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Summary  
 

Hepatocellular carcinoma (HCC) is the fifth most common cancer and the second leading 

cause of cancer-related mortality worldwide. The high mortality rates have been attributed to 

late diagnosis and limited treatment options available. Sorafenib, a multi- kinase inhibitor, is 

currently the only targeted therapy that has shown survival benefits in advanced HCC 

patients. Several other targeted therapies, which were successful in animal models of HCC 

and in human cancer of head and neck, were met with limited success in HCC patients. Due 

to the unmet medical needs, it is clear that characterization of the mechanisms during 

hepatocarcinogenesis is pivotal in identifying novel treatment targets and diagnostic 

biomarkers. 

 

In an effort to identify novel targets during HCC, previous work from the lab has shown that 

TRIP13, a member of the AAA
+
-ATPase family was significantly upregulated in DEN-

induced HCC in mice and in human HCC. TRIP13 has been described to be an important 

regulator of chromosomal events during meiosis and mitosis. An induced expression of 

TRIP13 has been reported in several cancer entities however its cancer-related role remains 

marginally understood. Interestingly, TRIP13 forms part of the chromosomal instability 

(CIN) gene signature that is commonly seen in tumour cells and has DNA-damage repair 

functions in head and neck carcinoma cells (SSCHN). 

 

Unpublished data from the lab was the first to have confirmed the growth-promoting role of 

TRIP13 in liver, which was unveiled during hepatocyte regeneration and tumourigenesis 

using various mouse models of HCC. Here, we aim to dissect the mechanism through which 

TRIP13 exerts its pro-proliferative effects in HCC and to identify novel signalling pathways 

through which TRIP13 could exert its function. 

 

In this study, we showed that TRIP13 is essential during cell growth and proliferation, 

proliferation was severely impaired by Trip13 knockdown in all mouse and human HCC cells 

lines under investigation. Conversely, the overexpression of Trip13 in non-tumourigenic 

AML12 liver cells stimulated cell proliferation significantly, with upregulated expression of 

oncogenic factors like c-MYC, EGFR and cyclin D1. We identified an unexpected functional 

relevance of the interaction between TRIP13 and SIN3A, which was enriched during a MS 

screen for Trip13 interaction partners previously performed in the lab. SIN3A has been 

commonly described as a transcriptional repressor due to its HDAC-related roles. Strikingly, 

a concomitant depletion of SIN3A reverses the growth defect of TRIP13-depleted HCC cells, 

despite accumulated DNA damages (from TRIP13 depletion) still apparent in these growth-

rescued cells.  This growth rescue was paralleled by a partial restoration of c-MYC 

expression levels, which were significantly depleted during TRIP13-KD alone. We further 

demonstrated that the overexpression of c-MYC was able to rescue the growth defect seen in 

TRIP13-depleted cells.  

 

Taken together, this study is the first to report on an oncogenic, pro-proliferative role of 

TRIP13 in liver cancer using both human HCC cells and mice HCC models. An inhibition of 

c-MYC and its downstream targets might account for the growth arrest and apoptotic cell 

death during TRIP13-depletion. Along with the reported roles of SIN3A as a c-MYC 

antagonist, further work is required to decipher a possible cross talk between TRIP13, SIN3A 

and c-MYC and its functional relevance during hepatocarcinogenesis.       

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

 

Zusammenfassung Summary 

  
Das hepatozelluläre Karzinom (hepatocellular carcinoma, HCC) ist weltweit die fünft-

häufigste Krebsart aber an zweiter Stelle was die Krebs-assoziierten Mortalität angeht. Für 

die hohe Sterbebrate werden insbesondere die späte Diagnose sowie die limitierten 

Behandlungsoptionen verantwortlich gemacht. Die Behandlung mit Sorafenib, einem 

Multikinase-Inhibitor, stellt zurzeit die einzige gerichtete Therapie dar, bei der ein Benefit 

bezüglich Überleben festgestellt werden konnte. Verschiedene andere Therapieansätze, die in 

HCC-Tiermodellen sowie z.B. beim humanen Kopf-Hals Karzinom erfolgreich eingesetzt 

wurden, zeigten bei HCC-Patienten nur eine sehr eingeschränkte Wirkung. Angesichts dieses 

ungedeckten klinischen Bedarfs ist eine weiterführende Charakterisierung der Mechanismen 

der hepatischen Karzinogenese von entscheidender Bedeutung für die Identifikation neuer 

Zielstrukturen für Therapie sowie von diagnostischen Biomarkern. 

In vorherigen Arbeiten aus unserem Labor zur Identifikation neuer Zielstrukturen bei HCC 

wurde gezeigt, dass Trip13, ein Mitglied aus Proteinfamilie der AAA
+
-ATPasen, signifikant 

hochreguliert war beim hepatozellulären Karzinom im Menschen sowie bei 

Diethylnitrosamin-induziertem Leberkrebs in Mäusen. Trip13 war als wichtiger Regulator 

chromosomaler Prozesse während der Meiose und der Mitose beschrieben worden. Eine 

erhöhte Expression von Trip13 war zuvor in mehreren Krebsarten festgestellt worden, wobei 

die krebsfördernde Wirkung mechanistisch nur ansatzweise aufgeklärt wurde. 

Interessanterweise wurde Trip13 einer häufig in Tumourzellen festgestellten Gensignatur für 

chromosomale Instabilität (chromosomal instability, CIN) zugeordnet, sowie einer DNA-

Reparatur-Funktion beim Kopf-Hals-Karzinom. 

In bisher nicht publizierten Daten aus unserem Labor wurde zum ersten Mal eine 

wachstumfördernde Wirkung von Trip13 in der Leber gezeigt, die sich sowohl bei 

Hepatozyten-Regenerationsprozessen als auch bei der Tumourgenese in verschiedenen 

Mausmodellen von HCC bestätigte. Ziel dieser Arbeit war die Aufklärung der Mechanismen 

durch die Trip13 seine pro-proliferative Wirkung ausübt, sowie die Identifikation von bisher 

unbekannten Signalwegen, die daran beteiligt sein könnten. 

In der vorliegenden Studie konnten wir zeigen, dass Trip13 von zentraler Bedeutung für 

Zellwachstum und Proliferation ist. Trip13-Defizienz reduzierte in erheblichem Maß das 

Zellwachstum bei allen untersuchten humanen und murinen HCC-Zelllinien. Umgekehrt 

führte die Überexpression of Trip13 in nicht-tumourbildenden AML12-Leberzellen zu einer 

signifikanten Erhöhung des Zellwachstums (Proliferation), die mit einer Erhöhung der 

Expression von onkogenen Faktoren wie c-MYC, EGFR und Cyclin D1 einher ging. Darüber 

hinaus konnten wir eine unerwartete funktionale Relevanz der Interaktion zwischen Trip13 

und SIN3A feststellen. Der Interaktionspartner SIN3A war zuvor aus einem im Labor 

durchgeführten Screen nach Trip13-Interaktionsproteinen mittels Massenspektrometrie 

hervorgegangen und als transkriptioneller Korepressor in Komplexen mit Histon-

deacetylasen beschrieben worden. Erstaunlicherweise führte die gleichzeitige Ausschaltung 

von SIN3A zu einer vollständigen Aufhebung des wachstumshemmenden Effekts der Trip13-

Depletion in HCC-Zellen. Die Umkehrung des Wachstumseffekts hatte jedoch keinen 

Einfluss auf die Erhöhung der DNA-Schäden, die wir nach Trip13-Depletion detektieren 

konnten. Diese Aufhebung des Wachstumsdefekts ging mit einer zumindest teilweisen 

Wiederherstellung der c-MYC-Expressionslevel einher, die bei der alleinigen Depletion von 

Trip13 erheblich reduziert waren. Darüber hinaus konnten wir zeigen, dass eine  

 



 
 

 

 

Überexpression von c-MYC in der Lage war, den Wachstumsdefekt nach Trip13-Depletion 

umzukehren. 

Diese Arbeit zeigt zum ersten Mal eine onkogene, pro-proliferative Rolle von Trip13 bei 

Leberkrebs unter Verwendung von humanen und murinen HCC-Zelllinien und HCC-Maus-

Modellen. Die Reduktion von c-MYC und dessen Zielgenen könnte dabei für die 

wachstumshemmende und Apoptose-auslösende Wirkung von Trip13-Depletion 

verantwortlich sein. Unter Berücksichtigung der zuvor berichteten Rolle von SIN3A als 

Inhibitor von c-MYC, sind weiterführende Untersuchungen notwendig um die funktionalen 

Zusammenhänge zwischen Trip13, SIN3A und c-MYC hinsichtlich ihrer Relevanz für die 

Hepatokarzinogenese umfassend zu definieren. 
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1  INTRODUCTION  

    1 
 

 

1 Introduction 

 
1.1 Hepatocellular carcinoma 

 
Hepatocellular carcinoma (HCC) is the fifth most prevalent cancer and the second 

leading cause of Cancer-related mortality [64].  Liver carcinogenesis is a highly complicated 

process, which results from a complex interplay between host genetic factors and 

environmental exposure. HCC arises from a plethora of etiological factors that originates 

with a background in chronic liver diseases (CLDs). Such risk factors for the occurrence of 

HCC include chronic Hepatitis B or C infections (HBV, HCV); excessive alcohol 

consumption, autoimmune Hepatitis and several metabolic diseases including Diabetes 

mellitus, diet-induced fatty liver diseases and obesity [65]. The initiation and progression of 

HCC is thought to be a multistep process, involving the progressive accumulation of genetic 

and epigenetic alterations, undermined from different molecular and cellular events that still 

remains poorly understood [66]. 

 

1.2 Genetic landscape and altered cell signaling driver pathways in 

HCC 

 
The liver is rarely affected by classical germ line mutations that predispose during 

the development of colorectal, breast or ovarian cancer. Instead, the 

transformation/proliferation of hepatocytes are usually associated with several single 

nucleotide polymorphisms (SNPs) [67]. Amongst these polymorphisms, many alter the 

carcinogenic pathways and are related to predisposition to specific risk factors during 

chronic liver diseases. PNPL3 was first identified to be a gene encoding for a lipase that 

mediates triacylglycerol hydrolysis [68]. In this example, there is a strong association 

between the SNP of PNPL3 with fatty liver and alcohol induced chronic liver damage, 

alongside an increased risk of HCC occurrence [69].  

Cirrhosis marks the late stages of chronic liver injury when fibrotic tissues overtakes 

the function of hepatocytes, as these cells are forced to chronically alternate between 

necrosis and regeneration and eventually senesces. Cirrhosis paves the way during which 

preneoplastic lesions eventually gives way to malignant transformation in a well defined 

sequence as shown in Fig. 1.1. Damaged cells possibly hepatocytes undergoes initial insults 

to form a low-grade dysplastic nodules (LGDN) which then switches to a high-grade 

dysplastic nodules (HGDN) [66]. Subsequently, early HCC cells are further transformed to 

become highly proliferative and invasive cells in advanced HCC. 
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1.3 Signaling pathways altered in HCC 

 

It has been predicted that the genome from each HCC tumour cell is uniquely 

complex and harbors between 35-80 somatic gene mutations. An overview of the recent 

whole-exome sequencing studies has identified the following 6 signaling pathways to be 

recurrently altered in HCC [66]. These are namely pathways regulating Telomerase 

maintenance; WNT/β-catenin; p-53 cell cycle regulation, epigenetic modifiers, oxidative 

stress and the PI3K/AKT/mTOR, MAPK kinases and are briefly discussed below: 

 
Telomeres are short DNA repeats that are located in chromosomal ends, which serves a 

protective role during cell division. Telomere shortening occurs with each round of cell 

division until a finite number of cycles have been reached before cell senesces and 

undergoes apoptosis.  Telomerase is an enzymatic complex comprising of the TERT 

enzyme, which is responsible for telomere synthesis. In humans, telomerase are inactive in 

mature hepatocytes, whereby liver cells undergo normal replicative senescence and dies 

eventually. In HCC, frequent and a recurrent somatic mutation in the TERT promoter region 

results in reactivation of Telomerase in up to 59% of patients in a HCC cohort [70]. The 

reactivation of telomerase marks the key event during malignant transformation from a  

 

Fig. 1.1 Cirrhosis as a cancer field during malignant tumour 

transformation  

A sequence of genetic events marks the malignant transformation of 

preneoplastic lesions in ultimately leading up to tumour initiation and 

progression. Figure adapted from [66]. In this paradigm, TERT promoter 

mutation is shown to occur early on during the transformation sequence, which 

progressively gives way to several more cancer gene mutations during 

advanced HCC 
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neoplastic lesion into a HCC [70,71]. Furthermore, TERT promoter mutations were 

proposed to be an early recurrent somatic gene mutation as observed by the progressive 

increase in gene mutations from 6% in LGDN to 19% in HGDN and eventually increasing 

to 61% in early HCC [70].    

The WNT/β-catenin pathway plays an indispensible role during embryonic development. 

This oncogenic pathway is frequently activated in HCC via an activating mutation of 

CTNNB1 (encoding for B-catenin) in 11%-37% of HCC patients and inactivating mutation 

of the inhibitory complexes of AXIN or APC [72, 73].  

 

The p53 cell cycle pathway is altered in at least 50% of the HCC patients, with frequent 

inactivating mutations in the TP53 tumour suppressor gene [74]. Further genetic mutations 

in other component of this cell cycle pathway, like CDKN2A, and RB1 were found to be 

inactivated in HCC tumours characteristic of poor prognosis [75]. 

 

Epigenetic alterations allows for reversible modifications on the genomic level without 

changing the DNA sequence. Recent advances in sequencing technologies have made 

possible the identification of a novel class of non-coding RNAs (ncRNAs), the PIWI-

interacting RNA (piRNA) piR-Hep1, which are upregulated in more than 50% of the HCC 

tumours being screened [80]. Inactivating mutations in HCC have also been seen in ARID1, 

ARID2 that are part of chromatin remodeling complexes [77]. Somatic alterations in the 

methylation writer family, mainly in MLL1, 2, 3, and 4 are similarly frequent in HCC. As 

limited work has been performed to explore the epigenetic aspects during HCC 

development, the functional consequences of a deregulation in these epigenetic modifiers in 

HCC awaits to be further explored [76, 77]. 

 

The Oxidative stress pathway is altered by recurrent activation of NRF2 or inactivating 

mutations of KEAP. Activation of NRF2 in tumour cells was shown to confer a protective 

role against chronic oxidative stress and cell death [78]. 

 

PI3K/AKT/mTOR and the RAS/MAPK growth factor receptor-signaling pathway are 

activated in around 5-10% of HCC cells. An activation of the AKT/mTOR pathway was 

shown to occur mainly via amplifications of the CCND1 locus, activating mutations of the 

PI3KCA and inactivating mutations of TSC1 or TSC2 [79].  Altogether, the activation of 

this growth factor signaling pathways in HCC likely accounts for the enhanced cell 

proliferative abilities of these tumour cells [79]. 
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1.4 Metabolic syndrome and HCC burden 

 
1.4.1 Obesity, inflammation and HCC 

 

As previously mentioned, the risk of developing HCC are affected both by genetics 

and environmental factors including history of HBV or HCV infection, alcohol abuses as 

well as a conundrum of metabolic–related disorders like obesity, diabetes, fatty-liver 

diseases etc. In recent years, there has been a surge in the rates of obesity in both developing 

and developed nations, with one quarter of the population in the U.S deemed to be obese 

(BMI > 30 kg/m
2
) [1]. This obesity epidemic has been paralleled by a rise in prevalence of 

the metabolic syndrome, a collective term referring to disorders ranging from obesity to 

hypertension, hyperlipidaemia, insulin resistance to type-2 diabetes (T2D).  

 

1.4.2 A potential link between metabolic syndrome and HCC 

 

Several epidemiological and clinical studies have confirmed the importance of 

obesity as an independent risk factor for HCC [3, 4]. Notably, the risk of cancer-related 

death was significantly associated with obesity for multiple difference types of cancer. In a 

meta-analysis study, the relative risk for HCC-related death was reported to be 4,5 times 

higher in men with a high BMI ≥ 40kg/m
2
 [2].  

Non-alcoholic fatty liver disease (NAFLD) is characterized by hepatic steatosis in 

the absence of alcohol abuse and other known liver disease and occurs commonly as a 

manifestation of obesity-related metabolic syndromes (6). Up to 90% of obese patients and 

70% of T2D patients have been diagnosed with some sort of fatty liver diseases (5).  In the 

absence of proper diet or weight management, 12-40% of the patients with NAFLD 

progresses to non-alcoholic steatohepatitis (NASH) and 15-33% of those with NASH 

develop cirrhosis, which paves the transformation from preneoplastic lesion towards HCC 

development [7, 8, 62] as outline in Fig. 1.2. 

Obesity, as a state associated with chronic low-grade systemic inflammation, has 

been postulated to be a main contributor during this progression from NAFLD – NASH- 

fibrosis- cirrhosis and finally to HCC [9]. In obese individuals, adipocytes undergo 

hypertrophy due to the accumulation of excess lipids. These hypertrophic adipocytes secrete 

free fatty acids (FFA) into the surroundings, which can activate immune cells including liver 

macrophages and kupffer cells. Altogether, these adipocytes and immune cells secrete pro 

inflammatory cytokines like TNF-α, IL-6, IL-1β, IL-8, IL-10, IL-17, IL-18, as well as 

adipokines-like leptin and adiponectin [10,11,12,13,14]. In the presence of excessive 

proinflammatory adipokines and cytokines, kupffer cells and hepatocytes are further 

stimulated to produce more cytokines, resulting in an inflammatory cascade in the liver. 

Several of these cytokine-signalling pathways have been separately demonstrated to be 

pivotal during this state of chronic liver injury, marking the progression from NAFLD to 

NASH, liver cirrhosis and finally towards liver carcinogenesis [15]. Furthermore, obesity- 



 

1   INTRODUCTION 

    5 
 

 

associated inflammation has also been identified to directly contribute to the development of 

metabolic disorders like atherosclerosis and insulin resistances during T2D [16, 17]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.4.3 Genetic instability and hepatocyte apoptosis correlate with a risk for HCC  

Independent of all the underlying etiology leading up to chronic liver diseases 

(CLD), liver tissues from CLD patients all displayed varying degrees of chronic hepatocyte 

damage [18]. Mechanistically, it has been reported by the authors in [19] that the removal of 

damaged hepatocytes during the maintenance of liver homeostasis is regulated by factors 

involved in programmed cell death, namely Caspase 8 and receptor interacting kinase 1 

(RIPK1).  More recently in 2017, another group established that the concomitant hepatocyte 

apoptosis and proliferation seen during CLD acts as a decisive determinant of subsequent 

HCC development in mouse and human CLDs [20]. In these hyper-proliferative and hyper-

apoptotic livers from CLD patients and mouse models, the carcinogenic effect from

Fig. 1.2 The pathological progression from benign hepatic steatosis to 

NASH/cirrhosis and eventually to HCC formation 

Non-alcoholic fatty liver disease (NAFLD) is a liver manifestation of the 

metabolic syndrome and is characterized by simple steatosis without obvious 

signs of necrosis and inflammatory activities.  The percentages above provide an 

estimate of affected subjects at a current stage, which will progress onto the next 

clinical stage. Non-alcoholic steatohepatitis (NASH) is an aggressive form of 

hepatic steatosis marked by necroinflammatory activities. The sequential 

progression from NASH/cirrhosis to malignant transformation during HCC is 

believed to involve chronic cycles of inflammation-necrosis-regeneration along 

with mutation of tumour related genes. Figure adapted from [62] 

 
 

NAFLD/ 



 

2   INTRODUCTION 

    6 
 

 

replication errors that usually occurs stochastically is drastically increased [20]. The authors 

thereafter postulate that the levels of hepatocyte apoptosis and DNA damage serves as a 

predictive risk factor for subsequent HCC development in CLD patients. This finding further 

highlights and provides a mechanistic link for the correlation between CLD patients to 

develop HCC vs the severity and duration of their liver damage conditions as seen in most 

HCC epidemiological data [21,22,23].  

 

 

2 TRIP13- An overview of key cellular functions   

 

2.1 TRIP13 as a key regulator of chromosomal processes during cell 

division 

 

Cell mitosis and meiosis are key events during development, where a series of tightly 

regulated chromosomal events occur to ensure a faithful transmission of genetic materials. 

AAA
+
-ATPase (ATPase Associated with diverse cellular Activities) are multi-subunit ATP 

hydrolases that mediate a conformational change in its targets, during which changes in the 

complex assembly in turn affect cellular signalling or activities [24]. TRIP13 is a member of 

this ATPase family and has been described to regulate key chromosomal events during cell 

meiosis and mitosis. Different studies have shown TRIP13 to be involved in a myriad of 

processes during G2/prophase of meiosis. These findings include its role as a checkpoint 

activator during synapsis defects and double strand break (DSB), which are intrinsically 

linked to its role in establishing homologous recombination and DSB repair strictly between 

homologous pairs [25, 26, 27].  

 

TRIP13 has been recently described to be a novel mitotic checkpoint regulator 

during the transition from metaphase-to-anaphase and in promoting mitotic progression [28, 

29]. The mitotic checkpoint is a fail-safe mechanism to ensure proper chromosomal 

segregation and genetic transmission to daughter cells during cell division. The spindle 

assembly checkpoint (SAC) is activated whilst its downstream mitotic checkpoint complex 

(MCC) is assembled when a defective kinetochore-microtubule attachment is detected [30]. 

The MCC is composed between BubR1, Bub3 and closed Mad2 (C-Mad2) which directly 

binds to Cdc20 (an APC activator) to inhibit the activity of the anaphase promoting 

complex/cyclosome (APC/C) [30]. The SAC is silenced once all the sister chromatids have 

been properly attached and bi-oriented at the metaphase plate, as shown in Fig. 1.3.  
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2.1.1 TRIP13 and p31comet during mitotic checkpoint silencing 

 

P31
comet

 is a mitotic checkpoint silencing protein that can initiate the disassembly of 

the MCC by directly binding to C-Mad2 and displacing BubR1/Bub3 from this complex [31, 

32]. A picture emerges such that P31
comet

 recruits TRIP13 to the kinetochores during which 

these two factors coordinate the disassembling and silencing of the mitotic checkpoint 

signals [28, 29]. In order for Cdc20 to be released during MCC disassembly, C-Mad2 needs 

to be actively remodelled into the inactive open conformation of O-Mad2. The ATPase 

activity of TRIP13 was found to be essential in driving this ATP-dependent conformational 

transition from C-Mad2 to O-Mad2 [33]. After Cdc20 is released following a disassembly of 

MCC and a halt in the checkpoint signalling, the activated APC/C then drives the transition 

from metaphase to anaphase [28, 29] as seen in Fig. 1.3.  Further highlighting the essential 

role of TRIP13 during checkpoint exit, authors from [34] found that besides the inability to 

inactivate MAD2, TRIP13-depleted cells were similarly unable to activate the SAC. In other 

words, the activation and inactivation of the SAC were both dependent on TRIP13-mediated 

activities [34]. 
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Fig. 1.3    Schematic organization of the human TRIP13 and the proposed 

model for its role in mitotic checkpoint silencing 

(A) TRIP13 contains one AAA
+
-ATPase domain that is located between 171-

323 residues of which is preceded by a non-catalytic NTD. Like many other 

AAA
+
-ATPase proteins, it is suggested that TRIP13 likely assembles itself into 

a homo-hexameric oligomer. (B) Spindle assembly checkpoint (SAC) and 

MCC are activated by the presence of unattached kinetochores. The MCC is 

composed of BubR1 (purple), Bub3 (not shown), CDC20 and closed Mad-2 (C-

Mad2) which directly binds and inhibits the anaphase promoting 

complex/cyclosome (APC/C), inhibiting anaphase onset. (C) Model depicts the 

role of TRIP13 in disassembling the MCC and promoting mitotic progression. 

When kinetochores are properly attached, the silencing of the SAC is initiated. 

p31Comet binds to the existing MCC and displaces BubR1, whilst delivering 

CDC20:C-Mad2 to TRIP13 for further conformational conversion (to O-Mad2) 

and disassembly. The release of CDC20 activates the APC/C, which then 

drives the onset of anaphase. (Figures adapted from [63, 81]) 
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2.2 Upregulated expression of TRIP13 in several human cancers 

 

2.2.1 Genomic instability and aneuploidy in cancer 

Chromosomal instability (CIN) and aneuploidy are persistent hallmarks of human 

solid tumours [38]. Given the essential roles of TRIP13 in regulating chromosomal events 

during meiosis and mitosis, one of the predicted functions of TRIP13 was to prevent genome 

instability. This was reflected by many studies that have shown either an amplification of the 

TRIP13 gene or an overexpression of TRIP13 in several cancers [35, 36, 37, 43, 44]. The 

CIN signature identifies a set of top-ranked genes that are common upregulated in tumour 

cells displaying functional aneuploidy. Most of the genes identified to be associated with 

CIN, for instances TPX2, PRC1, FOXM1 and TRIP13 are critical regulators during DNA 

replication, SAC signalling, chromosomal segregation and cytokinesis [37]. Net 

overexpression of this CIN signature was a predictor for poor clinical outcome in 6 different 

cancer types, namely breast cancer, lung cancer, medulloblastoma, glioma, mesotheliomia 

and lymphoma. Strikingly, the authors also reported the ability to stratify tumour grades 

from multiple tumour types using the CIN signature, with more aggressive cancer 

phenotypes typically displaying higher CIN signature expression [37]. 

 

Reflecting the findings that a loss of genome stability is an essential step during 

malignant transformation, TRIP13 was listed amongst multiple breast cancer signatures due 

to its overexpression in transcriptome profiling across tumour samples from patients 

associated with poor clinical outcomes [35, 36]. Furthermore, knocking down of TRIP13 

inhibited cell proliferation in breast cancer cell lines, highlighting roles of TRIP13 during 

mitotic progression and cell growth [28]. 

 

2.2.2 Chromosomal instability (CIN) in liver cancer 

 

The relevance of CIN and the importance of functional aneuploidy in HCC was left 

unknown as this cancer type was not included as part of the previous study in defining the 

CIN signature of cancer patients [37]. Evidence suggesting that CIN similarly plays a role in 

liver cancer was derived from these early observations. Firstly, the presence of CIN and 

aneuploidy were correlated with the progression of HCC. Secondly, induction of aneuploidy 

in HCC cells were associated with elevated levels of telomere shortenings and centromere 

abnormalities, all of which were indicative of CIN phenotypes [40,41].  

 

Hippo/Yap signalling pathway in inducing CIN in liver cancer 

-Function implications of TRIP13 as part of the CIN signature?  

Recently in 2017, the authors [39] demonstrated that the CIN signatures as identified 

previously [37] are similarly detectable in HCC tumour tissues and stratifies a subgroup of 

HCC patients with poor clinical outcome. The Hippo pathway and its downstream effector  
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yes-associated protein (YAP) are key regulators of tissue and organ size homeostasis where 

its deregulation was implicated in hepatocarcinogenesis [42]. Overexpression of YAP was 

sufficient to induce an upregulation of CIN signature genes along with chromosomal 

aberrations in hepatocytes of transgenic mice (YAP
S127A

) that were expressing a 

constitutively active form of YAP [39].  In human HCC tissues, high nuclear expression of 

YAP correlated with CIN signature expression and aneuploidy. It was then reported that 

YAP cooperates with FOXM1 in contributing to the expression of CIN gene signatures and 

chromosomal aberrations during hepatocarcinogenesis [39].  Interestingly, TRIP13 was 

identified as one of the top 25 ranked CIN signature genes (CIN25) along with FOXM1 and 

MAD2L1, which were induced by an overexpression of YAP in liver tumour cells from this 

study. Patients displaying a high CIN25 gene expression were correlated with poor survival 

and early cancer recurrence. Given the role of YAP in regulating CIN gene expression in 

HCC, it is plausible that TRIP13 along with several downstream target genes from 

YAP/FOXM1 contributes towards chromosomal instability in HCC patients displaying 

CIN25 signatures [39].   

 

2.2.3 Role of TRIP13 in promoting DNA repair and chemoresistance 

 

Squamous cell carcinoma of the head and neck (SCCHN) is an aggressive cancer 

with high mortality and recurrence rate due to rapid acquiring of treatment resistance by 

these carcinoma cells [45]. An oncogenic role of TRIP13 was first reported in SCCHN. The 

upregulated expression of TRIP13 was shown to promote aggressive tumour growth and 

treatment resistance, supposedly mediated via the roles of TRIP13 in DNA damage repair 

[45]. TRIP13 copy number and gene expression was found to be upregulated in SCCHN 

patients when compared against non-tumourous mucuosa tissues. The oncogenicity of 

TRIP13 was established via these key findings: Firstly, overexpressing TRIP13 transformed 

non-malignant fibroblast cells during a clonogenic assay. Secondly, overexpressing TRIP13 

in a SCC cell line expressing low endogenous levels of TRIP13 triggered an increase in cell 

proliferation, migration and invasiveness as compared to control cells. This was further 

validated in vivo where these TRIP13-overexpressing tumours grew much quicker than 

control tumours after being implanted into mice. Mice with TRIP13 overexpressing tumours 

had poorer survival rates than mice with control tumours presumably due to the larger 

tumour burden in these animals. This tumourigenic effect was reversed when TRIP13 was 

depleted, as it was demonstrated by doxycycline-induced shTRIP13 KD that significantly 

arrested tumour growth as compared to doxycycline treated control groups in xenograft 

models [45].  

Adding on to the oncogenic role of TRIP13 in SCCHN, the authors further reported a 

mechanistic involvement of TRIP13 in promoting treatment resistance via enhanced repair 

of DNA damage. Using a mass spectrometry screening to identify TRIP13-interacting 

partners, several non-homologous end joining (NHEJ)/ DNA repair group proteins like 

KU70, KU80 and DNA PKcs were identified, suggesting a role of TRIP13 in NHEJ. In 

SCCHN, efficient repair of radiation and chemotherapy-induced double strand breaks ( 
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DSBs) was identified as one of the leading causes of chemoresistance and early tumour 

recurrence. This study provided an important finding that the upregulated expression of 

TRIP13 confers treatment resistance in SCCHN, emphasizing the importance of targeting 

NHEJ to overcome treatment failure [45]. 

 

2.3 A novel role of TRIP13 in liver regeneration and HCC 

tumourigenesis 

 

 

2.3.1 TRIP13 is upregulated in liver cancer 
 

The mortality rates from liver cancer is the second highest worldwide, presumably 

due to the lack of early presenting signs and symptoms. Patients often present with advanced 

stage of HCC when first being diagnosed, which further limits their treatment options. 

Depending on the stage of liver cancer, some common treatment options include surgical 

resection of the tumour (partial hepatectomy), liver transplantation, radiotherapy, 

conventional chemotherapy, and more recent targeted and immunotherapy [66]. Vascular 

endothelial growth factor (VEGF), platelet derived growth factor (PDGF) and fibroblast 

growth factor (FGF-2) are established proangiogenic factors that play key roles during HCC 

development. Sorafenib was the first multi kinase inhibitor drug targeting the 

VEGF/VEGFR to be approved that has demonstrated survival benefits in advanced HCC 

patients [82, 83]. Despite numerous targeted therapies that made it through to clinical trials, 

few have been demonstrated to be effective in advanced-stage HCC [66]. Due to the unmet 

medical needs, novel pathways and cellular mechanisms during hepatocarcinogenesis need 

to be further explored in order to identify new therapeutic targets or prognostic biomarkers.   

In an effort to identify novel regulators in HCC, a former colleague in the lab, Dr. 

Bettina Meissburger, reviewed publicly available expression data of genes deregulated in 

HCC (E-GEOD-25097). From these expression data, TRIP13 was found to be strongly 

upregulated in tumour tissues compared to non-tumour tissues (Fig. 1.4A) in the liver.  

A HCC mouse model was set up by injecting Diethylnitrosamine (DEN) to young 

mice (2 weeks) and to observe for HCC formation at later age of 30 weeks. Trip13 

expression was found to be significantly upregulated in liver tumours of DEN-injected mice 

compared to healthy livers from the control group (Fig. 1.4B). Tissue micro array (TMA) 

from a cohort of HCC patients revealed similarly an increase in TRIP13 staining exclusively 

in the hepatocytes (data not shown).  
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2.3.2 TRIP13 is induced in partial hepatectomy and fatty liver diseases 

 

The novel role of TRIP13 in hepatocyte regeneration and tumourigenesis was 

unveiled through various complementary in vivo approaches. Interestingly, the expression of 

TRIP13 was similarly upregulated in various mouse models of fatty liver and steatohepatitis, 

from ob/ob, db/db mice to high fat diet and methionine-choline deficient diet-induced 

obesity in animals (Fig. 1.5A). Reflecting the role of TRIP13 during mitotic progression, an 

induction of TRIP13 was noted at 48 hrs post operation after performing partial hepatectomy 

(PHX), when cell proliferation was at its peak during liver regeneration (Fig. 1.5B). 

Subsequently, this PHX procedure was performed again to investigate the regenerative 

ability of hepatocytes when depleted of Trip13. To knockdown Trip13 specifically in the 

liver, mice were injected with Adeno-associated virus (AAV) containing miRNA against a 

non-targeted control (NTC) sequence or Trip13, one-week prior to PHX (Fig. 1.6).  

Fig. 1.4 Expression of Trip13 in human HCC and mouse model of 

DEN-induced HCC    

(A) TRIP13 expression in a HCC gene expression profile (accession number: 

E-GEOD-25097) where TRIP13 is significantly upregulated in tumour tissues 

compared to non-tumour tissues and healthy liver tissues.                                 

(B) Diethlynitrosamine (DEN)- induced HCC mouse model was established by 

injecting DEN to young mice at 2 weeks of age and observing for tumour 

formation by 30 weeks of age. Trip13 expression was significantly upregulated 

in liver tumours from DEN-injected mice vs healthy liver from control-injected 

mice.  

 

A B
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Expectedly, the number of proliferating cells in the control liver was strongly 

induced during liver regeneration after the operation. Mice depleted of Trip13 specifically in 

the liver showed hepatocytes with a decreased ability to regenerate, as seen by a decrease in 

the expression of a mitotic cell marker, proliferating cell nuclear antigen (PCNA), in liver 

sections (Fig. 1.6).  

 

 

 

 

 

 

 

 

 

Fig. 1.5    Trip13 is upregulated in mouse models of fatty liver diseases and 

during liver regeneration 

(A) Trip13 expression is upregulated in murine genetic models of insulin 

resistance as well as diet-induced fatty liver diseases. (B) Partial hepatectomy 

(PHX) was performed in the liver of mice and liver tissues were harvested 

24hrs and 48hrs post PHX. Gene expression of Trip13 was shown to be induced 

48 hours post PHX on both mRNA and protein levels. 
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Fig. 1.6 Trip13 is essential during hepatocyte regeneration after partial 

hepatectomy (PHX) operation in mice 

1 week prior to the PHX procedure, mice were injected with Adeno-associated 

virus (AAV) containing miRNA targeting either a control or a Trip13 sequence. 

Sham operated mice served as a negative control for the procedure itself. (A) 48hrs 

after the PHX procedure, liver tissues were harvested and processed for histology 

and microtome sectioning. Liver sections were immunostained with PCNA 

(proliferating cell nuclear antigen) to detect for cell proliferation. PCNA staining 

was much weaker in Trip13-depleted liver sections as compared to liver section 

from control AAV injected mice after PHX. (B) The number of proliferating cells 

(PCNA positive nuclear) was manually counted in each field of view (FOV) and 

the average from 5 FOV is shown.   

 

A

B Sham-control 
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To examine the oncogenic potential of TRIP13 during tumourigenesis, HCC cells 

were infected with lentiviral particles harbouring either the shRNA control or the shRNA 

TRIP13 construct. These HCC cells were then implanted subcutaneously into mice and 

monitored for tumour growth in vivo. In line with the growth-promoting effects of TRIP13 

as seen above in Fig. 1.6, tumours developed from TRIP13-depleted HCC cells were much 

smaller as compared to the control tumours in Fig. 1.7. Furthermore, knockdown of TRIP13 

significantly impaired in vitro cell growth across all HCC cell lines being investigated        

as shown in the later results section (Fig. 3.2).  
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B

Fig. 1.7 Trip13 depletion inhibits tumour growth in a tumour 

xenograft model 

HLF and Hepa1-6 cells were infected with lentiviruses containing either control 

shRNA or Trip13-targeting shRNAs. These HCC cells were implanted into the 

left flank of mice to monitor tumour growth in vivo. The experiments were 

terminated and tumours were harvested when palpable tumour reaches more than 

a size of 15 mm in any dimensions. (A) Picture shows tumours being harvested 

from BalbC mice implanted with Hepa1-6 cells from one representative 

xenograft. Trip13-depleted Hepa1-6 cells resulted in much smaller tumours 

compared to control Hepa1-6 cells. (B) Weight of tumours derived from animals 

being injected with Trip13-depleted Hepa1-6 cells were significantly lower 

compared to control Hepa1-6 cells.  
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Cell invasiveness of HCC cells through transwell chambers were severely impeded 

post TRIP13 depletion, with HLF cells showing the most dynamic response in this assay 

(Fig. 1.8B), suggesting an additional role of TRIP13 during HCC cell motility. Cell cycle 

analysis subsequently revealed that depleting TRIP13 resulted in more cells in the G1 phase 

for Hepa1-6 and Huh7 whilst more cells accumulated in G2 phase for HLF cells as compared 

against control cells (Fig. 1.8A) Altogether, the findings above strongly supported a growth 

regulatory role of TRIP13, both during hepatocyte regeneration and tumourigenesis, where 

the function of this frequently overexpressed protein has yet to be characterized in liver 

cancer. 
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Fig. 1.8 Trip13 depletion in HCC cells affects cell cycle and cell 

invasiveness through transwell assays 

Cell cycle analysis using propidium iodide (PI) staining was performed to compare 

between control and Trip13 depleted HCC cells. (A) Hepa1-6 and Huh7 cells were 

harvested and fixed in ethanol before being further processed for cell cycle 

analysis using FACscanto. A shift in cell cycle phases is detected in Trip13-

depleted cells, with more cells being accumulated in the G1 phase vs the control 

cells. (B) Cell migration of HCC cells post Trip13 depletion was examined using 

transwell inserts with 8 μm pore size. Cells were seeded into transwells containing 

serum-free media, whilst the lower chambers were filled with media+10% serum. 

16 hours post incubation; cells that migrated through the transwell membrane were 

fixed, stained with 0.1% crystal violet and then imaged. The area of stained cells 

was analysed with image J.  
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2.3.3 Involvement of TRIP13 in the mTOR-signalling axis? 

 

Preliminary unpublished data from the lab suggested an oncogenic role of TRIP13 in 

the mTOR-signalling axis. A decrease in phosphorylation and activation of key mTOR 

downstream regulators like p-S6K, p-eIF4B and p-4E-BP1 were seen in TRIP13-depleted 

HCC cells in Fig. 1.9. The EGF signalling axis which acts upstream of the mTOR pathway 

was similarly impaired, a decrease in receptor activation of EGF along with a decrease in 

expression levels of this receptor is detected in TRIP13-depleted HCC cells (data not 

shown). The initial hypothesis is such that TRIP13 could be involved in an oncogenic EGF-

mTOR signalling axis during HCC development.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.3.4 Identifying novel interaction partners of TRIP13 in HCC 

 

Given the roles of TRIP13 in oncogenic signalling pathways, a mass spectrometry 

(MS) was performed with aims of identifying TRIP13-interacting partners, which might 

account for these TRIP13-mediated effects. To this end, endogenous TRIP13 was pulled 

down from HLF and Huh7 cells and interaction partners were analysed by MS. Out of the 

proteins that were enriched to be interacting with TRIP13, 39 proteins were identified to be 

common interacting partners of TRIP13 from both cell lines (Fig. 1.10). Based on KEGG 

analysis, some of the main pathways identified were involved either in cell cycle regulation, 

transcriptional co-regulation and DNA damage repair (data not shown). Out of this pool of 

enriched targets from the MS analysis, candidates with a putative role as transcriptional  

Fig. 1.9    TRIP13 depletion downregulates 

key regulators in the mTOR-signalling axis 

Regulators of the mTOR-signalling pathway 

were immunoblotted in TRIP13-depleted HCC 

cells. HLF cells depleted of TRIP13 showed 

decreased activation/phosphorylation of key 

factors in the mTOR pathway like S6K, eIF4B, 

4E-BP1 and Cyclin D1. β-actin was used as a 

loading control in this immunoblot. 
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regulators/co-regulators were picked for further analysis. 2 of this selected targets, SIN3A 

and SAP130 have been described to form part of the histone deacetylase (HDAC) complex 

during transcriptional repression [48, 50]. Efforts aimed at characterizing the interactions 

between TRIP13 and its interaction partners along with the functional relevance of this 

interaction during tumourigenesis forms the bulk of the work in this thesis. 
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Criteria: > 70% spectrum enrichment in 
TRIP13 sample versus GFP 

  

133 136 

39 

Fig. 1.10 Mass spectrometry-based identification of TRIP13 

interaction partners 

(A) Representative Western blot of TRIP13-IP in Huh7 and HLF cells. Cells 

were harvested from a 15 cm dish and cell lysates were subjected to a typical 

agarose beads protocol for protein pull down. Precleared cell lysates were 

incubated with equal amounts of either a control GFP antibody or TRIP13 

antibody on a rotating wheel at 4°C overnight. Endogenous TRIP13 proteins 

eluted from the pulldown were verified via western blotting. For analysis of 

interaction partners by mass spectrometry, eluates were run on a gradient gel, 

Coomassie stained and submitted for protein analysis. (B) Venn diagram of 

proteins identified by mass spectrometry. 39 proteins were identified that 

interacts with TRIP13 in both HLF and Huh7 HCC cell lines.    
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2.4 SIN3A— role as a transcriptional regulator in the context of cancer? 

 

2.4.1 Structure and function of SIN3A 

Sin3 (SWI-independent-3) family was first identified in a genetic screen to study 

mating-type switching in yeast cells [47]. This protein family is highly conserved from 

human to yeast, with its roles described as both an enhancer and repressor of gene 

expression [46]. In mammals, the Sin3 family consist of two isoform members, Sin3A and 

Sin3B that have both overlapping and distinct functions [48]. Sin3 proteins have 4 paired 

amphipathic α helices (PAH) that share structural similarities to the helix-loop-helix 

dimerization domains of the Myc family of transcription factors. The other two conserved 

domains include the histone interacting domain (HID) and the highly conserved region 

(HCR) in the c-terminal [48, 49] as illustrated in Fig. 1.11. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.11   Schematic representation of structural domains in Sin3 protein  

Sin3 contains 6 highly conserved domains including 4 PAH domains, along 

with one HID and one HCR domain at the C-terminal. Cellular functions of 

Sin3 as both a positive and negative regulator of gene expression is shown 

above. The Sin3/HDAC complex is a class one HDAC-containing complex 

consisting of several chromatin-associated factors as shown above in green.  

The PAH2 domain interacts with a subset of transcription factors containing a 

conserved sequence called the Sin-interacting domain (SID). In a targeted 

therapy against Triple-negative breast cancer (TNBC) discussed in section 

2.4.3, SID decoys were used to block the interaction between PAH2 domain 

of Sin3A and its interaction partners. Figure adapted from [49].     
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Sin3 has been described as a master transcriptional regulator due to its ability to act 

as a molecular scaffold to recruit several chromatin-associated factors like HDAC1/2, 

RBBP4/7, SDS3, SAP30/130/180, RBP1 to form what is known as the Sin3/HDAC 

complex. This complex transcriptionally regulates several genes and diverse cellular 

functions due to an ability to bind to target promoters with or without target specific 

transcription factors [48, 50].  

The Sin3/HDAC complex is commonly referred to as the “co-repressor complex” 

due the recruitment of HDAC activities being linked to promoter hypoacetylation and gene 

repression [48, 51]. Recent evidence points to a versatile role of Sin3 in both gene activation 

and repression. This is best illustrated in the regulation of the pluripotency factor, Nanog, in 

embryonic stem cells (ESC). The recruitment of Sin3/HDAC by Sox-2 activates the 

expression of Nanog in proliferating ESC whilst p53-mediated recruitment of the same 

complex silences Nanog during differentiation  [51, 52]. The mechanism of gene activation 

mediated by Sin3 is not well characterized and this dual mode of gene regulation seems 

dependent on both the cellular and molecular conditions and upon interactions with different 

chromatin-associated regulators [48, 51].  

 

2.4.2 SIN3A as a tumour suppressor in cancer 

  

SIN3A was identified as one of the interaction partners for TRIP13 during our MS 

screening using whole cell lysates from HCC cells (Fig. 1.10). Given that SIN3A acts as a 

master regulator of several essential genes in critical cellular functions, it is hardly surprising 

that aberrant gene regulations mediated by this protein complex could have far-reaching 

consequences during cellular malignancies [49, 54]. Recruitment of Sin3A/3B by the Mad-

Max heterodimer was shown to be essential in antagonizing transcriptional activations 

driven by the proto-oncogene Myc during cell proliferation and transformation [53-55].  

Other than Mad-Max dependent negative regulation of c-Myc, Sin3/HDAC complex was 

shown recently to direct antagonize c-Myc activity via deacetylation and destabilization of 

the Myc protein [54].  A tumour suppressor role of Sin3A was demonstrated using the 

Drosophila (multiple endocrine neoplasia type 2) MEN2 model [56]. The drosophila 

homologue of human Sin3A, dsin3, was identified to be an important regulator of EMT, 

where the RNAi-mediated depletion of dsin3 led to strong enhancement of cell migration 

and mesenchyme phenotypes [56]. 

 

2.4.3 SIN3A as a tumour oncogene in promoting tumourigenesis in Triple negative 

Breast cancer (TNBC) 

 

Triple negative breast cancer (TNBC) is an aggressive and poorly differentiated 

subtype of breast cancer that is diagnosed one out of five breast cancer patients. Currently, 

no forms of hormonal/targeted therapies are available due to the absence of the estrogen 

(ER), progesterone (PR) and EGFR receptors in TBNC tumours [57, 58]. 
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SIN3A was demonstrated to mediate oncogenic functions in TNBC via protein-

interactions between the PAH domain of SIN3A and specific interaction partners [59]. The 

PAH2 domain of SIN3A is well characterized and is known to interact specifically with a 

subset of transcription factors that contain a conserved sequence called the SIN3-interaction 

domain (SID), see Fig. 1.11. In an attempt to understand the consequences of targeting the 

PAH2 domain of SIN3A in TNBC, the authors from this study [61] expressed a SID decoy 

to specifically disrupt PAH2 domains of SIN3A from binding to SID-containing partners. 

The SID decoy led to epigenetic reprogramming and re-expression of TNBC-associated 

silenced genes of ER and retinoic acid receptor along with the downregulation of markers 

for cancer stem cells and epithelial-mesenchymal transition (EMT) [59-61]. The re-

expression of these hormone receptors made this previously “undruggable” cancer subtype 

“druggable” again with hormone-targeted therapies [61]. This study highlighted the 

discovery of an interaction between SIN3A and a SID-containing adaptor protein, PF1, [59] 

as essential in the oncogenic maintenance of EMT and CSC phenotype in TNBC. 

The decrease in CSC functions of TNBC by SID treatment reflects previous reports 

of the positive role of Sin3A in promoting pluripotency in proliferating ESC [52]. This 

finding stands in contrast with the tumour repressor role of Sin3A/HDAC complexes as a c-

Myc-antagonist. At this point, the conflicting roles of SIN3A as either a tumour suppressor 

or an oncogene remains controversial. The dual mode of transcriptional regulation mediated 

by SIN3A is likely to be context dependent and subjected to the dynamics of its spatial-

temporal associations with different factors, as reflected by numerous examples discussed 

above [49-51]. 
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Aims of the study 
  

In lieu of the unmet medical needs for improving targeted-therapies and diagnostic 

biomarkers in liver cancer, it was of paramount interest in characterizing novel targets and 

mechanisms involved that were important during hepatocarcinogenesis.  

Previous unpublished work from the lab has shown an oncogenic role of TRIP13 in human 

and mouse HCC through various experimental mice models of HCC and expression data sets 

from HCC patients.  

 

The aim of the present study was to further characterize the mechanisms through which 

TRIP13 exerts its oncogenic effects during liver cancer growth. We hypothesized that 

TRIP13 could be regulating or be part of a central regulator pathway that determines cellular 

outcomes in terms of cell survival, growth or death.  

 

To do so, we adopted various complementary in vitro approaches to examine for the 

oncogenic functions of TRIP13 in several HCC cell lines including HLF, Huh7, HepG2 and 

Hepa1-6. Cell viability, proliferation and apoptosis upon siRNA-mediated KD of TRIP13 

were determined in here. Additionally, we aim to examine the expression levels of key 

oncogenic signalling factors to identify upstream and downstream pathways through which 

TRIP13 is involved in. The oncogenic relevance between TRIP13 and its interaction partner 

of SIN3A, which was identified from a mass-spectrometry analysis, were characterized. In 

order to determine whether this interaction was functionally relevant for cell growth, we 

examined for effects on HCC cell lines upon either single siRNA KD of TRIP13, SIN3A or 

both. Using lentiviral-mediated shRNA KD of SIN3A, we plan to establish a stable HLF cell 

line (shTRIP13+shSIN3A) for use in subcutaneous tumour implantation studies in order to 

accurately recapitulate this relationship in vivo.  

 

From all the findings above, we aim to dissect the mechanistic framework and provide 

functional annotations on the oncogenic roles of TRIP13 during hepatocarcinogenesis. This 

would serve as an interesting basis for developing novel biomarkers during diagnosis or  

targeted-therapies against HCC.   
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3 Results 
 

3.1 TRIP13 regulates cell growth and proliferation in HCC cells  

We have seen a regulation of TRIP13 during hepatocytes regeneration as well as its central 

role during HCC in human and mice (Fig.1.5 to Fig.1.8). Given these striking in vivo data, we 

were intrigued to further investigate the importance of TRIP13 as an oncogenic factor in 

HCC cells. 

To this end, we first performed siRNA transfections using human HCC cell lines of HLF, 

Huh7 and HepG2 as well as mouse cell line of Hepa1-6. These cell lines were transfected 

either with a non-targeting control (siNTC) or a TRIP13- (human or mouse) specific siRNA 

(Fig. 3.1) to study cell proliferation (Fig. 3.2). Quantitative analysis of mRNA and protein 

levels 3 days post transfection showed that a knockdown of more than 75% of endogenous 

TRIP13 was achieved in all cell lines being utilized (Fig. 3.1).  
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As shown previously in vivo, a depletion of TRIP13 strongly reduced tumour growth in the 

xenograft models. Similarly in here, the knockdown of TRIP13 resulted in a significant arrest 

in cell growth 48hrs post transfection. The severities of siTRIP13-induced proliferation arrest 

in these various cell lines are listed in the order from HLF, Huh7, and HepG2 to Hepa1-6, 

with HLF cells being the most severely impaired (Fig. 3.2A).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.1 Validation of siRNA-mediated knockdown in human and 

mouse HCC cell lines  

The different cell lines were seeded in 12-well plates and siRNA transfections 

were performed the following day in accordance to protocols in section 4. 

Samples were harvested for RNA extraction and protein lysis at 72hrs post 

transfection. (A) mRNA expression levels of TRIP13 are relative to TBP and 

values shown are normalised against the siNTC group. (B) Western blot of 

TRIP13 from HLF and Huh7 cells transfected with siNTC or siTRIP13 siRNAs. 

VCP: Valosin containing protein (loading control).  Data are plotted as mean ± 

SEM. **** p< 0,0001; ***p<0,0002; * p<0,05; vs siNTC determined by two-

tailed welch’s t-test 
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As an alternative readout to assess cell proliferation, we have also utilised the BrdU 

incorporation kit, which determines BrdU incorporation into DNA as a measure for cell 

proliferation (Fig. 3.2B). Cell proliferations were similarly decreased across all HCC cell 

lines examined. Our in vitro data therefore strongly demonstrates that TRIP13 indeed plays a 

central role during cell proliferation.   

Fig.  3.2 TRIP13 regulates cell proliferation in various HCC cells  

24hrs post siRNA transfection, cells are trypsinzed and reseeded into 96-well 

plates with at least 3 repeats per siRNA conditions. (A) Growth rate of cells in 

96-well plates D1 to D4 post transfection were measured by using CCK8 (cell 

counting kit 8). Absorbance at 450nm directly correlates to the number of viable 

cells in the well. (B) Cell proliferation was measured at D3 post transfection 

using a BrdU incorporation kit following protocols in section 1.  Absorbance at 

540nm correlates directly with actively proliferating cells. Values are shown 

normalized to that of the siNTC conditions    

Data are plotted as mean ± SEM. (A) **** p≤ 0,0001; **p≤ 0,01; vs siNTC 

determined by 2-way Anova. (B) * p≤ 0,05 ; ***p≤ 0,001 vs siNTC determined 

by two-tailed welch’s t-test versus siNTC 
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3.2 TRIP13 as a regulator of EGFR  
 

 

3.2.1 EGFR expression is dependent on cellular levels of TRIP13  

Based on our in vivo and in vitro data that supported a pro-tumourigenic role of TRIP13 in 

HCC development, we aimed to further identify and characterize the mechanistic 

involvement of TRIP13 in this context. From TRIP13 depleted HCC cells, we observed a 

decreased expression of EGFR, phosphorylation of key factors in the mTOR signalling 

pathway like E2F, IF4, along with downstream targets like cyclin D (Fig. 1.9).  

Indeed, the EGFR signalling system has been implicated as a key player in the reparative and 

regenerative response of the liver, ranging from early inflammation and hepatocyte 

proliferation to fibrogenesis and neoplastic transformation [115]. EGFR expression and gene 

copy number has been found to be hugely upregulated in more than 50% of the HCC patients 

and tumour samples [116]. This has been accompanied alongside by an elevated expression 

of the EGFR ligands.  

We first hypothesize that the EGFR/mTOR signalling pathway could be involved in here, in 

which a reduced signalling through this pathway could mediate the marked decrease in 

proliferation in TRIP13-depleted HCC cells. In order to investigate this mechanistic link, we 

first determined mRNA and protein expression of EGFR upon TRIP13 knockdown in 

multiple HCC cells (Fig. 3.3). We observed a significant decrease in both mRNA (Fig. 3.4A) 

and protein expression of EGFR (Fig. 3.3) across all HCC cell lines investigated (only data 

from HLF and Huh7 cells are shown in here).   

 

 

 

 

Fig. 3.3 TRIP13 regulates EGFR protein expression in HCC cells  

72hrs post siRNA transfection, cell lysates were harvested for western blot. 

Three repeats per siRNA conditions per cell line were immuno-stained for 

TRIP13, EGFR and VCP (loading control) as shown. 
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We wanted to address whether manipulating the cellular levels of TRIP13 could affect the 

mRNA expression of EGFR in either ways. To do so, we examined cells that were either 

depleted (siTRIP13) or overexpressing TRIP13 (p-TRIP OE). 
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Fig. 3.4 Cellular levels of TRIP13 affect EGFR mRNA and promoter 

activity in HCC cells  

TRIP13 levels were manipulated by either siRNA knockdown or overexpressed 

via a plasmid vector expressing the full-length sequence of TRIP13 (A) 72 hrs 

post transfection, cells were harvested for RNA extraction and subsequent 

qPCR analysis for TRIP13 and EGFR expression levels. Values are normalized 

against TBP and relative to that of either siNTC or the p-CDNA3.1 (empty 

vector) group. (B) An EGFR-promoter reporter construct (p-EGFR-HRP) has 

been co-transfected along with different siRNA or plasmids in here. The cell 

culture media was collected over D3 and D4 post transfection and the EGFR 

promoter reporter activity was measured with a Dual luciferase reporter assay. 

Relative luminescence values (RLU) correlates directly to the EGFR promoter 

activities. The values shown are relative to that of the control groups of either 

siNTC or p-CDNA3.1 (not displayed in this graph).  Data are plotted as 

mean  ±  SEM. **** p≤  0,0001; **p≤  0,01; vs siNTC determined by 2-way 

Anova. NS indicates non significant differences  
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True indeed, EGFR mRNA expression was down regulated in TRIP13 KD cells and 

upregulated in HCC cells overexpressing the full-length human TRIP13 protein    (Fig. 3.4A). 

To further investigate whether TRIP13 transcriptionally regulates EGFR via its promoter 

activity, we co transfected HCC cells with a human EGFR promoter reporter construct (p-

EGFR-HRP) along with either siTRIP13 or p-TRIP13 OE  (Fig. 3.4B). Similar to changes in 

EGFR levels upon TRIP13 KD or OE, a decrease in EGFR promoter activities were observed 

for TRIP13 KD cells whilst an increase in promoter levels was seen for TRIP13 OE cells. In 

conclusion, our data suggests that EGFR could be transcriptionally regulated by TRIP13.  

 

3.2.2 The EGF pathway does not significantly contributes to TRIP13-dependent cell 

proliferation 

In order to test our initial hypothesis that EGF signalling acts as a downstream mediator in 

conveying TRIP13-dependent effects on cell proliferation, we performed a loss of function 

analysis on cell growth upon EGFR knockdown. In both HLF and Huh7 cells, a successful 

knockdown of EGFR could be seen both on the mRNA and protein levels (Fig. 3.5A, B). The 

knockdown of EGFR resulted only in a minor growth defect in both cell lines (Fig. 3.5C). 

This was particularly so in HLF cells where proliferation impairment became apparent only 

at D4 post knockdown (Fig. 3.5C) as compared to an arrested cell proliferation already at D2 

post TRIP13 knockdown (Fig. 3.2A). Due to the minor effects on growth as seen during 

EGFR knockdown, the initial hypothesis that EGF signalling plays a central role in mediating 

a TRIP13-dependent effect on cell growth could not be confirmed.  

Along the same direction in refuting our initial hypothesis, a microarray analysis from a HCC 

patient cohort in Heidelberg showed that EGFR expression was relatively higher in the non-

tumour samples vs the tumour samples (Fig. 3.6A). In line with our findings thus far, TRIP13 

expression was shown to be significantly upregulated in the tumour samples vs the non-

tumour samples. A spearman correlation analysis was performed between the expression 

levels of TRIP13 and EGFR (Fig. 3.6B). A negative correlation coefficient value of r= -0,272 

was derived from this analysis.  

 

In light of the above findings, we came to the conclusion that the EGF signalling pathway 

does not play a central role in mediating the TRIP13-dependent oncogenic effects as seen 

during proliferation of HCC cells.    

 

 

 



 

3  RESULTS 

 29 

  

HLF Growth curve- siEGFR 

Days post transfection

A
b

s
 4

5
0

n
m

 

D1 D2 D3 D4
0.0

0.5

1.0

1.5

2.0

2.5

siNTC 

siEGFR

ns

ns

*

EGFR KD+ trip13 OE growth assay (21.6.16) 
in HLF, huh7 cells 

Huh7 growth curve- siEGFR

Days post transfection

A
b

s
 4

5
0

n
m

 

D1 D2 D3 D4
0.0

0.5

1.0

1.5

2.0

2.5

siNTC 

siEGFR

*

*

*

C 

siEGFR KD- HLF 

R
e

la
ti
v

e
 e

x
p

re
s

s
io

n
/T

B
P

EGFR Trip13 
0.0

0.5

1.0

1.5

**

NS

siNTC siEGFR

**

siEGFR KD- Huh7

R
e

la
ti
v

e
 e

x
p

re
s

s
io

n
/T

B
P

EGFR Trip13 
0.0

0.5

1.0

1.5

****

*

siNTC siEGFR

****

A 

Fig. 3.5  EGFR knockdown only has a minor effect on cell proliferation in 

HCC cells  

Expression levels of EGFR and TRIP13 D3 post transfection in HLF and Huh7 

cells. Cell growth was assessed between D1 to D3 post siRNA transfection.(A) 

mRNA levels of EGFR and TRIP13 are normalized against TBP and shown as 

relative to the siNTC group.  (B) Blotting for EGFR and TRIP13 with VCP as a 

loading control. (C) Growth rate of cells D1 to D4 post transfection were 

measured by using CCK8 (cell counting kit 8). Absorbance at 450nm directly 

correlates to the number of viable cells in the well Data are plotted as mean ± 

SEM. (A) **** p≤  0,0001; **p≤  0,01; vs siNTC determined by two-tailed 

welch’s t-test. (C) * p≤  0,05 ; vs siNTC determined by 2-way Anova. NS 

indicates no significant differences 
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Fig. 3.6  TRIP13 and EGFR expression are not positively correlated 

in HCC cancer 

(A) TRIP13 and EGFR microarray expression data in a HCC patient cohort 

dataset from Heidelberg (In collaboration with Stephanie Roesler from 

Heidelberg). TRIP13 and EGFR expression from tumour samples (N=247) vs 

non-tumour samples (N=239) are compared here. (B) A Spearman correlation 

analysis was performed between expression levels of TRIP13 and EGFR. The 

spearman correlation coefficient R is as stated.  Data are plotted as mean ± 

SEM. (A) **** p≤ 0,0001 vs Non tumour group, unpaired t-test. 

A 
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3.3 Investigating the mechanistic role of TRIP13 in its tumour promoting 

functions 

3.3.1 Identification of TRIP13-interaction partners that could define involved 

regulatory complexes  

In order to decipher the mechanistic framework through which TRIP13 exerts its oncogenic 

function in HCC, a Mass spectrometry-based screening to identify TRIP13 interaction 

partners was performed. As outlined in Fig. 1.10, an immunoprecipitation (IP) approach was 

performed to pull down endogenous TRIP13 protein from both HLF and Huh7 cells. 

Amongst the co-precipitated proteins that were identified from the MS analysis, 39 proteins 

were found to be identical between both cell lines. Intriguingly, amongst the most enriched 

co-purified proteins, we detected SIN3A and SAP130, which have been previously identified 

to function as transcriptional regulators [48, 50]. Several members from the TRIP family 

including TRIP13 have been suggested to act as transcriptional co-regulators [85]. In lieu of 

this, we were interested to see whether TRIP13 along with its interaction partners of SIN3A 

and SAP130 might shed new light into the mechanistic workings of the tumour promoting 

function of TRIP13. 

To rule out the possibility of false positives arising from enriched hits in our MS analysis, we 

decided to perform further biochemical analysis to prove that SIN3A and SAP130 are indeed 

interaction partners of TRIP13. Previous attempts to perform a TRIP13-IP to pull down 

SIN3A, SAP130 as well as a SIN3A/SAP130-IP to pull down TRIP13 have been 

unsuccessful (data not shown). We decided to adopt another method called the Proximity 

ligation assay (PLA), which has been reported to be more sensitive and dynamic in detecting 

interaction partners vs the traditional co-IP method.    

To do this, we first performed an immunofluorescences staining to identify the intracellular 

localization of TRIP13, SIN3A and SAP130 (Fig. 3.7). We detected TRIP13 expression 

strongly in the perinuclear zone, ubiquitously in the cytoplasmic and weakly in the nuclei. 

SIN3A and SAP130 expression were strictly nuclei-localized, in line with published findings 

from other studies [48, 50].  
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Thereafter, we performed the PLA assay to validate an intracellular interaction between 

TRIP13 with SIN3A or SAP130 (Fig. 3.8) Antibodies derived from different species are 

needed in order for this PLA procedure to be able to detect interactions between 2 potential 

targets. In Fig. 3.8, TRIP13 antibodies derived from rabbit along with either SIN3A or 

SAP130 derived from goat was used during this assay to probe for potential interactions. 

Every single red fluorescence spot indicates a close proximity of < 40μm of interactions 

between these two proteins being probed for. For detailed description on this PLA procedure, 

please refer to methods in section 5.  

 

 

 

 

 

 

 

Fig. 3.7  Intracellular localization of TRIP13, SIN3A and SAP130 in 

HCC cells by confocal imaging 

Immunofluorescence staining for TRIP13, SIN3A and SAP130 reveals the 

cellular localization of these proteins respectively in HLF cell line. DAPI 

staining marks the cell nucleus. The fixing of cells in chamber slides and 

subsequent processing for immunofluorescence and confocal imaging is 

outlined in methods in section 5.  Scale bar: 50μm  
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As a positive control for this assay, SIN3A+SAP130 (interacting partners as previously 

published) have been probed to first verify that this assay is working optimally under the 

given conditions (top panel in Fig. 3.8).  As expected, the red fluorescence dots 

corresponding to interactions between SIN3A and SAP130 were localized mainly in the 

nucleus. PLA for TRIP13 and SIN3A interactions showed up mainly in the nucleus, with 

some faint red dots in the cytoplasm. In the PLA for TRIP13 and SAP130, interactions seem 

to be localized mainly to the perinuclear and cytoplasm, along with weak staining in the 

nucleus. Please refer to the discussions in section 4, where a possible shuttling of TRIP, 

SIN3A is discussed. In the negative controls of this PLA assay, where one of the 2 antibodies 

in a probed pair has been replaced either with a control rabbit or goat lgG antibody, minimum 

background staining was seen in the cytoplasm but not in the nucleus. In essence, we have 

been able to verify that MS-identified TRIP13 partners of SIN3A and SAP130 do indeed 

interact with TRIP13 in an independent experimental setup.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.  3.8 Proximity ligation assay (PLA) to validate an intracellular 

interaction between TRIP13 with SIN3A or SAP130 that were previously 

identified via a MS screen. 

Confocal imaging has been performed on Huh7 cells being processed for PLA 

staining. In this PLA protocol, pairs of antibodies of different species have been 

used to probe for interactions between TRIP13 (Rabbit) and SIN3A (Goat) or 

TRIP13 (Rabbit) and SAP130 (Goat) with reference to methods section 5. 

Every red fluorescent spot indicates a close proximity (< 40 μm) interaction 

between two targets being probed for.  PLA staining for SIN3A+SAP130 

served as an internal positive control for interacting partners. Negative controls 

for this PLA staining are shown in the bottom panel where one of the antibodies 

in a probed pair has been replaced with either an unconjugated Goat IgG or 

Rabbit IgG antibody.  Scale bar: 50μm  
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3.3.2 Effects of TRIP13 and interaction partners of SIN3A/SAP130 in HCC cell 

proliferation 

To test the effects of TRIP13 along with SIN3A and SAP130 on HCC cell growth, we 

performed siRNA transfections whereby different combinations of specific siRNA were used 

and proliferation was thereafter monitored in Fig. 3.9A. Whilst cell proliferation was 

impaired in TRIP13 knockdown cells as previously seen, SIN3A or SAP130 knockdown 

alone had no effects on proliferation. Interestingly, the TRIP13 siRNA proliferation defect 

was restored upon combinatorial knockdown of either SIN3A or SAP130. Due to the similar 

growth restoring effect that SIN3A and SAP130 gene depletion both exert in TRIP13 

knockdown cells, we decided to focus only on SIN3A in future experiments (given that the 

functions of SAP130 has been ascribed mainly due to its direct binding to SIN3A as reviewed 

in introduction). 

 

Concomitantly knockdown of SIN3A reverses growth defect in TRIP13-depleted cells 

A separate experiment was thereafter performed to examine only the growth effects of a 

concomitant knockdown of TRIP13+SIN3A. A similar rescue in growth defect of TRIP13 

knock down cells was observed up to D6 post combinatory depletion of TRIP13+SIN3A 

(Fig. 3.9B). The cell growth results above were further reaffirmed by a BrdU incorporation 

assay performed (Fig. 3.9C), where a combined knockdown of TRIP13+SIN3A significantly 

restored cell proliferation from TRIP13-depleted cells.  

Thereafter, using the cell lysates from these HLF cells depleted either of TRIP13 or SIN3A 

or both, we determined apoptotic levels by measuring caspase 3/7 activities in these cells 

(Fig. 3.9D) The Caspase 3/7 levels as measured in Fig. 3.9D were in accordance to what has 

been previously observed for TRIP13-depleted cells, in comparison to these cells, 

TRIP13+SIN3A depleted cells had only half the amount of Caspase 3/7 levels. 

Next, we checked for the mRNA and protein expression of genes regulating proliferation by 

qPCR and western blotting from HLF cell lysates harvested from this experiment (Fig. 3.9). 

Remarkably, we noticed a significant depletion of a proto-oncogene c-MYC, on both the 

protein and the mRNA levels upon TRIP13 knockdown (Fig. 3.10A, B). With regards to the 

well described role of c-Myc as a master regulator during cell proliferation and its frequent 

overexpression in multiple cancers including HCC, it seems plausible that reduced c-MYC 

activity could account for an arrested cell growth upon TRIP13 knockdown in HLF cells 

(Fig. 3.9B, C). In line with this notion and reflecting its corresponding effects on cell 

proliferation, the depletion of c-MYC in TRIP13 knockdown cells were partially restored 

when SIN3A was concomitantly depleted (Fig. 3.10). Conversely, SIN3A knockdown alone 

had no effects on cell growth or c-MYC levels (Fig. 3.10A). In the combined knockdown 

group, only a marginal decrease in knockdown efficiency of TRIP13 (<5%) was seen as 

compared to the single TRIP13 siRNA knockdown group. This indicates that a restored cell 

growth and c-MYC activity after concomitantly depleting TRIP13 and SIN3A cannot be due 

to a reduced efficiency of TRIP13-depletion induced growth arrest in this case.    
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Fig. 3.9A - C  Concomitant KD of SIN3A or SAP130 rescues the 

proliferation defect exerted by TRIP13 depletion in HLF cells 

Transfections using siRNAs targeting either TRIP13 or SIN3A or SAP130, or 

both were performed. Cell proliferation are thereafter monitored up to D6 post 

transfection. Results from representative experiments were shown. (A) Growth 

rate of cells in 96-well plates D1 to D4 post transfection were measured by 

using CCK8 (cell counting kit 8), following protocols described in section 5. 

Absorbance at 450nm directly correlates to the number of viable cells in the 

well. (B) Growth rate of cells comparing siTRIP13 cells vs combined KD of 

TRIP13+SIN3A up to D6 post transfection. (C) Cell proliferation from 

combined siRNA KD was measured at D3 post transfection using a BrdU 

incorporation kit following protocols described in section 5. Values are shown 

normalized to that of the siNTC conditions    

Data are plotted as mean ± SEM. **** p≤ 0,0001; *** p≤ 0,001; **p≤ 0,01; 

vs siNTC determined by 2-way Anova. NS indicates not significant. 
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Fig. 3.9D   Apoptotic levels in HLF cells depleted either with TRIP13 or 

SIN3A or both 

HLF cells were harvested D3 post transfection and apoptosis were determined 

by measuring Caspase 3/7 levels from cell lysates using an assay kit: Glo-

caspase3/7 homogenous assay, following protocols in section 5. Fluorescence 

values for the amount of caspases3/7 levels present were plotted relative to the 

siNTC group. Data are plotted as mean ± SEM. **p≤ 0,01; ****p≤ 0,0001 vs 

siNTC or siTRIP13 as indicated in the chart and determined by 2-way Anova.  
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Thereafter, we performed at least four additionally experiments under the experimental set up 

as before and have always observed a corresponding rescue of TRIP13-depletion dependent 

growth defect upon simultaneous knockdown of SIN3A in HLF cells (cell growth are similar 

to    Fig. 3.9). A partial restoration of c-MYC and CyclinD1 in TRIP13+SIN3A conditions 

could similarly be seen from 3 of these independent experiments conducted in Fig. 3.11.  

Next, in order to determine whether cellular localization of TRIP13 and SIN3A changes upon   

single or combined gene knockdown, we performed cellular fractionation on these HLF cells, 

harvested D3 post transfection. In Fig. 3.12, TRIP13 expression was seen in both the 

cytoplasmic and nuclear fractions, whereas SIN3A was localized only to the nuclear fraction. 

No changes were however observed in the cellular localization of SIN3A upon TRIP13 

knockdown or vice versa in TRIP13 upon SIN3A knockdown. 

 In conclusion of the above findings, we have observed a robust restoration of cell 

proliferation and c-MYC levels during TRIP13-depletion when SIN3A was concomitantly 

inactivated in HLF cells. It is conceivable that a reduced c-MYC activity accounted for the 

severe proliferation defect along with a down regulation of growth promoting proteins like 

EGFR and CyclinD1 in TRIP13 inactivated HLF cells (Fig. 3.10)  

Fig.  3.10 Expression levels of TRIP13, SIN3A and c-MYC after 

combined siRNA transfection in HLF cells 

mRNA and protein expression levels D3 post transfection.  

(A) mRNA levels of TRIP13, SIN3A and c-MYC are normalized against TBP 

and shown as relative to the siNTC group.  (B) Blotting for SIN3A, EGFR 

TRIP13 and c-MYC with VCP as a loading control. Data are plotted as mean ± 

SEM. (A) **** p≤  0,0001; **p≤  0,01; vs siNTC determined by two-tailed 

welch’s t-test. (C) * p≤  0,05 ; vs siNTC determined by 2-way Anova. NS 

indicates not significant difference. 
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Fig. 3.11 Partial restoration of c-MYC and Cyclin D1 (CCND1) after 

concomitantly knockdown of TRIP13+SIN3A from 3 independent 

experiments 

Cell lysates were harvested D3 post transfection in HLF cells and blotted for c-

MYC and CCND1, with VCP as a loading control.  siRNA KD on protein 

levels for TRIP13 and SIN3A has been separately verified via western blot 

(data not shown). 
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Fig. 3.12 Cellular fractionation to determine cell localization of 

TRIP13 and SIN3A during single and combined knockdown of these genes 

Cell lysates were harvested D3 post transfection in HLF cells and blotted for 

SIN3A and TRIP13, with HSP90 and LaminA/C as a loading control for 

cytoplasmic and nuclear fractions respectively.  The loadings from the whole 

cell lysate, cytoplasmic and the nuclear fraction are shown.  
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3.3.3 SIN3A knockdown reverses the anti-proliferative effects from TRIP13-depletion 

and is recapitulated in several HCC cell lines 

In order to rule out a common experimental pitfall that our findings above were cell line-

specific only in HLF cells, we decided to include several other HCC cell lines namely human 

Huh7, HepG2 and mouse Hepa1-6 cells. In Fig. 3.13, we performed siRNA transfections to 

knockdown either TRIP13 or SIN3A or both and measured cell proliferation in these various 

cell lines as shown. In Huh7, HepG2 and Hepa1-6 cells, a concomitant knockdown of SIN3A 

partially restored cell growth in TRIP13-depleted cells from D3 onwards (Fig. 3.13A, B&C). 

These results above were also reaffirmed during a BrdU assay in Huh7 (Fig. 3.13D) cells. For 

Hepa1-6 in Fig. 3.13E, there were no effects on BrdU uptake across all samples as compared 

to the control group. This was in contrast with our previous results in Fig. 3.2 showing that an 

impaired cell proliferation during TRIP13-depletion in Hepa1-6 could be captured both via a 

CCK8 cell counting kit and the BrdU uptake assay. We assumed that a lack of changes in 

BrdU uptake even in the TRIP13 depleted cells could be due to the suboptimal knockdown 

efficiencies for Hepa1-6 in this experiment.  

Thereafter, we analysed the gene expression of c-MYC from these various cell lines upon 

single or combined depletion of TRIP13 and Sin3A (Fig. 3.14). A reduction of c-MYC 

protein levels in Huh7 cells across all samples upon depleting either TRIP13 or SIN3A or 

both was seen. The corresponding effect in the combined knockdown of TRIP13+SIN3A is 

unclear. The lower endogenous levels of c-MYC in Huh7 cells made it hard to ascertain 

whether there was indeed a partial restoration of c-MYC in this case. We observed also a 

depletion of c-MYC across all samples upon depleting either TRIP13 or SIN3A or both in 

Hepa1-6 cells. The restoration of c-MYC levels as seen previously in HLF cells (Fig. 3.11) 

was not seen in Hepa1-6 cells, where the c-MYC levels were lower in the combined 

knockdown of TRIP13+SIN3A vs the single gene knockdown. 

In summary, we were able to reverse the antiproliferative effects of TRIP13-depletion by 

concomitantly depleting SIN3A in various HCC cell lines of HLF, Huh7, HepG2 and Hepa1-

6 cells. The corresponding effect in restoring c-MYC levels during TRIP13-depletion, when 

SIN3A is concomitantly depleted is established in HLF cells. Due to the absence of a clear 

rescue of c-MYC levels in other cell lines, this effect could not be conclusively confirmed in 

other cell lines as tested. 
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Fig. 3.13 Concomitant KD of SIN3A rescues the growth defect in 

TRIP13-depleted human Huh7 and HepG2 but not mouse Hepa1-6 cells 

siRNA transfections to knockdown either TRIP13 or SIN3A or both was 

performed in Huh7, HepG2 and Hepa1-6 cells. Cell proliferation was monitored 

up to D4 post transfection. (A) Cell proliferation has been measured via a 

CCK8 kit (B) Cell proliferation has been measured via BrdU incorporation 

using a BrdU labelling kit Data are plotted as mean ± SEM. (A) *** p≤ 0,001; 

**p≤ 0,01) * p≤ 0,05 vs siTRIP13 determined by two-tailed welch’s t-test. (C) 

**** p≤  0,0001; vs siNTC determined by 2-way Anova. NS indicates non-

significant differences 
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3.3.4 The oncogenic c-MYC pathway in mediating antiproliferative effects upon 

TRIP13 depletion in HLF cells 

We first observed a marked reduction in c-MYC levels, along with several growth promoting 

factors like EGFR and cyclinD1 when we knock down TRIP13. In order to decipher the 

mechanistic framework in the oncogenic functions of TRIP13, we performed a MS analysis 

to identify interaction partners defining involved regulatory complexes (Fig. 1.10). Due to the 

initial hypothesis that TRIP13 might transcriptionally regulate EGFR mRNA levels, we 

decided to focus on this MS-enriched target, SIN3A, with well-characterised functions as a 

global transcriptional regulator. As shown from Fig. 3.9 to Fig. 3.11 in HLF cells, the 

decrease in growth and c-MYC levels upon TRIP13 ablation was strikingly reversed upon a 

concomitant ablation of SIN3A. Indeed, SIN3A forms part of the histone deacetylation 

complex (HDAC) and represses MYC activities by directly deacetylating and destabilizing c-

MYC [48]. 

In line with this, we wanted to test the idea that a reduction in c-MYC related activities 

accounted for the growth arrest along with a down regulation of growth promoting factors 

like EGFR and Cyclin D1 in TRIP13 inactivated cells (Fig. 3.10). To test this hypothesis that 

c-MYC could be an important mediator in conveying TRIP13-dependent effects on cell 

growth, we performed a gain of function analysis by overexpressing a full length human c-

MYC to observe for effects on cell proliferation thereafter (Fig. 3.15). 
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Fig. 3.14 Expression levels of c-MYC after depleting TRIP13 or 

SIN3A or both in Huh7 and Hepa1-6 cells 

Western blot was performed using cell lysates harvested D3 post siRNA 

transfection. Immunoblotting for SIN3A, TRIP13 and c-MYC was performed 

with VCP as a loading control.  
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Fig. 3.15 Overexpression of c-MYC rescues the proliferation defect in 

TRIP13 deficient HLF cells 

Co-transfections with siRNAs targeting against TRIP13, +/- a plasmid 

overexpressing full-length human c-MYC was performed in HLF cells.  Cell 

proliferation and western blot are shown. (A) Cell proliferation has been 

measured via a CCK8 kit using protocol from section 5. Abs at 450nm 

correlates directly to the number of cells in this assay. (B) Cell proliferation has 

been measured via BrdU incorporation using a BrdU labelling kit. (C) 

Immunoblotting for SIN3A, TRIP13 and c-MYC with VCP as a loading 

control.  Data are plotted as mean ± SEM. (A) **** p≤ 0,0001; **p≤ 0,01; vs 

siTRIP13 determined by two-tailed welch’s t-test. ## p≤ 0,01; #### p≤ 0,0001 

vs siNTC (B) ***p≤ 0,001; *p≤ 0,01 vs siNTC determined by 2-way Anova.  
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HLF cells were co-transfected either with a plasmid overexpressing c-MYC (p-cMYC O/E), 

or an empty vector backbone along with NTC or TRIP13 targeted siRNAs. In Fig. 3.15A, 

TRIP13-depleted cells were expectedly growth arrested from D2 post gene knockdown. This 

growth arrest was remarkably reversed when a full-length c-MYC protein was concomitantly 

overexpressed in these TRIP13-depleted cells, resulting in an almost complete proliferation 

rescue at D3 and D4. This was similarly recapitulated in the BrdU uptake assay where 

concomitantly overexpressing c-MYC resulted in 4 times the amount of cell proliferation in 

TRIP13-depleted cells (Fig. 3.15B), nearly reaching control BrdU levels. On another note, 

the increase in BrdU uptake upon c-MYC overexpression in the si-Control group was not 

recapitulated in the growth curve via the CCK8 assay (Fig. 3.15A). Cell lysates from this 

experiment was subsequently harvested and immunoblotted to verify for TRIP13, c-MYC 

and SIN3A expression against VCP as the loading control (Fig. 3.15C). 

These results above are in line with our hypothesis that reduced c-MYC activities contribute 

towards the anti-proliferative effects of TRIP13-depleted HCC cells. Reflecting a central role 

that c-MYC plays in relaying the tumour-promoting function of TRIP13, we observed a 

complete rescue of growth arrest when c-MYC was simultaneously overexpressed in 

TRIP13-depleted cells. For further in-depth discussion with regards to this TRIP13-SIN3A-c-

MYC axis that we propose, please refer to discussions in section 4.   We hypothesize that the 

ability of SIN3A to exert a destabilizing effect on c-MYC depends on the absences of 

TRIP13. A SIN3A- dependent depletion of c-MYC is lifted when both TRIP13 and SIN3A 

were concomitantly depleted, as seen by the partial restoration of c-MYC levels in those cells 

in Fig. 3.11.  

 

3.3.5 Establishing stable cell lines with concomitant depletion of TRIP13 and SIN3A for 

in vivo tumour implantation models 

We aim to validate our hypothesis of a TRIP13-SIN3A-MYC axis in vivo in a tumour 

implantation model as outlined in Fig. 3.16A. In this approach, TRIP13 or SIN3A or both 

will be inactivated either in Human HLF or mouse Hepa1-6 cells using a lentivirus-mediated 

shRNA incorporation approach. Genetically modified cells would then be implanted either 

into immune-deficient mice (Human HLF cells) or C57Bl/6 mice (mouse Hepa1-6 cells). 

Tumour growth would be monitored and cell proliferation markers would thereafter be 

analysed at the end of the study from these tumour tissues.   

Numerous attempts in the past have failed to establish a stable knockdown of TRIP13 in 

HCC cells, due to a low cell viability post TRIP13 depletion. Using an alternative approach 

to circumvent this problem, we decided to first establish a stable knockdown of SIN3A in 

HLF and Hepa1-6 cells since depleting SIN3A conferred no effects on cell growth. One week 

prior to the tumour implantation study, these SIN3A-depleted stable cell lines would be 

infected with Lentiviral particles to mediate an shRNA dependent knockdown of TRIP13. 

After one round of antibiotics selection using blasticidin (SIN3A) and puromycin (TRIP13), 

these shTRIP13+shSIN3A-depleted cells would be directly implanted into the animals.  
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A set of 4 SIN3A-specific shRNA constructs, each containing a unique 29mer specifically 

targeting SIN3A was ordered from Origene. For the specific vector backbone and shRNA 

sequences of these 29mer, refer to materials in section 5. As the SIN3A shRNA vectors were 

available only in a pGFP-C-shLenti plasmid backbone that conferred a puromycin resistance 

gene (which was similar to that of the antibiotic resistance for TRIP13-shRNA expression 

vectors that we already have), we had to subclone these SIN3A-shRNA expression cassettes 

into another vector backbone of pRFP-C-shLenti that confers the blasticidin resistance gene 

(data not shown). 

After the sequences of the subcloned SIN3A-shRNA constructs have been verified via 

sequencing analysis, we then proceeded to package these constructs into the respective 

lentiviral particles using HEK293T cells. The efficiencies of each of these lentiviral-mediated 

knockdowns of SIN3A, 7-days post blasticidin selections in HLF and Hepa1-6 cells are as 

shown in Fig. 3.16B. Lentiviral particles containing shRNA constructs from shSIN3A_1 and 

shSIN3A_4 mediated the most efficient knockdowns in HLF and Hepa1-6 and were used 

subsequently to establish stable SIN3A knockdowns in these cell lines.  

Due to the lack of time, the initial aim to perform an in vivo tumour implantation study using 

shTRIP13+shSIN3A HCC cells could not be realized in time before the thesis was 

completed.  

 

 

Fig. 3.16A Planned tumour implantation study using 
shTRIP13+shSIN3A HCC cells 
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Fig. 3.16B  Generating stable HLF and Hepa1-6 cell lines with shR KD 

of SIN3A using a Lentiviral-mediated system 

Lentivirus containing plasmid with different shRNA sequence targeting against 

SIN3A are denoted as shSIN3A_1, shSIN3A_3 and shSIN3A_4. Lentivirus 

production and quantification was outlined in methods in section 5.  Lentivirus 

was added to cells at an MOI of 10 along with polybrene (8 mg/ml) to enhance 

the virus transduction. D5 post-viral transduction, Blasticidin at (2 mg/ml) was 

added to select for resistant cells that are successfully expressing the pLKO-

shRSIN3A plasmids.  Western blot shows SIN3A expression in different cell 

lines D7 post blasticidin selection, using VCP as a loading control.  
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3.4 Effects of overexpressing Trip13 in non-tumourigenic AML12 liver 

cells 

3.4.1 Overexpressing Trip13 in AML12 cells boosted an increase in cell proliferation  

As shown in the Fig. 1.5, Trip13 was upregulated in various fatty liver-related disease 

conditions in ob/ob, db/db and high fat diet fed mice as well as in a mouse model of non-

alcoholic steatohepatitis (NASH) upon methionine-choline deficient diet feeding.    

Furthermore, numerous reports have shown TRIP13 to be significantly upregulated in various 

types of cancer including liver cancer (from our own data). We have also provided in vivo 

and in vitro data indicating that TRIP13 plays a central role in oncogenic growth of liver 

cancer cells.  

AML12 is a non-transformed mouse liver cell line, derived from a mouse transgenic for 

human TGFα, allowing it to be continuously passaged in cell culture. We have separately 

verified that the expression levels of Trip13 in AML12 to be at least 4 times lower than that 

in HCC cell lines of HLF and Huh7, based on mRNA expression analysis (data not shown). 

Under this premise, we were interested to investigate if overexpressing Trip13 could 

contribute to oncogenic transformation of AML12 cells.  

Overexpressing a full-length mouse Trip13 in AMl12 cells resulted in a significant induction 

in cell growth, 3 days upon Trip13 overexpression (Fig. 3.17A). This increase in cell growth 

was similarly reflected in the BrdU uptake assay in Fig. 3.16B, where Trip13 overexpressing 

cells showed 1,5 fold increase in proliferation vs the control cells. In line with the growth 

promoting effects, western analysis for different tumourigenic factors like EGFR, c-MYC 

and p-53 showed all these proteins to be upregulated in the Trip13 overexpressing AML12 vs 

the control cells (Fig. 3.16C). On a separate note, an overexpression of a full length human 

TRIP13 in a HepG2 liver cancer cell line did not showed any significant effects on cell 

growth, BrdU uptake and c-MYC levels (Fig. 3.16D, E, F). We were unsuccessful after 

numerous attempts to perform the Colony forming assays for AML12 to compare 

tumourigenicity between Trip13 overexpressing vs control cells. These cells were deemed to 

be unsuitable for this colony assay in our hands, due to the low cell viability (when AML12 

cells were seeded at a low density to perform this assay) and inability to form viable colonies. 

In view of the above, we have further highlighted the pro-tumourigenic function of TRIP13 

by demonstrating that an overexpression of this gene is sufficient to stimulate cell 

proliferation in a non-tumourigenic hepatocyte cell line of AML12. This induction in cell 

proliferation is further reflected by a corresponding upregulation of growth promoting factors 

like EGFR and c-Myc.  
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Fig. 3.17 Overexpression of TRIP13 resulted in an increase in cell 

proliferation in non-tumourigenic AMl12 cells but not in HepG2 cells 

Transfections using plasmids overexpressing either a full-length human or 

mouse TRIP13 was performed in HepG2 or AML12 cells respectively. (A) Cell 

proliferation has been measured via a CCK8 kit. Abs at 450nm correlates 

directly to the number of cells in this assay. (B) Cell proliferation has been 

measured via BrdU incorporation using a BrdU labelling kit on D3 post 

transfection. (C) Blotting for EGFR, p-53, TRIP13 and c-MYC with HSP90 as 

a loading control.  Data are plotted as mean ± SEM. **** p≤ 0,0001; ***p≤ 

0,001; *p ≤  0,01 vs pcDNA3.1 determined by 2-tailed Welch’s t-test. N.S 

indicates non significant differences 
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3.5 Role of TRIP13 in the DNA damage repair pathway 

3.5.1 Chromosomal instability (CIN) and upstream regulation of TRIP13 

Chromosomal instability is a phenomenon commonly seen in tumour cells when 

chromosomes are improperly segregated in daughter cells due to the loss of proper 

checkpoint controls. In this regard, a CIN signature refers to a specific set of highly ranked 

genes that is consistently correlated with chromosomal instability in cancer. The Hippo/YAP 

signalling was found to be one of the main drivers in regulating the expression of the CIN 

signature genes in liver cancer, with TRIP13 being found to be one of the 25 top ranking 

genes (reviewed in section 2.2.2). In a mouse model for HCC, it was found that 

overexpressing YAP stimulated both invasiveness and growth of tumour cells. Furthermore, 

liver cancer patients with tumour gene expression pattern associated with the CIN signature 

were characterized by a poorer prognosis [39].   

In this context, it seems possible that YAP could be an upstream regulator of TRIP13, where 

an upregulation of the hippo/YAP signalling mediates a corresponding increase in TRIP13 as 

commonly seen in human HCC patients. We picture that knocking down YAP could result in 

a corresponding decrease in TRIP13 along with its downstream targets in HCC cells.  

To test this hypothesis, we performed a loss of function analysis by knocking down YAP1 

using target specific siRNA. As shown in Fig. 3.18A & B, a knockdown of YAP1 resulted in 

a corresponding decrease in expression of TRIP13 along with EGFR, in both HLF and Huh7 

cells. This decrease in mRNA expression levels of TRIP13 and EGFR was similarly 

recapitulated on the protein levels via western blot analysis in Fig. 3.17C. In Huh7 cells (Fig. 

3.18B), the knockdown of YAP1 resulted in an almost complete depletion of YAP1, which 

might account for the marked decrease in a corresponding expression of TRIP13 and EGFR 

(vs the less dramatic effects in HLF cells). These results seen above suggest that YAP could 

indeed be an upstream regulator of TRIP13 in HCC cells. 
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3.5.2 TRIP13 in DNA damage repair pathways 

TRIP13 has been described in several reports [34, 35, 45] to be indispensible during DNA 

damage repair and non-homologous end joining (NHEJ). Furthermore, the role of TRIP13 

during NHEJ was proposed to be the main oncogenic mechanism in conferring chemo-

resistances to head and neck tumour cells [45]. Owning to the enhanced DNA repair 

machinery of these TRIP13-overexpressing tumour cells, these cells acquire resistances 

against the genotoxins commonly used in chemotherapeutic treatments [45]. 

 We were similarly interested to explore the DNA damage repair role of TRIP13 and more 

importantly whether this pathway when deregulated attributed to the severe growth defect in 

TRIP13 depleted HCC cells.  D3 post TRIP13 depletion, DNA fragmentation was 

characterized by grossly abnormal nuclear morphology and nuclear blebbing in Fig. 3.19A.  

Fig. 3.18 YAP as a plausible upstream regulator of TRIP13 

siRNAs targeting against YAP1 was performed in HLF and Huh7 cells.  mRNA 

and protein expression has been performed on cells harvested D3 post 

transfection. (A) mRNA expression of YAP, TRIP13 and EGFR were 

normalized against TBP and represented relative to the NTC group. (B) Blotting 

for EGFR, YAP, and TRIP13 with HSP90 as a loading control.  Data are 

plotted as mean ± SEM. **** p≤ 0,0001; **p≤ 0,001 vs siNTC determined by 

2-tailed Welch’s test.  
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pH2AXγ, which is a marker to detect for DNA damage was also remarkably upregulated in 

these TRIP13-depleted HLF cells (Fig. 3.19B). Reflecting what was seen above, the caspase 

3/7 levels in these TRIP13-depleted cells were 38 folds more than that of the control group in 

Fig. 3.19C. 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.19 A– C      TRIP13 depletion triggered an increase in DNA damage  

Confocal images of siNTC vs siTRIP13 HLF cells are shown. Cell lysates were 

harvested for western blotting and separately measured for caspase 3/7 levels. 

(A) Immunofluorescence staining of DAPI and TRIP13 are compared between 

siNTC vs sTRIP13 cells. (B) Western Blotting for TRIP13 and p-H2AXy with 

VCP as a loading control. (C) Caspase 3/7 levels has been measured from cell 

lysates using this assay kit: Glo-caspase3/7 homogenous assay, following 

protocol of section 5. Fluorescence values for the amount of caspases3/7 present 

were plotted relative to the siNTC group. Scale bar indicates 50um. Data are 

plotted as mean ± SEM. **p≤ 0,001 vs siNTC determined by 2-tailed Welch’s 

test.  
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3.5.3 DNA damage signalling pathway does not play a central role in causing 

proliferation defect in TRIP13-KD cells 

 Our data thus far suggests that TRIP13 could be part of an oncogenic signalling network, 

regulating downstream c-MYC activities, which could indeed play a central role in HCC 

tumourigenesis. In lieu of this hypothesis above, one has to also consider several other 

aspects of oncogenic regulation that determines the final outcome between cell survival vs 

cell death. In this respect, we questioned whether the role that TRIP13 plays during DDR 

could also have a central role in determining the oncogenic growth of HCC cells.  

KU60019 is an ATM (Ataxia Telangiectasia Mutated Protein) inhibitor that is used 

frequently to block the central DNA damage response  (DDR) mediated via ATM signalling. 

In this experiment, we treated HLF cells in a final concentration of 3 μM of KU60019 to 

observe for a possible effect on cell growth between the control vs TRIP13-depleted cells in   

Fig. 3.19D. TRIP13-depleted cells were expectedly growth arrested D2 upon gene depletion. 

Importantly, we observed that an inhibition of the DDR pathway via ATM signalling 

(+KU60019) did not reverse the growth defect in these TRIP13-depleted cells. If an 

accumulation of DNA damage due to TRIP13 depletion were mainly responsible for the 

growth arrest in TRIP13-depleted HCC cells, then a reversal of this growth defect would 

have occurred when this DDR pathway was inhibited which was not the case in Fig. 3.19D. 

In light of the above findings, we argue that the DNA damage repair role of TRIP13 is no 

doubt an important aspect during tumourigenesis; it was however not a main attributor in 

inhibiting proliferation as seen upon TRIP13 knockdown in HCC cells. 
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Fig. 3.19D Growth defect in TRIP13-depleted cells are not dependent on 

the ATM DNA damage pathway  

Growth of HLF cells +/- an ATM inhibitor (KU60019) was compared between 

the siNTC vs siTRIP13 group. One day post siRNA transfections, KU60019 

was added at a final concentration of 30 μM to the respective wells. Fresh 

media +/- KU60019 was given to cells and cell growth was assessed with the 

CCK8 kit. The absorbance at 450nm correlates directly to the cell numbers. 

Data are plotted as mean ± SEM. **p≤ 0,001 vs siNTC determined by 2-tailed 

Welch’s test. NS indicates non-significant difference between siTRIP13+/- 

KU60019. 
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3.5.3 DNA damage persist despite a growth rescue during concomitant depletion of 

TRIP13+SIN3A  

As previously seen in Fig. 3.9 and Fig. 3.11, growth arrest in TRIP13-depletd cells could be 

reversed by concomitantly depleting SIN3A in multiple HCC cell lines. We were curious to 

examine also the DNA damage levels in these “growth rescued” cells as compared to the 

TRIP13-depleted cells alone. 

 In Fig. 3.20A, we observed a marked accumulation of p-γH2AX in the nucleus of TRIP13-

depleted cells as compared to the control cells D3 post gene-depletion. In the bottom panel of 

Fig. 3.20A, despite an apparent growth rescue of cells by a concomitant depletion of 

TRIP13+SIN3A, these cells continue to accumulate high levels of p-γH2AX. As a side note, 

as images were captured on a random field of view, the number of cells in the images are 

non-representative of the true total amount of cells in that sample.  Similar to what was 

observed on the immunofluorescence (IF) staining for p-γH2AX, we observed an 

upregulation of this DNA damage marker in both TRIP13 depleted and TRIP13+SIN3A 

depleted cells in Fig. 3.20B. No changes in the level of p-γH2AX in SIN3A-depleted cells 

were observed (data not shown).  
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Fig. 3.20A Accumulation of DNA damage in combined 

siTRIP13+SIN3A persisted in spite of a growth rescue   

HLF cells were transfected with siNTC, siTRIP13 or siTRIP13+SIN3A, using 

siNTC for titrations to an equal final amount during transfection. D1 post 

siRNA transfections, cells were seeded into chamber slides for further 

incubation before being harvested for immunofluorescences (IF) staining D3 

post transfection. IF was performed in reference to methods in section 5. 

Confocal images shows IF staining for DAPI and p-γH2AX from the different 

siRNA conditions. Scale bar indicates 50 μm. 
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As a summary to conclude what has been observed thus far, a reversal of growth arrest is 

seen in TRIP13-depleted cells upon concomitant knockdown of SIN3A. Interestingly, 

proliferation in these cells was apparently not impaired by an accumulation of DNA 

fragmentation as seen via an upregulation of p-γH2AX unlike the corresponding growth 

arrest in TRIP13-depleted cells. In lieu of the above findings, it is unlikely that an 

accumulation of DNA damage could have accounted for the severe growth arrest in TRIP13-

depleted cells. This proliferation impairment could have been caused by a deregulated 

oncogenic signalling pathway, in this case the c-MYC proto-oncogene, which when 

overexpressed was able to reverse the growth arrest in TRIP13-depleted HLF cells.  

 

 

Fig. 3.20B   Detection of DNA-damage markers in HLF cells depleted 

either with TRIP13 or SIN3A or both 

HLF cells were harvested D3 post transfection for western blotting to deter for 

DNA damage.  Immunoblotting was performed for TRIP13 and p-γH2AX with 

VCP as a loading control.  
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4 Discussions 
 

4.1 TRIP13 as an oncogenic regulator of tumour growth 

 
4.1.1 TRIP13 in cell cycle checkpoint and cancer 

 

TRIP13 was first identified as a novel transcriptional co-regulator that binds to the 

Thyroid hormone receptor (TR), both in the presence or absence of Thyroid hormones (TH) 

[85]. Early studies of the conserved mammalian orthologue of Trip13 in budding yeast cell; 

C-elegans and Drosophila have discovered an essential role of this factor in regulating 

chromosomal events during meiosis and mitotic progression [25, 26]. Functional roles of 

Trip3 in meiotic recombination dates back to its activating roles in double strand-break 

(DSB) checkpoint responses and in establishing inter-homologous recombination (HR) 

during chromosome synapsis [27, 87]. Mammalian Trip13 was found to be involved in both 

the activation and silencing of the spindle assembly checkpoint (SAC) during mitotic 

progression [34].  

Intriguingly, TRIP13 was observed to be upregulated in a variety of human cancers, 

ranging from breast cancer, squamous cell carcinoma of head and neck (SCCHN), prostate 

cancer, non-small cell lung cancer and leukaemia [28, 37, 43, 45, 84]. The oncogenic 

properties of TRIP13 were recently investigated in breast cancer and SCCHN, where the 

upregulated expression of TRIP13 stimulated growth and cell invasiveness of these tumour 

cells [45, 28]. Furthermore, the ability of treatment-resistant SCC cells to escape cell death 

was proposed to be due to the enhanced ability of such high-TRIP13 expressing cells in 

repairing DNA damage induced during chemotherapy [45]. Besides this aforementioned 

DNA-repairing role of TRIP13 in conferring surviving advantages to tumour cells during 

genotoxic assaults, the underlying molecular and cellular mechanisms of TRIP13 in 

mediating a pro-proliferative effect during tumourigenesis is largely unclear. 
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4.1.2 A proliferation-promoting role of TRIP13 in liver cancer 

The present study is the first to have confirmed an oncogenic role of TRIP13 in 

hepatocellular carcinoma (HCC). Through various in vivo tumour xenograft models and 

established in vitro systems of HCC cell lines, we have established the following findings: 

Firstly, TRIP13 is essential during hepatocyte regeneration and HCC cell proliferation, 

without which, cell proliferation is impaired. Secondly, we identified novel interaction 

partners of TRIP13 via a MS screening, which has shed new light into the proliferative roles 

of TRIP13 in section 3.3. Thirdly, we demonstrated that the proliferation impairment during 

TRIP13-depletion was not attributable to an upregulation of the DNA-damage response 

(DDR) pathway in section 3.5. Lastly, we have data to suggest the mechanistic regulations, 

both upstream and downstream of TRIP13 in section 3.2, 3.3 and 3.5. Our findings confirm 

previous aforementioned publications regarding the oncogenic role TRIP13 whilst providing 

a functional annotation and unveiling the mechanistic involvements of TRIP13 during 

tumourigenesis.  

We have previously shown that overexpressing Trip13 in a non-transformed liver cell 

line, AML12, stimulated cell proliferation in those cells (Fig. 3.16). Further along this line, 

an upregulation of oncogenic factors like C-MYC, EGFR was observed (Fig. 3.16). 

Interestingly, overexpressing TRIP13 in several human HCC cell lines did not produce this 

pro-proliferative effect as seen in AML12 cells. We speculate that these HCC cells could 

have been non-responsive to a further increase in TRIP13 levels, due to already high 

endogenous levels of TRIP13. Under this pre-text of a high TRIP13-driven proliferative 

growth in these HCC cells, simply increasing TRIP13 independently of other oncogenic 

factors would not further stimulate proliferation in these tumour cells. Conversely in AML12 

cells, where the endogenous Trip13 levels are much lower compared to HCC cells, 

overexpressing Trip13 could stimulate proliferation via activation of growth-promoting 

pathways which is synonymous with what we have observed. It remains to be seen whether 

overexpressing TRIP13 in a HCC cell line with low endogenous levels of TRIP13 would  

similarly stimulate cell proliferation as in AML12 cells.  

 

 

4.2 The functional implications of an interaction between TRIP13 and its 

interaction partner, SIN3A 
 

4.2.1 Validating an interaction between TRIP13 and interaction partners 

TRIP13 is a member of the highly conserved family of AAA
+
ATPases that are known 

to mediate diverse cellular activities. Through its ability to mediate protein-protein and 

protein-DNA complex assembly and disassembly, members from this ATPase family have 

been implicated in regulating diverse functions including cell signalling and cell cycling [24]. 

In order to investigate the mechanism through which TRIP13 exerts an oncogenic effect in 

liver cancer, we decided to perform a mass spectrometry screening to identify novel  

 



 
4  DISCUSSION 

 62 

 

interacting partners of TRIP13 (Fig. 1.10). Endogenous TRIP13 was immunoprecipitated 

from both HLF and Huh7 cells using TRIP13-specific antibodies. Based on KEGG pathway 

analysis, some of enriched pathways identified were cell cycle regulation, transcriptional co-

regulation and DNA damage repair pathways. 

TRIP13 could act as a transcriptional co-regulator in binding to TR as suggested by 

early studies [85] and from our own observations; TRIP13 seems to regulate the expression 

of EGFR.  Based on these early hypotheses that TRIP13 might function as a transcriptional 

co-regulator, we decided to focus on 2 candidates that were enriched from the MS screen, 

SIN3A and SAP130. These proteins have been well characterized as transcriptional 

regulators in forming part of the histone deacetylase complex (HDAC) during transcriptional 

repression [48, 50].  

We sought to independently perform co-IP to re-confirm a protein interaction between 

TRIP13 and its MS-identified interaction partners. Despite numerous attempts and optimizing 

Co-IP protocols, a pull down of Sin3A and SAP130 could not be captured from TRIP13-IP 

from HCC cells lines. There could be several biological and technical reasons as to why a co-

IP did not work in here. One feasible biological theory could be that a transient interaction 

between TRIP13+SIN3A/ SAP130 could be taking place at a specific cell cycle phase for 

instance in the M –phase where assembly and disassembly of mitotic complexes have been 

known to mediate this tightly orchestrated process. In light of this hypothesis, by 

synchronizing cells in specific cell cycle phases, we might be able to capture this transient 

interaction between TRIP13+SIN3A/ SAP130. As an evidence to back up this theory, we 

have seen an enrichment of interactions between TRIP13 and SIN3A or SAP130 in the 

nucleus and in mitotic cells undergoing various phases in the M-phase during PLA (Fig. 3.8). 

At a higher magnification of the PLA images, these interaction signals seem to be localized 

around the chromosomes in mitotic cells. Using fluorescent immunocytochemistry, we have 

verified that TRIP13 is predominantly localized in the cytoplasm and around the perinuclear 

region, whilst SIN3A and SAP130 are strictly nucleus- bound (Fig. 3.7). Although we were 

not able to confirm a transcriptional co-regulatory function of TRIP13, our above findings 

seem to suggest a checkpoint-related function resulting from an interaction between TRIP13 

and SIN3A/SAP130. 

In one study looking at the recovery of renal epithelial cells following acute kidney 

injury, the authors showed that TRIP13 played a fundamental role in the recovery phase of 

these damaged cells by modulating p53 activity via its interaction with a p53 cofactor, 

Tetratricopeptide domain 5 (TTCP5) [88]. Under normal basal conditions, TTCP5 was 

predominantly in the nucleus whilst TRIP13 was mainly in the cytoplasm. Under sublethal 

dose of H2O2, TRIP13 was detected also in the nucleus via an importin α/β-independent 

pathway.  Furthermore, an overexpression of TRIP13 with TTCP5 resulted in a redistribution 

of TRIP13 into the nucleus along with a decrease of p53 induction in the nucleus [88]. The 

shuttling of TRIP13 into the nucleus during an interaction with SIN3A/SAP130 might be in 

agreement with our PLA results in Fig. 3.8. It would be interesting to test whether there is 

indeed a shuttling of TRIP13 between the cytoplasm and nucleus in response to the following 

scenarios: an acute hepatic stress injury (eg. Partial Hepatectomy), chronic stress like the  
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administration of heptotoxins (eg. Tetrachloride CCL4, which does not induce genotoxic) or 

in response to an overexpression of interactions partners of SIN3A/SAP130.  

 

4.2.2 Depleting of SIN3A reverses the growth impairment of TRIP13-depleted cells  

TRIP13 expression is upregulated in several different kinds of cancers; however the 

functional annotations of its pro-proliferative roles are still unclear. The cancer related roles 

of SIN3A are similarly controversial due to its role as an oncogene in breast cancer whilst 

being separately reported to act as an antagonist against the proto-oncogene c-MYC [53-56]. 

We were curious to investigate the biological relevance of an interaction between TRIP13 

and its interaction partners of SIN3A and SAP130 in the context of liver cancer.  Much to our 

surprise, we observed a stark rescue in the proliferation defect of siTRIP13 KD cells when 

we concomitantly depleted SIN3A or SAP130 (Fig. 3.9). Due to the overlapping functions of 

SAP130 ascribed mainly via its binding to SIN3A, we decided to focus on SIN3A in order to 

reduce the complexities during further experiments. What was remarkable in these cells that 

were depleted of both TRIP13 and SIN3A was that the DNA damage marker, p-γH2AX 

remained high (marginally less than TRIP13-KD cells), whilst these cells appeared 

phenotypically normal with almost no signs of DNA fragmentation when counter-stained 

with DAPI (Fig. 3.20). This was in stark contrast against the DNA-damage response 

consistently observed during TRIP13 depletion, not only in our context of liver cancer but 

also in other cellular systems for instance in head and neck cancer, breast cancer and during 

ischemia injury of the kidney [88, 45, 28].  

In this scenario, we imagine an antagonistic interaction between TRIP13 and SIN3A 

on an unknown master regulator that plays a central role in signalling output. Under this 

regulator, cells are either committed for recovery or to progress towards cell death in 

response to severe DNA damage. A downregulation of growth promoting factors like c-

MYC, EGFR and downstream targets of the mTOR-signalling pathway (Fig. 1.9; Fig. 3.10) 

in TRIP13-depleted cells was reversed when both TRIP13 and SIN3A were concomitantly 

depleted. The relevance of these pathways in accounting for the reversal of proliferation 

defect in double KD of TRIP13+SIN3A are being discussed in the next sections below.  

Recently, fundamental questions regarding how TRIP13 recognizes and remodels its 

target-substrate/complexes has been unveiled in some studies. Through X-crystallography, it 

was demonstrated that the N-terminal domain (NTD) of TRIP13 is responsible for the 

binding of substrates or adaptors, for instance p31
comet

, which acts together with TRIP13 in 

silencing the mitotic checkpoint complex (MCC) [63]. In head and neck cancer, the ATPase 

domain of TRIP13 has been demonstrated to be vital in conferring its oncogenic properties 

during tumour growth [45]. In lieu of these findings, it would be of interest to use site-

directed mutagenesis to generate mutants in the NTD and/or ATPase domain of TRIP13 to 

probe for domain-interactions with SIN3A and downstream targets or pathways that would 

be altered. These results would be informative in providing more mechanistic basis for the 

interactions between TRIP13 and SIN3A and how this in turn translates to our observation of 

growth revival of HCC cells upon depletion of both factors.  
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4.3 Role of the oncogene c-Myc in liver cancer 
 

The proto-oncogene c-MYC is a ubiquitous transcription factor that regulates 

important aspects of biological functions including cell cycle progression, DNA replication, 

cell proliferation, growth, differentiation and apoptosis [97-99]. c-MYC is frequently 

upregulated not only throughout the progression of liver carcinogenesis but recently also 

implicated with chronic liver disease like alcoholic liver diseases,  viral hepatitis and liver 

fibrosis/cirrhosis [100]. Through the use of various experimental murine models of HCC 

including transgenic mouse models overexpressing c-MYC, this proto-oncogene has been 

demonstrated to be essential in HCC development [reviewed in 100]. Studies with c-MYC 

are of great clinical interest as high c-MYC levels along with p53 inactivation are an 

indicator for poor prognosis and early cancer recurrence in HCC patients [74,101].  

 

4.3.1 Possible cross talk between TRIP13 and c-MYC signalling pathways? 

Given the importance of c-MYC during liver regeneration and HCC tumourigenesis, 

we were intrigued by the possibility that c-MYC inactivation might account for the 

proliferative arrest and massive cell apoptosis upon TRIP13-depletion (Fig. 3.10). The 

decrease in c-MYC expression and its downstream target Cyclin D1 (CCND1) were 

consistently decreased in HLF and Huh7 cells upon TRIP13 KD. Interestingly, there was a 

partial restoration of the c-MYC levels, which coincided with the revival of cell proliferation 

when being depleted of both TRIP13 and SIN3A (Fig. 3.10).  

In order to test for the relevance of the c-MYC oncogene in here, we overexpressed 

(OE) a full-length human c-MYC protein and observed a partial rescue of growth defect and 

decrease in cell death in TRIP13-depleted cells (Fig. 3.15). Given that TRIP13-depleted cells 

were arrested in G2 phase of cell cycle, it would be informative to study the cell cycle profile 

of these TRIP13 KD cells that are growth revived upon OE of c-MYC. These findings 

support the hypothesis that a deregulation of c-MYC and its target genes might have resulted 

in changes in important cellular outcomes in terms of cell viability and proliferation as seen 

in cells depleted of TRIP13 or SIN3A or both.  

c-MYC has been described to be essential during hepatocyte regeneration after partial 

hepatectomy (PHX), it would be interesting to explore a possible interaction or cross talk 

between c-MYC and TRIP13 during proliferation under this context. As shown previously, 

TRIP13-depleted livers were significantly impaired during hepatocyte regeneration after 

PHX (Fig. 1.6). Further experiments to investigate if overexpressing c-MYC could rescue the 

regenerative defect of TRIP13-depleted livers after PHX will allow us to examine for a 

possible cross talk between TRIP13 and c-MYC. Concurrently, an overexpression of TRIP13 

with or without the co-expression of c-MYC during PHX and in mice models for HCC would 

be definitely insightful to probe for this possible cross talk. 

Due to the central role that c-MYC plays in regulating various aspects of cellular 

functions and in cancer, it is hardly surprising that an altered expression of this oncogene 

leads to deregulation of a large number of target genes that are consequently essential during  
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tumour growth. In order to look for novel Myc target genes during lymphomagenesis, 

Marinkovic, D.et al [89] used murine B and T lymphoma cells line that has been transformed 

with a conditional Myc-allele [89]. True indeed, the list of Myc target genes as identified via 

microarray analysis revealed essential functions ranging from cell proliferation, 

differentiation, signalling, metabolism, and protein synthesis to DNA repair [89]. Trip13 was 

found to be one of the 88 Myc-target genes in this list and was being categorized under the 

function of cell signalling [89].  We have separately verified from a “Champion ChIP 

transcription factor search portal” that TRIP13 contains 2 c-MYC binding sites (E-boxes 

sequences) in its 5’UTR promoter region. Recently in 2017, TRIP13 was identified to be an 

oncogenic factor in human chronic lymphocytic leukemia (CLL) [84]. The authors further 

proposed that c-MYC promotes TRIP13 expression by directly upregulating its 

transcriptional activities in CLL cells [84].  

 

4.3.2 A possible TRIP13- c-MYC-SIN3A axis in HCC? 

Coming back to our findings in the context of HCC, we do not exclude the possibility 

that the relationship between TRIP13 and c-MYC could indeed be acting bidirectional. In 

terms of transcriptional regulation, an overexpression of c-MYC commonly seen in liver 

tumours could well result in a transcriptional activation and upregulation of TRIP13 in 

tumour cells. On the other hand, the depletion of c-MYC consistently seen in TRIP13-

depleted HCC cells suggests that TRIP13 could similarly act in a feed-forward loop in here to 

maintain c-MYC expression in oncogenic cells. In addition to the above, there exist also the 

possibilities that the relationship/interaction between TRIP13 and c-MYC is mediated 

indirectly via other interacting factors or complex assembly.  It is well appreciated that Myc 

possess a large interactome, where Myc can be recruited through protein-protein interactions 

to the promoters of specific gene targets [90] whilst the recruitment of different effectors has 

been shown to affect the protein stability of Myc itself [90, 91]. Chromatin-

immunoprecipitation (ChIP) and dual luciferase reporter assays should be performed in order 

to test for this possible transcriptional regulatory relation between TRIP13 and c-MYC. 

SIN3A has been originally identified to be a co-repressor, associated to Myc-

antagonist of Mad-Max heterodimer in inhibiting Myc target activities [53-55]. The 

recruitment of the Sin3A/HDAC complex was shown to directly antagonize c-Myc activity 

via deacetylation and destabilization of the c-Myc protein [54, 92]. In light of we have 

observed, where there is a partial restoration of c-MYC and cell proliferation of TRIP13-

depleted cells upon simultaneous deletion of SIN3A, it seems plausible that TRIP13 and 

SIN3A exert opposing effects on c-MYC activity. SIN3A depletion alone results in no 

observable decrease in cell proliferation or c-MYC levels, suggesting that the ability of 

SIN3A to exert its destabilizing effects on c-MYC depends on the absence of TRIP13. In this 

model, we speculate that the interaction between TRIP13-SIN3A prevents SIN3A from 

complex formation with HDAC associated co-factors and subsequent deacetylation and 

degradation of c-MYC. TRIP13 depletion releases SIN3A to exert its repressive effects on c-

MYC, resulting in inhibition of c-MYC activities like cell growth, proliferation and  
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expression of growth related factors like EGFR and Cyclin D1.  Further studies to investigate 

whether an overexpression of SIN3A in the presence/absence of TRIP13 would affect the de-

acetylation levels and stability of c-MYC; along with promoter assay of c-MYC or c-MYC 

target genes would be necessary to reveal this functional relevance of a cross talk between 

TRIP13-SIN3A and c-MYC. Alternatively, overexpressing a c-MYC mutant (expressing a 

mimic of constitutive-acetylation for instance by replacing lysine with glutamine) would also 

allow us to test the functional relationship between TRIP13 and SIN3A and the consequent 

effects on c-MYC activities.   

 

4.4 The relevance of EGFR signalling pathway during liver homeostasis 

and tumourigenesis 

Several losses of function studies have highlighted the important role of EGFR during 

liver regeneration after partial hepatectomy (PHX). In these studies using mice with 

hepatocyte-specific knockout or expression of a dominant negative mutant version of EGFR, 

an impairment of hepatocyte proliferation upon acute liver injury or after PHX were 

consistently reported [93, 94, 95].  In human HCC, overexpression of EGFR occurs in more 

than 68% of patients being detected with aggressive tumours, metastasis, and poor clinical 

outcomes [102-104].  

We first observed a remarkable decrease in EGF receptor and receptor activation 

(EGF stimulation) across all HCC cells lines being investigated during TRIP13 depletion 

(Fig. 3.3). Concomitantly, a decrease in activation/phosphorylation of key factors along the 

mTOR-signalling pathway with the likes of S6K, eIF4B, 4E-BP1, cyclin D1 was seen. EGFR 

dual luciferase reporter assay further suggested that EGFR expressions could have been 

regulated by TRIP13 (Fig. 3.4). The preliminary conclusion that we first drawn were that the 

decrease in EGF-mTOR signalling could have been responsible for the proliferation defect 

seen during TRIP13-depletion. To investigate this, we decided to first test for the functional 

relevance of EGFR in HCC cells. Much to our dismay, a siRNA-mediated depletion of EGFR 

resulted only in a minor proliferation defect in HCC cells (Fig. 3.5). These minimal effects 

question the hypothesis that the EGFR signalling pathway plays a central role in regulating 

cell proliferation under our framework with TRIP13. Further pointing us away from this 

direction was the fact that EGFR expression was not upregulated in an expression array from 

a cohort of HCC patients in Heidelberg (Fig. 3.6). The overexpression of TRIP13 was 

nonetheless detected across all samples from CLD and HCC patients where we then saw a 

negative correlation between TRIP13 and EGFR expression (Fig. 3.6). 

EGFR inhibitors such as gefitinib, erlotinib or lapatinib, which also inhibits ErbB2, 

have been successful in the treatment of HCC in animal models and in other human tumours 

such as non-small cell lung carcinoma. Surprisingly, the use of EGFR inhibitors has shown 

only limited success in HCC patients during clinical trials [105, 106, 107].  Furthermore, it 

was shown that EGFR plays distinct roles in hepatocytes vs Kupffer cells during HCC 

development [94]. A hepatocyte specific depletion of EGFR was shown to promote tumour 

growth whereas a deletion of EGFR in the kupffer/macrophages in the liver reduced HCC  
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growth in mice [94]. Interestingly, the authors further propose that EGFR positive 

macrophages (in the tumours) and not EGFR positive HCC cells provided prognostic values 

for overall survival in patients [94].  

In light of the above findings, it might not come as a surprise that we observed 

minimal effects on HCC cell proliferation upon depletion of EGFR alone. Many other growth 

factors or their receptors are similarly deregulated in HCC and could directly or indirectly 

influence EGFR signaling. A compensatory increase in hepatic growth factor/c-MET 

signaling has been demonstrated during EGFR inhibition, possibly to compensate for the 

impaired hepatocyte proliferation [95]. It seems that simultaneous targeting of several growth 

factor pathways was necessary in here in order to exclude possibilities of functional 

redundancies amongst signals involved during hepatocyte regeneration and carcinogenesis. In 

order to further verify the relevancy of EGFR signaling in our context, it would be notable to 

molecularly dissect and characterize the various HCC cell lines (the different oncogene gene 

mutations, EMT status etc.) before deciding on the appropriate combinations of receptor 

tyrosine kinases (RTK) inhibiting-strategies to study during hepatocarcinogenesis.  

As we do not have evidence to prove a direct interaction or promoter binding between 

TRIP13 and EGFR, the decrease in EGFR levels upon TRIP13 depletion could well have 

been secondary effects on gene expression upon DNA damage checkpoint inductions. It has 

been well described that changes in global gene expression in response to checkpoint 

inductions may derive either directly from gene transcriptional regulation or indirectly due to 

effects secondary from cell synchronization (resulting from growth arrest) [111-113]. In this 

case, it would be important to distinguish whether TRIP13 indeed exerts a direct effect on 

EGFR levels or these are simply unspecific changes secondary to growth arrest.         

 

 

4.5 The role of TRIP13 in DNA damage repair pathway and the 

implications in liver diseases and tumourigenesis 
 

 

 4.5.1 YAP as a regulator of TRIP13 in CIN signatures 

 

Chromosomal instability (CIN) represents a persistent hallmark of human solid 

tumours [37, 38]. Genetic alterations and genomic instability have long been recognised as a 

common feature between human chronic liver disease (CLD) and liver cancer [41, 66]. It was 

not until recently in 2017 that the molecular mechanisms linking this progression from 

increased hepatocyte regeneration (in CLD) to eventual liver tumourigenesis has been 

revealed [20, 39]. The authors proposed that Caspase 8 mechanistically links the increase of 

hepatocyte apoptosis during compensatory proliferation in CLD to later HCC development 

[20]. In the second study, the authors reported that a collective gene signature, termed the 

CIN25, stratified HCC patients with poor survival and early cancer recurrence [39]. The YAP 

protein, which forms part of the Hippo signalling pathway was found to be essential in 

regulating the expression of this CIN25 signature in HCC.   
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As introduced in section 2.2, TRIP13 was identified as one of the top 25 ranked CIN 

signature genes (CIN25) along with FOXM1 and MAD2L1, which were induced by an 

overexpression of YAP in liver tumour cells [39]. Indeed, we have seen a corresponding 

decrease in TRIP13 and EGFR levels upon YAP depletion in HCC cells (Fig. 3.18) It is 

feasible that the YAP/FOXM1 is regulating downstream target genes including TRIP13 in 

accounting for chromosomal instability seen in HCC patients displaying CIN25 signatures 

[39].  

 

4.5.2 TRIP13 in DNA damage and repair pathway 

 

In SCCHN, high expression of TRIP13 was shown to be the main mechanism through 

which chemoresistance develops as these tumour cells have an enhanced ability to repair 

DNA damages acquired during the genotoxic assaults [45].  

Our observations are in line with what has been reported of TRIP13 as a regulator 

during DNA damage repair [45, 88]. Firstly, we noted a remarkable upregulation and an 

essential role of Trip13 during hepatocyte regeneration post PH. Secondly; TRIP13 depletion 

resulted in severe proliferation defect and DNA damage in HCC cells. The plausible 

relevance of Trip13 under this chronic cycle of inflammation-necrosis-regeneration was 

further demonstrated by its upregulation in mouse and human CLD and across all etiologies 

of human HCC from our data. What these previous papers [45, 88] did not address however 

was the oncogenic pro-proliferative aspect that TRIP13 exerts. Besides indirectly 

recapitulating the regulatory role of TRIP13 during DNA repair in CLD and HCC, we have 

observations that suggest a DNA repair-independent role of TRIP13 during cell proliferation. 

A decrease in c-MYC along with growth promoting factors like EGFR and Cyclin D1 

suggest that TRIP13 could be directly or indirectly involved in signalling pathways that 

determine cell proliferation. Furthermore, there was no rescue of proliferation defect in 

TRIP13-depleted cells when the major DNA damage response (DDR) and DNA repair 

pathway mediated by ATM was blocked in Fig. 3.19D. In the same direction, a remarkable 

reversal of proliferation defect in TRIP13-depleted cells upon concomitantly depleting 

SIN3A was observed, albeit the persistence in high levels of DNA damage markers of p-

γH2AX and cleaved-PARP (lower level than TRIP13KD alone).  

On a separate note as mentioned in section 4.4, we discussed the possibility of 

changes in gene expression, which could be mediated directly via transcriptional regulation 

or indirectly due to checkpoint activation in response to DNA damages [111-113]. 

Performing global transcriptome profiling on HCC cells arrested in different cell cycle phases 

would be necessary to distinguish whether the changes in gene expression of c-Myc, EGFR, 

etc. that has been observed upon TRIP13 depletion are indeed specific effects or secondary 

effects to growth arrest in specific cell cycle phase (for instance in G2).     

Nonetheless, our current findings suggest that the increase in DNA damage during 

TRIP13 depletion alone was not sufficient to explain the severe proliferation impairment in 

HCC cells. It is likely that a continuous activation of signalling cascades associating with cell  
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proliferation and survival is pivotal during tumourigenesis, where the reversal of malignant 

phenotypes occurs when these central pathways are targeted.  

In this scenario, we imagine a possible cross talk between c-MYC, p53 and TRIP13. 

A high expression of TRIP13 and c-MYC commonly observed in human cancer increases 

cell proliferation by accelerating mitotic progression, leading to increased frequencies of 

mutations, replication errors and subsequent genomic instability in these cells [114]. Most 

cells entering cell cycle with DNA damage are expected to die due to arrest responses 

orchestrated by p53.  Interestingly, TRIP13 was shown as an antagonist against p53-induced 

cell death activities during the recovery phase of damaged renal epithelial cells [88]. 

Upregulated expressions of c-MYC coupled with inactivation of p53 are indicators for poor 

prognosis and early cancer recurrence in HCC patients [74,101]. In this instance, a random 

mutational inactivation of p53 or an antagonist against p53 (for instance TRIP13) might just 

create a highly tolerable environment whereby cells overexpressing c-MYC and TRIP13 can 

both drive mitotic progression and cell proliferation in spite of gross chromosomal 

abnormalities. 

 

 

4.6 Concluding remarks and outlook 

A role of TRIP13 during liver regeneration and liver cancer has not been previously 

descripted and would serve as an interesting basis to further understand the link btw CLD and 

subsequent HCC development. This brings us to the next question as to why an upregulation 

of TRIP13 during CLD and HCC seems essential under this hyper-proliferative state. From a 

functional point of view, the induced expression of TRIP13 might be a compensatory 

mechanism acquired by the cells in an attempt to maintain genomic stability by repairing 

DNA damages from an aftermath of rapid proliferation. As shown in head and neck cancer, 

TRIP13 preferentially adopts a non-homologous end-joining (NHEJ) pathway during DNA 

repair, which is a form of repair requiring less DNA fidelity (no DNA template required) and 

results in frequent DNA mismatches [45]. Together with the proliferation-promoting 

oncogenic role of TRIP13, which has been illustrated throughout our findings, these two 

TRIP13-dependent roles could set the fertile ground for eventual cellular transformation to 

occur in hepatocarcinogenesis and other cancers. 

The interesting observation from SIN3A, identified as a TRIP13-interaction partner, 

when concomitantly depleted reverses the proliferation defect in TRIP13-depleted cells is 

exciting as it reveals a potential aspect of regulation between HDAC co-factors and 

oncogenes. These finding needs to be further validated in in vivo settings during HCC 

tumourigenesis in order to accurately reflect the functional relevance of an interaction 

between TRIP13 and SIN3A. It would be interesting to observe whether these proliferation 

rescued cells (TRIP13+SIN3A depleted) are still able to sustain cell proliferation in spite of 

an accumulation of massive DNA damage or whether these DNA damages could be 

eventually resolved over time. 
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To further probe for a novel cross talk between TRIP13 and c-MYC, it would be 

critical to first determine whether this cross talk occurs on a transcriptional level or post-

transcriptionally. A dual luciferase reporter assay couple with ChIP and protein stability/half 

life test would be one of the few ways to test this out. Once this mechanistic interaction has 

been figured out, it would be noteworthy to bring this further onto in vivo studies. A plethora 

of studies have been conducted using various transgenic mice models overexpressing c-MYC 

to study HCC. A mice model with an inducible-overexpression of c-MYC specifically in 

hepatocytes [108, 109] would be extremely valuable to enable us to test this hypothesis of a 

signalling/interaction axis of TRIP13-c-MYC-SIN3A. In an orthotropic HCC implantation 

study, the ability of c-MYC overexpression to reverse the proliferation impairment of 

TRIP13-depleted HCC cells could be examined both spatially and temporally.   

Given that TRIP13 forms part of the CIN25 signature during HCC, it would serve as a 

good biomarker during early screening of patients especially those from a high-risk group 

(with cirrhosis or present with a history of CLD background) as a preventive measure against 

HCC.  

Furthermore, the expression of TRIP13 along with a predefined set of biomarkers for 

instance the CIN25 signatures, c-MYC; p-53, etc. might serve to better stratify patients for 

treatment options and prognostic outcomes. c-MYC currently represents an undruggable 

target as transcription factors do not harbour enzymatic activities or domains that could be 

pharmacologically targeted with small molecule inhibitors. TRIP13 might represent an 

alternative druggable target in here to disrupt cross talks with c-MYC or to deplete c-MYC 

levels, resulting in loss of function of relevant downstream target genes. A potent and 

selective small molecule inhibitor against p97, a member of the AAA
+
-ATPase family has 

been recently demonstrated to display antitumour activities across a broad range of solid 

tumour models [110]. TRIP13, being a member of the same family could similarly represent 

a novel and unique druggable target for HCC and other cancer entities.   
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5 Material and Methods 
 

5.1 Methods 
 

5.1.1 Cell culture 
 

5.1.2 Cell lines  

Human hepatocellular carcinoma (HCC) cell lines of HLF, Huh7, HepG2 and Mouse HCC 

cell lines of Hepa1-6 were used. A non-transformed Mouse liver cell line of AML12 was 

used to test for oncogenic properties of Trip13. The cell line identities have been separately 

verified to ensure that no cross contaminations between different cell lines have occurred. 

HLF cells were a kind gift from Dr. Iryna Ikavets; Huh7, HepG2 and AML12 were 

obtained from ATCC. 

 

5.1.2 Cultivation of cells  

All cells were cultured in 10 cm-plates in 10 ml of high-glucose DMEM supplemented with 

10% heat-inactivated FBS and 1% of penicillin/streptomycin all from Gibco in a humidified 

incubator at 37°C with 5% CO2. For normal cell line maintenance, fresh media was given to 

cells 2 times per week and cells were subcultured once per week when cell confluency 

reaches between 80%-90%.  

For subculturing, cells were first washed with 5 ml of DPBS (Gibco) to remove residual 

culture media and serum before being detached from the cell culture plate using 1 ml of 

0,05% Trypsin (Gibco) between 3-5 mins incubation in the 37°C incubator. The 

trypsinization step was stop by resuspending cells in 10 ml of full DMEM media + FBS. The 

resuspended cells were centrifuged for 3 mins at 500 x g, resuspended in 10 ml of fresh 

culture media and 1 ml of this cell suspension was reseeded into a 10 cm dish. Cell 

morphology was assessed in an inverted light microscope (Olympus).   

To seed cells into different cell culture dish formats for experiments, 10 μl of cell suspension 

was taken from the last step of the cell resuspension and mixed with 10 μl of trypan blue 

solution. Cells were then counted manually using either a Neubauer cell counting chamber or 

using the Countess
TM 

automated cell counter. The cell concentrations were determined and 

the appropriate numbers of cells were seeded according to the surface area of the dishes and 

the purpose of the experiments.  

 

5.1.3 Freezing and thawing of cells  

Cells were trypsinized as described in the section above. After cells were counted and cell 

concentrations were determined, cell densities were adjusted to 2x10
6
 cells /ml by dilution 

with an appropriate volume of cell media. Thereafter, a freezing media mixture consisting of 

a final concentration of 40% FBS, 10% DMSO and 50% full DMEM media containing 1x10
6
 

cells were aliquot in a volume of 1 ml into cryogenic vials. These vials were then put into a 

Mr Frosty
TM

 freezing container (ThermoFischer Scientific) overnight in -80°C to allow cells 

to gradually cool down to freezing temperatures.  
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The following day, one cryovial of cells were taken out from -80°C to be thawed to test for 

cell viability after freezing before this batch of frozen cells are transferred to the liquid 

nitrogen tanks. During this cell thawing process, one frozen cryovial is thawed in the 37°C 

water bath for 1-2 minutes before being transferred into a falcon tube containing 9 ml of full 

DMEM media. The cell suspension is centrifuged for 3 mins at 500 xg to remove the DMSO 

freezing media before being resuspended in 10 ml of full DMEM media for plating in a 10 

cm dish.  

 

5.1.4 siRNA and plasmid transfections 

An overview of all the plasmids and Target-on pooled siRNA oligos (Dharmfect) used 

throughout the thesis is outlined in the material section. One day prior to cell transfection at 

D0, cells were trypsinized and seeded into either 6-well or 12-well plates as described in 

5.1.2. Cells were resuspended and plated in antibiotic-free full DMEM media to reach a 

confluence of 60-70% the next day for transfection.  

Target-ON plus siRNAs (Dharmafect) ordered in the format of lysophilized salt are 

reconstituted using 1x siRNA buffer (Dharmafect) into a stock concentration of 50μM. The 

siRNA oligo tubes were spin briefly before being resuspended in an appropriate volume of 

buffer, placed on a shaker at 300rpm for 30 mins at RT before being aliquoted into 10 μl 

volumes for long term storage in -20°C or -80°C.   

siRNAs were then further diluted in 1x siRNA buffers into working stocks of 5μM before 

being used at a final concentration of 25nM during transfections. During double siRNA 

transfections, the final amount of siRNAs used was titrated with the NTC siRNA to ensure 

that all groups received an equal amount of siRNAs. The set up of a transfection reagent mix 

using siRNAs is shown for a 12-well culture dish in table 1 , which was similarly applied to a 

6-well culture dish by multiplying every volume by a ratio of 2. Components in tube A and B 

were assembled separately and incubated for 5 mins at RT. The two tubes were then 

combined and incubated at RT for 20 mins before being added drop wise to the culture 

media. For every transfection set up, one well of cells would be transfected with a NTC 

siRNA that has been coupled with a GFP tag to assess for RNAi transfection efficiency in 

this particular experiment. After an incubation of at least 7 hours at 37°C, the transfection 

reagent was removed from the cells and replaced with fresh antibiotic-free full DMEM media 

for overnight incubation. Cells were either trypsinized the next day and reseeded in 96-well 

plates for cell-based assays or further cultured for 72 hours for RNA and protein extractions 

Transfections with plasmids were performed following the same set up as shown in the below 

table, except where plasmids are used in a final amount of 500ng and lipofectamine 2000 

(Invitrogen) was used instead of RNAi max (Invitrogen) reagent. As a control for DNA 

transfection efficiency, one well of cells was transfected with an enhanced-GFP empty 

plasmid vector.      
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  Table 1: Set up of siRNA transfection regents for cells seeded in a 12 –well dish 

 

 

 

5.2 Cell-based assays 
 

5.2.1 Cell counting kit-8 (CCK8) 

Cell numbers and cell viability was assessed using a CCK8 reagent from Sigma-Aldrich. This 

is a highly sensitive enzyme-based colorimetric assay, which makes use of water–soluble 

tetrazonium salts called WST-8 to assesses cell viability during proliferation and cytotoxicity 

assays. WST-8 is bioreduced into an orange-coloured formazan dye by cellular 

dehydrogenases; therefore the amount of formazan produced is directly proportional to the 

number of viable cells.  

During the initial optimization of assay conditions for using the CCK8, a serial cell dilution 

process was performed and it was determined that 5000 cells/well during seeding was the 

optimum cell seeding number for all HCC cell lines over a course of 4 days of growth assay. 

Due to the slower growth rate of AML12 cells, 8000 cells to be seeded per well was 

necessary in order to achieve a good correlation between absorption readings and viable cell 

numbers. One day after transfection, cells were trypsinized and 5000 cells in 100 μl 

volumes/well were seeded into 96-wells for different cell-based assays. At least 4 repeats 

were seeded per experimental conditions and cells were pre-incubated overnight to regain cell 

viability prior to the CCK8 assay the next day. 10 μl of CCK8 was added to each 96-well 

(cells incubated in 100 μl of cell media) and incubated for colour development at 37°C with 

5% CO2. HLF, Huh7 and Hepa1-6 cells were incubated for 2.5 hours whilst AML12 and 

HepG2 were incubated for 3 hours for colour development before the readings for absorbance 

were taken at 450nm. 

Due to the low cytotoxicity of the CCK8 reagent, the same cell wells can be used repeatedly 

for cell proliferation measurements over the entire course of the experiment. The existing 

CCK8 reagents are removed from the wells, washed once in 1x PBS before 100 μl of fresh 

cell media is added to each well for repeated cell number measurements over the next days.   

 

5.2.2 BrdU cell proliferation assay 

Cell proliferation was measured using the BrdU cell proliferation ELISA kit from cell 

signalling. This assay kit detects the amount of the base analog, 5-bromo-2’deoxyuridine 

(BrdU) that is being incorporated into the cellular DNA during cell proliferation by using an 

anti-BrdU antibody, therefore providing a direct indication of cell proliferation.  

 Tube A Tube B 

Reagents siRNA (5 μM) Opti-MEM RNAi max reagent  Opti-MEM 

1 x 5 μl 95 μl 4 μl 96 μl 
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At D3 post transfection, the BrdU labelling reagent from the kit is added at a dilution of 

1:1000 (10 μM) to cells previously seeded in 96-well plates and cells are returned to the 

incubator for 4 hours at 37°C with 5% CO2. After removing the BrdU labelling medium, the 

cells are fixed and DNA denatured at 30 mins RT using 100 μl/well of the fixing/denaturing 

solution as provided. The Mouse BrdU detection antibody is then diluted 1:100 in the 

antibody diluent provided and 100 μl/well is added and incubated for 1 hr at RT. The cells 

were then washed 3 times with 1x of wash buffer as provided before being incubated for 30 

mins at RT with the anti-Mouse HRP conjugated Mouse antibody (diluted 1:100 in antibody 

diluent). Finally, cells were washed for 3 times with 1x wash buffer and 100 μl/well of HRP 

substrate TMB is then added for colour development for 30mins at RT in the dark. The 

colour development is stop by adding 100 μl/well of STOP solution. The absorbance is read 

at 450 nm where the magnitude of the absorbance provides a direct indication of cell 

proliferation in each well.  

 

5.2.3 Apoptosis detection assay  

The Apo-ONE
®
 Homogeneous Caspase-3/7 Assay from Promega was used to measure the 

amount of active caspase-3/7 present in cells being subjected to different experimental 

treatments. This assay includes a profluorescent caspase-3/7 consensus substrate, Z-DEVD-

R110, which upon cleavage of the C-terminal Aspartate residue of this peptide sequence by 

caspase-3/7 produces a fluorescent product that is indicative of the active caspase levels in 

the sample. 

The Apo-ONE
®
 Caspase-3/7 reagent was prepared by diluting the provided substrate 1:100 

with the buffer to obtain a volume of 50 μl/well in a 96-well plate. To obtain a 1:1 ratio of 

substrate reagent to sample volume, 50 μl of the culture medium was removed from each 96-

well cell culture sample. 50 μl of the prepared Caspase-3/7 reagent was then added to each 

well containing 50 μl of cells in culture and cells were lysed and homogenized on a shaker at 

400 rpm for 15 mins. The samples were then further incubated for 4 hrs at RT in the dark to 

allow for the Caspase 3/7-enzymatic reaction to proceed. Once the incubation period was 

over, the Caspase 3/7 activities from each well were measured at a fluorescence excitation 

wavelength of 495nm and emission wavelength of 525nm. The results from the assays were 

plotted as relative fluorescence units (RFU) to indicate the activity levels of caspase3/7 in 

that sample condition.   

  

5.2.4 Immunohistochemistry (IHC) fluorescence staining  

Intracellular localization of different protein targets was verified using the IHC fluorescence 

staining protocol as outlined below. HLF, Huh7 and HepG2 cells were first trypsinized and 

seeded at a density of 2x10
4
 cells/well in a 8-chamber Labtech Microscopy Slide and 

incubated overnight at 37°C with 5% CO2. The following day, cell medium was removed 

and cells were washed once with cold PBS before being fixed with 4% formaldehye/PBS for 

10 mins at RT. Cells were then permeabilized with 4%formaldehyde/0,1% Triton-X in PBS 

for 5 mins on ice. Thereafter, cells were washed 4 times for 2 mins each in PBS before being 

blocked in 5%BSA/10%FBS/PBS for 1 hr, shaking at RT.  After the blocking step, primary  
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antibodies that have been diluted in blocking solution are added to cells and incubated in a 

humidity chamber overnight at 4°C. 200 μl/well of reagents were used for every step except 

when 100 μl/well was used during the primary antibody incubation step. The next day, the 

primary antibodies were removed and cells were washed 3 times with PBS for 5 mins each. 

The corresponding secondary antibodies coupled with either Alexa-Fluor
®
 488 or 555 were 

added to cells for 1 hr at RT protected from light. Finally, cells were washed thrice for 5 mins 

with PBS before being mounted in DAPI-VectaSheid with microscope coverslip and the 

edges of the slides are then sealed with nail vanish. Microscopic slides were store at 4°C in 

the dark before being imaged using the Olympus confocal microscope FV1000 under the 

GFP, FITC and DAPI channel. Cells were imaged at a thickness of 5 μM either with a 20x air 

or a 40x oil-immersion objective. Using the Olympus fluoview software, the maximum 

projection Z-stacks were merged thereafter for image analyse. 

 

5.2.5 In situ Proximity ligation assay (PLA)  

DuolinkTM in situ reagents from Sigma Aldrich was used in order to perform the in situ PLA 

to verify for intracellular interactions between TRIP13 and its MS-identified interaction 

targets of SIN3A and SAP130 in fixed HCC cell culture samples. The interaction between 2 

proteins is detected using 2 corresponding antibodies raised in different species. Species-

specific secondary antibodies (species-specific PLA probes that are conjugated with a unique 

short sequence of DNA) then bind to the primary antibodies. When the two (plus and minus) 

PLA probes are in close proximity (< 40nm), these DNA strands can interact through a 

subsequent addition of 2 circle-forming DNA oligonucleotides. A fluorescent signal is then 

generated during the incorporation of fluorophore-labelled complementary oligonucleotide 

probes during further amplifications of the DNA circle. Therefore each fluorescent spot 

represents a single interaction that can be quantified and assigned to a specific cellular 

localization during confocal imaging.  

A brief outline of the PLA protocol optimized for HLF/HUH7 is as follows: 

1. Seeding and processing of cells in chamber slides                                               

The process from seeding of cells into chamber slides (8-well) overnight; fixing, 

permeabilizing and blocking for 1 hr at RT are exactly as what was performed during 

immunofluorescence staining in section 5.2.4.  

2. Adding Primary antibodies for use in PLA                                                         

These antibodies for use in PLA must be raised in different species. For this reason the 

following combinations of antibodies were used: TRIP13 (Rabbit)+SIN3A (goat); 

TRIP13(R)+SAP130 (G) and SIN3A(R)+SAP130 (G) to detect for interactions between 

these proteins under investigations. lgG from the same isotypes and antibodies from the 

same species were used for negative controls. TRIP13 was diluted 1:100, Sin3A 1:50 and 

SAP130 1:100 in blocking solution. 50 μl of antibodies diluted in blocking solution was 

added to each of these chamber wells and the wells were sealed with a parafilm before 

being incubated overnight at 4°C in a humidity chamber. 
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3. Adding PLA plus and minus probes       

All washes are done at RT with gentle shaking unless otherwise specified. The next day, 

the primary antibodies were removed and cells were washed for 3 x 5 mins in PBS. 

Rabbit PLA plus and Goat PLA minus probes are used in here. The two PLA probes are 

diluted 1:500 in the PLA diluent as provided, added at a volume of 50 μl per well and 

incubated for 1 hr at 37°C in a humidity chamber. 

4. The chamber gaskets that are separating the wells from each other in the chamber slides 

can now be removed. A PAP pen is used to mark around each cell-well area and all 

subsequent washes are done in Coplin jars. Slides are then washed 2 x 5 mins in PBS to 

remove the residual PLA probes.  

5. Ligation step (For ligase to add DNA nucleotides to the two PLA probes that will join 

into a circle if these pairs are in close proximity) 

The ligation stock is diluted 1:5 in water to make the ligation solution. Ligase provided is 

diluted 1:40 in this solution and added at 40 μl/well and incubated for 30 mins at 37°C 

for the ligation process to take place. 

6. Rolling circle DNA amplification                               

The ligation mix is removed and slides were washed 2 x 5 mins in PBS. The 

amplification stock was diluted 1:5 in water and DNA polymerase was diluted 1:80 in 

this solution. 40 μl /well of this amplification mix was added and incubated for 100 mins 

at 37°C.   

7. Final washing and mounting of slides 

The amplification mix was tapped off and slides were washed 2 x 5 mins again in PBS 

before being air dried in the dark for 2-3 mins. Slides were mounted with a coverslip 

using DAPI vectashield and stored at -20°C until imaging. 

8. Detection of red fluorescent amplification signals 

Confocal imaging to detect for amplification signals were performed using at least 20x 

magnification objective and using the FITC filter. DNA were stained with DAPI and 

imaged under the ultraviolet excitation/emission filter.  

 

5.2.6 Dual luminescence assay 

 

The GLuc-ON
TM

 human EGFR promoter reporter construct (EGFR-HRP pEZX-G04) from 

Genecopoeia was used in experiments to detect for changes in EGFR promoter activities. 

This dual reporter system uses the secreted Gaussia luciferase (GLuc) as the promoter 

reporter and the secreted alkaline phosphatase (SEAP) as an internal control to enable 

transfection normalization across samples. GLuc and SEAP are both secreted into the cell 

media and can be detected by the secrete-pair
TM

 dual luminescence assay kit without cell 

lysis. This EGFR HRP dual-reporter vector is co-transfected with siRNAs in HCC cells using 

lipofectamine 2000 following transfection protocols in section 5.1.2. Cell culture media were 

collected at 48 hrs and 72 hrs after transfection and stored in -20°C before samples were 

analysed. A 1x assay working solution was constituted with the GLuc substrate, 

coelenterazine, as provided. The assay was set up in a 96-well all-round white opaque plate. 4 

repeats (10 μl) was pipetted from each experimental condition and 100 μl of the 1x working 

assay solution was added and luminescence reading was taken within the first 5 mins of the  
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reaction with the bioluminescent filter of the plate reader. The results are subsequent plotted 

as relative light units (RLU). 

 

 

5.3 Virus work 
 

5.3.1 Lentivirus shRNA vector constructs 

A set of Lentiviral pLKO.1 vectors containing 4 unique 29-mer shRNA constructs against 

human SIN3A was purchased from Origene in the form of dried plasmids (TL301698). The 

scrambled negative control (TR30021) shRNA cassette in the same pLKO.1 plasmid 

backbone was obtained from Origene. These dried plasmids were subsequently reconstituted 

with H2O into a final concentration of 100 μg/μl and transformed into DH5α bacterial cells 

for plasmid amplification. Lentiviral packaging vectors of psPAX2 (Cat. No. 12259) and 

pMDG.2 (Cat. No. 12260) were available in the lab plasmid database that were originally 

obtained from Addgene with the catalogue numbers as stated.     

 

5.3.2 shRNA transfections to pre-select constructs with a good Knockdown 

HEK293T cells were seeded into 6-well plates at 2,5x10
6
 cells/well. The next day, 

transfections with the four different SIN3A specific shRNA constructs were performed using 

lipofectamine 2000 following the transfection protocol in section 5.1.4. At D3-post 

transfection, protein lysates were harvested from cells and immunoblotted to select 2 of the 

shRNA constructs that gave the best SIN3A knockdown. These shRNA plasmid constructs 

were used for subsequent lentivirus production. Prior to lentivirus production, these 2 

selected shRNA constructs were subcloned into another pLKO.1 plasmid vector backbone 

containing Blasticidin resistance also from Origene (TL30032), details are in the molecular 

cloning in section 5.7.    

 

5.3.3 Lentivirus production 

HEK293T cells were seeded into 10 cm plate at an amount of 3.8 x 10
6
 cells/plate. The 

following day, the selected PLKO.1 vectors and packaging plasmids were transfected into 

cells in the following way: 

9 μg of pLKO.1 vector, 9 μg of psPAX2 and 0,9 μg of pMD2.g were diluted into 800 μl of 

Opti-Mem in a 1,5 ml tube for each 10 cm plate. In the second tube, 15 μl of lipofectamine 

2000 was diluted into 800 μl of Opti-Mem. These 2 tubes were separately incubated for 5 

mins at RT before being mixed and further incubated for 25 mins. The plasmid-lipofectamine 

mixture (1600 μl) was then added dropwise to the cells. The next day, fresh media containing 

BSA was given to the cells (Full DMEM+ 10% FBS+ 1.1% BSA) and further incubated at 

37°C in the incubator. 48 hrs after transfection, the cell media (containing packaged viruses) 

was harvested. Media was first centrifuged at 1250 rpm for 5 mins and passed through a 0,45 

uM filter fitted syringe to remove cell debris before being stored at -80°C. Fresh media 

containing BSA was again given to cells to repeat for media harvesting the following day  
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following the exact protocol. Virus supernatant from 48 hrs and 72 hrs post virus packaging 

are pooled and virus titer of supernatant was determined via qPCR to quantify for expression 

of HIV p24 antigen. 

 

5.3.4 Lentivirus titer calculations 

ABM's Lentiviral qPCR Titer Kit (LV900) was used to determine the virus titer from cell 

supernatant collected from above.  2 μl of the cell supernatant was lysed with 18 μl of the 

virus lysis buffer as provided and incubated for 3 mins at RT. The Ct value of this viral lysate 

is used for subsequent calculations to determine the viral titer of the supernatant. A single 

step RT-qPCR reactions are set up in triplicates as follow: 12,5 μl of 2X SYBR green qPCR 

mastermix and 10 μl of reagent-mix are added to 2,5 μl of viral lysate. The qPCR reactions 

for the lentivirus standard 1 (STD1) and lentivirus standard 2 (STD2) are set up in the same 

way by adding 2,5 μl of STD1 or STD2 instead of the viral lysate. The reagent mix provided 

by the kit already contains primers and reagents for reverse transcription of the RNA 

template. The RT-qPCR program is set up like a usual PCR program with the exception of an 

additional RT step at the start. The reactions were ran in the (Thermo Fisher) QuantStudio 6 

Flex Real time PCR system using this program: reverse transcription for 20 mins at 42°C; 

enzyme inactivation for 10 mins at 95°C; 30 cycles of template denaturation for 15s at 95°C 

and primer annealing/extension step for 1 min at 60°C. The virus titer (IU/ml) was calculated 

using this formula:  

Titer of viral lysate = 5 x 10
7
/2

3(Ctx-Ct1)/(Ct2-Ct1)
 

Ctx = Average of 3 Ct values of the unknown viral lysate 

Ct1 = Average of 3 Ct values of STD1 

Ct2 = Average of 3 Ct values of STD2 

 

 

5.3.5 Lentivirus transduction and establishing stable cell lines 

HLF cells were seeded at 2 x 10
5
 cells/well in a 6-well plate with antibiotics-free full DMEM 

media. The next day, 1 ml of fresh antibiotic free media with 8 μg/ml of polybrene was given 

to each well. 1 ml of opti-MEM with 8 μg/ml polybrene plus lentivirus was added at an MOI 

of 5 -20. The next day, cells were given fresh anitbiotics-free media and further incubated. 

After 3-4 days post virus transduction, cells are trypsinized and subcultured into 6 well plates 

for antibiotic selection with blasticidin (2 μg/ml). Cells were further expanded in 10 cm 

plates under constant antibiotic selection process over 2 weeks. In the meantime, a small 

amount of cell lysates are harvested and tested for protein knockdown of SIN3A before the 

cell line is considered to be a stable cell line for SIN3A KD. These stable cells lines 

containing either the control shRNA construct or the SIN3A-targeted shRNA construct are 

frozen and kept subsequently in the liquid N2 tank for long-term storage.  
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5.5 RNA methods 

 

5.5.1 RNA extraction from cell culture samples  

Cells were washed once with cold PBS before being lysed directly on the wells for RNA 

extraction following the typical TRIzol (Sigma) phenol-chloroform extraction method. RNA 

was precipitated from the extracted aqueous organic phase by adding 700 μl of isopropanol to 

every 1 ml of TRIzol added, vortexed vigorously and centrifuged at 13 000 rpm for 30 mins 

at 4°C. The RNA pellet was washed once with 75% ethanol before being air-dried on the heat 

block at 55°C for 5 mins until all residual ethanol has evaporated. The RNA pellet was 

reconstituted into 50 μl of RNase free H2O and placed onto the heat block again at 55°C for 

10 mins. The final RNA concentration, 260/280 and 260/230 ratios were determined using 

the NanoDrop spectrophotometry. RNA was then stored in -20°C for short term and -80°C 

for long-term storage. 

 

5.5.2 Reverse transcription of RNA to form cDNA  

QuantiTect Reverse Transcription kit form Qiagen was used for synthesizing cDNA 

(complementary DNA) from RNA extracted. 1 μg of RNA was diluted into 12 μl of nuclease 

free water. Genomic DNA (gDNA) was first removed by adding 2 μl of gDNA wipe out 

buffer and incubating for 2 mins at 42°C on the Thermo Heat block and back on ice. The 

reaction mix is set up by adding 4 μl of QuantiTect reverse transcriptase (RT) buffer, 1 μl of 

RT primer and 1 μl of RT to each RNA sample. The reverse transcription reaction is 

incubated for 30 mins at 42°C before the reaction was stop by increasing the temperature to 

95°C for 2 mins. 80 μl of nuclease free water are added to the resulting cDNA solutions and 

these diluted cDNA (equivalent to 10 ng/μl of initial RNA) are used for later qPCR reactions. 

 

5.5.3 TaqMan qPCR to quantify for gene expression   

qPCR reactions were set up in 10 μl per well in MicroAmp optical 384-well reaction plates 

with triplicates /sample as follow:  

qPCR set up using TaqMan ®probes  Volume per sample  (ul) 

10 ng/μl cDNA 2,5 

TaqMan probe 0,25 

TaqMan ® Gene expression Master Mix 5 

Nuclease free water  2,25 

 

The plate was sealed with MicroAmp optical Adhesive film; briefly centrifuged for 2 mins at 

2000 rpm and amplification was performed in the Thermo Fischer Quantstudio 6 Flex 

instrument, 384-well block. The temperature profile for the PCR cycle used was: 2 mins at 

50°C, 10 mins at 95°C then 40 cycles of 15 secs at 95°C followed by 1 mins at 60°C. The  
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ΔCT values are obtained by subtracting the CT value for gene of interest from CT value of the 

housekeeping gene TBP of the same sample. This ΔCT is then converted to relative gene 

expression to TBP using this formula for relative expression:  2
- Δ

 
CT

. 

 

 

5.6 Protein methods 
 

5.6.1 Protein extraction from cell culture 

Cells were washed once in cold PBS on ice before being lysed in RIPA buffer supplemented 

with protease and phosphatase inhibitors (Sigma). All steps were performed on ice or at 4°C 

unless specified. To a 6-well plate, 400 μl of RIPA buffer was added per well and cells were 

lysed for 30 mins on ice. Thereafter, the cell lysates were collected and transferred into 1,5 

ml tubes. Depending on the viscosity of the cell lysates, sonications were also performed 

using the Bioruptor Plus Sonicator for 3 cycles of 10 secs at low intensity for viscous lysates. 

20 μl of the cell lysates are put aside for subsequent determination of protein concentration 

whilst the rest of the lysates are stored at -20°C or  -80°C until further use. 

 

5.6.2 Determination of protein concentrations  

Protein concentrations were determined using the Pierce BCA assay kit on 96-well microtiter 

plates. BSA standards in a range of 0,025– 2 mg/ml were prepared beforehand by serial 

dilution of the BSA stock (2 mg/ml) in water. 10 μl of the protein sample or of the BSA 

standards were pipetted in duplicates with 200 μl of assay reagent per well. BCA assay was 

incubated for 30 mins at 37°C for purple coloration to develop and absorbance values were 

measured in the plate reader at 560 nm. Protein concentration of samples was extrapolated 

and calculated from BSA standard curve generated during the assay.     

 

5.6.3 SDS-polyacrylamide gel electrophoresis   

20-40 μg of proteins were diluted in H2O and 5x SDS loading dye to a final volume of 40 μl, 

then denatured for 7 mins at 95°C, shaking on the heat block. Samples are cooled briefly on 

ice before being loaded onto 8-12% gradient SDS- polyacrylamide gels that has been placed 

into gel chambers filled with 1x SDS running buffer. Electrophoresis was performed at 90-

120 V for 1,5- 2 hrs with powerpac from Biorad. 5 μl of Precision Dual stain protein ladders 

from Biorad was used as a size standard.    

 

5.6.4 Protein transfer and immunoblotting  

Protein transfer was performed using a wet blot system. After gel separation, gels were 

removed from the gel cassettes and submerged briefly in the SDS transfer buffer. A sandwich 

array was assembled in the transfer cassette in the following order: a sponge pad, 1 gel-sized 

Whatman filterpaper, 1 gel-sized 0,45 μM nitrocellulose membrane, gel, whatman filterpaper 

and sponge pad (all components previously soaked in transfer buffer).  Protein transfer was 

performed in Tris-glycine-SDS transfer buffer for 1,5 hrs at 90 v at 4°C using a Mini trans- 
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blot cell. After the transfer, the membrane was removed and stained briefly in Poncea-S 

solution to access the quality of transfer. Staining was removed by a few washes under 

running water until no stain remained.  Membranes were blocked for 1 hr in 5% milk/TBS-T 

(0.1% Tween) before being incubated with primary antibodies overnight at 4°C. The next 

day, blots were washed for 3 x 5 mins in TBS-T before being incubated with HRP-conjugated 

secondary antibodies (refer to antibodies section) for 1 hr at RT. Blots were washed for 3 x 5 

mins in TBS-T. ECL (enhanced chemiluminescence) western blotting detection reagent mix 

was applied to the membrane, incubated for 1 min and chemiluminescence was imaged with 

the Bio-rad ChemiDoc system with Image lab software. 

 

5.7 Molecular Cloning 
 

5.7.1 Transformation of bacteria E.coli cells 

DH5α chemically competent E.coli cells were transformed by using the heat shock method. 

One aliquot of bacteria cells (50 μl) is taken out from -80°C and thawed on ice. 10ul of 

plasmid DNA in an amount ranging from 0.1 μg to 1 μg is then mixed with the cells and 

incubated for 30 mins on ice. Thereafter, cells are subjected to a heat shock at 42°C for 40 

secs in a prewarmed waterbath. These cells were given 250 μl of S.O.C medium and then 

incubated at 37°C for 1 hr on the shaker at 225 x g. Thereafter, 100 μl of these cells were 

spread onto an LB agar containing the appropriate selective antibiotics and incubated 

overnight at 37°C.    

5.7.2 Growing bacteria colonies for plasmid amplification 

The next day, single colonies are picked with a 20 μl pipette tip and inoculated into a starter 

culture containing 4 ml of LB media with the appropriate selective antibiotics. Culture was 

incubated for approximately 8 hrs at 37°C shaking at 300 x g. This starter culture is further 

inoculated into a larger culture volume of 200 ml of selective LB medium and allowed to 

grow overnight for 12-16 hrs, shaking at 300 x g at 37°C.  

5.7.3 Plasmid DNA purification 

The next day, the bacterial cells were harvested into centrifuge bottles and centrifuged at 

5000 x g for 20 mins at 4°C. All traces of the medium were removed by draining the bottles. 

The bacteria pellets were frozen in -20°C until further plasmid purification step. All 

subsequent steps were performed in accordance to the manufacturer’s protocol for the 

HispeedPlasmid Maxi kit (Qiagen). After the plasmid DNA has been finally eluted in 500 μl 

of TE buffer, the DNA yield is measured with the Nanodrop at 260nm.  Depending on the 

downstream applications, the DNA is either used for direct transfection into cells or needs to 

be further digested with appropriate RE to check for correct orientation of the inserts. In the 

latter case, the RE-digested Plasmids are then analysed by agarose gel electrophoresis.  

5.8 Nomenclature of genes and proteins  

All Mouse proteins and genes are assigned with a capitalized first letter (e.g. Trip13, Sin3a) 

whilst human proteins and genes are assigned entirely with block letters (E.g. TRIP13, 

SIN3A
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5.9 Material 
 

5.9.1  Equipments  

  

Product name Company 

Aspiration adaptor, 8-channel  Neolab  

Bacterial Incubator  ThermoFisher Scientific  

Bacterial shaking incubator  Infors HT  

Balance, Analytical, Entris, 2200g Sartorius 

Balance, Cubis, MSE623S-100DE Sartorius 

Benchtop Microfuge 20 1 Beckman Coulter 

Bioruptor® _Plus Sonicator  Diagenode  

Bunsen Burner  Campingaz  

C-4040 zoom Digital Camera Olympus 

ChemiDoc TMi XRS+ Molecular Imager®  Biorad  

Ckx41 Inverted Light Microscope  Olympus 

Comfort Thermomixer  Eppendorf 

Fluoview FV1000 Confocal microscope Olympus  

Countess II Cell counter, automated  Life Technologies 

Laminair Model 1.2 Holtern 

Magnetic Stirrer Rsm-10hs Phoenix Instruments 

Micropipette, 8-channel, 0.5-10 ml  Eppendorf 

Micropipette, 8-channel, 10-100 ml  Eppendorf 

Mini Trans-Blot Electrophoretic Transfer Cell Biorad 

Mr Frosty Freezing Container  ThermoFisher Scientific  

Multimode Microplate reader, Varioscan LUX  ThermoFisher Scientific  

Multipette® _M4 Multistep pipette  Eppendorf 
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Product  Company  

Multipette® _plus Multistep pipette Eppendorf 

Mutistep pipette  Eppendorf 

Nanodrop Nd-1000 Thermo Fischer  

Neubauer Counting chamber  Brand (Wertheim, Germany)  

Ot340 Hotplate Medite 

pH meter Qph 70 GHM Messtech  

PowerPac Basic TM gel electrophoresis Biorad 

Rotating Wheel Neolab 

TissueLyser MixerMill Retsch 

Titer plate shaker  ThermoFischer scientific 

Trans-Blot cell Biorad 

Trans-Blot, Turbo Blotting System Biorad 

Vortex Genie 2 G560E Scientific Industries, Inc 

Western Blot Tank Blotting System Mini Biorad 

 

 
5.10  Consumables  

   

Product  Company  Cat. No.  

0.1 -10 μl pipette tips Eppendorf  0030 072.006  

0.2 mL Combitips advanced®  Eppendorf  0030 089.413  

0.5 mL Combitips advanced®  Eppendorf  0030 089.421  

0.5-20 μl pipette tips  Eppendorf  0030 072.014  

1 mL syringe, Soft-Ject® _Tuberkulin  Henke Sass Wolf 5010-200V0  

1-200 μl pipette tips Eppendorf  0030 072.022  

10 mL Combitips advanced®  Eppendorf  0030 089.464  

1.5 mL safe-lock tube  Eppendorf  0030 120.086  
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Product  Company  Cat. No.  

10 cm tissue culture plate  BD Falcon™  353003 

10 mL serological pipettes  BD Falcon™  357551 

15 cm tissue culture plate  BD Falcon™  353025 

2 mL cryogenic vials  StarLab  E3110-6122  

2 mL safe-lock tube  Eppendorf  0030 120.094  

20 mL syringe  BD Falcon™  300629 

25 mL serological pipettes  BD Falcon™  357525 

5 mL Combitips advanced®  Eppendorf  0030 089.456  

5 mL safe-lock tube  Eppendorf  0030 119.460  

5 mL serological pipettes  BD Falcon™  357543 

5 mL syringe  BD Falcon™  309050 

50 mL serological pipettes  BD Falcon™  357550 

50 mL syringe  BD Falcon™  300865 

50-1000 μl pipette tips Eppendorf  0030 072.030  

Cell scraper  Corning  3010 

Corning® 96 Well Solid Polystyrene 

Microplate (White) 
Corning CLS3912 

Corning™ Falcon™ 15mL Conical 

Centrifuge Tubes 

ThermoFischer Corning, 

Inc  
 352096 

Corning™ Falcon™ 50mL Conical 

Centrifuge Tubes 

ThermoFischer Corning, 

Inc   
 352070 

Countess™ cell counting chamber slides  
Life Technologies, 

Invitrogen  
C10283  

Cover slips 24X60 mm #1  Menzel  
BBAD024006

00 

Cover slips 24X60 mm #1,5 Menzel  
BBAD024006

00 

Imaging plate, 96-well clear bottom black 

wall  
BD Falcon  353219 

Lab-Tek II CC2 Glass Chamber Slides 4-

well  
ThermoFisher Scientific 154526 

Lab-Tek II CC2 Glass Chamber Slides 8-

well  ThermoFisher Scientific 154941 
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Product  Company  Cat. No.  

Microtiter plate, 96-well  ThermoFisher Scientific  260836 

Nitrocellulose membrane, Protran® BA85, 

0.45 μm pore size 
GE Healthcare  10401196 

Parafilm® _M  Bemis®  BR701650 

PCR tube lids, flat, 8 strip  Greiner Bio-one 373250 

PCR Tubes, 8 strips, 0.2 mL  Greiner Bio-one 673210 

Petri dish for Agar plates  Greiner Bio-one 632180 

Stainless steel beads, 5 mm  Qiagen 69989 

Tissue-culture treated plate, 12-well  BD Falcon™  353043 

Tissue-culture treated plate, 24-well  BD Falcon™  353047 

Tissue-culture treated plate, 6-well  BD Falcon™  353046 

Tissue-culture treated plate, 96-well  BD Falcon™  353916 

Whatman™ paper  GE Healthcare 3030 917  

Novex™ 8-16% Tris-Glycine Mini Gels, 

WedgeWell™ format, 12-well 
Invitrogen XP08162BOX 

Novex™ 4-20% Tris-Glycine Mini Gels, 

WedgeWell™ format, 12-well 
Invitrogen XP04202BOX 

 
 
5.11  Kits 

   

 Product  Company  Cat. No.  

Apo-ONE® Homogeneous Caspase-3/7 Assay Promega G7792 

BrdU Cell proliferation kit  
Cell Signaling 

Technology  
6813S  

Cell Counting kit 8 (CCK-8) Sigma-Aldrich 96992 

Duolink detection reagentsRed Sigma-Aldrich DUO92008 

Duolink in situ PLA probe Anti-Goat Minus Sigma-Aldrich DUO92006 

Duolink in situ PLA probe Anti-Rabbit Plus Sigma-Aldrich DUO92002 

ECL Prime Western Blotting Detection Reagent Amersham 

Biosciences 
RPN2232 
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 Product  Company  Cat. No.  

Glucose (HK) assay kit  Sigma-Aldrich GAHK20-1KT  

QuantiTect Rev. Transcription Kit Qiagen 205313 

Secrete-Pair Dual Luminescence Assay Kit  Genecopoeia LF032 

Serum Triglyceride determination kit  Sigma-Aldrich TR0100  

qPCR Lentiviral titration Kit  abm Good LV900 

Lenti-X GoStix, 20 tests Takara Bio Clontech 631243 

 

 

 
  

5.12  Enzymes  

   

 Product  Company  Cat. No.  

Calf Intestinal Alkaline Phosphatase 1 U/µL Sigma-Aldrich 18009027 

FastDigest EcoRI Fermentas FD0274 

FastDigest KpnI Fermentas FD0274 

FastDigest XhoI Fermentas FD0694 

Proteinase K  
ThermoFisher 

Scientific  
EO0491  

RNase A 10 mg/mL  
ThermoFisher 

Scientific  
EN0531  

T4 DNA Ligase  Invitrogen  15224017 

 

 

5.13  Plasmids 
 

 

 

 
 

Vector name  Company  Cat. No.  

pENTR-shRNA-hTRIP13 (TRCN0000022063)  Sigma-Aldrich  
SHCLND-

NM_004237 

pENTR-shRNA-mTrip13 (TRCN0000319690) Sigma-Aldrich 
SHCLND-

XM_127444  

pGFP-C-shRNA-NTC Origene TL30021 

pGFP-C-shRNA-SIN3A_1  Origene  TL301698A 

pGFP-C-shRNA-SIN3A_4  Origene  TL301698D 

pRFP-CB-shRNA-NTC Origene TL30032 
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pRFP-CB-shRNA-SIN3A_1 Origene  

subcloned 

from Origene 

vector 

pRFP-CB-shRNA-SIN3A_4 Origene 

subcloned 

from Origene 

vector 

psPAX2  Addgene 12260 

pMD2.G  Addgene 12259 

pLKO.1-shRNA-scrambled  Addgene 1864 

pEZX-PG04-HRP-EGFR  Genecopoeia 
HPRM21493-

LvPG04 

 
 
 
5.14  Chemicals 

   

 Product  Company  Cat. No. 

Acetic acid  Sigma-Aldrich  45731 

Agarose  Carl Roth  3810 

Ampicillin sodium salt  Sigma-Aldrich  A9518  

Antifade Mounting Medium with 

DAPI 
Vectashield H-1200 

APS (Ammonium persulfate)  Carl Roth  9592 

β-mercaptoethanol Sigma-Aldrich  M7154  

CaCl2 (Calcium Chloride)  Carl Roth  CN93  

Chloroform (CHCl3)  Carl Roth  3313 

D-Glucose anhydrous  Applichem A0883  

DEPC (Diethylpyrocarbonate)  Sigma-Aldrich  D5758  

DH5α chemically Competent Cells  Invitrogen  18265017 

DTT (Dithiothreitol)  Applichem A2948  

Ethanol, absolute  Sigma-Aldrich  32205 

Formaldehyde solution 37%  Carl Roth  7398,4 

6x DNA Loading Dye  Fermentas  R0611 
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 Product  Company  Cat. No. 

GeneRuler 1 kb Plus DNA Ladder Fermentas  SM1334 

GeneRuler 100 bp Plus DNA Ladder Fermentas  SM0323 

Glycerol  Sigma-Aldrich  15523 

Glycine  Sigma-Aldrich  33226 

H2O2 (Hydrogen peroxide) solution, 

30%  (W/V) in H2O 
Sigma-Aldrich  H1009 

HCl (Hydrochloric acid) 37%  Sigma-Aldrich  30721 

KCl (Potassium chloride)  Carl Roth  A137  

KH2PO4 (Potassium dihydrogen 

phosphate)  
Carl Roth  3904 

LB-Agar (Luria/Miller)  Carl Roth  X969  

LB-Medium (Luria/Miller)  Carl Roth  X968  

Na3VO4 (sodium orthovanadate)  Sigma-Aldrich  S6508  

NaCl (sodium chloride)  Sigma-Aldrich  31434 

NaF (sodium flouride)  Sigma-Aldrich  S1504  

NaOH (sodium hydroxide)  Sigma-Aldrich  30620 

PhosSTOP™ Phosphatase Inhibitor 

tablets 
Roche  

49068450

01 

Ponceau S solution 0.1% in 5% 

acetic acid  
Sigma-Aldrich  P7170  

Precision Plus Protein™ Dual Color 

Standards 
Biorad 1610374 

Protease inhibitor cocktail  Sigma-Aldrich  P8340  

Protease inhibitor cOmplete, EDTA 

free  
Roche  

11873580

001 

Restore Plus Western Blot Striping 

Buffer 
ThermoScientific 46430 

Roti®-Histofix 4% acetic acid free 

(pH 7.0) 
Carl Roth  P087  

S.O.C. Medium  Invitrogen  15544034 

SDS (sodium dodecyl sulfate)  Sigma-Aldrich  D6750  

Skim Milk Powder  Sigma-Aldrich  70166 

Sodium Azide Sigma-Aldrich  S2002 
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 Product  Company  Cat. No. 

Sodium deoxycholate  Sigma-Aldrich  D6750  

Sucrose  Sigma-Aldrich  S1888  

Triton® X-100  Applichem A1388  

TRIzol
™

 Reagent Invitrogen 15596026 

Tween® _20  Sigma-Aldrich  P9416  

16% Formaldehyde (w/v), Methanol-

free 

ThermoScientific 

Pierce 
28908 

 
 

5.15  Cell culture reagents 

   

 Product  Company  Cat. No. 

DMEM High Glucose Pyruvate (+ L-

glutamine)  
Life Technologies

™
Gibco 41966-029  

DMEM Low Glucose Pyruvate (+ L-

glutamine)  
Life Technologies

™ 
Gibco 31885-023  

RPMI 1640 Medium  Life Technologies
™

Gibco 11875093 

DMEM/F-12, HEPES Life Technologies
™ 

Gibco 11330057 

Hoechst 33342, trihydrochloride 

trihydrate, 10 mg/mL  

Life Technologies
™ 

Gibco 
H3570  

Lipofectamine
™

 2000 Transfection 

Reagent 
Invitrogen 11668019 

Lipofectamine
™

 3000 Transfection 

Reagent 
Invitrogen L3000015 

Lipofectamine™ RNAiMAX 

Transfection Reagent 
Invitrogen 13778150 

Opti-MEM® I Reduced Serum 

Medium  
Life Technologies

™ 
Gibco 31985-047  

Polybrene (hexadimethrine bromide)  Sigma-Aldrich   H9268  

Pyruvate 100mM, 100x  Life Technologies
™ 

Gibco 11360-039  

Puromycin  Sigma-Aldrich   P8833  

Blasticidin S HCL 10 mg/mL Life Technologies
™ 

Gibco A1113903 

0.25% Trypsin-EDTA (1x), Phenol 

red  
Life Technologies

™ 
Gibco 25200-056  

DPBS, no CaCl2, no MgCl2  Life Technologies
™ 

Gibco 14190-094  
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 Product  Company  Cat. No. 

Fetal bovine serum (FBS)  Life Technologies
™ 

Gibco 26400-036  

HEPES Buffer solution, 1M  Life Technologies
™ 

Gibco 15630-056  

Penicillin-streptomycin, liquid, 100x  Life Technologies
™ 

Gibco 15140-122  

Tryphan blue solution, 0.4%  Life Technologies
™ 

Gibco T10282  

Water, nuclease free  Life Technologies
™ 

Gibco 10977-035  

BSA for cell culture: Albumin 

solution from bovine serum, 30% 

DPBS, sterile-filtered  

Sigma-Aldrich   A9576  

DMSO (Dimethylsulfoxide) sterile 

for cell culture  
Sigma-Aldrich  D2650  

 
 
 
5.16  Antibodies 

 

 

  

Primary Antibodies   Company  Cat. No.  Origin 

AKT  Cell Signaling  9272 Rabbit  

c-MYC Cell Signaling  9402 Rabbit 

Cleaved Caspase-3  Cell Signaling  9664S  Rabbit  

Cleaved PARP  Cell Signaling  9544S  Mouse  

CyclinD1  Cell Signaling  2926 Mouse  

EGFR Cell Signaling  4267 Rabbit  

phospho-EGFR  Cell Signaling  3777 Rabbit  

HSP90 Abcam  ab13492 Mouse 

Lamin A/C Abcam  ab8984 Mouse 

p53  Cell Signaling  2524S  Mouse  

p70S6K  Cell Signaling  2708 Rabbit  

Phospho-p70S6K  Cell Signaling  9234 Rabbit  

Phospho-AKT  Cell Signaling  9271 Rabbit  

Phospho-Histone H2A.X  Cell Signaling  9718 Rabbit  

phospho-SAPK/JNK 

(Thr183/Tyr185) (G9) 
Cell Signaling 9255 Mouse 

SAP130  Proteintech  12130-1-AP Rabbit 

SAP130  Novusbio NB100-1077 Goat 

SIN3A  Novusbio AF6115-SP Goat 

m-SIN3A 
Santa Cruz 

biotechnology 
sc-994 Rabbit 
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TRIP13  Proteintech 19602-1-AP  Rabbit  

Ubiquitin Sigma-Aldrich U0508 Mouse 

VCP  Abcam  Ab11433 Mouse  

β actin  Sigma  A5441  Mouse  

 
 
Secondary Antibodies  Company  Cat. No.  

Anti-Rabbit IgG-HRP  Bio-Rad 170-6516 

Anti-Mouse IgG-HRP  Bio-Rad 172-1019 

Normal goat IgG isotype control Santa Cruz sc-2028 

Normal Rabbit lgG isotype control Santa Cruz sc-2027 

Alexa Fluor 488 - Phalloidin Invitrogen A12379 

Alexa Fluor 488 donkey anti-Rabbit 

IgG (H+L) 
Invitrogen A21206 

Alexa Fluor 488 donkey anti-goat 

IgG (H+L) 
Invitrogen A11055 

Alexa Fluor 555 donkey anti-Rabbit 

IgG (H+L) 
Invitrogen A-21428 

Alexa Fluor 555 donkey anti-goat 

IgG (H+L) 
Invitrogen A-21432 

 
 
 
5.17  Software 

 
 Product  Company/Source 

Graphpad Prism 6 GraphPad Software 

Illustrator  Adobe system 

ImageJ  https://imagej.nih.gov/ij/ 

ImageLab  Biorad  

Microsoft Office  Microsoft 

ND-1000  Nanodrop  

Photoshop  Adobe System 
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UCSC Genome Browser  http://genome.ucsc.edu 

Papers version 3 Mekentosj B.V 

Primer-Blast 
https://www.ncbi.nlm.nih.gov/tools/primer-

blast/ 

Olympus Fluoview  Olympus  

 
 
 
5.18  Commercial probes for TaqMan quantitative PCR 
 

 

Gene Species 
Entrez 

Gene ID 
 TaqMan Assay ID  

TRIP13 Human 9319 Hs01020073_m1 

Trip13  Mouse  69716 Mm01352446_m1  

EGFR Human 1956 Hs01076090_m1 

Egfr Mouse  13649 Mm01187858_m1 

SIN3A Human 25942 Hs00411592_m1 

Sin3A Mouse  20466 Mm00488255_m1  

SAP130 Human 79595 Hs01089391_m1 

Sap130 Mouse  269003 Mm00556995_m1  

MYC Human 4609 Hs00153408_m1 

Cyclin D1 Human 595 Hs00765553_m1 

cyclin D1 Mouse  12443 Mm00432359_m1  

TBP Human 6908 Hs00427620_m1 

Tbp Mouse  21374 Mm01277042_m1  

https://www.thermofisher.com/taqman-gene-expression/product/Hs00411592_m1?CID=&ICID=&subtype=
https://www.thermofisher.com/taqman-gene-expression/product/Mm00488255_m1?CID=&ICID=&subtype=
https://www.thermofisher.com/taqman-gene-expression/product/Hs01089391_m1?CID=&ICID=&subtype=
https://www.thermofisher.com/taqman-gene-expression/product/Mm00556995_m1?CID=&ICID=&subtype=
https://www.thermofisher.com/taqman-gene-expression/product/Hs00153408_m1?CID=&ICID=&subtype=
https://www.thermofisher.com/taqman-gene-expression/product/Hs00765553_m1?CID=&ICID=&subtype=
https://www.thermofisher.com/taqman-gene-expression/product/Mm00432359_m1?CID=&ICID=&subtype=
https://www.thermofisher.com/taqman-gene-expression/product/Hs00427620_m1?CID=&ICID=&subtype=
https://www.thermofisher.com/taqman-gene-expression/product/Mm01277042_m1?CID=&ICID=&subtype=
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5.19 Solutions and Buffers  

 

All stock solutions and buffers were prepared in filtered water unless otherwise stated 

  

Blocking Buffer (5% Milk/TBST) 
1x TBS, 0.1% Tween 20, 5% Milk powder  

 

Blocking Buffer (5% BSA/TBST) to block when probing with anti-phosphoantibodies 

1x TBS, 0.1% Tween 20, 5% BSA Fraction V 

 

RIPA Buffer  
50 mM Tris pH 8.0, 150 mM NaCl, 1% NP40, 0.5% SDS, 0,1% Sodium deoxycholate  

1 tablet each of PhoSTOP and protease inhibitor is dissolved in 10 ml of RIPA buffer before 

use. 

 

LB agar plate  
40g/L LB agar (Carl Roth) is dissolved in water by warming up the mixture in the 

microwave. Mixture is cooled down before adding appropriate selective antibiotics and 20 ml 

of molten agar was poured per petri dish and allowed to cool down before storing at 4 C for 

up to 1 month 

TBST  

1x TBS with 0.1% Tween 20 

SDS running buffer (10x)  
0.25 M Tris, 1,9 M Glycine, 1% SDS  

 

TBE Buffer (10x)  

100 mM Tris, 1 mM EDTA, 90 mM Boric acid, pH 8.0  

 

TE Buffer  
1 mM EDTS, 10 mM Tris HCl, pH 8.0  

 

Transfer Buffer  
25 mM Tris, 190 mM Glycine, 20% Methanol, 0.1% SDS 

 

10X TBS stock 

500 mM Tris-HCL, PH7.4, 1.5mM Nacl  

 

5X SDS Sample Buffer  
250 mM Tris/HCl pH 6.8, 0.5 M DTT, 10% SDS, 50% glycerol, 0.01% bromophenol blue
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6 Appendices 

S1 Expression profiling of TRIP13 and EGFR in HCC patient cohorts 

from different etiology background 

One of the patient cohorts A_33_P3407256 was disregarded, as there was no 

difference in TRIP13 expression across different HCC etiology. TRIP13 

expression is upregulated across all HCC etiology from the other patient cohort 

of A_33_P3339212. EGFR expression remains constant across all HCC 

etiology groups. No correlation was observed between EGFR and TRIP13 in 

HCC patient cohorts. 
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S2 Gene expression levels between 8 hrs-72 hrs post siRNA 

transfections to knockdown either TRIP13 or SIN3A or both  

RNA samples were harvested at 8, 24, 48 and 72 hrs post siRNA transfections. 

siR KD efficiencies along with expression levels of EGFR, CyclinD1 and c-

MYC were quantified via qPCR analysis. 
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S3 Protein expression levels between 8 hrs-72 hrs post siRNA 

transfections to knockdown either TRIP13 or SIN3A or both  

Cell lysates were harvested at 8, 18, 20, 24 post siRNA transfections. siR KD 

efficiencies along with expression levels of c-MYC were verified via 

immunoblotting for SIN3A, TRIP13 and c-MYC using VCP as a loading 

control 
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