.66)

z2(η) = z1(ηr,1) + (pzi − δpCzi − δpCzr,1)(t− tr,1), (5.67)
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Figure 5.9: Analysis of the bend between points B2 and B4 for ε = 0.07 and ε = 0.11
shown in the panels (a) and (b), respectively. In the right PMD we changed the range of
the colorbar so all bins with larger intensity than 0.2 are plotted with red color in order to
enhance the visibility of the split bend. The red crosses are obtained as numerical solutions
of Eqs. (5.69) and (5.70). We compare the trajectories of electrons ending on the right
part of the split with corresponding electrons in linear case. The similarity can be seen as a
cancellation of the consecutive Coulomb momentum transfers δpCy in the py momentum (as
the hump on the red line in the lowest figure at η ≈ 2π).

where we introduced the R-CMT δpCyr and δpCzr. The I-CMT can be estimated as in
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Eq. (4.9). The CMTR is

δpCyr ≈
y

(y2 + z2)3/2 δtr,

δpCzr ≈
z

(y2 + z2)3/2 δtr, (5.68)

with the characteristic duration of the recollision proportional to the longitudinal velocity
δtr = 2

√
y2+z2

px
(as shown in Sec. 2.3.3), which translates the condition of Eq. (5.63) to

the following relation

|y1(ηr,1)|
|y2(ηr,2)| =

[
y2

1(ηr,1) + z2
1(ηr,1)

]
|px(ηr,1)|[

y2
2(ηr,2) + z2

2(ηr,2)
]
|px(ηr,2)|

. (5.69)

The x- and y-momentum components can be found from Eq. (5.4) and (5.5), respectively.
The last unknown is the momentum pzi which is determined by the fact that pzf = 0.
Since z-component of R-CMT for all three recollisions are approximately equal, we can
roughly estimate δpCzr,1 = 1

f (pzi − δpCzi), which reads

2z1(ηr,1)[
y2

1(ηr,1) + z2
1(ηr,1)

]
|px(ηr,1)|

= 1
f

(pzi − δpCzi). (5.70)

with a ratio factor f . Now, we are able to find for each ionization phase ηi the recollision
phases ηr,1 and ηr,2 and hence the initial momenta pyi and pzi from Eqs. (5.69) and
(5.70), such that the electrons with these initial conditions will end at the bent cusp.
The final momentum at the cusp is calculated as pyf = pyi − δpCyi − εE0

ω cos ηi.
While solving the Eqs. (5.69) and (5.70) numerically, we observed a strong dependency

of the final cusp position on the ratio factor f , the value f = 3 in Eq. (5.70) being a very
rough estimation. Instead, using f as a fitting parameter, we obtain agreement with the
experiment, as shown in Fig. 5.9(a), (b) for both considered ellipticities. The value of
the fitting parameter f in the case of ε = 0.11, is f = 3.5 (for pxf = 0.33 . . . 0.36) and
f = 4.4 (for pxf = 0.36 . . . 0.48) and f = 6 for (for pxf = 0.48 . . . 0.56), i.e., the ratio of
CMTR δCzr,1 and pzi − δpCzi depends on pxf and decreases with increasing pxf .
The agreement with the CTMC simulations shows that even when the ellipticity is

non-zero, similarities to the linear case can be found making several features of the PMD
easier to understand. Nevertheless, any similarities are fast washed away with increasing
ellipticity. This can be seen in the Fig. 5.9(b) where the right part of the fork is much
weaker than the right part. This is due to the fact that the trajectories corresponding
to the right part of the fork are distorted more strongly.

At small longitudinal momenta: straightening

The lower part of the central cusp seems to be quite resistant with respect to the in-
troduced ellpiticity as shown in Fig. 5.3. This is because the underlying trajectories for
B4, and trajectories ending up on the central ridge at |px| smaller than for B4, start to
resemble the linear case again. The resemblance can be understood via the small ioniza-
tion phases that are characteristic for these trajectories, meaning also that the oscillating
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part of the y-component does not perturb the recollision coordinates significantly. The
condition for this is

|y(ε)
r − y(0)

r | � y(0)
r , (5.71)

with the index (0) indicating the linear polarization, from which we can estimate the
threshold ionization phase. Using Eq. (5.30) and (5.37), and the approximations η(ε)

r =
η

(0)
r and η(ε)

i = η
(0)
i , this condition reads∣∣∣∣εE0
ω2 (sin ηr − sin ηi)

∣∣∣∣� (
p

(0)
yi + δp

C(0)
yi

) (ηr − ηi)
ω

, (5.72)

which can be expressed via the Coulomb momentum transfer at the recollision δpCyr:

|sin ηr − sin ηi| �
δpCyr

(εE0/ω)(ηr − ηi). (5.73)

The recollision phase is found from the condition x(ηr) = 0. Taking into account that
for the first recollision ηr ≈ 2π − η′r, with η′r � 1, we find

η′r ≈
√

4πηi, (5.74)

and the condition of Eq. (5.73), at which the oscillating part of the y-coordinate does
not perturb the recollision coordinates significantly, reads

ηi � π

(
δpCy

(εE0/ω)

)2

≈ 0.7, (5.75)

for δpCy = 0.1, ε = 0.07, and the laser parameters of the experiment E0 ≈ 0.04, ω ≈ 0.013.
The latter means that at ηi . 0.07, which assumes px . E0ηi/ω ≈ 0.2, the recollisions
and Coulomb focusing in the elliptical polarization case will be similar to the linear one.
This estimate fits the CTMC calculation in Fig. 5.3.

5.3 The role of the drift induced by nondipole effects
In the previous section, we were able to link the newly measured central structure in
the PMDs to rescattered trajectories and draw analogies to the central cusp of linear
polarization. Moreover, we were able to explain the inner structure and dependency on
the ellipticity thanks to the similarity of the underlying trajectories with the linearly
polarized case. This similarity can be achieved when the tunneled electrons is able to
compensate for the drift induced by the non-zero vector potential along the minor axis
of polarization and derived the condition on visibility of the sharp ridge in Eq. (5.58).
The open question is, how does the situation change due to the nondipole effects as we

introduce drift in the remaining transversal direction corresponding to the propagation
direction of the laser?
In order to answer this question, we performed CTMC simulations including nondipole

effects and plotted the resulting PMDs in Fig. 5.10. In the panels (a)-(c), we show the
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the projections of the PMDs onto the (py-px)-plane. They mostly correspond to the
dipole case allowing us to identify the very same significant points Bn as in Fig. 5.3. The
means that the underlying trajectories and their classification with respect to the number
of recollision did not change with the introduction of the nondipole effects keeping our
analysis from Sec. 5.2 valid.
The novelty comes with the next set of panels: (d)-(f) placed in the second row of the

figure showing the PMDs projected on the (pz-px)-plane, where we can clearly recognize
the counterintuitive bend of the central cusp. The panel (d) corresponds to linear po-
larization discussed thoroughly in Chap. 4 and poses no surprise. More importantly, the
bend cusp appears also for ε = 0.07 and ε = 0.11 in the part with rescattered electrons
below the point B2. It is no surprise that the bend cusp in the panels (e) and (f) does
quantitatively correspond to the cusp in panel (d). By this we mean that the energy
dependent shift is negative and has the same amplitude as in the linear case, which may
not be obvious at first glance. Therefore, we plotted the initial distribution of the elec-
trons ending at the points B2, B3 and B4 in Fig. 5.11. As we can see, the negative offset
in pzi direction of the rings is the same for every point Bn through all ellipticities. More-
over, the rings or half rings in the initial phase space are preserved from the dipole case
presented in Fig. 5.4 meaning that the magnetic force introduces only a slight distortion
of the underlying trajectories which can be compensated for by proper modification of
the initial transversal momenta pzi.

Disentanglement of ellipticity and nondipole effects

The magnetically induced drift shifts the initial momentum distribution for the sharp
ridge electrons along the z-axis. To show this, let us first calculate the final momentum
along the laser propagation direction. According to Eq. (5.11),

pzf = pzi + p
(i)
zd + δpCzi + δpCzr, (5.76)

where p(i)
zd ≡

A2(ηi)
2c − pi ·

A(ηi)
c . The Coulomb momentum transfer at the recollision can

be estimated (for more detain see Sec. 2.3.3) as

δpCyr ≈ −
yr
R3
r

δtr, (5.77)

δpCzr ≈ −
zr
R3
r

δtr = zr
yr
δpCyr (5.78)

where yr, zr, and Rr are the recollision coordinates and the recollision distance, respec-
tively, and δtr is the recollision time. As we analyze the case pzi = 0, the electron
trajectory in the laser field via Eqs. (5.16)-(5.17) is

yr =
(
ε
E0
ω

sin ηr − sin ηi
ηr − ηi

+ pyi + δpCyi − ε
E0
ω

cos ηi
)

(tr − ti)

≈
(
pyi + δpCyi − ε

E0
ω

cos ηi+
)

(tr − ti) = −δpCyr(tr − ti) (5.79)

zr = (pzd + δpCzi)(tr − ti),

117



Chapter 5 Nondipole effects in elliptical polarization

0−0.2 0.2
py [a.u.]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
p
x

[a
.u

.]
(a)

ε = 0

B1
B2

B3

B4

0−0.2 0.2
py [a.u.]

(b)

ε = 0.07

B1
B2

B3

B4

0−0.2 0.2
py [a.u.]

0

0.2

0.4

0.6

0.8

1
(c)

ε = 0.11

B1
B2

B3(l)

B4

B3(r)

0−0.2 0.2
pz [a.u.]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

p
x

[a
.u

.]

(d)
B1
B2

B3

B4

0−0.2 0.2
pz [a.u.]

(e)
B1
B2

B3

B4

0−0.2 0.2
pz [a.u.]

0

0.2

0.4

0.6

0.8

1
(f)

B1
B2

B3

B4

Figure 5.10: Comparison of PMD projections obtained by nondipole CTMC simulations
with fixed CEP phase and ionization restricted only to the central half-cycle for different
ellipticities: ε = 0, ε = 0.07 and ε = 0.11 shown in the left, central and right column,
respectively. The panels (a)-(c) show the projections along the pz-axis and exhibit the same
features as described in the dipole case of Fig. 5.3. The panels (d)-(f) show the the projections
along py-axis and reveal the bend of the central cusp towards the negative pz momentum.
The panel (f) shows suppression of the vertical cusp due to ellipticity which can be identified
up to the point B4, only anticipated between B4 and B2 and is not visible above B2.

where pzd ≡ 1
2c
∫ ηr
ηi

[A(η′)−A(ηi)]2 dη′

ω + 1
c

∫ ηr
ηi

pi · [A(η′)−A(ηi)] dη
′

ω . In the second line
we have taken into account the condition for the ridge electron from Eq. (5.54), as well as
neglected the fist term in the brackets. This is well justified for slow recollisions, where
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Figure 5.11: The initial momentum space distribution for trajectories ending in the momen-
tum bins of 0.01×0.01×0.01 dimensions at the asymptotic values of longitudinal momentum
px: (a) 0.62, (b) 0.44 and (c) 0.3 a.u., corresponding to the points B2, B3, B4 of Fig. 5.3,
respectively. In contrast to the Fig. 5.4, we have taken into account also the nondipole effects
causing the shift of the ionization regions to the negative pzi momenta in correspondence
with the prediction of the Eq. 5.82.

the term vanishes due to the slow recollision condition pxr ≈ 0 [i.e., at sin ηr ≈ sin ηi,
see Eq. (5.4)]. It is also reasonable for other recollisions, since the term will be small
due to the relatively large ηr − ηi. As a consequence, we can conclude from the second
expression of Eq. (5.78) that in the case of pzi = 0,

δpCzr ≈ −pzd − δpCzi, (5.80)

and from Eq. (5.76) the z-component of the final momentum of the ridge electrons is

pzf ≈ −pzd + p
(i)
zd . (5.81)

Furthermore, let us consider another electron in the initial momentum distribution ring,
namely, with the initial vanishing momentum y-component (pyi = 0, pzi) marked as either
PT or PB in Fig. 5.4(f). As it belongs to the sharp ridge with the same final momentum
as in Eq. (5.81), we can use Eqs. (5.76) and (5.81) to find z-component of its initial
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momentum:

pzi = −pzd − δpCrz − δpCiz, (5.82)

while in the dipole limit it is pzi = −δpCrz−δpCiz, i.e., the nondipole effects shift the initial
distribution ring for the sharp ridge electrons by −pzd in the z-direction regardless of the
ellipticity as long as we keep the peak intensity of the laser field constant. Let us stress
that the latter is not completely true and holds only for small values of the ellipticity
since it explicitly appears in the drift term −pzd as terms is proportional to ε2.

Ellipticity-dependent offset

Let us now concentrate on the ellipticity dependent peak offset of pz momentum as
presented at the beginning of this chapter in Fig. 5.2.
At larger ellipticities, when the sharp ridge disappears, the recollision effects are neg-

ligible leading to the conclusion that the final electron momentum component along the
laser propagation direction is positive and determined by the nondipole drift momentum
of free electrons given in Eq. 5.49 manifesting quantitative agreement with the estimation
from Eq. 5.50.
At vanishing ellipticities, most of the electrons get rescattered and create the central

bend cusp. Therefore, it is no surprise that the measured offset is negative and quali-
tatively corresponds to the estimate in Eq. 5.48. Nevertheless, the estimated absolute
value of the offset is greater than the one obtained by the experiment. This is for several
reasons: firstly, the estimated peak offset is for one particular value of the longitudi-
nal momenta, but instead we have to average the whole bend cusp over all longitudinal
momenta in order to reproduce the experiment; secondly, the our estimation does not
take into account the effects of a long laser pulse and varying CEP phase. Because of
the latter, we have performed CTMC simulations with ionization extended to the whole
laser pulse and with randomly varying CEP phase for several values of the ellipticity
and plotted the results in Fig. 5.2 using blue stars. The values were obtained from the
projections of the PMDs onto the single pz momentum by fitting with the Gaussian
distribution.
Qualitatively the CTMC simulations reproduce the experimentally observed trend of

the peak position as a function of the ellipticity and achieve better agreement at vanishing
ellipticities than our simple estimate. The remaining discrepancy between the simulations
and experiment can be explained by focal volume averaging, which is not included in our
simulations.
So far, we have not discussed the most intriguing feature of Fig. 5.2: the transition

from negative to positive peak offsets. As we have already shown, the positive offset
can be attributed to the direct type A electrons without rescattering and the negative
offset to the rescattered type B electrons. We have also shown in Sec. 5.2 that the ellip-
ticity introduces a non-zero drift along the negative direction of the minor polarization
axis. This drift has to be compensated by modification of initial transversal momen-
tum pyi, otherwise the electrons will not be Coulomb focused via multiple recollisions
to the central line-shaped cusp. With increasing ellipticity, the correction to the initial
momentum has to increase meaning that the weight of such trajectories in the tunneled
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wave packet decreases exponentially with this correction and at some point such large
initial transversal momenta are not available and the central structure of the rescattered
electron disappears along with negative final momenta pzf .

We estimated the condition for the existence of the sharp ridge in Eq. 5.58 as ε ≈ 0.07
being in the middle of the constant part of the peak offset. The latter shows that the
width of the tunneled wave packet ∆⊥ was underestimated as the offset exhibits the
transition at ε ≈ 0.12 in Fig. 5.2. This means that the structure of rescattered electrons
disappears for ε & 0.12. This ellipticity can be used to determine the width of the
initial wave packet from the this ellipticity-dependent momentum displacement ∆⊥ =
∆py ≈ εE0/ω ≈ 0.37 a.u. This value is slightly larger than one expected from tunnel
ionization theory, ∆PPT

⊥ = 0.30 a.u. However, we cannot expect an exact prediction
of this threshold since the CTMC calculations based on tunnel ionization theory also
predict a smaller final PMD due to a narrower initial momentum spread, which could be
attributed to multielectron effects on the ionization of Xenon atoms [196]. As the spread
of the wave packet ∆PPT

⊥ ∝ I
−1/4
p , there is only a weak dependence of the transition on

the atomic species (see appendix B in [142]).
In order to illustrate the roles of the ellipticity and of the drift induced by the nondipole

effects, we have plotted the modifications of the tunneled wave packed due to the Coulomb
interaction in Fig. 5.12 for several ellipticities. For the sake of clarity, we plotted only
slices of constant longitudinal momenta corresponding to the point B2. The panels (a),
(c) and (e) show the initial transversal momentum distributions at the tunnel exit at a
particular ionization phase ui for various values of the ellipticity ε = 0, 0.07 and 0.11,
respectively. These initial momentum distributions will modified during the evolution
of the tunneled wave packet in the combined laser and Coulomb field and end with
asymptotic longitudinal momentum px = −Ax(ui) (in the case of our figure px ≈ 0.6).
In panels (b), (d), and (c), we plotted the asymptotic form of the initial distributions from
panels (a), (c) and (e), respectively. The highlighted parts in (a), (c) and (e) undergo
rescatterings and contribute to the highlighted cusps at the vanishing momenta in the
panels (b), (d) and (f). This cusp corresponds to the line-shape central structure and is
shifted along negative pz-axis in correspondence to the results discussed in this section.
With increasing ellipticity the highlighted area of rescattered electrons slips down from
the peak of the distribution along the pyi-axis leading to suppression of the central cusp
in the right panels. This explains the fading of the central cusp with increasing ellipticity
and hence the transition to positive peak offsets for pz as the number of back-rescattered
electrons decreases. In the panels (d) and (f) we can also identify the side lobes of direct
electrons with positive pz being the dominant part of the distributions. Let us also point
out that the borders of the highlighted areas in panels (a), (c) and (e) correspond to
the shifted circle-like structures from Fig. 5.11(a), (d) and (g). This also means that the
radius of the highlighted area equals to the total Coulomb momentum transfer.
As we know already, the Coulomb focusing can compensate for a momentum drift

introduced to the tunneled electrons ensuring that the total Coulomb momentum transfer
remains unchanged as long as the introduced distortion does not change the underlying
trajectories significantly.
From the experimental results in Fig. 5.1 we can see that the ellipticity transforms
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Figure 5.12: We show a slice at pxi ≈ 0.63 of the initial wave packet at the tunnel exit in
the panels (a), (c) and (d) for ellipticities ε = 0, ε = 0.07 and ε = 0.11, respectively. Then
the wave packet evolves in the combined laser and Coulomb fields and the final distributions
are shown in the right panels (b), (d), (e). Note the shift of the maxima towards the
negative py momenta responsible for the side lobes and also the highlighted central cusp
structure at vanishing py momentum. The electrons from the highlighted areas in the right
panels are Coulomb focused and originate only in the highlighted areas in the left panels and
nowhere else. As the ellipticity increases, the highlighted area slips from the distribution
demonstrating the suppression mechanism due to the inability of the tunneled electrons to
compensate for the drift induced by the ellipticity. Moreover, the disks in (a), (c) and (d)
are shifted towards negative pz momentum as well as the cusps in (b), (d) and (e) due to the
nondipole effects. On the other hand, the direct electrons from the side lobes have positive
pz and the competition between these two electron types leads to the observed dependency
from Fig. 5.2.

the single cigar-shaped PMD in panel (a) into the PMD with two lobes. There is a
clear transition when the two lobes start to separate between the panels (b) and (c)
corresponding to an ellipticity between 0.03 and 0.07. Therefore, let us assume that this

122



5.4 Summary

ellipticity introduces such a momentum drift pyf ≈ εE0/ω that cannot be compensated
any longer by the Coulomb focusing given by the Coulomb momentum transfer δpCy . The
assumption that δpCy ≈ pyf leads to the estimate of the averaged Coulomb momentum
transfer δpCy ≈ 0.09−0.22, which is in agreement with the radii of the circles in Fig. 5.11
and hence opens the possibility for measurement of the Coulomb momentum transfer in
the experiment.
Let us note that this assumption actually describes the situation when the edge of

the disk in the left panels in Fig. 5.12 touches the maximum of the distribution. The
disk slips from the top of the distribution when the ellipticity (and therefore the induced
drift) increases further. The drift cannot then be compensated for and the electrons at
the maximum become effectively direct type A electrons and the separated lobes with
final positive momentum pz appear in the PMD.

Once the disk slips off the distribution completely, the cusp structure of type B electron
disappears and the the standard PMD with two spatially separated lobes is restored in
momentum space.

5.4 Summary
In this chapter we addressed the two newly observed features in the PMD of elliptically
polarized laser fields: the central cusp structure and the transition of the negative peak
offset of pz momentum to positive values with increasing ellipticity. The first feature
was linked to the rescattered type B electrons and identified as the exclusive feature of
the introduced small ellipticity. We thoroughly investigated the underlying trajectories
and exposed similarities to the case of linear polarization. We explored the latter in a
thorough investigation of the form of the central structure in the center and in finding the
limits on its existence. Moreover, we presented a method how to measure the averaged
Coulomb momentum transfer which we linked to the ellipticity, when the two lobes in the
PMD start to separate and achieved agreement with the results of the CTMC simulations.
The second feature was link to nondipole effects and to the fraction of the rescattered
versus direct electrons, as the Coulomb focused type B electrons end on the cusp with
negative pz momentum and the direct electrons on the lobes of direct type A electrons
with positive pz. We found that the ratio is driven by the ellipticity and the transition
can be used to investigate the width of the tunneled wave packet. As an application,
we reveled discrepancy between an ionization theory prediction for Xe and experimental
results, which we attributed to the multielectron effects.

123





Chapter 6

Photoelectron holography

The strong-field photoelectron holography has gained a lot of attention in the last two
decades which can be contributed to the rapid development of stable high-intensity
sources of laser light. The standard holography [197] is based on interference of two
light beams which can be created from a single beam of coherent light. The first beam is
led to scatter of a target and hence carries information about the spatial structure of the
target. On the other hand, the second beam stays untouched and serves as a reference.
Then, the interference pattern created by these two beams also encodes the structural
and temporal information about the target.
The strong-field holography does not rely on light beams but rather on an ionized

electron wave packet which starts at the tunnel exit, evolves in the combined laser and
Coulomb field afterwards and ends at the detector finally. The detected interference
pattern exhibits a spider-like structure and encodes all the dynamics of the tunneled
wave packet influenced by the long range Coulomb force of the parent ion on the tun-
neled electron driven by the oscillatory laser field [146, 147]. Although the dynamics is
not trivial, we can illustrate the origin of the interference pattern as a two path inter-
ference in Fig. 6.1. One part of the tunneled wave packet with large initial transversal
momentum is nearly uninfluenced by the Coulomb field (blue trajectory), but the part
of the wave packet with small initial transversal momentum (red trajectory) rescatters
at one recollision point (yellow star) and receives a large momentum transfer leading to
the agreement of the final momenta for both trajectories. This makes the trajectories
indistinguishable and leads to the creation of the interference pattern due to different
accumulated phases. We point out that the interference pattern contains the information
about both the target and the rescattered electron.
The main advantage of the strong-field holography is the fact that the recollision time

tr(ti) depends on the ionization time ti, which also uniquely determines the final lon-
gitudinal momentum (as discussed in Chap. 2). This mechanism opens the possibility
for time-resolved spectroscopy of atoms or molecules. With mid-IR laser pulses one can
achieve femtosecond resolutions for the ions and attosecond resolutions for the electron
dynamics [146, 147]. Moreover, the mid-IR wavelengths are rather long and can accel-
erate the photoelectrons to velocities such that their de Broglie wavelength becomes
comparable to the interatomic distances in molecules and hence makes the investigation
of molecular dynamics possible.
The crucial aspects in the holography are: the restriction of the Coulomb interaction

to well defined rescattering points, which can be achieved by the amplitude of the quiver
motion being larger than the size of an atom (i.e., E0/ω

2 � 1Å), and the averaged
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E

kxE(ti), ti

tr(ti)

φ(d)(p)φ(r)(p)

Figure 6.1: Illustration of the two path interference in the strong-field ionization hologra-
phy. The wave packet appears at the tunnel exit xe(ti) in the time ti and can be divided into
two parts: the direct part with large initial transversal momentum (blue trajectory) and the
rescattered part with small initial transversal momentum (red trajectory). The influence of
the atomic core (red point) on the blue path is negligible and therefore we can use it as the
reference signal. On the other hand, the Coulomb interaction leads to severe distortion of
the red path at the recollision point (yellow star) at the recollision time tr(ti), which leads
to the same value of the final momenta p. This leads to interference due t the difference of
the accumulated phases φ(d)(p)− φ(r)(p).

ponderomotive energy of the electron in the oscillating laser field being much larger
then the energy of the individual photons (i.e., Up = E2

0λ
2

16π2c2 � }ω) so the photolectrons
behave classically. Both of these conditions are easier to satisfy with mid-IR laser pulses
than with shorter wavelengths which would require as a compensation high-intense lasers
leading to experimental and physical complications.
This chapter is based on [183] and addresses the strong-field photoelectron holography

theoretically in the nondipole regime induced by the mid-IR laser field. We are going
to apply three approaches for our investigation: the Strong-field approximation (SFA),
the Coulomb-corrected Strong-field approximation (CCSFA), and the Quantum trajec-
tory Monte Carlo (QTMC) simulation. Moreover, we will discuss the role of multi-path
interference within the frame of the CCSFA and the role of the ionization target (e.g.,
species, multi-electron effects or polarizability) on the interference pattern within the
frame of QTMC simulation. The results of the latter will be used to simulate the photo-
electron momentum distribution (PMD) for an atom of Xe and for an diatomic molecule
of O2, which will be compared. Finally, we will discuss the scaling of the characteristic
interference features with parameters of the laser field.

6.1 The general setup

For simplicity, we consider ionization of a xenon atom in a strong linearly polarized laser
pulse. The xenon atom is in the ground state with the ionization potential Ip = 12.13
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Figure 6.2: (a) The fields of the laser pulse; (b) The ionization rate in the laser pulse
according to the Perelomov-Popov-Terent’ev (PPT) theory [25,30]. The ionization peaks in
(b) correspond to the three half-cycles of the laser field in(a). We distinguish the ionization
regions as right (R), central (C) and left (L).

eV (Ip = κ2/2, with the bound state momentum κ = 0.9435 a.u.). The peak intensity of
the laser pulse is I = 5.8 ·1013 W/cm2 (the laser field amplitude is E0 = 0.0407 a.u.), the
wavelength λ = 3.4 µm (the angular frequency ω = 0.013 a.u.). The short laser pulse is
defined by its vector potential

A(t) = eE
E0
ω

sin(ωt) exp
[
−(t/τ)2/2

]
, (6.1)

with τ = 3π/ω, and the unit vector in the laser polarization direction eE , see Fig. 6.2
(the indices E and k at the vectors indicate the vector component along the laser field and
the laser propagation direction, respectively). The ionization is in the tunneling regime
as the Keldysh parameter [1] is small γ ≡ κω/E0 ≈ 0.28. The tunneling dynamics is non-
relativistic because κ/c ≈ 0.007, with the speed of light c. The electron dynamics in the
continuum after the tunneling is described by the relativistic field parameter ξ ≡ E0/cω ≈
0.025, which is small but not negligible, indicating the weakly relativistic regime for the
continuum motion. In this regime the magnetic field effect in the continuum dynamics
is non-negligible, but next to the leading order relativistic corrections such as the mass
shift can be neglected. As Fig. 6.2(b) shows, the ionization mostly takes place in the
three half-cycles around the peak of the laser pulse.
The holographic picture of photoelectron momentum distribution, which is known to

show spider-like structures [146, 147], is due to interference of two (or many) electron
paths yielding the same final momentum. One of the paths is the direct trajectory
without rescattering, other paths include rescatterings.
In the simple-man model the electron’s final momentum is determined by the vector

potential at the ionization time pE = −A(ti). Therefore, one can deduce from Fig. 6.2(b)
that for the photoelectron final momentum pE > 0, the contributing trajectories are: the
direct trajectory from the left (L-half-cycle) and right half-cycles (R-half-cycle) adjacent
to the peak with the laser field E < 0, as well as the recolliding trajectories (the ionization
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Figure 6.3: Examples of recolliding trajectories: the trajectory with a single return to the
atomic core exists for 0.2E0/ω < |pE | < E0/ω (black); the second and third returns exists
for trajectories up to 0.1E0/ω < |pE | < 0.2E0/ω ∼ 0.7 a.u. (green), the trajectories with
four returns exists at |pE | < 0.1E0/ω (blue) and so on (the recollision points are indicated
by dots). The role of the recollision is enhanced for the specific trajectory (red) when the
longitudinal velocity vanishes at the recollision point.

time after the peak of the electric field) from the central half-cycle (C-half-cycle) E > 0.
At pE < 0, the contributing trajectories are: the direct trajectory from the C-half-cycle
with E > 0, as well as the recolliding trajectories from the L-half-cycle and R-half-cycle
with E < 0. Later we will see that the interference due to direct trajectories induces a
horizontal interference structures, while the main holographic spider-like structure are
due to the interference of recolliding trajectories. The number of recollisions depends on
the ionization time or the final longitudinal momentum pE of the electron, see Fig. 6.3.
Along the trajectories that contribute to the holographic structure, the ionized electron
may forward scatter by the atomic core at a recollision. At some recollisions the forward
scattering could be negligible.

6.2 Quantum description via perturbative SFA

In this section, we calculate photoelectron momentum distribution using the perturbative
Strong-field Approximation (SFA) [1–3], when the rescattering, i.e., the interaction of the
electrons in the continuum with the atomic core, is treated as a perturbation. Rather
than fully relativistic SFA [184], we use the nondipole SFA [131,198], when the relativistic
Hamiltonian is expanded up to terms of the order of 1/c. The Volkov wave function in
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the nondipole case reads:

ΨV = exp {i [p + A(t) + T(p, t)] · r + iSL(t)} , (6.2)

where

T(p, t) = ek
c

[
p ·A(t) + A2(t)/2

]
(6.3)

is the magnetic dipole term describing the electron drift in the laser propagation direction,
ek is the unit vector in the laser propagation direction, and

SL(t) =
∫ ∞
t

dt′
[p + T(p, t′) + A(t′)]2

2 , (6.4)

is the electron action in the laser field including first order laser magnetic field effects
(atomic units are used throughout).
The unperturbed ionization amplitude with a given value of the electron’s final mo-

mentum describes the direct electrons, i.e., electrons that do not scatter by the atomic
core after ionization [187]:

M
(d)
p = −

∫
dt〈p + A(t)|QCr ·E(t)|φ0(t)〉 exp [−iSL(t)] , (6.5)

where QC = −4Ip/r ·E(t) is the Coulomb correction factor for tunneling as discussed in
Sec. 1.2, 〈r|φ0(t)〉 = φ0(r) exp(Ipt) is the atomic bound state, E = −∂tA is the laser field.
The laser field E is described by the scalar and vector potentials in the Göppert-Mayer
gauge [199]: A = −ek(r ·E)/c and ϕ = −r ·E, respectively.
The second-order SFA amplitude describes the ionization path which includes a recol-

lision [131]:

M
(r)
p = −

∫
dt

∫
dt′
∫
d3q (6.6)

× 〈p + A(t) + T(p, t)|Va|q + A(t) + T(q, t)〉
× 〈q + A(t′)|QCr ·E(t′)|φ0(t′)〉 exp

(
−iS(r)

L (t, t′)
)
,

where Va = − exp(−λr)/r is the potential of the atomic core with the screening parameter
λ, q is the intermediate momentum, and

S
(r)
L (t, t′) =

∫ t

t′
dt′′

[p + T(p, t′′) + A(t′′)]2

2 , (6.7)

is the action of the recolliding electron. The integrals in Eqs. (6.5),(6.6) are calculated
via the saddle point method and the momentum distribution of photoelectrons is derived
by

|Mp|2 =
∣∣∣M (d)

p +M
(r)
p
∣∣∣2 . (6.8)

The recolliding trajectories can be ordered by the time distance between ionization and
recollision. For the spider-like structure the short trajectories (the time distance between
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Figure 6.4: The photoelectron momentum distribution via second-order SFA (λ = 0.0224
a.u.): (a) calculation including four trajectories indicated in the text ; (b) calculation in-
cluding two trajectories, without rescattering and with rescattering at the third return to
the atomic core; (c) calculation including only the trajectory without rescattering; (d) the
difference |Mp|2 − |M (d)

p |2.

the ionization and recollision is less than half of a laser period) are responsible, while
long ones lead to horizontal interference patterns. The photoelectron returns once to the
atomic core if 0.2E0/ω < |pE | < E0/ω ≈ 3.1, three times if 0.1E0/ω < |pE | < 0.2E0/ω ≈
0.6 and even more often for lower values of the longitudinal momentum, see Fig. 6.3.

In the second-order perturbative SFA, it is assumed that the ionized electron is either
not scattered by the atomic core, or it scatters once at one of the recollision points.
When there are many recollision points, the forward scattering can take place at any of
them. The photoelectron spectrum calculated using the four trajectories is displayed in
Fig. 6.4(a). Three of the four trajectories differ with location of the significant rescat-
tering taking place at the first, the second or the third revisit of the ionized electron.
Interference features (two wings) can be seen in the momentum distribution. This can
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Figure 6.5: The photoelectron distribution over the transverse momentum via second-
order SFA at pE = 0.5 a.u. (λ = 0.0224 a.u.): (a) calculation using two trajectories (without
rescattering and with rescattering at the third recollision) (solid) and only due to the tra-
jectory without rescattering (dashed); (b) calculation using all four trajectories (solid) and
only due to the trajectory without rescattering (dashed).

be displayed on the cut over the spectral distribution, e.g., at pE = 0.5 a.u. which is
shown in Fig. 6.5. It can be seen that the interference structure is shifted against the
laser propagation direction and that the right wing is more dominant than the left wing.
Moreover, the main features of the interference structure are already exhibited when one
takes into account only two trajectories, one without rescattering and the second with a
forward scattering at the third return, see Fig. 6.4(b). Fig. 6.4(c) shows the symmetric
final momentum distribution of the unscattered electrons and is carried out by the red
dashed lines in Figs. 6.5(a)-(b). In Fig. 6.5(d) we have plotted the difference between the
distributions from Fig. 6.5(a) and Fig. 6.5(d). Note that the probability of the rescat-
tering at the third return is enhanced due to the small recollision velocity [96, 105, 106],
see the red trajectory in Fig. 6.3.
Thus, we can conclude that the interference structure arises already at the perturbative

treatment of the recollisions. In the next section we will discuss how the features of
the interference structure are modified when the Coulomb field of the atomic core is
accurately accounted for during the continuum motion.

6.3 Description via the Coulomb-corrected SFA

In this section we analyze the role of the Coulomb field of the atomic core on the photo-
electron momentum distribution. We apply the Coulomb-corrected strong-field approxi-
mation (CCSFA) similar to [32,33] which will be explained in the following.
Rather than the Volkov wave function for the continuum electron, the CCSFA employs

the electron wave function which takes into account the laser field and the Coulomb field
of the atomic core in the eikonal approximation [28, 187] as discussed in the Sec. 1.2.
Then, the ionization amplitude is expressed by a formula similar to Eq. (6.5), where one
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has to replace the action by the Coulomb corrected one, SL → S
(C)
L :

S
(C)
L (t) =

∫ ∞
t

dt′
{

[p + T(p, t′) + A(t′)]2

2 + Va(r(t′))
}
,

(6.9)

where r(t) is the electron trajectory under the action of the laser and Coulomb field of
the atomic core Va(r). The integration of the ionization amplitude from Eq. 6.6 is carried
out by the saddle-point method, the photoelectron momentum distribution from Eq. 6.8
can be represented as follows

|Mp|2 ∼

∣∣∣∣∣∣
∑
s

Γ(t(s)i , p
(s)
k,i)

[∂2
t S

(C)
L (t(s)i )]1/2

exp
[
iS(t(s)i )

]∣∣∣∣∣∣
2

, (6.10)

where Γ(ti, pk,i) = exp
[
−(κ2 + p2

k,i)3/2/3FL(ti)
]
is the Keldysh-tunneling exponent. The

phase of the trajectory S(t) is determined by the classical action along the trajectory in
the laser and the Coulomb fields. In the fully relativistic case it reads:

S(t) = −p · r(tf ) +
∫ tf

t
dt′
{
L(t′) + (c2 − Ip)t′ − Va(r(t′))

}
,

(6.11)

where L is the Lagrangian of the electron in the laser field [173]:

L = −c2

√
1− v2

c2 −A · v + ϕ. (6.12)

In the leading order relativistic corrections,

E
(
t− ek · r

c

)
≈ E(t)− Ė(t)ek · r

c
, (6.13)

with dot denoting derivative with respect to time. Therefore, we can write in the order
of O(1/c):

S(t) ≈ −p · r(tf ) + Ipt+
∫ tf

t
dt
{

ṙ2(t′)
2 − Va(r(t′)) (6.14)

− r(t′) ·
(

E(t′)− Ė(t′)ek · r(t′)
c

)(
1− ek · ṙ(t′)

c

)}
.

In Eq. (6.10) the summation is carried out over all possible trajectories of the electron in
the laser and Coulomb fields that yield the given final momentum for the electron. The
trajectories start at the ionization time ti = ti(p) at the tunnel exit ri = (Ip/FL(ti), 0)
with the initial velocity ṙ(ti) = (0, pk,i(p)) and end up asymptotically at a given final
momentum of the photoelectron p = (pE , pk). The trajectories are found solving classical
Newton equations numerically. Taking into account that in the plane laser field the
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magnetic field B is transverse to the electric field E, B = (ek ×E) /c, the Newton
equations read

dp
dt

= −E
(

1− ek · r
c

)
− ek

c

[
v ·E

(
1− ek · r

c

)]
+ Fa(r). (6.15)

where Fa(r) = −r/r3 is the Coulomb force of the atomic core. In the weakly relativistic
regime using the expansion of Eq. (6.13), we have

r̈(t) = −E(t)
(

1− ek · ṙ(t)
c

)
− ek

(E(t) · ṙ(t)
c

)
(6.16)

+ Ė(t)ek · r(t)
c

− r(t)
r3(t) .

While the first two terms in the equation above are due to the electric and magnetic
dipole interactions, the third term is due to the electric quadrupole interaction.
The trajectories are modified due to the Coulomb field. However, one can again apply

the classification based on the number of recollisions. Whereas for |pE | > 0.5 a.u. there
are only two trajectories that fulfill the initial and final conditions: (i) the trajectory
which has no significant rescattering; (ii) the trajectory with one significant rescattering
at the single return to the atomic core, see Fig. 6.6(a). For smaller drift momenta there
are four types of contributing trajectories (|pE | > 0.2): one direct and three with one
significant rescattering which takes place either at first return to the atomic core, or at
the second, or at third, see Fig. 6.6(b). For momenta smaller than |pE | < 0.2 the electron
revisits the atomic core more than three times and multiple rescatterings are possible.
The photoelectron momentum distribution using CCSFA is shown in Fig. 6.7(a). In the

calculation of these spectra we included the main two trajectories: the direct trajectory
and the trajectory with a single rescattering, which takes place either at the single (|pE | >
0.5 a.u.) or at the third return (|pE | < 0.5 a.u.) to the atomic core. In the latter case
the scattering probability is enhanced because of the low recollision velocity. We also
separate the distribution into the regions with respect to the number of recollisions and
hence also to the number of interfering electron paths. We separated the regions with
respect to the number of recollisions, which also corresponds to the number of interfering
paths. In the region of 1 + 1, one direct and one rescattered trajectory exist as shown
in the Fig. 6.6(a). The region 3 + 1 corresponds to trajectories with three rescatterings
which leads to four-path interference of one direct and three rescattered trajectories as
illustrated in Fig. 6.6(b).
The role of other trajectories is clarified in Fig. 6.7(b) and (c), where the zoom in the

photoelectron distribution is calculated using either the two main trajectories or all four
available trajectories, respectively. The conclusion drawn from this comparison is that
the momentum distribution becomes more smooth and the intensity of lobes gradually
decreases with increasing pE by tahing all trajectories into account. However, the main
features of the interference structure are already given by the spectra based on two
trajectories.
The photoelectron spectrum reveals interference structure with a middle lobe and

with side wings, which have qualitatively already been expected from the non-relativistic
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(a)

(b)

Figure 6.6: The trajectories used in CCSFA: (a) for pE = 1 a.u. and pk = 0.05 a.u.
there are two trajectories, without significant rescattering (blue) and with one rescattering
(red) at the single recollision; (b) for pE = 0.4 a.u. and pk = 0.05 a.u. there are four
trajectories, without significant rescattering (blue), and with one rescattering at the first
recollision (black), the second (green), and at the third (red). The last trajectory is the most
significant rescattered trajectory.

regime [146]. A comparison with the perturbative result of Fig. 6.4 shows that the effect
of the Coulomb field is to squeeze the interference structure in the transverse direction,
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Figure 6.7: Photoelectron momentum distribution via CCSFA: (a) based on two trajecto-
ries: without significant rescattering and with the significant rescattering at the third return
to the atomic core; (b) zoom of the panel (a); (c) based on four trajectories, one direct and
three with one significant rescattering which takes place either at first return to the atomic
core, or at the second, or at the third. We also denoted the regions in (a) with respect to
possible number of interfering trajectories (as number of rescattered trajectories plus one
direct), which corresponds to the number of recollisions via the longitudinal momentum pE .

which is also known as Coulomb focusing [75, 93, 191]. Moreover, the visibility of the
interference structure is significantly enhanced. The interference structure is shifted
against the laser propagation direction. The right wing is slightly stronger than the left
wing. The wings end at approximately pE ∼ 0.56 a.u..

The calculation in CCSFA including all trajectories is rather cumbersome for the full
range of the momentum distribution. In the next section we provide Quantum-trajectory
Monte-Carlo (QTMC) simulations which include all possible trajectories in the full range
of the momentum distribution.

6.4 Quantum-trajectory Monte-Carlo simulation

In this section we describe the photoelectron momentum distribution using QTMC sim-
ulation [200], which includes all possible trajectories as well as takes into account the
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Coulomb field of the atomic core for the continuum dynamics exactly. In our 3D QTMC
simulation, the ionized electron wave packet is formed according to the PPT ionization
rate [25, 30] and further propagates classically. In the tunneling regime γ � 1 at low
frequencies (ω � Ip), the semiclassical approach is justified because the photon energy
is much less than the characteristic electron energies of the process Ip and Up. The elec-
trons are born with following conditions: along the laser polarization direction, the initial
position xE = xE(ti) corresponds to the tunnel exit coordinate from the effective poten-
tial, the initial longitudinal velocity of the electron is vanishing, vEi = 0; the transverse
coordinates are yi = 0 and zi = 0 , and the transverse velocities vti = vyi = v⊥0 cosφ
and vki = vzi = v⊥0 sinφ, where φ is randomly distributed within the interval of (0, 2π),
and v⊥0 follows the PPT-distribution for the transverse momentum [25, 27]. The index
t refers to the direction ek × eE . The positions and momenta of electrons after the laser
pulse are used to calculate the final asymptotic momenta [201] at the detector.
The QTMC simulation is based on the path-integral formulation of quantum mechanics

and allows to include interference between different trajectories. A phase is attached to
each trajectory according to Eq. (6.11). For QTMC we employed a fully relativistic
representation of the phase:

S(t) = −
∫ tf

t
dt′
{
ε(t′)− c2 + Ip +

[
Va(r(t′))− r · ∇Va(r(t′))

]
− ek · r(t′)

c
v(t′) ·E

(
t′ − ek · r(t′)/c

)}
, (6.17)

with the electron energy ε(t). In Eq. (6.17) we have used the identity p(tf ) ·r(tf )−p(ti) ·
r(ti) =

∫ tf
t dt′ d

dt′p(t′) · r(t′), as well as the relativistic classical equations of motion from
Eq. (6.15). Moreover, the term in the square brackets simplifies for the specific case of a
Coulomb potential in the following manner:

Va(r(t′))− r · ∇Va(r(t′)) = −2Z
|r| . (6.18)

The factor of two is important since it leads to a better agreement with the solutions
of the time-dependent Schrödinger equation [162]. Once the laser pulse is gone, the
position and momentum of the electron yield r(tf ) and p(tf ), respectively. It is possible
to account for the Coulomb potential in the absence of the laser field and determine its
asymptotic momentum at the detector via the Kepler analytic formula [202]:

P = |P| |P| (L×A)− ZA
Z2 + P2L2 , (6.19)

where

P2 = p2(tf )− 2Z
|r(tf )| ,

A = p(tf )× L− Z

|r(tf )|r(tf ),

L = r(tf )× p(tf ).
(6.20)
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Here P2/2 corresponds to the conserved total energy of the electron at the the end of
the laser pulse tf , A is the Runge–Lenz vector and L is the angular momentum.
We also take into account the phase accumulated after the switch-off of the laser pulse

at the time tf and before detection [162] as

ΦC(tf ) = −
√
b

[
ln g + arcsin

(
r(tf ) · p(tf )

g
√
b

)]
, (6.21)

where b ≡ 1/(P2) and g ≡
√

1 + P2L2.
The photoelectron momentum distribution is calculated as a sum over allN trajectories

ending in the same bin

|Mp|2 ∼ lim
t→∞

1
N

∣∣∣∣∣
N∑
i=1

√
W (p⊥i) exp[iφi(t)]

∣∣∣∣∣
2

, (6.22)

φi(t) ≡ Si(t) + φin,i + ΦC
i (tf ), (6.23)

where W (p⊥i) is the ADK ionization probability (for the atom) or the MO-PFT tunnel-
ing rate from Eq. (1.91) (for the diatomic molecule) at the tunnel exit with the initial
transverse momentum p⊥i of the electron at the tunnel exit for the given ith-trajectory.
For the molecule we also have to add the phase at the tunnel exit φin given by Eq. (1.93),
while for the atom φin = 0.
The photoelectron momentum distribution via QTMC simulation is shown in Fig. 6.8.

For comparison we give also the result of the Classical Trajectory Monte-Carlo (CTMC)
simulation. From Fig. 6.8 we can deduce that the main ridge of the momentum distri-
bution is of classical nature. There are peaks on the main ridge with wings for large
longitudinal momenta. They correspond to the so called soft recollision condition (to the
peak of the momentum transfer at a recollision) [93, 97], when the electron momentum
is vanishing at the recollision point (see the recollision for the red trajectory in Fig. 6.3).
The main ridge in Fig. 6.8(a), (b) and (d) is curved due to the nondipole effects. It is
shifted nonuniformly to the negative transverse (along the laser propagation) momentum
region for relatively low longitudinal momenta (along the laser polarization, px) and to
the positive transverse momentum region for relatively high longitudinal momenta. The
main ridge is split at negative px momentum values. Each of the sub-ridges arises from
the trajectories originating either in the L-half-cycle, or in the R-half-cycle (E < 0). The
physical reasons of all features of the momentum distribution will be discussed in Sec. 6.6.
Let us note that Fig. 6.8(c) resembles the nondipole case as the nondipole effects do not
break symmetry along the y-axis.

The main effect of the quantum consideration is the appearance of interference struc-
tures. The zoom into the the central part of the interference structure is given in Fig. 6.9.
There are three types of interference modulations in the momentum distribution. First
of all, these are the horizontal interference peaks with a low separation (the energy dif-
ference is of the order of the laser photon energy). It arises due to interference of the
direct trajectory and the recollided trajectories, the time of ionization of these trajecto-
ries being separated by an half-cycle. In fact, when we leave only trajectories born in
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Figure 6.8: Photoelectron momentum distribution for the laser and atom parameters given
in Sec. 6.1 represented by projections of all electrons with |py,z| < 0.02 a.u.: (a) classi-
cal calculation via CTMC simulation; (b) calculation via QTMC which includes quantum
mechanical interference; (c) the same as in (b) but for the (pE , pt)-distribution which is un-
affected by the magnetic field and manifest unbroken symmetry; (d) calculation via QTMC
where the ionization is restricted to take place only in the main half-cycle, with E > 0, at
the peak of the laser pulse.

the main half-cycle, with E > 0, at the peak of the laser pulse, then the horizontal inter-
ference structure disappears, see Fig. 6.8(d). The second type of interference structure
is the modulation of the main ridge (at energies larger than the laser photon energy) in
the negative direction of momenta. It is easily proved that this interference structure
is due to interference of trajectories originating from the L- and from the R-half-cycles,
see Fig. 6.2. The third type of interference structure which, in fact, constitutes the
holography pattern, are the spider-like wings at low momentum values |px| < 0.2 a.u.,
see Figs. 6.9 and 6.8(d). They arise from the interference of the recolliding trajectories
which originate in the main half-cycle for px > 0 (or in the L- and the R-half-cycle for
px < 0). These insight is in agreement with the analysis presented in [152].
To figure out which trajectories are mostly responsible for the interference, we analyse

the phases φi of the trajectories. The phases of the electron trajectories that end up with
px = 0.1 a.u. are shown in Fig. 6.10. Following [147], we classify the trajectories with the

138



6.5 The role of the target on the holographic pattern

0−0.2 −0.1 0.1 0.2
pk [a.u.]

0

-0.2

-0.1

0.1

0.2

p
E

[a
.u

.]

0

0.2

0.4

0.6

0.8

1

Figure 6.9: Zoom in the photoelectron momentum distribution in quantum mechanical
calculation of Fig. 6.8(b).

relative sign of the electron initial momentum pzi with respect to the final one pzf , i.e.,
(A) in the case of pzipzf > 0, the direction of the electron drift in the transverse direction
does not change due to Coulomb focusing, or (B) pzipzf < 0, the electron drift in the
transverse direction is reversed due to Coulomb focusing. When one takes into account
only the most probable points (green) in Fig. 6.10, then it appears that for the given
value of pz, one has two possible values of the phase, one in Fig. 6.10(a) and another
in Fig. 6.10(b), i.e., belonging either to the A- or the B-type trajectories. We will call
them below as direct and rescattered trajectories, although the “direct” trajectory is also
affected by the Coulomb field.

6.5 The role of the target on the holographic pattern

One of the main motivations behind the photoelectron holography is the investigation of
molecular structures which leave imprints in the holographic spider-like pattern. Nev-
ertheless, even for atoms it is not clear how sensitive the pattern is to the strong-field
effects as Stark shift, polarizability or the multielectron effects. Moreover, the molecules
possesses more complication due to their ionization dependency on their orientation with
respect to the ionizing field as discussed in Sec. 1.5.
The aim of this section is to analyze the role of the effects for the atomic target of Xe

and the role of the orientation for diatomic molecules. In order to do so, we performed
restricted QCTMC (RQTMC) simulations for layouts at px = 0.6 a.u., and including
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Figure 6.10: Photoelectron asymptotic phases in QTMC simulation for Xe, when the
ionization is restricted to take place only in the main half-cycle, with E > 0, at the peak of
the laser pulse, pE = 0.1 a.u., |py| ≤ 0.002: (a) For the tajectories of type A, pzipzf > 0, see
the text; (b) For the tajectories of type B, pzipzf < 0. The different branches of the plot are
continuation of the same curve.

only the type A and selected type B electrons. The used type B electrons correspond to
the electrons with the significant recollision at the third rescattering point which already
capture the main properties of the spider-like structure as discussed in Secs. 6.2 and 6.3.

6.5.1 The role of the potential

As we have shown in Eq. (6.18), the potential energy should be accounted for twice
in the relativistic action S(t) in Eq. (6.17). We compare the results of the RQTMC in
Fig. 6.11(a) for Xe atoms. As we can see, the position of the interference maxima depend
severely on this term. When we take into account only one single term from Eq. (6.18),
we obtain widely spread maxima. This case corresponds to the original QTCM [200] and
reproduces the spread obtained via SFA in Sec. 6.2. On the other hand, we obtain a
narrower structure and agreement with the results via CCSFA in Sec. 6.3 while taking
both terms in Eq. (6.18) into account. We are going to use both terms from now on
for the better agreement with the time-dependent Schrödinger equation as discussed in
previous section.
Furthermore, the ionized Xe atom has nontrivial electronic structure and multielectron

effects could also happen to influence the holographic pattern. Some effective potentials
for Xe were obtained from ab initio calculations in [203, 204] or from rescattering ex-
periments [205] and references therein. From the latter we have effective potential of
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Xe+:

Vs(r) = −1 + a1e
−a2|r| + a3e

−a4|r| + a5e
−a6|r|

|r| , (6.24)

with a1 = 51.356, a2 = 2.112, a3 = −99.927, a4 = 3.737, a5 = 1.644, and a6 = 0.431
for xenon. The effective potential resembles the Coulomb potential at large distances.
We plotted the resulting cut in Fig. 6.11(a) and we can see that the patterns are nearly
indistinguishable from the case of a Coulomb potential. This is no big surprise as the
restriction on the simulation excludes trajectories with rescatterings close to the atomic
core where the difference between the Coulomb and the effective potential is the great-
est. Therefore, we performed full scale QTMC simulations including all trajectories but
without seeing any noticeable difference for the spider-like structure. This is probably
due to the diminished role of the excluded trajectories.
Assuming the Coulomb potential of a charge q at the center of the coordinate system

in the case of the ionic O2 molecule leads to an unwanted oversimplification because the
molecular structure is neglected. Therefore, we use the potential of the ionized molecule
in the following form

Vm(r) = − 1
2 |r−R/2| −

1
2 |r + R/2| , (6.25)

describing the field at r from two charges q/2 located at ±R/2 as shown in Fig. 1.4.
We are going to include the potential Vm(r) also in the equation for action S(t) in

Eq. (6.17) instead of the atomic potential Va(r) whenever we are going to talk about
O2. Nevertheless, we assume that the electron is far away from the molecular ion at the
end of the laser pulse, |r(tf )| � |R|/2, which is well justified for most of the electrons
except small part of the electron spectrum with vanishing energy. Under this assumption
we can use the formulas for the asymptotic evolution in Eqs. (6.19) and (6.21) without
modifying the potential Vm(r) ≈ −1/|r| in this region.

6.5.2 Role of polarizability

Atoms in strong electric fields experience several effects as induced dipole moment and
Stark shift. These effects also influence the position of the tunnel exit xE . In this short
subsection we are going to address both these effects for Xe and O2.

Polarizability

The external electric field E(t) induces a dipole moment d(t) in dielectric materials. The
dipole moment of an atomic ion is given by

d(t) = αIE(t), (6.26)

where αI is the polarizability of the atomic ion.
The induced dipole moment for a molecule is generally nontrivial as the polarizability

is a three-by-three matrix in such a case. Nevertheless, this problem simplifies as only
polarizability along the molecular axis is known. When the orientation of the molecule
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Figure 6.11: The layouts of the holographic structure at px = 0.6 a.u. for Xe in (a)
and (b) and for O2 in (c) and (d). We investigate the role of the atomic potential in
panel (a), where we address the importance of the two terms in Eq. (6.18) (see text) and
the difference between Coulomb potential (full, orange) and effective potential including
multielectron effects (dashed, green). The role of the polarizability is addressed for Xe in
(b) and for two different cases of alignment of O2 in (c) and (d). The polarizability of the
molecule changes its ionization potential Ip which modifies the ionization rate and influences
the visibility of the holographic pattern. Polarizability of the ion O+

2 influences the trajectory
of the tunneled electron but as we can see, its effect on the position of the lobes is rather
negligible.

is in the x-y plane defined by the unit vector eM = (cos θM , sin θM , 0), we can express
the laser induced polarization of the ion as

d(t) = αI [E(t) · eM ] eM , (6.27)

with unit vector along the molecular axis

eM ≡ (cos θM , sin θM cosϕM , sin θM sinϕM ) . (6.28)

The dipole moment d(t) influences the electron in the continuum, which feels the dipole
electric field [173]

Ed(t) = 3 [n(t) · d(t)] n(t)− d(t)
|r(t)|3

, (6.29)

142



6.5 The role of the target on the holographic pattern

with the unit vector n(t) ≡ r(t)/ |r(t)| pointing from the center of the atom or molecule
to the tunneled electron. The electric field of the induced dipole can also be introduced
into Eqs. (6.16) leading to the equation of motion

r̈(t) = − [E(t) + Ed(t)]
(

1− ek · ṙ(t)
c

)
− ek

(E(t) · ṙ(t)
c

)
(6.30)

+
[
Ė(t) + Ėd(t)

] ek · r(t)
c

−∇V (r(t),

which will be used in our QTMC and RQTMC simulations from now on with the corre-
sponding potential V (r(t)) from Eq. (6.24) or (6.25).

Stark shift

The quadratic Stark shift for an atom placed in the external electric field E(t) yields [205]

Ip (E(t)) = Ip(0) + 1
2(αN − αI)E2(t), (6.31)

with ionization potential Ip(0) and polarizabilities αN and αI of the neutral and singly
ionized atom, respectively. For Xe we have Ip(0) = 0.4456, αN = 27.292 and αI = 21.324
[206].
The Stark shift for a general molecule is given as [207]

Ip (E(t)) = Ip(0) + ∆µ ·E(t) + 1
2ET (t)∆αE(t), (6.32)

with dipole moment vector ∆µ = µM − µI and polarizability matrix ∆α = αM − αI .
The superscript M stands for the neutral molecule and the superscript I for the positive
ion.
The molecule O2 has no inherited dipole moment due to its heteroatomic nature and

only quadratic Stark shift influences the ionization potential. Since we know only the
values of the polarizability for O2 along the molecular axis, the Stark-shifted ionization
potential reduces to

Ip (E(t)) = Ip(0) + 1
2(αM − αI) cos2 θME2(t), (6.33)

for the electric field E(t) and the unaffected ionization potential Ip(0) = 0.4438 a.u. The
oxygen molecule O2 has measured polarizability αN = 1.562Å3 = 10.54 a.u. and its
cation O+

2 has computed polarizability αI = 0.867Å3 = 5.85 a.u. [206].

Tunnel exit

As the electron orbitals try to adjust to the external electric field, also the tunneling
dynamic is influenced. The main effect can be found for the position of the tunnel exit
xE which shifts closer to the atomic center. This behavior is described in the so called
TIPIS model [195] via the 1D effective potential for the tunneling in Xe:

V (η,E(t)) = −
1−

√
2Ip(E(t))

2
2η − 1

8ηE(t) + m2 − 1
8η2 + αIE(t)

η2 , (6.34)
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with parabolic coordinate η, the electric field E(t) = |E(t)|, and the Stark-shifted po-
tential Ip(E(t)) from Eq. (6.31). The tunnel exit xE is a function of time and can be
found as xE = −ηE/2, where ηE solves the equation V (ηE , E(t)) = − Ip(E(t))

4 . From now
on, we also include the corrected tunnel exit in our QTMC and RQTMC simulations for
Xe. Unfortunately, wince the extension for the O2 molecule is not straightforward, we
will stick with the tunnel-exit given by the zero-range potential as discussed in Sec. 1.5.
Nevertheless, our analysis of Xe has shown that the position of the tunnel exit does not
have significant impact on the holographic pattern and the results are quite robust with
respect to the position of the tunnel exit.

Concluding the role of the polarizability

We examine the role of polarizability on holographic pattern in Fig. 6.11(b)-(d) for Xe
and O2 in two different orientations. The main influence of the polarizability of the
molecule on the PMD is the change of the tunneling rate due to the change of ionization
potential Ip(E(t)) via the Stark shift in Eqs. (6.31) and (6.33). The dipole moment d(t)
introduced by the laser field and altering the electron dynamics via Eq. (6.30) does not
noticeably influence the position of the lobes as we can see in Figs. 6.11(b)-(d).

6.5.3 Orientation of the diatomic molecule

Recently, several experiments with aligned molecules have shown the dependency of
the holographic pattern on the alignment [49, 53]. Not only the recollision dynamics is
influenced by the orientation of the molecule, but there also exists a nontrivial phase
structure in the tunneled wave packet as we discussed in Sec. 1.5. Since these effects
cannot be easily separated, we have to take them both into account hile investigating
the role of the molecule’s orientation.
In order to do so, we have performed several RQTMC simulations incorporating all the

upper discussed effects of alignment, Stark shift, polarizability and asymptotic evolution
in the simulations for different distinct orientations of the O2 molecule. We show the
resulting cuts at px = 0.6 a.u. in Fig. 6.12.

In the first two panels (a) and (b) of Fig. 6.12, we have concentrated on the orientation
of the molecular axes yielding the largest ionization rates for θ(max)

M = 42.368◦ and 137.632◦
as shown in Subsec. 1.5.1. As we can see, the two remaining angles do not influence the
position of the interference maxima significantly. The measured holographic spectrum
would be a incoherent addition of all the curves represented by the black dotted line.
In the last two panels (c) and (d) of Fig. 6.12, we have concentrated on the more

unfavorable orientations yielding small ionization rates (by two orders of magnitude)
but large differences in the phase structure (see Subsec. 1.5.2). The holographic pattern
differs severely as the initial phase difference at the tunnel exit differs for the direct and
rescattered electrons by ≈ π. Our simulations for O2 qualitatively correspond to the
experimental results for N2 in [49]. Nevertheless, any closer correspondence is excluded
because the role of the rescattering on the molecular potential from Eq. (6.25) cannot
be properly addressed with our RQTMC simulations as we do dot consider electrons
approaching closely the molecular ion. For this purpose it would be more suitable to
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(d) ϕP = π/2

Figure 6.12: The layouts for px = 0.6 a.u. show the role of the molecule’s and orbitals’
alignment for the holographic pattern. The negative shift of the central peaks is caused
by the nondipole effects caused by the laser propagating along the z-axis. The tunneling
dominantly happens for alignment given by θM = γ and π − γ with γ = 42.4◦ as shown
in panel (a) and (b). The other parameters of the alignment as ϕM and ϕP play rather
negligible role on the position of the peaks. On the other hand, the extreme alignment of
θM → 0+ or θM → 90− alters the holographic pattern significantly as shown in panels (c) and
(d). This effect is expected due to the nontrivial phase structure of the tunneled wave packet
as indicated in Figs. 1.9(b)-1.9(d). For such alignments, vanishing transversal momenta pzi
are suppressed and only large values manifest leading to the disappearance of the central
peak. Let us note for completeness that the non-visible lines in Figs. 6.12(c)-6.12(d) have
similar structure as the layouts with θM = γ in Fig. 6.12(a) but are suppressed by five orders
of magnitude (this applies for our case of θM = 0.5◦). We expect them to vanish completely
in the limit of θM → 0.
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Figure 6.13: The final alignments for QTMC simulation ( with θM = 42.4◦) do not severely
differ and we can use any of those.

perform full QTMC simulations. Nevertheless, we have already shown in Sec. 6.3 that
the other trajectories have only little influence on the position of the interference maxima
and therefore we consider the RQTMC simulation in this section as sufficient for the
longitudinal momentum of our interest. Let us also note that presented features for the
positions of lobes correspond to the analysis given in [61].
There remain further questions: how would look like the holographic spider-like struc-

ture for an initially unaligned (or rather randomly aligned) molecule of O2 and can it be
distinguished form the structure created by Xe atom? The random alignment manifests
mainly during high number of repetitions of the ionization of molecular gas in order to
collect enough data for the photoelectrom momentum spectrum. We know from Sub-
sec. 1.5.1 that the highest ionization rates are for alignments θ(max)

M = 42.4◦ and 137.6◦,
which will contribute dominantly to the photoelectron momentum spectrum. Instead
of averaging over the two remaining orientation angles ϕM and ϕP , we can choose par-
ticular values giving the same positions of the interference maxima as the incoherently
added dotted black lines in Fig. 6.12(a) and (b). This leads to two candidates for the
representative alignment:

1. θM = 42.4◦, ϕM = 0 and ϕP = 0,

2. θM = 42.4◦, ϕM = π/2 and ϕP = π/2,

which we compare in Fig. 6.13. The position of the first lobes does not differ and we
can use any of those alignments to get the correct position of the lobes in our QTMC
simulations.
We performed two QCMT simulations including all discussed effects for Xe and O2

with the orientation θM = 42.4◦, ϕM = 0 and ϕP = 0 and ionization restricted to
the central half-cycle. The results are plotted in Fig. 6.14(a) and (c), respectively. In
the panels (b) and (d) we plotted the distributions of the transversal momenta pz in
the cut-outs of the PMD corresponding to strips of |px − pPMD| < 0.05 a.u., where
pPMD = 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, and 0.1. As we can see, the spider-like pattern does
not severely differ with respect to the used target and we cannot use it for distinction. It
is not surprising that the horizontal lines corresponding to slow recollision condition are
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6.6 Scaling of characteristic features of the holography pattern

located at same position, since they are completely determined by the electrons dynamics
in the continuum. It is worth mentioning that the cut-out manifests the negative shift
and hence negative offset of the most dominant maxima which can be seen as the classical
effect.

6.6 Scaling of characteristic features of the holography
pattern

In this section we discuss the scaling laws for the characteristic features of the holographic
interference structure in the photoelectron momentum distribution.
As already said, the features of the spider-like structure in the momentum distribution

are due to the interference of the direct and the rescatterd electrons [146]. These electrons
acquire different phases φ(d)(p) and φ(r)(p) during their travel from the tunnel exit to the
detector. The phases depend on the final momentum and the coherent sum of ionization
amplitudes oscillates with respect to the final momentum:∣∣∣exp

[
iφ(d)

]
(p) + exp

[
iφ(r)

]
(p)
∣∣∣2 = 2

{
1 + cos[φ(d)(p)− φ(r)(p)]

}
.

(6.35)

The difference between these phases can be expressed via the accumulated action of the
electron between the ionization and recollision times due to the transverse kinetic energy
of the direct electron, see Eq. (3) in [147]. In the weakly-relativistic regime it is:

∆φ ≡ φ(d) − φ(r) =
∫ tr

ti

dt
v2
k

2

=
∫ tr

ti

dt
[pk + Tk(pE , t)]2

2 , (6.36)

with electron velocity component vk in the laser propagation direction, and the recollision
time tr. The position of the interference maximum in the spectrum is defined by the phase
difference via

∆φ = 2πn, (6.37)

with an integer n. As ∆φ = 0 is not possible, the main middle lobe of the spectrum
(n ≈ 0) is then defined by the minimum of the phase difference, i.e., by d∆φ/dpk = 0,
which yields the condition for the final transversal momentum of the main interference
lobe

p
(0)
k = − 1

tr − ti

∫ tr

ti

dt Tk(pE , t). (6.38)

The position of the lobe p(0)
k is shifted against the laser polarization direction compared

to the symmetric non-relativistic description and it depends on pE . It can be qualitatively
estimated as follows

p
(0)
k ∼ −Tk(pE , t̃) = −

(
pEA(t̃) + A2(t̃)

2

)
, (6.39)

147



Chapter 6 Photoelectron holography

0-0.2 0.2
pk [a.u.]

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

p
E

[a
.u

.]

0

0.2

0.4

0.6

0.8

1
(a) Xe

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0-0.2 -0.1 0.1 0.2
ar

b.
un

it
s

pk [a.u.]

(b) Xe

0-0.2 0.2
pk [a.u.]

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

p
E

[a
.u

.]

0

0.2

0.4

0.6

0.8

1
(c) O2

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0-0.2 -0.1 0.1 0.2

ar
b.

un
it

s

pk [a.u.]

(d) O2

Figure 6.14: We plotted the results of the QTMC simulations for Xe [panel (a)] and for O2
[panel (c)]. Both exhibit the interference fringes located at same positions for both elements
and with the same pitch as we can read out from panels (b) and (c), where we have plotted
distribution of the pz momentum in stripes of width ∆px = 0.1 and with their center located
at px = 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1 (plotted in the figures from the top to the bottom).
Both PMDs also exhibit the same horizontal cusps of the Coulomb focusing, which are also
separating the regions with different structure of interference fringes, e.g., at px ≈ 0.32 a.u.
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where ti < t̃ < tr. For low values of pE we can estimate p(0)
k ∼ −A2(t̃)/2 ∼ −Up/c, where

Up = (E0/ω)2/4 is the ponderomotive potential, and we use |pE | = |A(ti)| � A(t̃). In
the given case of E0 = 0.0407 and ω = 0.013 (Up = 2.45) the momentum of the main
ridge is p(0)

k ≈ −0.018, which is in accordance with the perturbative result of Fig. 6.5,
the results of CCSFA of Fig. 6.7(a), as well as with the QTMC simulatios, Fig. 6.9.
The position of the side-lobes in the spectrum is determined by the phase difference

condition ∆φ = 2πn. The latter can be estimated from Eq. (6.36) as follows:

∆φ ∼
[
pk + Tk(pE , t̃)

]2
2 (tr − ti) = 2πn. (6.40)

Roughly estimating the rescattering time (tr − ti) ∼ 2πδ/ω, as a δ-fraction of the laser
period. Then, the momentum corresponding to the nth-lobe is

p
(n)
k ∼ −Tk(pE , t̃)±

√
2nω/δ, (6.41)

which is also shifted against the laser propagation direction compared to the non-relativistic
description. The distance between the main and the second lobes, for instance, can be
estimated as

|p(1)
k − p

(0)
k | ≈

√
2ω/δ, (6.42)

which at the given frequency ω = 0.013, is |p(1)
k − p

(0)
k | ≈ 0.16 a.u.. It is in accordance

with the perturbative spectra shown in Fig. 6.5, which do not include Coulomb focusing.
The interference wings are much closer in the case of CCSFA, Fig. 6.7(a), because of the
Coulomb focusing effect.
Further, let us see why the left lobe is weaker than the right one. For this we esti-

mate the initial transversal momentum corresponding to the side-lobes. For the direct
electrons:

p
(n)
k,i = p

(n)
k + Tk(p

(n)
E , ti). (6.43)

Assuming for an estimation that pE = −A(ti) ≈ 0, yields Tk(p
(n)
E , ti) ≈ 0 and p(n)

k,i = p
(n)
k .

It is clear that the left side-lobes have larger transverse momentum p
(n)
k ≈ −Tk(pE , t̃)−√

2nω/δ than the right ones of the same nth-order. Therefore, the probability of the
left side-lobes Wn<0 is suppressed compared to the right-lobes Wn>0 due to a smaller
tunneling probability:

Wn<0
Wn>0

= exp
{
−
p

2 (n<0)
k − p2 (n>0)

k

∆2
k

}
≈ exp

−2

√
nIp
ωδ

ξ

 , (6.44)

where ∆k =
√
E0/κ is the width of the transverse momentum distribution at the tun-

neling ionization [27], and the estimate Tk ≈ Up/c is used. For instance W−1/W1 ≈ 0.75
at given parameters.
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Figure 6.15: Phase space of the initial electron distribution at the tunnel exit: (a) the
part which contributes to the final momentum bin at pE = 0.588 a.u., and pk = −0.0157
a.u., corresponding to the first soft recollision. The central spot is the contribution of the
direct trajectories. Note that the central spot is the center of the ring and it is shifted to
the negative pk direction. (b) the part which contributes to the bin at the vanishing final
momentum. The inner ring is symmetric, while the outer one is shifted in the negative pk
direction.

From Fig. 6.8 we have deduced that the position of the main ridge is of classical
origin, see also [114,191]. The cusp at vanishing transverse momentum in the main ridge
arises due to Coulomb focusing. The latter causes transformation of the transverse phase
space of the ionized electron wave packet during propagation from the tunneling exit to
asymptotics. In the non-relativistic case when the drift due to the laser magnetic field is
neglected, the electrons initially distributed in a ring in the transverse phase space (pk, pt)
asymptotically move in a small cycle near the vanishing transverse momentum, pk = 0
and pt = 0, because of the momentum transfer to the atomic core during the recollision.
The magnetically induced relativistic drift will change the electron recollision parameters
and will modify the phase space transformation due to the Coulomb field. However, if
the electron at the tunnel exit has an appropriate initial transverse momentum pki, such
that the recollision coordinate xk in the case of the drift is the same as in the case without
drift, then the momentum transfer due to the Coulomb effect will be the same as in the
non-relativistic case.

In the non-relativistic case the recollision xk-coordinate of the electron, ionized with the
momentum p

(0)
ki , is x

(0)
kr = p

(0)
ki (tr − ti). Due to the recollision the momentum transfer to

the Coulomb field is δpCk , and final momentum of the electron, initially in the mentioned
ring, is vanishing pkf = p

(0)
ki −δpCk = 0. Consequently, p(0)

ki = δpCk , and x
(0)
kr = δpCk (tr−ti).
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For the relativistic electron motion in the laser field we have:

pE(η) = A(η)−A(ηi) + pEi,

pk(η) = pki + p2
E(η)− p2

Ei

2Λ , (6.45)

where ηi is the initial phase, and pEi and pki are the initial momentum components of
the electron, Λ = (εi − pki)/c ≈ c is the integral of motion in the plane laser field. The
electron recollision coordinate in the weakly relativistic regime is

xkr = pki(tr − ti) +
∫ tr

ti

dt
[A(t)−A(ti)]2

2c , (6.46)

where we set the ionized electron momentum pEi = 0. The condition xkr = x
(0)
kr , when

the recollision in the relativistic case takes place with the same impact parameter as in
the non-relativistic case, reads

pki = δpCk −
1

tr − ti

∫ tr

ti

dt
[A(t)−A(ti)]2

2c . (6.47)

At the recollision point the electron momentum components according to Eq. (6.45) are

pE(t−r ) = A(tr)−A(ti), (6.48)

pk(t−r ) = pki + [A(tr)−A(ti)]2

2c , (6.49)

while after the recollision they become

pE(t+r ) ≈ A(tr)−A(ti), (6.50)

pk(t+r ) = pki − δpCk + [A(tr)−A(ti)]2

2c , (6.51)

where we have taken into account that δpCE � δpCk . Then the asymptotic momentum at
the detector according to Eq. (6.45) is

pE ≈ −A(ti),

pk = pki − δpCk + A(ti)2

2c = − 1
tr − ti

∫ tr

ti

dt
[A(t)−A(ti)]2 −A(ti)2

2c

= − 1
tr − ti

∫ tr

ti

dt Tk(pE , t). (6.52)

Concluding the discussion about the main ridge, the Coulomb focusing in the case of
the relativistic drift will be similar to the non-relativistic case. The only change is the
shift of the cusp in the transverse momentum distribution against the laser propagation
direction by the value of the drift momentum

pk = −p(d)
k ≡ −

1
tr − ti

∫ tr

ti

dt Tk(pE , t). (6.53)
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The initial phase space at the tunnel exit which is squeezed into the central cusp is a
ring of the radius δpCk centered around the momentum value

pki = −p(d)
k −

A(ti)2

2c , (6.54)

see Fig. 6.15. The part of the initial phase space at the tunnel exit which contributes
to the final momentum bin at the vanishing momentum is shown in Fig. 6.15(b). The
inner ring is symmetric, while the outer one is shifted in the negative pk direction. The
asymmetric ring is produced by electrons which are ionized in the L-half-cycle. The
asymmetry is again described by Eq. (6.53). The inner ring in Fig. 6.15(b) is produced
by electrons which are ionized either in the C-half-cycle, or in the R-half-cycle. The
inner ring is not asymmetric, because the trajectory analysis shows that in this case the
Coulomb focusing arises after switching off the laser field. Then, there is no relativistic
drift and there is no asymmetry along the pk direction.

Note that the main lobe of the quantum interference pattern, Eq. (6.38), coincides
with the position of the cusp due to the classical Coulomb focusing given by Eq. (6.53).
Eq. (6.53) describes the shift of the main ridge in the region when the rescattering

plays a significant role. The shift is negative. It depends on pE , increasing with pE by
absolute value. For such large pE , or large pk, when rescattering is not important, the
shift of the momentum distribution with respect to the non-relativistic case is in positive
pk direction: pki → pki +A(ti)2/2c, according to Eq. (6.45).
A final observation is that the wings of the spider-like structure end at a longitudinal

momentum of pE ∼ 0.65 a.u. which can be explained by a cutoff rule of the trajectories
with soft recollisions [106]. For values of the longitudinal momentum larger than the
cutoff only one return of the trajectory to the core is possible.
Concluding, with these simple estimates all qualitative features of the interference

structure can be reproduced, showing how the magnetic dipole interaction alters the
holography image of the momentum distribution.

6.7 Summary

In this section we have investigated the strong-field photoelectron holography with mid-
IR laser beyond the dipole approximation for xenon and molecular oxygen. Firstly, we
have introduced the concept of the photoelectron holography, its manifestation via the
spider-like structure and explained the origin of the structure due to existence of multi-
path interference introduced by forward scatterings of the ionized target. We investigated
the holographic patterns by several methods: SFA, CCSFA, QTMC, RQTMC and by
simple analytical estimates.
In the SFA, we have taken the Coulomb potential of the parent ion perturbatively

into account. Already the perturbative treatment of the recollision yields qualitative
interference patterns. The further inclusion of the Coulomb potential can be achieved
in CCSFA, where we can take into account the Coulomb momentum transfer at one
recollision point (although multiple recollisions can happen). Via the CCSFA we found
out that the interference maxima are situated closer towards the center. Moreover, we
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6.7 Summary

investigated the role of multiple paths and concluded that the main features of the spider-
like structures are already given by two-path interference of the direct and recollided
electrons with momentum transfer at the slow recollision. Inclusion of the other paths
smoothens the distribution leads to a gradual decrease of the intensity in the spectra with
increasing pE . This is true for regions with large longitudinal momenta (i.e., pE > 0.25
a.u. in our setup), where only up to three recollisions take place. Smaller values of final
longitudinal momenta could not be estimated by this method.
The full inclusion of the Coulomb potential was made in the numerical QTMC sim-

ulations, where we have also taken into account the effects of the strong laser field on
the target. Features as multi-electron effect, polarizability of the ionic target, quadratic
Stark shift or shift of the tunnel exit due to polarizability were shown to play only a
minor role on the position of the interference maxima via RQTMC simulation. Not like
the orientation of a diatomic molecule of O2, which can have a strong influence on the
tunneling rates an the phase structure of the tunneled wave packet. The latter was con-
tributed to the nontrivial phase structure of the tunneled wave packet. We have also
found one particular orientation of the O2, which yields the highest ionization rate and
the right position of the interference maxima. This orientation can be used in the simu-
lations for unaligned O2 in order to avoid the need for averaging over all three alignment
angles. We also employed these results and compared the spider-like structure created by
Xe and by unaligned O2 via QTMC simulations, while finding no observable difference
in the spider-like structure.

Moreover, we analyzed the role of the pulse length on the interference pattern due to
ionization taking place at multiple half-cycles. We identified the interference features
with respect to the origin of the tunneled electron.
Finally, we used analytical estimates for explanation of the features in the holographic

pattern as negative shift against the laser propagation direction, position of the central
lobe, spread of the interference maxima and suppression of the intensities at the first left
and right lobe. The overall negative offset, along with the position of the central lobe,
and asymmetry in the intensities at the first left and right lobe were contributed to the
nondipole effects. Eventually, the position of the main lobe was shown to correspond to
the position of the vertical cusp arising classically due to the Coulomb focusing.
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Conclusions

In this work we have addressed the role of the Coulomb potential in the strong-field
ionization physics beyond the dipole approximation. As we tried to illustrate in the
introduction, the Coulomb force acting on the ionized electron is essential and leads to
many new phenomena. Therefore, the Coulomb interaction can not be neglected neither
during electrons promotion to the continuum (inization) nor during the evolution in the
continuum for proper understanding of the underlying physics.
In Chap. 1, we concentrated on the Strong-field approximation (SFA) and its Coulomb-

corrected version (CCSFA). We introduced the basic idea behind the SFA in Sec. 1.1 and
the way how the CCSFA accounts for the Coulomb potential via first-order correction
obtained from the eikonal expansion of the electron wave function in the continuum in
Sec. 1.2. We repeated the calculations from the literature and showed how the Coulomb
singularity in the first-order correction term can be avoided by saddle-point integration .
Moreover, we showed that the correction term leads to reproduction of the PPT tunneling
rate. The novelty brought by this thesis is the analysis of the higher-order correction
term from the eikonal expansion and their role in the ionization process. The higher-order
terms are neglected in the standard CCSFA and were not addressed previously. We have
analyzed the role of the second-order correction terms in 1D and identified classical and
quantum contributions and discussed their influence on the nonadiabatic momentum shift
in Sec. 1.3. Finally, we drew conclusions for more realistic 3D case yielding a negative
nonadiabatic momentum shift. In Sec. 1.4, we briefly discussed other extensions of the
CCSFA to the relativistic regime and the alternative Analytical R-Matrix theory.
Furthermore, we were motivated by the recent attention gained by the strong-field

ionization of molecules, as it promises a new tool for investigation of molecular struc-
tures and dynamics. Therefore, we investigated the strong-field ionization process of the
diatomic molecule O2 by Partial-Fourier-transformation method in Sec. 1.4. We have
generalized the known formulas for arbitrary alignment of the molecule with respect to a
linearly polarized laser field and reproduced the orientation-dependent ionization rates.
Moreover, we were able to retrieve the phase structure of the tunneled wave packet,
which plays an important role in strong-field holography, addressed in the last chapter
of this thesis.

In the next part of the thesis, we investigated the influence of the Coulomb interaction
between tunneled electron and its parent ion on the electron’s dynamics in the contin-
uum. The Coulomb potential causes bunching in the photoelectron momentum diagram
and is therefore called Coulomb focusing. In the first section of Chap. 2, we introduced
the classical analytical theory for the description of Coulomb focusing in linearly po-
larized laser fields. We included the nondipole effects accounting for the magnetic field
induced drift of the ionized electron along the propagation direction of the laser during
the electron’s excursion in the laser field. We treated the Coulomb interaction as a per-

155



Conclusions

turbation to the laser driven trajectory and restricted it to the so called recollision points.
Furthermore, we have classified the recollision points as slow and fast and with respect
to the electron’s velocity at the recollision in Sec. 2.2. After we restricted the interaction
to these well defined points, we derived in Sec. 2.3 analytic formulas for the Coulomb
momentum transfer to the recolliding electron at these points. We also discussed the
simple-man’s approximation of the Coulomb momentum transfer at recollision (R-CMT)
as a product of the acting Coulomb force and the recolision’s duration. The scaling of
R-CMT was derived with respect to the rescattering parameters (momentum and im-
pact parameter) as well as with respect to the laser intensity and wavelength and further
analyzed in Sec. 2.4, where the Coulomb interaction was assumed as global perturbation
in the dipole case. In addition, we provided the higher-order corrections to the initial
Coulomb momentum transfer at the tunnel exit in Sec. 2.5. The correction appeared to
be necessary for preservation of the overall precision of the model.
When we captured the Coulomb interaction via the Coulomb momentum transfers,

we estimated the total Coulomb momentum transfer in dipole regime in Chap. 3. For
this purpose, we addressed the generalization of the recollision points for any electron
trajectory and the suitability of the analytic formulas in Sec. 3.1. Furthermore, we
developed two methods for the estimation of the total Coulomb momentum transfer in
Sec. 3.2: a fully perturbative zero-order method and a step-by-step method. Whereas
in the first method we consider the Coulomb effect as a global perturbation to the laser
driven trajectory, in the second method the electron momentum is adjusted after each
recollision leading to a change in the trajectory. The latter allows us to extend the
treatment of the Coulomb focusing beyond the perturbative regime. In particular, we
devoted special attention to the contribution of high-order rescattering events and to the
derivation of the effective number of rescatterings. In Sec. 3.3, we used both methods
to derivate the photoelectron momentum diagram using a modified Classical-trajectory
Monte Carlo simulation. Both methods were shown to reproduce the main features of the
Coulomb focusing. In addition, we proposed an alternative way of treating the Coulomb
focusing as a transformation of the momentum phase space undisturbed by the Coulomb
field in Sec. 3.4, where we have shown that the I-CMT contributes to the spatial focusing
of the tunneled wave function. Finally, we employed the analytical framework in Chap. 4
to investigate the counterintuitive bend of the central cusp in the nondipole regime.
We discussed the modification of the rescatterings and, hence, of the Coulomb focusing
due to the magnetic force in Sec. 4.1. Moreover, we revealed fine interplay between the
nondipole and Coulomb field effects resulting in the energy-dependent bend of the cusp.
In Sec. 4.2, we investigated the role of high-order rescatterings and found a direct relation
between the number of rescatterings and the fine structure of the cusp.
In Chap. 5, this analytical framework was used for investigation of the the newly ob-

served features of the Coulomb focusing in elliptically polarized laser fields. We extended
our framework for the elliptical polarization to the dipole and the nondipole regime in
Sec. 5.1, while exposing similarity of the drift opposite the direction of the minor axis of
polarization ellipse and the magnetically induced drift due to the nondipole effects. We
modeled the experiment with CTMC simulations in Sec. 5.2 for the dipole case, repro-
duced the observed central cusp and revealed its inner structure. The cusp was divided
into three parts with respect to the number of recollisions experienced by the underlying
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electron trajectories and we addressed each part with our framework while expose analo-
gies to the linear case. Nondipole effects were included and analyzed in Sec. 5.3, where
we revealed the roles of Coulomb focusing and ellipticity for the measured transition
of the negative peak offset to positive values. Due to this deeper understanding of the
underlying processes, we were able to estimate the average size of Coulomb focusing and
the width of the tunneled wave packet from experimental data and found it to be in
agreement with the simulations.
In addition, we investigated the role of the nondipole effects on the strong-field photo-

electron holography in Chap. 6. After we introduced our ionization setup in Sec. 6.1, we
addressed the influence of nondipole effects on the spider-like structure arising in the mid-
infrared strong-field tunneling regime using several quantum descriptions: second-order
perturbative SFA, CCSFA and Quantum-trajectory Monte Carlo simulation (QTMC).
First, we showed in Sec. 6.2 that the “spider legs” arise already in the second-order per-
turbative SFA along with the overall negative shift introduced by the nondipole effects.
We addressed the role of multi-path interference for the pattern yielding enhancement
of the central cusp but having no influence on the positions of the interference max-
ima (i.e., the “spider-legs”). Furthermore, we included the Coulomb potential fully via
CCSFA and revealed that the Coulomb potential of the parent ion changes the positions
of the interference maxima in Sec. 6.3. We also investigated the multi-path interference
and concluded that the main features of the spider-like structure are already captured
by two-path interference. In Sec. 6.4, we revised the QTMC simulation and used it to
reproduce of the intracycle spider-like and the typical multi-cycle interferometric struc-
tures. We defined a restricted QTMC simulation in Sec. 6.5 and used it to investigate
the interferometric spider-like structure with respect to the properties of the ionized
atomic or molecular target. As targets we took atomic Xenon and diatomic molecule
of Oxygen. We found that the multi-electron effects represented by effective atomic po-
tential for Xenon do not change the position of the interference maxima. Moreover, we
found that the polarizability of the atom or the molecule (manifest as a quadratic-Stark
shift and induced electric dipole of the ion) does not change the position of the inter-
ference maxima. The quadratic-Stark shift merely changes the ionization rate but the
effect of the induced dipole on the electron’s dynamics in the continuum is negligible.
Furthermore, we investigated the role of the molecule’s alignment (with respect to the
linearly polarized laser field) for the holographic spider-like structure. We found that
the structure changes severely with different orientations of the molecule, which can be
contributed to the non-trivial and also orientation-dependent phase structure of the tun-
neled wave packet. Nevertheless, the ionization rate is not independent of the orientation
and influences the intensity of the spider-like structures. Thus, we found one particular
orientation of the Oxygen molecule which can be used to represent the interferometric
spectrum created by unaligned molecule. In the last part of the section, we compared
results from two QTMC simulations: for Xenon and for the molecular Oxygen aligned
by the representative angles. We have not found any observable difference in the repro-
duced holographic patterns. In the end, we investigated the scaling of the characteristic
features of the strong-field mid-infrared holography in the nondipole regime in Sec. 6.6.
We applied the three-step model and found that the negative shift of the central inter-
ference lobes corresponds to the previously investigated classical negative offset, which
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we interpret as a correspondence between the classical and quantum Coulomb focusing.
Finally, we explained the relative weakness of the left wing with respect to the right
wing (as already shown in the second-order perturbative SFA approach) arising due to
the nondipole effects.
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Outlook

The results presented in this thesis addressed several phenomena in the strong-field ion-
ization physics arising due to interplay between Coulomb interaction and nondipole ef-
fects. The proposed classical as well as quantum mechanical formalisms for treating
these effects need further development. Thus, the analysis of the high-order terms of
the CCSFA was made only for linearly polarized laser field in 1D case. An extension
of the calculation to 3D case would be more suitable for more precise comparison with
the nowadays attoclock experiments, where high ellipticity of the laser field is used to
extract the nonadiabatic momentum shift.
Furthermore, our classical analytical model is suitable for description of the rescatter-

ing event only in the regime, where the nondipole terms are just a correction and can
be neglected during the recollision. As we explained, this works well for the common
shapes of the laser pulse because an increase of the nondipole effects increases the in-
duced momentum drift which causes the tunneled wave packet to miss the parent ion
and hence suppresses recollisions. However, in the case of specially tailored laser pulses,
the recollions can be restored and the nondipole effects would most-likely influence the
Coulomb momentum transfer during the rescattering in such setup. Therefore, the classi-
cal analytical model should be modified in the case of the tailored laser pulses. Moreover,
our classical analytical model is developed for the case of linearly polarized laser fields,
which should be extended to the general case of elliptical polarization. Especially, the
possibility of the nonadiabatic change of the laser field orientation during the recollision
should be addressed by a proper modification of our model.
We have defined a method to determine the recollision points for any arbitrary tra-

jectory of the tunneled electron and the corresponding Coulomb momentum transfers.
However, the method can be improved by imposing a larger set of selection rules ad-
dressing multiple recollisions more accurately that is important for a better treatment of
the low energy electron dynamics and of the trapping in the Rydberg states.
The developed analytical tool for the analysis of Coulomb effects can be applied for

explanation of nontrivial Coulomb focusing features in more complicated laser configu-
rations, such as two-color orthogonal linearly polarized laser fields, or in bicircular field
configurations.
There is a discrepancy between the experimental and theoretical results of the elliptic-

ity dependent momentum shift along the laser propagation direction for moderate values
of the ellipticity. This possibly comes from the significantly modified rescattering process
at intermediate ellipticities and needs careful investigation.
Finally, we discussed in the last chapter the strong-field holography beyond the dipole

regime and several analytical models. We found agreement between two models: the
CCSFA and the QTMC simulation. In future, we should compare these models with
the experimental results and validate them along with our conclusions. Preliminary
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comparison with the experimental holography pattern shows a slight but systematic
deviations of the interference fringes positions. This may arise due to the quantum
scattering phase during recollisions, which should be systematically calculated.

160



Bibliography

[1] L. V. Keldysh, Zh. Eksp. Teor. Fiz. 47, 1945 (1964).

[2] F. H. M. Faisal, “Multiple absorption of laser photons by atoms,” J. Phys. B 6,
L89 (1973).

[3] H. R. Reiss, Phys. Rev. A 22, 1786 (1980).

[4] Y. Gontier, M. Poirier, and M. Trahin, “Multiphoton absorptions above the ion-
isation threshold,” Journal of Physics B: Atomic and Molecular Physics 13, 1381
(1980).

[5] Y. Gontier and M. Trahin, “Energetic electron generation by multiphoton absorp-
tion,” Journal of Physics B: Atomic and Molecular Physics 13, 4383 (1980).

[6] M. Göppert-Mayer, “Über elementarakte mit zwei quantensprüngen,” Annalen der
Physik 401, 273 (1931).

[7] A. McPherson, G. Gibson, H. Jara, U. Johann, T. S. Luk, I. A. McIntyre, K. Boyer,
and C. K. Rhodes, “Studies of multiphoton production of vacuum-ultraviolet radi-
ation in the rare gases,” J. Opt. Soc. Am. B 4, 595 (1987).

[8] M. Ferray, A. L’Huillier, X. Li, L. Lompre, G. Mainfray, and C. Manus, “Multiple-
harmonic conversion of 1064 nm radiation in rare gases,” J. Phys. B 21, L31 (1988).

[9] M. Lewenstein, P. Balcou, M. Y. Ivanov, A. L’Huillier, and P. B. Corkum, “Theory
of high-harmonic generation by low-frequency laser fields,” Phys. Rev. A 49, 2117
(1994).

[10] P. Agostini and L. F. DiMauro, Rep. Prog. Phys. 67, 813 (2004).

[11] D. N. Fittinghoff, P. R. Bolton, B. Chang, and K. C. Kulander, “Observation of
nonsequential double ionization of helium with optical tunneling,” Phys. Rev. Lett.
69, 2642 (1992).

[12] B. Walker, B. Sheehy, L. F. DiMauro, P. Agostini, K. J. Schafer, and K. C. Ku-
lander, “Precision measurement of strong field double ionization of helium,” Phys.
Rev. Lett. 73, 1227 (1994).

[13] B. Feuerstein, R. Moshammer, D. Fischer, A. Dorn, C. D. Schröter, J. Deipen-
wisch, J. R. Crespo Lopez-Urrutia, C. Höhr, P. Neumayer, J. Ullrich, H. Rottke,
C. Trump, M. Wittmann, G. Korn, and W. Sandner, “Separation of recollision
mechanisms in nonsequential strong field double ionization of Ar: The role of ex-
citation tunneling,” Phys. Rev. Lett. 87, 043003 (2001).

161



Bibliography

[14] W. Becker, X. Liu, P. J. Ho, and J. H. Eberly, “Theories of photoelectron correlation
in laser-driven multiple atomic ionization,” Rev. Mod. Phys. 84, 1011 (2012).

[15] This approach named as a Simpleman theory, has been proposed more than 25
years ago in different variations by several authors, see M. Yu. Kuchiev, Pis’ma
Zh. Eksp. Teor. Fiz. 45, 319 (1987) [Sov. Phys. JETP Lett. 45, 404 (1987)]; H. B.
van Linden van den Heuvell and H. G. Muller, in Multiphoton Processes, ed. S.
J. Smith and P. L. Knight, Cambridge University Press (1988); K. J. Schafer, B.
Yang, L. F. DiMauro, and K. C. Kulander, Phys. Rev. Lett. 70, 1599 (1993); P. B.
Corkum, Phys. Rev. Lett. 71, 1994 (1993), and proved to have a high predicitve
power in discussions of strong-field ionization phenomena.

[16] D. M. Wolkow, Z. Phys. 94, 250 (1935).

[17] W. Becker, J. K. McIver, and M. Confer, “Total multiphoton-ionization rates for
an extremely short-ranged potential,” Phys. Rev. A 40, 6904 (1989).

[18] W. Becker, S. Long, and J. K. McIver, “Modeling harmonic generation by a zero-
range potential,” Phys. Rev. A 50, 1540 (1994).

[19] H. R. Reiss, Phys. Rev. A 19, 1140 (1979).

[20] D. Bauer, D. B. Milošević, and W. Becker, “Strong-field approximation for intense-
laser–atom processes: The choice of gauge,” Phys. Rev. A 72, 023415 (2005).

[21] M. Klaiber, K. Z. Hatsagortsyan, and C. H. Keitel, “Gauge-invariant relativistic
strong-field approximation,” Phys. Rev. A 73, 053411 (2006).

[22] F. H. M. Faisal, J. Phys. B 40, F145 (2007).

[23] F. H. M. Faisal, “Gauge-equivalent intense-field approximations in velocity and
length gauges to all orders,” Phys. Rev. A 75, 063412 (2007).

[24] A. M. Perelomov, V. S. Popov, and V. M. Terent’ev, Zh. Exp. Theor. Fiz. 51, 309
(1966).

[25] A. M. Perelomov and V. S. Popov, Zh. Exp. Theor. Fiz. 52, 514 (1967).

[26] V. S. Popov, V. P. Kuznetsov, and A. M. Perelomov, Zh. Exp. Theor. Fiz. 53, 331
(1967).

[27] V. S. Popov, Phys. Usp. 47, 855 (2004).

[28] V. S. Popov, Phys. Atom. Nuclei 68, 686 (2005).

[29] S. V. Popruzhenko, “Keldysh theory of strong field ionization: history, applications,
difficulties and perspectives,” J. Phys. B 47, 204001 (2014).

[30] M. V. Ammosov, N. B. Delone, and V. P. Krainov, “Tunnel ionization of complex
atoms and of atomic ions in an alternating electromagnetic field,” Zh. Eksp. Teor.
Fiz. 91, 2008 (1986).

162



Bibliography

[31] N. B. Delone and V. P. Krainov, J. Opt. Soc. Am. B 8, 1207 (1991).

[32] S. V. Popruzhenko, G. G. Paulus, and D. Bauer, “Coulomb-corrected quantum
trajectories in strong-field ionization,” Phys. Rev. A 77, 053409 (2008).

[33] S. V. Popruzhenko and D. Bauer, J. Mod. Opt. 55, 2573 (2008).

[34] M. Klaiber, E. Yakaboylu, and K. Z. Hatsagortsyan, “Above-threshold ionization
with highly charged ions in superstrong laser fields. i. coulomb-corrected strong-
field approximation,” Phys. Rev. A 87, 023417 (2013).

[35] M. Klaiber, E. Yakaboylu, C. Müller, H. Bauke, G. G. Paulus, and K. Z. Hat-
sagortsyan, “Spin dynamics in relativistic ionization with highly charged ions in
super-strong laser fields,” J. Phys. B 47, 065603 (2014).

[36] E. Yakaboylu, M. Klaiber, and K. Z. Hatsagortsyan, “Above-threshold ionization
with highly charged ions in superstrong laser fields. iii. spin effects and their de-
pendence on laser polarization,” Phys. Rev. A 91, 063407 (2015).

[37] L. Torlina and O. Smirnova, “Time-dependent analytical r-matrix approach for
strong-field dynamics. i. one-electron systems,” Phys. Rev. A 86, 043408 (2012).

[38] L. Torlina, M. Ivanov, Z. B. Walters, and O. Smirnova, “Time-dependent analytical
r-matrix approach for strong-field dynamics. ii. many-electron systems,” Phys. Rev.
A 86, 043409 (2012).

[39] J. Kaushal and O. Smirnova, “Nonadiabatic coulomb effects in strong-field ioniza-
tion in circularly polarized laser fields,” Phys. Rev. A 88, 013421 (2013).

[40] C. Figueira de Morisson Faria, H. Schomerus, and W. Becker, “High-order above-
threshold ionization: The uniform approximation and the effect of the binding
potential,” Phys. Rev. A 66, 043413 (2002).

[41] R. Kopold, W. Becker, and M. Kleber, “Quantum path analysis of high-order
above-threshold ionization1dedicated to marlan o. scully on the occasion of his
60th birthday.1,” Optics Communications 179, 39 (2000).

[42] M. Klaiber, E. Yakaboylu, and K. Z. Hatsagortsyan, “Above-threshold ionization
with highly charged ions in superstrong laser fields. i. coulomb-corrected strong-
field approximation,” Phys. Rev. A 87, 023417 (2013).

[43] P. Eckle, M. Smolarski, F. Schlup, J. Biegert, A. Staudte, M. Schöffler, H. G.
Muller, R. Dörner, and U. Keller, Nature Phys. 4, 565 (2008).

[44] P. Eckle, A. N. Pfeiffer, C. Cirelli, A. Staudte, R. Dörner, H. G. Muller, M. Büttiker,
and U. Keller, “Attosecond ionization and tunneling delay time measurements in
helium,” Science 322, 1525 (2008).

[45] A. S. Landsman, M. Weger, J. Maurer, R. Boge, A. Ludwig, S. Heuser, C. Cirelli,
L. Gallmann, and U. Keller, “Ultrafast resolution of tunneling delay time,” Optica
1, 343 (2014).

163



Bibliography

[46] M. Busuladžić, A. Gazibegović-Busuladžić, D. B. Milošević, and W. Becker,
“Angle-resolved high-order above-threshold ionization of a molecule: Sensitive tool
for molecular characterization,” Phys. Rev. Lett. 100, 203003 (2008).

[47] X.-B. Bian and A. D. Bandrauk, “Orientation-dependent forward-backward photo-
electron holography from asymmetric molecules,” Phys. Rev. A 89, 033423 (2014).

[48] M. Li, X. Sun, X. Xie, Y. Shao, Y. Deng, C. Wu, Q. Gong, and Y. Liu, “Revealing
backward rescattering photoelectron interference of molecules in strong infrared
laser fields,” Scientific Reports 5, 8519 EP (2015). Article.

[49] M. Meckel, A. Staudte, S. Patchkovskii, D. M. Villeneuve, P. B. Corkum, R. Dörner,
and M. Spanner, “Signatures of the continuum electron phase in molecular strong-
field photoelectron holography,” Nature Phys. 10, 594 (2014).

[50] D. Pavičić, K. F. Lee, D. M. Rayner, P. B. Corkum, and D. M. Villeneuve, “Direct
measurement of the angular dependence of ionization for n2, o2, and co2 in intense
laser fields,” Phys. Rev. Lett. 98, 243001 (2007).

[51] S. Petretti, Y. V. Vanne, A. Saenz, A. Castro, and P. Decleva, “Alignment-
dependent ionization of n2, o2, and co2 in intense laser fields,” Phys. Rev. Lett.
104, 223001 (2010).

[52] J. Muth-Böhm, A. Becker, and F. H. M. Faisal, “Suppressed molecular ionization
for a class of diatomics in intense femtosecond laser fields,” Phys. Rev. Lett. 85,
2280 (2000).

[53] M.-M. Liu, M. Li, C. Wu, Q. Gong, A. Staudte, and Y. Liu, “Phase structure of
strong-field tunneling wave packets from molecules,” Phys. Rev. Lett. 116, 163004
(2016).

[54] X. M. Tong, Z. X. Zhao, and C. D. Lin, “Theory of molecular tunneling ionization,”
Phys. Rev. A 66, 033402 (2002).

[55] T. K. Kjeldsen and L. B. Madsen, “Strong-field ionization of n 2 : length and ve-
locity gauge strong-field approximation and tunnelling theory,” Journal of Physics
B: Atomic, Molecular and Optical Physics 37, 2033 (2004).

[56] D. B. Milošević, “Strong-field approximation for ionization of a diatomic molecule
by a strong laser field,” Phys. Rev. A 74, 063404 (2006).

[57] M. Busuladžić, A. Gazibegović-Busuladžić, D. B. Milošević, and W. Becker,
“Strong-field approximation for ionization of a diatomic molecule by a strong laser
field. ii. the role of electron rescattering off the molecular centers,” Phys. Rev. A
78, 033412 (2008).

[58] M. Busuladžić, A. Gazibegović-Busuladžić, and D. B. Milošević, “Strong-field ap-
proximation for ionization of a diatomic molecule by a strong laser field. iii. high-
order above-threshold ionization by an elliptically polarized field,” Phys. Rev. A
80, 013420 (2009).

164



Bibliography

[59] R. Murray, W.-K. Liu, and M. Y. Ivanov, “Partial fourier-transform approach to
tunnel ionization: Atomic systems,” Phys. Rev. A 81, 023413 (2010).

[60] M. Liu and Y. Liu, “Application of the partial-fourier-transform approach for tun-
nel ionization of molecules,” Phys. Rev. A 93, 043426 (2016).

[61] M.-M. Liu and Y. Liu, “Semiclassical models for strong-field tunneling ionization
of molecules,” Journal of Physics B: Atomic, Molecular and Optical Physics 50,
105602 (2017).

[62] R. Murray, M. Spanner, S. Patchkovskii, and M. Y. Ivanov, “Tunnel ionization of
molecules and orbital imaging,” Phys. Rev. Lett. 106, 173001 (2011).

[63] T. Brabec, M. Y. Ivanov, and P. B. Corkum, “Coulomb focusing in intense field
atomic processes,” Phys. Rev. A 54, R2551 (1996).

[64] S. P. Goreslavski, G. G. Paulus, S. V. Popruzhenko, and N. I. Shvetsov-Shilovski,
“Coulomb asymmetry in above-threshold ionization,” Phys. Rev. Lett. 93, 233002
(2004).

[65] P. B. Corkum, Phys. Rev. Lett. 71, 1994 (1993).

[66] N. I. Shvetsov-Shilovski, S. P. Goreslavski, S. V. Popruzhenko, and W. Becker,
“Ellipticity effects and the contributions of long orbits in nonsequential double
ionization of atoms,” Phys. Rev. A 77, 063405 (2008).

[67] X. Wang and J. H. Eberly, “Effects of elliptical polarization on strong-field short-
pulse double ionization,” Phys. Rev. Lett. 103, 103007 (2009).

[68] X. Wang and J. H. Eberly, “Elliptical polarization and probability of double ion-
ization,” Phys. Rev. Lett. 105, 083001 (2010).

[69] F. Mauger, C. Chandre, and T. Uzer, “From recollisions to the knee: A road map
for double ionization in intense laser fields,” Phys. Rev. Lett. 104, 043005 (2010).

[70] C. Liu and K. Z. Hatsagortsyan, “Coulomb focusing in above-threshold ionization
in elliptically polarized midinfrared strong laser fields,” Phys. Rev. A 85, 023413
(2012).

[71] A. Kamor, F. Mauger, C. Chandre, and T. Uzer, “How key periodic orbits drive
recollisions in a circularly polarized laser field,” Phys. Rev. Lett. 110, 253002
(2013).

[72] D. Dimitrovski, J. Maurer, H. Stapelfeldt, and L. B. Madsen, “Low-energy photo-
electrons in strong-field ionization by laser pulses with large ellipticity,” Phys. Rev.
Lett. 113, 103005 (2014).

[73] D. Dimitrovski and L. B. Madsen, “Theory of low-energy photoelectrons in strong-
field ionization by laser pulses with large ellipticity,” Phys. Rev. A 91, 033409
(2015).

165



Bibliography

[74] G. L. Yudin and M. Y. Ivanov, “Physics of correlated double ionization of atoms in
intense laser fields: Quasistatic tunneling limit,” Phys. Rev. A 63, 033404 (2001).

[75] D. Comtois, D. Zeidler, H. Pépin, J. C. Kieffer, D. M. Villeneuve, and P. B. Corkum,
“Observation of coulomb focusing in tunnelling ionization of noble gases,” J. Phys.
B 38, 1923 (2005).

[76] R. Moshammer, J. Ullrich, B. Feuerstein, D. Fischer, A. Dorn, C. D. Schröter, J. R.
Crespo Lopez-Urrutia, C. Hoehr, H. Rottke, C. Trump, M. Wittmann, G. Korn,
and W. Sandner, “Rescattering of ultralow-energy electrons for single ionization of
ne in the tunneling regime,” Phys. Rev. Lett. 91, 113002 (2003).

[77] A. Rudenko, K. Zrost, C. D. Schröter, V. L. B. de Jesus, B. Feuerstein, R. Mosham-
mer, and J. Ullrich, “Resonant structures in the low-energy electron continuum for
single ionization of atoms in the tunnelling regime,” J. Phys. B 37, L407 (2004).

[78] K. I. Dimitriou, D. G. Arbó, S. Yoshida, E. Persson, and J. Burgdörfer, “Origin of
the double-peak structure in the momentum distribution of ionization of hydrogen
atoms driven by strong laser fields,” Phys. Rev. A 70, 061401 (2004).

[79] A. Rudenko, K. Zrost, T. Ergler, A. B. Voitkiv, B. Najjari, V. L. B. de Jesus,
B. Feuerstein, C. D. Schröter, R. Moshammer, and J. Ullrich, “Coulomb singularity
in the transverse momentum distribution for strong-field single ionization,” J. Phys.
B 38, L191 (2005).

[80] B. Wolter, M. G. Pullen, M. Baudisch, M. Sclafani, M. Hemmer, A. Senftleben,
C. D. Schröter, J. Ullrich, R. Moshammer, and J. Biegert, “Strong-field physics
with mid-ir fields,” Phys. Rev. X 5, 021034 (2015).

[81] C. I. Blaga, F. Catoire, P. Colosimo, G. G. Paulus, H. G. Muller, A. P., and L. F.
DiMauro, “Strong-field photoionization revisited,” Nat. Phys. 5, 1745 (2009).

[82] F. Catoire, C. Blaga, E. Sistrunk, H. Muller, P. Agostini, and L. DiMauro, “Mid-
infrared strong field ionization angular distributions,” Laser Physics 19, 1574
(2009).

[83] W. Quan, Z. Lin, M. Wu, H. Kang, H. Liu, X. Liu, J. Chen, J. Liu, X. T. He,
S. G. Chen, H. Xiong, L. Guo, H. Xu, Y. Fu, Y. Cheng, and Z. Z. Xu, “Classical
aspects in above-threshold ionization with a midinfrared strong laser field,” Phys.
Rev. Lett. 103, 093001 (2009).

[84] C. Y. Wu, Y. D. Yang, Y. Q. Liu, Q. H. Gong, M. Wu, X. Liu, X. L. Hao, W. D. Li,
X. T. He, and J. Chen, “Characteristic spectrum of very low-energy photoelectron
from above-threshold ionization in the tunneling regime,” Phys. Rev. Lett. 109,
043001 (2012).

[85] B. Wolter, C. Lemell, M. Baudisch, M. G. Pullen, X.-M. Tong, M. Hemmer, A. Sen-
ftleben, C. D. Schröter, J. Ullrich, R. Moshammer, J. Biegert, and J. Burgdörfer,
“Formation of very-low-energy states crossing the ionization threshold of argon
atoms in strong mid-infrared fields,” Phys. Rev. A 90, 063424 (2014).

166



Bibliography

[86] J. Dura, N. Camus, A. Thai, A. Britz, M. Hemmer, M. Baudisch, A. Senftleben,
C. D. Schröter, J. Ullrich, R. Moshammer, and J. Biegert, “Ionization with low-
frequency fields in the tunneling regime,” Scientific Reports 3, 2675 (2013).

[87] M. G. Pullen, J. Dura, B. Wolter, M. Baudisch, M. Hemmer, N. Camus, A. Sen-
ftleben, C. D. Schröter, R. Moshammer, J. Ullrich, and J. Biegert, “Kinematically
complete measurements of strong field ionization with mid-IR pulses,” J. Phys. B
47, 204010 (2014).

[88] Q. Z. Xia, D. F. Ye, L. B. Fu, X. Y. Han, and J. Liu, “Momentum Distribution of
Near-Zero-Energy Photoelectrons in the Strong-Field Tunneling Ionization in the
Long Wavelength Limit.” Scientific reports 5, 11473 (2015).

[89] K. Zhang, Y. H. Lai, E. Diesen, B. E. Schmidt, C. I. Blaga, J. Xu, T. T. Gorman,
F. Légaré, U. Saalmann, P. Agostini, J. M. Rost, and L. F. DiMauro, “Universal
pulse dependence of the low-energy structure in strong-field ionization,” Phys. Rev.
A 93, 021403 (2016).

[90] E. Diesen, U. Saalmann, M. Richter, M. Kunitski, R. Dörner, and J. M. Rost,
“Dynamical Characteristics of Rydberg Electrons Released by a Weak Electric
Field,” Phys. Rev. Lett. 116, 143006 (2016).

[91] J. B. Williams, U. Saalmann, F. Trinter, M. S. Schöffler, M. Weller, P. Burzyn-
ski, C. Goihl, K. Henrichs, C. Janke, B. Griffin, G. Kastirke, J. Neff, M. Pitzer,
M. Waitz, Y. Yang, G. Schiwietz, S. Zeller, T. Jahnke, and R. Dörner, “Born
in weak fields: below-threshold photoelectron dynamics,” J. Phys. B 50, 034002
(2017).

[92] F. H. M. Faisal, “Strong-field physics: Ionization surprise,” Nat. Phys. 5, 319
(2009).

[93] C. Liu and K. Z. Hatsagortsyan, “Origin of unexpected low energy structure in
photoelectron spectra induced by midinfrared strong laser fields,” Phys. Rev. Lett.
105, 113003 (2010).

[94] T.-M. Yan, S. V. Popruzhenko, M. J. J. Vrakking, and D. Bauer, “Low-energy
structures in strong field ionization revealed by quantum orbits,” Phys. Rev. Lett.
105, 253002 (2010).

[95] J. Guo, X.-S. Liu, and S.-I. Chu, “Exploration of strong-field multiphoton double
ionization, rescattering, and electron angular distribution of he atoms in intense
long-wavelength laser fields: The coupled coherent-state approach,” Phys. Rev. A
82, 023402 (2010).

[96] C. Liu and K. Z. Hatsagortsyan, “Wavelength and intensity dependence of multiple
forward scattering of electrons at above-threshold ionization in mid-infrared strong
laser fields,” J. Phys. B 44, 095402 (2011).

167



Bibliography

[97] A. Kästner, U. Saalmann, and J. M. Rost, “Electron-energy bunching in laser-
driven soft recollisions,” Phys. Rev. Lett. 108, 033201 (2012).

[98] C. Lemell, K. I. Dimitriou, X.-M. Tong, S. Nagele, D. V. Kartashov, J. Burgdörfer,
and S. Gräfe, “Low-energy peak structure in strong-field ionization by midinfrared
laser pulses: Two-dimensional focusing by the atomic potential,” Phys. Rev. A 85,
011403 (2012).

[99] L. Guo, S. S. Han, X. Liu, Y. Cheng, Z. Z. Xu, J. Fan, J. Chen, S. G. Chen,
W. Becker, C. I. Blaga, A. D. DiChiara, E. Sistrunk, P. Agostini, and L. F. Di-
Mauro, “Scaling of the low-energy structure in above-threshold ionization in the
tunneling regime: Theory and experiment,” Phys. Rev. Lett. 110, 013001 (2013).

[100] E. Pisanty and M. Ivanov, “Slalom in complex time: Emergence of low-energy struc-
tures in tunnel ionization via complex-time contours,” Phys. Rev. A 93, 043408
(2016).

[101] T. Keil, S. V. Popruzhenko, and D. Bauer, “Laser-Driven Recollisions under the
Coulomb Barrier,” Phys. Rev. Lett. 117, 243003 (2016).

[102] D. B. Milošević, “Reexamination of the improved strong-field approximation: Low-
energy structures in the above-threshold-ionization spectra for short-range poten-
tials,” Phys. Rev. A 88, 023417 (2013).

[103] D. B. Milošević, “Low-frequency approximation for above-threshold ionization by
a laser pulse: Low-energy forward rescattering,” Phys. Rev. A 90, 063423 (2014).

[104] W. Becker, S. P. Goreslavski, D. B. Milošević, and G. G. Paulus, “Low-energy
electron rescattering in laser-induced ionization,” J. Phys. B 47, 204022 (2014).

[105] M. Möller, F. Meyer, A. M. Sayler, G. G. Paulus, M. F. Kling, B. E. Schmidt,
W. Becker, and D. B. Milošević, “Off-axis low-energy structures in above-threshold
ionization,” Phys. Rev. A 90, 023412 (2014).

[106] W. Becker and D. B. Milošević, “Above-threshold ionization for very low electron
energy,” J. Phys. B 48, 151001 (2015).

[107] S. A. Kelvich, W. Becker, and S. P. Goreslavski, “Coulomb focusing and defocus-
ing in above-threshold-ionization spectra produced by strong mid-IR laser pulses,”
Phys. Rev. A 93, 033411 (2016).

[108] J. G. Leopold and I. C. Percival, “Ionisation of highly excited atoms by electric
fields. III. Microwave ionisation and excitation,” J. Phys. B 12, 709 (1979).

[109] B. Hu, J. Liu, and S. Chen, “Plateau in above-threshold-ionization spectra and
chaotic behavior in rescattering processes,” Phys. Lett. A 236, 533 (1997).

[110] J. S. Cohen, “Reexamination of over-the-barrier and tunneling ionization of the
hydrogen atom in an intense field,” Physical Review A 64, 043412 (2001).

168



Bibliography

[111] D. D. Hickstein, P. Ranitovic, S. Witte, X.-M. Tong, Y. Huismans, P. Arpin,
X. Zhou, K. E. Keister, C. W. Hogle, B. Zhang, C. Ding, P. Johnsson, N. Toshima,
M. J. J. Vrakking, M. M. Murnane, and H. C. Kapteyn, “Direct visualization
of laser-driven electron multiple scattering and tunneling distance in strong-field
ionization.” Phys. Rev. Lett. 109, 073004 (2012).

[112] J. Liu, W. Chen, B. Zhang, J. Zhao, J. Wu, J. Yuan, and Z. Zhao, “Trajectory-
based analysis of low-energy electrons and photocurrents generated in strong-field
ionization,” Phys. Rev. A 90, 063420 (2014).

[113] K. Sasaki, X. M. Tong, and N. Toshima, J. Phys. B 42, 165603 (2009).

[114] A. Ludwig, J. Maurer, B. W. Mayer, C. R. Phillips, L. Gallmann, and U. Keller,
“Breakdown of the dipole approximation in strong-field ionization,” Phys. Rev.
Lett. 113, 243001 (2014).

[115] S. Chelkowski, A. D. Bandrauk, and P. B. Corkum, “Photon-momentum transfer
in multiphoton ionization and in time-resolved holography with photoelectrons,”
Phys. Rev. A 92, 051401 (2015).

[116] J. F. Tao, Q. Z. Xia, J. Cai, L. B. Fu, and J. Liu, “Coulomb rescattering in
nondipole interaction of atoms with intense laser fields,” Phys. Rev. A 95, 011402
(2017).

[117] P.-L. He, D. Lao, and F. He, “Strong Field Theories beyond Dipole Approximations
in Nonrelativistic Regimes,” Physical Review Letters 118, 163203 (2017).

[118] T. Keil and D. Bauer, “Coulomb-corrected strong-field quantum trajectories be-
yond dipole approximation,” J. Phys. B 50, 194002 (2017).

[119] M. Førre, J. P. Hansen, L. Kocbach, S. Selstø, and L. B. Madsen, “Nondipole
ionization dynamics of atoms in superintense high-frequency attosecond pulses,”
Phys. Rev. Lett. 97, 043601 (2006).

[120] A. Di Piazza, C. Müller, K. Z. Hatsagortsyan, and C. H. Keitel, “Extremely high-
intensity laser interactions with fundamental quantum systems,” Rev. Mod. Phys.
84, 1177 (2012).

[121] M. C. Kohler, T. Pfeifer, K. Z. Hatsagortsyan, and C. H. Keitel, “Chapter 4 -
frontiers of atomic high-harmonic generation,” in “Adv. At. Mol. Phys.”, , vol. 61,
E. A. Paul Berman and C. Lin, eds. (Academic Press, 2012), pp. 159 – 208.

[122] H. R. Reiss, “Limits on tunneling theories of strong-field ionization,” Phys. Rev.
Lett. 101, 043002 (2008).

[123] C. H. Keitel and P. L. Knight, “Monte carlo classical simulations of ionization and
harmonic generation in the relativistic domain,” Phys. Rev. A 51, 1420 (1995).

[124] M. W. Walser, C. H. Keitel, A. Scrinzi, and T. Brabec, “High harmonic generation
beyond the electric dipole approximation,” Phys. Rev. Lett. 85, 5082 (2000).

169



Bibliography

[125] D. B. Milošević, S. Hu, and W. Becker, “Quantum-mechanical model for ultrahigh-
order harmonic generation in the moderately relativistic regime,” Phys. Rev. A 63,
011403(R) (2000).

[126] N. J. Kylstra, R. M. Potvliege, and C. J. Joachain, “Photon emission by ions
interacting with short intense laser pulses: beyond the dipole approximation,” J.
Phys. B 34, L55 (2001).

[127] T. Popmintchev, M. C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Alisauskas,
G. Andriukaitis, T. Balciunas, O. D. Mucke, A. Pugzlys, A. Baltuska, B. Shim,
S. E. Schrauth, A. Gaeta, C. Hernández-García, L. Plaja, A. Becker, A. Jaron-
Becker, M. M. Murnane, and H. C. Kapteyn, “Bright Coherent Ultrahigh Harmon-
ics in the keV X-ray Regime from Mid-Infrared Femtosecond Lasers,” Science 336,
1287 (2012).

[128] S. Palaniyappan, I. Ghebregziabher, A. D. DiChiara, J. MacDonald, and B. C.
Walker, Phys. Rev. A 74, 033403 (2006).

[129] M. Klaiber, K. Z. Hatsagortsyan, J. Wu, S. S. Luo, P. Grugan, and B. C. Walker,
“Limits of Strong Field Rescattering in the Relativistic Regime,” Physical Review
Letters 118, 093001 (2017).

[130] M. Dammasch, M. Dörr, U. Eichmann, E. Lenz, and W. Sandner, Phys. Rev. A
64, 061402 (2001).

[131] M. Klaiber, K. Z. Hatsagortsyan, and C. H. Keitel, “Above-threshold ionization
beyond the dipole approximation,” Phys. Rev. A 71, 033408 (2005).

[132] A. D. DiChiara, I. Ghebregziabher, R. Sauer, J. Waesche, S. Palaniyappan, B. L.
Wen, and B. C. Walker, Phys. Rev. Lett. 101, 173002 (2008).

[133] N. Ekanayake, S. Luo, P. D. Grugan, W. B. Crosby, A. D. Camilo, C. V. McCowan,
R. Scalzi, A. Tramontozzi, L. E. Howard, S. J. Wells, C. Mancuso, T. Stanev, M. F.
Decamp, and B. C. Walker, “Electron shell ionization of atoms with classical,
relativistic scattering,” Phys. Rev. Lett. 110, 203003 (2013).

[134] C. Smeenk, L. Arissian, A. Staudte, D. Villeneuve, and P. Corkum, “Momentum
space tomographic imaging of photoelectrons,” J. Phys. B 42, 185402 (2009).

[135] M. Klaiber, E. Yakaboylu, H. Bauke, K. Z. Hatsagortsyan, and C. H. Keitel,
“Under-the-barrier dynamics in laser-induced relativistic tunneling,” Phys. Rev.
Lett. 110, 153004 (2013).

[136] S. Chelkowski, A. D. Bandrauk, and P. B. Corkum, “Photon momentum sharing
between an electron and an ion in photoionization: From one-photon (photoelectric
effect) to multiphoton absorption,” Phys. Rev. Lett. 113, 263005 (2014).

[137] D. Cricchio, E. Fiordilino, and K. Z. Hatsagortsyan, “Momentum partition between
constituents of exotic atoms during laser-induced tunneling ionization,” Phys. Rev.
A 92, 023408 (2015).

170



Bibliography

[138] S. Chelkowski, A. D. Bandrauk, and P. B. Corkum, “Photon-momentum transfer
in multiphoton ionization and in time-resolved holography with photoelectrons,”
Phys. Rev. A 92, 051401 (2015).

[139] C. Huang, Q. Liao, Y. Zhou, and P. Lu, “Role of coulomb focusing on the elec-
tron transverse momentum of above-threshold ionization,” Opt. Express 18, 14293
(2010).

[140] S. A. Berman, C. Chandre, and T. Uzer, “Persistence of coulomb focusing during
ionization in the strong-field regime,” Phys. Rev. A 92, 023422 (2015).

[141] S. A. Kelvich, W. Becker, and S. P. Goreslavski, “Caustics and catastrophes in
above-threshold ionization,” Phys. Rev. A 96, 023427 (2017).

[142] J. Maurer, B. Willenberg, J. Daněk, B. W. Mayer, C. R. Phillips, L. Gallmann,
M. Klaiber, K. Z. Hatsagortsyan, C. H. Keitel, and U. Keller, “Probing the ion-
ization wave packet and recollision dynamcis with an elliptically polarized strong
laser field in the nondipole regime,” Phys. Rev. A 97, 013404 (2018).

[143] C. I. Blaga, J. Xu, A. D. DiChiara, E. Sistrunk, K. Zhang, P. Agostini, T. A.
Miller, L. F. DiMauro, and C. D. Lin, “Imaging ultrafast molecular dynamics with
laser-induced electron diffraction,” Nature 483, 194 EP (2012).

[144] M. Y. Ivanov, “Single molecules filmed dancing on a table top,” Nature 483, 161
EP (2012).

[145] M. G. Pullen, B. Wolter, A.-T. Le, M. Baudisch, M. Hemmer, A. Senftleben, C. D.
Schröter, J. Ullrich, R. Moshammer, C.-D. Lin, and J. Biegert, “Imaging an aligned
polyatomic molecule with laser-induced electron diffraction,” Nat. Commun. 6,
7262 (2015).

[146] Y. Huismans, A. Rouzée, A. Gijsbertsen, J. H. Jungmann, A. S. Smolkowska, P. S.
W. M. Logman, F. Lépine, C. Cauchy, S. Zamith, T. Marchenko, J. M. Bakker,
G. Berden, B. Redlich, A. F. G. van der Meer, H. G. Muller, W. Vermin, K. J.
Schafer, M. Spanner, M. Y. Ivanov, O. Smirnova, D. Bauer, S. V. Popruzhenko,
and M. J. J. Vrakking, “Time-resolved holography with photoelectrons,” Science
(New York, N.Y.) 331, 61 (2011).

[147] Y. Huismans, A. Gijsbertsen, A. S. Smolkowska, J. H. Jungmann, A. Rouzée, P. S.
W. M. Logman, F. Lépine, C. Cauchy, S. Zamith, T. Marchenko, J. M. Bakker,
G. Berden, B. Redlich, A. F. G. van der Meer, M. Y. Ivanov, T.-M. Yan, D. Bauer,
O. Smirnova, and M. J. J. Vrakking, “Scaling Laws for Photoelectron Holography
in the Midinfrared Wavelength Regime,” Phys. Rev. Lett. 109, 013002 (2012).

[148] M. Spanner, O. Smirnova, P. B. Corkum, and M. Y. Ivanov, “Reading diffraction
images in strong field ionization of diatomic molecules,” Journal of Physics B:
Atomic, Molecular and Optical Physics 37, L243 (2004).

171



Bibliography

[149] X.-B. Bian, Y. Huismans, O. Smirnova, K.-J. Yuan, M. J. J. Vrakking, and A. D.
Bandrauk, “Subcycle interference dynamics of time-resolved photoelectron holog-
raphy with midinfrared laser pulses,” Phys. Rev. A 84, 043420 (2011).

[150] C. Liu, G. Golovin, S. Chen, J. Zhang, B. Zhao, D. Haden, S. Banerjee, J. Silano,
H. Karwowski, and D. Umstadter, “Generation of 9 mev x -rays by all-laser-driven
compton scattering with second-harmonic laser light,” Opt. Lett. 39, 4132 (2014).

[151] A. S. Maxwell, A. Al-Jawahiry, T. Das, and C. F. d. M. Faria, “Coulomb-corrected
quantum interference in above-threshold ionization: Working towards multitrajec-
tory electron holography,” Phys. Rev. A 96, 023420 (2017).

[152] N. I. Shvetsov-Shilovski and M. Lein, “Effects of the coulomb potential in inter-
ference patterns of strong-field holography with photoelectrons,” Phys. Rev. A 97,
013411 (2018).

[153] T. Marchenko, Y. Huismans, K. J. Schafer, and M. J. J. Vrakking, “Criteria for
the observation of strong-field photoelectron holography,” Phys. Rev. A 84, 053427
(2011).

[154] X.-B. Bian and A. D. Bandrauk, “Attosecond time-resolved imaging of molecular
structure by photoelectron holography,” Phys. Rev. Lett. 108, 263003 (2012).

[155] M. Li, J. Yuan, X. Sun, J. Yu, Q. Gong, and Y. Liu, “Recollision-induced subcycle
interference of molecules in strong laser fields,” Phys. Rev. A 89, 033425 (2014).

[156] T. Zuo, A. Bandrauk, and P. Corkum, “Laser-induced electron diffraction: a new
tool for probing ultrafast molecular dynamics,” Chemical Physics Letters 259, 313
(1996).

[157] H.-C. Shao and A. F. Starace, “Detecting electron motion in atoms and molecules,”
Phys. Rev. Lett. 105, 263201 (2010).

[158] M. Haertelt, X.-B. Bian, M. Spanner, A. Staudte, and P. B. Corkum, “Probing
molecular dynamics by laser-induced backscattering holography,” Phys. Rev. Lett.
116, 133001 (2016).

[159] S. G. Walt, N. Bhargava Ram, M. Atala, N. I. Shvetsov-Shilovski, A. von Conta,
D. Baykusheva, M. Lein, and H. J. Wörner, “Dynamics of valence-shell electrons
and nuclei probed by strong-field holography and rescattering,” Nature Communi-
cations 8, 15651 EP (2017). Article.

[160] M. Li, J.-W. Geng, H. Liu, Y. Deng, C. Wu, L.-Y. Peng, Q. Gong, and Y. Liu,
“Classical-quantum correspondence for above-threshold ionization,” Phys. Rev.
Lett. 112, 113002 (2014).

[161] M. Li, J.-W. Geng, M. Han, M.-M. Liu, L.-Y. Peng, Q. Gong, and Y. Liu, “Subcycle
nonadiabatic strong-field tunneling ionization,” Phys. Rev. A 93, 013402 (2016).

172



Bibliography

[162] N. I. Shvetsov-Shilovski, M. Lein, L. B. Madsen, E. Räsänen, C. Lemell, J. Burgdör-
fer, D. G. Arbó, and K. Tőkési, “Semiclassical two-step model for strong-field ion-
ization,” Phys. Rev. A 94, 013415 (2016).

[163] X.-Y. Lai, C. Poli, H. Schomerus, and C. F. d. M. Faria, “Influence of the coulomb
potential on above-threshold ionization: A quantum-orbit analysis beyond the
strong-field approximation,” Phys. Rev. A 92, 043407 (2015).

[164] X. Lai, S. Yu, Y. Huang, L. Hua, C. Gong, W. Quan, C. F. d. M. Faria, and X. Liu,
“Near-threshold photoelectron holography beyond the strong-field approximation,”
Phys. Rev. A 96, 013414 (2017).

[165] A. J. F. Siegert, “On the derivation of the dispersion formula for nuclear reactions,”
Phys. Rev. 56, 750 (1939).

[166] O. I. Tolstikhin and T. Morishita, “Adiabatic theory of ionization by intense laser
pulses: Finite-range potentials,” Phys. Rev. A 86, 043417 (2012).

[167] Y. Zhou, O. I. Tolstikhin, and T. Morishita, “Near-forward rescattering photoelec-
tron holography in strong-field ionization: Extraction of the phase of the scattering
amplitude,” Phys. Rev. Lett. 116, 173001 (2016).

[168] M. Klaiber, J. Daněk, E. Yakaboylu, K. Z. Hatsagortsyan, and C. H. Keitel,
“Strong-field ionization via a high-order coulomb-corrected strong-field approxi-
mation,” Phys. Rev. A 95, 023403 (2017).

[169] J.-P. Connerade, Highly Excited Atoms (Cambridge, UK: Cambridge University
Press, 2005).

[170] G. F. Gribakin and M. Y. Kuchiev, “Multiphoton detachment of electrons from
negative ions,” Phys. Rev. A 55, 3760 (1997).

[171] B. M. Karnakov, V. D. Mur, V. S. Popov, and S. V. Popruzhenko, “Ionization of
atoms and ions by intense laser radiation,” JETP Letters 93, 238 (2011).

[172] P. P. Pereyra, Fundamentals of Quantum Physics. Undergraduate Lecture Notes in
Physics. (Springer, Berlin, Heidelberg, 2012).

[173] L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields (Elsevier, Oxford,
1975).

[174] R. Loudon, “One-Dimensional Hydrogen Atom,” Am. J. Phys. 27, 649 (1959).

[175] R. Loudon, “One-dimensional hydrogen atom,” Proc. Roy. Soc. (London) A 472,
20150534 (2016).

[176] G. Abramovici and Y. Avishai, “The one-dimensional coulomb problem,” Journal
of Physics A: Mathematical and Theoretical 42, 285302 (2009).

[177] H. Kleinert, Path Integrals in Quantum Mechanics, Statistics, Polymer Physics,
and Financial Markets (World Scientific, Singapore, 2006).

173



Bibliography

[178] S. V. Popruzhenko, V. D. Mur, V. S. Popov, and D. Bauer, “Strong field ionization
rate for arbitrary laser frequencies,” Phys. Rev. Lett. 101, 193003 (2008).

[179] T. Nubbemeyer, K. Gorling, A. Saenz, U. Eichmann, andW. Sandner, “Strong-field
tunneling without ionization,” Phys. Rev. Lett. 101, 233001 (2008).

[180] U. Eichmann, T. Nubbemeyer, H. Rottke, andW. Sandner, “Acceleration of neutral
atoms in strong short-pulse laser fields,” Nature 461, 1261 (2009).

[181] E. P. Wigner, Phys. Rev. 98, 145 (1955).

[182] E. Yakaboylu, M. Klaiber, and K. Z. Hatsagortsyan, “Wigner time delay for tun-
neling ionization via the electron propagator,” Phys. Rev. A 90, 012116 (2014).

[183] J. Maurer, J. Daněk, B. Willenberg, B. W. Mayer, C. R. Phillips, L. Gallmann,
M. Klaiber, K. Z. Hatsagortsyan, C. H. Keitel, and U. Keller, “Photoelectron
holography,” (2018). In preparation.

[184] H. R. Reiss, Phys. Rev. A 42, 1476 (1990).

[185] H. R. Reiss, “Relativistic strong-field photoionization,” J. Opt. Soc. Am. B 7, 574
(1990).

[186] T. Keil and D. Bauer, “Coulomb-corrected strong-field quantum trajectories be-
yond dipole approximation,” Journal of Physics B: Atomic, Molecular and Optical
Physics 50, 194002 (2017).

[187] M. Klaiber, E. Yakaboylu, and K. Z. Hatsagortsyan, “Above-threshold ionization
with highly charged ions in superstrong laser fields. ii. relativistic coulomb-corrected
strong-field approximation,” Phys. Rev. A 87, 023418 (2013).

[188] M. Klaiber, , K. Z. Hatsagortsyan, and C. H. Keitel, “Tunneling dynamics in
multiphoton ionization and attoclock calibration,” Phys. Rev. Lett. 114, 083001
(2015).

[189] X.-Y. Lai, C. Poli, H. Schomerus, and C. F. d. M. Faria, “Influence of the coulomb
potential on above-threshold ionization: A quantum-orbit analysis beyond the
strong-field approximation,” Phys. Rev. A 92, 043407 (2015).

[190] M. Dantus, R. M. Bowman, and A. H. Zewail, “Femtosecond laser observations of
molecular vibration and rotation,” Nature 343, 737 EP (1990).

[191] J. Daněk, K. Z. Hatsagortsyan, and C. H. Keitel, “Analytical approach to coulomb
focusing in strong field ionization,” Submitted, preprint on arXiv:1707.06921v2.

[192] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products (Aca-
demic Press, New York and London, 1965).

[193] N. Shvetsov-Shilovski, S. Goreslavski, S. Popruzhenko, and W. Becker, “Cap-
ture into rydberg states and momentum distributions of ionized electrons,” Laser
Physics 19, 1550 (2009).

174



[194] J. Daněk, M. Klaiber, K. Z. Hatsagortsyan, C. H. Keitel, B. Willenberg, J. Maurer,
B. W. Mayer, C. R. Phillips, L. Gallmann, and U. Keller, “Interplay between
coulomb-focusing and non-dipole effects in strong-field ionization with elliptical
polarization,” Submitted.

[195] A. N. Pfeiffer, C. Cirelli, M. Smolarski, D. Dimitrovski, M. Abu-samha, L. B.
Madsen, and U. Keller, “Attoclock reveals natural coordinates of the laser-induced
tunnelling current flow in atoms,” Nature Phys. 8, 76 (2012).

[196] P. A. Batishchev, O. I. Tolstikhin, and T. Morishita, “Atomic siegert states in an
electric field: Transverse momentum distribution of the ionized electrons,” Phys.
Rev. A 82, 023416 (2010).

[197] D. Gabor, “Nobel lecture: Holography,” (1971).

[198] C. C. Chirilă, N. J. Kylstra, R. M. Potvliege, and C. J. Joachain, Phys. Rev. A
66, 063411 (2002).

[199] H. Reiss, “Theoretical methods in quantum optics: S-matrix and Keldysh tech-
niques for strong-field processes,” Prog. Quant. El. 16, 1 (1992).

[200] M. Li, J.-W. Geng, H. Liu, Y. Deng, C. Wu, L.-Y. Peng, Q. Gong, and Y. Liu,
“Classical-quantum correspondence for above-threshold ionization,” Phys. Rev.
Lett. 112, 113002 (2014).

[201] L. D. Landau and E. M. Lifshitz, Mechanics (Pergamon, Oxford, 1993).

[202] N. I. Shvetsov-Shilovski, D. Dimitrovski, and L. B. Madsen, “Ionization in el-
liptically polarized pulses: Multielectron polarization effects and asymmetry of
photoelectron momentum distributions,” Phys. Rev. A 85, 023428 (2012).

[203] Y. S. Lee, W. C. Ermler, and K. S. Pitzer, “Ab initio effective core potentials
including relativistic effects. i. formalism and applications to the xe and au atoms,”
The Journal of Chemical Physics 67, 5861 (1977).

[204] F. J. Rogers, “Analytic electron-ion effective potentials for z ≤ 55,” Phys. Rev. A
23, 1008 (1981).

[205] D. B. Milošević, W. Becker, M. Okunishi, G. Prümper, K. Shimada, and K. Ueda,
“Strong-field electron spectra of rare-gas atoms in the rescattering regime: en-
hanced spectral regions and a simulation of the experiment,” Journal of Physics B:
Atomic, Molecular and Optical Physics 43, 015401 (2010).

[206] NIST Computational Chemistry Comparison and Benchmark Database
(http://cccbdb.nist.gov/).

[207] D. Dimitrovski, C. P. J. Martiny, and L. B. Madsen, “Strong-field ionization of
polar molecules: Stark-shift-corrected strong-field approximation,” Phys. Rev. A
82, 053404 (2010).

175





Acknowledgements

At this point I would like to thank all the people who lent me a helping hand during the
preparations of my thesis and of my graduation.

First, I thank my fist supervisor Prof. Christoph H. Keitel very much for accepting me
as a member of his division at the Max Planck Institute for Nuclear Physics in Heidelberg
and for always being ready to support me and my research. I greatly profited from the
cooperative and inspiring working environment in the division that he has created. I
am very thankful that he was always there for me with his rich scientific experience and
expertise to discuss the physics or the problems connected to publication of my results.

I would like to express my gratitude towards my mentor Dr. habil. Karen Z. Hat-
sagortsyan who introduced me to the field of strong-field ionization physics. He always
supported me and my scientific growth. Moreover, he was extremely patient and en-
couraging during my first clumsy steps in the field. He always found time for a short
discussion or to answer my questions. My research extended over several still unsettled
branches of the strong-field physics addressed in a great details thanks to his guidance.
I will always remember our long, but interesting and sometimes also very challenging
discussions about ionization physics and new results in particular.

I would also like to thank our collaborator Dr. Michael Klaiber with whom I was work-
ing on the Coulomb-corrected Strong-field approximation. I strongly benefited from his
insight into the Strong-field approximation and its extended versions. He was reachable
for any questions and ready to help at any time.

I thank also our collaborators Dr. Jochen Maurer and Benjamin Willenberg from
ETH Zürich who conducted several interesting experiments and involved us in the anal-
ysis of the results which motivated a substantial part of my research as presented in this
thesis. I would also like to thank them for being always supportive and allowing me to
use their results for presentations.

I would also like to thank Prof. Dr. Björn Malte Schäfer who agreed on being my
second referee and, therefore, also on writing a report on my thesis.

Many thanks go also to the proofreaders of my thesis: Niklas Michel, Kamil Dzikowski,
Chunhai Lyu, Halil Cakir, Daniel Bakucz Canário, Dr. Jonas Gunst and Shikha Bhadoria
whose remarks significantly improved the manuscript.

In addition, I would also like to thank our division secretary Sibel Babacan for helping
me to fight any administrative paper work.

Special thanks go to all my present or former officemates with whom I enjoyed my
working days at the Max Planck Institute for Nuclear Physics over the last years, in

177



Acknowledgements

particular, Shikha Bhadoria, Niklas Michel, Dr. Jonas Gunst, Nicolas Teeny and Kamil
Dzikowski.

Velký dík patří také mým rodičům, mojí babičce a mému nedávno zesnulému dědečkovi,
kteří mě po celou dobu mého studia v Heidelbergu podporovali a stáli při mně. V
neposlední řadě chci také poděkovat svému bratrovi i za jeho podporu, ale hlavně za jeho
letní návštěvy.

178


	Introduction
	Strong-field ionization
	SFA
	Coulomb-corrected SFA
	The role of higher-order correction terms
	Further theories
	Strong-field ionization of diatomic molecules
	Ionization rates
	Initial phase structure

	Summary

	Analytical model
	Introducing the model
	Restrictions and key assumptions
	Expansions of equations of motions

	Classification of recollisions
	Slow recollision
	Fast recollision

	Momentum transfer during recollisions
	Slow recollisions
	Fast recollisions
	Simple-man estimations

	Global perturbation approach for the Coulomb field
	Initial Coulomb momentum transfer
	The first-order approximation
	The second-order corrections

	Summary

	Total Coulomb momentum transfer
	Rescattering points in the general setup
	Estimation of the total Coulomb momentum transfer
	Zero-order trajectory approach
	Step-by-step approach
	Comparing the methods

	Photoelectron momentum distribution
	Coulomb focusing as a transformation
	Zero-order method
	Step-by-step method
	Comparison
	Initial momentum correction and its properties

	Summary

	Nondipole effects in linear polarization
	Rescattering in the nondipole regime 
	The role of high-order rescatterings 
	Summary

	Nondipole effects in elliptical polarization
	Electrons in ell. polarized laser
	The role of the drift induced by the ellipticity 
	The role of nondipole drift
	Summary

	Photoelectron holography
	The general setup
	Quantum description via perturbative SFA
	Description via the Coulomb-corrected SFA
	Quantum-trajectory Monte-Carlo simulation
	The role of the target on the holographic pattern
	The role of the potential
	Role of polarizability
	Orientation of the diatomic molecule

	Scaling of characteristic features of the holography pattern
	Summary


	Conclusions
	Outlook
	Bibliography
	Acknowledgements

