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Zusammenfassung

Die Erzeugung von schmalbandigen, vollstindig kohdrenten Rontgenlasern basierend
auf stimulierter Emission in hochgeladenen Ionen, wird untersucht. Das hier vorgeschla-
gene Lasingschema fiihrt zu Rontgenquellen mit hoher rdumlicher und zeitlicher Ko-
hérenz, die neue Anwendungen in der Réntgenquantenoptik ermoglichen. Hochgeladene
Tonen koénnen in Plasmen erzeugt werden, die durch linienfokussierte intensive optische
Laser erzeugt werden. Die Besetzungsinversion zwischen den Zustidnden 152l (I = s, p)
und 1s? in He-dhnlichen Ionen wird durch Innerschalen-Photoionisation von Li-ihnlichen
Tonen mit intensiven Freie-Elektronen-Rontgenlaser-Pulsen erreicht. Wir zeigen, dass
das Lasing in Elementen wie Ne, Ar, Kr und Xe durch E1-, M1- oder M2-Uberginge er-
folgen kann. Die entsprechenden Maxwell-Bloch Gleichungen werden unter Einbeziehung
von Multipol-Wechselwirkungen zwischen den Rontgenfeldern und den Ionen entwickelt.
Numerische Simulationen zeigen, dass die auf diese Weise erzeugten Réntgenlaser durch
hohe Intensitdten und Femtosekunden-Pulsdauern charakterisiert sind. Die relativen
Bandbreiten von Aw/w = 107" — 1077 sind um bis zu 3 Gréfenordnungen kleiner als bei
Pulsen von modernen Réntgenquellen bei Wellenlingen bis hinunter zum Sub-Angstrom-
Bereich. Analytische Losungen der Maxwell-Bloch-Gleichungen in der “exponential-
gain”-Néherung ergeben Ergebnisse, die mit numerischen Simulationen fiir die Puls-
und Spektrumprofile konsistent sind.

Abstract

The generation of narrow-band fully coherent x-ray lasers based on stimulated emission
in highly charged ions is investigated. The lasing scheme we put forward leads to x-ray
sources with high spatial and temporal coherence, enabling new applications in x-ray
quantum optics. Highly charged ions can be generated in plasmas created by line-
focused intense optical lasers. Population inversion between the 1s2l (I = s,p) and
1s? states in He-like ions is obtained by inner-shell photoionization of Li-like ions with
intense x-ray free-electron laser pulses. We show that lasing can happen in elements such
as Ne, Ar, Kr and Xe through F1, M1 or M2 transitions. The corresponding Maxwell—
Bloch equations are developed with the inclusion of multipole interactions between the
x-ray fields and the ions. Numerical simulations show that the x-ray lasers generated
this way are characterized by high intensities and with femtosecond pulse durations.
The relative bandwidths of Aw/w = 107> — 10~" achieved are by up to 3 orders of
magnitude narrower than in pulses from state-of-art x-ray sources at wavelengths down
to the sub-angstrom regime. Analytical solutions of the Maxwell-Bloch equations in
the exponential-gain approximation are found to give results consistent with numerical
simulations for the pulse and spectral profiles.






Within the framework of this thesis, the following article was submitted to a refereed
journal:

In Chapter 5:

o Narrow-band hard-X-ray lasing
Chunhai Lyu (& % %), Stefano M. Cavaletto, Christoph H. Keitel and Zoltan
Harman. arXiv:1801.02503.

Articles in preparation:

In Chapter 3:

o Maxwell-Bloch theory for multipole radiation
Chunhai Lyu ( & %), Stefano M. Cavaletto, Christoph H. Keitel and Zoltan Har-
man.

In Chapter 6:

e Analytical solution to the Maxwell-Bloch equations describing transient lasing
Chunhai Lyu (& #L#), Stefano M. Cavaletto, Christoph H. Keitel and Zoltdn Har-
man.


https://arxiv.org/abs/1801.02503




Contents

1 Introduction 1
2 Maxwell-Bloch equations 9
2.1 Wave equation under slowly varying envelope approximation . . . .. .. 9
2.1.1 Maxwell’s equations . . . . . . . .. ..o 9

2.1.2 Light propation in time domain . . . . . . . ... ... ... .... 11

2.1.3 Light propagation in the frequency domain . . . . ... ... ... 12

2.1.4 Slowly varying envelope approximation . . .. ... .. ... ... 13

2.1.5 Retarded time . . . . . . . .. ... 16

2.2 Hamiltonian for light-matter interaction . . . . .. ... ... ... .... 17
2.3 Density matrix for two-level atoms . . . . . . . ... ... ... ... ... 22
2.3.1 Hamiltonian for two-level systems . . . ... ... ... ...... 22

2.3.2 Polarization . . . . . . . . . ... e 27

2.4 Maxwell-Bloch equations . . . . ... ... ... oL 28
2.4.1 Steady-state solutions and rate equations . . . .. ... ... ... 30

25 Summary . ... 34

3 Multipole transitions 35
3.1 The Diracequation . . . . . . . . . . .. ... 35
3.2 Multipole transition amplitude . . . . . . . .. ... 0oL 38
3.3 The Hamiltonian of multipole transitions . . . . . .. ... ... ... .. 40
3.4 Multipole wave propagation . . . . . . . .. ... oo 41
3.5 SUMMATY . . . o e e 43

4 Spectral broadening 45
4.1 Doppler broadening . . . . . .. ..o 45
4.2 Electron-impact broadening . . . . . . . .. ... oL 46
4.2.1 Classical trajectory . . . . . . . . .. . oL o 48

4.2.2 Thermaleffects . . . . . . .. .. ... .. ..o 49

4.3 lon-ion Stark broadening . . . . . . . .. ... Lo 52
4.3.1 Starkeffect . . .. ... ... 52

4.3.2 Quasi-static-field broadening by ions . . . . . ... ... ... ... 54

4.4 SUmMmMAary . . . ... e 56

5 Narrow-band hard-X-ray lasing with highly charged ions 59
5.1 Lasing scheme based on HCIs . . . . . . . .. .. ... ... .. ...... 59
5.2 Theoretical description . . . . . . .. ... Lo 61
5.3 Numerical simulations . . . . . .. .. .. ... ... ... ... ... ... 64
5.3.1 Initial conditions . . . . . . ... .. o 64

5.3.2 Averaged results . . . . . .. ... L 68

5.3.3 Individualresults . . . . . . .. ... ... 69

5.4 Other individual simulations . . . . . . . . ... ... ... ... ... ... 71
5.4.1 XFEL parameters . . . . . . . . . . . . ... ... ... 71



i Contents

5.5 Line broadening in plasma . . . . . . ... ... . 0oL
5.6 Plasma inhomogeneities . . . . . . . .. ... 0oL
B.7 Summary . ... .. e e

6 Analytical solutions to the Maxwell-Bloch equations

6.1 Formal solutions to the Maxwell-Bloch equations . . . . . . .. ... ...

6.2 Small-signal assumption . . . .. .. ... Lo oo

6.3 Exponential-amplification assumption . . . . . .. .. ..o

6.4 Instantaneous pumping . . . . . . . . . ... o
6.4.1 Spontaneous-emission regime . . . . . ... ...
6.4.2 Long-timeregime. . . . . . .. ... ... ... . ...
6.4.3 Stimulated-emission regime: approximate analytical results

6.5 Transient pumping . . . . . . . ... Lo

6.6 Duration of population inversion . . . . .. ... ... ... ... ... ..
6.6.1 Slow ground-state depletion . . . . . . .. .. ... ...
6.6.2 Fast ground-state depletion . . . . . . .. ... ... ...

6.7 Summary . . ... .. e e

7 Seeding in transient X-ray laser
7.1 Light propagation equations . . . . . . . . . . . ... .. ... ... ...
7.2 Polarization in a transient medium . . . . . . . ... ... L.
7.3 Monochromatic seeding . . . . . . . . . ...
7.3.1 Medium in steady state . . . . ... ...
7.3.2 Transient population inversion . . . .. ... ... ... ... ...
T4 SUMMATY . . . . o o e e e e

8 Summary and outlook
Appendices

A Perturbation theory
A.1 Bare Hamiltonian and Hilbert space . . . . .. ... ... ... ......
A.2 Time-independent perturbation theory . . . . . .. . ... ... ... ...
A.3 Time-dependent perturbation theory . . . . . ... ... ... ... ....

B More on density matrix theory
B.1 Atomic calculation of Rabi frequencies . . . . . . . . ... ... ... ...

B.2 Atomic calculation of electric-dipole momenta . . . . . . .. .. ... ...
B.3 Lindblad Hamiltonian . . . . . . . ... ... .. ... ... ... .....

C Schrodinger picture, interaction picture and rotating-phase picture
C.1 Schrédinger picture . . . . . . . ...
C.2 Imteraction picture . . . . . . . . . . . .
C.3 Rotating-phase picture . . . . . . . . . ... L

D More on Maxwell-Bloch equations
D.1 The light field as a complex function . . . . . .. ... ... ... .....
D.2 Thexipicture. . . . . . . . . . . .
D.3 Polarization in the xi picture . . . . . . . . ... L L.
D.4 Maxwell-Bloch equation in the xi picture. . . . . . .. ... ... ... ..
D.5 Maxwell-Bloch equation with real functions . . . . .. ... ... ... ..

105

109

111
111
113
115

119
119
121
123

125
125
126
128



Contents iii
E More on multipole transitions 141
E.1 Multipole expansion of the electromagnetic field . . . . . . . ... ... .. 141
E.2 Multipole transition operators . . . . . . .. .. .. Lo 143
E.2.1 Gauge invariance . . . . . . ... L oo 144

E.2.2 Multipole transition operators. . . . . . .. .. .. .. .. 146

E.3 Nonrelativistic imit . . . . . . . . . . . . e 151
E.3.1 Nonrelativistic results: magnetic multipole transition . . . . . . . . 151

E.3.2 Nonrelativistic results: electric multipole transition . . . . . . . .. 155

F Collisions between two charged particles 157
F.1 Elastic two-body collisions . . . . . . . . . . . .. ... .. ... ... ... 157
F.1.1 Change in relative velocity . . . . .. ... .. ... ... ..... 158

F.1.2 Change in momentum . . . . . . . . . .. ... ... ... ... .. 159

F.1.3 Changeinenergy . . . . . . . . . . . . . . .. e 159

F.2 Differential cross section . . . . . . . . . . . e e e 160
F.3 Total cross section for number of particles being scattered . . . . . . . .. 161
F.4 Total cross section for momentum transfer . . . . . . . . . ... ... ... 162
F.4.1 Momentum transfer: single velocity . . . . .. .. ... ... ... 162

F.4.2 Momentum transfer: thermal effects . . . . . . . .. .. ... ... 165

F.5 Total cross section for energy transfer . . . .. .. ... ... ... ... 169
F.6 Phase shift: collisional broadening and shift . . . . . . ... ... ... .. 172

G Light propagation in resonant media 175
G.1 Light propagation equation . . . . . . . .. .. ... ... .. ..., 175
G.1.1 Light propagation in time domain . . ... ... ... ... .... 175

G.1.2 Light propagation in frequency domain . . . . . . ... ... ... 176

G.2 Linear polarization . . . . . . . . . . . ... 177
G.2.1 Instantaneous reSponse. . . . . . . . .. ou e e e 178

G.2.2 Finite-time response . . . . . . . . . ... e 179

G.3 Nonlinear polarization . . . . . . . . . . . . .. .. ... ... ... 183
G.3.1 Perturbative treatment . . . . . ... .. ... 183

G.3.2 Non-perturbative treatment . . . . . . ... ... ... ....... 192

G.4 Two-level system . . . . . . . . . . . . e 193
G.4.1 SVEA . . . 194

G.4.2 Susceptibility . . . . . ... 196

G.5 Summary . . ... e 196
Bibliography 197



Chapter 1

Introduction

History of X-ray lasers

In 1953, Charles Townes and his colleagues at Columbia University created the first
maser (microwave amplification by stimulated emission of radiation), where microwave
radiation is amplified through stimulated emission from excited ammonia molecules in
a resonant cavity [1]. The generated coherent electromagnetic wave, with a wavelength
of A =1.25 cm (24 GHz), triggered wide-ranging applications in microwave communica-
tion. Thereafter, a theoretical proposal to extend this technology to the optical regime
was raised, in 1958, by Townes and his colleagues in Bell Laboratories [2]. This new
concept known as laser (light amplification by stimulated emission of radiation), firstly
demonstrated by Theodore Maiman with a ruby crystal medium (A = 694.3 nm) in 1960
at Hughes Research Laboratories [3], was widely replicated in varieties of gain media in
solid, gas and liquid states in the 1960s [4-6]. Compared to candles and light bulbs which
emit random uncorrelated photons in all directions, a laser generates coherent photons
propagating in a well-defined single direction. As a result, the intensity of a laser is more
than 6 orders of magnitude higher than the light field generated by conventional light
sources with the same emission power. The availability of intense coherent radiation at
optical frequencies had a major impact, leading to revolutionary applications in scientific
and industrial research, as well as in medicine.

Early X-ray sources were mostly based on X-ray tubes. Similarly to candles and light
bulbs, these X-ray sources emit incoherent broadband radiation into a wide range of
directions. Therefore, when the maser and laser were invented, great efforts were devoted
to extending the stimulated-emission scheme to shorter wavelengths such as the soft and
hard X-ray regime (A < 0.1 nm). The laser was demonstrated only 8 years after the
creation of the maser, achieving a reduction of the wavelength by 5 orders of magnitude.
However, a further reduction of the working wavelength to XUV and X-ray frequencies
was very challenging [7-12]. Difficulties in atom-based short-wavelength lasers mainly
come from two aspects: firstly, the large transition energies for short-wavelength photons
demand a huge amount of pump power which could only be achieved when intense laser
pulses became available; secondly, the large penetration lengths of short-wavelength
photons render it hard to fabricate high-reflectivity normal-incident cavity mirrors, as
required for a laser to reach saturation intensity. This issue was partly solved after
1985, in a different way, by using plasmas as the gain medium to generate XUV and
soft-X-ray lasers (soft-XRLs) at wavelengths around 20 nm [13-18]. Because the plasma
produces a density of population inversion orders of magnitude higher than in solid state
lasers, the corresponding soft-XRLs can reach the saturation intensity with single-pass
or double-pass amplification [19].

Plasma-based soft-XRLs are mainly based on 3p — 3s or 4d — 4p transition in highly
charged Ne- or Ni-like ions for elements varying from 14Si to 79Au (the atomic numbers
for Ne and Ni are 10 and 28, respectively). The population inversion is achieved through



1. Introduction

Sources Wavelength Pulse duration ~ Coherences  Spectral width Repetition rate Brightness
dw/w (Hz) ph/s/mm?/mrad?/0.1%bw
X-ray tubes . fixed by ) continuous spatial: no broadband continuous 106
discharge voltage temporal: no
Synchrotrons down to 0.017 A . spatial: yes . . 12 24
(storage rings) (up to 750 keV) 100 ps temporal: 1o broadband continuous 10 10
. down to 3.5 nm spatial: no 4 . 26 o7
Plasma-XRLs (up t0 0.34 keV) down to 450 fs temporal: yes 10 1-10 Hz 10 10
HHG down to 0.33 nm attosecond spatial: yes 10-3 1 KH; 1022
(up to 3.8 keV) S temporal: yes “
SASE XFELs | downto 004 nm oy o0 g spatial: yes 55 101 60 Hz - 1 MHy 108 ~ 103
(‘up to 30 keV) temporal: no
Seeded XFELs | 00™0 to (13 mm 25 fs spatial: yes 104 195 10 120 He 1083 ~ 10%
(‘up to 9 keV) temporal: yes
] | 1.46 nm (0.85 keV) ] spatial: yes 4 29
Inner-shell XRLs 0.15 nm (8 keV) <20 fs temporal: yes ~ 10 120 Hz 10
. . down to 0.04 nm o . spatial: ye; _5 7 31 34
This thesis (‘up to 30 keV) 10 fs — 1 ps temporal: yes 10 10 120 Hz 10 10

Table 1.1: Ranges of key parameters of different X-ray sources.

electron collisional excitation in a hot dense plasma produced either by high-peak-power
lasers [9, 11, 20], or by fast high-voltage discharge in a capillary [8, 21]. Another mecha-
nism based on recombination-assisted population inversion between the n = 3 — 2 and
n = 2 — 1 transitions, in H-like Li created by optical-field-induced ionization, was also
demonstrated and resulted in a laser at a wavelength of A = 13.5 nm [22, 23]. Until now,
the shortest wavelength reported with these methods is A = 3.56 nm based on Ni-like
Au [20]. Though the recombination scheme based on the n = 2 — 1 transition can scale
the wavelength down to A < 0.1 nm for elements with high atomic numbers, population
inversion can hardly be obtained for elements heavier than carbon [15]. Nonetheless,
these soft X-ray sources have found versatile applications in X-ray microscopy, hologra-
phy and plasma diagnostics [8, 9, 11].

The first hard-XRL was initially proposed through direct pumping of the 15~ — 2p~1
transition via photoionization of a K-shell electron in 1967 by Duguay and Rentzepis [24].
The same photoionization pumping scheme was subsequently reintroduced by theo-
rists based on different gain media and pump sources [25-29]. Limited by the high
pump power required, however, this inner-shell XRL scheme was demonstrated in Ne
(1.46 nm) [30] and Cu (0.15 nm) [31] only in recent years after high-flux X-ray free-
electron lasers (XFELs) became available.

Free-electron lasers (FELS) belong to a separate class of coherent electromagnetic ra-
diation sources compared to the bound-electron-based atomic lasers discussed above [32—
35]. Initially introduced and demonstrated by John Madey at Stanford in the 1970s [36,
37], the mechanism is based on the stimulated emission of bremsstrahlung when free
electrons pass through a periodic magnetic field. In the first demonstration of FELs in
1977, a 43-MeV electron beam from a superconducting accelerator was injected into a 5-
m long wiggler, generating radiation at a wavelength A = 3.4 um [37]. Early research on
FELs is based on theories in the small-gain regime where the radiation field is assumed to
be constant during the whole interaction with electrons. When a self-consistent theory
was formulated, a high-gain regime with exponential amplification of the radiation field
was found by Saldin and Kondratenko in 1980 [38, 39]. Thereafter, the self-amplified
spontaneous emission (SASE) mechanism, as well as the extension of the scheme for the
generation of short-wavelength FELs using relativistic electron beams, were extensively
studied in the 1980s [38, 40-42]. These theoretical considerations were followed by the
first realization of the SASE-FEL concept in 1997, which demonstrated a gain of 10°
at wavelengths around 12 pm [43] in the infrared regime. Several years later in 2000,
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a b
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Figure 1.1: Typical pulse (a) and spectral (b) profiles for a single-shot SASE XFEL pulses.
The behaviors of these profiles underly significant changes from shot to shot.

the first saturated SASE FEL was achieved at Argonne National Laboratory with vis-
ible (530 nm) and ultraviolet (UV) (390 nm) wavelengths [44]. Subsequently, similar
saturation regimes were produced for FELs in the vacuum-UV (VUV) regime (98 nm)
at DESY in 2001 [45, 46]. After this significant progress, the FELs can deliver high-
brightness radiation in the far-infrared and VUV-frequency domain that can hardly be
achieved with conventional atomic lasers.

The era of XFEL science started in 2005 when FLASH, the first soft X-ray FEL in the
world, became accessible to the user community [47, 48]. This was then embraced by a
worldwide construction of new XFEL facilities over the past decade [49]. This includes
the first lasing of a hard X-ray FEL at LCLS in USA (2009, [50]), followed by SACLA in
Japan (2011, [51]), the Fermi-FEL in Italy (2012, [52]), the PAL-XFEL in South Korea
(2016, [53]), the SwissFEL in Switzerland (2016, [54]), the Shanghai-XFEL in China
(2019, [55]) as well as the European-XFEL funded by the European Union (2016, [56]).
By virtue of their spatial coherence, short pulse duration (femtosecod range), high peak
brightness and broad wavelength tunability (0.04-52 nm), XFELs have found extensive
applications in physics, chemistry and structural biology [57-62]. However, as shown in
Fig. 1.1, the temporal coherence of the XFEL sources is rather poor [63-65]. Therefore,
they are still limited in applications in X-ray quantum optics.

Besides these two types of X-ray lasers, there is another type of coherent X-ray source
which is based on high-order harmonic generation (HHG) via free-bound transitions [66—
69]. Though these sources enable the generation of fully coherent X-ray radiation at
wavelengths as short as 0.33 nm [70-72], a high brightness only retains for wavelengths
longer than 10 nm [73]. Nevertheless, this coherent radiation source is the only one that
provides attosecond pulses which enable research on the ultrafast dynamics of electrons
in atoms.

In this thesis, we put forward a scheme that combines the advantages of both plasma-
based XRLs (good temporal coherence) and the high-brightness XFELs, to produce
fully coherent high-intensity hard-X-ray lasers at wavelengths down to the sub-angstréom
regime [74]. Such XRLs may enable the study of X-ray quantum optics [75-78] and
metrology [79], the investigation of nonlinear interactions between X rays and matter [80,
81], or high-precision spectroscopic studies in laboratory astrophysics [82].
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Coherence properties of X-ray sources

Ever since its discovery in 1895 by Wilhelm Roéntgen at the University of Wiirzburg,
X-ray radiation has become a major tool triggering many ground-breaking discoveries in
science. This includes the establishment of X-ray crystallography in 1912 by Laue and
Braggs [83, 84] with the direct confirmation of the long-disputed periodic arrangement
of atoms and molecules in crystals. When similar diffraction techniques were applied
to non-crystalline materials, it resulted in the discovery of the double-helix structure of
DNA by James Watson and Francis Crick in 1953 [85]. Furthermore, the first X-ray
radiograms (1895) as well as the X-ray computed tomography (CT) developed in the
1970s [86] have found invaluable applications in medical imaging and industrial non-
destructive testing [34].

These applications are successful because they rely on X-ray absorption or far-field
diffraction that only require information on the intensity of the radiation. The next step
of X-ray science would be to explore the applications based on the phase information of
the X-ray photons [87]. To name a few, this includes X-ray holography [88-91], coherent
diffraction imaging [73, 92] and quantum control in X-ray quantum optics [75, 79, 93]. For
such techniques to work, it is essential to achieve a large number of coherent photons.
Table 1.1 shows the ranges of the key parameters for different X-ray sources. The
traditional X-ray tube source is characterized by poor coherence properties and small
brightness. Though one can improve the degree of the temporal and the spatial coherence
through monochromators and apertures, respectively [34], this leads to the reduction of
the number of photons. Thus, sources with high brightness are demanded. As an
example, when Hartmut Michel (Nobel laureate in chemistry in 1988) obtained the first
diffraction pattern of single crystals of protein in 1981, the exposure times were typically
several hours with a laboratory-based source (X-ray tubes). However, with synchrotrons,
this can be achieved within minutes [94]. With XFEL pulses, their high brightness (10
orders of magnitude higher compared to synchrotron sources) even enables single-shot
coherent imaging [95, 96]. Moreover, nonlinear interaction between X-rays and matter
are also accessible [62, 80, 81, 97].

However, most of the XFEL facilities in operation or under construction generate X-
ray pulses based on the SASE process. Despite their high peak brightness, these pulse
are characterized by random spikes in both time and spectral domains. This results in
a relative bandwidth of Aw/w ~ 1073, In order to improve the temporal coherence and
frequency stability, different seeding schemes have been implemented successfully [52, 98—
101]. In the hard-X-ray regime, the self-seeding mechanism has reduced the relative
bandwidth to the level of 5 x 107> at photon energies of 8-9 keV [99]. However, at
higher energies around 30 keV, the predicted relative bandwidth for seeded XFELs is
still around 4 x 10~* [35]. Further reduction of the bandwidth with low-gain XFEL
oscillators (XFELOs) has also been proposed [102]. By recirculating the X-ray pulses
through an undulator in a cavity, the output X-rays have an estimated relative bandwidth
as small as 10~7. To date, however, the XFELO scheme remains untested.

Motivation and structure of the thesis

The aim of this thesis is to explore an alternative scheme for generating fully coherent
high-intensity X-ray pulses other than the inner-shell XRLs listed in Table 1.1. The
inner-shell XRLs, as shown in Fig. 1.2a, are achieved by direct pumping of the K,
transitions through photoionization of K-shell electrons. However, due to the large
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number of electrons in the outer shells, the upper-lasing state is dominated by Auger
processes which limits the density and lifetime of population inversion. The XFEL-
pumped plasma-XRLs put forward in Chapter 5 of this thesis exclude the fast Auger
decay processes from the upper lasing levels, resulting in an X-ray laser with relative
bandwidths of Aw/w = 107® ~ 1077, which are orders-of-magnitude smaller than in
SASE XFELs, seeded XFELs, and inner-shell X-ray lasers with neutral atoms. This can
be achieved without significantly decreasing the brightness (see Table 1.1).

The main discussion of our scheme is presented in Chapter 5. The gain medium is
a laser-produced plasma consisting of Li-like ions in the 1522l state (Fig. 1.2b). K-
shell photoionizations by the XFEL pulse generate population inversions in He-like ions
between the 1s2] and 1s? states. As there are only radiative processes, one can choose
a long-lived state as the upper lasing state, resulting in a much narrower bandwidth of
the output laser. In particular, when choosing heavier elements such as Kr and Xe, even
magnetic quadrupole transitions become available for lasing. This provides a further
reduction of the bandwidth in the output X-ray pulses.

In Chapters 2-4, we introduce the theoretical description of transient X-ray lasing
based on stimulated emission in a laser-produced plasma, including also all relevant
broadening effects. This is based on Maxwell-Bloch theory [103, 104], a self-consistent
theory that describes the interaction between light and atomic matter. When light
propagates in a medium, it populates excited states and generates coherences between
different bound states in atoms or molecules. On the other hand, the response of the
atoms or molecules induces a polarization field that, in turn, modifies the amplitude and
phase of the light fields.

The propagation equations of the light field are derived in Sec. 2.1 from Maxwell’s
equations under the slowly varying envelope approximation, where the variations of the
amplitude in time and space are assumed to be much slower than the scale of a single
period and wavelength of the light. This condition is generally met in our consideration
of narrow-band X-ray lasing. The Hamiltonian describing the dynamics of the atoms is
presented in the electric-dipole approximation in Sec. 2.2. This leads to the formulation
of density-matrix theory for two-level systems in Sec. 2.3, where von Neumann equations
are obtained in different pictures, namely, the Schrodinger picture, the interaction picture

a S

/ XRL
ITﬂT
CECECECE e \

Inner-shell XRL Auger electrons

II.:I] é
. ‘
CHCE W,

XRL in this thesis

XRL

Figure 1.2: Inner-shell X-ray lasing with neutral atoms (a) and with HCls (b). With a noisy
XFEL pulse as an input, one obtains a coherent X-ray laser as output.
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and the newly-defined rotating-phase picture. Connections between the polarization field
and atomic coherence are discussed in detail in Sec. 2.3.2, based on which the Maxwell-
Bloch equations are obtained in Sec. 2.4. Steady-state solutions to the Maxwell-Bloch
equations are presented, by deriving the corresponding rate equations for describing
light propagation in the medium. The rate-equation approach has been widely used
in discussions of lasing processes, but our calculations show that this approach is only
accurate for steady-state atomic systems, or, in other words, for the case where changes
in the populations of atomic states are negligible during the presence of external fields.
Otherwise, a more elaborate approach based on Maxwell-Bloch equations has to be used.

In Chapter 3, we extend the theory describing the electric-dipole transitions to mul-
tipole transitions. Our atomic calculation with the GRASP atomic structure code [105]
shows that, for He-like ions, there are four main K« transitions, including two electric-
dipole transitions, one magnetic-dipole transition and one magnetic-quadrupole tran-
sition. As all of them may have the chance to contribute to lasing, it is necessary to
generalize the electric-dipole Hamiltonian to the case of a multipole Hamiltonian. Start-
ing from the Dirac equation in the presence of a plane-wave electromagnetic field, we
show that the light-matter interaction can be generally characterized by an effective
dipole moment. General relationships between the effective dipole momenta and Ein-
stein A coefficients are derived. In Sec. 3.2, based on the multipole expansion of the
electromagnetic plane wave, the effective dipole momenta are expanded in series of mul-
tipole momenta. The corresponding relations between multipole momenta and Einstein
A coeflicients are also presented, which gives us the opportunity to obtain the value of
multipole momenta from atomic codes, like GRASP for example. The Maxwell-Bloch
equations are also generalized to include multipole radiations in Sec. 3.4.

In Chapter 4, different spectral broadening effects are considered. In order to produce
highly charged ions, a hot dense plasma is necessary. This plasma is generally charac-
terized by fast collisions (see also Appendix F) that may influence the bandwidth of the
X-ray laser. Therefore, Doppler broadening is discussed in Sec. 4.1, and a formula for
the electron impact broadening in the presence of a Coulomb scattering potential is de-
rived in Sec. 4.2. The evaluation of this formula requires detailed calculations of atomic
structures. However, we show how this formula can be approximately calculated with
Finstein A coefficients and oscillator strengths from an atomic code. In the last section
of this Chapter, the ionic Stark broadening of transitions in He-like ions is discussed.

The theoretical preparations in Chapters 2—4 provide the methods and formalism
required to study X-ray lasing in realistic systems. Thus, in Chapter 5, numerical
simulations of our lasing processes in He-like ions for noble-gas elements like Ne, Ar,
Kr and Xe are performed. FLYCHK [106] simulations show that, under given densities
and temperatures, significant fractions of Li- and He-like ions are obtained in laser-
produced plasmas. The Chapter discusses the laser conditions needed to obtain the
plasmas dominated by Li- and He-like ions. Atomic structure calculations for Einstein
A coefficients, oscillator strengths and photoionization rates are also presented to obtain
the associated parameters for the Maxwell-Bloch equations for realistic systems. As
an exact solution of the Maxwell-Bloch equations is out of reach, we developed Fortran
codes that can solve these equations numerically. This helped us to design the optimized
temperatures, densities and plasma lengths needed to achieve narrow-band high-intensity
X-ray lasers. The results of these simulations are discussed in Sec. 5.3-5.6. In particular,
we use realistic noisy SASE-XFEL pulses to integrate the equations of motion, and show
that fully coherent XRLs can be obtained with relative bandwidths of 107° ~ 1077,

Stimulated by the numerical results above, in Chapter 6, analytical solutions to the
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Maxwell-Bloch equations are presented by assuming that the laser field is underlying an
exponential amplification in the gain medium. This intuitive hypothesis has also been
confirmed by comparison with our numerical simulations. As a result, by introducing
one parameter describing the effective gain coefficient, a relation between the laser field
and the atomic coherence is obtained, which allows one to decouple the light propa-
gation equations (Maxwell’s equations) from the Bloch equations, and renders both of
them analytically solvable. This analytical model allows us to predict a Gaussian X-ray
laser profile, in good agreement with the numerical simulations presented in Chapter 5.
Furthermore, this procedure can be generalized to different transient laser systems.

While analytical solutions of the Maxwell-Bloch equations under the assumption of
exponential amplification were presented in Chapter 6 in the time domain, in Chapter 7,
we study the amplification of a seeding pulse while propagating through the medium in
the frequency space. In particular, we analyze two different conditions for the medium.
In a steady state (or in perturbed systems), stimulated emission indicates that the
photon emitted by the atom should have the same frequency, direction and polarization
as the input photons. However, in a transient-gain medium, as discussed in this thesis,
the populations of the atomic states feature fast modifications influencing the photons
emitted by stimulation and, therefore, the photons occupy a broad frequency range.

Certain detailed calculations can be found in the appendices at the end of the thesis.
Unless specifically stated, the international system of units (SI) is used.
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Chapter 2

Maxwell-Bloch equations

In this Chapter, we introduce the semiclassical theories that are extensively used in
Chapters 5-7 to describe light-matter interactions. For lasing, the atoms in the medium
have to be treated in a quantum mechanical way, while the electromagnetic field may
be described classically [107]. The propagation equations of the light field are derived
in Sec. 2.1 from Maxwell’s equations under the slowly varying envelope approximation,
where the variations of the amplitude in time and space are assumed to be much slower
than the scale of a single period and wavelength of the light. This condition is generally
met in our consideration of narrow-band X-ray lasing. The Hamiltonian describing the
dynamics of the atoms is presented in the electric-dipole approximation in Sec. 2.2. This
leads to the formulation of density-matrix theory for two-level systems in Sec. 2.3, where
von Neumann equations are obtained in different pictures, namely, the Schréodinger pic-
ture, the interaction picture and the newly-defined rotating-phase picture. Connections
between the polarization field and atomic coherence are discussed in detail in Sec. 2.3.2,
based on which the Maxwell-Bloch equations are obtained in Sec. 2.4. Steady-state solu-
tions to the Maxwell-Bloch equations are presented, by deriving the corresponding rate
equations for describing light propagation in the medium. The rate-equation approach
has been widely used in discussions of lasing processes, but our calculations show that
this approach is only accurate for steady-state atomic systems, or, in other words, for
the case where changes in the populations of atomic states are negligible during the pres-
ence of external fields. Otherwise, a more elaborate approach based on Maxwell-Bloch
equations has to be used.

2.1 Wave equation under slowly varying envelope
approximation

In this Section, we will first review the Maxwell’s equations in matter, then derive the
propagation of the electromagnetic field both in time domain and in frequency domain.

2.1.1 Maxwell’s equations

Microscopically, the Maxwell’s equations are given as [108]

V-E ="', (2.1)
€0
V.B = 0 (2.2)
0B
VxE = -2, (2.3)
E
VxB = uo <J+€oaat>, (24)
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where E and B is the electric and magnetic field, respectively. p is the microscopic total
charge density and J is the microscopic total current, including the charges and currents
at the atomic level. Macroscopically, the total charge () and total current I consists of
free and bound parts:

Q = Qb+Qf:///(pb+Pf)dVZ///PdVa (2.5)
I = Ib—i—If:///(Jb—i—Jf)-dS:///J-dS, (2.6)
with
p = pPb+pr (2.7)
J = 3+, (2.8)

where pp, and Jy, are the macroscopic bound charge density and bound current den-
sity, and pr and Jy are the macroscopic free charge density and free current density,
respectively.

In order to treat the contributions of free charges and currents separately from the
contributions of bound charges and currents, one introduces the displacement field D
and the magnetizing field H with the definitions

D = gE+P, (2.9)
1

H = —B-M. (2.10)
Ho

Here, P is the polarization field and M is the magnetization field which are defined in
terms of microscopic bound charges and currents, respectively. Macroscopically, These
are given by

pp = —V-P, (2.11)
oP

— M+ . 2.12
Ji, VX M+ (2.12)

This gives the macroscopic variant of Maxwell’s equations

V-D = p (2.13)
V-B = 0, (2.14)
0B
E = — 2.1
V x 5 (2.15)
oD
VxH = Jit- (2.16)

In this set of equations, only free charges and currents are relevant.
For a source-free medium without free charges and currents, one has pr = 0 and J¢ = 0.
If the medium is also free of magnetization, M = 0, then

H = iB—M:iB.
Ho Ho
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The corresponding Maxwell’s equations are

V-D = 0, (2.17)

V-B = 0 (2.18)
0B

VxE = -2, (2.19)
oD

B = —_ 2.2

V x oy (2.20)

These equations, Eqs. (2.17-2.20), are widely used for the description of electromagnetic
fields in media without magnetization effects [108]. In Chapter 3, we will generalize
these equations to also include other couplings between the electromagnetic field and
matter. However, within this Chapter, we only focus on the case where there is only
electric dipole interaction between the field and matter. Based on Egs. (2.17-2.20), we
will derive how the electromagnetic wave may propagate in the medium.

2.1.2 Light propation in time domain

From Egs. (2.20) and Egs. (2.20), one obtains the relation between the electric field and
the displacement field

0B 0°D
Using the formula
Vx(VxE) = V(V-E)-V’E, (2.22)
one obtains
9’D
. — 2 — — -
V(V-E)-V‘E o~z (2.23)

Furthermore, from Egs. (2.17) together with the definition of the displacement field in
Egs. (2.10), one has

V-D=¢V-E+V-P = 0. (2.24)

If the polarization is uniform in space, one can take V - P = 0 (discussions for the case
V - P # 0 can be found in Chapter G, or in reference [109]). This means that the
divergence of the electric field is also zero, V - E = 0. As a result, one has

Vx(VxE) = —-V’E. (2.25)
Accordingly, Egs. (2.23) can be simplified to

0°D

2 = i 2.2
\ Ho (2.26)

or

VZE — l@ — o°p

2 o2 Ko o2 3 (227)
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where ¢ = 1/,/opo is the velocity of light in vacuum. This equation can simply be
written in a scalar form by multiplying it with the conjugate of the polarization vector
of the electric field €*,

1 O’E 0*(P - &%)
2
E-—— = _— . 2.28
VE= 2 HO™ o¢2 (2.28)
If P is parallel to the electric field, i.e. €, one will have
1 9’E 0P
2
E-—-— = —. 2.29
VE- G oe HO" o2 (2.29)

This is always true for linearly polarized and circularly polarized light fields. For elliptical
polarized light traveling through a nonlinear medium, a tensor relationship between the
nonlinear polarization must be considered, and one must consider a vector wave equation.

2.1.3 Light propagation in the frequency domain

By introducing the Fourier transformation,
A 1 0o )
P(r,w) = T /_ OOP(r,t)e_Wtdt, (2.30)
N 1 o0 :
Blrw) = [ B(r e (2.31)

and substituting these relations into Eq. (2.27), one obtains the propagation equation in
frequency domain as

2

A

V2E+°;—2E = —pw?P. (2.32)

Compared to Eq. (2.27), there are no time derivatives any more. This reduces the partial
differential equation to an ordinary differential equation and simplifies the calculations
if the expressions of polarization in frequency domain are known (Appx. G).

From the definition of Fourier transform we know that

Flw) = jﬂ | e
Plew) = \/12? /O:O F(t)etdt.

When f(t) is a real function, one will have

The inverse Fourier transform gives

fit)y = \/12? /O:o F(w)e“dw = \/%Re {/Ooo F(w)ei“tdw} .
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2.1.4 Slowly varying envelope approximation

The electric and polarization fields can be expressed as complex functions

E(r,t) = EF) (r,t) +E (r,1), (2.33)
P(r,t) = PH(r,t)+ P (r,0), (2.34)

with E(H) being the positive-frequency part and E() the negative-frequency part of the
electric field, defined as

E(+) (I‘, t) = Z €k5kak6i(k‘r_wkt+¢k), (2.35)
k

EC) (I‘, t) _ Z giigkaLe—i(k-r—wkt-&-(ﬁk)? (2.36)
k

which is also an expansion of the electric field in different electromagnetic wave modes k.
With such a definition, the positive-frequency part E(H) (r,t) only contains the annihi-
lation operators ay and the negative-frequency part only contains the creation operators
ol

For a light wave propagating in a single direction, if the duration of the field is much
longer than the period of the oscillating field, one can separate the fast oscillating com-
ponent and the slowly varying component by introducing a carrier frequency wg and the

envelope function € (r,t)

EF) (r,t) = %5 (r,t) e'koT—wotte(rD) (2.37)
E) (r,t) = %8* (r,t) e (ko r—wolto(r1)) (2.38)

Similarly for the polarization field, one has

P (r,t) = %P (r, t) eilkoT—wotte(rb) (2.39)

PO (r,f) = %p* (r, ) e~ilkoT—wot+0(r.) (2.40)

Here, € (r,t) et) and P (r,t) ¢@(rt) stand for the envelope of the positive-frequency
part of the electric and the polarization field, respectively. Because € (r,t) = €€ (r,t),
in principle, é may be a complex vector (for circularly polarized light), one could always
take £ (r,t) and ¢ (r,t) as two real functions which refer to the amplitude and phase,
respectively. For the polarization field, the relative phase with respect to the electric
field is nonzero (see Sec. 2.4), therefore P (r,¢) must be a complex function.

In the following, we assume that the light is propagating along the & direction. One
would have

BO) (1) = € (o, ) clhoreotsoten), (2.41)
PO (r,) — %p (2, 1) eilkor—ot+6/ (@) (2.42)

where we also assume that the light field is uniform in the y—z plane, € (r,t) = € («, t).
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These two assumptions yield

O’E

2 _
VEfaxQ.

(2.43)

By defining

Y = eilhor—wot+d(a.t)) (2.44)

we first have

and

ot2 o2

o joE, 06

D%2E . 0E& 00 0E
B RO TR T T
- OE d¢
—iwo oY — WIEY + wo 5 EY

9% 99 0E 99 09\ ?

2R 9* (gei(koxfwoﬁ*(ls(x:t)))

0z2 0z2

0 (0E,, 90
0’E . 0& .0¢ OE
+ik0%Y — k2EY — ko EY
Ox

82 96 OE 06 0\ 2

PEH) 2 <gei(k0x—wot+¢(z:t)))

In the same way, we can write

62P(+) 82 i(kox—wot+o(x,t
atQ — 8t2 ('Pe( 0 0 d)( 1)))

|k

Figure 2.1: Schematic light pulse with envelope and fast oscillating term.
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2P . OP 0¢ OP
= gt g Y i Y
. 0P o
—iwo Y — WEPY + wo s PY
0% 0¢ OP ¢ dp\?

For a slowly varying envelope, both the amplitude £ and phase ¢ vary slowly compared
to the fast oscillating terms. This means that

€ 0E 0*E o€
22 | <@l a2l € kog | (2.48)
9°P oP ,
and
0%¢ 99 0%¢ 9¢
ﬁ < WOE y @ < ‘koax‘ . (250)

Substituting the results of Eqgs. (2.45-2.47) into Eq. (2.27) and, eliminating the expo-
nent term Y on both sides of the equation, one obtains

igs tics o — = € —co £ = -2 P, (2.51)

where wg = cko has been used.

Note that the electric field £ and the polarization field P are still vectors in these
evolution equations. Because £ = £€, one can multiply with the conjugate of the polar-
ization vector, €*, on each side of the equation to get the scalar variables:

0E . 0E D¢ Ioler B Lowoc?

la"‘lcaix—ag—C%g: 5

P (2.52)

As discussed above, with proper definition, £ and ¢ are two real functions and P - €* is
a complex function. Then, we obtain the approximate evolution of the slowly varying
amplitude and slowly varying phase of the envelope as

65 85 B M0w062 A%
a + C% = —Tlm[’P - € ], (253)
96 | 9 _ powoc® 1 .

Based on the definition of the phase in the complex form of electric field,

EF) (r,t) = E&(x,t)¢kormwot=o@t) (2.55)
PM) (r,t) = P (x,t)eFormwot=o@t) (2.56)

one can also have

88 . 88 8¢) 8d) o _,U,()(UO
Za+zcaix+ag+c%8y_ B

P, (2.57)
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which adds a negative sign to the equations of the phase evolution:

o€ o€ _ LowoC? ok

e + Con = —Tlm[’P €], (2.58)
06, 00 _ poncly o

T +C8x = ) SRe[’P €] (2.59)

These are the two equations describing the evolution of the amplitude and phase of the
envelope of the electric field. Noticing that %062 = 2“’7%, Eq. (2.59) gives the same
results as [107]. From the equations for the phase evolution one can see that there is
a sudden change of phase at the point £ — 0. To avoid this singularity, one should
have Re[P - €] — 0 as £ — 0 so that Re[P - €*]/€ remains finite. Otherwise, the slowly
varying approximation is not valid at this point.

2.1.5 Retarded time

As we will see in the later Chapters, to describe the light propagation in the slowly vary-
ing envelope approximation, there are several variants of Eq. (2.52) and Eq. (2.57). They
are consistent with each other, but each with its own advantages for given applications.
As an example, here we will show how those equations can be simplified by switching to
the retarded-time coordinates

r — T =z, (2.60)

b= T=t—". (2.61)

Under this coordinate transformation, the derivatives can be calculated as

O (w,t) _ 0\ On' O (a',m) Or _ OE(m) 10E(a!,7) (2.62)
Ox B ox'  Ox or Oxr  Ox c Oor '
and
/ / / /
0¢ (w,t) _ O9E(a',7) 00"  OE(al,T)Or _ OE(,T) (2.63)

ot - ox’ ot or ot or

Therefore, one has the evolution of the envelope in the retarded-time coordinates as

o (', 1) powoc -
06 (',7)  powoc 1 -

The partial differential equations have been replaced by two ordinary differential equa-
tions, simplifying numerical simulations in Chapter 5.

Besides the discussions above, more details about of envelope propagation can be
found in Appx. G.



2.2. Hamiltonian for light-matter interaction 17

2.2 Hamiltonian for light-matter interaction

For a particle with charge ¢ moving in an electromagnetic field, the Hamiltonian is [107]

H= (p_gw +qV (x), (2.66)

with p being the canonical momentum, which satisfies the relation

. 0H
T op.

= Moy = pr — qA,. (2.67)

The quantum operator for the canonical momentum is given as
p = —ihV. (2.68)
Therefore, one gets

(—ihV — A (r))*
2m

. 2
LqV(r) = (lhvzglA(r)) LV (). (269)

H =

For an electron with ¢ = —e (e = 1.6 x 107! C being a positive value), then

g - (p+;2(r))2+v(r)
. 2
_ (—th;—ﬂjA(r)) V)
hQ

— (V+ A(r))2 +V (r), (2.70)

2m

where we have absorbed the charge into the potential term by renaming
—eV (r) = V(r). (2.71)

An atom consists of a nucleus and electrons.In the presence of an electromagnetic
wave field, both the nucleus and the electrons interact with the field. However, the mass
of the nucleus is much larger than the mass of the electrons, such that the former can
hardly respond to the change of the field. Therefore, one can assume the coordinate of the
nucleus, thus the coordinate of the atom, to be fixed. Only the dynamics of the electrons
are taken into consideration. This is called the Born-Oppenheimer approximation. In
this approximation, one can divide the coordinate of the electron into two parts: rg +r,
with rg being the coordinate of the atomic nucleus and r the coordinate of the electron
relative to the nucleus. With rg being a constant value for a given atom, the interaction
between atom and electromagnetic field is reduced to be the interaction between the
field and the electrons bound in the atom.

After the simplification of the atomic part of the Hamiltonian, we now apply further
approximations to the electromagnetic wave field. We will follow the ideas used in
reference [107] and generalize them to our case with a pulse light field:

1 .
A(ro+r,t) = §A(r0 + r, t) ot (ko (ro+r)=g(ro+r.t))
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+1A* (ro+r,t) e~ wot—(ko:(ro+r)—¢(ro+r,t))
2 9y

1 .
QA (ro,t) eiwot—koTo—g(ro,t))

12

—1—1./4* (ro t) e—i(wot—kO'I‘O—d’(rovt))
5 )

= A(rg,t). (2.72)

Here we have used three approximations:

A(rg+r,t) ~ A(rg,t) Slowly varying envelope approximation;
¢ (ro+r,t) ~ ¢ (ro,t) Slowly varying phase approximation;
ko-(ro+r)~kp-rg Dipole approximation.

In the dipole approximation, we have assumed that the carrier wavelength of the elec-
tromagnetic field is much larger than the size of the atom, which gives kg - r < 1. This
approximation is more stringent than the other two approximations. Thus, as long as
the dipole approximation holds, the other two approximations are also applicable sub-
sequently. Under these field approximations, the electrons are assumed to be moving in
a uniform field which only oscillates in time, with the Hamiltonian being

H = +V(r)=——

(p + €A (ro, 1)) h? (
2m 2m

. 2
ie
Vo EAGD) V). (273)
This represents a large simplification to the Hamiltonian given by Eq. (2.70): as A (ro, t)
is independent of the electron’s displacement r, it commutes now with the canonical
momentum operator:

p-A(rg,t) = A(rog,t)-p. (2.74)

In this dipole approximation, the dynamics of the wave function of the electron moving
in the atom is given by the Schrédinger equation

2 ; 2
m“’(‘g;’r’“ - {—;n (v + Z;A(ro,t)) + V(r)} O (ro,r,t).  (2.75)
As mentioned before, rg is the coordinate of the atom and r is the coordinate of the
electron moving around the atomic nucleus with respect to ry. Because the atoms are
independent of each other, here in the Schrodinger equation, rq is just a parameter and
not a variable.

Eq. (2.75) is the equation describing the light-matter interaction in velocity gauge.
By introducing a gauge transformation defined by

® (rg,r,t) = exp {—Z;A (ro,t) -r] U (rg,r,t), (2.76)

one can switch to the length gauge. Accordingly, the time derivative of the wave function
® (rp,r,t) can be described in terms of the wave function ¥ (rg,r, ) in the length gauge
as

0P (ro,r,t)

ie . ie e :
o — _EA.reXp {—hA-r} U + exp {—hA-I} v. (2.77)
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Moreover, one can rewrite

<V+Z;A) ® (ro,r,t) = <V+1;5A) exp [—Z;A-r}‘lf = exp [—?A'P} VAU,

Thus, one obtains the Schrédinger equation in the length gauge:

ov t h 0A
ih(g;’r’) - {_vaMV(r) —eat.r} U (ro,r,t). (2.78)
Making use of the relation E = —%—‘?, one obtains the Schrédinger equation in the form
of the electric field in the dipole approximation
ov t h?
Zh%(;;r’) = [_mVQ —|—V(I‘) + eE (r07t) 'r] \P(I‘(],I',t), (279)
or, equivalently
ov t 2
m(g’t’r’) - l;” +V (r) + eE (o, t) - r] U (ro,r, ). (2.80)
Thus, the Hamiltonian in the length gauge is
H = Hp + Hi, (2.81)
with
p?
Hya=—+V 2.82
A= v, (282)
being the bare atomic Hamiltonian, and
HI =ck (I‘D, t) - r (283)

being the interaction Hamiltonian between the electric dipole moment of the atom and
the electric field. Because the direction of the dipole moment is pointing from the
negative charge to the positive charge, and r refers to the displacement of the electron,
the dipole moment of the atom is defined as

d= —er. (2.84)
Accordingly, the interaction Hamiltonian is
H;=—d-E. (2.85)

This is exactly the Hamiltonian of a dipole in the electric field.
In addition, one also needs to include the Hamiltonian of the free electromagnetic field
defined by

1

Hpy = Z Ay (aLak + 2) . (2.86)
k
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Therefore, the full Hamiltonian describing the light-atom interaction is given by

When the photons in the light field are in a Fock state, one needs to treat the light
field as photons, thus the E field in Eq. (2.85) must be written in terms of photon
annihilation/creation operators. This corresponds to a full quantum theory of the light-
atom interaction. However, if the photons are in a coherent state, the light can be
treated as a classical electromagnetic field, and only the atoms are treated through
quantum mechanics. This approach represents a semi-classical theory of the system.

As we discussed before, the full Hamiltonian can be divided into two parts, one is the
Hamiltonian

describing a bare atom and free field which is exactly solvable, the other is the Hamilto-
nian Hi representing the interaction between the atom and light field. When the light
can be treated as a classical field, one can drop the free electromagnetic energy Hgym
from the bare Hamiltonian.

In principle, there is no exact solution to this problem. Nevertheless, one can still gain
many important insights on this problem under some approximations. As a first step, we
will define the Hilbert space based on the complete eigenvectors of the bare Hamiltonian.
Then all the wave functions and operators (including the interaction Hamiltonian) can
be represented by the basis of the Hilbert space. This procedure is important because
it provides the mathematical foundations for further approximations to be introduced.

The Schrodinger equation of an atom without any external field is given by

p2
L v (r)] W (ro,r,t). (2.89)

iha\I/() (I‘(), r, t)

ot 2m

After separation of variables, one arrives to the stationary Schrédinger equation

2

Pvio| ) = E ) 250)

where we assume the atom is a hydrogen-like system so that n,l, m are good quantum
numbers to classify the complete eigenbasis. For many-electron systems, the procedures
are similar but with different notifications of the orthonormal basis.

Solving this stationary Schrodinger equation one gets the eigenvectors which define
the Hilbert space of this quantum system. Any wave function can be expanded in this
eigenbasis as a vector

[v@) = 3 P fu). (2.91)

k={nim}

The operator Fis represented in a matrix form

o= Yy ") (v
i

, (2.92)
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with each element given by
_ O £1,,00)
F, = <¢l ’F ‘wj > (2.93)

Dynamics of the wave function of this system are then just described by time-dependent
coefficients for each eigenvector.

When interaction with an extra field is involved, its Hamiltonian can also be expressed
in a matrix form

He = Y H O (v, (2.94)
ij

The Schrodinger equation can be expressed in a matrix form

.0

’Lha |¥ (ro,r,t)) = [Ho+ Hi]|¥ (ro,r,t)). (2.95)
With

W (ro,r,8)) = 3 ck(t)\¢,§0>>, (2.96)

k={nlm}

Due to the infinite number of eigenvectors, the matrix-form Schrédinger equation is
actually a set of infinite number of coupled linear equations. An exact solution is not
possible. Thus one needs to make approximations based on the problem of interest [110].

For instance, one can truncate the number of levels involved if H; only has significant
couplings between a finite number of eigenstates. As a result, one obtains a finite-
dimensional matrix, thus a finite number of coupled linear equations. The simplest cases
would be the two-level, three-level or four-level approximation, which will be discussed
later in Sec. 2.3. This simplified problem can be either solved numerically (with an exact
diagonalization method), or analytically. The accuracy of this method is limited by the
truncation of levels.

Another way to gain insight into the coupled equations is based on a perturbation
series [110]. This approach is applicable when the interaction Hamiltonian is perturba-
tively small, i.e. the magnitude of each coefficient c(t) only deviates to a small extent
from c,io) (more discussion can be found in Appx. A).

For the interaction between light and atoms, as an example, if the frequency of the
light is tuned far from the resonance of the atom, it will have a negligible influence
on the atomic state. Therefore, perturbation theory is applicable. When the light is
close to resonance, singularities show up in perturbation series. One needs to use e.g.
the two-level approximation instead of perturbation theory to resolve the problem. If
the strength of the light field is low, stimulated emission/absorption would be much
smaller compared to the decay of the atoms. In such case, rate equations are sufficient
to describe the two-level system. However, when the field becomes strong enough, Rabi
flopping will show up and the populations of the eigenstates will undergo fast changes.
In this situation, a density-matrix theory [111] should be used for the two-level system.
Until now, the light field is still perturbative compared to the static electric field of the
atomic nucleus. Rabi oscillation in the populations is only a result of resonance (or in
full quantum theory, a result of degenerate-state perturbation). When the light intensity
becomes ultra-strong such that tunneling ionization becomes possible, both perturbative
and level-truncation approaches fail to describe the problem, and some other treatment
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should be used.

In this thesis, we will only focus on perturbative interaction. Therefore density matrix
theory or perturbation theory is sufficient to analyze the physical situation. Moreover,
in a full quantum mechanical treatment, the two-level approach represents a degenerate
perturbation theory.

2.3 Density matrix for two-level atoms

As discussed in the previous Section, when the frequency of the light field is close to
resonance with one of the atomic transitions, a two-level approximation on the infinite
atomic levels is valid [107, 112]. Here, we introduce the density-matrix theory [111] to
describe the dynamics of the two-level systems under interactions with an external field
given by Eq. (2.85). By going from the Schrédinger picture to the interaction picture
and then to the rotating-phase picture, the equation of motion for the density matrix
is presented in Eq. (2.133). Furthermore, we deduce the calculation of the polarization
field based on density matrix, resulting in a connection of Maxwell’s equations and
density-matrix theory.

2.3.1 Hamiltonian for two-level systems

Depending on the problems of interest, different pictures such as the Schréodinger picture,
the Heisenberg picture and the interaction picture can be used to describe the time
evolution of a quantum system [107]. Different pictures are related to each other by
unitary transformations of the wave functions, density matrix as well as the Hamiltonian.
In the following, we first give the expressions of the density matrix and the Hamiltonian
in the Schrodinger picture and the interaction picture. After that, a new picture called
rotating-phase picture is defined to simplify the discussions of atoms interacting with a
detuned light field [113]. Details of the constructions of these pictures can be found in
Appx. S-I-R-Picture.

2.3.1.1 The Schrddinger picture

For a two-level system with eigenstates |g) and |e) standing for ground state and excited
state, respectively, the time-dependent wave function of the atomic state has the general
form

[¥(2)) = cg(t) |2) + ce(t) le) - (2.97)

This pure state can also be represented by the corresponding density matrix [107, 112]
= _ | G e | | Pus Pue | 2.98
p|@@|[%%cdl [M %] (2:98)

According to the Schrédinger equation, one ccan derive the equation of motion for the
density matrix (more details in Appx. C)

p = ilp.H]=ilp, Ho+ Hi. (2.99)

Here, Eq. (2.99) is called von Neumann equation, which is the starting point to study
the dynamics of a quantum system in density matrix theory. Because we don’t consider
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any spatial variations for the atomic system we are interested in, the partial derivative
with respect to time is changed to be total derivative.

With the eigenenergy of the ground state |g) set to be zero, the bare atomic Hamilto-
nian for a two-level system is given by

Hy = [ 00 ] : (2.100)

0 wy
Here we take i = 1. Considering that it is interacting with an electric field as
1 —iwot * iwot
E(x,t) = 5 (Em (1) €700 4 £5, (1) ') (2.101)
with
Em(x,1) = E(x,1)kx+olxt) (2.102)
the interaction Hamiltonian is
H _ E _ er —twot * twot
1 = er-E(x,t)= 5 (Em (x,t)e + &5 (x,t)e ) . (2.103)
Accordingly, the matrix form of the interaction Hamiltonian is

_eE(x,t) | (gr]g) (g|rle)
== l<errg> <err|e>]'

Here we use the vector x instead of ry as the coordinate of the atom and the electric field.
The vector r corresponds to the relative coordinate of the electron in a specific atom.
Considering the parity symmetry of the atomic wave function, one can see (g|r|g) =
(e|rle) = 0, therefore, the interaction Hamiltonian reduces to

= B [ 0 f(elrle) ] . (2.105)

(2.104)

2 (e[rfg) 0

2.3.1.2 The interaction picture

In the Schrodinger picture presented above, both the bare Hamiltonian and the interac-
tion Hamiltonian are involved in the dynamics of the density matrix. When switch to
the interaction picture, the bare Hamiltonian will be absorbed into the density matrix
and only the interaction Hamiltonian will play a role. With the unitary transformation

0 eiwat

Uy = ettt — l L0 ] , (2.106)

the density matrix p' in the interaction picture has the form

- - ng pgeefiwat 1
oo = [ pe€ ™ pee | (2.107)
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and the off-diagonal elements in the interaction picture can be regarded as the envelope
function of the off-diagonal elements in Schrédinger picture:

—iwalt

pée = Pge€ :ﬁgea (2108)

wal

Pég = Pegl " = Peg- (2.109)
The corresponding interaction Hamiltonian H I— UOHIUg becomes

H'=
< 0 (g]r le) (Eme ot 4 £7, ¢ilo—walt)
2 <e| I |g> (8m€_i(WO—UJa)t + g:nei(wo—i—wa)t) O

In the rotating-wave approximation, where one neglects the fast oscillating term with
wo + w, in the exponent, one obtains

1 0 Q) (x,t) e
H' = 5 [ Oy (x. 1) e~ ( 0) ] , (2.110)

where A = wy — w, refers to the detuning between the carrier frequency and the atom.
The complex coupling function is given by

O (x,t) = elelr|g) Em (x,1), (2.111)
O (x,t) = e(glrle) &, (x,1). (2.112)

Explicitly, they can be written as

Om (x,1) = Q(x,t) elkxToxt+éo) (2.113)
QF (x,t) = Q(x,t) e kxtoxt)+eo) (2.114)

with the amplitude €2 (x,t) being the Rabi frequency defined by
D0c1) = lelelrle) €(ot)| =|elelrle) - éle (o) = pe (x 1), (2115)

where € = €€ and

poo= ‘e(e]r\g)-é (2.116)
have been introduced. The constant parameters y and ¢y are the magnitude and phase
from the coupling between the light and atom,

elelrlg)-é = pe'. (2.117)

In reality, p is the magnitude of the dipole moment and ¢g is the angle between the
directions of the dipole moment and the direction € of the electric field. Both of them
could be different for different transitions. Calculations for g and ¢y based on realistic
atomic transitions can be found in Appx. B.

As shown in Appx. C, in the interaction picture, the von Neumann equation Eq. (2.99)
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has been replaced by
po= il HY, (2.118)

where only the interaction Hamiltonian remains.

2.3.1.3 The rotating-phase picture

Though the von Neumann equation given by Eq (2.118) in the interaction picture is

simpler compared to Eq (2.99) in the Schrodinger picture, the exponential terms in the

effective Hamiltonian in Eq (2.110) makes it difficult to analysis. Therefore, we introduce

a new picture that can remove them from the off-diagonal elements of the Hamiltonian.
By defining a new phase function

0(x,t) = k-x—At+ ¢ (x,t)+ ¢o, (2.119)

one can rewrite the Hamiltonian in the interaction picture as

Q(x,t) 0 e~ 00x1)

1 )

H = — [ Si001) 0 . (2.120)
In form, the time-dependent exponential terms e¥?*%) are explicit. Thus, with another

unitary transformation

1 0
Uy = [ 0 e—ifx) ] , (2.121)
one can eliminate the exponential term and obtain

1
HM = UyH'U) = 5 [ g goz ] : (2.122)

Correspondingly, after the Uy transformation, the density matrix is changed to be

I I i
M Ir7t 1Y Pge
= Upp U, = e & ) 2.123
P P UYg [pége 0 p(Iae ] ( )

with the von Neumann equation being replaced by (see Appx. C)

opM

S = [pM, Heﬁ] , (2.124)

where the effective Hamiltonian Hg is given by

o [ g e

We may call this rotating-phase picture as a different language compared to the inter-
action picture and the Schrodinger picture. Note that, by working in this picture, all
the functions are real functions of the time ¢ and the coordinate x. From this effective
Hamiltonian one can see that the change of the phase with time gives the time-dependent
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instantaneous frequency detuning in this coupled system:

00
Ag(t) = ——. 2.126
o) = —5 (2:126)
Because k - x and ¢g are constant quantities which are independent of time for each
atom, one could have

Ag(t) = —%ﬁ (2.127)

For the time-dependent phase function ¢ (x,t), one can write it in a polynomial form as
p(x,t) = 0O )+ x)t+0? (x)t2+ ... (2.128)

One can notice that the first term ¢(®) refers to a constant phase which is independent
of time. Because the derivative of this term gives zero in the rotating-phase picture, it
does not change the physics in this case. One could also absorb the other two constant-
phase terms k - x and ¢ into ¢(©). The second term ¢ can be regarded as a frequency
shift of the carrier frequency. If we take the reference carrier frequency to be resonant
with the two-level system, A = 0, and ¢(1) exactly refers to the detuning between the
two-level system and the light field. For the third term, ¢ corresponds to a chirp in
the light pulse. As a result, in principle, the detuning A, the constant phase ¢y and the
time-independent phase k - x can be absorbed into a single phase term ¢.

0(x,t) = 09 (x)+0W x)t+0% x)t*+ ..., (2.129)
with
0x) " = ) +k-x+ ¢, (2.130)
gx)Y = p(x)Y - A, (2.131)
0x)™ = ¢x)W for all n > 2. (2.132)

When the decay and decoherence processes are included, the full equations of motion
for the density matrix are given by

M 1 M 1 M

M _ | M Pee ~5Pge 0 —3Pge
M= [ M Hg| T + 3 . (2133
" Hen —3Pes  —Pec ~3pes O (2.133)

With I' being the decay rate of the excited state, the second term is the Lindblad
Hamiltonian which is added phenomenologically to describe spontaneous emission (see
Appx. B.3 and [112]). The third term with S is related to different decoherence process
such as elastic collisions (see Chapter 4). Such collisions between the atoms and other
particles lead to dephasing of the atomic state. As a result, it causes decay of the
coherences (peg and pge) between the two states.
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2.3.2 Polarization

In terms of the density matrix, one can calculate the expectation value of the dipole
moment in the Schrédinger picture according to

(d) =Tr{pd} = —eTr{pr}. (2.134)
This gives
(d) = —el(glprlg) + (el prle)]
= —e[(g]ple) (e|r|g) + (e| plg) (g r|e)]
= —e [Pge (e[r]g) + Peg (glrle)]. (2.135)

Therefore, the polarization field induced by light when it propagates through the atomic
medium can be calculated as

P = n(d) = —ne[pge (e|r |g) + peg (8| T [e)], (2.136)

where n is the number density of the atoms, and pge and pes are the density matrix
elements in the Schrodinger picture. Recalling the relationships

pge — plg\geiwat—ie — plg\/éei(tg)ot—k~x—¢)(x,t)—¢o)7 (2137)
peg = pel}ge—iwat-me _ pgge—i(wot—kx—(b(x,t)—aﬁo)’ (2.138)

one obtains the polarization in the rotating-phase picture

P = —ne <e|r|g>plg\/[eei(wot—k'x—ﬂxvt)—%)
—ne (g|r|e) ple\/[ge—i(WOt—k'x—MX,t)—%)
= PY(x0)+ P (x1), (2.139)
with
PO (x,t) = —ne (g|r [e) pMeilunt—kx—glxt)=¢0) (2.140)
PO (x,t) = —ne (e|r|g) phlei@ot—kx—o(xt)=00) (2.141)

By comparing these result with the definition of the positive and negative parts of the
polarization field in Eq. (2.39) and Eq. (2.40)

1 .
P& (x,t) = ?P (x,t) el kx—wotte(xt))
one immediately arrives at the atomic definition of the polarization envelope
P (x,t) = —2ne(g|rle) pggeid’o. (2.142)

To see how the atoms may affect the light field, we rewrite the propagation equation
of the slowly varying envelope of the light field derived in Eq. (2.53) and Eq. (2.54)

3 C@ _ howoc?
ot or 2

Im[P - €],
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0 0 powoc? 1

5 T = 3 ERe['P - €]
The term P - €* can be written as
P& = —2neppe® (g|rle) - ¢ (2.143)
By using the relation
@rle)-& = ((elrlg)-¢) (2.144)
one has
(glrle) & = [(elrla)- el = e, (2.145)
and
P& = —2nupl. (2.146)

Here, the magnitude of the coupling factor u is given as

u:e‘ (e|r|g) - €|. (2.147)

Finally, we arrive at the evolution equations of the magnitude and the phase of the
electric field under interaction with two-level atoms:

e  0E 9 M

m + ¢, = Homuwoc Im[peg], (2.148)
99 99 ol 1 m

9t + Cop = THonfwoc ERe[peg]. (2.149)

2.4 Maxwell-Bloch equations

As we discussed in the previous Section, in the rotating-phase picture the magnitude
and phase of the light envelope are directly coupled to the off-diagonal element of the
density matrix. For two-level systems, the von Neumann equation in Eq. (2.133) de-
scribing the time evolution of each element in the density matrix is also called Bloch
equation. Therefore, the light propagation equations together with the Bloch equations
are called Maxwell-Bloch equations [103, 104]. They are the basic equations to describe
the interaction between light and matter where both of the systems are affected by each
other.

As we will work in the rotating-phase picture from now on, to simplify our notation we
will remove the superscript M’ for the density operator pM. Without any specific note,
p represents the density operator in the rotating-phase picture instead of the operator
in Schrédinger picture:

_1
p — 'L[p7 Heﬁ] + 1—\ [ /;ee nge + ,8

—5Peg  ~Pee

1
0 2Pee | (2.150)
T 2Peg 0
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The Bloch equations for the four matrix elements are given as
) Q2
Pgg = ) (pge - Peg) + Ipee, (2.151)
_ 19 . vy
Pge = D) (Pee — ng) — 1AgpPge — §pge7 (2.152)
. i§2 . v
Peg = ? (pee - pgg) + ZAGPeg - Epega (2'153)
_ €2
Pee = o (Peg — Pge) — I'pee; (2.154)
with
0¢
Q= pug, AGIA_E and =T+ 4, (2.155)
and they are coupled to the light propagation equations
o€ o€
e + o = ponpwoc®Tm[peg), (2.156)
0 0 1
£ + ca—i = —,uonuwoc2gRe[peg]. (2.157)
Thus, this set of equations is called Mazwell-Bloch equations [103, 104]. Through the
Rabi frequency € and the detuning Ay in Eq. (2.155), the amplitude £ and phase ¢
of the light field are involved in the atomic populations and coherences in Egs. (2.151-
2.154). In return, the coherence peg (With peg = ng) acts as a dipole source to the light
field in Eq. (2.156) and Eq. (2.157), which influences the propagation of the light. The
newly defined parameter ~ is the total decoherence rate of the atomic system.

There are different variants of Maxwell-Bloch equations (see Appx. D). As another
form of the Maxwell-Bloch equations in Egs. (2.151-2.157), one can explicitly separate
the coherence terms peg (Or pge) in real and imaginary parts

Peg = a + 1b, (2.158)
Pge = a — 1ib. (2.159)

This gives a different form of the Bloch equations:

e = Qb+ Dpee, (2.160)
6 = —%Q—Agb, (2.161)
b = (oo pee) + a1 (2.162)

peoe = —Qb—Tpe. (2.163)

When the total population, pee + pgg = 1 is conserved, one can define a new variable
N = pec — Pges (2.164)

to represent the population difference (or population inversion) between the excited state
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and the ground state. We have

0@ = —La— Agh, (2.165)
2

: 0

b= 5NWLAQCL—%b, (2.166)

N = —200—T(N+1). (2.167)

In this way, the evolution of the electric field becomes

o oE 9
n + Co, = Honuwoc b, (2.168)
op  0¢ 91
Z7 -z = _ = 2.1
5t +08x ponjuwoc” a, (2.169)
or in the retarded time coordinates
o€ (x, T
éx) = ponuwocb, (2.170)
0o (x, T 1
qﬁém) = ~Honpwoca (2.171)

Because n, ¢ and w are non-negative quantities, and the magnitude of the electric field
£ is also defined to be positive, one can see that the imaginary part b defines whether
the light will be absorbed or amplified:

if b>0 , gain & emission,

if b<0 , attenuation & absorption.

The real part a is related to the phase of the light field, thus it determines the dispersion
or refractive index when light propagates in the medium.

The Maxwell-Bloch equations do not have exact analytical solutions yet. Therefore
we developed numerical codes that can solve this equation exactly. Besides that, one
can also obtain analytical solutions based on further approximations and assumptions.
One possible simplification is to assume that the atoms have evolved into a steady state,
and then one can solve the equations explicitly.

2.4.1 Steady-state solutions and rate equations

When the density of the atoms is small such that the variation (absorption/amplification)
of the light is negligible, the atoms will evolve into a steady state for times longer than
the decoherence time of the atoms. If such conditions are met, one will have p = 0 and
all the derivatives of the density matrix elements can be taken to be zero

_%a —Agh=0, (2.172)

Q
SN+ Aga - %b: 0, (2.173)
—20b—T (N +1) = 0. (2.174)
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The differential equations for the density matrix are reduced to a set of algebraic equa-
tions that can be easily solved as

Ql'y
b o— 2.175
2702 + T (4A2 +42)’ ( )
20T
a = d (2.176)

2702 + T (4A2 +42)’

I (4A% ++2)
N = - g 2.1
2902 + T (4A2 +42)’ (2:177)

with the relation

o = 2o, (2.178)
v

Furthermore, from Eq. (2.175) and Eq. (2.177) one obtains the following relation between
the coherence and population inversion:
Oy

Due to the fact that ﬁ > 0 always holds, the sign of the coherence b is only
determined by the population inversion N. When N > 0, one has b > 0 and the light
field is amplified, though it is negligibly small. This is true because N > 0 means that
there are more atoms in the excited state than the atoms in the ground state. Therefore,
stimulated emission would be larger than the stimulated absorption and the net effect is
that the light field is amplified. On the other hand, if N < 0, the light will be attenuated
as it propagates in the medium.

Another phenomenon revealed by Eq. (2.179) is that the absorption rate is frequency
dependent. This can be clearly seen if we rewrite Eq. (2.179) as

b = Sg (w) N, (2.180)

with the dimensionless function g (w) being a normalized Lorentzian function given by

_ 7 _ (v/2)*
g (W) B 4 (w — wa)Z + 72 - (w _ Wa)2 + (7/2)2 . (2.181)

For simplicity, we have assumed the light to be a plane wave such that
o(z,t) = (k—ko)r — (w—wo)t, (2.182)

and

o9

A = _—— =
o ot

Wo — Wa +W — Wy = W — Wy (2.183)
We should mention that here, w and w, are angular frequencies with dimensions of
“rad s717. Therefore, the value of the decay rate I’ should also be given in units of
angular frequency. For example, when we have Einstein A coefficient Aeg (in units of
“s~17) as the spontaneous decay rate from the excited state to the ground state, one will
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have

r = =—E, (2.184)

w—wa (1/7)

Figure 2.2: Lorenztian line shape of Eq. (2.181).

As we can see from Fig. 2.2, the strongest absorption happens when the light frequency
is resonant with the atomic transition. The amplitude and bandwidth of the absorption
is given by the decoherence rate ~.

Eq. (2.180) describes the absorption for a single atom. In order to see how the light
is affected by the whole medium, we substitute Eq. (2.180) into the evolution of the
magnitude of the electric field in Eq. (2.170):

OE (z, 1) Q
== = Zg(w)N. 2.1
e Honpe g (w) (2.185)

Here, we continue to assume a plane wave with the carrier frequency wy = w such that
¢ is constant and does not experience any times and space evolution. Recalling that
Q = p&, the evolution equation of the light field becomes

08 (x,7)  npfw 1
“or T oo g(Ww)NE = 5M0eg (w)NE, (2.186)

where g = 1/c? has been used. g (w) is the frequency-dependent stimulated emission
cross Section defined by

202w
Oeg (W) = E‘O‘wg(w). (2.187)

From Eq. (B.20), one has the relationship between the dipole moment and the Einstein
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A coefficient for a two-level system as

o 3meo hed

[ Aeg. (2.188)

3
wa
Therefore, the stimulated-emission cross section can be written as

6mc? w Aeg

Oeg (W) = g (w). (2.189)

2
Wy Wa Y

In the resonant case, one has g (w) = g (wa) = 1. The stimulated emission cross Section
becomes

6mc? Aeg
Oeg (Wa) = . (2.190)
R
If there is only spontaneous decay, v = Aeg and
6mc® 32
Oeg (W) = 2= 27:. (2.191)

a

This means that the cross Section nearly equals the size of the photons [114], as defined
by it’s wavelength.

Furthermore, we can also describe the propagation of the light field in terms of the
photon flux passing through the atomic medium. This is done with the following defini-
tions of the intensity and photon flux:

7 = S0g2_ S0g2 (2.192)
2 2
7
- = 2.1
g ==L (2.19)

With these relations, one can derive the evolution equation of the photon flux as

8j N CEQ 652 N CEQ o€ .
o = o as = on g, = noeNJ. (2.194)

As the multiplication nN represents the number density of population inversion, it is
from Eq. (2.194) that one reveals the physical meaning of ey as the cross Section of
stimulated emission.

Besides, we can also obtain the evolution of the population inversion as

N = —20b—~(N+1)

= —QS?;g(w)N—F(N—i-l)

2
N o2
2
W 2hw
= 22— N-T(N+1
b e 9 IN =T (N +1)

= 200 (W) IN —T (N +1). (2.195)
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By combining Eq. (2.194) and Eq. (2.195), one obtains the rate-equation description of
the light-matter interaction:

6”78(?7) =noeg (W) N (2,7), (2.196)
aNa(f’T) =20 (W) T (z,7) N =T (N +1). (2.197)

Here, n is the atomic density, oeg (w) is the stimulated photon emission cross Section
with w the carrier frequency of the light field and N = pe. — pge is the population
inversion. T' is the decay rate of the excited state. The factor of 2 in the stimulated
process on the right hand of Eq. (2.197) represents that a depopulation in the excited
state pee is always accompanied by an increase in population pge in the ground state by
the same amount, resulting in a change in the population difference by two times of that
amount.

For a steady state where NN is constant, one can solve Eq. (2.186) and Eq. (2.196) to
get the evolution of electric field and the photon flux as

E(x,m) = E£(0,7)e2%", (2.198)
J(x,7) = J(0,7)e%, (2.199)

with
G =noeg (W) N (2.200)

being the gain/attenuation coefficient.

2.5 Summary

Starting with Maxwell’s equations and density matrix theory, we obtain two sets of
equations that can be used to describe the amplification of a laser in a gain medium.
One is given by the elaborate Maxwell-Bloch equations in Egs. (2.151-2.157) based on
density matrix theory; the other is given by the simpler rate equations, Eq. (2.196) and
Eq. (2.197), which have been widely used in the laser community. Our calculations
show that the latter approach is only accurate for atomic systems in a steady state, or
in other words, for the case where the changes in the populations of the atomic state
are negligible during the presence of the laser field. Otherwise, one needs to use the
Maxwell-Bloch equations.

For the transient lasing considered in this thesis, the populations are underlying fast
pumping and decay processes. Therefore, the Maxwell-Bloch equations are used in
Chapters 5-7 to fully describe the establishment and propagation of the laser field.



Chapter 3

Multipole transitions

As we realized, a narrower laser bandwidth can be achieved by choosing a transition
beyond electric-dipole transitions in the lasing ions. Therefore, in this Chapter, we gen-
eralize the density-matrix theory with the usually considered electric-dipole transitions
to multipole transitions. We start with the Dirac equation and derive the general inter-
action Hamiltonian between plane-wave light and matter. The multipole expansion of
the plane wave in spherical harmonics results in a series of multipole-transition terms.
We will first derive the multipole expansion of the light-matter interaction Hamilto-
nian, based on Walther Johnson’s book on Atomic structure theory [115], and obtain
the multipole moment for each transition. After that we generalize the density-matrix
theory for any multipole transitions. A direct method to get the coupling strength, or
multipole moment, in the interaction Hamiltonian needs atomic structure calculations.
Considering that there are already existing atomic codes that can be adopted to ob-
tain the energies, rates and oscillator strengths for a given atomic transition, we express
the multipole moment, Einstein A coefficient and interaction Hamiltonian in terms of
the oscillator strength. With such relations, the light-atom coupling strength can be
represented with realistic atomic parameters.

3.1 The Dirac equation

To consider radiative transitions, the spin angular momentum should also be included
consistently in the theory. In Schrodinger equation there is no spin information and
the spin effect has to be introduced by hand. However, the Dirac equation includes
the spin automatically and the coupling between spin and orbit angular momentum is
also included therein. Also, for the highly charged ions considered in this work, realistic
effects are important. Thus, in this Chapter, we will start with Dirac equation.

Similarly to the Schrodinger equation, the time-dependent Dirac equation for a single
electron is given as [115]

)
i U(r,t) = HU(r1). (3.1)

The difference is in the definition of the Hamiltonian and the wave function. Firstly, the
Hamiltonian for Dirac equation is defined through

H = ca-p+pmc+V(r), (3.2)

with ¢ being the speed of light and o and 3 are the 4 x 4 Dirac matrices:

a = lg ‘g],ﬁ—lbo“ _1(;2]. (3.3)

35
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The vector matrix o = (0, 0y,0) is constructed from the 2 x 2 Pauli matrices

01 0 —i 1 0
Oy = [1 Ol,ay:[i O],OZ:[O _1]. (3.4)

As discussed before in Sec. 2.2, when an external field is involved, the momentum p
should be replaced by p — ¢A (r,t), with A (r,t) being the vector potential. This yields
the interaction Hamiltonian between the bound electron and the external field

Hy = cea-A(r,t), (3.5)

where ¢ = —e for an electron was used. For a plane wave A (r,t) = Aeilkr=wt) L p e
one has the expressions for the electric and magnetic field as [108]

E(r,t) = —-Vo¢(r,t)— (‘?tA (r,t),

B(r,t) = -V xA(r,t),

where ¢ is the scalar potential. For the gauge V¢ (r,t) = 0, one has the amplitude of
both fields

E = wA=iwAg,
B = ikxA=ikAlk x|,

with
E = wA,
B = kA,
and
A = ,ié':,il%xB.
iw ik

Therefore, the Hamiltonian can be written in terms of electric or magnetic fields as

H = ,0—6a CEeiller—wt) 4 p o

w

%a ceetkr—wt) g e
w ‘

= —d-E ™' +he,

or

H = %a [k x Blet®Th Lop e,
i
= c_e—Ba ceetler=wt) L p e,
ik ‘
= —m-Be ™+ he.
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The effective electric and magnetic momenta are defined according to

ce

d = —— (a-&ekre 3.6
- (- §ere, (3.6)
m o= — (&) ek x &, (3.7)
ik
Note that |d| = |m|/c. As we can see, at this stage, there is no difference between

electric- and magnetic-multipole interactions. After the multipole expansion, one can
obtain monopole, dipole and quadrupole contributions to the effective momenta. The
dimensions of d and m are

d = [Ce] _ m — ler], (3.9)

w

ce
m] = [} = [ecr] = [el], (3.9)
ik
Indicating that they represent effective ‘dipole’ moments.
In density-matrix theory, one needs to know the matrix form of the interaction Hamil-
tonian. According to Eq. (2.94), each element of the Hamiltonian can be written as

Hy),, = (b Hyla) — ecg/dwb (-0 1 hc) us, (3.10)

In principle, one could calculate this integral directly and obtain each matrix element
of the Hamiltonian. However, in the following, we will show how these terms can be
calculated from the Einstein A coefficient and oscillator strength that can be obtained
from ab atomic database or code. The first step of such an approach is to recognize the
relation between [Hj],, and the dimensionless transition amplitude Tgp. In first-order
time-dependent perturbation theory (Appx. A.3), the matrix element T, for a wave
polarized in €, is

Top(k,v) = / dryfa - &,e Ty, (3.11)

Therefore, the interaction Hamiltonian can be written as

[Hl]ba = % ab(k V) —iwt + h.c.=d-E+ h.c., (3.12)

with the scalar effective ‘dipole’ moment given as

d = STk, v). (3.13)

~—Lab
W

Using the relation between the Einstein A coefficient and the transition amplitude

o ~ 2 ~ 2
Ape = %w/dﬁkz Tia (k)| = 60w |Tha(k0)| (3.14)
v
one obtains the effective ‘dipole’ moment as
3 2.2
2 = 2 A (3.15)

4o’
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Here, Eq. (3.15) is a general relation between the ‘dipole’ moment and the Einstein A
coefficient. Later we will show that, for all multipole transitions, there is always an
effective ‘dipole’ moment as defined in Eq. (3.13) related to the multipole transition.

3.2 Multipole transition amplitude

The multipole transition series originate from the multipole expansion of the vector light
field in the basis of vector spherical harmonics. To proceeds, we define a new field

A(r,w) = ek,

which is just a normalized vector potential of a plane-wave light field. Expanding this
function in the basis of vector spherical harmonics (see Appx. E), in velocity gauge, one
obtains [115]

Arw) = 4r 3 (YA (k) -€) el (), (3.16)
JMX

with the multipole potential a‘(])}&(r) given by

al(r) = Gs(kr)Y 0 (7). (3.17)
o) = 1500+ 2 v + 102y (06, @y

Here, J is the total angular momentum and M is the magnetic quantum number of
the transition. The definition of the spherical Bessel functions j;(kr) and the vector
spherical harmonics Y}Z)\‘/}(f) can be found in Appx. E and in reference [115]. Especially,
A = 0 corresponds to magnetic multipole potentials and A = 1 corresponds to electric
multipole potentials. All information on the polarization é and propagation direction
k is included in the expansion coefficients Y}Ji‘/}*(l%) - €. The strength A of the field is
normalized in the definition of A (r,w).

Based on the multipole expansion of the field, the transition amplitude from state |a)
to state |b) defined in Eq. (3.11) can be expanded into a series of multipole transition
amplitudes as

T(k,v) = 4z 3 (Y ()¢ )[T}}}]ba, (3.19)
JMM

with the multipole transition amplitude being

T, = [ drvle @ (320)

For spontaneous emission from an excited state to the ground state, the photon can
be emitted to any direction and polarization. In order to obtain the total transition
probability, one needs to sum the transition probability over all the propagation direc-
tions k and polarizations €,. This results in the total transition probability (Einstein A
coefficient) as

(6]
A = 5w Tha|?, (3.21)
7T
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with
2

Z Tha (K, V)ei“”(f“"’)
kv

’Tba’2 -

The extra phase factor go(]?;, v) characterizing the phase of a wave for a given k and e,.
Physically, they stem from the vector potential through

A(r,w) = /koZA(I%,V)&eik’rHW(’;”’).

If we assume that the photons emitted into different directions and polarizations are
incoherent with each other, we obtain

(IThal?) = ;‘Tba(l%,u)‘z_/koZV:‘Tba(l%,u)F,

with the term for a given k and é being

‘Tba(iﬁ V) ’2
- o 3 ot ) [ 5 O ) ],
JM'N JMM\

In the above equation, the effects of integration and summation only show up in the two
coefficients of the multipole expansion

(YR &) (Yir () -,
which can be easily calculated. Firstly, the summation over €, gives
> (Vb &) (Yir () - &) = (Vi (h) - Y ().
Then integration over all the propagation directions leads to the orthogonality relation
[ (Y (0 - YT (B) = ssbrnasbin,

expressed in with the Kronecker § symbols. Therefore, one obtains

2

2
‘Tba(k,u)’ = 1672 Y HT}}}] | (3.22)
JMX
which gives the total transition probability as
2
Ape = %w<\Tbal2> = 8maw Z HT}?‘\HM‘ ) (3.23)

JMA

This is an incoherent summation over all the possible multipole transitions. Selection

rules based on angular momentum conservation laws are included in the multipole tran-

sition momenta [T%}IL} . From Egs. (3.17,3.18,3.20) and the orthogonality relation in
a
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spherical harmonics, only one J and A remains, and all the other terms vanish. There-
fore, the Einstein A coefficient is only characterized by a specific J-pole A-transition

a

Ay = [Af})}b - 8meHT}}Hba‘2. (3.24)
M

From Eq. (E.56), we also know the relation between the Einstein A coefficient and the
reduced oscillator strength

[AP), = 2], 325)

3.3 The Hamiltonian of multipole transitions

For a light field, the vector potential can be written in terms of a carrier frequency wy
and envelope A:

AW (x,1) = %A(x,t)e“ko-xfwoﬂ:%A(xo+r,t)e“ko-xwot)eiko-f. (3.26)

The coordinate x = xg + r is separated into the coordinate of the nucleus x¢ and the
coordinate of the electron r. If the envelopes vary slowly in the range of the atomic size,
one can approximate A (x¢ + r,t) ~ A (xo,t). This leads to

. 1 . .

A (x, 1) ~ AP (x0, 1) K0T = 5A (x0. 1) eilkoxo—wot) giko-r, (3.27)

With xg being a parameter, the electric field has the form
, 1 . ,

EY (x,t) ~ EXF) (x¢,1) ek0T = & (x0,1) ei(koxo—wot) gikor (3.28)
where & (xq,t) = iwpA (x0,1) is the envelope of the electric field. Here, it is a complex
function because the phase function is absorbed into &€ (xo,¢). The Hamiltonian in
Eq. (3.6) is replaced by

Hy = —d- & (xo,t)e!koxowot) L p
with the effective ‘dipole’ moment d defined by Eq. (3.6).

Based on discussions in Appx. E.2.2, the effective moment can be expanded in terms
of multipole momenta

d = Y df, (3.29)
JMA
with
» o ce€ Jox (v A @I D) Ry

w

- (i ) (PR ). e
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N

with ¢j,,(r) being the electric and magnetic J-pole-moment operator for A = 1 and
N

A = 0, respectively. t;,,(r) is the corresponding J-pole-transition operator. Therefore,
the Hamiltonian can be expanded in terms of multipole transitions Hamiltonian as

Z d%\)/[ - & (x0,t) ci(ko-xo—wot) + h.c. = Z [H‘(]?\HI’ (3.31)
JMN JMA

with the multipole transitions Hamiltonian given by
[H ], = d - € ro ) eloomeol e, (3.32)
In matrix form, each element of the Hamiltonian is
|52 e = (Wl A0y 1ba) - € (x0, 1) eiox0=e0t) 4 p e, (3.33)

As we discussed before, for given eigenstates |¢,) and |¢p), there is only one nonzero
multipole transition and all the other terms vanish. Substituting the relation between
multipole transition operator and its corresponding oscillator strength from E.52; the

M)

amplitude of the effective multipole moment p5;, between the two states is given as

(3.34)

e AL M) I O RE YL A

Therefore, we obtain the new form of the matrix element of the interaction Hamiltonian
as

[H0)] = W geitonotion) Lpe, (3.35)
with the term ¢y being defined according to

(sl Ay a) = uGype™®. (3.36)

By defining the multipole Rabi frequency
Q = ufye. (3.37)

the Hamiltonian is represented in the same form of what we obtained for electric-dipole
transition in Sec. (2.3). Because the oscillator strength can be obtained from e.g. the
GRASP atomic structure code, the above form gives the direct calculations of the cou-
pling strength for given multipole transitions.

3.4 Multipole wave propagation

There have been many discussions on Maxwell’s equations including quadrupole terms [116—
120]. However, all of them are based on Cartesian coordinates which makes the discus-
sions difficult to be generalized to higher multipole radiation cases. Here we will show
how they can be simplified in the basis of multipole potentials.

As introduced in Sec. 2.1, Maxwell’s equations in a medium without free charges and
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currents are given as [108]

V-D = o0, (3.38)

V-B = 0, (3.39)
0B

VxE = - (3.40)
oD

H = - 41

V x Ho ot (3 )

where the displacement field D and the magnetizing field H are defined through

D = gE+P, (3.42)
1

H = —B-M (3.43)
Ho

Usually, the polarization field P and magnetization field M are defined through the
electric-dipole moment and the magnetic-dipole moment

P = N er), (3.44)
M = N<;L(L+ZS)>. (3.45)

When multipole radiation is considered, one can generalized the field P to an effective
multipole polarization field

Py = N(df)). (3.46)

In this way, the Maxwell-Bloch equation would be of the same form as derived in Sec. 2.4
and Appx. D.
We start tart with the wave propagation equation from Eq. (2.27)

1 62E (X[) t) 62P (X() t)
2 ) - )
VE (x0,t) — 2 o 'UOT’ (3.47)
and

1 ,
E(+) (X07 t) = 55 (X07 t) eZ(kO.xo_WOt)a (348)

1 A
PY) (xo,t) = 5P (x0,1) eilkoxo—wot) (3.49)

with £ and P being the amplitude of the envelope of electric field and polarization field,
respectively. The Laplace operator V2 now is acting with respect to xg. In Chapter 2,
the wave propagation of £ is accounted for in terms of amplitude and phase functions
separately. However, from Appx. D, one also obtains the wave propagation equation of
the complex field:

o€ o€ ipowoc? »

As the Hamiltonian in Eq. (3.35) represents the same form as the Hamiltonian of
the electric-dipole transitions discussed in Chapter 2 and Appx. D, the corresponding
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Maxwell-Bloch equations used their can be directly applied to the case of multipole
transitions.

In terms of the complex light field discussed in Appx. D, one obtains the Maxwell-Bloch
equations for multipole transitions as:

Pgg = % (Q2pge — 27peg) + Tpee, (3.51)
Pge = Z% (Pegg — Pee) — 1Apge — %Pge» (3.52)
Peg = Z% (Pee = pgg) + iDpeg — %Pegv (3.53)
Pee = % (2% peg — Qpge) — Tpee. (3.54)
with
Q:MS)}\)/I‘S» A=wy)—w, and y=T+g4, (3.55)

and they are coupled to the light propagation equation

oE  0& .
5 + Cop = ~HHONIWOCHe. (3.56)

These equations are extensively used in Chapters 5-7.

Compared to the Maxwell-Bloch equations given by Eqs. (2.151-2.157) where the
amplitude and phase of the light field is treated separately, Eqs. (3.51-3.56) are equations
with a complex light field and the singularity problems in the numerical simulation is
removed. Therefore, the equations represented here are extensively used in the numerical
and analytical discussion of lasing processes in Chapters 5-7.

3.5 Summary

In this Chapter, we generalized the Maxwell-Bloch theory to include multipole transi-
tions. The multipole moment and the Rabi frequency are written in a form which allows
their direct evaluations by the help of existing computer codes or transitions. As we
show later, lasing transitions with higher multipole rates lead to a narrower bandwidth
in the X-ray lasing.
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Chapter 4

Spectral broadening

The gain medium of our lasing scheme is based on highly charged ions in a hot dense
plasma in which fast collisions occur (see also Appendix F), resulting in a broadening of
the lasing transition [121-126]. Therefore, in this Chapter, different spectral broadening
effects e.g. the Doppler broadening, electron-ion impact broadening and ion-ion Stark
broadening arising in the plasma are considered. The Doppler broadening is presented in
Sec. 4.1 by assuming a Maxwell-Boltzmann distribution of the ions’ kinetic energy. Then,
the formula for the electron impact broadening in the presence of a Coulomb scattering
potential is derived in Sec. 4.2. After that, the formula for the ionic Stark broadening
of the transition in He-like ions is discussed. The evaluation of these formulas requires
detailed calculations of atomic structures. However, we show how these formulas can be
approximately calculated with Einstein A coefficients and oscillator strengths from an
atomic code.

4.1 Doppler broadening

For an atom moving with velocity u, the corresponding Doppler shift of frequency vy is
given as [125, 126]

v = E1/0. (4.1)
c

Therefore, the the frequency seen by the atom is

v = <1 — u) V. (4.2)

Cc

For gases with Maxwell-Boltzmann velocity distribution, different atoms get different
Doppler shift. The corresponding distribution of the shift is just given by the Maxwell—
Boltzmann distribution of the gas

2
2v/1In2 2v/1n2
_ _ — 4.
¢(V) ﬁAVD exp{ < AZ/D (V VO)) } Y ( 3)
which is also a Gaussian distribution with the FWHM given as

2kpTin2
Avp = 2/ 720, (4.4)
micC

with kg = 1.38 x 10723 m? - kg -s2- K~ ! the Boltzmann’s constant, 7} the temperature
of the ion gas and m; the mass of the atom. Introducing the mass number M; = m;/ My,

45
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with mp, = 1.673 x 10727 kg, the Doppler broadening can be rewritten in a form

Avp

Yo

= 7.689 x 107°/Ti[eV]/M;. (4.5)

Here, the temperature is in units of €V, with 1 eV equivalent to 11594 K. The relative
broadening Ay—’;D is proportional to the square of temperature, and inversely proportional
to the mass of the atom.

For Ne®t with M; = 20, the relative Doppler broadening under temperature 7; = 0.042
eV gives

Avp

Yo

= 3.523 x 1079, (4.6)

In the case of x-ray lasing with hry = 920 eV, the Doppler broadening in the unit of
meV is given as

hAvp = 3.24 meV . (4.7)

4.2 Electron—impact broadening

In hot plasmas, the collisions between electron—ion and ion—ion modify the wave function
of the bound electron states in the ions. When the collisions are much faster compared
to the time scale At we are interested about, the ion undergoes large number of collisions
with electrons or ions. Therefore, the average modifications of the wave functions of the
bound electrons results in an effective Hamiltonian given by Eq. (F.68):

H o= ih)y_ fi(Si—1), (4.8)

with f; the collision frequency and .S; the scattering matrix of the i-th type of collisions.
For a low-temperature dense plasma, as discussed in this thesis, the ions move much
slower compared the electrons such that the ion-ion collisions are inefficient. Thus, the
spectral broadening by neighboring ions are accounted by a quasi Stark field discussed
in Sec. 4.3. Nevertheless, the procedure for the calculation of both electron—ion and ion—
ion impact broadenings are the same. In the following, we will first derive the general
formula for the impact broadening of collisions with a charge particle. After that, we
will only focus on the results for the case of electron-impact broadening.
The collisions lead to energy shifts and spectral broadenings of the ionic transitions

%7—[ = w+1d. (4.9)

To calculate the values of the shift and broadening of a specific transition for a ion
under collisions with other charged particles (electrons or ions), in the following, we
will call the ion we are interested in as the emitter and call the other charged particles
colliding with the ion as the perturbers. Then the total interaction experienced by the
emitter is given by

U=> U, (4.10)
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with U; the interaction between the emitter and the i-th perturber given by

(Z+ 1)ZZ’62 ZZ’GQ

Ui = - :
! 47T50R2‘ 47['50 ’T - Rl|

(4.11)

Here, Z is the charge number of the emitter, Z; is the charge number of the i-th perturber.
R; is the displacement of the i-th perturber with respect to the nuclei of the emitter,
and 7 is the displacement of the electron in the emitter. For R; > r, one has
ZZ‘GQ ZZEQ
dmeg [r — R;| 47750\/1%1-24—7"2—27“-31
Zl-ez
4reg\/R? — 2r - R;
Zl-ez 1

47T60Ri 1— 27'1.%12?,2-

2
Zi€2 T‘-Ri 3 T‘RZ‘
1-— — U I 4.12
47T€0RZ‘ ( R? +2< Rz2 ) + ) ( )

Thus, the i-th interaction Hamiltonian can be approximated as

Q

%

ZZZ'(B2 ZZ'QZ r L 3Zi62
dreoR;  AmeoR3 8meg R?

U; (r- R;)?. (4.13)

The first term refers to the Coulomb interaction between the two particles, the second
term refers to the dipole interaction that describe the potential energy of and charged
perturber in the field of the emitter’s electron-nuclei dipole. The third term refers to
quadrupole interaction which is prominent only when the perturber is very close to the
emitter. Surely, Coulomb interaction is much stronger than the dipole and quadrupole
interactions when R; > r. However, such Coulomb term has no dependence on the
bound electrons in the emitter, it only acts as a global phase shift for all the eigen-
states, thus affecting the trajectories of the perturbers during the collisions. Besides,
the quadrupole term is also small compared to dipole term when R; > r, we will also
neglect such effect in the following. Therefore, the interaction Hamiltonian giving rise to
phase shift, thus broadening can be approximately accounted for as [121, 122, 125, 126]

Zi62

UA
! 471‘80 R?

r-R;. (4.14)

With this interaction Hamiltonian, the scattering matrix can be written as (Appx. F.6)

1 00 1 2 roo t1
S;—1 = %/700 dtUi(t)-f- <Z7:L> / dty dtQUi(tl)Ui(tQ)

—0o0 —00

e}

1 3 0 t1 to
+ (Zh) / dt1/ dts dtsU;(t1)U;(t2)Ui(ts) + ... (4.15)
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4.2.1 Classical trajectory

In order to calculate the integrals in Eq. (4.15), one needs to know the expressions of
Ui(t). The quest for U;(t) is equivalent to the quest for the trajectory R;(t) of the i-th
perturber [122, 125, 127]. From Eq. (4.13), the trajectory is mainly determined by the
first term describing the Coulomb interaction. Therefore, the equation of motion for
R;(t) is given by

d’R,; Z7;e2

. - : 4.16
Hi g dmeoR3 (4.16)

with u; the reduced mass of the two collision particles. Solution of such equation is

Ry

(1) = —0  for ZZ; <0, 4.17
Ba(?) e cosf(t) + 1 or <0 (4.17)
Ri(t) = __ B for ZZ; >0 (4.18)

’ © ecosf(t) -1 Lo '

with
4 202

R, — Ameobivl (4.19)

|ZZZ‘|€2

being the closest distance the perturber can approach to the emitter. Because the
perturber comes with a finite velocity and energy, one would expect € > 1 and the orbit
to be a hyperbola curve with the form

[\
)

= 1. (4.20)

Q‘H

<o
|
@‘@

ENN)

However, as shown in the following, we do not have to perform the trajectory integral
along the hyperbola curves [122]. By making use of the relation

dR;

el v;, (4.21)
one obtains
77>
————R,. 4.22
WiV = oo R (4.22)

Therefore, the dipole interaction Hamiltonian can be rewritten as

Zi€2 1w
’i — . Z f— '77 . 'i 4-2
u 47r50R?T R ih z" Y (4.23)
This means that
1 [ i
" / AU () = ELr . vi(o0) — vi(—o0)]

1



4.2. Electron—impact broadening 49

with Ap; = u; [v;(00) — v;(—00)] the momentum transfer during the collision (Appx. F.4).
Then the S-matrix is given as

5.1 = Lpa -+1<1 rA -)2+
i T oz P Gy o) T
TApZ 1 2
- _ AP+ 4.2
iz oz TUAP) (4.25)

We can see that the first-order term is nonzero only for off-diagonal matrix elements
with electric dipole transition. The second-order term is finite for all the possible matrix
elements.

Considering thermal effects without any drifting velocity, the average of Ap; gives
zero value in the first order term of the S-matrix. Therefore, if one only keeps the lowest
nonvanishing term, we have

1

Sl =~

r-Ap)t. (4.26)
What we should emphasize is that R;, v; and p; are vector parameters describing the

perturbers. On the other hand, r is a matrix vector represent the electrons in the
emitter. Thus, » commutes with p;.

4.2.2 Thermal effects
Firstly, the quadratic term can be rewritten as
(’l” : Api)Z = (rxApia: + TyApiy + rzApiz)Q . (427)

All the terms like pizpiy, Dizpi- and piypi. in Eq. (4.27) will vanish after thermal average.
Thus

<

(r-apy)*)y = r2(Aph) +r2 (Aph) +r2 (Aph)
= 3 <Ap12> (r% + 7’2 + rz)
1

= 3 (Ap?)rr. (4.28)

—_

One should keep in mind that r%+r§+r§ # r2. This is because each r;, 7y, 7, corresponds
to an operator

re =y i li) (i,
ij
ry = > v li) (il
ij
r. o= > z;li) (il
i
and

Glrrls) = D Glr k) (k[ j). (4.29)

k
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From Appx. F.4, the change in momentum for v;(—o0) = v;2 is

Ap, = piAv; = p;v; (sinfcosg® + sinfsingy + (cosd — 1)2) . (4.30)
This means
2 20
(Ap;)® = 4plv’sin 2 (4.31)
and
1 2 2u3v; 50
Si(v;)) —1 = ~ 6272 <Api > T =g sin 5T (4.32)

The collision frequency for a given velocity is given as

fl(vz) = NUZ'O'Z'(UZ‘)F(’UZ‘), (433)
with N the density of the perturbers and F'(v;) the velocity distribution function.
2
oi(v;) = 4;{19 is the differential cross section given in Eq. (F.15) with
11 b
ZZ;e?
b, = —. 4.34
+ 47r50,u,ivi2 ( )

Therefore, the effective Hamiltonian can be calculated as
= iy filSi -
i

= ’LhN/’UlF(’Uz)d’Ul/27T81n9d90'1(51 - 1)

— ihN / viF(v;)dv; % / 47rsinzcosgd04si§4g {_2/1322211; g}r’r
= g;ggN/F(vi)v?dvi/d sing S?j‘g rT
, 2
= ggg;N/F(’Uz)v?d’vz/ dSisrllfég Lfgﬁi;] rr
= lenA/F(vi);dw
_ _Zm (;)avmm. (4.35)
d sing

Here, InA = [ —

plasma. For electrons, one has

[eoknTe [ Toev]
= =744 ——=-. 4.36
b Nee? Ne[em ™) (4.36)

47T60ﬁ2
Zmee?

7~ R lan is the Coulomb logarithm. Ap is the Debye length of the
2

Furthermore, with = in units of Bohr radius ag = in the emitter, one has the
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effective Hamiltonian as

AnZ2R3NInA
H = —ZWTT, (437)

where we have taken the relation

1 204 4 1
- — . 4.
(UZ‘) 7Tk‘BT T U; (4.38)

The corresponding shift and broadening operator can be calculated through

16Z2h2N1InA

= —H=—— 4.
¢ zhH 30;Z°%m? TT’ (4.39)
or
¢ = —16N<Z’h)21nA>< (4.40)
= 35, Zme rT. .

With v; = \/SffﬁT, one has

8 Uy Zlh 2
—— N InA . 4.41
¢ 3\ 2ksT (Zm> e (4.41)
For electron impact scattering, Z; = —1 and the reduced mass p; = me, one obtains
8 ho\?
= ° N, InA
¢ 2k:BT (Zme) AT
o Nofem™] 1
= —1.66 x 107" \/[CL] ZslA xrr
Nilem
~ —0.83 x 10*9¥1n1\ X rr (4.42)

TeV]

From this formula, the electron-ion impact broadening is proportional to the ion density,
but inversely proportional to the electron temperature.

For further calculations, one needs to know the value of rr. In the following, we will
show how this can be calculated from oscillator strengths. Starting with Eq. (4.35), one
defines

H = prr, (4.43)
with
A Z2et 1
= —4—2r— = NlnA. 4.44
ﬁ Z3(47T€0)2h (Ui>av . ( )

Now, r is again in SI units. As an example, we calculate the diagonal elements of the
effective Hamiltonian

Hpn = [{n|rr|n) = ﬁz (n|r|k) (k| r|n) = QZ,unk, (4.45)
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where p,,r, = e|(n|r|k)| is the dipole moment between state |n) and |k). From Eq. (B.18),
we will have

3h gn fnk Bh gn fnk
& 2me TN Z wkn, 2me TN Z E; — (4.46)

With fnk and fuwg, can be calculated from graspa, the value of H,, can be obtained.

4.3 lon-ion Stark broadening

In a low temperature dense plasma, the ions move slowly that, for the time scale we are
interested, they can be treated as static. Therefore, the interaction between the emitter
the the neighboring ions can be accounted for by the Stark effect [122, 128, 129]. In
the following, we will first introduce the atomic calculations of the Stark effects. By
introducing the random distance between the emitter and neighbor ions, one obtains a
distribution of the Stark shift over different coordinate, resulting in an inhomogeneous
spectral broadening.

4.3.1 Stark effect

For an atom in an external static electric field, the potential energy for the atom sitting
at R is [122, 125]

Vint = eV (R) + Z eV(R+ 1), (4.47)

with V(R) the potential energy of the nuclei and V(R + 7;) the potential energy for the
i-th bound-electron in the atom. For a given atom, the value of V(R) is constant and
can be set to zero. Furthermore, if the external electric field changes little within the
size of the atom (thus within r;), one has

Vit =Y _eV(R+71)=> e(-VV)r; = ZFdl, (4.48)

7 7

with FF = —VV the electric field strength at R and d; = er; the electric dipole moment
of the i-th electron. Define the total dipole moment of the atom as

D=>d, (4.49)

we have
Vi = F - D. (4.50)

First order — Perturbation theory gives the first-order energy correction due to Viy
as
EY = (n|Vig|n) =F - (n|D|n). (4.51)
Usually, (n| D |n) = 0 because D has odd parity.

First-order Stark effect exists only for degenerate systems that can be coupled by
electric dipole interactions. As an example, we take n = 2, there would be states |200)
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for angular momentum ! = 0, and |20 — 1), |200), |201) for angular momentum ! = 1.

If energy for all the four states are degenerate, such as H-like ions [122], then coupling

between |200) and the other three states would give the first-order Stark corrections
EY = D,F, (4.52)

with D,, = |(s| D |p)| the absolute value of the dipole moment that can be calculated
from the oscillator strength. By approximation, one has

(4.53)

Second order — For nondegenerate state, the first-order energy correction vanishes
and one needs to go to the second order perturbation where

(2] Vi 18) (K] Vi I}
EY(L2) - Z E —F = Z Fanzg 7s (4.54)
k#n n k i iy,

with the polarizability tensor o;; defined as

(n| Dj |k) (k| Dj |n)

An.ij = —2 Z y (455)
in E, — E;
and
D = D,d&+ D,g+ D.2. (4.56)

When the hyperfine structure in the atom is negligible, the polarizability tensor is
isotropic [128, 129], therefore,

Oniij = 51‘]‘0[”. (4.57)

So, the second-order Stark effect gives an energy correction of

1

E? = —§anF2, (4.58)
with
(n| D; |k (k| D; |n) D
an = —2> > =—2) —= (4.59)
i k#n En _Ek k;énE _Ek
and
Dy = [(n| DIk, (4.60)

Oscillator strength — To calculate the value for the two coefficients corresponding to lin-
ear and quadratic Stark effects, one makes use of the relation between oscillator strength
and electric dipole moment in Eq. (B.18)

30%¢® gn  fuk
D2, = Jn_ JnE 4.61
nk o2me Ty Ej — En, (4.61)
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Then we have

3FL2 2 r
o, = € %% (4.62)

4.3.2 Quasi-static-field broadening by ions

In the plasma, ions move much slower that electrons such that one can treat the ions
almost static. Then the emitters will have Stark shift by the Coulomb field of the nearby
ions. The distance between ions is randomly distributed, leading to a random Stark shift.
This will cause an extra broadening of the emission line.

In perturbation theory, the energy shift for transition between |i) and |j) follows

with m = 1 the linear Stark effect and m = 2 the quadratic Stark effect. The strength of
the electric field can be approximated as F' = 47350 Zpe/ R?, which is valid if there is only
one perturber nearby and all the other perturbers are far away. Quasi-static approxima-
tion holds if the perturbers move sufficiently slow that the characteristic frequency v/R

is much smaller compared to the Stark shift frequency [122, 125]

With the expression for F', one has

1
1 AI/z‘j(F) 2n
— = (=22 4.
R ( Cl-ije > ’ ( 65)

This gives the criterion for quasi-static approximation

’U2 ﬁ 1 ﬁ
Av;i(F —_— — . 4.66
e > (22)" (&) (4.66)

4.3.2.1 Linear Stark broadening

For first order, n = 1, the corresponding averaged Stark coefficient given in refer-
ence [125] is

Cy(F) =~ 5o (n? = n2) (4.67)
with n; and n; the principle quantum number of the initial and final states. It is similar
to our former calculation of first order Stark effect

= 1

Cii(F) =~ %(Dm — D). (4.68)

, one has

where the prefactor -+ comes from E = hv. Taking v? ~ 3kpT
27h o

QZmekBT

M ()

(4.69)
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where p is the reduced mass of the emitter-perturber pair.
To calculate the mean Stark shift, one can approximate the mean field strength as [125,
130]

27
8Z,eN3 = ~“PE N3 (4.70)

Fr~
47T€0 471'60

Calculation of the above mean field strength has also included the cases where two or
more perturbers are presented at the same time. With such field strength, the linear
Stark broadening can be approximated by

12Z,h

2
Vij = Zm. (n? - n?) Ns. (4.71)

Relation in Eq. (4.69) gives the lower density limit of quasi static approximation

3 3 3
ksT\2 [ Zme 1
N 2 . 4.72
~ (6;1) (th> (n?n?) ( )
For x-ray lasing withn; =2, n; =1, Z =2, =8, u= %mNe and T = 10* K, one has
the lower limit as

N > 544972 =544 x 10"m™3, (4.73)

For our x-ray lasing with ion density N = 10?* m™3, a quasi-static treatment of ions is
therefore sufficient.

Besides, the collision between electron-ions gives Z = 8, Z, = 1, u = me, this gives
the lower limit for a quasi-static treatment of electrons as

3
N. > 5.44x10'6 (mN) Y% 7% = 6.91 x 10%m~3,
Me

This means that, for ion density N = 10?* m~3, the electron density would be approxi-
mately N, = 8 x 1024 m~3, which is quite close to the lower density limit for electrons.
The quasi-static broadening from nearby ions can be approximated through

12x8x1.05x 1072 5 > a2
Vi = Tgyodlxi0—s (2 T LNT=357x 107N

For N = 10** m~3, one has
vij = 357x 108 s7! (4.74)
with the corresponding broadening of
Aws = hr; = 148.2 meV (4.75)

4.3.2.2 Quadratic Stark broadening

For second order, one has

Qi
2
|

o~ o
K Ak "
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)~ P 64Z2¢*Ns
- - (471'60)2

This results in the formula for Quadratic Stark broadening as:

Vij = él(F2)
1 3126~ gn fur  64Z2¢2N

Ah me k?énﬁ(En — E)? (4meg)?
3 hetZ?

= S— PN QLLQ. (4.76)
™ Mmeed iz IN (En — E)

If we take the energy FE, in units of eV, we have the another form of the Quadratic Stark
broadening:

3 he? 4
vy = S gyt Ok ok (4.77)
3 M i I (E, — Ek)
The prefactor has a value of
h 2
3 e garx1072
T MeE]

The oscillator strength fx, and energies E,, Ej can be calculated from GRASP atomic
code.

To give an estimation, we find that the energy difference between 1s2s and 1s2p in
He-like ions can be approximated by E, — E, ~ Z eV, thus (E, — E;)?> ~ Z? in the
second-order Stark broadening. Because fp) ~ 1,

Z2 gi fnkz
’ k#n Tn (E” - Ek)Q
So the shifted frequency is about
vi; = 347x1072'N3,

For N = 10%* m~3, this gives a second-order Stark broadening of

vij = 347x 10" 7,
hvij = 1.44 meV.

4.4 Summary

In summary, the spectral broadening effects in plasma including Doppler broadening
Avp, electron-ion impact broadening ¢ and ion-ion quasi-static Stark broadening v;;
have been considered. In total, they have the following forms:

A
Doppler broadening: —-2 = 7.689 x 1075,/ T3[eV] /M,
Vo
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Nifem™]

TeV]

. . 120 / 2\ Ar2

ion Stark broadening, first-order: v;; = (nZ — nj) N3,
Mme

3 he?

i - L NN
ion Stark broadening, second-order: v;; = ﬁ@ Z5N3 % g—nm,

electron impact broadening: ¢ = —0.83 x 107 InA x rr,

with the following scaling laws on the temperature and density of the plasma:

Avp ~ VTZ3, (4.78)
1

¢ ~ —=DNion, (4.79)
vT
2

vij ~ N3  first-order, (4.80)

Vij o~ N3 second-order. (4.81)

The formulas derived here are used in order to calculate the broadening effect in our
lasing scheme put forward in Chapter 5.
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Chapter 5

Narrow-band hard-X-ray lasing with highly
charged ions

Since the advent of X-ray free-electron lasers (XFELs), considerable efforts have been
devoted to achieve X-ray pulses with better temporal coherence [30, 31, 52, 98-102].
Here, we put forward a scheme to generate fully coherent X-ray lasers (XRLs) based on
population inversion in highly charged ions (HCIs), created by fast inner-shell photoion-
ization using XFEL pulses in a laser-produced plasma. Numerical simulations presented
in this Chapter show that one can obtain high-intensity, femtosecond X-ray pulses of rel-
ative bandwidths Aw/w = 107> — 10~7 by orders of magnitude narrower than in XFEL
pulses for wavelengths down to the sub-angstréom regime. Such XRLs may be applicable
in the study of X-ray quantum optics [75-78] and metrology [79], investigating nonlin-
ear interactions between X-rays and matter [80, 81], or in high-precision spectroscopy
studies in laboratory astrophysics [82]. Parts of this Chapter have been presented in
reference [74].

5.1 Lasing scheme based on HCls

The photoionization-pumped atomic laser we put forward is illustrated in Fig. 5.1, where
the Li-like HCIs are initially prepared in a 15?2l (I = s,p) state in a laser-produced
plasma [106]. A SASE XFEL pulse tuned above the K-edge of the ions first removes
a K-shell electron from the Li-like ions, creating He-like ions in the 152l excited states.
Subsequent decay to the 1s? ground state leads to emission of X-ray photons via four
possible Ko transitions: one magnetic-dipole (M1) transition from the 35 state, two
electric-dipole (E1) transitions from the 3P; or ! P states, and one magnetic-quadrupole
(M?2) transition from the 3P, state. The population inversion in the He-like ions resulting
from this photoionization-pumping scheme leads to amplification of the emitted X-rays,
i.e., to inner-shell X-ray lasing.

Former soft X-ray lasers based on outer-shell transitions have demonstrated line focus-
ing to generate laser-produced plasma with a length up to 9 cm [13, 16, 131]. Therefore,
experimental realization could be achieved. The laser intensity to reach such conditions
can be estimated through the formula [132, 133]

T, ~ 3.6 x I1g\. (keV) (5.1)

with T, being the electron temperature in units of keV, I the laser intensity normalized
to 1 x 10 W cm™2, Ay the laser wavelength in unit of ym. The highest temperature
needed is 25 keV in the case of Xe plasma, corresponding to a laser intensity around
6.9 x 10" W em™2. Assuming a line focusing geometry of 10 pumx1 cm (10~% cm?
in focusing area), the total power needed for such an experiment can be estimated as
107* em? x 6.9 x 101 W cm™2 = 6.9 TW.

99
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The total energy needed to generate such a plasma can be estimated from the total
kinetic energy of the electrons plus the average binding energy of the electrons in a
neutral atom

W ~ (T, + 0.5Wy)NSL (5.2)

with Wy the ionization threshold of the 1s22s configuration in Li-like ions. N, is the
electron density, S and L are the cross section and length of the plasma, respectively.
For lasing with e.g. a Xe plasma, the values we assume are S = 1 ym?, L = 8 mm and
Ne =~ 52 x N; = 52 x 2.7 x 10?! cm™3. This gives the total number of electrons in the

plasma being approximately

N.SL =52 x 2.7 x 1021 x 1078 x 0.8 = 1.12 x 10%. (5.3)

Highly charged ions

o e I T B A S R B o M

SASE XFEL

X-ray lasin
transition

MI1|E1|M2

Figure 5.1: Scheme of the lasing process. An upper lasing state 1s2] of He-like ions is pumped
through K-shell photoionization of Li-like ions initially in a 15221 state by an XFEL pulse tuned above
the K-edge of the He-like ions (blue arrow left). Lasing takes place through one of the four possible
transitions from an upper lasing state 152/ to the lower lasing state 15 (green arrows). The state
1s? is depleted through further K-shell photoionization by the same XFEL pulse (blue arrow right).
L-shell photoionization of the upper lasing states is represented by the thick blue arrow. The order
of the 152 states may vary for different elements.
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Considering that Wy = 9 keV, the total energy needed is
W = (25 +4.5) x 10* x 1.6 x 1071 x 1.12 x 10" = 5.3 J. (5.4)

Assuming an absorption rate of the laser pulse by the plasma being 10% [134], this
corresponds to a laser output energy of 53 J which can be achieved at currently existing
high power laser facilities [135]. With the power 6.9 TW estimated before, the duration
of the pulse to deliver such energy is around 7.7 ps. Besides, the simulation of the
sequential ionization of Xe in Fig. 5.2 indicates that Li-Like Xe can be generated in 5 ps.
Compare this duration with the pulse duration, one can expect that there is significant
fraction of Li-like ions.

Two factors determine which transition of the ion will lase. Firstly, population inver-
sion is needed to have stimulated emission. Typical XFEL facilities, with peak photon
fluxes of 1033 — 1035 ecm =2 s [35, 62], yield an inverse ionization rate of a few femtosec-
onds, such that XFEL pulses can effectively photoionize all the Li-like ions. Transitions
with upper-state lifetimes longer than 1 fs are necessary to ensure sufficient population
inversion between the 1521 and 1s? state. Furthermore, the finite lifetime of the plasma
Tp ~ 10 ps [136] also influences the lasing process. Sufficient amplification of X-ray radi-
ation will take place only from transitions whose decay is slower than XFEL pumping,
but faster than plasma expansion.

5.2 Theoretical description
Suitable XRL transitions in He-like ions are shown in Table 5.1. A full description of the

lasing process should account for all the 152l (I = s, p) states in He-like ions. However,
the lifetimes of these states differ from each other by orders of magnitude. When only

0.5 Xe Xe?3+ Xed4t B
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Figure 5.2: Sequential ionization of Xe. Collisional ionization of Xe is calculated in the simulation,
with the ionization rate obtained from FLYCHK simulations [106]. He- and Li-like highly charged
states are dominant after 3 ps.
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one of the four Ka transitions in the He-like ions satisfies the lasing requirements, a
two-level description of the ions is sufficient.

For light ions, Ne®T for example, the E1 transition with a decay rate of 9.24 x 1012 s~!
from the 'P; state will develop lasing. The other transitions have decay times much
larger than the plasma expansion time, and their contribution is negligible compared to
the ! Py state, such that they can be neglected. For heavy ions like Xe??T, however, since
the two E1 transition rates scale as ~ Z* (Z being the atomic number), they correspond
to 3.05 x 10'% s7! for 3P} and 6.82 x 10'° s~! for ! P|, respectively, which are too large to
enable population inversion with available XFEL pulses. On the other hand, the decay
rates of the M1 transition from the 35 state and the M2 transition from the 3P, state
are 3.7 x 101 s71 and 2.56 x 102 s~!, respectively, which are sufficient for lasing to take
place before the expansion of the plasma. However, the M1 transition from the 25 state
is dominated by large Stark broadening effects, such that the amplification of photons
emitted from this transition is much slower than for those emitted in the M2 transition.
Within the characteristic length L. for the M2 transition, the presence of the 3S; state
can hence be neglected. Similar arguments are applicable to Kr34+,

For Ar'* | there are two transitions that may lase simultaneously, as listed in Table 5.1.
However, the lifetimes 7 of these states differ from each other by a factor of 63. The
XFEL photon flux can be tuned properly to exclude one of them from lasing. For
instance, in order to obtain lasing from the 3P, — 1S transition, a mean peak flux
of 2.29 x 10?3 cm™2 s7! for the XFEL pulses is applied. This generates an upper state
pumping rate and a lower-state depletion rate which are 32 and 58 times larger than the
decay rate of the 3P, upper state, respectively, resulting in population inversion of the
transition. At the same time, for this value of the peak flux, the pumping rate of the
1Py upper state is only 0.26 times the decay rate of the ' P; state, too small to obtain
population inversion in the 'P; — 1S; transition. Thereby, lasing will only take place
from the 3P, state. A sufficient amplification of the X-ray photons emitted from the ' P;
state needs higher XFEL peak fluxes and higher ion densities. When such conditions are
met, e.g., for the parameters shown in Table 5.1, lasing from the 'P; — 18, transition
takes place. Saturation will be reached much sooner than for the 3P; — 1S, transition,
such that the 3P; state can be neglected.

With the Maxwell-Bloch equations in Egs. (3.51-3.56), one can construct the equa-
tions of motion describing the lasing processes put forward in this here. Assuming XFEL
pulses propagating along the # direction, the evolution of the X-ray laser field in the
slowly varying envelope approximation is given by [103, 104]

0A(x,t) N C@A(az, t) _ Z.HOUJOCQ

Y o 5 F(z,t), (5.5)

where A(z,t) is either the electric field £(z, t) or the magnetic field B(z,t), depending on
the specific transition. pg is the vacuum permeability and c is the vacuum speed of light.
F(z,t) corresponds to the polarization field induced by £(x,t) for E1 transitions, or the
magnetization field and magnetic-quadrupole field induced by B(z,t) for M1 transitions
and M2 transitions, respectively.

For a given lasing transition, we assume all Li-like ions are pumped into the corre-
sponding upper lasing state of such transition by the XFEL pulse. Using |e) and |g) to
represent the upper lasing state and the lower lasing state, respectively, the dynamics of
the He-like ions are described by the Bloch equations of the density matrix

pee(z,t) = —Im[Q(x,t)(x,t)peg(,t)] + o0xtel(x, ) poo(x,t) (5.6)
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_Uejxfel(l'a t)pee (:Ea t) - Fpee (:Ua t)a

peslr 1) = 10w 1) e, 1) — paglr, ) (5.7)
—%peg(g; t)+ S(z,1),

/)gg(x,t) = Im[Q(x, t)peg(x,t)] - Ugjxfel(ajvt)pgg(x’t) (58)
+T pee(z, ).

The carrier frequency wg is chosen to be resonant with the lasing transition. pe. and pgg
are the populations of |e) and |g), and the off-diagonal term peg represents the coherence
between the two lasing states. Q(x,t) = p&(x,t)/h for an E1 transition (or Q(z,t) =
mB(x,t)/hfor an M1 transition, and Q(x, t) = kogy.B(x,t)/h for an M2 transition [137])
is the time- and space-dependent Rabi frequency, with g the electric-dipole moment, m
the magnetic-dipole moment, and gy, the yz-component of the magnetic-quadrupole
tensor. XFEL pumping of the |e) state from Li-like ions is accounted for through the
second term in the right-hand side of Eq. (6.2), with pgy being the population of Li-like
ions, jyfel the photon flux of the XFEL pump pulse, and oy the K-shell photoionization
cross section of the pump process (15221 — 1s21). The XFEL pulse also depletes the |e)
and |g) states, as modeled by the third term on the right-hand side of Eq. (6.2) and the
second term on the right-hand side of Eq. (6.3), respectively, with 0. and o4 being the
corresponding photoionization cross sections. In Egs. (6.2) and (6.3), I'pee(z, t) describes
spontaneous emission at rate I'. In Eq. (6.3), the parameter

vy=TI+ Awei + (O'e + O'g)jxfel(ma t) (5'9)

models the three contributions to the decay of the off-diagonal elements: I' is the de-
coherence originating from spontaneous photon emission; the second term Awe; ac-
counts for the broadening from electron—ion collisions [138]; and the final term de-
scribes the contribution from depletion of the total population of He-like ions. S(z,t)
in Eq. (6.3) is a Gaussian white-noise term added phenomenologically, which satisfies
(S*(x,t)S(2,t")) = F(z,t1)0(t — t'). For E1 transitions, one has [103]

607?&)0 d ’)/2

where gg is the vacuum permitivity and N; stands for the density of the ions in the
plasma. d = 0.4 um is the radius of the XFEL spot on the plasma and L is the length
of the plasma.

The coupling between the Maxwell equations and the Bloch equations is given through
the induced fields P = —2Njppes, M = —2Nimpeg and Q = —2N;qpeg for E1, M1, and
M?2 transitions, respectively. Absorption of the XFEL pulse by the ions is included
through the rate equations

Djjxce :
‘éf L= Z Ok Pk NiJxfel, (5.11)
o K

where k={0, e, g} represents the three different states.
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5.3 Numerical simulations

Simulations for each transition have been conducted by solving the Maxwell-Bloch equa-
tions [103, 104] numerically in retarded-time coordinates for 1,000 different realizations
of SASE XFEL pulses. For most of the ions displayed in Table 5.1, only one of the four
transitions in Fig. 5.1 satisfies the requirements for lasing described above, such that
a two-level description of the He-like ions is applicable. For Ar'®* ions, there are two
transitions which may lase simultaneously. Thus, the XFEL peak flux is tuned properly
to ensure that only one of them lases. Values of the initial populations of the states in
Li- and He-like ions are computed with the FLYCHK method [106]. XFEL frequencies
and photon fluxes are then fixed such that K-shell photoionization of the 1522] and 1s?
states ensures population inversion in the He-like ions. Except for the transition from
Kr3* 3P, which needs more than 10 cm to reach saturated intensity, all the other
transitions are predicted to generate high-intensity X-ray pulses within 1 cm with small
bandwidths. For E1 transitions in Ne®" and Ar'6* a significant improvement of Aw/w
is obtained compared to SASE XFEL pulses [35] and XRLs with neutral atoms [30, 31].
When going to heavier Kr3** and Xe®?" ions, the M2 transitions provide an even more
significant reduction of the bandwidth, with Aw/wg being 3.7 x 10~ and 1.5 x 1076,
respectively. The resulting 13- and 30-keV lasers feature similar bandwidths as the
untested XFELO scheme [102], with intensities of ~ 10'® W ¢cm™2. The relative band-
widths are by 2 to 3 orders of magnitude narrower than the value predicted for future
seeded-XFEL sources at analogous hard-X-ray wavelengths around 0.41 — 0.95 A [35].

To understand the properties of our XRLs and how they develop in the plasma, simu-
lation results for the 3P; — 1Sy transition in Ar'®* are shown in Figs. 5.6-5.12 for the
corresponding parameters listed in Table 5.1. We use a partial-coherence method [93] to
simulate 124-fs-long SASE XFEL pulses with a spectral width of 1.55 eV and a peak pho-
ton flux of 2.29 x 1033 cm~2 s~!. This results in a peak pumping rate of 6.04 x 103 s~!
for the upper lasing state, and a depletion rate of 5.63 x 10 s~! for the lower lasing
state. They are 32 and 58 times larger than the spontaneous-emission rate of the 3P;
state, ensuring population inversion.

5.3.1 Initial conditions

Values of the initial populations of the states in Li- and He-like ions are computed with
the FLYCHK code [106]

poo(&?, = 0) = PlLiclike> (5'12)
pee(z,t=0) = 0, (5.13)
pgg(:pv t=0) = PhHe-like (5.14)

where p, . and p,_ . are the fractions of Li-like ions (15?2l state) and He-like ions
(1s? state) shown in Fig. 5.3. The initial population of the 152/ upper lasing states in
He-like ions is found to be negligible. Thus, most of the He-like ions are in the lower
lasing state and no population inversion exists before XFEL-pulse pumping sets in.
Since the decay of the upper lasing state in He-like ions is much slower than the K-shell
photoionization rate, after the Li-like ions are pumped to a 1s2[ state, this decays on a
time scale much longer than the inverse of the K-shell photoionization rate. Population
inversion develops after the lower lasing state (1s2) of the He-like ions has been depleted
by the XFEL pulse. In the simulation, only evolutions of the He-like ions are described
by density-matrix theory. The evolution of the populations of the other charge states is
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Table 5.1: Results for selected X-ray lasing transitions for different elements. Radiative pa-
rameters like transition energy wp, natural linewidth " and upper-state lifetime 7 are obtained from
the GRASP code [105]. The XFEL photon energy wysel, tuned above the K-shell ionization threshold
of the 1s? state, and the mean peak flux (ph. stands for photons), used in the 1,000 realizations of
the SASE XFEL pulses, are fixed to ensure population inversion and the applicability of the two-level
approximation. Electron temperature T, and ion density N; (ng = 10%° cm™3) are chosen to enable
a significant fraction of Li-like ions in the plasma [106] (see Fig. 5.3). The broadening effects, with
Doppler broadening Awp, electron—ion impact broadening Awe_;, and ion—ion Stark broadening Aw;;,
are calculated for given T, and NNV; based on Maxwell-Boltzmann distributions [125], with ion temper-
ature T; = 487 K. The characteristic length L. is the optimal length defined in Fig. 5.12. The XRL
intensity I. as well as the relative bandwidth Aw/wq at this length are obtained by averaging over
1,000 simulations, with the uncertainties arising from the random XFEL pulse profiles. The upper
and lower bounds are the values at the 10th and 90th percentiles of the corresponding distributions
(as shown in Figs. 5.12d.f for Art®™ 3P;).

Radiative parameters XFEL Plasma conditions Simulation results
Upper state wo T T Wxfel peak flux Te N; Awp  Awei Awii Le¢ 1. Aw/wo
1521 (keV) (meV) (ps) | (keV) (ph./cm?/s) | (keV) (ng) (meV) (meV) (meV) | (mm) (W/cm?)

Ne® TP 0920 608 010 | 1197 110x10% [ 0.035 002 323 008 006 | 28 455ix102 7.8,7x107°
A%t 3p0 3120 116 057 | 4124 229x10% | 025 025 780 138 981 | 33 5075 x 104 7.87,7 x 107
At 1P 3137 722 0009 | 4124 1.98x10% | 025 248 7.83 029 2522 | 035 1555Ex 100 47777 x 1070
Kt 3P, 13.087 007 946 | 17.316 1.87x 10% | 6.20 0.50 2258 045 276 | 289 43775 x 10 3777 x 1077
Xe?T 3P, 30589 1.91  0.34 | 40.304 7.45x10% | 25.00 27.0 4216  7.60 126 85 4718 x 10" 1.5%0% x 1070

modeled through rate equations.

Generation of the highly charged ions involves many complex processes. However,
experiments [139-141] shown that under given electron temperature and density, the
plasma will mainly consists of ions in highly charged states. In reference [139], experi-
ments at LULI2000 facility generated Kr and Xe plasmas with most of the ions being
Kr?* to Kr?™ and Xe?0T to Xe?!*, respectively. Other experiments [140] with Nb and
Ta at LULI2000 facility in 2015 produced plasmas with a mean charge state of (Z) = 30
and (Z) = 44, respectively. The main feature of these experiments is the laser inten-
sity which is around 10 W em™2 (1.5 ns). This has prevented the laser to generate
even higher charged states. By adopting a higher laser intensity (5 x 10'® W cm™2, 700
fs), in 2017, He- and H-like sulfur ions were obtained in a plasma generated by Orion
laser facility at AWE, UK [141]. All these measurements are coincident with atomic
simulations based on collisional-radiative atomic kinetics models like Averroes [142] and
FLYCHK [106]. Therefore, one can use these atomic models to predict the plasma
properties.
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Figure 5.3: Charge-state distributions for different elements and simulation parameters.

Table 5.2: Charge state distributions for Ar. The fractions of different ions under given electron
temperatures assuming an ion density N; = 2.5 x 10%cm™3.

Charge number 50 (V) 100 (eV) 150 (eV) 200 (eV) 250 (eV) 300 (V) 350 (V) 400 (eV)

0 1.28E-20 1.07E-30 7.47E-37 6.03E-41 4.05E-44 1.45E-46 1.65E-48 4.19E-50
1 2.84E-17 6.87TE-27 8.41E-33 T7.47E-37 9.15E-40 4.17E-42 5.80E-44 1.76E-45
2 3.61E-14 297E-23 7.06E-29 1.21E-32 1.48E-35 8.64E-38 1.48E-39 5.35E-41
3 3.62E-11 1.15E-19 4.96E-25 1.06E-28 1.82E-31 1.36E-33 2.87E-35 1.42E-36
4 1.58E-08 2.25E-16 2.00E-21 7.02E-25 1.69E-27 1.64E-29 4.25E-31 2.61E-32
) 3.22E-06 2.66E-13 5.25E-18 3.07E-21 1.02E-23 1.27E-25 4.04E-27 2.47E-28
6 3.14E-04 1.71E-10 7.58E-15 5.89E-18 2.64E-20 4.25E-22 1.67E-23 1.21E-24
7 1.04E-02 3.44E-08 3.27E-12 4.14E-15 2.66E-17 5.72E-19 2.85E-20 2.55E-21
8 1.26E-01 8.49E-06 3.01E-09 8.18E-12 8.79E-14 2.76E-15 1.84E-16 2.09E-17
9 4.93E-01  6.23E-04 8.66E-07 5.21E-09 9.57E-11 4.44E-12 4.01E-13 5.80E-14
10 3.38E-01 1.60E-02 8.31E-05 1.11E-06 3.53E-08 2.44E-09 3.02E-10 5.61E-11
11 3.14E-02  1.58E-01 2.99E-03 8.68E-05 4.74E-06 4.90E-07 8.30E-08 1.99E-08
12 2.37E-04 4.47E-01  4.48E-02 2.96E-03 2.78E-04 4.29E-05 9.93E-06 3.08E-06
13 1.89E-07 3.23E-01  2.59E-01 4.54E-02 7.68E-03 1.79E-03 5.65E-04 2.25E-04
14 1.49E-11 5.48E-02 5.04E-01 2.83E-01 9.51E-02 3.51E-02 1.56E-02 8.13E-03
15 3.09E-17 9.33E-04 1.70E-01 4.20E-01 3.44E-01 2.31E-01 1.58E-01 1.15E-01
16 1.54E-23 4.60E-06 1.97E-02 248E-01 5.53E-01 7.32E-01 8.26E-01 8.77E-01
17 1.75E-59  6.31E-24 3.20E-14 4.65E-10 7.36E-08 1.71E-06 1.51E-05 7.67E-05
18 4.30E-71  3.94E-44 7.70E-28 2.42E-20 4.05E-16 2.19E-13 1.89E-11 5.38E-10

Our FLYCHK simulations have provided the experimental conditions, e.g. temper-
atures and densities, needed to generate highly charged ions in the plasma. For each
element considered, one can obtain the distributions of the charged states (Table 5.2)
as well as the electronic configurations (Table 5.3) in the plasma. Such charged states
and electronic-configuration distributions, acting as the initial conditions, are the input
of our subsequent simulations with Maxwell-Bloch equations. However, as we can see
from the figure, only a few charge states dominate the populations and the others are
negligible. For each charge state, more than 96.4% of the populations are in their ground
state configurations, with the populations in the other configurations up to three orders
of magnitude smaller. Though they may contribute to the background emission, these
excited configurations can be omitted in the simulations because of their low density.
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Table 5.3: Electronic-configuration distribution for Ar. The density for different electronic con-
figurations are listed in the case of a total ion density N; = 2.5 x 10'°cm~3 with electron temperature
Te = 250 eV. The red color refers to the excited electrons in the corresponding charge state. The
electron number stands for the number of bound electrons in given ionization stage; the level number
for each ionization stage is counted from the corresponding ground state configurations; the level
name represents the superconfiguration defined in reference [106]; the configuration for singly and
doubly excited state are for a principal quantum number up to 10 is accounted.

Electron level level energy degeneracy configuration maximum  density
number number name (eV) shell, n
1 1 hyl 0.0000 2 1000000000 1 1.01E404
2 1 hels 0.0000 1 2000000000 1 1.38E+19
2 2 he2st  3104.2000 3 1100000000 2 3.18E+11
2 3 he2ss  3124.6001 1 1100000000 2 1.11E+411
2 4 he2pt  3123.6001 9 1100000000 2 7.88E+11
2 5 he2ps  3139.6001 3 1100000000 2 5.83E+09
2 6 he3ps  3683.6491 36 1010000000 3 1.49E+10
2 7 hedps  3874.6790 64 1001000000 4 5.85E+09
2 8 hebps  3963.2015 100 1000100000 5 3.21E+09
2 9 hebps 4011.2937 144 1000010000 6 3.50E+4-09
2 10 he7ps  4040.1938 196 1000001000 7 4.02E+09
2 11 he8ps  4055.3251 256 1000000100 8 4.82E+09
2 12 he9ps  4068.8349 324 1000000010 9 5.71E+09
2 13  helOps 4078.4984 400 1000000001 10 6.74E+-09
2 14  hellps 4085.6482 484 1000000000 11 7.92E+09
2 15 hel2ps 4091.0864 576 1000000000 12 9.22E+09
2 16  hel3ps 4095.3185 676 1000000000 13 1.06E+10
2 17 heldps 4098.6765 784 1000000000 14 1.22E+10
3 1 li2s 0.0000 2 2100000000 2 2.31E+18
3 2 li2p 33.9817 6 2100000000 2 5.98E+18
3 3 li3s 517.8149 2 2010000000 3 1.27E+16
3 4 l1i3p 527.1846 6 2010000000 3 2.99E+16
3 5 1i3d 531.0147 10 2010000000 3 3.85E+16
3 6 lids 695.0732 2 2001000000 4 1.85E+15
3 7 lidp 698.9396 6 2001000000 4 5.33E+15
3 8 lidd 700.5104 10 2001000000 4 8.51E+15
3 9 liaf 700.6742 14 2001000000 4 1.20E+16
3 10 libs 776.1229 2 2000100000 5 9.42E+14
3 11 li5p 778.1493 6 2000100000 5 2.80E+15
3 12 lidd 778.9801 10 2000100000 5 4.64E+15
3 13 libf 779.0683 14 2000100000 5 6.53E+15
3 14 lig 779.0942 18 2000100000 5 8.46E+15
3 15 1i6 821.6196 72 2000010000 6 2.46E+16
3 16 li7 847.3138 98 2000001000 7 2.89E+16
3 17 18 863.9893 128 2000000100 8 347TE+16
3 18 1i9 875.4214 162 2000000010 9 4.17TE+16
3 19 110 883.5982 200 2000000001 10 4.98E+16
3 20 op 3084.6816 4 1200000000 2 1.44E411
3 21 qr 3114.3101 6 1200000000 2 1.45E+10
3 22 st 3123.7200 6 1200000000 2 1.63E+11
3 23 jkl 3138.1516 14 1200000000 2 3.19E+11
3 24 abcd 3144.3916 12 1200000000 2 1.73E+10
3 25 mn 3161.6416 4 1200000000 2 4.29E+10

Charge state and electronic configurations with significant populations (> 0.001), have
been taken into account in our numerical simulations. Because the X-ray lasing only
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Figure 5.4: Evolution of the XRLs over 1,000 simulations (for the Arl®t 3p transitions).
a-c, Peak intensity, pulse duration and spectral full width at half maximum (FWHM) for the X-ray
laser. The solid lines display results averaged over 1,000 simulations. The dotted line in (@) indicates
the saturation intensity Iy = 1.18 x 10'2 W cm™2. Ly, Lo and L3 mark the lengths for the XRL
pulse to reach transform-limited profile, saturation intensity and Rabi flopping, respectively. L. refers
to the characteristic length that optimizes the intensity and bandwidth of the XRL pulses. Here, it is
defined as the length at which the slope of the solid line in (a) is 1/3 of the slope at Ly. The gray
areas in (a-c) indicate the distribution areas of the results over 1,000 simulations. At a given length,
the bottom and top edges of the areas indicate the 10th and 90th percentiles of the distributions,
respectively. d-f, Distributions of the peak intensity, pulse duration and spectral FWHM at L. along
the green dotted lines in (a-c). In (d), there are 15 simulations whose peak intensities locate in
the unsaturated region 106 ~ 10'2 W cm ™2, indicating that 1.5% of the SASE XFEL pulses cannot
provide enough pumping. More details can be found in Fig. 5.5.

happens in the He-like ions, only such ions have been described by a density matrix
through the Bloch equations. Evolutions of the other ions are described by rate equa-
tions. Besides, the three broadening effects are also calculated under the presence of
different charge states in the plasma.

5.3.2 Averaged results

Average results over 1,000 SASE-pulse realizations are shown in Figs. 5.12a-c. The
peak intensity of the XRL, shown by the solid line in Fig. 5.12a, increases exponentially
during the initial propagation stage, then displays a saturation behavior. The dotted
line indicates the saturation intensity

I, = hTw3 /6mc? (5.15)

at which the stimulated-emission rate equals the spontaneous-emission rate. This is
also the intensity from which the amplification begins to slow down. The evolution of
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Figure 5.5: Distributions of the XRLs at L. over 1,000 simulations (Ar'®T 3P,). a-c, Peak
intensity, pulse duration and spectral full width at half maximum (FWHM) for the X-ray laser. Blue
dots correspond to the simulation shots whose intensities at L. is higher than the saturation intensity.
Red dots represents the ones with intensities lower than the saturation intensity.

the pulse duration and the spectral width are shown by the solid lines in Figs. 5.12b,c.
At L = 0, only spontaneous emission takes place: the 342-fs average pulse duration is
mainly determined by the lifetime of the Py state (Fig. 5.12b), whereas the 23.5-meV
intrinsic spectral width before propagation (Fig. 5.12¢) is mostly due to the sum of the
natural linewidth I and the three broadening effects shown in Table 5.1.

5.3.3 Individual results

During its propagation in the medium, gain narrowing and saturation rebroadening
will also contribute to the final bandwidth. This can be observed by inspecting the
four distinct propagation regions separated by Li, Lo and L3 in Figs. 5.12a-c, which
can also be followed in Figs. 5.6a,b for a single simulation. Up to L; = 0.75 mm,
both the pulse duration and spectral FWHM decrease severely. The laser intensity
and spectrum in this region for a single simulation are spiky and noisy, as the ions
irradiate randomly in time and space (Figs. 5.6a,b). When the spontaneously emitted
signal propagates and stimulated emission sets in, it selectively amplifies the frequencies
around wy such that the XRL pulse approaches a fully coherent transform-limited profile
at Ly [104], with a bandwidth smaller than the intrinsic width. Thereafter, a gradual
broadening of the spectrum is observed in the region LiLo. The broadening increases
abruptly from Ly = 2.3 mm, where the saturation intensity has been reached and the
stimulated-emission rate exceeds the spontaneous-emission rate. This is accompanied
by a substantial slowing down of the amplification of the intensity and a significant
decrease of the pulse duration in the region between Lo and L3 (Figs. 5.12a,b). Further
propagation of the XRL pulse after L3 = 3.5 mm is characterized by the onset of Rabi
flopping (Fig. 5.6a) which is reflected by a splitting in the XRL spectrum (Fig. 5.6b).
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Figure 5.6: Evolution of the normalized XRL intensity and spectrum (Ar16+ 3Py, single

simulation). a, Intensity shown as a function of retarded time and propagation length. b, Power
spectrum displayed as a function of photon energy and propagation length. For a given length, the
intensity and spectrum are normalized to the maximum value of the corresponding profiles at that
length. The vertical dotted lines indicate the characteristic length L. shown in Fig. 5.12. For lengths
larger than L, the strength of the second peak in (a) appearing around retarded times of ~ 700 fs
has been multiplied by a factor of 5 for better visibility. c,d, XRL pulse profile and spectrum at L..
The yellow dotted lines correspond to the results from the simulation in (a,b). Three other simulation
results (green, blue and red dotted lines) at L. are also included for comparison, with the solid lines
corresponding to the results averaged over 1,000 simulations. e-h, SASE XFEL pulses used in the
four simulations in (c,d). Differences in amplitudes and positions of the peak intensities in (c,d) are
the result of shot-to-shot random profiles of the SASE XFEL pulses. XRL intensity and spectrum as a
function of propagation length for the XFEL pulses in (f-h), and averaged over 1,000 simulations, can
be found in the Figs. 5.7-5.9 and Fig. 5.10, respectively. In (c,d), the blue solid lines are obtained by
averaging XRL pulse shapes and spectra as a function of retarded time and frequency, respectively.
The peak intensity of the averaged XRL pulse shape in (c), therefore, differs from the averaged value
of the XRL peak intensity displayed in Fig. 5.12a and Table 5.1, because the position of the intensity
peak varies from shot to shot.

This effect is much stronger and more marked than for previous XFEL-pumped transient
lasers with neutral atoms [104] due to the absence of Auger decay [93]. At the same
time, the gain of the laser intensity in this region is strongly suppressed.

The optimal choice for a coherent XRL pulse is located in the third region Lo L3, where
saturation has already been reached while the bandwidth is still narrow. By choosing
the medium length to be L. = 3.3 mm, as shown in Fig. 5.12, one will obtain an approx-
imately 87-fs-long XRL pulse with an average peak intensity of I, = 5.0 x 10'* W cm 2
(~80% fluctuations) and an average bandwidth of Aw = 24.5 meV (~30% fluctuations)
as shown in Table 5.1. This gives Aw/wy = 7.8 x 1075 for a total of 6.5 x 10% coherent
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photons, with a peak brilliance of 1.4 x 103! photons/s/mm?/mrad?/0.1%bandwidth.

5.4 Other individual simulations

Simulation results of the intensity profile and spectrum as a function of propagation
length for shots 2—4 in Figs. 5.6, as well as the intensity profile and spectrum averaged
over 1,000 simulations, are displayed in Figs. 5.7-5.9 and Fig. 5.10, respectively. Shot-
to-shot differences are a consequence of the random SASE-XFEL-pulse profiles used,
shown in Figs. 5.6e-f.
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Figure 5.7: Evolution of the normalized X-ray laser intensity and spectrum (shot 2). Results
for SASE-pulse shot 2 in Fig. 5.6f; green dotted lines in Figs. 5.6¢,d. a, Intensity shown as a function
of retarded time and propagation length. b, Power spectrum displayed as a function of photon
energy and propagation length. For a given length, the intensity and spectrum are normalized to the
maximum value of the corresponding profiles at such length. The vertical dotted lines indicate the
characteristic length L. defined in Figs. 5.12. The decrease in the XRL bandwidth at the end of the
medium is a result of XFEL absorption.

5.4.1 XFEL parameters

Using the radiative parameters displayed in Table 5.1, and the corresponding K-shell and
L-shell photoionization cross sections shown in Table 5.4, the XFEL parameters are fixed
such that the requirements for lasing described in Sec. 5.2 are satisfied, and significant
population inversion can be obtained. In particular, the XFEL photon energies wyfel
listed in Table 5.1 are tuned above the K-edge of the He-like ions, in order to ensure
depletion of the initial population in the lower lasing state of He-like ions. For the
elements considered, this photon energy is also above the K-edge of the corresponding
Li-like ions. Photoionization of Li-like ions to a 1s2l excited state in He-like ions then
ensures population inversion of the considered lasing transition. Most of the XFEL
bandwidths listed in Table 5.4 are chosen taking into account realistic parameters at
XFEL facilities in operation or under construction. Only for the case of Kr34* and Xe??*,
the smallest values of the XFEL coherence times, thus the largest values of the XFEL
bandwidths, used in the simulations are limited by the time steps (6t = 0.00017 = 0.95 fs
for Kr34" and 6t = 0.0017 = 0.34 fs for Xe5>") employed in our numerical calculations
of the Maxwell-Bloch equations. However, simulation runs with smaller time steps, thus
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Figure 5.8: Same as Fig. 5.7 for shot 3. Results for SASE-pulse shot 3 in Fig. 5.6g; blue dotted
lines in Figs. 5.6¢,d. The exotic structures in both intensity and spectrum around L = 2 mm originate
from XFEL photoionization of the upper lasing state. The decay of this state is different during and
after the XFEL pulse. This renders it possible that two peaks develop and propagate before saturation.
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Figure 5.9: Same as Fig. 5.7 for shot 4. Results for SASE-pulse shot 4 in Fig. 5.6h; red dotted
lines in Figs. 5.6¢,d. A slight shift of the peak of the spectrum from wy is here apparent.

larger XFEL bandwidths, provide results which are not significantly different. This is
because photoionization pumping is determined by the XFEL flux and is not significantly
influenced by the properties of the XFEL spectrum [104]. Therefore, when we compare
the bandwidth of the XRLs and XFEL pulses in the main text, we refer to the realistic
bandwidth measured at XFEL facilities and not to the values used in this table.

5.5 Line broadening in plasma

In the following, we explain in detail the role of the presence of Doppler, collisional and
Stark broadening effects discussed in 4, as they are also comparable to the relatively
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Figure 5.10: Evolution of the normalized X-ray laser intensity and spectrum averaged over
1,000 realizations of SASE XFEL pulses. Intensity and spectra evaluated at the characteristic
length L. are exhibited by the solid lines in Figs. 5.6c,d. The chaotic features for small propagation
lengths, which are shown for single simulations in Figs. 5.6a,b and in Figs. 5.7-5.9 above, become
smooth here.

Table 5.4: Extended XFEL parameters. K-shell ionization cross section og and o, together with
the L-shell ionization cross section o, are calculated from the LANL Atomic Physics Codes [143]
(kb = 1072! cm?). SASE XFEL parameters such as pulse duration, bandwidth and total photons
inserted into the medium are simulated with a partial-coherence method [93]. The number of photons
absorbed during the lasing process is obtained from our numerical solutions of Egs. (6.2 — 5.11).

XFEL ionization cross section XFEL parameters
Upper state  og O Og duration bandwidth photons inserted photons absorbed
1521 (kb) (kb) (kb) (fs) (eV)

NefTIp, 391 16 151.2 21.3 6.25 2.4 x 1012 6.3 x 10°
Art6t 3P 246 048 446 124 1.55 2.9 x 1012 1.0 x 1012
At 1p 124 047 446 2.0 74 3.8 x 10'2 2.7 x 1010
Kt 3p,  6.24 012 109 202 0.57 3.9 x 10'8 2.0 x 10%3
Xe??t 3p, 266 0.06 5.31 72.5 1.96 5.6 x 10%3 3.6 x 103

small natural linewidth. As shown in Table 5.1, the Doppler broadening

|8In2kpT;
AwD = 78n ];) wo, (516)
mic

with kg being the Boltzmann constant, 7} the ion temperature and m; the mass of the
He-like ions, is not significant for light ions, but it becomes dominant for heavy ions like
Kr?4* and Xe??T.

The electron-impact broadening is given by [138]

16 Nh?

with v, = \/8kpTe/mm, being the average thermal velocity of the electrons in the plasma
and N, the electron density, and Z; the charge number of the ions. T, and m, are the
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electron temperature and electron mass, respectively. InA ~ 10 is the Coulomb logarithm
and 77 is a tensor with 7 being the dipole operator of the bound electrons in the ions.
This broadening is significant only for light ions such as Ne®™ and Ar'®* with lower
electron temperatures, but becomes negligible compared to Awp for heavy ions and
higher electron temperatures.

The quadratic Stark broadening from ion-ion interaction is calculated through [125]

Awii = aF?2, (5.18)
with
a = 4ﬂth]k/ eEpj), (5.19)
k#j
F? = 4Z% 2N3/(7750), (5.20)

where « is the quadratic Stark coefficient which would be different for each transition,
and F? is the mean-square electric-field strength generated by nearby perturbing ions
with charge number Z,. p;i and Ej;, are the electric-dipole moment and energy difference
between the states |j) and |k), respectively. Awi;, in general, is negligible for ion density
N; < 10" ¢cm™3, but becomes large for dense ion gases.

‘l‘ \ “ " H|\ “"M'l\ | |

i ‘ "“’ Wl

—_ —_ i 1
2 062 il sv b ')"‘ N
P P { ‘,”'“ ‘M]q mdllh‘\ |]
g -0.6_§ (’ \‘\ 1f u” h\J")‘{'\‘h,M' M
2 . ; ity
8 0.4% ;".‘ 1\\' ‘W I!N‘ \n il H ‘ﬂ"'lll‘
E E w\,‘\ j“l‘i\\ u,,!ﬁ‘ﬂw,‘,‘ “
g 02 A \:\‘ N
“ "‘H il f It l“
0 | | I i |“|
0 5 10 0 5 10
Length (mm) Length (mm)

Figure 5.11: XRL intensity evolution in an inhomogeneous plasma. a, normalized XRL in-
tensity. b, normalized plasma density (or temperature). For a given length, the intensity in (a) is
normalized to the maximum value of the corresponding profiles at that length. In (b), with the mean
values being 1, the density and temperature are normalized to ng = 2.5 x 10 cm™3 and T, = 250
eV, respectively.

In general, the natural broadening and electron—ion impact broadening are homoge-
neous for each ion, yielding a Lorentzian spectrum. The Doppler broadening and ion—ion
Stark broadening, on the other hand, are inhomogeneous for different ions, and result
in a Gaussian spectrum. For systems involving both homogeneous and inhomogeneous
broadenings, as it is the case here, the real spectrum has a Voigt lineshape given by the
convolution of the Lorentzian and Gaussian profiles, with a FWHM Awy approximately
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Figure 5.12: Evolution of the XRLs in an inhomogeneous plasma with averaging over 1,000
simulations (Ar16+ 3P)). a-c, Peak intensity, pulse duration and spectral full width at half maximum
(FWHM) for the X-ray laser.

given by [144]

Awy = 0.5364Awp, + /02166402 + Aw?, (5.21)

Here, Awy, = I'+Awe i is the FWHM of the Lorentzian function, and Awg = Awp+Awi;
is the FWHM of the Gaussian function.

Numerical simulations of the lasing process accounting for the inhomogeneous broad-
ening should take into account the distributions of the thermal velocity as well as

the Stark shift of the ions, which renders the simulations time consuming. However,
Eq. (5.21) shows that

Awy ~ Awr, + Awg =T + Awe.i + Awp + Awij (5.22)
For the sake of simplicity, we can approximate the parameter in Eq. (5.9) as
v =T+ Awe.i + Awp + Awi i + (0c + 0g) jxtel (T, 1). (5.23)

With this approximation, the distribution of the ions over different thermal velocities
and Stark shifts is automatically included in the Maxwell-Bloch equations. This simpli-
fication may lead to a maximum of 25% overestimate of the bandwidth compared to the
Voigt bandwidth Awy in the simulations. However, this will not change our conclusions
in the main text.
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5.6 Plasma inhomogeneities

For the above simulations, we assumed that the plasma is homogeneous in space and
time. Considering that the plasma may undergo fluctuations in both temperature and
density, simulations including these inhomogeneous effects should also be included to
verify whether the narrow-band lasing still holds.

Our new simulations considering fluctuations in the plasma density and temperature,
show in Fig. 5.11, yield the same conclusions. We assume the same behavior in density
and temperature fluctuations, see Fig. 5.11.b. The only difference is that, large density
fluctuations may need a longer plasma length, but the spectral width does not change
significantly.

5.7 Summary

In this Chapter, combining the theoretical results of the previous Chapters, we put
forward a scheme to obtain high-intensity X-ray lasers with bandwidths up to three
orders of magnitude narrower compared to the value predicted for seeded-XFEL sources
in the hard-X-ray regime [35]. The gain medium consists of highly charged ions generated
in laser-produced plasma. To show that our scheme can work with current experimental
capabilities, we perform numerical simulations with realistic systems for elements such
as Ne, Ar, Kr and Xe. As shown in Sec. 5.1, the plasma needed for lasing can be
generated by existing picosecond optical lasers with an intensity around 107 W cm 2.
Depending on the elements used, the electron temperatures in the plasmas are in the
range of 35 eV to 25 keV with the ion densities varying between 2x 108 —2.7x10%! cm™3.
A high-intensity X-ray laser can be obtained after a 1-cm-long exponential amplification
in a laser-produced plasma (see Table 5.1). For lasing based on Ne®t and Ar'4t, the
FE1 transitions are sufficient to develop X-ray pulses with saturation intensity. The
wavelength of the XRL is around 1.4 nm (920 eV) and 0.4 nm (3137 eV) for Ne®"
and Ar't respectively, with a relative bandwidth around 10~°. However, for heavier
elements, the M2 transition at a wavelength of 0.95 A (13.1 keV) and 0.42 A (30.6 keV)
for Kr3**t and Xe®?t has been employed, respectively, resulting in a relative bandwidth
of around 3 x 107 and 1.5 x 1075, respectively.



Chapter 6

Analytical solutions to the Maxwell-Bloch
equations

In Chapter 5, numerical simulations are performed based on the Maxwell-Bloch equa-
tions introduced in Sec. 3.4. Though, exact solutions to these equations are not available,
they can be solved under certain approximations. In this Chapter, we show that for
transient lasing discussed in Chapter 5, the analytical result on the spectrum and pulse
shape can be approximately calculated when the laser intensity is below the saturation
intensity.

6.1 Formal solutions to the Maxwell-Bloch equations

Assume the atoms are prepared in the excited state through instantaneous pumping.
The corresponding Bloch equations for the density matrix elements are given as

poat) = 1D (o ]~ T, (61)

peste.t) = 2P 0 (o) — (1) (62)
—peslw,t) + (2. 1),

Peg(z,t) = Im[pg(hampeg(x,t)]—i—rpee(:v,t). (6.3)

Here, p is the electric dipole moment, I' is the spontaneous emission rate and -~ is
the decoherence of the off-diagonal element. &(z,t) is the envelope of the electric field
satisfying the following propagation equation

0E(x,t) OE(x,t) powoc?
o o 2

P(z,1). (6.4)

where P(x,t) = —2Nppeg(x,t) refers to the macroscopic polarization field induced by
the interaction between the atoms and light field.

Solving these partial differential equations are challenging. In the following, we trans-
form to the retarded-time coordinate, where the form of the Bloch equations remains
unchanged, while the propagation of the light field is replaced by

0E(x,t) _ ;Howoc

o 5 P(x,t) = —ipowocN ppeg(z,t). (6.5)

From now on, in this Chapter, ¢ represents the retarded time. Now we find that the
evolution equation of the electric field becomes an ordinary differential equation. It is

7
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possible to perform a formal integral yielding
T
E(x,t) = —iuowoch/ peg (', t)d’, (6.6)
0

where we have assumed £(0,¢) = 0 as the boundary condition for the light field. This
formal solution indicates that, in the retarded-time coordinate, the amplitude of the
light field at a given position x is just a result of accumulation of all the emissions in
the direction of  between 0 ~ x. By introducing the population inversion

D(z,t) = pee(x,t) — pgg(a,t), (6.7)
one can rewrite the evolution of the off-diagonal element in Eq. (6.3) as

peglst) = ;pg(hx’ﬂ@(m,t)—;peg(x,t)—i—S(x,t). (6.8)

Substituting Eq. (6.6) into the above equation results in

Np? @
peg(a,t) = POV p gy /0 pegla’, )’ = L peg(,) + S(2,). (6.9)

2h
The evolution of the peg(z,t) is governed by a integral-differential equation, which cannot
be solved exactly. Therefore, we will show how this can be solved approximately based
on some model simplifications.
The complexity in Eq. (6.9) comes from two aspects. One is the integral [ peg(a’, t)da’
over space, the other is the population inversion D(z,t) which depends on another dif-
ferential equation

- pE(z,1)

D(z,t) = —2Im - peg(z,t)| =T (D(x,t)+1). (6.10)

Thus, our model simplification will mainly address these two terms.

6.2 Small-signal assumption

Eq. (6.10) shows that the evolution of the population inversion D(x,t) depends on two
processes: the stimulated emission/absorption from the first term, and the spontaneous
decay from the second term. The first simplification that we perform for D(x,t) is to
restrict our considerations to the small-signal regime. In this regime, the light field is
weak enough so that the stimulated processes can be omitted because they are much
slower than the spontaneous decay

D(z,t) ~ —I'(D(x,t)+1). (6.11)

Assuming all the atoms are in their excited states at the retarded time t = 0, D(x,0) = 1,
the solution to this equation is simply given as

D(z,t) = 21t —1. (6.12)

With this assumption, the two coupled differential equations, Eq. (6.9) and Eq. (6.10),
are reduced to Eq. (6.9) only, with the population inversion D(z,t) being a well-defined
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function.

6.3 Exponential-amplification assumption

We can see that Eq. (6.9) is still a integral-differential equation even in the small-signal
regime. To proceed analytically, it has to be simplified. For this purpose, we notice
that when a weak light beam propagates through a medium with population inversion,
the stimulated emission will lead to an exponential amplification of the intensity of the
light beam. Similar features have also been obtained in Chapter 5, where the numerical
simulations of the Maxwell-Bloch equations predict the exponential amplification of
E(z,t), as shown in Fig. 5.12a. Motivated by this, we assume that £(z,t) is a solution of

OE (x,1)

5 = G@)E(x.b). (6.13)

G(z) is the effective gain coefficient that may depend on x. By comparing it with
Eq. (6.5), one can deduce the relation between the light field and the off-diagonal element

frowocN
E(x,t) ~ —iP0CIY, (2, 1). 6.14
( ) g(.’IJ) Peg( ) ( )
This result can be directly substituted into Eq. (6.8) to obtain a differential equation
which is simpler than Eq. (6.9)

pes(,t) = B(2)D(w,1)pes(,t) — Lpeg(, 1) + (e, 1), (6.15)

with the coefficient

prowocN o

B(z) 2hG (x)

(6.16)

being inversely proportional to the effective gain coefficient. On the other hand, com-
parison between Eq. (6.14) and Eq. (6.6) indicates

| peala s’ ~ A@)pes( ), (6.17)
0
with the coefficient
1
= 6.18
Aw) = 5o (6.15)

being a function that only depends on z.
Both of the above two approaches leads to the simplified equation Eq. (6.15) for
peg(x,t) with a formal solution given as

t
peg(T,t) = / dt’ |:€fti [B(I)D(x’t”)_%]dtus(x,t/) '
(6.19)

Because this formula only depends on the retarded time ¢, in the following, we only
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consider the solutions at given medium length =, and drop the z-dependent relation,
t t 1 1
peglt) = / dt’ {efa [BD(")~3]dt S(t')pee(t’)} . (6.20)

We notice that, the Gaussian noise term S(¢') modeling spontaneous emission is mul-
tiplied by the population of the excited state. Eq. (6.20) can be substituted back into
Eq. (6.14) to obtain the light field as

E(z,t) = —iw /_t _ar [efff[BD“”)—Z]dt”S(t’)pee(t/)}. (6.21)

One should keep in mind that the evolution equation in Eq. (6.13) only holds in the
regime where exponential amplification exists. This means that it is only correct in the
small-signal regime far from saturation. In the saturated regime, this approximation
breaks down and one needs to solve Eq. (6.9) directly.

In the following, we consider two cases of population dynamics, instantaneous pumping
and transient pumping, to see how the light field may look like.

6.4 Instantaneous pumping

For instantaneous pumping, we consider the case where a d-function-like pump pulse
excites all the atoms into the excited state. In the small-signal regime, this means

o, t <0,
pee(t) = RV

and

0 t<0
Dt: ) M
®) {2e—“—1, t>0.

Substituting these results into Eq. (6.20), we obtain
t t 1" " /
pes(t) = / dt’ {eft’ [BD@")~5]dt S(t’)e“} . (6.22)
0

The inner integral over ¢’ is calculated as

t t
m Y g Tt 4\ _ Y| g
/t/ {BD(t) Q}dt /t [B (2¢ 1) 2}dt
t "
= / [266” —B—V} dt”
# 2

= _? (e—” — e—”') — (B + ;) (t—t). (6.23)

Thus,

t _2B( —Tt_—Tt ) _ Y (4 ,
pe(t) = [ at [e #( )-(5+3)c ”S(t’)e“}. (6.24)
0



6.4. Instantaneous pumping 81

Setting I' = 1, one gets

pes(t) = /Otdt’ [6_26(6t‘etl)—(ﬁﬂ)(t—t’)s(t,)etfl

_ 6—286775_(8—&—%)15 /t dr’ |:6286t/+(8+;_1)t/3(t/):|
0

— e oi(®) /Ot dt’ [ego(t’)g(t/)] 7 (6.25)

with
golt) = 2Be~'+ (B + % = 1) t, (6.26)
a(t) = 2Be~t+ <B + g) t. (6.27)

6.4.1 Spontaneous-emission regime

For t < 1/ (B + 3), the following also holds:

<1/ (B+ g) <1, (6.28)
and
o 2Be ' =(B+3)t e28.
/Ot dt’ [e258_t/+(5+3—1)t'5(t’)} ~ /Ot dt' [eBS(t)] .
Furthermore,
Peg(t / dt'S(t (6.29)

gives a random walk behavior for ¢ < 1. As t is the retard time, the random walk
represents the spontaneous emission behavior at the very beginning.

6.4.2 Long-time regime

For ¢t > 1, one first has the approximate expression for the prefactor
e2BeT =(B+3)t o~ (B+3)t < 1.
The integral, on the other hand, can be divided into three parts:

t t—o t
/dt’:/dt+/ dt’ + dt
0

Firstly,

0 —t 0l ’ t
/ ar’ [e%e +(B+3-1)t S(t’)] ~ / dt’[ B(| = B / da's(t).
0 0
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Multiplied with the prefactor, one obtains a negligible contribution. Secondly,
t—48 _¢ ~ , t—0 o' ’
/ dt’ [ezBe +(B+3-1)t S(t’)] < 628/ d’ {6(8+571)t S(t’)} :
é 4

multiplied with the prefactor, one has

IA

) [T [ e s <8 [T ar [ (0 s )
5 é

t—§

< &P / L [e—(3+%)6le*t’5(t’)]
§

0 for 51 Z 2.

Q

Lastly, the third integral can be obtained through

%

t / ¢
(R [ a0~ [ [ B0 )
t—01 ¢

—5

< /t Coar e s()]

—&
~ 0 for 61 > 1.

Thus, all together, we know that

peg(t) = 0fort>1. (6.30)

6.4.3 Stimulated-emission regime: approximate analytical results

For ¢t ~ 1, we now approximate the exponent in the integral
golt) = 2Be~t+ (B + % - 1) t, (6.31)
by a parabolic function
folt) = ap(t— 50)2 + cp. (6.32)
The coefficient of the parabolic function can be obtained by assuming that, on the one

hand, go(0) = fo(0); on the other hand, the minima of the two functions go(t) and fo(t)
overlap at tyi,, Therefore,

bo = tmin, (6.33)
co = gO(tmin)a (6.34)
agh? +co = 2B. (6.35)

Firstly, tmin can be found from ¢'(¢min) = 0. One has

—9Bet + (B + % - 1) —0. (6.36)
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This equation gives

tmin = In

28
= | <1 .
B+g—1] < (6.37)

Then one can calculate the minimum of go(tmin) through

go(tmin) = 2Be tmin 4 (B + % - 1) tmin
_ sl <B+ 1= 1) In |z +2§— 1]
- 2BB+2;B_1+ (B+;—1)1n B+2;B—1]
= <B+;—1> <1+ln B+2§—1D
< 2(B+g—1>. (6.38)

Therefore, we have the equaling for by and cq:

2B
B Y 2B
o = (B+2 1> (Hlnllﬂ}—l])’ (6.40)
and
2B —
o — 2B _— (6.41)
bO

Because 0 < by < 1, and
<B+g—1> < co<2<B+;—1>,

it also holds:

28 —
aw = Tyt >W-c>B- o+l
0

Thus, the value of peg(t) for t ~ 1 can be approximated by
t / t !
peglt) = e 9O / dt' [ 5(t")] ~ e ® / ai' [OS] . (6.42)
0 0

To have a better understanding of the behavior of these functions, we may first drop
the Gaussian noise term S(t). The integral can be approximated by
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Figure 6.1: Light pulse without noise. a, the integral in Eq. (6.43). b, electric field strength of the
light field. In (@), the accurate value of the integral (blue solid line) shows a step-like platform with an
approximate behavior of an imaginary error function. The red dashed line represents our approximated
value of the integral. In (b), the accurate pulse shape (blue solid line) overlaps with the function
e=9® (yellow dotted line), indicating that the profile of the pulse is determined by e~91(!). The
approximate result (red dashed line) from Eq. (6.46) has also been shown. B = 30,7 = 1.

/tego(t')dt’ R /tefo(t')dt’
0 0
t

— / eao (t/—b0)2+00 dt/
0

e \/7Exfi [\/a(t' — bo)] |'
2/ 0
— VT s [an(t — bo)] — Exfi[yas(~bo)])
2/
e\ /T

= S (B [Vaolt — bo)] + Erfi[Vaobo)). (6.43)

Then the integral has a behavior similar to an imaginary error function (Fig. 6.1a). The
off-diagonal element can be approximated as

) ey
2./a;

In the region of interest, one can approximate

(Erfi [\/ao(t — bo)] + Exfi[y/aobo]) ~ Erfi[/aobo],

peg(t) =~ (Exfi [y/ao(t — bo)] + Exfi [y/agho]) (6.44)
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and the final result for the off-diagonal element is given as

co
Z\/gErﬁ [\/agbo] e ®. (6.45)

At the same time, the light field is given by

_powoeNp e /T
Gr) 2y

In Fig. 6.1b, we plot the electric field by numerical integration of Eq. (6.25), exhibited
by the blue solid line. While the approximate result (red dashed line) from Eq. (6.46)
gives a similar pulse profile with a relatively smaller peak value, by setting the peak
value of the red dashed line to be the same as the blue solid line, the two curves (yellow
dotted line) overlap with each other. This indicates that, by using Eq. (6.31) instead of
(6.30) to model the function go(t), one can find the pulse shape and spectrum given by

peg(t) =~

E(z,t) = Erfi [/agbg] e =91, (6.46)

E(x,t) = Ce_gl(t):C’e*we_t*(BJr%)t, (6.47)

and its Fourier transform (where C is a constant) well reproduce the numerical solution
of Eq. (6.25).
Furthermore, the function g1 (¢) can also be approximated by a parabolic function

Al) = ai(t—b)" +a, (6.48)
with the coefficients given as
2B
= 1 —_— .4
bl 2 B—f-% 9 (6 9)
~ 2B
= (B+=<)[1+1 6.50
¢ <+2)<+HB+3>’ (6.50)
2B —c¢
a = =5 L (6.51)
1

Again, we know that
by < In2<1,
B+ % < ¢ <2B+7,

ay > B—%

This approximation of g;(¢) indicates that the final pulse shape resembles a Gaussian
function given by e~/1(!) which is apparent from Fig. 6.1b. The FWHM pulse duration,
therefore, can be calculated from the following relation:

a (th — bl)Q +c1 = ¢+ 1n2. (6.52)
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In2
th = bl + )
ai
and the pulse duration
In2
At = 24/ —.
ai
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Figure 6.2: Light pulse with noise. a, the integral in Eq. (6.25). b, electric field strength of the

light field. In (a), the accurate value of the integral (blue solid line) shows a step-like platform for
times between (0.2,1.3) with a similar behavior as in Fig. 6.1. In (b), the accurate pulse shape (blue

solid line) overlaps with the function e=91() (yellow dotted line), indicating that the profile of the
pulse is determined by e=91(®) Here, B = 30,~ = 1.

When the noise term S(¢) is included, one obtains the same conclusion for the pulse
profile. As depicted in Fig. 6.2a, the presence of a noise term leads to fast oscillations at
the front and tail of the integral in Eq. (6.25). However, for the time between (0.2,1.3),
there is still a platform similar to Fig. 6.1a. Therefore, the profile of the light pulse is
again determined by the Gaussian-like function e=91(t),

The existence of S(t) leads to fluctuations in the peak value for different realizations
of the noise. Its average value can be found through the correlations

t t , ,
pestpeg(t)) = e m D) [ [ty [ (5(8)5(1)
0 0

— () —a1(t) /t dt' /t1 dt’l [efo(t/)efo(ti)pg(t/ ¢ )}
0 0

— Fe91()g—g1(t1) /mm(t’tl) dt’ e2To(t)
0

(6.55)

(6.53)

(6.54)



6.5. Transient pumping 87

Therefore,
t !
(1)) = Fe 2 / dt' o)
26()\/>
291(t
F2 Jan i {\/2(1 bo} (6.56)
and

(e 0P) = (MOZ(E;])VWYF;\C/O%E& [V2agho| 2. (6.57)

The ratio between the light intensity with and without the noise term is calculated as

(@) v B [/Zaoh]
|<S’(:U,t)|2 Vvr  Erfi [\/agbo]

(6.58)

6.5 Transient pumping

Similarly to what we derived above, and considering that the excited state is pumped
from another initial state (assuming I' = 1), the Bloch equations are

poo(t) = —wpoo(t), (6.59)
Pee(t) = —pee(t) +wpoo(t), (6.60)
Peg(t) = pee(t). (6.61)

With all the ions initially in the |0) state at ¢ = 0, one can solve the equations to give

poo(t) = e ™ (6.62)
peelt) = ——= (e =), (6.63)
peg(t) = ” i 0 (efwt —we™t + (w — 1)) . (6.64)

Correspondingly, one obtains the time-dependent population inversion given as

D) = ﬁ (2we™ = (w—1) — (w+ 1)e™). (6.65)

For w > 1, this population inversion reduces to the case of instantaneous pumping of |e):

_ 1 —t ~ —t

as derived in the former sections. Therefore, the formal integral of the off-diagonal
element has the form

polt) = [t [ RO ) 1)

—00

t t " o4 "
= [ [l s 0.
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The inner integral over ¢’ is calculated as

[fooer-2ar = [ [ o) 3

/ / w —
t B
_ P —t —wt w7 "
_.A[w_l(mw (w+1)e™") - B 2}&
- B s —y w+1l, —wt!
= o1 (2we — 2we i (e —e ))

—(B+g)u—ﬂ)
_ 2wB (e_t _ e_t/ _ w + 1 (e_wt _ e_wt/>)

w—1 2?2

—<B+;>u—yy

Thus, one obtains

_M(e—t_%fw)_(mrg)t

Peg(t) = e vt
t M(e—f’—w—“e—wi’>+(8+l)t/ w / /
/ w—1 2w2 2 / —t° _ _—wt
X/Odt le S(t)iw_l(e e > .
In other way, this can be written as
w t / t /
peglt) = —Z e { / dt'e WS¢y — / d'ess(t )S(t’)}, (6.66)
w—1 0 0
with
_2wB [, w+l v
gi(t) = w_1<e ~ o2 © >—|—<B+2)t,
o 2wB o, o wH+1 0%
) = 2B () (a3 1)
o 2wB [, wH1 ol

Also in this case, we approximate these functions with parabolic functions, which leads
to an approximate solution of the integral (see Fig. 6.3). In particular, the two functions
g2(t) and g3(t) only influence the peak value of the final pulse. The profile of the pulse
is a Gaussian-like function determined by g;(t).

To generalize our conclusions, we introduce a function G(t) which satisfies

d
3G = BD@) -~ St. (6.67)

2

With this function, the formal solution in Eq. (6.20) can be rewritten as

t ! t !
pes(t) = / dt! (DGO (1) pee ()] = 1) / dt' [ IS(t) pee(t')] -

— 00

The integral usually has a behavior similar to a shifted imaginary error function with a
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Figure 6.3: Light pulse under transient pumping. a, the integral in Eq. (6.66). b, electric field
strength of the light field. In (@), the accurate value of the integral (blue solid line) shows a step-like
platform for times between (0.2,1.5) with a similar behavior as in Fig. 6.1. In (b), the accurate pulse
shape (blue solid line) overlaps with the function e=91(*) (red dotted line) and the Gaussian fitting
curve (yellow dashed line). Here, B=30,v = 1,w = 2.

plateau that can be approximated by a constant. Then one obtains
t o / Y
E(z,t) = CeCO = Celo @ BPE)=3t), (6.68)

As long as we know the population inversion and B, the pulse profile and spectrum can
be deduced from the above function.

The analytical solution of the laser field given in Eq. (6.68) represents a Gaussian-like
function, as shown in Fig. 6.3b. Compared to the Gaussian XRL pulses we obtained
in Fig. 5.6c with numerical simulations, they show a good agreement. The physics still
missing in our analytical solution is the intensity. In Eq. (6.68), it shows up as an
integration constant. Nevertheless, with the analytical solution, one can estimate the
conditions needed to obtain coherent X-ray laser pulses. As shown in Fig. 6.4, a smooth
coherent pulse is obtained only if B > v holds.

6.6 Duration of population inversion

Eq. (6.68) gives a general solution to transient lasing under given population inversion.
In this Section, we discuss how population inversion is generated in different pumping
schemes.
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Figure 6.4: Light pulse under transient pumping: different gain. a, 5 =10. b, B = 30. c,
B = 60. The legends of each line are the same as in Fig. 6.3b. A smooth light pulse develops only
when the gain parameter 5 is much larger than the decoherence rate «y. For all the three figures,
v=10,w = 2.

6.6.1 Slow ground-state depletion
If the decay of the ground state is negligible, the population inversion for transient
pumping is given by Eq. (6.65):

D(t) = ﬁ (2we™ — (w—1) — (w+ 1)e™) (6.69)

In general, D(z,0) = 0 at the beginning, then it becomes positive for a short time
duration, after which it decreases and stays in a negative value. Here, in this Section,
we calculate the time duration of the positive population inversion, in the limit of fast
and slow pumping. This can be found by solving D(t) = 0. We know already the first
solution is at ¢ = 0. Then the task remaining is to find the second solution.

6.6.1.1 Fast pumping: w > 1 regime

When the pumping rate is much larger than the decay rate of the upper state, it corre-
sponds to instantaneous pumping;:

D(t) ~ 2'—1 fort>0. (6.70)
Then, D(t) = 0 gives t = In2. This also means that

At =1In2 < 1.
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6.6.1.2 Slow pumping: w < 1 regime
When the pumping rate is much smaller than the decay rate of the upper state,
pec(t) =~ we ™! for 1 <t < 1/w. (6.71)

The “lifetime” of the upper state |e) is increased to the time ~ 1/w > 1. The population
inversion is

1

Dit) = —— (2we™ = (w=1) = (w+ 1)e™")
~ —2we '+ (w—1)+ (w+1)e
= 2ws+ (w—1)4 (w+1)s", (6.72)

where s = e~!. Considering the expansion
1
sY ~ 1+ (Ins)w + 5(1115)221)2 + ..,
one has

D(t) = —2ws+ (w—1)+ (w+1)s"

—2ws + (w — 1) + (w + 1)(1 + wlns)

= —2ws+ 2w+ wlns

= w(—2e"4+2-1), (6.73)

Q

and then D(t) = 0 means —2e¢~* + 2 — ¢ = 0. Defining
k(t)=2—t—2e7", (6.74)

we know that k(1) = 1—2 > 0 and k(2) = —% < 0. The solution for D(t) = 0
is located in the region of 1 < ¢ < 2, which means that the duration for population
inversion satisfies

1< At < 2.

The magnitude of the population inversion is also in the range of w, which can be
calculated from the peak value of D(t), or k(t):

E(t)=-1+2"=0,
yielding ¢, = In2. Then
k(ty) =2 —In2 — 272 =1 — In2, (6.75)
and
D(t) = w(l — In2). (6.76)
All together, this means that the duration of the population inversion exists for any

values of the pumping rate. The time scale of the population inversion is on the same
scale of the lifetime of the upper state. However, the magnitude of the population
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inversion is negligibly small for small pumping rates (in the same order as the pumping
rate), see Fig. 6.5.

6.6.2 Fast ground-state depletion

When the decay rate of the ground state is much faster than the pumping rate, atoms
decayed to the ground state will be immediately depleted. In this case, one can always
take pgg(t) = 0 and the population inversion is just determined by the population in the
excited state:

_ _ w —t_ _—wt
D(t) = pee(t) = —— (et —et). (6.77)
The behavior of D(t) for different pumping rates in Fig. 6.6a show a pulse-like inversion.
Similarly to the former Section, the peak of D(t) can be calculated as

1
ty = —0 (6.78)

w—1"

Details of the dependence of D(t,), and the FWHM duration of positive inversion At can
be found in Fig. 6.6b. Compared to Fig. 6.5, the FWHM duration for positive population
inversion is not limited anymore, and it increases exponentially for small pumping rates.
However, the peak value of the inversion is still proportional to w.

6.7 Summary

For lasing based on transient population inversion, we solved the Maxwell-Bloch equa-
tions analytically in the small-signal regime, in the assumption of exponential amplifi-
cation of the electric field. This allows one to introduce a gain function. The profile of
the light pulse is universally characterized by a Gaussian-like profile, with its duration
and spectral width determined by the gain coefficient and decoherence rate. In order to
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Figure 6.5: Population inversion for different pumping rates. a, time evolution of population
inversion for a pumping rate w = 2 (yellow dashed line), w = 10 (red dotted line) and w = 100 (blue
solid line). b, the value (red solid line) and position (blue solid line) of peak population inversion, as
well as the duration (blue dotted line) for positive population inversion.
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Figure 6.6: Population inversion for different pumping rates under fast ground-state deple-
tion. a, time evolution of population inversion for a pumping rate w = 0.2 (blue dash-dotted line),
w = 2 (red dashed line), w = 10 (yellow dotted line) and w = 100 (purple solid line). b, the value
(red solid line) and position (blue solid line) of peak population inversion, as well as the FWHM
duration (blue dotted line) for positive population inversion.

have a coherent laser pulse, the gain should be much larger than the decoherence rate.
Besides, we also find that, when the lasing element is pumped from another element,
independent of the pump rate, there always exists population inversion in the lasing
element for times within the lifetime.
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Chapter 7

Seeding in transient X-ray laser

In Chapters 5 and 6, we considered X-ray lasing seeded by spontaneously emitted pho-
tons. Numerical and analytical solutions of the Maxwell-Bloch equations under transient
XFEL pumping were solved in the time domain, giving an X-ray laser with a smooth
Gaussian-like profile. Nevertheless, the numerical results indicate shot-to-shot fluctu-
ations in the intensity, pulse duration and spectral width of the output laser. These
fluctuations mainly originate from two stochastic processes: one is the random behavior
of the SASE XFEL pump pulse, the other is the noisy spontaneous-emission seeding. In
this Chapter, we study a lasing process seeded by a weak external X-ray radiation from
either HHG sources or XFEL sources.

Through a step-function-like XFEL pump pulse, one obtains a transient population
inversion in the medium. Compared to the case of constant population inversion where
the atom responds linearly to the light field which renders the corresponding equations
easily solvable, light propagation in a transient medium will be more complex. The cou-
pling between different frequencies leads to a different mechanism of spectral evolution
in the medium. Here we consider a simple seeding spectrum, a monochromatic light, to
show how such a transient effect may modify the input spectrum.

7.1 Light propagation equations

The accurate wave propagation equations in time and frequency domain are given as

O’E(z,t) 1 0%E(z,t) 0?P(z,t)

02 @ o2 MTer T1)
PB(z,w)  w?. 95

52 + CTE(Z,OJ) = —pow”P(z,w), (7.2)

respectively. In the slowly varying envelope approximation, the evolution of the envelope
functions is described by

0E(z,t)  10&E(z,t) powoc

9% —l—; BT = —i— P(z,1), (7.3)
8f(z,d)) iWa, HOWOC A, -

5, + Cg(z,w) = —i— P(z,w), (7.4)

with @ = w — wy, and the envelope functions defined as

E(zt) = E(z )0tz fiy o) = &(z,@)e 02, (75)
P(z,t) = P(z,t)eiot=koz Py ) = P(z,@)e 02,

95
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7.2 Polarization in a transient medium

The dynamics for the off-diagonal element pe, of the density matrix is

poe = )+ (18- 7) sl &

with D(t) = pee — pge being the population inversion, A = wp —w, the detuning between
the atom and the carrier frequency, and v being the decoherence. Assuming peg(0) = 0,
the formal solution of Eq. (7.7) gives

peg(t) = /0 t e<iA-g)(t_t/)W2(ﬂ)D(t’)dt’. (7.8)

Considering the relation between the polarization envelope and the off-diagonal element

P = —2nappPeg, (7.9)

one can have the corresponding formal solution for the polarization envelope

P(t) = —2nap /Ote(m—l)“—t’)ip;ét/)D(t’)dt'
~ 5 /Otx(t—t’)é’(t’)D(t’)dt’. (7.10)

Here, the susceptibility is defined according to

_inap2e(iA—%)(t—t,) t > t/
(it —t) = {O o o (7.11)
or
_inap? (z‘A—l)t +>
x(t) = {o o € P t;g’ (7.12)

Eq. (7.10) reveals that, because of the finite-time response given by (¢t —t’), the polar-
ization at time ¢ is a weighted sum of all the history experienced by the medium during
t' < t. To continue, the integral in Eq. (7.10) can be extended to +oo based on two
arguments: Firstly, if the light field or the polarization appears only after t = 0, then
E(t) =0and D(t) =0 for t < 0, and one can extend the integral to —oo,

P(t) = eO/t x(t—=tEMR)D()dt' .

Secondly, due to causality, x(t —t') = 0 for ¢ > t as defined above, the upper limit of
the integral can be extended to co to have

P(t) = < / Tt — EE) D). (7.13)

—0o0
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Though Eq. (7.10) is intuitive for understanding the underlying physics of the origin
of polarization, the new formal solution in Eq. (7.13) is more convenient for frequency
analysis.

Defining a new function

Yit) = E@t)D(t), (7.14)

the integral becomes

P(t) = eo / T — V(). (7.15)

—0o0

One can immediately recognize that the polarization P(t) is a convolution of the sus-
ceptibility x(¢) and the new function Y(¢). In frequency domain, this gives

P@) = ox(@)V(@), (7.16)
with
(@) = —— | e ar
X = Tw X
_ /OO Znap zA—f)t 7zwtdt
\/271' goh
_ iNag’” 1 e(i(A—&;)—%)t’oo
\/QWEOﬁi(A—(D)—% 0
_inap? 1
 V2reohi(A—@) — 1
_ nap’  (A-Q) - Z% (7.17)
V2meoh (A +@)2 + (3)%
and
V@) = / £(& — &) D(@)da’
= D@ —&")é@)da'. (7.18)

This means that, in the frequency domain, the polarization for each frequency compo-
nent is given by

P@) = cox(@) O:O D@ — &)E(@)d, (7.19)
P@) = ek(@) [ D@)E@—a')da. (7.20)

When the atoms are in a steady state, the population inversion varies slowly compared
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Figure 7.1: Spectrum of population inversion D(@). a, D(t) in Eq. (6.69) for w = 2. b, Fourier
transform of the corresponding D(t) in (a): real part (blue line) and imaginary part (red line). There

is a d-function component in the spectrum because D(t) = —1 for large ¢.
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Figure 7.2: Spectrum of population inversion D(@). a, D(t) in Eq. (6.77) for w = 2. b, Fourier
transform of the corresponding D(t) in (a): real part (blue line) and imaginary part (red line).

to the envelope of the light field. One can take D(t) = const. such that D(&') can be
treated as a delta function. One will obtain the linear polarization relation

P@) = ecor(@E@) (7.21)

discussed in Appx. G. For a given input frequency @, the polarization responds to this
input frequency only. However, for a time-dependent population inversion, each fre-
quency component of the polarization depends on all the other frequency components
of the input electric field. When we consider the propagation of the light pulse in such
a transient medium, the spectrum of the light field will change as it propagates. This
would make the spectrum of the polarization field change accordingly. In the other ex-
treme case where the time scale of the population inversion is much smaller than the
duration of the light pulse, D(t) becomes a ¢-like function with the D(@) being much



7.2. Polarization in a transient medium 99

broader than the input spectrum &£(@). Then one can take D(@') = D(@) and

A

P@) = =ox(@)D@) /Zé(w—@')dw':const.*eox(@)f)(@). (7.22)

In this case, the spectrum of the polarization field is determined by the susceptibility
X(@) and by the population inversion. Only the power of the light field is added to the
polarization field. On the other hand, when ﬁ(d}) is broad, the input spectrum can be
taken as a delta function, and one will also arrive to Eq. (7.22)).

We should also keep in mind that the population inversion and susceptibility are not
always independent from each other. In reality, the duration of D(t) is always longer
than the duration of the susceptibility x(¢). This is because the decoherence rate should
always be larger than the decay rate of the population, thus the decoherence time is
shorter than the lifetime of the atoms. In turn, the spectrum of x(@) will always be
broader than D(@).

Similarly to the envelope function, the full polarization field can be calculated through

P(t) = eote /_ Tt = )EE) DAY
— 5 [ O:O (= )=o) g (7)ot (¢!
— & /_ 7 X(t — ¢)E@) D)
— 5 /_ O;X(t—t’)Y(t’)dt’. (7.23)

The new susceptibility function is defined by

N
X(t—t) = x(t—t’)emo(ttf):{(’fg% ~(iwat3) =1 i? (724)
and
) .
Ro) = - = 22 (ofi;:’;)jg), (7.25)
Y (t) is defined as
Y(t) = E(t)D(t) = V(t)e™o". (7.26)

Therefore, the polarization in the time and frequency domain can be written as
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P(t) = & L T X(t — YE()D(#)dt (7.27)

and
Pw) = coX(w) /_ O:O D(w — B ), (7.28)
Pw) = oX(w) /_ O:O D)B(w - o)d. (7.29)

7.3 Monochromatic seeding

First, for monochromatic input light with spectrum and envelope being

E(z,w) = E(2)e  *§(w—win), E(z,0)= 5§z)ef“~finza(w—wm), (7.30)
E(z,t) = B(z)e hmzeiwmt  £(5 1) = £(z)e  Fnzeilint (7.31)

)

the polarization spectrum and envelope are given as

Plz,0) = eof(2)X(@)D(@ — o )e Fnz, (7.32)

P(2t) = eof(z)e i / (t = )D(t)d®nt !, (7.33)
or

P(z,w) = eE(2)X(w)D(w — wiy)e iz, (7.34)

P(z,t) = eoE(2) m“‘z/ X(t—t) ) wint' q¢/. (7.35)

For monochromatic light, Eq. (7.19) and Eq. (7.28) have been reduced to simpler forms
shown in Eq. (7.33) and Eq. (7.35). In Eq. (7.19) and Eq. (7.28), we have coupling
between all the frequency components. However, for the case of monochromatic seeding,
there is a coupling between the input frequency and the other frequencies only. This
simplification makes an analytical treatment possible.

7.3.1 Medium in steady state

As mentioned before, if the atoms are in a steady state where the populations are
constant, D(©) = D§(w), and one gets

Plz,0) = eof(2)DR(@)5(@ — @ )e Fn = gD (@)E (2, @), (7.36)

or

- {«SODX( D) (2,@), & = Gin, (7.37)

0, otherwise.
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In the time domain, this means that the polarization envelope is independent of ¢
P(z,t) = eoDE(z ’kmz/ x(t et qy/
— €0D5( ) zkmzezwmt/ X(t _ t,)e_i&)i"(t_t/)dt/
—00

80D(€( ) (wln)e_“;inzei(:}int
- e (7.35)

Therefore, the full polarization field is given by

P(z,t) = eoDX(wim)E(z,t), (7.39)

N DX i E , Win ) = Win,

Plrw) = {coDRw)BE W), w=wn (7.40)
0, otherwise.

Similarly to Eq. (7.21), the polarization only has a frequency component which is the
same as the input frequency, win = wg + @i The other frequencies are not present.
The propagation equation for the light with frequency @, is given as

O?E(z,win) Wi« w2

5.2 2 E(z Win) = 2 DX(wm)E(z,win), (7.41)

8g(zaajin) Win 5 - o WO A~ 4 -
92 + . E(z,0m) = Z%Dx(wm)g(z,wm), (7.42)

where we used the relation poeq = 1/¢2. With X(win) = X(@in), the solutions are given
by

E(z,win) — E(O,win)e_iki“ 14+DX(win) — i E(0, win )—ikm\/l-&-D)%(cDm)z’ (7.43)
E(z,0m) = E(0,@m)e ¢ [Fnt3Dx@mlz, (7.44)

These results are presented more in depth in our discussions in Appx. G.

7.3.2 Transient population inversion

In the following, we restrict our discussions in the small-gain regime by assuming that
the amplitude of the seeding field does change during the interaction with the transient
medium. Such conditions are generally satisfied when the propagation length is shorter
than a critical length given below.

We know that for transient population inversion, there are other frequencies generated
by the polarization field 73(@) The amplitude of these frequencies are & (0,&0) = 0 at the
beginning. After propagation through the medium, such frequencies will start showing
up according to the equation

’B(zw) | Wi w? 5 A —ikinz
0(,2:2) +FB(zw) = —SEE)X(w)D(W - win)e ", (7.45)

aé Z’(D W 4 LW ~ A —ikin 2
(az : ?g( @) = _1?25( 2)X(@)D(@ — @i ) e Hin?, (7.46)

After some time of propagation, the spectrum will no longer be d-function-like anymore,
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and one has to include the contributions from frequencies other than the input frequency.
The light field in time domain is also changed so that £y(z, ) is no longer constant. There
will be a bump propagating with the transient inversion pulse (pumping XFEL pulse).
Then, all the frequencies will interweave with each other and one needs to solve the
general propagation equation

9?E(z,w)  w?. W2 o .
8(22) + CTE(Z,(U) = —C—2X(w) . D(w — w/>E(Z,w/)dw/7 (7.47)
aggzz, @) Leea) = —2x@) [~ be-abeadd. (149

We study this for a small susceptibility |x(©)| < 1, the amplitudes of the generated
frequencies will be much smaller compared to the input field, |£(z,®)| < |E(2)] for @ #
@in. We therefore assume a monochromatic frequency with a Jd-function-like spectrum
E(z,0) = E(2)e ™ 5@ — i) (7.49)
On the left-hand side of Eq. (7.46), one has

& (z,@)

W,
"o o)

= 8‘2(2) —ikE(2)| e R (@ — ) + —E(2)e 26 (@ — )

z c
_ 85(2) —ikz e/~ ~. _ 85(2) 7il~cinz ~ ~.
= 3, ¢ O(0 — @) = 5, ¢ (0 — @in). (7.50)

This means that Eq. (7.46) yields
85(Z) ~ - B .Wo NN TN~ ~
P 0(@0—@m) = —Z%S(z)x(w)D(w — Win)- (7.51)

Integrate over @ on both sides of Eq. (7.51) gives

08(z)  .wo NP~
9, —z%S(z) _Oodwx(w)D(w—wm). (7.52)

If D(@ — @) is a delta function, one recovers Eq. (7.38) for the evolution of &(2)
under constant population inversion. In Eq. (7.38), only the frequency component x(@)
contributes to the light evolution. However, for the transient population inversion in
Eq. (7.52), all frequency components of the susceptibility will contribute to the evolution
of the light field. Defining

W) = [ dog@D@ - ) (7.53)
one obtains a simpler form

0&(z) W -
o = —ZZ—EW(wm)E(z), (7.54)
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with the solution given by
E(z) = E£(0)e"2W(@m)z, (7.55)

As long as the monochromatic approximation still holds, the spectrum of the light field
is given by

B(z,w) = &(0)e 2eW@mzeikinzg(, gy, (7.56)
Accordingly, the light field in time domain is given by
E(z,t) = E(0)e 2 W(@m)zgiomt=ikinz (7.57)

where we have taken E(0) = £(0). For the monochromatic approximation to hold, one
should ensure

.Wo
—

Re| 5

W ((I)in)z]

1
_ ‘Im[QW(o?in)k:oz] <1 (7.58)
This gives an estimate of the critical length for monochromatic approximation to be
valid,

0.2
[T [W(@in)][ ko

Zc (7.59)
With this definition, 2. corresponds to the propagation distance after which the ampli-
tude of the input frequency has been changed by a fraction of 10%.

In the time domain, transient population inversion leads to a transient amplification
of the input field. As a result, there would be a peak bumped out of the uniform light
field. When z < z., the peak is not significant and the light field can be treated as
a uniform field described by a plane wave. However, when z approaches z., the peak
becomes strong compared to the uniform field. Therefore, the plane-wave description
should be replaced by a pulse description.

In the following, we consider how the other frequency components are evolving in the
monochromatic approximation. This can be examined through the formal solution of

Eq. (7.46):
Ea) = [ (L 3@) D@ - an)Ee ) d
0 C
= —ZfX((I))b((I) — (Din)efi?z g(zl)ei(%—fcm)z’dzl' (7.60)

For slowly varying envelope approximation to be valid, one usually needs % ~ ki
Moreover, £(2') = £(0) is sufficient for z < z.. The above result can be simplified to be

E(z,@) = —igg(wm(w—win)e—i%zg(())z. (7.61)

This indicates that the amplitudes of these frequency components increase linearly with
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z. Therefore, the full spectrum amplitude for z < z. is given by

£(0), & = @in,

£(0)% |5(@)D(@ - n) (7:62)

E(z2,& =
| (7 )‘ 2, otherwise.

7.4 Summary

In this Chapter, the transient laser seeded by an external radiation field is analyzed in
the small-gain regime in frequency domain. We were able to point out a new stimulated-
emission process: when a single frequency radiation interacts with an excited atom, the
spectrum of the radiation emitted via stimulated emission, instead of being a d-function,
possesses a broadband profile in frequency space.



Chapter 8

Summary and outlook

Summary

In this thesis, we put forward a scheme to generate fully coherent lasers in the hard-X-
ray regime with a relative bandwidth of approximately Aw/w = 1075 ~ 10~7. The gain
medium consists of highly charged ions generated in a laser-produced plasma. Population
inversion between the 1521 and the 1s? states is achieved by fast K-shell photoionization
of Li-like ions. Therefore, stimulated emission from the long-lived 1s2[ excited state gives
rise to lasing. Compared to former X-ray sources, the laser generated in our scheme has
advantages as it features a better temporal coherence and narrower bandwidth. Together
with their high brightness, our X-ray lasers will open up a new regime of coherent control
of ionic and nuclear states in X-ray quantum optics, enable the investigation of nonlinear
interactions between X-rays and matter and improve high-precision spectroscopic studies
in laboratory astrophysics.

To show that our scheme can work with current experimental capabilities, we perform
numerical simulations in Chapter 5 with realistic systems for elements such as Ne, Ar,
Kr and Xe. The equations of motions, or Maxwell-Bloch equations, used in the simu-
lations, are developed in Chapter 2 for electric-dipole interactions, and then generalized
to multipole transitions in Chapter 3. Formulas to calculate spectral broadening effects
such as Doppler broadening, electron-impact broadening and ion Stark broadening in
the hot dense plasma medium are derived in Chapter 4. The Doppler broadening, scal-
ing as Awp/w ~ /T, becomes significant when the ion temperature T} is high. The
electron-impact broadening, scaling as Awe.; ~ No/v/Te, only depends on the temper-
ature and density of the electrons. This broadening will be significant for cold dense
plasmas. The quadratic Stark broadening is induced by the Coulomb field of neighbor-
ing ions. Therefore, it scales as Awj.j ~ Ni4 / 3, which is severe for large ion densities. As
shown in Sec. 5.1, the plasma needed for lasing can be generated by existing picosecond
optical lasers with an intensity around 10’7 W ¢cm™2. Depending on the elements used,
the electron temperatures in the plasmas are in the range of 35 eV to 25 keV with the
ion densities varying between 2 x 10'® — 2.7 x 10?! cm™3. The ions are assumed to stay
at room temperatures, for the time scale when a laser is developed, because they are too
heavy to be thermalized by the hot electrons.

For each lasing transition, we perform 1000 simulations with different realizations of
the chaotic XFEL pulses, which show that a high-intensity X-ray laser can be obtained
after a 1-cm-long exponential amplification in a laser-produced plasma (see Table 5.1).
For lasing based on Ne®t and Ar'** ions, the E1 transitions are sufficient to develop
X-ray pulses reaching the saturation intensity. The wavelength is around 1.4 nm (920
eV) and 0.4 nm (3137 eV) for Ne®t and Ar'#*, respectively, with a relative bandwidth
around 107°. However, for heavier elements, the E1 transition rates scale as ~ Z4,
becoming too fast to achieve sufficient population inversion for the laser to develop.
Instead, the M2 transition at a wavelength of 0.95 A (13.1 keV) and 0.42 A (30.6 keV)
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for Kr3*+ and Xe®?t were employed, respectively, resulting in a relative bandwidth of
around 3x 1077 and 1.5 x 1075, respectively. These bandwidths are up to three orders of
magnitude narrower than the bandwidth of X-ray pulses generated at state-of-art X-ray
sources [35].

Evolution of a single-shot XRL pulse, as shown in Figs. 5.6-5.9, is found to be noisy
for short propagation lengths. This random feature is smoothed out during laser am-
plification, resulting in a smooth Gaussian profile at intermediate propagation lengths.
The spectral widths are much smaller than the sum of all the broadenings in this re-
gion, indicating a gain-narrowing phenomenon before the saturation rebroadening sets
in. Though the intensity, pulse duration and spectral width of single XRL pulses undergo
fluctuations from shot to shot, their stabilities are still much better than the pulses from
XFELs.

Furthermore, the analytical solutions to the Maxwell-Bloch equations are discussed
in Chapters 2, 6 and 7 for particular approximations and assumptions. These solutions
provide a useful insight into light-matter interaction, and help in interpreting our nu-
merical results at intermediate propagation lengths. In Sec. 2.4, we consider the case
where the atoms are in a steady state. For such cases, the widely used rate equations
are rederived. Our analysis indicates that the rate-equation approach often used by the
laser community for continuous lasers is insufficient to fully describe transient lasers. In
Chapter 6, the Maxwell-Bloch equations are solved in the time domain for the case of
small signals where the laser field is far below the saturation intensity. The solution of
the laser pulse resembles a Gaussian-like function which is in agreement with numer-
ical simulation results in Chapter 5. The duration of the pulse, thus the bandwidth
of the spectrum, is mainly determined by the gain coefficient, providing a theoretical
explanation of the gain-narrowing effect we observed in our numerical simulations.

Lastly, when the Maxwell-Bloch equations are considered in frequency space in Chap-
ter 7, we were able to point out a new stimulated-emission regime: when single frequency
radiation interacts with an excited atom, the spectrum of the radiation emitted via stim-
ulated emission, instead of being a d-function, possesses a broadband profile in frequency
space.

Outlook

Based on the results obtained in this thesis, several new ideas can be addressed in the
future. Firstly, it would be interesting to extend our considerations of X-ray lasing
to other elements, which can produce X-ray lasers in a different wavelength range. In
particular, going to elements heavier than Xe can be considered to obtain X-ray lasers
at even shorter wavelengths. As the E1 transition rate scales as ~ Z4, the inner-shell
XRLs based on neutral atoms can hardly generate population inversions pumped by
XFEL pulses. However, the XRLs from He-like ions can always find a transition beyond
the E1 transitions that features a much lower decay rate. Besides the M1 and M2
transitions discussed in this thesis, £2 transitions may be employed for X-ray lasing
from elements heavier than Xe.

Besides that, our density-matrix theory considered in Chapter 2 is based on the two-
level approximation, where only one of the four main transitions is considered. Including
more transitions may be needed to study more complex systems or regimes where a two-
level approximation cannot be applied. Similarly to other atom-based lasers, the wave-
lengths of our XRLs are discrete. In the future, three-wave interactions by synchronizing
optical/ XUV lasers with XFEL pulses could be investigated to tune the frequencies in
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a broad range.

Secondly, a different lasing scheme can also be considered to generate hard-X-ray
pulses using relativistically accelerated ions pumped by a counterpropagating optical or
XFEL lasers. As the highest photon energy of current XFEL pulses is only around 30
keV, this renders the pumping of XRL transitions even with Xe challenging. However,
this problem could be solved with highly relativistic ions generated in conventional or
laser-based accelerators. If an ion moves at a speed close to the velocity of light with a
Lorentz factor of v = E/m;c?, and collides with a photon propagating in the opposite
direction, due to the relativistic Doppler effect, the energy of the photon seen by the ion
will be increased by a factor of «v. This scheme can effectively push the XFEL photon
energy to the ionization threshold of an element even as heavy as uranium. When the
lifetime of the excited state is longer than the time needed for the pumping pulse to
propagate through the ion beam, population inversion is created at every coordinate of
the ion beam. Subsequent spontaneous emission from the excited state leads to lasing in
both forward and backward directions. In particular, the photon energy from the laser
in the forward direction of the ion beam will be increased by a factor of -, resulting in
wavelengths shorter than 0.12 A (~ 100 keV).

Moreover, a more elaborate simulation of the generation of He-like ions in a laser-
produced plasma can be considered in the future. In the thesis, we considered sequential
collisional ionizations to estimate the time needed for the production of He-like ions.
Other processes like collisional excitation, photoionization, photoexcitation and field-
induced tunneling ionization are also involved in the generation of plasma. Simulations
involving all these processes would be beneficial not only for the XRL lasing, but also
for the general understanding of laser-plasma interactions.

Furthermore, in Appx. G, the light propagation theory is generalized to the case of
media with significant nonlinear dispersion. Although such a case has been extensively
studied in nonlinear optics, generalization of the concepts to light interacting with a
resonant medium may lead to new phenomena. As a first step, we find an upper limit of
the atomic density for the slowly varying envelope approximation to be valid in describing
resonant light-matter interactions. When the nonlinear light propagation effects are
considered in a dense medium, the slowly varying envelope approximation breaks down.
The interplay between nonlinear dispersion and strong absorption/amplification may
lead to the development of novel light sources.

The analytical solution to the Maxwell-Bloch equations discussed in Chapter 6 pro-
vides results consistent with the numerical simulations. Applications of the results in
designing and optimizing transient lasers is still missing and will be included in our up-
coming manuscripts. The seeded-XRL scheme proposed in Chapter 7 is solved only in
the small-gain regime. In the future, solutions in the high-gain regime will be considered.

The theory describing light-matter interaction through multipole transitions have been
developed in Chapter 3. Graham and Raab [145] found that the electric octopole and
the magnetic quadrupole effects are important to explain linear birefringence in cubic
crystals. Therefore, applications of our theory to systems other than the X-ray lasing
system described in this thesis will be considered.
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Appendix A

Perturbation theory

Though the dipole approximation has been implemented, the Schrédinger equation with
Hamiltonian given in Eq. (2.87) is still not exactly solvable, and so an approximative
method such perturbation theory has to be adopted [110]. In the following, we will first
introduce time-independent perturbation theory for nondegenerate cases, then extend it
to the time-dependent case.

A.1 Bare Hamiltonian and Hilbert space

As we discussed in Sec. 2.2, the full Hamiltonian can be divided into two parts, one is
the Hamiltonian

Hy= Hp + Hpm (Al)

describing a bare atom and the free field which is exactly solvable, the other is the
Hamiltonian Hp representing the interaction between the atom and light field, given by
Eq. (2.85). When the light can be treated as a classical field, one can drop the free
electromagnetic energy Hgy from the bare Hamiltonian.

In principle, there is no exact solution to this problem. Nevertheless, one can still gain
many important insights into this problem under some approximations. As a first step,
we define the Hilbert space based on the complete eigenvectors of the bare Hamiltonian.
Then all the wave functions and operators (including the interaction Hamiltonian) can
be represented by the basis of the Hilbert space. This procedure is important because it
provides us the mathematical foundations for further approximations to be introduced.

The Schrodinger equation of an atom free of any external field is given by
2

p

ind%o ro.r, 1) Py (r)] U (ro, 1, 1) (A.2)

ot

2m

as defined earlier in Sec. 2.2. After separation of variables, one arrives at the stationary
Schrédinger equation

2

P v ) = B ). a9

where we assume the atom is a hydrogen-like system so that quantum numbers n, [, m
fully classify the complete eigenbasis. For many-electron systems, the procedures are
similar but with different notations of the orthonormal basis.

Solving this stationary Schrodinger equation one obtains the eigenvectors which define
the Hilbert space of the quantum system. Any wave function can be expanded in this
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eigenbasis as a vector

WO) = 0y, (A4)

k={nim}
The operator Fis represented in a matrix form

F = ZFZ] ¢£0)><¢§'0) ) (A.5)
ij

with the elements given by
P ©)] £ (,,(0)
Fy = (0 P[pf”). (A.6)

The dynamics of the wave function of this system are then just described by time-
dependent coefficients for each eigenvector.

When interaction with an extra field is involved, it is Hamiltonian can also be expressed
in a matrix form:

H o= S HL O (6], (A7)
ij

The Schrodinger equation can be expressed in a matrix form as well:

0

zha |W (ro,r,t)) = [Ho+ Hi]|¥ (ro,r,t)), (A.8)
with

o t) = > el) ). (A.9)

k={nlm}

Due to the infinite number of eigenvectors, the matrix-form Schrédinger equation is
actually an infinite set of coupled linear equations. An exact solution of this system is not
possible. Thus one needs to make approximations based on the problem at hand [110].

For instance, one can truncate the number of levels involved if H; only has significant
couplings between a finite number of eigenstates. As a result, one obtains a finite-
dimensional matrix, thus a finite number of coupled linear equations. The simplest
cases would be e.g. the two-level, three-level or four-level approximation, which are
discussed in Sec. 2.3. This simplified problem can be either solved numerically (with
exact diagonalization method), or analytically. The accuracy of this method is limited
by the truncation of levels.

Another way to gain insight in the coupled equations is based on perturbation se-
ries [110]. This approach is available when the interaction Hamiltonian is perturbatively
small, such that the magnitude of each coefficient ck(t) only deviates negligibly from
),

For the interaction between light and atoms, as an example, if the frequency of the
light is tuned far from the atomic resonance, it will have a negligible influence on the
atomic state. Therefore, perturbation theory is applicable. When the light is close
to resonance, singularities show up in perturbation series. One needs to use the two-
level approximation instead of the perturbation approach to solve the problem. If the
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strength of the light field is low, stimulated emission/absorption would be much smaller
compared to the decay of the atoms. In such case, a rate-equation description is sufficient
to describe the two-level system. However, when the field becomes strong enough, Rabi
flopping will show up and the populations of the eigenstates will undergo fast changes.
In this situation, a density-matrix theory [111] should be used for the two-level system.
Until now, the light field is still perturbative compared to the static electric field of the
atomic nuclei. Rabi oscillation in the populations is only a result of resonance (or in full
quantum theory, a result of degenerate-state perturbation). When the light intensity
becomes ultra-strong so that tunneling ionization becomes possible, both perturbative
and level-truncation approaches fail to describe the problem, and some other ideas need
to be introduced.

A.2 Time-independent perturbation theory

Supposing the coupling energy between the atom and light is small compared to the
bare atomic Hamiltonian [110].,

Hy < Hy, (A.IO)

one can first solve the Schrédinger equation of the bare atomic state with Hy, and treat
Hi as a perturbation. When the later is involved, the stationary Schrodinger equation
has the form

2
V@) + HI] [nim) - = Bt [Yoim) (A1)

Because the equation is not analytically solvable, we do not know the exact form of the
eigenvectors |t,;,) and eigenenergies E,,,. For perturbative Hy, |¢nm) and Eyyyy, only

deviate to a small extent from ’@bfﬁl& and Efl(l)gn Therefore, they can be expanded as

Eum = EO +EU) +EC 4. (A.12)
ntm) =[5 ) + 1) + ]wﬁh} (A.13)

with E( ) and E( )

i m being the first- and second-order corrections to the eigenenergy,

respectively. ‘¢nlm> and ’zbggn> are the first- and second-order corrections to the eigen-
vector, respectively. For each order, the eigenvectors are orthonormal to each other:

(V8 [y = i (A14)
The Schrodinger equation becomes

(Ho + 1) ([0, ) + [0l ) + [, ) + )

= (B + Bl + B+ ) ([0i) + [0S,) + [0S0 ) + ). (A15)

nlm

Accordingly, one obtains the sequential equations

Ho ) = B [¥in)
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Hy !wnlm> + Hilun,) = Enn \wiim EfﬁBn \wnlm> ,

which can be solved iteratively.

Firstly, one can multiply the second equation by <¢£L(,]?,m,
0 0 0)
(O i) = (O
Wlth <w( /l)/ /’ HO - <w7(10’3’m/ E’r(lgl)/m” we haVe

(0| Bt [ ) + (0| Er [ i) = (| Bt [0+ (00

For n’ = n,l’ =1,m' = m, one obtains the first-order correction of the eigenenergy

Bnim i) + (Ot Evim [

[rin) + (Vb

(0)
E lll

Epi 9t -

By = (| i[5,

For the other quantum numbers, one obtains the first-order correction of the eigenvector

(0 [0 = (| H |5,
wlim! | Fnlm /T (0) (0) ’
Enlm - En’l’m’
or
Wy -y (O | HE 50 | 50,0
nlm - (0) (0) T ]+
{n/l/m/} Enlm E /l/ /
Usually, E T(len = 0 for certain cases, then one needs to go to second-order corrections of

the eigenenergy by solving the third equation:

(V3¢ \w% (00| 1 Vi)
= <T/J(/z/ / nlm ‘¢7(1217)71> <¢7(10/2’m’ Egzn ‘w72112n> + <w((’)l’ / nlm ‘wnlm> .
For n’ = n,l' =1,m’' = m, one obtains the second-order correction of the eigenenergy
V0| 21000 )

One may notice that levels lower than ‘1/17(527» give positive contributions to the second-

order correction; levels higher than ‘1/}532& give negative contributions. As a results, the
ground state always becomes lower due to a perturbation.
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A.3 Time-dependent perturbation theory

When the perturbative Hamiltonian is time dependent, the Schrodinger equation reads [110].

ma‘l’gi’“ = ;’; FV (x) + Hy(t)| W (r,t), (A.16)
maq’g’t) [Ho + Hi ()]0 (r,1). (A.17)

To proceed, one needs to adapt the interaction picture where the bare Hamiltonian Hy
is eliminated

mwla(t‘”t) = Hi(H)¥(r,1), (A.18)
with

Uy (r,t) = e wHNp (r,¢), (A.19)
and

H'(t) = e mHotp(t)emtot, (A.20)

The formal solution of this equation is given by directly integrating the equation over
time

1t
Up(rt) = Uy(r,0)+ E/ Hi(t) Wy (v, 1) dty. (A.21)

0
This integral equation is still not solvable because we do not know Wy (r,¢1) yet. To

tackle this problem, one can substitute Wy (r,¢;) iteratively into the formal integral to
get a series of integrals

1 t 1 t1
‘l’[ (I‘, t) \III (I‘, O) + = / Hl(tl) {\IJI (I‘, 0) + = / HI(tQ)\III (I‘, tg) dtz} dt1
ih Jo th Jo
1 t
= ¥ (I’,O) -+ 71 / dtlHI(tl)\Ifl (I‘,O)
mn.Jo
1\? rt h I I
+ () / diy / At HY (1) H (12) W (x, t2)
th/) Jo 0
Continuing the iteration, one obtains
1 rt
Wi(rt) = Wi(r0)+ / At HY(1) T (r, 0)
0
1 2 t t1
+ () / dt1 dtgHI(tl)HI(tQ)\I/I (I‘, 0)
ih 0 0

1 3 t t1 to

+() / dt, / dts / dts HY(t1) H' (1) H(t5)¥; (r, 0)
ih 0 0 0

+...
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> 1\F rt t1 tn—1
" (r,0)+z<,> /dt1 dtg.../ Aty H (1) HY (t2)... H' (t,) W1 (r, 0)
i \ih/ Jo 0 0

0 1 kot t1 tn—1

W0+ () / dty dtg.../ Aty HY (1) H(t)... H(t,) 0 (r,0).
i \ih/ Jo 0 0

In the last step, we have used the relation

Uy (r,0) = e w0y (rt =0) =W (r,0), (A.22)

which means the wave function of the initial state is the same in the Schrodinger picture
and in the interaction picture. Until now, the result for Wi (r,¢) is accurate without
any approximation. However, the solution is represented by an infinity of terms, each
corresponding to a perturbation of a given order. For each term, we know the expression
of the interaction Hamiltonian H'(¢,) and the initial wave function ¥ (r,0), and so one
can calculate the perturbation series to any accuracy by stopping at a given order. As
an example, first-order perturbation thereby gives

Uy (1) ~ \I'(r,O)—i—% /Otdtlﬂl(tl)\ll(r,o). (A.23)

For some cases e.g. scattering problems, we are only interested in the final state of
the system far after the scattering. Therefore, the equation above can be rewritten as

\IJI (I‘, OO)

_ qz(r,—oo)+gl (;)k/_o:odtl /_t;dtg.../tnl by H' (1) H (t3)... H'(£,) U (r, —0) ,

—0o
which gives the definition of the scattering operator

Ur(r,o0) = SYU(r,—oc0),

with
S = I+) 5®,
k=1
and
* 1 k  poo t1 tn—1 I I I
sk = (m)/ dt; dtg.../ At H'(01) H (1) H(1).

The first-order scattering gives
1 o0
S ~ I+~ / dLH (1), (A.24)
h J_so
with the scattering amplitude from an initial state |i) to a final state |f) given as
(1) Lo/ I > I
s = E/ dt (fi] H'(2) [ir) = fraclih/ At (i H (O ). (A.25)
— 0o —0o0

As we are only interested in the amplitude, one can drop the extra phase term in (fi| =
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e Hoxoo (f|. This gives a new definition of the scattering amplitude as:

1 oo
s = 5 [ _anE

= [ agle B en )
N J—co
1 [ . )
= [t e 1), (A.26)

with Eif =F;, - Ef.
As an example, for interaction Hi(t) = Hi(w)e™ ™! + h.c., one has

1 o]
S %[ dt (f] e Pt Hy(t)em Pt |i)
1 o . e .
= %[ dt (f| e "ist (Hl(w)e t 4 h.c.) |7)
= 171/ dt (f] (Hl(w)e*i(Eierﬁw)t/ﬁ_’_HI]L(w)efi(Eiffﬁw)t/h) i)
t —00

= —2mi (| (Hi(w)3(Euf + ) + Hf ()3(Biy — hw)) i)
= —2mid(Big + hw) (f] Hi(w) i) — 2mi6(Eip — hw) (f| H{ (@) i) . (A.27)

Based on these results, one can define the transition amplitude

Ty;

{(f| Hi(w) i), for E; < Ef, excitation , (A.28)

(fl HIT(w) liy, for E; > Ef, emission .
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Appendix B

More on density matrix theory

B.1 Atomic calculation of Rabi frequencies

As defined in Sec. 2.3.1, all the parameters in the rotating-phase picture are real func-
tions. The coupling strength between the atoms and electromagnetic field is given as

Q(x,t) = ‘e (e|r|g) € (x,1) ‘
= |etelr ) éle (x 1)
= ‘e(e]r~€\g> ’E(x,t), (B.1)
with & (x,t) the scalar amplitude of the electromagnetic wave and € its polarization

vector. Assuming that the light propagates along & direction, the polarization of the
light can be

€ = cosaj + sinaZ, for linear polarization, (B.2)

or

R 1
€ = —
* V2

Here, based on the example of the hydrogen atom, we will shown how the value of
(e|r - €|g) can be calculated.

To start with, we should realize that, as long as the main axis (2) is fixed, the mag-
nitude and direction of (e| r|g) are fixed quantities for a given atom with specific states
lg) and [e):

(g £i2), for circular polarization. (B.3)

(e[rlg) = (elz]g)Z+ (elylg) g+ (e|z]g) 2. (B.4)

The dipole moment, (d) = Re [pge (e[ r|g)], may change during the interaction with the
radiation field. The value (e|r |g), however, is always a constant vector as long as the
two energy levels are given.

As an example, we assume the ground state is |g) = 1100 and the excited state is
le) = 1910 using the indices nlm with the hydrogen-atom quantum numbers. With the
length normalized to the Bohr radius ag, we have

[e’s} ™ 27
. 1 —r/2 . 1 -7
(elz|gy = / dr/ d9/ dg (r’sinf ( e "/ rcos@) (rsinfcosyp) (e > =0,
0 0 0 ( ) 4v2m VT
e} " TT 27
. 1 —r/2 . . 1 —r
(elylg) = / dr/ d€/ dy r2sind < e/ rcos6‘> (rsinfsing) (e ) =0,
0 0 0 ( ) 421 NG
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Table B.1: Coupling factors (e| r |g)-& between hydrogen a atom and light for different atomic excited
states, different light propagation and polarization directions. We assume the atoms are polarized
along the % direction e.g. by applying a magnetic field B = B,Z. The ground state of the hydrogen

atom is |’¢100>.

Excited states
(e|r|g) /0.744936
Propagation direction | Polarization: é lor), m = +1 lha0), m = 0 (o1 1), m = —1
T 7~ - z T 72 =
(& + i) 2 (& — i)
z 0 1 0
~ T T~
along & Y 2! 0 A
(0 +i2) i R, —1i
o %. 4 =
ﬁ(y —i2) 50 -5 —5i
z 0 1 0
z —=i 0 5t
along § V2 V2
T +i2) 1% —5i 30
e ’r 2 ’r
ﬁ(z—m) —5i ok —5i
— T 1
- v : 7z
along 2 . Y ok 0 vk
—=(Z + 1y 0 0 1
2
i(:f: — g 1 0 0
V2
oo T 27 1 / 1
e|]z]g) = / dr/ d9/ dep (r*sing < e " 27“0059) (rcosf) (er) = 0.744936,
0 0 0 ( ) 4v2m VT
where we have used the transformation
x = rsinfcosp, (B.5)
y = rsinfsing, (B.6)
z = rcosb. (B.7)
Similarly, if the excited state is |e) = 1211, then
(e|lzlg) = /OO dr /7r do /27r de (r251n0) ( L er/zrsin06i¢> * (rsinfcosyp) (16T> = 0.526749 + 0¢
o o o 8V T
oo T 27 *
. 1 . i¢ . . 1 . .
(elylg) = / dr/ dG/ dg (r’sinf <e /2rsinfe ) (rsinfsing) (e ) =0 —0.5267491,
o 0 o ( ) 8/ VT
0 T 27 *
. 1 —r/2 . i 1 —r .
e|z]g) = / dr/ d@/ dy (r?sind ( e " rsinfe ) (rcosf) <e ) =0+ 0s.
A A A v 7

And, if the excited state is |e) = 10211, one has

(e[ = g)

(e|y |2

(e[ 2 ]g)

oo ks 27
1
dr/ d@/ dy (r?sind ( e
/0 0 0 ( ) 8vm
o] T 27 1
dr/ d@/ dy (r?sind ( e
/0 0 0 ( ) 8v/m

oo T 2m *
. 1 2 ooy i 1 _ )
dr do dg (r’sinf <e /2 rsinfe Z¢) (rcosf) (e T) =0+ 0s.
/0 / / Crm0) 5 va

"/2rsin96_i¢) (rsinfcosyp) (

r/zrsinﬁew) (rsinfsiny) (

1

—e") =0.526
N )

1

— e ") =0+0.
ﬁe ) +

In total, the dipole vectors for three different electric-dipole transitions are

749 + 0i,

5267494,
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(e|r|g) = 0.7449362, for m =0,
(e| T |g) = 0.526749% — i0.5267497, for m = +1,
(e|r|g) = 0.526749% + i0.5267497, for m = —1.

We also note that, for all the excited states, one has

(el r]g)] 7# (el 7 g), (B.8)

where |{e|r|g)| = 0.744936, but (e| r|g) = 0.

The coupling between the dipole and the light field under different propagation and
polarization directions are given in table B.1. One can see that the value of the coupling
factors (e| r|g) - € is not simply decided by the selection rules according the the polariza-
tions. It can be positive, negative or even a complex number. This is why we introduce
a phase term ¢o when defining the Rabi frequency in Egs. (2.113-2.117). Therefore,
(el v]g) - # (elr]g) - &

Another conclusion from this calculation is that p = |(e|r|g)| is independent of M,.
This is because when the principle quantum number and the angular momentum quan-
tum number are given, the different magnetic substates will only contribute a phase
factor to the wave functions. Therefore, they do not modify the amplitude of the dipole
moment.

B.2 Atomic calculation of electric-dipole momenta

After the direct calculation of the electric-dipole moment described in Appx. B.1, in
this section, we discuss two other methods to calculate it. The first method starts from
Einstein A coefficient which can be calculated by using e.g. the GRASP package (for
E1, M1, E2 and M2 transitions) [105]; the other method starts from the oscillator
strength which can be obtained through either the GRASP package or from the Los
Alamos Atomic Physics Codes (only for E1 transitions) [143].

In a transition from an excited state |a) to a lower state |b), the spontaneous emission
probability per second is given as

s 4o w3 2
W = 0 alr ) B.9)

The corresponding oscillator strength is defined through [115]

2MeWpq 2
fap = 3 | {alr|b)]". (B.10)

For degenerate levels such as atoms without a Zeeman splitting, the spontaneous emission
probability is obtained by summing over all the allowed transitions between the magnetic
substates of the excited and final state, and averaging over the excited state. This gives
the Einstein A coefficient of spontaneous emission:

I o dawd 1 9 da w3 1 9
Amp = Zg—awajbi =2 30—2? (ai| v |bj) | = ?@ng“w (B.11)
b I 0]
with g, being the magnetic sublevel degeneracy of the excited state and

pij = el{alr|bs)|. (B.12)
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The oscillator strength for a degenerate system is defined as a reduced oscillator strength

2mewb¢aj 1 B 2mewpq 1

_ 1 2
fab = ;%fajbizzzmgHaﬂﬂbiH T T 3he2 *Zl‘?i’ (B.13)

i a Ja i
which is obtained again by summing over all the allowed transitions between the magnetic
substates of the excited and final states, and then averaging over the excited state. From
Eq. (B.10) and Eq. (B.13), one can notice that

fab = —foas (B.14)
fab = _?fba- (B15)

Due to wg;p; = w and p;; = pj;, a comparison of Eq. (B.11) and Eq. (B.13) gives the
relationship between the Einstein A coefficient and the reduced oscillator strength:

20hw? - 20hw? gy - w?e? gy -
Aab = - 2 Jab = ) fba: fba~ (Blﬁ)
mecC MeC* gq

2megMec® g

As we know from Appx. B.1, the p;; = p are independent of the magnetic substates
when [, and [, are given. This results in the following relations:

Aab = ?@Eﬂ , (Bl?)
- 2mewpe TN o

” —us, B.1
Jab 3hez g, " (B.18)

with Ty being the number of all allowed transitions between the initial and final states.
Besides, p;; = p also indicates that the oscillator strength and transition probability are
the same for transitions between different magnetic substates. Therefore, one has the
following relation between the reduced oscillator strength and the oscillator strength:

_ Ty
fab = —fab- (B.19)
Ya
Then, one can obtain the light electric dipole moment from the Einstein A coefficient
as
3 c2e? g 3meghc? 3meghtc?
2 a 0 Ja 0 Ga
- 2 Je = T, = Ta Y B.20
M 4C¥ (.U3 TN ab wg TN ab (hw>3 TN abs ( )
or
2 3x3.14x8.85x 1072 x 1.05% x 10734 x 33 x 10873 L« 90 4
o= (1.6 x 10-19)3(fuw)3 Ty
_ 83367 x 10712 x 1.22 x 10719 x 27 x 10* ga ,
- 4.096 x 10~54(fw)3 Ty
— 6704 x 1072 x o g
(h(,d)g TN ab»

with Aw given in units of eV.
For the transition 1s2p 'P; — 1s® 1Sy in Ne8+7 one has g, = Ty = 3. With the
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parameters fuw = 920 eV and A,y = 9 x 102 obtained from a GRASP calculation, one
can calculate the electric-dipole moment as

1
p? = 670.4 x 10752 x 9205 < g x 9 x 1012 = 77.488 x 1072 C? . m?.

So, we have
p o= 88x1073C-m = 0.104 eay,

with eag = 8.48 x 1073°C - m.
On the other hand, the electric dipole can also be calculated from the oscillator
strength

_ 2mew 2 2mew o
[o= 3 |lelrle) | = 55w (B.21)
So that
o _ 3D0e? g, 3 hA gy
H 2mew TN 2me2me Ty

1.05 x 1073% x 1.62 x 10738 %
27 1 —10 1 1
X9.11><10—31><6,28><3X108XTNXO‘OX0 ) % (fox1077)

= 2.35x 1072 x ﬁi(xo X fo).
N

= 1.5

For our transition 1s2p 'P; — 15> 1Sy in Ne®", the wavelength and the oscillator
strength can also be obtained from the Los Alamos Atomic Physics Code as A = 13.45 A
and f = 0.76228. Because there is only one possible ground state, g, = 1, and the
number of transitions are Ty = 3:

p? = 2.35x107%2 x = x (13.45 x 7.6228) = 0.803 x 107%° C2% . m?,

Wl

which gives
p = 0.896 x 1072°C - m = 0.106 eay.

One can see that the electric-dipole momenta calculated from different codes and ap-
proaches are approximately equal to each other.

B.3 Lindblad Hamiltonian

In Eq. (2.133), the coupling of the two-level system with the reservoir is given by the
Lindblad form [112]

p = Lip)=

N | H

(20_p0+ —otop— p0+0_> , (B.22)

with the operators
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p and I is the density matrix and decay rate defined in Sec. 2.3, respectively. One should
notice that the right-hand side of the Lindblad form does not change under any unitary
transformation U;. Take the first term for example

Uio potUl = Uio Ul UipUlUie U = o7 pioi (B.25)

i
with the new excitation and deexcitation operators defined as

of = UietUl = Uile) (g| U = les) (ail, (B.26)
o = Uo U =Ulg) (e|Ul =|g) (ei]. (B.27)

Here, |g;) and |e;) are the new eigenstates in after the unitary transformation. Therefore,
no matter which picture we are working in, one could always use the same Lindblad form
to describe the decay process and include it directly to the von Neumann equation.

In the matrix form, the three terms can be reformulated as

~ [0 1] pew pee | [0 0
+ gg g
_ [ Peg  Pee 0 0
0 0 1 0
_ | Pee 0
= 0 0 ] , (B.28>
otaTp = le){elp

_ 00 Pgg  Pge
01 Peg  Pee

0 0
_ , B.29
[ Peg  Pee ‘| ( )

portom = ple) (el
_ Pgg  Pge 00
Peg  Pee 01
0 pge
= ) B.30
[ 0 pee ‘| ( )
Adding them together, one obtains the matrix form of the Lindblad Hamiltonian:

1
. Pee —5Pge
=T 28 . B.31
P [_%peg —Pee ] ( )



Appendix C

Schrodinger picture, interaction picture and
rotating-phase picture

The dynamics of any quantum system can be studied in different equivalent pictures.
Each of these pictures has their own advantages. In the following, We introduce three
pictures that are used in our thesis, namely the Schrédinger picture, the interaction
picture and the rotating-phase picture.

Considering a two-level system interacting with an electric field of the form

B (x,¢) = % (Em (1) 0" 4 £3, (x,0) "), (C.1)

with €, (x,t) given by Eq. (2.102), the Hamiltonian is given as

H = Hy + Hj, (CQ)
with
0 0
and
H = er E(xt)= % (Em (x, ) ™00 4 £5 (x, 1) €01 (C.4)

C.1 Schrodinger picture

In the Schrédinger picture, the wave function of the atomic state of a two-level system
has the form

(1)) = cg(t) [8) + ce(t) |e) - (C.5)
The corresponding density matrix is defined as [107]
- _ | e CeCc | _ | Pas Pec
p =) (Y| = [ CeCl CeCl ] B [ Peg Pec ] : (C.6)

According to the Schrédinger equation, one can derive the equation of motion for the
density matrix:

b= SNl he = CH W) W~ ) WIH = (He,  (C7)

125
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which means
p = ilp,H] =ilp, Ho+ Hi]. (C.8)

Here, Eq. (C.8) is called the von Neumann equation, which is the starting point for
studying the dynamics of a quantum system in density matrix theory. Because we do
not consider any spatial variations for the atomic system we are interested in, the partial
derivative with respect to time is changed to be the total derivative.

One of the advantages of density matrix theory is that the global phase of the quantum
system is eliminated from the theory. For a given atomic wave function

(0} = 5 18+ )] (C.9)
the phase 8 would never enter the density matrix element and one can just neglect it. In
other words, the global phase of the atom has no effect on the dynamics of the atomic
state. Therefore, one can drop it without changing the physics. Only the phase difference
Bo between |e) and |g) will enter the density matrix and hence affect the evolution of
the density matrix elements. Supposing all the atoms are staying in their ground state
at t = 0, even though their phase may be different between each other, in the language
of the density matrix, they are indistinguishable particles. These arguments give us the
idea to prepare an ensemble of atoms in a state with the same initial conditions for
density-matrix.

C.2 Interaction picture

The wave function ‘w1> in the interaction picture is obtained by the following unitary
transformation of the wave function |¢) in the Schrédinger picture [107],

UO — eiHOt — l é eigat ] , (Clo)
which gives
N {1 0 ce | Cg
\¢> = Uoly) = [ 0 gl ] [ o | = | et |- (C.11)

Therefore, one can express ‘¢I> in the basis of Schrédinger picture as

[W') = Cyle) + Cele), (C.12)
with the relations of the coefficients given as

Cs = cg (C.13)
Co = cee™. (C.14)
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Accordingly, the corresponding density matrix in the interaction picture reads
C,Cr C,C Pl
1 — I I — gvg gve g p e
o =[ut) (] l C.CE CoCr ] [ oL, ] (C.15)

This density matrix can also be written in the basis of Schrédinger picture as

I —iwat
oy e e
P Poe | = | e - Pee - (C.16)
peg pee pege Pee

One can see that the off-diagonal elements in the interaction picture can be regarded as
the envelope function of the off-diagonal elements in Schrédinger picture:

twat

pée = Pge€ = Pge; (C.17)

wat

p(Ieg = Pegt = Peg: (C.18)
The same results can also be obtained by an equivalent form p' = UOpU(;r due to
p' = UopU§ = Un [0) (| U§ = [u") ('] (C.19)

The time-evolution of the density matrix is given as

.I.
op 2 (Uorll) v, op Ul
9r =0, 2
ot ot 51 P08 + Vo Ul + Uop =, (C.20)
With
aUO _ a iHot __ iHot __
5 = &e = 1Hpe = 1HyUy, (C.21)
8Ug O _imt . —iHot ; T
Yo Y i = —jHae Wot — _iH 22
5t 52¢ 1Hye iHoUy, (C.22)
we obtain
oU, Uy
m%%+% £): iHoUopU] — iUogpUl Hy = iHop" — ip' Hy = i[Ho, p'].
Furthermore,
0 . . )
UnseUd = Uoilp, Ho + Hil) U§ = Uy (i, Hol) UJ + Uo (i [p, Hi) UJ. (C-23)
With

Uo (i lp, Hol) Uy = i (UopHoU{ — UsHopUy)
= i (UopUj Ho — HoUppUy)
= i (p'Ho — Hop')
:zVH@ (C.24)
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and
Uo (i lp, H)) US =i (UopHhU] — UpHipUy)
= i (UopU§ UoFalU§ — Up HiU{UopUy )
_ Z(pIHI H! 1)
= z{pI,HI} (C.25)
we obtain
Us ?95 i[o Ho| +i[p H|. (C.26)

All together, this yields the von Neumann equation in the interaction picture:
po= il A, (C.27)

with the Hamiltonian in the interaction picture being (see Eq. (2.120))

Q (X t) 0 e—i@(x,t)
_ T J
=UoHiUy = 2 [ e10(x,t) 0 )
(C.28)
and
0(x,t) = k-x—At+ ¢ (x,t)+ ¢o. (C.29)

C.3 Rotating-phase picture

In order to deal with the phase term in the interaction picture, one could go to the
rotating-phase picture through the unitary transformation

1 0
Up = [ 0 e—i00xD) ] : (C.30)

Under this transformation, the wave function is

\wM> = Uy ‘1/11> - l (1) e_oi(, ] l gg ] = l Ceig_w ] : (C.31)

Then we get the relations between the coefficients in the rotating-phase picture, the
interaction picture and the Schrédinger picture as

Cy = Cg=cg, (C.32)
C. = Coe 0 = ¢ ewat=10, (C.33)
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Similarly to the former transformation, the density matrix is replaced by

I I 0
e

M o= UppUS = | [y, P (C.30)
Peg€ Pee

Therefore, one can have the following relations for the density matrix elements in these
three pictures:

pg/é — plgeeie — pgee_iwat+i6; (035)
ng = pégeiie = pEgeiwatiiaa (036)
Pgé = plgg = Pgg> (C.37)
Pee = Pre= Pec: (C.38)
The evolution of the density matrix p™ in this new picture can be derived as
8pM 9 (UapIUeT) Uy Ut 8,01 Ut U I@Ug C.39)
ot at o PV T ey te T her T (.

The three terms on the right hand side can be calculated as follows:
Uy 1.+ [0 0 pr. ph 1 0

0yt = on g Pge .

ot e | 0 —z%e"e pgg pie 0 e

[ 0 0 1 0
_—i%e_“gpleg fi%e_lepée 0 e

0 0
= =00 —i0 1 290 1
L _Zme ! peg _’Lﬁpee

0 0
_ , C.40
[ Sines Gipes 1 (40

and
U 1 0 oL Pl 0 0
U0 — , g Pge e
T 0 e pig pi;o 0 z%ew
_ 1 0 0 z%e"eplge
o 0 e 0 i%eiepée
_ 0 i%zzapée
_O ’meée
0 @pM
= i - (C.41)
lO %pgﬁ
furthermore,
ap" T [ 1 g1 i
Up Uy = U (i [0 1)) U]
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= i (Upp'UUH'UJ — UpH'UUp'U} )
_ i(pMHM _HMpM)

- z'[pM,HM], (C.42)
with
HM = UQHIUg:Hg g] (C.43)
For the first two terms, one obtains
ool = i g g+ R
-8 ][0 8]
- i[pM,Hg}, (C.44)
with
w0 (.5
ot

Putting all the terms together, one finds the evolution of the density matrix in the
rotating-phase picture as

o0

= i{pM,HM—FHg} :i[pM,Heﬁ}, (C.46)

with the effective Hamiltonian given as

Hyg = [932 Qg/; 1 (C.47)

From this effective Hamiltonian one can see that the change of the phase with time
gives the time-dependent instantaneous frequency detuning in this coupled system:

Ag(t) = _gf. (C.48)

Because k - x and ¢g are constant quantities which are independent of time for each
atom, one could have

Ag(t) = f%f. (C.49)

The time-dependent phase function ¢ (x,t), can be written it in a polynomial form as
o(x,t) = ¢ (x)+ oW (x)t+ 0P (x)12 + ... (C.50)

One may notice that, the first term ¢(?) refers to a constant phase which is independent of
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time. Because the derivative of this term gives zero in the rotating-phase picture, it does
not change the physics in this case. One could also absorb the other two constant-phase
terms k-x and ¢g into ¢(©). The second term ¢! can be regarded as a frequency shift of
the carrier frequency. If we take the reference carrier frequency to be resonant with the
two-level system, we have A = 0 and ¢(1) exactly refers to the detuning between the two-
level system and light field. For the third term, ¢ corresponds to a chirp in the light
pulse. So, in principle, the detuning A, the constant phase ¢y and the time-independent
phase k - x can be absorbed into a single phase term ¢.

0(x,t) = 09 (x)+0D x)t+0% x)t*+ .., (C.51)
with
0x)? = 6x)?+k-x+ ¢, (C.52)
0" = ¢ -4, (C.53)
0x)™ = ¢x)™ for all n > 2. (C.54)

Then, the dynamics of the system can be fully described by the effective Hamiltonian

Hay — [ 0 9/2]. (C.55)

90
02 %
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Appendix D

More on Maxwell-Bloch equations

In the Maxwell-Bloch equations given by Eqs. (2.151-2.157), the amplitude and phase
of the light field is treated separately. This procedure has the advantages in e.g. defining
the Rabi frequency in Egs. (2.113 and 2.125), obtaining the rate equations in Eq. (2.196)
and Eq. (2.197) and analyzing the light amplification and absorption based on simple
properties of atomic coherences. In particular, in the rotating-phase picture, the Hamil-
tonian in Eq. (2.125) gives clear physics on the interaction between the atom and a
chirped light pulse with a time-dependent detuning [113]. Nevertheless, Eqgs. (2.151—
2.157) have problems in numerical simulations. The evolution of the phase of the light,
¢ (z,t), includes a 1/€ (x,t) term that leads to singularities when &£ (z,t) — 0. Fur-
thermore, treating the amplitude and phase separately results in two wave propagation
equations that makes the analytical treatment more complicated.

In this Appendix, we account the amplitude and phase in terms of a single complex
function and derive the corresponding Maxwell-Bloch equations used in Chapters 5-7.
In order to solve these equations numerically, the Maxwell-Bloch equations in terms of
its real and imaginary parts of the light field are also derived.

D.1 The light field as a complex function

By defining two complex vector functions

= E.(x,t)eilkrmwot) (D.3)
= P (x,t)ekr—wot), (D.4)

This means

P N bl P L
5 7€ +1 5 Ee'?, (D.5)
0E. 0 ;5 .09 ;s
e~ D —i—z—axge . (D.6)

and

0 OE ¢ 0. (0E. OEN\ _is
8t+66x+8t5+68xg_(8t “ax)‘f :
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From Eq. (2.52), we obtain the evolution equation of the complex field in the the slowly
varying envelope approximation as:

0E. 0E.  ipgwoc?

T +C(9x = Pe. (D.8)

Again, using the definition &€ = £, one can multiply the conjugate of the polarization
vector, €%, to each side of the equation to obtain the scalar equation:

o0& 0. i LowoC?

D.
ot " “ox 5 Peé (D.9)

with & and P, being complex scalar functions. Separating & into a real and an imagi-
nary part:

Ec =&, +i&, (D.lO)

one obtains a new set of wave propagation equations given as:

0E,  O&, prowoc? "
- /U o €Y, D.11
5 +c 5 5 Im[P. - €] ( )
08,  0&  powoc? .

Similarly, in retarded time we have

0E:  ipipwoc .
_ L D.1
9 5 P. - € (D.13)
or, in a different form
0&, HowoC .
I .-, D.14
B 5 Im[P, - "] ( )
o0&, HowoC .
_ HooCp i, e, D.1
B 5 Re[P, - "] (D.15)

The complex light fields have the following relations with the amplitude and phase of
the light field.

E(z,t) = E(z,t) @), (D.16)

and
& (x, = E(x,t)cos (¢ (z,t)), D.17
& (z,t) = E(x,t)sin(¢(z,1)) (D.18

D.2 The xi picture

Apart from switching to the rotating-phase picture to obtain a completely positive cou-
pling strength given by the Rabi frequency € (see Sec. 2.3), one can also change to
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another picture with a complex coupling strength where the phase ¢ (x,t) of the light
field is included. In the following, we call this newly defined picture the xi picture.
With Eq. (D.1) and Eq. (2.113), the complex coupling strength can be written as:
QC (:U> t) = ¢ <e| r ’g> £C (.%', t) ei¢0)
O (z,t) = elglrle) &L (z,t) e, (D.19)

which has the relation with the Rabi frequency as:

QC (.’13, t) Q (LU, t) €i¢(x’t) = Mgei¢(x>t)7
Qf (2,1) = Q(x,t) e 0@ = gm0,

They can also be separate into a real and an imaginary part

Qc = Qa + ina (D20)

with
Q= péa, (D.21)
Qb = /Lgb. (D.22)

In the interaction picture, the Hamiltonian is given as

1 0 Q*e—if(x,t)
I _
B = 5| qeten o |
(D.23)
and
E(z,t) = kx— At + ¢o. (D.24)

Similarly to the procedures adopted in Appx. C, using the unitary transformation

1 0
Uxi = [ 0 e—itt) ] ; (D.25)

the Hamiltonian changes to
xi iyt 1 0 Q:
H" = U4HUy = 5 [ R (D.26)
and the wave function has the form

¢I> - [ (1] 6_01.5 ] [ gi ] = [ ng_ig ] : (D.27)

The relations between the coefficients in the interaction picture and in the xi picture is
given by

,l/}Xi> — Uxi

xXi _
Cy = Cg=cg,
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CH = Che ™ = gelnt=i, (D.28)

Therefore, the density matrix p* in the xi picture has the form

1 I i€

xi e

P = UxipIUlizlpJ’gg_i pg; ] (D.29)
eg ee

where one can have the following relations for the density matrix elements in the xi
picture, the interaction picture and the Schrédinger picture

Pae = Ppe€ = pgoe T, (D.30)
p)e(é = p}egeiig = Pegeiwatiié (D.31)
xi 1
Pog = Pag = Pegs (D-32)
Pee = P<Iee = Pee- (D.33)
The corresponding evolution equation of the density matrix in this xi picture is
8pxi . ) )
o = o, (D.34)

with the effective Hamiltonian given as

i = [(200/2 %5/2]:[900/2 Q—Cf]' (D-35)

Here, ). in the off-diagonal term is a complex function.

D.3 Polarization in the xi picture

With the relations

pge = pz‘iaeiwatfif _ p;‘iaei(wotszftﬁo), (D.36)
Pog = pzigefiwaH»i& — pﬁéefi(wotkafqﬁo), (D37)

we can obtain the polarization in the xi picture as

P = —nee|r|g) pae’@olFrmdo)
—ne (g| r|e) plge (ot hm00)
= P (z,t) + P (1), (D.38)
with
P (2,t) = —ne(g|rle) plpe (ofhr—00)

PO (2,t) = —ne(e|r|g) ppe’“omo %),
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Because we also have the relation
1 .
P (z,1) = 5 Pe(@t) eikz—wot) (D.39)

we immediately arrive at

Pe (ZL‘, t) = —2ne <g| r |e> p)e(éei¢0a (D40)
and
P& = 2npupk. (D.41)

Thus, the evolution equation of the slowly varying scalar envelope is given as

0&: 0&:

BN +c o —i,uon,uwocpgfg, (D.42)
or, equivalently,
0, 0&, i
5 +c o ponpwoclm[pg,], (D.43)
wr + Cor = —ponpwocRe[pgg]. (D.44)

D.4 Maxwell-Bloch equation in the xi picture

Similar to Eq. (2.133), in the xi picture, the evolution equation of the density matrix
including decay and decoherence processes is given as

X 1 xi 1 xi
i i pyxi Pee  —2Pge 0 =3Pk
P = i|p HF| +T - S| +8 - 1. (D45
{ eff} “3Peg " Pee _%peg 0 ( )
Considering that
_PXi, e)fflf}
ST ][ o wme] o e[
| Py Pee || /2 —A Q/2 -A Peg  Pee
[ Q¢  xi QF i xi QF i QF i
N NP L T
Ton wre— A 5P~ Dley S Pge — B
[ xi * X1 Qg xi xi xi
. % (Qcpge - QcPeg) 2 (pgg - pee) - Apge (D 46)
- Qe Xi Xi Xi xi Xi ’ ’
| 2 (peé - pglg) + Apeé % (Q:peé - Qcpgtla)
one obtains the differential equation for each density matrix element as:
- X1 i Xi * Xi xi
Pgg = 5 (QCpge - Qcpeg) + Fpee? (D47)
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- xi Q* xi Xi . Xi Y xi
Pge = Z?C (:Ogg - pee) - ZApge - §pgea (D48)
- xi -QC Xi Xi . Xi Y xi
peé = l? (peé - pglg) + Y’Apeé - §peg’ (D49)
e = 5 (0% - Qi) —To. (D.50)

where we used v =I' 4+ 3. Together with the wave propagation equation

05, OE.
ot o

= —iuonuwocp’e‘fg, (D.51)

one arrives to the Maxwell-Bloch equations in the xi picture. Besides, compared to the
results in book of Scully and Zubairy (page 163) [107], there is a sign difference in the
Bloch equations, which is because of the extra sign in defining the elementary charge e.
The same difference also applies to the definition of the dipole moment and the Rabi
frequency.

D.5 Maxwell-Bloch equation with real functions

As defined before, one can rewrite the complex function into a real and an imaginary
part (neglect the superscript xi)

Qe = Qp + 1Oy,
Peg = @ + 1b,
Pge = a — 1b,

Ec =&y +i&p.

This results in the following Bloch equations:

Poe = Qab— Qpa+ e, (D.52)
. Oy, g
a = T (Pee — ng) —Ab— 5@, (D.53)
; Qy Y

Pee = —ab+ Qpa — Tpee. (D.55)

Using the relation Q, = pu&, and Qp = pép, one obtains the Maxwell-Bloch equations in
terms of the real and imaginary part of the light as:

Pee = pED — puEpa + I'pee, (D.56)
. pE Y
i = 52 (pee = pug) — Ab— Ja, (D.57)
. &,
b = “7 (Peo — Pag) + Aa — %b, (D.58)

Pee = —pEb~+ uEpa — I'pee, (D.59)
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and
0, 0,
p— D.
En +c o Honpwoch, (D.60)
0& o0&
a—tb + ca—xb = —Uonpwoca, (D.61)
where we used Im[pge] = —b. Comparing these differential equations with the equations

we obtained in Sec. 2.4, it has a main advantage in numerical simulations: there is no
possibility for singularity to appear in the equations above.
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Appendix E

More on multipole transitions

In this Appendix, we explain more details on multipole light-matter interaction, based
on Walther Johnson’s book on Atomic structure theory [115]

E.1 Multipole expansion of the electromagnetic field

Assuming a plane wave, A (r,t) = A (r,w) e"“! + h.c., the vector potential can be given
as

A(r,w) = A&

The scalar quantity A is the amplitude of the field for which we assume A = 1 in the
following. The vector € refers to the polarization of the field.

To proceed, we expand the vector potential A (r,w) in the basis of vector spherical
harmonics Y (7) as [115]

A(r,w) = Y ApmYiu(F), (E.1)
JLM

with 7 = (cosgsind, singsinf, cosf) the unit vector, and the vector spherical harmonics

YJLM(f) - ZC<L7 17J7M — 0,0, M)YLM—O'(f)ga" (EQ)

The Y7as(7) are the spherical harmonics and the vectors &, are the unit spherical vectors
defined by

1 1 0 1 1,
& = G 8 &o = 2 75—125 _OZ : (E.3)

The coefficients A jrs can be obtained by adopting the orthogonality relations between
different vector spherical harmonics:

[ Q0¥ a0 0 Yoras(5) = [ 06 [ A0 1100,0)¥i001(6,6) = 600
This results in
At = [ AQ (¥ () - A(r,w)
- / AQ (Y5, 0 (7) - &) € (E4)

141
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Considering that a plane wave can be expanded in the basis of spherical Bessel functions
Ji(kr) as

e*r = An > ilGi(kr) Y, (k) Yin (), (E.5)

Ilm

the coefficients Ay can be rewritten as

Ajpm = /dQ (Yo (F) - €) (47Tziljl(k7“)yzfn(ff)ylm(f)>

Im
= ar Vi (k) [ AR (Vipag() - Yim 7)) - i)

= 47rlZz'lY,*m(i%)/dQ <Z C(L,1,J,M — 0,0, M)Y} )y, (F)E" - Ylm(f)> - &5 (kr)
= Ar > ity (k) (Z C(L,1,J,M — 0,0, M)aLl(sM_mg:;> &1 (kr)

= 4mit <Z C(L,1,J,M — 0,0, MY}, (k)& ) & (kr)

= ami® (Yipar(k) - €) ju(hr).

Therefore, the vector potential can be written as

A(r,w) = ar Y it (Yipa(R) - @) jo(er) Yoru(?)

JLM
= 47 Z 7 (YJLM ]% €) aJLM(T'),
JLM
with
CI,JLM<7’) = jL<kT)YJLM(f). (E6)

Introducing the transformation for the spherical vector harmonics

Vi) = (|57 ¥ )+ o s Y, (.7
Yo = Y@, (E.8)
Yisou®) = -\ o Vi )+ 55 YA, (£9)
one obtains
A(r,w) = 47?2@‘] A( JM *(k) - )af]’\]\Z(T), (E.10)
JMM

with the multipole potentials af])}\)/[(r) given by

a{(JOJ\)/[(r) = ajm(r), (E.11)
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| J+1 J
a’Eflj\)J(T) = maJJflM(r) - T_HGJ[JAM(T’). (E.12)

Y k)6 = Yy (kee) =o, (E.13)

only terms with A = 0 and A = 1 remain in the multipole expansion, with A = 0
corresponding to the magnetic multipole potential and A = 1 corresponding to the
electric multipole potential. All information referring to the polarization €, propagation
direction k and field strength A are included in the expansion coefficients YJ(]’\\}*(I%) - €.

Moreover, with the definition in Eq. (E.6), the expression of the multipole potential
can be rewritten in the basis of spherical vector harmonics as [115]

afl(r) = Js(kr)Y (7). (E.14)

) =[50+ e + 00y 6. @)

To derive these equations, the following identities for spherical Bessel functions

n+1.

Jn1(2) = Fma(2) +'n(2), (E.16)
Jni(2) = Zin(z) = 7(2), (E17)

and
) = Siaa), (5.15)

have been used.
One can examine that the multipole potentials af])}\)/[(r) satisfy the Helmholtz equation

V2 (r) + kK2al), (r) = 0 (E.19)
and the transverality condition

v-a)(r)=0. (E.20)

E.2 Multipole transition operators
For the calculation of the Einstein A coefficient, one needs to proceed with the calculation
of the multipole transition operator

], = /drwga-a%(rma. (E.21)

In the nonrelativistic limit, the wave function is calculated from the Schrédinger equa-
tion. In the following, we do not refer to any specific wave function. Instead, we only
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consider the interaction Hamiltonian for multipole transitions
A A
[Hfmﬂba = a-al),(r). (E.22)

E.2.1 Gauge invariance

For an electron interacting with an external field with vector potential A(r,¢) and scalar
potential ¢(r,t) given by

A(r,t) = A(r,w)e ™ +he, (E.23)
b(r,t) = ¢(r,w)e ™ +h.e, (E.24)

the interaction Hamiltonian is given by

hi(r,t) = hi(r,w)e ™ 4 h.c, (E.25)
with

hi(r,w) = e{—ca-A(r,w)+¢(r,w)}. (E.26)

Introducing scalar gauge function

G(r,t) = G(r,w)e ™ +h.c, (E.27)
with G (r,w) satisfying the Helmholtz equation

V3G (r,w) + k*G (r,w) = 0, (E.28)

one can perform the gauge transformation for the external fields

A'(r,t) = A(r,t)+ VG (r,t), (E.29)

¢ (r,t) = gb(r,t)—%G(r,t), (E.30)
which gives

A(rw) = A(r,w)+ VG (rw), (E.31)

¢ (rw) = ¢(rw) +iwG (rw). (E.32)

This procedure can be followed in the multipole expansion, with the gauge function
defined as

Grw) = ar 3 (Y7 (k) -€) ghn(r), (E.33)
JMN\

where the g((]>}\)4(r) is the multipole gauge functions. Because the expansion coefficients are

r-independent, one can immediately recognize that g%& (7) should satisfy the Helmholtz

equation. Therefore, the gauge transformation for the multipole potential is given as

a7 = aly )+ vglr), (E.34)
) = G u(r) +iwgl (). (E.35)
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E.2.1.1 Length gauge

Considering that the gauge function can be any function that satisfies the Helmholtz
equation, one can design G (r,w) by neglecting any term of its multipole components.
One of the choices is to drop all the magnetic multipole terms with A = 0, and keep only
the electric multipole terms. This can be done by setting gf,%(r) =0 for all J and M
to give

G(rw) = ard 7 (Y (k) -€) gia(r). (E.36)
JM

This means that one only performs gauge transformation for the electric multipole po-
tential, and the magnetic multipole potential remains unchanged:

O @ = al(r), E.37
o) = o) (E.38)

Furthermore, we assume gglj\)/f () to be

o) = [T Yo (7). (E39)

Then
Vo) = — [V Gk Yo ()
= T UV ) Yo ) + 3 br) (Vs (5))]
= G k) ) Yand(#) + ) (@Ym)]

J+1. R Ja(kr R
- [y - o+ 02y ).

Substituting this into the gauge transformation and using the fact that ¢(r,t) = 0 before
the transformation, one obtains

R . . J+1.(1n,.
@S (7) = —jrealkr) [Yfﬁ(r)— ; Y}M“m], (E.40)
VS +1 R
o) = —ic T Ja(kr)Yu (7). (E.41)

With this gauge transformation we arrive to then length gauge. Accordingly, the multi-
pole transition operators are given as

hi(r,w) = —ec {a : a"(llje/[(f) -

SO (.42

If the wavelength of the external field is much larger than to the size of the atom, it
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holds kr < 1. In this case,

. 1) . (kr)/+1 Do NI+ -1,
dm ai () = Gy [Ym) - 7Y @)

1, L J+1 (kr)? R
Ay @) = W g oy o ()

Here we can see that the vector potential scales has a lower of kr-order than the scalar
potential, e.g. it is smaller in the long-wavelength limit, such that

kr—0 kr—0 C

T+ (k) .
- N (2J+1)!!YJM(T)

.\/(2J+1)(J+1) k!
! AmJ (27 + 1)

1 1
lim {a . a’t(]lja/[(f) — ¢/f]1]%4(r)} = lim *¢/L(11]%/[(7°)

T Qum(r),
with the electric J-pole moment operator @ jas(r) being defined in a spherical basis

Qm(r) = r/Cru(P),

[ 4

For the magnetic multipole transitions,

and

. 10) /Ay . (0) /4
A a ou(P) = pl @ (")
= Jlim, {2 en) Y550
(kr)” (0) /
@t om0

Therefore, the following holds

. 0) /4 (k"”)J 0) /4
klv}g() {a . a’f]&(r)} - (2J + 1! {a ' YJ(]V)[(T)} '
E.2.2 Multipole transition operators

No matter which gauge we are considering, the multipole interaction can be rewritten
as

/ o L, 2J+1)(J+1 k7

_ \/(2J —|—4173((]J+ 1>t5’>\)4(r),
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with tf]’\]\Z(T) being the dimensionless multipole-transition operator and qff}&(r,w) the
frequency-dependent multipole-moment operators. These two kinds of operators satisfy
the following relation:

A 2J + D! o
fn&(’“) = (kj)tt(]]\)J(rv

With such definition, we know that

) _ 4mJ ) (LY
ti(r) = \/(2J+1)(J+ 1) {O“aJM(T) - ;¢ JM(’")}-

For A = 0, the transition operators are

O r) = \/ & +417;‘(] Ty k) {a- Y@} (E.43)

For A = 1, we have

ir) = —V ST ) {a e - Y}M%)}

+i\/(2J +417;‘(]J =y v JJ+ L )Yy (7). (E.44)

Remember that the Einstein A coefficient is

Ay = %w<\Tba ?) = 8maw J%AHT(»}

2

)

with
T, = [ari{a-aGue - LoRm .
_ \/(2J+1 )(J +1) /d a1 (e

and with the matrix elements

A A
[arel@ea = @il G )
Here, the Dirac wave function can be written in spherical coordinates as [115]

i 1 t ;

Ghr) = = [Py, (1), (), Qi (MR, ()] (E.45)
L P (1) Qkum (P)

a 'S = — atva a’tta 5 E46

valr) = 3 [ Qures (), (7) (540)
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with the radial functions P, ., (r) and Qn,k,(r), and the spherical spinor €, m, (7).
Then we know that for A = 0, the matrix element is

[ el e,
= /d'l“ { —i Py, (7 Qmeb (7), Qnyy (T>Q—‘-—Hbmb <f)]

x\/ o 47;‘(7 Ty ) [ 0,0 - V() ] 1[ PP (7)o, (7) H
2J+1)(J+1 o- r

oY\ i r 7
. {—ianv)Qmeb(m,QWw)szf_mmb(m} [0( };)JM(()JH Pty (1) Sy () H

_ /dr/s1n0d9/d¢{\/ T ) J+1)]J(kr)

{anﬁb( )Q _Hbmb(f)a-.Y}g}(f%_Z‘Pnbﬁb(T)Qmeb(f)o._YJ(J(‘)}(?)} [ i Pryieg (1) Qi (7) ]}

4 J .
- /dr/smade/ 2J+1 J+1)‘7"<kr)

% { Qi (ML 10y (1) - Y S () Py (1) (7)
fpnmmzbmb(f)a- JM<r>@m<r>ﬂfnama<f>}

. dmJ
N /Smede/dd)\/@wr (T +1)

. . i . 1 . .
XZ/dTJJ(k‘T) {Qnm( )anbmb( o - LmYJM(T)Pnam(T)Qmma(T)
. 1 . .
nblib( )szmb( )U ' LWYJM(T)QnaKa (T)anama (’l“)}

. 4
- /Slnede/d¢\/(2j+1)(J+1)2

i [ drgs (k) {Quye ()R gy (7) (50 = 1) Y01 (7) P, (1) 2, ()

— Py, (1) 2y (7) (=15 = 1) Y01 () Qg (1) Qi (7) }

- / sinfdo / a6 J+1)Qf_nbmb(f)YJM(f)Qmma(f)

Ky + /{a .
i / Ar 719 o) Qs (1) P (1) + Py (1) Qe (1)}

= ﬁ< Iibmb’YJM( )|nama /d?”

K/b+ a .
PEE

3.0 (k1) {Qunyrs (1) Prra (1) + Pryry, (1) Qnarg (1)}

3.7 (kr) { Qi (1) Prga (1) + Pryrey, (1) Qngrea (1) }

Kb+ Kq .
1)’

= i {(—rpmp| Cypr(7) |Kama) X /dr
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—my, M, mg

_ (_1) Kp—mmy ( Hb,J Ra >< ’Qb||CJ( )’|/‘€a>

/dr"'}j—r?a 7 (k7)) {Qnyiey () Priarka (1) + Py, (1) Qg (1) }

with the reduced matrix elements

. I, J,1
(L] |Cy ()] ]2) :(—Ww@h+nﬂb+n<&ug>~ (E.A7)
If we define the following reduced matrix element

Wo 1450 | o)
_ @%HQ&HM@/M%?%.

(k) {@nymy, (1) Prarsa (1) 4 Py (1) Qg (1)}

one will have

(Wl t5h (r) [pa) = z‘(—l)“bmb( ~Fipy S i )wb 1D @) || ). (E48)

—my, M, mg,
Let us Set
A = [AD],
with
49, = 8mZHTﬁ?&]bJ2
_ zaw[{ﬁ]“l o [tV ) || )|

2J+1)J+1 k%
[T J (2] + D2

[ 1140 ) 1)

= 20w

(N 2
(T + 12T + D)2 | 115V [ )

J[(2J + 1)1]2 [Ja]
(E.49)
By introducing the definition of the line strength of a J-pole A-transition
A A 2
57, = e e 1] (E.50)

we have the following relation between the line strength and the Einstein A coefficient:

T4 1)(27 + 1)k S5 .
A5, = %M(gn&§+1w% [ij' (E-51)
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Furthermore, we introduce the oscillator strength for a transition a — b:

2 2
\) _ Amme ) (s 1
{f } = (ol - a'gy (F) — —¢ O () [ha)
dme? 1 2
= ha)b <nbaﬁb,mb|a-a/§])}\)4(r) — Egb {(]]\)4( )‘navlia;ma>
2
4mc? J+1)(J+1) K/ o)
= (np, Kb, Mp| oy O 1)”qJM('r) Ny s M)
2
4rmc? (2J +1) J +1
= oy nb,ﬁb,mb| \/ )t()‘) ( ) ’naaﬁa7ma>
This means that
2 2J
() _ drme” (2 +1)(J + 1) k " )
[f } - hwpg, 47 J [(2J + 1)”]2 ‘<nb,nb,mb!qJM(r) |Nas Kay Ma)
4rme? (2J +1)(J + 1) \
- huoy, 4 J ‘<nb’ Kb, mb| tf]A)/[ (T‘) |na7 Ra, ma) (E52)

When the transition happens between degenerate states, the transition energy w is the
same for all the M under given J, one cannot distinguish which m; and m, contribute
to the emission. Thus, one needs to collect oscillator strengths from all the transition
channels and average over the initial substates, which gives the average oscillator strength
for a single transition. This is called the reduced oscillator strength:

5 = g, 2 R,

Ma,Myp
drme® (2T +1)(J+1) Kk 1 2
T hw AmJ (27 + D2 [J,] m;b ‘ o 5, 0] 4531 () s s 0|
(E.53)
where we have assumed (1), to be the excited state and (1| the ground state (wp, = —w).

Concerning that the line strength is defined by

2
[S‘(]/\)}ba - Z ‘<nb’ﬂb’mb‘ q‘(])]\\)/[(r) ‘naaﬂavma>
Ma,Mp
2J + 1)N? N )
W Z ‘<nb’/€b’mb|tt(]]\)/[(r) |naa/€a7ma> ) (E54)
Meq,Mp
one obtains
N
G e ATV I (58],
I Jba hw dnJ (27 + D)2 [J]
2 2J S()‘)
 mE@I+DI 4+ k 5§ ]ba‘ o
hw J (27 + D)2 [J4]

This results in the general relation between the Einstein A coefficient and the reduced
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oscillator strength:

2
O P o 20
EViI 20 7V, (E.56)
This relations can also be verified through atomic structure codes [105].
E.3 Nonrelativistic limit
In the Pauli approximation, the wave functions are given by [115]
vy ~ain) L] )~ [ o ] Gulr). (E57)

where we have used the relation o* = o, and the ¢,(r) and ¢p(r) are scaler wave
functions.

Therefore,
) B . oc-pl| 0,0 a (r) 1
[TJMLm = /dr%(r) [Lm} a-ag’\]\);]é\f“),ol [ op 1 Pa(T)
(o-p) (o-af(r)
= [arsi(r) <2mc W) i [ 2 ]%(r)

= o [ardi ) (o p) (o ) + (-0l 1) (0 9) 6u(r).
Using the relation
(0-a)(c-b)=a-b+io-[axb, (E.58)
one has

((0-p) (- afy() + (-l () (o p))

A A . A A
= p-aly(r)+ el () p+io- (pxal(r)+al(r) x p)

(E.59)
E.3.1 Nonrelativistic results: magnetic multipole transition
The magnetic multipole potentials are given by
0 _ (0) () _ ! ;
aji(r) = Js(kr)Y; (7)) = js(kr) J(J+1)LYJM(7")
1
= —  — L kr)Y. P
TNAIOESY (G (k)Y m (7))
1
- If, (E.60)

with
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Therefore, the magnitude of the matrix element is

((0-p) (o-afl(m) + (o)) (o p))

1 .
= m{P'(Lf)+(Lf)‘p+w" [p x (Lf) + (Lf) x pl}-
(E.61)
In the following, we will calculate these terms one by one. Firstly,
p-(Lf) = p-((rxp)fl=-1*V-[(rxV)f],
(Lf)-p = p-[(rxp)f]=-1[(rxV)f]-V,
px (Lf) = RV x[rxV)f],
(L) xp = —W[(rx V)] x V.
The first terms can be calculated as
Ve xVf] = e (70 )]

= eidi [ (94F)]

= €;k(51] + Tjai) (akf)

= el (08F) +elyrio (0 F)

= 0—cknio, (0°F)

= —(rxV)-(Vf),
the second term gives

(rx V)]V = Hk@wwﬂ@
_ 0f  O*f
N <8 O 8;49,-)
0 .02

= —eﬂrjc'?Z 8£ e5r? 8’{(;;

= —(rxV)-(Vf)-0

= —(rxV)-(Vf).

(E.62)

The third term reads
Vx| xV)f] = epden, @) &

= ]kemna] [ (anf)] -6
= ]kgmn((sjm + rm@])(anf) 3
= ]kejn(anf) 6+ gjkgfrm ma] (8nf) "€
2 .
o' waj] &

k
9,0, " B,

= —E;kE?k(anf) . érL -+ €§k€mnrm [
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n . i k m A ik ,m e
= —20,,(0"f) - & + EikEmnT <3j8n> “€ + EipEmnT <8n(9ﬂ) - &;

, o2 . of .
= —2Vf —i—eé»ksfmrm <8 6f> J +5§-kz—:'f,mrm <8f8]> - ;.
7Un

n

(E.63)
The fourth term represents
[(rx V)1V = el (o™ @"f)) 0 &
= &y (har™@'D) 0 -0
= —€§k (smnrm(anf)) &
Thus also use
i ko .m 82f ~
Vxrx V)fl+[(rxV)fIxV = =2Vf+een,r 50, | & (E.64)
vn
Furthermore,
, 9% f O’ f
glpel rm ( ) 8 = —elek m ( - &
ik 9,0y, J 9;0y,
= _(5jm5in - 6]71 im T (8 >
0’ f .
() () -
_ m0f s Of\ . 2
= (8nr O 5nmam> en+r-V°f
. (raf) bn LV f £V
or
= —V( 8f) +Vf+r Vf
or
Thus Eq. (E.64)can be rewritten as
Vx|rxV)f]+[(rxV)f]xV = -Vf-V (r?ﬁ) +7r-V2f. (E.65)

To proceed, we calculate
Vi = V2 [ (kr) Yo (7))

2
_ r% (;r (ﬁi) _ ;) gr(kr)Yrar(7)]

- {182 st i)
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with

% <r2870> jg(kr)

+ 22 |:—zt]2jj(2) + g (jjj(z) — jJ+1(Z)>

- (T -l

= J(J+1)js(2) = 2(J + 40)jss1(2) + 22 s42(2)
= J(J+1)js(kr) = kr(J + 4)jrr(kr) + (kr)*jrpa(kr),

(E.66)

and

L*Yyu(P) = J(J+1)j(kr)Yiu (7).

Thus we obtain
1 . . “
V2f = 2 (*’W(J +4)jr1(kr) + (kT)ZJJH(k‘T)) Yy (7).

The other term can be reformulated as

0 o0 . .
ra—f = TEJJ(IW)YJM(T)

= zaaZjJ(Z)YJM(f)
= z (jjJ(z) - jJ+1(Z)> Yym ()

(Jji(2) = 2jr1(2)) Y (7)
= (Jjg(kr) = krjgei(kr)) Yoar (7).

in the long wavelength-approximation, kr < 1, one has

of

re = (Jjg(kr) — krjyea(kr)) Y (7)

= Jig(kr)Y (7)) = Jf

and

)
V(rag ~ JVf>r- -V (E.67)
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Therefore, r - V2f can be taken to be zero. This yields the result
Vx[(rxV)fl+[(rxV)f]xV =~ —(J+1)V}. (E.68)

All together, we have

(@-p) (o-a(m) + (- ally(m) (o p))

= T P L) (L) p il (B + () < )
2

_ thH{Q(rxV)—i—i(J—i—l)a}-(V

- \/Ji—i-l{ ih2(r x V)+h(J+1)o}- (V)

W (2L + (J + 1)28} - (V)

_ W{MLHS}-(W),

where we have used the relation S = %ha for the spin operator. Therefore Therefore,

T, = e [ i) (@2 (o am) + (o aflym) (0 -) o)

1 Lo T 2
— e [ Ao T { o D28 (V) bl

E.3.2 Nonrelativistic results: electric multipole transition

For simplicity, we just start with the long-wavelength approximation kr < 1. Then,

tim {a @) - 2N | = tim T )
= le(zgki)i)!!YJM(f)'
- i\/(QJ +4172§J = (2Jk—:1)!!Q"M(T)’
and thus
0], = - [aroim) L3P oo [ o ] Bulr)
= g e (Lo + T2 T2 gur)

g [aroin) {208} ot

J
_ _;m/drgb;‘(r){i\/(2J+417zf]J+1) (y’i 1)!!QJM(r)}¢a(r).
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Appendix F

Collisions between two charged particles

This Appendix follows the treatment of reference [146-148] on charged particle collisions.

F.1 Elastic two-body collisions

The basic laws for two-body collisions are momentum and energy conservation

miv1 + Mmoo = mlfv’l + TTLQ’Ué, (Fl)
1 1 1 1
§mlv% + §m2v% = 5771117/1 24 Emgvé 2+ AE. (F.2)

For elastic collisions, AE = 0, and for inelastic collisions AE # 0. By introducing
center-of-mass coordinate

R = MTitmars (F.3)
mi + mso

with 1 and 79 the displacements of particle 1 and particle 2, one can obtain the velocity
of the center-of-mass,

miv] + mova

’U == R = F.4
¢ mi + ms (F-4)
This quantity is important because it is conserved during any collision
miv, + mov)
v, = AT TRE e (F.5)
mi + ma

Therefore, one can go to the center-of-mass coordinates with the mathematical descrip-
tion of the two conservation laws

Mv. = Mv., (F.6)
%MU? +E = %va + E. + AE, (F.7)
with the residual energy F, defined as
E. = %mlv% + %mgvg — éMUCQ
= %Muvé- (F.8)
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1o = nﬁﬁf& is the reduced mass and v = v1 — v9 is the relative velocity for particle

1 with respect to particle 2. From the energy conservation law, one can notice another
advantage of center-of-mass coordinates in describing the collisions between two particles:
for elastic collisions, £, = E! means

vy = vy ” (F.9)

The magnitude of the relative velocity is also conversed before and after the collision.
Only the direction of the relative velocity may be changed under collisions. This leads
us to adopt a relative coordinate by assuming that one of the particle is fixed and only
consider the moving of the other particles whose (relative) speed does change before and
after the collision. Only the direction of motion particle is changed after collision with
the fixed particle.

In general, as mentioned above, there are several choices of coordinates to describe
the two-body collision problem. It can be the laboratory coordinate, the center-of-mass
coordinate, the relative coordinate where particle 1 is fixed, the relative coordinates
where particle 2 is fixed, and so on. The first two coordinates (laboratory and center-
of-mass) are always convenient because they satisfy Galilean transformation and does
not change before and after the collisions. For the other two relative coordinates with
respect to particle 1 or particle 2, one should always be careful for collisional problems
because the momentum conservation law is violated. That is, though the energy is still
conserved,

but
/ /
mivie # MV, Or MoVa1 F# MoVy.

The reason is that the velocity of each of the particles has been changed after the collision,
so the transformations from a laboratory coordinate to the relative coordinates, before
and after collision, are different. Any physical law adopted in laboratory coordinates
should account for extra coordinate transformation terms.

However, there is one extreme case where the relative coordinate becomes equivalent
to the center-of-mass coordinate. This is true when the masses of the two particles are
different from each other by orders of magnitude. As an example, we assume m; << ms.
Because during the collision 71 ~ r9, then

R = Mritmars mar: (F.10)

mi1 + mg my

F.1.1 Change in relative velocity

Assuming that the relative velocity is along the Z direction, vis = v122, the relative
velocity after the collision can be written in the form

viy = wvia(sinfcosd + sinfsingg + cosh?). (F.11)
This gives the change in relative velocity as

Aviy = iy — v12 = via(sinfcosed + sinfsingg + (cosd — 1)2). (F.12)
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F.1.2 Change in momentum

According to momentum conservation, the momentum of particle 1 has been changed

by
Ap; = mi(v] —v1) = —ma(v) —vy) = —Apo.
Considering that
v = V12 — V2, v} = vy — V)
one has
Ap; = ml('vi —v1)

= mi(vyy — vi2) + mi(vy — v2)

mq ’
= mpAvis + —ma(vy — v2)
mo

my
= mlA’le — 7Ap1.
ma

This means that

m
(1 + 1) Apl = mlA’Uu,
mo

and

m1Mmsy
Apy = ———Avs = ppAviy = —Apo.
mi + ms

The relations above account for the total momentum transfer between the two particles

during the collision.

F.1.3 Change in energy

To calculate the energy transfered between the two particles after the collision, one first

has the relation

1 1
AEl = 57’7@1'[}% — §m1vi 2
1
= §m1('v1 +v))(v1 — v))

1
= —§Ap1(vl + 'Ull)

Similarly, for particle 2, we have

1 1
AE, = —§AP2(U2 +vy) = §AP1(”2 +vh) = —AEL.

(F.13)

(F.14)



160 F. Collisions between two charged particles

We can notice that, on the one hand
miAEL —meAFEy = miAE; + meAE, = MAE;,
on the other hand
miAFE] —meAFEy = —%Apl (v1 +v]) — %Apl(vg + vh)
= —%Apl (m1’01 + move + myv + mQ’Ué)

1
= —§Ap1 (Mv. + Mvy)
= —Ale’UC.

Combining the two results, one obtains the energy transfer between the two particles as

AE, = —Apiv.= —vCM12AU12 = —AFE;.

F.2 Differential cross section

For the collision of two charged-particles with Coulomb interaction, the differential scat-
tering cross section is given by the Rutherford formula [146-148]

o192 = L (F.15)
48&1&4%7
with
b, = LB (F.16)
dep 112075
Z1, Zo are the charges of the two particles, pis = % is the reduced mass, and v12 is

the relative velocity between the two particles.

From this formula, one can notice that the differential cross section goes to infinity
either for small scattering angles or for small relative velocities. Small scattering angles
correspond to large impact parameters which is always the case for long-range interac-
tions like Coulomb potential. To remove this singularity, one needs to take the screening
effect into consideration. In a plasma, the potential decays approximately according to

e~7/Ap 1
U(r) o , instead of —.
r r

Interaction for distances outside of the Debye radius Ap is negligible because of the
screening effect.

The reason for large differential cross sections at small relative velocities is that the
interaction time for small velocities is much longer than that for large velocities. Thus,
the scattering is more efficient than in the large velocity case. This can be seen from
the relatively larger impact parameter b, for 90° scattering. However, the calculation
is based on the impact approximation where we assume that the time for scattering is
much shorter than the other time scales. Thus, the cross section calculated here is not
correct for very small relative velocity which breaks down the impact approximation. To
avoid such problems, one needs a cut-off at the small velocity edge. One of the possible
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ways is to assume that the Debye radius is much larger than b, giving the lower limit
of the relative velocity.

We should know that this is the differential cross section for a given impact parameter
and shooting velocity. Corresponding to each scattering, there are changes in different
physical quantities like energy, momentum, phase, inner-state transition and scattered
particle number, etc. For each physical quantity, one needs to calculate the effective total
scattering cross section separately. Each of them corresponds to a relaxiation process
with different time scales (as the rate of change during the collision for different quantities
may be different). For example, elastic scattering usually leads to transfer of momentum
and energy between the two particles. If one of the particles is more massive than the
other and can be treated as fixed at the original point during the collision process, there
is approximately no energy transfer and only momentum transfer is prominent.

F.3 Total cross section for number of particles being scattered

The most simple calculation is the calculation of the total cross section for the number
of scattered particles at a given relative shooting velocity, which is just the integration
of the differential cross section (thus integral over impact parameters). In free space,
one has to integrate 6 from 0 to :

0’?2 = /dQO‘lg

IS b2
= 2 _J‘49 sinfdd
0 4sin 3
IS 2 0
= 27 L <2cossin) do
0 4sint? 2
™ b2 0
1 .
— d z
87T/0 4sin3g (SIHQ)
T
_
sian 0
2 1
sin“3

For Coulomb potential scattering, the total cross section for the number of particles
scattered diverges because the long-range Coulomb interacting makes ¢ — oo when
# — 0. This long-range potential scatters all the particles no matter how far they would
be.

When the two charged particles are immersed in a plasma, the Debye screening sets
an upper limit of the interaction to be approximately the Debye radius Ap. Particle
distances larger than the Debye radius lead to no interaction at all. This upper limit of
interaction distance sets the lower limit for the scattering angle. Then, the corresponding
total cross section for scattered particles is given as

™

b2
oy = —T - Jig
S~ 5
2 emin(bmax)
2 s
— bL
Y,
mn-z
S 2 emin(AD)




162 F. Collisions between two charged particles

1
- <_1>. (F.18)
: 6min A
sin2 2( D)

Using the relation between the scattering angle and the impact parameter

b
tan- = -—
a.rl2 b,

one has sineﬂ% ~ %L when Ap > b, . This gives

AD
n )\2
0'12 = Tbi <b;) — >
1
= (X -v1). (F.19)

The reason we have a cross section of 7 ()\2D — bi) instead of Tr)\2D may come from our
approximation sineﬁ‘% ~ %. Because Ap > b, one could continue to use approximation
and get

oty = 7w} (F.20)

which means that the total cross section for the number of particles being scattered is
just the area of the full ineraction range. One can also calculate the cross section for
backward scattering which accounts for all the particles scattered into (7 /2, 7):

7r1>
4

= b3, (F.21)

n’ 2 1
o = b -
12 L <51n2

F.4 Total cross section for momentum transfer

During each collision, there is momentum transfer between the two particles. To calcu-
late the effective total cross section for momentum transfer, one should first calculate
the momentum transfer for each specific collision characterized by the impact param-
eter, velocity and particle species. Subsequently average over different velocities when
thermal effects are taken into consideration.

F.4.1 Momentum transfer: single velocity

First consider the case of a particle beam in which that all the particles are moving
in a single direction with fixed velocity. Scatterings of these particles with the target
particles lead to momentum loss. Assume the relative velocity before collision is along
2, and the scattering is elastic v12 = v]5. One will have the relative velocity after the
collision as

vy = 1o (sinfcosgd + sinfsingd + cosh2) ;
(F.22)
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then the corresponding momentum transfer is
Apr = iz (viy — v12) = p2Avie = —Aps,
with the changes in relative velocity given as
Aviy = w12 (sinfcosp® + sinfsingy + (cosd — 1)2) .

Based on this knowledge, the total momentum change of particle 1 after collision with
different impact parameters is given as

T 2T
(Ap1) = /OSin9d9 A dooiap12Av12
= —27?/ sinfdfoq2p12v12(cost) — 1)2
0

= —27rp12/ o12(cost — 1)sinfdb2.
0
The momentum transfer from particle 1 to particle 2 is
s
(Ap2) = 27rp12/ o12(cosf — 1)sinfddh2.
0

We can see that, for a given incident velocity, the effective momentum changes is just
along the incident direction. All the transverse momentum changes are averaged out to
be zero. For a given relative velocity, the relative momentum transfer rate is

(Ap2)
P12

27r/ o12(cosf — 1)sinfdb2.
0

This leads to the definition of the effective cross section for momentum transfer as

oy = (Aps) = 277/0 o12(cosf — 1)sinfdé.

P12

This can be fully evaluated as
oy = 27r/ o12(1 — cosf)sinfdé
0

G bi . 90 0 .0
= 97 A 4sin4% (QSm 2) <20082sm2) do

= 27rb2L/ %cosgde
0 Sln§

= 47b? (ln sing)

= 47b? <ln sing —In 0) = 00.

™

0

Again, we notice that the effective cross section for momentum transfer is divergent for
the long-range Coulomb interaction. If the particles are immersed in a plasma, similarly



164 F. Collisions between two charged particles

to the previous subsection, one will have a finite cross section due to screening

T

6
o = 4nb? <ln sin)
2 emin()\D)

= —47biIn (sinemin(AD)>

2
= 473 InA, (F.23)
with
AD T3/2

being the Coulomb logarithm which has InA ~ (10 ~ 20). We know that, on the one
hand, the scattering cross section o1o for particles with large distances (thus smaller
scattering angles) are dominant compared to short-distance scattering; one the other
hand, large distances lead to smaller scattering angles, thus a lower efficiency for mod-
ifications of the scattering particles (the term 1 — cosf for momentum transfer in the
integral). When this two factors are multiplied, the contribution of the effective scatter-
ing cross section for large distances (thus small angles) tends to be reduced. However,
even though it is reduced, the contribution of the total momentum transfer under long-
range Coulomb potential is still dominant and render the total effective cross section
divergent. So, one needs to include the screening effect in the plasma case which gives a
finite cross section. Comparing to the cross section for the total number of particles scat-
tered in Eq. (F.20), one can find that the effective cross section for momentum transfer
is significantly reduced. One can calculate the ratio as

n drb?InA b3 b A b}
iz o L A = Al ~ 10 (F.25)

The effective cross section obtained above is the transfer rate of momentum under
single scattering. Now we can calculate the effective momentum loss rate of particle 1
under a given relative velocity after a propagation distance of di. Before this, we first
calculate the total momentum loss along £ after propagating through dl,

(Ap1)g, = —p12neoiadl = —prangoiaviadt,

with dl = wvi9dt. The minus sign refers to loss of momentum. The accuracy of this
definition of dl holds if the momentum loss rate is infinitesimal so that one can treat vy
constant during the time duration dt. Because the momentum of shooting particle is
p1 = mqvi2, one has the following equations for momentum loss of the shooting particle
as

dp: (Ap1) gy
A e F.26
dt dt V12pP1, ( )
with v12 the momentum loss rate given as
Vg = 77,2(7?5’1)12&. (F27)
mi

However, this definition of the momentum loss rate is not strict because both v1o and
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o5 are momentum dependent. The loss rate for a given relative velocity is nonlinear,
and

12
Vo = MNaUi2 M—Zlﬂ'biln/\
my

2
Z1Zoe?
= 471’712’012& #62 InA
my \ 4meop1207o

Z2Z2 4
_ _mAze (F28)
4dmegma p12v7y

We can see that the momentum loss rate in collision is smaller for collisions of large
velocities than for that with lower velocities.

For electron-electron scattering, electron-ion scattering, ion-electron scattering and
ion-ion scattering, the reduced masses are

MeMe Me
#ee = _— = —
Me + Me 27

memmyj
Hei = Hie = N Me,

Me + my

mimj mj

Hiig = ———— = —
my + my 2’

respectively, So, the corresponding effective loss rates are

4
Ne€
= ———5—=InA, F.29
Vee 2medm2u3, " (F.29)
niZ2et
i = —5—5=nA F.30
Vei 477537’”2'031 na, ( )
Zket
Vie = 77126 i€ <InA, (F.31)
dmefmem;vy,
niZtet
i = —5 5 =lnA F.32
Vij 2775%7”127)1?; na, ( )

respectively.

F.4.2 Momentum transfer: thermal effects

In the previous Sections, all the particles in the beam are assumed to be identical and
moving along the same direction. Besides the macroscopic drift velocity vq, in reality,
microscopically the particles in the beam are moving with different velocities in both
magnitude and direction. It is the drift velocity that gives the macroscopic flow of the
particle beam. Then, one can calculate how the collisions with target particles may lead
to a macroscopic momentum loss of the particle flow.

Let us assume the distribution of the microscopic relative velocity is given by a
Maxwell-Boltzmann distribution,

3 u
flw) = (J;;T) ¢ BT (V) (F.33)
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The total momentum change after a propagation distance of di is given by

AP = (Apa)l = [ (Api)y, (@)%, (F.34)

For the Maxwell-Boltzmann distribution, one can define the thermal velocity

kT
Vth = B (F35)
H12
to get
1 - U12 (v—vq)?
flv) = m@ ik . (F.36)

By defining u = v /vy, and uq = vq/v¢n, one obtains

1 1 2
) = Lt (F.37)
(2m)3/ 203,

Thus, with f(v)d®v = o3 f(u)d®u the total momentum change <AP1>$ can be written
as

APl = mody [ (A fw)du. (F.35)

In principle, the drift velocity is much smaller than the typical thermal velocity, uq < 1,
SO we can approximate

1

flu) =~ W/Qvghe—iuz(pru.ud). (F.39)

Setting the drift velocity to be along 2, the corresponding momentum loss along 2 is
given as

AP = v [(ApDa S(u)du

= —nlfug’hdt/prnQUﬁvlgf(u)dgu

3 . nlnngZQe
= —v dt/ —— 2 InAf
o b2 dme 0#12”12 (o )

3 . mneZi Z3e
— ot / InA
) PR dregudd, T @),

n1n22%22264 14+ uyuq _1
= —dt/ulg’l}fz InA
47T5(2)M%2U:1)’2 (27T)3/2

14+u-uq o hu? g3y,

u d3
or

1+ uzud 1,243
InA 7 By
47“3(2)#%2”%2 (27T)3/2

(appl . mmaZ3zZ3e!
T

1+uzud 7;u2 3
= nymivs Vlg('l)th) e 2% d°u
/ 2 %2 (277)3/2
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4
Uy, U +u Ud 1
= /n1m1V12(Uth) U?W ’ d3

12
n1mM1v12(Vgh)Vih Uz+uzud —1u2 43
- _ 575 3 e 2% d°u,
(271') / u
where u, = v{y/vtn, u = vi2/veh, and

272 4
n2Z1 Z26

47T€0m1H12U12

To continue the integration of the momentum change, one should notice that there
is no sign for v (thus u), because it originates from our former calculation of the loss
rate. However, u, has signs indicating the particles are shooting the target from -£ or
2. Then one can see that the first integral is

Uz —7u 3
—= d>u = 0
/ us© ’

and the average momentum change only depends on the term containing the drift effect:

(APT)S _ _n1m1V12(Uth)Uth/U 2Ud L g3,
dt (2m)3/2 u?
__mmivavia(vin) u72 142 g3y,
(27)3/2 23 €

Here, the integral can be calculated as

2
Ut 1,0 1
/—ge W P = /—e 2% By
u

= 5[

- ila/oo A gy
0 U

= 4% OOue_%uzdu

_ 47

= 5

For a beam of particle of 1 shooting on a target of particles 2, the total drift momentum
of particle 1 is given as P§ = n;p{ = nymv{. So we know that

(APf)g __ Plvis(vm) 4r

dt (2032 3
This gives the momentum loss equation for the drift momentum as

(AP

i = —oPyY, (F.41)
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with the average loss rate of the drift momentum as

. 2

The averaged momentum loss rate is approximately the loss rate under collisions with
thermal velocity.

For electron-electron scattering, electron-ion scattering, ion-electron scattering and
ion-ion scattering, the thermal velocities are

2kgT
Vee-th = me
e
kgT
Vei-th = Vie-th = m
e
2kgT
Vii-th = e
1

respectively. Thus, the averaged loss rate for each types of collisions are

4
m nee*InA
Vee = 3 . T 3 (F.43)
6r2edmé (kgT)2
_ niZ2e*nA
v = 3‘ T = (F.44)
6v2r2edmé (kpT)2
1
Z2etmZInA
pm = e ;Zme _ (F.45)
6\/§7T260mi (kBT) 2
i Zie*InA
Zi AT (F.46)

NI

1
67r%5(2)mf (ksT)

If the ion-ion scatterings are collisions between two different ions, the corresponding loss
rate is

1
nipd Z2Z2e*nA
o= Tl - (F.47)
2

6\/§7T%5(2)m1 (k‘BT) 2

For a neutral plasma, one can approximately take n. = n;Zj, thus one has the following
approximate relation:

Upo  Uni Vi 1 i = 1:Zi:Zi2%:Zi31/%. (F.48)
1

1

Thus, if Z; is not too large compared to \/m;/me ~ 43, one will have

Vg~ ZiVye > Ui > Uy (F.49)
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F.5 Total cross section for energy transfer

We know that for a single collision, the energy transfer is given as
AE|, = —vcpi2Av.

For given a configuration of v, and w2 (thus given vy and vs), the impact factor may
change from collision to collision. Therefore, similar as in the case of momentum transfer,
the energy transfer averaged over different impact factors is given as

™ 2m
<AE1> = —/ sinfdd dd)algAEl
0 0

T 27
= —/ sinfd@ dpo12vcp12Av12
0 0

T
= —2#/ sinfdfoovcpi12v12(cosd — 1)2
0
T
= —27w12/ sinf(cosf — 1)dfo12v, - v12
0
= —47rulgbilnA'vC - v19,

where we have used the relation vi12 = v122. One should mention that (AFE;) has a unit
of energy per area. After a time of df, there would be nooi2v12dt total collisions, and

<AE1>dt = —4ﬂu12n2biln/\vc-'vlgvlgdt.

To proceed, we calculate the term in the integral through

mi1v1 + Mov2

Ve " V12 = W(”l — v2)
= ;[mlv% — mgvg + (mg — mq)vy - v9]
mi + ms
2

1
F—— mg[ 1 2+ 2(m2 my)vy - V2]

Considering the thermal effect, one needs to average over different configurations of v
and vo:

<AE’1>$ /d’v1/d’U2f(’Ula’U2) (AEL) g

= —47m12n21nA/dv1/dvgbif('vl,vg)'vc . ’Ulgvlgdt,

with f(v1,v2) being the distribution function of the two particles. Usually, this distri-
bution is isotropic over different directions. Therefore, the thermal average would give
(b2 (vy '02)1}12>th = 0 because b; and v15 do not depend on the angle between vy and
v2. One can just take

2

——— (W (B1 — Ba)v >th
m1+ mo 1 1 2)V12 .

<bi(vc ' Ul2)®12>th =
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This means that

<AE1)$l = /d’v1/d’02f(1117’02) (AE1)q,

8Tmim
= —len/&/dvl/dvgf(vl,vg)bi(El —Eg)Uudt.

As an approximation, let us assume particle 2 moves slowly compared to particle 1,
and E; > FEs, then

8mmims
STmim
—W”QIDA/dvlf@l)biEwldt.

With

3 _ om0
Fo) = 4m? (%TZ;T) ¢l (F.50)

and

71762

—. F.51
4meopov} ( )

b

one can write

(AB)S 327T2m1m2n1n < my )3
T (mi+me)? 2rksT

2
2
my_ 2
X/dvl'l)%eingTvl L% lml’U%Ul
4dmeg 120y 2

2,2 3 2\ 2 m
167 mimy A ( my ) AVALE /dvlvleii%BlTv%.
(m1 + m2)2 2wkgT dmeg 12

(F.52)

Setting u =, /Q?ﬁ”v the integral gives

3 m
V(zrigz) [ e
1 mq w2
= e\ i | v
1 mq 1
I \ 27TkBT§
o 1 mq
T 2\ 8keT
1 1

2 <v1>th7

(F.53)



F.5. Total cross section for energy transfer 171
with the average velocity given by
(01) 8kpT
v = .
1/¢h ™ma
Then
<AE1>5}; _ 167T mlmg 212262 2 i 1
de (m1 + m2)2 2 4dmeg 12 2 <Ul>th
_ mpZiZ3e*lnA (F.54)

_7T253m2 <vl>th.

The result is interesting because it is inversely proportional to the velocity of the shooting
particle: the higher energy the shooting particle has, the less energy it loses during the

collision.

Furthermore, we can use the relation between average velocity and average kinetic

energy:

N e

Substituting it into the above equation, one obtains

(AE)S

dt

For electron-electron collision,

<AE€>e-e
dt

N Z? Z22 e*InA
4m2edmy (Ev) g,

noZ2Z2e*inA [ 3m
— (B g -
472 somg (E1>th

this yields

B neetlnA 3Mme ()
47725%7”6 <Ee>§h ol

neetlnA

N 7725%77% <Ue>th‘

For electron-ion collision where the ion is the target particle 2,

(AEe) o

dt

niZ2e*inA [ 3me

- 471.25(2)mi <Ee>?h< e>th
n; Z2enA

_7725(2)7”1 <Ue>th.

Usually, the neutrality of plasma gives ne, = n;Zj, therefore

<AEe>e—e

. <AEe>e—i i . A AL

dt

dt me  2mi  me

(F.55)

(F.56)

(F.57)

(F.58)

(F.59)

where we assume highly charged ions for which Z; is approximately the atomic number of
the ion. The ratio between the energy transfer rates for electron-electron and electron-ion
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collisions indicates that thermalization times between hot electrons and cold electrons
are almost 4000 times shorter than the thermalization times between hot electrons and
cold ions.

F.6 Phase shift: collisional broadening and shift

During collision processes, when the scattering particles fly by the targets, the interaction
potential between the two particles stark shifts the eigenstates of the targets, atoms or
ions. The changes in eigenstates and energies modify the evolution of the target in free
space, giving rise to both spectral broadening and frequency shift.

We start with the total Hamiltonian for a target particle (emitter) interacting with
the surrounding perturbers:

H=Hy+U, (F.60)
with Hy being the Hamiltonian of the free emitter, with the eigenstates
Hy an) =E, |¢n> ) (F-Gl)

and U being the sum of the interaction Hamiltonian of the emitter with all the perturbers:

U=> Uibuv;t), (F.62)

where each interaction is time dependent, and also depends on a specific impact param-
eter and shooting velocity. Let us assume the wave function is

V) = Z Cn Wn> (F-63)

In the interaction picture, the evolution of the wave function follows the equation

0
Zﬁa W)y =Ur|¥)y, (F.64)
with

‘\II>I _ e—iHot/ﬁ ‘\I/> _ Z cne—iEnt/h ’wn> _ ch |1/}n> .

n

therefore, wave function in the interaction picture and
UI — e*iHot/hUeiHot/h (F65)

being the Hamiltonian in the interaction picture. Thus, the time-dependent wave func-
tion can be integrated as

(1)) = e M w(0)); (F.66)

Or, in other way,

W) = O+ [ Uilen) ()
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_ |\1;(0)>I+/0t Ur(t1) [2(0)) diy
+/0t dtq /Otl dtoUr(t1)Ur(t2) |W(0)),

t t1 to
+/() dtl/o dts ; dtsUp(t1)Ur(t2)Ui(ts) [W(0));
+.... (F.67)

In the following, we assume that the duration of a single collision process is significantly
smaller compared to other time scales. After some time duration As sufficiently large
compared to the collision time, but sufficiently small compared to the other physical
processes, one can calculate the wave function as

[W(As)); — [¥(0));
As As t1
dtlUI(tl) —l—/o dtq ; dtQUI(tl)UI(tQ)

+/0A8dt1 /Otl dts Otz dthl(tl)UI(tg)UI(tg)+...] 19(0));

Because the time duration for each scattering events is much smaller than As, one can
divide the As into time segments [n,n + 1)ds so that within each segment there is only
one single collision. Then we have

[W(As)); = [W(0));

ds ds t1
= Y filds [/ dtUn(t) +/ dty [ dtaU(t1)Un(t2)
- 0 0 0

ds t1 to
+/0 dt1/0 dts i dtsUri (t1) Ui (t2) Ui (t3) + ... | [€(0));,

with f; being the collision frequencies for a specific type of collision. Here we assume that
there are only two-body collisions, and all collisions involving more than two particles
are neglected. This means that Uy (t1) and Uy;(t2) do not overlap, and

Ui(t1)Ui(te) = ZUIi(tl)UIj(tQ)%ZUIi(tl)UIi(Q)-

ij

If we assume the scattering process does not change the internal state of the perturber
and emitter, U will commute with Hy and Uy = U. So we can further written:

|W(As)); — [¥(0))y
— ZfiAs Llh /OﬁsdtUi(t)
+(Z.1h)2/065dt1 OtldtzUxtl)Ui(tQH--- 9(0))
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with the scattering matrix .S given as

1 ds 1 2 pés t1
S, = 1+ — dtU( ) () / diq dtaU; (tl)U( )
ih h 0

ds t1
<m>/ dtl/ dtg/ dtsUs (4 Ui (t2)Ui(t3) + ...

In a given time segment, ds is much larger than the collision time, U;(t) = 0 for a given
collision event. Thus one can extend the integral to infinity to get the strictly defined
S-matrix

[e%s) t1

1 [ 1?2
S = 1+Z_h/_oodtUi(t)+<m> /_ dty [ dtsUs(t) Ui (k)

[e.9] —00

1 3 o] t1 to
+ (ZFL) / dtl/ dts dthi(tl)Ui(tQ)Ui(tg) + ...

—0
Then we will have

Or, equivalently

e,
zh%] (s)) = ZﬁZfz Si = 1) |¥(s));

One can define an effective non-Hermite Hamiltonian
= ihy_ fi(Si—1) (F.68)
i
with
! H +d (F.69)
— = w+1 .
ih
Here, w corresponds to the spectral broadening operator, and d corresponds to the energy

shift operator. Then, calculation of the collisional broadening and shift is equivalent to
the calculation of the scattering matrix for each collision event, as shown in Sec. 4.2.



Appendix G

Light propagation in resonant media

When a light interacts with a dense medium, the nonlinear dispersion and significant
absorption/amplification become prominent. The the wave propagation equations in the
slowly varying envelope approximation derived in Chapter 2 and Appx. D may breaks
down. Therefore, in this Appendix, a more elaborated consideration of the slowly varying
envelope approximation of the light propagation equations is presented in the frequency
space. As we show later, the frequency-domain approach reveals much more information
than the time-domain approach.

It is well known in nonlinear optics that (see Sec. G.3), when nonlinear dispersion
(group velocity dispersion) becomes significant, some higher-order time derivatives must
be included [109] [there is only first-order time-derivative in Eq. (2.52) and Eq. (2.57)].
This phenomenon is crucial because when light-matter interaction is close to resonance,
it does lead to nonlinear dispersion. Therefore, we examined the conditions for a SVEA
approach to holds in describing resonant light-matter interactions in Sec. G.4.

G.1 Light propagation equation

In this Section, we first recall the equations describing the propagation of light in matter
discussed in Sec. 2.1.1, then derive the propagation equation of the electric field in both
time domain and frequency domain.

G.1.1 Light propagation in time domain

For a source-free medium, e.g. without free charges, free currents and magnetiza-
tions, the corresponding Maxwell equations for the electric field E and magnetic field B
are [108]

vV.-D = 0 (G.1)

V.-B = 0 (G.2)
0B

VxE = -2 (G.3)
oD

VXB = ILLOE7 (G4)

with the displacement field D defined by
D(r,t) = eoE(r,t)+P(r,1). (G.5)
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Here, P is the polarization field. Combining these equations, one obtains the propagation
equation for the electric field

1 O’°E 0*P

2E_ CE)—- —— = —_—
VE-V(V-E) - 550 Ho" g2

(G.6)

Usually, in most media, the term V (V-E) # 0. In general, it does not hold. The
polarization field is induced by the electric field, therefore, it may depend on E either
linearly or nonlinearly. For convenience, we rewrite the above definitions as

D = gE+ P(l) + Pn1, = 6(1)E + Pnr,, (G7)

with P(y) the linear polarization in E,

8(1)E = €0E+P(1), (G.8)
and Pyp, the nonlinear polarization in E. The quantity ey = TL%I)E(] is the linear
permitivity with n() being the linear refractive index. Then, V - D = (0 means

8(1)V’E = —E-Vs(l) *V-PNL. (G.g)

In a nonlinear medium [109], one usually has V - Pyy, # 0, therefore, V - E # 0. But in
this Appendix, we not consider such a case. If the nonlinear polarization Pyy, is weak
and the first-order permitivity €(;) does not change with space, one can neglect this term
and set V - E = 0. Under such conditions, one could have the well known propagation
equation for the electric field:

1 O’E o0*P

VE- 20 =

2oz~ MogE (G.10)

In the following, we only consider the case where V (V- E) = 0 and Eq. (G.10) holds.
One should always keep in mind that this condition may not be satisfied for some specific
cases, such as in nonlinear optics.

G.1.2 Light propagation in frequency domain

By introducing the Fourier transform

~ 1 o0 .

P(r,W) = m/ P(I‘,t)e_Wtdt,
1 o0 )

Blrw) = o /_ E(r, {)e“dt,

and substituting these relation into Eq. (G.10), one obtains the propagation equation in
frequency domain as

2

A

VZE—i—w—QE = —pw?P. (G.11)
c

Compared to Eq. (G.10), there is no time derivative any more. This reduces the partial
differential equation to an ordinary differential equation and simplifies the calculations
if one knows the expression of polarization in frequency domain.
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G.2 Linear polarization

For linear polarization Pnr, = 0, one usually has
P(r,t) = P(r,t) +Pnu(r,t) = esoE(r, 1).
Then the displacement field is
D(r,t) = eoE(r,t)+ P(r,t)

€
= gE(r,t) + esoE(r,?)
e E(r,t),

where g1y = (1 +€)eg = n%l)so with n(;) being the refractive index. For convenience, we
use n instead of n(1) to represent the refractive index without specifying whether it is a
linear or nonlinear index. The propagation equation becomes

1 9’E O’E

2
V°E — Cﬁﬁ = MOEEOW' (G12)

Re-arranging the terms in the equation gives

2 92
9 n® 0°E

However, the relation P = eggE between polarization field and electric field in time
domain is correct only if the refractive index is constant for all frequencies constituting
to the electric field. A more general relation between P and E is given as

t 00
P(r,t) = 50/ x(r,t —tE(r,t)dt' = 50/ x(r,t —tE(r,t)dt', (G.14)
with
x(r,t—t) =0 for t' >t (G.15)

This is a convolution of the electric field and the material response function x(r,t).
Using the convolution theorem, one has a linear relation between the electric field and
polarization field for different frequencies

P(rw) = cotlrw)B(r.w), (G.16)
with
X(r,w) = \/127/_Oox(r,t)e_mdt. (G.17)

It indicates that, the medium responses differently to different frequencies: or, in other
words, the refractive index and the absorption/amplification coefficient are frequency-
dependent:

n(r,w) = ni(r,w)+ing(r,w) =1/1+ x(r,w), (G.18)
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with n; being the refractive index and no the absorption coefficient if ny > 0, ampli-
fication coefficient if no < 0. In the following, we call n the complex refractive index,
where its real part corresponds to the refractive index of matter and the imaginary part
corresponds to the absorption/amplification coefficient.

In this Appendix, we only consider the polarization where there is no interplay be-
tween different frequency components. In Chapter 7, a more complex polarization field
defined by Eq. (7.13) and Eq. (7.19) is used. Here we only consider the polarization field
defined according to Eq. (G.14).

G.2.1 Instantaneous response

If the medium responses to an external electric field instantaneously, the corresponding
linear response function is a Dirac é-function,

x(r,t—t) = xod(t—1t), (G.19)
which gives a frequency-independent response

X(r,w) = Xo (G.20)

Then one has
t
P(r.t) = [ xlrt—t)E?)

¢
= 60/ xo0(t — t")E(r,t")
- €0X0E(I‘,t), (G21)

and

A

P(r,w) = xoeoE(r,w), (G.22)

with € = xo being a constant.

In reality, the instantaneous response refers to the case when the duration 7" of the
electric field is much longer than the time scale 7 of the response function. Compared
to T, 7 is infinitely small and can be taken to be instantaneous. In this situation, the
envelop of the electric field varies so slowly in the duration 7 that one can approximately
assume E(r,¢') = E(r,t), and take it out of the integral:

t
P(r,t) = 50/ x(r,t —t)E(r, t')dt’
t

= sOE(r,t)/ x(r,t —t)dt

—00

= XOEOE(ra t)7 (G23)

with

t (e}
Xo = / X(r,t—t’)dt’:/ x(r,t1)dt;.
—00 0
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In frequency domain, this corresponds to the case when the bandwidth of the electric
field is much narrower than the linewidth of the medium such that x(r,w) does not
change significantly within the bandwidth of E(r,w). Then, the propagation equation

is given as
1 6°E O’E
VE- 55 = S —
2 o2 HoX0E0 12
This equation can be rewritten as
R n? 0°E B
VE-G = 0

with

The solution to this equation is
1 o0 . .
B(r.1) = [ dwB (0, w) el k@) ) (G.24)

with E(0,w) being the input spectrum at r = 0. The wave number k(w) and the
frequency w satisfy the linear dispersion relation

k(w) = —w. (G.25)

n
(&

In general, the susceptibility xo could be a complex value, thus one has a complex
refractive index. However, in this subsection, we assume there is no absorption or
amplification, thus n is a real number.

Given a frequency wg, one can rewrite the dispersion relation as

k:(w) =ko+ k1 (w — WQ), (G26)

with ko = Zwo and k1 = 2. The phase velocity for wp is

wo Cc
vp(wo) = Fo n (G.27)
and the group velocity for wy is
-1
dk(w) 1 ¢
= =—=—. .28
g (wo) ( dw w_wo) ko (G.28)

Because the medium responses equally to every frequency, the phase velocity and group
velocity are equal to each other and have no dependence on a specific frequency.

G.2.2 Finite-time response

If the medium has a finite response time which is comparable to the time duration of
the light pulse, it will response differently to different frequencies. This can be seen
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explicitly in the frequency domain, where the light propagation equation in Eq. (G.11)
changes to be

2

A

V2E(r,w) + S E(r,w) = —pozow(r,w)E(r,w).

Reorganizing the terms above, one obtains
V2E(r,w) 4+ K (r,w)B(r,w) = 0, (G.29)

with the dispersion relation

k(r,w) = %,/Hx(r,w):%n(r,w). (G.30)

Here we still keep the dispersion relation k(r,w) position dependent. This corresponds
to a position-dependent complex refractive index n(r,w).

Usually, the dispersion relation only accounts for the real refractive index which only
refers to phase changes in the light field, the changes of amplitudes are not included
in the dispersion relation. However, for the sake of simplicity, we define the dispersion
relation in a more general way so that it includes changes in both phase and amplitude.
This refers to a complex refractive index, thus complex wave number k.

If the refractive index changes periodically in space as n(r,w) = n(r + rp,w), then
Eq. (G.29) is similar to the equations for electrons moving in a periodic lattice described
by Bloch band theory. This is the situation in photonic crystals.

In the following, we assume that the medium is homogeneous, the susceptibility x,
thus the dispersion and refractive index, are independent of r. Then we have

V2E(r,w) 4+ k2 (w)B(r,w) = 0, (G.31)
with the dispersion relation

klw) =

w
C

n(w). (G.32)

The ordinary differential equation Eq. (G.31) can be easily solved to get

E(r,w) = E(0,w)e *@T, (G.33)
In time domain, one has
1 o0 A )
B(r,1) = = /_ " dB(0,w)ei ), (G.34)

This means that, for linear dispersion, as long as one knows the input spectrum E(O, w)
at r = 0 and the dispersion relation k(w), one can immediately get the corresponding
output spectrum through Eq. (G.33), and get the pulse function through Eq. (G.34).
The dispersion relation k(w) can be obtained either by a theoretical calculation of the
susceptibility x(w) through light-matter interaction, or by experimentally measuring the
complex refractive index n(w).

Nevertheless, assuming n(w) [thus k(w)] being a real function, there are only phase
changes in the spectrum and the amplitude of the power spectrum remains unaffected.
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One can again write the dispersion in form of a Taylor series around wy

k k
k(w) = ko + k1o + 2—?@2 + 3—?&;3 T (G.35)
with & = w — wyp, and
w " w
ko = ?0 1+ x(wo) = ?On(wo). (G.36)

With this relation, one can easily get the frequency-dependent phase velocity

wo c

vp(wo) = = , (G.37)

ko n(wp)
vgln) = (dk(w)

~1
dw w—wo>
_ ( d wn(w) )1

dw ¢
dn(w)

C
n(wo) +wo g7 | _

and frequency-dependent group velocity

Both the phase velocity and group velocity are different from frequency to frequency with

a frequency-dependent refractive index. For a given frequency wy, the group velocity is

equal to the phase velocity only if d’gﬁj’)

‘ = 0. This either refers to a frequency-
wW=wo

independent constant refractive index, or to the extrema on the curve of a frequency-
dependent refractive index.
More generally, we have the relations

vp(w) = n(iu)’ (G.38)
vg(w) = O ToEd : R (G.39)
dw

and

< vp(w), ide—g‘)) > 0,
vg(w) § = vp(w), if 22 — g (G.40)
> vp(w), ifdziff) < 0.

These relations reveal that the group velocity can be smaller, equal to or larger than the
phase velocity, depending on whether the refractive index increases or decreases when
w gets larger. For dz(:) > 0, high frequencies have larger refractive indices, thus their
phase velocities are smaller compared to those with lower frequencies. As a results, the
group velocity becomes smaller than the phase velocity and vise versa.

Another conclusion from the finite-time response is that there always exists chirp

phenomenon because of the frequency-dependent phase velocity.
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G.2.2.1 Linear dispersion

However, even when the phase velocity is frequency-dependent, the group velocity can
still be frequency-independent if all the higher-order terms beyond linear dispersion in
Eq. (G.35) vanish. In details, this means

1 1 w
klw) = k+kio=w|————|+—, G.41
) o ’ (UP(WO) Ug) Vg ( )
with
1
vg(wo) = T = Ve (G.42)
1

The corresponding refractive index for linear dispersion is an inversely proportional
function given by

n(w) = FW) _ wo ( < __ C) + 2, (G.43)

with the derivative

dn(w) c
WL T —n(w) + v’ (G.44)
and
vg(w) = vg = vg(wo). (G.45)

Therefore, we should keep in mind that a linear dispersion relation does not imply a
linear refractive index.

Compared to the linear dispersion in Eq. (G.25) for instantaneous response, there
is a finite intercept at w = wp in Eq. (G.41). This gives rise to an offset between
group velocity and phase velocity, as well as a frequency-dependent refractive index. In
particular, the phase velocity for linear dispersion can be calculated as

w 1
vp(w) = = . (G.46)
k(w wo 1 _ 1 1
( ) "-? (UP(WO) ”g) t Vg
One can check the behavior of the phase velocity in two extremes
Vg, if w > wy,
= G.47
UplW) =\ w vplwos g o wo. (G.47)

wo vg—vp(wo)’

For this linear dispersion, the group velocity is frequency-independent and it is always
faster than (or equal to) the phase velocity, indicating superluminal propagation for such
kind of materials. This conclusion can also be derived from the frequency dependent
refractive index which is inversely proportional to w.
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G.2.2.2 Second-order dispersion

As we have discussed before, the group velocity is universal for all frequencies if the
material has a linear dispersion relation. When higher-order dispersions are significant,
one expects the group velocity to be frequency-dependent. This phenomenon is called
group velocity dispersion (GVD) [109] or group delay dispersion (GDD) [113],

d2

k(w). (G.48)
If all the terms beyond second order in Eq. (G.41) are negligible, one has
k(w) = ko + k1@ + %aﬂ,
with the
GV D(w) = ka. (G.49)

Nevertheless, this second-order dispersion gives rise to a frequency-dependent group ve-
locity when the light propagates through the medium.

G.3 Nonlinear polarization

As we discussed before, for a homogeneous medium with linear polarization only, the
dispersion k(w) is r-independent. The propagation equation is exactly solvable for any
given input spectrum E(O,w), provided that we know the dispersion relation [either
theoretically from y(w) or experimentally from n(w)]. However, when nonlinear polar-
ization sets in, it may change the dispersion relation to be r-dependent again, which
prohibits the analytical calculations. More precisely, a specific dispersion relation may
not even exist because the nonlinear term is not explicitly expressed in frequency domain
by Fourier transform. (the Fourier transform has advantages only for linear systems.)
In this Section, we tackle this problem from two aspects: one is a perturbative treat-
ment where the nonlinear polarization term is much smaller compared to the linear term
so that it does not change the dispersion relation obtained from linear polarization too
much; the other one is a non-perturbative treatment in which nonlinear polarization is
comparable to linear polarization, and one should solve Eq. (G.10) or Eq. (G.11) exactly.

G.3.1 Perturbative treatment

Going back to the beginning of this Appendix, the polarization can be separated into a
linear term and a small nonlinear term

P(I‘, t) = P(l) (I‘, t) + PxNL (I‘, t)v

with the linear polarization term satisfying

t
Poy(rt) = & [ Xt =BG, (G.50)
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and
Poy(r,w) = eoX)(r,w)B(r,w). (G.51)

One can see that, because of the convolution there, when we discuss linear polarization,
it is more accurate and convenient in the language of frequency space instead of the
time domain. In the following, we still assume that the linear susceptibility )2(1)(1', w) =
X(1)(w) is independent of the position r. Then we can adopt the propagation equation
in Eq. (G.10) and rewrite it as

1 9°E P O°P
2 (1) NL
E-—-—— = G.52
VE- G e Mo =g THO g (G.52)
Similarly, in frequency domain with
P (r,w) ! / P (r, ety
, W = = y L)€ )
NL Jor ) NL
Eq. (G.11) changes to be
N wz N N N
V2E + B = — 1w P (1) — powPx. (G.53)
This can be simplified by substituting Eq. (G.51) into the equations above,
25 w? A - 21
VE+ 5 (14%0)B = —pow’Pur. (G.54)
As defined before, we use
2 w? A
(w) = =l (1 + X(1)) (G.55)

to represent the dispersion from linear polarization. Accordingly, the propagation equa-
tion becomes

VE + BE(WE = —pw*Pyr. (G.56)

To get this equation from the exact one given in Eq. (G.6), two approximations are
adopted: firstly, the linear polarization field is homogeneous; secondly, the nonlinear
polarization field is small and can be treated perturbatively. If Py is comparable to
15(1), it at least should be homogeneous as well.

The solutions for f’NL = 0 have been given in Sec. G.2, with

A

E(r,w) = E(0,w)e kT
1 [e.e] ~ .
— i(wt—k(w)-r)
E(r,t) \/%/—oo dwE(0,w)e .

When Py, # 0, there are no general solutions to Eq. (G.54) or Eq. (G.56). One can not
get the spectrum E(r,w) at r directly. To proceed, we first write the electric field in its
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general form,
E(r,t) = l/oo dwE(r,w)e™!
Y /271' oo Y )

with E(r, w) being an unknown function. However, no matter what kind of polarization
is present, one can always write the spectrum at r as a multiplication of the spectrum
at r = 0 and a modification function

A

E(r,w) = E(0,w)e #Ew)T, (G.57)

In such a way, the time-dependent electric field reads
1 o ,
E(r,t) = —/ dwE(0, w)e!@t=Brw)r), G.58
8 = = [ dBow) (G.58)

Compared to the linear-polarization-only case, the r-independent dispersion relation
k(w) is replaced by a new dispersion relation 3(r,w) which may depend on r even for a
homogeneous medium. The task remains is to solve or measure f(r,w).

G.3.1.1 Slowly varying envelope approximation |

In order to proceed further in understanding, we separate the total dispersion into a
linear-polarization contribution and a nonlinear-polarization contribution,

B(r,w) = k(w)+ [B(r,w)—kw)]. (G.59)
We thus have
E(r,t) = \/12?/00 dwB(0, W)t —K(w) ) o =i(B(rw) —k(w))x
= \/12?/_00 de(rjw)ei(wtfk(w)-r)’ (G60)

with

A

Ar,w) = E(0,w)e Brw)-kw)r, (G.61)

The spectrum at position r is

A

E(r,w) = A(r,w)e kT, (G.62)

If |Pn| < ]15(1)|, one would expect that the new dispersion function §(r,w) will not
deviate from k(w) too much,

|B(r,w) — k(w)] < 1. (G.63)

Then ft(r,w) would be slowly varying in space r. Although they look similar to each
other, the new function LA(r,w) defined here is not the envelope function. Therefore, a
slowly varying A(r, w) does not mean that the evolution of the spectrum is also slow as
it is propagating through the medium. There are contributions from k(w) that stand
for light absorption/amplification.



186 G. Light propagation in resonant media

With Eq. (G.62), the spatial derivative of the spectrum is given as
VB = (VZA-i2k(w)V - A -k (w)A) ek,

Substituting into the propagation equation in Eq. (G.56), the k%(w) terms cancel with
each other and give

(V2A — i2k(w)V - A) e R = 0Py (G.64)

We should mention that Eq. (G.64) is equivalent to Eq. (G.56) without any further
approximation. For a slowly varying A(r,w) in space, one has

V2A| < [2k(w)V - A

Dropping the second-order derivative in space, one obtains the propagation equation for
the slowly varying field:

Z‘Qk(w)V'Aeiik(w)'r = MowzlsNL. (G.65)

Compared to Eq. (G.56), the second-order differential equation has been reduced to
a first-order differential equation. However, both Eq. (G.56) and Eq. (G.65) have the
same problem in finding a general solution in frequency space: the explicit form of the
spectrum f’NL, in general, is not available.

Going back to time domain from Eq. (G.65) is also complicated. There is no explicit
relation between the two fields E(r,¢) and A(r,t) defined in time domain as

E(r,t) = \/12?/_ de(r’w)ei(wt—k(w)-r)7
and
1 o0 ~ :
A(r,t) = \/%/ dwA(r,w)e™.

Therefore, general analytical calculations for such an approach is applicable neither in
time domain nor in frequency domain. So, one needs to find a new function that can
make the inverse Fourier transform of the propagation equation available.

G.3.1.2 Slowly varying envelope approximation Il

The difficulties for solving the slowly varying field above mainly come from the frequency-
dependent relation between A(r,w) and E(r,w) in Eq. (G.62). This cue indicates that
we should separate the dispersion k(w) into two parts ,

k(w) =ko + C(w), (G.66)
with kg being the frequency-independent term and

k K
C(@) = ki + 2—'2@2 + 3—?@3 + o (G.67)
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the frequency-dependent term. Accordingly, one defines another field £ (r,w) that satis-
fies

E(r,w) = &(r,w)e *oT, (G.68)
and
Er,w) = Alr,w)e C@T = B(0,w)e Brw)—ko)r, (G.69)

Then we can express the electric field in time domain as
1 0 A 4 .
E(r,t) = VT /_ N dw€ (r,w)e!@tkoT) — g(p t)eilwot—kor) (G.70)

with £(r,t) the envelope function under frequency wp. It is an inverse Fourier transform
of £(r,w) with the frequency being shifted by wq:

1 o0 ~ .
E(r,t) — \/%/— € (v, &), (@.71)

where & = w —wp. With this new field representing the envelope function, Eq. (G.64) is
replaced by

(V2€ —i2koV - &) e ™% 4 [k (w) — k| £ ™07 = —pugw? Py, (G.72)

Considering that the dispersion term is k%(w) = k% + 2ko - C(@) + C*(@), Eq. (G.72) can
be rewritten in the language of @ as

(V2€ - i2koV - €) e ™0™ 4 [2ko - C(@) + C2(@)] Ee7™0™ = —po(wo + @) Prr(G.73)

Furthermore, from Eq. (G.69), the first-order derivative of b4 yields

V-E& = V. A€ _iCc@)-é€, (G.74)
and the second-order derivative of € gives

Vi = (VZA-i2C@)V - A) e OO — c2(@)€. (G.75)

We first substitute the second-order derivative into Eq. (G.73) and multiply e’¥0T to
both sides of the equation, resulting in

(V2A - i2C(@)V - A) e ot C@T _ 9k [V - £ +iC(@) - £] M0
= —to(wo +@)*Pxr. (G.76)

Then using the relation from the first-order derivatives V- Ae C@T = V. £ +iC(a)- &,
one obtains the equation

(V2A - i2C@)V - A) e ™™ —iglegV - Ae T = ppw®Pyr. (G77)
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This equation is the same equation we derived before in Eq. (G.64). The only difference
is that we have separated the dispersion k(w) into a frequency-dependent part C(&) and
a frequency-independent part kg.

Again, until now, all the derivations are accurate. Eq. (G.77) is equivalent to Eq. (G.56).
To proceed, we make further approximations. However, unlike what we have done for
Eq. (G.64) where only a slowly varying A is considered, here we also assume

|C(@)] < ko, or, equivalently, & < wy. (G.78)
These two extra approximations mean
—i2koV - Ae @It — 002 Pyy, (G.79)
or
pow?

V. é + ZC((D) : é - _ZWkO . ]/.:\)NLeikO.r. (G80)
0

As & < wp, one can approximate
w? = (wo + @) = Wi (G.81)
This results in the well-known propagation equation for a slowly varying envelope

2
V-E+iCw)-€& = —it20

k(] . ].SNLeikO'r. (G82)

In time domain, one has by inverse Fourier transform

N ,u0w2
VE+CE = —i——Lko P, (G.83)
with the operator C' given as
R > ks O° 0 ko 0% k30
N (g O RO R OT 24
C o= T g = g T e GaE T (G-84)

and the time-domain envelope of the nonlinear polarization field
Py, = Ppel@otkor), (G.85)

From C we know that, in frequency space, a higher-order dispersion corresponds to
higher-order terms in the Taylor series of k(w); in time domain, they are represented by
higher-order time derivatives of the envelope function.
Considering the case of light propagating along 2, the propagation equation is reduced
to be
o | powd

E‘ch = —1 Qko

PNL- (G.86)

If there is only s linear dispersion and all the higher-order dispersions are not significant,
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one has

o€ Yk oc MOWO
9z " Var T Tk,

Pxi, (G.87)

with k1 = 1/v,. We know that the group velocity is independent of the frequency under
linear dispersion, and one can transform to retarded time coordinates with

z !

T = t——, zZ =z
Vg

Because

9 _ 9

ot o1’

9o 00

9z ‘or oz

the propagation equation in retarded time is given as

08 _poh
0z - 2]{0

PNL- (G.88)
We can see that the contributions from the group velocity terms have been canceled.
When higher-order dispersion are involved, the time derivatives change to be

o
ots — ors’

So, the propagation equation in Eq. (G.86) in retarded time domain is given as

o€ s ks O°
8 + ( )s+1 _ MOWO
z s=2

s! aTsa N 2]{,‘0

PNL- (G.89)

We know that higher-order dispersions lead to group velocity dispersion. Therefore,
for different carrier frequencies, the retarded time 7(w) =t — @ would be different.
However, for & < wyp, one can take 7(w) = 7 for all the frequency components within
this narrow bandwidth.
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As a summary of all the approximations we made until now, we list

1.
P (1) being homogeneous and Py being small,
V-E =0 for or (G.90)
both P(;) and Py, being homogeneous;
2.
Pyr, being small, such that 8(r,w) — k(w) < 1,
VZA=0for { or (G.91)
both P}y and Pyy, being homogeneous [3(r,w) = 5(w)];
3.

|C(D)] < ko or @ < wo,
C@)V-A=0for { or (G.92)
k(w) = kg or & < wop.

Especially, the condition & < wq indicates that the bandwidth of the light field should
be much smaller compared to the carrier frequency.

G.3.1.3 Slowly varying envelope approximation Ill

The propagation equation above is only applicable to a light field with a slowly vary-
ing envelope. In other words, the relative bandwidth is much smaller than one. For
ultrashort pulses, especially few-cycle pulses, the relative bandwidth becomes closer to
unity. Eq. (G.86) and Eq. (G.89) are not sufficient to describe the propagation effects
anymore. We need to look for a different approach beyond the slowly varying envelope
approximation, or beyond narrow bandwidth approximation.

This can be started by taking into account the first-order dispersion in k(w):

k(w) = ko + ki@ + F(&), (G.93)
with
k K
F(&) = Q—faﬂ + g—fﬁ +o (G.94)

Then, Eq. (G.68) is replaced by
BE(r,w) = B(r,w)e kotkio)r (G.95)
with

Br,w) = E(r,w)e™ T = A(r,w)e F@T = E(0,w)e v —ko—lad)r (G 96)

Then substituting Eq. (G.95) into Eq. (G.56), the Eq. (G.64) and Eq. (G.72) are replaced
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by

(VQB —i2(ko + k1 @)V - B) e~ikothad)r | [k?(w) — (ko + klw)ﬂ Beikotki@)r
= _,UOWQISNL- (G.97)

Following the same procedure for £, one obtains another form of Eq. (G.64) and Eq. (G.77):

(V2A - 2F(@)V - A) e ™7 —in( + @)V - AT REOT = —pp0?P.
(G.98)

Similar to Eq. (G.77), the propagation equation Eq. (G.98) is also accurate without any
approximation.
If all the higher-order dispersions are perturbative,

IF(@)] < ko+ ki, (G.99)
one can drop the first term in Eq. (G.98) and obtain

—i2(ko 4+ k1@)V - Ae7 k@)t — 00,2 Py. (G.100)

A

With V- A = (V B+iF@)- B) eF@T one gets

2
V-B+iF@) B = —i PO (ko + k@) - Prpei®otkad)T (G 101)

(k() + kla))Q
The complex forms in @ on the right-hand-side of the above equation makes it difficult
to have a simple inverse Fourier transform. Therefore, we need further approximations
based on

wo w

ko + ki@ = +
o vp(wo)  vg(wn)

Q

Up(wo) (wo + (Z))
_ ff;w + ). (G.102)

This argument is satisfied when vg(wo) =~ vp(wp) or wy > @ is fulfilled. Then, one has

A _ ipowo (wo + @)

B+FW)-B = ko + k@) - Ppeikotki@)r (G q
V-B+Fw)- B o (ko—i-kﬂf))( o+ ki) - Pyre (G.103)

By introducing another polarization field

1 . .
k k1) - Pny ekt G.104
Qn, = (ko kld))( 0+ 1w) NL€ ) ( )

the propagation equation is changed to a form

5 lpowo

V-B+F@)-B o (@0 + @) Qurekor, (G.105)
0
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which can be easily transformed to the time domain:

;- iHowWo 0 iko-r
. . = — — = . 1
V-B+F-B ST (wo Z@t) Qe (G.106)

The differential operator F' is defined by

A =, . ks O° ko 0% k3 0®

— st 2 e T
b 2_:2( P er T e ol T (G-107)

and the new polarization field in time domain is given as
Qunt) = —= [ Qo)
r, = = ’
NL \/ﬂ o NL
1 0 . .N .
= — doP Ny (r, ©).e @k Tt (G.108)
vV 2 [oo

We know how to obtain Quy,(r,¢) in terms of Py (r,t), however, there is no explicit
relation between Qyy,(r,t) and Py (r,t).
In the one dimensional case,

0 ~ iuowo ( . 8) ik
9B+DB = — 2 ikoz, 109
828 + DB ko wo Zat Onre (G 0 )

Compared to the equation obtained before, there is a time-derivative term for the non-
linear polarization. The group-velocity term is absent in a sense that we are in the
retarded-time domain. This would be more clear if we notice the similarity between
Eq. (G.109) and Eq. (G.89) in a way that, if we take

(wo +@0)? = Wi+ 2we@ + &? = wi + 2w (G.110)

instead of the approximation in Eq. (G.81), we find that Eq. (G.89) is replaced by

8i,a+ﬁya - _”2‘3;’0 <w0 —¢2§T) Pype™o?, (G.111)
with
R o'} ‘ k. % ,kQ 82 kS 83
— _;\st17s - _ _
F. = §_2( i) 9 992 o8 + ... (G.112)

The only difference is that there is a factor of 2 in the time derivative of nonlinear
polarization in Eq. (G.111) compared to the term in Eq. (G.109).

G.3.2 Non-perturbative treatment

In the derivations before, we are working with slowly varying approximation in three
different approaches, all of which are limited by the condition

) — k@) < [2k(w)], for A,
B(w) — k(w)[,[2C@)| < |2k, for £,
Bw) —k(w)],2F@)] < [2(ko +ki@)|, for B.
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These conditions are satisfied only if the nonlinear polarization is small compared to the
linear polarization so that it does not change the dispersion of linear polarization too
much.

However, either when nonlinear polarization is comparable to linear polarization, or
when nonlinear dispersion is comparable to linear dispersion, the approximation will not
be available any more. Depending on whether the total polarization can be separated
into linear and nonlinear parts, one should solve the following equations directly:

2
V2E + %E = —pow?P, for non-separable P
c
1 O’E o0*P
V2E — 22 MOW’ for non-separable P
and
V2E + k2(w)ﬁ) = —uow2f’NL, for separable P

G.4 Two-level system

From Sec. G.3.1.2 we know that the slowly varying envelope approximation holds only if
C(w) < ko. In the following, we check how this argument can be fulfilled when light is
interacting with a set of two-level atoms. We assume that the light is linearly polarized
and is propagating along 2.

The electric and polarization fields can be written in an integral of all their frequency
components

1 oo .
E(z,t) = —/ dwE(z, w)e™?,
Gt = o= [ dublew)
L7 b (s, w)et
P(z,t) = — / wP(z,w)e™".
( ) vV 21 J -0
Introducing a carrier frequency wgy and the corresponding envelope functions

i 1 0o o o
E(z,t) = g(z’t)ez(wot—koz) = \/ﬂ/ d@g(z,cb)emez(wot_koz)7

P(z,t) = "P(Z,t)ei(wot_koz) = 127r/ dwﬁ(z,@)ei‘:’tei(“’ot_koz),

with @ = w — wp, we know the relations between the full spectrum and the envelope
spectrum to be
E(z,w) =
P(z,w

In the following, we see how these relations may be broken if we introduce the slowly
varying envelope approximation.

For two-level systems, if the populations of the two levels do not change significantly
and can be taken as constants during interacting with the light field, the situation
corresponds to the weak-field case as discussed in Chapter 6, and the system can be
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described by linear polarization theory

P(z,t) = go/t (¢ — YE(z, 1),

A

P(z,w) = eR(w)E(z,w).

Because the different frequency components are decoupled, from Eq. (G.33) we know
that the accurate spectrum is given by

E(z,w) = E(0,w)e e VITX@:z, (G.113)

However, if the populations change vastly during the interaction with light (see Chap-
ter 7), all the frequencies are coupled to each other, and an analytical solution becomes
difficult. In this situation, numerical simulations become important to understand the
physics of light propagating in the medium. When the propagation distance is short
(several wavelengths z ~ \), one can just solve

0%E(z,t) 1 0’E(z,1) 0?P(z,t)

972 2 o~ M

together with the Bloch equations numerically and obtain an accurate result. However,
if the length of the medium is long compared to the wavelength (z > A), this approach
is time consuming. Instead, one can solve equations for the envelope of the fields.
Therefore, it is important to verify the slowly varying envelope approximation under
given conditions.

G.4.1 SVEA

Usually, the light propagation equation under slowly varying envelope approximation is
given by

0E(z,1) n 10€(z,t) _ . powoc

0z c ot "y P(z1).

Compared to Eq. (G.83), all the higher-order dispersion effects have been neglected. In
frequency domain, one has

E(z,0) = —i———P(z,0). (G.114)
We also only consider the linear polarization case
75(25 (:J) = 80)2(&})3('27 ('D)

This relation gives the propagation equation for the spectrum as

0€(z,0)  if.  R(@wo
0z c(w+ 2

) E(z,@). (G.115)
Therefore, the spectrum of the envelope function is solved as

E(z,3) = 5(0,@)6_%<&+M)Z.
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Then, the full spectrum is recovered by
E(z,w) = &(z,@)e %0z
i~ X(@)w
= 3(0, Q)eiz (erXiQO)Ze_ikOZ
i (WWMM)Z

= E(0, w)e e~ thoz

. _i w+>‘<(')w0)z ) )
= E(0,w)e °( : el demikoz,
Because ckg = wp, and {(w) = x(©) for a given w, one has

A

" _ify X(w)wg 2
E(z,w) = E(0,w)e c(+ 2 ) (G.116)

In order to compare this spectrum to the accurate results in Eq. (G.113), one can expand
the exponent in the accurate spectrum as

W) X x@)? (G.117)

When Y(w) < 1, one can only keep the first-order term,

~ ~ Fw X(w)
E(z,w) = E(O,w)eil?(HXT)z. (G.118)

Comparing the spectra in Eq. (G.116) and Eq. (G.118), one finds that they are almost
the same, except for different frequency multipliers in front of the susceptibility.

Based on these results, a comparison between the accurate spectrum and the approx-
imate spectrum can be performed based on whether the condition y(w) < 1 is fulfilled
or not.

Firstly, if ¥(w) < 1 holds, the amplitudes of the spectrum can be approximated by the
first-order term. However, the phase of the spectrum will be modified by higher-order
terms at larger propagation distance because %M)Qz ~ 1 for large z. For the first order
of x(@) in Eq. (G.118), one has

W@ 2mR@)

—TS AT, Z:WXX(M)' (G.119)

The effect of polarization shows up for a propagation distance

A (G.120)

If we have X(@) ~ 1072, one has z ~ 10?\. Then, the second order term —2(2)2 will be
of effect for z ~ 10%\.

Secondly, if X(w) 2 1, all the higher-order terms in Eq. (G.117)must be taken into
account, and the slowly varying envelope approximation breaks down.
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G.4.2 Susceptibility

The susceptibility is given as

2
o~ png 1

- AN G.121
xX(@) Yeoh T it ( )

with AN = 1 being the population inversion per atom. At resonance, one has

2
prne

. 1
x(0) = o 7 (G.122)
Using relation
8m2p2w3
one obtains
3¢3 3rc?
Y(0) = = . G.124
X( ) 87r2w8n8 Vg ne ( )

The peak value of the susceptibility is proportional to the atomic density nge. For
vp = 3 x 101° Hz, %(0) = 1 gives ng = 3% x 10*! m™3 or ng = 3% x 10" em™3.
For idea gas with concentration 1 mol per 22.4 L, the typical atom number density is

around %L_l = 2.7 x 10" cm~3.

For our X-ray lasing scheme, a photon energy of 920 eV gives a frequency vy =
2.22 x 10'7 Hz, the corresponding atomic density is ng = 4.3 x 10 cm™3. The ionic
density used in our simulation with nijo, = 3.5 x 10'® cm ™3 gives a ratio of 0.13 compared
to ng. This means that slowly varying approximation in such a system is applicable.

G.5 Summary

In particular, the SVEA is valid only if the polarization field is small compared to
the electric field of the light pulses that the dispersion (refractive index and loss/gain
coefficient) does not change significantly. The differences between the results from SVEA
and the accurate solution are discussed for two-level system. It shows that, for photon
energy around 920 eV, SVEA is applicable when the density of the medium is well below
2.7 x 10! em™3. For our X-ray lasing scheme with ionic density around 3.5 x 10'® cm=3,
SVEA is still a good approximation for the light propagation.
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