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Zusammenfassung

Wir untersu
hen kosmologis
he Quintessenz-Modelle. Quintessenz ist eine hypo-

thetis
he, fast homogen im Universum verteilte Energieform. Wir f�uhren die kosmo-

logis
he St�orungsre
hnung und die Bere
hnung der Anisotropien der Hintergrund-

strahlung ei
hinvariant dur
h. F�ur viele Modelle folgen dabei Quintessenz
uktua-

tionen zu fr�uhen Zeiten einfa
hen Potenzgesetzen. Die Auswirkungen von Quintes-

senz auf die Kosmis
he Hintergrundstrahlung und das Alter des Universums wer-

den dur
h drei intuitive Parameter bes
hrieben. Wir quanti�zieren die Relation der

Peaks im Spektrum der Hintergrundstrahlung zur sogenannten akustis
hen Skala

und zeigen, dass si
h die akustis
he Skala aus Experimenten ablesen l�asst. Damit

und mittels der Strukturentstehung s
hr�anken wir zwei bedeutende Modelle ein.

Quantenkorrekturen zu den klassis
hen Quintessenzpotentialen werden bere
hnet,

wodur
h Modelle mit Kopplungen zu dunkler Materie unwahrs
heinli
h s
heinen.

S
hliessli
h stellen wir 
mbeasy, ein Programm zur Bere
hnung der Kosmis
hen

Hintergrundstrahlung vor.

Abstra
t

We investigate 
osmologi
al models 
ontaining quintessen
e. Quintessen
e is a hy-

potheti
al form of energy distributed almost homogeneously throughout the Uni-

verse. We 
al
ulate 
osmologi
al perturbations and 
osmi
 mi
rowave ba
kground

anisotropies using gauge-invariant variables. For many models, quintessen
e 
u
-

tuations follow simple power laws at early times. The impli
ations of quintessen
e

on the 
osmi
 mi
rowave ba
kground and the age of the universe are des
ribed via

three intuitive parameters. We quantify the relation between the peaks in the mul-

tipole spe
trum of the 
osmi
 mi
rowave ba
kground to the so 
alled a
ousti
 s
ale.

We show that this a
ousti
 s
ale is extra
table from experimental data. Using this

and 
onstraints from stru
ture formation, we 
onsiderably restri
t two frequently

used quintessen
e models. Quantum loop 
orre
tions to the 
lassi
al quintessen
e

potentials are 
al
ulated. From this, models with a 
oupling to dark matter be
ome

unlikely. Finally, we present 
mbeasy, a 
omputer 
ode for 
al
ulating the 
osmi


mi
rowave ba
kground anisotropies
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1

Introdu
tion

A

ording to the Hit
hhiker's guide to the Galaxy, `spa
e is . . .mind-bogglingly

big' [1℄. And, one should add, it is getting bigger. This is no surprise, for most

of the galaxies are moving away from ea
h other. Intuitively, gravitation should

slow down this expansion. For years, s
ientists asked the question whether this

de
eleration would bring the expansion to a halt and lead to a 
run
h. It was a

surprise when in 1998 distan
e measurements using supernovae (exploding stars)

indi
ated that the expansion of the universe may on the 
ontrary be a

elerated [2℄.

A

ording to Einstein's theory of relativity (applied to 
osmology), an a

elerated

expansion ne
essitates a form of energy with so-
alled negative pressure. While the

universe expands, the negative pressure of this energy means that it be
omes more

and more important with respe
t to ordinary matter. Figure 1.1 depi
ts the s
aling

of di�erent 
omponents with the overall expansion of the universe. The two dark

energy models plotted are seen to 
at
h up and overtake the density of matter at

the present time.

Combining di�erent observational tests one is led to 
on
lude that this (un-

known) energy 
onstitutes more than half of the energy density within the universe.

It surpasses the mass of baryons (making up stars and galaxies) by about a fa
tor of

10 and it also 'weighs' about twi
e as mu
h as 
old dark matter. Cold dark matter,

in turn, is some form of matter that gravitationally behaves like ordinary bary-

oni
 matter, yet non-intera
ting with baryons. Naturally, the mysterious energy

has been given the name `dark energy'. For those among us that spontaneously

asso
iate `Star Wars' with dark energy, a more noble name has been proposed:

quintessen
e [3℄. Yet, years before the mysterious energy was 
hristened, 
osmo-

logi
al models involving a light s
alar �eld have been investigated [4{8℄. Today,

these light s
alar �eld models are the prototype of quintessen
e. The motivation

for proposing these light s
alar �elds 
omes from more fundamental theories, like

string theories whi
h feature su
h �elds. In addition, the �eld models may solve the


osmologi
al 
onstant problem [6℄. The 
osmologi
al 
onstant is asso
iated with

the va
uum energy of the universe. From naive quantum �eld theory 
al
ulations

one is lead to 
on
lude [9,10℄ that its observed value and the value most naturally

expe
ted di�er by 120 de
imal pla
es (more of this in se
tion 7). Having no under-

1
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Figure 1.1: Energy density of radiation, matter, leaping kineti
 term quintessen
e and

va
uum energy (
osmologi
al 
onstant). The energy densities are plotted as a fun
tion of

the s
ale fa
tor a. The s
ale fa
tor is related to the redshift via z = a

�1

� 1 and today one

has a = 1. The densities of radiation and matter s
ale like a

�4

and a

�3

respe
tively. At

about a � 10

�4

, matter be
omes more important than radiation. The 
ontribution from

the 
osmologi
al 
onstant (va
uum energy) is negligible throughout most of the history of

the universe. The densities of matter and va
uum energy would only re
ently be of the same

order of magnitude. This involves �ne-tuning of the 
osmologi
al 
onstant. More natural

seems the behaviour of the (leaping kineti
 term) quintessen
e model, denoted by �

'

. It

s
ales like the dominant spe
ies throughout the early history of the universe, 
ontributing

at the per
ent level towards the total energy density. In this phenomenologi
al model,

some event at a � 0:1 leads to a 
hange in the quintessen
e behaviour. From then on, it

be
omes more and more important with respe
t to matter. Even though the parameters

of the model still need to be adjusted, the tuning is on the level of 1 : 1000, as opposed to

the 120 de
imal pla
es of the 
osmologi
al 
onstant.

standing of how this mysterious 
an
ellation should happen, theoreti
ians prefer a

vanishing 
osmologi
al 
onstant. As life is rarely fair, present 
osmologi
al data is

very well 
ompatible with dark energy being a 
osmologi
al 
onstant. In 
ontrast

to the severe �ne-tuning for a 
osmologi
al 
onstant, s
alar �eld quintessen
e mod-

els very often have attra
tor solutions [11{13℄. Over an impressing broad range of

initial 
onditions the �eld moves swiftly towards its attra
tor (see Figure 1.2). This

is a mu
h desired feature, be
ause many s
ientists believe that our universe should

in some way be generi
. Sure, the universe 
ould be very spe
ial indeed, however,

histori
ally mankind has moved from the 
enter of the world to the outer region

2
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Figure 1.2: Convergen
e of di�erent initial 
onditions (dotted, dashed and long-dashed

line) towards the attra
tor solution (solid line). Shown is the energy density of the quint-

essen
e �eld as a fun
tion of the s
ale fa
tor a. The present time 
orresponds to a = 1 and

Ele
tron-proton re
ombination o

urred at a

ls

� 10

�3

. The quintessen
e model used is an

inverse power law with power � = �3 (see se
tion 2.3 for details).

of a typi
al galaxy. From this, it is only a small step to assume that also our uni-

verse should not be too dependent on �ne-tuned initial 
onditions. Exa
tly to what

extent one is a

epting a tuning of initial 
onditions remains personal taste. For

many people, the tuning still needed to yield for example the right amount of dark

energy today is too mu
h to a

ept s
alar quintessen
e models. One should remark

here that the models on the market are phenomenologi
al models. There 
ould

well be a me
hanism (e.g. 
u
tuations 
hanging the e�e
tive potential) that leads

generi
ally to a behaviour of the s
alar �eld that presently may look �ne-tuned.

Maybe even more mind-bogglingly than the vast size of the universe is the fa
t

that within the framework of `standard' physi
s

1

, one is 
apable of understanding

many phenomena in the history of the universe, ba
k to when it has been younger

than a fra
tion of a se
ond. A very ni
e example of this is the theory (and obser-

vation) of the Cosmi
 Mi
rowave Ba
kground (CMB) radiation. The radiation is

made up of photons that on
e were part of a hot, spatially almost uniform plasma

�lling the universe. About 300'000 years after the big-bang, the universe was 
ool

enough for the ele
trons and protons in the plasma to re
ombine and form neutral

hydrogen. The photons that before and during this pro
ess s
attered o� free ele
-

1

Well, some of it is not so standard, a
tually.

3
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trons suddenly were able to travel freely. About 10

0

000

0

000

0

000 years later, some

of these photons (redshifted by the expansion of the universe that also stret
hes

their wavelength) hit the dete
tors of balloon and satellite borne experiments. As

it turns out, the radiation looks almost the same in all dire
tions on the sky: it

is the thermal radiation of a bla
k body with temperature 2.7 K. Yet, when ap-

plying Einstein's theory of general relativity to small density 
u
tuations within

the primeval plasma, one �nds that depending on the s
ale, 
u
tuations should

behave di�erently. It is a remarkable su

ess story that several experiments in

the late 1990's and early 2000's have measured these s
ale-dependent 
u
tuations.

Independently of supernovae measurements, the CMB data also favours some form

of dark energy 
ontributing about 70% towards the present energy 
ontent of the

universe [14,15℄.

The stage is thus set. If the experiments and our understanding of them is to

be trusted, then one needs to devise tests to di�erentiate between various forms

of dark energy. As s
alar �eld quintessen
e is usually time-dependent, tests at

di�erent epo
hs may reveal its nature. Our aim is not to restri
t a parti
ular

model as good as possible, but to des
ribe e�e
ts of quintessen
e on some of the

observations in an model-independent way. With very few intuitive parameters,

su
h as the average fra
tional energy density before re
ombination, we will be able

to a

urately quantify main impli
ations of quintessen
e on the CMB, SNe Ia and

the age of the universe.

Yet with today's pre
ision experiments, analyti
 estimates need to be supple-

mented by numeri
al simulations. A very useful tool for this is the publi
ly available


mbfast pa
kage [16℄. During this work, we have substantially modi�ed this 
ode

(see Chapter 8). With the kind permission of the authors of 
mbfast, U. Seljak

and M. Zaldarriaga, this modi�ed pa
kage has been presented to the publi
 during

the xxxvii. Ren
ontres de Moriond [17℄. The new 
ode has been designed to fa
il-

itate modi�
ations. As it also features a graphi
al user interfa
e, it goes under the

name of 
mbeasy.

The s
alar quintessen
e �eld is usually treated at the 
lassi
al level. Even

though it might be motivated by more fundamental theories, this does a-priori not

mean that quantum 
u
tuations are in
luded. In prin
iple, and for as long as one

does not view the potentials as already e�e
tive, 
u
tuations below the s
ale of

the more fundamental theory need to be taken into a

ount. We will turn to this

important issue in Chapter 7.

We have tried to make this thesis as self 
ontained as possible. However, on
e

in a while abbreviations and 
onventions 
osmologists are familiar with may have

slipped into the text without further explanation. If so, we would like to apologize

for any in
onvenien
e 
aused. Our 
onventions and tables summarizing frequently

used symbols as well as 
onversion fa
tors of mega Parse
 to other units 
an be

found in Appendix D.

This thesis is organized as follows: in Chapter 2, we review the expansion his-

tory of universes 
ontaining dark energy. After this, several quintessen
e models

frequently used in the literature are brie
y introdu
ed. The s
aling of various quint-

4



essen
e related quantities with 
onformal time is also presented in this 
hapter for

models with attra
tor solutions. Chapter 3 treats 
osmologi
al perturbation theory

in
luding s
alar quintessen
e. The perturbations are mostly expressed in gauge-

invariant variables, however some results are additionally stated in syn
hronous

gauge. In Chapter 4, we start by reviewing intuitive 
on
epts in the theory of


osmi
 mi
rowave ba
kground anisotropies. Afterwards, the derivation of the main

formulae needed to 
al
ulate CMB anisotropies is presented along the lines of [18℄.

The line of sight strategy [16℄ implemented in 
mbfast and 
mbeasy together

with the appropriate gauge invariant formulae used in 
mbeasy are (re-)derived

at the end of Chapter 4. The initial 
onditions for all perturbation variables are


al
ulated in Chapter 5. In addition, an analyti
 solution to the equation of mo-

tion of the s
alar �eld 
u
tuation is found. This solution holds generally whenever

the �eld is in its attra
tor. Chapter 6 deals with observational tests for quint-

essen
e. After dis
ussing the e�e
ts on the multipole spe
trum of the CMB, we

present �tting formulae for the so-
alled shifts of the peaks in this spe
trum. We

will show that the shift of the third peak is parti
ularly insensitive to di�erent


osmologi
al models. Using this result, we extra
t the so-
alled a
ousti
 s
ale from

CMB data. Comparing values for the a
ousti
 s
ale predi
ted by spe
i�
 models

to this experimental value, and 
ombining with 
luster abundan
e 
onstraints we

restri
t two types of quintessen
e models in more detail. The end of Chapter 6

deals with quintessen
e impli
ations on the re
ent expansion history and hen
e on

SNe Ia-experiments. In Chapter 7, quantum loop 
orre
tions to the s
alar �eld po-

tentials are 
al
ulated. Finally, the obje
t oriented design of the 
mbeasy pa
kage

is presented in Chapter 8.

5
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2

Quintessen
e in the

homogenous Universe

In general relativity, Einstein's equations relate the geometry of the universe lo
ally

to the energy momentum 
ontent. The geometry is expressed via the metri
 g

��

and subsequently through the Ri

i Tensor R

��

and the 
urvature s
alar R, while

the energy momentum tensor is 
ommonly denoted by T

��

. Using the redu
ed

Plank mass M

P

� (8�G)

�1=2

, Einstein's equations read

1

T

��

= M

2

P

�

R

��

�

1

2

g

��

R

�

: (2.1)

In order to solve these in general very 
ompli
ated 
oupled di�erential equations

analyti
ally, one needs to guess the geometry of the spa
e and hen
e the metri
.

The most general metri
 that is isotropi
 and homogenous on 
onstant time hyper-

surfa
es is the Robertson Walker metri
. This metri
 
omes in three `
avours',

for the 
ases of negative, positive or vanishing 3-
urvature in the 
onstant time

hyper-surfa
es. A vanishing of this 3-
urvature means a spatially 
at universe

(we will sloppily 
all this just a `
at universe'). Now, there is strong theoreti
al

prejudi
e for a 
at universe. Firstly, the theory of in
ation predi
ts it. Se
ondly

and maybe more 
onvin
ingly: A Friedmann Robertson Walker universe starting

with a small deviation from spatial 
atness will get more and more 
urved as time

goes on [20℄. Experimentally, the universe is found to be at least very nearly 
at

[14,21℄. So if the Universe would have a small but dete
table 
urvature, then it

must have departed from being undete
table 
lose to 
at just re
ently. This is not

very natural to assume. We will thus usually limit our dis
ussion to 
at universes,

as this simpli�es the dis
ussion (and presentation) greatly. Having said this, we

take the Robertson Walker metri
 of the form

ds

2

� g

��

dx

�

dx

�

= a

2

(�)

�

�d�

2

+ Æ

ij

dx

i

dx

j

�

; (2.2)

1

An eventual 
osmologi
al 
onstant is assumed to be part of the energy momentum tensor.

7
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where the 
onformal time � is related to the usual time t by d� = a

�1

dt. The

expression `
onformal time' is well 
hosen, for the metri
 (2.2) is 
onformally related

to the usual Minkowski metri
 �

��

= diag(�1; 1; 1; 1) by the 
onformal fa
tor a(�).

We normalize a(�) su
h that today, we have

a

0

� a(�

0

) = 1; (2.3)

where here and in the following a subs
ript 0 will denote quantities as measured

today. As a(�) determines the stret
hing of physi
al length s
ales,

l

2

physi
al

(�) = g

ij

l

i

l

j

= a

2

(�)Æ

ij

l

i

l

j

= a

2

(�)l

2

; (2.4)

it is 
ommonly 
alled the s
ale fa
tor. Please note that 3-ve
tors are in bold,

spatial 
omponents are denoted by Latin indi
es and the 3-ve
tor s
alar produ
t is

the usual one: xy = Æ

ij

x

i

x

j

.

It is 
ommon pra
ti
e to des
ribe the matter 
ontent of the universe by 
uids.

Even in 
ases where this des
ription is no longer valid and one needs to think in

terms of distribution fun
tions, we will still identify 
ertain parts of these distri-

butions with 
uid terminology. For a start, let us brie
y forget about 
ases where

the 
uid des
ription breaks down and note that the energy momentum tensor for

a perfe
t 
uid is [22℄ (see also Se
tion 3.2)

�

T

�

�

= diag(���; �p; �p; �p); (2.5)

where ��(�) is the (unperturbed

2

) energy density and �p(�) is the pressure. The

relation between �� and �p is expressed in the equation of state

�p(�) = w(�)��(�): (2.6)

For non-relativisti
 matter, the pressure vanishes, whereas photons and massless

neutrinos have w = 1=3. From the 0 � 0 part of Einstein's Equation (2.1), we we

get the Friedmann equation

3M

2

P

H

2

= �(�): (2.7)

Here, the Hubble parameter H is related to the s
ale fa
tor a(�) by

H � a

�1

da

dt

= a

�1

da

d�

d�

dt

� a

�2

_a; (2.8)

where a dot denotes a derivative with respe
t to 
onformal time � throughout this

work. Conservation of the zero 
omponent of the energy momentum tensor,r

�

�

T

�

0

=

0, yields the useful relation

_

��

��

= �3(1 + w)

_a

a

: (2.9)

2

Anti
ipating perturbation theory, we denote ba
kground quantities by a bar.
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2.1. Constituents of the Universe

Finally, by 
ombining Friedmann's equation (2.7) with the i� i part of Einstein's

equation one obtains

X

all spe
ies

�

��

�

1

3

+ w

��

= �2M

2

P

a

�1

d

2

a

dt

2

: (2.10)

2.1 Constituents of the Universe

We know very little about the pre
ise 
ontent of the universe. Big Bang Nu
leosyn-

thesis (BBN), the Cosmi
 Mi
rowave Ba
kground (CMB) as well as the 
ounting of

luminous matter tells us that only a few per
ent of the 
ontent of the universe 
an

be baryons: summing up their energy 
ontribution is just not enough to ful�ll the

(
at) Friedmann equation (2.7) given the observed value of the Hubble 
onstant.

We will denote the fra
tion of baryon energy to the total energy density as 


b

,

where




x

�

�

x

�


rit

=

�

x

3M

2

P

H

2

; (2.11)

for any spe
ies X, and we have de�ned �


rit

� 3M

2

P

H

2

. It is 
lear from the

de�nition of 


x

, that in a 
at universe, the sum of all 


x

, 


tot

needs to be unity.

If not baryons, what else is out there? In prin
iple, there are many possibilities

and 
andidates e.g. from parti
le physi
s to bla
k holes are 
onsidered. Funny

enough, the simplest 
andidate behaving like ordinary pressureless matter and yet

non-intera
ting with baryons is very su

essfully des
ribing many aspe
ts of our

Universe. Having no 
lue what exa
tly 
ould be this 
andidate, one 
alls it 
old

dark matter. As we will soon see, CMB, SNe Ia and stru
ture formation all point

in the dire
tion of 





0

� 0:3.

Yet, this still does not add up to unity and again both CMB and SNe Ia

experiments favour some form of dark energy that at least in the re
ent universe

z / 1 should have a negative equation of state

w

'

(�) =

�p

'

��

'

: (2.12)

We will denote all kinds of dark energy - in
luding the possibility of a 
osmologi
al


onstant (where w

�

� w

'

= �1) by the index '.

Under the assumption that today only 
old dark matter and dark energy play

a major role, one obtains from Equation (2.10) that a universe with

w

'

0




'

0

< �

1

3

; (2.13)

is expanding in an a

elerated way.
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Chapter 2. Quintessen
e in the homogenous Universe

2.2 S
alar Quintessen
e A
tion and Equation of Mo-

tion

The a
tion for a s
alar �eld minimally 
oupled to gravity is

S = �

Z

d

4

x

p

�g

�

1

2

�

�

'�

�

'+ V (')

�

; (2.14)

where g � g

��

. Using Æ

p

�g = �

1

2

p

�gg

��

Æg

��

, we get for the energy momentum

tensor [23℄

T

�

�

� �

2

p

�g

ÆS

Æg

��

g

��

(2.15)

= '

;�

'

;�

� Æ

�

�

�

1

2

'

;�

'

;�

+ V

�

: (2.16)

For the homogenous ba
kground value �'(�) of '(x), the spatial derivatives vanish

and we are left with an energy momentum tensor of the perfe
t 
uid form (2.5),

where

��

'

=

1

2

a

�2

_

�'

2

+ V and �p

'

=

1

2

a

�2

_

�'

2

� V: (2.17)

We 
an thus simply use Equation (2.9) to obtain the equation of motion

�

�'+ 2

_a

a

_

�'+ a

2

�V

� �'

= 0: (2.18)

2.3 Popular Quintessen
e Models

Sin
e the early work of [4{8℄, many potentials for the s
alar �eld have been pro-

posed. Also, a 
oupling [11,30,31℄ to dark matter has been investigated. We will

brie
y introdu
e some of the more popular models on the market, starting with

one of the oldest ones, the exponential potential.

Exponential Potential

The exponential potential (EP)

V

ep

= M

4

P

exp(��'=M

P

); (2.19)

is motivated by higher dimensional theories [6℄. It exhibits an attra
tor solution

where 


'

0

is determined by 


'

0

= 3=�

2

and the equation of state follows that of

radiation (matter) in the RD (MD) era. Hen
e, its equation of state vanishes today

[11℄ and therefore it 
annot lead to an a

elerated expansion. In Se
tion 7, we will

see that it is stable under quantum 
u
tuations.
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2.3. Popular Quintessen
e Models

Leaping Kineti
 Term

While keeping the exponential potential, one 
an modify the kineti
 term in the

a
tion (2.14). Multiplying it with a �eld dependent fa
tor, one gets [32℄

L = k(')�

�

'�

�

'�M

4

P

exp('=M

P

): (2.20)

By means of the transformation '! K('), where k(') =

�K(')

�'

, one 
an translate

these models ba
k to 
anoni
al kineti
 terms with non-exponential potential. It is

very 
onvenient to 
hoose a leaping kineti
 term (LKT)

k(') = k

min

+ tanh [� ('� '

1

) =M

P

℄ + 1; (2.21)

where the 
onstant k

min

determines the amount of quintessen
e in the early universe

and � � O(1) spe
i�es the steepness of the transition between k = k

min

and

k = 2 + k

min

whi
h o

urs at the �eld value ' = '

1

. Using this kineti
 fa
tor,

one 
an independently spe
ify the amount of dark energy in the early universe (via




'

early

= 3[1 + w

ba
kg:

℄k

2

min

), as well as w

'

0

and 


'

0

(via '

1

and �). Be
ause it is so

versatile, we will use it frequently.

Modi�ed Exponentials

Multiplying the exponential potential by a polynomial V

p

('), we arrive at the

modi�ed exponential potentials (AS) [33℄

V

as

= V

p

(') exp(��'=M

P

): (2.22)

Novel features appear if the polynomial leads to a lo
al minimum in the potential

in whi
h the �eld 
an be trapped.

Inverse Power Laws

Inverse power law (IPL) potentials

V

ipl

= A

�

'

M

P

�

��

; (2.23)

have been investigated thoroughly in the literature [5,12,34{37℄. Here, the pre-

fa
tor A needs to be tuned in order to give the right amount of quintessen
e today.

As IPL models feature attra
tor solutions, the equation of state today is determined

solely by w

'

0

= �2=(� + 2). As it takes on negative values, it 
an lead to an

a

elerated expansion. Unfortunately the power � is phenomenologi
ally restri
ted

to values � / 2 [35,36℄. This leads to more and more �ne tuning of A, be
ause as

�! 0, IPL models behave more and more like a genuine 
osmologi
al 
onstant. For

phenomenologi
ally a

eptable values of �, A is of the order 10

�30

M

P

. Depending

on one's taste (and interpretation of the pre-fa
tor), this may or may not look �ne

tuned.
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Chapter 2. Quintessen
e in the homogenous Universe

SUGRA Inspired Models

A mixture of the exponential and the inverse power law potential

V

sugra

= A

�

'

M

P

�

��

exp

�

1

2

['=M

P

℄

2

�

; (2.24)

may arise from supergravity [38℄. It features an a

elerated expansion and is thus

an interesting model. SUGRA inspired models have been investigated thoroughly

for instan
e in [39℄.

Cooking it all up

In [40℄ a unifying expression

V

uni

= A

�

'

M

P

�

��

exp(��['=M

P

℄




) (2.25)

for mixing up EP, IPL and SUGRA potentials has been proposed. This form

fa
ilitates the dis
ussion of su
h models as they be
ome just limiting 
ases of one

potential. We will use it brie
y in Chapter 7.

2.3.1 Tra
king and Attra
tor Solutions

Many quintessen
e models feature attra
tor solutions [5,6,12℄. For a wide range

of initial 
onditions, the �eld is drawn towards this solution in whi
h it may stay

forever (EP and IPL). In some models (like LKT), an event ki
ks it out of the

attra
tor. In both 
ases, the equation of state w

'

during the early stages of 
osmo-

logi
al evolution remains frozen. The Friedmann Equation (2.7) and the equation

of motion (2.18) 
ombine in the 
ase of _w

'

= 0 to [12℄

�

V

0

V

=

p

3(1 + w

'

)M

�1

P

(


'

)

�

1

2

; (2.26)

where � = sign(V

0

). This is a very valuable result, be
ause it will enable us to

dis
uss the time dependen
e of V; V

0

; V

00

and ' as a fun
tion of w

'

solely. As the

expression for D

'

g


ontains a term V

0

=��

'

, we note that

V

0

��

'

=

V

0

T + V

= (1 + w

'

)

V

0

2V

: (2.27)

A relation to

_

�' 
an be found by 
onsidering

a

�2

_

�'

2

= 2T = (1 + w

'

)�

'

= 3(1 + w

'

)M

2

P

a

�2

�

_a

a

�

2




'

; (2.28)

and therefore

_

�' = M

P

_a

a

[3(1 + w

'

)


'

℄

1

2

: (2.29)
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2.4. Expansion History

Combining this and Equation (2.26) yields

�

V

0

V

= 3(1 + w

'

)

_a

a

_

�'

�1

: (2.30)

Using the relations (2.26-2.30) above, we 
an now infer the s
aling of various quint-

essen
e quantities with � . As we will primarily need these for early times, we

assume that during the early universe, the dominating energy 
ontribution s
ales

like radiation, i.e �� / �

�4

. This is 
ertainly valid if quintessen
e is subdominant

and also in 
ases where exponential potentials are involved. Hen
e,




'

=

��

'

��

rel:

/ �

1�3w

'

; (2.31)

and therefore from Equation (2.29)

_

�' / �

�

1

2

(1+3w

'

)

; (2.32)

and similarly from Equation (2.26)

V

0

V

/ �

1

2

(3w

'

�1)

: (2.33)

As V / T in the tra
king regime, we further have

V / �

�2

_

�'

2

/ �

�3(1+w

'

)

(2.34)

and 
ombining the two relations above

V

0

/ �

�

1

2

(7+3w

'

)

: (2.35)

Finally, the 
hain rule yields

V

00

=

dV

0

d�

d�

d�

/ �

�4

; (2.36)

independent of the equation of state.

2.4 Expansion History

Quintessen
e in
uen
es the expansion history of the universe. As we will see, it


an for instan
e lead to a larger age of the universe. It 
ould also alter the size of

the so 
alled sound horizon (see se
tion 4). The imprints of this will then be seen

in the 
osmi
 mi
rowave ba
kground. This se
tion brie
y reviews the properties of

the di�erent spe
ies, stressing the impa
t of quintessen
e.

From the Friedmann Equation (2.7), we see that the expansion of the universe

is determined solely by the energy density. In this work, we 
onsider 
ontributions
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Chapter 2. Quintessen
e in the homogenous Universe

Spe
ies w

Photons 1=3

Massless neutrinos 1=3

Massive neutrinos 0 < w < 1=3

Baryons 0

Cold dark matter 0

Cosmologi
al 
onstant �1

Quintessen
e

2

�1 < w < 1=3

Table 2.1: S
aling behaviour of various spe
ies, expressed by the equation of state pa-

rameter w = �p=��.

towards this energy density from baryons, 
old dark matter, photons, massless

neutrinos, quintessen
e and in prin
iple massive neutrinos.

With the ansatz �(�) / a(�)


(�)

, one immediately �nds from Equation (2.9)

that


 + a

_


_a

lna = �3(1 +w): (2.37)

For slowly varying 
 (additionally suppressed by a lna), this leads to

��

x

/ a

�3(1+w

x

)

: (2.38)

We summarize the di�erent s
aling behaviour of the spe
ies in Table 2.1. Inserting

w = �1 for a 
osmologi
al 
onstant in Equation (2.38) and using Equation (2.7),

we get

3M

2

P

H

2

= 
onst; (2.39)

and hen
e a / exp(H t) - the universe is undergoing in
ation. S
ales that were

before in 
ausal 
onta
t are pressed out of the horizon. With horizon, we mean

the distan
e, a light signal with a meaningful

3

wavelength 
an travel from the big

bang until some time t. Now, if at some earlier time with s
ale fa
tor a

e

, a photon

travels a distan
e we would today 
all a lightyear, this distan
e will have grown

due to the expansion by a fa
tor of a

0

=a

e

until today. Hen
e, the horizon 
oin
ides

with the 
onformal time

Horizon =

Z

t

0

dt

0

a

=

Z

�(t)

0

d�

0

= �: (2.40)

The horizon size above is the size of the horizon as seen today. To �nd its physi
al

size as seen at the time � , one needs to s
ale the horizon by a(�).

3

In
ation stret
hes wavelengths in an extreme way. A wave with wavelength larger than the

horizon will be undete
table and does not 
arry useful information.

2

In prin
iple, the range depends on the model and more extreme 
ases are possible (however,

not for s
alar quintessen
e models).

14



2.4. Expansion History

w

0

; 


'

ls

= 0:22

w(�); 


'

ls

= 0:22

~w(�); 


'

ls

= 0:22

w

0

; 


'

ls

= 0:13

w(�); 


'

ls

= 0:13

~w(�); 


'

ls

= 0:13

� [Mp
℄

120001000080006000400020000

0.5

0

-0.5

-1

-1.5
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-2.5

Figure 2.1: Equation of state w(�), ~w(�) � 


'

(�)w(�)�

0

=

R

�

0

0




'

(�

0

)d�

0

and averaged

equation of state w

0

for a leaping kineti
 term model (see se
tion 2.3) with

�




'

ls

= 0:13 and

�




'

ls

= 0:22.

As photons and massless neutrinos s
ale di�erently than baryons and 
old dark

matter, there is a s
ale fa
tor

a

eq

=




rel

0




b

0

+





0

� 10

�4

; (2.41)

at whi
h the relativisti
 and the pressureless matter energy density have been

equal. Before a

eq

, the universe has been dominated by radiation. In this 
ase, the

Friedmann equation (2.7) gives

a / �; (2.42)

whereas in a matter dominated universe,

a / �

2

: (2.43)

Adding quintessen
e to this pi
ture, things be
ome more 
ompli
ated. For the

pure exponential potential, the expansion history both in the radiation and matter

era remains un
hanged, be
ause w

'

follows the equation of state of the dominant

spe
ies [11℄. In general, however, this is not true anymore and one has to integrate

the Friedmann equation numeri
ally.
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'
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Figure 2.2: F (


'

0

; w

0

) as a fun
tion of w

0

of the dark energy 
omponent, for 


'

0

between

0.2 and 0.7. Between the limiting 
ases of w

0

= �1 (
osmologi
al 
onstant) and w

0

= 0

(
orresponding to pressureless dust), the age of the Universe varies 
onsiderably.

Yet, we 
an make 
onsiderable progress, if we des
ribe generi
 features of quint-

essen
e by suitably de�ned averages. For the equation of state, we use

w

0

�

Z

�

0

0




'

(�)w

'

(�)d� �

�

Z

�

0

0




'

(�)d�

�

�1

: (2.44)

It is 


'

-weighted, re
e
ting the fa
t that the equation of state of the dark energy


omponent is more signi�
ant if the dark energy 
onstitutes a higher proportion

of the total energy of the Universe (see Figure 2.1). In the limiting 
ase that the

equation of state did not 
hange during the re
ent history of the Universe, the

average is of 
ourse equal to w today. Nevertheless, the di�eren
e between the

average w

0

and today's value w

0


an be substantial for 
ertain models, as 
an be

seen from Table 6.2.

The Friedmann equation (2.7) for relativisti
 spe
ies together with baryoni


and 
old dark matter and a quintessen
e 
omponent reads

3M

2

P

_a

2

a

�4

= �

m

+ �

rel

+ �

'

(2.45)

= �

m

0

a

�3

+ �

rel

0

a

�4

+ �

'

0

a

�3(1+w

0

)

: (2.46)
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2.4. Expansion History

Hen
e, using 3M

2

P

H

2

0

= �


rit:

0

, we have

�

da

d�

�

2

= H

2

0

n

(1� 


'

0

� 


r

0

)a(�) + 


'

0

a

(1�3w

0

)

+


r

0

o

: (2.47)

Upon integrating this, the 
onformal time today be
omes

�

0

= 2H

�1

0

(1� 


'

0

)

�

1

2

F (


'

0

; w

0

); (2.48)

with F given by

F (


'

0

; w

0

) =

1

2

Z

1

0

da

�

a+




'

0

1� 


'

0

a

(1�3w

0

)

+




r

0

(1� a)

1� 


'

0

�

�1=2

: (2.49)

The integral F 
an be solved analyti
ally for spe
ial values of w

0

, e.g.

F (


'

0

; w

0

= 0) =

q

1� 


'

0

�

1�

p




r

0

�

+O(


r

0

): (2.50)

Sin
e (2.49) is dominated by a 
lose to one (typi
ally w

0

� 0) only the present epo
h

matters, 
onsistent with the averaging pro
edure (2.44). From this we regain on

inserting (2.50) in Equation (2.48) the trivial result that the age of the Universe is

the same for a 
old dark matter and a pressureless dark energy universe. We plot

F (


'

0

; w

0

) for various values of 


'

0

in Figure 2.2.
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3

Flu
tuations in Linear Theory

In the previous 
hapter, we have seen that using the Robertson-Walker metri
, we


an solve Einstein's equation. The result is almost mira
ulously simple. However,

the universe is not 
ompletely homogenous. On the 
ontrary: it is quite 
lumpy

on the s
ales of the solar system or even galaxies. Yet, the larger the s
ale one

looks at, the more homogenous it be
omes. In addition, the inhomogeneities usu-

ally grow due to gravitational infall. Hen
e, in the early universe, we may expe
t

only small departures from homogeneity. This is where linear perturbation the-

ory enters the stage. Starting from the homogenous FRW universe, one perturbs

the metri
 and the energy momentum tensor. It is 
onvenient to expand these

perturbations in (generalized) Fourier modes and to 
lassify physi
al quantities in

the 3-dimensional 
onstant time hyper-surfa
es by their transformation properties

[24{26,18℄. Eigenfun
tions of the 3-dimensional Lapla
e operator

�Q

k

(x) = �k

2

Q

k

(x) (3.1)

are used to de
ompose the metri
 and energy momentum perturbations into s
alar,

ve
tor and tensor parts (
alled modes). The bene�t of this 
lassi�
ation is that dif-

ferent modes do not mix in �rst order perturbation theory [26℄: the perturbation

equations de
ouple. Furthermore, a 
oupling between perturbations of di�erent

Fourier modes k and k

0

involves produ
ts of perturbations. These would be of

se
ond order and are thus negle
ted. Hen
e, also modes with di�erent k de
ouple

and it is not ne
essary to display the wave ve
tor k of the eigenfun
tions Q ex-

pli
itly. For the same reason, it is not ne
essary to keep the integration over the

Fourier modes expli
itly in the equations. One should however keep in mind that

for instan
e the energy density is

�(�;x) = ��+

Z

d

3

k

(2�)

3

Æ�(�;k)Q

k

(x); (3.2)

and it is only the de
oupling of di�erent k modes that will enable us to 
ompare

the integrands dire
tly.
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Chapter 3. Flu
tuations in Linear Theory

If the 3-spa
e is 
at (the 
ase we are primarily interested in), thenQ = exp(ikx)

is the solution of the Lapla
e equation (3.1). Now, take for instan
e some ve
tor

V

i

. One 
an de
ompose it into a gradient and a (divergen
e-less) rotation part:

V = grad�+ rotB (3.3)

The fun
tion � is a s
alar, yet it 
ontributes to a ve
tor. In general, we 
an


onstru
t the s
alar basis fun
tions by deriving Q. Let us de�ne

1

Q

i

� �k

�1

Q

;i

(3.4)

Q

ij

� k

�2

Q

;ij

+

1

3

Æ

ij

; (3.5)

where Q

ij

is tra
eless by 
onstru
tion and gives the s
alar 
ontribution towards a

symmetri
 tensor. In general, the 
ontributions to a ve
tor �eld B by some s
alar

fun
tion B 
an thus be written as:

B

i

= BQ

i

(3.6)

and for a tensor �eld, we have

H

ij

= H

L

QÆ

ij

+H

T

Q

ij

(3.7)

In exa
tly the same manner, basis fun
tions for ve
tor and tensor type pertur-

bations 
an be derived. For instan
e, the divergen
e-less part of a ve
tor �eld is

expressed [25℄ via Q

(V )

i

(x) solving the ve
tor Helmholtz equation

Q

(V );j

i;j

+ k

2

Q

(V )

i

= 0; (3.8)

and being divergen
e-less: Q

(V )i

;i

= 0. As we assume that the quintessen
e �eld is a

s
alar under general 
oordinate transformations, it has to be a s
alar under spatial

transformations also. We will therefore restri
t ourselves to the dis
ussion of s
alar

perturbations. The most general line element for a perturbed Robertson Walker

metri
 is [25℄

ds

2

= a(�)

2

�

�(1 + 2A)d�

2

�B

i

d�dx

i

+ (Æ

ij

+ 2H

ij

)dx

i

dx

j

�

(3.9)

Where in the s
alar 
ase B

i

and H

ij

are given by Equations (3.6) and (3.7).

3.1 The Gauge Problem

General 
oordinate transformations are a main ingredient of general relativity. Un-

fortunately, the freedom to 
hoose a 
oordinate system needs to be used with 
are in

1

We follow [25℄, but restri
t ourselves to 
at universes. Hen
e the 
ovariant 3-derivative Q

ji


an be repla
ed by the partial derivative Q

;i

.
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osmology. Let us see, how this 
omes about. Consider an in�nitesimal 
oordinate

transformation

x

�

! ~x

�

= x

�

+ �

�

(�;x); (3.10)

where the derivative of �

�

is also assumed to be at most of the order �. We know

that some tensor expressed in the new 
oordinate system will be

~

T

�:::

�:::

(~x) =

�

�~x

�

�x

�

��

�x

�

�~x

�

�

: : : T

�:::

�:::

(x); (3.11)

where the transformation matri
es are

�

�~x

�

�x

�

�

= Æ

�

�

+

��

�

(�;x)

�x

�

(3.12)

�

�x

�

�~x

�

�

= Æ

�

�

�

��

�

(�;x)

�~x

�

(3.13)

= Æ

�

�

�

��

�

(�;x)

�x

�

�x

�

�~x

�

(3.14)

= Æ

�

�

�

��

�

(�;x)

�x

�

+O(�

2

): (3.15)

The last equation in the above holds, be
ause we have assumed that the derivative

of � is also of the order �. Thus, working to order �, the tensor transformation

(3.11) be
omes

~

T

�:::

�:::

(~x) = T

�:::

�:::

(x) +

�

T

�:::

�:::

(x)

��

�

(�;x)

�x

�

+ � � � �

�

T

�:::

�:::

(x)

��

�

(�;x)

�x

�

� � � � (3.16)

If we were willing to give up the ni
e FRW ba
kground universe, we 
ould hap-

pily use the transformation Equation (3.16). However, we would like to make the


oordinate transformation (3.10), but without paying the pri
e of 
hanging the

ba
kground physi
s. The reason why we would like to keep the ba
kground physi
s

the same regardless of our 
oordinate transformations is that we would like the

ba
kground to maintain its Robertson-Walker metri
, for we have seen that it is

the Robertson-Walker metri
 that leads to the 
onvenient Friedmann equation. So,

in order to sti
k to the old 
oordinates for the ba
kground, we have to go ba
k from

~x to x in the argument of

~

T :

~

T

�:::

�:::

(~x) =

~

T

�:::

�:::

(x+ �)

=

~

T

�:::

�:::

(x) + �

�

 

�

~

T

�:::

�:::

(�)

��

�

!

j�=x

=

~

T

�:::

�:::

(x) + �

�

�

�T

�:::

�:::

(�)

��

�

�

j�=x

+O(�

2

): (3.17)

Here, we have used the transformation Equation (3.16). Putting Equations (3.16)

and (3.17) together, we get the �nal gauge transformation law
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~

T

�:::

�:::

(x) = T

�:::

�:::

(x)�

�

T

�:::

�::: ;�

(�)�

�

+

�

T

�:::

�:::

(�)�

�

;�

+ � � � �

�

T

�:::

�:::

(�)�

�

;�

� � � � : (3.18)

The derivatives above 
ombine to give the Lie derivative L

�

�

T and we 
an rewrite

Equation (3.18) rather elegant as

~

T (x) = T (x)� L

�

�

T : (3.19)

Having derived the transformation equation, let us see what this means for the

metri
. Using Equation (3.18), we get

~g

��

(x) = g

��

(x)� �g

��

�

�

;�

� �g

��

�

�

;�

� �

�

�g

��; �

: (3.20)

It is the last term in the above equation that would quantify the 
hange in the

ba
kground, if we allowed one. However, as we sti
k to the same ba
kground, we

will interpret this term as a 
ontribution to the 
hange of the perturbation variables

due to the 
oordinate transformation. This is the 
on
eptional di�eren
e between

the 
oordinate transformation (
hanging the ba
kground, the 
oordinates and the


u
tuations) and the gauge transformation (
hanging only the 
u
tuations, keeping

the old 
oordinates and ba
kground quantities). The transformation four ve
tor �


an be de
omposed into s
alar and ve
tor parts. Following [25℄, we set

~� = � + T (�)Q(x)

~x

i

= x

i

+ L(�)Q

i

(x) + L

(V )

(�)Q

(V ) i

(x): (3.21)

The ve
tor 
ontribution will not a�e
t s
alar perturbations, just like s
alar, ve
tor

and tensor perturbations de
ouple in linear approximation. Using the above tran-

formation (3.21) in (3.20), we 
an 
al
ulate for instan
e the 
hange in the metri


perturbation B:

~g

0i

(x) = g

0i

(x)� �g

�i

(�)�

�

;0

� �g

0�

(�)�

�

;i

� �

�

�g

0i; �

= g

0i

(x)� �g

ji

(�)

_

LQ

j

� �g

00

(�)TQ

;i

= �a

2

(�)

�

B +

_

L+ kT

�

Q

i

� �a

2

(�)

~

BQ

i

(3.22)

Similar 
al
ulations yield the transformation properties of all the metri
 perturba-

tion variables:

~

A(�) = A(�)�

_a

a

T (�)�

_

T (�)

~

B(�) = B(�) +

_

L+ kT (�)

~

H

L

(�) = H

L

(�)�

_a

a

T �

k

3

L(�)

~

H

T

(�) = H

T

(�) + kL(�) (3.23)
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3.2. The Energy Momentum Tensor

From the transformation properties (3.23) of the s
alar metri
 
u
tuations, it is


lear that one 
an 
hoose the fun
tions T (�) and L(�) su
h, that two of the per-

turbation variables vanish. Popular 
hoi
es are the syn
hronous gauge de�ned by

A = 0; B = 0 and the longitudinal gauge with H

T

= B = 0.

Having the transformation law (3.23) at hand, one 
an 
onstru
t gauge-invariant


ombinations, the so 
alled Bardeen potentials

	 � A�

_a

a

k

�1

� � k

�1

_� (3.24)

� � H

L

+

1

3

H

T

�

_a

a

k

�1

�; (3.25)

where � � k

�1

_

H

T

�B vanishes in the longitudinal gauge. Hen
e, the line element

in the longitudinal gauge takes on the parti
ularly 
onvenient form

ds

2

= a(�)

2

�

�(1 + 2	)d�

2

+ (Æ

ij

+ 2�)dx

i

dx

j

�

; (3.26)

where we have restri
ted ourselves to s
alar 
ontributions. One expe
ts that in gen-

eral, the 
u
tuations in the energy momentum tensor will also be gauge dependent.

This is the true gauge-problem. Due to the di�erent metri
 in di�erent gauges, 
o-

moving observers in di�erent gauges will measure di�erent energy perturbations.

3.2 The Energy Momentum Tensor

Having de�ned the metri
, we will now spe
ify the energy momentum tensor for

matter and radiation. Even though photons during re
ombination (and neutrinos)

need to be des
ribed by a distribution fun
tion, it is still 
onvenient to identify


ertain moments of these distributions as 
uid perturbations. Here, we are go-

ing to derive the perturbation equations for one single spe
ies.

2

After deriving

the perturbation equations in the 
uid des
ription, we will turn to quintessen
e

perturbations.

The imperfe
t 
uid

Let us start by de�ning the energy momentum tensor of a (possibly imperfe
t)


uid:

T

�

�

= pÆ

�

�

+ (p+ �)u

�

u

�

+ �

�

�

(3.27)

Here, the 4-velo
ity u is the velo
ity of the matter rest frame with respe
t to the


oordinate frame. Usually, one assumes that the spatial 
omponents u

i

are �rst

order perturbations. With this in mind, we get from

u

�

u

�

g

��

= �1 (3.28)

2

In Appendix C (see also Chapter 5) we give the full equations (in
luding momentum transfer

between baryons and photons) used to 
al
ulate the CMB anisotropies.
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the time 
omponent

u

0

= a(�)

�1

(1�A(�)): (3.29)

Next, we set for the spatial part

u

i

= a

�1

v(�)Q

i

; (3.30)

de�ning v. Lowering the index, we �nd for the 
ovariant velo
ity

u

0

= �a(1 +A) u

i

= a(v �B)Q

i

: (3.31)

Using the same 
onventions as [26,18℄, let us set

� � ��(�) [1 + Æ(�)Q℄; (3.32)

and the spatial tra
e

p Æ

i

j

� �p(�) [1 + �

L

(�)Q℄ Æ

i

j

; (3.33)

while for the tra
eless part

�

i

j

� �p�Q

i

j

: (3.34)

This de�nes the perturbations � and �

L

and Æ. Working to �rst order one gets

from these de�nitions

T

0

0

= ���(1 + Æ Q)

T

0

i

= (��+ �p) (v �B)Q

i

T

i

0

= �(��+ �p) v Q

i

(3.35)

T

i

j

= �p

�

(1 + �

L

Q)Æ

i

j

+�Q

i

j

�

: (3.36)

Gauging the Energy

We will now investigate the gauge dependen
e of the energy momentum perturba-

tions. From Equations (3.18), (3.21) and (2.9), we get

~

T

0

0

(x) = T

0

0

(x) +

�

T

0

0

�

0

;0

�

�

T

0

0

�

0

;0

�

�

T

0

0;0

�

0

(3.37)

= ���

�

1 +

�

Æ �

_

��

��

T

�

Q

�

= ���

�

1 +

�

Æ + 3(1 + w)

_a

a

T

�

Q

�

: (3.38)

Hen
e,

~

Æ = Æ + 3(1 + w)

_a

a

T: (3.39)

The velo
ity perturbation transforms as
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3.3. Gauge Invariant Energy-Momentum Perturbations

~v = v +

_

L; (3.40)

whi
h 
an be seen by either 
al
ulating d~x

i

=d~� or by transforming T

i

0

. Finally, we

get from a 
al
ulation similar to the one for Æ, that �

L

, transforms as

~�

L

= �

L

�

_

�p

�p

T = �

L

+ 3(1 + w)




2

s

w

_a

a

T; (3.41)

where the sound speed is given by




2

s

�

_

�p

_

��

: (3.42)

The vanishing of the o� diagonal elements

�

T

i

j

ensures that � is gauge invariant

from the start.

3.3 Gauge Invariant Energy-Momentum Perturbations

There are many ways to 
ombine one of the energy-momentum perturbations with

the metri
 
u
tuations (or another energy-momentum perturbation) to form gauge-

invariant quantities. Following [18℄, we will use

V � v �

1

k

_

H

T

= v

(longit)

(3.43)

D

g

� Æ + 3(1 + w)

�

H

L

+

1

3

H

T

�

= Æ

(longit)

+ 3(1 +w)� (3.44)

D � Æ

(longit)

+ 3(1 + w)

_a

a

V

k

(3.45)

� � �

L

�




2

s

w

Æ; (3.46)

where (longit) labels perturbations in the longitudinal gauge, and � 
an be viewed

as entropy produ
tion rate. This is due to the fa
t that for adiabati
 perturbations

Æp=Æ� =

_

�p=

_

�� and therefore

3

�

(adiab)

=

Æp

�p

�

Æp=Æ�

w

Æ�

��

= 0: (3.47)

Perturbed Einstein's and Conservation Equation

Having de�ned the metri
 and the energy momentum tensor, we are now in the

position to use Einstein's equation to relate the metri
 perturbations to the matter

3

To avoid 
onfusion of the Æ's in this line: Æ� is the absolute perturbation ��� Æ.
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perturbations. We will �rst derive the equations with Æ; v : : : in the longitudinal

gauge and in a se
ond step move to the gauge invariant variables. The perturbed

part of Einstein's equations yields

a

2

�� Æ = 2M

2

P

�

k

2

�+ 3

_a

a

�

_

��

_a

a

	

��

from G

0

0

; (3.48)

a

2

v (��+ �p) = 2M

2

P

k

�

_a

a

	�

_

�

�

from G

0

i

; (3.49)

a

2

�p� = = �M

2

P

k

2

(� + 	) from G

i

j

: (3.50)

Conservation of the energy 
omponent T

�

0;�

= 0, gives

�

_

Æ =

�

_

��

��

+ 3

_a

a

�

Æ + (1 + w)(vk + 3

_

�) + 3

_a

a

w�

L

; (3.51)

whereas the momentum part T

�

i;�

= 0 yields

� _v = 4

_a

a

�� v + v

_

��

��

1 + 


2

s

1 + w

� k	+

w k

1 + w

�

2

3

�� �

L

�

: (3.52)

Please note that in prin
iple, the equation of state w and the speed of sound 


s


ould be time dependent. Moving to the gauge-invariant perturbations and using

Equation (2.9) we 
an rewrite equations (3.48-3.50) as

a

2

��D = 2M

2

P

k

2

� (3.53)

a

2

(��+ �p)V = 2M

2

P

k

�

_a

a

	�

_

�

�

(3.54)

a

2

�p� = �M

2

P

k

2

(� + 	); (3.55)

where we have simpli�ed (3.53) using the expression for v from Equation (3.49).

The dynami
s of the the matter perturbations is governed by Equations (3.51) and

(3.52) expressed in gauge invariant variables. Using

_w =

_

��

��

�




2

s

� w

�

(3.56)

and Equation (2.9), we obtain

_

D

g

+ 3

�




2

s

� w

�

_a

a

D

g

+ k V (1 + w) + 3

_a

a

w � = 0; (3.57)

and

_

V =

_a

a

(3


2

s

� 1)V + k

�

	� 3


2

s

�

�

+




2

s

k

1 + w

D

g

+

wk

1 + w

�

��

2

3

�

�

(3.58)
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e Energy Momentum Tensor

3.4 Perturbed Quintessen
e Energy Momentum Ten-

sor

The energy perturbation Æ is de�ned relative to ��. For the quintessen
e �eld, it will

be advantageous to 
onsider the absolute perturbation of a s
alar quantity. From

(3.18), we see that any s
alar ' = �' + � transforms as ~' = ' �

_

�'T . Hen
e, the

perturbation � transforms like ~� = ��

_

�'T and the 
ombination

X � ��

_

�'k

�1

� (3.59)

is gauge invariant. Due to the vanishing of � in the longitudinal gauge, we simply

have �

(longit:)

= X. For the quintessen
e �eld we write

'(�;x) = �'(�) + �(�); (3.60)

where we as usual suppressed the k integration and the k dependen
e of �. We now

use the above expression for X (3.59) to de�ne the gauge invariant �eld 
u
tuation

and write gauge-invariantly ' = �'(�) +X(�).

The perturbed energy momentum tensor follows from inserting the 
u
tuat-

ing '(�;x) and the perturbed metri
 into Equation (2.15). In longitudinal gauge

(where � = X), it is given by

ÆT

0 (longit)

0

=

h

a

�2

�

_

�'

2

	�

_

X

_

�'

�

� V

0

(')X

i

Q (3.61)

ÆT

i (longit)

j

= �

h

a

�2

�

_

�'

2

	�

_

X

_

�'

�

+ V

0

(')X

i

QÆ

i

j

(3.62)

ÆT

0 (longit)

i

= a

�2

k

_

�'X Q

i

(3.63)

ÆT

i (longit)

0

= �a

�2

k

_

�'X Q

i

: (3.64)

Here, the potential V (') should not be 
onfused with the gauge invariant velo
ity

perturbation V, whi
h for quintessen
e will be denoted by V

'

. Despite the fa
t that

only gauge invariant variables appear in Equations (3.61 - 3.64), none of them is

gauge invariant. For instan
e ÆT

0

0

transforms as a s
alar.

4

As spatial o� diagonal

elements vanish, we immediately get

�

'

= 0: (3.67)

4

We 
an easily see this from Equation (3.37), where

~

ÆT

0

0

= ÆT

0

0

�

_

�

T

0

0

�

0

. Hen
e, the quantity

T � ÆT

0

0

� k

�1

�

_

�

T

0

0

is gauge invariant and T = ÆT

0 (longit)

0

. Thus, the perturbation in the

syn
hronous gauge follows from

ÆT

0 (syn
)

0

= T + k

�1

�

(syn
)

_

�

T

0

0

= ÆT

0 (longit)

0

+ k

�1

�

(syn
)

_

�

T

0

0

(3.65)

= �a

�2

_

�' _�

(syn
)

� V

0

�

(syn
)

; (3.66)

in agreement with the dire
t 
al
ulation using Equation (2.15) in the syn
hronous gauge.
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To solve Equations (3.53) and (3.54), an expression for D

'

and V is needed. Com-

paring Equation (3.35) with Equation (3.64) in longitudinal gauge, yields

a

�2

k

_

�'X = (��

'

+ �p

'

)V

'

: (3.68)

Using ��

'

+�p

'

= a

�2

_

�'

2

from Equation (2.17), we �nd the gauge invariant expression

V

'

= k

_

�'

�1

X: (3.69)

An expression for the density perturbation D

g

is obtained by inserting Equation

(3.61) in Equation (3.44)

D

'

g

= ��

�1

'

h

�ÆT

0 (longit)

0

+ 3(��

'

+ �p

'

)�

i

(3.70)

= ��

�1

'

h

a

�2

_

�'

�

_

X +

_

�'f3��	g

�

+ V

0

(')X

i

(3.71)

= (1 + w

'

)

h

3��	 +

_

X

_

�'

�1

i

+X V

0

(') ��

�1

'

(3.72)

where we have on
e again used ��

'

+�p

'

= a

�2

_

�'

2

. The perturbation D

'

then follows

from D

'

g

using Equations (3.45) and (3.69).

Equation of Motion of the Quintessen
e Field Perturbation

Energy 
onservation, T

�

0;�

= 0 (or alternatively the Klein-Gordon equation), yields

the gauge invariant equation of motion

�

X =

_

�'

�

_

	� 3

_

�

�

� 2a

2

V

0

(')	�

�

a

2

V

00

(') + k

2

�

X � 2

_a

a

_

X; (3.73)

for the �eld perturbation X. That this equation is truly gauge invariant follows

from the equation of motion

�� = �2Aa

2

V

0

(') +

_

�'(

_

A� kB � 3

_

H

L

)�

�

a

2

V

00

(') + k

2

�

�� 2

_a

a

_�; (3.74)

derived without gauge �xing and a subsequent gauge transformation of all pertur-

bation variables. To see the invarian
e, the � -derivative of Equation (2.18) leading

to

d

3

d�

3

�'+

h

2

�a

a

� 6

�

_a

a

�

2

+ a

2

V

00

i

_

�' = 0 is useful.

3.5 Syn
hronous Gauge Quintessen
e Field

Most of the existing literature uses syn
hronous gauge. In addition, the widely

used 
mbfast 
omputer 
ode whi
h integrates the perturbation equations is im-

plemented in this gauge. In terms of the perturbation variables de�ned in [27℄, the

equations for the quintessen
e �eld have been derived for instan
e in [28,29℄. Here,
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we will re-derive them using the gauge invariant equations of the previous se
tion.

The perturbation H

ij

of Equation (3.9) is de�ned in [27℄ as

2H

ij

=

^

k

i

^

k

j

hQ+ 6�

�

^

k

i

^

k

j

�

1

3

Æ

ij

�

Q (3.75)

=

1

3

hÆ

ij

Q� (h+ 6�)Q

ij

; (3.76)

in other words, H

T


ontains terms both from h and �,

H

L

=

1

6

h; H

T

= �

1

2

(h+ 6�): (3.77)

Even though we will not need them here, we note that using h and �, the Bardeen

potentials be
ome

	 =

1

2k

2

�

_a

a

�

_

h+ 6 _�

�

+

�

�

h+ 6��

�

�

(3.78)

� =

4

3

h� � +

1

2k

2

_a

a

�

_

h+ 6 _�

�

: (3.79)

Turning to the perturbation evolution, a short manipulation of Equation (3.69),

using the expression for V

'

and X in the syn
hronous gauge yields

v

(syn
)

'

= k

_

�'

�1

�

(syn
)

: (3.80)

In the notation of [27℄, one uses � � ik

j

v

j

Q

�1

. Now, v

j

= vQ

j

= �k

�1

vQ

;j

=

�ik

�1

k

j

vQ and hen
e

�

(syn
)

'

= �i

2

k

j

k

j

k

�1

v

(syn
)

'

= k v

(syn
)

'

(3.81)

= k

2

_

�'

�1

�

(syn
)

: (3.82)

In the Footnote on page 27, we have already derived

Æ

(syn
)

'

��

'

= �a

�2

_

�' _�

(syn
)

� V

0

�

(syn
)

: (3.83)

Alternatively, in syn
hronous gauge ÆT

0

0

= �Æ� holds, giving the same result. Fi-

nally, the perturbation �

(syn
)

obeys the equation of motion

��

(syn
)

+ 2

_a

a

_�+ k

2

�

(syn
)

+ a

2

V

00

(')�

(syn
)

+

1

2

_

h

_

�' = 0; (3.84)

whi
h 
an be derived using the non-gauge-�xed equation of motion (3.74) and Equa-

tion (3.77).
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3.6 Solutions for Perfe
t Fluids

In order to get some intuition for the perturbation variables, we brie
y summarize

their behaviour in simple settings. Chapter 5 will generalize these ideas in great

detail to early time perturbations.

The perturbation equations (3.53) - (3.58) simplify 
onsiderably for a shear

free 
uid (� = 0) with vanishing entropy produ
tion (� = 0). The easily obtained

analyti
 solution for pressureless dust (w = 


2

s

= � = � = 0), is [18℄

V = V

0

(k�)

D

g

= �V

0

�

15 +

1

2

(k�)

2

�

	 = 3V

0

; (3.85)

where V

0

is an integration 
onstant. We see, that the gravitational potential 	 =

�� is 
onstant in a matter dominated universe. Turning to the relativisti
 
uid

with w = 


2

s

= 1=3; � = � = 0, the solution on super horizon s
ales (k� � 1)

be
omes [18℄

V = V

0

(k�)

D

g

= �12V

0

�

2

3

V

0

(k�)

2

	 = 2V

0

; (3.86)

where again V

0

is an arbitrary 
onstant. Hen
e, also in a radiation dominated

universe, 	 remains 
onstant. Finally, the solution on sub horizon s
ales (k� � 1)

is

V = V

2

sin

�

k�=

p

3

�

D

g

=

4

p

3

V

2


os

�

k�=

p

3

�

	 = �

3

2

(k�)

�2

D

g

: (3.87)

Interestingly, the perturbation variables os
illate within the horizon in a radiation

dominated universe. As the photons in the 
osmi
 mi
rowave ba
kground are emit-

ted from su
h a radiation 
uid, one suspe
ts to see os
illation patterns depending

on the s
ale k. This is quite true, even though the details are a bit more 
ompli-


ated. We will pi
k up the os
illatory solution again in Chapter 4, but before that

a look at quintessen
e perturbations is in order.

For modes that are well inside the horizon, we negle
t gravitational feedba
k.

5

The equation of motion (3.73) for X be
omes

�

X + 2

_a

a

_

X +

�

a

2

V

00

(') + k

2

�

X = 0: (3.88)

5

This assumption is by no means 
orre
t in the 
ase of super-horizon perturbations.

30



3.6. Solutions for Perfe
t Fluids

On sub-horizon s
ales, k

2

� a

2

V

00

('). In addition, _a=a = 1=� during radiation

domination and _a=a = 2=� in a matter dominated universe. Thus, sub-horizon

wise, we get

�

X +

2s

�

_

X + k

2

X = 0; (3.89)

with s = 1; 2 for RD and MD respe
tively. In both 
ases, the solution to Equation

(3.89) is

X(�) = �

1�s

p

k [


1

j

s�1

(k�) + 


2

n

s�1

(k�)℄ ; (3.90)

where 


1

; 


2

are 
onstants and j

l

; n

l

are spheri
al Bessel and Neumann fun
tions.

Figures 5.2 and 5.1 ni
ely show the os
illatory behaviour of X as soon as the mode

is well inside the horizon. Super-horizon modes will be dis
ussed in se
tion 5.2.

There, we will show that X usually follows a power law in � .

31



Chapter 3. Flu
tuations in Linear Theory

32



4

The Cosmi
 Mi
rowave

Ba
kground

The 
osmi
 mi
rowave ba
kground has been a

idently dis
overed by Penzias &

Wilson in 1965 [42℄. It is formed by a sea of photons that arrive almost isotropi
ally

from all dire
tions in the sky. Before we review the main features of the CMB

anisotropy 
al
ulation (starting with Se
tion 4.2), we would like to gain some results

from intuition that hold also in the detailed 
al
ulation.

4.1 Intuition

Let us start by the observation, that a thermal photon gas has o

upation numbers

N =

�

exp(~!=k

b

�

T )� 1

�

�1

=

�

exp(h
=k

b

�

T�)� 1

�

�1

; (4.1)

where k

b

is the Boltzmann 
onstant, 
 is the speed of light and � is the wave length

of a photon determining its energy. Now, the frequen
y of a mi
rowave (with say

� = 10 
m) is f = 3� 10

9

Hz, whereas the Hubble parameter is

H

0

� 100 km s

�1

Mp


�1

� 2� 10

�18

Hz: (4.2)

Thus, the mi
rowave frequen
y is mu
h higher than the relative expansion rate of

the universe. Hen
e, for the photon gas, the universe expands adiabati
ally and

from quantum me
hani
s, we know that the o

upation number should be 
on-

served. Along with the physi
al s
ales, the wavelength stret
hes with the expansion

� / a. In order to 
onserve the o

upation number, we thus �nd

�

T / a

�1

: (4.3)

Alternatively, the energy density of a photon gas �




/

�

T

4

, and as �




/ a

�4

, we see

that

�

T / a

�1

as above.
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Within the photon-baryon plasma, sound waves propagate at the huge speed of

[45℄




2

s

=

d�p

d��

=

1

3

d��




d (��




+ ��

b

)

; (4.4)

whi
h is � 1=3 until re
ombination destroys the plasma. The sound horizon is the

distan
e, a sound wave 
an at most travel sin
e � = 0. It is given by

s(�) =

Z

�

0

d�

0




s

(�

0

); (4.5)

and owing to the fa
t that 


2

s

� 1=3 during most of the time until de
oupling,

one simply has s(�) � �

p

1=3. Now, the plasma is opaque to photons. Just at

the end of re
ombination, the universe is transparent enough for photons to travel

almost freely. Therefore, most of the CMB photons seen today s
attered for the

last time at around the epo
h of de
oupling. Naturally, this epo
h is also 
alled

last s
attering. Using the Saha equation [43℄, one �nds that the redshift of last

s
attering is z

ls

� 1100. This 
orresponds to � � 300Mp
 and therefore a sound

horizon of s � 170Mp
. As far as sound-waves are 
on
erned, the only (large) s
ale

present at last s
attering is this sound horizon. We have already seen in Se
tion 3.6

that within the horizon, photon perturbations start to os
illate. Thus, one expe
ts

`resonan
es' [45℄ of the form


os(k � s

ls

+ '); (4.6)

where ' a

ounts for a possible overall phase shift.

1

In adiabati
 models, this shift is ' � 0:2. We will later �nd more detailed

formulae for the shifts of the peaks. However, for a �rst estimate, it is enough to


onsider ' = 0 and hen
e, one expe
ts peaks in Fourier spa
e at

k =

m�

s

� m� 0:018Mp


�1

; (4.7)

where m is an integer.

The CMB experiments do not measure temperature anisotropies in Fourier

spa
e dire
tly, but angular 
orrelations on the sky today. Therefore, it is natural

to quote the results in terms of 
oeÆ
ients C

l

of a Legendre series (see Se
tion 4.2

below). The photons last s
attered at z

ls

stream freely as a plane wave towards us.

In terms of Legendre polynomials a plane wave is expanded with spheri
al Bessel

fun
tions j

l

as 
oeÆ
ients. As the `distan
e' the plane wave travels is �

0

� �

ls

� �

0

,

the wave is given today by exp(ik�

0

). It turns out that the Bessel fun
tions in the

Legendre expansion of exp(ik�

0

) take on the argument j

l

(k�

0

) (see Se
tion 4.5.1).

Now, spheri
al Bessel fun
tions are peaked when the argument equals the multipole

l. Therefore, a feature present in Fourier spa
e at last s
attering translates into a

1

Unfortunately, there are many quantities that are 
ommonly denoted by the Greek letter �.

However, the reader should have no problem to keep the peak shift ' and the �eld ' apart, as

the peak shift is o

urring only here and in the se
tion about peak shifts and in both 
ases, the

quintessen
e �eld ' is not present.
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Figure 4.1: Boomerang 2001 data and the spe
trum for a LKTmodel with h = 0:65; 


'

0

=

0:7; 


b

0

h

2

= 0:022; n = 0:97. In this model, the horizons at last s
attering and to-

day are �

ls

= 280Mp
; �

0

= 14400Mp
. The roughly estimated peak positions are

l = 260; 520; 780 : : : .

feature in the multipole de
omposition today at

l � k�

0

: (4.8)

For the k-values of (4.7), one gets (using �

0

� 14400Mp
 of the model depi
ted

in Figure 4.1) l

peak

� 260; 520; 780 : : : . Figure 4.1, showing experimental data as

well as theoreti
al predi
tions for the C

l

spe
trum ni
ely demonstrates that the

estimate of peak positions

2

is fairly adequate. The o

urren
e of peaks spa
ed by

roughly the same �l � 200� 300 in the multipole spe
trum leads to the de�nition

of the a
ousti
 s
ale [44,45℄

l

A

= �

�

0

� �

ls

s

= �

�

0

� �

ls

�


s

�

ls

; (4.9)

where �


s

= �

�1

ls

R

�

ls

0

d�


s

(�) is the average sound speed until last s
attering. In

terms of l

A

, our estimate of peak positions, (4.8) is just l

m

= ml

A

.

4.2 The Multipole Spe
trum

The temperature anisotropies are usually quoted in terms of 
oeÆ
ients C

l

of 2-

point 
orrelations. Suppose, we knew the temperature anisotropy �(n) today on

2

Or rather inter-peak spa
ing, as we didn't in
lude the shift.
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planet earth pointing in dire
tion n in the sky.

3

We 
an expand this in terms of

spheri
al harmoni
s

4

�(n) �

�T

T

(n) =

X

l;m

a

lm

Y

m

l

(n): (4.10)

The 2-point 
orrelation between two dire
tions in the sky is then




�(n)�(n

0

)

�

=

X

l;l

0

;m;m

0

ha

lm

a

�

l

0

m

0

iY

m

l

(n)

�

Y

m

0

l

0

(n

0

)

�

�

(4.11)

One now assumes that the angle � � n � n

0

between the dire
tions is statisti
ally

independent of the orientation, i.e. one 
an write

ha

lm

a

�

l

0

m

0

i = Æ

ll

0

Æ

mm

0

C

l

; (4.12)

with 
oeÆ
ients C

l

. From Equation (4.11) we then get




�(n)�(n

0

)

�

=

X

l

C

l

l

X

m=�l

Y

m

l

(n)

�

Y

m

l

(n

0

)

�

�

(4.13)

=

1

4�

(2l + 1)C

l

P

l

(�); (4.14)

where P

l

(�) are Legendre polynomials. In Fourier spa
e, C

l

's 
an be expressed as

C

l

= (4�)

Z

k

2

dkP (k)j�

l

(k; �

0

)j; (4.15)

where P(k) is the initial power spe
trum and �

l

(k; �

0

) are 
oeÆ
ients of the Leg-

endre series

�(k; �; �

0

) =

X

l

(�i)

l

(2l + 1)�

l

(k; �

0

)P

l

(�): (4.16)

4.3 The Liouville Equation for Photons

At redshift z � 1100, the universe was 
ool enough for ele
trons and protons to

re
ombine and form neutral hydrogen. The less free ele
trons there were, the less

opaque the universe be
ame for photons. From the re
ombination period on, the

des
ription of photons and baryons as one single 
uid is not appropriate anymore.

One therefore uses the phase-spa
e distribution fun
tion f . For a start, let us 
on-

sider the simple 
ase of a spatially homogenous distribution f =

�

f(p; �) (forgetting

3

We suppress the arguments x

0

(`here') and �

0

('now`) in this se
tion for ease of notation.

4

The 
al
ulation here follows `textbook' standard and 
an in similar form be found for instan
e

in [18℄.
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for a moment that it might resemble the one in (4.1)). In the argument we have

de�ned p � Æ

ij

p

i

p

j

. The general relativisti
 Liouville equation is [47℄

p

�

(�

�

�

f)

jp

� �

i

��

p

�

p

�

�

�

f

�p

i

= 0; (4.17)

where jp stands for evaluation at 
onstant p. From p = Æ

ij

p

i

p

j

one has

�p

�p

i

=

p

k

p

Æ

ik

: (4.18)

Using this, p

0

= p 6= 0 for photons and the unperturbed Christo�el symbols of

Appendix A yields

�

�

�

�

f

�

jp

� 2p

_a

a

�

�

�

f

�p

�

j�

= 0: (4.19)

Now, a photon observed by some observer with 4-velo
ity u

�

has energy E = u

�

p

�

[46℄ and therefore with u

0

= �a from Equation (3.31),

E = �ap: (4.20)

The time derivative of E at 
onstant p is therefore

5

(�

�

E)

jp

= � _ap =

_a

a

E: (4.21)

Moving from the variablesf�; pg of Equation (4.19) to f�; Eg and using p

�

�

f

�p

= E

�

�

f

�E

yields

0 = (�

�

�

f)

jE

+

�

�

�

f

�E

�

j�

�

�E

��

�

jp

� 2E

_a

a

�

�

�

f

�E

�

j�

= (�

�

�

f)

jE

�E

_a

a

�

�

�

f

�E

�

j�

: (4.22)

Now, for any fun
tion

�

f(x � aE),

(�

�

�

f)

jE

=

�

�

f

�x

�

�x

��

�

jE

= _aE

�

�

f

�x

; (4.23)

and

(�

E

�

f)

j�

=

�

�

f

�x

�

�x

�E

�

j�

= a

�

�

f

�x

: (4.24)

Inserting this in Equation (4.22), we see that any distribution that solely depends on

aE is un
hanged by the 
osmologi
al expansion. Looking ba
k at the distribution

fun
tion for a thermal photon gas (4.1) one �nds that for T / a

�1

, f is preserved

just as before.

5

If one happens to know that Ea = 
onst: (e.g. from the last se
tion), one is tri
ked into the


on
lusion that

_

E = �

_a

a

E. However, at 
onstant p, one gets the opposite sign.
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4.4 The Perturbed Photon Distribution

The last se
tion showed that

�

f is a fun
tion of aE = �a

2

p only. Following [18℄,

we de�ne v � a

2

p

i

p

j

Æ

ij

and f(�;x; v;n) =

�

f(v) +F (�;x; v;n), where n is the unit

ve
tor of the photon momentum. In
luding 
ollisions, Liouville's equation (4.17)

be
omes Boltzmann's Equation [47℄

p

�

(�

�

f)

jp

� � �

i

��

p

�

p

�

�f

�p

i

= C[f ℄; (4.25)

where C[f ℄ 
ontains 
ollision terms. We will not 
al
ulate the 
ollision term in

this work, but state the result as derived in [18℄ at the end of this se
tion. The

unperturbed distribution

�

f is by de�nition thermal with Temperature

�

T =

�

T (�) =

�

T

0

a

�1

:

�

f(v) =

�

exp

�

�

v

�

T

0

�

� 1

�

�1

: (4.26)

One then de�nes the temperature perturbation by

f(�;x; v;n) =

�

f

�

v

1 +�

�

; (4.27)

where the term in bra
kets is the argument of

�

f , and

�(�;x;n) �

�T

�

T

; (4.28)

is the relative temperature anisotropy. Plugging this into (4.26) one indeed sees

that

�

T

0

!

�

T

0

(1 + �) making the de�nition plausible. Taylor expanding (4.27)

f(�;x; v;n) �

�

f(v) � v�

d

�

f

dv

; (4.29)

one sees that

F (�;x; v;n) = �v

d

�

f

dv

�(�;x;n); (4.30)


onne
ting F with �. In order to obtain an equation for the temperature pertur-

bation �, one uses [18℄ Boltzmann's equation (4.25) with the perturbed Christo�el

symbols and repla
es F by � by means of relation (4.30). The intermediate result

is [18℄:

�

�

�+ n

i

�

i

� = �n

i

A

;i

� n

i

n

j

�

B

i;j

+

_

H

ij

�

+

~

C[f ℄; (4.31)

where

~

C[f ℄ � �C[f ℄=(v

�

f

0

). The next step 
onsists in an expansion of

�(�;x;n) =

1

X

l=0

�

i

1

;:::i

l

(�;x)n

i

1

: : : n

i

l

; (4.32)
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where �

i

1

;:::i

l

(�;x) are symmetri
 tra
eless tensor �elds. It turns out that tensor


omponents beyond the 2-tensor are negligible [18℄. Furthermore, s
alar �eld quint-

essen
e will not sour
e tensor or ve
tor perturbations and hen
e, we will only treat

the s
alar temperature anisotropy in the following. Keeping only the s
alar and

using the de
omposition of Chapter (3), one simply has

�(�;x;n) = �

(S)

(�)Q(x): (4.33)

Inserting this in Equation (4.31) yields

�

�

�

(S)

+ ik��

(S)

= �ik�A+ �

2

k� �

1

3

_

H

T

�

_

H

L

+

~

C[f ℄; (4.34)

where � is the dire
tion 
osine de�ned via n

j

Q

;j

= ik�Q and � = k

�1

_

H

T

� B. In


at spa
e, where Q = exp(ikx), � given by � = k

�1

k �n. Unfortunately, the above

Equation (4.34) is not gauge invariant. However with

M� �

(S)

+H

L

+

1

3

H

T

+ i��; (4.35)

Equation (4.34) be
omes

�

�

M+ ik�M = ik�(��	) +

~

C[f ℄: (4.36)

One 
an show [18℄ that M = �

(S)

up to a gauge dependent monopole and dipole


ontribution and indeed M is gauge invariant [48℄. It is this quantity M that

plays the 
entral role in the 
al
ulation of the CMB anisotropy spe
trum. Let us

stop for a moment to re
apitulate the steps: from the Boltzmann Equation and the

distribution f(�;x; v;n) =

�

f(v)+F (�;x; v;n) one moves to �(�;x;n), de
omposes

this into s
alar, ve
tor et
. and singles out the equation for �

(S)

(�) for one Fourier

mode k. It turns out that this equation depends on k and n only through k �n and

that by moving from �

(S)

to M, the Equation (4.34) be
omes gauge invariant.

One 
an now make 
onta
t to the 
uid des
ription of Se
tion (3.2) by means of

T

��

=

Z

p

�

p

�

f(p; x)p

2

dp

p

0

d


p

: (4.37)

Comparison with the 
uid perturbations, yields [18℄

D




g

=

1

�

Z

Md
 (4.38)

V




=

3i

4�

Z

�Md
 (4.39)

�




= �

3

�

Z

1

2

�

3�

2

� 1

�

Md
: (4.40)

The appearan
e of Legendre polynomials in the integrals of (4.38 -4.40) suggests,

that an expansion of M in terms of spheri
al harmoni
s is helpful. Following

[49,18℄, we use

M =

X

l

M

l
0

G

0

l

(4.41)
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with

s

G

m

l

(n) = (�i)

l

r

4�

2l + 1

s

Y

m

l

; (4.42)

where

s

Y

m

l

are spin weighted harmoni
s [50,51℄. The use of spin-weighted harmon-

i
s is of advantage, be
ause the polarization turns out to be a spin-2 quantity whi
h

is best quoted in terms of the variables E and B. For s
alars B vanishes, and E is

related to the Stokes parameter Q via [52,53,18℄

1

4

Q =

X

l

E

l
2

G

0

l

(n): (4.43)

With the multipole de
omposition of M, we 
an rewrite Equations (4.38-4.40) as

D




g

= 4M

0

(4.44)

V




= M

1

(4.45)

�




=

12

5

M

2

(4.46)

In
luding polarization and the 
ollision terms due to Thomson s
attering [49,18℄,

one �nally arrives at

_

M+ i�kM+ _�M = i�k(��	) + _�

�

1

4

D




g

� i�V

b

�

1

2

(3�

2

� 1)C

�

; (4.47)

where _� � an

e

�

T

is the di�erential opti
al depth with n

e

the number density of

free ele
trons and �

T

the Thomson s
attering 
ross se
tion. The quantity C in

the above, is given by C � (M

2

�

p

6E

2

)=10. In prin
iple, one 
ould now insert

the multipole de
omposition ofM and E in Equation (4.47) (and a 
orresponding

equation for E), get an hierar
hy of equations for ea
h multipole l and from this

infer the 
oeÆ
ients C

l

of the temperature anisotropy 
orrelation. However, for C

l

up to l � 1500, this translates into more than 3000 
oupled di�erential equations.

Lu
kily, the line of sight strategy to solve Equation (4.47) has been developed [16℄.

It only needs a few (l / 8)M

l

's and is hen
e mu
h faster. As we still need the mul-

tipole hierar
hy (even though to mu
h smaller extent), we note that this hierar
hy

for M is given by [52℄

_

M

0

= �

k

3

V




(4.48)

_

M

1

= _�(V

b

� V




) + k(	� �) + k

�

M

0

�

2

5

M

2

�

(4.49)

_

M

2

= � _� (M

2

� C) + k

�

2

3

V




�

3

7

M

3

�

(4.50)

_

M

l

= � _�M

l

+ k

�

l

2l � 1

M

l�1

�

l + 1

2l + 3

M

l+1

�

; l > 2; (4.51)
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whereas the one for E is [52℄

_

E

2

= �

k

p

5

7

E

3

� _�

�

E

2

+

p

6 C

�

(4.52)

_

E

l

= k

�

2

�

l

2l � 1

E

l�1

�

2

�

l+1

2l + 3

E

l+1

�

� _�E

l

; l > 2: (4.53)

Here, C = (M

2

�

p

6E

2

)=10 as above and

2

�

l

=

p

l

2

� 4 are 
ombinatorial fa
tors

[52℄ that should not be 
onfused with the di�erential opti
al depth _�.

Massless neutrinos

Massless neutrinos follow the same multipole hierar
hy as M, however without

polarization and Thomson s
attering. Hen
e, the perturbed neutrino distribution

is

_

N

0

= �

k

3

V

�

(4.54)

_

N

1

= k(	� �) + k

�

N

0

�

2

5

N

2

�

(4.55)

_

N

l

= k

�

l

2l � 1

N

l�1

�

l + 1

2l + 3

N

l+1

�

; l > 1; (4.56)

where V

�

= N

1

. In 
ontrast to photons, there is no tight 
oupling to baryons.

Thus, moments beyond the dipole may built up from the beginning. However, as

_

N

l

/ kN

l�1

for l > 1, it follows that N

l

/ (k�)

(l�1)

N

1

at early times. As k� � 1

for super-horizon modes, higher order moments of N are suppressed.

6

4.5 The Line of Sight Strategy

Inspe
ting (4.47), one noti
es that the LHS 
an be written as

e

�i�k�

e

��(�)

_

L; (4.57)

where

L � e

i�k�

e

�(�)

M: (4.58)

Hen
e, (4.47) translates into

_

L = e

i�k�

e

�(�)

�

i�k(��	) + _�

�

1

4

D




g

� i�V

b

�

1

2

(3�

2

� 1)C

��

; (4.59)

6

This is a bit of a 
ir
ular reasoning. If ea
h moment N

l+1

is small 
ompared to N

l�1

, then

_

N

l

/ kN

l�1

. That this leads to the suppression of higher order moments is no wonder, for we have

assumed this from the start. Yet, N

2


orresponds to �

�

and this in turn determines 	� � from

Einstein's equation. As this di�eren
e is not substantial, one 
on
ludes that N

2

(and all higher

moments) are small initially.
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Figure 4.2: The visibility g � _� exp(�(�) � �(�

0

)) as a fun
tion of 
onformal time � in

Mp
. Its peak at about � � 300Mp
 de�nes the epo
h of last s
attering.

and integrated over 
onformal time,

L(�

0

) =

Z

�

0

0

d�e

i�k�

e

�(�)

�

i�k(��	) + _�

�

1

4

D




g

� i�V

b

�

1

2

(3�

2

� 1)C

��

:

(4.60)

A

ording to Equation (4.58), the photon perturbation today is given byM(�; �

0

) =

e

�i�k�

0

e

��(�

0

)

L(�

0

), so

M(�; �

0

) =

Z

�

0

0

d� e

i�k(���

0

)

e

�(�)��(�

0

)

�

�

i�k(��	) + _�

�

1

4

D




g

� i�V

b

�

1

2

(3�

2

� 1)C

��

: (4.61)

The produ
t g � _� exp(�(�) � �(�

0

)) plays an important role

7

and is 
alled the

visibility fun
tion. Its peak de�nes the epo
h of re
ombination (see also Figure

4.5). Ea
h term in the above Equation (4.61) 
ontaining fa
tors of �, 
an be

7

Please note that in [16℄, �(� ) =

R

�

0

�

_�(�

0

)d�

0

and hen
e �(�

0

) = 2�(� ). Therefore the fa
tor

exp(�(� )��(�

0

)) equals exp(��(� )). However, this obs
ures the derivation a bit and we therefore


hoose to display �(�

0

).
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integrated by parts, in order to get rid of �. For instan
e

Z

�

0

0

h

e

i�k(���

0

)

i�k

i

gV

b

d� =

h i

�

Z

�

0

0

e

i�k(���

0

)

k

�1

�

g

_

V

b

+ V

b

_g

�

d�; (4.62)

where [ ℄ stands for the boundary term that here and for all of the terms above


an be dropped, as it vanishes for � ! 0 and only 
ontributes to C

0

for � = �

0

.

Applying this pro
edure to all terms involving � yields

M(�; �

0

) =

Z

�

0

0

e

i�k(���

0

)

S(k; �)d�; (4.63)

where the sour
e is

S = �e

�(�)��(�

0

)

h

_

��

_

	

i

+ g

"

1

4

D




g

+

_

V

b

k

� (��	) +

C

2

+

3

2k

2

�

C

#

+ _g

�

V

b

k

+

3

k

2

_

C

�

+ �g

3

2k

2

C: (4.64)

Let us pause to dis
uss this result (4.63, 4.64) in detail. First, we note that the

visibility fun
tion g is sharply peaked at the epo
h of de
oupling (see Figure 4.5).

Hen
e, M(�

0

) gets 
ontributions from D




g

and V




b

at about this epo
h: whatever

the density 
ontrast of the photon 
uid and the baryon 
uid velo
ity has been

at de
oupling, will be imprinted in the temperature anisotropy today. The term

from the density 
ontrast D




g

is the most important one on s
ales smaller than the

sound horizon. It is the main 
ontributor towards the os
illatory behaviour of the

C

l

spe
trum. Its appearan
e is plausible, be
ause for a photon gas, � / T

4

and

therefore ÆT=T /

1

4

Æ�=�. The V




b

-term appears, be
ause a baryon moving in the

dire
tion towards the observer will 
ause a Doppler shift of the emitted photon.

For adiabati
 initial 
onditions, this Doppler shift �lls the region before the �rst

peak (at l � 220), whi
h is mainly due to D




g

[44℄. The �rst term in the sour
e

(involving

_

��

_

	) a

ounts for the integrated Sa
hs-Wolfe (ISW) e�e
t [54℄: if the

gravitational potential de
ays, the photons have to 
limb out of a more shallow

potential than they have been in before. Quintessen
e, for instan
e 
an lead to a

more pronoun
ed ISW than standard CDM models. The terms involving C and

its derivatives des
ribe polarization e�e
ts and are far less important than the D




g

term. Finally, the (� � 	) term is the (ordinary) Sa
hs-Wolfe e�e
t. On s
ales

that at de
oupling were well outside the horizon, this gives the main 
ontribution.
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4.5.1 The Multipole Power Spe
trum from the Line of Sight

In order to �nd the multipole power spe
trum, one expands

8

the plane wave

exp(ik�[� � �

0

℄) in Equation (4.63) in terms of Legendre polynomials

e

ik�[���

0

℄

= e

�ik�[�

0

�� ℄

=

h

e

ik�[�

0

�� ℄

i

�

(4.65)

=

"

X

l

(i)

l

(2l + 1)j

l

(k[�

0

� � ℄)P

l

(�)

#

�

(4.66)

=

X

l

(�i)

l

(2l + 1)j

l

(k[�

0

� � ℄)P

l

(�): (4.67)

Comparing with (4.16) one �nds [16℄

M

l

(k; �

0

) =

Z

�

0

0

d�S(k; �) j

l

(k[�

0

� � ℄) : (4.68)

Inserting this in Equation (4.15), the C

l

spe
trum follows.

4.5.2 Putting it all together

As far as the CMB is 
on
erned what one really wants is the temperature

9

anisotropy


orrelation fun
tions, 
ommonly quoted using the 
oeÆ
ients C

l

. The slow way

would be to get the C

l

's dire
tly from the (vast) multipole hierar
hy of the photon

distribution via Equation (4.15). In 
ontrast, the line of sight integration gets the

�

l

's (in our 
ase the gauge-invariant M

l

's) by folding the sour
e term S with the

spheri
al Bessel fun
tions j

l

. While the Bessel fun
tions os
illate rapidly in this


onvolution, the sour
e term is most of the time rather slowly 
hanging. It thus

suÆ
es to 
al
ulate the sour
es at few (
leverly 
hosen) points and interpolate be-

tween. In order to determine the sour
es, one needs to know (among other things)

D




g

and C. Therefore, one still needs to solve a multipole hierar
hy for M and E.

However, for suÆ
ient pre
ision, only a few multipoles are needed: they built up

rather slowly starting from initially shear-free 
onditions (M

l

= 0; l > 1) due to

the tight 
oupling to baryons. In order to suppress trun
ation e�e
ts, the multipole

beyond the highest one in the hierar
hy is approximated by the re
ursion relation

of Bessel fun
tions (see Appendix C).

8

See Abramowitz, M. and Stegun, I. A. (Eds.)., Chapter on Bessel fun
tions of fra
tional order,

addition theorems.

9

And some more, like polarization et
.
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5

Initial Conditions

In order to 
lassify initial 
onditions the introdu
tion of

S

a:b

�

Æ

a

1 + w

a

�

Æ

b

1 + w

b

(5.1)

=

D

a

g

1 + w

a

�

D

b

g

1 + w

b

(5.2)

is useful. It is gauge invariant and 
hara
terizes the entropy ex
hange between two


omponents `a' and `b'. As an illustration, suppose the two 
omponents were 
old

dark matter and radiation and S


dm:r

would vanish. Then the perturbation in the

number density of 
dm parti
les n would be

�n

n

= Æ


dm

=

3

4

��

r

�

r

=

�s

r

s

r

; (5.3)

sin
e the entropy of radiation s

r

/ T

3

and �

r

/ T

4

. Hen
e, the radiation entropy

per 
dm parti
le would vanish:

�

�

s

r

n

�

=

n�s

r

� s

r

�n

n

2

= 0: (5.4)

If

S

a:b

= 0; (5.5)

for all pairs of 
omponents in the early universe, one speaks of isentropi
 or adiabati


initial 
onditions.

5.1 Initial Conditions without Quintessen
e

The initial 
onditions are most easily derived without quintessen
e �rst. Later in

this 
hapter, we will add quintessen
e to the pi
ture. With initial 
onditions, we

mean the value of all perturbation variables at early time (i.e. radiation domina-

tion) for modes that are well outside the horizon. Therefore x � k� is a small

number.
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The multipole hierar
hy of photons (4.48-4.53) and neutrinos (4.54-4.56) shows

that ea
h higher order moment is suppressed by a power of x with respe
t to the

one below (see also Se
tion 4.4). As x � 1, it suÆ
es to trun
ate the expansion

beyond the quadrupole, i.e. we have N

3

=M

3

= 0. For photons, the tight 
oupling

to baryons suppresses even the quadrupole and together they behave like one single


uid. From the equations governing the time evolution of the photon and baryon

velo
ities one 
an derive a single equation for the baryon-photon 
uid velo
ity. One

starts from the equations for the separate 
uids (negle
ting baryon sound speed

and photon dipole here),

_

V

b

= �

_a

a

V

b

+ k	+ _�R(V




� V

b

)

_

V




=

k

4

D

g;


+ k(	��) + _�(V

b

� V




); (5.6)

where R � 4�




=(3�

b

). In the above, the Thomson drag term [18℄ has been added

to the Equation for the Baryon velo
ity. As _� is overwhelmingly large in the early

universe, both velo
ities are for
ed to 
oin
ide. This is the so 
alled tight 
oupling

limit. Adding the two Equations (5.6) , one gets

R

_

V




+

_

V

b

= k

�

R(	� �) + 	+R

1

4

D

g;


�

�

_a

a

V

b

; (5.7)

and �nally using R

_

V




+

_

V

b

= (R+ 1)

_

V

b

�R

_

V

b

+R

_

V




,

(R+ 1)

_

V

b

= k

�

(R + 1)	�R�+R(

_

V

b

�

_

V




) +

1

4

RD

g;


�

�

_a

a

V

b

: (5.8)

It is this equation that in the tight 
oupling limit repla
es the two equations (5.6).

To pro
eed further we note that in the early universe, R� 1 and hen
e R+1 � R.

In addition,

_

V

b

�

_

V




= 0 due to the tight 
oupling. Therefore Equation (5.8)

simpli�es to

_

V

b

= k

�

	� �+

1

4

D

g;


�

�R

�1

_a

a

V

b

: (5.9)

Now,

R

�1

=

3�

b

4�




=

3


b

0

h

2

4





0

h

2

a � 500 a: (5.10)

At the early times we are interested in, a is small and we 
an also drop the term

proportional to V

b

.

1

The perturbed Einstein equations (3.53 - 3.55) simplify in the deep radiation

dominated era, be
ause then a / �; _a=a = �

�1

and the Friedmann equation (2.7)

yields

3M

2

P

a

�2

�

_a

a

�

2

= 3M

2

P

a

�2

�

�2

= ��; (5.11)

1

After these simpli�
ations, the evolution equation for the 
ommon baryon-photon velo
ity V

b

has be
ome the one for a single photon 
uid (see Equation (5.16) below).

46



5.1. Initial Conditions without Quintessen
e

hen
e
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�2

P
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2

�� = 3�

�2

: (5.12)

Using this and (5.8), the set of equations determining the perturbation evolution

is therefore
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℄ + 9





?

+ x

2

) + 3





?

�

D

g;


+ 4V




x

�1

�

+3


�

?

�

D

g;�

+ 4V

�

x

�1

�

+ 3





?

�

D




+ 3V




x

�1

�

: (5.21)

Here, Equation (5.20) 
orresponds to (3.54) and the last Equation is just Poisson's

equation (3.53). The 


?

's denote quantities at initial time. We keep the minute


old dark matter 
ontribution in (5.21), until we have shown that V




vanishes to

lowest order in x. Thereafter, we drop 
old dark matter from Poisson's equation.

Please note that we do not need to 
onsider baryons separately, as their velo
ity


oin
ides with the one for photons and D

g;b

will be determined from the type of

initial 
onditions later. In addition, adding baryons to Poisson's equation wouldn't


hange the reasoning with respe
t to V




, whi
h is why we omit it from (5.21). The

easily obtained solutions for a single photon 
uid, (3.86) suggest that a power-law

ansatz of the form

Y (x) = Y

0

+ Y

1

x

2

+ Y

2

x

2

; (5.22)

with 
oeÆ
ients Y

i

is sensible. As � and 	 are related to �

�

via Equation (5.19),


onsisten
y requires that we keep only the 
onstant

2

term for � and 	 [56℄. All

other perturbation variables are expanded up to x

2

. In a �rst step, Equation (5.20)

requires

�

0

�

= �

1

�

= 0; (5.23)

2

In prin
iple, we 
an add the terms up to x

2

, a detailed 
al
ulation shows however, that

�

1

= 	

1

= 0 and the se
ond order terms don't in
uen
e other quantities.
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and hen
e using Equation (5.19), we �nd

V

0

�

= 0: (5.24)

Similarly, Equation (5.14) gives

V

0




= 0; (5.25)

and 
ombining the two, Poisson's equation (5.21) for
es

V

0




= 0: (5.26)

Hen
e, all zero order velo
ities vanish. Comparing terms proportional to � in our

equation system, we get

D

2

g;


= �2=3V

1




(5.27)

D

2

g;�

= �2=3V

1

�

(5.28)

D

2




= �1=2V

1




(5.29)

V

2




= 1=8D

1

g;


(5.30)

V

2

�

= 1=8D

1

g;�

(5.31)

V

2




= 0 (5.32)

Turning subsequently to the 
onstant terms in the equation system, one gets

D

1




= 0 (5.33)

V

1




= 	

0

=2 (5.34)

D

1

g;


= 0 ! V

2




= 0 (5.35)

D

1

g;�

= 0 ! V

2

�

= 0 (5.36)

�

2

�

= � (


�

?

)

�1

(	

0

+�

0

) (5.37)

In addition, Equation (5.16) relates

	

0

= �

0

+ V

1




�

1

4

D

0

g;


; (5.38)

and

�

0

=

1

8

D

0

g;


�

2

5




�

?

V

1

�

�

1

2

V

1




: (5.39)

After all these 
onsiderations, we are left with

V

1




� V

1

�

=

1

4

�

D

0

g;


�D

0

g;�

�

(5.40)







?

�

6V

1




+

1

2

D

0

g;


�

= �


�

?

�

V

1

�

�

6

5

(


�

?

+





?

) + 4

�

(5.41)

+D

0

g;�

�

1

2

D

0

g;


+ 2V

1




�

(5.42)

(5.43)

The relation between D

g;


and D

g;�

imposed by the type of initial 
onditions,

determines then all variables in terms of an overall 
onstant. Let us look 
loser at

adiabati
 
onditions.
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5.1.1 Adiabati
 Initial Conditions

A

ording to Equation (5.5), adiabati
ity for
es D

g;


= D

g;�

. In this 
ase, Equa-

tion (5.40) yields V

1




= V

1

�

. Also, D




= 3=4D

g;


is implied by adiabati
 
onditions.

Solving Equation (5.42) for V

1




then 
ompletely determines all perturbations,

D

g;�

= D

g;


= 1 +

5

6

Qx

2

(5.44)

D




= D

b

=

3

4

+

15

24

Qx

2

(5.45)

V

�

= V




= V

b

= V




= �

5

4

Qx (5.46)

�

�

= �Qx

2

(5.47)

� =

1

2

[2


�

?

+ 5℄Q (5.48)

	 = �

5

2

Q; (5.49)

where Q = [4


�

?

+ 15℄

�1

. Having found the early time behaviour of the perturba-

tions, we are now going to turn to the quintessen
e �eld.

5.2 Early Time Quintessen
e Perturbations

As su
h, there is no `
anoni
al' quintessen
e. To our knowledge, however, the

early time behaviour of the �eld perturbation has been studied either for pure

exponentials [28℄ or for negligible quintessen
e 
ontent in the early universe [55℄.

3

The reason for these assumptions is simply the fa
t that a 
losed solution for all

types of quintessen
e is impossible to �nd.

However, for tra
ker solutions, this is possible. We owe this to the fa
t that in

these 
ases, V

0

;

_

�' et
., o

urring in the equation of motion for the perturbation

(3.73) have a well de�ned s
aling with � (see Se
tion 2.3.1). The equation of motion

(3.73) 
ontains a term

_

�'

�

_

	� 3

_

�

�

. We will in the following assume that quintess-

en
e doesn't 
hange the almost 
onstant behaviour of the gravitational potentials

and hen
e drop this term.

4

In addition, for super-horizon modes, a

2

V

00

� k

2

, and

hen
e the equation of motion redu
es to

�

X = �2a

2

V

0

	� a

2

V

00

X � 2

_a

a

_

X: (5.50)

We will solve this equation using the power law solutions for the derivatives of V

obtained in Se
tion 2.3.1. Our assumptions are hen
e that

(i ) The energy density of the universe s
ales as a

�4

at the time of interest, implying

3

Unfortunately, the solution given in [55℄ seems in
orre
t, though the s
aling with � is 
orre
t.

4

This is very well justi�ed in pra
ti
e.
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_a=a = �

�1

.

(ii ) The equation of state w

'

is (nearly) 
onstant.

In order to manifestly display the power laws, we write

V

0

=

^

V

(1)

�

�(7+3w

'

)=2

(5.51)

V

00

=

^

V

(2)

�

�4

(5.52)

a = â� (5.53)

X =

^

X�

q

; (5.54)

where â et
. are proportionality 
onstants and we seek a power-law solution for

X(�). Inserting these relations in (5.50), one gets

q(q + 1) = �â

2

h

2	

^

V

(1)

^

X

�1

�

(

1

2

�

3

2

w

'

�q

)

+

^

V

(2)

i

: (5.55)

Ex
ept for the fa
tor �

(1�3w

'

)=2�q

, all quantities are 
onstant in this equation.

5

Hen
e, the solution is given by q = (1� 3w

'

)=2 and therefore

X(�) =

^

X �

1

2

(1�3w

'

)

; (5.56)

with

^

X given by

^

X = �

8â

2

^

V

(1)

	

3(1� w

'

)(1� 3w

'

) + 4â

2

^

V

(2)

; (5.57)

and upon re-substituting â! a(�)�

�1

et
,

X(�) = �

8a

2

�

2

V

0

	

3(1� w

'

)(1 � 3w

'

) + 4a

2

�

2

V

00

: (5.58)

Let us brie
y denote this parti
ular solution by

~

X. Adding another power-law to

this, i.e. making the ansatz X(�) =

~

X(�) + 
�

p

, one observes that this also solves

the equation of motion, if p =

1

2

h

�1 +

p

1� 4â

2

^

V

(2)

i

. In fa
t, the general solution

is obtained by adding the parti
ular solution and two 
omplementary solutions:

X(�) =

~

X(�) + 
 �

�

1

2

�

1�

p

1�4â

2

^

V

(2)

�

+ 


2

�

�

1

2

�

1+

p

1�4â

2

^

V

(2)

�

; (5.59)

where the mode proportional to 


2

is at least as rapidly de
aying as the one propor-

tional to 
. From Equations (5.52) and (5.53), we know that 4â

2

^

V

(2)

= 4a

2

V

00

�

2

.

5

As already mentioned, we assume that the time behaviour of 	, i.e. its (near) 
onstan
y

remains unaltered by quintessen
e. It is 
lear, that this is true for subdominant quintessen
e. As

we will see, it is also true for exponential potential quintessen
e and its relatives like the LKT

model.
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Figure 5.1: Gauge invariant quintessen
e �eld 
u
tuation X(�) as simulated (dotted),


ompared to the analyti
 solution of Equation (5.58) (solid). The relative deviation is

plotted as long dashed line. The quintessen
e model used was an IPL with � = 4, leading

to w

'

early

� �0:111 and hen
e a

ording to (5.56), X / �

0:667

. Shown is the mode for

k = 0:1Mp


�1

and the 
osmologi
al parameters have been 


b

0

h

2

= 0:02; h = 0:65; 


'

0

=

0:1; 





0

= 1� 


b

0

� 


'

0

.

As V

00

is the mass square of the quintessen
e �eld and as in the attra
tor, the only

available s
ale is the Hubble parameter, it follows that V

00

is O(H

2

). Therefore,

4a

2

V

00

�

2

� 4a

2

�

_a

a

�

2

a

�2

�

2

= 4

�

_a

a

�

2

�

2

= 4: (5.60)

This order of magnitude result is in pra
ti
e rather under estimating 4a

2

V

00

�

2

. In

most situations, the square root in p is therefore imaginary and one is left with a

de
aying os
illating mode. Even if 4a

2

V

00

�

2

would vanish, the mode would at most

be 
onstant. For as long as w

'

< 1=3, this mode will even then be subdominant. In

all pra
ti
al settings, it is de
aying / 1=

p

� in an os
illating fashion. Coming ba
k

to the dominating parti
ular solution (5.58), Figure 5.1 shows that the a

ura
y

of this analyti
 result is indeed high at early times, when 
ompared to numeri
al

simulations.
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5.2.1 Quintessen
e Energy Density Perturbation

Intuitively, one expe
ts that the energy density perturbation D

'

g

should remain


onstant on super-horizon s
ales

6

. This is true, at least for tra
king solutions,

be
ause from the s
aling relations of Se
tion 2.3.1 and Equation (5.56), it follows

that

_

X

_

�'

= 
onst; X

V

0

�

= 
onst: (5.61)

Hen
e, making use of X / �

(1�3w)=2

and Equations (2.29, 2.27)

D

'

g

= 
onst = (1 + w

'

)

�

3��	 +

1� 3w

'

2

X(�)

�

_

�'

�

+X(�)

V

0

(')

��

'

(5.62)

= (1 + w

'

)

"

3��	 �X(�)

(

1 + 3w

'

M

P

p

3(1 + w

'

)


'

)#

(5.63)

with X(�) given by Equation (5.58). For w

'

= �1=3, the X-dependent 
ontri-

bution 
an
els. However, this doesn't mean that there is no quintessen
e energy


u
tuation, be
ause there is still the time 
u
tuation 	 present. This a

ounts

for the apparent energy 
u
tuation of observers measuring the same ba
kground

density, yet disagreeing about the 
orresponding time. For exponential potentials,

it turns out that D

'

g

is parti
ularly simple.

Early time exponential potentials

For the exponential potential the derivatives of the potential are V

0

= ��M

�1

P

V

and V

00

= �

2

M

�2

P

V . Hen
e, Equation (5.58) simpli�es to

X(�) = 2�

�1

	M

P

: (5.64)

Thus, the �eld 
u
tuation remains 
onstant during the early universe on super-

horizon s
ales for exponential potentials and their relatives (like LKT). In addition,

Equation (5.62) simpli�es to

D

'

g

= 4�� 2	; (5.65)

where we have used V

0

ep

=��

'

= ��=(3M

P

). The 
onstant behaviour of X and D

'

g

is

depi
ted in Figure 5.2.

5.2.2 Adiabati
 Initial Conditions in
luding Quintessen
e

From the de�nition of S

a:b

(5.1), we see that adiabati
ity requires

D

'

g

= (1 + w

'

)D




g

: (5.66)

6

If not by some initial 
ondition for
ed out of this solution
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Figure 5.2: Gauge invariant quintessen
e �eld 
u
tuation X(�) (solid line) and energy

density perturbation D

'

g

(long dashed line) as a fun
tion of 
onformal time for an ex-

ponential potential. Also drawn is the line 
onst = 1. A

ording to Equation (5.65),

D

'

g

= 4� � 2	 and for the adiabati
 
onditions used, 4� � 2	 = 1. The agreement of

numeri
al and analyti
 results is very good. The mode shown has k = 0:1Mp


�1

and the


osmologi
al parameters are 


b

0

h

2

= 0:02; h = 0:65; 


'

0

= 0:1; 





0

= 1 � 


b

0

� 


'

0

. The

horizon at equality and today are �

0

� 9130Mp
 and �

eq

= 40Mp
.

In addition, this shouldn't 
hange instantly after spe
ifying the initial 
ondition,

leading to the demand

_

D

'

g

= _w

'

D




g

; (5.67)

where we assumed that D




g

is at least nearly 
onstant. Using the �rst 
onstraint

yields

X = �

��

'

V

0

(1 + w

'

)

h

3��	+D




+

_

X

_

�'

�1

i

= �

��

'

V

0

(1 + w

'

)

"

1

2

	 +

_

X

_

�'

#

; (5.68)

where

1

2

	

h

_

�'

�

��

'

W

_

A� _w

'

_

�'V

0

�

+ a

2

W

�

4(V

0

)

2

� ��

'

WV

00

	

i

h

_w

'

�W (2�

�1

+

_

�'

�1

�

�') +

_

�'

_

A

i

V

0

+ (

_

�'

�1

Wa

2

V

00

�A)W ��

'

(5.69)

is �xed by the se
ond requirement and the equation of motion for X (3.73) and

W � (1 +w

'

); A � V

0

=��

'

. In our numeri
al simulation, these rather 
ompli
ated
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expressions give the initial 
onditions for X and

_

X. In the next few lines, we will

prove that for tra
king quintessen
e, X given by the above and the tra
king value

(5.58) 
oin
ide.

For tra
king quintessen
e, _w

'

vanishes. Thus

_

D

'

g

= 0 from whi
h it follows

that

(1 + w

'

)

_

X

_

�'

+X

�

V

0

��

'

�

= 
onst; (5.70)

where we have assumed that 	 and � are (at least nearly) 
onstant. As both

_

�'

and V

0

=��

'

follow a power law in the attra
tor, Equation (5.70) for
es X to follow

a power law in � also. If ea
h of the two terms in Equation (5.70) is 
onstant

by itself, then the s
aling relation (2.33) determines X / �

(1�3w

'

)=2

. This is just

the behaviour of X from Equation (5.56). Thus, the solution for X from the

adiabati
ity requirement and the `tra
king solution' for X from Equation (5.56)

are proportional to ea
h other. However, the `adiabati
' X (5.69) has been derived

using the equation of motion for X (3.73). The very same equation that is used to

derive (5.56). As both solve the equation of motion and as they are proportional to

ea
h other, we are lead to 
on
lude that they 
oin
ide.

7

To 
omplete the proof, we

have to show that ea
h of the two terms in Equation (5.70) is 
onserved separately.

Suppose that this wouldn't be the 
ase, but still, the sum (5.70) is 
onserved. Then,

the power-law of X di�ers from X / �

(1�3w

'

)=2

and the only possibility left for

(5.70) to hold is a 
an
ellation of the two terms. Using the relations (2.29) and

(2.27), Equation (5.70) then be
omes

�

_

X +

3

2

(1 + w

'

)�X = 0; (5.71)

where � = sign(V

0

) and � = �1 in the 
ase we are interested in. The solution to

Equation (5.71) is X =

^

X�

3(1+w

'

)=2

. However, for w

'

6= �1=3, this solution is not

the one of (5.56), (5.59). As this is the only solution to the equation of motion in

the tra
king regime, we are led to 
on
lude that a 
an
ellation in the sum (5.70) is

not possible, ex
ept for w

'

= �1=3. In this 
ase, the solutions 
oin
ide anyway and

both terms are on
e again 
onserved separately (and as we know from Equation

(5.63), they 
an
el ea
h other). This 
ompletes the proof.

A problem arises, be
ause to evaluate (5.69), one needs 	. This in turn is

given by �

�

and �. To get �, one needs to solve Poisson's equation in
luding

quintessen
e

�(12[


�

?

+





?

℄ + 9(1 + w

'

)


'

) = 3[





?

+


�

?

℄

�

D

g;


+ 4V




x

�1

�

+ 3


'

�

D

'

g

+ 3(1 + w)V

'

x

�1

�

; (5.72)

where we have used the (still valid) relations V

�

= V




; D

g;�

= D

g;


and negle
ted

the (small) matter 
ontribution.

8

Pra
ti
ally all relations of the previous se
tion

7

To prove this by dire
t 
al
ulation seems rather diÆ
ult.

8

We have also dropped the term proportional to x

2

, as it is negligible for early times and never

used in the derivation of �

0

, et
.
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between the perturbation variables are still valid, as only Poisson's equation is


hanged. It is 
lear from this Poisson equation (5.72), that if 3(1 + w

'

)V

'

= 4V




,

then solutions for � from Poisson's equation without quintessen
e (5.21) also solve

(5.72). For arbitrary quintessen
e, this is not 
lear, asX is given by the 
ompli
ated

expressions (5.68) and (5.69).

Yet, if 


'

is subdominant at early times, Poisson's equation will pra
ti
ally

stay the same as without quintessen
e and � will be given by Equation (5.48). In

addition, even if 


'

is relevant, then usually potentials that look exponential at the

time of interest are involved. Lu
kily, exponential potentials lead to w = 1=3 and

therefore a / � is still valid. In addition, their tra
king assures that the relations

of se
tion 2.3.1 are fully appli
able. Using the fa
t that X = 
onst, and Equations

(2.27, 2.33) yields

V

'

=

kX

_

�'

= �k	

1 + w

'

1� w

'

V

V

0

_

�'

=

k	

3(1� w

'

)

_a

a

=

1

2

k�	

= V




(5.73)

Thus, quintessen
e models with potentials that behave like an exponential at the

time of interest, do not alter the value of � (and 	). Unfortunately, we 
an say

nothing generi


9

about the in
uen
e on � in the 
ase of a substantial quintessen
e


ontribution at early times with arbitrary potential.

To put it in a nutshell: for most models of pra
ti
al interest, 


'

0

is either neg-

ligible at initial times, or the potential behaves like an exponential. In both 
ases,

� stays the same as without quintessen
e. One 
an therefore use Equations (5.44-

5.49) together with (5.68) and (5.69) to spe
ify the initial adiabati
 
onditions.

10

9

At least nothing notable. In prin
iple, one 
an solve the problem, however the result is rather

lengthy and of little pra
ti
al use. We therefore omit it here.

10

Making a mistake, whenever quintessen
e is non-negligible at early times and the potential is

not exponential.
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6

Footprints of Quintessen
e

The non-generi
ness of quintessen
e makes it diÆ
ult to dete
t it and even more

diÆ
ult to rule it out. In this 
hapter, we are going to di
uss possibilities to �nd the

tra
es dark energy 
ould have left behind. We will mainly fo
us on CMB and SNe Ia

experiments, tou
hing only brie
y stru
ture formation. In addition to these three

observation possibilites, lensing [57℄ as well as bounds from big bang nu
leosynthesis

(BBN) [11,59℄ play an important role. For an overview of observation strategies,

see for instan
e [58,60℄. If dark energy is not a 
osmologi
al 
onstant, then its time

varying behaviour may be imprinted at di�erent epo
hs. For instan
e, a dete
tion

of, say 5% dark energy at last s
attering would mean that the dark energy must be

dynami
al. But even if observational tests do not lead to a dete
tion, they still put

stringent bounds on ea
h model. Already, it is by no means trivial to �nd a model

with sensible parameters that passes observational tests. The 
urrent 
onstraints

available together with the epo
h ea
h test probes are summarized in Figure 6.1.

Our aim is not to 
onstrain a parti
ular model as good as possible. In fa
t,

there is no parti
ular reason why any of the models on the market should be the

quintessen
e realization. Therefore, we will des
ribe main features of quintessen
e

relevant for CMB and SNe Ia in a model independent way. With very few param-

eters, e.g. the in
uen
e of quintessen
e on the CMB 
an be determined. Apart

from the better understanding due to this analyti
 des
ription (
ompared to sim-

ulations), one 
an also estimate whether a given model will pass CMB 
onstraints

without expli
itly using a CMB Boltzmann 
ode. Of 
ourse, our �ndings are ap-

pli
able in universes without quintessen
e also. For instan
e, the phase shift of the

third peak in the CMB multipole spe
trum is quite insensitive to the details of the


osmologi
al model.

6.1 Introdu
ing Quintessen
e in the CMB

In the following se
tions, we will dis
uss in whi
h ways quintessen
e in
uen
es the

CMB. For as long as quintessen
e is not 
oupled to any other form of matter or

radiation, it 
an only 
hange the expansion history and - less importantly - the in-

tegrated Sa
hs-Wolfe e�e
t. We will see that 
hanging the expansion history leads
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Figure 6.1: Constraints on dark energy versus redshift. The upper bound ea
h test pla
es

on 


'

is indi
ated by shaded boxes. A viable model needs to stay within these regions.

Very short termed violations of the bounds (though seemingly unnatural) are of 
ourse still

possible.

to a di�erent spa
ing between the peaks in the CMB. In prin
iple, one 
ould use

this e�e
t to dete
t the amount of quintessen
e before re
ombination. However, the

Hubble parameter 
an mimi
 the in
uen
e of quintessen
e, spreading the separa-

tion between peaks. Hen
e, one needs independent information about the Hubble


onstant, in order to determine the amount of quintessen
e at last s
attering.

In a 
at universe, the a
ousti
 s
ale l

A

, we will be 
al
ulating determines the av-

erage spa
ing �l between the peaks. We will derive an analyti
 expression depend-

ing only on the averaged equation of state w

0

from Equation (2.44), the averaged

amount of quintessen
e before re
ombination,

�




'

ls

, and the amount of quintess-

en
e today, 


'

0

. When 
omparing this analyti
 formula for the a
ousti
 s
ale to

numeri
al simulations, the typi
al pre
ision turns out to be better than 1%.

Even though the a
ousti
 s
ale yields the average spa
ing between CMB peaks,

it is inappropriate to estimate the lo
ation of the peaks. Hen
e, in a se
ond step, we
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ale of the CMB

are going to quantify the relation between the a
ousti
 s
ale and the peak lo
ations.

The results on these peak shifts are appli
able to universes without quintessen
e

as well and have been used to analyti
ally des
ribe main features of the CMB [61℄.

As a side e�e
t, we will be in the position to determine the a
ousti
 s
ale from

measurements - an extremely valuable result. But let us �rst turn to the a
ousti


s
ale.

6.2 The A
ousti
 S
ale of the CMB

The equation of state of quintessen
e in
uen
es the expansion rate of the Universe

and thus the lo
ations of the CMB peaks [3,28,62{64℄. The in
uen
e of dark energy

on the present horizon and therefore on the CMB has been dis
ussed in [39℄. A

likelihood analysis on 
ombined CMB, large s
ale stru
ture and supernovae data

[65,66℄ 
an also give limits on the equation of state. Several of these analysis 
on-


entrate on models where the dark energy 
omponent is negligible at last s
attering.

In 
ontrast, we are interested parti
ularly in getting information about dark energy

in early 
osmology. Therefore, the amount of dark energy at last s
attering is an

important parameter in our investigation.

The inter-peak spa
ing is to a good approximation [44,45℄ given by the a
ousti


s
ale

1

l

A

= �

�

0

� �

ls

�


s

�

ls

: (6.1)

The a
ousti
 s
ale depends dire
tly on the present geometry through �

0

as well as

indire
tly through the dependen
e of �

ls

on the amount of dark energy today (see

Equation (6.5)). In se
tion (2.4), we have already 
al
ulated �

0

using a suitably

de�ned average equation of state w

0

for the quintessen
e 
omponent. In addition,

the average sound speed until de
oupling is �


s

� 1=

p

3. A

ording to Equation

(4.9), we then only need to estimate �

ls

to get l

A

. To this end, we assume that the

fra
tion of quintessential energy 


'

(�) does not 
hange rapidly for a 
onsiderable

period before de
oupling and de�ne an e�e
tive average

�




'

ls

� �

�1

ls

Z

�

ls

0




'

(�)d�: (6.2)

This average is dominated for � near �

ls

whereas very early 
osmology is irrelevant.

Approximating 


'

by the 
onstant

�




'

ls

for the period around last s
attering, the

Friedmann equation (2.7) is just

3M

2

P

H

2

(1�

�




'

ls

) = �

m

+ �

r

= �

m

0

a

�3

+ �

r

0

a

�4

: (6.3)

Here �

m

0

and �

r

0

are the matter and relativisti
 (photons and 3 spe
ies of neu-

trinos) energy densities today. Negle
ting radiation 
ontributions today, we have

1

See also se
tion 4.1.
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Figure 6.2: The CMB Spe
trum for �-CDM (model C), leaping kineti
 term (model A)

and inverse power law (model B) quintessen
e universes with 


'

0

= 0:6. The data points

from the Boomerang [67℄ and Maxima [68℄ experiments are shown for referen
e.

3M

2

P

H

2

0

(1� 


'

0

) = �

m

0

, whi
h we insert in Equation (6.3) to obtain

�

da

d�

�

2

= H

2

0

(1�

�




'

ls

)

�1

[(1�


'

0

)a(�) + 


r

0

℄ : (6.4)

Separating the variables and integrating gives

�

ls

= 2H

�1

0

s

1�

�




'

ls

1� 


'

0

(

s

a

ls

+




r

0

1� 


'

0

�

s




r

0

1� 


'

0

)

; (6.5)

whi
h is well known for vanishing

�




'

ls

. For �xed H

0

; 


'

0

; 


r

0

and a

ls

, we see that

�

ls

= �

va


ls

(1 �

�




'

ls

)

(1=2)

, where �

va


ls

is the last s
attering horizon for a �-CDM

universe (whi
h we treat here to be just a spe
ial realization of dark energy with

w = �1). Inserting Equations (6.5) and (2.48) in Equation (4.9), we get the desired

expression for the a
ousti
 s
ale

l

A

= ��


�1

s

2

4

F (


'

0

; w

0

)

q

1�

�




'

ls

(

s

a

ls

+




r

0

1� 


'

0

�

s




r

0

1� 


'

0

)

�1

� 1

3

5

; (6.6)
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with F given by Equation (2.49) and today's radiation 
omponent 


r

0

h

2

= 4:2 �

10

�5

. Please note, that sin
e it is the 
ombination 


r

0

h

2

that is measurable, the ex-

pression (6.6) above depends strongly on the Hubble parameter. Both, an in
rease

in

�




'

ls

and a de
rease in h lead to an in
rease in l

A

. The sound velo
ity 


s

and the

s
ale fa
tor of de
oupling a

ls

have to be determined numeri
ally to a
hieve high

a

ura
y in l

A

. In our 
ase (


b

0

= 0:05 and h = 0:65), they are a

�1

ls

= 1130 and

�


s

= 0:52. However, using a

ls

� 1100 and 


s

= 1=

p

3 � 0:57, is still enough for a

qui
k estimate at the 10% level.

2

We have evaluated Equation (6.6) for quintessen
e

models with various parameters (see se
tion 2.3 for de�nitions of the models):

A. A Leaping kineti
 term model with � = 1, k

min

= 0:05; 0:1; 0:2 and 0:26 and

'

1

is adjusted to � 277 in order to obtain 


'

0

= 0:6. The value of

�




'

ls

is

determined by these parameters.

B. An inverse power law potential, with � = 6; 22 and 40, and A adjusted su
h

that 


'

0

= 0:6. On
e again,

�




'

ls

follows.

C. A 
osmologi
al 
onstant tuned su
h that 


'

0

� 


�

0

= 0:6.

D. The pure exponential potential with � =

p

3=


'

0

.

The results are summarized in Table 6.1, where we give l

A

together with the

lo
ations l

1

; l

2

of the �rst two peaks 
omputed by 
mbeasy. The last entry 
ontains

the peak spa
ing �l averaged over 6 peaks for the numeri
al solution. Of 
ourse,

when running 
mbeasy, one 
an also determine l

A

dire
tly from the ba
kground

evolution via Equation (4.9). The formula (6.6), the numeri
al value of l

A

and the

averaged peak spa
ing �l are found to be in very good agreement.

In Table 6.2, we determine the a

ura
y of the estimates of �

ls

(6.5) and �

0

(2.48)

by 
omparison with the numeri
al solution. The good agreement demonstrates that

the averaging pres
riptions Equation (2.44) and (6.2) are indeed meaningful. We


on
lude that the in
uen
e of a wide 
lass of di�erent quintessen
e models (beyond

the ones dis
ussed here expli
itly) on �

ls

, �

0

and l

A


an be 
hara
terized by the

three quantities 


'

0

;

�




'

ls

and w

0

.

For the models (A) and (D), quintessen
e is not negligible at last s
attering. The

pure exponential potential requires 


'

0

� 0:2 for 
onsisten
y with nu
leosynthesis

and stru
ture formation. It does not lead to a presently a

elerating universe.

We quote results for 


'

0

= 0:6 for 
omparison with other models and in order to

demonstrate that a measurement of l

A


an serve as a 
onstraint for this type of

models, independently of other arguments. The inverse power law models (B) are


ompatible with a universe a

elerating today only if

�




'

ls

is negligible. Again, our

parameter list in
ludes 
ases whi
h are not favoured by phenomenology. As an

illustration we quote in Table 6.1 the value of �

8

, whi
h should typi
ally range

between 0:6 and 1:1 for the models 
onsidered. For example, the exponential

2

Generi
ally, the sound velo
ity is smaller than the theoreti
al upper limit 1=

p

3 and hen
e

using this upper limit, Equation (6.6) will give a lower bound on l

A

.
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�




'

ls

w

0

l

1

l

2

l

estim:

A

�l

num:

�

8

Leaping kineti
 term (A), 


'

0

= 0.6

8:4 � 10

�3

�0:76 215 518 292 291 0:86

0:03 �0:69 214 520 294 293 0:78

0:13 �0:45 211 523 299 300 0:47

0:22 �0:32 207 524 302 307 0:29

Inverse power law potential (B), 


'

0

= 0.6

8:4 � 10

�8

�0:37 199 480 271 269 0:61

9:9 � 10

�2

�0:13 178 443 252 252 0:18

0:22 �8:1� 10

�2

172 444 257 257 0:09

Pure exponential potential, 


'

0

= 0.6

0:70 7� 10

�3

190 573 368 377 0:01

Pure exponential potential, 


'

0

= 0:2

0:22 4:7� 10

�3

194 490 282 281 0:38

Cosmologi
al 
onstant (C), 


'

0

= 0.6

0 �1 219 527 296 295 0:97

Cold Dark Matter - no dark energy, 


'

0

= 0

0 � 205 496 269 268 1:49

Table 6.1: Lo
ation of the �rst two CMB peaks l

1

; l

2

for several models of dark energy.

We also show the analyti
 (from Equation (6.6)) and numeri
al (from 
mbeasy) average

spa
ing of the peaks and �

8

, the normalization of the power spe
trum on s
ales of 8h

�1

Mp
.

potential model with large

�




'

ls

is 
learly ruled out by its tiny value of �

8

3

. The

main interest for listing also phenomenologi
ally disfavored models arises from the

question to what extent the lo
ation of the peaks 
an give independent 
onstraints.

From the point of view of naturalness, only the models (A) and (D) do not involve

tiny parameters or small mass s
ales.

The horizons and l

A

for the models 
onsidered are shown in Tables 6.2 and

6.1. We note that the estimate and the exa
t numeri
al 
al
ulation are in very

good agreement. A di�erent 
hoi
e of a

ls

, say a

�1

ls

= 1150, would have a�e
ted

the out
ome on the low-per
ent level. Also, the average spa
ing obtained from


mbeasy varies slightly (at most 2%) when averaging over 4; 5 or 6 peaks. For

a �xed value of the equation of state, w

0

= �0:7, we plot the peak spa
ing as a

fun
tion of 


'

0

and

�




'

ls

in Figure 6.3.

3

Of 
ourse �

8

itself also depends on other 
osmologi
al parameters and so it alone 
annot be

used to determine

�




'

ls

.
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�




'

ls

w

0

w

0

�

estim:

0

��

0

�

estim:

ls

��

ls

Leaping kineti
 term (A), 


'

0

= 0.6

8:4� 10

�3

�0:79 �0:76 13073 0:1% 266 0:3%

0:03 �0:79 �0:69 12971 0:2% 263 0:3%

0:13 �0:78 �0:45 12470 1:0% 248 0:2%

0:22 �0:75 �0:32 12012 1:3% 236 0:0%

Inverse power law potential (B), 


'

0

= 0.6

8:4� 10

�8

�0:32 �0:37 12205 0:5% 267 0:0%

9:9� 10

�2

�0:16 �0:13 10774 0:2% 253 0:2%

0:22 �0:1 �8:1� 10

�2

10241 0:3% 236 0:2%

Pure exponential potential, 


'

0

= 0.6

0:70 0:00 7� 10

�3

9014 0:4% 146 2:3%

Pure exponential potential, 


'

0

= 0:2

0:22 5� 10

�5

4:7� 10

�3

9107 0:1% 191 0:3%

Cosmologi
al 
onstant (C), 


'

0

= 0.6

0 �1 �1 13330 0:0% 267 0:0%

Cold Dark Matter - no dark energy, 


'

0

= 0

0 � � 9133 0:0% 201 0:5%

Table 6.2: Horizons in Mp
 at last s
attering and today for various kinds of quintessen
e.

The deviation of our analyti
 estimates and numeri
ally obtained values for �

0

and �

ls

are

also given.

For �xed w

0

and 


'

0

, we see from Equation (6.6) that l

A

/ (1 �

�




'

ls

)

(�1=2)

.

Hen
e, when 
ombining bounds on 


'

0

and w

0

from the stru
ture of the Universe,

supernovae redshifts and other sour
es with CMB data, the amount of dark energy

in a redshift range of z � 10

5

to last s
attering z � 1100 may be determined.

However, as the Hubble parameter 
an mimi
 the e�e
ts of

�




'

ls

, one needs to know

H

0

from an independent measurement.

6.3 CMB Peak Positions and Quintessen
e

The lo
ations of the peaks and troughs of the CMB anisotropy spe
trum 
an serve

as a sensitive probe of 
osmologi
al parameters [69{72,39,63℄.

There are however many pro
esses whi
h 
ontribute to the �nal anisotropies,

and these must be 
al
ulated from the systems of 
oupled partial di�erential equa-

tions of se
tion 4.4. As su
h it is not possible a priori to derive an a

urate analyti
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Figure 6.3: Contours of equal peak spa
ing l

A

as a fun
tion of 


'

0

and

�




'

ls

.The average

equation of state is kept �xed, w

0

= �0:7. In
reasing

�




'

ls

leads to a pronoun
ed stret
hing

of the spa
ing.

formula for the peak lo
ations. There exists a numeri
ally-obtained estimate of the

lo
ation of the �rst peak [73℄ for a universe with no 
osmologi
al 
onstant, namely

l

1

� 200 


�1=2

m

. This was extended to universes with � 6= 0, by perturbing around

the � = 0 value [74℄, but holding all other parameters �xed. In this se
tion, we


al
ulate the lo
ations of the �rst three peaks as a fun
tion of several 
osmologi
al

parameters, in
luding universes with a large dark energy 
omponent. We show how

these results 
an be used to extra
t 
osmologi
al information about, for instan
e

the history of quintessen
e, from just a handful of CMB data points and also to

speed up multi-parameter likelihood analysis.

Before last s
attering, the photons and baryons are tightly bound by Compton

s
attering and behave as a 
uid. The os
illations of this 
uid, o

urring as a re-

sult of the balan
e between the gravitational intera
tions and the photon pressure,

lead to the familiar spe
trum of peaks and troughs in the averaged temperature

anisotropy spe
trum whi
h we measure today. The odd peaks 
orrespond to max-

imum 
ompression of the 
uid, the even ones to rarefa
tion [45℄. In an idealized

64



6.3. CMB Peak Positions and Quintessen
e




m




�

l

1

(estim.) l

1

(numeri
.) % error

0.4 0.6 296 219 35

1.0 0.0 269 205 31

Table 6.3: Values of the lo
ation of the �rst peak l

1

estimated by l

1

� l

A

and 
al
ulated

numeri
ally via 
mbeasy. The intuitive model 
learly does not des
ribe the lo
ation of

the �rst peak well, though the spa
ings between other peaks is better. The above values

were 
al
ulated assuming h = 0:65, 


b

= 0:05, n = 1 and a

ls

= 1100

�1

.

model of the 
uid, there is an analyti
 relation for the lo
ation of the m-th peak:

l

m

� ml

A

[75,44℄ where l

A

is the a
ousti
 s
ale whi
h may be 
al
ulated analyti-


ally [72℄ and depends on both pre- and post-re
ombination physi
s as well as the

geometry of the universe.

The simple relation l

m

� ml

A

however does not hold very well for the �rst peak

(see Table 6.3) although it is better for higher peaks [69℄. Driving e�e
ts from the

de
ay of the gravitational potential as well as 
ontributions from the Doppler shift

of the os
illating 
uid introdu
e a shift in the spe
trum. In order to 
ompensate

for this, we parameterize the lo
ation of the peaks and troughs as in [75℄ by

4

l

m

� l

A

(m� '

m

) � l

A

(m� �'� Æ'

m

) : (6.7)

For 
onvenien
e, we de�ne �' � '

1

to be the overall peak shift, and Æ'

m

� '

m

� �'

the shift of the m-th peak relative to the �rst.

5

The reason for this parame-

terization is that the phase shifts of the peaks are determined predominantly by

pre-re
ombination physi
s, and are independent of the geometry of the Universe.

In parti
ular, the ratio of the lo
ations of the �rst and m-th peaks

l

m

l

1

=

l

A

l

A

(m� �'� Æ'

m

)

(1� �')

= 1 +

m� 1� Æ'

m

1� �'

; (6.8)

probes mostly pre-re
ombination physi
s and so 
an be used to extra
t information

on the amount of dark energy present before last s
attering [72℄.

If we knew how the phase shifts depended on 
osmologi
al parameters, it would

be possible to extra
t l

A

from the measured CMB spe
trum. Sin
e any given 
os-

mologi
al model predi
ts a 
ertain value of l

A

, this is a simple way of distinguishing

between di�erent models { in parti
ular we know from se
tion 6.2 that di�erent

quintessen
e models with the same energy density and equation of state today 
an

have signi�
antly di�erent values of l

A

. Finally, having extra
ted l

A

from observa-

tions, we 
ould speed up likelihood analysis by being able to dis
ard models not

leading to the right value of the a
ousti
 s
ale before a single perturbation equation

has to be solved.

4

The peaks are labeled by integer values of m and the troughs by half-integer values.

5

There should be no 
onfusion between the quintessen
e �eld ', whi
h is not expli
itly used in

this se
tion and the phase shifts.
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Symbol Range




m

0

[0:2; 0:6℄




b

h

2

[0:005; 0:04℄

�




'

ls

[0; 0:23℄

h [0:55; 0:80℄

n [0:8; 1:2℄

Table 6.4: Parameter ranges used in this se
tion.

In a [75℄, a �tting formula for �' was given

�' � 0:267

�

r

?

0:3

�

0:1

; (6.9)

for the values n = 1, 


b

h

2

= 0:02. In this formula, r

?

is the ratio of radiation to

matter at last s
attering

6

r

?

= �

r

(z

?

)=�

m

(z

?

) = 0:042

�




m

h

2

�

�1

�

z

?

=10

3

�

: (6.10)

Equation (6.9) however, is valid only for the given values of spe
tral index, Hubble

parameter and baryon density. It does not in
lude the dependen
e of the peak

lo
ation on the amount of quintessen
e present at last s
attering, and is valid only

for the �rst peak l

1

. In the following, we give �tting formulae (see Appendix B)

for the shifts of the �rst three peaks and the �rst trough and des
ribe how one 
an

use them to extra
t 
osmologi
al information from future CMB experiments.

Our �rst task in 
omputing �tting formulae for the peak lo
ations is to de
ide

whi
h 
osmologi
al parameters to �t to. The dependen
e on the baryon density

and the Hubble parameter is sensitive only to the produ
t 


b

h

2

, and so we do not

seek to �t for them separately. We further take r

?

de�ned in Equation (6.10) and

the spe
tral index n as parameters. For the quintessen
e dependen
e, we use the

e�e
tive average density 
omponent before last s
attering

�




'

ls

de�ned in Equation

(6.2).

We re
all that the peak shifts are sensitive mainly to pre-re
ombination physi
s

and so we do not need to use the value of 


'

today as a parameter. Of 
ourse

the a
ousti
 s
ale l

A

does depend on today's quintessen
e 
omponent (see se
tion

6.2). We will thus seek to �nd the dependen
e of ( �'; Æ'

m

) on the 
osmologi
al

parameter set

�




b

h

2

; r

?

; n;

�




'

ls

�

. In performing these 
al
ulations, we restri
ted

ea
h of the 
osmologi
al parameters used to lie within a 
ertain interval, whi
h

in ea
h 
ase is over- rather than under-
autious. The ranges of parameter values


hosen are displayed in Table 6.4. To gain intuition for the �tting formulae, we plot


urves for the shift of the �rst and the se
ond peak as well as the relative shifts of

the �rst trough and the se
ond peak in Figures 6.4 and 6.5.

6

This relation also holds in the presen
e of quintessen
e.
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Figure 6.4: The overall shift �' (a) and the relative shift of the �rst trough (b). In both �gures, the long dashed, dotted and the

dashed lines represent the �tting formulae for the parameters

�




b

h

2

; r

?

; n;

�




'
ls

�

= (0:02; r

?

; 1; 0), (0:02; r

?

; 1; 0:1) and (0:01; r

?

; 1; 0)

respe
tively. The large symbols show the data 
orresponding to these 
urves. The errors quoted in Appendix B are 
al
ulated from the

spread of these symbols relative to the 
urves. The sprinkled dots represent thousands of models sele
ted at random from the parameter

spa
e given in Table 6.4, and indi
ate the ranges of values taken on by �' et
. for these models.
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Figure 6.5: The relative shift of the se
ond peak (a) and the overall shift of the third peak (b). In both �gures, the long dashed,

dotted and the dashed lines represent the �tting formulae for the parameters

�




b

h

2

; r

?

; n;

�




'
ls

�

= (0:02; r

?

; 1; 0), (0:02; r

?

; 1; 0:1) and

(0:01; r

?

; 1; 0) respe
tively. The large symbols show the data 
orresponding to these 
urves. The errors quoted in Appendix B are


al
ulated from the spread of these symbols relative to the 
urves. The sprinkled dots represent thousands of models sele
ted at random

from the parameter spa
e given in Table 6.4, and indi
ate the ranges of values taken on by �' et
. for these models.
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6.3. CMB Peak Positions and Quintessen
e

In Se
tions 6.3.1 and 6.3.2 we des
ribe a systemati
 pro
edure for extra
ting the

a
ousti
 s
ale l

A

from the lo
ation of the �rst three peaks. Se
tion 6.3.3 introdu
es

a quantity � whi
h is useful as it depends only on two of our four parameters. The

model (in)dependen
e of the �tting formulae is dis
ussed in Se
tion 6.3.4. Finally,

our �tting formulae are given in Appendix B.

6.3.1 Retrieving the Shifts from CMB Measurements

With future high pre
ision measurements of the MAP

7

and PLANCK

8

satellites,

we expe
t that the position of the �rst three peaks and troughs will be determined

to high a

ura
y. From these few data points, it is possible to extra
t valuable

information on the 
osmologi
al parameters. We have observed, during our 
om-

putation of CMB spe
tra for thousands of universes, that the overall shift of the

third peak '

3

(i.e. '

3

= �' + Æ'

3

) is a relatively insensitive quantity. In the pa-

rameter range we used (see Table 6.4) we found that '

3

= 0:341� 0:024.

9

In using

'

3

= 0:341 we introdu
e slight (at most one per
ent) systemati
 deviations in our

estimate, be
ause an in
rease of

�




'

ls

typi
ally in
reases '

3

(see Fig. 6.5(b)). We

will partially 
orre
t for these e�e
ts by improving our estimate for '

3

, via the

pro
edure des
ribed below.

We start by extra
ting our �rst estimate of the overall phase shift, from the

measured lo
ations of the �rst and third peaks

�' = 1� (3� '

3

)

l

1

l

3

� 1� 2:66

l

1

l

3

: (6.11)

Comparing this estimate with the value 
al
ulated from numeri
al simulations, we

�nd ��' = 0:006. Having a handle on the overall phase shift, it is now simple to

infer the relative shifts Æ'

m

of the remaining troughs and peaks. From equation

(6.8) we get the relation

Æ'

m

= (m� 1)�

�

l

m

l

1

� 1

�

(1� �') : (6.12)

The error of this estimate is

� (Æ'

m

) =

�

l

m

l

1

� 1

�

��': (6.13)

Having a �rst (and already quite a

urate) estimate of the shifts, we now 
orre
t

for the systemati
 e�e
ts des
ribed above. Taking the 
osmologi
al parameter set

we wish to maximize over (i.e. Table 6.4), we 
al
ulate for ea
h model universe the

phase shifts of the �rst three peaks using the �tting formulae given in Appendix

B. We then dis
ard those models for whi
h any phase shift deviates signi�
antly

7

http://map.gsf
.nasa.gov/

8

http://astro.este
.esa.nl/SA-general/Proje
ts/Plan
k/

9

Here and in the following, we quote 1-� errors. All errors follow approximately a bell 
urve.
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�




'

ls

(%) h'

num

3

i h'

improved

3

i

0 - 2 0.313 0.326

10 - 12 0.340 0.337

18 - 20 0.362 0.348

Table 6.5: Binned average '

3

of the numeri
al simulation and the improved dedu
tion.

(say > 2-�) from the data-inferred values. This leaves an improved 
osmologi
al

parameter set, for whi
h the average value of '

3

is 
al
ulated (see Table 6.5). This

improved '

3


an then be used to re-
al
ulate the phase shifts from Equations (6.11)

and (6.12).

6.3.2 Extra
ting l

A

from CMB Measurements

Using the improved value

10

for '

3

from the previous se
tion, we 
an extra
t to very

good a

ura
y the a
ousti
 s
ale l

A

, provided l

3

has been measured:

l

A

=

l

3

3� '

3

(6.14)

In fa
t, the deviation of the value of l

A

estimated from this formula and the

numeri
ally-obtained value is small for models within the parameter range of Table

6.4, with a 1-� error of 0:8% (see also Table 6.6). This is a very valuable result,

for the value of l

A


an be simply 
omputed for any given quintessen
e (or indeed

any other) 
osmology. In parti
ular, di�erent quintessen
e models with the same

energy density and equation of state today 
an have signi�
antly di�erent values

of l

A

. In this way stringent bounds on 
osmologi
al models 
an be imposed just by


omparing the l

A

value of spe
i�
 models.

6.3.3 Insensitive Quantities

The phase shifts depend on the 
osmologi
al parameters

�




b

h

2

; r

?

; n;

�




'

ls

�

. Of


ourse, if it were possible to �nd a linear 
ombination of phase shifts whi
h is

insensitive to some of these parameters and thus redu
e the dimensionality of our

parameter spa
e, it would greatly help in extra
ting 
osmologi
al information. To

this end, we note an anti-
orrelation between �' and Æ'

3

{ empiri
ally, we have

found that the quantity

� � �'+

2

5

Æ'

3

(6.15)

is pra
ti
ally insensitive to r

?

and 


b

h

2

, and depends only on n and

�




'

ls

. In fa
t,

it is to very good approximation given by the �t

� =

�

0:277 + 0:284

�




'

ls

�

(1:3 � 0:3n); (6.16)

10

In fa
t, using '

3

= 0:34 instead of the improved value also gives reasonable results.
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all data
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�(0; 1)
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�
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0.4

0.38

0.36

0.34

0.32

0.3

0.28

0.26

0.24

Figure 6.6: The quantity � as a fun
tion of r

?

. It is pra
ti
ally insensitive to r

?

and 


b

h

2

for most of the initial 
onditions 
onsidered. The dots represent �fty thousand models with

parameters in the ranges given in Table 6.4 The +'s and �'s represent models with

�




'

ls

=

0 and 0.22 respe
tively, for n = 1, and all values of other input parameters.

with ��

�t

� 0:0024 being the deviation of the �t from the numeri
ally-simulated

values (see Fig. 6.6). Following the pro
edure in Se
tion 6.3.1, we 
an dedu
e �

from the measured values of the peak lo
ations. Within our parameter range, � is

then determined with error ��

dedu
:

= 0:013.

In the parameter spa
e we have 
onsidered, the value of � varies between

0:26 and 0:36. Hen
e to 1-� 
on�den
e level, about three quarters of our two-

dimensional (n;

�




'

ls

) parameter spa
e 
an be ex
luded for any given �. For instan
e,

without quintessen
e, the value of � lies between 0:26 and 0:29 for n 2 [0:8; 1:2℄.

The measurement by MAP or PLANCK of a value of � > 0:29 would therefore be

a strong hint of a dark energy 
omponent playing a role at last s
attering.

6.3.4 Model Dependen
e of the Shift Fun
tions

The �tting formulae were obtained using a standard exponential potential [6℄ for

the quintessen
e 
omponent. Be
ause the shifts are almost independent of post

re
ombination physi
s, we expe
t the results to be approximately 
orre
t for any

realization of quintessen
e, i.e. all potentials. One should however be 
autious

with models that are qualitatively extremely di�erent from the exponential poten-

tial before last s
attering, as for example the Ratra-Peebles inverse power law [7℄

with substantial

�




'

ls

. In these models there is a sharp in
rease in 


'

during re
om-

bination, whereas the quintessen
e 
ontent for the exponential potential is fairly


onstant at this epo
h. The inverse power law is 
hara
terized by its potential

V

IPL

= A='

�

. Models with � ' 2 are phenomenologi
ally disfavored [35℄. We use

these models only as 
ross 
he
ks for the �tting formulae. In terms of phase shifts,

one �nds that the sensitive relative shifts of the �rst trough and the se
ond peak
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�




'

ls

(%) l

1

l

3=2

l

2

l

3

l

A

�' Æ'

3=2

Æ'

2

�

Leaping kineti
 term

3 214 396 521 788 293 0.269 -0.121 -0.045 0.287

294 0.271 -0.119 -0.041 0.292

13 210 396 522 799 301 0.301 -0.120 -0.038 0.317

301 0.301 -0.120 -0.038 0.318

22 208 397 524 808 307 0.324 -0.116 -0.030 0.341

305 0.320 -0.120 -0.035 0.333

Ratra Peebles inverse power law

5� 10

�3

199 366 480 724 269 0.259 -0.119 -0.043 0.278

270 0.261 -0.117 -0.038 0.284

10 178 339 443 674 251 0.294 -0.140 -0.054 0.304

253 0.298 -0.138 -0.050 0.312

22 172 338 444 683 258 0.333 -0.144 -0.057 0.340

258 0.334 -0.145 -0.057 0.340

Table 6.6: The peak lo
ations and the phase shifts of leaping kineti
 term [32℄ and Ratra

Peebles inverse power law [7℄ models for 


b

h

2

= 0:021; 


'

0

= 0:6; h = 0:65; n = 1 and

varying

�




'

ls

. The inverse power law models 
orrespond to � = 6; 22 and 40 respe
tively.

The �rst row of ea
h model gives the 
mbeasy-obtained values of the lo
ations of the

peaks and the phase shifts as well as l

A

and �. The se
ond row gives the values dedu
ed

using the method des
ribed in Se
tion 6.3.1.

di�er substantially for the two models (see Table 6.6). However, �' and � are seen

to be more robust and the dedu
ed value of l

A

is a

urate to within one per
ent in

every 
ase.

In the next se
tion, we will use this possibility of determining l

A

from measure-

ment to 
onstrain quintessen
e models.

6.4 The Boomerang 2001 Data and Quintessen
e

The data released in spring 2001 by the boomerang [14℄ and maxima [15℄ team


overs the multipoles up to l � 1000. It shows three peaks as distin
t features,

seeming to 
on�rm beyond any reasonable doubt the in
ationary pi
ture of stru
-

ture formation from predominantly adiabati
 initial 
onditions. Here, we will use

this data to extra
t the a
ousti
 s
ale l

A

. This together with bounds from stru
ture

formation will permit us to 
onstrain inverse power law and leaping kineti
 term

models. We also show that the new CMB data provides strong eviden
e for an a
-


elerating universe, independent of supernovae (SNe Ia) data, to whi
h we return

later. In this se
tion, we have assumed a 
at universe, with 


b

h

2

= 0:022 � 0:003
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Figure 6.7: The CMB anisotropy power spe
trum as measured by boomerang [20℄. The

inner verti
al lines show the region 820 < l

3

< 857 as 
al
ulated by the boomerang team

[24℄, and the outer lines our more 
onservative region 800 < l

3

< 900.

(in a

ordan
e with Big Bang Nu
leosynthesis) and spe
tral index n = 1 unless

otherwise stated.

We have shown in se
tion 6.3, that the shift of the third peak, '

3

is relatively

insensitive to 
osmologi
al parameters, and that by assuming the 
onstant value

'

3

= 0:341 we 
an estimate l

A

to within one per
ent if the lo
ation of the third

peak l

3

is measured, via the relation (6.14). The measurement of a third peak

in the CMB spe
trum by boomerang [14℄ now allows us to extra
t the a
ousti


s
ale l

A

and use this as a 
onstraint on 
osmologi
al models. In an analysis of peak

positions, the boomerang team performed a model-independent analysis of their

data [67℄, and found the third peak to lie in the region

l

3

= 845

+12

�25

; (6.17)

from whi
h we 
al
ulate the value

l

A

= 316 � 8: (6.18)

If we instead 
hose the more 
onservative assumption that 800 < l

3

< 900, we

would get the bound

l

A

= 319 � 23; (6.19)

We will perform our analysis using both of these ranges for the lo
ation of the

third peak. The two ranges are displayed, along with the boomerang data, in
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Fig. 6.7. Independently of [67℄ we have performed 
ubi
 spline �ttings to the data

presented in [14℄, as well as to the 
ombined multiple-experiment data given in [76℄.

We allowed the data to vary a

ording to the Gaussian errors given. We �nd for

the boomerang and 
ombined data respe
tively:

l

1

= 221� 14; 222 � 14 (6.20)

l

2

= 524� 35; 539 � 21 (6.21)

l

3

= 850� 28; 851 � 31 (6.22)

We applied our CMB-derived l

A


onstraints to two types of quintessen
e model:

an inverse power law (IPL) potential [7℄ as de�ned in Equation (2.23) and a leaping

kineti
 term (LKT) model [32℄, as spe
i�ed in Equations (2.20,2.21). Please note

that the IPL model has equation of state today given by w

0

� w(today) = �2=(�+

2). In 
ontrast to this, w

0

for LKT depends strongly on the pre
ise shape of

k(').For a steep in
rease in the kineti
 term, one 
an have w

0

very 
lose to �1

und thus mimi
 a 
osmologi
al 
onstant at the present epo
h (see also �gure 6.12).

Other models of quintessen
e share the e�e
tive time dependen
e of w [38,81℄. We

also applied the 
onstraints to a 
osmologi
al 
onstant (


'

0

� 


�

) universe (i.e.

IPL quintessen
e with � = 0) for 
omparison.

In Figs 6.8, 6.9 we show for our 
hosen dark energy models the range of 


'

0

and h allowed by Equations (6.18) and (6.19). These ranges are similar for the


osmologi
al 
onstant, LKT (also for

�




'

ls

= 0:2) and IPL for small � whereas IPL

with � = 2 would be pushed to small values of h. The 
omparatively low values of

h inferred from the boomerang data 
an be 
ombined with information from LSS

formation. The growth of density 
u
tuations slows down when quintessen
e starts

to dominate. In this way LSS 
an serve as a probe of quintessen
e at intermediate

redshifts. We will 
ome ba
k to this in se
tion (6.6). Meanwhile, we note that


luster abundan
e 
onstraints for quintessen
e models with 
onstant equation of

state yield [77℄

�

8







m

= 0:5� 0:1 [(n� 1) + (h� 0:65)℄ (6.23)

where 
 depends slightly on w, and typi
ally 
 � 0:6. In [77℄, the un
ertainty for

Equation (6.23) was estimated as 20% at 2-�, and this is the 
onstraint shown in

the plots. We have 
hosen to shade the 2-� LSS and 
onservative l

A


on
ordan
e

region in the 


'

0

-h plane, but not to impose any bounds on these parameters.

Re
ently, however, the HST has measured h = 72 � 8 [79℄, and the 2dF survey




m

h = 0:20 � 0:03 [80℄.

The 
urrent CMB and LSS data are 
onsistent with a 
osmologi
al 
onstant

(Fig. 6.8). The LKT model with 5% quintessen
e at last s
attering is marginally


ompatible for small h. If the amount of quintessen
e at last s
attering is in
reased

beyond 5%, the l

A

bounds do not 
hange signi�
antly. Compatibility with LSS data

would require, however, even higher h-values, at odds with the boomerang data.

In 
ontrast to the CMB measurements, the determination of �

8

by 
luster abun-

dan
es involves systemati
 un
ertainties that are diÆ
ult to quantify. Furthermore,

the theoreti
al expe
tation for �

8

depends strongly on the spe
tral index n.
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Figure 6.8: boomerang (solid lines give 
onservative bound, dotted lines more stri
t bound) and LSS (dashed lines) 
onstraints in




�

-h plane (left) and 


'
0

-h plane for LKT quintessen
e with

�




'
ls

= 0:05 (right). The dotted box indi
ates the 1-� maximum likelihood

ranges obtained by the boomerang data analysis team with 
atness and LSS priors.
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Figure 6.9: Constraints in the 
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-h plane for IPL quintessen
e, from boomerang and LSS , � = 1 (left) and � = 2 (right).

7
6
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e
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Figure 6.10: Lines of 
onstant l

A

in the 


'

0

- �w

0

plane, for h = 0:6. All universes to

the left of the dotted line are a

elerating. For larger values of h, the l

A

lines are shifted

north-west.

Some in
ationary models indeed 
onne
t the smallness of primordial density


u
tuations to n = 1:1{1:15 [78℄. In
reasing n in
reases the amount of dark en-

ergy allowed during stru
ture formation. For n = 1:1, the LKT model with 10%

quintessen
e at last s
attering be
omes feasible.

The IPL model (Fig. 6.9) with � = 2 is disfavored, with higher values of � even

worse, but � = 1 survives. Of 
ourse IPL models with � < 1 provide a better �t

to the data, however for �! 0 IPL approa
hes the 
osmologi
al 
onstant and the

problem of naturalness be
omes more and more severe (with possible ex
eptions

[41℄). Similar 
on
lusions on the IPL model have been derived from the 1998

boomerang data [35℄, but only for �xed h = 0:65. We see from our �gures that

the results 
an be very sensitive to 
hanges in h.

A 
at universe is a

elerating today if the dark energy 
omponent and its

equation of state satisfy




'

0

w

0

< �

1

3

: (6.24)

Assuming that there is no signi�
ant dark energy 
omponent at last s
attering,

we 
an 
ombine our 
onstraints on l

A

with Equation (6.6). Fig 6.10 shows that

provided h > 0:6, the CMB now gives strong eviden
e for an a

elerating universe,

independently of supernovae data.
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Figure 6.11: E�e
tive magnitudes m

e�

B

of low (blue, z < 0:18, from [82℄) and high (red,

z > 0:18, from [84℄) redshift SNe Ia as a fun
tion of z.

6.5 Supernovae Ia

Astronomers use the so 
alled distan
e ladder to determine the distan
e of some far

away obje
t. If one knows by some means the distan
e of an obje
t one 
an in prin-


iple determine the distan
e of any other obje
t by measuring the 
ux of in
oming

photons, provided both obje
ts are equally bright. Unfortunately, one 
annot just

enter some spa
eship, 
y to the two obje
ts in question and measure their bright-

ness.

11

Therefore, astronomers make the edu
ated guess that two similar obje
ts

should be similarly bright.

When looking into the deep universe, photon 
uxes get low and only bright

obje
ts 
an be used to 
alibrate distan
es. Among the brightest obje
ts are super-

novae, exploding stars. And among supernovae is a 
lass 
alled Type Ia, whi
h look

quite similar. Using an empiri
al 
orre
tion fa
tor, SNe Ia seem to be
ome stan-

dard 
andles. They therefore are an ideal tool to measure redshift versus distan
e,

provided they really are standard 
andles.

12

SNe Ia data is usually quoted by the e�e
tive magnitude m

e�

B

versus redshift z

(see �gure 6.11). The e�e
tive magnitude 
an be expressed as

m

e�

B

=M

B

+ 5lgD

L

(z); (6.25)

11

This, indeed would be the golden age of astronomy

12

The universe at redshift z � 1 was mu
h younger and there are still doubts possible whether

di�erent environmental 
onditions 
ould have in
uen
ed SNe Ia su
h that they explode di�erently

at low and high redshift.
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Figure 6.12: The luminosity distan
e d

l

(z) (plotted as d

l

(z)H

0

=2(1 + z)) and 
(z) for

a �CDM and a LKT universe with 


0

�

= 0:6 and 


'

0

= 0:7 respe
tively. The equation

of state w

�

(z) of the LKT quintessen
e is also given. For low redshift, the equation of

state is 
lose to �1, w

0

= �0:8. For w

0

[


'

0

℄

1:4

= 


0

�

, the luminosity distan
e of both

LKT and �CDM fall on top of ea
h other in the redshift region relevant for 
urrent SN Ia

analysis (two upper most 
urves). Despite the similar late time behaviour, the LKT model

has 


'

� 0:1 from very early times on, whereas in the 
osmologi
al 
onstant model, dark

energy plays a role only re
ently.

where D

L

(z) is just the luminosity distan
e

d

L

(z) = (1 + z)

Z

z

0

H

�1

(z

0

)dz

0

; (6.26)

times the Hubble parameter today:

D

L

(z) = H

0

d

L

(z): (6.27)

In pra
ti
e,M

B

is 
alibrated by �ttingm

e�

B

of some given model to the low redshift

data of SNe Ia [82℄. With the so �xed M

B

, one predi
ts m

e�

B

for the high redshift

SNe Ia and determines the goodness of the �t.

Now, the universe at redshift z = 0 : : : 2 
an be well des
ribed by a mixture of

quintessen
e and matter. By simply using the Friedmann equation (2.7), on gets

�

H

H

0

�

2

= (1� 


'

0

)a

�3

+


'

0

a

�3(1+ �w

'

)

; (6.28)

for an equation of state �w

'

that has been averaged over the redshift range in

question and should generi
ally be 
lose to �w

'

0

. Inserting Equation (6.28) in (6.26),
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yields

(1 + z)

�1

D

L

= (1 + z)

�1

H

0

d

L

=

Z

z

0

dz

0

n

(1� 


'

0

)a

�3

+


'

0

a

�3(1+ �w

'

)

o

�

1

2

: (6.29)

It is hen
e the integral (6.29) that determines solely whether a given quintessen
e

model �ts the data or not, provided the equation of state doesn't 
hange too dras-

ti
ally.

13

Unfortunately, there is no 
losed expression for the integral. However,

(1 + z)

�1

D

L

is to very good a

ura
y des
ribed by a straight line in the variable

x � �w

'

[


'

0

℄

1:4

; (6.30)

at �xed redshift z 2 [0:35; 0:7℄:

(1 + z)

�1

D

L

� g

0

(z) + xg

1

(z): (6.31)

As most of the SNe Ia data is in this redshift region, one is led to 
on
lude that dark

energy models that have the same �w

'

[


'

0

℄

1:4

are indistinguishable by 
urrent SNe

Ia measurements. This degenera
y is the subje
t of many publi
ations that try to

quantify the possibilities to measure the dark energy equation of state by a future

SNe Ia sattelite mission [19,58,83℄. SNe Ia measurements have been extensively

used to restri
t dark energy models [21,40,58,59,84{87℄. A 
osmologi
al 
onstant is

restri
ted to 


�

2 [0:5; 0:9℄ at 2� 
on�den
e level [84,85℄. Using the relation (6.30)

this bound on 


�


an easily be translated into one on �w

'

and 


'

0

.

�0:86 [


'

0

℄

�1:4

< �w

'

< �0:38 [


'

0

℄

�1:4

: (6.32)

For the inverse power law model, where �w

'

= �2=(� + 2), this gives




'

0

> 0:3(� + 2)

5=7

, i.e. assuming that 


'

0

< 0:8, we have � < 1:9 (see also [40℄).

This is 
omparable to our CMB and LSS 
onstraint of se
tion 6.4. On the other

hand, leaping kineti
 term models 
an be 
onsistent with SNe Ia and nevertheless

di�er substantially from 
osmologi
al 
onstant s
enarios for the CMB and LSS (see

�gure 6.12). For these models, the CMB+LSS and the SNe Ia 
onstraints are not

dire
tly related and 
annot easily be 
ompared.

6.6 Stru
ture formation

The in
uen
e of quintessen
e on the growth of stru
ture has been dis
ussed in [28,

77,89{92℄. In a CDM universe without dark energy, 
old dark matter perturbations

are not growing

14

within the horizon during the radiation dominated regime. Only

from matter-radiation equality on, 
dm 
u
tuations within the horizon start to

grow.

13

Examples for possible pitfalls with drasti
ally 
hanging equations of state 
an be found in [88℄.

14

The statements on perturbations in this se
tion are valid in syn
hronous gauge.
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6.6. Stru
ture formation

Quintessen
e has roughly two main e�e
ts on this pi
ture [91,92℄: �rstly, from

the de�nition of a

eq

(2.41), one sees that a

eq

gets shifted. This is due to the

fa
t that whereas in a universe without quintessen
e, 





0

� 0:9, one has in
luding

quintessen
e 





0

� 1 � 


'

0

. Therefore, stru
ture growth starts later in a universe

with substantial 


'

0

. The se
ond main e�e
ts is a de
rease in the growth exponent

for 
dm 
u
tuations: the more dark energy present at some epo
h, the more slowly

stru
ture grows. In [91,92℄ the useful formula

�

8

(')

�

8

(�)

= a

3

�




'

sf

=5

eq

�

1� 


�

0

�

�(1+ �w

�1

)=5

s

�

0

(')

�

0

(�)

; (6.33)

relates the rms-
u
tuations on s
ales of 8h

�1

Mp
 of any quintessen
e model to a

model with a 
osmologi
al 
onstant, where 


'

0

= 


�

0

. In the above,

�




sf

and �w are

suitably de�ned averages [91,92℄. The usefulness of Equation (6.33) lies in the fa
t

that if one knows �

8

(�) (say, from a data base), then one 
an estimate �

8

(') from

the knowledge of the ba
kground evolution only. We use this in the likelihood part

of 
mbeasy to give a qui
k (two orders of magnitude faster than normal) estimate

of likelihoods.

Applying Press-S
he
hter Theory to quintessen
e s
enarios, 
luster abundan
e


onstraints yield the useful relation (6.23) derived in [77℄. For any quintessen
e

model, the normalization of the 
u
tuations via the CMB predi
ts a 
ertain value

of �

8

. Relation (6.23) then determines whether this value of �

8

is 
ompatible with


luster abundan
es or not.

81



Chapter 6. Footprints of Quintessen
e

82



7

Quantum Loop Corre
tions

The evolution of the quintessen
e s
alar �eld is usually treated at the 
lassi
al level.

However, quantum 
u
tuations may alter the 
lassi
al quintessen
e potential. We

will in the following investigate one-loop 
ontributions both from quintessen
e and

fermion 
u
tuations to the e�e
tive potential. We

1

will show that in the late

universe, quintessen
e 
u
tuations are harmless for most of the potentials used

in the literature. For inverse power laws and SUGRA inspired models, this has

already been demonstrated in [34℄. Also, it has been noted in [94,95℄, that the

mass of the quintessen
e �eld needs to be prote
ted by some symmetry. In 
ontrast

to the rather harmless quintessen
e �eld 
u
tuations, fermion 
u
tuations severely

restri
t the magnitude of a possible 
oupling of quintessen
e to fermioni
 dark

matter, as we will show.

In Eu
lidean 
onventions, the a
tion we use for the quintessen
e �eld � and a

fermioni
 spe
ies 	 to whi
h it may 
ouple [4,71,101℄ is

S =

Z

d

4

x

p

g

"

M

2

P

R+

1

2

�

�

�(x)�

�

�(x) + V (�(x))

+

�

	(x)

�

i =r+ 


5

m

f

(�)

�

	(x)

#

; (7.1)

with m

f

(�) as a � dependent fermion mass. This � dependen
e (if existent in a

model) determines the 
oupling of the quintessen
e �eld to the fermions. As long as

one is not interested in quantum gravitational e�e
ts, one may set

p

g = 1, R = 0

and repla
e =r ! =� in the a
tion (7.1).

By means of a saddle point expansion [96℄, we arrive at the e�e
tive a
tion

�[�


l

℄ to one loop order of the quintessen
e �eld. The equation governing the dy-

nami
s of the quintessen
e �eld is then determined by Æ�[�


l

℄

j�


l

=�

?


l

= 0. When

estimating the magnitude of the loop 
orre
tions, we will assume that �

?


l

is 
lose

to the solution of the 
lassi
al �eld equations: ÆS = 0. Evaluating � for 
onstant

�elds, we 
an fa
tor out the spa
e-time volume U from � = UV . This gives the

1

This 
hapter is based on work in 
ollaboration with J�org J�a
kel [93℄.
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Figure 7.1: Pure quintessen
e 
u
tuations (depi
ted as dashed lines). The loop of the


u
tuating quintessen
e �eld modi�es the potential. Sin
e the potential involves in prin
i-

ple arbitrary powers of �, we depi
t V

00

as multiple external lines.

e�e
tive potential

V

1-loop

(�


l

) = V (�


l

) +

�

2

32�

2

V

00

(�


l

)�

�

2

ferm

8�

2

[m

f

(�


l

)℄

2

: (7.2)

Here, primes denote derivatives with respe
t to �; �


l

is the 
lassi
al �eld value

and � and �

ferm

are the ultra violet 
uto�s of s
alar and fermion 
u
tuations.

The se
ond term in Equation (7.2), is the leading order s
alar loop, depi
ted in

�gure 7.1(a). We negle
t graphs of the order (V

00

j
l

)

2

and higher like the one in �g-

ure 7.1(b), be
ause V and its derivatives are of the order 10

�120

(see se
tion 7.2).

We have also ignored �-independent 
ontributions, as these will not in
uen
e the

quintessen
e dynami
s.

However, the �-independent 
ontributions add up to a 
osmologi
al 
onstant

of the order �

4

� O(M

4

P

). This is the old 
osmologi
al 
onstant problem, 
ommon

to most �eld theories. We hope that some symmetry

2

or a more fundamental

theory will for
e it to vanish. The same symmetries or theories 
ould with the

same right remove the loop 
ontribution by some 
an
elling me
hanism. After all,

this me
hanism must be there, for the observed 
osmologi
al 
onstant is far less

than the naively 
al
ulated O(M

4

P

).

Besides, none of the potentials under investigation 
an be renormalized in the

stri
t sense. However, as we will see, terms preventing renormalization may in

some 
ases be absent to leading order in V

00

j
l

. As the mass of the quintessen
e �eld

is extremely small, one may for all pra
ti
al purposes view these spe
i�
 potentials

(su
h as the exponential potential) as renormalizable.

There is also a loophole for all models that will be ruled out in the following:

The potential used in a given model 
ould be the full e�e
tive potential in
luding

all quantum 
u
tuations, down to ma
ros
opi
 s
ales. For 
oupled quintessen
e

models, this elegant argument is rather problemati
 and the loophole shrinks to a

2

Unfortunately, SUSY is too badly broken to be this symmetry [94℄.
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point (see se
tion 7.2).

In the following, we apply Equation (7.2) to various quintessen
e models in

order to 
he
k their stability against one loop 
orre
tions. We do this separately

for 
oupled and un
oupled models. We use units in whi
h M

P

= 1. For 
larity, we

restore it when appropriate.

7.1 Un
oupled Quintessen
e

Here, we are going to dis
uss inverse power law, pure and modi�ed exponential and


osine-type potentials.

7.1.1 Inverse power law and exponential potentials

Inverse power law [7,5℄ and exponential potentials [6,28℄ and mixtures of both [38℄


an be treated by 
onsidering the potential (2.25). Deriving V from Equation (2.25)

twi
e with respe
t to �, we �nd

V

00

= A�

��

exp(���




)

n

�(� + 1)�

�2

+ 2��
�


�2

+ �

2




2

�

2
�2

� �
(
 � 1)�


�2

o

: (7.3)

Inverse Power Laws

For inverse power laws, we set 
 = � = 0. This gives the 
lassi
al potential

V

ipl


l

= A�

��


l

and by means of Equation (7.2) the loop 
orre
ted potential

V

ipl

1-loop

= V

ipl


l

�

1 +

1

32�

2

�

2

�(� + 1)�

�2


l

�

: (7.4)

The potential is form stable if

1

32�

2

�

2

�(� + 1)�

�2

� 1, whi
h today is satis�ed,

as � � M

P

[38℄.

However, if the �eld is on its attra
tor today, then � / (1 + z)

�3=(�+2)

, where

z is the redshift [38℄. Using this, we have for z � 1

V

ipl

1-loop

� V

ipl


l

�

1 +

1

32�

2

�

2

�(�+ 1)z

6=(�+2)

�

: (7.5)

Thus, the 
uto� needs to satisfy �

2

�

32�

2

�(�+1)

� z

�6=(�+2)

. From se
tion 6.4, we

know that 
osmologi
ally viable inverse power law potentials seem to be restri
ted

to � < 2 (see also [35,36℄). Using � = 1 and z � 10

4

for de�niteness, the bound

be
omes �

2

� 10

�6

.

So at equality (and even worse before that epo
h), the 
uto� needs to be well

below 10

12

Gev, if 
lassi
al 
al
ulations are meant to be valid. In [34℄ it is ar-

gued that for inverse power laws, the quintessen
e 
ontent in the early universe

is negligible and hen
e the 
u
tuation 
orre
tions are important only at an epo
h
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where quintessen
e is subdominant. As the loop 
orre
tions introdu
e only higher

negative powers in the �eld, it is hoped that even though one does not know the

detailed dynami
s, the �eld will nevertheless roll down its potential (whi
h at that

time is supposed to be mu
h steeper) and by the time it is is 
osmologi
ally rele-

vant, the 
lassi
al treatment is on
e again valid. Having no means of 
al
ulating

the true e�e
tive potential for the inverse power law in the early universe, this view

is 
ertainly appealing.

Pure Exponential Potentials

The pure exponential potential is spe
ial be
ause its derivatives are multiples of

itself. The 
lassi
al potential (with � = 0; 
 = 1) is V

ep


l

= A exp(���


l

) and to

one loop order

V

ep

1-loop

= V

ep


l

�

1 +

1

32�

2

�

2

�

2

�

: (7.6)

It is easy to see that a res
aling of A ! A=

�

1 +

1

32�

2

�

2

�

2

�

absorbs the loop


orre
tion, leading to a stable potential up to order V

00


l

. Working to next to leading

order, i.e restoring terms of order (V

00


l

)

2

we get

V

ep

1-loop, n.l.

=

1

32�

2

�

V

00


l

�

2

ln

�

V

00


l

�

2

�

:

It is this term whi
h in four dimensions spoils stri
t renormalizability.

7.1.2 Nambu-Goldstone Cosine Potentials

Cosine type potentials resulting from an quintessen
e axion have been introdu
ed

in [97,98℄ and their impli
ations on the CMB have been studied in [99℄. They take

on the 
lassi
al potential V

ng


l

= A [1� 
os (�


l

=f

Q

)℄ and in
luding loop 
orre
tions

V

as

1-loop

= A

"

1�

(

1�

1

32�

2

�

2

f

2

Q

)


os

�

�


l

f

Q

�

#

:

Upon a rede�nition A ! A=

�

1�

1

32�

2

�

2

f

2

Q

�

and re
alling that the loop 
orre
tion

is only de�ned up to a 
onstant, one arrives at the same fun
tional form as the


lassi
al potential.

7.1.3 Modi�ed Exponentials

In the model proposed by Albre
ht and Skordis [33℄, the 
lassi
al potential is V

as


l

=

V

p

exp(���


l

), where V

p

is a polynomial in the �eld. To one loop order, this leads

to

V

as

1-loop

= V

as


l

�

1 +

1

32�

2

�

2

�

V

00

p

V

p

� 2�

V

0

p

V

p

+ �

2

��

: (7.7)
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Figure 7.2: Classi
al and 1-loop 
orre
ted potential [in 10

�123

M

4

P

℄ for V

as


l

=

�

(��B)

2

+ C

�

exp(���


l

) with B = 34:8; C = 0:013; � = 1:2. The 
lassi
al poten-

tial has a lo
al minimum, whi
h is absent for the loop 
orre
ted one. This is a hand-pi
ked

example and in most 
ases, the bump will not vanish but move and 
hange its form.

Let us for de�niteness dis
uss the example given in [33℄, where the authors 
hose

V

p

(�) = (��B)

2

+ C. With this 
hoi
e, we have

V

as, exmpl

1-loop

= V

as, exmpl


l

�

�

1 +

1

32�

2

�

2

�

1

V

p

�

2� 4�(�


l

�B)

�

+ �

2

�

�

: (7.8)

Now 
onsider �eld values 
lose to the minimum of V

p

, i.e. let the absolute value of

� � �


l

�B be small 
ompared to

p

C. Then

V

as, exmpl

1-loop

= V

as, exmpl


l

�

1 +

�

2

32�

2

�

2� 4��

C + �

2

+ �

2

��

; (7.9)

and to leading order in �

V

as, exmpl

1-loop

� V

as, exmpl


l

�

1 +

�

2

32�

2

�

1

C

[2� 4��℄ + �

2

��

: (7.10)

Now 
onsider, as has been the 
ase in the example given in [33℄, C = 0:01 for

de�niteness. If we assume the 
uto� � and the Plank mass of approximately the

same order, we get

V

as, exmpl

1-loop

� V

as, exmpl


l

�

1 +

1

32�

2

�

100 [2� 4��℄ + �

2

�

�

: (7.11)
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The � (and hen
e �


l

) dependent 
ontribution in the 
urly bra
ket of Equation

(7.11) is �25=(2�

2

)�� whi
h for the value � = 8 
hosen in the example gives

�200=(2�

2

)� � �10�.

If we now look at the behaviour of the loop 
orre
tion as a fun
tion of �


l

and

hen
e � in the vi
inity of the minimum of this example polynomial, we see that for

e.g. � = 0:01, the one loop 
ontribution dominates the 
lassi
al potential giving

rise to a linear term in �


l

una

ounted for in the 
lassi
al treatment. For many

values of the parameters B and C, this just 
hanges the form and lo
ation of the

bump in the potential. In prin
iple, however the loop 
orre
tion 
an remove the

lo
al minimum altogether (see �gure 7.2).

Needless to say that this �nding depends 
ru
ially on the 
uto�. If it is 
hosen

small enough, the 
on
lusion is 
ir
umvented. In addition, only the spe
i�
 
hoi
e

of V

p

above has been shown to be potentially unstable. The spa
e of polynomials

is 
ertainly large enough to provide numerous stable potentials of the Albre
ht and

Skordis form.

7.2 Coupled Quintessen
e

Various models featuring a 
oupling of quintessen
e to some form of dark matter

have been proposed [11,30,71,100,101℄. From the a
tion Equation (7.1), we see

that the mass of the fermions 
ould be � dependent: m

f

= m

f

(�


l

) (see also

Figure 7.3). Two possible realization of this mass dependen
e are for instan
e

m

f

= m

0

f

exp(���


l

) and m

f

= m

0

f

+
(�


l

), where in the se
ond 
ase, we may have

a large �eld independent part together with small 
ouplings to quintessen
e.

3

For

the model dis
ussed in [71℄, the 
oupling is of the �rst form, whereas in [101℄, the


oupling is realized by multiplying the 
old dark matter Lagrangian by a fa
tor

f(�). This fa
tor is usually taken of the form f(�) = 1 + �(� � �

0

)

�

. Hen
e,

the 
oupling is m

f

(�) = f(�)m

0

f

, if we assume that dark matter is fermioni
. If it

were bosoni
, the following arguments would be similar.

We will �rst dis
uss general bounds on the 
oupling and in a se
ond step 
he
k

whether these bounds are broken via an e�e
tive gravitational 
oupling.

7.2.1 General Bounds on a Coupling

We will only dis
uss the new e�e
ts 
oming from the 
oupling and set

V

1-loop

= V


l

��V; (7.12)

where �V = �

2

ferm

[m

f

(�


l

)℄

2

=

�

8�

2

�

. If we assume that the potential energy of

the quintessen
e �eld 
onstitutes a 
onsiderable part of the energy density of the

universe today, i.e. �

q

� �


riti
al

, we see from the Friedman equation

3H

2

= �


riti
al

; (7.13)

3

The 
onstant m

0

f

is not the fermion mass today, whi
h would rather be m

today

=

m

f

(�


l

(today)).
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m
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f

(�


l

)

Figure 7.3: Corre
tion to the quintessen
e potential due to fermion 
u
tuations. Fermion

lines are solid, quintessen
e lines dashed. Shown is the 
ase where m

f

(�) gives a Yukawa


oupling, i.e. 
(�) = ��, 
orresponding to one quintessen
e line. Of 
ourse, for more


ompli
ated m

f

(�) su
h as m

f

(�


l

) = m

0

f

exp(���


l

), several external lines like in �gure

7.1 would appear.

that V


l

� H

2

. With todays Hubble parameter H = 8:9� 10

�61

h (h = 0:5 : : : 0:9),

we have

V


l

� 7:9� 10

�121

h

2

: (7.14)

The ratio of the `
orre
tion' to the 
lassi
al potential is

�V

V


l

=

1

8�

2

�

2

ferm

[m

f

(�


l

)℄

2

V


l

: (7.15)

Let us �rst 
onsider the 
ase that all of the fermion mass is �eld dependent, i.e.

we 
onsider 
ases like m

f

= m

0

f

exp(���


l

). As an example, we 
hoose a fermion


uto� at the GUT s
ale �

ferm

= 10

�3

, and a fermion mass, m

f

(�


l

) of the order of

100Gev = 10

�16

M

P

. Then Equation (7.15) gives the overwhelmingly large ratio

�V

V


l

� 10

80

: (7.16)

Thus, the 
lassi
al potential is negligible relative to the 
orre
tion indu
ed by the

fermion 
u
tuations.

Having made this estimate, it is 
lear that the fermion loop 
orre
tions are

only harmless, if the square of the 
oupling takes on exa
tly the same form as

the 
lassi
al potential itself. If, for example we have an exponential potential

V


l

= A exp(���


l

) together with a 
oupling m

f

(�


l

) = m

0

f

exp(���


l

), then this


oupling 
an only be tolerated, if 2� = �.

4

Taken at fa
e value, this �nding

restri
ts models with these types of 
oupling. It is however interesting to note that

for the exponential 
oupling, the 
ase 2� = � is not ruled out by 
osmologi
al

observations [30℄.

Turning to the possibility of a fermion mass that 
onsists of a �eld independent

part and a 
oupling, i.e. m

f

= m

0

f

+ 
(�


l

), Equation (7.15) be
omes

�V

V


l

=

1

8�

2

�

2

ferm

�

2m

0

f


(�


l

) + 
(�


l

)

2

�

V


l

; (7.17)

4

Of 
ourse, suÆ
iently small �, will lead to a more or less 
onstant 
ontribution, where

m

f

(�


l

) � m

0

f

� ��


l

.
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where we have ignored a quintessen
e �eld independent 
ontribution proportional

to (m

0

f

)

2

. Assuming 
(�


l

)� m

0

f

, and demanding that the loop 
orre
tions should

be small 
ompared to the 
lassi
al potential, Equation (7.17) yields the bound


(�


l

)�

4�

2

V


l

�

2

ferm

m

0

f

: (7.18)

If, as above, we assume �

ferm

= 10

�3

M

P

, m

0

f

= 10

�16

M

P

and V


l

from Equation

(7.14), this gives


(�


l

)� 3� 10

�97

; (7.19)

in units of the Plan
k mass. On
e again, the bound from Equation (7.18) only

applies if the fun
tional form of the loop 
orre
tion di�ers from the 
lassi
al poten-

tial. Assuming a Yukawa type 
oupling 
(�


l

) = ��


l

and �eld values of at least

the order of a Plank mass, we get � � 10

�97

.

For the 
oupling 
(�) = m

0

f

�(���

0

)

�

with the values � = 50; � = 8; �

0

= 32:5

given in [101℄, 
(�) is usually larger than m

0

f

. Therefore we take m

f

(�


l

) � 
(�


l

).

With m

f

(�


l

) = 10

�16

as before, we get the same result as in (7.16).

The 
oupled models share one property: the loop 
ontribution from the 
oupling

is by far larger than the 
lassi
al potential. At �rst sight, the golden way out of

this seems to view the potential as already e�e
tive: all 
u
tuations would be

in
luded from the start. However, there is no parti
ular reason, why any 
oupling

of quintessen
e to dark matter should produ
e just exa
tly the e�e
tive potential

used in a parti
ular model: there is a relation between a 
oupling and the e�e
tive

potential generated. Put another way, if the e�e
tive potential is of an elegant form

and we have a given 
oupling, then it seems unlikely that the 
lassi
al potential


ould itself be elegant or natural.

7.2.2 E�e
tive gravitational Fermion Quintessen
e Coupling

The bound in Equation (7.18) is so severe that the question arises whether gravita-

tional 
oupling between fermions and the quintessen
e �eld violates it. To give an

estimate, we 
al
ulate two simple pro
esses depi
ted in �gure 7.4. We evaluate the

diagrams for vanishing external momenta. This is 
onsistent with our derivation of

the fermion loop 
orre
tion Equation (7.2), in whi
h we have assumed momentum

independent 
ouplings. The e�e
tive 
oupling due to the graviton ex
hange 
on-

tributes to the fermion mass, whi
h be
omes �


l

dependent. We assume that this


oupling is small 
ompared to the fermion mass and write m

f

(�


l

) =m

0

f

+ 
(�


l

).

Fermions in general relativity are usually treated within the tetrad formalism.

The 
 matri
es be
ome spa
e-time dependent: 


�

(x) � 


a

e

�

a

(x). Together with

the spin 
onne
tion !, one uses (see e.g. [102℄, [103℄):

=r = e

�

a

(x)


a

�

�

�

+

i

4

�

b


!

b


�

�

: (7.20)

The a
tion (7.1) 
an then be expanded in small 
u
tuations around 
at spa
e:

g

��

= Æ

��

+ h

��

=M

P

.
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)

� � �

(a)
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l

)

� � �

(b)

Figure 7.4: E�e
tive fermion-quintessen
e 
oupling via graviton ex
hange. The fermions

(solid lines) emit gravitons (wiggled lines) whi
h are 
aught by the quintessen
e �eld

(dashed lines). As the graphs involve 
ouplings of the gravitons to the 
lassi
al quint-

essen
e potential, the generated 
oupling is proportional to the 
lassi
al potential. Sin
e

the potential involves arbitrary powers of �, we depi
t it as several �-lines. A Yukawa

type 
oupling, 
orresponding to just one line, is then generated by power expanding

V (�) = V (�


l

) + V

0

j
l

(�� �


l

) in the 
u
tuating �eld.

Using the gauge �xing term �

1

2

(�

�

h

��

�

1

2

�

�

h

�

�

)

2

and expanding the a
tion to

se
ond order in h, we �nd the propagator [103℄:

P

�1

grav

(k) =

Æ

��

Æ

��

+ Æ

��

Æ

��

� Æ

��

Æ

��

k

2

: (7.21)

The diagrams in �gure 7.4 are generated by the expansion of

p

g = 1 +

1

2

h

��

�

1

4

(h

��

)

2

+

1

8

(h

��

)

2

multiplying the matter Lagrangian. Additional (and more 
om-

pli
ated) verti
es originate from the spin 
onne
tion and the tetrad.

However, we don't 
onsider external graviton lines, whi
h would only give


orre
tions to the 
ouplings and wave fun
tion renormalization of the gravitons.

Therefore only internal gravitons appear. In order to 
ontribute a quintessen
e de-

pendent part to the fermion mass, the gravitons starting from the fermion-graviton

verti
es (
ompli
ated as they may be) have to tou
h quintessen
e-graviton verti
es.

As these quintessen
e verti
es are proportional to V (�


l

), all diagrams to lowest

order in V (�


l

) will only produ
e mass 
ontributions proportional to V (�


l

).

Evaluating the diagrams in �gure 7.4 for vanishing external momenta we get

from the �rst diagram, �gure 7.4(a)


(�


l

) =

1

8�

2

m

0

f

V (�


l

)

"

ln

 

�

2

�

2

+

�

m

0

f

�

2

!

� ln

 

�

2

�

2

+

�

m

0

f

�

2

!#

; (7.22)

whereas 7.4(b) gives


(�


l

) =

5

8�

2

m

0

f

V (�


l

) ln

�

�

�

�

: (7.23)
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V (�


l

)

.

.

.

Figure 7.5: Fermion loop 
ontribution to the quintessen
e potential involving the e�e
tive


oupling �gure 7.4(a). The 
ross in the fermion line depi
ts the �eld independent fermion

mass m

0

f

.

Here, we have introdu
ed infrared and ultraviolet 
uto�s � and � for the graviton

momenta. We assume � to be of the order M

P

and � about the inverse size of the

horizon. Sin
e the results depend only logarithmi
ally on the 
uto�s, this 
hoi
e is

not 
riti
al and in addition ln(M

P

=H) � 140, whi
h is small. From Equation (7.17,

7.22, 7.23), we see that in leading order, the 
hange in the quintessen
e potential

due to this e�e
tive fermion 
oupling would be proportional to V (�


l

) and 
ould

hen
e be absorbed upon rede�ning the pre-fa
tor of the potential (see also �gure

7.5). In next to leading order, the 
ontribution is proportional to V (�


l

)

2

whi
h is

negligible.

From Equation (7.20) it is 
lear that there are pro
esses where the verti
es are

more 
ompli
ated. However, to this order all diagrams are proportional to V (�


l

).

Thus, they 
an be absorbed just like the two pro
esses presented above.

7.3 Weyl-transformed Fields

So far, we have assumed a 
onstant Plan
k mass together with a �eld independent


uto�. We 
ould however, assume that the Plan
k mass is not 
onstant, but rather

given by the expe
tation value of a s
alar �eld �. We will 
all the frame resulting

from this Weyl s
aling Weyl frame, opposed to the frame with 
onstant Plank mass

whi
h we will 
all Einstein frame. From the 
lassi
al point of view, both frames are

equivalent. On 
al
ulating quantum 
orre
tions, we have to evaluate a fun
tional

integral. Usually, the fun
tional measure in the Einstein frame is set to unity. In

prin
iple, the variable 
hange asso
iated with the Weyl s
aling leads to a non-trivial

Ja
obian and therefore a di�erent fun
tional measure. Taking on the position that

the Weyl frame is fundamental, this measure 
ould with the same right be set to

unity in the Weyl frame. Therefore, it is a priori un
lear whether the loop 
orre
ted

potential in the Weyl frame, when transformed ba
k into the Einstein frame, will

be the same as the one from Equation (7.2).

As the 
uto� in the Einstein frame is a 
onstant mass s
ale and hen
e propor-

tional to the Plank mass, it seems natural to assume that the 
uto� in the Weyl

frame is proportional to �. We restri
t our dis
ussion to this 
ase. For other 
hoi
es
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of the �-dependen
e of the 
uto�, the results may di�er.

The Weyl transformation is a
hieved by s
aling the metri
, the 
urvature s
alar,

all �elds and the tetrad by appropriate powers of �=M

P

(see table 7.1) [6,11℄:
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+ �

m

f

(�


l

)

M

P




5

�

3

2

i~


�

(x) ln�

;�

�

~

 

#

; (7.24)

where � = (12 + z)

1=2

M

P

ln(�=M

P

) and

W (�) �

�

�

M

P

�

4

V (�(�)): (7.25)

The term proportional to ln�

;�

in Equation (7.24) is somewhat in
onvenient.

Adopting the position that the Weyl frame is fundamental, this term is unnat-

ural. Instead, one would formulate the theory with 
anoni
al 
ouplings for the

fermions. Dropping this term,

~

S


an.

=

Z

d

4
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+
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; (7.26)

we observe by going ba
k to the usual a
tion

~

S


an.

! S

S =

Z

d

4

x

p

g

"

1

2

�

�

�(x)�

�

�(x) + V (�(x))

+

�

	(x)

�

i=r+ 


5

m

f

(�) +

3

2M

P
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�

(x)�

;�

�

	(x)

#

; (7.27)

that the 
anoni
al form of the a
tion in the Weyl frame gives rise to a derivative


oupling of the quintessen
e �eld to the fermions in the Einstein frame, whi
h we


an safely ignore.

5

Working with Equation (7.26), we get the loop 
orre
tion in the Weyl frame by

repla
ing V ! W and �! � in Equation (7.2). In addition, the 
onstant 
uto�s

� and �

ferm

are repla
ed by 
onst � �:

W

1-loop

=W (�) +

(C�)

2

32�

2

z

2

W

00

(�)�

(C

f

�)

2

8�

2

�

�

M

P

m

f

(�)

�

2

: (7.28)

5

A
tually, this 
oupling is non-renormalizable in the stri
t sense. Sin
e the theory is non-

renormalizable anyhow, this is not of great 
on
ern. In addition, if one believes that the Weyl

frame is fundamental, there is no need in going ba
k to the Einstein frame and hen
e no need to

fa
e this nuisan
e.
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Table 7.1: Weyl s
aling of various quantities. The transformation of the 
urvature s
alar

R follows from the s
aling of the metri
. This s
aling, in turn, originates from the 
ondition

that instead of the Plank mass squared multiplying R in the a
tion in the Einstein frame,

a fa
tor �

2

should appear. Here, we have set � = ln(�=M

P

).

Transforming W

1-loop

ba
k into the Einstein frame, the potential V is modi�ed by

V

1-loop

= V (�


l

) +

(C

f
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P
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2

8�

2
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+
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32�
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00
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)

�

: (7.29)

As an example, lets 
al
ulate the 
orre
tion to the pure exponential potential V

ep


l

=

A exp(���


l

), on
e again setting M

P

= 1. The Weyl frame potential is

W (�) = A�

4

exp(���


l

(�)) = A�

(4��

p

12+z)

: (7.30)

Negle
ting fermion 
u
tuations and 
hoosing z = 1,

W

1�loop

=

�

1 +

C

2

32�

2

z

2

(4� �

p

13)(3� �

p

13)

�

W (�): (7.31)

Again (and not surprisingly) we 
an absorb the square bra
ket in a rede�nition of

the pre-fa
tor A. In the 
ase of the inverse power law, the term proportional to V

0

in

Equation (7.29) leads to a slightly di�erent 
ontribution 
ompared to Equation (7.4)

(a term / �

���1


l

arises). For the modi�ed exponential potentials the expressions


orresponding to V

0

in Equation (7.29) make no stru
tural di�eren
e.
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CMBEASY

In 
hapter 2, 4 and 5, we have reviewed 
osmologi
al perturbation theory and the

physi
s of CMB anisotropies. Having all ne
essary equations at hand

1

, we 
an

thus set out to 
al
ulate the CMB spe
trum for any 
osmologi
al model. Sin
e

1996, the 
mbfast 
omputer 
ode implementing the fast line of sight integration

method is publi
ly available. It 
an 
al
ulate spe
tra for open, 
losed and 
at

universes 
ontaining massless and massive neutrinos, baryons, 
old dark matter

and a 
osmologi
al 
onstant. It is a very well tested program that has enabled

many 
osmologists to test their model of the universe against CMB data.

However, from the point of view of 
ode design, there is maybe no program that


ould not be improved. This is also true for 
mbfast: it is a rather monolithi



ode that is quite diÆ
ult to oversee and modify.

In order to address these short
omings and simplify modi�
ations of the 
ode {

in our 
ase the implementation of quintessen
e models and gauge invariant variables

{ we have ported the 
mbfast pa
kage to the C++ programming language. The

C++ language is obje
t oriented and it turns out that to think in obje
ts (more of

this soon), is very advantageous in 
osmology. The program has not been rewritten

from s
rat
h, but redesigned step by step. Some people may argue that it is hen
e

not independent, i.e. some unknown errors and limitations in 
mbfast 
ould be

present in the new 
ode. The obje
t oriented modular design, however, ensures

that ea
h part of the 
ode is independently testable. If, for instan
e, one does not

trust the integrator, one 
an use another one to 
he
k it, without 
hanging anything

else in the pa
kage. Also, pra
ti
ally all lines in the 
ode have been rewritten, to

bene�t from the redesign.

There are roughly three main steps needed to 
al
ulate the CMB anisotropy

spe
trum,

� solving the expansion and thermal ba
kground evolution,

� 
al
ulating the perturbation equations in Fourier spa
e,

� mapping the 
al
ulations onto the sky today.

1

The full set of equations used is summarized in Appendix C
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Before we present the implementation we 
hose for this task, let us brie
y review

the 
on
ept of obje
t oriented programming.

8.1 Obje
ts

Quite often, some data and fun
tions a
ting on the data are so tightly 
onne
ted,

that it is sensible to think of them as one obje
t. As an example, let us dis
uss

splines. Given a dis
rete set of n points x

i

with x

i+1

< x

i

and 
orresponding

f(x

i

) = y

i

, a spline 
an smoothly interpolate, i.e. give f(x) for any x 2 [x

0

; x

n

℄.

For as long as the sampling is dense enough, arbitrary fun
tions may be des
ribed

by a spline for all pra
ti
al purposes. This is widely used in 
mbfast. Even the

C

l

's are 
al
ulated only every 50 l-value for l > 200. As the spe
trum is very

smooth, this still gives a pre
ise result.

Now, a fun
tion like the visibility that is 
al
ulated in the thermal history part

of the 
ode, 
an be used to de�ne a spline. Without obje
t orientation, one would

need to keep tra
k of various variables, most notably arrays for the x; y data and

derivatives needed for spline interpolation. Also, in order to assure qui
k a

ess

within the spline data table, one either needs to know the pre
ise layout of the

data arrays (
mbfast does this), or even more variables (storing for instan
e the

last interpolation x value) would be ne
essary. In total, this sums up to a lot of

bookkeeping for a 
on
eptually simple entity like a spline.

Alternatively, one may de�ne a 
lass holding all ne
essary variables a spline

needs together with de�nitions of an interfa
e with whi
h other parts of the pro-

gram 
an a

ess and manipulate the spline data. An obje
t behaves as des
ribed

by the 
orresponding 
lass. There 
an be an arbitrary number of obje
ts of a 
er-

tain 
lass (just like there is one 
oating point type float, but many variables of

type float in a program).

2

The 
lass (in our 
ase) 
alled Spline, 
an hen
e be

viewed as yet another data type, with no more bookkeeping needed than say for

a 
oating point number. To illustrate this, let us dis
uss the visibility fun
tion

g � _� exp(�(�)� �(�

0

)). Its typi
al shape is depi
ted in Figure 4.5. As mentioned

in Se
tion 4.5, its peak de�nes the epo
h of last s
attering. As soon as the Spline


alled visibility has been given the data, its maximum 
an be determined by a

single line of 
ode:

tau ls = visibility.getMaximum(); get � of last s
attering

z ls = 
osmos.tau2z(tau ls); 
onvert to redshift

Here, the se
ond line asks the 
osmos obje
t to 
onvert

3


onformal time to red-

2

We usually denote here (and in the 
ode) 
lasses with 
apital �rst letter. In some 
ases where

there is only one obje
t of a 
lass used in the 
ode, we denote the obje
t with the same name as

the 
lass, but with lower 
ase initial letter. Hen
e, the line

Cosmos 
osmos;


reates an obje
t `
osmos' of the 
lass `Cosmos'.

3

Many of these `
onvenien
e' fun
tions are de�ned in the Cosmos 
lass and moving from a to
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shift. As the expansion history has been 
al
ulated before the thermal history, this

is a

urately possible. The important point to noti
e is that all fun
tions de�ned

in the Spline 
lass are immediately available to everyone who uses Splines. So,

whenever one needs to �nd the maximum, integrate a spline, 
al
ulate the 
onvolu-

tion of two Splines et
, this 
an be done in very few lines of 
ode: the fun
tionality

is fully en
apsulated in the implementation of the Spline 
lass. Any in
rease in

performan
e or sophisti
ation of the Spline 
lass immediately translates over to all

Splines used in the program.

8.1.1 Inheritan
e

Tightly 
onne
ted to the fa
t that data and methods are 
ombined within one

obje
t, the 
on
ept of inheritan
e proofs very powerful in 
osmology. A 
lass


an inherit from another 
lass (in this 
ontext 
alled base 
lass). All variables

and the full fun
tionality the base 
lass implements is instantly available to the

inheriting 
lass,

4


alled sub-
lass. The sub-
lass 
an then re-implement fun
tions

of the base 
lass to provide a di�erent fun
tionality, or add new fun
tions and

variables. The important point to note is that all 
lasses deriving from the same

base 
lass ne
essarily need to provide all fun
tions the base 
lass provides. Hen
e,

for as long as other parts of the 
ode use the base 
lass, one 
an substitute any of

the inheriting 
lasses for the base 
lass without 
hanging a single line of 
ode in the

part that uses the bases 
lass. As an illustration, let us look at the Perturbation


lass of 
mbeasy. It is designed to evolve the perturbation equations for one

k-mode through 
onformal time and 
al
ulate the temperature perturbation. It

de�nes fun
tions to do this that other parts of the program 
an be sure to �nd

implemented in all sub-
lasses. In pra
ti
e, there are four 
lasses that inherit from

it, for perturbations in gauge-invariant variables and in syn
hronous gauge both

with and without quintessen
e (see also Figure 8.3). From the point of view of the

rest of the program, all of them are equally well suited.

5

8.2 Design

A hierar
hy overview of the main 
lasses of 
mbeasy is given in Figure 8.3. Maybe

the most 
entral part of the pa
kage is the CmbCal
 
lass. It provides fun
tions

to prepare and exe
ute the perturbation evolution in k spa
e and the integration

of the C

l

's. During the preparation, it also 
alls the Cosmos 
lass whi
h 
al
u-

lates the expansion and thermal ba
kground evolution. The Cosmos 
lass is the

z to � to t is easily possible. All 
onversion fun
tions have the syntax y = X2Y (x), where the

number 2 should be spelled as `to'.

4

This is as if a 
hild was born with the whole knowledge of its parents. No training and learning

would be ne
essary. It 
ould instantly go and in
rease its 
apabilities starting from the level of its

parents.

5

Ex
ept for the fa
t that if one wants quintessen
e, the perturbation 
lass should of 
ourse

support it.
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Figure 8.1: Temperature anisotropy spe
trum for h = 0:65; 


�

0

= 0:6; 


b

0

h

2

= 0:02; 





0

=

1 � 


�

0

� 


b

0

obtained from 
mbfast. The relative deviation �C

l

=C

l

of 
mbeasy's syn-


hronous (long dashed line) and gauge invariant (solid line) solution with respe
t to the

original 
mbfast spe
trum are also given. The a

ordan
e of all spe
tra is always better

than 1%. In the gauge invariant 
ase, both the ba
kground and perturbation evolution as

well as the C

l

integration are entirely independent of the 
mbfast 
ode. However, they use

the same thermal history algorithm that should in prin
iple be independently implemented

for 
ross 
he
ks.


entral instan
e providing ba
kground quantities like ��(�) of all spe
ies et
. Al-

ready the 
entralization of the ba
kground evolution within the Cosmos 
lass fa-


ilitates the modi�
ation of the 
ode greatly. A di�erent ba
kground 
osmology

(su
h as quintessen
e) 
an be implemented by just inheriting from Cosmos and

re-implementing the expansion history part of the 
ode.

6

As already mentioned,

the Perturbation 
lass and its sub
lasses propagate the perturbation variables for

one k-mode through 
onformal time. Finally, the Integrator sub
lasses perform

the 
onvolution of the sour
es with the Bessel fun
tions, (4.68), as well as the �nal

k-integration of Equation (4.15).

8.2.1 Quintessen
e Implementation

The di�erent ba
kground evolution of quintessen
e s
enarios is implemented using

the QuintCosmos and the Quintessen
e 
lass. Ea
h sub
lass of Quintessen
e

6

All in all 800 lines of a total of 2500 lines of Cosmos.
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al User Interfa
e

Figure 8.2: Graphi
al user interfa
e (GUI) for 
mbeasy.


orresponds to a 
ertain model, su
h as EP, IPL, LKT et
. Certainly, a more

monolithi
 design with the quintessen
e models implemented in the QuintCosmos


lass would have been possible. However, we believe that the details of the models

are best kept to a 
lass of its own. For instan
e tuning model parameters in order to

get the right amount of 


'

0

et
. is di�erent for ea
h model and a monolithi
 design

would have to 
all di�erently named fun
tions for di�erent models. Using sub-


lassing, QuintCosmos (and Perturbation) always 
all fun
tions with the same

argument and name for all models. Yet, as the obje
t implementing the fun
tion

di�ers for ea
h model, the 
ode exe
uted by 
alling the fun
tion 
an be totally

di�erent. Thus, a new quintessen
e model 
an be implemented by simply sub-


lassing Quintessen
e and implementing a minimal set of fun
tions, su
h as one

for the potential et
.

8.3 Graphi
al User Interfa
e

For edu
ational purposes and also to simplify the parameter input and subsequent

visualization of results, a graphi
al user interfa
e (GUI) is of great value. Lu
kily,

there is the very sophisti
ated and publi
ly available `Qt' library[104℄ with whi
h

the 
reation of a GUI is fa
ilitated. Its obje
t oriented C++ design is a perfe
t

mat
h for the 
mbeasy pa
kage. There is therefore an exe
utable program 
alled

`
mbeasy' giving intera
tive a

ess to almost the full 
apabilities of the pa
kage,

in
luding quintessen
e. As is seen from Figure 8.2, the spe
tra are visualized in
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separate plots arranged in a so 
alled Tab-Widget.

7

One 
an for instan
e zoom in,

sele
t and save 
urves or print the plot. In addition, a likelihood analysis, using

SNe Ia data, peak lo
ations and 
luster abundan
e 
onstraints is available. Its

aim is rapid 
al
ulation and visualization and hen
e it only uses the ba
kground

evolution, estimating peak lo
ations via the peak shift formulas of appendix B and

�

8

from Equation (6.33) and a library of pre-
al
ulated �CDM models.

8.4 Do
umentation

Using the doxygen program, the do
umentation is automati
ally generated from

the sour
e 
ode of the 
mbeasy pa
kage. In its html version, it is intera
tively

navigable and in
ludes the full sour
e 
ode. Due to the automati
 generation,

the do
umentation and the 
ode are naturally syn
hronized. A posts
ript version

of the do
umentation is also generated. Depending on the depth of information

requested, it easily ex
eeds several hundred pages, making it less a

essible than

its html 
ounterpart.

7

A widget is a part of a user interfa
e that 
an intera
t. Examples are buttons, sliders, et
.
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TensorIntegratorScalarIntegrator    QuintCosmos

MathObject  

Figure 8.3: Hierar
hy of the main 
lasses of the 
mbeasy pa
kage. All 
lasses dealing with mathemati
s inherit from MathObje
t for

te
hni
al reasons. The Cosmos 
lass 
al
ulates the ba
kground evolution and 
an be extended using sub
lasses su
h as QuintCosmos

for quintessen
e. The perturbation equations are en
apsulated in the Perturbation 
lass. Implementing di�erent gauges as sub
lasses

is therefore unproblemati
. The 
entral instan
e invoking Cosmos, the Perturbations and Integrators is the CmbCal
 
lass. Not shown

are several (sometimes small) 
lasses, e.g. the ControlPanel, whi
h holds 
ommonly used settings, or e.g. the Mis
Math 
lass providing

low-level mathemati
al fun
tions.

1
0
1



Chapter 8. CMBEASY

102



9

Con
lusions

We have started this work by des
ribing the e�e
ts of dark energy on the expansion

history of the universe. Depending on its e�e
tive equation of state w

0

, the age of

the universe ranges from � � 9000Mp
 (w

0

= 0) to approximately 14000Mp
 in

the 
ase of a 
osmologi
al 
onstant. The Perturbations to homogenous ba
kground

quantities have been introdu
ed using gauge-invariant variables. The gauge invari-

ant s
alar quintessen
e 
u
tuation X is identi
al to the 
u
tuation in longitudinal

gauge. This makes the longitudinal gauge the ideal tool to derive quintessen
e

related perturbation equations. We have then reviewed the gauge-invariant for-

mulation of CMB anisotropies along the lines of [18℄. In order to bene�t from

the numeri
ally fast line of sight method [16℄, we have formulated it using gauge

invariant variables.

To set the numeri
al 
al
ulation up, one needs initial 
onditions. For this pur-

pose, the equation of motion of the �eld 
u
tuation X has been solved analyti
ally

in the 
ase of tra
king quintessen
e. As most s
alar quintessen
e models are in su
h

an attra
tor solution at early times, this result is widely appli
able. The 
u
tua-

tion X follows a simple power-law in 
onformal time with exponent (1 � 3w

'

)=2.

As it turns out, this solution for X is identi
al to the solution for X following

from adiabati
 initial 
onditions. Like all perturbations, the metri
 potential �

needs to be determined 
onsistently at initial time. The existing literature assumes

that � is given by the same relation as in the 
ase without quintessen
e. This is


ertainly true if quintessen
e is subdominant at early times. More importantly,

we have shown that this also holds whenever the quintessen
e model resembles an

exponential potential model at the time of interest. In most pra
ti
al situation, �

is therefore indeed given by the same relation as without quintessen
e.

For tra
king quintessen
e, the gauge-invariant energy density perturbation D

'

g

remains 
onstant on s
ales outside the horizon. As quintessen
e is in prin
iple very

versatile, we 
an't prove this intuitively expe
ted result for arbitrary realizations.

Moving towards observational tests for dark energy, we have 
al
ulated the

a
ousti
 s
ale l

A

. The a
ousti
 s
ale determines the inter-peak spa
ing in the CMB

multipole spe
trum. The in
uen
e of quintessen
e on l

A

has been expressed by the

three parameters w

0

;

�




'

ls

and 


'

0

. Unfortunately, the e�e
ts of dark energy 
an be
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mimi
ked by the Hubble parameter. An independent determination of the Hubble

parameter is therefore mandatory if l

A

is used to restri
t quintessen
e models. The

a
ousti
 s
ale is still found in the literature as an estimate for the lo
ation of the

�rst peak despite the fa
t that this introdu
es large errors [69,75℄. In addition, the

relation between 


0

and the position of the �rst peak noted in [73℄ is based on

numeri
al simulations. These simulations did not take dark energy into a

ount.

In order to a

urately 
onne
t the a
ousti
 s
ale and CMB peak positions, we

have parameterised the peak positions with peak shifts '

m

. For these shifts, we

devised �tting formulae that are appli
able over a wide range of parameters. As

the shifts are in
uen
ed mostly by pre-re
ombination physi
s, dark energy before

last s
attering (quanti�ed by

�




'

ls

) has been an important parameter in our analysis.

The independen
e from post-re
ombination e�e
ts means that the shift formulae

are also appli
able to non-
at universes. During these numeri
al simulations, the

shift of the third peak '

3

proved rather insensitive to the 
osmologi
al model.

As both the Boomerang and the Maxima experiments released data 
overing three

peaks in spring 2001, we used this insensitivity to extra
t the a
ousti
 s
ale from the

measurements. The value we �nd is l

A

= 319 � 23. As the a
ousti
 s
ale is easily


al
ulable from ba
kground physi
s only, this provides a qui
k way to estimate

whether a model is possibly in agreement with the CMB data or not. Combining

this bound on l

A

with 
luster abundan
e 
onstraints, we �nd that inverse power

law models with exponent � > 2 are disfavoured. This is both in agreement with

SNe Ia 
onstraints, as well as with the result of [35℄. In addition, the amount of

dark energy during re
ombination is restri
ted to

�




'

ls

/ 0:15. Yet, for a spe
tral

index slightly greater than one, a small 
ontribution at the 5% level is favoured.

In order to dete
t quintessen
e via the CMB, a more pre
ise measurement of the

lo
ation of the �rst peak may be ne
essary. From this and l

A

, one would be able to

extra
t the quantity � that 
ould give hints to the amount of quintessen
e present at

re
ombination. Using the value of l

A

, we �nd that the expansion of the universe is

most likely a

elerating. This result is entirely independent of SNe Ia observations.

In order to implement quintessen
e models numeri
ally, we 
hose to modify the


mbfast 
omputer 
ode. We have ported the pa
kage to the obje
t oriented C++

programming language. The 
ode has been re-designed and grouped in 
lasses.

As all fun
tionality is 
leanly en
apsulated in these 
lasses, the 
ode is easier to

overview. This fa
ilitates bug-�nding and leads to more 
on�den
e in the numeri
al

results. By inheriting from existing 
lasses, the implementation of di�erent models,


osmologies or gauges is greatly simpli�ed. In addition, a powerful graphi
al user

interfa
e is available for the modi�ed 
ode. This will make the CMB a

essible to

non-experts also, in
reasing intuition for the e�e
t of di�erent parameters on the

spe
trum. Besides, it 
an be used for edu
ational purposes.

Turning to SNe Ia observations, we have shown that dark energy models with

the same value of �w

'

[


'

0

℄

1:4

are indistinguishable by 
urrent SNe Ia-data. This

in prin
iple well known degenera
y has to our knowledge not been 
ast in su
h a

simple relation before.

Leaving the observational side, we have 
al
ulated one-loop quantum 
orre
-
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tions to quintessen
e potentials. In the late universe, most potentials are stable

with respe
t to s
alar quintessen
e 
u
tuations. The pure exponential and Nambu-

Goldstone type potentials are form invariant up to order V

00

, yet terms of the order

(V

00

)

2

prevent them from being renormalizable in the stri
t sense. For the modi�ed

exponential potential introdu
ed by Albre
ht and Skordis, stability depends on the

spe
i�
 form of the polynomial fa
tor V

p

in the potential. In some 
ases the lo
al

minimum in the potential 
an even be removed by the loop. An expli
it 
oupling of

the quintessen
e �eld to fermions (or similarly to dark matter bosons) seems to be

severely restri
ted. The e�e
tive potential to one loop level would be 
ompletely

dominated by the 
ontribution from the fermion 
u
tuations. All models in the

literature share this fate. One way around this 
on
lusion 
ould be to view these

potentials as already e�e
tive. They must, however, not only be e�e
tive in the

sense of an e�e
tive quantum �eld theory originating as a low-energy limit of an

underlying theory, but also in
lude all 
u
tuations from this e�e
tive QFT. In this


ase, there is a strong 
onne
tion between 
oupling and potential and it is rather

unlikely that the 
orre
t pair 
an be guessed. The bound on the 
oupling is so se-

vere that for 
onsisten
y, we have 
al
ulated an e�e
tive 
oupling due to graviton

ex
hange. To lowest order in V (�), this 
oupling leads to a fermion 
ontribution

whi
h 
an be absorbed by rede�ning the pre-fa
tor of the potential.

Surely, the one-loop 
al
ulation does not give the true e�e
tive potential. Sym-

metries or more fundamental theories that make the 
osmologi
al 
onstant small

as it is, 
ould for
e loop 
ontributions to 
an
el. In addition, the ba
k-rea
tion of

the 
hanging e�e
tive potential on the 
u
tuations remains un
lear in the one loop


al
ulation. A renormalization group treatment would therefore be of great value.

In the last years, 
osmology be
ame more and more quantitative. With the

high pre
ision data of the map satellite, the 
osmi
 mi
rowave ba
kground will

soon restri
t many 
osmologi
al parameters to breath taking a

ura
y. However,

the CMB spe
trum is degenerate in several parameters. The same is true for SNe Ia

observations. In fa
t, pra
ti
ally all observations are plagued by su
h degenera
ies.

It is only the 
ombination of several tests { ea
h of high pre
ision { that 
an �x

the parameters of the 
osmologi
al model. If the standard �-CDM model is well

des
ribing the soon available data, high energy physi
ists may need to �nd a reason

for a non-vanishing and yet in
redibly small va
uum energy.

However, it may well be that �-CDM runs into diÆ
ulties. Given the fa
t

that it seemingly involves so mu
h �ne-tuning, it it rather unlikely the 
orre
t

model. Taken together all the soon available pre
ision data, this should manifest

itself in an observational mismat
h. It is well possible that a quintessen
e model

will be favoured by the experiments. But as quintessen
e is so versatile, it is

hard to imagine that only one quintessen
e s
enario will be mat
hing observations.

To single out the quintessen
e model, a deeper understanding of the fundamental

physi
s leading to the e�e
tive s
alar theory is needed. If one day this theory is

found, we shouldn't wonder if it involves a light s
alar �eld whi
h funny enough

tri
ked s
ientists at the beginning of the 21st 
entury into believing that there is a


osmologi
al 
onstant.
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A

Christo�el Symbols

The Christo�el symbols

�

�

��

=

1

2

g

��

(g

��;�

+ g

��;�

� g

��;�

) (A.1)

for the Robertson Walker metri
 (2.2) are in the unperturbed 
ase

�

0

00

=

_a

a

(A.2)

�

0

ij

=

_a

a

Æ

ij

(A.3)

�

i

0j

=

_a

a

Æ

i

j

(A.4)

�

i

jl

= �

0

i0

= 0 (A.5)

Using the s
alar longitudinal gauge metri
 (3.26), the �rst order perturbations

be
ome

Æ�

0

00

=

_

	Q (A.6)

Æ�

0

i0

= �kQ

i

	 (A.7)

Æ�

0

ij

= 2

�

_a

a

[��	℄ +

_

�

�

QÆ

ij

(A.8)

Æ�

i

00

= �kQ

i

	 (A.9)

Æ�

i

j0

=

_

�QÆ

i

j

(A.10)

Æ�

i

jl

= k�

�

Q

i

Æ

jl

�Q

j

Æ

i

l

�Q

l

Æ

i

j

�

(A.11)
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B

Fitting formulas for the peak

shifts

We present here our �tting formulae for the overall phase shift �', followed by the

relative shifts of the �rst trough (Æ'

3=2

) and the se
ond (Æ'

2

) and third (Æ'

3

)

peaks.

1

In ea
h 
ase we also give an estimate of the a

ura
y of the formulae.

Overall phase shift �'

For the overall phase shift �' (i.e. the phase shift of the �rst peak) we �nd the

formula

�' = (1:466 � 0:466n)

�

a

1

r

a

2

?

+ 0:291

�




'

ls

�

; (B.1)

where a

1

and a

2

are given by

a

1

= 0:286 + 0:626

�




b

h

2

�

(B.2)

a

2

= 0:1786 � 6:308


b

h

2

+ 174:9

�




b

h

2

�

2

(B.3)

�1168

�




b

h

2

�

3

: (B.4)

It 
ontains the main dependen
e of any shift '

m

on

�




'

ls

. The 1-� error for �' is

� �' = 0:0031 (B.5)

Relative shift of �rst trough Æ'

3=2

The relative shift of the �rst trough is a very sensitive quantity spanning a wide

range of values. It 
an very well be used to restri
t the allowed parameter spa
e

for 
osmologi
al models. We have

Æ'

3=2

= b

0

+ b

1

r

1=3

?

exp(b

2

r

?

) + 0:158 (n � 1); (B.6)

1

A small 
++ pa
kage providing fun
tions for the shifts is available at http://www.thphys.uni-

heidelberg.de/~doran/peak.html
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with

b

0

= �0:086 � 0:079

�




'

ls

�

�

2:22 � 18:1

�




'

ls

�




b

h

2

�

�

140 + 403

�




'

ls

� �




b

h

2

�

2

(B.7)

b

1

= 0:39 � 0:98

�




'

ls

�

�

18:1� 29:2

�




'

ls

�




b

h

2

(B.8)

+440

�




b

h

2

�

2

(B.9)

b

2

= �0:57 � 3:8 exp

n

�2365:0

�




b

h

2

�

2

o

: (B.10)

For the one standard-deviation error we have

�Æ'

3=2

= 0:0039: (B.11)

Relative shift of se
ond peak Æ'

2

The relative shift of the se
ond peak is a very sensitive quantity. It is thus not

surprising to �nd a strong dependen
e of Æ'

2

on the parameters. We have

Æ'

2

= 


0

� 


1

r

?

� 


2

r

�


3

?

+ 0:05 (n � 1); (B.12)

with




0

= �0:1 +

�

0:213 � 0:123

�




'

ls

�

(B.13)

� exp

�

�

�

52� 63:6

�




'

ls

�




b

h

2

	

(B.14)




1

= 0:063 exp

n

�3500

�




b

h

2

�

2

o

+ 0:015 (B.15)




2

= 6� 10

�6

+ 0:137

�




b

h

2

� 0:07

�

2

(B.16)




3

= 0:8 + 2:3

�




'

ls

+

�

70� 126

�




'

ls

�




b

h

2

: (B.17)

The error of this approximation is

�Æ'

2

= 0:0044: (B.18)

Relative shift of third peak Æ'

3

For the third peak, we �nd

Æ'

3

= 10� d

1

r

d

2

?

+ 0:08 (n � 1); (B.19)

with

d

1

= 9:97 +

�

3:3� 3


�

ls

�




b

h

2

(B.20)

d

2

= 0:0016 � 0:0067


�

ls

+

�

0:196 � 0:22


�

ls

�




b

h

2

+

(2:25 + 2:77


�

ls

)� 10

�5




b

h

2

; (B.21)

110



and error given by

�Æ'

3

= 0:0052: (B.22)

Overall shift of third peak '

3

For 
ompleteness, we give a �t for '

3

whi
h in prin
iple 
ould be obtained by

adding �' and Æ'

3

. However, a one-step-�t yields better errors here. Our formula

is

'

3

= e

1

(1 + e

3

r

?

) r

e

2

?

+ e

4

� 0:037 (n � 1); (B.23)

with

e

1

= 0:302 � 2:112


b

h

2

+ 0:15 exp

�

�384


b

h

2

	

(B.24)

e

2

= �0:04� 4:5


b

h

2

(B.25)

e

3

=

�

�0:118 + 44:7


b

h

2

�

�




'

ls

(B.26)

e

4

=

�

0:214 exp

�

�48


b

h

2

	

+ 0:106

�

�




'

ls

; (B.27)

and error

�'

3

= 0:0017: (B.28)
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C

Full set of Perturbation

Equations

In this appendix, we summarize the formulae needed to evolve the gauge-invariant

perturbation variables listed in Table C.1.

The Metri
 Potentials � and 	

In order to solve Einstein's equations, we �rst use Equation (3.55) in the form

�	 = �+M

�2

P

k

�2

a

2

�p

�

�; (C.1)

where �p

�

� � �p




�




+ �p

�

�

�

. With this, we get from Equations (3.72) and (3.45)

a

2

��

'

D

'

= a

2

��

'

D

'

g

� 3a

2

(��

'

+ �p

'

)� + 3a

2

(��

'

+ �p

'

)

_a

a

V

'

k

=

_

�'

h

_

X +M

�2

P

k

�2

a

2

�p

�

�

i

+ a

2

V

0

(')X

+a

2

(��

'

+ �p

'

)� + 3a

2

(��

'

+ �p

'

)

_a

a

V

'

k

; (C.2)

whi
h is of the form a

2

��

'

D

'

= A

'

� B

'

�. For the other spe
ies, things are more

simple

a

2

��

i

D

i

= a

2

��

i

D

i

g

� 3��

i

a

2

(1 + w

i

)�; (C.3)

whi
h is also of the form a

2

��

i

D

i

= A

i

+B

i

�. Therefore, Equation (3.53) yields

� =

P

A

i

2M

2

P

k

2

+

P

B

i

(C.4)

where the summation runs over all spe
ies, in
luding quintessen
e and A

i

and B

i


an be read o� Equations (C.2) and (C.3) respe
tively. This �xes �, be
ause the

right hand side of Equation (C.4) 
ontains only known variables. The gravitational

potential 	 follows then immediately from Equation (C.1).
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Symbol Meaning

M

l

Photon multipole, l = 0 : : : 7

E

l

Photon polarization multipole, l = 2 : : : 7

N

l

Neutrino multipole, l = 0 : : : 9

X Quintessen
e �eld 
u
tuation

_

X dX=d� (be
ause e.o.m. is se
ond order)

D

b

g

Density perturbation for baryons

D




g

Density perturbation for 
old dark matter

V

b

Velo
ity of baryons

V




Velo
ity of 
old dark matter

D




g

Density perturbation for photons (from M

0

)

D

�

g

Density perturbation for massless neutrinos (from N

0

)

V




Velo
ity of photons (from M

1

)

V

�

Velo
ity of neutrinos (from N

1

)

V

'

Quintessen
e velo
ity (from

_

X)

�




Photon shear (from M

2

)

�

�

Neutrino shear (from N

2

)

Table C.1: Perturbations propagated through 
onformal time (upper half). Quantities

that are not propagated themselves, but derived algebrai
ally from quantities propagated

are grouped in the lower half.

Cold dark matter, Baryons and Photons

For 
old dark matter, we use Equations (5.13) and (5.14). As far as photons and

baryons are 
on
erned, one distinguishes between the tight-
oupling and the `no-

tight-
oupling' regime:

(I) Tight 
oupling:

In tight 
oupling, one 
ombines the Equations (C.8) governing the velo
ity evo-

lution for baryons and photons (4.49) into one single Equation along the lines of

Se
tion 5.1

_

V = k	+

�

Rk

�

1

4

D




g

�

1

6

�




�

+ k


2

s

D

b

g

�

_a

a

V (1� 3


2

s

)

� k�(R+ 3


2

s

)

�

(R+ 1)

�1

; (C.5)
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where 


2

s

is the baryon sound speed,

1

V is the 
ommon velo
ity of baryons and

photons and R = 4�




=(3�

b

). The monopoles evolve a

ording to

_

D

b

g

= �kV

b

� 3


2

s

D

b

g

_a

a

; (C.6)

and

_

M

0

= �

k

3

V: (C.7)

All higher moments of M as well as the polarization terms E

l

are set to zero.

(II) No Tight 
oupling:

Without tight 
oupling, baryons obey

_

V

b

= k(	� 3


2

s

�) + k


2

s

D

b

g

+

_a

a

�

3


2

s

� 1

�

V

b

+ _�R(V




� V

b

); (C.8)

where 


s

is still the baryon sound speed. For the photon velo
ity, one uses Equation

(4.49). The densities D

g

for photons and baryons evolve as in the tight 
oupling

regime. Multipoles l > 1 for photons are 
al
ulated using Equations (4.49, 4.50).

The multipole expansion is trun
ated at some l < 10 for suÆ
ient pre
ision. In

order to avoid trun
ation e�e
ts as good as possible, one uses [27℄ the re
ursion

relation for spheri
al Bessel fun
tions

_

M

l

max

=

2l

max

+ 1

2l

max

� 1

kM

l

max

�1

�M

l

max

�

l

max

+ 1

�

+ _�

�

(C.9)

The polarization E is propagated using Equations (4.52,4.53), and the re
ursion

relation

_

E

l

max

=

2l

max

+ 1

2l

max

� 1

kE

l

max

�1

�E

l

max

�

l

max

+ 1

�

+ _�

�

; (C.10)

for trun
ation.

Massless Neutrinos

Massless neutrinos evolve a

ording to Equations (4.54-4.56). The hierar
hy is

trun
ated using

_

N

l

max

=

2l

max

+ 1

2l

max

� 1

kN

l

max

�1

�N

l

max

l

max

+ 1

�

: (C.11)

Quintessen
e

The s
alar �eld 
u
tuation is propagated using a �rst order formulation of Equation

(3.73), i.e. dX=d� =

_

X and d(

_

X)=d� is then given by

�

X of (3.73).

1

This is pra
ti
ally vanishing for most of the time, thus setting 


2

s

= 0 in this Equation is still

quite a

urate.
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D

Conventions, Symbols and

Conversion Fa
tors

? We take the metri
 with signature (�;+;+;+).

? Greek indi
es run from 0 : : : 3 and are raised and lowered by the metri
 g

��

.

? Latin indi
es run from 1 : : : 3 and are raised and lowered by Æ

ij

.

? The partial derivative of a tensor �

�

T is abbreviated by T

;�

.

? The 
o-variant derivative of a tensor r

�

T is abbreviated by T

;�

.

? Perturbations in a 
ertain gauge are denoted by lower 
ase letters: Æ; v; � : : :

? Gauge-invariant variables are denoted by 
apital letters: D

g

; �; X : : :

? Three-ve
tors are denoted by bold letters and their s
alar produ
t is given

by a � b = a

i

b

j

Æ

ij

.

? The Christo�el symbols are

�

�

��

=

1

2

g

��

(g

��;�

+ g

��;�

� g

��;�

) ;

while the Riemann tensor is

R

�

���

= �

�

�

�

��

� �

�

�

�

��

+ �

�

��

�

�

��

� �

�

��

�

�

��

:
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tors

One Mp
 is . . .

1:5637 � 10

38

Gev

�1

3:0856 � 10

22

m

1:0292 � 10

14

s

3:264 � 10

6

years

One Mp


�1

is . . .

6:3952 � 10

�39

Gev

3:2408 � 10

�23

m

�1

9:7163 � 10

�15

s

�1

In terms of Mp
 is . . .

M

P

= 3:753 � 10

�56

Mp


�1

H = 3:34 � 10

�6

h Mp


�1

One Mp


�4

is . . .

1:673 � 10

�153

Gev

Table D.1: Conversion of Mp
 to various units.
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Symbol Meaning

t time

� 
onformal time

a s
ale fa
tor, normalized a(today) = 1

z redshift z = (1� a)=a

_y 
onformal time derivative

d

d�

y

V

0

derivative with respe
t to the �eld '

y

eq

Quantity y at matter radiation equality

y

ls

Quantity y at last s
attering

y

0

Quantity y today

M

P

Redu
ed Plank mass M

P

= (8�G)

�1=2

.

H Hubble parameter H = (da=dt)=a

h de�ned via H = 100h km s

�1

Mp


�1

��

y

Ba
kground energy density of y

�p

y

Ba
kground pressure of y

w

y

Equation of state w = �p=�� of spe
ies y




s

Sound speed (of some spe
ies) see (3.42)




y

Fra
tion of energy ��

y

=�

total

.




y

0




y

(today).

�' Ba
kground quintessen
e �eld

' Quintessen
e �eld

'

m

Shift of peak m

D

y

g

Density perturbation of spe
ies y

V

y

Velo
ity perturbation of spe
ies y.

�

y

Shear of spe
ies y.

X Gauge invariant quintessen
e �eld 
u
tuation

M

l

Photon multipole

E

l

Photon polarization multipole

N

l

Neutrino multipole

Q S
alar perturbation basis fun
tion

Q

i

S
alar basis fun
tion for ve
tor �elds

Q

ij

S
alar basis fun
tion for tensor �elds


ontinued on next page . . .
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tors


ontinued . . .

n

e

Number density of free ele
trons

�

T

Thomson s
attering 
ross-se
tion

_� Di�erential opti
al depth _� = an

e

�

T

.

n spe
tral index of initial 
u
tuations

l

A

A
ousti
 s
ale

w

0

Average equation of state (2.44)

�




'

ls

Average 


'

until last s
attering

�

8

RMS 
old dark matter 
u
tuations on s
ales of 8h

�1

Mp
.

Table D.2: Frequently used symbols, 
ontinued from page before.

hello
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