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Zusammenfassung

Wir untersuchen kosmologische Quintessenz-Modelle. Quintessenz ist eine hypo-
thetische, fast homogen im Universum verteilte Energieform. Wir fithren die kosmo-
logische Storungsrechnung und die Berechnung der Anisotropien der Hintergrund-
strahlung eichinvariant durch. Fiir viele Modelle folgen dabei Quintessenzfluktua-
tionen zu frithen Zeiten einfachen Potenzgesetzen. Die Auswirkungen von Quintes-
senz auf die Kosmische Hintergrundstrahlung und das Alter des Universums wer-
den durch drei intuitive Parameter beschrieben. Wir quantifizieren die Relation der
Peaks im Spektrum der Hintergrundstrahlung zur sogenannten akustischen Skala
und zeigen, dass sich die akustische Skala aus Experimenten ablesen lasst. Damit
und mittels der Strukturentstehung schranken wir zwei bedeutende Modelle ein.
Quantenkorrekturen zu den klassischen Quintessenzpotentialen werden berechnet,
wodurch Modelle mit Kopplungen zu dunkler Materie unwahrscheinlich scheinen.
Schliesslich stellen wir CMBEASY, ein Programm zur Berechnung der Kosmischen
Hintergrundstrahlung vor.

Abstract

We investigate cosmological models containing quintessence. Quintessence is a hy-
pothetical form of energy distributed almost homogeneously throughout the Uni-
verse. We calculate cosmological perturbations and cosmic microwave background
anisotropies using gauge-invariant variables. For many models, quintessence fluc-
tuations follow simple power laws at early times. The implications of quintessence
on the cosmic microwave background and the age of the universe are described via
three intuitive parameters. We quantify the relation between the peaks in the mul-
tipole spectrum of the cosmic microwave background to the so called acoustic scale.
We show that this acoustic scale is extractable from experimental data. Using this
and constraints from structure formation, we considerably restrict two frequently
used quintessence models. Quantum loop corrections to the classical quintessence
potentials are calculated. From this, models with a coupling to dark matter become
unlikely. Finally, we present CMBEASY, a computer code for calculating the cosmic
microwave background anisotropies
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1

Introduction

According to the Hitchhiker’s guide to the Galazy, ‘space is ...mind-bogglingly
big’ [1]. And, one should add, it is getting bigger. This is no surprise, for most
of the galaxies are moving away from each other. Intuitively, gravitation should
slow down this expansion. For years, scientists asked the question whether this
deceleration would bring the expansion to a halt and lead to a crunch. It was a
surprise when in 1998 distance measurements using supernovae (exploding stars)
indicated that the expansion of the universe may on the contrary be accelerated [2].
According to Einstein’s theory of relativity (applied to cosmology), an accelerated
expansion necessitates a form of energy with so-called negative pressure. While the
universe expands, the negative pressure of this energy means that it becomes more
and more important with respect to ordinary matter. Figure 1.1 depicts the scaling
of different components with the overall expansion of the universe. The two dark
energy models plotted are seen to catch up and overtake the density of matter at
the present time.

Combining different observational tests one is led to conclude that this (un-
known) energy constitutes more than half of the energy density within the universe.
It surpasses the mass of baryons (making up stars and galaxies) by about a factor of
10 and it also 'weighs’ about twice as much as cold dark matter. Cold dark matter,
in turn, is some form of matter that gravitationally behaves like ordinary bary-
onic matter, yet non-interacting with baryons. Naturally, the mysterious energy
has been given the name ‘dark energy’. For those among us that spontaneously
associate ‘Star Wars’ with dark energy, a more noble name has been proposed:
quintessence [3]. Yet, years before the mysterious energy was christened, cosmo-
logical models involving a light scalar field have been investigated [4-8]. Today,
these light scalar field models are the prototype of quintessence. The motivation
for proposing these light scalar fields comes from more fundamental theories, like
string theories which feature such fields. In addition, the field models may solve the
cosmological constant problem [6]. The cosmological constant is associated with
the vacuum energy of the universe. From naive quantum field theory calculations
one is lead to conclude [9,10] that its observed value and the value most naturally
expected differ by 120 decimal places (more of this in section 7). Having no under-
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Figure 1.1: Energy density of radiation, matter, leaping kinetic term quintessence and
vacuum energy (cosmological constant). The energy densities are plotted as a function of
the scale factor a. The scale factor is related to the redshift via z = a=! — 1 and today one
has @ = 1. The densities of radiation and matter scale like a—* and a~* respectively. At
about a ~ 10™*, matter becomes more important than radiation. The contribution from
the cosmological constant (vacuum energy) is negligible throughout most of the history of
the universe. The densities of matter and vacuum energy would only recently be of the same
order of magnitude. This involves fine-tuning of the cosmological constant. More natural
seems the behaviour of the (leaping kinetic term) quintessence model, denoted by p,. It
scales like the dominant species throughout the early history of the universe, contributing
at the percent level towards the total energy density. In this phenomenological model,
some event at a = 0.1 leads to a change in the quintessence behaviour. From then on, it
becomes more and more important with respect to matter. Even though the parameters
of the model still need to be adjusted, the tuning is on the level of 1 : 1000, as opposed to
the 120 decimal places of the cosmological constant.

standing of how this mysterious cancellation should happen, theoreticians prefer a
vanishing cosmological constant. As life is rarely fair, present cosmological data is
very well compatible with dark energy being a cosmological constant. In contrast
to the severe fine-tuning for a cosmological constant, scalar field quintessence mod-
els very often have attractor solutions [11-13]. Over an impressing broad range of
initial conditions the field moves swiftly towards its attractor (see Figure 1.2). This
is a much desired feature, because many scientists believe that our universe should
in some way be generic. Sure, the universe could be very special indeed, however,
historically mankind has moved from the center of the world to the outer region
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Figure 1.2: Convergence of different initial conditions (dotted, dashed and long-dashed
line) towards the attractor solution (solid line). Shown is the energy density of the quint-
essence field as a function of the scale factor a. The present time corresponds to a = 1 and
Electron-proton recombination occurred at ajs &~ 1073. The quintessence model used is an
inverse power law with power o = —3 (see section 2.3 for details).

of a typical galaxy. From this, it is only a small step to assume that also our uni-
verse should not be too dependent on fine-tuned initial conditions. Exactly to what
extent one is accepting a tuning of initial conditions remains personal taste. For
many people, the tuning still needed to yield for example the right amount of dark
energy today is too much to accept scalar quintessence models. One should remark
here that the models on the market are phenomenological models. There could
well be a mechanism (e.g. fluctuations changing the effective potential) that leads
generically to a behaviour of the scalar field that presently may look fine-tuned.
Maybe even more mind-bogglingly than the vast size of the universe is the fact
that within the framework of ‘standard’ physics', one is capable of understanding
many phenomena in the history of the universe, back to when it has been younger
than a fraction of a second. A very nice example of this is the theory (and obser-
vation) of the Cosmic Microwave Background (CMB) radiation. The radiation is
made up of photons that once were part of a hot, spatially almost uniform plasma
filling the universe. About 300’000 years after the big-bang, the universe was cool
enough for the electrons and protons in the plasma to recombine and form neutral
hydrogen. The photons that before and during this process scattered off free elec-

'Well, some of it is not so standard, actually.
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trons suddenly were able to travel freely. About 10'000’000'000 years later, some
of these photons (redshifted by the expansion of the universe that also stretches
their wavelength) hit the detectors of balloon and satellite borne experiments. As
it turns out, the radiation looks almost the same in all directions on the sky: it
is the thermal radiation of a black body with temperature 2.7 K. Yet, when ap-
plying Einstein’s theory of general relativity to small density fluctuations within
the primeval plasma, one finds that depending on the scale, fluctuations should
behave differently. It is a remarkable success story that several experiments in
the late 1990’s and early 2000’s have measured these scale-dependent fluctuations.
Independently of supernovae measurements, the CMB data also favours some form
of dark energy contributing about 70% towards the present energy content of the
universe [14,15].

The stage is thus set. If the experiments and our understanding of them is to
be trusted, then one needs to devise tests to differentiate between various forms
of dark energy. As scalar field quintessence is usually time-dependent, tests at
different epochs may reveal its nature. Our aim is not to restrict a particular
model as good as possible, but to describe effects of quintessence on some of the
observations in an model-independent way. With very few intuitive parameters,
such as the average fractional energy density before recombination, we will be able
to accurately quantify main implications of quintessence on the CMB, SNe Ta and
the age of the universe.

Yet with today’s precision experiments, analytic estimates need to be supple-
mented by numerical simulations. A very useful tool for this is the publicly available
CMBFAST package [16]. During this work, we have substantially modified this code
(see Chapter 8). With the kind permission of the authors of cMBFAST, U. Seljak
and M. Zaldarriaga, this modified package has been presented to the public during
the xxxvII. Rencontres de Moriond [17]. The new code has been designed to facil-
itate modifications. As it also features a graphical user interface, it goes under the
name of CMBEASY.

The scalar quintessence field is usually treated at the classical level. Even
though it might be motivated by more fundamental theories, this does a-priori not
mean that quantum fluctuations are included. In principle, and for as long as one
does not view the potentials as already effective, fluctuations below the scale of
the more fundamental theory need to be taken into account. We will turn to this
important issue in Chapter 7.

We have tried to make this thesis as self contained as possible. However, once
in a while abbreviations and conventions cosmologists are familiar with may have
slipped into the text without further explanation. If so, we would like to apologize
for any inconvenience caused. Our conventions and tables summarizing frequently
used symbols as well as conversion factors of mega Parsec to other units can be
found in Appendix D.

This thesis is organized as follows: in Chapter 2, we review the expansion his-
tory of universes containing dark energy. After this, several quintessence models
frequently used in the literature are briefly introduced. The scaling of various quint-

4



essence related quantities with conformal time is also presented in this chapter for
models with attractor solutions. Chapter 3 treats cosmological perturbation theory
including scalar quintessence. The perturbations are mostly expressed in gauge-
invariant variables, however some results are additionally stated in synchronous
gauge. In Chapter 4, we start by reviewing intuitive concepts in the theory of
cosmic microwave background anisotropies. Afterwards, the derivation of the main
formulae needed to calculate CMB anisotropies is presented along the lines of [18].
The line of sight strategy [16] implemented in CMBFAST and CMBEASY together
with the appropriate gauge invariant formulae used in CMBEASY are (re-)derived
at the end of Chapter 4. The initial conditions for all perturbation variables are
calculated in Chapter 5. In addition, an analytic solution to the equation of mo-
tion of the scalar field fluctuation is found. This solution holds generally whenever
the field is in its attractor. Chapter 6 deals with observational tests for quint-
essence. After discussing the effects on the multipole spectrum of the CMB, we
present fitting formulae for the so-called shifts of the peaks in this spectrum. We
will show that the shift of the third peak is particularly insensitive to different
cosmological models. Using this result, we extract the so-called acoustic scale from
CMB data. Comparing values for the acoustic scale predicted by specific models
to this experimental value, and combining with cluster abundance constraints we
restrict two types of quintessence models in more detail. The end of Chapter 6
deals with quintessence implications on the recent expansion history and hence on
SNe Ia-experiments. In Chapter 7, quantum loop corrections to the scalar field po-
tentials are calculated. Finally, the object oriented design of the CMBEASY package
is presented in Chapter 8.
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Quintessence in the
homogenous Universe

In general relativity, Einstein’s equations relate the geometry of the universe locally
to the energy momentum content. The geometry is expressed via the metric g,
and subsequently through the Ricci Tensor R, and the curvature scalar R, while
the energy momentum tensor is commonly denoted by 7),,. Using the reduced
Plank mass Mp = (87G)~'/2, Einstein’s equations read'

Ty = Mp (RW — %QWR> : (2.1)
In order to solve these in general very complicated coupled differential equations
analytically, one needs to guess the geometry of the space and hence the metric.
The most general metric that is isotropic and homogenous on constant time hyper-
surfaces is the Robertson Walker metric. This metric comes in three ‘flavours’,
for the cases of negative, positive or vanishing 3-curvature in the constant time
hyper-surfaces. A vanishing of this 3-curvature means a spatially flat universe
(we will sloppily call this just a ‘flat universe’). Now, there is strong theoretical
prejudice for a flat universe. Firstly, the theory of inflation predicts it. Secondly
and maybe more convincingly: A Friedmann Robertson Walker universe starting
with a small deviation from spatial flatness will get more and more curved as time
goes on [20]. Experimentally, the universe is found to be at least very nearly flat
[14,21]. So if the Universe would have a small but detectable curvature, then it
must have departed from being undetectable close to flat just recently. This is not
very natural to assume. We will thus usually limit our discussion to flat universes,
as this simplifies the discussion (and presentation) greatly. Having said this, we
take the Robertson Walker metric of the form

ds? = g datds” = a*(7) (—dT2 + 5ijdmidxj) , (2.2)

! An eventual cosmological constant is assumed to be part of the energy momentum tensor.

7



CHAPTER 2. QUINTESSENCE IN THE HOMOGENOUS UNIVERSE

where the conformal time 7 is related to the usual time ¢ by dr = a~'dt. The
expression ‘conformal time’ is well chosen, for the metric (2.2) is conformally related
to the usual Minkowski metric 7, = diag(—1,1,1,1) by the conformal factor a(r).
We normalize a(7) such that today, we have

apg = a(Tg) = ]_, (23)

where here and in the following a subscript 0 will denote quantities as measured
today. As a(7) determines the stretching of physical length scales,

12

ohysical (T) = gisl't = a®(1)01'V = a* ()12, (2.4)

it is commonly called the scale factor. Please note that 3-vectors are in bold,
spatial components are denoted by Latin indices and the 3-vector scalar product is
the usual one: xy = 6Z~jxixj.

It is common practice to describe the matter content of the universe by fluids.
Even in cases where this description is no longer valid and one needs to think in
terms of distribution functions, we will still identify certain parts of these distri-
butions with fluid terminology. For a start, let us briefly forget about cases where
the fluid description breaks down and note that the energy momentum tensor for
a perfect fluid is [22] (see also Section 3.2)

TIIL/ = diag(_ﬁapapap)a (25)

where p(7) is the (unperturbed?) energy density and p(7) is the pressure. The
relation between p and p is expressed in the equation of state

p(1) = w(r)p(7). (2.6)

For non-relativistic matter, the pressure vanishes, whereas photons and massless
neutrinos have w = 1/3. From the 0 — 0 part of Einstein’s Equation (2.1), we we
get the Friedmann equation

3M2H? = p(7). (2.7)

Here, the Hubble parameter H is related to the scale factor a(7) by

da da dr

—1 —1 — =2

—=a4 ———=a “a 2.8
de dr dt ’ (2:8)
where a dot denotes a derivative with respect to conformal time 7 throughout this
work. Conservation of the zero component of the energy momentum tensor,V, T =

0, yields the useful relation

H=ua

Y —I—w)%. (2.9)

-

% Anticipating perturbation theory, we denote background quantities by a bar.



2.1. CONSTITUENTS OF THE UNIVERSE

Finally, by combining Friedmann’s equation (2.7) with the i — i part of Einstein’s
equation one obtains

> <,6 E + w]) = _2M2a! %. (2.10)

all species

2.1 Constituents of the Universe

We know very little about the precise content of the universe. Big Bang Nucleosyn-
thesis (BBN), the Cosmic Microwave Background (CMB) as well as the counting of
luminous matter tells us that only a few percent of the content of the universe can
be baryons: summing up their energy contribution is just not enough to fulfill the
(flat) Friedmann equation (2.7) given the observed value of the Hubble constant.
We will denote the fraction of baryon energy to the total energy density as QP,
where

Px Px
0x — , 2.11
Perit 3M12> H? ( )

for any species X, and we have defined periy = 3M%H 2. Tt is clear from the
definition of ¥, that in a flat universe, the sum of all X, Q'°' needs to be unity.
If not baryons, what else is out there? In principle, there are many possibilities
and candidates e.g. from particle physics to black holes are considered. Funny
enough, the simplest candidate behaving like ordinary pressureless matter and yet
non-interacting with baryons is very successfully describing many aspects of our
Universe. Having no clue what exactly could be this candidate, one calls it cold
dark matter. As we will soon see, CMB, SNe Ia and structure formation all point
in the direction of Qf ~ 0.3.

Yet, this still does not add up to unity and again both CMB and SNe Ta
experiments favour some form of dark energy that at least in the recent universe
z $ 1 should have a negative equation of state

w?(r) = Py (2.12)

We will denote all kinds of dark energy - including the possibility of a cosmological
constant (where w® = w¥ = —1) by the index ¢.

Under the assumption that today only cold dark matter and dark energy play
a major role, one obtains from Equation (2.10) that a universe with

1
wong<——

3 (2.13)

is expanding in an accelerated way.
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2.2 Scalar Quintessence Action and Equation of Mo-
tion

The action for a scalar field minimally coupled to gravity is
S = / d*z/—g [ Lo+ V(p)|, (2.14)

where g = g,,,. Using 0y/—¢g = —%\/—ggwég‘“’, we get for the energy momentum
tensor [23]

2 68
1
= 90’”90,,—5”( ¥’ ‘Pa'l'V) (2.16)

For the homogenous background value ¢(7) of ¢(z), the spatial derivatives vanish
and we are left with an energy momentum tensor of the perfect fluid form (2.5),
where

1. 1,
Py = §a*2¢2 +V  and p,= Ea*%? -V (2.17)

We can thus simply use Equation (2.9) to obtain the equation of motion

20V

2
<p+ <p+a 2%

= 0. (2.18)

2.3 Popular Quintessence Models

Since the early work of [4-8], many potentials for the scalar field have been pro-
posed. Also, a coupling [11,30,31] to dark matter has been investigated. We will
briefly introduce some of the more popular models on the market, starting with
one of the oldest ones, the exponential potential.

Exponential Potential

The exponential potential (EP)
VP = Mp exp(—Ap/Mp), (2.19)

is motivated by higher dimensional theories [6]. It exhibits an attractor solution
where f is determined by Qf = 3/\? and the equation of state follows that of
radiation (matter) in the RD (MD) era. Hence, its equation of state vanishes today
[11] and therefore it cannot lead to an accelerated expansion. In Section 7, we will
see that it is stable under quantum fluctuations.

10



2.3. POPULAR QUINTESSENCE MODELS

Leaping Kinetic Term

While keeping the exponential potential, one can modify the kinetic term in the
action (2.14). Multiplying it with a field dependent factor, one gets [32]

L = k(9)up 0" — Mp exp(ip/Mp). (2-20)

By means of the transformation ¢ — K (), where k(p) = algé@)’ one can translate
these models back to canonical kinetic terms with non-exponential potential. It is

very convenient to choose a leaping kinetic term (LKT)

k(@) = kmin + tanh [0 (¢ — 1) /Mp] + 1, (2.21)

where the constant ki, determines the amount of quintessence in the early universe
and o =~ O(1) specifies the steepness of the transition between k& = kpi, and
k = 2 4+ kmin which occurs at the field value ¢ = 1. Using this kinetic factor,
one can independently specify the amount of dark energy in the early universe (via
Qfarly =31+ wbackg.]kfnin), as well as w{ and Qf (via ¢; and o). Because it is so
versatile, we will use it frequently.

Modified Exponentials

Multiplying the exponential potential by a polynomial V,(¢), we arrive at the
modified exponential potentials (AS) [33]

VS = V() exp(—Ap/Mp). (2.22)

Novel features appear if the polynomial leads to a local minimum in the potential
in which the field can be trapped.

Inverse Power Laws

Inverse power law (IPL) potentials

—Q
IPL __ P
VP = A (Mp> , (2.23)

have been investigated thoroughly in the literature [5,12,34-37]. Here, the pre-
factor A needs to be tuned in order to give the right amount of quintessence today.
As IPL models feature attractor solutions, the equation of state today is determined
solely by w§ = —2/(a 4+ 2). As it takes on negative values, it can lead to an
accelerated expansion. Unfortunately the power « is phenomenologically restricted
to values o $ 2 [35,36]. This leads to more and more fine tuning of A, because as
a — 0, IPL models behave more and more like a genuine cosmological constant. For
phenomenologically acceptable values of v, A is of the order 1073'Mp. Depending
on one’s taste (and interpretation of the pre-factor), this may or may not look fine
tuned.

11
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SUGRA Inspired Models

A mixture of the exponential and the inverse power law potential

v = a (2) e (FomrP). 224

may arise from supergravity [38]. It features an accelerated expansion and is thus
an interesting model. SUGRA inspired models have been investigated thoroughly
for instance in [39].

Cooking it all up

In [40] a unifying expression

—Q
VO = 4 (i> exp(—Alp/Mp]?) (2.25)

Mp
for mixing up EP, IPL and SUGRA potentials has been proposed. This form
facilitates the discussion of such models as they become just limiting cases of one
potential. We will use it briefly in Chapter 7.

2.3.1 Tracking and Attractor Solutions

Many quintessence models feature attractor solutions [5,6,12]. For a wide range
of initial conditions, the field is drawn towards this solution in which it may stay
forever (EP and IPL). In some models (like LKT), an event kicks it out of the
attractor. In both cases, the equation of state w¥ during the early stages of cosmo-
logical evolution remains frozen. The Friedmann Equation (2.7) and the equation
of motion (2.18) combine in the case of w¥ = 0 to [12]

a% = V31 +wh)M5' () 7, (2.26)

where o = sign(V'). This is a very valuable result, because it will enable us to
discuss the time dependence of V, V', V" and ¢ as a function of w¥ solely. As the
expression for D{ contains a term V'/p,, we note that

VI Vl VI

STV = (L+wf)o. (2.27)
4

A relation to ¢ can be found by considering
N
a"?¢* = 2T = (1 + w¥)p, = 3(1 + w¥)Mpa ™2 (—) 0%, (2.28)
a

and therefore

-

- Mp% 3(1 + w?) Q]2 . (2.29)

12



2.4. EXPANSION HISTORY

Combining this and Equation (2.26) yields

!

Q.
— =301 Iy 2.30
o (+w)a<P (2.30)

Using the relations (2.26-2.30) above, we can now infer the scaling of various quint-
essence quantities with 7. As we will primarily need these for early times, we
assume that during the early universe, the dominating energy contribution scales
like radiation, i.e 5 oc 7%, This is certainly valid if quintessence is subdominant
and also in cases where exponential potentials are involved. Hence,

0r = Lo plosu? (2.31)
Prel.

and therefore from Equation (2.29)
¢ oc 73 (143w9) (2.32)

and similarly from Equation (2.26)

o 723w 1), (2.33)
As V o T in the tracking regime, we further have
Voo 77232 oc 730407 (2.34)
and combining the two relations above
V! oc ra(TH3w?), (2.35)

Finally, the chain rule yields

av’ dr
V= — 7t 2.36
ar dg 7 (2.36)

independent of the equation of state.

2.4 Expansion History

Quintessence influences the expansion history of the universe. As we will see, it
can for instance lead to a larger age of the universe. It could also alter the size of
the so called sound horizon (see section 4). The imprints of this will then be seen
in the cosmic microwave background. This section briefly reviews the properties of
the different species, stressing the impact of quintessence.

From the Friedmann Equation (2.7), we see that the expansion of the universe
is determined solely by the energy density. In this work, we consider contributions

13



CHAPTER 2. QUINTESSENCE IN THE HOMOGENOUS UNIVERSE

Species w
Photons 1/3
Massless neutrinos 1/3
Massive neutrinos 0<w<1/3
Baryons 0
Cold dark matter 0
Cosmological constant -1
Quintessence? —-l<w<1/3

Table 2.1: Scaling behaviour of various species, expressed by the equation of state pa-
rameter w = p/p.

towards this energy density from baryons, cold dark matter, photons, massless
neutrinos, quintessence and in principle massive neutrinos.

With the ansatz p(7) « a(7)"("), one immediately finds from Equation (2.9)
that

7+a%1na: =3(1 +w). (2.37)
For slowly varying 7 (additionally suppressed by alna), this leads to
Py oc q 3(Hws), (2.38)

We summarize the different scaling behaviour of the species in Table 2.1. Inserting
w = —1 for a cosmological constant in Equation (2.38) and using Equation (2.7),
we get

3M3H? = const, (2.39)

and hence a o« exp(H t) - the universe is undergoing inflation. Scales that were
before in causal contact are pressed out of the horizon. With horizon, we mean
the distance, a light signal with a meaningful® wavelength can travel from the big
bang until some time ¢t. Now, if at some earlier time with scale factor ae, a photon
travels a distance we would today call a lightyear, this distance will have grown
due to the expansion by a factor of ag/a. until today. Hence, the horizon coincides
with the conformal time

t dtl T(t)
Horizon = / — = / dr' = 1. (2.40)
0o a 0

The horizon size above is the size of the horizon as seen today. To find its physical
size as seen at the time 7, one needs to scale the horizon by a(7).

3Inflation stretches wavelengths in an extreme way. A wave with wavelength larger than the
horizon will be undetectable and does not carry useful information.

2In principle, the range depends on the model and more extreme cases are possible (however,
not for scalar quintessence models).

14
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0 2000 4000 6000 8000 10000 12000
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Figure 2.1: Equation of state w(r), w(r) = Q?(r)w(r)7o/ [;° Q?(7')dr’ and averaged

equation of state Wy for a leaping kinetic term model (see section 2.3) with Q) = 0.13 and
Qf =0.22.

As photons and massless neutrinos scale differently than baryons and cold dark
matter, there is a scale factor

rel
Q0

=0 ~107% 2.41
fed = op g (2.41)

at which the relativistic and the pressureless matter energy density have been
equal. Before aeq, the universe has been dominated by radiation. In this case, the
Friedmann equation (2.7) gives

a o T, (2.42)

whereas in a matter dominated universe,
a o 72 (2.43)

Adding quintessence to this picture, things become more complicated. For the
pure exponential potential, the expansion history both in the radiation and matter
era remains unchanged, because w¥ follows the equation of state of the dominant
species [11]. In general, however, this is not true anymore and one has to integrate
the Friedmann equation numerically.

15
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Figure 2.2: F(Qj,w,) as a function of Wy of the dark energy component, for f between
0.2 and 0.7. Between the limiting cases of Wy = —1 (cosmological constant) and Wy = 0
(corresponding to pressureless dust), the age of the Universe varies considerably.

Yet, we can make considerable progress, if we describe generic features of quint-
essence by suitably defined averages. For the equation of state, we use

T = /0 " 0P (e (r)dr x ( /0 b m(T)dT> o (2.44)

It is Q¥-weighted, reflecting the fact that the equation of state of the dark energy
component is more significant if the dark energy constitutes a higher proportion
of the total energy of the Universe (see Figure 2.1). In the limiting case that the
equation of state did not change during the recent history of the Universe, the
average is of course equal to w today. Nevertheless, the difference between the
average wy and today’s value wy can be substantial for certain models, as can be
seen from Table 6.2.

The Friedmann equation (2.7) for relativistic species together with baryonic
and cold dark matter and a quintessence component reads

3M2a2a™t = pm+pr 4 p¥ (2.45)
pa=® + pifla™ + pila=304T0), (2.46)

16
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Hence, using 3M% HZ = p§™, we have

da\? r 3w r
(E) =H; {(1 - Qf — Q))a(r) + an(l 3wo) 4 QO} .

Upon integrating this, the conformal time today becomes

_4

o = 2Hy ' (1 - QF) 2 F(QF, W),

with F' given by

1 ! Q(p o QL (1 — —1/2
F(QF,wo) = 5/ da <a 420 ,(-3w0) 4 M) _
0

107 107

The integral F' can be solved analytically for special values of wy, e.g.

F(9f, w0 = 0) = \/1 - 0f (1 - /O) + 0(0%).

(2.47)

(2.48)

(2.49)

(2.50)

Since (2.49) is dominated by a close to one (typically wy < 0) only the present epoch
matters, consistent with the averaging procedure (2.44). From this we regain on
inserting (2.50) in Equation (2.48) the trivial result that the age of the Universe is
the same for a cold dark matter and a pressureless dark energy universe. We plot

F(Qf,wp) for various values of f in Figure 2.2.
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3

Fluctuations in Linear Theory

In the previous chapter, we have seen that using the Robertson-Walker metric, we
can solve Einstein’s equation. The result is almost miraculously simple. However,
the universe is not completely homogenous. On the contrary: it is quite clumpy
on the scales of the solar system or even galaxies. Yet, the larger the scale one
looks at, the more homogenous it becomes. In addition, the inhomogeneities usu-
ally grow due to gravitational infall. Hence, in the early universe, we may expect
only small departures from homogeneity. This is where linear perturbation the-
ory enters the stage. Starting from the homogenous FRW universe, one perturbs
the metric and the energy momentum tensor. It is convenient to expand these
perturbations in (generalized) Fourier modes and to classify physical quantities in
the 3-dimensional constant time hyper-surfaces by their transformation properties
[24-26,18]. Eigenfunctions of the 3-dimensional Laplace operator

AQg(z) = K Qi(x) (3.1)

are used to decompose the metric and energy momentum perturbations into scalar,
vector and tensor parts (called modes). The benefit of this classification is that dif-
ferent modes do not mix in first order perturbation theory [26]: the perturbation
equations decouple. Furthermore, a coupling between perturbations of different
Fourier modes k and k' involves products of perturbations. These would be of
second order and are thus neglected. Hence, also modes with different k decouple
and it is not necessary to display the wave vector k of the eigenfunctions @) ex-
plicitly. For the same reason, it is not necessary to keep the integration over the
Fourier modes explicitly in the equations. One should however keep in mind that
for instance the energy density is

3

p(re) = p+ / % 5o(r,k) Qu(2), (3.2)

and it is only the decoupling of different & modes that will enable us to compare
the integrands directly.

19



CHAPTER 3. FLUCTUATIONS IN LINEAR THEORY

If the 3-space is flat (the case we are primarily interested in), then ) = exp(ikx)
is the solution of the Laplace equation (3.1). Now, take for instance some vector
V;. One can decompose it into a gradient and a (divergence-less) rotation part:

V = grad¢ + rotB (3.3)

The function ¢ is a scalar, yet it contributes to a vector. In general, we can
construct the scalar basis functions by deriving Q. Let us define'

Qi = —kilQ’i (34)

_ 1
Qij = k 2Q,ij+§5ija (3.5)

where (Q;; is traceless by construction and gives the scalar contribution towards a
symmetric tensor. In general, the contributions to a vector field B by some scalar
function B can thus be written as:

B; = BQ; (3.6)
and for a tensor field, we have
H;j = H,Qd;j + HTQjj (3.7)

In exactly the same manner, basis functions for vector and tensor type pertur-
bations can be derived. For instance, the divergence-less part of a vector field is

expressed [25] via QEV)(:B) solving the vector Helmholtz equation
V), v
QM+ k2QY) =0, (3.8)

and being divergence-less: Q(iv )i = 0. As we assume that the quintessence field is a
scalar under general coordinate transformations, it has to be a scalar under spatial
transformations also. We will therefore restrict ourselves to the discussion of scalar
perturbations. The most general line element for a perturbed Robertson Walker
metric is [25]

ds® = a(1)? [~ (1 + 24)dr* — Bidrdz' + (8 + 2H;j)dx" da? | (3.9)

Where in the scalar case B; and H;; are given by Equations (3.6) and (3.7).

3.1 The Gauge Problem

General coordinate transformations are a main ingredient of general relativity. Un-
fortunately, the freedom to choose a coordinate system needs to be used with care in

'We follow [25], but restrict ourselves to flat universes. Hence the covariant 3-derivative Q);
can be replaced by the partial derivative @ ;.
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cosmology. Let us see, how this comes about. Consider an infinitesimal coordinate

transformation
ot — H =zt + (1, ), (3.10)

where the derivative of € is also assumed to be at most of the order e. We know
that some tensor expressed in the new coordinate system will be

70 = () (5 ) - 7300, 1)

where the transformation matrices are

() - otee
(gﬁ”) _ g % (3.13)
- %ggj (3.14)
= - % + O(€%). (3.15)

The last equation in the above holds, because we have assumed that the derivative
of € is also of the order e. Thus, working to order e, the tensor transformation
(3.11) becomes

T (3) =T (2) + T (w)

V...

m «@

% b Ttg::_@)% .. (3.16)
If we were willing to give up the nice FRW background universe, we could hap-
pily use the transformation Equation (3.16). However, we would like to make the
coordinate transformation (3.10), but without paying the price of changing the
background physics. The reason why we would like to keep the background physics
the same regardless of our coordinate transformations is that we would like the
background to maintain its Robertson-Walker metric, for we have seen that it is
the Robertson-Walker metric that leads to the convenient Friedmann equation. So,
in order to stick to the old coordinates for the background, we have to go back from
# to  in the argument of T

TS (7) = T)(z+e)
= Ty (@) + € <%)

l¢=2

o1l (€)

= TH(z)+€" <87§0‘> - + O(€?). (3.17)

Here, we have used the transformation Equation (3.16). Putting Equations (3.16)
and (3.17) together, we get the final gauge transformation law
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CHAPTER 3. FLUCTUATIONS IN LINEAR THEORY

Tt (z) = TV (2) = TV o(T)e® + T (T)elly + - — Tl (1)el, — -+ . (3.18)
The derivatives above combine to give the Lie derivative L./T and we can rewrite
Equation (3.18) rather elegant as

T(z) = T(z) — L.T. (3.19)

Having derived the transformation equation, let us see what this means for the
metric. Using Equation (3.18), we get

I (z) = g;w(x) - gauei - guaﬁf)f/ — e v, a- (3.20)

It is the last term in the above equation that would quantify the change in the
background, if we allowed one. However, as we stick to the same background, we
will interpret this term as a contribution to the change of the perturbation variables
due to the coordinate transformation. This is the conceptional difference between
the coordinate transformation (changing the background, the coordinates and the
fluctuations) and the gauge transformation (changing only the fluctuations, keeping
the old coordinates and background quantities). The transformation four vector e
can be decomposed into scalar and vector parts. Following [25], we set

T o= 1+T(1)Q(=)
i = 2+ L(NQ (x) + LV (1) QW) (x). (3.21)

The vector contribution will not affect scalar perturbations, just like scalar, vector
and tensor perturbations decouple in linear approximation. Using the above tran-
formation (3.21) in (3.20), we can calculate for instance the change in the metric
perturbation B:

T

Goi(x) 0i

(

— 9ailT)Ey — GoalT)E; — € Goi,a
) (T)€d (7)€ — €
02 )_g

(1) LQ7 — goo(1)TQ
= —d®(r) (B+L+ kT) Qi
—a®(1) B Q; (3.22)

g
g

Similar calculations yield the transformation properties of all the metric perturba-
tion variables:

Ar) = A(r)—=T(r) = T(r)

B(r) = B(r)+ L+ kT(7)

Ai(r) = Hy(r)- o7 - gL(T)

Hr(t) = Hp(r) 4+ kL(7) (3.23)

22



3.2. THE ENERGY MOMENTUM TENSOR

From the transformation properties (3.23) of the scalar metric fluctuations, it is
clear that one can choose the functions T'(7) and L(7) such, that two of the per-
turbation variables vanish. Popular choices are the synchronous gauge defined by
A =0, B =0 and the longitudinal gauge with Hr = B = 0.

Having the transformation law (3.23) at hand, one can construct gauge-invariant
combinations, the so called Bardeen potentials

v

A=l -kl (3.24)
a
1 a
o = HL+§HT_Ek o, (325)

where o = k1 Hp — B vanishes in the longitudinal gauge. Hence, the line element
in the longitudinal gauge takes on the particularly convenient form

ds® = a(1)? [~ (1 + 20)dr? + (65 + 2®)dz'da’] (3.26)

where we have restricted ourselves to scalar contributions. One expects that in gen-
eral, the fluctuations in the energy momentum tensor will also be gauge dependent.
This is the true gauge-problem. Due to the different metric in different gauges, co-
moving observers in different gauges will measure different energy perturbations.

3.2 The Energy Momentum Tensor

Having defined the metric, we will now specify the energy momentum tensor for
matter and radiation. Even though photons during recombination (and neutrinos)
need to be described by a distribution function, it is still convenient to identify
certain moments of these distributions as fluid perturbations. Here, we are go-
ing to derive the perturbation equations for one single species.? After deriving
the perturbation equations in the fluid description, we will turn to quintessence
perturbations.

The imperfect fluid

Let us start by defining the energy momentum tensor of a (possibly imperfect)
fluid:
T%, = pd", + (p + p)utuy, + 7t (3.27)

Here, the 4-velocity w is the velocity of the matter rest frame with respect to the
coordinate frame. Usually, one assumes that the spatial components u' are first
order perturbations. With this in mind, we get from

utu’ g, = —1 (3.28)

2In Appendix C (see also Chapter 5) we give the full equations (including momentum transfer
between baryons and photons) used to calculate the CMB anisotropies.
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the time component

u® = a(r)7H1 = A(7)). (3.29)
Next, we set for the spatial part

u' = a to(r)Q, (3.30)
defining v. Lowering the index, we find for the covariant velocity
up = —a(l + A) u; = a(v — B)Q;. (3.31)

Using the same conventions as [26,18], let us set

p=p(r)[1+3(r)Ql, (3.32)
and the spatial trace . .
pd'; =p(r)[1 +m(7)Q] 8", (3.33)
while for the traceless part . .
;= pllQj. (3.34)

This defines the perturbations IT and 71, and . Working to first order one gets
from these definitions

T = —p(1+6Q)

T = (p+p)(v—B)Q;

T, = —(p+p)v@Q (3.35)
T = p[(1+mmQ)s+TQY. (3.36)

Gauging the Energy

We will now investigate the gauge dependence of the energy momentum perturba-
tions. From Equations (3.18), (3.21) and (2.9), we get

Th(z) = TY(z)+ Toof?o - Toof?o - Too,of0 (3.37)
= —/7<1+ [5—éT Q)
p
_ —p<1+[5+3ﬂ+ﬂmgT]Q>. (3.39)
Hence,
5=0+3(1 +w)gT. (3.39)

The velocity perturbation transforms as
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b=v+L, (3.40)

which can be seen by either calculating di’/d7 or by transforming T%. Finally, we
get from a calculation similar to the one for d, that =y, transforms as

- 2 .
fp, =, — 2T =y, + 3(1 + w) = 21, (3.41)
D wa

where the sound speed is given by

® DN
Il

b\:l"@l-

(3.42)

The vanishing of the off diagonal elements Tij ensures that II is gauge invariant
from the start.

3.3 Gauge Invariant Energy-Momentum Perturbations

There are many ways to combine one of the energy-momentum perturbations with
the metric fluctuations (or another energy-momentum perturbation) to form gauge-
invariant quantities. Following [18], we will use

V = v— %HT = y(longit) (3.43)
1 .
D, = 0+3(1+w) (HL + §HT> = §Uongit) L 3(1 4+ w)®  (3.44)
— (longit) aV
D = 5§ +3(1 +w) - (3.45)
02
D = m -2 (3.46)

where (longit) labels perturbations in the longitudinal gauge, and T' can be viewed
as entropy production rate. This is due to the fact that for adiabatic perturbations
6p/ép = p/p and therefore?

Sp _ dp/opdp _
P ow p

l—w(adiab) _

0. (3.47)

Perturbed Einstein’s and Conservation Equation

Having defined the metric and the energy momentum tensor, we are now in the
position to use Einstein’s equation to relate the metric perturbations to the matter

3To avoid confusion of the §’s in this line: dp is the absolute perturbation p x 4.
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perturbations. We will first derive the equations with 4, v ... in the longitudinal
gauge and in a second step move to the gauge invariant variables. The perturbed
part of Einstein’s equations yields

a’pd = 2M3 {kQ@ + 3% (<i> - gqf)} from GY, (3.48)

a?v(p+p) = 2Mik (9\1/ — <i>> from GV, (3.49)
a
a?pll= = —MEEX(D+0) from G';. (3.50)
Conservation of the energy component T’f]; , =0, gives
: p a . a
—0=|(=+3-)0+(1+w)(vk+3P)+ 3—wny, (3.51)
p a a
whereas the momentum part T’ﬁ; u =0 yields
. a pl+c? wk (2
-0 =4- = -k + — | 11— . 3.52
v apv_l-vﬁl-l-w +1-|-w 3 L, ( )

Please note that in principle, the equation of state w and the speed of sound cg4
could be time dependent. Moving to the gauge-invariant perturbations and using
Equation (2.9) we can rewrite equations (3.48-3.50) as

a’pD = 2M}E*® (3.53)
(p+p)\V = 2Mbk <gqf—¢>> (3.54)
a’pll = —MZ2E*(®+ 0), (3.55)

where we have simplified (3.53) using the expression for v from Equation (3.49).
The dynamics of the the matter perturbations is governed by Equations (3.51) and
(3.52) expressed in gauge invariant variables. Using

i =2 (2 = w) (3.56)
p
and Equation (2.9), we obtain
Dg+3(c§—w)%Dg+kV(1+w)+3%wF=0, (3.57)
and

Vo= =3 -1V +k[¥-3c9]

2k wk 2
g — [ I'— =11 3.58
+1+w g 1+w[ 3 ] (3:58)



3.4. PERTURBED QUINTESSENCE ENERGY MOMENTUM TENSOR

3.4 Perturbed Quintessence Energy Momentum Ten-
sor

The energy perturbation 4 is defined relative to p. For the quintessence field, it will
be advantageous to consider the absolute perturbation of a scalar quantity. From
(3.18), we see that any scalar ¢ = @ + x transforms as ¢ = ¢ — @T. Hence, the
perturbation y transforms like ¥ = x — ¢ and the combination

X=x—¢pklo (3.59)

is gauge invariant. Due to the vanishing of ¢ in the longitudinal gauge, we simply
have x(°"9%) — X . For the quintessence field we write

p(m2) = ¢(7) + x(7), (3.60)

where we as usual suppressed the k integration and the k dependence of x. We now
use the above expression for X (3.59) to define the gauge invariant field fluctuation
and write gauge-invariantly ¢ = ¢(7) + X (7).

The perturbed energy momentum tensor follows from inserting the fluctuat-
ing ¢(7,2) and the perturbed metric into Equation (2.15). In longitudinal gauge
(where x = X), it is given by

5T00 (longit) _ [a72 <¢2 U — X(ﬁ) _ V’((p)X] Q (3.61)
5Tij(longit) - _ |:a—2 <¢2 U — X(ﬁ) + V,((p)X] Q(s; (362)
61—,0Z (longit) _ a—2 L @X Qz (363)
T, = a2k X Q. (3.64)

Here, the potential V() should not be confused with the gauge invariant velocity
perturbation V, which for quintessence will be denoted by V,,. Despite the fact that
only gauge invariant variables appear in Equations (3.61 - 3.64), none of them is
gauge invariant. For instance 6T transforms as a scalar.* As spatial off diagonal
elements vanish, we immediately get

I, = 0. (3.67)

*We can easily see this from Equation (3.37), where 5~TOO =T — TOO ®. Hence, the quantity
T = 6T% — k™ 'oTY is gauge invariant and 7 = 6T “"9"") Thus, the perturbation in the
synchronous gauge follows from

()-TOO (sync) = T4+ k—lo_(sync) ,1%700 — ()-TOO (longit) + k—l U(sync)fwoo (365)
_ _a—2 QLOX(S:WM) _ VIX(sync)’ (366)

in agreement with the direct calculation using Equation (2.15) in the synchronous gauge.
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To solve Equations (3.53) and (3.54), an expression for D, and V is needed. Com-
paring Equation (3.35) with Equation (3.64) in longitudinal gauge, yields

a7’k G X = (P + Pp) V- (3.68)
Using p,+p, = a~2¢? from Equation (2.17), we find the gauge invariant expression
Vo=ko ' X. (3.69)

An expression for the density perturbation Dy is obtained by inserting Equation
(3.61) in Equation (3.44)

Dy = p! [—5T°0 (longit) | 3(p, + pw)é] (3.70)
- 5, [a*%; (X + 330 — \If}) + V’((p)X} (3.71)
— (1+w) [3@ — v +X¢—1} + X V() 5! (3.72)

where we have once again used p,+p, = a2(?. The perturbation D, then follows
from D{ using Equations (3.45) and (3.69).

Equation of Motion of the Quintessence Field Perturbation

Energy conservation, T’S; u=0 (or alternatively the Klein-Gordon equation), yields
the gauge invariant equation of motion

X=¢ (\If - 3<i>) —2a?V' (o)W — [a2V"(p) + k2] X — 2%)‘(, (3.73)

for the field perturbation X. That this equation is truly gauge invariant follows
from the equation of motion

X = —24a*V'(p) + (A — kB — 3Hy) — [a®> V" (p) + k] x — 2350 (3.74)

derived without gauge fixing and a subsequent gauge transformation of all pertur-
bation variables. To see the invariance, the 7-derivative of Equation (2.18) leading

to dd—:3<,5 + [2% -6 (%)2 + aQV”] ¢ = 0 is useful.

3.5 Synchronous Gauge Quintessence Field

Most of the existing literature uses synchronous gauge. In addition, the widely
used CMBFAST computer code which integrates the perturbation equations is im-
plemented in this gauge. In terms of the perturbation variables defined in [27], the
equations for the quintessence field have been derived for instance in [28,29]. Here,
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we will re-derive them using the gauge invariant equations of the previous section.
The perturbation H;; of Equation (3.9) is defined in [27] as

PN PN 1

2H;j = kikjhQ +6n (kz'kj - g%‘) Q (3.75)
1
§h5ijQ — (h 4 67)Qqj, (3.76)

in other words, Hr contains terms both from A and 7,

1 1
Hp = Eh’ HT=—§(h+6n). (3.77)
Even though we will not need them here, we note that using - and 7, the Bardeen

potentials become

- %[g <h+6f7)+(ﬁ+6ﬁ>] (3.78)
o = %h—n+2—]1€2g(h+6f;>. (3.79)

Turning to the perturbation evolution, a short manipulation of Equation (3.69),
using the expression for V,, and X in the synchronous gauge yields

o) — 1 lune) (3.50)
In the notation of [27], one uses 0§ = ik'v;Q~". Now, v; = vQ; = —k~'vQ ; =
—ikilkij and hence
e&sync) _ —iijkjk_l ,Ugosync)
= kol 3.81
— k2 ()5—1 X(sync) 3 82)

In the Footnote on page 27, we have already derived

5505ync)ﬁ(p _ _a72 (;X(sync) o VIX(sync)‘ (383)
Alternatively, in synchronous gauge 67% = —&p holds, giving the same result. Fi-

nally, the perturbation x(5¥"¢) obeys the equation of motion
j 1..
X(sync) + 2%)( + kQX(sync) + GQV”((p)X(sync) + ih’@ =0, (3.84)

which can be derived using the non-gauge-fixed equation of motion (3.74) and Equa-
tion (3.77).
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3.6 Solutions for Perfect Fluids

In order to get some intuition for the perturbation variables, we briefly summarize
their behaviour in simple settings. Chapter 5 will generalize these ideas in great
detail to early time perturbations.

The perturbation equations (3.53) - (3.58) simplify considerably for a shear
free fluid (IT = 0) with vanishing entropy production (I' = 0). The easily obtained
analytic solution for pressureless dust (w = c¢2 =T =TI = 0), is [18§]

V. = Vy(kr)
1
D, = -V [15+§(kr)2]
T = 3V, (3.85)

where Vj is an integration constant. We see, that the gravitational potential ¥ =
—® is constant in a matter dominated universe. Turning to the relativistic fluid
with w = ¢2 = 1/3, T' = IT = 0, the solution on super horizon scales (k7 < 1)
becomes [18]

V. = Vu(kT)
2
D, = —12V0—§V0(k7)2
T = 2V, (3.86)

where again Vj is an arbitrary constant. Hence, also in a radiation dominated
universe, ¥ remains constant. Finally, the solution on sub horizon scales (k7 > 1)
is

V = Vpsin (kr/\/§>

D, = %Vgcos(/m’/\/g)

T = —g(kT)—QDg. (3.87)

Interestingly, the perturbation variables oscillate within the horizon in a radiation
dominated universe. As the photons in the cosmic microwave background are emit-
ted from such a radiation fluid, one suspects to see oscillation patterns depending
on the scale k. This is quite true, even though the details are a bit more compli-
cated. We will pick up the oscillatory solution again in Chapter 4, but before that
a look at quintessence perturbations is in order.

For modes that are well inside the horizon, we neglect gravitational feedback.’
The equation of motion (3.73) for X becomes

X+ 23)’( + [a2V"(0) + £?] X =0. (3.88)

®This assumption is by no means correct in the case of super-horizon perturbations.
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On sub-horizon scales, k? > a?V"(p). In addition, a/a = 1/7 during radiation
domination and a/a = 2/7 in a matter dominated universe. Thus, sub-horizon
wise, we get
. 925 .
X+ 2% 112X =0, (3.89)
T

with s = 1,2 for RD and MD respectively. In both cases, the solution to Equation
(3.89) is
X(1) = VE[e1js—1 (k7) + cang—1 (k7)] (3.90)

where c¢q, co are constants and j;, n; are spherical Bessel and Neumann functions.
Figures 5.2 and 5.1 nicely show the oscillatory behaviour of X as soon as the mode
is well inside the horizon. Super-horizon modes will be discussed in section 5.2.
There, we will show that X usually follows a power law in 7.
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4

The Cosmic Microwave
Background

The cosmic microwave background has been accidently discovered by Penzias &
Wilson in 1965 [42]. It is formed by a sea of photons that arrive almost isotropically
from all directions in the sky. Before we review the main features of the CMB
anisotropy calculation (starting with Section 4.2), we would like to gain some results
from intuition that hold also in the detailed calculation.

4.1 Intuition

Let us start by the observation, that a thermal photon gas has occupation numbers

N = (exp(hw/kyT) — 1)71
= (exp(he/kyTX) —1)7", (4.1)
where ky, is the Boltzmann constant, ¢ is the speed of light and X is the wave length

of a photon determining its energy. Now, the frequency of a microwave (with say
A =10cm) is f = 3 x 10°Hz, whereas the Hubble parameter is

Hy ~ 100km s 'Mpc™! ~ 2 x 107 8Hz. (4.2)

Thus, the microwave frequency is much higher than the relative expansion rate of
the universe. Hence, for the photon gas, the universe expands adiabatically and
from quantum mechanics, we know that the occupation number should be con-
served. Along with the physical scales, the wavelength stretches with the expansion
A  a. In order to conserve the occupation number, we thus find

T xa™". (4.3)

Alternatively, the energy density of a photon gas p, o< T4, and as Py X a~*, we see
that T oc a~! as above.
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Within the photon-baryon plasma, sound waves propagate at the huge speed of
[45]

Cs = 7= =5 3/= -
fodp 3d(py+ )]
which is ~ 1/3 until recombination destroys the plasma. The sound horizon is the
distance, a sound wave can at most travel since 7 = 0. It is given by

s(t) = /OT dr'eg(7"), (4.5)

and owing to the fact that ¢ ~ 1/3 during most of the time until decoupling,
one simply has s(7) =~ 74/1/3. Now, the plasma is opaque to photons. Just at
the end of recombination, the universe is transparent enough for photons to travel
almost freely. Therefore, most of the CMB photons seen today scattered for the
last time at around the epoch of decoupling. Naturally, this epoch is also called
last scattering. Using the Saha equation [43], one finds that the redshift of last
scattering is zig &~ 1100. This corresponds to 7 =~ 300Mpc and therefore a sound
horizon of s ~ 170Mpc. As far as sound-waves are concerned, the only (large) scale
present at last scattering is this sound horizon. We have already seen in Section 3.6
that within the horizon, photon perturbations start to oscillate. Thus, one expects
‘resonances’ [45] of the form

cos(k X s15 + ), (4.6)

where ¢ accounts for a possible overall phase shift.!

In adiabatic models, this shift is ¢ ~ 0.2. We will later find more detailed
formulae for the shifts of the peaks. However, for a first estimate, it is enough to
consider ¢ = 0 and hence, one expects peaks in Fourier space at

k=""xm x0.018Mpc~", (4.7)
S

where m is an integer.

The CMB experiments do not measure temperature anisotropies in Fourier
space directly, but angular correlations on the sky today. Therefore, it is natural
to quote the results in terms of coefficients C; of a Legendre series (see Section 4.2
below). The photons last scattered at z)5 stream freely as a plane wave towards us.
In terms of Legendre polynomials a plane wave is expanded with spherical Bessel
functions j; as coefficients. As the ‘distance’ the plane wave travels is 1) — 15 & 70,
the wave is given today by exp(ik7y). It turns out that the Bessel functions in the
Legendre expansion of exp(ikTy) take on the argument j;(k7y) (see Section 4.5.1).
Now, spherical Bessel functions are peaked when the argument equals the multipole
[. Therefore, a feature present in Fourier space at last scattering translates into a

!Unfortunately, there are many quantities that are commonly denoted by the Greek letter ¢.
However, the reader should have no problem to keep the peak shift ¢ and the field ¢ apart, as
the peak shift is occurring only here and in the section about peak shifts and in both cases, the
quintessence field ¢ is not present.
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6000

4000

[\
=)
S
(=)

T, 10+1) C/(27) [UK’]

O I I I I
0 250 500 750 1000 1250 1500
C

Figure 4.1: Boomerang 2001 data and the spectrum for a LKT model with h = 0.65, Qf =
0.7, Qbh% = 0.022, n = 0.97. In this model, the horizons at last scattering and to-
day are 13 = 280Mpc, 79 = 14400 Mpc. The roughly estimated peak positions are
[ = 260,520,780....

feature in the multipole decomposition today at
=2 (4.8)

For the k-values of (4.7), one gets (using 79 ~ 14400 Mpc of the model depicted
in Figure 4.1) lpeak ~ 260,520,780.... Figure 4.1, showing experimental data as
well as theoretical predictions for the C) spectrum nicely demonstrates that the
estimate of peak positions? is fairly adequate. The occurrence of peaks spaced by
roughly the same Al =~ 200 — 300 in the multipole spectrum leads to the definition
of the acoustic scale [44,45]

7o — Tis To — Tis

Iah=m =7 , (4.9)

S CsTis

where ¢; = ’Tlgl Jo d7eg(7) is the average sound speed until last scattering. In
terms of /4, our estimate of peak positions, (4.8) is just l,, = ml4.

4.2 The Multipole Spectrum

The temperature anisotropies are usually quoted in terms of coefficients C; of 2-
point correlations. Suppose, we knew the temperature anisotropy A(n) today on

20r rather inter-peak spacing, as we didn’t include the shift.
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planet earth pointing in direction n in the sky.®> We can expand this in terms of
spherical harmonics

A(m) = S (n) = 3 ¥ (n). (4.10)
Im

The 2-point correlation between two directions in the sky is then

(AmAR)) = 3 (amai )" () (7 () (4.11)

! !
I,I' m,m

One now assumes that the angle ;. = n - n’ between the directions is statistically
independent of the orientation, i.e. one can write

(alma;m’> = 0 O C, (4.12)

with coefficients Cj. From Equation (4.11) we then get

!
(AmA@) = Yo Y vrm) ()" (4.13)
l m=—I
1
= —Q2[+1)CP 4.14
1 L+ DG R(R), (4.14)
where P;(p) are Legendre polynomials. In Fourier space, C;’s can be expressed as

Cy = (4r) / E2dkP (k)| A (k, 10)], (4.15)

where P(k) is the initial power spectrum and A;(k, 7p) are coefficients of the Leg-
endre series

Ak, 1, 70) = (=)' (21 + 1) Ay, 70) Pu(p)- (4.16)
I

4.3 The Liouville Equation for Photons

At redshift z ~ 1100, the universe was cool enough for electrons and protons to
recombine and form neutral hydrogen. The less free electrons there were, the less
opaque the universe became for photons. From the recombination period on, the
description of photons and baryons as one single fluid is not appropriate anymore.
One therefore uses the phase-space distribution function f. For a start, let us con-
sider the simple case of a spatially homogenous distribution f = f(p,7) (forgetting

*We suppress the arguments o (‘here’) and 7o ('now*) in this section for ease of notation.
“The calculation here follows ‘textbook’ standard and can in similar form be found for instance
in [18].

36



4.3. THE LIOUVILLE EQUATION FOR PHOTONS

for a moment that it might resemble the one in (4.1)). In the argument we have
defined p = §;; p'p?. The general relativistic Liouville equation is [47]

of
az

PO f)p — Tlup'p’ 55 =0, (4.17)

where |p stands for evaluation at constant p. From p = §;; p'p’ one has

o _ps
8pi = D ik

(4.18)

Using this, p® = p # 0 for photons and the unperturbed Christoffel symbols of
Appendix A yields

@:1), - <g£> - =0. (4.19)

Now, a photon observed by some observer with 4-velocity u# has energy F = u,p*
[46] and therefore with ug = —a from Equation (3.31),

E = —ap. (4.20)
The time derivative of E at constant p is therefore®
) a
(0-E)p = —ap = EE. (4.21)

Moving from the variables{r, p} of Equation (4.19) to {7, £’} and using pg—{: = Ea—é

yields
o of\ [OE of
o - e (35), (50), -2 (),

— 0. - -(gg) (1.22)

Now, for any function f(z = aFE),

. of . of
(0r e = 9z (87’) o aEZ, (4.23)
and 5 5
Ouf)r ai (8E>| = ai (4.24)

Inserting this in Equation (4.22), we see that any distribution that solely depends on
aF is unchanged by the cosmological expansion. Looking back at the distribution
function for a thermal photon gas (4.1) one finds that for T oc a™', f is preserved
just as before.

°If one happens to know that Ea = const. (e.g. from the last section), one is tricked into the
conclusion that F = —2F. However, at constant p, one gets the opposite sign.
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4.4 The Perturbed Photon Distribution

The last section showed that f is a function of aE = —a?p only. Following [18],
we define v = a?p'p’d;; and f(r,z,v,m) = f(v) + F(7,2,v,n), where n is the unit
vector of the photon momentum. Including collisions, Liouville’s equation (4.17)
becomes Boltzmann’s Equation [47]

~ 0
PO )~ T 55 = O, (4.25)

where C[f] contains collision terms. We will not calculate the collision term in
this work, but state the result as derived in [18] at the end of this section. The
unperturbed distribution f is by definition thermal with Temperature T'= T'(7) =

Toa™": 1
flv) = [eXp <—T%> — 1]_ : (4.26)

One then defines the temperature perturbation by

f(r,2,0,n) :f(lfr’A>, (4.27)

where the term in brackets is the argument of f, and

A(r,z,n) = %, (4.28)

is the relative temperature anisotropy. Plugging this into (4.26) one indeed sees
that Ty — To(1 + A) making the definition plausible. Taylor expanding (4.27)

_ df
flrz..m) ~ f(v) ~ oA (4.29)
dv
one sees that B
df
F(r,z,v,n) = —vd—A(T,m,n), (4.30)
v
connecting F with A. In order to obtain an equation for the temperature pertur-
bation A, one uses [18] Boltzmann’s equation (4.25) with the perturbed Christoffel
symbols and replaces F' by A by means of relation (4.30). The intermediate result
is [18]:
OrA +iOA = —n'A; — nind (By+ Hyy) + Clfl, (4.31)

where C[f] = —C[f]/(vf"). The next step consists in an expansion of
A(r,z,n) = Z iy (T )™ ot (4.32)
=0
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4.4. THE PERTURBED PHOTON DISTRIBUTION

where o, ;,(7,z) are symmetric traceless tensor fields. It turns out that tensor
components beyond the 2-tensor are negligible [18]. Furthermore, scalar field quint-
essence will not source tensor or vector perturbations and hence, we will only treat
the scalar temperature anisotropy in the following. Keeping only the scalar and
using the decomposition of Chapter (3), one simply has

A(r,z,n) = A (1)Q(z). (4.33)
Inserting this in Equation (4.31) yields

0, A9 4 ikuA) = —ikuA+ pko — Sy~ Hy 4+ Olf], (434)

where p is the direction cosine defined via an,j = ikuQ and o =k 'Hy — B. In
flat space, where Q = exp(ikx), it given by u = k~'k-n. Unfortunately, the above
Equation (4.34) is not gauge invariant. However with

1
M=AO) L H + S Hr +ipo, (4.35)

Equation (4.34) becomes
M + ikpM = ikp(® — ¥) + C[f]. (4.36)

One can show [18] that M = A®) up to a gauge dependent monopole and dipole
contribution and indeed M is gauge invariant [48]. It is this quantity M that
plays the central role in the calculation of the CMB anisotropy spectrum. Let us
stop for a moment to recapitulate the steps: from the Boltzmann Equation and the
distribution f(7,z,v,n) = f(v)+F(7,2,v,n) one moves to A(7, z,n), decomposes
this into scalar, vector etc. and singles out the equation for A()(7) for one Fourier
mode k. It turns out that this equation depends on k and n only through k-n and
that by moving from A(%) to M, the Equation (4.34) becomes gauge invariant.

One can now make contact to the fluid description of Section (3.2) by means of

v v dp
T = / P'p f(p,x)pQP—Ode. (4.37)
Comparison with the fluid perturbations, yields [18]
1
v, = 2 [ mdo (4.39)
Y A7 M .
3 (1, 5
m, = —— /3 (3p” — 1) MdQ. (4.40)

The appearance of Legendre polynomials in the integrals of (4.38 -4.40) suggests,
that an expansion of M in terms of spherical harmonics is helpful. Following
[49,18], we use

M= M; oG (4.41)
[

39



CHAPTER 4. THE CoSMIC MICROWAVE BACKGROUND

m - 4 m
sGj (n) = (—Z)l\/ m s (4.42)

where ;Y;™ are spin weighted harmonics [50,51]. The use of spin-weighted harmon-
ics is of advantage, because the polarization turns out to be a spin-2 quantity which
is best quoted in terms of the variables F and B. For scalars B vanishes, and F is
related to the Stokes parameter @ via [52,53,18]

with

i@ = Xl: B GV (n). (4.43)

With the multipole decomposition of M, we can rewrite Equations (4.38-4.40) as

D] = 4M, (4.44)

vV, = M (4.45)
12

L, = £ M; (4.46)

Including polarization and the collision terms due to Thomson scattering [49,18],
one finally arrives at

: 1 1
M+ ipkM + M = ipk(® — ) + i (ZDg —ipVy = 5 (3u° — 1)c> . (4.47)

where £ = aneor is the differential optical depth with n, the number density of
free electrons and op the Thomson scattering cross section. The quantity C in
the above, is given by C = (My — v/6E)/10. In principle, one could now insert
the multipole decomposition of M and F in Equation (4.47) (and a corresponding
equation for F), get an hierarchy of equations for each multipole [ and from this
infer the coefficients C} of the temperature anisotropy correlation. However, for C;
up to [ ~ 1500, this translates into more than 3000 coupled differential equations.
Luckily, the line of sight strategy to solve Equation (4.47) has been developed [16].
It only needs a few (I < 8) M;’s and is hence much faster. As we still need the mul-
tipole hierarchy (even though to much smaller extent), we note that this hierarchy
for M is given by [52]

. k

My = -2V, (4.48)
. 2

My = EW—-V) + k(T —-d)+k <M0 - gMQ) (4.49)
. . 2 3

My = —i(Ms—C)+k <§V7 - ?M3> (4.50)
. . [ [+1

M; = —cM;+k (ﬁMl—l — 21—+3MH—1> ,l > 2, (4:5].)
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whereas the one for F is [52]

: NG

By = ——{Eg iy (E2 n \/6(:) (4.52)

B o= k(X XU ) —kE 2 (4.53)
57— 1 29 +3 ’

Here, C = (M3 — v/6F5)/10 as above and »x; = V12 — 4 are combinatorial factors
[52] that should not be confused with the differential optical depth k.

Massless neutrinos

Massless neutrinos follow the same multipole hierarchy as M, however without
polarization and Thomson scattering. Hence, the perturbed neutrino distribution
is

k

No = -3V (4.54)

N1 = k(U —d)+k (No — %NQ) (4.55)
. l [+1

N =k <m/\/‘l—1 - mMH) i0>1, (4.56)

where V,, = Nj. In contrast to photons, there is no tight coupling to baryons.
Thus, moments beyond the dipole may built up from the beginning. However, as
N, o kNj_q for I > 1, it follows that NV} o (k7)"DN] at early times. As kr < 1
for super-horizon modes, higher order moments of A are suppressed.’

4.5 The Line of Sight Strategy

Inspecting (4.47), one notices that the LHS can be written as

e~k e=R(T) ], (4.57)
where .
L = e es(m M. (4.58)
Hence, (4.47) translates into
ro_ ipkTt k(T) |, (1 y . 1 2
L=¢e""e ipk(® — V) + & ZDg —iuVy — 5(3@ -1)C |, (4.59)

6This is a bit of a circular reasoning. If each moment Ny is small compared to N;_1, then
Ni o kN;_1. That this leads to the suppression of higher order moments is no wonder, for we have
assumed this from the start. Yet, N5 corresponds to IT, and this in turn determines ¥ — & from
Einstein’s equation. As this difference is not substantial, one concludes that N> (and all higher
moments) are small initially.
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Figure 4.2: The visibility g = £exp(k(7) — k(70)) as a function of conformal time 7 in
Mpc. Its peak at about 7 ~ 300 Mpc defines the epoch of last scattering.

and integrated over conformal time,

T0 . 1 1
L(m) = / dretkT e(7) [mk(@ — ) + £ (ZDg —ipVy — 5(3u2 — 1)0)]
0

(4.60)
According to Equation (4.58), the photon perturbation today is given by M (u, 79) =
e~ k70 e=K(T0) I (79), so

70 .
M (7o) = / dr (o) () (o)
0
X [mk(@ ~0)+ 4 (iDg —ipVy — %(3;} - 1)0)] . (4.61)

The product g = kexp(k(r) — k(70)) plays an important role” and is called the
visibility function. Its peak defines the epoch of recombination (see also Figure
4.5). Each term in the above Equation (4.61) containing factors of y, can be

"Please note that in [16], k() = J7° f(7")dr" and hence k(7o) = 2k(7). Therefore the factor
exp(k(7) — k(70)) equals exp(—«(7)). However, this obscures the derivation a bit and we therefore
choose to display (7).
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integrated by parts, in order to get rid of . For instance

/TO [ei“k(T*TO)i,uk] gVpdr = H - /TO HHk(T=T0) 1 (ng + Vi,g) dr, (4.62)
0 0

where [] stands for the boundary term that here and for all of the terms above
can be dropped, as it vanishes for 7 — 0 and only contributes to Cy for 7 = 7.
Applying this procedure to all terms involving p yields

T0 |
M, 7o) = / eHE(T—0) §(k 7)dr, (4.63)
0

where the source is

§ = =05 [~ §] + 4 | 1D} + 2 " 2k

1 v cC 3
—D7+—b—(<1>—\11)+—+—2€]

AWV 3 .3
—l—g |:z aF EC] +gﬁc. (4.64)

Let us pause to discuss this result (4.63, 4.64) in detail. First, we note that the
visibility function g is sharply peaked at the epoch of decoupling (see Figure 4.5).
Hence, M(7) gets contributions from Dy and V" at about this epoch: whatever
the density contrast of the photon fluid and the baryon fluid velocity has been
at decoupling, will be imprinted in the temperature anisotropy today. The term
from the density contrast Dy is the most important one on scales smaller than the
sound horizon. It is the main contributor towards the oscillatory behaviour of the
C; spectrum. Its appearance is plausible, because for a photon gas, p o< T* and
therefore 6T /T o %5p/ p. The V,-term appears, because a baryon moving in the
direction towards the observer will cause a Doppler shift of the emitted photon.
For adiabatic initial conditions, this Doppler shift fills the region before the first
peak (at | = 220), which is mainly due to D{ [44]. The first term in the source
(involving & — ¥) accounts for the integrated Sachs-Wolfe (ISW) effect [54]: if the
gravitational potential decays, the photons have to climb out of a more shallow
potential than they have been in before. Quintessence, for instance can lead to a
more pronounced ISW than standard CDM models. The terms involving C and
its derivatives describe polarization effects and are far less important than the D]
term. Finally, the (® — ¥) term is the (ordinary) Sachs-Wolfe effect. On scales
that at decoupling were well outside the horizon, this gives the main contribution.
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4.5.1 The Multipole Power Spectrum from the Line of Sight

In order to find the multipole power spectrum, one expands® the plane wave
exp(iku[T — 19]) in Equation (4.63) in terms of Legendre polynomials

ikulr—mo] _  —ikulro—T] _ [eiku[m*ﬂr (4.65)
- [Z(i)l(%-l- 1), (k[0 — 7]) Pi(1) * (4.66)
= ;l(—i)lmu D)ji (k[ro = 71) Pi(n)- (4.67)
Comparing with (4.16) one finds [16]
My(k, 7o) = /0 " ) 8 (i = o) (4.68)

Inserting this in Equation (4.15), the C; spectrum follows.

4.5.2 Putting it all together

As far as the CMB is concerned what one really wants is the temperature® anisotropy
correlation functions, commonly quoted using the coefficients C;. The slow way
would be to get the Cj’s directly from the (vast) multipole hierarchy of the photon
distribution via Equation (4.15). In contrast, the line of sight integration gets the
A;’s (in our case the gauge-invariant M;’s) by folding the source term S with the
spherical Bessel functions j;. While the Bessel functions oscillate rapidly in this
convolution, the source term is most of the time rather slowly changing. It thus
suffices to calculate the sources at few (cleverly chosen) points and interpolate be-
tween. In order to determine the sources, one needs to know (among other things)
D} and C. Therefore, one still needs to solve a multipole hierarchy for M and E.
However, for sufficient precision, only a few multipoles are needed: they built up
rather slowly starting from initially shear-free conditions (M; = 0, [ > 1) due to
the tight coupling to baryons. In order to suppress truncation effects, the multipole
beyond the highest one in the hierarchy is approximated by the recursion relation
of Bessel functions (see Appendix C).

8See Abramowitz, M. and Stegun, I. A. (Eds.)., Chapter on Bessel functions of fractional order,
addition theorems.
9And some more, like polarization etc.
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Initial Conditions

In order to classify initial conditions the introduction of

5 5
S .. = e _ 5.1
azb 1+w, 1+uwy (5.1)

b

Dy Dy

= — 5.2
1+ W, 1+ Wy ( )
is useful. It is gauge invariant and characterizes the entropy exchange between two
components ‘a’ and ‘b’. As an illustration, suppose the two components were cold
dark matter and radiation and S.g,., would vanish. Then the perturbation in the
number density of cdm particles n would be
An 3Ap, As,

=" _5 =Z =_"7 5.3
n cdm 4 07 s ) ( )

since the entropy of radiation s, oc 7% and p, o< T*. Hence, the radiation entropy
per cdm particle would vanish:

_ D2 TSR, (5.4)

n2

A(Sr) nAs, — s, An
n
If

Sap =0, (5.5)
for all pairs of components in the early universe, one speaks of isentropic or adiabatic
initial conditions.

5.1 Initial Conditions without Quintessence

The initial conditions are most easily derived without quintessence first. Later in
this chapter, we will add quintessence to the picture. With initial conditions, we
mean the value of all perturbation variables at early time (i.e. radiation domina-
tion) for modes that are well outside the horizon. Therefore x = k7 is a small
number.
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The multipole hierarchy of photons (4.48-4.53) and neutrinos (4.54-4.56) shows
that each higher order moment is suppressed by a power of x with respect to the
one below (see also Section 4.4). As x < 1, it suffices to truncate the expansion
beyond the quadrupole, i.e. we have N3 = M3 = 0. For photons, the tight coupling
to baryons suppresses even the quadrupole and together they behave like one single
fluid. From the equations governing the time evolution of the photon and baryon
velocities one can derive a single equation for the baryon-photon fluid velocity. One
starts from the equations for the separate fluids (neglecting baryon sound speed
and photon dipole here),

Vi, = —%Vb +EU 4 i R(V, — W)

: k
vV, = ZD“M +EW - @) +i(V - V,), (5.6)

where R = 4p,/(3pp). In the above, the Thomson drag term [18] has been added
to the Equation for the Baryon velocity. As £ is overwhelmingly large in the early
universe, both velocities are forced to coincide. This is the so called tight coupling
limit. Adding the two Equations (5.6) , one gets

a

. . 1
RV, +V, =k <R(\If —®)+ T+ RZDM> -V, (5.7)
and finally using RV, + Vi, = (R + 1)Vi, — RV,, + RV,

a

. .1
(R+ 1)V, =k ((R + 1)U — R® + R(Vy, — V;) + ZRDM> -~V (58)

It is this equation that in the tight coupling limit replaces the two equations (5.6).
To proceed further we note that in the early universe, R > 1 and hence R+ 1 = R.
In addition, V;, — V7 = 0 due to the tight coupling. Therefore Equation (5.8)
simplifies to

) 1 ;
Vi =k (\If o ZDm> - R_lng. (5.9)
Now,
3 300 K2
R = ﬁ = gy 4~ 500a. (5.10)
Y 0

At the early times we are interested in, a is small and we can also drop the term
proportional to V4.

The perturbed Einstein equations (3.53 - 3.55) simplify in the deep radiation
dominated era, because then a o< 7, d/a = 7! and the Friedmann equation (2.7)
yields

N\ 2
3M2a~2 <g> = 3M2a~2r2 = 5, (5.11)

! After these simplifications, the evolution equation for the common baryon-photon velocity V3,
has become the one for a single photon fluid (see Equation (5.16) below).
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5.1. INITIAL CONDITIONS WITHOUT QUINTESSENCE

hence
Mp2a?p= 3172 (5.12)

Using this and (5.8), the set of equations determining the perturbation evolution
is therefore

0 = D.+EkV, (5.13)
0 = Vc—i-gVC—k\If (5.14)
: 4
0 = Dyy+ kY, (5.15)
; 1
0 = V,—k (\If ~ &+ ZDm> (5.16)
: 4
0 = Do+ 5kVy (5.17)
; 1 1
0 = Vo—k(¥—@+ 7Dy, — Il (5.18)
.8
0 = IL —zkV, (5.19)
= O+ U+ Q,z 2 (5.20)
= —O(12[0 + Q)] + 995 + 2°) + 3Q] [Dy, + 4Vyz ']
+3QY [Dyy + 4V,z 1] 4+ 305 [D, + 3Vez 1. (5.21)

Here, Equation (5.20) corresponds to (3.54) and the last Equation is just Poisson’s
equation (3.53). The Q,’s denote quantities at initial time. We keep the minute
cold dark matter contribution in (5.21), until we have shown that V, vanishes to
lowest order in z. Thereafter, we drop cold dark matter from Poisson’s equation.
Please note that we do not need to consider baryons separately, as their velocity
coincides with the one for photons and D,; will be determined from the type of
initial conditions later. In addition, adding baryons to Poisson’s equation wouldn’t
change the reasoning with respect to V,,, which is why we omit it from (5.21). The
easily obtained solutions for a single photon fluid, (3.86) suggest that a power-law
ansatz of the form

Y(z) =Y +Y'2? + V222, (5.22)

with coefficients Y is sensible. As ® and ¥ are related to II, via Equation (5.19),
consistency requires that we keep only the constant? term for ® and ¥ [56]. All
other perturbation variables are expanded up to z2. In a first step, Equation (5.20)
requires

I =11, =0, (5.23)

2In principle, we can add the terms up to z2, a detailed calculation shows however, that
&' = U' =0 and the second order terms don’t influence other quantities.
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and hence using Equation (5.19), we find

Vo =o. (5.24)
Similarly, Equation (5.14) gives
V0 =0, (5.25)
and combining the two, Poisson’s equation (5.21) forces
0 _
Vo =o. (5.26)

Hence, all zero order velocities vanish. Comparing terms proportional to 7 in our
equation system, we get

D; = —2/3V} (5.27)
D;, = -2/3V, (5.28)
D? = —1/2v! (5.29)
vV = 1/8D, (5.30)
V; = 1/8D,, (5.31)
VZ =0 (5.32)
Turning subsequently to the constant terms in the equation system, one gets
Dl =0 (5.33)
v = 12 (5.34)
Dy, =0 —=V'=0 (5.35)
D, =0 —=V’=0 (5.36)
m = — Q)7 (10 + a0 (5.37)
In addition, Equation (5.16) relates
U0 =3+ V) - %Dgﬁ, (5.38)
and
o0 = épg,7 — %QZV,} — %V;. (5.39)
After all these considerations, we are left with
vVi-V,) = i (DY, — D7) (5.40)
1, 10 vl J 6 o
Q) [61/7 + §Dg’7] = —=Qf [VV {E(Q* + Q)+ 4} (5.41)
+D), — %D;{7 + 2V71] (5.42)
(5.43)

The relation between D,. and D,, imposed by the type of initial conditions,
determines then all variables in terms of an overall constant. Let us look closer at
adiabatic conditions.
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5.1.1 Adiabatic Initial Conditions

According to Equation (5.5), adiabaticity forces Dy, = Dg,. In this case, Equa-
tion (5.40) yields V.! = V). Also, D, = 3/4D,,, is implied by adiabatic conditions.
Solving Equation (5.42) for V'yl then completely determines all perturbations,

Dy, =Dy, = 1—1—%@:1:2 (5.44)
D.=D, = %Jrng? (5.45)
Vo=Ve=V=V, = —2Qq (5.46)
I, = —Qz’ (5.47)

o — %[29:+5]Q (5.48)

U = —gQ, (5.49)

where Q = [4QY 4 15]~!. Having found the early time behaviour of the perturba-
tions, we are now going to turn to the quintessence field.

5.2 Early Time Quintessence Perturbations

As such, there is no ‘canonical’ quintessence. To our knowledge, however, the
early time behaviour of the field perturbation has been studied either for pure
exponentials [28] or for negligible quintessence content in the early universe [55].3
The reason for these assumptions is simply the fact that a closed solution for all
types of quintessence is impossible to find.

However, for tracker solutions, this is possible. We owe this to the fact that in
these cases, V', ¢ etc., occurring in the equation of motion for the perturbation
(3.73) have a well defined scaling with 7 (see Section 2.3.1). The equation of motion

(3.73) contains a term @ <\I/ — 3@). We will in the following assume that quintess-

ence doesn’t change the almost constant behaviour of the gravitational potentials
and hence drop this term.* In addition, for super-horizon modes, a?V" > k2, and
hence the equation of motion reduces to

v 2v/1 2y a.

X =-220V'V¥ -0 V"X —2-X. (5.50)

a

We will solve this equation using the power law solutions for the derivatives of V'
obtained in Section 2.3.1. Our assumptions are hence that

1 e energy density of the universe scales as a™ " at the time of interest, implyin
/) Th gy density of the uni 1 4 at the time of interest, implying

3Unfortunately, the solution given in [55] seems incorrect, though the scaling with 7 is correct.
*This is very well justified in practice.
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aja =171
(7i) The equation of state w? is (nearly) constant.

In order to manifestly display the power laws, we write

v = v (T43we)/2 (5.51)
v = v (5.52)
a = ar (5.53)
X = X9, (5.54)

where a etc. are proportionality constants and we seek a power-law solution for
X (7). Inserting these relations in (5.50), one gets

dg+1) = —a 2070 X1 (G- 3wea) 4 v(2>] : (5.55)

Except for the factor 7(173%)/2=¢_ ]l quantities are constant in this equation.’

Hence, the solution is given by ¢ = (1 — 3w¥)/2 and therefore

X(r) = X 72(1=3w?), -
with X given by
¢ 5217 (1)
e 31— W)(Sla—v:;wf; +4a2v (@)’ (5.57)
and upon re-substituting @ — a(7)7! etc,
8a2T2V'I

X(r)=— (5.58)

3(1 — w?)(1 — 3w¥) + 4a272V""

Let us briefly denote this particular solution by X. Adding another power-law to

this, i.e. making the ansatz X (7) = X (7) 4+ ¢7P, one observes that this also solves
the equation of motion, if p = % [—1 +v1-— 4&2‘7(2)} . In fact, the general solution
is obtained by adding the particular solution and two complementary solutions:

~ _1(1— 45272 1 — 462V (2)
X(r) = X(r) 4 or 2 (07VI0VE) =5 (14T (5.59)

where the mode proportional to ¢ is at least as rapidly decaying as the one propor-
tional to ¢. From Equations (5.52) and (5.53), we know that 442V ®) = 4a?V"72.

®As already mentioned, we assume that the time behaviour of ¥, i.e. its (near) constancy
remains unaltered by quintessence. It is clear, that this is true for subdominant quintessence. As
we will see, it is also true for exponential potential quintessence and its relatives like the LKT
model.
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Figure 5.1: Gauge invariant quintessence field fluctuation X (7) as simulated (dotted),
compared to the analytic solution of Equation (5.58) (solid). The relative deviation is
plotted as long dashed line. The quintessence model used was an IPL with a = 4, leading

to wy,,, ~ —0.111 and hence according to (5.56), X oc 7°%7. Shown is the mode for

k= 0.1Mpc™" and the cosmological parameters have been Qbh% = 0.02, h = 0.65, QOf =
0.1, Q5 =1-Qp — QF.

As V" is the mass square of the quintessence field and as in the attractor, the only
available scale is the Hubble parameter, it follows that V" is O(H?). Therefore,

.\ 2
a _
4a?V"? =~ 4ad® (—) a 272

a

= 4. (5.60)

This order of magnitude result is in practice rather under estimating 4a?V"72. In
most situations, the square root in p is therefore imaginary and one is left with a
decaying oscillating mode. Even if 42V " 72 would vanish, the mode would at most
be constant. For as long as w? < 1/3, this mode will even then be subdominant. In
all practical settings, it is decaying o 1/4/7 in an oscillating fashion. Coming back
to the dominating particular solution (5.58), Figure 5.1 shows that the accuracy
of this analytic result is indeed high at early times, when compared to numerical
simulations.
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CHAPTER 5. INITIAL CONDITIONS

5.2.1 Quintessence Energy Density Perturbation

Intuitively, one expects that the energy density perturbation D/ should remain
constant on super-horizon scales®. This is true, at least for tracking solutions,
because from the scaling relations of Section 2.3.1 and Equation (5.56), it follows
that

X 14
— = const, X — = const. (5.61)
Y p

Hence, making use of X oc 7(!73%)/2 and Equations (2.29, 2.27)

] X (7) Vi) (5.62)

Py

14 3w¥
30— U _X(T){MP\/m}] (5.63)

with X (7) given by Equation (5.58). For w¥ = —1/3, the X-dependent contri-
bution cancels. However, this doesn’t mean that there is no quintessence energy
fluctuation, because there is still the time fluctuation ¥ present. This accounts
for the apparent energy fluctuation of observers measuring the same background
density, yet disagreeing about the corresponding time. For exponential potentials,
it turns out that Dy is particularly simple.

1 —3w? X(71)
2 TQ

Dy =const = (1+w?) [3<I>—\Il +

— (1+w?)

Early time exponential potentials
For the exponential potential the derivatives of the potential are V' = —AMp ly
and V" = \2M,%V. Hence, Equation (5.58) simplifies to

X (1) = 22 1O Mp. (5.64)

Thus, the field fluctuation remains constant during the early universe on super-
horizon scales for exponential potentials and their relatives (like LKT). In addition,
Equation (5.62) simplifies to

Df = 4% — 2V, (5.65)
where we have used Vy,/p, = —A/(3Mp). The constant behaviour of X and Dg is
depicted in Figure 5.2.

5.2.2 Adiabatic Initial Conditions including Quintessence

From the definition of S,.;, (5.1), we see that adiabaticity requires

D¢ = (1 +w*)DC. (5.66)

SIf not by some initial condition forced out of this solution
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Figure 5.2: Gauge invariant quintessence field fluctuation X (7) (solid line) and energy
density perturbation Dy (long dashed line) as a function of conformal time for an ex-
ponential potential. Also drawn is the line const = 1. According to Equation (5.65),
Dy = 4% — 2V and for the adiabatic conditions used, 4® — 2¥ = 1. The agreement of

numerical and analytic results is very good. The mode shown has k = 0.1 Mpc ™' and the
cosmological parameters are Q5h? = 0.02, h = 0.65, Qf = 0.1, O =1—Qf — QF. The
horizon at equality and today are 79 ~ 9130Mpc and 7q = 40Mpc.

In addition, this shouldn’t change instantly after specifying the initial condition,
leading to the demand

Dy = i” Dy, (5.67)
where we assumed that Dy is at least nearly constant. Using the first constraint
yields

X = —%(1 +u®) [3<1> ~ U+ D, + X@*l]
I 1. X
- Py |cu+ S :
7L+ w?) |5 2| (5.68)
where
Ly [(,5 (ﬁ@W./l - W@V’) +a?W {4V - ﬁ@WV”}}
(5.69)

[0 =W @r 1+ G71G) + GA| V! + (57 Wa2V" — A) Wi,

is fixed by the second requirement and the equation of motion for X (3.73) and
W= (1+w¥), A=V'/p,. In our numerical simulation, these rather complicated
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CHAPTER 5. INITIAL CONDITIONS

expressions give the initial conditions for X and X. In the next few lines, we will
prove that for tracking quintessence, X given by the above and the tracking value
(5.58) coincide.

For tracking quintessence, w¥ vanishes. Thus D‘; = 0 from which it follows
that . ,

(1+ w‘p)£ +X (Y—) = const, (5.70)
® Py

where we have assumed that ¥ and & are (at least nearly) constant. As both ¢
and V'/p, follow a power law in the attractor, Equation (5.70) forces X to follow
a power law in 7 also. If each of the two terms in Equation (5.70) is constant
by itself, then the scaling relation (2.33) determines X oc 7(173%*)/2_ This is just
the behaviour of X from Equation (5.56). Thus, the solution for X from the
adiabaticity requirement and the ‘tracking solution’ for X from Equation (5.56)
are proportional to each other. However, the ‘adiabatic’ X (5.69) has been derived
using the equation of motion for X (3.73). The very same equation that is used to
derive (5.56). As both solve the equation of motion and as they are proportional to
each other, we are lead to conclude that they coincide.” To complete the proof, we
have to show that each of the two terms in Equation (5.70) is conserved separately.
Suppose that this wouldn’t be the case, but still, the sum (5.70) is conserved. Then,
the power-law of X differs from X oc 7(1=3%")/2 and the only possibility left for
(5.70) to hold is a cancellation of the two terms. Using the relations (2.29) and
(2.27), Equation (5.70) then becomes

3
X + 5(1 +w?)oX =0, (5.71)

where o = sign(V') and o = —1 in the case we are interested in. The solution to
Equation (5.71) is X = X73(1+%?)/2_ However, for w? # —1/3, this solution is not
the one of (5.56), (5.59). As this is the only solution to the equation of motion in
the tracking regime, we are led to conclude that a cancellation in the sum (5.70) is
not possible, except for w¥ = —1/3. In this case, the solutions coincide anyway and
both terms are once again conserved separately (and as we know from Equation
(5.63), they cancel each other). This completes the proof.

A problem arises, because to evaluate (5.69), one needs ¥. This in turn is
given by II, and ®. To get ®, one needs to solve Poisson’s equation including
quintessence

(12[04 + Q)] + 9(1 +w?)Q?) = 3[Q) + QY] [Dy,, + 4Vyz ]
+30Q7 [Df +3(1+w)V,z '], (5.72)

where we have used the (still valid) relations V,, = Vy, Dy, = Dy~ and neglected
the (small) matter contribution.® Practically all relations of the previous section

"To prove this by direct calculation seems rather difficult.
8We have also dropped the term proportional to x>, as it is negligible for early times and never
used in the derivation of ®°, etc.
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between the perturbation variables are still valid, as only Poisson’s equation is
changed. Tt is clear from this Poisson equation (5.72), that if 3(1 +w¥)V,, =4V,
then solutions for ® from Poisson’s equation without quintessence (5.21) also solve
(5.72). For arbitrary quintessence, this is not clear, as X is given by the complicated
expressions (5.68) and (5.69).

Yet, if Q¥ is subdominant at early times, Poisson’s equation will practically
stay the same as without quintessence and ® will be given by Equation (5.48). In
addition, even if ¥ is relevant, then usually potentials that look exponential at the
time of interest are involved. Luckily, exponential potentials lead to w = 1/3 and
therefore a o< 7 is still valid. In addition, their tracking assures that the relations
of section 2.3.1 are fully applicable. Using the fact that X = const, and Equations
(2.27, 2.33) yields

k 1 L
th = = = _k\Ill —l_w@ V’ =
¥ w ¥
kv 1
S S -
3(1—wv)s 2
- v, (5.73)

Thus, quintessence models with potentials that behave like an exponential at the
time of interest, do not alter the value of ® (and ¥). Unfortunately, we can say
nothing generic® about the influence on ® in the case of a substantial quintessence
contribution at early times with arbitrary potential.

To put it in a nutshell: for most models of practical interest, Qf is either neg-
ligible at initial times, or the potential behaves like an exponential. In both cases,
® stays the same as without quintessence. One can therefore use Equations (5.44-
5.49) together with (5.68) and (5.69) to specify the initial adiabatic conditions.'®

9At least nothing notable. In principle, one can solve the problem, however the result is rather
lengthy and of little practical use. We therefore omit it here.

10Making a mistake, whenever quintessence is non-negligible at early times and the potential is
not exponential.
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Footprints of Quintessence

The non-genericness of quintessence makes it difficult to detect it and even more
difficult to rule it out. In this chapter, we are going to dicuss possibilities to find the
traces dark energy could have left behind. We will mainly focus on CMB and SNe Ta
experiments, touching only briefly structure formation. In addition to these three
observation possibilites, lensing [57] as well as bounds from big bang nucleosynthesis
(BBN) [11,59] play an important role. For an overview of observation strategies,
see for instance [58,60]. If dark energy is not a cosmological constant, then its time
varying behaviour may be imprinted at different epochs. For instance, a detection
of, say 5% dark energy at last scattering would mean that the dark energy must be
dynamical. But even if observational tests do not lead to a detection, they still put
stringent bounds on each model. Already, it is by no means trivial to find a model
with sensible parameters that passes observational tests. The current constraints
available together with the epoch each test probes are summarized in Figure 6.1.

Our aim is not to constrain a particular model as good as possible. In fact,
there is no particular reason why any of the models on the market should be the
quintessence realization. Therefore, we will describe main features of quintessence
relevant for CMB and SNe Ia in a model independent way. With very few param-
eters, e.g. the influence of quintessence on the CMB can be determined. Apart
from the better understanding due to this analytic description (compared to sim-
ulations), one can also estimate whether a given model will pass CMB constraints
without explicitly using a CMB Boltzmann code. Of course, our findings are ap-
plicable in universes without quintessence also. For instance, the phase shift of the
third peak in the CMB multipole spectrum is quite insensitive to the details of the
cosmological model.

6.1 Introducing Quintessence in the CMB

In the following sections, we will discuss in which ways quintessence influences the
CMB. For as long as quintessence is not coupled to any other form of matter or
radiation, it can only change the expansion history and - less importantly - the in-
tegrated Sachs-Wolfe effect. We will see that changing the expansion history leads
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Figure 6.1: Constraints on dark energy versus redshift. The upper bound each test places
on (% is indicated by shaded boxes. A viable model needs to stay within these regions.
Very short termed violations of the bounds (though seemingly unnatural) are of course still
possible.

to a different spacing between the peaks in the CMB. In principle, one could use
this effect to detect the amount of quintessence before recombination. However, the
Hubble parameter can mimic the influence of quintessence, spreading the separa-
tion between peaks. Hence, one needs independent information about the Hubble
constant, in order to determine the amount of quintessence at last scattering.

In a flat universe, the acoustic scale [ 4, we will be calculating determines the av-
erage spacing Al between the peaks. We will derive an analytic expression depend-
ing only on the averaged equation of state wy from Equation (2.44), the averaged
amount of quintessence before recombination, Ql";, and the amount of quintess-
ence today, €f. When comparing this analytic formula for the acoustic scale to
numerical simulations, the typical precision turns out to be better than 1%.

Even though the acoustic scale yields the average spacing between CMB peaks,
it is inappropriate to estimate the location of the peaks. Hence, in a second step, we
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are going to quantify the relation between the acoustic scale and the peak locations.
The results on these peak shifts are applicable to universes without quintessence
as well and have been used to analytically describe main features of the CMB [61].
As a side effect, we will be in the position to determine the acoustic scale from
measurements - an extremely valuable result. But let us first turn to the acoustic
scale.

6.2 The Acoustic Scale of the CMB

The equation of state of quintessence influences the expansion rate of the Universe
and thus the locations of the CMB peaks [3,28,62—64]. The influence of dark energy
on the present horizon and therefore on the CMB has been discussed in [39]. A
likelihood analysis on combined CMB, large scale structure and supernovae data
[65,66] can also give limits on the equation of state. Several of these analysis con-
centrate on models where the dark energy component is negligible at last scattering.
In contrast, we are interested particularly in getting information about dark energy
in early cosmology. Therefore, the amount of dark energy at last scattering is an
important parameter in our investigation.

The inter-peak spacing is to a good approximation [44,45] given by the acoustic
scale!
0~ s

a=m (6.1)

CsTis

The acoustic scale depends directly on the present geometry through 7y as well as
indirectly through the dependence of 75 on the amount of dark energy today (see
Equation (6.5)). In section (2.4), we have already calculated 7y using a suitably
defined average equation of state wy for the quintessence component. In addition,
the average sound speed until decoupling is ¢, ~ 1/v/3. According to Equation
(4.9), we then only need to estimate 73 to get 4. To this end, we assume that the
fraction of quintessential energy Q¥ (7) does not change rapidly for a considerable
period before decoupling and define an effective average

_ Tls
0 =1t /0 QP (r)dr. (6.2)

This average is dominated for 7 near 7;3 whereas very early cosmology is irrelevant.
Approximating ¥ by the constant Ql"; for the period around last scattering, the
Friedmann equation (2.7) is just

SMEH?(1—QF) = p™ + p" = pfla™® + pha™". (6.3)

Here py* and pf, are the matter and relativistic (photons and 3 species of neu-
trinos) energy densities today. Neglecting radiation contributions today, we have

'See also section 4.1.
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Figure 6.2: The CMB Spectrum for A-CDM (model C), leaping kinetic term (model A)
and inverse power law (model B) quintessence universes with QF = 0.6. The data points
from the Boomerang [67] and Maxima [68] experiments are shown for reference.

3MpHZ(1 — QF) = pi*, which we insert in Equation (6.3) to obtain

2
() =m0 - 00 [0 - 9f)atr) + 5. (6.4

Separating the variables and integrating gives

o [1=9F Qn Qb
s = 2H; " I_Q}E{\/als-q-l_[;zg—\/l_gzg}, (6.5)

which is well known for vanishing Qlﬁ. For fixed Hy, Qf, Qf and aj, we see that
Ts = T (1 — anps)(l/ 2), where 7% is the last scattering horizon for a A-CDM
universe (which we treat here to be just a special realization of dark energy with
w = —1). Inserting Equations (6.5) and (2.48) in Equation (4.9), we get the desired
expression for the acoustic scale

=1
o F(Q‘p Eg) QF QOF
Iy = me; ' | —=0 2 0 — 0 -1 :
A = TCy —— als-l-l_Qg 1_QO¢ ) (66)
\/ Is
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with F given by Equation (2.49) and today’s radiation component Q5h? = 4.2 x
1075, Please note, that since it is the combination Q52 that is measurable, the ex-
pression (6.6) above depends strongly on the Hubble parameter. Both, an increase
in Ql‘g and a decrease in h lead to an increase in [ 4. The sound velocity ¢ and the
scale factor of decoupling ajs have to be determined numerically to achieve high
accuracy in [4. In our case () = 0.05 and h = 0.65), they are afsl = 1130 and
¢s = 0.52. However, using a)s = 1100 and c¢; = 1/\/3 ~ 0.57, is still enough for a
quick estimate at the 10% level.2 We have evaluated Equation (6.6) for quintessence
models with various parameters (see section 2.3 for definitions of the models):

A. A Leaping kinetic term model with o = 1, ki, = 0.05, 0.1, 0.2 and 0.26 and
¢1 is adjusted to ~ 277 in order to obtain €f = 0.6. The value of Qf is
determined by these parameters.

B. An inverse power law potential, with & = 6,22 and 40, and A adjusted such
that QF = 0.6. Once again, Qf, follows.

C. A cosmological constant tuned such that Qf = Q) = 0.6.

D. The pure exponential potential with A = 1/3/Q;.

The results are summarized in Table 6.1, where we give [4 together with the
locations Iy, I of the first two peaks computed by CMBEASY. The last entry contains
the peak spacing Al averaged over 6 peaks for the numerical solution. Of course,
when running CMBEASY, one can also determine [4 directly from the background
evolution via Equation (4.9). The formula (6.6), the numerical value of /4 and the
averaged peak spacing Al are found to be in very good agreement.

In Table 6.2, we determine the accuracy of the estimates of 15 (6.5) and 7 (2.48)
by comparison with the numerical solution. The good agreement demonstrates that
the averaging prescriptions Equation (2.44) and (6.2) are indeed meaningful. We
conclude that the influence of a wide class of different quintessence models (beyond
the ones discussed here explicitly) on 75, 7 and [4 can be characterized by the
three quantities Qf, Ql‘ps and wy.

For the models (A) and (D), quintessence is not negligible at last scattering. The
pure exponential potential requires Qf < 0.2 for consistency with nucleosynthesis
and structure formation. It does not lead to a presently accelerating universe.
We quote results for QF = 0.6 for comparison with other models and in order to
demonstrate that a measurement of [, can serve as a constraint for this type of
models, independently of other arguments. The inverse power law models (B) are
compatible with a universe accelerating today only if Ql"; is negligible. Again, our
parameter list includes cases which are not favoured by phenomenology. As an
illustration we quote in Table 6.1 the value of g, which should typically range
between 0.6 and 1.1 for the models considered. For example, the exponential

2Generically, the sound velocity is smaller than the theoretical upper limit 1/4/3 and hence
using this upper limit, Equation (6.6) will give a lower bound on 4.
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Qlﬁ wo I Is lftim' JAN o8
Leaping kinetic term (A), Qf= 0.6
8.4 x 1073 —0.76 215 518 292 291 0.86
0.03 —0.69 214 520 294 293 0.78
0.13 —0.45 211 523 299 300 0.47
0.22 —0.32 207 524 302 307 0.29
Inverse power law potential (B), Q5= 0.6
8.4 x 1078 —0.37 199 480 271 269 0.61
9.9 x 1072 —0.13 178 443 252 252 0.18
0.22 —8.1x 1072 172 444 257 257 0.09
Pure exponential potential, Q5= 0.6
0.70 7x 1073 190 573 368 377 0.01
Pure exponential potential, 2 = 0.2
0.22 4.7x107% 194 490 282 281  0.38
Cosmological constant (C), Qf= 0.6
0 -1 219 527 296 295 0.97
Cold Dark Matter - no dark energy, Q5= 0
0 — 205 496 269 268 1.49

Table 6.1: Location of the first two CMB peaks [y, [, for several models of dark energy.
We also show the analytic (from Equation (6.6)) and numerical (from CMBEASY) average
spacing of the peaks and og, the normalization of the power spectrum on scales of 8h~'Mpc.

potential model with large Ql‘ps is clearly ruled out by its tiny value of og®. The
main interest for listing also phenomenologically disfavored models arises from the
question to what extent the location of the peaks can give independent constraints.
From the point of view of naturalness, only the models (A) and (D) do not involve
tiny parameters or small mass scales.

The horizons and [5 for the models considered are shown in Tables 6.2 and
6.1. We note that the estimate and the exact numerical calculation are in very
good agreement. A different choice of a5, say al_s1 = 1150, would have affected
the outcome on the low-percent level. Also, the average spacing obtained from
CMBEASY varies slightly (at most 2%) when averaging over 4, 5 or 6 peaks. For
a fixed value of the equation of state, wy = —0.7, we plot the peak spacing as a
function of Qf and Qlﬁ, in Figure 6.3.

30f course o itself also depends on other cosmological parameters and so it alone cannot be
used to determine Q7.
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Qig wo Wo T(z)estim. AT() Tltzstim. ATls
Leaping kinetic term (A), Qf= 0.6
8.4 x 1073 —0.79 —0.76 13073 0.1% 266 0.3%
0.03 —0.79 —0.69 12971 0.2% 263  0.3%
0.13 —0.78 —0.45 12470  1.0% 248 0.2%
0.22 —0.75 —0.32 12012 1.3% 236 0.0%
Inverse power law potential (B), Q5= 0.6
8.4 x 1078 —0.32 —-0.37 12205 0.5% 267 0.0%
9.9x 1072  —0.16 —0.13 10774 0.2% 253  0.2%
0.22 —-0.1 —-81x1072 10241 0.3% 236 0.2%

Pure exponential potential, 2= 0.6

0.70 0.00 7x 1073 9014  0.4% 146  2.3%

Pure exponential potential, 2 = 0.2

0.22 5x107° 4.7x10°3 9107 0.1% 191 0.3%

Cosmological constant (C), Q5= 0.6

0 -1 -1 13330  0.0% 267 0.0%
Cold Dark Matter - no dark energy, Qf= 0
0 — — 9133  0.0% 201 0.5%

Table 6.2: Horizons in Mpc at last scattering and today for various kinds of quintessence.
The deviation of our analytic estimates and numerically obtained values for 79 and 75 are
also given.

For fixed @y and Qf, we see from Equation (6.6) that [y oc (1 — Q7)(~1/2).
Hence, when combining bounds on Q¢ and wy from the structure of the Universe,
supernovae redshifts and other sources with CMB data, the amount of dark energy
in a redshift range of z ~ 10° to last scattering z ~ 1100 may be determined.
However, as the Hubble parameter can mimic the effects of Qlﬁ, one needs to know
Hj from an independent measurement.

6.3 CMB Peak Positions and Quintessence

The locations of the peaks and troughs of the CMB anisotropy spectrum can serve
as a sensitive probe of cosmological parameters [69-72,39,63].

There are however many processes which contribute to the final anisotropies,
and these must be calculated from the systems of coupled partial differential equa-
tions of section 4.4. As such it is not possible a priori to derive an accurate analytic
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Figure 6.3: Contours of equal peak spacing [5 as a function of Qf and Qlﬁ.The average

equation of state is kept fixed, wy = —0.7. Increasing Qlﬁ leads to a pronounced stretching

of the spacing.

formula for the peak locations. There exists a numerically-obtained estimate of the
location of the first peak [73] for a universe with no cosmological constant, namely
l1 ~ 200 Q;ll/ ?. This was extended to universes with A # 0, by perturbing around
the A = 0 value [74], but holding all other parameters fixed. In this section, we
calculate the locations of the first three peaks as a function of several cosmological
parameters, including universes with a large dark energy component. We show how
these results can be used to extract cosmological information about, for instance
the history of quintessence, from just a handful of CMB data points and also to
speed up multi-parameter likelihood analysis.

Before last scattering, the photons and baryons are tightly bound by Compton
scattering and behave as a fluid. The oscillations of this fluid, occurring as a re-
sult of the balance between the gravitational interactions and the photon pressure,
lead to the familiar spectrum of peaks and troughs in the averaged temperature
anisotropy spectrum which we measure today. The odd peaks correspond to max-
imum compression of the fluid, the even ones to rarefaction [45]. In an idealized
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Qn Qa Ip (estim.) [ (numeric.) % error

0.4 0.6 296 219 35
1.0 0.0 269 205 31

Table 6.3: Values of the location of the first peak [ estimated by Iy =~ [4 and calculated
numerically via CMBEASY. The intuitive model clearly does not describe the location of
the first peak well, though the spacings between other peaks is better. The above values
were calculated assuming h = 0.65, 0, = 0.05, n = 1 and a)s = 11001,

model of the fluid, there is an analytic relation for the location of the m-th peak:
I = mly [75,44] where [ 4 is the acoustic scale which may be calculated analyti-
cally [72] and depends on both pre- and post-recombination physics as well as the
geometry of the universe.

The simple relation [,,, = m [4 however does not hold very well for the first peak
(see Table 6.3) although it is better for higher peaks [69]. Driving effects from the
decay of the gravitational potential as well as contributions from the Doppler shift
of the oscillating fluid introduce a shift in the spectrum. In order to compensate
for this, we parameterize the location of the peaks and troughs as in [75] by*

Im =14 (m - ‘Pm) =la (m — Q- 6‘Pm) . (6-7)

For convenience, we define ¢ = @1 to be the overall peak shift, and dp,, = @, — @
the shift of the m-th peak relative to the first.® The reason for this parame-
terization is that the phase shifts of the peaks are determined predominantly by
pre-recombination physics, and are independent of the geometry of the Universe.
In particular, the ratio of the locations of the first and m-th peaks

b _la(m =@ = dpm) | m—1=0pm

L la (1-9) l-p

probes mostly pre-recombination physics and so can be used to extract information
on the amount of dark energy present before last scattering [72].

If we knew how the phase shifts depended on cosmological parameters, it would
be possible to extract [4 from the measured CMB spectrum. Since any given cos-
mological model predicts a certain value of [ 4, this is a simple way of distinguishing
between different models — in particular we know from section 6.2 that different
quintessence models with the same energy density and equation of state today can
have significantly different values of /4. Finally, having extracted [4 from observa-
tions, we could speed up likelihood analysis by being able to discard models not
leading to the right value of the acoustic scale before a single perturbation equation
has to be solved.

, (6.8)

“The peaks are labeled by integer values of m and the troughs by half-integer values.
®There should be no confusion between the quintessence field o, which is not explicitly used in
this section and the phase shifts.
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Symbol Range

om [0.2, 0.6]
Qph?  [0.005, 0.04]
Qf [0, 0.23]
h [0.55, 0.80]
n [0.8, 1.2]

Table 6.4: Parameter ranges used in this section.

In a [75], a fitting formula for @ was given
_ Ty
5~ 0.267 (—) : (6.9)

for the values n = 1, Qh? = 0.02. In this formula, r, is the ratio of radiation to
matter at last scattering®

re = pr(2) [ pm(22) = 0.042 (uh?) " (2,/10%) . (6.10)

Equation (6.9) however, is valid only for the given values of spectral index, Hubble
parameter and baryon density. It does not include the dependence of the peak
location on the amount of quintessence present at last scattering, and is valid only
for the first peak /;. In the following, we give fitting formulae (see Appendix B)
for the shifts of the first three peaks and the first trough and describe how one can
use them to extract cosmological information from future CMB experiments.

Our first task in computing fitting formulae for the peak locations is to decide
which cosmological parameters to fit to. The dependence on the baryon density
and the Hubble parameter is sensitive only to the product Q,h?, and so we do not
seek to fit for them separately. We further take r, defined in Equation (6.10) and
the spectral index n as parameters. For the quintessence dependence, we use the
effective average density component before last scattering Ql‘ps defined in Equation
(6.2).

We recall that the peak shifts are sensitive mainly to pre-recombination physics
and so we do not need to use the value of Q¥ today as a parameter. Of course
the acoustic scale I4 does depend on today’s quintessence component (see section
6.2). We will thus seek to find the dependence of (¢, d¢;,,) on the cosmological
parameter set (Qth,r*,n,Qlﬁ). In performing these calculations, we restricted
each of the cosmological parameters used to lie within a certain interval, which
in each case is over- rather than under-cautious. The ranges of parameter values
chosen are displayed in Table 6.4. To gain intuition for the fitting formulae, we plot
curves for the shift of the first and the second peak as well as the relative shifts of
the first trough and the second peak in Figures 6.4 and 6.5.

5This relation also holds in the presence of quintessence.
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Figure 6.5: The relative shift of the second peak (a) and the overall shift of the third peak (b). In both figures, the long dashed,
dotted and the dashed lines represent the fitting formulae for the parameters (Qyh?,ry,n, Q) = (0.02, 4, 1, 0), (0.02, 4, 1, 0.1) and
(0.01, 74, 1, 0) respectively. The large symbols show the data corresponding to these curves. The errors quoted in Appendix B are
calculated from the spread of these symbols relative to the curves. The sprinkled dots represent thousands of models selected at random
from the parameter space given in Table 6.4, and indicate the ranges of values taken on by ¢ etc. for these models.
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In Sections 6.3.1 and 6.3.2 we describe a systematic procedure for extracting the
acoustic scale [ 4 from the location of the first three peaks. Section 6.3.3 introduces
a quantity k which is useful as it depends only on two of our four parameters. The
model (in)dependence of the fitting formulae is discussed in Section 6.3.4. Finally,
our fitting formulae are given in Appendix B.

6.3.1 Retrieving the Shifts from CMB Measurements

With future high precision measurements of the MAP” and PLANCK® satellites,
we expect that the position of the first three peaks and troughs will be determined
to high accuracy. From these few data points, it is possible to extract valuable
information on the cosmological parameters. We have observed, during our com-
putation of CMB spectra for thousands of universes, that the overall shift of the
third peak @3 (i.e. p3 = ¢ + dp3) is a relatively insensitive quantity. In the pa-
rameter range we used (see Table 6.4) we found that @3 = 0.341 £0.024.% In using
@3 = 0.341 we introduce slight (at most one percent) systematic deviations in our
estimate, because an increase of O typically increases @3 (see Fig. 6.5(b)). We
will partially correct for these effects by improving our estimate for 3, via the
procedure described below.

We start by extracting our first estimate of the overall phase shift, from the
measured locations of the first and third peaks

_ 1 h
p=1—-—(3—¢3)—~1—2.66—. (6.11)
I I3

Comparing this estimate with the value calculated from numerical simulations, we
find Ap = 0.006. Having a handle on the overall phase shift, it is now simple to
infer the relative shifts d¢,, of the remaining troughs and peaks. From equation
(6.8) we get the relation

Som = (m —1) — (ll—": —1> (1-). (6.12)

The error of this estimate is

A (8pm) = (ll_’“f - 1) Ap. (6.13)

Having a first (and already quite accurate) estimate of the shifts, we now correct
for the systematic effects described above. Taking the cosmological parameter set
we wish to maximize over (i.e. Table 6.4), we calculate for each model universe the
phase shifts of the first three peaks using the fitting formulae given in Appendix
B. We then discard those models for which any phase shift deviates significantly

"http://map.gsfc.nasa.gov/
Shttp://astro.estec.esa.nl/SA-general /Projects/Planck/
9Here and in the following, we quote 1-o errors. All errors follow approximately a bell curve.
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QU%) (3™ (5™

0-2 0.313 0.326
10-12  0.340 0.337
18-20  0.362 0.348

Table 6.5: Binned average 3 of the numerical simulation and the improved deduction.

(say > 2-0) from the data-inferred values. This leaves an improved cosmological
parameter set, for which the average value of o3 is calculated (see Table 6.5). This
improved o3 can then be used to re-calculate the phase shifts from Equations (6.11)
and (6.12).

6.3.2 Extracting [, from CMB Measurements

Using the improved value!? for @3 from the previous section, we can extract to very
good accuracy the acoustic scale [ 4, provided I3 has been measured:

3— 3

Ia (6.14)
In fact, the deviation of the value of [4 estimated from this formula and the
numerically-obtained value is small for models within the parameter range of Table
6.4, with a 1-0 error of 0.8% (see also Table 6.6). This is a very valuable result,
for the value of [4 can be simply computed for any given quintessence (or indeed
any other) cosmology. In particular, different quintessence models with the same
energy density and equation of state today can have significantly different values
of [ 4. In this way stringent bounds on cosmological models can be imposed just by
comparing the [4 value of specific models.

6.3.3 Insensitive Quantities

The phase shifts depend on the cosmological parameters (Qth,r*,n, Qﬁ) Of
course, if it were possible to find a linear combination of phase shifts which is
insensitive to some of these parameters and thus reduce the dimensionality of our
parameter space, it would greatly help in extracting cosmological information. To
this end, we note an anti-correlation between @ and dp3 — empirically, we have
found that the quantity

2
HE(;_?-l-g(S(pg (6.15)

is practically insensitive to 7, and Qyh?, and depends only on n and Ql‘ps. In fact,
it is to very good approximation given by the fit

k= (0.277 + 0.2849) (1.3 — 0.3n), (6.16)

%Tn fact, using @3 = 0.34 instead of the improved value also gives reasonable results.
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Figure 6.6: The quantity & as a function of r,. It is practically insensitive to r, and Qh>
for most of the initial conditions considered. The dots represent fifty thousand models with
parameters in the ranges given in Table 6.4 The +’s and x’s represent models with Qlﬁ:
0 and 0.22 respectively, for n = 1, and all values of other input parameters.

with Axfi* &~ 0.0024 being the deviation of the fit from the numerically-simulated
values (see Fig. 6.6). Following the procedure in Section 6.3.1, we can deduce k
from the measured values of the peak locations. Within our parameter range,  is
then determined with error Agdeduc- = 0,013.

In the parameter space we have considered, the value of s varies between
0.26 and 0.36. Hence to 1-0 confidence level, about three quarters of our two-
dimensional (7, Ql";) parameter space can be excluded for any given . For instance,
without quintessence, the value of k lies between 0.26 and 0.29 for n € [0.8,1.2].
The measurement by MAP or PLANCK of a value of x > 0.29 would therefore be
a strong hint of a dark energy component playing a role at last scattering.

6.3.4 Model Dependence of the Shift Functions

The fitting formulae were obtained using a standard exponential potential [6] for
the quintessence component. Because the shifts are almost independent of post
recombination physics, we expect the results to be approximately correct for any
realization of quintessence, i.e. all potentials. One should however be cautious
with models that are qualitatively extremely different from the exponential poten-
tial before last scattering, as for example the Ratra-Peebles inverse power law [7]
with substantial Ql";. In these models there is a sharp increase in Q¥during recom-
bination, whereas the quintessence content for the exponential potential is fairly
constant at this epoch. The inverse power law is characterized by its potential
VIPL = 4/p®. Models with « Z, 2 are phenomenologically disfavored [35]. We use
these models only as cross checks for the fitting formulae. In terms of phase shifts,
one finds that the sensitive relative shifts of the first trough and the second peak
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Qli(%) ll l3/2 12 13 lA (,5 5(,03/2 5(,02 K

Leaping kinetic term

3 214 396 521 788 293 0.269 -0.121 -0.045 0.287
294 0.271 -0.119 -0.041 0.292
13 210 396 522 799 301 0.301 -0.120 -0.038 0.317
301 0301 -0.120 -0.038 0.318
22 208 397 524 808 307 0.324 -0.116 -0.030 0.341
305 0.320 -0.120 -0.035 0.333

Ratra Peebles inverse power law

5x 1073 199 366 480 724 269 0.259 -0.119 -0.043 0.278
270 0.261 -0.117 -0.038 0.284

10 178 339 443 674 251 0.294 -0.140 -0.054 0.304
253 0.298 -0.138 -0.050 0.312

22 172 338 444 683 258 0.333 -0.144 -0.057 0.340
258 0.334 -0.145 -0.057 0.340

Table 6.6: The peak locations and the phase shifts of leaping kinetic term [32] and Ratra
Peebles inverse power law [7] models for Q,h%* = 0.021, Qf = 0.6, h = 0.65, n = 1 and
varying Ql“;. The inverse power law models correspond to @ = 6, 22 and 40 respectively.
The first row of each model gives the CMBEASY-obtained values of the locations of the
peaks and the phase shifts as well as [4 and k. The second row gives the values deduced
using the method described in Section 6.3.1.

differ substantially for the two models (see Table 6.6). However, ¢ and x are seen
to be more robust and the deduced value of [ 4 is accurate to within one percent in
every case.

In the next section, we will use this possibility of determining [4 from measure-
ment to constrain quintessence models.

6.4 The Boomerang 2001 Data and Quintessence

The data released in spring 2001 by the BOOMERANG [14] and MAXIMA [15] team
covers the multipoles up to [ ~ 1000. It shows three peaks as distinct features,
seeming to confirm beyond any reasonable doubt the inflationary picture of struc-
ture formation from predominantly adiabatic initial conditions. Here, we will use
this data to extract the acoustic scale [ 4. This together with bounds from structure
formation will permit us to constrain inverse power law and leaping kinetic term
models. We also show that the new CMB data provides strong evidence for an ac-
celerating universe, independent of supernovae (SNe Ia) data, to which we return
later. In this section, we have assumed a flat universe, with Qyh? = 0.022 & 0.003
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Figure 6.7: The CMB anisotropy power spectrum as measured by BOOMERANG [20]. The
inner vertical lines show the region 820 < I3 < 857 as calculated by the BOOMERANG team
[24], and the outer lines our more conservative region 800 < I3 < 900.

(in accordance with Big Bang Nucleosynthesis) and spectral index n = 1 unless
otherwise stated.

We have shown in section 6.3, that the shift of the third peak, @3 is relatively
insensitive to cosmological parameters, and that by assuming the constant value
w3 = 0.341 we can estimate [4 to within one percent if the location of the third
peak I3 is measured, via the relation (6.14). The measurement of a third peak
in the CMB spectrum by BOOMERANG [14] now allows us to extract the acoustic
scale [ 4 and use this as a constraint on cosmological models. In an analysis of peak
positions, the BOOMERANG team performed a model-independent analysis of their
data [67], and found the third peak to lie in the region

I3 = 845732 (6.17)
from which we calculate the value
4 =316 £8. (6.18)

If we instead chose the more conservative assumption that 800 < I3 < 900, we

would get the bound
la =319 £ 23, (6.19)

We will perform our analysis using both of these ranges for the location of the
third peak. The two ranges are displayed, along with the BOOMERANG data, in
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Fig. 6.7. Independently of [67] we have performed cubic spline fittings to the data
presented in [14], as well as to the combined multiple-experiment data given in [76].
We allowed the data to vary according to the Gaussian errors given. We find for
the BOOMERANG and combined data respectively:

o= 21414, 222414 (6.20)
l, = 524435, 539 +21 (6.21)
l; = 850428, 851431 (6.22)

We applied our CMB-derived [ 4 constraints to two types of quintessence model:
an inverse power law (IPL) potential [7] as defined in Equation (2.23) and a leaping
kinetic term (LKT) model [32], as specified in Equations (2.20,2.21). Please note
that the IPL model has equation of state today given by wy = w(today) = —2/(a+
2). In contrast to this, wy for LKT depends strongly on the precise shape of
k(p).For a steep increase in the kinetic term, one can have wq very close to —1
und thus mimic a cosmological constant at the present epoch (see also figure 6.12).
Other models of quintessence share the effective time dependence of w [38,81]. We
also applied the constraints to a cosmological constant (2§ = Q,) universe (i.e.
IPL quintessence with o« = 0) for comparison.

In Figs 6.8, 6.9 we show for our chosen dark energy models the range of Qf
and h allowed by Equations (6.18) and (6.19). These ranges are similar for the
cosmological constant, LKT (also for Qi‘; = 0.2) and IPL for small & whereas IPL
with a = 2 would be pushed to small values of h. The comparatively low values of
h inferred from the BOOMERANG data can be combined with information from LSS
formation. The growth of density fluctuations slows down when quintessence starts
to dominate. In this way LSS can serve as a probe of quintessence at intermediate
redshifts. We will come back to this in section (6.6). Meanwhile, we note that
cluster abundance constraints for quintessence models with constant equation of
state yield [77]

o), =0.5—-0.1[(n —1) + (h — 0.65)] (6.23)

where 7 depends slightly on w, and typically v ~ 0.6. In [77], the uncertainty for
Equation (6.23) was estimated as 20% at 2-o, and this is the constraint shown in
the plots. We have chosen to shade the 2-0 LSS and conservative [4 concordance
region in the Qf-h plane, but not to impose any bounds on these parameters.
Recently, however, the HST has measured h = 72 + 8 [79], and the 2dF survey
Qb = 0.20 £ 0.03 [80].

The current CMB and LSS data are consistent with a cosmological constant
(Fig. 6.8). The LKT model with 5% quintessence at last scattering is marginally
compatible for small h. If the amount of quintessence at last scattering is increased
beyond 5%, the [ 4 bounds do not change significantly. Compatibility with LSS data
would require, however, even higher h-values, at odds with the BOOMERANG data.
In contrast to the CMB measurements, the determination of og by cluster abun-
dances involves systematic uncertainties that are difficult to quantify. Furthermore,
the theoretical expectation for og depends strongly on the spectral index n.
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Q-h plane (left) and Qf-h plane for LKT quintessence with Q = 0.05 (right). The dotted box indicates the 1-0 maximum likelihood
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Figure 6.9: Constraints in the f-h plane for IPL quintessence, from BOOMERANG and LSS , a =1 (left) and o = 2 (right).
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Figure 6.10: Lines of constant [4 in the Qf-wo plane, for h = 0.6. All universes to
the left of the dotted line are accelerating. For larger values of h, the [4 lines are shifted
north-west.

Some inflationary models indeed connect the smallness of primordial density
fluctuations to n = 1.1-1.15 [78]. Increasing n increases the amount of dark en-
ergy allowed during structure formation. For n = 1.1, the LKT model with 10%
quintessence at last scattering becomes feasible.

The IPL model (Fig. 6.9) with a = 2 is disfavored, with higher values of « even
worse, but o = 1 survives. Of course IPL models with a < 1 provide a better fit
to the data, however for & — 0 IPL approaches the cosmological constant and the
problem of naturalness becomes more and more severe (with possible exceptions
[41]). Similar conclusions on the IPL model have been derived from the 1998
BOOMERANG data [35], but only for fixed h = 0.65. We see from our figures that
the results can be very sensitive to changes in h.

A flat universe is accelerating today if the dark energy component and its
equation of state satisfy

1
Assuming that there is no significant dark energy component at last scattering,
we can combine our constraints on /4 with Equation (6.6). Fig 6.10 shows that

provided h > 0.6, the CMB now gives strong evidence for an accelerating universe,
independently of supernovae data.
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Figure 6.11: Effective magnitudes m$! of low (blue, z < 0.18, from [82]) and high (red,
z > 0.18, from [84]) redshift SNe Ia as a function of z.

6.5 Supernovae Ia

Astronomers use the so called distance ladder to determine the distance of some far
away object. If one knows by some means the distance of an object one can in prin-
ciple determine the distance of any other object by measuring the flux of incoming
photons, provided both objects are equally bright. Unfortunately, one cannot just
enter some spaceship, fly to the two objects in question and measure their bright-
ness.'! Therefore, astronomers make the educated guess that two similar objects
should be similarly bright.

When looking into the deep universe, photon fluxes get low and only bright
objects can be used to calibrate distances. Among the brightest objects are super-
novae, exploding stars. And among supernovae is a class called Type Ia, which look
quite similar. Using an empirical correction factor, SNe Ia seem to become stan-
dard candles. They therefore are an ideal tool to measure redshift versus distance,
provided they really are standard candles.'?

SNe Ia data is usually quoted by the effective magnitude m%ﬁ versus redshift z
(see figure 6.11). The effective magnitude can be expressed as

m& = Mp + 5lgDy(z), (6.25)

"'This, indeed would be the golden age of astronomy

12The universe at redshift z ~ 1 was much younger and there are still doubts possible whether
different environmental conditions could have influenced SNe Ia such that they explode differently
at low and high redshift.
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Figure 6.12: The luminosity distance d;(z) (plotted as d;(z)Ho/2(1 + z)) and (z) for
a ACDM and a LKT universe with Q} = 0.6 and Qf = 0.7 respectively. The equation
of state we(z) of the LKT quintessence is also given. For low redshift, the equation of

state is close to —1, wg = —0.8. For wq [95]1'4 = 09, the luminosity distance of both
LKT and ACDM fall on top of each other in the redshift region relevant for current SN Ia
analysis (two upper most curves). Despite the similar late time behaviour, the LKT model
has Q¥ =~ 0.1 from very early times on, whereas in the cosmological constant model, dark
energy plays a role only recently.

where Dy (z) is just the luminosity distance
z
dn(z) = (14 2) / ()7, (6.26)
0
times the Hubble parameter today:

DL(Z) = HgdL(Z). (627)

In practice, M p is calibrated by fitting m%ff of some given model to the low redshift
data of SNe Ta [82]. With the so fixed Mp, one predicts m$! for the high redshift
SNe Ia and determines the goodness of the fit.

Now, the universe at redshift z = 0...2 can be well described by a mixture of
quintessence and matter. By simply using the Friedmann equation (2.7), on gets

H\? i
(F) = (1 - Q)3 + Qfa—30+D0), (6.28)
0

for an equation of state w, that has been averaged over the redshift range in
question and should generically be close to w(. Inserting Equation (6.28) in (6.26),
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yields
(1+Z)71'DL = (1—|—Z)71H0d[,

= / a2 {(1 - 0f)a™ + Qa0 b 2 (6.29)
0

It is hence the integral (6.29) that determines solely whether a given quintessence
model fits the data or not, provided the equation of state doesn’t change too dras-
tically.!> Unfortunately, there is no closed expression for the integral. However,
(14 2) "Dy, is to very good accuracy described by a straight line in the variable

z = w, [, (6.30)

at fixed redshift z € [0.35,0.7]:
(14 2)7'Dy, = go(2) + g1 (2). (6.31)

As most of the SNe Ia data is in this redshift region, one is led to conclude that dark
energy models that have the same w,, [Qg]l'4 are indistinguishable by current SNe
Ta measurements. This degeneracy is the subject of many publications that try to
quantify the possibilities to measure the dark energy equation of state by a future
SNe Ia sattelite mission [19,58,83]. SNe Ia measurements have been extensively
used to restrict dark energy models [21,40,58,59,84-87]. A cosmological constant is
restricted to Q24 € [0.5,0.9] at 20 confidence level [84,85]. Using the relation (6.30)
this bound on Q, can easily be translated into one on w, and Q.

—0.86 [0 < w, < —0.38[QF] " (6.32)

For the inverse power law model, where @, = -—2/(a + 2), this gives
QF > 0.3(a +2)%/7, i.e. assuming that QF < 0.8, we have a < 1.9 (see also [40]).
This is comparable to our CMB and LSS constraint of section 6.4. On the other
hand, leaping kinetic term models can be consistent with SNe Ia and nevertheless
differ substantially from cosmological constant scenarios for the CMB and LSS (see
figure 6.12). For these models, the CMB~+LSS and the SNe Ia constraints are not
directly related and cannot easily be compared.

6.6 Structure formation

The influence of quintessence on the growth of structure has been discussed in [28,
77,89-92]. In a CDM universe without dark energy, cold dark matter perturbations
are not growing'* within the horizon during the radiation dominated regime. Only
from matter-radiation equality on, cdm fluctuations within the horizon start to
grow.

!3Examples for possible pitfalls with drastically changing equations of state can be found in [88].
"The statements on perturbations in this section are valid in synchronous gauge.

80



6.6. STRUCTURE FORMATION

Quintessence has roughly two main effects on this picture [91,92]: firstly, from
the definition of aeq (2.41), one sees that aeq gets shifted. This is due to the
fact that whereas in a universe without quintessence, Qf ~ 0.9, one has including
quintessence Qf ~ 1 — Qp. Therefore, structure growth starts later in a universe
with substantial QF. The second main effects is a decrease in the growth exponent
for cdm fluctuations: the more dark energy present at some epoch, the more slowly
structure grows. In [91,92] the useful formula

US(SO) az?ff/5 (1 _ 96\)*(1+w*1)/5 TO(()O) (633)

relates the rms-fluctuations on scales of 82~ Mpc of any quintessence model to a
model with a cosmological constant, where Qf = Qf]\. In the above, Qg and w are
suitably defined averages [91,92]. The usefulness of Equation (6.33) lies in the fact
that if one knows og(A) (say, from a data base), then one can estimate og(g) from
the knowledge of the background evolution only. We use this in the likelihood part
of CMBEASY to give a quick (two orders of magnitude faster than normal) estimate
of likelihoods.

Applying Press-Schechter Theory to quintessence scenarios, cluster abundance
constraints yield the useful relation (6.23) derived in [77]. For any quintessence
model, the normalization of the fluctuations via the CMB predicts a certain value
of 0s. Relation (6.23) then determines whether this value of og is compatible with
cluster abundances or not.
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Quantum Loop Corrections

The evolution of the quintessence scalar field is usually treated at the classical level.
However, quantum fluctuations may alter the classical quintessence potential. We
will in the following investigate one-loop contributions both from quintessence and
fermion fluctuations to the effective potential. We' will show that in the late
universe, quintessence fluctuations are harmless for most of the potentials used
in the literature. For inverse power laws and SUGRA inspired models, this has
already been demonstrated in [34]. Also, it has been noted in [94,95], that the
mass of the quintessence field needs to be protected by some symmetry. In contrast
to the rather harmless quintessence field fluctuations, fermion fluctuations severely
restrict the magnitude of a possible coupling of quintessence to fermionic dark
matter, as we will show.

In Euclidean conventions, the action we use for the quintessence field ® and a
fermionic species ¥ to which it may couple [4,71,101] is

S = /d4:1: VI|MER + %(9”@(:1:)8”@(:1:) + V(®(x))

+U(z) [i Y +7°me(®)] T(z)|, (7.1)

with mg¢(®) as a ® dependent fermion mass. This ® dependence (if existent in a
model) determines the coupling of the quintessence field to the fermions. As long as
one is not interested in quantum gravitational effects, one may set \/g =1, R =0
and replace Y — @ in the action (7.1).

By means of a saddle point expansion [96], we arrive at the effective action
['[®] to one loop order of the quintessence field. The equation governing the dy-
namics of the quintessence field is then determined by 5F[(I)01]|<I>01=<I>;1 = 0. When
estimating the magnitude of the loop corrections, we will assume that @7 is close
to the solution of the classical field equations: 6S = 0. Evaluating I' for constant
fields, we can factor out the space-time volume U from I' = UV. This gives the

'This chapter is based on work in collaboration with Jérg Jéickel [93].
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Figure 7.1: Pure quintessence fluctuations (depicted as dashed lines). The loop of the
fluctuating quintessence field modifies the potential. Since the potential involves in princi-
ple arbitrary powers of ®, we depict V' as multiple external lines.

effective potential

A " A%errn 2

Vl—loop(q)d) = V(q)d) +

Here, primes denote derivatives with respect to ®; ®.; is the classical field value
and A and Ag are the ultra violet cutoffs of scalar and fermion fluctuations.
The second term in Equation (7.2), is the leading order scalar loop, depicted in

figure 7.1(a). We neglect graphs of the order ( ‘::’1)2 and higher like the one in fig-

ure 7.1(b), because V and its derivatives are of the order 10~ '2% (see section 7.2).
We have also ignored ®-independent contributions, as these will not influence the
quintessence dynamics.

However, the ®-independent contributions add up to a cosmological constant
of the order A* =~ O(M3p). This is the old cosmological constant problem, common
to most field theories. We hope that some symmetry? or a more fundamental
theory will force it to vanish. The same symmetries or theories could with the
same right remove the loop contribution by some cancelling mechanism. After all,
this mechanism must be there, for the observed cosmological constant is far less
than the naively calculated O(Mp).

Besides, none of the potentials under investigation can be renormalized in the
strict sense. However, as we will see, terms preventing renormalization may in
some cases be absent to leading order in |£’1. As the mass of the quintessence field
is extremely small, one may for all practical purposes view these specific potentials
(such as the exponential potential) as renormalizable.

There is also a loophole for all models that will be ruled out in the following:
The potential used in a given model could be the full effective potential including
all quantum fluctuations, down to macroscopic scales. For coupled quintessence
models, this elegant argument is rather problematic and the loophole shrinks to a

*Unfortunately, SUSY is too badly broken to be this symmetry [94].
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point (see section 7.2).

In the following, we apply Equation (7.2) to various quintessence models in
order to check their stability against one loop corrections. We do this separately
for coupled and uncoupled models. We use units in which Mp = 1. For clarity, we
restore it when appropriate.

7.1 Uncoupled Quintessence

Here, we are going to discuss inverse power law, pure and modified exponential and
cosine-type potentials.
7.1.1 Inverse power law and exponential potentials

Inverse power law [7,5] and exponential potentials [6,28] and mixtures of both [38]
can be treated by considering the potential (2.25). Deriving V' from Equation (2.25)
twice with respect to @, we find

V"' =A@ exp(—)\@'y){oz(a + 1)®72 4 2a1yd7 2

FA220272 _ Ay (y — 1)@*2}. (7.3)

Inverse Power Laws

For inverse power laws, we set v+ = A = 0. This gives the classical potential
VIt = A®_® and by means of Equation (7.2) the loop corrected potential

1
3272

Vi = V2" (14 g Mt + 1957 o

The potential is form stable if 32;2 Aa(a 4+ 1)@~2 < 1, which today is satisfied,
as ® ~ Mp [38].

However, if the field is on its attractor today, then ® o (1 4 2z)~3/(2+2) where
z is the redshift [38]. Using this, we have for z > 1

1
3272

VI A VI (1+ A2a<a+1>z6/<a+2>). (7.5)

Thus, the cutoff needs to satisfy A? < a?ifl) x z~6/(a+2) " From section 6.4, we
know that cosmologically viable inverse power law potentials seem to be restricted
to a < 2 (see also [35,36]). Using @ = 1 and z ~ 10* for definiteness, the bound
becomes A? < 1075,

So at equality (and even worse before that epoch), the cutoff needs to be well
below 1012 Gev, if classical calculations are meant to be valid. In [34] it is ar-
gued that for inverse power laws, the quintessence content in the early universe

is negligible and hence the fluctuation corrections are important only at an epoch
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where quintessence is subdominant. As the loop corrections introduce only higher
negative powers in the field, it is hoped that even though one does not know the
detailed dynamics, the field will nevertheless roll down its potential (which at that
time is supposed to be much steeper) and by the time it is is cosmologically rele-
vant, the classical treatment is once again valid. Having no means of calculating
the true effective potential for the inverse power law in the early universe, this view
is certainly appealing.

Pure Exponential Potentials

The pure exponential potential is special because its derivatives are multiples of
itself. The classical potential (with & = 0, v = 1) is VJ* = Aexp(—A®) and to
one loop order

1
rop = V" {1 + 553 AQAQ} : (7.6)

It is easy to see that a rescaling of A — A/ (1 + 321#2 AQ)\Q) absorbs the loop
correction, leading to a stable potential up to order V. Working to next to leading

order, i.e restoring terms of order (V)% we get

EP 1

_ " 21 Vclll
1-loop, n.l. — m( cl) n F :

It is this term which in four dimensions spoils strict renormalizability.

7.1.2 Nambu-Goldstone Cosine Potentials

Cosine type potentials resulting from an quintessence axion have been introduced
in [97,98] and their implications on the CMB have been studied in [99]. They take
on the classical potential VY% = A[1 — cos (®./fg)] and including loop corrections

1-4<1-— ! A—2 cos(%>
32m2 f2 fo

Upon a redefinition A — A/ {1 - # }\—22} and recalling that the loop correction
Q

Viop = A

1-loop —

is only defined up to a constant, one arrives at the same functional form as the
classical potential.

7.1.3 Modified Exponentials

In the model proposed by Albrecht and Skordis [33], the classical potential is V}® =
Vpexp(—A®;), where V}, is a polynomial in the field. To one loop order, this leads

to
1 ‘rll ‘rl
AS  —pAS 4+ A? <—p —o L2 4 A2> } . (7.7)
-1 1
1-loop ¢ { 3272 [/],J Vp
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Figure 7.2: Classical and 1-loop corrected potential [in 107'2Mp] for Vi4$ =
[(® — B)> + C] exp(—A®.) with B = 34.8, C = 0.013, A = 1.2. The classical poten-
tial has a local minimum, which is absent for the loop corrected one. This is a hand-picked
example and in most cases, the bump will not vanish but move and change its form.

Let us for definiteness discuss the example given in [33], where the authors chose
V,(®) = (® — B)? + C. With this choice, we have

J/AS, EXMPL _ 1/AS, EXMPL
1-loop — Tcl

X {1 + 321%2 AQ(Vip (2 —4X(®y — B)] + AQ) } (7.8)

Now consider field values close to the minimum of V,, i.e. let the absolute value of
¢ = &y — B be small compared to v/C. Then

A2 [2—4X¢
Vlflst;c];:;MpL - chl\&EXMPL {1 + 3271.2 < C + 62 +A > } ’ (79)

and to leading order in ¢

A% (1
Viop ™ ;IS’EXMPL{H—?,QWQ <5[2—4A£1+A2)}- (7.10)

Now consider, as has been the case in the example given in [33], C = 0.01 for
definiteness. If we assume the cutoff A and the Plank mass of approximately the
same order, we get

AS, EXMPL AS, EXMPL
Viie ~ V™ {1 +

-loop cl

57 (1002 — 4X¢] + >\2)} . (7.11)
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The ¢ (and hence @) dependent contribution in the curly bracket of Equation
(7.11) is —25/(2w2)A¢ which for the value A = 8 chosen in the example gives
—200/(272)¢ ~ —10€.

If we now look at the behaviour of the loop correction as a function of ® and
hence £ in the vicinity of the minimum of this example polynomial, we see that for
e.g. & = 0.01, the one loop contribution dominates the classical potential giving
rise to a linear term in ®. unaccounted for in the classical treatment. For many
values of the parameters B and C, this just changes the form and location of the
bump in the potential. In principle, however the loop correction can remove the
local minimum altogether (see figure 7.2).

Needless to say that this finding depends crucially on the cutoff. If it is chosen
small enough, the conclusion is circumvented. In addition, only the specific choice
of Vj, above has been shown to be potentially unstable. The space of polynomials
is certainly large enough to provide numerous stable potentials of the Albrecht and
Skordis form.

7.2 Coupled Quintessence

Various models featuring a coupling of quintessence to some form of dark matter
have been proposed [11,30,71,100,101]. From the action Equation (7.1), we see
that the mass of the fermions could be ® dependent: mg = me(P) (see also
Figure 7.3). Two possible realization of this mass dependence are for instance
me = m) exp(—B®a) and mg = m +¢(P), where in the second case, we may have
a large field independent part together with small couplings to quintessence.? For
the model discussed in [71], the coupling is of the first form, whereas in [101], the
coupling is realized by multiplying the cold dark matter Lagrangian by a factor
f(®). This factor is usually taken of the form f(®) = 1 + a(® — ®y)?. Hence,
the coupling is m¢(®) = f(®) m{, if we assume that dark matter is fermionic. If it
were bosonic, the following arguments would be similar.

We will first discuss general bounds on the coupling and in a second step check
whether these bounds are broken via an effective gravitational coupling.

7.2.1 General Bounds on a Coupling

We will only discuss the new effects coming from the coupling and set
Vl—loop =V - AV, (7'12)

where AV = AZ [me (@))% / (87?). If we assume that the potential energy of
the quintessence field constitutes a considerable part of the energy density of the

universe today, i.e. pq ~ Peritical, We see from the Friedman equation

3H? = peritical, (7.13)

*The constant m{ is not the fermion mass today, which would rather be Mmioday =
me (P (today)).
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Figure 7.3: Correction to the quintessence potential due to fermion fluctuations. Fermion
lines are solid, quintessence lines dashed. Shown is the case where m¢(®) gives a Yukawa
coupling, i.e. ¢(®) = P, corresponding to one quintessence line. Of course, for more
complicated m¢(®) such as me(®) = m exp(—B®Pa), several external lines like in figure
7.1 would appear.

that V; ~ H?. With todays Hubble parameter H = 8.9 x 107 % 4 (h = 0.5...0.9),
we have

Vi ~ 7.9 x 107121 p2, (7.14)

The ratio of the ‘correction’ to the classical potential is

ﬂ _ L A%erm [mf(q)d)]Q (7 15)
v, 82 7 ' '

cl

Let us first consider the case that all of the fermion mass is field dependent, i.e.
we consider cases like my = m? exp(—f®P¢). As an example, we choose a fermion
cutoff at the GUT scale Agerr, = 1072, and a fermion mass, m(®) of the order of
100 Gev = 10~ '®Mp. Then Equation (7.15) gives the overwhelmingly large ratio

AV

— =~ 10%. 7.16
v, (7.16)
Thus, the classical potential is negligible relative to the correction induced by the
fermion fluctuations.

Having made this estimate, it is clear that the fermion loop corrections are
only harmless, if the square of the coupling takes on ezactly the same form as
the classical potential itself. If, for example we have an exponential potential
V., = Aexp(—A®) together with a coupling m¢(®Py) = m{ exp(—B®), then this
coupling can only be tolerated, if 28 = A\.* Taken at face value, this finding
restricts models with these types of coupling. It is however interesting to note that
for the exponential coupling, the case 26 = X is not ruled out by cosmological
observations [30].

Turning to the possibility of a fermion mass that consists of a field independent
part and a coupling, i.e. m¢ = m{ + ¢(®), Equation (7.15) becomes

ferm

v, 872 % ’

cl

AV 1 AZ L [2m2c(@a) + o(@a)?]

(7.17)

10f course, sufficiently small 8, will lead to a more or less constant contribution, where
mf(q%l) ~ m? — 8P
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where we have ignored a quintessence field independent contribution proportional
to (m)?%. Assuming ¢(®) < m{, and demanding that the loop corrections should
be small compared to the classical potential, Equation (7.17) yields the bound
47’ V.
(D) € 9. (7.18)

2 0
Aferm My

If, as above, we assume Agrm = 1073Mp, m? = 10" Mp and V,, from Equation
(7.14), this gives
o(Bo) <€ 3 x 1077, (7.19)

in units of the Planck mass. Once again, the bound from Equation (7.18) only
applies if the functional form of the loop correction differs from the classical poten-
tial. Assuming a Yukawa type coupling ¢(®.) = 5P, and field values of at least
the order of a Plank mass, we get 3 < 10797,

For the coupling ¢(®) = mPa(®—®,)” with the values a = 50, § = 8, &y = 32.5
given in [101], ¢(®) is usually larger than m{. Therefore we take m¢(®c) & c(Pq)).
With me(®.) = 10716 as before, we get the same result as in (7.16).

The coupled models share one property: the loop contribution from the coupling
is by far larger than the classical potential. At first sight, the golden way out of
this seems to view the potential as already effective: all fluctuations would be
included from the start. However, there is no particular reason, why any coupling
of quintessence to dark matter should produce just exactly the effective potential
used in a particular model: there is a relation between a coupling and the effective
potential generated. Put another way, if the effective potential is of an elegant form
and we have a given coupling, then it seems unlikely that the classical potential
could itself be elegant or natural.

7.2.2 Effective gravitational Fermion Quintessence Coupling

The bound in Equation (7.18) is so severe that the question arises whether gravita-
tional coupling between fermions and the quintessence field violates it. To give an
estimate, we calculate two simple processes depicted in figure 7.4. We evaluate the
diagrams for vanishing external momenta. This is consistent with our derivation of
the fermion loop correction Equation (7.2), in which we have assumed momentum
independent couplings. The effective coupling due to the graviton exchange con-
tributes to the fermion mass, which becomes ®. dependent. We assume that this
coupling is small compared to the fermion mass and write m¢(®q) = m + ¢(®q).

Fermions in general relativity are usually treated within the tetrad formalism.
The y matrices become space-time dependent: v#(z) = %, (z). Together with
the spin connection w, one uses (see e.g. [102], [103]):

Y = et (0 + font). (720)

The action (7.1) can then be expanded in small fluctuations around flat space:
Juv = (5l“j + huu/MP.
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(a) (b)

Figure 7.4: Effective fermion-quintessence coupling via graviton exchange. The fermions
(solid lines) emit gravitons (wiggled lines) which are caught by the quintessence field
(dashed lines). As the graphs involve couplings of the gravitons to the classical quint-
essence potential, the generated coupling is proportional to the classical potential. Since
the potential involves arbitrary powers of ®, we depict it as several ®-lines. A Yukawa
type coupling, corresponding to just one line, is then generated by power expanding
V(®) =V (®y) + V., (P — D) in the fluctuating field.

lel

Using the gauge fixing term — % (0" by — % d,,h%)? and expanding the action to
second order in h, we find the propagator [103]:

_ 9uadus + dupduva — Opdap
- 5 .

Pyrae (F)

grav

(7.21)

The diagrams in figure 7.4 are generated by the expansion of \/g = 1 + %h’”‘ —
T (W) + & (h#*)?* multiplying the matter Lagrangian. Additional (and more com-
plicated) vertices originate from the spin connection and the tetrad.

However, we don’t consider external graviton lines, which would only give
corrections to the couplings and wave function renormalization of the gravitons.
Therefore only internal gravitons appear. In order to contribute a quintessence de-
pendent part to the fermion mass, the gravitons starting from the fermion-graviton
vertices (complicated as they may be) have to touch quintessence-graviton vertices.
As these quintessence vertices are proportional to V(®.), all diagrams to lowest
order in V(®) will only produce mass contributions proportional to V(®).

Evaluating the diagrams in figure 7.4 for vanishing external momenta we get
from the first diagram, figure 7.4(a)

A2 22
(o) (o) o

c(Py) = 8—75T2 m{V (D) In (%) : (7.23)

1

W m?V((I)Cl)

c(®g) =

whereas 7.4(b) gives
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Figure 7.5: Fermion loop contribution to the quintessence potential involving the effective

coupling figure 7.4(a). The cross in the fermion line depicts the field independent fermion

mass my.

Here, we have introduced infrared and ultraviolet cutoffs A and A for the graviton
momenta. We assume A to be of the order Mp and A\ about the inverse size of the
horizon. Since the results depend only logarithmically on the cutoffs, this choice is
not critical and in addition In(Mp/H) & 140, which is small. From Equation (7.17,
7.22, 7.23), we see that in leading order, the change in the quintessence potential
due to this effective fermion coupling would be proportional to V(®.) and could
hence be absorbed upon redefining the pre-factor of the potential (see also figure
7.5). In next to leading order, the contribution is proportional to V(®)? which is
negligible.

From Equation (7.20) it is clear that there are processes where the vertices are
more complicated. However, to this order all diagrams are proportional to V(®).
Thus, they can be absorbed just like the two processes presented above.

7.3 Weyl-transformed Fields

So far, we have assumed a constant Planck mass together with a field independent
cutoff. We could however, assume that the Planck mass is not constant, but rather
given by the expectation value of a scalar field y. We will call the frame resulting
from this Weyl scaling Weyl frame, opposed to the frame with constant Plank mass
which we will call Einstein frame. From the classical point of view, both frames are
equivalent. On calculating quantum corrections, we have to evaluate a functional
integral. Usually, the functional measure in the Einstein frame is set to unity. In
principle, the variable change associated with the Weyl scaling leads to a non-trivial
Jacobian and therefore a different functional measure. Taking on the position that
the Weyl frame is fundamental, this measure could with the same right be set to
unity in the Weyl frame. Therefore, it is a priori unclear whether the loop corrected
potential in the Weyl frame, when transformed back into the Einstein frame, will
be the same as the one from Equation (7.2).

As the cutoff in the Einstein frame is a constant mass scale and hence propor-
tional to the Plank mass, it seems natural to assume that the cutoff in the Weyl
frame is proportional to y. We restrict our discussion to this case. For other choices
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of the y-dependence of the cutoff, the results may differ.
The Weyl transformation is achieved by scaling the metric, the curvature scalar,
all fields and the tetrad by appropriate powers of x/Mp (see table 7.1) [6,11]:

g:/cﬁx@

.z
2R + 3 Oux0"x + Wi(x)

~ (I)(: 3 » ~
+ (z Y (2)Vy + x mi(®al) 75 ~3 iyH () lnx,ﬂ> 14 , (7.24)
where @ = (12 4 z)'/2Mp In(x/Mp) and

Y 4
w0 = (1) V@0, (7.5

The term proportional to Iny, in Equation (7.24) is somewhat inconvenient.
Adopting the position that the Weyl frame is fundamental, this term is unnat-
ural. Instead, one would formulate the theory with canonical couplings for the
fermions. Dropping this term,

gcan. = /d4$\/§

.z
YR + 3 Oux0"x + Wi(x)

+0 (134009, + 2o mi(@00) ) ¥, (720
we observe by going back to the usual action Sean. — S
S = /d%« @[% 0,8(2)0"®(z) + V(d(x))
0 (7 +Pmn(®) + i @) W) | (120

that the canonical form of the action in the Weyl frame gives rise to a derivative
coupling of the quintessence field to the fermions in the Einstein frame, which we
can safely ignore.’

Working with Equation (7.26), we get the loop correction in the Weyl frame by
replacing V' — W and ® — x in Equation (7.2). In addition, the constant cutoffs
A and Agem, are replaced by const - x:

2 2 2
3(2(:;)% W (x) — ((é%) [MLP mf(X):| : (7.28)

% Actually, this coupling is non-renormalizable in the strict sense. Since the theory is non-
renormalizable anyhow, this is not of great concern. In addition, if one believes that the Weyl
frame is fundamental, there is no need in going back to the Einstein frame and hence no need to
face this nuisance.

Wl—loop = W(X) +
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G = (/M) G
g1 = (x/Mp) 2"
V3~ (/Mp)' V3
R = (¢/Mp) ™ (R = 63" 03, = 6500,
eli(w) = (x/Mp) ™! ¥ ()

T — (x/Mp) ™32 ¥

Table 7.1: Weyl scaling of various quantities. The transformation of the curvature scalar
R follows from the scaling of the metric. This scaling, in turn, originates from the condition
that instead of the Plank mass squared multiplying R in the action in the Einstein frame,
a factor x? should appear. Here, we have set o = In(y/Mp).

Transforming W, back into the Einstein frame, the potential V' is modified by

loop

2
Bl +

d "(@
V@) 4 7yigss L(2a)

M3 Mp

(CeMp)?
872

x |12

Vl—loop = V(@Cl) +

+ (12 + 2)V" (@) |. (7.29)

As an example, lets calculate the correction to the pure exponential potential Vj* =
Aexp(—Ad), once again setting Mp = 1. The Weyl frame potential is

W(x) = Ax* exp(—A®(x)) = AxAVIZF2), (7.30)

Neglecting fermion fluctuations and choosing z = 1,

2
Wl—loop = |1+ ?Qcﬁ (4 — )\\/ﬁ)(?) — )\\/ﬁ) W(X) (7.31)
Tz

Again (and not surprisingly) we can absorb the square bracket in a redefinition of
the pre-factor A. In the case of the inverse power law, the term proportional to V' in
Equation (7.29) leads to a slightly different contribution compared to Equation (7.4)
(a term o CD(;“_I arises). For the modified exponential potentials the expressions
corresponding to V' in Equation (7.29) make no structural difference.
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CMBEASY

In chapter 2, 4 and 5, we have reviewed cosmological perturbation theory and the
physics of CMB anisotropies. Having all necessary equations at hand' |, we can
thus set out to calculate the CMB spectrum for any cosmological model. Since
1996, the CMBFAST computer code implementing the fast line of sight integration
method is publicly available. Tt can calculate spectra for open, closed and flat
universes containing massless and massive neutrinos, baryons, cold dark matter
and a cosmological constant. It is a very well tested program that has enabled
many cosmologists to test their model of the universe against CMB data.

However, from the point of view of code design, there is maybe no program that
could not be improved. This is also true for CMBFAST: it is a rather monolithic
code that is quite difficult to oversee and modify.

In order to address these shortcomings and simplify modifications of the code —
in our case the implementation of quintessence models and gauge invariant variables
— we have ported the CMBFAST package to the C+4 programming language. The
C++ language is object oriented and it turns out that to think in objects (more of
this soon), is very advantageous in cosmology. The program has not been rewritten
from scratch, but redesigned step by step. Some people may argue that it is hence
not independent, i.e. some unknown errors and limitations in CMBFAST could be
present in the new code. The object oriented modular design, however, ensures
that each part of the code is independently testable. If, for instance, one does not
trust the integrator, one can use another one to check it, without changing anything
else in the package. Also, practically all lines in the code have been rewritten, to
benefit from the redesign.

There are roughly three main steps needed to calculate the CMB anisotropy
spectrum,

e solving the expansion and thermal background evolution,
e calculating the perturbation equations in Fourier space,

e mapping the calculations onto the sky today.

'The full set of equations used is summarized in Appendix C
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Before we present the implementation we chose for this task, let us briefly review
the concept of object oriented programming.

8.1 Objects

Quite often, some data and functions acting on the data are so tightly connected,
that it is sensible to think of them as one object. As an example, let us discuss
splines. Given a discrete set of n points x; with ;51 < x; and corresponding
f(x;) = y;, a spline can smoothly interpolate, i.e. give f(z) for any = € [z, x,].
For as long as the sampling is dense enough, arbitrary functions may be described
by a spline for all practical purposes. This is widely used in CMBFAST. Even the
Cy’s are calculated only every 50 l-value for [ > 200. As the spectrum is very
smooth, this still gives a precise result.

Now, a function like the visibility that is calculated in the thermal history part
of the code, can be used to define a spline. Without object orientation, one would
need to keep track of various variables, most notably arrays for the x,y data and
derivatives needed for spline interpolation. Also, in order to assure quick access
within the spline data table, one either needs to know the precise layout of the
data arrays (CMBFAST does this), or even more variables (storing for instance the
last interpolation z value) would be necessary. In total, this sums up to a lot of
bookkeeping for a conceptually simple entity like a spline.

Alternatively, one may define a class holding all necessary variables a spline
needs together with definitions of an interface with which other parts of the pro-
gram can access and manipulate the spline data. An object behaves as described
by the corresponding class. There can be an arbitrary number of objects of a cer-
tain class (just like there is one floating point type float, but many variables of
type float in a program).? The class (in our case) called Spline, can hence be
viewed as yet another data type, with no more bookkeeping needed than say for
a floating point number. To illustrate this, let us discuss the visibility function
g = fkexp(k(T) — k(70)). Its typical shape is depicted in Figure 4.5. As mentioned
in Section 4.5, its peak defines the epoch of last scattering. As soon as the Spline
called visibility has been given the data, its maximum can be determined by a
single line of code:

tau_ls = visibility.getMaximum() ; get 7 of last scattering
z_1ls = cosmos.tau2z(tau_ls); convert to redshift

Here, the second line asks the cosmos object to convert® conformal time to red-

*We usually denote here (and in the code) classes with capital first letter. In some cases where
there is only one object of a class used in the code, we denote the object with the same name as
the class, but with lower case initial letter. Hence, the line

Cosmos cosmos;

creates an object ‘cosmos’ of the class ‘Cosmos’.
3Many of these ‘convenience’ functions are defined in the Cosmos class and moving from a to
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shift. As the expansion history has been calculated before the thermal history, this
is accurately possible. The important point to notice is that all functions defined
in the Spline class are immediately available to everyone who uses Splines. So,
whenever one needs to find the maximum, integrate a spline, calculate the convolu-
tion of two Splines etc, this can be done in very few lines of code: the functionality
is fully encapsulated in the implementation of the Spline class. Any increase in
performance or sophistication of the Spline class immediately translates over to all
Splines used in the program.

8.1.1 Imheritance

Tightly connected to the fact that data and methods are combined within one
object, the concept of inheritance proofs very powerful in cosmology. A class
can inherit from another class (in this context called base class). All variables
and the full functionality the base class implements is instantly available to the
inheriting class,* called sub-class. The sub-class can then re-implement functions
of the base class to provide a different functionality, or add new functions and
variables. The important point to note is that all classes deriving from the same
base class necessarily need to provide all functions the base class provides. Hence,
for as long as other parts of the code use the base class, one can substitute any of
the inheriting classes for the base class without changing a single line of code in the
part that uses the bases class. As an illustration, let us look at the Perturbation
class of CMBEASY. It is designed to evolve the perturbation equations for one
k-mode through conformal time and calculate the temperature perturbation. It
defines functions to do this that other parts of the program can be sure to find
implemented in all sub-classes. In practice, there are four classes that inherit from
it, for perturbations in gauge-invariant variables and in synchronous gauge both
with and without quintessence (see also Figure 8.3). From the point of view of the
rest of the program, all of them are equally well suited.’

8.2 Design

A hierarchy overview of the main classes of CMBEASY is given in Figure 8.3. Maybe
the most central part of the package is the CmbCalc class. It provides functions
to prepare and execute the perturbation evolution in & space and the integration
of the C)’s. During the preparation, it also calls the Cosmos class which calcu-
lates the expansion and thermal background evolution. The Cosmos class is the

z to T to t is easily possible. All conversion functions have the syntax y = X2Y (z), where the
number 2 should be spelled as ‘to’.

4This is as if a child was born with the whole knowledge of its parents. No training and learning
would be necessary. It could instantly go and increase its capabilities starting from the level of its
parents.

SExcept for the fact that if one wants quintessence, the perturbation class should of course
support it.

97



CHAPTER 8. CMBEASY
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Figure 8.1: Temperature anisotropy spectrum for h = 0.65, Q) = 0.6, Qh? = 0.02, QF =
1 — Q) — O obtained from cMBFAST. The relative deviation AC;/C; of CMBEASY’s syn-
chronous (long dashed line) and gauge invariant (solid line) solution with respect to the
original CMBFAST spectrum are also given. The accordance of all spectra is always better
than 1%. In the gauge invariant case, both the background and perturbation evolution as
well as the C} integration are entirely independent of the CMBFAST code. However, they use
the same thermal history algorithm that should in principle be independently implemented
for cross checks.

central instance providing background quantities like p(7) of all species etc. Al-
ready the centralization of the background evolution within the Cosmos class fa-
cilitates the modification of the code greatly. A different background cosmology
(such as quintessence) can be implemented by just inheriting from Cosmos and
re-implementing the expansion history part of the code. As already mentioned,
the Perturbation class and its subclasses propagate the perturbation variables for
one k-mode through conformal time. Finally, the Integrator subclasses perform
the convolution of the sources with the Bessel functions, (4.68), as well as the final
k-integration of Equation (4.15).

8.2.1 Quintessence Implementation

The different background evolution of quintessence scenarios is implemented using
the QuintCosmos and the Quintessence class. Each subclass of Quintessence

5All in all 800 lines of a total of 2500 lines of Cosmos.
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Figure 8.2: Graphical user interface (GUI) for CMBEASY.

corresponds to a certain model, such as EP, IPL, LKT etc. Certainly, a more
monolithic design with the quintessence models implemented in the QuintCosmos
class would have been possible. However, we believe that the details of the models
are best kept to a class of its own. For instance tuning model parameters in order to
get the right amount of Qf etc. is different for each model and a monolithic design
would have to call differently named functions for different models. Using sub-
classing, QuintCosmos (and Perturbation) always call functions with the same
argument and name for all models. Yet, as the object implementing the function
differs for each model, the code executed by calling the function can be totally
different. Thus, a new quintessence model can be implemented by simply sub-
clagsing Quintessence and implementing a minimal set of functions, such as one
for the potential etc.

8.3 Graphical User Interface

For educational purposes and also to simplify the parameter input and subsequent
visualization of results, a graphical user interface (GUI) is of great value. Luckily,
there is the very sophisticated and publicly available ‘Qt’ library[104] with which
the creation of a GUI is facilitated. Its object oriented C++ design is a perfect
match for the CMBEASY package. There is therefore an executable program called
‘cmbeasy’ giving interactive access to almost the full capabilities of the package,
including quintessence. As is seen from Figure 8.2, the spectra are visualized in
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separate plots arranged in a so called Tab-Widget.” One can for instance zoom in,
select and save curves or print the plot. In addition, a likelihood analysis, using
SNe Ia data, peak locations and cluster abundance constraints is available. Its
aim is rapid calculation and visualization and hence it only uses the background
evolution, estimating peak locations via the peak shift formulas of appendix B and
og from Equation (6.33) and a library of pre-calculated ACDM models.

8.4 Documentation

Using the DOXYGEN program, the documentation is automatically generated from
the source code of the CMBEASY package. In its HTML version, it is interactively
navigable and includes the full source code. Due to the automatic generation,
the documentation and the code are naturally synchronized. A postscript version
of the documentation is also generated. Depending on the depth of information
requested, it easily exceeds several hundred pages, making it less accessible than
its HTML counterpart.

TA widget is a part of a user interface that can interact. Examples are buttons, sliders, etc.
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Figure 8.3: Hierarchy of the main classes of the CMBEASY package. All classes dealing with mathematics inherit from MathObject for
technical reasons. The Cosmos class calculates the background evolution and can be extended using subclasses such as QuintCosmos
for quintessence. The perturbation equations are encapsulated in the Perturbation class. Implementing different gauges as subclasses
is therefore unproblematic. The central instance invoking Cosmos, the Perturbations and Integrators is the CmbCalc class. Not shown
are several (sometimes small) classes, e.g. the ControlPanel, which holds commonly used settings, or e.g. the MiscMath class providing

low-level mathematical functions.
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Conclusions

We have started this work by describing the effects of dark energy on the expansion
history of the universe. Depending on its effective equation of state wy, the age of
the universe ranges from 7 ~ 9000 Mpc (wy = 0) to approximately 14000 Mpc in
the case of a cosmological constant. The Perturbations to homogenous background
quantities have been introduced using gauge-invariant variables. The gauge invari-
ant scalar quintessence fluctuation X is identical to the fluctuation in longitudinal
gauge. This makes the longitudinal gauge the ideal tool to derive quintessence
related perturbation equations. We have then reviewed the gauge-invariant for-
mulation of CMB anisotropies along the lines of [18]. In order to benefit from
the numerically fast line of sight method [16], we have formulated it using gauge
invariant variables.

To set the numerical calculation up, one needs initial conditions. For this pur-
pose, the equation of motion of the field fluctuation X has been solved analytically
in the case of tracking quintessence. As most scalar quintessence models are in such
an attractor solution at early times, this result is widely applicable. The fluctua-
tion X follows a simple power-law in conformal time with exponent (1 — 3w?)/2.
As it turns out, this solution for X is identical to the solution for X following
from adiabatic initial conditions. Like all perturbations, the metric potential ®
needs to be determined consistently at initial time. The existing literature assumes
that ® is given by the same relation as in the case without quintessence. This is
certainly true if quintessence is subdominant at early times. More importantly,
we have shown that this also holds whenever the quintessence model resembles an
exponential potential model at the time of interest. In most practical situation, ®
is therefore indeed given by the same relation as without quintessence.

For tracking quintessence, the gauge-invariant energy density perturbation Dy
remains constant on scales outside the horizon. As quintessence is in principle very
versatile, we can’t prove this intuitively expected result for arbitrary realizations.

Moving towards observational tests for dark energy, we have calculated the
acoustic scale [ 4. The acoustic scale determines the inter-peak spacing in the CMB
multipole spectrum. The influence of quintessence on [ 4 has been expressed by the
three parameters wy, Qi’; and Q. Unfortunately, the effects of dark energy can be
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mimicked by the Hubble parameter. An independent determination of the Hubble
parameter is therefore mandatory if [ 4 is used to restrict quintessence models. The
acoustic scale is still found in the literature as an estimate for the location of the
first peak despite the fact that this introduces large errors [69,75]. In addition, the
relation between €, and the position of the first peak noted in [73] is based on
numerical simulations. These simulations did not take dark energy into account.
In order to accurately connect the acoustic scale and CMB peak positions, we
have parameterised the peak positions with peak shifts ¢,,. For these shifts, we
devised fitting formulae that are applicable over a wide range of parameters. As
the shifts are influenced mostly by pre-recombination physics, dark energy before
last scattering (quantified by Qﬁ) has been an important parameter in our analysis.
The independence from post-recombination effects means that the shift formulae
are also applicable to non-flat universes. During these numerical simulations, the
shift of the third peak @3 proved rather insensitive to the cosmological model.
As both the Boomerang and the Maxima experiments released data covering three
peaks in spring 2001, we used this insensitivity to extract the acoustic scale from the
measurements. The value we find is [4 = 319 £ 23. As the acoustic scale is easily
calculable from background physics only, this provides a quick way to estimate
whether a model is possibly in agreement with the CMB data or not. Combining
this bound on /4 with cluster abundance constraints, we find that inverse power
law models with exponent o > 2 are disfavoured. This is both in agreement with
SNe Ia constraints, as well as with the result of [35]. In addition, the amount of
dark energy during recombination is restricted to Ql‘ps < 0.15. Yet, for a spectral
index slightly greater than one, a small contribution at the 5% level is favoured.
In order to detect quintessence via the CMB, a more precise measurement of the
location of the first peak may be necessary. From this and /4, one would be able to
extract the quantity x that could give hints to the amount of quintessence present at
recombination. Using the value of [ 4, we find that the expansion of the universe is
most likely accelerating. This result is entirely independent of SNe Ia observations.

In order to implement quintessence models numerically, we chose to modify the
CMBFAST computer code. We have ported the package to the object oriented C++
programming language. The code has been re-designed and grouped in classes.
As all functionality is cleanly encapsulated in these classes, the code is easier to
overview. This facilitates bug-finding and leads to more confidence in the numerical
results. By inheriting from existing classes, the implementation of different models,
cosmologies or gauges is greatly simplified. In addition, a powerful graphical user
interface is available for the modified code. This will make the CMB accessible to
non-experts also, increasing intuition for the effect of different parameters on the
spectrum. Besides, it can be used for educational purposes.

Turning to SNe Ta observations, we have shown that dark energy models with
the same value of w, [93]1'4 are indistinguishable by current SNe Ia-data. This
in principle well known degeneracy has to our knowledge not been cast in such a
simple relation before.

Leaving the observational side, we have calculated one-loop quantum correc-
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tions to quintessence potentials. In the late universe, most potentials are stable
with respect to scalar quintessence fluctuations. The pure exponential and Nambu-
Goldstone type potentials are form invariant up to order V", yet terms of the order
(V)2 prevent them from being renormalizable in the strict sense. For the modified
exponential potential introduced by Albrecht and Skordis, stability depends on the
specific form of the polynomial factor V, in the potential. In some cases the local
minimum in the potential can even be removed by the loop. An explicit coupling of
the quintessence field to fermions (or similarly to dark matter bosons) seems to be
severely restricted. The effective potential to one loop level would be completely
dominated by the contribution from the fermion fluctuations. All models in the
literature share this fate. One way around this conclusion could be to view these
potentials as already effective. They must, however, not only be effective in the
sense of an effective quantum field theory originating as a low-energy limit of an
underlying theory, but also include all fluctuations from this effective QFT. In this
case, there is a strong connection between coupling and potential and it is rather
unlikely that the correct pair can be guessed. The bound on the coupling is so se-
vere that for consistency, we have calculated an effective coupling due to graviton
exchange. To lowest order in V(®), this coupling leads to a fermion contribution
which can be absorbed by redefining the pre-factor of the potential.

Surely, the one-loop calculation does not give the true effective potential. Sym-
metries or more fundamental theories that make the cosmological constant small
as it is, could force loop contributions to cancel. In addition, the back-reaction of
the changing effective potential on the fluctuations remains unclear in the one loop
calculation. A renormalization group treatment would therefore be of great value.

In the last years, cosmology became more and more quantitative. With the
high precision data of the MAP satellite, the cosmic microwave background will
soon restrict many cosmological parameters to breath taking accuracy. However,
the CMB spectrum is degenerate in several parameters. The same is true for SNe Ia
observations. In fact, practically all observations are plagued by such degeneracies.
It is only the combination of several tests — each of high precision — that can fix
the parameters of the cosmological model. If the standard A-CDM model is well
describing the soon available data, high energy physicists may need to find a reason
for a non-vanishing and yet incredibly small vacuum energy.

However, it may well be that A-CDM runs into difficulties. Given the fact
that it seemingly involves so much fine-tuning, it it rather unlikely the correct
model. Taken together all the soon available precision data, this should manifest
itself in an observational mismatch. It is well possible that a quintessence model
will be favoured by the experiments. But as quintessence is so versatile, it is
hard to imagine that only one quintessence scenario will be matching observations.
To single out the quintessence model, a deeper understanding of the fundamental
physics leading to the effective scalar theory is needed. If one day this theory is
found, we shouldn’t wonder if it involves a light scalar field which funny enough
tricked scientists at the beginning of the 21st century into believing that there is a
cosmological constant.
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Christoffel Symbols

The Christoffel symbols

1
Tog = 59" Go6.u + Gao,6 = Gap.o) (A.1)

for the Robertson Walker metric (2.2) are in the unperturbed case

0 a
= = A2
gy = ° (A-2)
a
i a )
b= Th= (A.5)

Using the scalar longitudinal gauge metric (3.26), the first order perturbations
become

oo, = TQ (A.6)
0T = —kQ;V (A.7)
oy = 2(%[@-@]+¢>> Q 6ij (A.8)
oThy = —kQ'U (A.9)
% = Q0 (A.10)
oY = ko (Q'6; — Qi — Qi5}) (A.11)
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Fitting formulas for the peak
shifts

We present here our fitting formulae for the overall phase shift ¢, followed by the
relative shifts of the first trough (dp3/2) and the second (dp2) and third (d¢3)
peaks.! In each case we also give an estimate of the accuracy of the formulae.

Overall phase shift ¢

For the overall phase shift ¢ (i.e. the phase shift of the first peak) we find the
formula

@ = (1.466 — 0.466n) [a1ry® +0.291Q7] , (B.1)
where a; and a9 are given by
ar = 0.286 + 0.626 (2h*) (B.2)
a; = 0.1786 — 6.308 Q,h% + 174.9 (Q,h2)” (B.3)
—1168 (4h%)°. (B.4)

It contains the main dependence of any shift ¢, on Ql‘g. The 1-0 error for ¢ is

Ap = 0.0031 (B.5)

Relative shift of first trough dp3/»

The relative shift of the first trough is a very sensitive quantity spanning a wide
range of values. It can very well be used to restrict the allowed parameter space
for cosmological models. We have

8aj2 = bo + biry” exp(bary) + 0.158 (n — 1), (B.6)

' A small c++ package providing functions for the shifts is available at http://www.thphys.uni-
heidelberg.de/”doran/peak.html
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with
by = —0.086—0.079QF — (2.22 — 18.1QF) Ak
— [140 + 4030¢] (2,h) (B.7)
by = 0.39—0.98QF — (18.1 — 29.2Q7) Ok’ (B.8)
+440 (2h?)* (B.9)
by = —0.57 - 38exp {23650 (h?)"}. (B.10)
For the one standard-deviation error we have
Adps 9 = 0.0039. (B.11)

Relative shift of second peak ¢,

The relative shift of the second peak is a very sensitive quantity. It is thus not
surprising to find a strong dependence of dpo on the parameters. We have

dpa =co — €1y — cor, @ +0.05(n — 1), (B.12)
with

w

co = —0.14(0.213 —0.12307)
x exp {— (52 — 63.6QF) Qyh*}

er = 0.063 exp{-3500 (2h%)° } +0.015

[ —

¢s = 6x10 540137 (2h? = 0.07)
c3 = 0.8+2307+ (70— 126Q7) Q.

TE W E®
AV O O
vvgvv

The error of this approximation is

Ay = 0.0044. (B.18)

Relative shift of third peak dy3

For the third peak, we find
Sz =10 — dird? 4+0.08 (n — 1), (B.19)
with
di = 9.97+ (3.3 - 39;’;) yh2 (B.20)
dy = 0.0016 —0.0067 Q) + (0.196 —0.22 Qfs) Qph?

(2.25 +2.77Q7) x 1075
e ’

(B.21)
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and error given by
Adpsz = 0.0052. (B.22)

Overall shift of third peak (3

For completeness, we give a fit for 3 which in principle could be obtained by
adding @ and dp3. However, a one-step-fit yields better errors here. Our formula
is

w3 =e1 (1 +e3re)rs? +eq4 —0.037(n — 1), (B.23)
with

er = 0.302 —2.112Qh% + 0.15exp {—384Qh* } (B.24)
eo = —0.04 —4.5Q,h* (B.25)
e3 = (—0.118 +44.7Q,n%) Q7 (B.26)
es = (0.214exp {—48Q,h%} +0.106) QF, (B.27)

and error
Aps = 0.0017. (B.28)
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Full set of Perturbation
Equations

In this appendix, we summarize the formulae needed to evolve the gauge-invariant
perturbation variables listed in Table C.1.

The Metric Potentials ® and U

In order to solve Einstein’s equations, we first use Equation (3.55) in the form
¥ =&+ Mp?k 2a?pll, (C.1)
where pIl = 5,11, + p,I1,. With this, we get from Equations (3.72) and (3.45)

_ _ _ _ _ _.aV
a2pnpan = GZPLngW - 3a2(/7ap + D) ® + 3a2(pnp + Py) a f

= ¢ [X + M52 k72a2;51:[] +a?V'(p) X

_ ~ _ . aV
"‘GQ(PW + D)@ + 302(,0@ + Py) a f ) (C.2)

which is of the form aQﬁwa = A, — B,®. For the other species, things are more
simple
aQﬁiDi = aQﬁiDg — 3,E)ia2(1 + wi)q), (03)
which is also of the form a?p;D; = A; + B;®. Therefore, Equation (3.53) yields
A
= = 2 A (C.4)
2Mpk? + 3. B;

where the summation runs over all species, including quintessence and A; and B;
can be read off Equations (C.2) and (C.3) respectively. This fixes ®, because the
right hand side of Equation (C.4) contains only known variables. The gravitational
potential ¥ follows then immediately from Equation (C.1).
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Symbol Meaning
M, Photon multipole, [ =0...7
E, Photon polarization multipole, [ =2...7
N, Neutrino multipole, I =0...9

X Quintessence field fluctuation

X dX/dr (because e.o.m. is second order)
Dz Density perturbation for baryons

Dy Density perturbation for cold dark matter

W Velocity of baryons
Ve Velocity of cold dark matter

D} Density perturbation for photons (from M)

Dy Density perturbation for massless neutrinos (from Np)
v, Velocity of photons (from M)
V, Velocity of neutrinos (from N7)

Vo Quintessence velocity (from X))
I, Photon shear (from M)
11, Neutrino shear (from N5)

Table C.1: Perturbations propagated through conformal time (upper half). Quantities
that are not propagated themselves, but derived algebraically from quantities propagated
are grouped in the lower half.

Cold dark matter, Baryons and Photons

For cold dark matter, we use Equations (5.13) and (5.14). As far as photons and
baryons are concerned, one distinguishes between the tight-coupling and the ‘no-
tight-coupling’ regime:

(I) Tight coupling:

In tight coupling, one combines the Equations (C.8) governing the velocity evo-
lution for baryons and photons (4.49) into one single Equation along the lines of
Section 5.1

1 1 a
V=kU+ [Rk <Z D) — 6H7> + kg Dg — — V(1 = 3¢)

—k®(R+3)|[(R+1)7", (C.5)
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where ¢2 is the baryon sound speed,! V is the common velocity of baryons and
photons and R = 4p,/(3py). The monopoles evolve according to

D) = —kVy — 32D} =, (C.6)
and L
Mo = — SV (C.7)

All higher moments of M as well as the polarization terms F; are set to zero.

(IT) No Tight coupling:
Without tight coupling, baryons obey

Vy = k(¥ — 3¢2®) + ke2 D! + g (32 = 1) Vi + &R(V, — Vi), (C.8)
where c; is still the baryon sound speed. For the photon velocity, one uses Equation
(4.49). The densities D, for photons and baryons evolve as in the tight coupling
regime. Multipoles [ > 1 for photons are calculated using Equations (4.49, 4.50).
The multipole expansion is truncated at some [ < 10 for sufficient precision. In
order to avoid truncation effects as good as possible, one uses [27] the recursion
relation for spherical Bessel functions

. 2max + 1 lmax + 1 .
My, = omx T g oMy (e (C.9)
2lmax — 1 T

The polarization E is propagated using Equations (4.52,4.53), and the recursion
relation

lmax

21 1 l 1
ZLX_I-kElafl—Ela ﬂ_i_,% , (C.10)
2max — 1 max max T

for truncation.

Massless Neutrinos

Massless neutrinos evolve according to Equations (4.54-4.56). The hierarchy is
truncated using

2ll’l’laX + 1 lmax + 1

N, = EN, _{—N C.11
lmax 2lmaX _ 1 lma.x 1 lma.x ( )

Quintessence

The scalar field fluctuation is propagated using a first order formulation of Equation
(3.73), i.e. dX/dr = X and d(X)/dr is then given by X of (3.73).

!This is practically vanishing for most of the time, thus setting ¢? = 0 in this Equation is still
quite accurate.
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D _

Conventions, Symbols and
Conversion Factors

We take the metric with signature (—, +, +, +).

Greek indices run from 0...3 and are raised and lowered by the metric g, .
Latin indices run from 1...3 and are raised and lowered by d;;.

The partial derivative of a tensor 9,7 is abbreviated by T',,.

The co-variant derivative of a tensor VT is abbreviated by T,.
Perturbations in a certain gauge are denoted by lower case letters: 6, v, x ...
Gauge-invariant variables are denoted by capital letters: D,, II, X ...

Three-vectors are denoted by bold letters and their scalar product is given
by a-b:allﬂéij.

The Christoffel symbols are
T = 2 0 (Gops + oo — Gaso)
aB T 9 g JoB,u T Yoo, — GaB,o)
while the Riemann tensor is

R, 5= 0oL} — 0T, + T, —T7, T

v va~ gf*
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One Mpcis ...

1.5637 x 10%® Gev™!
3.0856 x 10?2 m
1.0292 x 10 s
3.264 x 10° years

One Mpc s ...

6.3952 x 103 Gev
3.2408 x 10723 m~!
9.7163 x 1015 g1

In terms of Mpcis ...

Mp = 3.753 x 10756 Mpc~!
H =3.34%x10%h Mpc™!

One Mpc™*is ...
1.673 x 10~ 193Gev

Table D.1: Conversion of Mpc to various units.
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Symbol Meaning

t time

T conformal time

a scale factor, normalized a(today) = 1
z redshift z = (1 —a)/a

U conformal time derivative % Y

V! derivative with respect to the field ¢
Yeq Quantity y at matter radiation equality
Yls Quantity y at last scattering

Yo Quantity y today
Mp Reduced Plank mass Mp = (87G)~1/2.
H Hubble parameter H = (da/dt)/a

h defined via H = 100 hkms~'Mpc*

Py Background energy density of y

Dy Background pressure of y

wy Equation of state w = p/p of species y
Cs Sound speed (of some species) see (3.42)
Qv Fraction of energy py,/protal -

Qf QY (today).

@ Background quintessence field

© Quintessence field
©m Shift of peak m
Dy Density perturbation of species y

Vy Velocity perturbation of species y.

11, Shear of species y.

X Gauge invariant quintessence field fluctuation
M, Photon multipole

E; Photon polarization multipole

N, Neutrino multipole

Q Scalar perturbation basis function

Qi Scalar basis function for vector fields
Qij Scalar basis function for tensor fields

continued on next page ...
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continued . ..

ne Number density of free electrons
or Thomson scattering cross-section

% Differential optical depth £ = an.or.

n spectral index of initial fluctuations
l4 Acoustic scale

wy Average equation of state (2.44)

0¥

s Average ¥ until last scattering

os  RMS cold dark matter fluctuations on scales of 8~ Mpc.

Table D.2: Frequently used symbols, continued from page before.
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