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Zusammenfassung

Wir untersuhen kosmologishe Quintessenz-Modelle. Quintessenz ist eine hypo-

thetishe, fast homogen im Universum verteilte Energieform. Wir f�uhren die kosmo-

logishe St�orungsrehnung und die Berehnung der Anisotropien der Hintergrund-

strahlung eihinvariant durh. F�ur viele Modelle folgen dabei Quintessenzuktua-

tionen zu fr�uhen Zeiten einfahen Potenzgesetzen. Die Auswirkungen von Quintes-

senz auf die Kosmishe Hintergrundstrahlung und das Alter des Universums wer-

den durh drei intuitive Parameter beshrieben. Wir quanti�zieren die Relation der

Peaks im Spektrum der Hintergrundstrahlung zur sogenannten akustishen Skala

und zeigen, dass sih die akustishe Skala aus Experimenten ablesen l�asst. Damit

und mittels der Strukturentstehung shr�anken wir zwei bedeutende Modelle ein.

Quantenkorrekturen zu den klassishen Quintessenzpotentialen werden berehnet,

wodurh Modelle mit Kopplungen zu dunkler Materie unwahrsheinlih sheinen.

Shliesslih stellen wir mbeasy, ein Programm zur Berehnung der Kosmishen

Hintergrundstrahlung vor.

Abstrat

We investigate osmologial models ontaining quintessene. Quintessene is a hy-

pothetial form of energy distributed almost homogeneously throughout the Uni-

verse. We alulate osmologial perturbations and osmi mirowave bakground

anisotropies using gauge-invariant variables. For many models, quintessene u-

tuations follow simple power laws at early times. The impliations of quintessene

on the osmi mirowave bakground and the age of the universe are desribed via

three intuitive parameters. We quantify the relation between the peaks in the mul-

tipole spetrum of the osmi mirowave bakground to the so alled aousti sale.

We show that this aousti sale is extratable from experimental data. Using this

and onstraints from struture formation, we onsiderably restrit two frequently

used quintessene models. Quantum loop orretions to the lassial quintessene

potentials are alulated. From this, models with a oupling to dark matter beome

unlikely. Finally, we present mbeasy, a omputer ode for alulating the osmi

mirowave bakground anisotropies
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1

Introdution

Aording to the Hithhiker's guide to the Galaxy, `spae is . . .mind-bogglingly

big' [1℄. And, one should add, it is getting bigger. This is no surprise, for most

of the galaxies are moving away from eah other. Intuitively, gravitation should

slow down this expansion. For years, sientists asked the question whether this

deeleration would bring the expansion to a halt and lead to a runh. It was a

surprise when in 1998 distane measurements using supernovae (exploding stars)

indiated that the expansion of the universe may on the ontrary be aelerated [2℄.

Aording to Einstein's theory of relativity (applied to osmology), an aelerated

expansion neessitates a form of energy with so-alled negative pressure. While the

universe expands, the negative pressure of this energy means that it beomes more

and more important with respet to ordinary matter. Figure 1.1 depits the saling

of di�erent omponents with the overall expansion of the universe. The two dark

energy models plotted are seen to ath up and overtake the density of matter at

the present time.

Combining di�erent observational tests one is led to onlude that this (un-

known) energy onstitutes more than half of the energy density within the universe.

It surpasses the mass of baryons (making up stars and galaxies) by about a fator of

10 and it also 'weighs' about twie as muh as old dark matter. Cold dark matter,

in turn, is some form of matter that gravitationally behaves like ordinary bary-

oni matter, yet non-interating with baryons. Naturally, the mysterious energy

has been given the name `dark energy'. For those among us that spontaneously

assoiate `Star Wars' with dark energy, a more noble name has been proposed:

quintessene [3℄. Yet, years before the mysterious energy was hristened, osmo-

logial models involving a light salar �eld have been investigated [4{8℄. Today,

these light salar �eld models are the prototype of quintessene. The motivation

for proposing these light salar �elds omes from more fundamental theories, like

string theories whih feature suh �elds. In addition, the �eld models may solve the

osmologial onstant problem [6℄. The osmologial onstant is assoiated with

the vauum energy of the universe. From naive quantum �eld theory alulations

one is lead to onlude [9,10℄ that its observed value and the value most naturally

expeted di�er by 120 deimal plaes (more of this in setion 7). Having no under-
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Figure 1.1: Energy density of radiation, matter, leaping kineti term quintessene and

vauum energy (osmologial onstant). The energy densities are plotted as a funtion of

the sale fator a. The sale fator is related to the redshift via z = a

�1

� 1 and today one

has a = 1. The densities of radiation and matter sale like a

�4

and a

�3

respetively. At

about a � 10

�4

, matter beomes more important than radiation. The ontribution from

the osmologial onstant (vauum energy) is negligible throughout most of the history of

the universe. The densities of matter and vauum energy would only reently be of the same

order of magnitude. This involves �ne-tuning of the osmologial onstant. More natural

seems the behaviour of the (leaping kineti term) quintessene model, denoted by �

'

. It

sales like the dominant speies throughout the early history of the universe, ontributing

at the perent level towards the total energy density. In this phenomenologial model,

some event at a � 0:1 leads to a hange in the quintessene behaviour. From then on, it

beomes more and more important with respet to matter. Even though the parameters

of the model still need to be adjusted, the tuning is on the level of 1 : 1000, as opposed to

the 120 deimal plaes of the osmologial onstant.

standing of how this mysterious anellation should happen, theoretiians prefer a

vanishing osmologial onstant. As life is rarely fair, present osmologial data is

very well ompatible with dark energy being a osmologial onstant. In ontrast

to the severe �ne-tuning for a osmologial onstant, salar �eld quintessene mod-

els very often have attrator solutions [11{13℄. Over an impressing broad range of

initial onditions the �eld moves swiftly towards its attrator (see Figure 1.2). This

is a muh desired feature, beause many sientists believe that our universe should

in some way be generi. Sure, the universe ould be very speial indeed, however,

historially mankind has moved from the enter of the world to the outer region

2
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Figure 1.2: Convergene of di�erent initial onditions (dotted, dashed and long-dashed

line) towards the attrator solution (solid line). Shown is the energy density of the quint-

essene �eld as a funtion of the sale fator a. The present time orresponds to a = 1 and

Eletron-proton reombination ourred at a

ls

� 10

�3

. The quintessene model used is an

inverse power law with power � = �3 (see setion 2.3 for details).

of a typial galaxy. From this, it is only a small step to assume that also our uni-

verse should not be too dependent on �ne-tuned initial onditions. Exatly to what

extent one is aepting a tuning of initial onditions remains personal taste. For

many people, the tuning still needed to yield for example the right amount of dark

energy today is too muh to aept salar quintessene models. One should remark

here that the models on the market are phenomenologial models. There ould

well be a mehanism (e.g. utuations hanging the e�etive potential) that leads

generially to a behaviour of the salar �eld that presently may look �ne-tuned.

Maybe even more mind-bogglingly than the vast size of the universe is the fat

that within the framework of `standard' physis

1

, one is apable of understanding

many phenomena in the history of the universe, bak to when it has been younger

than a fration of a seond. A very nie example of this is the theory (and obser-

vation) of the Cosmi Mirowave Bakground (CMB) radiation. The radiation is

made up of photons that one were part of a hot, spatially almost uniform plasma

�lling the universe. About 300'000 years after the big-bang, the universe was ool

enough for the eletrons and protons in the plasma to reombine and form neutral

hydrogen. The photons that before and during this proess sattered o� free ele-

1

Well, some of it is not so standard, atually.

3



Chapter 1. Introdution

trons suddenly were able to travel freely. About 10

0

000

0

000

0

000 years later, some

of these photons (redshifted by the expansion of the universe that also strethes

their wavelength) hit the detetors of balloon and satellite borne experiments. As

it turns out, the radiation looks almost the same in all diretions on the sky: it

is the thermal radiation of a blak body with temperature 2.7 K. Yet, when ap-

plying Einstein's theory of general relativity to small density utuations within

the primeval plasma, one �nds that depending on the sale, utuations should

behave di�erently. It is a remarkable suess story that several experiments in

the late 1990's and early 2000's have measured these sale-dependent utuations.

Independently of supernovae measurements, the CMB data also favours some form

of dark energy ontributing about 70% towards the present energy ontent of the

universe [14,15℄.

The stage is thus set. If the experiments and our understanding of them is to

be trusted, then one needs to devise tests to di�erentiate between various forms

of dark energy. As salar �eld quintessene is usually time-dependent, tests at

di�erent epohs may reveal its nature. Our aim is not to restrit a partiular

model as good as possible, but to desribe e�ets of quintessene on some of the

observations in an model-independent way. With very few intuitive parameters,

suh as the average frational energy density before reombination, we will be able

to aurately quantify main impliations of quintessene on the CMB, SNe Ia and

the age of the universe.

Yet with today's preision experiments, analyti estimates need to be supple-

mented by numerial simulations. A very useful tool for this is the publily available

mbfast pakage [16℄. During this work, we have substantially modi�ed this ode

(see Chapter 8). With the kind permission of the authors of mbfast, U. Seljak

and M. Zaldarriaga, this modi�ed pakage has been presented to the publi during

the xxxvii. Renontres de Moriond [17℄. The new ode has been designed to fail-

itate modi�ations. As it also features a graphial user interfae, it goes under the

name of mbeasy.

The salar quintessene �eld is usually treated at the lassial level. Even

though it might be motivated by more fundamental theories, this does a-priori not

mean that quantum utuations are inluded. In priniple, and for as long as one

does not view the potentials as already e�etive, utuations below the sale of

the more fundamental theory need to be taken into aount. We will turn to this

important issue in Chapter 7.

We have tried to make this thesis as self ontained as possible. However, one

in a while abbreviations and onventions osmologists are familiar with may have

slipped into the text without further explanation. If so, we would like to apologize

for any inonveniene aused. Our onventions and tables summarizing frequently

used symbols as well as onversion fators of mega Parse to other units an be

found in Appendix D.

This thesis is organized as follows: in Chapter 2, we review the expansion his-

tory of universes ontaining dark energy. After this, several quintessene models

frequently used in the literature are briey introdued. The saling of various quint-

4



essene related quantities with onformal time is also presented in this hapter for

models with attrator solutions. Chapter 3 treats osmologial perturbation theory

inluding salar quintessene. The perturbations are mostly expressed in gauge-

invariant variables, however some results are additionally stated in synhronous

gauge. In Chapter 4, we start by reviewing intuitive onepts in the theory of

osmi mirowave bakground anisotropies. Afterwards, the derivation of the main

formulae needed to alulate CMB anisotropies is presented along the lines of [18℄.

The line of sight strategy [16℄ implemented in mbfast and mbeasy together

with the appropriate gauge invariant formulae used in mbeasy are (re-)derived

at the end of Chapter 4. The initial onditions for all perturbation variables are

alulated in Chapter 5. In addition, an analyti solution to the equation of mo-

tion of the salar �eld utuation is found. This solution holds generally whenever

the �eld is in its attrator. Chapter 6 deals with observational tests for quint-

essene. After disussing the e�ets on the multipole spetrum of the CMB, we

present �tting formulae for the so-alled shifts of the peaks in this spetrum. We

will show that the shift of the third peak is partiularly insensitive to di�erent

osmologial models. Using this result, we extrat the so-alled aousti sale from

CMB data. Comparing values for the aousti sale predited by spei� models

to this experimental value, and ombining with luster abundane onstraints we

restrit two types of quintessene models in more detail. The end of Chapter 6

deals with quintessene impliations on the reent expansion history and hene on

SNe Ia-experiments. In Chapter 7, quantum loop orretions to the salar �eld po-

tentials are alulated. Finally, the objet oriented design of the mbeasy pakage

is presented in Chapter 8.
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2

Quintessene in the

homogenous Universe

In general relativity, Einstein's equations relate the geometry of the universe loally

to the energy momentum ontent. The geometry is expressed via the metri g

��

and subsequently through the Rii Tensor R

��

and the urvature salar R, while

the energy momentum tensor is ommonly denoted by T

��

. Using the redued

Plank mass M

P

� (8�G)

�1=2

, Einstein's equations read

1

T

��

= M

2

P

�

R

��

�

1

2

g

��

R

�

: (2.1)

In order to solve these in general very ompliated oupled di�erential equations

analytially, one needs to guess the geometry of the spae and hene the metri.

The most general metri that is isotropi and homogenous on onstant time hyper-

surfaes is the Robertson Walker metri. This metri omes in three `avours',

for the ases of negative, positive or vanishing 3-urvature in the onstant time

hyper-surfaes. A vanishing of this 3-urvature means a spatially at universe

(we will sloppily all this just a `at universe'). Now, there is strong theoretial

prejudie for a at universe. Firstly, the theory of ination predits it. Seondly

and maybe more onviningly: A Friedmann Robertson Walker universe starting

with a small deviation from spatial atness will get more and more urved as time

goes on [20℄. Experimentally, the universe is found to be at least very nearly at

[14,21℄. So if the Universe would have a small but detetable urvature, then it

must have departed from being undetetable lose to at just reently. This is not

very natural to assume. We will thus usually limit our disussion to at universes,

as this simpli�es the disussion (and presentation) greatly. Having said this, we

take the Robertson Walker metri of the form

ds

2

� g

��

dx

�

dx

�

= a

2

(�)

�

�d�

2

+ Æ

ij

dx

i

dx

j

�

; (2.2)

1

An eventual osmologial onstant is assumed to be part of the energy momentum tensor.

7



Chapter 2. Quintessene in the homogenous Universe

where the onformal time � is related to the usual time t by d� = a

�1

dt. The

expression `onformal time' is well hosen, for the metri (2.2) is onformally related

to the usual Minkowski metri �

��

= diag(�1; 1; 1; 1) by the onformal fator a(�).

We normalize a(�) suh that today, we have

a

0

� a(�

0

) = 1; (2.3)

where here and in the following a subsript 0 will denote quantities as measured

today. As a(�) determines the strething of physial length sales,

l

2

physial

(�) = g

ij

l

i

l

j

= a

2

(�)Æ

ij

l

i

l

j

= a

2

(�)l

2

; (2.4)

it is ommonly alled the sale fator. Please note that 3-vetors are in bold,

spatial omponents are denoted by Latin indies and the 3-vetor salar produt is

the usual one: xy = Æ

ij

x

i

x

j

.

It is ommon pratie to desribe the matter ontent of the universe by uids.

Even in ases where this desription is no longer valid and one needs to think in

terms of distribution funtions, we will still identify ertain parts of these distri-

butions with uid terminology. For a start, let us briey forget about ases where

the uid desription breaks down and note that the energy momentum tensor for

a perfet uid is [22℄ (see also Setion 3.2)

�

T

�

�

= diag(���; �p; �p; �p); (2.5)

where ��(�) is the (unperturbed

2

) energy density and �p(�) is the pressure. The

relation between �� and �p is expressed in the equation of state

�p(�) = w(�)��(�): (2.6)

For non-relativisti matter, the pressure vanishes, whereas photons and massless

neutrinos have w = 1=3. From the 0 � 0 part of Einstein's Equation (2.1), we we

get the Friedmann equation

3M

2

P

H

2

= �(�): (2.7)

Here, the Hubble parameter H is related to the sale fator a(�) by

H � a

�1

da

dt

= a

�1

da

d�

d�

dt

� a

�2

_a; (2.8)

where a dot denotes a derivative with respet to onformal time � throughout this

work. Conservation of the zero omponent of the energy momentum tensor,r

�

�

T

�

0

=

0, yields the useful relation

_

��

��

= �3(1 + w)

_a

a

: (2.9)

2

Antiipating perturbation theory, we denote bakground quantities by a bar.

8



2.1. Constituents of the Universe

Finally, by ombining Friedmann's equation (2.7) with the i� i part of Einstein's

equation one obtains

X

all speies

�

��

�

1

3

+ w

��

= �2M

2

P

a

�1

d

2

a

dt

2

: (2.10)

2.1 Constituents of the Universe

We know very little about the preise ontent of the universe. Big Bang Nuleosyn-

thesis (BBN), the Cosmi Mirowave Bakground (CMB) as well as the ounting of

luminous matter tells us that only a few perent of the ontent of the universe an

be baryons: summing up their energy ontribution is just not enough to ful�ll the

(at) Friedmann equation (2.7) given the observed value of the Hubble onstant.

We will denote the fration of baryon energy to the total energy density as 


b

,

where




x

�

�

x

�

rit

=

�

x

3M

2

P

H

2

; (2.11)

for any speies X, and we have de�ned �

rit

� 3M

2

P

H

2

. It is lear from the

de�nition of 


x

, that in a at universe, the sum of all 


x

, 


tot

needs to be unity.

If not baryons, what else is out there? In priniple, there are many possibilities

and andidates e.g. from partile physis to blak holes are onsidered. Funny

enough, the simplest andidate behaving like ordinary pressureless matter and yet

non-interating with baryons is very suessfully desribing many aspets of our

Universe. Having no lue what exatly ould be this andidate, one alls it old

dark matter. As we will soon see, CMB, SNe Ia and struture formation all point

in the diretion of 




0

� 0:3.

Yet, this still does not add up to unity and again both CMB and SNe Ia

experiments favour some form of dark energy that at least in the reent universe

z / 1 should have a negative equation of state

w

'

(�) =

�p

'

��

'

: (2.12)

We will denote all kinds of dark energy - inluding the possibility of a osmologial

onstant (where w

�

� w

'

= �1) by the index '.

Under the assumption that today only old dark matter and dark energy play

a major role, one obtains from Equation (2.10) that a universe with

w

'

0




'

0

< �

1

3

; (2.13)

is expanding in an aelerated way.
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Chapter 2. Quintessene in the homogenous Universe

2.2 Salar Quintessene Ation and Equation of Mo-

tion

The ation for a salar �eld minimally oupled to gravity is

S = �

Z

d

4

x

p

�g

�

1

2

�

�

'�

�

'+ V (')

�

; (2.14)

where g � g

��

. Using Æ

p

�g = �

1

2

p

�gg

��

Æg

��

, we get for the energy momentum

tensor [23℄

T

�

�

� �

2

p

�g

ÆS

Æg

��

g

��

(2.15)

= '

;�

'

;�

� Æ

�

�

�

1

2

'

;�

'

;�

+ V

�

: (2.16)

For the homogenous bakground value �'(�) of '(x), the spatial derivatives vanish

and we are left with an energy momentum tensor of the perfet uid form (2.5),

where

��

'

=

1

2

a

�2

_

�'

2

+ V and �p

'

=

1

2

a

�2

_

�'

2

� V: (2.17)

We an thus simply use Equation (2.9) to obtain the equation of motion

�

�'+ 2

_a

a

_

�'+ a

2

�V

� �'

= 0: (2.18)

2.3 Popular Quintessene Models

Sine the early work of [4{8℄, many potentials for the salar �eld have been pro-

posed. Also, a oupling [11,30,31℄ to dark matter has been investigated. We will

briey introdue some of the more popular models on the market, starting with

one of the oldest ones, the exponential potential.

Exponential Potential

The exponential potential (EP)

V

ep

= M

4

P

exp(��'=M

P

); (2.19)

is motivated by higher dimensional theories [6℄. It exhibits an attrator solution

where 


'

0

is determined by 


'

0

= 3=�

2

and the equation of state follows that of

radiation (matter) in the RD (MD) era. Hene, its equation of state vanishes today

[11℄ and therefore it annot lead to an aelerated expansion. In Setion 7, we will

see that it is stable under quantum utuations.

10



2.3. Popular Quintessene Models

Leaping Kineti Term

While keeping the exponential potential, one an modify the kineti term in the

ation (2.14). Multiplying it with a �eld dependent fator, one gets [32℄

L = k(')�

�

'�

�

'�M

4

P

exp('=M

P

): (2.20)

By means of the transformation '! K('), where k(') =

�K(')

�'

, one an translate

these models bak to anonial kineti terms with non-exponential potential. It is

very onvenient to hoose a leaping kineti term (LKT)

k(') = k

min

+ tanh [� ('� '

1

) =M

P

℄ + 1; (2.21)

where the onstant k

min

determines the amount of quintessene in the early universe

and � � O(1) spei�es the steepness of the transition between k = k

min

and

k = 2 + k

min

whih ours at the �eld value ' = '

1

. Using this kineti fator,

one an independently speify the amount of dark energy in the early universe (via




'

early

= 3[1 + w

bakg:

℄k

2

min

), as well as w

'

0

and 


'

0

(via '

1

and �). Beause it is so

versatile, we will use it frequently.

Modi�ed Exponentials

Multiplying the exponential potential by a polynomial V

p

('), we arrive at the

modi�ed exponential potentials (AS) [33℄

V

as

= V

p

(') exp(��'=M

P

): (2.22)

Novel features appear if the polynomial leads to a loal minimum in the potential

in whih the �eld an be trapped.

Inverse Power Laws

Inverse power law (IPL) potentials

V

ipl

= A

�

'

M

P

�

��

; (2.23)

have been investigated thoroughly in the literature [5,12,34{37℄. Here, the pre-

fator A needs to be tuned in order to give the right amount of quintessene today.

As IPL models feature attrator solutions, the equation of state today is determined

solely by w

'

0

= �2=(� + 2). As it takes on negative values, it an lead to an

aelerated expansion. Unfortunately the power � is phenomenologially restrited

to values � / 2 [35,36℄. This leads to more and more �ne tuning of A, beause as

�! 0, IPL models behave more and more like a genuine osmologial onstant. For

phenomenologially aeptable values of �, A is of the order 10

�30

M

P

. Depending

on one's taste (and interpretation of the pre-fator), this may or may not look �ne

tuned.

11



Chapter 2. Quintessene in the homogenous Universe

SUGRA Inspired Models

A mixture of the exponential and the inverse power law potential

V

sugra

= A

�

'

M

P

�

��

exp

�

1

2

['=M

P

℄

2

�

; (2.24)

may arise from supergravity [38℄. It features an aelerated expansion and is thus

an interesting model. SUGRA inspired models have been investigated thoroughly

for instane in [39℄.

Cooking it all up

In [40℄ a unifying expression

V

uni

= A

�

'

M

P

�

��

exp(��['=M

P

℄



) (2.25)

for mixing up EP, IPL and SUGRA potentials has been proposed. This form

failitates the disussion of suh models as they beome just limiting ases of one

potential. We will use it briey in Chapter 7.

2.3.1 Traking and Attrator Solutions

Many quintessene models feature attrator solutions [5,6,12℄. For a wide range

of initial onditions, the �eld is drawn towards this solution in whih it may stay

forever (EP and IPL). In some models (like LKT), an event kiks it out of the

attrator. In both ases, the equation of state w

'

during the early stages of osmo-

logial evolution remains frozen. The Friedmann Equation (2.7) and the equation

of motion (2.18) ombine in the ase of _w

'

= 0 to [12℄

�

V

0

V

=

p

3(1 + w

'

)M

�1

P

(


'

)

�

1

2

; (2.26)

where � = sign(V

0

). This is a very valuable result, beause it will enable us to

disuss the time dependene of V; V

0

; V

00

and ' as a funtion of w

'

solely. As the

expression for D

'

g

ontains a term V

0

=��

'

, we note that

V

0

��

'

=

V

0

T + V

= (1 + w

'

)

V

0

2V

: (2.27)

A relation to

_

�' an be found by onsidering

a

�2

_

�'

2

= 2T = (1 + w

'

)�

'

= 3(1 + w

'

)M

2

P

a

�2

�

_a

a

�

2




'

; (2.28)

and therefore

_

�' = M

P

_a

a

[3(1 + w

'

)


'

℄

1

2

: (2.29)
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2.4. Expansion History

Combining this and Equation (2.26) yields

�

V

0

V

= 3(1 + w

'

)

_a

a

_

�'

�1

: (2.30)

Using the relations (2.26-2.30) above, we an now infer the saling of various quint-

essene quantities with � . As we will primarily need these for early times, we

assume that during the early universe, the dominating energy ontribution sales

like radiation, i.e �� / �

�4

. This is ertainly valid if quintessene is subdominant

and also in ases where exponential potentials are involved. Hene,




'

=

��

'

��

rel:

/ �

1�3w

'

; (2.31)

and therefore from Equation (2.29)

_

�' / �

�

1

2

(1+3w

'

)

; (2.32)

and similarly from Equation (2.26)

V

0

V

/ �

1

2

(3w

'

�1)

: (2.33)

As V / T in the traking regime, we further have

V / �

�2

_

�'

2

/ �

�3(1+w

'

)

(2.34)

and ombining the two relations above

V

0

/ �

�

1

2

(7+3w

'

)

: (2.35)

Finally, the hain rule yields

V

00

=

dV

0

d�

d�

d�

/ �

�4

; (2.36)

independent of the equation of state.

2.4 Expansion History

Quintessene inuenes the expansion history of the universe. As we will see, it

an for instane lead to a larger age of the universe. It ould also alter the size of

the so alled sound horizon (see setion 4). The imprints of this will then be seen

in the osmi mirowave bakground. This setion briey reviews the properties of

the di�erent speies, stressing the impat of quintessene.

From the Friedmann Equation (2.7), we see that the expansion of the universe

is determined solely by the energy density. In this work, we onsider ontributions

13



Chapter 2. Quintessene in the homogenous Universe

Speies w

Photons 1=3

Massless neutrinos 1=3

Massive neutrinos 0 < w < 1=3

Baryons 0

Cold dark matter 0

Cosmologial onstant �1

Quintessene

2

�1 < w < 1=3

Table 2.1: Saling behaviour of various speies, expressed by the equation of state pa-

rameter w = �p=��.

towards this energy density from baryons, old dark matter, photons, massless

neutrinos, quintessene and in priniple massive neutrinos.

With the ansatz �(�) / a(�)

(�)

, one immediately �nds from Equation (2.9)

that

 + a

_

_a

lna = �3(1 +w): (2.37)

For slowly varying  (additionally suppressed by a lna), this leads to

��

x

/ a

�3(1+w

x

)

: (2.38)

We summarize the di�erent saling behaviour of the speies in Table 2.1. Inserting

w = �1 for a osmologial onstant in Equation (2.38) and using Equation (2.7),

we get

3M

2

P

H

2

= onst; (2.39)

and hene a / exp(H t) - the universe is undergoing ination. Sales that were

before in ausal ontat are pressed out of the horizon. With horizon, we mean

the distane, a light signal with a meaningful

3

wavelength an travel from the big

bang until some time t. Now, if at some earlier time with sale fator a

e

, a photon

travels a distane we would today all a lightyear, this distane will have grown

due to the expansion by a fator of a

0

=a

e

until today. Hene, the horizon oinides

with the onformal time

Horizon =

Z

t

0

dt

0

a

=

Z

�(t)

0

d�

0

= �: (2.40)

The horizon size above is the size of the horizon as seen today. To �nd its physial

size as seen at the time � , one needs to sale the horizon by a(�).

3

Ination strethes wavelengths in an extreme way. A wave with wavelength larger than the

horizon will be undetetable and does not arry useful information.

2

In priniple, the range depends on the model and more extreme ases are possible (however,

not for salar quintessene models).
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2.4. Expansion History

w
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w
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'
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Figure 2.1: Equation of state w(�), ~w(�) � 


'

(�)w(�)�

0

=

R

�

0

0




'

(�

0

)d�

0

and averaged

equation of state w

0

for a leaping kineti term model (see setion 2.3) with

�




'

ls

= 0:13 and

�




'

ls

= 0:22.

As photons and massless neutrinos sale di�erently than baryons and old dark

matter, there is a sale fator

a

eq

=




rel

0




b

0

+




0

� 10

�4

; (2.41)

at whih the relativisti and the pressureless matter energy density have been

equal. Before a

eq

, the universe has been dominated by radiation. In this ase, the

Friedmann equation (2.7) gives

a / �; (2.42)

whereas in a matter dominated universe,

a / �

2

: (2.43)

Adding quintessene to this piture, things beome more ompliated. For the

pure exponential potential, the expansion history both in the radiation and matter

era remains unhanged, beause w

'

follows the equation of state of the dominant

speies [11℄. In general, however, this is not true anymore and one has to integrate

the Friedmann equation numerially.
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Figure 2.2: F (


'

0

; w

0

) as a funtion of w

0

of the dark energy omponent, for 


'

0

between

0.2 and 0.7. Between the limiting ases of w

0

= �1 (osmologial onstant) and w

0

= 0

(orresponding to pressureless dust), the age of the Universe varies onsiderably.

Yet, we an make onsiderable progress, if we desribe generi features of quint-

essene by suitably de�ned averages. For the equation of state, we use

w

0

�

Z

�

0

0




'

(�)w

'

(�)d� �

�

Z

�

0

0




'

(�)d�

�

�1

: (2.44)

It is 


'

-weighted, reeting the fat that the equation of state of the dark energy

omponent is more signi�ant if the dark energy onstitutes a higher proportion

of the total energy of the Universe (see Figure 2.1). In the limiting ase that the

equation of state did not hange during the reent history of the Universe, the

average is of ourse equal to w today. Nevertheless, the di�erene between the

average w

0

and today's value w

0

an be substantial for ertain models, as an be

seen from Table 6.2.

The Friedmann equation (2.7) for relativisti speies together with baryoni

and old dark matter and a quintessene omponent reads

3M

2

P

_a

2

a

�4

= �

m

+ �

rel

+ �

'

(2.45)

= �

m

0

a

�3

+ �

rel

0

a

�4

+ �

'

0

a

�3(1+w

0

)

: (2.46)
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2.4. Expansion History

Hene, using 3M

2

P

H

2

0

= �

rit:

0

, we have

�

da

d�

�

2

= H

2

0

n

(1� 


'

0

� 


r

0

)a(�) + 


'

0

a

(1�3w

0

)

+


r

0

o

: (2.47)

Upon integrating this, the onformal time today beomes

�

0

= 2H

�1

0

(1� 


'

0

)

�

1

2

F (


'

0

; w

0

); (2.48)

with F given by

F (


'

0

; w

0

) =

1

2

Z

1

0

da

�

a+




'

0

1� 


'

0

a

(1�3w

0

)

+




r

0

(1� a)

1� 


'

0

�

�1=2

: (2.49)

The integral F an be solved analytially for speial values of w

0

, e.g.

F (


'

0

; w

0

= 0) =

q

1� 


'

0

�

1�

p




r

0

�

+O(


r

0

): (2.50)

Sine (2.49) is dominated by a lose to one (typially w

0

� 0) only the present epoh

matters, onsistent with the averaging proedure (2.44). From this we regain on

inserting (2.50) in Equation (2.48) the trivial result that the age of the Universe is

the same for a old dark matter and a pressureless dark energy universe. We plot

F (


'

0

; w

0

) for various values of 


'

0

in Figure 2.2.

17



Chapter 2. Quintessene in the homogenous Universe

18



3

Flutuations in Linear Theory

In the previous hapter, we have seen that using the Robertson-Walker metri, we

an solve Einstein's equation. The result is almost miraulously simple. However,

the universe is not ompletely homogenous. On the ontrary: it is quite lumpy

on the sales of the solar system or even galaxies. Yet, the larger the sale one

looks at, the more homogenous it beomes. In addition, the inhomogeneities usu-

ally grow due to gravitational infall. Hene, in the early universe, we may expet

only small departures from homogeneity. This is where linear perturbation the-

ory enters the stage. Starting from the homogenous FRW universe, one perturbs

the metri and the energy momentum tensor. It is onvenient to expand these

perturbations in (generalized) Fourier modes and to lassify physial quantities in

the 3-dimensional onstant time hyper-surfaes by their transformation properties

[24{26,18℄. Eigenfuntions of the 3-dimensional Laplae operator

�Q

k

(x) = �k

2

Q

k

(x) (3.1)

are used to deompose the metri and energy momentum perturbations into salar,

vetor and tensor parts (alled modes). The bene�t of this lassi�ation is that dif-

ferent modes do not mix in �rst order perturbation theory [26℄: the perturbation

equations deouple. Furthermore, a oupling between perturbations of di�erent

Fourier modes k and k

0

involves produts of perturbations. These would be of

seond order and are thus negleted. Hene, also modes with di�erent k deouple

and it is not neessary to display the wave vetor k of the eigenfuntions Q ex-

pliitly. For the same reason, it is not neessary to keep the integration over the

Fourier modes expliitly in the equations. One should however keep in mind that

for instane the energy density is

�(�;x) = ��+

Z

d

3

k

(2�)

3

Æ�(�;k)Q

k

(x); (3.2)

and it is only the deoupling of di�erent k modes that will enable us to ompare

the integrands diretly.
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Chapter 3. Flutuations in Linear Theory

If the 3-spae is at (the ase we are primarily interested in), thenQ = exp(ikx)

is the solution of the Laplae equation (3.1). Now, take for instane some vetor

V

i

. One an deompose it into a gradient and a (divergene-less) rotation part:

V = grad�+ rotB (3.3)

The funtion � is a salar, yet it ontributes to a vetor. In general, we an

onstrut the salar basis funtions by deriving Q. Let us de�ne

1

Q

i

� �k

�1

Q

;i

(3.4)

Q

ij

� k

�2

Q

;ij

+

1

3

Æ

ij

; (3.5)

where Q

ij

is traeless by onstrution and gives the salar ontribution towards a

symmetri tensor. In general, the ontributions to a vetor �eld B by some salar

funtion B an thus be written as:

B

i

= BQ

i

(3.6)

and for a tensor �eld, we have

H

ij

= H

L

QÆ

ij

+H

T

Q

ij

(3.7)

In exatly the same manner, basis funtions for vetor and tensor type pertur-

bations an be derived. For instane, the divergene-less part of a vetor �eld is

expressed [25℄ via Q

(V )

i

(x) solving the vetor Helmholtz equation

Q

(V );j

i;j

+ k

2

Q

(V )

i

= 0; (3.8)

and being divergene-less: Q

(V )i

;i

= 0. As we assume that the quintessene �eld is a

salar under general oordinate transformations, it has to be a salar under spatial

transformations also. We will therefore restrit ourselves to the disussion of salar

perturbations. The most general line element for a perturbed Robertson Walker

metri is [25℄

ds

2

= a(�)

2

�

�(1 + 2A)d�

2

�B

i

d�dx

i

+ (Æ

ij

+ 2H

ij

)dx

i

dx

j

�

(3.9)

Where in the salar ase B

i

and H

ij

are given by Equations (3.6) and (3.7).

3.1 The Gauge Problem

General oordinate transformations are a main ingredient of general relativity. Un-

fortunately, the freedom to hoose a oordinate system needs to be used with are in

1

We follow [25℄, but restrit ourselves to at universes. Hene the ovariant 3-derivative Q

ji

an be replaed by the partial derivative Q

;i

.

20



3.1. The Gauge Problem

osmology. Let us see, how this omes about. Consider an in�nitesimal oordinate

transformation

x

�

! ~x

�

= x

�

+ �

�

(�;x); (3.10)

where the derivative of �

�

is also assumed to be at most of the order �. We know

that some tensor expressed in the new oordinate system will be

~

T

�:::

�:::

(~x) =

�

�~x

�

�x

�

��

�x

�

�~x

�

�

: : : T

�:::

�:::

(x); (3.11)

where the transformation matries are

�

�~x

�

�x

�

�

= Æ

�

�

+

��

�

(�;x)

�x

�

(3.12)

�

�x

�

�~x

�

�

= Æ

�

�

�

��

�

(�;x)

�~x

�

(3.13)

= Æ

�

�

�

��

�

(�;x)

�x

�

�x

�

�~x

�

(3.14)

= Æ

�

�

�

��

�

(�;x)

�x

�

+O(�

2

): (3.15)

The last equation in the above holds, beause we have assumed that the derivative

of � is also of the order �. Thus, working to order �, the tensor transformation

(3.11) beomes

~

T

�:::

�:::

(~x) = T

�:::

�:::

(x) +

�

T

�:::

�:::

(x)

��

�

(�;x)

�x

�

+ � � � �

�

T

�:::

�:::

(x)

��

�

(�;x)

�x

�

� � � � (3.16)

If we were willing to give up the nie FRW bakground universe, we ould hap-

pily use the transformation Equation (3.16). However, we would like to make the

oordinate transformation (3.10), but without paying the prie of hanging the

bakground physis. The reason why we would like to keep the bakground physis

the same regardless of our oordinate transformations is that we would like the

bakground to maintain its Robertson-Walker metri, for we have seen that it is

the Robertson-Walker metri that leads to the onvenient Friedmann equation. So,

in order to stik to the old oordinates for the bakground, we have to go bak from

~x to x in the argument of

~

T :

~

T

�:::

�:::

(~x) =

~

T

�:::

�:::

(x+ �)

=

~

T

�:::

�:::

(x) + �

�

 

�

~

T

�:::

�:::

(�)

��

�

!

j�=x

=

~

T

�:::

�:::

(x) + �

�

�

�T

�:::

�:::

(�)

��

�

�

j�=x

+O(�

2

): (3.17)

Here, we have used the transformation Equation (3.16). Putting Equations (3.16)

and (3.17) together, we get the �nal gauge transformation law
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Chapter 3. Flutuations in Linear Theory

~

T

�:::

�:::

(x) = T

�:::

�:::

(x)�

�

T

�:::

�::: ;�

(�)�

�

+

�

T

�:::

�:::

(�)�

�

;�

+ � � � �

�

T

�:::

�:::

(�)�

�

;�

� � � � : (3.18)

The derivatives above ombine to give the Lie derivative L

�

�

T and we an rewrite

Equation (3.18) rather elegant as

~

T (x) = T (x)� L

�

�

T : (3.19)

Having derived the transformation equation, let us see what this means for the

metri. Using Equation (3.18), we get

~g

��

(x) = g

��

(x)� �g

��

�

�

;�

� �g

��

�

�

;�

� �

�

�g

��; �

: (3.20)

It is the last term in the above equation that would quantify the hange in the

bakground, if we allowed one. However, as we stik to the same bakground, we

will interpret this term as a ontribution to the hange of the perturbation variables

due to the oordinate transformation. This is the oneptional di�erene between

the oordinate transformation (hanging the bakground, the oordinates and the

utuations) and the gauge transformation (hanging only the utuations, keeping

the old oordinates and bakground quantities). The transformation four vetor �

an be deomposed into salar and vetor parts. Following [25℄, we set

~� = � + T (�)Q(x)

~x

i

= x

i

+ L(�)Q

i

(x) + L

(V )

(�)Q

(V ) i

(x): (3.21)

The vetor ontribution will not a�et salar perturbations, just like salar, vetor

and tensor perturbations deouple in linear approximation. Using the above tran-

formation (3.21) in (3.20), we an alulate for instane the hange in the metri

perturbation B:

~g

0i

(x) = g

0i

(x)� �g

�i

(�)�

�

;0

� �g

0�

(�)�

�

;i

� �

�

�g

0i; �

= g

0i

(x)� �g

ji

(�)

_

LQ

j

� �g

00

(�)TQ

;i

= �a

2

(�)

�

B +

_

L+ kT

�

Q

i

� �a

2

(�)

~

BQ

i

(3.22)

Similar alulations yield the transformation properties of all the metri perturba-

tion variables:

~

A(�) = A(�)�

_a

a

T (�)�

_

T (�)

~

B(�) = B(�) +

_

L+ kT (�)

~

H

L

(�) = H

L

(�)�

_a

a

T �

k

3

L(�)

~

H

T

(�) = H

T

(�) + kL(�) (3.23)
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3.2. The Energy Momentum Tensor

From the transformation properties (3.23) of the salar metri utuations, it is

lear that one an hoose the funtions T (�) and L(�) suh, that two of the per-

turbation variables vanish. Popular hoies are the synhronous gauge de�ned by

A = 0; B = 0 and the longitudinal gauge with H

T

= B = 0.

Having the transformation law (3.23) at hand, one an onstrut gauge-invariant

ombinations, the so alled Bardeen potentials

	 � A�

_a

a

k

�1

� � k

�1

_� (3.24)

� � H

L

+

1

3

H

T

�

_a

a

k

�1

�; (3.25)

where � � k

�1

_

H

T

�B vanishes in the longitudinal gauge. Hene, the line element

in the longitudinal gauge takes on the partiularly onvenient form

ds

2

= a(�)

2

�

�(1 + 2	)d�

2

+ (Æ

ij

+ 2�)dx

i

dx

j

�

; (3.26)

where we have restrited ourselves to salar ontributions. One expets that in gen-

eral, the utuations in the energy momentum tensor will also be gauge dependent.

This is the true gauge-problem. Due to the di�erent metri in di�erent gauges, o-

moving observers in di�erent gauges will measure di�erent energy perturbations.

3.2 The Energy Momentum Tensor

Having de�ned the metri, we will now speify the energy momentum tensor for

matter and radiation. Even though photons during reombination (and neutrinos)

need to be desribed by a distribution funtion, it is still onvenient to identify

ertain moments of these distributions as uid perturbations. Here, we are go-

ing to derive the perturbation equations for one single speies.

2

After deriving

the perturbation equations in the uid desription, we will turn to quintessene

perturbations.

The imperfet uid

Let us start by de�ning the energy momentum tensor of a (possibly imperfet)

uid:

T

�

�

= pÆ

�

�

+ (p+ �)u

�

u

�

+ �

�

�

(3.27)

Here, the 4-veloity u is the veloity of the matter rest frame with respet to the

oordinate frame. Usually, one assumes that the spatial omponents u

i

are �rst

order perturbations. With this in mind, we get from

u

�

u

�

g

��

= �1 (3.28)

2

In Appendix C (see also Chapter 5) we give the full equations (inluding momentum transfer

between baryons and photons) used to alulate the CMB anisotropies.
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Chapter 3. Flutuations in Linear Theory

the time omponent

u

0

= a(�)

�1

(1�A(�)): (3.29)

Next, we set for the spatial part

u

i

= a

�1

v(�)Q

i

; (3.30)

de�ning v. Lowering the index, we �nd for the ovariant veloity

u

0

= �a(1 +A) u

i

= a(v �B)Q

i

: (3.31)

Using the same onventions as [26,18℄, let us set

� � ��(�) [1 + Æ(�)Q℄; (3.32)

and the spatial trae

p Æ

i

j

� �p(�) [1 + �

L

(�)Q℄ Æ

i

j

; (3.33)

while for the traeless part

�

i

j

� �p�Q

i

j

: (3.34)

This de�nes the perturbations � and �

L

and Æ. Working to �rst order one gets

from these de�nitions

T

0

0

= ���(1 + Æ Q)

T

0

i

= (��+ �p) (v �B)Q

i

T

i

0

= �(��+ �p) v Q

i

(3.35)

T

i

j

= �p

�

(1 + �

L

Q)Æ

i

j

+�Q

i

j

�

: (3.36)

Gauging the Energy

We will now investigate the gauge dependene of the energy momentum perturba-

tions. From Equations (3.18), (3.21) and (2.9), we get

~

T

0

0

(x) = T

0

0

(x) +

�

T

0

0

�

0

;0

�

�

T

0

0

�

0

;0

�

�

T

0

0;0

�

0

(3.37)

= ���

�

1 +

�

Æ �

_

��

��

T

�

Q

�

= ���

�

1 +

�

Æ + 3(1 + w)

_a

a

T

�

Q

�

: (3.38)

Hene,

~

Æ = Æ + 3(1 + w)

_a

a

T: (3.39)

The veloity perturbation transforms as
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3.3. Gauge Invariant Energy-Momentum Perturbations

~v = v +

_

L; (3.40)

whih an be seen by either alulating d~x

i

=d~� or by transforming T

i

0

. Finally, we

get from a alulation similar to the one for Æ, that �

L

, transforms as

~�

L

= �

L

�

_

�p

�p

T = �

L

+ 3(1 + w)



2

s

w

_a

a

T; (3.41)

where the sound speed is given by



2

s

�

_

�p

_

��

: (3.42)

The vanishing of the o� diagonal elements

�

T

i

j

ensures that � is gauge invariant

from the start.

3.3 Gauge Invariant Energy-Momentum Perturbations

There are many ways to ombine one of the energy-momentum perturbations with

the metri utuations (or another energy-momentum perturbation) to form gauge-

invariant quantities. Following [18℄, we will use

V � v �

1

k

_

H

T

= v

(longit)

(3.43)

D

g

� Æ + 3(1 + w)

�

H

L

+

1

3

H

T

�

= Æ

(longit)

+ 3(1 +w)� (3.44)

D � Æ

(longit)

+ 3(1 + w)

_a

a

V

k

(3.45)

� � �

L

�



2

s

w

Æ; (3.46)

where (longit) labels perturbations in the longitudinal gauge, and � an be viewed

as entropy prodution rate. This is due to the fat that for adiabati perturbations

Æp=Æ� =

_

�p=

_

�� and therefore

3

�

(adiab)

=

Æp

�p

�

Æp=Æ�

w

Æ�

��

= 0: (3.47)

Perturbed Einstein's and Conservation Equation

Having de�ned the metri and the energy momentum tensor, we are now in the

position to use Einstein's equation to relate the metri perturbations to the matter

3

To avoid onfusion of the Æ's in this line: Æ� is the absolute perturbation ��� Æ.
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Chapter 3. Flutuations in Linear Theory

perturbations. We will �rst derive the equations with Æ; v : : : in the longitudinal

gauge and in a seond step move to the gauge invariant variables. The perturbed

part of Einstein's equations yields

a

2

�� Æ = 2M

2

P

�

k

2

�+ 3

_a

a

�

_

��

_a

a

	

��

from G

0

0

; (3.48)

a

2

v (��+ �p) = 2M

2

P

k

�

_a

a

	�

_

�

�

from G

0

i

; (3.49)

a

2

�p� = = �M

2

P

k

2

(� + 	) from G

i

j

: (3.50)

Conservation of the energy omponent T

�

0;�

= 0, gives

�

_

Æ =

�

_

��

��

+ 3

_a

a

�

Æ + (1 + w)(vk + 3

_

�) + 3

_a

a

w�

L

; (3.51)

whereas the momentum part T

�

i;�

= 0 yields

� _v = 4

_a

a

�� v + v

_

��

��

1 + 

2

s

1 + w

� k	+

w k

1 + w

�

2

3

�� �

L

�

: (3.52)

Please note that in priniple, the equation of state w and the speed of sound 

s

ould be time dependent. Moving to the gauge-invariant perturbations and using

Equation (2.9) we an rewrite equations (3.48-3.50) as

a

2

��D = 2M

2

P

k

2

� (3.53)

a

2

(��+ �p)V = 2M

2

P

k

�

_a

a

	�

_

�

�

(3.54)

a

2

�p� = �M

2

P

k

2

(� + 	); (3.55)

where we have simpli�ed (3.53) using the expression for v from Equation (3.49).

The dynamis of the the matter perturbations is governed by Equations (3.51) and

(3.52) expressed in gauge invariant variables. Using

_w =

_

��

��

�



2

s

� w

�

(3.56)

and Equation (2.9), we obtain

_

D

g

+ 3

�



2

s

� w

�

_a

a

D

g

+ k V (1 + w) + 3

_a

a

w � = 0; (3.57)

and

_

V =

_a

a

(3

2

s

� 1)V + k

�

	� 3

2

s

�

�

+



2

s

k

1 + w

D

g

+

wk

1 + w

�

��

2

3

�

�

(3.58)
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3.4. Perturbed Quintessene Energy Momentum Tensor

3.4 Perturbed Quintessene Energy Momentum Ten-

sor

The energy perturbation Æ is de�ned relative to ��. For the quintessene �eld, it will

be advantageous to onsider the absolute perturbation of a salar quantity. From

(3.18), we see that any salar ' = �' + � transforms as ~' = ' �

_

�'T . Hene, the

perturbation � transforms like ~� = ��

_

�'T and the ombination

X � ��

_

�'k

�1

� (3.59)

is gauge invariant. Due to the vanishing of � in the longitudinal gauge, we simply

have �

(longit:)

= X. For the quintessene �eld we write

'(�;x) = �'(�) + �(�); (3.60)

where we as usual suppressed the k integration and the k dependene of �. We now

use the above expression for X (3.59) to de�ne the gauge invariant �eld utuation

and write gauge-invariantly ' = �'(�) +X(�).

The perturbed energy momentum tensor follows from inserting the utuat-

ing '(�;x) and the perturbed metri into Equation (2.15). In longitudinal gauge

(where � = X), it is given by

ÆT

0 (longit)

0

=

h

a

�2

�

_

�'

2

	�

_

X

_

�'

�

� V

0

(')X

i

Q (3.61)

ÆT

i (longit)

j

= �

h

a

�2

�

_

�'

2

	�

_

X

_

�'

�

+ V

0

(')X

i

QÆ

i

j

(3.62)

ÆT

0 (longit)

i

= a

�2

k

_

�'X Q

i

(3.63)

ÆT

i (longit)

0

= �a

�2

k

_

�'X Q

i

: (3.64)

Here, the potential V (') should not be onfused with the gauge invariant veloity

perturbation V, whih for quintessene will be denoted by V

'

. Despite the fat that

only gauge invariant variables appear in Equations (3.61 - 3.64), none of them is

gauge invariant. For instane ÆT

0

0

transforms as a salar.

4

As spatial o� diagonal

elements vanish, we immediately get

�

'

= 0: (3.67)

4

We an easily see this from Equation (3.37), where

~

ÆT

0

0

= ÆT

0

0

�

_

�

T

0

0

�

0

. Hene, the quantity

T � ÆT

0

0

� k

�1

�

_

�

T

0

0

is gauge invariant and T = ÆT

0 (longit)

0

. Thus, the perturbation in the

synhronous gauge follows from

ÆT

0 (syn)

0

= T + k

�1

�

(syn)

_

�

T

0

0

= ÆT

0 (longit)

0

+ k

�1

�

(syn)

_

�

T

0

0

(3.65)

= �a

�2

_

�' _�

(syn)

� V

0

�

(syn)

; (3.66)

in agreement with the diret alulation using Equation (2.15) in the synhronous gauge.
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Chapter 3. Flutuations in Linear Theory

To solve Equations (3.53) and (3.54), an expression for D

'

and V is needed. Com-

paring Equation (3.35) with Equation (3.64) in longitudinal gauge, yields

a

�2

k

_

�'X = (��

'

+ �p

'

)V

'

: (3.68)

Using ��

'

+�p

'

= a

�2

_

�'

2

from Equation (2.17), we �nd the gauge invariant expression

V

'

= k

_

�'

�1

X: (3.69)

An expression for the density perturbation D

g

is obtained by inserting Equation

(3.61) in Equation (3.44)

D

'

g

= ��

�1

'

h

�ÆT

0 (longit)

0

+ 3(��

'

+ �p

'

)�

i

(3.70)

= ��

�1

'

h

a

�2

_

�'

�

_

X +

_

�'f3��	g

�

+ V

0

(')X

i

(3.71)

= (1 + w

'

)

h

3��	 +

_

X

_

�'

�1

i

+X V

0

(') ��

�1

'

(3.72)

where we have one again used ��

'

+�p

'

= a

�2

_

�'

2

. The perturbation D

'

then follows

from D

'

g

using Equations (3.45) and (3.69).

Equation of Motion of the Quintessene Field Perturbation

Energy onservation, T

�

0;�

= 0 (or alternatively the Klein-Gordon equation), yields

the gauge invariant equation of motion

�

X =

_

�'

�

_

	� 3

_

�

�

� 2a

2

V

0

(')	�

�

a

2

V

00

(') + k

2

�

X � 2

_a

a

_

X; (3.73)

for the �eld perturbation X. That this equation is truly gauge invariant follows

from the equation of motion

�� = �2Aa

2

V

0

(') +

_

�'(

_

A� kB � 3

_

H

L

)�

�

a

2

V

00

(') + k

2

�

�� 2

_a

a

_�; (3.74)

derived without gauge �xing and a subsequent gauge transformation of all pertur-

bation variables. To see the invariane, the � -derivative of Equation (2.18) leading

to

d

3

d�

3

�'+

h

2

�a

a

� 6

�

_a

a

�

2

+ a

2

V

00

i

_

�' = 0 is useful.

3.5 Synhronous Gauge Quintessene Field

Most of the existing literature uses synhronous gauge. In addition, the widely

used mbfast omputer ode whih integrates the perturbation equations is im-

plemented in this gauge. In terms of the perturbation variables de�ned in [27℄, the

equations for the quintessene �eld have been derived for instane in [28,29℄. Here,
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3.5. Synhronous Gauge Quintessene Field

we will re-derive them using the gauge invariant equations of the previous setion.

The perturbation H

ij

of Equation (3.9) is de�ned in [27℄ as

2H

ij

=

^

k

i

^

k

j

hQ+ 6�

�

^

k

i

^

k

j

�

1

3

Æ

ij

�

Q (3.75)

=

1

3

hÆ

ij

Q� (h+ 6�)Q

ij

; (3.76)

in other words, H

T

ontains terms both from h and �,

H

L

=

1

6

h; H

T

= �

1

2

(h+ 6�): (3.77)

Even though we will not need them here, we note that using h and �, the Bardeen

potentials beome

	 =

1

2k

2

�

_a

a

�

_

h+ 6 _�

�

+

�

�

h+ 6��

�

�

(3.78)

� =

4

3

h� � +

1

2k

2

_a

a

�

_

h+ 6 _�

�

: (3.79)

Turning to the perturbation evolution, a short manipulation of Equation (3.69),

using the expression for V

'

and X in the synhronous gauge yields

v

(syn)

'

= k

_

�'

�1

�

(syn)

: (3.80)

In the notation of [27℄, one uses � � ik

j

v

j

Q

�1

. Now, v

j

= vQ

j

= �k

�1

vQ

;j

=

�ik

�1

k

j

vQ and hene

�

(syn)

'

= �i

2

k

j

k

j

k

�1

v

(syn)

'

= k v

(syn)

'

(3.81)

= k

2

_

�'

�1

�

(syn)

: (3.82)

In the Footnote on page 27, we have already derived

Æ

(syn)

'

��

'

= �a

�2

_

�' _�

(syn)

� V

0

�

(syn)

: (3.83)

Alternatively, in synhronous gauge ÆT

0

0

= �Æ� holds, giving the same result. Fi-

nally, the perturbation �

(syn)

obeys the equation of motion

��

(syn)

+ 2

_a

a

_�+ k

2

�

(syn)

+ a

2

V

00

(')�

(syn)

+

1

2

_

h

_

�' = 0; (3.84)

whih an be derived using the non-gauge-�xed equation of motion (3.74) and Equa-

tion (3.77).
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Chapter 3. Flutuations in Linear Theory

3.6 Solutions for Perfet Fluids

In order to get some intuition for the perturbation variables, we briey summarize

their behaviour in simple settings. Chapter 5 will generalize these ideas in great

detail to early time perturbations.

The perturbation equations (3.53) - (3.58) simplify onsiderably for a shear

free uid (� = 0) with vanishing entropy prodution (� = 0). The easily obtained

analyti solution for pressureless dust (w = 

2

s

= � = � = 0), is [18℄

V = V

0

(k�)

D

g

= �V

0

�

15 +

1

2

(k�)

2

�

	 = 3V

0

; (3.85)

where V

0

is an integration onstant. We see, that the gravitational potential 	 =

�� is onstant in a matter dominated universe. Turning to the relativisti uid

with w = 

2

s

= 1=3; � = � = 0, the solution on super horizon sales (k� � 1)

beomes [18℄

V = V

0

(k�)

D

g

= �12V

0

�

2

3

V

0

(k�)

2

	 = 2V

0

; (3.86)

where again V

0

is an arbitrary onstant. Hene, also in a radiation dominated

universe, 	 remains onstant. Finally, the solution on sub horizon sales (k� � 1)

is

V = V

2

sin

�

k�=

p

3

�

D

g

=

4

p

3

V

2

os

�

k�=

p

3

�

	 = �

3

2

(k�)

�2

D

g

: (3.87)

Interestingly, the perturbation variables osillate within the horizon in a radiation

dominated universe. As the photons in the osmi mirowave bakground are emit-

ted from suh a radiation uid, one suspets to see osillation patterns depending

on the sale k. This is quite true, even though the details are a bit more ompli-

ated. We will pik up the osillatory solution again in Chapter 4, but before that

a look at quintessene perturbations is in order.

For modes that are well inside the horizon, we neglet gravitational feedbak.

5

The equation of motion (3.73) for X beomes

�

X + 2

_a

a

_

X +

�

a

2

V

00

(') + k

2

�

X = 0: (3.88)

5

This assumption is by no means orret in the ase of super-horizon perturbations.
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3.6. Solutions for Perfet Fluids

On sub-horizon sales, k

2

� a

2

V

00

('). In addition, _a=a = 1=� during radiation

domination and _a=a = 2=� in a matter dominated universe. Thus, sub-horizon

wise, we get

�

X +

2s

�

_

X + k

2

X = 0; (3.89)

with s = 1; 2 for RD and MD respetively. In both ases, the solution to Equation

(3.89) is

X(�) = �

1�s

p

k [

1

j

s�1

(k�) + 

2

n

s�1

(k�)℄ ; (3.90)

where 

1

; 

2

are onstants and j

l

; n

l

are spherial Bessel and Neumann funtions.

Figures 5.2 and 5.1 niely show the osillatory behaviour of X as soon as the mode

is well inside the horizon. Super-horizon modes will be disussed in setion 5.2.

There, we will show that X usually follows a power law in � .
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4

The Cosmi Mirowave

Bakground

The osmi mirowave bakground has been aidently disovered by Penzias &

Wilson in 1965 [42℄. It is formed by a sea of photons that arrive almost isotropially

from all diretions in the sky. Before we review the main features of the CMB

anisotropy alulation (starting with Setion 4.2), we would like to gain some results

from intuition that hold also in the detailed alulation.

4.1 Intuition

Let us start by the observation, that a thermal photon gas has oupation numbers

N =

�

exp(~!=k

b

�

T )� 1

�

�1

=

�

exp(h=k

b

�

T�)� 1

�

�1

; (4.1)

where k

b

is the Boltzmann onstant,  is the speed of light and � is the wave length

of a photon determining its energy. Now, the frequeny of a mirowave (with say

� = 10 m) is f = 3� 10

9

Hz, whereas the Hubble parameter is

H

0

� 100 km s

�1

Mp

�1

� 2� 10

�18

Hz: (4.2)

Thus, the mirowave frequeny is muh higher than the relative expansion rate of

the universe. Hene, for the photon gas, the universe expands adiabatially and

from quantum mehanis, we know that the oupation number should be on-

served. Along with the physial sales, the wavelength strethes with the expansion

� / a. In order to onserve the oupation number, we thus �nd

�

T / a

�1

: (4.3)

Alternatively, the energy density of a photon gas �



/

�

T

4

, and as �



/ a

�4

, we see

that

�

T / a

�1

as above.
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Chapter 4. The Cosmi Mirowave Bakground

Within the photon-baryon plasma, sound waves propagate at the huge speed of

[45℄



2

s

=

d�p

d��

=

1

3

d��



d (��



+ ��

b

)

; (4.4)

whih is � 1=3 until reombination destroys the plasma. The sound horizon is the

distane, a sound wave an at most travel sine � = 0. It is given by

s(�) =

Z

�

0

d�

0



s

(�

0

); (4.5)

and owing to the fat that 

2

s

� 1=3 during most of the time until deoupling,

one simply has s(�) � �

p

1=3. Now, the plasma is opaque to photons. Just at

the end of reombination, the universe is transparent enough for photons to travel

almost freely. Therefore, most of the CMB photons seen today sattered for the

last time at around the epoh of deoupling. Naturally, this epoh is also alled

last sattering. Using the Saha equation [43℄, one �nds that the redshift of last

sattering is z

ls

� 1100. This orresponds to � � 300Mp and therefore a sound

horizon of s � 170Mp. As far as sound-waves are onerned, the only (large) sale

present at last sattering is this sound horizon. We have already seen in Setion 3.6

that within the horizon, photon perturbations start to osillate. Thus, one expets

`resonanes' [45℄ of the form

os(k � s

ls

+ '); (4.6)

where ' aounts for a possible overall phase shift.

1

In adiabati models, this shift is ' � 0:2. We will later �nd more detailed

formulae for the shifts of the peaks. However, for a �rst estimate, it is enough to

onsider ' = 0 and hene, one expets peaks in Fourier spae at

k =

m�

s

� m� 0:018Mp

�1

; (4.7)

where m is an integer.

The CMB experiments do not measure temperature anisotropies in Fourier

spae diretly, but angular orrelations on the sky today. Therefore, it is natural

to quote the results in terms of oeÆients C

l

of a Legendre series (see Setion 4.2

below). The photons last sattered at z

ls

stream freely as a plane wave towards us.

In terms of Legendre polynomials a plane wave is expanded with spherial Bessel

funtions j

l

as oeÆients. As the `distane' the plane wave travels is �

0

� �

ls

� �

0

,

the wave is given today by exp(ik�

0

). It turns out that the Bessel funtions in the

Legendre expansion of exp(ik�

0

) take on the argument j

l

(k�

0

) (see Setion 4.5.1).

Now, spherial Bessel funtions are peaked when the argument equals the multipole

l. Therefore, a feature present in Fourier spae at last sattering translates into a

1

Unfortunately, there are many quantities that are ommonly denoted by the Greek letter �.

However, the reader should have no problem to keep the peak shift ' and the �eld ' apart, as

the peak shift is ourring only here and in the setion about peak shifts and in both ases, the

quintessene �eld ' is not present.
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4.2. The Multipole Spetrum
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Figure 4.1: Boomerang 2001 data and the spetrum for a LKTmodel with h = 0:65; 


'

0

=

0:7; 


b

0

h

2

= 0:022; n = 0:97. In this model, the horizons at last sattering and to-

day are �

ls

= 280Mp; �

0

= 14400Mp. The roughly estimated peak positions are

l = 260; 520; 780 : : : .

feature in the multipole deomposition today at

l � k�

0

: (4.8)

For the k-values of (4.7), one gets (using �

0

� 14400Mp of the model depited

in Figure 4.1) l

peak

� 260; 520; 780 : : : . Figure 4.1, showing experimental data as

well as theoretial preditions for the C

l

spetrum niely demonstrates that the

estimate of peak positions

2

is fairly adequate. The ourrene of peaks spaed by

roughly the same �l � 200� 300 in the multipole spetrum leads to the de�nition

of the aousti sale [44,45℄

l

A

= �

�

0

� �

ls

s

= �

�

0

� �

ls

�

s

�

ls

; (4.9)

where �

s

= �

�1

ls

R

�

ls

0

d�

s

(�) is the average sound speed until last sattering. In

terms of l

A

, our estimate of peak positions, (4.8) is just l

m

= ml

A

.

4.2 The Multipole Spetrum

The temperature anisotropies are usually quoted in terms of oeÆients C

l

of 2-

point orrelations. Suppose, we knew the temperature anisotropy �(n) today on

2

Or rather inter-peak spaing, as we didn't inlude the shift.
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Chapter 4. The Cosmi Mirowave Bakground

planet earth pointing in diretion n in the sky.

3

We an expand this in terms of

spherial harmonis

4

�(n) �

�T

T

(n) =

X

l;m

a

lm

Y

m

l

(n): (4.10)

The 2-point orrelation between two diretions in the sky is then




�(n)�(n

0

)

�

=

X

l;l

0

;m;m

0

ha

lm

a

�

l

0

m

0

iY

m

l

(n)

�

Y

m

0

l

0

(n

0

)

�

�

(4.11)

One now assumes that the angle � � n � n

0

between the diretions is statistially

independent of the orientation, i.e. one an write

ha

lm

a

�

l

0

m

0

i = Æ

ll

0

Æ

mm

0

C

l

; (4.12)

with oeÆients C

l

. From Equation (4.11) we then get




�(n)�(n

0

)

�

=

X

l

C

l

l

X

m=�l

Y

m

l

(n)

�

Y

m

l

(n

0

)

�

�

(4.13)

=

1

4�

(2l + 1)C

l

P

l

(�); (4.14)

where P

l

(�) are Legendre polynomials. In Fourier spae, C

l

's an be expressed as

C

l

= (4�)

Z

k

2

dkP (k)j�

l

(k; �

0

)j; (4.15)

where P(k) is the initial power spetrum and �

l

(k; �

0

) are oeÆients of the Leg-

endre series

�(k; �; �

0

) =

X

l

(�i)

l

(2l + 1)�

l

(k; �

0

)P

l

(�): (4.16)

4.3 The Liouville Equation for Photons

At redshift z � 1100, the universe was ool enough for eletrons and protons to

reombine and form neutral hydrogen. The less free eletrons there were, the less

opaque the universe beame for photons. From the reombination period on, the

desription of photons and baryons as one single uid is not appropriate anymore.

One therefore uses the phase-spae distribution funtion f . For a start, let us on-

sider the simple ase of a spatially homogenous distribution f =

�

f(p; �) (forgetting

3

We suppress the arguments x

0

(`here') and �

0

('now`) in this setion for ease of notation.

4

The alulation here follows `textbook' standard and an in similar form be found for instane

in [18℄.
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4.3. The Liouville Equation for Photons

for a moment that it might resemble the one in (4.1)). In the argument we have

de�ned p � Æ

ij

p

i

p

j

. The general relativisti Liouville equation is [47℄

p

�

(�

�

�

f)

jp

� �

i

��

p

�

p

�

�

�

f

�p

i

= 0; (4.17)

where jp stands for evaluation at onstant p. From p = Æ

ij

p

i

p

j

one has

�p

�p

i

=

p

k

p

Æ

ik

: (4.18)

Using this, p

0

= p 6= 0 for photons and the unperturbed Christo�el symbols of

Appendix A yields

�

�

�

�

f

�

jp

� 2p

_a

a

�

�

�

f

�p

�

j�

= 0: (4.19)

Now, a photon observed by some observer with 4-veloity u

�

has energy E = u

�

p

�

[46℄ and therefore with u

0

= �a from Equation (3.31),

E = �ap: (4.20)

The time derivative of E at onstant p is therefore

5

(�

�

E)

jp

= � _ap =

_a

a

E: (4.21)

Moving from the variablesf�; pg of Equation (4.19) to f�; Eg and using p

�

�

f

�p

= E

�

�

f

�E

yields

0 = (�

�

�

f)

jE

+

�

�

�

f

�E

�

j�

�

�E

��

�

jp

� 2E

_a

a

�

�

�

f

�E

�

j�

= (�

�

�

f)

jE

�E

_a

a

�

�

�

f

�E

�

j�

: (4.22)

Now, for any funtion

�

f(x � aE),

(�

�

�

f)

jE

=

�

�

f

�x

�

�x

��

�

jE

= _aE

�

�

f

�x

; (4.23)

and

(�

E

�

f)

j�

=

�

�

f

�x

�

�x

�E

�

j�

= a

�

�

f

�x

: (4.24)

Inserting this in Equation (4.22), we see that any distribution that solely depends on

aE is unhanged by the osmologial expansion. Looking bak at the distribution

funtion for a thermal photon gas (4.1) one �nds that for T / a

�1

, f is preserved

just as before.

5

If one happens to know that Ea = onst: (e.g. from the last setion), one is triked into the

onlusion that

_

E = �

_a

a

E. However, at onstant p, one gets the opposite sign.
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Chapter 4. The Cosmi Mirowave Bakground

4.4 The Perturbed Photon Distribution

The last setion showed that

�

f is a funtion of aE = �a

2

p only. Following [18℄,

we de�ne v � a

2

p

i

p

j

Æ

ij

and f(�;x; v;n) =

�

f(v) +F (�;x; v;n), where n is the unit

vetor of the photon momentum. Inluding ollisions, Liouville's equation (4.17)

beomes Boltzmann's Equation [47℄

p

�

(�

�

f)

jp

� � �

i

��

p

�

p

�

�f

�p

i

= C[f ℄; (4.25)

where C[f ℄ ontains ollision terms. We will not alulate the ollision term in

this work, but state the result as derived in [18℄ at the end of this setion. The

unperturbed distribution

�

f is by de�nition thermal with Temperature

�

T =

�

T (�) =

�

T

0

a

�1

:

�

f(v) =

�

exp

�

�

v

�

T

0

�

� 1

�

�1

: (4.26)

One then de�nes the temperature perturbation by

f(�;x; v;n) =

�

f

�

v

1 +�

�

; (4.27)

where the term in brakets is the argument of

�

f , and

�(�;x;n) �

�T

�

T

; (4.28)

is the relative temperature anisotropy. Plugging this into (4.26) one indeed sees

that

�

T

0

!

�

T

0

(1 + �) making the de�nition plausible. Taylor expanding (4.27)

f(�;x; v;n) �

�

f(v) � v�

d

�

f

dv

; (4.29)

one sees that

F (�;x; v;n) = �v

d

�

f

dv

�(�;x;n); (4.30)

onneting F with �. In order to obtain an equation for the temperature pertur-

bation �, one uses [18℄ Boltzmann's equation (4.25) with the perturbed Christo�el

symbols and replaes F by � by means of relation (4.30). The intermediate result

is [18℄:

�

�

�+ n

i

�

i

� = �n

i

A

;i

� n

i

n

j

�

B

i;j

+

_

H

ij

�

+

~

C[f ℄; (4.31)

where

~

C[f ℄ � �C[f ℄=(v

�

f

0

). The next step onsists in an expansion of

�(�;x;n) =

1

X

l=0

�

i

1

;:::i

l

(�;x)n

i

1

: : : n

i

l

; (4.32)
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4.4. The Perturbed Photon Distribution

where �

i

1

;:::i

l

(�;x) are symmetri traeless tensor �elds. It turns out that tensor

omponents beyond the 2-tensor are negligible [18℄. Furthermore, salar �eld quint-

essene will not soure tensor or vetor perturbations and hene, we will only treat

the salar temperature anisotropy in the following. Keeping only the salar and

using the deomposition of Chapter (3), one simply has

�(�;x;n) = �

(S)

(�)Q(x): (4.33)

Inserting this in Equation (4.31) yields

�

�

�

(S)

+ ik��

(S)

= �ik�A+ �

2

k� �

1

3

_

H

T

�

_

H

L

+

~

C[f ℄; (4.34)

where � is the diretion osine de�ned via n

j

Q

;j

= ik�Q and � = k

�1

_

H

T

� B. In

at spae, where Q = exp(ikx), � given by � = k

�1

k �n. Unfortunately, the above

Equation (4.34) is not gauge invariant. However with

M� �

(S)

+H

L

+

1

3

H

T

+ i��; (4.35)

Equation (4.34) beomes

�

�

M+ ik�M = ik�(��	) +

~

C[f ℄: (4.36)

One an show [18℄ that M = �

(S)

up to a gauge dependent monopole and dipole

ontribution and indeed M is gauge invariant [48℄. It is this quantity M that

plays the entral role in the alulation of the CMB anisotropy spetrum. Let us

stop for a moment to reapitulate the steps: from the Boltzmann Equation and the

distribution f(�;x; v;n) =

�

f(v)+F (�;x; v;n) one moves to �(�;x;n), deomposes

this into salar, vetor et. and singles out the equation for �

(S)

(�) for one Fourier

mode k. It turns out that this equation depends on k and n only through k �n and

that by moving from �

(S)

to M, the Equation (4.34) beomes gauge invariant.

One an now make ontat to the uid desription of Setion (3.2) by means of

T

��

=

Z

p

�

p

�

f(p; x)p

2

dp

p

0

d


p

: (4.37)

Comparison with the uid perturbations, yields [18℄

D



g

=

1

�

Z

Md
 (4.38)

V



=

3i

4�

Z

�Md
 (4.39)

�



= �

3

�

Z

1

2

�

3�

2

� 1

�

Md
: (4.40)

The appearane of Legendre polynomials in the integrals of (4.38 -4.40) suggests,

that an expansion of M in terms of spherial harmonis is helpful. Following

[49,18℄, we use

M =

X

l

M

l
0

G

0

l

(4.41)
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with

s

G

m

l

(n) = (�i)

l

r

4�

2l + 1

s

Y

m

l

; (4.42)

where

s

Y

m

l

are spin weighted harmonis [50,51℄. The use of spin-weighted harmon-

is is of advantage, beause the polarization turns out to be a spin-2 quantity whih

is best quoted in terms of the variables E and B. For salars B vanishes, and E is

related to the Stokes parameter Q via [52,53,18℄

1

4

Q =

X

l

E

l
2

G

0

l

(n): (4.43)

With the multipole deomposition of M, we an rewrite Equations (4.38-4.40) as

D



g

= 4M

0

(4.44)

V



= M

1

(4.45)

�



=

12

5

M

2

(4.46)

Inluding polarization and the ollision terms due to Thomson sattering [49,18℄,

one �nally arrives at

_

M+ i�kM+ _�M = i�k(��	) + _�

�

1

4

D



g

� i�V

b

�

1

2

(3�

2

� 1)C

�

; (4.47)

where _� � an

e

�

T

is the di�erential optial depth with n

e

the number density of

free eletrons and �

T

the Thomson sattering ross setion. The quantity C in

the above, is given by C � (M

2

�

p

6E

2

)=10. In priniple, one ould now insert

the multipole deomposition ofM and E in Equation (4.47) (and a orresponding

equation for E), get an hierarhy of equations for eah multipole l and from this

infer the oeÆients C

l

of the temperature anisotropy orrelation. However, for C

l

up to l � 1500, this translates into more than 3000 oupled di�erential equations.

Lukily, the line of sight strategy to solve Equation (4.47) has been developed [16℄.

It only needs a few (l / 8)M

l

's and is hene muh faster. As we still need the mul-

tipole hierarhy (even though to muh smaller extent), we note that this hierarhy

for M is given by [52℄

_

M

0

= �

k

3

V



(4.48)
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1

= _�(V

b

� V



) + k(	� �) + k

�
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�

2

5
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2

�

(4.49)

_

M

2

= � _� (M

2

� C) + k

�

2

3

V



�

3

7

M

3

�

(4.50)

_

M

l

= � _�M

l

+ k

�

l

2l � 1

M

l�1

�

l + 1

2l + 3

M

l+1

�

; l > 2; (4.51)
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whereas the one for E is [52℄

_

E

2

= �

k

p

5

7

E

3

� _�

�

E

2

+

p

6 C

�

(4.52)

_

E

l

= k

�

2

�

l

2l � 1

E

l�1

�

2

�

l+1

2l + 3

E

l+1

�

� _�E

l

; l > 2: (4.53)

Here, C = (M

2

�

p

6E

2

)=10 as above and

2

�

l

=

p

l

2

� 4 are ombinatorial fators

[52℄ that should not be onfused with the di�erential optial depth _�.

Massless neutrinos

Massless neutrinos follow the same multipole hierarhy as M, however without

polarization and Thomson sattering. Hene, the perturbed neutrino distribution

is

_

N

0

= �

k

3

V

�

(4.54)

_

N

1

= k(	� �) + k

�

N

0

�

2

5

N

2

�

(4.55)

_

N

l

= k

�

l

2l � 1

N

l�1

�

l + 1

2l + 3

N

l+1

�

; l > 1; (4.56)

where V

�

= N

1

. In ontrast to photons, there is no tight oupling to baryons.

Thus, moments beyond the dipole may built up from the beginning. However, as

_

N

l

/ kN

l�1

for l > 1, it follows that N

l

/ (k�)

(l�1)

N

1

at early times. As k� � 1

for super-horizon modes, higher order moments of N are suppressed.

6

4.5 The Line of Sight Strategy

Inspeting (4.47), one noties that the LHS an be written as

e

�i�k�

e

��(�)

_

L; (4.57)

where

L � e

i�k�

e

�(�)

M: (4.58)

Hene, (4.47) translates into

_

L = e

i�k�

e

�(�)

�

i�k(��	) + _�

�

1

4

D



g

� i�V

b

�

1

2

(3�

2

� 1)C

��

; (4.59)

6

This is a bit of a irular reasoning. If eah moment N

l+1

is small ompared to N

l�1

, then

_

N

l

/ kN

l�1

. That this leads to the suppression of higher order moments is no wonder, for we have

assumed this from the start. Yet, N

2

orresponds to �

�

and this in turn determines 	� � from

Einstein's equation. As this di�erene is not substantial, one onludes that N

2

(and all higher

moments) are small initially.
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Figure 4.2: The visibility g � _� exp(�(�) � �(�

0

)) as a funtion of onformal time � in

Mp. Its peak at about � � 300Mp de�nes the epoh of last sattering.

and integrated over onformal time,

L(�

0

) =

Z

�

0

0

d�e

i�k�

e

�(�)

�

i�k(��	) + _�

�

1

4

D



g

� i�V

b

�

1

2

(3�

2

� 1)C

��

:

(4.60)

Aording to Equation (4.58), the photon perturbation today is given byM(�; �

0

) =

e

�i�k�

0

e

��(�

0

)

L(�

0

), so

M(�; �

0

) =

Z

�

0

0

d� e

i�k(���

0

)

e

�(�)��(�

0

)

�

�

i�k(��	) + _�

�

1

4

D



g

� i�V

b

�

1

2

(3�

2

� 1)C

��

: (4.61)

The produt g � _� exp(�(�) � �(�

0

)) plays an important role

7

and is alled the

visibility funtion. Its peak de�nes the epoh of reombination (see also Figure

4.5). Eah term in the above Equation (4.61) ontaining fators of �, an be

7

Please note that in [16℄, �(� ) =

R

�

0

�

_�(�

0

)d�

0

and hene �(�

0

) = 2�(� ). Therefore the fator

exp(�(� )��(�

0

)) equals exp(��(� )). However, this obsures the derivation a bit and we therefore

hoose to display �(�

0

).
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4.5. The Line of Sight Strategy

integrated by parts, in order to get rid of �. For instane

Z

�

0

0

h

e

i�k(���

0

)

i�k

i

gV

b

d� =

h i

�

Z

�

0

0

e

i�k(���

0

)

k

�1

�

g

_

V

b

+ V

b

_g

�

d�; (4.62)

where [ ℄ stands for the boundary term that here and for all of the terms above

an be dropped, as it vanishes for � ! 0 and only ontributes to C

0

for � = �

0

.

Applying this proedure to all terms involving � yields

M(�; �

0

) =

Z

�

0

0

e

i�k(���

0

)

S(k; �)d�; (4.63)

where the soure is

S = �e

�(�)��(�

0

)

h

_

��

_

	

i

+ g

"

1

4

D



g

+

_

V

b

k

� (��	) +

C

2

+

3

2k

2

�

C

#

+ _g

�

V

b

k

+

3

k

2

_

C

�

+ �g

3

2k

2

C: (4.64)

Let us pause to disuss this result (4.63, 4.64) in detail. First, we note that the

visibility funtion g is sharply peaked at the epoh of deoupling (see Figure 4.5).

Hene, M(�

0

) gets ontributions from D



g

and V



b

at about this epoh: whatever

the density ontrast of the photon uid and the baryon uid veloity has been

at deoupling, will be imprinted in the temperature anisotropy today. The term

from the density ontrast D



g

is the most important one on sales smaller than the

sound horizon. It is the main ontributor towards the osillatory behaviour of the

C

l

spetrum. Its appearane is plausible, beause for a photon gas, � / T

4

and

therefore ÆT=T /

1

4

Æ�=�. The V



b

-term appears, beause a baryon moving in the

diretion towards the observer will ause a Doppler shift of the emitted photon.

For adiabati initial onditions, this Doppler shift �lls the region before the �rst

peak (at l � 220), whih is mainly due to D



g

[44℄. The �rst term in the soure

(involving

_

��

_

	) aounts for the integrated Sahs-Wolfe (ISW) e�et [54℄: if the

gravitational potential deays, the photons have to limb out of a more shallow

potential than they have been in before. Quintessene, for instane an lead to a

more pronouned ISW than standard CDM models. The terms involving C and

its derivatives desribe polarization e�ets and are far less important than the D



g

term. Finally, the (� � 	) term is the (ordinary) Sahs-Wolfe e�et. On sales

that at deoupling were well outside the horizon, this gives the main ontribution.
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Chapter 4. The Cosmi Mirowave Bakground

4.5.1 The Multipole Power Spetrum from the Line of Sight

In order to �nd the multipole power spetrum, one expands

8

the plane wave

exp(ik�[� � �

0

℄) in Equation (4.63) in terms of Legendre polynomials

e

ik�[���

0

℄

= e

�ik�[�

0

�� ℄

=

h

e

ik�[�

0

�� ℄

i

�

(4.65)

=

"

X

l

(i)

l

(2l + 1)j

l

(k[�

0

� � ℄)P

l

(�)

#

�

(4.66)

=

X

l

(�i)

l

(2l + 1)j

l

(k[�

0

� � ℄)P

l

(�): (4.67)

Comparing with (4.16) one �nds [16℄

M

l

(k; �

0

) =

Z

�

0

0

d�S(k; �) j

l

(k[�

0

� � ℄) : (4.68)

Inserting this in Equation (4.15), the C

l

spetrum follows.

4.5.2 Putting it all together

As far as the CMB is onerned what one really wants is the temperature

9

anisotropy

orrelation funtions, ommonly quoted using the oeÆients C

l

. The slow way

would be to get the C

l

's diretly from the (vast) multipole hierarhy of the photon

distribution via Equation (4.15). In ontrast, the line of sight integration gets the

�

l

's (in our ase the gauge-invariant M

l

's) by folding the soure term S with the

spherial Bessel funtions j

l

. While the Bessel funtions osillate rapidly in this

onvolution, the soure term is most of the time rather slowly hanging. It thus

suÆes to alulate the soures at few (leverly hosen) points and interpolate be-

tween. In order to determine the soures, one needs to know (among other things)

D



g

and C. Therefore, one still needs to solve a multipole hierarhy for M and E.

However, for suÆient preision, only a few multipoles are needed: they built up

rather slowly starting from initially shear-free onditions (M

l

= 0; l > 1) due to

the tight oupling to baryons. In order to suppress trunation e�ets, the multipole

beyond the highest one in the hierarhy is approximated by the reursion relation

of Bessel funtions (see Appendix C).

8

See Abramowitz, M. and Stegun, I. A. (Eds.)., Chapter on Bessel funtions of frational order,

addition theorems.

9

And some more, like polarization et.
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5

Initial Conditions

In order to lassify initial onditions the introdution of

S

a:b

�

Æ

a

1 + w

a

�

Æ

b

1 + w

b

(5.1)

=

D

a

g

1 + w

a

�

D

b

g

1 + w

b

(5.2)

is useful. It is gauge invariant and haraterizes the entropy exhange between two

omponents `a' and `b'. As an illustration, suppose the two omponents were old

dark matter and radiation and S

dm:r

would vanish. Then the perturbation in the

number density of dm partiles n would be

�n

n

= Æ

dm

=

3

4

��

r

�

r

=

�s

r

s

r

; (5.3)

sine the entropy of radiation s

r

/ T

3

and �

r

/ T

4

. Hene, the radiation entropy

per dm partile would vanish:

�

�

s

r

n

�

=

n�s

r

� s

r

�n

n

2

= 0: (5.4)

If

S

a:b

= 0; (5.5)

for all pairs of omponents in the early universe, one speaks of isentropi or adiabati

initial onditions.

5.1 Initial Conditions without Quintessene

The initial onditions are most easily derived without quintessene �rst. Later in

this hapter, we will add quintessene to the piture. With initial onditions, we

mean the value of all perturbation variables at early time (i.e. radiation domina-

tion) for modes that are well outside the horizon. Therefore x � k� is a small

number.
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Chapter 5. Initial Conditions

The multipole hierarhy of photons (4.48-4.53) and neutrinos (4.54-4.56) shows

that eah higher order moment is suppressed by a power of x with respet to the

one below (see also Setion 4.4). As x � 1, it suÆes to trunate the expansion

beyond the quadrupole, i.e. we have N

3

=M

3

= 0. For photons, the tight oupling

to baryons suppresses even the quadrupole and together they behave like one single

uid. From the equations governing the time evolution of the photon and baryon

veloities one an derive a single equation for the baryon-photon uid veloity. One

starts from the equations for the separate uids (negleting baryon sound speed

and photon dipole here),

_

V

b

= �

_a

a

V

b

+ k	+ _�R(V



� V

b

)

_

V



=

k

4

D

g;

+ k(	��) + _�(V

b

� V



); (5.6)

where R � 4�



=(3�

b

). In the above, the Thomson drag term [18℄ has been added

to the Equation for the Baryon veloity. As _� is overwhelmingly large in the early

universe, both veloities are fored to oinide. This is the so alled tight oupling

limit. Adding the two Equations (5.6) , one gets

R

_

V



+

_

V

b

= k

�

R(	� �) + 	+R

1

4

D

g;

�

�

_a

a

V

b

; (5.7)

and �nally using R

_

V



+

_

V

b

= (R+ 1)

_

V

b

�R

_

V

b

+R

_

V



,

(R+ 1)

_

V

b

= k

�

(R + 1)	�R�+R(

_

V

b

�

_

V



) +

1

4

RD

g;

�

�

_a

a

V

b

: (5.8)

It is this equation that in the tight oupling limit replaes the two equations (5.6).

To proeed further we note that in the early universe, R� 1 and hene R+1 � R.

In addition,

_

V

b

�

_

V



= 0 due to the tight oupling. Therefore Equation (5.8)

simpli�es to

_

V

b

= k

�

	� �+

1

4

D

g;

�

�R

�1

_a

a

V

b

: (5.9)

Now,

R

�1

=

3�

b

4�



=

3


b

0

h

2

4




0

h

2

a � 500 a: (5.10)

At the early times we are interested in, a is small and we an also drop the term

proportional to V

b

.

1

The perturbed Einstein equations (3.53 - 3.55) simplify in the deep radiation

dominated era, beause then a / �; _a=a = �

�1

and the Friedmann equation (2.7)

yields

3M

2

P

a

�2

�

_a

a

�

2

= 3M

2

P

a

�2

�

�2

= ��; (5.11)

1

After these simpli�ations, the evolution equation for the ommon baryon-photon veloity V

b

has beome the one for a single photon uid (see Equation (5.16) below).
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hene

M

�2

P

a

2

�� = 3�

�2

: (5.12)

Using this and (5.8), the set of equations determining the perturbation evolution

is therefore
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(5.20)

0 = ��(12[


�

?

+




?
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D
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+ 4V
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�
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�

D

g;�

+ 4V

�

x

�1

�
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?

�

D



+ 3V



x

�1

�

: (5.21)

Here, Equation (5.20) orresponds to (3.54) and the last Equation is just Poisson's

equation (3.53). The 


?

's denote quantities at initial time. We keep the minute

old dark matter ontribution in (5.21), until we have shown that V



vanishes to

lowest order in x. Thereafter, we drop old dark matter from Poisson's equation.

Please note that we do not need to onsider baryons separately, as their veloity

oinides with the one for photons and D

g;b

will be determined from the type of

initial onditions later. In addition, adding baryons to Poisson's equation wouldn't

hange the reasoning with respet to V



, whih is why we omit it from (5.21). The

easily obtained solutions for a single photon uid, (3.86) suggest that a power-law

ansatz of the form

Y (x) = Y

0

+ Y

1

x

2

+ Y

2

x

2

; (5.22)

with oeÆients Y

i

is sensible. As � and 	 are related to �

�

via Equation (5.19),

onsisteny requires that we keep only the onstant

2

term for � and 	 [56℄. All

other perturbation variables are expanded up to x

2

. In a �rst step, Equation (5.20)

requires

�

0

�

= �

1

�

= 0; (5.23)

2

In priniple, we an add the terms up to x

2

, a detailed alulation shows however, that

�

1

= 	

1

= 0 and the seond order terms don't inuene other quantities.
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and hene using Equation (5.19), we �nd

V

0

�

= 0: (5.24)

Similarly, Equation (5.14) gives

V

0



= 0; (5.25)

and ombining the two, Poisson's equation (5.21) fores

V

0



= 0: (5.26)

Hene, all zero order veloities vanish. Comparing terms proportional to � in our

equation system, we get

D

2

g;

= �2=3V

1



(5.27)

D

2

g;�

= �2=3V

1
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(5.28)
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= �1=2V
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(5.29)

V

2



= 1=8D

1

g;

(5.30)

V

2

�

= 1=8D

1

g;�

(5.31)

V

2



= 0 (5.32)

Turning subsequently to the onstant terms in the equation system, one gets

D

1



= 0 (5.33)

V

1



= 	

0

=2 (5.34)

D
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2



= 0 (5.35)
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= 0 (5.36)
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In addition, Equation (5.16) relates
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+ V

1
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; (5.38)

and
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=

1

8
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2

V
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: (5.39)

After all these onsiderations, we are left with

V

1



� V

1

�
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1

4
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g;�
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(5.40)
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(5.41)

+D

0

g;�

�

1

2

D

0

g;

+ 2V

1



�

(5.42)

(5.43)

The relation between D

g;

and D

g;�

imposed by the type of initial onditions,

determines then all variables in terms of an overall onstant. Let us look loser at

adiabati onditions.
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5.2. Early Time Quintessene Perturbations

5.1.1 Adiabati Initial Conditions

Aording to Equation (5.5), adiabatiity fores D

g;

= D

g;�

. In this ase, Equa-

tion (5.40) yields V

1



= V

1

�

. Also, D



= 3=4D

g;

is implied by adiabati onditions.

Solving Equation (5.42) for V

1



then ompletely determines all perturbations,

D

g;�

= D
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(5.44)

D



= D
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(5.45)
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= V



= V
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Qx (5.46)
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(5.47)
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[2
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?

+ 5℄Q (5.48)

	 = �

5

2

Q; (5.49)

where Q = [4


�

?

+ 15℄

�1

. Having found the early time behaviour of the perturba-

tions, we are now going to turn to the quintessene �eld.

5.2 Early Time Quintessene Perturbations

As suh, there is no `anonial' quintessene. To our knowledge, however, the

early time behaviour of the �eld perturbation has been studied either for pure

exponentials [28℄ or for negligible quintessene ontent in the early universe [55℄.

3

The reason for these assumptions is simply the fat that a losed solution for all

types of quintessene is impossible to �nd.

However, for traker solutions, this is possible. We owe this to the fat that in

these ases, V

0

;

_

�' et., ourring in the equation of motion for the perturbation

(3.73) have a well de�ned saling with � (see Setion 2.3.1). The equation of motion

(3.73) ontains a term

_

�'

�

_

	� 3

_

�

�

. We will in the following assume that quintess-

ene doesn't hange the almost onstant behaviour of the gravitational potentials

and hene drop this term.

4

In addition, for super-horizon modes, a

2

V

00

� k

2

, and

hene the equation of motion redues to

�

X = �2a

2

V

0

	� a

2

V

00

X � 2

_a

a

_

X: (5.50)

We will solve this equation using the power law solutions for the derivatives of V

obtained in Setion 2.3.1. Our assumptions are hene that

(i ) The energy density of the universe sales as a

�4

at the time of interest, implying

3

Unfortunately, the solution given in [55℄ seems inorret, though the saling with � is orret.

4

This is very well justi�ed in pratie.
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_a=a = �

�1

.

(ii ) The equation of state w

'

is (nearly) onstant.

In order to manifestly display the power laws, we write

V

0

=

^

V

(1)

�

�(7+3w

'

)=2

(5.51)

V

00

=

^

V

(2)

�

�4

(5.52)

a = â� (5.53)

X =

^

X�

q

; (5.54)

where â et. are proportionality onstants and we seek a power-law solution for

X(�). Inserting these relations in (5.50), one gets

q(q + 1) = �â

2

h

2	

^

V

(1)

^

X

�1

�

(

1

2

�

3

2

w

'

�q

)

+

^

V

(2)

i

: (5.55)

Exept for the fator �

(1�3w

'

)=2�q

, all quantities are onstant in this equation.

5

Hene, the solution is given by q = (1� 3w

'

)=2 and therefore

X(�) =

^

X �

1

2

(1�3w

'

)

; (5.56)

with

^

X given by

^

X = �

8â

2

^

V

(1)

	

3(1� w

'

)(1� 3w

'

) + 4â

2

^

V

(2)

; (5.57)

and upon re-substituting â! a(�)�

�1

et,

X(�) = �

8a

2

�

2

V

0

	

3(1� w

'

)(1 � 3w

'

) + 4a

2

�

2

V

00

: (5.58)

Let us briey denote this partiular solution by

~

X. Adding another power-law to

this, i.e. making the ansatz X(�) =

~

X(�) + �

p

, one observes that this also solves

the equation of motion, if p =

1

2

h

�1 +

p

1� 4â

2

^

V

(2)

i

. In fat, the general solution

is obtained by adding the partiular solution and two omplementary solutions:

X(�) =

~

X(�) +  �

�

1

2

�

1�

p

1�4â

2

^

V

(2)

�

+ 

2

�

�

1

2

�

1+

p

1�4â

2

^

V

(2)

�

; (5.59)

where the mode proportional to 

2

is at least as rapidly deaying as the one propor-

tional to . From Equations (5.52) and (5.53), we know that 4â

2

^

V

(2)

= 4a

2

V

00

�

2

.

5

As already mentioned, we assume that the time behaviour of 	, i.e. its (near) onstany

remains unaltered by quintessene. It is lear, that this is true for subdominant quintessene. As

we will see, it is also true for exponential potential quintessene and its relatives like the LKT

model.
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Figure 5.1: Gauge invariant quintessene �eld utuation X(�) as simulated (dotted),

ompared to the analyti solution of Equation (5.58) (solid). The relative deviation is

plotted as long dashed line. The quintessene model used was an IPL with � = 4, leading

to w

'

early

� �0:111 and hene aording to (5.56), X / �

0:667

. Shown is the mode for

k = 0:1Mp

�1

and the osmologial parameters have been 


b

0

h

2

= 0:02; h = 0:65; 


'

0

=

0:1; 




0

= 1� 


b

0

� 


'

0

.

As V

00

is the mass square of the quintessene �eld and as in the attrator, the only

available sale is the Hubble parameter, it follows that V

00

is O(H

2

). Therefore,

4a

2

V

00

�

2

� 4a

2

�

_a

a

�

2

a

�2

�

2

= 4

�

_a

a

�

2

�

2

= 4: (5.60)

This order of magnitude result is in pratie rather under estimating 4a

2

V

00

�

2

. In

most situations, the square root in p is therefore imaginary and one is left with a

deaying osillating mode. Even if 4a

2

V

00

�

2

would vanish, the mode would at most

be onstant. For as long as w

'

< 1=3, this mode will even then be subdominant. In

all pratial settings, it is deaying / 1=

p

� in an osillating fashion. Coming bak

to the dominating partiular solution (5.58), Figure 5.1 shows that the auray

of this analyti result is indeed high at early times, when ompared to numerial

simulations.
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5.2.1 Quintessene Energy Density Perturbation

Intuitively, one expets that the energy density perturbation D

'

g

should remain

onstant on super-horizon sales

6

. This is true, at least for traking solutions,

beause from the saling relations of Setion 2.3.1 and Equation (5.56), it follows

that

_

X

_

�'

= onst; X

V

0

�

= onst: (5.61)

Hene, making use of X / �

(1�3w)=2

and Equations (2.29, 2.27)

D

'

g

= onst = (1 + w

'

)

�

3��	 +

1� 3w

'

2

X(�)

�

_

�'

�

+X(�)

V

0

(')

��

'

(5.62)

= (1 + w

'

)

"

3��	 �X(�)

(

1 + 3w

'

M

P

p

3(1 + w

'

)


'

)#

(5.63)

with X(�) given by Equation (5.58). For w

'

= �1=3, the X-dependent ontri-

bution anels. However, this doesn't mean that there is no quintessene energy

utuation, beause there is still the time utuation 	 present. This aounts

for the apparent energy utuation of observers measuring the same bakground

density, yet disagreeing about the orresponding time. For exponential potentials,

it turns out that D

'

g

is partiularly simple.

Early time exponential potentials

For the exponential potential the derivatives of the potential are V

0

= ��M

�1

P

V

and V

00

= �

2

M

�2

P

V . Hene, Equation (5.58) simpli�es to

X(�) = 2�

�1

	M

P

: (5.64)

Thus, the �eld utuation remains onstant during the early universe on super-

horizon sales for exponential potentials and their relatives (like LKT). In addition,

Equation (5.62) simpli�es to

D

'

g

= 4�� 2	; (5.65)

where we have used V

0

ep

=��

'

= ��=(3M

P

). The onstant behaviour of X and D

'

g

is

depited in Figure 5.2.

5.2.2 Adiabati Initial Conditions inluding Quintessene

From the de�nition of S

a:b

(5.1), we see that adiabatiity requires

D

'

g

= (1 + w

'

)D



g

: (5.66)

6

If not by some initial ondition fored out of this solution
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Figure 5.2: Gauge invariant quintessene �eld utuation X(�) (solid line) and energy

density perturbation D

'

g

(long dashed line) as a funtion of onformal time for an ex-

ponential potential. Also drawn is the line onst = 1. Aording to Equation (5.65),

D

'

g

= 4� � 2	 and for the adiabati onditions used, 4� � 2	 = 1. The agreement of

numerial and analyti results is very good. The mode shown has k = 0:1Mp

�1

and the

osmologial parameters are 


b

0

h

2

= 0:02; h = 0:65; 


'

0

= 0:1; 




0

= 1 � 


b

0

� 


'

0

. The

horizon at equality and today are �

0

� 9130Mp and �

eq

= 40Mp.

In addition, this shouldn't hange instantly after speifying the initial ondition,

leading to the demand

_

D

'

g

= _w

'

D



g

; (5.67)

where we assumed that D



g

is at least nearly onstant. Using the �rst onstraint

yields

X = �

��

'

V

0

(1 + w

'

)

h

3��	+D



+

_

X

_

�'

�1

i

= �

��

'

V

0

(1 + w

'

)

"

1

2

	 +

_

X

_

�'

#

; (5.68)

where

1

2

	

h

_

�'

�

��

'

W

_

A� _w

'

_

�'V

0

�

+ a

2

W

�

4(V

0

)

2

� ��

'

WV

00

	

i

h

_w

'

�W (2�

�1

+

_

�'

�1

�

�') +

_

�'

_

A

i

V

0

+ (

_

�'

�1

Wa

2

V

00

�A)W ��

'

(5.69)

is �xed by the seond requirement and the equation of motion for X (3.73) and

W � (1 +w

'

); A � V

0

=��

'

. In our numerial simulation, these rather ompliated
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expressions give the initial onditions for X and

_

X. In the next few lines, we will

prove that for traking quintessene, X given by the above and the traking value

(5.58) oinide.

For traking quintessene, _w

'

vanishes. Thus

_

D

'

g

= 0 from whih it follows

that

(1 + w

'

)

_

X

_

�'

+X

�

V

0

��

'

�

= onst; (5.70)

where we have assumed that 	 and � are (at least nearly) onstant. As both

_

�'

and V

0

=��

'

follow a power law in the attrator, Equation (5.70) fores X to follow

a power law in � also. If eah of the two terms in Equation (5.70) is onstant

by itself, then the saling relation (2.33) determines X / �

(1�3w

'

)=2

. This is just

the behaviour of X from Equation (5.56). Thus, the solution for X from the

adiabatiity requirement and the `traking solution' for X from Equation (5.56)

are proportional to eah other. However, the `adiabati' X (5.69) has been derived

using the equation of motion for X (3.73). The very same equation that is used to

derive (5.56). As both solve the equation of motion and as they are proportional to

eah other, we are lead to onlude that they oinide.

7

To omplete the proof, we

have to show that eah of the two terms in Equation (5.70) is onserved separately.

Suppose that this wouldn't be the ase, but still, the sum (5.70) is onserved. Then,

the power-law of X di�ers from X / �

(1�3w

'

)=2

and the only possibility left for

(5.70) to hold is a anellation of the two terms. Using the relations (2.29) and

(2.27), Equation (5.70) then beomes

�

_

X +

3

2

(1 + w

'

)�X = 0; (5.71)

where � = sign(V

0

) and � = �1 in the ase we are interested in. The solution to

Equation (5.71) is X =

^

X�

3(1+w

'

)=2

. However, for w

'

6= �1=3, this solution is not

the one of (5.56), (5.59). As this is the only solution to the equation of motion in

the traking regime, we are led to onlude that a anellation in the sum (5.70) is

not possible, exept for w

'

= �1=3. In this ase, the solutions oinide anyway and

both terms are one again onserved separately (and as we know from Equation

(5.63), they anel eah other). This ompletes the proof.

A problem arises, beause to evaluate (5.69), one needs 	. This in turn is

given by �

�

and �. To get �, one needs to solve Poisson's equation inluding

quintessene

�(12[


�

?

+




?

℄ + 9(1 + w

'

)


'

) = 3[




?

+


�

?

℄

�

D

g;

+ 4V



x

�1

�

+ 3


'

�

D

'

g

+ 3(1 + w)V

'

x

�1

�

; (5.72)

where we have used the (still valid) relations V

�

= V



; D

g;�

= D

g;

and negleted

the (small) matter ontribution.

8

Pratially all relations of the previous setion

7

To prove this by diret alulation seems rather diÆult.

8

We have also dropped the term proportional to x

2

, as it is negligible for early times and never

used in the derivation of �

0

, et.
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between the perturbation variables are still valid, as only Poisson's equation is

hanged. It is lear from this Poisson equation (5.72), that if 3(1 + w

'

)V

'

= 4V



,

then solutions for � from Poisson's equation without quintessene (5.21) also solve

(5.72). For arbitrary quintessene, this is not lear, asX is given by the ompliated

expressions (5.68) and (5.69).

Yet, if 


'

is subdominant at early times, Poisson's equation will pratially

stay the same as without quintessene and � will be given by Equation (5.48). In

addition, even if 


'

is relevant, then usually potentials that look exponential at the

time of interest are involved. Lukily, exponential potentials lead to w = 1=3 and

therefore a / � is still valid. In addition, their traking assures that the relations

of setion 2.3.1 are fully appliable. Using the fat that X = onst, and Equations

(2.27, 2.33) yields

V

'

=

kX

_

�'

= �k	

1 + w

'

1� w

'

V

V

0

_

�'

=

k	

3(1� w

'

)

_a

a

=

1

2

k�	

= V



(5.73)

Thus, quintessene models with potentials that behave like an exponential at the

time of interest, do not alter the value of � (and 	). Unfortunately, we an say

nothing generi

9

about the inuene on � in the ase of a substantial quintessene

ontribution at early times with arbitrary potential.

To put it in a nutshell: for most models of pratial interest, 


'

0

is either neg-

ligible at initial times, or the potential behaves like an exponential. In both ases,

� stays the same as without quintessene. One an therefore use Equations (5.44-

5.49) together with (5.68) and (5.69) to speify the initial adiabati onditions.

10

9

At least nothing notable. In priniple, one an solve the problem, however the result is rather

lengthy and of little pratial use. We therefore omit it here.

10

Making a mistake, whenever quintessene is non-negligible at early times and the potential is

not exponential.
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6

Footprints of Quintessene

The non-generiness of quintessene makes it diÆult to detet it and even more

diÆult to rule it out. In this hapter, we are going to diuss possibilities to �nd the

traes dark energy ould have left behind. We will mainly fous on CMB and SNe Ia

experiments, touhing only briey struture formation. In addition to these three

observation possibilites, lensing [57℄ as well as bounds from big bang nuleosynthesis

(BBN) [11,59℄ play an important role. For an overview of observation strategies,

see for instane [58,60℄. If dark energy is not a osmologial onstant, then its time

varying behaviour may be imprinted at di�erent epohs. For instane, a detetion

of, say 5% dark energy at last sattering would mean that the dark energy must be

dynamial. But even if observational tests do not lead to a detetion, they still put

stringent bounds on eah model. Already, it is by no means trivial to �nd a model

with sensible parameters that passes observational tests. The urrent onstraints

available together with the epoh eah test probes are summarized in Figure 6.1.

Our aim is not to onstrain a partiular model as good as possible. In fat,

there is no partiular reason why any of the models on the market should be the

quintessene realization. Therefore, we will desribe main features of quintessene

relevant for CMB and SNe Ia in a model independent way. With very few param-

eters, e.g. the inuene of quintessene on the CMB an be determined. Apart

from the better understanding due to this analyti desription (ompared to sim-

ulations), one an also estimate whether a given model will pass CMB onstraints

without expliitly using a CMB Boltzmann ode. Of ourse, our �ndings are ap-

pliable in universes without quintessene also. For instane, the phase shift of the

third peak in the CMB multipole spetrum is quite insensitive to the details of the

osmologial model.

6.1 Introduing Quintessene in the CMB

In the following setions, we will disuss in whih ways quintessene inuenes the

CMB. For as long as quintessene is not oupled to any other form of matter or

radiation, it an only hange the expansion history and - less importantly - the in-

tegrated Sahs-Wolfe e�et. We will see that hanging the expansion history leads
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Figure 6.1: Constraints on dark energy versus redshift. The upper bound eah test plaes

on 


'

is indiated by shaded boxes. A viable model needs to stay within these regions.

Very short termed violations of the bounds (though seemingly unnatural) are of ourse still

possible.

to a di�erent spaing between the peaks in the CMB. In priniple, one ould use

this e�et to detet the amount of quintessene before reombination. However, the

Hubble parameter an mimi the inuene of quintessene, spreading the separa-

tion between peaks. Hene, one needs independent information about the Hubble

onstant, in order to determine the amount of quintessene at last sattering.

In a at universe, the aousti sale l

A

, we will be alulating determines the av-

erage spaing �l between the peaks. We will derive an analyti expression depend-

ing only on the averaged equation of state w

0

from Equation (2.44), the averaged

amount of quintessene before reombination,

�




'

ls

, and the amount of quintess-

ene today, 


'

0

. When omparing this analyti formula for the aousti sale to

numerial simulations, the typial preision turns out to be better than 1%.

Even though the aousti sale yields the average spaing between CMB peaks,

it is inappropriate to estimate the loation of the peaks. Hene, in a seond step, we
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are going to quantify the relation between the aousti sale and the peak loations.

The results on these peak shifts are appliable to universes without quintessene

as well and have been used to analytially desribe main features of the CMB [61℄.

As a side e�et, we will be in the position to determine the aousti sale from

measurements - an extremely valuable result. But let us �rst turn to the aousti

sale.

6.2 The Aousti Sale of the CMB

The equation of state of quintessene inuenes the expansion rate of the Universe

and thus the loations of the CMB peaks [3,28,62{64℄. The inuene of dark energy

on the present horizon and therefore on the CMB has been disussed in [39℄. A

likelihood analysis on ombined CMB, large sale struture and supernovae data

[65,66℄ an also give limits on the equation of state. Several of these analysis on-

entrate on models where the dark energy omponent is negligible at last sattering.

In ontrast, we are interested partiularly in getting information about dark energy

in early osmology. Therefore, the amount of dark energy at last sattering is an

important parameter in our investigation.

The inter-peak spaing is to a good approximation [44,45℄ given by the aousti

sale

1

l

A

= �

�

0

� �

ls

�

s

�

ls

: (6.1)

The aousti sale depends diretly on the present geometry through �

0

as well as

indiretly through the dependene of �

ls

on the amount of dark energy today (see

Equation (6.5)). In setion (2.4), we have already alulated �

0

using a suitably

de�ned average equation of state w

0

for the quintessene omponent. In addition,

the average sound speed until deoupling is �

s

� 1=

p

3. Aording to Equation

(4.9), we then only need to estimate �

ls

to get l

A

. To this end, we assume that the

fration of quintessential energy 


'

(�) does not hange rapidly for a onsiderable

period before deoupling and de�ne an e�etive average

�




'

ls

� �

�1

ls

Z

�

ls

0




'

(�)d�: (6.2)

This average is dominated for � near �

ls

whereas very early osmology is irrelevant.

Approximating 


'

by the onstant

�




'

ls

for the period around last sattering, the

Friedmann equation (2.7) is just

3M

2

P

H

2

(1�

�




'

ls

) = �

m

+ �

r

= �

m

0

a

�3

+ �

r

0

a

�4

: (6.3)

Here �

m

0

and �

r

0

are the matter and relativisti (photons and 3 speies of neu-

trinos) energy densities today. Negleting radiation ontributions today, we have

1

See also setion 4.1.
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Figure 6.2: The CMB Spetrum for �-CDM (model C), leaping kineti term (model A)

and inverse power law (model B) quintessene universes with 


'

0

= 0:6. The data points

from the Boomerang [67℄ and Maxima [68℄ experiments are shown for referene.

3M

2

P

H

2

0

(1� 


'

0

) = �

m

0

, whih we insert in Equation (6.3) to obtain

�

da

d�

�

2

= H

2

0

(1�

�




'

ls

)

�1

[(1�


'

0

)a(�) + 


r

0

℄ : (6.4)

Separating the variables and integrating gives

�

ls

= 2H

�1

0

s

1�

�




'

ls

1� 


'

0

(

s

a

ls

+




r

0

1� 


'

0

�

s




r

0

1� 


'

0

)

; (6.5)

whih is well known for vanishing

�




'

ls

. For �xed H

0

; 


'

0

; 


r

0

and a

ls

, we see that

�

ls

= �

va

ls

(1 �

�




'

ls

)

(1=2)

, where �

va

ls

is the last sattering horizon for a �-CDM

universe (whih we treat here to be just a speial realization of dark energy with

w = �1). Inserting Equations (6.5) and (2.48) in Equation (4.9), we get the desired

expression for the aousti sale

l

A

= ��

�1

s

2

4

F (


'

0

; w

0

)

q

1�

�




'

ls

(

s

a

ls

+




r

0

1� 


'

0

�

s




r

0

1� 


'

0

)

�1

� 1

3

5

; (6.6)
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with F given by Equation (2.49) and today's radiation omponent 


r

0

h

2

= 4:2 �

10

�5

. Please note, that sine it is the ombination 


r

0

h

2

that is measurable, the ex-

pression (6.6) above depends strongly on the Hubble parameter. Both, an inrease

in

�




'

ls

and a derease in h lead to an inrease in l

A

. The sound veloity 

s

and the

sale fator of deoupling a

ls

have to be determined numerially to ahieve high

auray in l

A

. In our ase (


b

0

= 0:05 and h = 0:65), they are a

�1

ls

= 1130 and

�

s

= 0:52. However, using a

ls

� 1100 and 

s

= 1=

p

3 � 0:57, is still enough for a

quik estimate at the 10% level.

2

We have evaluated Equation (6.6) for quintessene

models with various parameters (see setion 2.3 for de�nitions of the models):

A. A Leaping kineti term model with � = 1, k

min

= 0:05; 0:1; 0:2 and 0:26 and

'

1

is adjusted to � 277 in order to obtain 


'

0

= 0:6. The value of

�




'

ls

is

determined by these parameters.

B. An inverse power law potential, with � = 6; 22 and 40, and A adjusted suh

that 


'

0

= 0:6. One again,

�




'

ls

follows.

C. A osmologial onstant tuned suh that 


'

0

� 


�

0

= 0:6.

D. The pure exponential potential with � =

p

3=


'

0

.

The results are summarized in Table 6.1, where we give l

A

together with the

loations l

1

; l

2

of the �rst two peaks omputed by mbeasy. The last entry ontains

the peak spaing �l averaged over 6 peaks for the numerial solution. Of ourse,

when running mbeasy, one an also determine l

A

diretly from the bakground

evolution via Equation (4.9). The formula (6.6), the numerial value of l

A

and the

averaged peak spaing �l are found to be in very good agreement.

In Table 6.2, we determine the auray of the estimates of �

ls

(6.5) and �

0

(2.48)

by omparison with the numerial solution. The good agreement demonstrates that

the averaging presriptions Equation (2.44) and (6.2) are indeed meaningful. We

onlude that the inuene of a wide lass of di�erent quintessene models (beyond

the ones disussed here expliitly) on �

ls

, �

0

and l

A

an be haraterized by the

three quantities 


'

0

;

�




'

ls

and w

0

.

For the models (A) and (D), quintessene is not negligible at last sattering. The

pure exponential potential requires 


'

0

� 0:2 for onsisteny with nuleosynthesis

and struture formation. It does not lead to a presently aelerating universe.

We quote results for 


'

0

= 0:6 for omparison with other models and in order to

demonstrate that a measurement of l

A

an serve as a onstraint for this type of

models, independently of other arguments. The inverse power law models (B) are

ompatible with a universe aelerating today only if

�




'

ls

is negligible. Again, our

parameter list inludes ases whih are not favoured by phenomenology. As an

illustration we quote in Table 6.1 the value of �

8

, whih should typially range

between 0:6 and 1:1 for the models onsidered. For example, the exponential

2

Generially, the sound veloity is smaller than the theoretial upper limit 1=

p

3 and hene

using this upper limit, Equation (6.6) will give a lower bound on l

A

.
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�




'

ls

w

0

l

1

l

2

l

estim:

A

�l

num:

�

8

Leaping kineti term (A), 


'

0

= 0.6

8:4 � 10

�3

�0:76 215 518 292 291 0:86

0:03 �0:69 214 520 294 293 0:78

0:13 �0:45 211 523 299 300 0:47

0:22 �0:32 207 524 302 307 0:29

Inverse power law potential (B), 


'

0

= 0.6

8:4 � 10

�8

�0:37 199 480 271 269 0:61

9:9 � 10

�2

�0:13 178 443 252 252 0:18

0:22 �8:1� 10

�2

172 444 257 257 0:09

Pure exponential potential, 


'

0

= 0.6

0:70 7� 10

�3

190 573 368 377 0:01

Pure exponential potential, 


'

0

= 0:2

0:22 4:7� 10

�3

194 490 282 281 0:38

Cosmologial onstant (C), 


'

0

= 0.6

0 �1 219 527 296 295 0:97

Cold Dark Matter - no dark energy, 


'

0

= 0

0 � 205 496 269 268 1:49

Table 6.1: Loation of the �rst two CMB peaks l

1

; l

2

for several models of dark energy.

We also show the analyti (from Equation (6.6)) and numerial (from mbeasy) average

spaing of the peaks and �

8

, the normalization of the power spetrum on sales of 8h

�1

Mp.

potential model with large

�




'

ls

is learly ruled out by its tiny value of �

8

3

. The

main interest for listing also phenomenologially disfavored models arises from the

question to what extent the loation of the peaks an give independent onstraints.

From the point of view of naturalness, only the models (A) and (D) do not involve

tiny parameters or small mass sales.

The horizons and l

A

for the models onsidered are shown in Tables 6.2 and

6.1. We note that the estimate and the exat numerial alulation are in very

good agreement. A di�erent hoie of a

ls

, say a

�1

ls

= 1150, would have a�eted

the outome on the low-perent level. Also, the average spaing obtained from

mbeasy varies slightly (at most 2%) when averaging over 4; 5 or 6 peaks. For

a �xed value of the equation of state, w

0

= �0:7, we plot the peak spaing as a

funtion of 


'

0

and

�




'

ls

in Figure 6.3.

3

Of ourse �

8

itself also depends on other osmologial parameters and so it alone annot be

used to determine

�




'

ls

.
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�




'

ls

w

0

w

0

�

estim:

0

��

0

�

estim:

ls

��

ls

Leaping kineti term (A), 


'

0

= 0.6

8:4� 10

�3

�0:79 �0:76 13073 0:1% 266 0:3%

0:03 �0:79 �0:69 12971 0:2% 263 0:3%

0:13 �0:78 �0:45 12470 1:0% 248 0:2%

0:22 �0:75 �0:32 12012 1:3% 236 0:0%

Inverse power law potential (B), 


'

0

= 0.6

8:4� 10

�8

�0:32 �0:37 12205 0:5% 267 0:0%

9:9� 10

�2

�0:16 �0:13 10774 0:2% 253 0:2%

0:22 �0:1 �8:1� 10

�2

10241 0:3% 236 0:2%

Pure exponential potential, 


'

0

= 0.6

0:70 0:00 7� 10

�3

9014 0:4% 146 2:3%

Pure exponential potential, 


'

0

= 0:2

0:22 5� 10

�5

4:7� 10

�3

9107 0:1% 191 0:3%

Cosmologial onstant (C), 


'

0

= 0.6

0 �1 �1 13330 0:0% 267 0:0%

Cold Dark Matter - no dark energy, 


'

0

= 0

0 � � 9133 0:0% 201 0:5%

Table 6.2: Horizons in Mp at last sattering and today for various kinds of quintessene.

The deviation of our analyti estimates and numerially obtained values for �

0

and �

ls

are

also given.

For �xed w

0

and 


'

0

, we see from Equation (6.6) that l

A

/ (1 �

�




'

ls

)

(�1=2)

.

Hene, when ombining bounds on 


'

0

and w

0

from the struture of the Universe,

supernovae redshifts and other soures with CMB data, the amount of dark energy

in a redshift range of z � 10

5

to last sattering z � 1100 may be determined.

However, as the Hubble parameter an mimi the e�ets of

�




'

ls

, one needs to know

H

0

from an independent measurement.

6.3 CMB Peak Positions and Quintessene

The loations of the peaks and troughs of the CMB anisotropy spetrum an serve

as a sensitive probe of osmologial parameters [69{72,39,63℄.

There are however many proesses whih ontribute to the �nal anisotropies,

and these must be alulated from the systems of oupled partial di�erential equa-

tions of setion 4.4. As suh it is not possible a priori to derive an aurate analyti

63



Chapter 6. Footprints of Quintessene

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

0.1

0.2

0.3

0.4

0.5

0.6

Ω
__

q
ls

Ω
q 0

275

280 285

285

290

290

295

295

295

300

300

300

305

305

305

310

315

Figure 6.3: Contours of equal peak spaing l

A

as a funtion of 


'

0

and

�




'

ls

.The average

equation of state is kept �xed, w

0

= �0:7. Inreasing

�




'

ls

leads to a pronouned strething

of the spaing.

formula for the peak loations. There exists a numerially-obtained estimate of the

loation of the �rst peak [73℄ for a universe with no osmologial onstant, namely

l

1

� 200 


�1=2

m

. This was extended to universes with � 6= 0, by perturbing around

the � = 0 value [74℄, but holding all other parameters �xed. In this setion, we

alulate the loations of the �rst three peaks as a funtion of several osmologial

parameters, inluding universes with a large dark energy omponent. We show how

these results an be used to extrat osmologial information about, for instane

the history of quintessene, from just a handful of CMB data points and also to

speed up multi-parameter likelihood analysis.

Before last sattering, the photons and baryons are tightly bound by Compton

sattering and behave as a uid. The osillations of this uid, ourring as a re-

sult of the balane between the gravitational interations and the photon pressure,

lead to the familiar spetrum of peaks and troughs in the averaged temperature

anisotropy spetrum whih we measure today. The odd peaks orrespond to max-

imum ompression of the uid, the even ones to rarefation [45℄. In an idealized
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m




�

l

1

(estim.) l

1

(numeri.) % error

0.4 0.6 296 219 35

1.0 0.0 269 205 31

Table 6.3: Values of the loation of the �rst peak l

1

estimated by l

1

� l

A

and alulated

numerially via mbeasy. The intuitive model learly does not desribe the loation of

the �rst peak well, though the spaings between other peaks is better. The above values

were alulated assuming h = 0:65, 


b

= 0:05, n = 1 and a

ls

= 1100

�1

.

model of the uid, there is an analyti relation for the loation of the m-th peak:

l

m

� ml

A

[75,44℄ where l

A

is the aousti sale whih may be alulated analyti-

ally [72℄ and depends on both pre- and post-reombination physis as well as the

geometry of the universe.

The simple relation l

m

� ml

A

however does not hold very well for the �rst peak

(see Table 6.3) although it is better for higher peaks [69℄. Driving e�ets from the

deay of the gravitational potential as well as ontributions from the Doppler shift

of the osillating uid introdue a shift in the spetrum. In order to ompensate

for this, we parameterize the loation of the peaks and troughs as in [75℄ by

4

l

m

� l

A

(m� '

m

) � l

A

(m� �'� Æ'

m

) : (6.7)

For onveniene, we de�ne �' � '

1

to be the overall peak shift, and Æ'

m

� '

m

� �'

the shift of the m-th peak relative to the �rst.

5

The reason for this parame-

terization is that the phase shifts of the peaks are determined predominantly by

pre-reombination physis, and are independent of the geometry of the Universe.

In partiular, the ratio of the loations of the �rst and m-th peaks

l

m

l

1

=

l

A

l

A

(m� �'� Æ'

m

)

(1� �')

= 1 +

m� 1� Æ'

m

1� �'

; (6.8)

probes mostly pre-reombination physis and so an be used to extrat information

on the amount of dark energy present before last sattering [72℄.

If we knew how the phase shifts depended on osmologial parameters, it would

be possible to extrat l

A

from the measured CMB spetrum. Sine any given os-

mologial model predits a ertain value of l

A

, this is a simple way of distinguishing

between di�erent models { in partiular we know from setion 6.2 that di�erent

quintessene models with the same energy density and equation of state today an

have signi�antly di�erent values of l

A

. Finally, having extrated l

A

from observa-

tions, we ould speed up likelihood analysis by being able to disard models not

leading to the right value of the aousti sale before a single perturbation equation

has to be solved.

4

The peaks are labeled by integer values of m and the troughs by half-integer values.

5

There should be no onfusion between the quintessene �eld ', whih is not expliitly used in

this setion and the phase shifts.

65



Chapter 6. Footprints of Quintessene

Symbol Range




m

0

[0:2; 0:6℄




b

h

2

[0:005; 0:04℄

�




'

ls

[0; 0:23℄

h [0:55; 0:80℄

n [0:8; 1:2℄

Table 6.4: Parameter ranges used in this setion.

In a [75℄, a �tting formula for �' was given

�' � 0:267

�

r

?

0:3

�

0:1

; (6.9)

for the values n = 1, 


b

h

2

= 0:02. In this formula, r

?

is the ratio of radiation to

matter at last sattering

6

r

?

= �

r

(z

?

)=�

m

(z

?

) = 0:042

�




m

h

2

�

�1

�

z

?

=10

3

�

: (6.10)

Equation (6.9) however, is valid only for the given values of spetral index, Hubble

parameter and baryon density. It does not inlude the dependene of the peak

loation on the amount of quintessene present at last sattering, and is valid only

for the �rst peak l

1

. In the following, we give �tting formulae (see Appendix B)

for the shifts of the �rst three peaks and the �rst trough and desribe how one an

use them to extrat osmologial information from future CMB experiments.

Our �rst task in omputing �tting formulae for the peak loations is to deide

whih osmologial parameters to �t to. The dependene on the baryon density

and the Hubble parameter is sensitive only to the produt 


b

h

2

, and so we do not

seek to �t for them separately. We further take r

?

de�ned in Equation (6.10) and

the spetral index n as parameters. For the quintessene dependene, we use the

e�etive average density omponent before last sattering

�




'

ls

de�ned in Equation

(6.2).

We reall that the peak shifts are sensitive mainly to pre-reombination physis

and so we do not need to use the value of 


'

today as a parameter. Of ourse

the aousti sale l

A

does depend on today's quintessene omponent (see setion

6.2). We will thus seek to �nd the dependene of ( �'; Æ'

m

) on the osmologial

parameter set

�




b

h

2

; r

?

; n;

�




'

ls

�

. In performing these alulations, we restrited

eah of the osmologial parameters used to lie within a ertain interval, whih

in eah ase is over- rather than under-autious. The ranges of parameter values

hosen are displayed in Table 6.4. To gain intuition for the �tting formulae, we plot

urves for the shift of the �rst and the seond peak as well as the relative shifts of

the �rst trough and the seond peak in Figures 6.4 and 6.5.

6

This relation also holds in the presene of quintessene.
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Figure 6.4: The overall shift �' (a) and the relative shift of the �rst trough (b). In both �gures, the long dashed, dotted and the

dashed lines represent the �tting formulae for the parameters

�




b

h

2

; r

?

; n;

�




'
ls

�

= (0:02; r

?

; 1; 0), (0:02; r

?

; 1; 0:1) and (0:01; r

?

; 1; 0)

respetively. The large symbols show the data orresponding to these urves. The errors quoted in Appendix B are alulated from the

spread of these symbols relative to the urves. The sprinkled dots represent thousands of models seleted at random from the parameter

spae given in Table 6.4, and indiate the ranges of values taken on by �' et. for these models.

6
7



C
h
a
p
t
e
r
6
.
F
o
o
t
p
r
i
n
t
s
o
f
Q
u
i
n
t
e
s
s
e
n

e

r

?

Æ
'

2

0.90.80.70.60.50.40.30.20.1

0.1

0.05
0

-0.05

-0.1

-0.15

-0.2

(a)

r

?

'

3

0.90.80.70.60.50.40.30.20.1

0.42

0.4

0.38

0.36

0.34

0.32

0.3

0.28

0.26

0.24

(b)

Figure 6.5: The relative shift of the seond peak (a) and the overall shift of the third peak (b). In both �gures, the long dashed,

dotted and the dashed lines represent the �tting formulae for the parameters

�




b

h

2

; r

?

; n;

�




'
ls

�

= (0:02; r

?

; 1; 0), (0:02; r

?

; 1; 0:1) and

(0:01; r

?

; 1; 0) respetively. The large symbols show the data orresponding to these urves. The errors quoted in Appendix B are

alulated from the spread of these symbols relative to the urves. The sprinkled dots represent thousands of models seleted at random

from the parameter spae given in Table 6.4, and indiate the ranges of values taken on by �' et. for these models.
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6.3. CMB Peak Positions and Quintessene

In Setions 6.3.1 and 6.3.2 we desribe a systemati proedure for extrating the

aousti sale l

A

from the loation of the �rst three peaks. Setion 6.3.3 introdues

a quantity � whih is useful as it depends only on two of our four parameters. The

model (in)dependene of the �tting formulae is disussed in Setion 6.3.4. Finally,

our �tting formulae are given in Appendix B.

6.3.1 Retrieving the Shifts from CMB Measurements

With future high preision measurements of the MAP

7

and PLANCK

8

satellites,

we expet that the position of the �rst three peaks and troughs will be determined

to high auray. From these few data points, it is possible to extrat valuable

information on the osmologial parameters. We have observed, during our om-

putation of CMB spetra for thousands of universes, that the overall shift of the

third peak '

3

(i.e. '

3

= �' + Æ'

3

) is a relatively insensitive quantity. In the pa-

rameter range we used (see Table 6.4) we found that '

3

= 0:341� 0:024.

9

In using

'

3

= 0:341 we introdue slight (at most one perent) systemati deviations in our

estimate, beause an inrease of

�




'

ls

typially inreases '

3

(see Fig. 6.5(b)). We

will partially orret for these e�ets by improving our estimate for '

3

, via the

proedure desribed below.

We start by extrating our �rst estimate of the overall phase shift, from the

measured loations of the �rst and third peaks

�' = 1� (3� '

3

)

l

1

l

3

� 1� 2:66

l

1

l

3

: (6.11)

Comparing this estimate with the value alulated from numerial simulations, we

�nd ��' = 0:006. Having a handle on the overall phase shift, it is now simple to

infer the relative shifts Æ'

m

of the remaining troughs and peaks. From equation

(6.8) we get the relation

Æ'

m

= (m� 1)�

�

l

m

l

1

� 1

�

(1� �') : (6.12)

The error of this estimate is

� (Æ'

m

) =

�

l

m

l

1

� 1

�

��': (6.13)

Having a �rst (and already quite aurate) estimate of the shifts, we now orret

for the systemati e�ets desribed above. Taking the osmologial parameter set

we wish to maximize over (i.e. Table 6.4), we alulate for eah model universe the

phase shifts of the �rst three peaks using the �tting formulae given in Appendix

B. We then disard those models for whih any phase shift deviates signi�antly

7

http://map.gsf.nasa.gov/

8

http://astro.este.esa.nl/SA-general/Projets/Plank/

9

Here and in the following, we quote 1-� errors. All errors follow approximately a bell urve.
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�




'

ls

(%) h'

num

3

i h'

improved

3

i

0 - 2 0.313 0.326

10 - 12 0.340 0.337

18 - 20 0.362 0.348

Table 6.5: Binned average '

3

of the numerial simulation and the improved dedution.

(say > 2-�) from the data-inferred values. This leaves an improved osmologial

parameter set, for whih the average value of '

3

is alulated (see Table 6.5). This

improved '

3

an then be used to re-alulate the phase shifts from Equations (6.11)

and (6.12).

6.3.2 Extrating l

A

from CMB Measurements

Using the improved value

10

for '

3

from the previous setion, we an extrat to very

good auray the aousti sale l

A

, provided l

3

has been measured:

l

A

=

l

3

3� '

3

(6.14)

In fat, the deviation of the value of l

A

estimated from this formula and the

numerially-obtained value is small for models within the parameter range of Table

6.4, with a 1-� error of 0:8% (see also Table 6.6). This is a very valuable result,

for the value of l

A

an be simply omputed for any given quintessene (or indeed

any other) osmology. In partiular, di�erent quintessene models with the same

energy density and equation of state today an have signi�antly di�erent values

of l

A

. In this way stringent bounds on osmologial models an be imposed just by

omparing the l

A

value of spei� models.

6.3.3 Insensitive Quantities

The phase shifts depend on the osmologial parameters

�




b

h

2

; r

?

; n;

�




'

ls

�

. Of

ourse, if it were possible to �nd a linear ombination of phase shifts whih is

insensitive to some of these parameters and thus redue the dimensionality of our

parameter spae, it would greatly help in extrating osmologial information. To

this end, we note an anti-orrelation between �' and Æ'

3

{ empirially, we have

found that the quantity

� � �'+

2

5

Æ'

3

(6.15)

is pratially insensitive to r

?

and 


b

h

2

, and depends only on n and

�




'

ls

. In fat,

it is to very good approximation given by the �t

� =

�

0:277 + 0:284

�




'

ls

�

(1:3 � 0:3n); (6.16)

10

In fat, using '

3

= 0:34 instead of the improved value also gives reasonable results.
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all data
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Figure 6.6: The quantity � as a funtion of r

?

. It is pratially insensitive to r

?

and 


b

h

2

for most of the initial onditions onsidered. The dots represent �fty thousand models with

parameters in the ranges given in Table 6.4 The +'s and �'s represent models with

�




'

ls

=

0 and 0.22 respetively, for n = 1, and all values of other input parameters.

with ��

�t

� 0:0024 being the deviation of the �t from the numerially-simulated

values (see Fig. 6.6). Following the proedure in Setion 6.3.1, we an dedue �

from the measured values of the peak loations. Within our parameter range, � is

then determined with error ��

dedu:

= 0:013.

In the parameter spae we have onsidered, the value of � varies between

0:26 and 0:36. Hene to 1-� on�dene level, about three quarters of our two-

dimensional (n;

�




'

ls

) parameter spae an be exluded for any given �. For instane,

without quintessene, the value of � lies between 0:26 and 0:29 for n 2 [0:8; 1:2℄.

The measurement by MAP or PLANCK of a value of � > 0:29 would therefore be

a strong hint of a dark energy omponent playing a role at last sattering.

6.3.4 Model Dependene of the Shift Funtions

The �tting formulae were obtained using a standard exponential potential [6℄ for

the quintessene omponent. Beause the shifts are almost independent of post

reombination physis, we expet the results to be approximately orret for any

realization of quintessene, i.e. all potentials. One should however be autious

with models that are qualitatively extremely di�erent from the exponential poten-

tial before last sattering, as for example the Ratra-Peebles inverse power law [7℄

with substantial

�




'

ls

. In these models there is a sharp inrease in 


'

during reom-

bination, whereas the quintessene ontent for the exponential potential is fairly

onstant at this epoh. The inverse power law is haraterized by its potential

V

IPL

= A='

�

. Models with � ' 2 are phenomenologially disfavored [35℄. We use

these models only as ross heks for the �tting formulae. In terms of phase shifts,

one �nds that the sensitive relative shifts of the �rst trough and the seond peak
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�




'

ls

(%) l

1

l

3=2

l

2

l

3

l

A

�' Æ'

3=2

Æ'

2

�

Leaping kineti term

3 214 396 521 788 293 0.269 -0.121 -0.045 0.287

294 0.271 -0.119 -0.041 0.292

13 210 396 522 799 301 0.301 -0.120 -0.038 0.317

301 0.301 -0.120 -0.038 0.318

22 208 397 524 808 307 0.324 -0.116 -0.030 0.341

305 0.320 -0.120 -0.035 0.333

Ratra Peebles inverse power law

5� 10

�3

199 366 480 724 269 0.259 -0.119 -0.043 0.278

270 0.261 -0.117 -0.038 0.284

10 178 339 443 674 251 0.294 -0.140 -0.054 0.304

253 0.298 -0.138 -0.050 0.312

22 172 338 444 683 258 0.333 -0.144 -0.057 0.340

258 0.334 -0.145 -0.057 0.340

Table 6.6: The peak loations and the phase shifts of leaping kineti term [32℄ and Ratra

Peebles inverse power law [7℄ models for 


b

h

2

= 0:021; 


'

0

= 0:6; h = 0:65; n = 1 and

varying

�




'

ls

. The inverse power law models orrespond to � = 6; 22 and 40 respetively.

The �rst row of eah model gives the mbeasy-obtained values of the loations of the

peaks and the phase shifts as well as l

A

and �. The seond row gives the values dedued

using the method desribed in Setion 6.3.1.

di�er substantially for the two models (see Table 6.6). However, �' and � are seen

to be more robust and the dedued value of l

A

is aurate to within one perent in

every ase.

In the next setion, we will use this possibility of determining l

A

from measure-

ment to onstrain quintessene models.

6.4 The Boomerang 2001 Data and Quintessene

The data released in spring 2001 by the boomerang [14℄ and maxima [15℄ team

overs the multipoles up to l � 1000. It shows three peaks as distint features,

seeming to on�rm beyond any reasonable doubt the inationary piture of stru-

ture formation from predominantly adiabati initial onditions. Here, we will use

this data to extrat the aousti sale l

A

. This together with bounds from struture

formation will permit us to onstrain inverse power law and leaping kineti term

models. We also show that the new CMB data provides strong evidene for an a-

elerating universe, independent of supernovae (SNe Ia) data, to whih we return

later. In this setion, we have assumed a at universe, with 


b

h

2

= 0:022 � 0:003
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6.4. The Boomerang 2001 Data and Quintessene

Figure 6.7: The CMB anisotropy power spetrum as measured by boomerang [20℄. The

inner vertial lines show the region 820 < l

3

< 857 as alulated by the boomerang team

[24℄, and the outer lines our more onservative region 800 < l

3

< 900.

(in aordane with Big Bang Nuleosynthesis) and spetral index n = 1 unless

otherwise stated.

We have shown in setion 6.3, that the shift of the third peak, '

3

is relatively

insensitive to osmologial parameters, and that by assuming the onstant value

'

3

= 0:341 we an estimate l

A

to within one perent if the loation of the third

peak l

3

is measured, via the relation (6.14). The measurement of a third peak

in the CMB spetrum by boomerang [14℄ now allows us to extrat the aousti

sale l

A

and use this as a onstraint on osmologial models. In an analysis of peak

positions, the boomerang team performed a model-independent analysis of their

data [67℄, and found the third peak to lie in the region

l

3

= 845

+12

�25

; (6.17)

from whih we alulate the value

l

A

= 316 � 8: (6.18)

If we instead hose the more onservative assumption that 800 < l

3

< 900, we

would get the bound

l

A

= 319 � 23; (6.19)

We will perform our analysis using both of these ranges for the loation of the

third peak. The two ranges are displayed, along with the boomerang data, in
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Fig. 6.7. Independently of [67℄ we have performed ubi spline �ttings to the data

presented in [14℄, as well as to the ombined multiple-experiment data given in [76℄.

We allowed the data to vary aording to the Gaussian errors given. We �nd for

the boomerang and ombined data respetively:

l

1

= 221� 14; 222 � 14 (6.20)

l

2

= 524� 35; 539 � 21 (6.21)

l

3

= 850� 28; 851 � 31 (6.22)

We applied our CMB-derived l

A

onstraints to two types of quintessene model:

an inverse power law (IPL) potential [7℄ as de�ned in Equation (2.23) and a leaping

kineti term (LKT) model [32℄, as spei�ed in Equations (2.20,2.21). Please note

that the IPL model has equation of state today given by w

0

� w(today) = �2=(�+

2). In ontrast to this, w

0

for LKT depends strongly on the preise shape of

k(').For a steep inrease in the kineti term, one an have w

0

very lose to �1

und thus mimi a osmologial onstant at the present epoh (see also �gure 6.12).

Other models of quintessene share the e�etive time dependene of w [38,81℄. We

also applied the onstraints to a osmologial onstant (


'

0

� 


�

) universe (i.e.

IPL quintessene with � = 0) for omparison.

In Figs 6.8, 6.9 we show for our hosen dark energy models the range of 


'

0

and h allowed by Equations (6.18) and (6.19). These ranges are similar for the

osmologial onstant, LKT (also for

�




'

ls

= 0:2) and IPL for small � whereas IPL

with � = 2 would be pushed to small values of h. The omparatively low values of

h inferred from the boomerang data an be ombined with information from LSS

formation. The growth of density utuations slows down when quintessene starts

to dominate. In this way LSS an serve as a probe of quintessene at intermediate

redshifts. We will ome bak to this in setion (6.6). Meanwhile, we note that

luster abundane onstraints for quintessene models with onstant equation of

state yield [77℄

�

8






m

= 0:5� 0:1 [(n� 1) + (h� 0:65)℄ (6.23)

where  depends slightly on w, and typially  � 0:6. In [77℄, the unertainty for

Equation (6.23) was estimated as 20% at 2-�, and this is the onstraint shown in

the plots. We have hosen to shade the 2-� LSS and onservative l

A

onordane

region in the 


'

0

-h plane, but not to impose any bounds on these parameters.

Reently, however, the HST has measured h = 72 � 8 [79℄, and the 2dF survey




m

h = 0:20 � 0:03 [80℄.

The urrent CMB and LSS data are onsistent with a osmologial onstant

(Fig. 6.8). The LKT model with 5% quintessene at last sattering is marginally

ompatible for small h. If the amount of quintessene at last sattering is inreased

beyond 5%, the l

A

bounds do not hange signi�antly. Compatibility with LSS data

would require, however, even higher h-values, at odds with the boomerang data.

In ontrast to the CMB measurements, the determination of �

8

by luster abun-

danes involves systemati unertainties that are diÆult to quantify. Furthermore,

the theoretial expetation for �

8

depends strongly on the spetral index n.
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Figure 6.8: boomerang (solid lines give onservative bound, dotted lines more strit bound) and LSS (dashed lines) onstraints in




�

-h plane (left) and 


'
0

-h plane for LKT quintessene with

�




'
ls

= 0:05 (right). The dotted box indiates the 1-� maximum likelihood

ranges obtained by the boomerang data analysis team with atness and LSS priors.
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Figure 6.10: Lines of onstant l

A

in the 


'

0

- �w

0

plane, for h = 0:6. All universes to

the left of the dotted line are aelerating. For larger values of h, the l

A

lines are shifted

north-west.

Some inationary models indeed onnet the smallness of primordial density

utuations to n = 1:1{1:15 [78℄. Inreasing n inreases the amount of dark en-

ergy allowed during struture formation. For n = 1:1, the LKT model with 10%

quintessene at last sattering beomes feasible.

The IPL model (Fig. 6.9) with � = 2 is disfavored, with higher values of � even

worse, but � = 1 survives. Of ourse IPL models with � < 1 provide a better �t

to the data, however for �! 0 IPL approahes the osmologial onstant and the

problem of naturalness beomes more and more severe (with possible exeptions

[41℄). Similar onlusions on the IPL model have been derived from the 1998

boomerang data [35℄, but only for �xed h = 0:65. We see from our �gures that

the results an be very sensitive to hanges in h.

A at universe is aelerating today if the dark energy omponent and its

equation of state satisfy




'

0

w

0

< �

1

3

: (6.24)

Assuming that there is no signi�ant dark energy omponent at last sattering,

we an ombine our onstraints on l

A

with Equation (6.6). Fig 6.10 shows that

provided h > 0:6, the CMB now gives strong evidene for an aelerating universe,

independently of supernovae data.
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Figure 6.11: E�etive magnitudes m

e�

B

of low (blue, z < 0:18, from [82℄) and high (red,

z > 0:18, from [84℄) redshift SNe Ia as a funtion of z.

6.5 Supernovae Ia

Astronomers use the so alled distane ladder to determine the distane of some far

away objet. If one knows by some means the distane of an objet one an in prin-

iple determine the distane of any other objet by measuring the ux of inoming

photons, provided both objets are equally bright. Unfortunately, one annot just

enter some spaeship, y to the two objets in question and measure their bright-

ness.

11

Therefore, astronomers make the eduated guess that two similar objets

should be similarly bright.

When looking into the deep universe, photon uxes get low and only bright

objets an be used to alibrate distanes. Among the brightest objets are super-

novae, exploding stars. And among supernovae is a lass alled Type Ia, whih look

quite similar. Using an empirial orretion fator, SNe Ia seem to beome stan-

dard andles. They therefore are an ideal tool to measure redshift versus distane,

provided they really are standard andles.

12

SNe Ia data is usually quoted by the e�etive magnitude m

e�

B

versus redshift z

(see �gure 6.11). The e�etive magnitude an be expressed as

m

e�

B

=M

B

+ 5lgD

L

(z); (6.25)

11

This, indeed would be the golden age of astronomy

12

The universe at redshift z � 1 was muh younger and there are still doubts possible whether

di�erent environmental onditions ould have inuened SNe Ia suh that they explode di�erently

at low and high redshift.
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Figure 6.12: The luminosity distane d

l

(z) (plotted as d

l

(z)H

0

=2(1 + z)) and 
(z) for

a �CDM and a LKT universe with 


0

�

= 0:6 and 


'

0

= 0:7 respetively. The equation

of state w

�

(z) of the LKT quintessene is also given. For low redshift, the equation of

state is lose to �1, w

0

= �0:8. For w

0

[


'

0

℄

1:4

= 


0

�

, the luminosity distane of both

LKT and �CDM fall on top of eah other in the redshift region relevant for urrent SN Ia

analysis (two upper most urves). Despite the similar late time behaviour, the LKT model

has 


'

� 0:1 from very early times on, whereas in the osmologial onstant model, dark

energy plays a role only reently.

where D

L

(z) is just the luminosity distane

d

L

(z) = (1 + z)

Z

z

0

H

�1

(z

0

)dz

0

; (6.26)

times the Hubble parameter today:

D

L

(z) = H

0

d

L

(z): (6.27)

In pratie,M

B

is alibrated by �ttingm

e�

B

of some given model to the low redshift

data of SNe Ia [82℄. With the so �xed M

B

, one predits m

e�

B

for the high redshift

SNe Ia and determines the goodness of the �t.

Now, the universe at redshift z = 0 : : : 2 an be well desribed by a mixture of

quintessene and matter. By simply using the Friedmann equation (2.7), on gets

�

H

H

0

�

2

= (1� 


'

0

)a

�3

+


'

0

a

�3(1+ �w

'

)

; (6.28)

for an equation of state �w

'

that has been averaged over the redshift range in

question and should generially be lose to �w

'

0

. Inserting Equation (6.28) in (6.26),
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yields

(1 + z)

�1

D

L

= (1 + z)

�1

H

0

d

L

=

Z

z

0

dz

0

n

(1� 


'

0

)a

�3

+


'

0

a

�3(1+ �w

'

)

o

�

1

2

: (6.29)

It is hene the integral (6.29) that determines solely whether a given quintessene

model �ts the data or not, provided the equation of state doesn't hange too dras-

tially.

13

Unfortunately, there is no losed expression for the integral. However,

(1 + z)

�1

D

L

is to very good auray desribed by a straight line in the variable

x � �w

'

[


'

0

℄

1:4

; (6.30)

at �xed redshift z 2 [0:35; 0:7℄:

(1 + z)

�1

D

L

� g

0

(z) + xg

1

(z): (6.31)

As most of the SNe Ia data is in this redshift region, one is led to onlude that dark

energy models that have the same �w

'

[


'

0

℄

1:4

are indistinguishable by urrent SNe

Ia measurements. This degeneray is the subjet of many publiations that try to

quantify the possibilities to measure the dark energy equation of state by a future

SNe Ia sattelite mission [19,58,83℄. SNe Ia measurements have been extensively

used to restrit dark energy models [21,40,58,59,84{87℄. A osmologial onstant is

restrited to 


�

2 [0:5; 0:9℄ at 2� on�dene level [84,85℄. Using the relation (6.30)

this bound on 


�

an easily be translated into one on �w

'

and 


'

0

.

�0:86 [


'

0

℄

�1:4

< �w

'

< �0:38 [


'

0

℄

�1:4

: (6.32)

For the inverse power law model, where �w

'

= �2=(� + 2), this gives




'

0

> 0:3(� + 2)

5=7

, i.e. assuming that 


'

0

< 0:8, we have � < 1:9 (see also [40℄).

This is omparable to our CMB and LSS onstraint of setion 6.4. On the other

hand, leaping kineti term models an be onsistent with SNe Ia and nevertheless

di�er substantially from osmologial onstant senarios for the CMB and LSS (see

�gure 6.12). For these models, the CMB+LSS and the SNe Ia onstraints are not

diretly related and annot easily be ompared.

6.6 Struture formation

The inuene of quintessene on the growth of struture has been disussed in [28,

77,89{92℄. In a CDM universe without dark energy, old dark matter perturbations

are not growing

14

within the horizon during the radiation dominated regime. Only

from matter-radiation equality on, dm utuations within the horizon start to

grow.

13

Examples for possible pitfalls with drastially hanging equations of state an be found in [88℄.

14

The statements on perturbations in this setion are valid in synhronous gauge.
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6.6. Struture formation

Quintessene has roughly two main e�ets on this piture [91,92℄: �rstly, from

the de�nition of a

eq

(2.41), one sees that a

eq

gets shifted. This is due to the

fat that whereas in a universe without quintessene, 




0

� 0:9, one has inluding

quintessene 




0

� 1 � 


'

0

. Therefore, struture growth starts later in a universe

with substantial 


'

0

. The seond main e�ets is a derease in the growth exponent

for dm utuations: the more dark energy present at some epoh, the more slowly

struture grows. In [91,92℄ the useful formula

�

8

(')

�

8

(�)

= a

3

�




'

sf

=5

eq

�

1� 


�

0

�

�(1+ �w

�1

)=5

s

�

0

(')

�

0

(�)

; (6.33)

relates the rms-utuations on sales of 8h

�1

Mp of any quintessene model to a

model with a osmologial onstant, where 


'

0

= 


�

0

. In the above,

�




sf

and �w are

suitably de�ned averages [91,92℄. The usefulness of Equation (6.33) lies in the fat

that if one knows �

8

(�) (say, from a data base), then one an estimate �

8

(') from

the knowledge of the bakground evolution only. We use this in the likelihood part

of mbeasy to give a quik (two orders of magnitude faster than normal) estimate

of likelihoods.

Applying Press-Shehter Theory to quintessene senarios, luster abundane

onstraints yield the useful relation (6.23) derived in [77℄. For any quintessene

model, the normalization of the utuations via the CMB predits a ertain value

of �

8

. Relation (6.23) then determines whether this value of �

8

is ompatible with

luster abundanes or not.
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7

Quantum Loop Corretions

The evolution of the quintessene salar �eld is usually treated at the lassial level.

However, quantum utuations may alter the lassial quintessene potential. We

will in the following investigate one-loop ontributions both from quintessene and

fermion utuations to the e�etive potential. We

1

will show that in the late

universe, quintessene utuations are harmless for most of the potentials used

in the literature. For inverse power laws and SUGRA inspired models, this has

already been demonstrated in [34℄. Also, it has been noted in [94,95℄, that the

mass of the quintessene �eld needs to be proteted by some symmetry. In ontrast

to the rather harmless quintessene �eld utuations, fermion utuations severely

restrit the magnitude of a possible oupling of quintessene to fermioni dark

matter, as we will show.

In Eulidean onventions, the ation we use for the quintessene �eld � and a

fermioni speies 	 to whih it may ouple [4,71,101℄ is

S =

Z

d

4

x

p

g

"

M

2

P

R+

1

2

�

�

�(x)�

�

�(x) + V (�(x))

+

�

	(x)

�

i =r+ 

5

m

f

(�)

�

	(x)

#

; (7.1)

with m

f

(�) as a � dependent fermion mass. This � dependene (if existent in a

model) determines the oupling of the quintessene �eld to the fermions. As long as

one is not interested in quantum gravitational e�ets, one may set

p

g = 1, R = 0

and replae =r ! =� in the ation (7.1).

By means of a saddle point expansion [96℄, we arrive at the e�etive ation

�[�

l

℄ to one loop order of the quintessene �eld. The equation governing the dy-

namis of the quintessene �eld is then determined by Æ�[�

l

℄

j�

l

=�

?

l

= 0. When

estimating the magnitude of the loop orretions, we will assume that �

?

l

is lose

to the solution of the lassial �eld equations: ÆS = 0. Evaluating � for onstant

�elds, we an fator out the spae-time volume U from � = UV . This gives the

1

This hapter is based on work in ollaboration with J�org J�akel [93℄.
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Figure 7.1: Pure quintessene utuations (depited as dashed lines). The loop of the

utuating quintessene �eld modi�es the potential. Sine the potential involves in prini-

ple arbitrary powers of �, we depit V

00

as multiple external lines.

e�etive potential

V

1-loop

(�

l

) = V (�

l

) +

�

2

32�

2

V

00

(�

l

)�

�

2

ferm

8�

2

[m

f

(�

l

)℄

2

: (7.2)

Here, primes denote derivatives with respet to �; �

l

is the lassial �eld value

and � and �

ferm

are the ultra violet uto�s of salar and fermion utuations.

The seond term in Equation (7.2), is the leading order salar loop, depited in

�gure 7.1(a). We neglet graphs of the order (V

00

jl

)

2

and higher like the one in �g-

ure 7.1(b), beause V and its derivatives are of the order 10

�120

(see setion 7.2).

We have also ignored �-independent ontributions, as these will not inuene the

quintessene dynamis.

However, the �-independent ontributions add up to a osmologial onstant

of the order �

4

� O(M

4

P

). This is the old osmologial onstant problem, ommon

to most �eld theories. We hope that some symmetry

2

or a more fundamental

theory will fore it to vanish. The same symmetries or theories ould with the

same right remove the loop ontribution by some anelling mehanism. After all,

this mehanism must be there, for the observed osmologial onstant is far less

than the naively alulated O(M

4

P

).

Besides, none of the potentials under investigation an be renormalized in the

strit sense. However, as we will see, terms preventing renormalization may in

some ases be absent to leading order in V

00

jl

. As the mass of the quintessene �eld

is extremely small, one may for all pratial purposes view these spei� potentials

(suh as the exponential potential) as renormalizable.

There is also a loophole for all models that will be ruled out in the following:

The potential used in a given model ould be the full e�etive potential inluding

all quantum utuations, down to marosopi sales. For oupled quintessene

models, this elegant argument is rather problemati and the loophole shrinks to a

2

Unfortunately, SUSY is too badly broken to be this symmetry [94℄.
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point (see setion 7.2).

In the following, we apply Equation (7.2) to various quintessene models in

order to hek their stability against one loop orretions. We do this separately

for oupled and unoupled models. We use units in whih M

P

= 1. For larity, we

restore it when appropriate.

7.1 Unoupled Quintessene

Here, we are going to disuss inverse power law, pure and modi�ed exponential and

osine-type potentials.

7.1.1 Inverse power law and exponential potentials

Inverse power law [7,5℄ and exponential potentials [6,28℄ and mixtures of both [38℄

an be treated by onsidering the potential (2.25). Deriving V from Equation (2.25)

twie with respet to �, we �nd

V

00

= A�

��

exp(���



)

n

�(� + 1)�

�2

+ 2���

�2

+ �

2



2

�

2�2

� �( � 1)�

�2

o

: (7.3)

Inverse Power Laws

For inverse power laws, we set  = � = 0. This gives the lassial potential

V

ipl

l

= A�

��

l

and by means of Equation (7.2) the loop orreted potential

V

ipl

1-loop

= V

ipl

l

�

1 +

1

32�

2

�

2

�(� + 1)�

�2

l

�

: (7.4)

The potential is form stable if

1

32�

2

�

2

�(� + 1)�

�2

� 1, whih today is satis�ed,

as � � M

P

[38℄.

However, if the �eld is on its attrator today, then � / (1 + z)

�3=(�+2)

, where

z is the redshift [38℄. Using this, we have for z � 1

V

ipl

1-loop

� V

ipl

l

�

1 +

1

32�

2

�

2

�(�+ 1)z

6=(�+2)

�

: (7.5)

Thus, the uto� needs to satisfy �

2

�

32�

2

�(�+1)

� z

�6=(�+2)

. From setion 6.4, we

know that osmologially viable inverse power law potentials seem to be restrited

to � < 2 (see also [35,36℄). Using � = 1 and z � 10

4

for de�niteness, the bound

beomes �

2

� 10

�6

.

So at equality (and even worse before that epoh), the uto� needs to be well

below 10

12

Gev, if lassial alulations are meant to be valid. In [34℄ it is ar-

gued that for inverse power laws, the quintessene ontent in the early universe

is negligible and hene the utuation orretions are important only at an epoh
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Chapter 7. Quantum Loop Corretions

where quintessene is subdominant. As the loop orretions introdue only higher

negative powers in the �eld, it is hoped that even though one does not know the

detailed dynamis, the �eld will nevertheless roll down its potential (whih at that

time is supposed to be muh steeper) and by the time it is is osmologially rele-

vant, the lassial treatment is one again valid. Having no means of alulating

the true e�etive potential for the inverse power law in the early universe, this view

is ertainly appealing.

Pure Exponential Potentials

The pure exponential potential is speial beause its derivatives are multiples of

itself. The lassial potential (with � = 0;  = 1) is V

ep

l

= A exp(���

l

) and to

one loop order

V

ep

1-loop

= V

ep

l

�

1 +

1

32�

2

�

2

�

2

�

: (7.6)

It is easy to see that a resaling of A ! A=

�

1 +

1

32�

2

�

2

�

2

�

absorbs the loop

orretion, leading to a stable potential up to order V

00

l

. Working to next to leading

order, i.e restoring terms of order (V

00

l

)

2

we get

V

ep

1-loop, n.l.

=

1

32�

2

�

V

00

l

�

2

ln

�

V

00

l

�

2

�

:

It is this term whih in four dimensions spoils strit renormalizability.

7.1.2 Nambu-Goldstone Cosine Potentials

Cosine type potentials resulting from an quintessene axion have been introdued

in [97,98℄ and their impliations on the CMB have been studied in [99℄. They take

on the lassial potential V

ng

l

= A [1� os (�

l

=f

Q

)℄ and inluding loop orretions

V

as

1-loop

= A

"

1�

(

1�

1

32�

2

�

2

f

2

Q

)

os

�

�

l

f

Q

�

#

:

Upon a rede�nition A ! A=

�

1�

1

32�

2

�

2

f

2

Q

�

and realling that the loop orretion

is only de�ned up to a onstant, one arrives at the same funtional form as the

lassial potential.

7.1.3 Modi�ed Exponentials

In the model proposed by Albreht and Skordis [33℄, the lassial potential is V

as

l

=

V

p

exp(���

l

), where V

p

is a polynomial in the �eld. To one loop order, this leads

to

V

as

1-loop

= V

as

l

�

1 +

1

32�

2

�

2

�

V

00

p

V

p

� 2�

V

0

p

V

p

+ �

2

��

: (7.7)
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Figure 7.2: Classial and 1-loop orreted potential [in 10

�123

M

4

P

℄ for V

as

l

=

�

(��B)

2

+ C

�

exp(���

l

) with B = 34:8; C = 0:013; � = 1:2. The lassial poten-

tial has a loal minimum, whih is absent for the loop orreted one. This is a hand-piked

example and in most ases, the bump will not vanish but move and hange its form.

Let us for de�niteness disuss the example given in [33℄, where the authors hose

V

p

(�) = (��B)

2

+ C. With this hoie, we have

V

as, exmpl

1-loop

= V

as, exmpl

l

�

�

1 +

1

32�

2

�

2

�

1

V

p

�

2� 4�(�

l

�B)

�

+ �

2

�

�

: (7.8)

Now onsider �eld values lose to the minimum of V

p

, i.e. let the absolute value of

� � �

l

�B be small ompared to

p

C. Then

V

as, exmpl

1-loop

= V

as, exmpl

l

�

1 +

�

2

32�

2

�

2� 4��

C + �

2

+ �

2

��

; (7.9)

and to leading order in �

V

as, exmpl

1-loop

� V

as, exmpl

l

�

1 +

�

2

32�

2

�

1

C

[2� 4��℄ + �

2

��

: (7.10)

Now onsider, as has been the ase in the example given in [33℄, C = 0:01 for

de�niteness. If we assume the uto� � and the Plank mass of approximately the

same order, we get

V

as, exmpl

1-loop

� V

as, exmpl

l

�

1 +

1

32�

2

�

100 [2� 4��℄ + �

2

�

�

: (7.11)
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The � (and hene �

l

) dependent ontribution in the urly braket of Equation

(7.11) is �25=(2�

2

)�� whih for the value � = 8 hosen in the example gives

�200=(2�

2

)� � �10�.

If we now look at the behaviour of the loop orretion as a funtion of �

l

and

hene � in the viinity of the minimum of this example polynomial, we see that for

e.g. � = 0:01, the one loop ontribution dominates the lassial potential giving

rise to a linear term in �

l

unaounted for in the lassial treatment. For many

values of the parameters B and C, this just hanges the form and loation of the

bump in the potential. In priniple, however the loop orretion an remove the

loal minimum altogether (see �gure 7.2).

Needless to say that this �nding depends ruially on the uto�. If it is hosen

small enough, the onlusion is irumvented. In addition, only the spei� hoie

of V

p

above has been shown to be potentially unstable. The spae of polynomials

is ertainly large enough to provide numerous stable potentials of the Albreht and

Skordis form.

7.2 Coupled Quintessene

Various models featuring a oupling of quintessene to some form of dark matter

have been proposed [11,30,71,100,101℄. From the ation Equation (7.1), we see

that the mass of the fermions ould be � dependent: m

f

= m

f

(�

l

) (see also

Figure 7.3). Two possible realization of this mass dependene are for instane

m

f

= m

0

f

exp(���

l

) and m

f

= m

0

f

+(�

l

), where in the seond ase, we may have

a large �eld independent part together with small ouplings to quintessene.

3

For

the model disussed in [71℄, the oupling is of the �rst form, whereas in [101℄, the

oupling is realized by multiplying the old dark matter Lagrangian by a fator

f(�). This fator is usually taken of the form f(�) = 1 + �(� � �

0

)

�

. Hene,

the oupling is m

f

(�) = f(�)m

0

f

, if we assume that dark matter is fermioni. If it

were bosoni, the following arguments would be similar.

We will �rst disuss general bounds on the oupling and in a seond step hek

whether these bounds are broken via an e�etive gravitational oupling.

7.2.1 General Bounds on a Coupling

We will only disuss the new e�ets oming from the oupling and set

V

1-loop

= V

l

��V; (7.12)

where �V = �

2

ferm

[m

f

(�

l

)℄

2

=

�

8�

2

�

. If we assume that the potential energy of

the quintessene �eld onstitutes a onsiderable part of the energy density of the

universe today, i.e. �

q

� �

ritial

, we see from the Friedman equation

3H

2

= �

ritial

; (7.13)

3

The onstant m

0

f

is not the fermion mass today, whih would rather be m

today

=

m

f

(�

l

(today)).
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Figure 7.3: Corretion to the quintessene potential due to fermion utuations. Fermion

lines are solid, quintessene lines dashed. Shown is the ase where m

f

(�) gives a Yukawa

oupling, i.e. (�) = ��, orresponding to one quintessene line. Of ourse, for more

ompliated m

f

(�) suh as m

f

(�

l

) = m

0

f

exp(���

l

), several external lines like in �gure

7.1 would appear.

that V

l

� H

2

. With todays Hubble parameter H = 8:9� 10

�61

h (h = 0:5 : : : 0:9),

we have

V

l

� 7:9� 10

�121

h

2

: (7.14)

The ratio of the `orretion' to the lassial potential is

�V

V

l

=

1

8�

2

�

2

ferm

[m

f

(�

l

)℄

2

V

l

: (7.15)

Let us �rst onsider the ase that all of the fermion mass is �eld dependent, i.e.

we onsider ases like m

f

= m

0

f

exp(���

l

). As an example, we hoose a fermion

uto� at the GUT sale �

ferm

= 10

�3

, and a fermion mass, m

f

(�

l

) of the order of

100Gev = 10

�16

M

P

. Then Equation (7.15) gives the overwhelmingly large ratio

�V

V

l

� 10

80

: (7.16)

Thus, the lassial potential is negligible relative to the orretion indued by the

fermion utuations.

Having made this estimate, it is lear that the fermion loop orretions are

only harmless, if the square of the oupling takes on exatly the same form as

the lassial potential itself. If, for example we have an exponential potential

V

l

= A exp(���

l

) together with a oupling m

f

(�

l

) = m

0

f

exp(���

l

), then this

oupling an only be tolerated, if 2� = �.

4

Taken at fae value, this �nding

restrits models with these types of oupling. It is however interesting to note that

for the exponential oupling, the ase 2� = � is not ruled out by osmologial

observations [30℄.

Turning to the possibility of a fermion mass that onsists of a �eld independent

part and a oupling, i.e. m

f

= m

0

f

+ (�

l

), Equation (7.15) beomes

�V

V

l

=

1

8�

2

�

2

ferm

�

2m

0

f

(�

l

) + (�

l

)

2

�

V

l

; (7.17)

4

Of ourse, suÆiently small �, will lead to a more or less onstant ontribution, where

m

f

(�

l

) � m

0

f

� ��

l

.
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where we have ignored a quintessene �eld independent ontribution proportional

to (m

0

f

)

2

. Assuming (�

l

)� m

0

f

, and demanding that the loop orretions should

be small ompared to the lassial potential, Equation (7.17) yields the bound

(�

l

)�

4�

2

V

l

�

2

ferm

m

0

f

: (7.18)

If, as above, we assume �

ferm

= 10

�3

M

P

, m

0

f

= 10

�16

M

P

and V

l

from Equation

(7.14), this gives

(�

l

)� 3� 10

�97

; (7.19)

in units of the Plank mass. One again, the bound from Equation (7.18) only

applies if the funtional form of the loop orretion di�ers from the lassial poten-

tial. Assuming a Yukawa type oupling (�

l

) = ��

l

and �eld values of at least

the order of a Plank mass, we get � � 10

�97

.

For the oupling (�) = m

0

f

�(���

0

)

�

with the values � = 50; � = 8; �

0

= 32:5

given in [101℄, (�) is usually larger than m

0

f

. Therefore we take m

f

(�

l

) � (�

l

).

With m

f

(�

l

) = 10

�16

as before, we get the same result as in (7.16).

The oupled models share one property: the loop ontribution from the oupling

is by far larger than the lassial potential. At �rst sight, the golden way out of

this seems to view the potential as already e�etive: all utuations would be

inluded from the start. However, there is no partiular reason, why any oupling

of quintessene to dark matter should produe just exatly the e�etive potential

used in a partiular model: there is a relation between a oupling and the e�etive

potential generated. Put another way, if the e�etive potential is of an elegant form

and we have a given oupling, then it seems unlikely that the lassial potential

ould itself be elegant or natural.

7.2.2 E�etive gravitational Fermion Quintessene Coupling

The bound in Equation (7.18) is so severe that the question arises whether gravita-

tional oupling between fermions and the quintessene �eld violates it. To give an

estimate, we alulate two simple proesses depited in �gure 7.4. We evaluate the

diagrams for vanishing external momenta. This is onsistent with our derivation of

the fermion loop orretion Equation (7.2), in whih we have assumed momentum

independent ouplings. The e�etive oupling due to the graviton exhange on-

tributes to the fermion mass, whih beomes �

l

dependent. We assume that this

oupling is small ompared to the fermion mass and write m

f

(�

l

) =m

0

f

+ (�

l

).

Fermions in general relativity are usually treated within the tetrad formalism.

The  matries beome spae-time dependent: 

�

(x) � 

a

e

�

a

(x). Together with

the spin onnetion !, one uses (see e.g. [102℄, [103℄):

=r = e

�

a

(x)

a

�

�

�

+

i

4

�

b

!

b

�

�

: (7.20)

The ation (7.1) an then be expanded in small utuations around at spae:

g

��

= Æ

��

+ h

��

=M

P

.
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Figure 7.4: E�etive fermion-quintessene oupling via graviton exhange. The fermions

(solid lines) emit gravitons (wiggled lines) whih are aught by the quintessene �eld

(dashed lines). As the graphs involve ouplings of the gravitons to the lassial quint-

essene potential, the generated oupling is proportional to the lassial potential. Sine

the potential involves arbitrary powers of �, we depit it as several �-lines. A Yukawa

type oupling, orresponding to just one line, is then generated by power expanding

V (�) = V (�

l

) + V

0

jl

(�� �

l

) in the utuating �eld.

Using the gauge �xing term �

1

2

(�

�

h

��

�

1

2

�

�

h

�

�

)

2

and expanding the ation to

seond order in h, we �nd the propagator [103℄:

P

�1

grav

(k) =

Æ

��

Æ

��

+ Æ

��

Æ

��

� Æ

��

Æ

��

k

2

: (7.21)

The diagrams in �gure 7.4 are generated by the expansion of

p

g = 1 +

1

2

h

��

�

1

4

(h

��

)

2

+

1

8

(h

��

)

2

multiplying the matter Lagrangian. Additional (and more om-

pliated) verties originate from the spin onnetion and the tetrad.

However, we don't onsider external graviton lines, whih would only give

orretions to the ouplings and wave funtion renormalization of the gravitons.

Therefore only internal gravitons appear. In order to ontribute a quintessene de-

pendent part to the fermion mass, the gravitons starting from the fermion-graviton

verties (ompliated as they may be) have to touh quintessene-graviton verties.

As these quintessene verties are proportional to V (�

l

), all diagrams to lowest

order in V (�

l

) will only produe mass ontributions proportional to V (�

l

).

Evaluating the diagrams in �gure 7.4 for vanishing external momenta we get

from the �rst diagram, �gure 7.4(a)
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whereas 7.4(b) gives
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) ln
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: (7.23)
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V (�

l

)

.

.

.

Figure 7.5: Fermion loop ontribution to the quintessene potential involving the e�etive

oupling �gure 7.4(a). The ross in the fermion line depits the �eld independent fermion

mass m

0

f

.

Here, we have introdued infrared and ultraviolet uto�s � and � for the graviton

momenta. We assume � to be of the order M

P

and � about the inverse size of the

horizon. Sine the results depend only logarithmially on the uto�s, this hoie is

not ritial and in addition ln(M

P

=H) � 140, whih is small. From Equation (7.17,

7.22, 7.23), we see that in leading order, the hange in the quintessene potential

due to this e�etive fermion oupling would be proportional to V (�

l

) and ould

hene be absorbed upon rede�ning the pre-fator of the potential (see also �gure

7.5). In next to leading order, the ontribution is proportional to V (�

l

)

2

whih is

negligible.

From Equation (7.20) it is lear that there are proesses where the verties are

more ompliated. However, to this order all diagrams are proportional to V (�

l

).

Thus, they an be absorbed just like the two proesses presented above.

7.3 Weyl-transformed Fields

So far, we have assumed a onstant Plank mass together with a �eld independent

uto�. We ould however, assume that the Plank mass is not onstant, but rather

given by the expetation value of a salar �eld �. We will all the frame resulting

from this Weyl saling Weyl frame, opposed to the frame with onstant Plank mass

whih we will all Einstein frame. From the lassial point of view, both frames are

equivalent. On alulating quantum orretions, we have to evaluate a funtional

integral. Usually, the funtional measure in the Einstein frame is set to unity. In

priniple, the variable hange assoiated with the Weyl saling leads to a non-trivial

Jaobian and therefore a di�erent funtional measure. Taking on the position that

the Weyl frame is fundamental, this measure ould with the same right be set to

unity in the Weyl frame. Therefore, it is a priori unlear whether the loop orreted

potential in the Weyl frame, when transformed bak into the Einstein frame, will

be the same as the one from Equation (7.2).

As the uto� in the Einstein frame is a onstant mass sale and hene propor-

tional to the Plank mass, it seems natural to assume that the uto� in the Weyl

frame is proportional to �. We restrit our disussion to this ase. For other hoies
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7.3. Weyl-transformed Fields

of the �-dependene of the uto�, the results may di�er.

The Weyl transformation is ahieved by saling the metri, the urvature salar,

all �elds and the tetrad by appropriate powers of �=M

P

(see table 7.1) [6,11℄:
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where � = (12 + z)
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The term proportional to ln�

;�

in Equation (7.24) is somewhat inonvenient.

Adopting the position that the Weyl frame is fundamental, this term is unnat-

ural. Instead, one would formulate the theory with anonial ouplings for the

fermions. Dropping this term,
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we observe by going bak to the usual ation
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that the anonial form of the ation in the Weyl frame gives rise to a derivative

oupling of the quintessene �eld to the fermions in the Einstein frame, whih we

an safely ignore.

5

Working with Equation (7.26), we get the loop orretion in the Weyl frame by

replaing V ! W and �! � in Equation (7.2). In addition, the onstant uto�s

� and �

ferm

are replaed by onst � �:

W

1-loop

=W (�) +
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2
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00
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m

f

(�)

�

2

: (7.28)

5

Atually, this oupling is non-renormalizable in the strit sense. Sine the theory is non-

renormalizable anyhow, this is not of great onern. In addition, if one believes that the Weyl

frame is fundamental, there is no need in going bak to the Einstein frame and hene no need to

fae this nuisane.
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Table 7.1: Weyl saling of various quantities. The transformation of the urvature salar

R follows from the saling of the metri. This saling, in turn, originates from the ondition

that instead of the Plank mass squared multiplying R in the ation in the Einstein frame,

a fator �

2

should appear. Here, we have set � = ln(�=M

P

).

Transforming W

1-loop

bak into the Einstein frame, the potential V is modi�ed by
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As an example, lets alulate the orretion to the pure exponential potential V

ep

l

=

A exp(���

l

), one again setting M

P

= 1. The Weyl frame potential is

W (�) = A�

4

exp(���

l

(�)) = A�

(4��

p

12+z)

: (7.30)

Negleting fermion utuations and hoosing z = 1,
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Again (and not surprisingly) we an absorb the square braket in a rede�nition of

the pre-fator A. In the ase of the inverse power law, the term proportional to V

0

in

Equation (7.29) leads to a slightly di�erent ontribution ompared to Equation (7.4)

(a term / �

���1

l

arises). For the modi�ed exponential potentials the expressions

orresponding to V

0

in Equation (7.29) make no strutural di�erene.
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8

CMBEASY

In hapter 2, 4 and 5, we have reviewed osmologial perturbation theory and the

physis of CMB anisotropies. Having all neessary equations at hand

1

, we an

thus set out to alulate the CMB spetrum for any osmologial model. Sine

1996, the mbfast omputer ode implementing the fast line of sight integration

method is publily available. It an alulate spetra for open, losed and at

universes ontaining massless and massive neutrinos, baryons, old dark matter

and a osmologial onstant. It is a very well tested program that has enabled

many osmologists to test their model of the universe against CMB data.

However, from the point of view of ode design, there is maybe no program that

ould not be improved. This is also true for mbfast: it is a rather monolithi

ode that is quite diÆult to oversee and modify.

In order to address these shortomings and simplify modi�ations of the ode {

in our ase the implementation of quintessene models and gauge invariant variables

{ we have ported the mbfast pakage to the C++ programming language. The

C++ language is objet oriented and it turns out that to think in objets (more of

this soon), is very advantageous in osmology. The program has not been rewritten

from srath, but redesigned step by step. Some people may argue that it is hene

not independent, i.e. some unknown errors and limitations in mbfast ould be

present in the new ode. The objet oriented modular design, however, ensures

that eah part of the ode is independently testable. If, for instane, one does not

trust the integrator, one an use another one to hek it, without hanging anything

else in the pakage. Also, pratially all lines in the ode have been rewritten, to

bene�t from the redesign.

There are roughly three main steps needed to alulate the CMB anisotropy

spetrum,

� solving the expansion and thermal bakground evolution,

� alulating the perturbation equations in Fourier spae,

� mapping the alulations onto the sky today.

1

The full set of equations used is summarized in Appendix C
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Before we present the implementation we hose for this task, let us briey review

the onept of objet oriented programming.

8.1 Objets

Quite often, some data and funtions ating on the data are so tightly onneted,

that it is sensible to think of them as one objet. As an example, let us disuss

splines. Given a disrete set of n points x

i

with x

i+1

< x

i

and orresponding

f(x

i

) = y

i

, a spline an smoothly interpolate, i.e. give f(x) for any x 2 [x

0

; x

n

℄.

For as long as the sampling is dense enough, arbitrary funtions may be desribed

by a spline for all pratial purposes. This is widely used in mbfast. Even the

C

l

's are alulated only every 50 l-value for l > 200. As the spetrum is very

smooth, this still gives a preise result.

Now, a funtion like the visibility that is alulated in the thermal history part

of the ode, an be used to de�ne a spline. Without objet orientation, one would

need to keep trak of various variables, most notably arrays for the x; y data and

derivatives needed for spline interpolation. Also, in order to assure quik aess

within the spline data table, one either needs to know the preise layout of the

data arrays (mbfast does this), or even more variables (storing for instane the

last interpolation x value) would be neessary. In total, this sums up to a lot of

bookkeeping for a oneptually simple entity like a spline.

Alternatively, one may de�ne a lass holding all neessary variables a spline

needs together with de�nitions of an interfae with whih other parts of the pro-

gram an aess and manipulate the spline data. An objet behaves as desribed

by the orresponding lass. There an be an arbitrary number of objets of a er-

tain lass (just like there is one oating point type float, but many variables of

type float in a program).

2

The lass (in our ase) alled Spline, an hene be

viewed as yet another data type, with no more bookkeeping needed than say for

a oating point number. To illustrate this, let us disuss the visibility funtion

g � _� exp(�(�)� �(�

0

)). Its typial shape is depited in Figure 4.5. As mentioned

in Setion 4.5, its peak de�nes the epoh of last sattering. As soon as the Spline

alled visibility has been given the data, its maximum an be determined by a

single line of ode:

tau ls = visibility.getMaximum(); get � of last sattering

z ls = osmos.tau2z(tau ls); onvert to redshift

Here, the seond line asks the osmos objet to onvert

3

onformal time to red-

2

We usually denote here (and in the ode) lasses with apital �rst letter. In some ases where

there is only one objet of a lass used in the ode, we denote the objet with the same name as

the lass, but with lower ase initial letter. Hene, the line

Cosmos osmos;

reates an objet `osmos' of the lass `Cosmos'.

3

Many of these `onveniene' funtions are de�ned in the Cosmos lass and moving from a to
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8.2. Design

shift. As the expansion history has been alulated before the thermal history, this

is aurately possible. The important point to notie is that all funtions de�ned

in the Spline lass are immediately available to everyone who uses Splines. So,

whenever one needs to �nd the maximum, integrate a spline, alulate the onvolu-

tion of two Splines et, this an be done in very few lines of ode: the funtionality

is fully enapsulated in the implementation of the Spline lass. Any inrease in

performane or sophistiation of the Spline lass immediately translates over to all

Splines used in the program.

8.1.1 Inheritane

Tightly onneted to the fat that data and methods are ombined within one

objet, the onept of inheritane proofs very powerful in osmology. A lass

an inherit from another lass (in this ontext alled base lass). All variables

and the full funtionality the base lass implements is instantly available to the

inheriting lass,

4

alled sub-lass. The sub-lass an then re-implement funtions

of the base lass to provide a di�erent funtionality, or add new funtions and

variables. The important point to note is that all lasses deriving from the same

base lass neessarily need to provide all funtions the base lass provides. Hene,

for as long as other parts of the ode use the base lass, one an substitute any of

the inheriting lasses for the base lass without hanging a single line of ode in the

part that uses the bases lass. As an illustration, let us look at the Perturbation

lass of mbeasy. It is designed to evolve the perturbation equations for one

k-mode through onformal time and alulate the temperature perturbation. It

de�nes funtions to do this that other parts of the program an be sure to �nd

implemented in all sub-lasses. In pratie, there are four lasses that inherit from

it, for perturbations in gauge-invariant variables and in synhronous gauge both

with and without quintessene (see also Figure 8.3). From the point of view of the

rest of the program, all of them are equally well suited.

5

8.2 Design

A hierarhy overview of the main lasses of mbeasy is given in Figure 8.3. Maybe

the most entral part of the pakage is the CmbCal lass. It provides funtions

to prepare and exeute the perturbation evolution in k spae and the integration

of the C

l

's. During the preparation, it also alls the Cosmos lass whih alu-

lates the expansion and thermal bakground evolution. The Cosmos lass is the

z to � to t is easily possible. All onversion funtions have the syntax y = X2Y (x), where the

number 2 should be spelled as `to'.

4

This is as if a hild was born with the whole knowledge of its parents. No training and learning

would be neessary. It ould instantly go and inrease its apabilities starting from the level of its

parents.

5

Exept for the fat that if one wants quintessene, the perturbation lass should of ourse

support it.
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Figure 8.1: Temperature anisotropy spetrum for h = 0:65; 
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b

0

obtained from mbfast. The relative deviation �C

l

=C

l

of mbeasy's syn-

hronous (long dashed line) and gauge invariant (solid line) solution with respet to the

original mbfast spetrum are also given. The aordane of all spetra is always better

than 1%. In the gauge invariant ase, both the bakground and perturbation evolution as

well as the C

l

integration are entirely independent of the mbfast ode. However, they use

the same thermal history algorithm that should in priniple be independently implemented

for ross heks.

entral instane providing bakground quantities like ��(�) of all speies et. Al-

ready the entralization of the bakground evolution within the Cosmos lass fa-

ilitates the modi�ation of the ode greatly. A di�erent bakground osmology

(suh as quintessene) an be implemented by just inheriting from Cosmos and

re-implementing the expansion history part of the ode.

6

As already mentioned,

the Perturbation lass and its sublasses propagate the perturbation variables for

one k-mode through onformal time. Finally, the Integrator sublasses perform

the onvolution of the soures with the Bessel funtions, (4.68), as well as the �nal

k-integration of Equation (4.15).

8.2.1 Quintessene Implementation

The di�erent bakground evolution of quintessene senarios is implemented using

the QuintCosmos and the Quintessene lass. Eah sublass of Quintessene

6

All in all 800 lines of a total of 2500 lines of Cosmos.
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Figure 8.2: Graphial user interfae (GUI) for mbeasy.

orresponds to a ertain model, suh as EP, IPL, LKT et. Certainly, a more

monolithi design with the quintessene models implemented in the QuintCosmos

lass would have been possible. However, we believe that the details of the models

are best kept to a lass of its own. For instane tuning model parameters in order to

get the right amount of 


'

0

et. is di�erent for eah model and a monolithi design

would have to all di�erently named funtions for di�erent models. Using sub-

lassing, QuintCosmos (and Perturbation) always all funtions with the same

argument and name for all models. Yet, as the objet implementing the funtion

di�ers for eah model, the ode exeuted by alling the funtion an be totally

di�erent. Thus, a new quintessene model an be implemented by simply sub-

lassing Quintessene and implementing a minimal set of funtions, suh as one

for the potential et.

8.3 Graphial User Interfae

For eduational purposes and also to simplify the parameter input and subsequent

visualization of results, a graphial user interfae (GUI) is of great value. Lukily,

there is the very sophistiated and publily available `Qt' library[104℄ with whih

the reation of a GUI is failitated. Its objet oriented C++ design is a perfet

math for the mbeasy pakage. There is therefore an exeutable program alled

`mbeasy' giving interative aess to almost the full apabilities of the pakage,

inluding quintessene. As is seen from Figure 8.2, the spetra are visualized in
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separate plots arranged in a so alled Tab-Widget.

7

One an for instane zoom in,

selet and save urves or print the plot. In addition, a likelihood analysis, using

SNe Ia data, peak loations and luster abundane onstraints is available. Its

aim is rapid alulation and visualization and hene it only uses the bakground

evolution, estimating peak loations via the peak shift formulas of appendix B and

�

8

from Equation (6.33) and a library of pre-alulated �CDM models.

8.4 Doumentation

Using the doxygen program, the doumentation is automatially generated from

the soure ode of the mbeasy pakage. In its html version, it is interatively

navigable and inludes the full soure ode. Due to the automati generation,

the doumentation and the ode are naturally synhronized. A postsript version

of the doumentation is also generated. Depending on the depth of information

requested, it easily exeeds several hundred pages, making it less aessible than

its html ounterpart.

7

A widget is a part of a user interfae that an interat. Examples are buttons, sliders, et.
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Figure 8.3: Hierarhy of the main lasses of the mbeasy pakage. All lasses dealing with mathematis inherit from MathObjet for

tehnial reasons. The Cosmos lass alulates the bakground evolution and an be extended using sublasses suh as QuintCosmos

for quintessene. The perturbation equations are enapsulated in the Perturbation lass. Implementing di�erent gauges as sublasses

is therefore unproblemati. The entral instane invoking Cosmos, the Perturbations and Integrators is the CmbCal lass. Not shown

are several (sometimes small) lasses, e.g. the ControlPanel, whih holds ommonly used settings, or e.g. the MisMath lass providing

low-level mathematial funtions.
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Conlusions

We have started this work by desribing the e�ets of dark energy on the expansion

history of the universe. Depending on its e�etive equation of state w

0

, the age of

the universe ranges from � � 9000Mp (w

0

= 0) to approximately 14000Mp in

the ase of a osmologial onstant. The Perturbations to homogenous bakground

quantities have been introdued using gauge-invariant variables. The gauge invari-

ant salar quintessene utuation X is idential to the utuation in longitudinal

gauge. This makes the longitudinal gauge the ideal tool to derive quintessene

related perturbation equations. We have then reviewed the gauge-invariant for-

mulation of CMB anisotropies along the lines of [18℄. In order to bene�t from

the numerially fast line of sight method [16℄, we have formulated it using gauge

invariant variables.

To set the numerial alulation up, one needs initial onditions. For this pur-

pose, the equation of motion of the �eld utuation X has been solved analytially

in the ase of traking quintessene. As most salar quintessene models are in suh

an attrator solution at early times, this result is widely appliable. The utua-

tion X follows a simple power-law in onformal time with exponent (1 � 3w

'

)=2.

As it turns out, this solution for X is idential to the solution for X following

from adiabati initial onditions. Like all perturbations, the metri potential �

needs to be determined onsistently at initial time. The existing literature assumes

that � is given by the same relation as in the ase without quintessene. This is

ertainly true if quintessene is subdominant at early times. More importantly,

we have shown that this also holds whenever the quintessene model resembles an

exponential potential model at the time of interest. In most pratial situation, �

is therefore indeed given by the same relation as without quintessene.

For traking quintessene, the gauge-invariant energy density perturbation D

'

g

remains onstant on sales outside the horizon. As quintessene is in priniple very

versatile, we an't prove this intuitively expeted result for arbitrary realizations.

Moving towards observational tests for dark energy, we have alulated the

aousti sale l

A

. The aousti sale determines the inter-peak spaing in the CMB

multipole spetrum. The inuene of quintessene on l

A

has been expressed by the

three parameters w

0

;

�




'

ls

and 


'

0

. Unfortunately, the e�ets of dark energy an be

103



Chapter 9. Conlusions

mimiked by the Hubble parameter. An independent determination of the Hubble

parameter is therefore mandatory if l

A

is used to restrit quintessene models. The

aousti sale is still found in the literature as an estimate for the loation of the

�rst peak despite the fat that this introdues large errors [69,75℄. In addition, the

relation between 


0

and the position of the �rst peak noted in [73℄ is based on

numerial simulations. These simulations did not take dark energy into aount.

In order to aurately onnet the aousti sale and CMB peak positions, we

have parameterised the peak positions with peak shifts '

m

. For these shifts, we

devised �tting formulae that are appliable over a wide range of parameters. As

the shifts are inuened mostly by pre-reombination physis, dark energy before

last sattering (quanti�ed by

�




'

ls

) has been an important parameter in our analysis.

The independene from post-reombination e�ets means that the shift formulae

are also appliable to non-at universes. During these numerial simulations, the

shift of the third peak '

3

proved rather insensitive to the osmologial model.

As both the Boomerang and the Maxima experiments released data overing three

peaks in spring 2001, we used this insensitivity to extrat the aousti sale from the

measurements. The value we �nd is l

A

= 319 � 23. As the aousti sale is easily

alulable from bakground physis only, this provides a quik way to estimate

whether a model is possibly in agreement with the CMB data or not. Combining

this bound on l

A

with luster abundane onstraints, we �nd that inverse power

law models with exponent � > 2 are disfavoured. This is both in agreement with

SNe Ia onstraints, as well as with the result of [35℄. In addition, the amount of

dark energy during reombination is restrited to

�




'

ls

/ 0:15. Yet, for a spetral

index slightly greater than one, a small ontribution at the 5% level is favoured.

In order to detet quintessene via the CMB, a more preise measurement of the

loation of the �rst peak may be neessary. From this and l

A

, one would be able to

extrat the quantity � that ould give hints to the amount of quintessene present at

reombination. Using the value of l

A

, we �nd that the expansion of the universe is

most likely aelerating. This result is entirely independent of SNe Ia observations.

In order to implement quintessene models numerially, we hose to modify the

mbfast omputer ode. We have ported the pakage to the objet oriented C++

programming language. The ode has been re-designed and grouped in lasses.

As all funtionality is leanly enapsulated in these lasses, the ode is easier to

overview. This failitates bug-�nding and leads to more on�dene in the numerial

results. By inheriting from existing lasses, the implementation of di�erent models,

osmologies or gauges is greatly simpli�ed. In addition, a powerful graphial user

interfae is available for the modi�ed ode. This will make the CMB aessible to

non-experts also, inreasing intuition for the e�et of di�erent parameters on the

spetrum. Besides, it an be used for eduational purposes.

Turning to SNe Ia observations, we have shown that dark energy models with

the same value of �w

'

[


'

0

℄

1:4

are indistinguishable by urrent SNe Ia-data. This

in priniple well known degeneray has to our knowledge not been ast in suh a

simple relation before.

Leaving the observational side, we have alulated one-loop quantum orre-
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tions to quintessene potentials. In the late universe, most potentials are stable

with respet to salar quintessene utuations. The pure exponential and Nambu-

Goldstone type potentials are form invariant up to order V

00

, yet terms of the order

(V

00

)

2

prevent them from being renormalizable in the strit sense. For the modi�ed

exponential potential introdued by Albreht and Skordis, stability depends on the

spei� form of the polynomial fator V

p

in the potential. In some ases the loal

minimum in the potential an even be removed by the loop. An expliit oupling of

the quintessene �eld to fermions (or similarly to dark matter bosons) seems to be

severely restrited. The e�etive potential to one loop level would be ompletely

dominated by the ontribution from the fermion utuations. All models in the

literature share this fate. One way around this onlusion ould be to view these

potentials as already e�etive. They must, however, not only be e�etive in the

sense of an e�etive quantum �eld theory originating as a low-energy limit of an

underlying theory, but also inlude all utuations from this e�etive QFT. In this

ase, there is a strong onnetion between oupling and potential and it is rather

unlikely that the orret pair an be guessed. The bound on the oupling is so se-

vere that for onsisteny, we have alulated an e�etive oupling due to graviton

exhange. To lowest order in V (�), this oupling leads to a fermion ontribution

whih an be absorbed by rede�ning the pre-fator of the potential.

Surely, the one-loop alulation does not give the true e�etive potential. Sym-

metries or more fundamental theories that make the osmologial onstant small

as it is, ould fore loop ontributions to anel. In addition, the bak-reation of

the hanging e�etive potential on the utuations remains unlear in the one loop

alulation. A renormalization group treatment would therefore be of great value.

In the last years, osmology beame more and more quantitative. With the

high preision data of the map satellite, the osmi mirowave bakground will

soon restrit many osmologial parameters to breath taking auray. However,

the CMB spetrum is degenerate in several parameters. The same is true for SNe Ia

observations. In fat, pratially all observations are plagued by suh degeneraies.

It is only the ombination of several tests { eah of high preision { that an �x

the parameters of the osmologial model. If the standard �-CDM model is well

desribing the soon available data, high energy physiists may need to �nd a reason

for a non-vanishing and yet inredibly small vauum energy.

However, it may well be that �-CDM runs into diÆulties. Given the fat

that it seemingly involves so muh �ne-tuning, it it rather unlikely the orret

model. Taken together all the soon available preision data, this should manifest

itself in an observational mismath. It is well possible that a quintessene model

will be favoured by the experiments. But as quintessene is so versatile, it is

hard to imagine that only one quintessene senario will be mathing observations.

To single out the quintessene model, a deeper understanding of the fundamental

physis leading to the e�etive salar theory is needed. If one day this theory is

found, we shouldn't wonder if it involves a light salar �eld whih funny enough

triked sientists at the beginning of the 21st entury into believing that there is a

osmologial onstant.
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A

Christo�el Symbols

The Christo�el symbols

�

�

��

=

1

2

g

��

(g

��;�

+ g

��;�

� g

��;�

) (A.1)

for the Robertson Walker metri (2.2) are in the unperturbed ase

�

0

00

=

_a

a

(A.2)

�

0

ij

=

_a

a

Æ

ij

(A.3)

�

i

0j

=

_a

a

Æ

i

j

(A.4)

�

i

jl

= �

0

i0

= 0 (A.5)

Using the salar longitudinal gauge metri (3.26), the �rst order perturbations

beome

Æ�

0

00

=

_

	Q (A.6)

Æ�

0

i0

= �kQ

i

	 (A.7)

Æ�

0

ij

= 2

�

_a

a

[��	℄ +

_

�

�

QÆ

ij

(A.8)

Æ�

i

00

= �kQ

i

	 (A.9)

Æ�

i

j0

=

_

�QÆ

i

j

(A.10)

Æ�

i

jl

= k�

�

Q

i

Æ

jl

�Q

j

Æ

i

l

�Q

l

Æ

i

j

�

(A.11)
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B

Fitting formulas for the peak

shifts

We present here our �tting formulae for the overall phase shift �', followed by the

relative shifts of the �rst trough (Æ'

3=2

) and the seond (Æ'

2

) and third (Æ'

3

)

peaks.

1

In eah ase we also give an estimate of the auray of the formulae.

Overall phase shift �'

For the overall phase shift �' (i.e. the phase shift of the �rst peak) we �nd the

formula

�' = (1:466 � 0:466n)

�

a

1

r

a

2

?

+ 0:291

�




'

ls

�

; (B.1)

where a

1

and a

2

are given by

a

1

= 0:286 + 0:626

�




b

h

2

�

(B.2)

a

2

= 0:1786 � 6:308


b

h

2

+ 174:9

�




b

h

2

�

2

(B.3)

�1168

�




b

h

2

�

3

: (B.4)

It ontains the main dependene of any shift '

m

on

�




'

ls

. The 1-� error for �' is

� �' = 0:0031 (B.5)

Relative shift of �rst trough Æ'

3=2

The relative shift of the �rst trough is a very sensitive quantity spanning a wide

range of values. It an very well be used to restrit the allowed parameter spae

for osmologial models. We have

Æ'

3=2

= b

0

+ b

1

r

1=3

?

exp(b

2

r

?

) + 0:158 (n � 1); (B.6)

1

A small ++ pakage providing funtions for the shifts is available at http://www.thphys.uni-

heidelberg.de/~doran/peak.html
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with

b

0

= �0:086 � 0:079

�




'

ls

�

�

2:22 � 18:1

�




'

ls

�




b

h

2

�

�

140 + 403

�




'

ls

� �




b

h

2

�

2

(B.7)

b

1

= 0:39 � 0:98

�




'

ls

�

�

18:1� 29:2

�




'

ls

�




b

h

2

(B.8)

+440

�




b

h

2

�

2

(B.9)

b

2

= �0:57 � 3:8 exp

n

�2365:0

�




b

h

2

�

2

o

: (B.10)

For the one standard-deviation error we have

�Æ'

3=2

= 0:0039: (B.11)

Relative shift of seond peak Æ'

2

The relative shift of the seond peak is a very sensitive quantity. It is thus not

surprising to �nd a strong dependene of Æ'

2

on the parameters. We have

Æ'

2

= 

0

� 

1

r

?

� 

2

r

�

3

?

+ 0:05 (n � 1); (B.12)

with



0

= �0:1 +

�

0:213 � 0:123

�




'

ls

�

(B.13)

� exp

�

�

�

52� 63:6

�




'

ls

�




b

h

2

	

(B.14)



1

= 0:063 exp

n

�3500

�




b

h

2

�

2

o

+ 0:015 (B.15)



2

= 6� 10

�6

+ 0:137

�




b

h

2

� 0:07

�

2

(B.16)



3

= 0:8 + 2:3

�




'

ls

+

�

70� 126

�




'

ls

�




b

h

2

: (B.17)

The error of this approximation is

�Æ'

2

= 0:0044: (B.18)

Relative shift of third peak Æ'

3

For the third peak, we �nd

Æ'

3

= 10� d

1

r

d

2

?

+ 0:08 (n � 1); (B.19)

with

d

1

= 9:97 +

�

3:3� 3


�

ls

�




b

h

2

(B.20)

d

2

= 0:0016 � 0:0067


�

ls

+

�

0:196 � 0:22


�

ls

�




b

h

2

+

(2:25 + 2:77


�

ls

)� 10

�5




b

h

2

; (B.21)
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and error given by

�Æ'

3

= 0:0052: (B.22)

Overall shift of third peak '

3

For ompleteness, we give a �t for '

3

whih in priniple ould be obtained by

adding �' and Æ'

3

. However, a one-step-�t yields better errors here. Our formula

is

'

3

= e

1

(1 + e

3

r

?

) r

e

2

?

+ e

4

� 0:037 (n � 1); (B.23)

with

e

1

= 0:302 � 2:112


b

h

2

+ 0:15 exp

�

�384


b

h

2

	

(B.24)

e

2

= �0:04� 4:5


b

h

2

(B.25)

e

3

=

�

�0:118 + 44:7


b

h

2

�

�




'

ls

(B.26)

e

4

=

�

0:214 exp

�

�48


b

h

2

	

+ 0:106

�

�




'

ls

; (B.27)

and error

�'

3

= 0:0017: (B.28)
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C

Full set of Perturbation

Equations

In this appendix, we summarize the formulae needed to evolve the gauge-invariant

perturbation variables listed in Table C.1.

The Metri Potentials � and 	

In order to solve Einstein's equations, we �rst use Equation (3.55) in the form

�	 = �+M

�2

P

k

�2

a

2

�p

�

�; (C.1)

where �p

�

� � �p



�



+ �p

�

�

�

. With this, we get from Equations (3.72) and (3.45)

a

2

��

'

D

'

= a

2

��

'

D

'

g

� 3a

2

(��

'

+ �p

'

)� + 3a

2

(��

'

+ �p

'

)

_a

a

V

'

k

=

_

�'

h

_

X +M

�2

P

k

�2

a

2

�p

�

�

i

+ a

2

V

0

(')X

+a

2

(��

'

+ �p

'

)� + 3a

2

(��

'

+ �p

'

)

_a

a

V

'

k

; (C.2)

whih is of the form a

2

��

'

D

'

= A

'

� B

'

�. For the other speies, things are more

simple

a

2

��

i

D

i

= a

2

��

i

D

i

g

� 3��

i

a

2

(1 + w

i

)�; (C.3)

whih is also of the form a

2

��

i

D

i

= A

i

+B

i

�. Therefore, Equation (3.53) yields

� =

P

A

i

2M

2

P

k

2

+

P

B

i

(C.4)

where the summation runs over all speies, inluding quintessene and A

i

and B

i

an be read o� Equations (C.2) and (C.3) respetively. This �xes �, beause the

right hand side of Equation (C.4) ontains only known variables. The gravitational

potential 	 follows then immediately from Equation (C.1).
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Appendix C. Full set of Perturbation Equations

Symbol Meaning

M

l

Photon multipole, l = 0 : : : 7

E

l

Photon polarization multipole, l = 2 : : : 7

N

l

Neutrino multipole, l = 0 : : : 9

X Quintessene �eld utuation

_

X dX=d� (beause e.o.m. is seond order)

D

b

g

Density perturbation for baryons

D



g

Density perturbation for old dark matter

V

b

Veloity of baryons

V



Veloity of old dark matter

D



g

Density perturbation for photons (from M

0

)

D

�

g

Density perturbation for massless neutrinos (from N

0

)

V



Veloity of photons (from M

1

)

V

�

Veloity of neutrinos (from N

1

)

V

'

Quintessene veloity (from

_

X)

�



Photon shear (from M

2

)

�

�

Neutrino shear (from N

2

)

Table C.1: Perturbations propagated through onformal time (upper half). Quantities

that are not propagated themselves, but derived algebraially from quantities propagated

are grouped in the lower half.

Cold dark matter, Baryons and Photons

For old dark matter, we use Equations (5.13) and (5.14). As far as photons and

baryons are onerned, one distinguishes between the tight-oupling and the `no-

tight-oupling' regime:

(I) Tight oupling:

In tight oupling, one ombines the Equations (C.8) governing the veloity evo-

lution for baryons and photons (4.49) into one single Equation along the lines of

Setion 5.1

_

V = k	+

�

Rk

�

1

4

D



g

�

1

6

�



�

+ k

2

s

D

b

g

�

_a

a

V (1� 3

2

s

)

� k�(R+ 3

2

s

)

�

(R+ 1)

�1

; (C.5)
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where 

2

s

is the baryon sound speed,

1

V is the ommon veloity of baryons and

photons and R = 4�



=(3�

b

). The monopoles evolve aording to

_

D

b

g

= �kV

b

� 3

2

s

D

b

g

_a

a

; (C.6)

and

_

M

0

= �

k

3

V: (C.7)

All higher moments of M as well as the polarization terms E

l

are set to zero.

(II) No Tight oupling:

Without tight oupling, baryons obey

_

V

b

= k(	� 3

2

s

�) + k

2

s

D

b

g

+

_a

a

�

3

2

s

� 1

�

V

b

+ _�R(V



� V

b

); (C.8)

where 

s

is still the baryon sound speed. For the photon veloity, one uses Equation

(4.49). The densities D

g

for photons and baryons evolve as in the tight oupling

regime. Multipoles l > 1 for photons are alulated using Equations (4.49, 4.50).

The multipole expansion is trunated at some l < 10 for suÆient preision. In

order to avoid trunation e�ets as good as possible, one uses [27℄ the reursion

relation for spherial Bessel funtions

_

M

l

max

=

2l

max

+ 1

2l

max

� 1

kM

l

max

�1

�M

l

max

�

l

max

+ 1

�

+ _�

�

(C.9)

The polarization E is propagated using Equations (4.52,4.53), and the reursion

relation

_

E

l

max

=

2l

max

+ 1

2l

max

� 1

kE

l

max

�1

�E

l

max

�

l

max

+ 1

�

+ _�

�

; (C.10)

for trunation.

Massless Neutrinos

Massless neutrinos evolve aording to Equations (4.54-4.56). The hierarhy is

trunated using

_

N

l

max

=

2l

max

+ 1

2l

max

� 1

kN

l

max

�1

�N

l

max

l

max

+ 1

�

: (C.11)

Quintessene

The salar �eld utuation is propagated using a �rst order formulation of Equation

(3.73), i.e. dX=d� =

_

X and d(

_

X)=d� is then given by

�

X of (3.73).

1

This is pratially vanishing for most of the time, thus setting 

2

s

= 0 in this Equation is still

quite aurate.
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D

Conventions, Symbols and

Conversion Fators

? We take the metri with signature (�;+;+;+).

? Greek indies run from 0 : : : 3 and are raised and lowered by the metri g

��

.

? Latin indies run from 1 : : : 3 and are raised and lowered by Æ

ij

.

? The partial derivative of a tensor �

�

T is abbreviated by T

;�

.

? The o-variant derivative of a tensor r

�

T is abbreviated by T

;�

.

? Perturbations in a ertain gauge are denoted by lower ase letters: Æ; v; � : : :

? Gauge-invariant variables are denoted by apital letters: D

g

; �; X : : :

? Three-vetors are denoted by bold letters and their salar produt is given

by a � b = a

i

b

j

Æ

ij

.

? The Christo�el symbols are

�

�

��

=

1

2

g

��

(g

��;�

+ g

��;�

� g

��;�

) ;

while the Riemann tensor is

R

�

���

= �

�

�

�

��

� �

�

�

�

��

+ �

�

��

�

�

��

� �

�

��

�

�

��

:

117



Appendix D. Conventions, Symbols and Conversion Fators

One Mp is . . .

1:5637 � 10

38

Gev

�1

3:0856 � 10

22

m

1:0292 � 10

14

s

3:264 � 10

6

years

One Mp

�1

is . . .

6:3952 � 10

�39

Gev

3:2408 � 10

�23

m

�1

9:7163 � 10

�15

s

�1

In terms of Mp is . . .

M

P

= 3:753 � 10

�56

Mp

�1

H = 3:34 � 10

�6

h Mp

�1

One Mp

�4

is . . .

1:673 � 10

�153

Gev

Table D.1: Conversion of Mp to various units.
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Symbol Meaning

t time

� onformal time

a sale fator, normalized a(today) = 1

z redshift z = (1� a)=a

_y onformal time derivative

d

d�

y

V

0

derivative with respet to the �eld '

y

eq

Quantity y at matter radiation equality

y

ls

Quantity y at last sattering

y

0

Quantity y today

M

P

Redued Plank mass M

P

= (8�G)

�1=2

.

H Hubble parameter H = (da=dt)=a

h de�ned via H = 100h km s

�1

Mp

�1

��

y

Bakground energy density of y

�p

y

Bakground pressure of y

w

y

Equation of state w = �p=�� of speies y



s

Sound speed (of some speies) see (3.42)




y

Fration of energy ��

y

=�

total

.




y

0




y

(today).

�' Bakground quintessene �eld

' Quintessene �eld

'

m

Shift of peak m

D

y

g

Density perturbation of speies y

V

y

Veloity perturbation of speies y.

�

y

Shear of speies y.

X Gauge invariant quintessene �eld utuation

M

l

Photon multipole

E

l

Photon polarization multipole

N

l

Neutrino multipole

Q Salar perturbation basis funtion

Q

i

Salar basis funtion for vetor �elds

Q

ij

Salar basis funtion for tensor �elds

ontinued on next page . . .
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ontinued . . .

n

e

Number density of free eletrons

�

T

Thomson sattering ross-setion

_� Di�erential optial depth _� = an

e

�

T

.

n spetral index of initial utuations

l

A

Aousti sale

w

0

Average equation of state (2.44)

�




'

ls

Average 


'

until last sattering

�

8

RMS old dark matter utuations on sales of 8h

�1

Mp.

Table D.2: Frequently used symbols, ontinued from page before.

hello
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