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Chapter 1

Introdution

In many appliations there is partiular interest in spei� quantities of the

solution. These inlude physially relevant quantities like, for example in aero-

dynamis, the drag or lift of an airfoil, the pressure di�erene between the

leading and trailing edge of the airfoil or single density or pressure values on the

pro�le of the airfoil. While traditionally these quantities are measured in wind

tunnel experiments, nowadays these experiments are inreasingly replaed by

numerial simulations aiming to predit these quantities, see the reent \First

AIAA Drag Predition Workshop" [42, 44℄ for example.

Multi-dimensional ompressible ows are modelled by nonlinear onserva-

tion laws whose solutions exhibit a wide range of loalised strutures, suh as

shok waves, ontat disontinuities and rarefation waves. The aurate numer-

ial resolution of these features neessitates the use of loally re�ned, adaptive

omputational meshes. The majority of adaptive CFD algorithms will re�ne

or adjust the omputational mesh aording to an ad ho riterion, suh as a

large gradient or urvature information in one of the �eld variables. Although

this intuitive approah has had some suess, it generally neither yields meshes

that are eÆient for omputing the quantities of interest nor gives eÆient and

reliable error estimates of the omputed quantities. Indeed, the design and im-

plementation of eÆient adaptive �nite element/�nite volume methods and the

omputation of reliable values for physially relevant quantities is one of the

main hallenges in the �eld of omputational partial di�erential equations.

In this thesis we introdue a disontinuous Galerkin method for the numer-

ial solution of hyperboli onversation laws, as for example the ompressible

Euler equations of gas dynamis. Based on this �nite element method, we de-

velop an adaptive algorithm for the eÆient omputation of physially relevant

quantities of the solution. This inludes a posteriori error estimation of the

error in the omputed quantity as well as adaptive mesh design spei�ally tai-

lored to the eÆient omputation of this quantity. We illustrate this approah

by several di�erent hyperboli problems in ombination with various di�erent

target quantities, inluding the eÆient omputation of drag and lift oeÆients

of airfoils immersed in invisid ompressible gas ows.
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8 CHAPTER 1. INTRODUCTION

Disretisation For the disretisation of the hyperboli problems we employ

the disontinuous Galerkin �nite element method, see the survey artile Cok-

burn et al. [15℄ and the referenes ited therein. The disontinuous Galerkin

method, DG method for short, is loally onservative and may be regarded

as a higher{order generalisation of the �nite volume method. While the low-

est order disontinuous Galerkin method, using pieewise onstant trial and

test funtions, oinides with the basi �nite volume method, the order of the

DG method an easily be inreased by replaing the trial and test funtions of

the �nite element method by polynomials of higher degree p, yielding so{alled

DG(p) methods. This way, higher order disretisations are obtained without the

use of any reovery or similar tehniques ommonly employed in �nite volume

methods.

We enhane the disontinuous Galerkin disretisation by onsistent arti�ial

visosity terms, similar to those in [35℄, in order to avoid spurious osillations of

the numerial solution in the viinity of sharp features like shoks and ontat

disontinuities. Furthermore, we employ higher order boundary approximations

at urved reetive boundaries to avoid unphysial solutions, f. [6℄. Finally,

we solve the resulting nonlinear problems by Newton iteration methods.

A posteriori error estimation and adaptivity The main purpose of this

work is to onsider the a posteriori error estimation in terms of physially rele-

vant quantities J(u) of the solution, and adaptive mesh design for the eÆient

omputation of these quantities, f. [5℄, the survey artiles [20, 7℄ and the ref-

erenes ited therein. In partiular, by employing a duality argument we derive

the error representation formula

J(u)� J(u

h

) �

X

K2T

h

�

K

; (1.1)

where �

K

on eah element K of the triangulation T

h

onsists of the �nite ele-

ment residuals depending only on the numerial solution u

h

multiplied by lo-

al weighting terms involving the solution z of a ertain dual problem. These

weights provide valuable information onerning the global transport of the er-

ror and the interation of the error in di�erent omponents of the solution.

Sine the solution z to the dual problem is usually unknown analytially it

may be desirable to eliminate it from the error representation (1.1); indeed, by

employing the Cauhy{Shwarz inequality, together with standard results from

approximation theory, the loal terms �

K

, K 2 T

h

, may be bounded from above

in terms of powers of the mesh funtion h and Sobolev seminorms of z. Then,

z may be ompletely eliminated from the a posteriori estimate by bounding

norms of z by suitable norms of the data for the dual problem by employing

well{posedness results. The resulting Type II (f. [34℄) a posteriori error bound

then only involves the omputable �nite element residual, the disretisation pa-

rameter h, interpolation onstants and the stability fator for the dual problem.

This type of bounds are in the spirit of the ones derived by C. Johnson and

his o-workers. However, as we shall see the elimination of the weighting terms
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involving the dual solution z may adversely a�et the eÆieny of the resulting

adaptive algorithm leading to uneonomial mesh design. Indeed, we shall see

that already by the �rst step en route to deriving a Type II a posteriori esti-

mate, the appliation of the triangle inequality on the right{hand side of (1.1),

may lead to large overestimation of the true error. This is beause all anella-

tion e�ets that our in the error representation (1.1) through the summation

of the loal terms �

K

are suppressed. Therefore, we refrain from bounding the

terms on the right{hand side of (1.1); in partiular, we shall not employ the

triangle inequality and thereby not eliminate the dual solution z from our a pos-

teriori error bound by exploiting standard approximation results and the strong

stability of the dual problem. Instead, the dual problem will be approximated

numerially as part of the error estimation proess. However, the ost of this

additional alulation is in general relatively heap in omparison to the ost

of determining the numerial approximation to the original (primal) system of

nonlinear partial di�erential equations, sine the dual problem omprises of a

system of linear partial di�erential equations.

We shall show in a variety of numerial experiments that the approximate

error representation

~

E




�

X

K2T

h

~�

K

; (1.2)

originating from (1.1) by replaing the exat dual solution z by a numerial ap-

proximation, is very lose to the true error and thus provides a sharp and reliable

error estimate of the error in the quantity of interest. Furthermore, we employ

the omputed loal indiators j~�

K

j, also referred to as weighted indiators, for

adaptive mesh re�nement resulting in meshes that are spei�ally tailored to

the ost-eÆient omputation of the quantity of interest. We ompare the ef-

�ieny of these meshes with meshes produed by so{alled ad ho indiators

that simply rely on the residual or smoothness information of the solution.

In the following, we show a typial example of adaptive mesh design by

onsidering a supersoni ow past an airfoil, see Setion 4.5.3 for more details.

Figure 1.2(a) shows the mesh produed using an ad ho indiator �

adho

K

that

depends on the �nite element residuals, only. This mesh is largely onentrated

in the viinity of both shoks of the ow; the bow shok in front of the airfoil and

the trailing shok. We note that other ad ho indiators relying, for example,

on large gradients or urvature information of the numerial solution, produe

meshes fairly similar in harater.

Let us assume that there is partiular interest in the point value of the

pressure at the leading edge of the airfoil, see Figure 1.1.

PSfrag replaements

p(0; 0)

Figure 1.1: Pressure value at leading edge of airfoil.
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Figure 1.2: Supersoni ow around airfoil. Mesh onstruted using (a) an ad ho

indiator with 13719 elements (jJ(u)� J(u

h

)j = 3:542 � 10

�2

), (b) a modi�ed

ad ho indiator with 9516 elements (jJ(u) � J(u

h

)j = 7:924 � 10

�3

), and ()

the weighted indiator with 1803 elements (jJ(u)� J(u

h

)j = 3:042� 10

�3

).

Then, it is obvious that the mesh in Figure 1.2(a) is not eÆient for a-

urately omputing this quantity of interest. Indeed, due to physial reasons,

the supersoni ow downstream of the airfoil does not a�et the value at the

leading edge. Also, regions that are plaed suÆiently far above or below the

airfoil are believed to not signi�antly a�et the auray of the quantity of

interest. Therefore, we onsider an alternative ad ho error indiator based on
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a modi�ation of �

adho

K

,

�

adho,C

K

=

�

�

adho

K

; if entroid(K) 2 C;

0; otherwise;

whereby only elements in a neighbourhood of a one-shaped region C upstream

of the point of interest are marked for re�nement, inhibiting the re�nement

of the region downstream and the regions suÆiently far above and below the

airfoil, see mesh in Figure 1.2(b). However, it is a priori not lear whih parts of

the bow shok in front of airfoil will inuene the target quantity. The angle �

of the one C should not be hosen too small as otherwise the lak of resolution

of the bow shok will impat on the omputed value of the pressure at the

leading edge of the airfoil; on the other hand hoosing � too large may lead to

over{re�nement.

In ontrast, the weighted error indiator j~�

K

j provides all the neessary in-

formation in order to deide whih regions of the shok should be re�ned, and

by what extent. Indeed, though the mesh produed using the modi�ed ad ho

indiator �

adho,C

K

is signi�antly more eÆient than the mesh in Figure 1.2(a)

produed using the (unmodi�ed) ad ho indiator, the mesh produed using

the weighted indiator j~�

K

j is even more eÆient, for more details about this

example, see Setion 4.5.3.

Pre-Publiations

We note that in agreement with the advisor some of the numerial results pre-

sented in this work have already been published or submitted, see [24, 26, 27,

30, 31℄. Some of the most reent results are published in joint work with Paul

Houston, Leiester. However, it is emphasised that all test problems presented

here originate from the author's own work. All numerial data and results in-

luded in this work were produed using a ode implemented by the author

based on the deal.II library [3℄.

Aknowledgments

I wish to thank Prof. Rolf Rannaher for suggesting this interesting subjet and

for supporting this work, Wolfgang Bangerth and Dr. Guido Kanshat for their

helpful omments and Dr. Paul Houston for a very fruitful ooperation.

I aknowledge the �nanial support of the DFG Priority Researh Program

\Analysis and Numeris of Conservation Laws" and the SFB 359 \Reative

Flows, Di�usion and Transport" at the IWR, University of Heidelberg.



12 CHAPTER 1. INTRODUCTION



Chapter 2

Finite Element

approximation to

hyperboli equations

In this hapter we desribe the disretisation of the �nite element method we

employ for solving nonlinear hyperboli equations. As already indiated in the

introdution we partiularly onsider a disontinuous Galerkin approximation

to stationary hyperboli problems with speial emphasis on the 2D ompressible

Euler equations. This hapter deals with the disretisation, the solution of the

numerial problems and the onvergene of numerial solutions.

In Setions 2.1 and 2.2 we introdue a model problem of nonlinear hyperboli

onservation laws and we formulate its disontinuous Galerkin �nite element

approximation. After quoting some a priori error estimation results for the

disontinuous Galerkin disretisation of salar hyperboli problems in Setion

2.3, we present a numerial example in Setion 2.4 indiating that the DG

method applied to the 2D ompressible Euler equations gives an order O(h

p+1

)

of onvergene on smooth solutions when pieewise polynomials of degree p are

employed. Then, in Setion 2.5, we ompare the disontinuous Galerkin (DG)

method and the streamline di�usion (SD) method with respet to auray and

onservation properties of the methods.

In Setion 2.6 we onsider boundary onditions for the 2D ompressible Eu-

ler equation and introdue sub- and supersoni inow and outow boundary

onditions as well as reetive boundary onditions for the DG method. Then,

in Setion 2.7, we de�ne a onsistent shok-apturing term that is added to the

DG disretisation in order to avoid spurious osillations in the viinity of dis-

ontinuities of the solution. From the onsisteny of the DG method we dedue

the so{alled Galerkin orthogonality property of the �nite element method.

In Setion 2.8 we explain whih solvers we employ for solving the linear

and nonlinear problems arising from DG disretisations of nonlinear hyperboli

equations. Then, in Setion 2.9 we introdue mapping funtions of higher order

13



14 CHAPTER 2. FINITE ELEMENT APPROXIMATION

polynomial degree that allow the disretisation of urved boundaries by a higher

order boundary approximation. It is shown that this must be employed on a

urved reetive boundary in order to avoid unphysial numerial solutions.

Finally in Setions 2.10 and 2.11 we disuss the mesh generation for air-

foil geometries and show the numerial solution of a transoni ow around the

BAC3-11 airfoil on a sequene of adaptively re�ned meshes.

2.1 Model problem

Given a �nal time T > 0, we onsider the following system of onservation

equations,

�

t

u+

d

X

i=1

�

x

i

F

i

(u) = 0 in (0; T ℄� 
;

u(0; �) = u

0

(�) in 
;

(2.1)

where 
 is a bounded onneted domain in R

d

, d � 1, u = (u

1

; : : : ; u

m

)

T

,

F = (F

1

(u); : : : ; F

d

(u)) and F

i

: R

m

! R

m

, i = 1; : : : ; d, are ontinuously

di�erentiable. In partiular, we will be onerned with the solution of the sta-

tionary system of onservation laws,

r � F (u) = 0 in 
; (2.2)

subjet to appropriate boundary onditions desribed below. We say that (2.1)

is hyperboli, if the matrix

B(u; �) :=

d

X

i=1

�

i

A

i

(u) (2.3)

has m real eigenvalues and a omplete set of linearly independent eigenvetors

for all vetors � = (�

1

; : : : ; �

d

) 2 R

d

. Here, A

i

(u) denotes the Jaobi matrix of

the ux F

i

(u), i.e.

A

i

(u) := F

0

i

(u); i = 1; : : : ; d:

An important example of suh a model problem is represented by the Euler equa-

tions of ompressible gas dynamis. In two spae{dimensions, the state vetor

is u = (�; �v

1

; �v

2

; e)

T

, where �, v = (v

1

; v

2

)

T

and e represent the density, the

veloity vetor and the total energy per unit volume, respetively. Furthermore,

the uxes are de�ned by

F

1

(u) =

0

B

B

�

%v

1

%v

2

1

+ p

%v

1

v

2

v

1

(e+ p)

1

C

C

A

and F

2

(u) =

0

B

B

�

%v

2

%v

1

v

2

%v

2

2

+ p

v

2

(e+ p)

1

C

C

A

: (2.4)
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Here, p denotes the pressure subjet to the equation of state of an ideal gas

p = ( � 1)

�

e�

1

2

�v

2

�

; (2.5)

where  is the ratio of spei� heats whih, for dry air, is  � 1:4.

The system of onservation laws (2.1) must be supplemented by appropriate

boundary onditions; for example at inow/outow boundaries, we require that

B

�

(u; n) (u� g) = 0;

where n denotes the unit outward normal vetor to the boundary � and g is a

(given) vetor funtion. Here, B

�

(u; n) denotes the negative part of B(u; n),

B

�

(u; n) = P�

�

P

�1

; (2.6)

where P = [r

1

; : : : ; r

m

℄ denotes the m�m matrix of eigenvetors of B(u; n) and

�

�

= diag(min(�

i

; 0)) the m �m diagonal matrix of the negative eigenvalues

of B(u; n) with Br

i

= �

i

r

i

, i = 1; : : : ; d.

2.2 Disontinuous Galerkin disretisation

For pratial omputations we �rst need to disretise the problem. In partiular,

here we onsider the disontinuous Galerkin �nite element disretisation.

First, we begin by introduing some notation. Suppose that T

h

is a subdi-

vision of 
 into disjuntive open element domains K suh that

�


 = [

K2T

h

�

K.

Here, h denotes the pieewise onstant mesh funtion de�ned by hj

K

� h

K

=

diam(K) for all K 2 T

h

. Let us assume that eah K 2 T

h

is an image of a

�xed referene element

^

K, that is, K = �

K

(

^

K) for all K 2 T

h

. Here, we shall

only onsider the ase when

^

K is the open unit hyperube in R

d

. Furthermore

the mapping �

K

of the referene element

^

K to the element K in real spae is

assumed to be bijetive and smooth, with the eigenvalues of its Jaobian matrix

being bounded from below and above. For elements in the interior of the do-

main, �K \� = ;, the mapping �

K

is given by a d-linear funtion; for elements

on the boundary �K \ � 6= ;, it might be neessary to employ mappings that

inlude polynomials of higher degree, see Setion 2.9 for more details. On the

referene element

^

K we de�ne spaes of polynomials of degree p � 0 as follows:

Q

p

= span fx̂

�

: 0 � �

i

� p; 0 � i � dg ;

where here � denotes a multi-index and x

�

=

Q

d

i=1

x

�

i

i

. Now, we introdue the

�nite element spae V

p

h

onsisting of disontinuous vetor{valued polynomial

funtions of degree p � 0, de�ned by

V

p

h

= fv

h

2 [L

2

(
)℄

m

: v

h

j

K

Æ �

K

2 [Q

p

℄

m

g: (2.7)

Suppose that v 2 H

1

(K) for eah K 2 T

h

. For eah K 2 T

h

and eah

x 2 �K we denote by v

+

K

the interior trae of v on �K and by v

�

K

the outer
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trae on �K. The inner trae v

+

K

of v on �K is the trae taken from within

K. The outer trae v

�

K

on �K is taken from within the neighbouring element

K

0

K

(x) for x 2 �K n �. Here, K

0

K

(x) is the (with the exeption of a set of

d�1{dimensional measure zero) unique element K

0

K

(x) 6= K, depending on the

hoie of x, suh that x 2 �K

0

K

(x). For x 2 �K \ � the outer trae is set to be

v

�

K

:= g with g an appropriate boundary funtion, see Setion 2.6.

Sine below it will be always lear from the ontext whih element K in

the subdivision T

h

the quantities v

+

K

and v

�

K

orrespond to, for the sake of

notational simpliity, we shall suppress the letter K in the subsript and write,

respetively, v

+

and v

�

instead.

To formulate the disontinuous Galerkin method, we �rst introdue a weak

formulation of (2.2). To this end, we multiply the onservation law (2.2) by an

arbitrary smooth funtion v and integrate by parts over an element K in the

mesh T

h

; thereby, we get

�

Z

K

F (u) � rv dx+

Z

�K

F (u) � n v ds = 0; (2.8)

where nj

�K

denotes the unit outward normal vetor to �K.

To disretise (2.8), we replae the analytial solution u by the Galerkin �nite

element approximation u

h

and the test funtion v by v

h

, where u

h

and v

h

both

belong to the �nite element spae V

p

h

. In addition, sine the numerial solution

u

h

is disontinuous between element interfaes, we must replae the ux F (u) �n

by a numerial ux funtion H(u

+

h

; u

�

h

; n), whih depends on both the inner{

and outer{trae of u

h

on �K, K 2 T

h

, and the unit outward normal n to �K.

Thereby, summing over the elements K in the mesh T

h

, yields the disontinuous

Galerkin �nite element disretisation of (2.2) as follows: �nd u

h

2 V

p

h

suh that

X

K2T

h

�

�

Z

K

F (u

h

) � rv

h

dx+

Z

�K

H(u

+

h

; u

�

h

; n) v

+

h

ds

�

= 0 8v

h

2 V

p

h

;

(2.9)

f. [4, 14, 16, 18℄, for example. This sheme is alled disontinuous Galerkin

method of degree p, or in short notation \DG(p) method".

For elements K 2 T

h

whose boundaries interset that of the omputational

domain 
, we replae u

�

h

by appropriate boundary onditions on the portion

of �K for whih �K \ � 6= ;. For more details about boundary onditions, see

Setion 2.6.

We remark that the replaement of the ux F (u) � n by the numerial ux

funtion H(u

+

h

; u

�

h

; n) on the boundary of element K, K in T

h

, orresponds

to the weak imposition of the boundary data, f. [4, 33℄. Furthermore, we

emphasise that the hoie of the numerial ux funtion is independent of the

�nite element spae employed. Indeed, the numerial ux H(�; �; �) may be

hosen to be any two{point monotone Lipshitz funtion whih satis�es the

following two onditions:
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(i) H(�; �; �)j

�K

is onsistent with the ux F (�) � n for eah K in T

h

; i.e.

H(v; v; n)j

�K

= F (v) � n 8K 2 T

h

;

(ii) H(�; �; �) is onservative, i.e. given any two neighbouring elements K and

K

0

from the �nite element partition T

h

, at eah point x 2 �K \ �K

0

6= ;,

noting that n

K

0

= �n, we have that

H(v; w; n) = �H(w; v;�n):

There are several numerial ux funtions satisfying these onditions, suh

as the Godunov, Engquist{Osher, Lax{Friedrihs, Roe or the Vijayasundaram

ux, for example; f. Kr�oner [39℄ and Toro [54℄, and the referenes ited therein.

As examples, here we onsider two di�erent numerial uxes: the (loal) Lax{

Friedrihs ux and the Vijayasundaram ux.

The (loal) Lax{Friedrihs ux H

LF

(�; �; �), is de�ned by

H

LF

(u

+

; u

�

; n)j

�K

=

1

2

�

F (u

+

) � n+ F (u

�

) � n+ �

�

u

+

� u

�

��

; (2.10)

for K 2 T

h

, where � is the maximum over u

+

and u

�

,

� = max

v=u

+

;u

�

fj�(B(v; n))jg;

of the largest eigenvalue (in absolute value) j�(B)j of the matrix

B(u

h

; n) = F

0

(u

h

) � n �

d

X

i=0

A

i

(u

h

) (n)

i

:

Here, A

i

, i = 0; : : : ; d, are the Jaobi matries de�ned in (2.1); (n)

i

denotes the

ith omponent of the unit outward normal vetor n to element K, K 2 T

h

, for

i = 0; : : : ; d.

The Vijayasundaram ux H

V

(�; �; �), is de�ned by

H

V

(u

+

; u

�

; n)j

�K

= B

+

(�u; n)u

+

+B

�

(�u; n)u

�

for K 2 T

h

; (2.11)

where B

+

(�u; n) and B

�

(�u; n) denote the positive and negative parts, f. (2.6),

of the matrix B(�u; n), respetively, evaluated at some average state �u between

u

+

and u

�

.

Remark 2.1 We note that disontinuous Galerkin disretisations are similar

to �nite Volume shemes, espeially in the use of numerial uxes. In fat,

the basi �nite Volume sheme exatly orresponds to the DG(0) method, i.e.

to the disontinuous Galerkin method using pieewise onstants. Consequently,

the DG(p) methods with p > 0 an be regarded as the \natural" generalization of

�nite Volume methods to higher order methods. Indeed, by simply inreasing the

degree p of the disrete funtion spae V

p

h

in the disretisation (2.9) we gain DG

methods of orresponding higher orders. This, we demonstrate by a numerial

example of the 2D ompressible Euler equations in Setion 2.4.
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2.2.1 Salar hyperboli equation

Originally, the disontinuous Galerkin method was introdued by Reed and Hill

[45℄ and analysed by LeSaint and Raviart [41℄ for the salar hyperboli problem

� � ru+ bu = f in 
;

u = g on �

�

;

(2.12)

with onstant vetor � 2 R

2

and a real number b > 0. This linear advetion

equation is used as simple model for neutron transport. The disontinuous

Galerkin disretisation of this problem is given by

X

K2T

h

(

Z

K

(� � ru

h

+ bu

h

)v

h

dx�

Z

�K

�

� � n [u

h

℄v

+

h

ds

)

=

X

K2T

h

�

Z

K

fv

h

dx

�

;

(2.13)

with the jump [u

h

℄ = u

+

h

� u

�

h

, the inow boundary of the element,

�K

�

= fx 2 �K; � � n < 0g;

the outow boundary �K

+

= � n �K

�

; and inow boundary values

u

�

h

(x) = g(x); x 2 �

�

;

see also Johnson and Pitk�aranta [38℄, for example. At �rst sight, the dison-

tinuous Galerkin disretisation given by (2.9) looks di�erent to the original DG

disretisation (2.13). However, by de�ning the numerial ux for the linear

advetion equation to be

H(u

+

h

; u

�

h

; n)(x) =

�

� � nu

�

h

; for (� � n)(x) < 0; i.e. x 2 �K

�

;

� � nu

+

h

; for (� � n)(x) � 0; i.e. x 2 �K

+

;

(2.14)

we see that after integration by parts equation (2.9) redues to (2.13) with b = 0

and f = 0. We reall that the numerial ux replaes the ux term F (u) � n on

the boundary of the elements. The normal ux of the linear advetion equation

is given by F (u) � n = � � nu, and the numerial ux H, see (2.14), swithes

between the interior and the outer traes, u

+

h

and u

�

h

, respetively, depending on

x 2 �K being in the outow or the inow part of the boundary of the element.

There are many generalisations of this numerial ux to systems of equations,

but, like the Lax-Friedrihs ux or the Vijayasundaram ux, they simply redue

to (2.14) when applied to the linear advetion equation.

2.3 Short review of a priori error estimates

In the following we quote an a priori error estimate of the disontinuous Galerkin

method for the salar hyperboli boundary value problem given in (2.12):
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Let b 2 C(

�


), f 2 L

2

(
), and g 2 L

2

(�

�

) on the inow boundary �

�

:=

fx 2 �; a(x) � n(x) < 0g, then the weak formulation of (2.12) given by,

Z




(� � ru+ bu)v dx =

Z




fv dx; v 2 L

2

(
);

Z

�

�

� � n uw ds =

Z

�

�

� � n gw ds; w 2 L

2

(�

�

);

has a unique (weak) solution u 2 L

2

(
) with � � ru 2 L

2

(
).

We reall the disontinuous Galerkin disretisation (2.13) to this problem

and write it as follows: �nd u

h

2 V

p

h

suh that

a(u

h

; v

h

) = l(v

h

) 8v

h

2 V

p

h

; (2.15)

where here a(�; �) and l(�) are given by

a(w; v) =

X

K2T

h

�

Z

K

(� � rw + bw)v dx

�

Z

�K

�

n�

�

� � n [w℄v

+

ds�

Z

�K

�

\�

�

� � nw

+

v

+

ds

)

; (2.16)

with [w℄ = w

+

� w

�

, and

l(w) =

X

K2T

h

(

Z

K

fv dx�

Z

�K

�

\�

�

� � n gv

+

ds

)

:

Furthermore, we de�ne the norms kvk

K

� kvk

L

2

(K)

=

�R

K

jvj

2

dx

�

1

2

forK 2 T

h

,

and kvk

e

=

�R

e

j� � njjvj

2

dx

�

1

2

for e � �K. Then the following lemma an be

obtained by performing integration by parts.

Lemma 2.2 Let a(�; �) be the bilinear form de�ned in (2.16), then the following

identity holds

a(v; v) =

X

K2T

h

�

Z

K

�

b�

1

2

r � �

�

v

2

dx+

1

2

kv

+

k

2

�K

�

\�

�

+

1

2

kv

+

� v

�

k

2

�K

�

n�

�

+

1

2

kv

+

k

2

�K

+

\�

+

o

: (2.17)

An impliation of this Lemma is a stability result quoted in the following Lemma

2.3 that is a speial ase of Lemma 2.4 in [33℄ with Æ = 0, i.e. without streamline

di�usion stabilisation.

Lemma 2.3 (Stability) Suppose that there exists a positive onstant 

0

suh

that

(x) := b(x)�

1

2

r � �(x) � 

0

; x 2

�


: (2.18)
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Then the disrete solution u

h

2 V

p

h

of (2.15) obeys the bound

X

K2T

h

n



0

ku

h

k

2

K

+ ku

+

h

� u

�

h

k

2

�K

�

n�

�

+ ku

+

h

k

2

�K

+

\�

+

+

1

2

ku

+

h

k

2

�K

�

\�

�

o

�

1



0

kfk

2




+ 2kgk

2

�

�

:

Lemma 2.3 implies the uniqueness of the solution u

h

of the disontinuous Galerkin

method (2.15); furthermore, sine (2.15) is a linear problem over the �nite-

dimensional spae V

p

h

, the existene of the solution u

h

follows from its unique-

ness.

Stimulated by the identity in Lemma (2.2) and de�nition (2.18), we de�ne

the DG-Norm jjj � jjj by

jjjvjjj :=

X

K2T

h

n

kvk

2

K

+

1

2

kv

+

k

2

�K

�

\�

�

+

1

2

kv

+

� v

�

k

2

�K

�

n�

�

+

1

2

kv

+

k

2

�K

+

\�

+

o

:

In terms of this norm the following onvergene result for the disontinuous

Galerkin method applied to the salar hyperboli equation (2.12) an be shown,

that is (in a simpli�ed version) quoted from [33℄.

Theorem 2.4 (Convergene rate of the DG method) Let T

h

onsist of shape-

regular quadrilateral elements. For all K 2 T

h

let uj

K

2 H

k

K

+1

(K), k

K

� 0.

Then, for the disrete solution u

h

2 V

p

h

of the disontinuous Galerkin problem

(2.15) and for 0 � s

K

� min(p; k

K

) the following estimate holds:

jjju� u

h

jjj

2

� C

X

K2T

h

h

2s

K

+1

K

juj

2

s

K

+1;K

; (2.19)

where C is independent of s

K

and h

K

.

This result was �rst proven by Johnson and Pitkar�anta in [38℄ for general tri-

angulations. However, this result indiates half an order of onvergene in the

L

2

-norm less than expeted from a trial spae V

p

h

of order p+1. Also numerial

results show a full O(h

p+1

) order of onvergene on virtually all meshes, see also

Setion 2.4. In fat, Rihter obtained in [46℄ the full order of onvergene in the

L

2

-norm for some strutured two-dimensional but non-Cartesian meshes. But

on the other hand, Peterson on�rmed in [43℄ by onsidering so{alled Peter-

son meshes, that atually O(h

p+1=2

) is the optimal order of onvergene in the

L

2

-norm on general meshes.

2.4 Convergene of the disontinuous Galerkin

method for the 2D Euler equations

For nonlinear hyperboli systems like the 2D ompressible Euler equations there

are virtually no a priori error estimates available. Therefore, the order of on-

vergene of these problems an be obtained through numerial tests, only. In
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PSfrag replaements
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Figure 2.1: Geometry for Ringleb's ow; M denotes the Mah number.

Figure 2.2: Ringleb ow problem: Meshes with 2, 8, 32 elements.

the following, we shall show a numerial example indiating that the dison-

tinuous Galerkin method applied to the steady 2D ompressible Euler equation

exhibits a full O(h

p+1

) order of onvergene on smooth solutions.

To this end, we onsider the solution of the 2D ompressible Euler equations

to the Ringleb ow problem, that is one of the few non-trivial problems of the 2D

Euler equations for whih a (smooth) analytial solution is known. For this ase

the analytial solution may be obtained using the hodograph transformation,

see [13℄ or Appendix B.5. This problem represents a transoni ow in a hannel,

see Figure 2.1, with inow and outow boundaries given by the lower and upper

boundaries of the domain, and non{absorbing, i.e. reetive boundaries with

normal veloity v � n = 0, on the left and right boundary.

The solution to this ow problem is smooth but it is transoni with a small

supersoni region near the lower right orner. Furthermore, this problem in-

ludes urved boundaries and the mesh onsists of arbitrary quadrilaterals; see

the �rst three globally re�ned meshes in Figure 2.2.

We note that low order boundary approximations of reetive boundaries

redue the order of onvergene, f. Setion 2.9.2. To suppress this e�et, here
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# el. # dofs L

2

-error Rate Order

2 32 8.48e-02 - -

8 128 2.39e-02 3.54 1.82

32 512 6.72e-03 3.56 1.83

128 2048 1.81e-03 3.72 1.90

512 8192 4.75e-04 3.80 1.93

2048 32768 1.23e-04 3.87 1.95

8192 131072 3.14e-05 3.92 1.97

Table 2.1: Ringleb ow problem: DG(1) is of order O(h

2

).

# el. # dofs L

2

-error Rate Order

2 72 2.06e-02 - -

8 288 2.75e-03 7.52 2.91

32 1152 3.85e-04 7.13 2.83

128 4608 5.18e-05 7.43 2.89

512 18432 6.61e-06 7.83 2.97

2048 73728 8.22e-07 8.05 3.01

Table 2.2: Ringleb ow problem: DG(2) is of order O(h

3

).

we impose the boundary ondition,

B

�

(u; n) (u� g) = 0; x 2 �
; (2.20)

on the whole boundary �
 of the domain, where g is the boundary value funtion

taken from the exat solution to the Ringleb ow problem. This boundary

ondition represents an inow boundary ondition for harateristi variables on

inow parts (with respet to the orresponding harateristis) of the boundary.

In the following, we ompute the numerial solutions to this problem on

globally re�ned meshes and evaluate the L

2

-error of the solutions. The results

of this test are presented in Tables 2.1- 2.4. They show the number of elements of

the globally re�ned meshes, the number of degrees of freedom, the L

2

-error of the

numerial solution and two additional olumns inluding the rate and the order

of the onvergene. These tables learly show a O(h

p+1

) order of onvergene of

the L

2

-error ku�u

h

k of the numerial solution u

h

. Finally Figure 2.3 shows the

L

2

-error of the DG(p), 0 � p � 4 methods plotted against the number of degrees

of freedom. The resulting O(h

p+1

) order of onvergene is optimal for trial

and test funtions of polynomial degree p. This again, as disussed in Setion 2.3

for the salar ase, is half an order more than expeted for the salar linear ase

on general meshes. We re-emphasise that, although the disontinuous Galerkin

method is based on ideas of upwinding, it is not restrited to onvergene of �rst

order but allows arbitrarily high orders of onvergene (for smooth solutions)

depending on the order of the disrete funtion spae V

p

h

employed.
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# el. # dofs L

2

-error Rate Order

2 128 5.85e-03 - -

8 512 3.58e-04 16.37 4.03

32 2048 2.84e-05 12.60 3.66

128 8192 1.92e-06 14.78 3.89

512 32768 1.23e-07 15.61 3.96

2048 131072 7.81e-09 15.75 3.98

Table 2.3: Ringleb ow problem: DG(3) is of order O(h

4

).

# el. # dofs L

2

-error Rate Order

2 200 2.92e-03 - -

8 800 6.92e-05 42.13 5.40

32 3200 2.25e-06 30.81 4.95

128 12800 7.77e-08 28.94 4.86

512 51200 2.56e-09 30.32 4.92

2048 204800 8.21e-11 31.21 4.96

Table 2.4: Ringleb ow problem: DG(4) is of order O(h

5

).
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2.5 Comparison of the SD and DG method

This work deals with the disretisation of hyperboli problems by the disontin-

uous Galerkin �nite element method, \DG method" for short. This method uses

trial and test spaes that inlude disontinuous disrete funtions; given that

solutions to hyperboli problems typially inlude disontinuities like shoks and

ontat disontinuities, this seems to be a natural hoie. However, there are

several other �nite element methods for solving hyperboli problems, one of

the most prominent ones is the streamline di�usion method, \SD method" for

short. This method employs ontinuous trial and test spaes and is based on

the standard Galerkin disretisation that, for stability reasons, is enhaned by

an arti�ial visosity term that ats in streamline diretion, only.

This setion is devoted to the omparison of the (ontinuous) SD method

and the DG method. We shall ompare these methods with respet to two major

topis: �rst, the auray of the methods in approximating smooth or dison-

tinuous solutions, and seond, the onservation (of ux) properties inherent

in these methods, that are essential for approximating solutions to hyperboli

onservation laws.

For simpliity, we restrit this omparison to the simplest possible hyperboli

problem, the linear advetion equation given in (2.12) with b = 0, i.e.

� � ru = f in 
;

u = g on �

�

;

with onstant advetion diretion � 2 R

2

. From (2.13) we reall the disontin-

uous Galerkin disretisation of this equation: �nd u

h

2 V

p

h

suh that

X

K2T

h

(

Z

K

� � ru

h

v

h

dx�

Z

�K

�

� � n [u

h

℄v

+

h

ds

)

=

X

K2T

h

Z

K

fv

h

dx 8v

h

2 V

p

h

;

(2.21)

where [u

h

℄ = u

+

h

� u

�

h

on �K

�

n �

�

and [u

h

℄ = u

+

h

� g on �

�

. Furthermore,

V

p

h

denotes the disrete funtion spae of disontinuous pieewise polynomial

funtions of degree p � 0 de�ned in (2.7). Additionally, we de�ne the �nite

element funtion spae V

;p

h

of ontinuous pieewise polynomial funtions of

degree p � 1,

V

;p

h

= fv

h

2 V

p

h

: v

h

ontinuous in 
g; (2.22)

and introdue the streamline di�usion method (see [36℄ for example) for the

linear advetion equation (2.5): �nd u

h

2 V

;p

h

suh that

X

K2T

h

Z

K

� � ru

h

(v

h

+ Æ

K

� � rv

h

) dx�

Z

�

�

� � n [u

h

℄v

+

h

ds

=

X

K2T

h

Z

K

f(v

h

+ Æ

K

� � rv

h

) dx 8v

h

2 V

;p

h

; (2.23)
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where Æ

K

denotes a stabilisation parameter given by Æ

K

= C

Æ

h

K

and C

Æ

is a

�xed positive onstant that is set to C

Æ

= 1 in the numerial tests below.

The order of onvergene of the SD method is known to be O(h

p+1=2

), see

[37℄ for example. Thereby, both methods, the DG method and the SD method,

are of the same order of onvergene. Nevertheless, there are di�erenes in the

auray of the two methods. This will be tested numerially in the following

subsetion. In the subsetion thereafter we disuss the onservation properties

of the two methods and draw some onlusions in the last subsetion.

2.5.1 Auray

In the following, we numerially test the auray of the DG and the SD method

given in (2.21) and (2.23), respetively. To this end, we onsider the linear

advetion equation (2.5) on the unit square 
 = [0; 1℄

2

with � =

1

5

(4; 3) and

zero right hand side, f = 0. First, we onsider a smooth boundary value funtion

g that yields the following smooth solution to the linear advetion equation (2.5)

u(x) = exp

�

x

2

�

�

2

�

1

x

1

�

:

In Figures 2.4(a) and (b) we show the L

2

(
)-error of the numerial solution

plotted against the number of elements and the number of degrees of freedom.

First we note that the methods onsidered show an order of onvergene of

exatlyO(h

p+1

) if pieewise polynomials of degree p are employed. Furthermore,

we see that the streamline di�usion method and the DG method of given degree

p and the same number of elements are both of approximately the same auray.

Given that the DG method involves more degrees of freedom per element than

the SD method this shows that for smooth solutions these additional degrees

of freedom do not result in a better auray. Indeed, in Figure 2.4 (b) we

learly see that for a given number of degrees of freedom the SD method is

more aurate than the DG method. Only on the oarsest meshes, the SD

method (with C

Æ

= 1) is slightly less aurate than the DG method. But,

numerial tests show that even on the oarsest meshes the DG method is not

more aurate than the SD method, provided C

Æ

is suÆiently small.

As seond example, we onsider a disontinuous boundary value funtion

g(x) =

�

1 for x 2 f0g � [0; 0℄;

0 otherwise;

that results in the following disontinuous solution to equation (2.5)

u(x) =

�

1 for x

2

�

1

� x

1

�

2

;

0 otherwise:

In Figure 2.5, we show the L

2

(
)-error of the numerial solution plotted against

the number of degrees of freedom. First, we see that for this disontinuous

solution all methods of degree p � 1 are of approximately the same auray.

Furthermore, we see that on globally re�ned meshes the streamline di�usion
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Figure 2.4: Smooth solution to the linear advetion equation: L

2

(
)-error of

DG(p), 0 � p � 4, and SD(p), 1 � p � 4, numerial solutions. (a) Error vs.

number of elements; (b) Error vs. number of degrees of freedom.

method of a given degree p and a given number of degrees of freedom is slightly

more aurate than the orresponding disontinuous Galerkin method, whereas

on loally re�ned meshes they show approximately the same auray. We note

that in the smooth parts of the solution the SD method is again more aurate

in terms of degrees of freedom than the DG method. This is the same e�et

that appears in the previous smooth solution example. However, this e�et

is superposed by the fat that the DG method is slightly more aurate in the

neighborhood of disontinuities. On loally re�ned meshes, the mentioned e�et

is totally overed as here the number of elements loated in the smooth parts

of the solution are signi�antly less than those loated in the neighborhood of

the disontinuity. Finally, in Figure 2.6 we show several numerial solutions on

globally re�ned mesh: the DG(1) solution on 64 and 256 elements, the DG(0)

solution on 1024 elements and the SD(1) solution on 256 elements; in Figure

2.8 we show the DG(1) and the SD(1) solution on 1081 elements on a loally

re�ned mesh.

2.5.2 Global and loal onservation property

Now, we hek the SD and the DG method for inherent global and loal on-

servation properties. In the following, we show that the SD method implies a

global onservation (of ux) property, whereas the DG method implies both, a

global and a loal onservation property.

First, we onsider the disrete solution u

h

to the SD method (2.23). In (2.23)

we set v

h

� 1 and the stabilisation term Æ

K

� � rv

h

vanishes. Integration by
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Figure 2.5: Disontinuous solution to the linear advetion equation: L

2

(
)-

error of DG(p), 0 � p � 2, and SD(p), p = 1; 2, numerial solutions. (a) Global

re�nement; (b) Loal re�nement.
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Figure 2.6: Disontinuous solution to the linear advetion equation: (a) DG(1)

on 64 elements with 256 degrees of freedom (DoFs); (b) DG(1) on 256 elements

with 1024 DoFs; () DG(0) on 1024 elements with 1024 DoFs and (d) SD(1) on

256 elements with 289 DoFs.
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Figure 2.7: Loally re�ned mesh with 1081 elements for the disontinuous so-

lution to the linear advetion equation.
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Figure 2.8: Disontinuous solution to the linear advetion equation on loally

re�ned mesh with 1081 elements: (a) DG(1) and (b) SD(1) numerial solution.
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parts gives the following global onvervation property

Z

�

�

� � n g ds+

Z

�

+

� � nu

+

h

ds =

Z




f dx: (2.24)

The global onservation property of the DG method (2.21) an be shown anal-

ogously. For proo�ng the loal onservation property of the DG method on a

�xed element K we reall (2.21) and hoose

v

h

(x) =

�

1; 8x 2 K;

0; otherwise,

a possible hoie of test funtion as v

h

2 V

d

h

. Again, by integration by parts we

dedue following loal onservation property

Z

�K

�

� � nu

�

h

ds+

Z

�K

+

� � nu

+

h

ds =

Z

K

f dx; 8K 2 T

h

; (2.25)

for the disrete solution u

h

to the DG method (2.21).

With zero right hand side, f = 0, this property redues to

Z

�K

�

� � nu

�

h

ds+

Z

�K

+

� � nu

+

h

ds = 0; 8K 2 T

h

; (2.26)

meaning that on eah element K the outow,

R

�K

+

� � nu

+

h

ds, is equal to the

inow,

R

�K

�

� � nu

�

h

ds.

Next, we introdue a value d

K

:= d

K

(u

h

) on eah element K, with

d

K

(u

h

) :=

8

<

:

j

R

�K

+

� � n u

+

h

dsj for u

�

h

j

�K

�

� 0;

�

�

�

�

R

�K

�

��n u

�

h

ds+

R

�K

+

��n u

+

h

ds

R

�K

�

��n u

�

h

ds

�

�

�

�

otherwise,

(2.27)

that indiates by what extent the loal onservation property (2.26) is violated.

For the DG method, this value is zero, max

K

d

K

= 0, due to the loal onserva-

tion property (2.26) of the DG method, but it is generally nonzero for methods

without an inherent loal onservation property. Analogously, we de�ne for a

(non{homogeneous) boundary value funtion g the value d




:= d




(u

h

), with

d




(u

h

) :=

�

�

�

�

�

 

Z

�

�

� � n g ds+

Z

�

+

� � n u

+

h

ds

!

=

Z

�

�

� � n g ds

�

�

�

�

�

; (2.28)

that indiates by what extend the global onservation property (2.24) is violated.

In the following, we numerially test the indiators d




and max

K

d

K

of the

global and loal onservation property, respetively. They are omputed for the

SD(1) and the DG(1) method in ombination with both, smooth and dison-

tinuous solutions to the linear advetion equation (2.5), see Tables 2.5 and 2.6,

respetively. Eah of these tables inludes the values d




and max

K

d

K

evaluated
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SD method DG method

# el. d




max

K

d

K

d




max

K

d

K

16 -5.82e-14 4.50e-03 - 1.88e-16 2.66e-16

64 -6.64e-15 1.10e-03 4.10 5.47e-16 2.70e-16

256 2.05e-15 2.75e-04 4.00 7.44e-16 4.61e-16

1024 5.29e-16 6.84e-05 4.02 1.45e-15 4.46e-16

4096 -1.48e-15 1.71e-05 4.00 2.24e-15 2.15e-15

Table 2.5: Conservation properties for a smooth solution.

SD method DG method

# el. d




max

K

d

K

d




max

K

d

K

16 -1.87e-14 1.08e-01 - 6.00e-17 2.38e-16

64 -9.39e-14 1.31e-01 0.83 6.30e-16 3.16e-16

256 -2.43e-14 1.31e-01 1.00 1.16e-15 3.97e-16

1024 8.08e-15 1.31e-01 1.00 1.36e-15 3.97e-16

4096 1.33e-14 1.31e-01 1.00 1.28e-15 4.76e-15

Table 2.6: Conservation properties for a disontinuous solution.

for the numerial solutions on a sequene of globally re�ned meshes for both,

the SD and the DG method. Additionally, the tables show the onvergene

rates of the max

K

d

K

values of the SD method. In agreement with the theory

above, we see that the DG method involves a global and loal onservation

property, whereas the SD method shows a global onservation property, only.

Furthermore, for the SD method on smooth solutions, max

K

d

K

onverges to

zero with the order h

2

; i.e. the SD method exhibits a loal onservation prop-

erty in the limit h ! 0, only. Finally, we see that for disontinuous solutions

the SD method shows no loal onservation property, indiated by the fat that

max

K

d

K

! C > 0 as h! 0. Further numerial tests show that the maximum

values of d

K

are plaed in the neighborhood of the disontinuity of the solu-

tion. Outside a neighborhood of the disontinuity the SD method shows a loal

onservation property in the limit h! 0 like for smooth solutions.

We note that d

K

(u) = 0 holds when u is the exat solution of problem 2.5.

Thereby, given an element K with u

�

h

j

�K

6� 0, we have

d

K

= d

K

(u

h

) = d

K

(u

h

)�

R

�K

�

� � n u ds

R

�K

�

� � n u

�

h

ds

d

K

(u)

=

R

�K

�

� � n (u

�

h

� u) ds+

R

�K

+

� � n (u

+

h

� u) ds

R

�K

�

� � n u

�

h

ds

� ku� u

h

k

L

1

:

In agreement with the results in Table 2.5, this veri�es that the order of on-

vergene of max

K

d

K

is at least the order of onvergene of u

h

in the L

1

-norm.
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2.5.3 Conlusion

First we summarise the results of this setion.

� { On smooth solutions the DG method requires the same number of

elements for ahieving the same auray as the SD method. But, in

terms of degrees of freedom, the DG method is less aurate than the

SD method as the former uses more degrees of freedom per element.

{ In ontrast, when applied to problems with disontinuous solutions,

the SD and DG methods are approximately of the same auray for

the same number of degrees of freedom.

� The DGmethod implies a global and a loal onservation property, whereas

the SD method implies a global onservation property, only. A loal on-

servation property of the SD method is given in the limit of h! 0 and in

smooth parts of the solution, only.

Furthermore, we note that for the DG disretisation of the linear advetion

equation (2.5) only one Blok-Gauss-Seidel step is required for solving the linear

problem when an appropriate numbering of the elements is employed, see Setion

2.8.1. In omparison to that there are several BiCGstab or GMRES steps needed

for solving the linear system arising from the SD disretisation.

The SD method (2.23) inludes the stabilisation parameter C

Æ

. As the nu-

merial solution depends on the spei� hoie of this parameter a determination

of an optimal value of C

Æ

is neessary. In omparison to that, the DG method

(2.21) is parameter-free.

Finally, we note that for the DG method the degree of polynomial basis

funtions an easily be hosen independently on eah element. This leads to so{

alled hp{methods where the atual degree on eah element is hosen aording

to the smoothness of the solution. These methods are muh easier to implement

for disontinuous than for ontinuous �nite element methods sine the support

of disontinuous basis funtions onsist of a single element only, and a hange

of the polynomial degree in one element does not a�et the disretisation in

neighboring elements. These hp{methods will not be overed in this work,

instead we refer to [48℄, [33℄ and [34℄, for example.

2.6 Boundary onditions

For the linear advetion equation (2.12) the boundary � of the domain an

easily be separated into an inow and an outow boundary part, �

�

and �

+

,

respetively, depending on whether the harateristis are entering or leaving the

domain, i.e. � � n < 0 or � � n > 0, respetively. In ontrast to that, for systems

of equations, there are in general several distint harateristi diretions. This

makes the imposition of boundary onditions muh more ompliated.

For the 2D Euler equations the numerial ux funtion H replaes the term

F (u) � n = F

0

(u) � nu = B(u; n)u;
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where here we used the de�nition (2.3) of the matrix B(u; n) and employed the

homogeneity property F

i

(u) = F

0

i

(u)u, i = 1; 2, of the 2D Euler equations, see

[50℄ for example. Furthermore, there are three harateristi diretions orre-

sponding to the three di�erent eigenvalues of the matrix B(u; n),

�

1

= v � n� ; �

2

= �

3

= v � n; �

4

= v � n+ ; (2.29)

with  :=

q

p

%

denoting the sound speed, see also Appendix (A.2). Aording

to the sign of the eigenvalues, we onsider four di�erent types of boundary

1: Supersoni inow: �

i

< 0; i = 1; : : : ; 4;

2: Subsoni inow: �

i

< 0; i = 1; : : : ; 3; �

4

> 0;

3: Subsoni outow: �

i

> 0; i = 2; : : : ; 4; �

1

< 0;

4: Supersoni outow: �

i

> 0; i = 1; : : : ; 4:

Additionally, we onsider reetive boundaries, i.e. solid walls.

In the following, we itemise the disretisation of all mentioned boundary

types. To that end, let the boundary � of the domain be subdivided into

the following distint parts: the (sub- and supersoni) inow boundary �

i

, the

supersoni outow boundary �

o,sup

, the subsoni outow boundary �

o,sub

and

the reetive boundary �

refl

,

� = �

i

[ �

o,sup

[ �

o,sub

[ �

refl

: (2.30)

First, we reall the disontinuous Galerkin disretisation, f. (2.9): �nd

u

h

2 V

p

h

suh that

X

K2T

h

�

�

Z

K

F (u

h

) � rv

h

dx+

Z

�K

H(u

+

h

; u

�

h

; n) v

+

h

ds

�

= 0 8v

h

2 V

p

h

:

After splitting the fae terms into interior fae terms and boundary fae terms,

P

K

R

�K

=

P

K

R

�Kn�

[

P

K

R

�K\�

, we now de�ne a

�

(u; v) to inlude the bound-

ary fae terms as follows

a

�

(u; v) =

X

K2T

h

Z

�K\�

H(u

+

; u

�

; n) v

+

ds: (2.31)

This boundary term onsists of several parts

a

�

(u; v) = a

�

i

(u; v) + a

�

o,sup

(u; v) + a

�

o,sub

(u; v) + a

�

refl

(u; v); (2.32)

aording to the subdivision (2.30) of the boundary of the domain. Depending

on the respetive boundary part, these boundary terms are given as follows:

� On the inow boundary �

i

the outer trae u

�

is replaed by the given

boundary funtion g

a

�

i

(u; v) :=

X

K2T

h

Z

�K\�

i

H(u

+

; g; n) v

+

ds:
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� On the supersoni outow boundary �

o,sup

the outer trae u

�

is replaed

by the inner trae u

+

a

�

o,sup

(u; v) :=

X

K2T

h

Z

�K\�

o,sup

H(u

+

; u

+

; n) v

+

ds:

� On the subsoni outow boundary �

o,sub

one harateristi variable must

be imposed. In appliations, subsoni outow boundary onditions are

not given in harateristi variables but in primitive variables. In many

ases the pressure p = p

o,sub

is presribed. Thereby, on �

o,sub

the outer

trae u

�

is replaed by a modi�ed state u

�

= u

�

o,sub

(u)

a

�

o,sub

(u; v) :=

X

K2T

h

Z

�K\�

o,sub

H(u

+

; u

�

o,sub

(u

+

); n) v

+

ds;

where u

�

o,sub

(u) depends on the inner trae u = (%; %v

1

; %v

2

; e) and the

presribed pressure p = p

o,sub

as follows

u

�

o,sub

(u) :=

0

B

B

�

%

%v

1

%v

2

p

o,sub

�1

+

1

2

%v

2

1

C

C

A

: (2.33)

� On the reetive boundary �

refl

the ux H(u

+

; u

�

; n) inludes a modi�ed

state u

�

= u

�

refl

(u).

a

�

refl

(u; v) :=

X

K2T

h

Z

�K\�

refl

H(u

+

; u

�

refl

(u

+

); n) v

+

ds:

Here, u

�

refl

(u) originates from u by simply inverting the sign of the normal

veloity omponent of u. With v = (v

1

; v

2

) denoting the veloity of the

state u = (%; %v

1

; %v

2

; e), the veloity v

�

= (v

�

1

; v

�

2

) of u

�

is determined

by

v

�

= (v � 2(v � n)n):

Thereby, u

�

= u

�

refl

(u) is given by the following linear mapping,

u

�

refl

(u) = u

�

refl

0

(u)u :=

0

B

B

�

1 0 0 0

0 1� 2n

2

1

�2n

1

n

2

0

0 �2n

1

n

2

1� 2n

2

2

0

0 0 0 1

1

C

C

A

u; (2.34)

where n

i

; i = 1; 2, are the omponents of the unit outward normal vetor

n = (n

1

; n

2

). This de�nition ensures that the normal veloity omponent

of the average state �u =

1

2

(u

+

+ u

�

) vanishes, �v � n =

1

2

(v

+

+ v

�

) � n = 0.

Despite the fat that the boundary fae terms are slightly di�erent on dif-

ferent parts of the boundary �, for simpliity, we will write the sheme in the

following as given in (2.9). u

�

h

on � is meant to represent appropriate boundary

values aording to the four di�erent ases disussed above.
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2.7 Shok{apturing

Even though the uxes at inter-element boundaries are up-winded through the

hoie of an appropriate numerial ux funtion H(�; �; �), spurious osillations

may still be generated by the disontinuous Galerkin �nite element method (2.9),

in the viinity of sharp features of the analytial solution, when polynomials

of higher degree are used, i.e. when p > 0. In order to ompute physially

relevant solutions whih do not exhibit suh osillatory behaviour, the basi

disontinuous Galerkin sheme (2.9) must be enhaned by the addition of some

form of nonlinear dissipation mehanism whih does not adversely a�et the

formal order of auray of the sheme. Indeed, muh researh ativity has

foused on the development of appropriate stabilisation devies; for example,

Cokburn et al. [14, 18℄ have proposed the use of loal projetion/limiting

tehniques for the Runge{Kutta disontinuous Galerkin �nite element method.

The a posteriori error analysis presented in the following hapter is based

on a hyperboli duality argument employing the so{alled Galerkin orthogo-

nality property of the �nite element method, see (2.39) below. Therefore, any

stabilisation tehnique used to enhane the numerial performane of the stan-

dard disontinuous Galerkin method (2.9) should not violate this orthogonality

property. To this end, we add an arti�ial visosity term (also referred to

as a `shok{apturing' term) to the sheme (2.9) whih depends on both the

mesh funtion h and the �nite element residual. The dependene of the shok{

apturing term on the residual of the underlying onservation law ensures the

onsisteny of the resulting �nite element method for smooth analytial solu-

tions u. Furthermore, we note that this shok{apturing term is isotropi; i.e. it

inludes both di�usion in the diretion of the streamlines, as well as ross{wind

di�usion.

Aordingly, we onsider the following disontinuous Galerkin �nite element

disretisation of (2.2): �nd u

h

2 V

p

h

suh that

a(u

h

; v

h

) = 0 8v

h

2 V

p

h

; (2.35)

where a(�; �) denotes a semi-linear form that is nonlinear in its �rst argument

and linear in its seond and that is de�ned by

a(u

h

; v

h

) =

X

K2T

h

�

�

Z

K

F (u

h

) � rv

h

dx +

Z

�K

H(u

+

h

; u

�

h

; n) v

+

h

ds

+

Z

K

"ru

h

� rv

h

dx

�

: (2.36)

Here, " denotes the arti�ial visosity de�ned by

" = C

"

h

2��

jr � F (u

h

)j; (2.37)

where C

"

and 0 < � < 1=2 are positive onstants. The de�nition of " in (2.37)

represents a slight modi�ation of the arti�ial visosity model introdued and
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analysed by Ja�re et al. [35℄; here, we have simpli�ed the de�nition of " to only

inlude the interior residual term jr � F (u

h

)j. We note that in [35℄, the dison-

tinuous Galerkin �nite element method (2.35), with the addition of streamline{

di�usion stabilisation and the numerial ux funtion H(�; �; �) de�ned as the

(global) Lax{Friedrihs ux, was shown to be onvergent for any approximating

polynomial of degree p � 0 on general meshes for multidimensional salar prob-

lems, whereas its solutions were shown to onverge to the `entropy solution' for

multidimensional salar problems.

The addition of the arti�ial visosity term with the onstant " introdues

two parameters into the resulting disontinuous Galerkin sheme; namely, C

"

and �. An automati proedure for determining the orret level of arti�ial

visosity to be added into the sheme would obviously be advantageous. We

note that in the ontext of streamline{di�usion stabilisation, work has been

onduted in [10, 22, 29℄, for example, to automatially determine the optimal

size of the streamline{di�usion parameter, thereby rendering the method free of

any numerial tuning. Extensions of these tehniques to yield parameter{free

shok apturing terms are possible; however, this is beyond the sope of this

work, and will not be disussed in more detail.

In the following, we demonstrate the e�et of the proposed shok{apturing

method. To this end, we onsider the supersoni ow past a wedge, see Setion

B.4. The solution to this problem develops an oblique shok originating at the

orner. In Figure 2.9, the shok at the outow boundary is shown in detail for

the numerial solution without shok{apturing, i.e. for C

"

= 0, and for small

values, C

"

= 0:02 and C

"

= 0:04 with � = 0:1. We note that in all ases in

Figure 2.9 the shok is resolved by 3-4 elements. Hene, for suÆiently small

C

"

the shok is not smeared but it is resolved by at most as many elements as

for the ase when no shok{apturing is employed.

We end this setion by noting that after the de�nition of the semi-linear

form a and the shok{apturing terms in (2.36), the disontinuous Galerkin �-

nite element disretisation used in this work for solving hyperboli problems is

now ompletely de�ned. As disussed above, the shok{apturing terms inlude

residual terms and, as a onsequene, are onsistent. This is an essential ingre-

dient to dedue that if the analytial solution u to (2.2) is suÆiently regular

(i.e. the semi-linear form a in (2.36) an be evaluated for the exat solution u),

then the following onsisteny ondition holds:

a(u; v

h

) = 0 8v

h

2 V

p

h

: (2.38)

This an be veri�ed by inserting the exat solution u into (2.35) and using both,

the dependene of the shok-apturing term on the residual and the onsisteny

ondition of the numerial ux funtion H(�; �; �), f. ondition (i) in Setion

2.2. Thereby the Galerkin orthogonality property of the �nite element method

(2.35) is expressed as follows:

a(u; v

h

)� a(u

h

; v

h

) = 0 8v

h

2 V

p

h

: (2.39)
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Figure 2.9: Compression orner problem: Shoks for C

"

= 0, C

"

= 0:02 and

C

"

= 0:04.
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Figure 2.10: (b) Matrix struture resulting from the DG disretisation of a linear

hyperboli equation on a mesh (a) with 4 elements, ordered downstream.

2.8 Solving the disrete problems

For the ase of a nonlinear problem (2.2) the disretised problem (2.35) is non-

linear and may be solved by a Newton iteration method or by a pseudo time

iteration, for example. Both will be desribed in Setion 2.8.3. The linear dis-

rete problems, either arising from disretisation of linear problems (2.2), or

ourring in eah of the nonlinear iteration steps, are solved by GMRES it-

eration or simply by a Rihardson iteration, both with blok-Gauss-Seidel or

blok-SSOR preonditioning. This will be disussed and numerially tested in

the following two subsetions 2.8.1 and 2.8.2.

2.8.1 Solving the linear equations

In the ase of salar linear hyperboli equations and an ordering of the ele-

ments from upstream to downstream, the system matrix beomes a lower blok-

diagonal matrix. The blok struture of the matrix originates from the dison-

tinuity of the test funtions of the disontinuous Galerkin sheme (2.9) that

allows for subdividing the global problem in several loal problems as desribed

in the following: By hoosing v

h

j

K

i

� �

i;k

for a �xed i and v

h

j

K

j

� 0 for all

j 6= i, equation (2.35) redues to the loal problem

�

Z

K

i

F (u

h

) � r�

i;k

dx+

Z

�K

i

H(u

+

h

; u

�

h

; n)�

+

i;k

ds+

Z

K

i

"ru

h

� r�

i;k

dx = 0:

(2.40)

Here, �

i;k

, k = 1; : : : ; l, represent the basis funtions of the disrete spae V

p

h

with supp(�

i;k

) � K

i

, and l := m(p + 1)

2

denoting the number of degrees of

freedom per element of disrete funtions v

h

2 V

p

h

. As an example, Figures

2.10(a) and 2.10(b) show a simple mesh and the orresponding system matrix.

The mesh onsists of 4 elements K

i

, i = 1; : : : ; 4, that are ordered in dire-

tion of vetor �. The matrix onsists of bloks eah of the size l � l, where

bloks without a label denote zero bloks. A diagonal blok A

ii

, i = 1; : : : ; 4,
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inludes the interior terms of the element K

i

; and a sub-diagonal blok A

ij

originates from the element boundary term inluding u

+

h

in element K

i

and u

�

h

in the neighbouring element K

j

. This system an simply be solved by a single

blok-Gauss-Seidel step. This orresponds to the fat that for linear hyperboli

equations the loal problems (2.40) on all elements an be solved suessively

in an upstream-downstream ordering of the elements.

When the equation is nonlinear a lower blok diagonal matrix an in general

not be attained through any ordering of the elements. Rather, there are some

bloks above the blok-diagonal of the matrix, even though possibly muh less

than below the diagonal. Numerial experiments show that for this ase several

blok Gauss-Seidel steps within a defet orretion algorithm must be employed

for solving the system. This is equivalent to employing Rihardson iteration

in ombination with a blok-Gauss-Seidel preonditioning. In the general ase

of nonlinear systems like the ompressible Euler equations, we have to distin-

guish between supersoni and subsoni ows. While for supersoni ows the

information is transported only in diretion of the ow �eld, making the blok-

Gauss-Seidel an appropriate preonditioner, for subsoni ows some information

is transported upstream of the ow �eld. Here a blok-SSOR preonditioner is

employed that aommodates the ows in down- and up-stream diretion.

In this ontext, we note that in [19℄ the onvergene of blok iterative meth-

ods for linear systems arising in the numerial solution of the Euler equations

has been proven.

2.8.2 Numerial tests for solving the linear problems

In this setion, we numerially test the performane of three di�erent solvers in

ombination with several di�erent preonditioners. They are tested on linear

problems that typially arise from a nonlinear Newton iteration step whih is

employed for solving the stationary 2D Euler equations. We onsider the solvers

GMRES, BiCGstab and the Rihardson iteration. Here, by Rihardson iteration

we denote a defet orretion iteration, one of the simplest iterative solvers. We

ombine solvers with standard preonditioners, like Jaobi, SOR (Gauss-Seidel)

and SSOR preonditioners as well as blok{based preonditioners, blok-Jaobi,

blok-SOR(Gauss-Seidel) and blok-SSOR, that use the blok struture of the

matries whih arise from disontinuous Galerkin disretisations. To obtain a

reasonably good approximation of the Newton diretion, it is not neessary to

redue the linear residual of a nonlinear Newton step to mahine auray, but

it is suÆient to redue the linear residual only by a spei� fator, say 10

�3

.

For this reason, the following tests measure the number of steps and the time

needed to redue the linear residual by this given fator, only.

As indiated in the last setion, we distinguish between subsoni and super-

soni ows. The �rst test suite is based on a transoni and shoked ow through

a nozzle. The ow is mainly subsoni; it aelerates from sub- to supersoni ow

while passing the throat of the nozzle and it is shoked bak to subsoni ow

in the diverging part of the nozzle. This problem is solved using the DG(1)

method on a globally re�ned mesh with 5120 degrees of freedom. In Table 2.7
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GMRES Rihardson BiCGstab

iter's time iter's time iter's time

b-ssor 59 8.2s 106 11.4s 35 9.2s

b-sor 102 12.0s 183 13.1s 87 15.8s

b-jaobi 205 28.1s 360 15.3s 165 19.0s

ssor 152 24.3s solver failed solver failed

sor 235 39.9s solver failed solver failed

jaobi 324 60.8s solver failed solver failed

Table 2.7: Nozzle problem (transoni): numbers of iterations and time for GM-

RES, Rihardson and BiCGstab solver for di�erent preonditioners.

GMRES Rihardson BiCGstab

iter's time iter's time iter's time

b-ssor 38 17.6s 54 21.1s 26 23.2s

b-sor 45 15.2s 73 18.3s 57 34.3s

b-jaobi 137 48.7s 206 28.6s solver failed

Table 2.8: Shok-reetion problem (supersoni): numbers of iterations and

time for GMRES, Rihardson and BiCGstab solver for di�erent preonditioners.

we ollet the numbers of iterations and the time used by eah of the linear

solvers in ombination with eah of the preonditioners to redue the linear

residual by the given fator. Here, \solver failed" means that the linear residual

inreases through the linear iteration of the solver and that after several steps

the linear residual exeeded a reasonably high value indiating that the solver

will not onverge. We see that only the GMRES solver is stable enough to solve

the linear problem in onjuntion with non-blok-based preonditioners.

The seond test suite is based on the so alled \Shok-Reetion" problem,

see [39℄, a purely supersoni problem, that involves a shok that is reeted

from a wall. Table 2.8 shows the respetive numbers of iterations and time

measurements. We omit the rows that inlude non-blok-based preonditioners

beause eah of the linear solvers in ombination with these preonditioners

failed to solve the problem. First, we see that in eah of the tests blok-Jaobi

preonditioning is the slowest of all blok-based preonditionings. Furthermore,

we see, by looking at the solvers GMRES and Rihardson, that for the transoni

problem, see Table 2.7, the solvers are faster in ombination with the Blok-

SSOR preonditioner than with the Blok-SOR(Gauss-Seidel) preonditioner.

In ontrast to that, for the supersoni problem, see Table 2.8, the situation is

vie versa, as solving with Blok-SOR turns out to be faster than with Blok-

SSOR preonditioning. This oinides with the onsideration that for supersoni

problems a \one-diretional" preonditioning should be suÆient whereas for

subsoni problems information is transported down- and upstream, wherefore a
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GMRES Rihardson

# el. # DoFs iter's time iter's time

20 320 15 0.1s 29 0.2s

80 1280 35 0.9s 60 1.2s

320 5120 59 8.2s 106 11.4s

1280 20480 136 102.2s 273 122.5s

5120 81920 180 630.4s 355 654.1s

Table 2.9: Nozzle problem (transoni): numbers of iterations and time for GM-

RES and Rihardson with blok-SSOR preonditioning under global re�nement.

GMRES Rihardson

# el. # DoFs iter's time iter's time

16 256 14 0.1s 21 0.1s

64 1024 19 0.3s 29 0.4s

256 4096 29 1.3s 38 2.4s

1024 16384 45 15.2s 72 17.6s

4096 65536 84 119.0s solver failed

Table 2.10: Shok-reetion problem (supersoni): numbers of iterations and

time for GMRES and Rihardson solver with blok-Gauss-Seidel preonditioning

under global re�nement.

symmetri \both-diretional" preonditioning, as provided by the Blok-SSOR

preonditioner, is the most adequate one.

Looking at the results of the BiCGstab solver we notie that the BiCGstab

solver is always slower than either the GMRES or the Rihardson solver. The

BiCGstab solver turns out to be { to some extent { ompetitive with the other

solvers for the ase of subsoni problems and symmetri preonditioning, only,

but it is slower by far in ases of transoni, hene \purely" unsymmetri, prob-

lems and unsymmetri preonditionings.

Finally, we numerially test on globally re�ned meshes the work (number of

iterations and time) required by the Rihardson iteration and the GMRES solver

for solving the linear systems. We �rst onsider the `transoni ow through the

nozzle' problem. Here, we employ the solver in ombination with the blok-

SSOR preonditioner. The results of the numerial tests are shown in Table

2.9. Analogously, we solve the supersoni shok reetion problem, where here

the solvers are preonditioned by the blok-Gauss-Seidel preonditioner. The

orresponding results are shown in Table 2.10.

We end this setion by noting that it ould ertainly be advantageous to use

multigrid methods for solving these linear problem, espeially for the ase of

subsoni and transoni ows. Unfortunately, multigrid methods have not yet

been fully implemented in the �nite element library the ode of this work was
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based on. Therefore, we an not give omparison of the above-tested solvers

with multigrid methods.

2.8.3 Solving the nonlinear problems

There are several di�erent ways of solving the nonlinear (stationary) equations.

The most ommon method is based on onsidering the solution of the stationary

problem (2.2) as the stationary limit of the unstationary problem

�

t

u+r � F (u) = 0: (2.41)

This is then solved by a simple expliit time stepping sheme whereby this

iteration in time is performed until the stationary solution is reahed. Similarly,

an impliit time stepping sheme an be employed. A di�erent approah is to

solve the stationary equation (2.2) diretly by employing a nonlinear iteration

sheme, like a Newton iteration. All these methods will be introdued in the

following.

Expliit time disretisations

For the time disretisation of (2.41) we �rst introdue some notation. By 0 <

t

0

< t

1

< : : : < t

N

= T we de�ne a partition of the time interval [0; T ℄ with time

step lengths k

n

= t

n

� t

n�1

, n = 1; : : : ; N and by u

n

h

2 V

p

h

we denote a disrete

funtion at the time t

n

. Finally, we write R(�; �) for the nonlinear residual of

equation (2.35) de�ned by

R(u; v) = �a(u; v): (2.42)

Using this notation, the expliit Euler sheme is given by: for 0 � n < N �nd

u

n+1

h

2 V

p

h

suh that

(u

n+1

h

; v

h

) = (u

n

h

; v

h

) + k

n

R(u

n

h

; v

h

) 8v

h

2 V

p

h

; (2.43)

and the seond order Runge-Kutta sheme by: for 0 < n � N �nd u

n+1

h

2 V

p

h

suh that

(u

n+1

h

; v

h

) =

1

2

f(u

n

h

; v

h

) + (~u

n

h

; v

h

) + k

n

R(~u

n

h

; v

h

)g ;

(~u

n

h

; v

h

) = (u

n

h

; v

h

) + k

n

R(u

n

h

; v

h

) 8v

h

2 V

p

h

:

For higher order Runge-Kutta time disretisations we refer to [14℄, for example.

We note that for a DG spae{disretisation with polynomials of degree p we

use a (p + 1)-th order aurate Runge Kutta expliit time disretisation, see

Cokburn and Shu [17℄.

Newton iteration

The nonlinear Newton iteration generates a sequene of iteratives u

k

h

by the

following method. Given an iterative u

k

h

, the update d

k

of u

k

h

to get to the next

iterative

u

k+1

h

= u

k

h

+ !

k

d

k
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no. of Newton Expliit Euler Runge Kutta 2

el. steps se steps se steps se

20 6 1.6 113 3.9 56 3.6

35 5 2.6 163 10.2 85 10.0

71 5 5.2 265 32.9 136 32.9

137 5 10.5 451 107.2 230 107.0

257 6 24.5 811 358.1 409 356.3

Table 2.11: Comparison of Newton iteration with time iteration shemes (ex-

pliit Euler, 2nd order Runge Kutta) for solving the nonlinear equations.

is given by the following problem: �nd d

k

h

2 V

p

h

suh that

a

0

[u

k

h

℄(d

k

h

; v

h

) = R(u

k

h

; v

h

); 8v

h

2 V

p

h

: (2.44)

Here, w

k

denotes a damping parameter and a

0

[w℄(�; v) denotes the Fr�ehet

derivative of u ! a(u; v), for v 2 V �xed, at some w in V , where V is some

suitable hosen funtion spae suh that V

p

h

2 V . We remark that the linearisa-

tion a

0

[w℄(�; v) of a(�; v) in equation (2.44) is only a formal notation, in the sense

that a

0

[w℄(�; v) may not in general exist. Instead, a suitable approximation to

a

0

[w℄(�; v) in the diretion d

k

h

must be determined, for example, by omputing

appropriate �nite di�erene quotients of a(�; v). For more details about possible

approximations to a

0

[w℄(�; v), see Setion 2.8.4.

Comparison of Newton iteration and expliite time iteration shemes

Here, we numerially test the performane of the Newton iteration for solving

nonlinear equations in omparison to expliit time iteration shemes, suh as the

expliit Euler sheme and the seond order Runge Kutta sheme. This test is

performed on the `supersoni ow around a wedge' problem, see Setion B.3 or

[11℄, under suessive adaptive re�nement. After the nonlinear problem is solved

up to a nonlinear residual of 10

�6

in the l

2

-norm, the mesh is re�ned and the

numerial solution is interpolated to the re�ned mesh. This transfered solution

serves as start solution of the nonlinear iteration on the re�ned mesh. All

adaptive re�nement takes plae at the position of the shok whereby the minimal

mesh size, h

min

, is halved in eah of the re�nement steps. Numerial tests

for the test problem onsidered here, show that to sustain numerial stability

of the expliit Euler sheme, the time step size k must satisfy

k

h

min

� 0:05,

approximately, whereas for the Runge-Kutta sheme this CFL ondition an be

weakened to

k

h

min

� 0:1. Hene, for this test suite the time step size of the

expliit Euler sheme needs to be hosen about half of the time step size of the

Runge-Kutta sheme. Therefore, approximately twie as many time steps are

needed for the expliit Euler sheme than for the Runge-Kutta sheme in order

to redue the nonlinear residual below a presribed �nal residual. However,

given that eah Runge Kutta time step involves two linear systems to be solved,
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in omparison to one in eah Euler step, both shemes turn out to require

approximately the same amount of time. This behaviour is on�rmed by Table

2.11 that shows the number of elements of the suessively adaptive re�ned

meshes, the number of iteration steps and the required CPU time in seonds

on eah re�nement level, for the Newton iteration, the expliit Euler and the

seond order Runge Kutta sheme. We see that the numbers of time steps for

the time iteration shemes signi�antly inrease (they almost double) on eah

re�nement level, whereas for the Newton iteration the number of iterations stays

onstant. This results in a large di�erene in the times required by the iteration

shemes under omparison: it an learly be seen in Table 2.11 that the Newton

iteration requires muh less time than the time iteration shemes. Finally, we

note that the CFL onditions on the time step size given above must be satis�ed

even when the nonlinear residual is small. Indeed, numerial tests show that the

time step size an not be inreased even when the numerial solution is already

lose to the stationary solution limit.

Impliit time disretisation

The impliit Euler sheme is given by: for 0 < n � N �nd u

n+1

h

2 V

p

h

suh that

(u

n+1

h

; v

h

) + k

n

a(u

n+1

h

; v

h

) = (u

n

h

; v

h

) 8v

h

2 V

p

h

:

For a nonlinear equation (2.41) this time disretisation involves a nonlinear

problem in eah time step, that in turn an be solved by Newton iteration: for

0 < n � N and given an iterative u

n+1;k

h

, the update d

k

of u

n;k

h

to get to the

next iterative

u

n+1;k+1

h

= u

n+1;k

h

+ !

k

d

k

is given by the following problem: �nd d

k

h

2 V

p

h

suh that

(d

k

h

; v

h

) + k

n

a

0

[u

n+1;k

h

℄(d

k

h

; v

h

) = (u

n

h

; v

h

)� (u

n+1;k

h

; v

h

) + k

n

R(u

n+1;k

h

; v

h

)

holds for all v

h

2 V

p

h

. This method is very time onsuming. A numerial test

omparing the impliit and the expliit Euler shemes with same time step sizes

employed and eah nonlinear problem of the impliit Euler sheme solved up

to a nonlinear residual of 10

�6

requires 86.8 seonds versus 3.9 seonds, see

�rst row of Table 2.11, on the oarsest mesh. But, the impliit Euler sheme

does not need to satisfy a CFL ondition like the expliit Euler sheme. This

allows arbitrarily large time steps, whereas in the limit the impliit Euler sheme

redues to the Newton iteration (2.44).

2.8.4 Approximations to the Jaobian matrix of the sheme

As disussed in the last subsetion, we employ Newton's iteration for solving the

nonlinear problems. For that, we introdued the Fr�ehet derivative a

0

[w℄(u; v)

of u! a(u; v) that is needed in eah Newton's iteration step de�ned in (2.44).
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We note that exatly the same \Jaobian matrix" a

0

[w℄(u; v) will our again in

the ontext of the dual problem in Chapter 3. The expliit form of this Jaobian

matrix will be desribed in the following.

To that end, we �rst reall de�nition (2.36) of the semi-linear form a(�; �)

and write it as follows

a(u; v) =

X

K2T

h

(

�

Z

K

F (u) � rv dx+

Z

�Kn�

H(u

+

; u

�

; n) v

+

h

ds

)

+ a

�

(u; v) + a

s

(u; v); (2.45)

where a

�

(u; v) was de�ned in (2.31) and inludes the boundary fae terms,

a

�

(u; v) =

X

K2T

h

Z

�K\�

H(u

+

; u

�

; n) v

+

ds;

where here u

�

j

�

denotes an appropriate boundary funtion as desribed in Se-

tion 2.6. Furthermore a

s

(u; v) inludes the shok{apturing terms,

a

s

(u; v) =

X

K2T

h

Z

K

"ru � rv dx; (2.46)

where " � "(u) = C

"

h

2��

jr � F (u)j aording to the de�nition in (2.37).

In general, the numerial uxes H(u

+

; u

�

; n) are not di�erentiable with

respet to u

+

and u

�

. As a onsequene, a(u; v) is in general not di�erentiable

with respet to u. Therefore, a

0

[w℄(u; v) must be replaed by an appropriate

approximation that may be written in the general form

~a

0

[w℄(u; v) =

X

K2T

h

�

�

Z

K

(F

0

(w)u) � rv dx

+

Z

�Kn�

�

~

H

0

u

+

(w

+

; w

�

; n)u

+

+

~

H

0

u

�

(w

+

; w

�

; n)u

�

�

v ds

)

+ ~a

0

�

[w℄(u; v) + ~a

0

s

[w℄(u; v);

where w !

~

H

0

u

+

(w

+

; w

�

; n) and w !

~

H

0

u

�

(w

+

; w

�

; n) denote approximations

to the derivatives of H with respet to its �rst and seond arguments, respe-

tively, and ~a

0

�

[w℄(u; v) and ~a

0

s

[w℄(u; v) represent approximations to the deriva-

tives of u ! a

�

(u; v) and u ! a

s

(u; v), respetively; see the following two

subsetions for more details. Furthermore, we give examples of

~

H

0

u

+

and

~

H

0

u

�

for di�erent uxes at the end of this setion.
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Jaobian matrix of the shok-apturing term

~a

0

s

[w℄(u; v) represents an approximation to the derivative of the shok-apturing

term (2.46) and is given by

~a

0

s

[w℄(u; v) =

X

K2T

h

Z

K

("(w)ru+ ~"

0

[w℄(u)rw) � rv dx;

where ~"

0

[w℄(u) denotes the following approximation to the derivative of u !

"(u), f. (2.37),

~"

0

[w℄(u) = C

"

h

2��

sgn("(w)) (F

0

(w) � ru+ F

00

(w) � wu) I:

Jaobian matrix of boundary fae terms

Aording to the de�nition (2.32) of a

�

(u; v), its approximate derivative ~a

0

�

[w℄(u; v)

onsists of several parts

~a

0

�

[w℄(u; v) = ~a

0

�

i

[w℄(u; v) + ~a

0

�

o,sup

[w℄(u; v) + ~a

0

�

o,sub

[w℄(u; v) + ~a

0

�

refl

[w℄(u; v):

(2.47)

Employing the same approximations

~

H

0

u

+

and

~

H

0

u

�

on boundary faes as on

inner faes, the terms on the right hand side of (2.47) are given by:

� On a inow boundary �

i

:

~a

0

�

i

[w℄(u; v) =

X

K2T

h

Z

�K\�

i

~

H

0

u

+

(w

+

; g; n)u

+

v

+

ds:

� On a supersoni outow boundary �

o,sup

~a

0

�

o,sup

[w℄(u; v) =

X

K2T

h

Z

�K\�

o,sup

�

~

H

0

u

+

(w

+

; w

+

; n)

+

~

H

0

u

�

(w

+

; w

+

; n)

�

u

+

v

+

ds: (2.48)

� On a subsoni outow boundary �

o,sub

~a

0

�

o,sub

[w℄(u; v) =

X

K2T

h

Z

�K\�

o,sub

�

~

H

0

u

+

(w

+

; u

�

o,sub

(w

+

); n)

+

~

H

0

u

�

(w

+

; u

�

o,sub

(w

+

); n)u

�

o,sub

0

(w

+

)

�

u

+

v

+

ds; (2.49)

with u

�

o,sub

(u) as de�ned in (2.33). Writing u

�

o,sub

(u) in onservative vari-

ables u = (u

1

; u

2

; u

3

; u

4

) = (%; %v

1

; %v

2

; e) gives

u

�

o,sub

(u) =

0

B

B

�

u

1

u

2

u

3

p

o,sub

�1

+

1

2

(u

2

2

+ u

2

3

)=u

1

1

C

C

A

; (2.50)
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and onsequently

u

�

o,sub

0

(u) =

0

B

B

�

1 0 0 0

0 1 0 0

0 0 1 0

�

1

2

(u

2

2

+ u

2

3

)=u

2

1

u

2

=u

1

u

3

=u

1

0

1

C

C

A

=

0

B

B

�

1 0 0 0

0 1 0 0

0 0 1 0

�

1

2

v

2

v

1

v

2

0

1

C

C

A

:

� On a reetive boundary �

refl

~a

0

�

refl

[w℄(u; v) =

X

K2T

h

Z

�K\�

refl

�

~

H

0

u

+

(w

+

; u

�

refl

(w

+

); n)

+

~

H

0

u

�

(w

+

; u

�

refl

(w

+

); n)u

�

refl

0

(w

+

)

�

u

+

v

+

ds;

with u

�

refl

(u) and u

�

refl

0

(u) as de�ned in (2.34).

Approximative derivatives of numerial uxes

The numerial uxes H(u

+

; u

�

; n) generally are not di�erentiable with respet

to u

+

and u

�

. In fat, for example the Vijayasundaram ux and the loal

Lax-Friedrihs ux, like many other uxes, inlude non{di�erentiable terms as

`min'- and `max'-funtions, for example.

1. Vijayasundaram ux. In the ase of the Vijayasundaram ux

H(u

+

; u

�

; n) = B

+

(�u; n)u

+

+B

�

(u

�

; n)u

�

;

as de�ned in (2.11), these non-di�erential terms are the matries B

�

(�u; n)

and B

+

(�u; n), that inlude the negative and positive parts of B(�u; n) =

F

0

(�u) �n, respetively. Therefore, we neglet the (non{existing) derivative

of B

�

(�u; n) and approximate the (non{existing) derivative of m(u) :=

B

�

(�u; n)u by

~m

0

[w℄(u) = B

�

( �w; n)u: (2.51)

For B

+

(�u; n) we employ an analogous approximation.

Applying the approximation (2.51) to the Vijayasundaram ux funtion

(2.11) yields

~

H

0

u

+

(u

+

; u

�

; n) = B

+

(�u; n) and

~

H

0

u

�

(u

+

; u

�

; n) = B

�

(�u; n): (2.52)
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Consequently, the boundary terms in (2.47) are given by

~a

0

�

i

[w℄(u; v) =

X

K2T

h

Z

�K\�

i

B

+

(w

+

; n)u

+

v

+

ds;

~a

0

�

o,sup

[w℄(u; v) =

X

K2T

h

Z

�K\�

o,sup

B

+

(w

+

; n)u

+

v

+

ds;

~a

0

�

o,sub

[w℄(u; v) =

X

K2T

h

Z

�K\�

o,sub

�

B

+

(w

+

; n)

+B

�

(w

+

; n)u

�

o,sub

0

(w

+

)

�

u

+

v

+

ds;

~a

0

�

refl

[w℄(u; v) =

X

K2T

h

Z

�K\�

refl

�

B

+

(w

+

; n)

+B

�

(w

+

; n)u

�

refl

0

(w

+

)

�

u

+

v

+

ds:

2. Lax-Friedrihs ux. The loal Lax-Friedrihs ux

H(u

+

; u

�

; n) =

1

2

�

F (u

+

) � n+ F (u

�

) � n+ �

�

u

+

� u

�

��

;

as de�ned in (2.10), inludes the onstant � that is an estimate of the

largest eigenvalue (in absolute value) of the matrix B(u; n) evaluated at

u = u

+

and u = u

+

. Hene, � inludes a `max'- funtion and is thus

not di�erentiable. Therefore, we neglet the derivatives of � and use the

following approximate derivatives

~

H

0

u

+

and

~

H

0

u

�

of the numerial ux

funtion H

~

H

0

u

+

(u

+

; u

�

; n) =

1

2

�

F

0

(u

+

) � n+ �I

�

and

~

H

0

u

�

(u

+

; u

�

; n) =

1

2

�

F

0

(u

�

) � n� �I

�

:

Consequently, the boundary terms (2.47) are given by

~a

0

�

i

[w℄(u; v) =

X

K2T

h

Z

�K\�

i

F

0

(w

+

) � nu

+

v

+

ds;

~a

0

�

o,sup

[w℄(u; v) =

X

K2T

h

Z

�K\�

o,sup

F

0

(w

+

) � nu

+

v

+

ds;

~a

0

�

o,sub

[w℄(u; v) =

X

K2T

h

Z

�K\�

o,sub

1

2

�

F

0

(u

+

) � n+ �I

+

�

F

0

(u

�

o,sub

(u

+

)) � n� �I

�

u

�

o,sub

0

(u

+

)

�

u

+

v

+

ds;

~a

0

�

refl

[w℄(u; v) =

X

K2T

h

Z

�K\�

refl

1

2

�

F

0

(u

+

) � n+ �I

+

�

F

0

(u

�

refl

(u

+

)) � n� �I

�

u

�

refl

0

(u

+

)

�

u

+

v

+

ds:
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Figure 2.11: Mapping � of referene element

^

K to the element K in real spae.

2.9 Higher order boundary approximation

In many appliations the domain 
 is not a polygonal domain but inludes

urved boundaries. For these ases the boundary annot be represented exatly

by the triangulation T

h

. Approximating the boundary by a pieewise linear

boundary interpolation, i.e. by a polygonal boundary, may in some appliations

not be suÆient. Then, a higher order boundary approximation, for example by

pieewise quadrati or ubi boundary interpolation, must be employed. This

neessitates the use of urved elements at the boundary of the domain. In �nite

element methods it is ommon pratie, see [49℄ for example, to deal with urved

elements by employing higher order polynomial mappings �

K

of the referene

element

^

K to the real element K in real spae, see Figure 2.11. This way a \Q

p

boundary approximation", that denotes a pieewise polynomial interpolation of

the boundary by polynomials of degree p, an be realised by a \Q

p

mapping"

�

K

2 [Q

p

℄

d

polynomial mapping of degree p. For a more detailed desription of

urved elements and mapping funtions of higher polynomial degrees as well as

for some implementational details we defer the reader to Appendix C.

In the following, we use quadrilateral elements with straight boundaries in

the interior of the domain; these elements are given by the image of a Q

1

mapping of the referene element. Furthermore, we use urved elements at

the boundary of the domain, where these urved elements are images of Q

p

mappings of the referene element, for given polynomial degrees p stated below.

A speial ase is the approximation of the domain 
 by a polygonal domain.

This is equivalent to a Q

1

approximation of the boundary and is realized by

employing a Q

1

mapping on all elements of the triangulation.

For the disontinuous Galerkin disretisation it is in some ases not suÆient

to approximate urved boundaries by polygons. In the following subsetion we

reompute the \ow around a irle problem" onsidered by Bassi and Rebay

[4℄. This example learly shows that when using disontinuous Galerkin dis-

retisations it is essential to employ a higher order boundary approximation at

reetive boundaries in order to avoid unphysial solutions.

In the subsetion thereafter, we show by numerial tests that even the order

of onvergene of disontinuous Galerkin solutions is redued when reetive

boundaries are approximated by polynomials of lower order.
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(a) (b)

Figure 2.12: (a) Coarse mesh of the \ow around a irle problem"; (b) Zoom

of part [�4; 4℄

2

of the mesh, both for Q

2

boundary approximation.

2.9.1 Flow around a irle

Bassi and Rebay [4℄ enountered that a polygonal boundary approximation of

urved reetive boundaries leads to inaurate and even to unphysial nu-

merial solutions. Furthermore, they showed that `a higher order boundary

approximation gives a dramati improvement in the auray of the numerial

approximation'.

In order to illustrate this e�et, in the following we reompute the \ow

around a irle problem" of the 2D ompressible Euler equations, an example

that was already onsidered in [4℄.

To this end, we onsider a omputational domain that is de�ned to be an

annulus with inner and outer boundary onsisting of irles of radius 1 and

20 units, respetively, see Figures 2.12(a) and 2.12(b) that show the oarse

mesh of the omputation domain and a zoom of part [�4; 4℄

2

of the mesh.

On the far�eld boundary we apply horizontal M = 0:38 ow that enters the

omputational domain from the left. The solution to this subsoni ow is known

to be symmetri, see [4℄. Figures 2.13 and 2.14 show the Mah isolines of DG(1)

numerial solutions on four globally re�ned meshes (128, 512, 2048 and 8192

elements) with Q

1

and Q

2

boundary approximation, respetively. The isolines

are plotted for values of the Mah number given byM

j

= 0:038j for j = 0; 1; : : : .

The solutions on meshes with Q

1

boundary approximation, see Figures 2.13,

are very inaurate and de�nitely not symmetri beause of a non-physial wake

that develops behind the obstale. The poor behaviour of this non-physial

numerial solution does not disappear through re�nement, even on very �ne

meshes a wake develops downstream the irle. Bassi and Rebay showed in [4℄

that there is a non-physial entropy prodution at the boundary of the irle
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leading to a non-physial \boundary layer" that a�ets the solution even a

distane from the boundary, as seen in the wake downstream of the obstale.

The behaviour of the numerial solution hanges ompletely when using

meshes with Q

2

boundary approximation, see Figure 2.14. For this ase, the

numerial solution onverges niely to a solution whih is symmetri in the

upstream-downstream diretion. Already after four re�nement steps the solu-

tion an hardly be distinguished from a symmetri solution, see Figure 2.14 (d).

We note that employing a Q

3

boundary approximation results in numerial so-

lutions that annot be distinguished from the numerial solutions in Figure 2.14.

Finally, Figure 2.15 shows the DG(2) numerial solution with Q

2

boundary ap-

proximation. It is remarkable that already after one re�nement step the solution

is aurate and shows a upstream{downstream symmetry. This example shows

that employing a higher order boundary approximation leads to a signi�ant

improvement in the auray of the numerial solution at the boundary as well

as in the rest of the domain, espeially behind an obstale.

At the end of this setion, we note that the DG(0) method, and hene the

orresponding �nite volume shemes, shows the same auray on meshes with

boundary approximation of arbitrary degree. For example, Figures 2.16 and 2.17

show the DG(0) solution with Q

1

and Q

2

boundary approximation, respetively.

This might explain why the e�et of unphysial solutions as a result of low

order boundary approximation has not been enountered earlier for example by

the �nite volume ommunity.

2.9.2 Redued order of onvergene due to boundary ap-

proximation

The e�et of low onvergene of numerial solutions involving reetive bound-

aries and even the ourrene of non-physial numerial solutions, are due to a

low order boundary approximation of the reetive boundaries. This was �rst

enountered by Bassi and Rebay in [4℄. They regarded the non-physial entropy

prodution at the reetive boundary of the \ow around the irle" and the

\Ringleb ow" problem and the onvergene of the numerial solution in terms

of this entropy prodution.

In this setion we onsider the onvergene of numerial solutions to the

\Ringleb ow" problem, see B.5, in terms of the L

2

-error of the numerial solu-

tions. In Setion 2.4 we numerially showed that the onvergene of numerial

solutions to a slightly modi�ed Ringleb ow problem is of the optimal order

O(h

p+1

). There, we modi�ed the ow problem by imposing the boundary on-

ditions, see (2.20), on the whole boundary of the domain, hene no reetive

boundary onditions were ative. In the following we want to investigate how

the order of onvergene is a�eted when reetive boundary onditions, see

Setion 2.6, are imposed, and how the order of onvergene hanges when the

reetive boundaries are approximated by polynomials of di�erent degrees.

Figure 2.18 shows the onvergene of the L

2

-error of the DG(1) numerial

solution to the Ringleb ow problem when the reetive boundaries are approx-

imated by polynomials of degrees one to four (Q

1

-Q

4

boundary approximation).
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(a) (b)

() (d)

Figure 2.13: (a)-(d) DG(1) solutions with Q

1

boundary approximation on glob-

ally re�ned meshes of 128, 512, 2048 and 8192 elements.
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(a) (b)

() (d)

Figure 2.14: (a)-(d) DG(1) solutions with Q

2

boundary approximation on glob-

ally re�ned meshes of 128, 512, 2048 and 8192 elements.
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(a) (b)

Figure 2.15: DG(2) solutions with Q

2

boundary approximation on globally re-

�ned meshes of (a) 128 and (b) 512 elements.

When the reetive boundaries are approximated by higher order polynomials

(Q

2

-Q

4

boundary), the order of onvergene is exatly O(h

2

) and the auray

of these higher order boundary methods oinide properly. In ontrast to that,

there is a big gap in auray when the reetive boundaries are approximated

by pieewise linear funtions (Q

1

boundary) ompared to higher order bound-

ary approximations. The reason for this dramati di�erene in auray are the

kinks in the reetive boundary when it is approximated by pieewise linear

funtions, see meshes in Figure 2.2, for example. Eah of the kinks a�ets the

ow leading to a non-physial entropy prodution, f. [4℄, right at the boundary.

This e�et an be learly seen in Figure 2.19. It shows the density � and the

density isolines on the base of the plot of DG(1) solutions omputed on meshes

of, respetively, 32 and 128 elements with Q

1

boundary approximation. At

the reetive boundaries the numerial solutions are staggered and rumbled.

This leads to a bad approximation of the solution in the neighbourhood of the

boundary. For omparison, in Figure 2.20 we show the orresponding solutions

on meshes with Q

2

boundary approximation where the numerial solutions are

smooth at the boundary. As seen in Figure 2.19 the wobbling behaviour of the

numerial solution at the reetive boundary does not vanish while the mesh

is re�ned. Indeed, even on very �ne meshes the numerial solution does not

hange this behaviour; see a zoom of a part of the numerial solutions in Figure

2.21 omputed on meshes of 2048 elements with Q

1

and Q

2

boundary approxi-

mation, respetively. We note that the solution in Figure 2.21, left, is staggered

even several layers of elements away from the boundary. This indiates that

the numerial solution is a�eted from a low order boundary approximation not

only in the neighbourhood of this boundary but also in the rest of the domain.
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(a) (b)

() (d)

Figure 2.16: (a)-(d) DG(0) solutions with Q

1

boundary approximation on glob-

ally re�ned meshes of 128, 512, 2048 and 8192 elements.
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(a) (b)

() (d)

Figure 2.17: (a)-(d) DG(0) solutions with Q

2

boundary approximation on glob-

ally re�ned meshes of 128, 512, 2048 and 8192 elements.
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Figure 2.19: Ringleb ow problem: DG(1) for Q

1

boundary approximation.
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Figure 2.20: Ringleb ow problem: DG(1) for Q

2

boundary approximation.
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DG(1), P1 boundary
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Figure 2.21: Ringleb ow problem: part of DG(1) solution on mesh with Q

1

(left) and Q

2

(right) boundary approximation.

This, indeed, is on�rmed by the \ow around a irle" example problem where

an unphysial wake develops downstream of the obstale.

For summarising the results of this setion we state that, in fat, the degree

of polynomials employed for approximating reetive boundaries does a�et the

order of onvergene of the disontinuous Galerkin method. Using a pieewise

linear approximation of the boundary leads to a very inaurate and unstable

solution in the neighbourhood of the boundary and in some ases even unphys-

ial numerial solutions develop. This e�et of unphysial solutions as a result

of low order boundary approximation for disontinuous Galerkin methods was

�rst reported in Bassi and Rebay, f. [4℄. Here, we showed that for the DG(1)

method a super{parametri element using at least Q

2

boundary approxima-

tions must be employed to avoid this e�et and to ensure an optimal order of

onvergene in the L

2

-norm.

2.10 Mesh generation for airfoil omputations

This setion is devoted to the generation of meshes. Here, we onsider meshes

partiularly designed for ow omputations around obstales like airfoils. As

powerful mesh generators for quadrilateral meshes were not available to the

author, in the following the airfoil meshes will be onstruted by hand, see [21℄

for several di�erent ways of mesh generation. These meshes are basially given

by an annulus where the inner boundary represents the geometry of the airfoil

and the outer boundary is given by a irle. To allow for free ow boundary

values applied on the whole outer boundary this irle should be relatively

large in omparison to the hord length of the airfoil. Given an airfoil of unit

hord length, here we hoose the radius of the outer boundary irle to be 10,

for example. Figure 2.12(a) shows suh an annular mesh with a small irular

obstale in the enter.We see that this mesh onsists of several layers of elements

that enirle the small obstale. These layers of elements are neessary in order
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Figure 2.22: Pro�le of the NACA0012 airfoil.

to avoid deformed elements.

The onstrution of basi meshes like shown in Figure 2.12(a) is a rather

simple task due to their axial symmetry. The situation is di�erent for obstales

suh as airfoils that are not axially symmetri. In that ase one possibility is

to base the mesh on a basi mesh like given in Figure 2.12(a) and to move

grid points on the inner boundary aording to the airfoil geometry. In order to

avoid deformed elements, again, it is advisable to move grid points of the seond

layer and so on. This an be done by smoothly mapping the whole basi mesh,

denoted by triangulation T

b

h

, to a mesh, T

h

, whose outer boundary is unhanged

and whose inner boundary mathes the geometry of the airfoil. In the following

we de�ne this mapping that will be based on solutions to the Laplae equation.

Let the index set J of all points p

b

j

, j 2 J , of a basi mesh T

b

h

be separated

into two distint index subsets J = I [ B, where I denotes the index set of all

interior points and B the index set of all points on the boundary of the (basi)

mesh. Furthermore let fp

j

g

j2B

, be the set of all boundary points of the airfoil

mesh given by a bijetive mapping of the boundary verties p

b

j

, j 2 B, of the

basi mesh.

Then, we de�ne the following disrete problem: for l = 1; 2 �nd the disrete

funtion u

l

, ontinuous and bilinear on eah element K 2 T

b

h

, suh that

��u

l

(x) = 0; x 2 K;K 2 T

b

h

;

u

l

(p

b

j

) = (p

j

)

l

; j 2 B:

(2.53)

Then the inner verties p

j

, j 2 B, of the airfoil mesh, T

h

, are given by

(p

j

)

l

= u

l

(p

b

j

); j 2 I:

2.10.1 The NACA0012 airfoil

First, we onsider the NACA0012 airfoil, see [1℄ for example; The upper and

lower surfaes of this airfoil geometry are spei�ed by the funtion g

�

, where

g

�

(s) = �5 � 0:12 � (0:2969s

1=2

� 0:126s� 0:3516s

2

+ 0:2843s

3

� 0:1015s

4

);

(2.54)

f. Figure 2.22. Here, 0 � s � l, where the hord length l of the airfoil is

l � 1:00893; thereby, we write ĝ to denote the resaling of g to yield an airfoil

of unit (hord) length.

Figure 2.23 shows an airfoil mesh based on a basi mesh similar to that in

Figure 2.12(a). In the zoomed part of the mesh, see Figure 2.23(b), we see that

two elements at the trailing edge have very obtuse angles as the aifoil onsists of

a very aute angle at the trailing edge. We note that the obtuse angle keeps the
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Figure 2.23: Simple oarse mesh for the NACA0012 airfoil. (a) Mesh; (b) Zoom

of the mesh; Two elements at the trailing edge have an angle of almost 180

Æ

.

same no matter how many times the mesh is re�ned. As deformed elements like

those at the trailing edge are not wanted, in the following we reate a modi�ed

mesh, see Figure 2.24.

2.10.2 The BAC3-11 airfoil

Here we onsider the BAC3-11 airfoil, see Figure 2.25, an unsymmetri airfoil

geometry that was originally spei�ed in [2℄. For this geometry mesh re�nement

may lead to very deformed and even to degenerate meshes. This subsetion

�rstly reveals this problem that ours when the mesh of this spei� geometry

is re�ned, and it shows how this diÆulty may be overome by loally modifying

the method of mesh re�nement.

Usually a quadrilateral element is re�ned to yield four disjoint sub{elements

by onneting with lines the midpoints of opposing faes of the boundary of

the element. Also on elements that inlude a fae next to a (possibly urved)

boundary of the domain, the re�nement is based on the midpoint of that fae. In

general the midpoint on a urved boundary part is de�ned to be the point that

splits the boundary fae into two parts of equal length. This way the urved

boundary is disretised by pieewise polynomials separated by equidistantly

distributed points where here distane is measured in ar length.

Figure 2.26(a) shows a zoom of the mesh near the leading edge of the BAC3-

11 airfoil. This is the mesh as it ours after three global re�nement steps. We

see that the points at the boundary of the domain, i.e. on the pro�le of the

airfoil, are equidistantly distributed. But furthermore, we see that the seond

element next to the airfoil and below the leading edge is strongly deformed in

the sense that it inludes an inner angle of more than 180

Æ

. The reason for this
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Figure 2.24: Modi�ed oarse mesh for the NACA0012 airfoil. (a) Whole mesh;

(b) Zoom into the mesh. At trailing edge: Four elements of the inner layer are

now replaed by three elements. () One globally re�ned; (d) Twie globally

re�ned.

Figure 2.25: Pro�le of the BAC3-11 airfoil.
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Figure 2.26: Mesh near the leading edge of the BAC3-11 airfoil. (a) Mesh

re�nement based on fae midpoints results in deformed elements near the leading

edge; (b) Modi�ed re�nement avoids deformation of elements.

distortion in the mesh is given by the strong urvature of this part of the bound-

ary in ombination with midpoints that seemingly are not hosen appropriate

for this spei� ase. In order to overome this diÆulty, we modify the mesh

re�nement of boundary elements next to the leading edge by onsidering points

on the boundary that subdivide the fae into two parts with equal lengths mea-

sured in the y omponent, only. This way, we gain a mesh, see Figure 2.26(b),

where the points on the boundary are not equally distributed but the mesh does

not su�er any more from the aw desribed above. Finally, Figure 2.27 shows

the oarse mesh for the BAC3-11 airfoil and some globally re�ned meshes where

here the modi�ed re�nement desribed above is employed.

2.11 Numerial example:

Flow around the BAC3-11 airfoil

Here, at the end of this hapter, we show the numerial solution of a Mah 0.7

ow around the BAC3-11 airfoil at an angle of attak of 5 degrees. Figure 2.28

shows the Mah number isolines of numerial solutions on a sequene of loally

re�ned meshes shown in Figure 2.29. We employ a re�nement indiator that

depends on the �nite element residuals of the numerial solution. Other indi-

ators depending on gradients or the urvature of the solution produe similar

meshes. These indiators do not require the solution of an auxiliary problem

(dual problem, f. Chapter 3) and will be alled ad ho indiators, in the fol-

lowing.
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Figure 2.27: Globally re�ned meshes for the BAC3-11 airfoil.
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Figure 2.28: M = 0:7 ow around BAC3-11 airfoil at � = 5 degrees. Mah

number isolines M

i

=

i

16

. Computed on meshes with 1020, 2913 and 8289

elements.
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Figure 2.29: M = 0:7 ow around BAC3-11 airfoil at � = 5 degrees. Meshes

with 1020, 2913 and 8289 elements.



Chapter 3

A posteriori error

estimation

In many appliations there is partiular interest in spei� quantities of the

solution. These inlude physially relevant quantities like, for example in aero-

dynamis, the drag or lift of an airfoil, the pressure di�erene between the

leading and trailing edge of the airfoil or single density or pressure values on

the pro�le of the airfoil. For ensuring a spei� auray of the numerial

omputation it is essential to provide an a posteriori error bound. However, for

ensuring a given auray in the omputed quantity it is not useful to give error

estimation in terms of global norms like the global L

1

-norm, but it is neessary

to provide error estimation in terms of the quantity of interest.

Therefore, in this setion, we shall be interested in ontrolling the error

of the numerial solution measured in terms of a given target funtional J(�),

sometimes also referred to as the error funtional. Here, J(�) is the physial

quantity of interest and may, for example, represent the drag or lift oeÆient

or a point value of the solution.

The proeeding error analysis is based on a hyperboli duality argument

using the general approah developed by Johnson et al. [20℄, and Rannaher et

al. [7℄, see also [5, 24, 32, 51℄.

3.1 The dual problem

We begin by �rst introduing some notation. Assuming that the funtional of

interest J(�) is di�erentiable, we write

�

J(�; �) to denote the mean value lineari-

sation of J(�) de�ned by

�

J(u; u

h

;u� u

h

) = J(u)� J(u

h

) =

Z

1

0

J

0

[su+ (1� s)u

h

℄(u� u

h

) ds; (3.1)

where J

0

[w℄(�) denotes the funtional (Fr�ehet) derivative of J(�) evaluated at

some w in V . Here, V is some suitably hosen funtion spae suh that V

p

h

� V .

65
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Analogously, we write L(u; u

h

; �; �) to denote the mean{value linearisation of

the semi-linear form a(�; �) given by

L(u; u

h

;u� u

h

; v) = a(u; v)� a(u

h

; v)

=

Z

1

0

a

0

[su+ (1� s)u

h

℄(u� u

h

; v) ds

(3.2)

for all v in V . Here, a

0

[w℄(�; v) denotes the Fr�ehet derivative of u ! a(u; v),

for v 2 V �xed, at some w in V . We remark that the linearisation de�ned

in equation (3.2) is only a formal alulation, in the sense that a

0

[w℄(�; v) may

not in general exist. Instead, it must be replaed by a suitable approximation

~a

0

[w℄(�; v), see Setion 2.8.4.

For the purposes of the proeeding a-posteriori error analysis, we assume

that the linearisation performed in (3.2) is well{de�ned. Under this hypothesis,

we introdue the following dual or adjoint problem: �nd z 2 V suh that

L(u; u

h

;w; z) =

�

J(u; u

h

;w) 8w 2 V: (3.3)

In the next setion we disuss the well-posedness of the dual problem and

provide some onrete examples when a

0

[w℄(�; v) may be uniquely determined.

Further disussion onerning the numerial approximation of the dual problem

is presented in Setion 3.4.

3.2 Well-posedness of the dual problem

We assume that the dual problem (3.3) is well-posed and possesses a unique

solution. Clearly, the validity of this assumption depends on both the de�nition

of L(u; u

h

; �; �) and the hoie of the linear funtional under onsideration and

annot be shown for general problems. Rather, here we present some important

examples whih are overed by our hypothesis.

3.2.1 Linear hyperboli problems

Following the disussion in [32, 34℄ we onsider the ase of the salar linear

hyperboli equation (2.12)

� � ru+ bu = f in 
;

u = g on �

�

:

(3.4)

In the following we ollet some linear target funtionals for that the exat dual

solution z de�ned in (3.3) is known to be well{posed:

1. Outow normal ux: Given a weight funtion  2 L

2

(�

+

) we onsider the

weighted normal ux through the outow boundary �

+

that is de�ned by

J(w) =

Z

�

+

� � nw ds:
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Then, z is the unique solution to the following boundary value problem:

�nd z 2 V suh that

�r � (�z) + bz = 0 in 
;

z =  on �

+

:

2. Mean value: Here, let  be a weight funtion in L

2

(
). Then a weighted

mean value is given by

J(w) =

Z




w ds:

In this ase, z is the solution to following dual problem: �nd z 2 V suh

that

�r � (�z) + bz =  in 
;

z = 0 on �

+

:

3. Point value: Finally we onsider a point value

J(w) = w(x

0

)

at a given point x

0

2 
. The existene and uniqueness of a dual solu-

tion orresponding to this non{regular target funtional an be shown by

�rst onsidering regularised target funtionals J

�

(w) =

R




w 

x

0

;�

ds with

 

x

0

;�

= �

�d

�((x� x

0

)=�) where � denotes a nonnegative funtion that is

zero outside the unit ball. For �! 0 this results in a unique solution z to

the following dual problem

�r � (�z) + bz = Æ

x

0

in 
;

z = 0 on �

+

;

where here, Æ

x

0

denotes a Æ-distribution at point x

0

with the property

Z




Æ

x

0

w ds = w(x

0

):

Analogous well{posedness results for the dual problem also hold for systems

of linear hyperboli onservation laws provided the numerial ux funtion is

hosen appropriately.

3.2.2 Nonlinear one{dimensional salar hyperboli

problems

The question of well{posedness of the dual problem assoiated with nonlinear

hyperboli onservation laws is rather more deliate. Let us, for example, on-

sider the following one{dimensional salar hyperboli equation

�

�t

u(x; t) +

�

�x

f(u(x; t)) = 0; �1 < x <1; 0 < t � T; (3.5)
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with stritly onvex ux funtion f , i.e. f

00

> 0, subjet to the initial ondition

u(x; 0) = u

0

(x); �1 < x <1: (3.6)

Here, we suppose that (3.5), (3.6) is approximated by the standard Galerkin

�nite element method onsisting of ontinuous pieewise polynomials in both

spae and time, f. [51℄. Furthermore, we suppose that the funtional of interest

represents the (weighted) mean value in spae; i.e.

J(w) �M

 

(w) =

Z

1

�1

w dx;

where  2 L

2

(�1;1) is a given weight funtion. Aording to (3.3), the dual

problem (in strong form) takes the following form: �nd z suh that

�

�z

�t

� a(x; t)

�z

�x

= 0; �1 < x <1; 0 � t < T;

z(x; T ) =  (x); �1 < x <1;

(3.7)

where

a(x; t) =

Z

1

0

f

0

((1� s)u+ su

h

) ds:

Although the dual problem (3.7) is linear, this is a non-standard hyperboli

problem sine the spatial veloity �eld a may be disontinuous. Thereby, in

this ase the standard lassial theory of well{posedness of linear hyperboli

equations does not apply. However, assuming that a 2 L

1

(R � (0; T )) and

satis�es a one{sided Lipshitz ondition, Tadmor [53℄ has shown that (3.7) is a

meaningful problem. For further details, and the veri�ation that a satis�es the

desired hypotheses when f is stritly onvex, we refer to S�uli [51℄. For related

work on the linearisation of onservation laws and the well{posedness of linear

hyperboli problems with disontinuous data, we refer to [9, 23, 55℄, and the

referenes ited therein.

In general, however, it is not known whether the dual problem (3.3) possesses

a unique solution when the hyperboli onservation law (2.2) is nonlinear, and

when the disontinuous Galerkin approximation (2.35) is employed, even for

salar problems, orresponding to m = 1. We an only hypothesise that the

omputation of a physially orret approximation to (2.2) will yield a uniquely

solvable dual problem. In the absene of suh analytial results, we must rely

solely on numerial simulation to on�rm the validity of this hypothesis. Indeed,

in Chapter 4, we onsider a series of test problems whih provide numerial

evidene to indiate that the dual problem is solvable for the partiular problems

and target funtionals seleted.

3.3 Error representation formula

As indiated in the last setion it is not known whether the dual problem (3.3)

possesses a unique solution when the hyperboli onservation law (2.2) is non-

linear, and when the disontinuous Galerkin approximation (2.35) is employed.
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For the proeeding error analysis, we must therefore assume that the dual prob-

lem (3.3) is well{posed. Under this assumption, we have the following general

result.

Theorem 3.1 Let u and u

h

denote the solutions of (2.2) and (2.35), respe-

tively, and suppose that the dual problem (3.3) is well{posed. Then, the following

error representation formula holds:

J(u)� J(u

h

) = E




(u; u

h

; h; z � z

h

) �

X

K2T

h

�

K

; (3.8)

where

�

K

=

Z

K

R(u

h

) (z � z

h

) dx+

Z

�K

r(u

h

) (z � z

h

)

+

ds

�

Z

K

"ru

h

� r(z � z

h

) dx (3.9)

for all z

h

in V

p

h

. Here, R(u

h

) and r(u

h

) denote the internal and boundary �nite

element residuals, respetively, de�ned on K 2 T

h

by

R(u

h

)j

K

= �r � F (u

h

) and r(u

h

)j

K

= F (u

+

h

) � n�H(u

+

h

; u

�

h

; n); (3.10)

respetively.

Proof: Choosing w = u � u

h

in (3.3), realling the linearisation performed in

(3.1), and exploiting the Galerkin orthogonality property (2.39), we get

J(u)� J(u

h

) =

�

J(u; u

h

;u� u

h

)

= L(u; u

h

;u� u

h

; z)

= L(u; u

h

;u� u

h

; z � z

h

)

= �a(u

h

; z � z

h

)

for all z

h

in the �nite element spae V

p

h

. By employing the divergene theorem,

we dedue that

J(u)� J(u

h

) =

X

K2T

h

�

�

Z

K

r � F (u

h

)(z � z

h

) dx

+

Z

�K

�

F (u

+

h

) � n�H(u

+

h

; u

�

h

; n)

�

(z � z

h

)

+

ds

�

Z

K

"ru

h

� r(z � z

h

) dx

�

: (3.11)

Using the de�nition of the �nite element residuals in (3.10), gives the desired

result. �

Based on the general error representation formula derived in Theorem 3.1,

a posteriori error estimates bounding the error in the omputed funtional J(�)
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may be dedued. Before we proeed, let us �rst reall the lassi�ation of Type

I and Type II a posteriori error bounds introdued in [34℄. Type I a posteriori

error bounds, also referred to as weighted a posteriori error bounds, involve the

multipliation of the residual terms R(u

h

) and r(u

h

) and the shok apturing

term "ru

h

, by the di�erene between the dual solution z and its projetion,

interpolant or quasi-interpolant z

h

. On the other hand, Type II a posteriori

bounds are in the spirit of the error estimates derived by C. Johnson et al.

[20℄, and do not depend expliitly on the dual solution. These latter error

estimates are derived from Type I a posteriori bounds by employing standard

results from approximation theory, together with well{posedness results for the

dual problem. The resulting Type II error bounds only involve ertain norms

of the residuals and shok{apturing term, the mesh funtion h, interpolation

onstants and the stability fator of the dual problem.

However, as we shall see in Chapter 4, the elimination of the `weighting

terms' involving the di�erene between z and z

h

may adversely a�et the perfor-

mane of our adaptive �nite element method. Indeed, mesh re�nement strategies

based on Type II a posteriori error bounds whih do not require the ompu-

tation of the dual solution may, under mesh re�nement, lead to suboptimal

onvergene of the error jJ(u)�J(u

h

)j in the omputed funtional, resulting in

uneonomial mesh design and an ineÆient adaptive algorithm (see [24, 32℄, for

related work). For this reason, we only onsider the derivation of the following

Type I a posteriori error bound that follows trivially from (3.8) by appliation

of the triangle inequality.

Corollary 3.2 Under the assumptions of Theorem 3.1, the following Type I a

posteriori error bound holds:

jJ(u)� J(u

h

)j � E

j
j

(u; u

h

; h; z � z

h

) �

X

K2T

h

j�

K

j ; (3.12)

where �

K

is de�ned as in (3.9).

We end this setion by noting that for nonlinear hyperboli onservation laws

and/or nonlinear target funtionals J(�), both the error representation formula

(3.8) and the resulting Type I a posteriori error bound (3.12) depend on the

unknown analytial solution to both the primal and dual problems, u and z,

respetively. Thus, in order to render these error estimates omputable, both

u and z must be replaed by suitable approximations whih do not adversely

a�et the quality of the resulting (approximate) error representation formula

and (approximate) Type I a posteriori error bound, f. Chapter 4 for numerial

validation. This subjet will be the topi of the following setion.

3.4 Numerial approximation of the

dual problem

To ensure that the error representation formula proved in Theorem 3.1 and

the subsequent error bound derived in Corollary 3.2 are genuinely a posteriori,
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all non-omputable quantities appearing in the right{hand side of (3.8) and

(3.12), respetively, must be replaed by suitable approximations; namely, the

analytial solution to the primal problem u, and the analytial solution to the

dual problem z.

Let us �rst deal with the approximation of u. To this end, we note that

the dependene of the error representation formula E




and the a posteriori

error bound E

j
j

on u stems from the mean value linearisation of a(�; v), v 2 V

�xed, and J(�) arried out in (3.2) and (3.1), respetively. Hene, for linear

hyperboli onservation laws and linear target funtionals J(�), the dependene

of the error representation formula (3.8) and the a posteriori error bound (3.12)

on u does not arise. In pratie, for nonlinear problems and/or nonlinear target

funtionals, the linearisation leading to L(u; u

h

; �; �) and

�

J(u; u

h

; �) is performed

about the numerial solution u

h

, rather than at some onvex ombination of u

and u

h

; i.e. L(u; u

h

; �; �) is approximated by L(u

h

; u

h

; �; �) in (3.2) and

�

J(u; u

h

; �)

is approximated by

�

J(u

h

; u

h

; �) in (3.1), f. [7℄, for example.

Seondly, the dual problem must be numerially approximated; here, there

are essentially two further soures of error introdued into the omputation of

E




and E

j
j

. Firstly, sine the formal alulation of the Fr�ehet derivative of

u ! a(u; v), for v 2 V �xed, at some w in V may not in general exist, it

must be replaed by a suitable approximation. Denoting this approximation by

~a

0

[w℄(�; v), we de�ne

~

L(u; u

h

;u� u

h

; v) =

Z

1

0

~a

0

[su+ (1� s)u

h

℄(u� u

h

; v) ds : (3.13)

Calulating the linearisation performed in (3.13) at u

h

, rather than at a onvex

ombination of u and u

h

(f. above), we now de�ne the following (approximate)

dual problem: �nd ~z 2 V suh that

~

L(u

h

; u

h

;w; ~z) =

�

J(u

h

; u

h

;w) 8w 2 V: (3.14)

We reall from the previous setion that there were open questions onerned

with the existene and uniqueness of the formal dual problem de�ned in (3.3).

Indeed, for general nonlinear systems of hyperboli onservation laws, it is not

at all lear whether (3.3) is well posed for a given target funtional J(�). In

pratie, we are onerned about the well{posedness of the approximate dual

problem (3.14). Given that the dual problem (3.14) serves only as an approxi-

mation to the true dual problem (3.3), further approximations may be made in

the de�nition of (3.14) in order to ensure that the resulting system of partial

di�erential equations is well{posed. For example, the approximate dual prob-

lem (3.14) may have additional arti�ial visosity inluded in order to guarantee

the existene and uniqueness of ~z. For the purposes of the this work, this last

approximation is not performed, sine for the model problems onsidered here,

the dual problem (3.14) was always found to be numerially solvable. Of ourse,

for more ompliated engineering problems, this may not be the ase, and the

additional regularisation provided by a `tune{up' of an arti�ial visosity term

may be neessary.
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Finally, we note that one a suitable approximate dual problem has been

de�ned, its analytial solution ~z must be numerially determined. Writing ~z

~

h

to denote this approximation, we remark that ~z

~

h

should not be alulated using

the same �nite element spae V

p

h

employed for the primal problem; otherwise

the resulting error representation formula would be identially zero. In pratie,

there are essentially three approahes to omputing a numerial approximation

~z

~

h

of ~z. The �rst approah is to keep the degree p of the approximating poly-

nomial used to ompute u

h

�xed, but ompute ~z

~

h

on a sequene of dual �nite

element meshes

^

T

~

h

whih, in general, di�er from the \primal meshes" T

h

. Al-

ternatively, ~z

~

h

may be omputed using pieewise disontinuous polynomials of

degree ~p, ~p > p, on the same �nite element mesh T

h

employed for the primal

problem. A variant of this seond approah is to ompute the approximate dual

problem using the same mesh T

h

and polynomial degree p employed for the

primal problem, i.e. ~z

~

h

2 V

p

h

, and to take a pathwise higher order reovery

~z

~

h

2 V

~p

2h

, ~p > p. While this latter approah is the heapest of the three methods,

and is still apable of produing adaptively re�ned meshes spei�ally tailored

to the seleted target funtional, the quality of the resulting approximate error

representation formula may be poor, f. Setion 3.6. Therefore we prefer the

seond approah, i.e. ~z

~

h

� ~z

h

2 V

~p

h

, with ~p > p.

To summarise, in pratie there are three soures of error in the omputation

of the error representation formula (3.8) and the Type I a posteriori error bound

(3.12):

1. Linearisation error stemming from the replaement of u by u

h

in (3.2) and

(3.1);

2. Error reated by the approximation of the Fr�ehet derivative of a(�; v),

v 2 V �xed, in the diretion u� u

h

;

3. Error generated in the numerial approximation of the (approximate) dual

problem.

Notwithstanding these approximations, we shall show through numerial exper-

imentation in Chapter 4, that the reliability of the Type I a posteriori error

bound (3.12) is not ompromised, in the sense that

~

E

j
j

� E

j
j

(u

h

; u

h

; h; ~z

h

� z

h

) =

X

K2T

h

j~�

K

j; (3.15)

where ~�

K

is de�ned as in (3.9) with z replaed by ~z

h

, remains an upper bound

on the true error in the target funtional J(�). In partiular, we shall show that

the ratio of the approximate error representation formula

~

E




� E




(u

h

; u

h

; h; ~z

h

� z

h

) =

X

K2T

h

~�

K

(3.16)

and the true value J(u) � J(u

h

) is very lose to one; see [24, 31, 32, 40℄, for

related work.
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Remark 3.3 In the error representation formula (3.8), the funtion z

h

may be

hosen to be any element from the �nite element spae V

p

h

employed to approx-

imate the primal problem (2.2). Here, we selet z

h

to be the projetion of the

numerial approximation ~z

h

to the dual problem (3.14) onto the �nite element

spae V

p

h

. In the theory of a posteriori error estimation of ontinuous Galerkin

�nite element methods this hoie is extremely important in order to obtain loal

error indiators j~�

K

j whih exhibit the optimal rate of onvergene as the mesh

is re�ned. However, for the disontinuous Galerkin method, this hoie is less

important, sine disontinuous �nite element shemes satisfy a Galerkin orthog-

onality property, f. (2.39), both on a global and loal level. Thereby, employing

the loal Galerkin orthogonality property, the error indiators ~�

K

beome

~�

K

=

Z

K

R(u

h

) ~z

h

dx+

Z

�K

r(u

h

) ~z

+

h

ds�

Z

K

"ru

h

� r~z

h

dx; (3.17)

i.e. they no longer depend on the hoie of z

h

.

As a �nal note, we remark that even if the a posteriori error bound (3.12)

should fail to remain an upper bound on the true error in the omputed fun-

tional J(�), then the adaptive mesh re�nement algorithm outlined in the fol-

lowing setion still provides the neessary loal information to ensure that eo-

nomial meshes, spei�ally tailored to the approximation of the underlying

funtional J(�) of interest, are generated.

3.5 Adaptive mesh re�nement

In this setion we onsider the design of an adaptive algorithm to ensure the

eÆient omputation of the given target funtional J(�) of pratial interest. To

this end, we employ the (approximate) a posteriori error bound

~

E

j
j

, f. (3.15),

to determine when the desired level of auray has been ahieved. For example,

suppose that the aim of the omputation is to ompute J(�) suh that the error

jJ(u)� J(u

h

)j is less than some user{de�ned tolerane TOL, i.e.

jJ(u)� J(u

h

)j � TOL;

then, in pratie we may enfore the stopping riterion

~

E

j
j

� TOL: (3.18)

If the ondition (3.18) is not satis�ed on the urrent �nite element mesh T

h

, then

the elementwise terms j~�

K

j are employed as loal error indiators to guide mesh

re�nement and oarsening. Hene, the yle of the adaptive mesh re�nement

may be outlined as follows:

1. Construt an initial mesh T

h

.

2. Compute the numerial approximation to the primal problem u

h

2 V

p

h

on

the urrent mesh T

h

.
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3. Compute the numerial approximation to the dual problem ~z

h

2 V

~p

h

on

the same mesh employed for the primal problem, with ~p > p.

4. Evaluate the approximate error representation

~

E




=

P

K2T

h

~�

K

, f. (3.15).

5. If

~

E




� TOL, where TOL is a given tolerane, then STOP.

6. Otherwise, re�ne and oarsen a �xed fration of the total number of ele-

ments aording to the size of the loal error indiators j~�

K

j and generate

a new mesh T

h

; GOTO 2.

The goal of the mesh re�nement and oarsening is to equidistribute the loal

error indiators j~�

K

j. During eah re�nement and oarsening step a �xed fra-

tion of the total number of elements are re�ned and oarsened. In the following

setion, we set the re�nement and oarsening frations to be 20% and 10%,

respetively.

3.6 Numerial approximation of the

dual problem: Numerial Experiment

The solution ~z to the approximate dual problem (3.14) is not known in general

and must be determined numerially. Writing ~z

h

to denote this approximation,

we reall from Setion (3.4) that ~z

h

should not be alulated using the same

�nite element spae V

p

h

employed for the primal problem. In the following

we employ the seond approah of numerially approximating the dual solution

introdued in Setion 3.4, i.e. ~z

h

will be omputed using pieewise disontinuous

polynomials of degree ~p, ~p > p, on the same �nite element mesh T

h

employed

for the primal problem. In omparison to that we employ a variant of the

approah, i.e. we ompute the approximate dual problem using the same mesh

T

h

and polynomial degree p employed for the primal problem, i.e. ~z

h

2 V

p

h

, and

take a pathwise higher order reovery ~z

h

2 V

~p

2h

, ~p > p.

In the following we onsider the numerial solution to the \Ringleb ow"

problem, f. [47℄, that represents a smooth transoni ow in a hannel. The

solution to this problem is known and may be obtained via hodograph trans-

formation, see [13℄ or Appendix B.5. This example is one of the few non-trivial

problems of the 2D Euler equations for whih a (smooth) analytial solution is

known. It o�ers the opportunity to properly test the sharpness of the approxi-

mate error representation for the 2D Euler equations.

In the following we approximate this problem by pieewise bilinear funtions,

i.e. u

h

2 V

p

h

with p = 1, and a pieewise quadrati boundary approximation.

We selet the target funtional to be the horizontal fore omponent exerted on

the hannel walls. More preisely, we hoose

J(u) =

Z

wall

( � n)p ds;
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~z

(2)

h

2 V

2

h

~z

(3)

h

2 V

3

h

~z

(1)

h

2 V

2

2h

# el. J(u)� J(u

h

)

~

E

(2)




�

(2)

�

(3)

�

(1)

32 -6.946e-04 -8.609e-04 1.239 1.001 0.65

56 9.940e-05 6.123e-05 0.616 0.969 -1.13

80 -5.332e-05 -7.316e-05 1.372 0.934 2.78

125 7.571e-05 7.165e-05 0.946 1.006 0.03

212 -6.735e-06 -9.230e-06 1.370 0.938 2.14

353 1.634e-05 1.621e-05 0.992 1.018 0.07

566 5.681e-06 5.541e-06 0.975 1.004 1.21

950 2.778e-06 2.763e-06 0.995 1.009 2.21

1562 1.344e-06 1.367e-06 1.017 1.020 1.05

2534 1.750e-07 1.807e-07 1.032 1.017 1.78

Table 3.1: Ringleb ow problem, J(u) = horizontal fore. Data of adaptive

re�nement by indiators j~�

(2)

K

j. Comparison of the eÆieny indies �

(~p)

=

~

E

(~p)




=J(e) for ~p = 2, 3 and 1.

where  = (1; 0), n denotes the unit outward normal vetor to the boundary

and p is the pressure; this is a slight variant of the target funtional seleted

in [40℄. In this ase, the true value of the funtional on the exat geometry

is given by J(u) = �0:5744441759095. We note that sine the pressure p is

derived from the onserved variables (�; �u; �v; �E) using the equation of state

(2.5), the seleted target funtional J(�) is nonlinear.

First we ompare the approximate error representations

~

E

(~p)




=

X

K2T

h

~�

(~p)

K

; ~p = 1; 2; 3;

with �

(~p)

K

as de�ned in (3.17) where the numerial dual solution ~z

h

is omputed

using polynomials of degree ~p, i.e. ~z

h

= ~z

(1)

h

2 V

~p

2h

and ~z

h

= ~z

(~p)

h

2 V

~p

h

,

~p = 2; 3, respetively. Table 3.1 shows the data of the adaptive re�nement

using the weighted indiators j~�

(2)

K

j. It inludes the number of elements, the

true error in the funtional, J(u) � J(u

h

), the omputed approximate error

representation

~

E

(2)




and its e�etivity index �

(2)

=

~

E

(2)




=J(e) and the e�etivity

indies �

(i)

=

~

E

(i)




=J(e), i = 1; 3.

We see that, although on the oarser meshes the e�etivity index �

(2)

still

shows some variation, the quality of the omputed error representation formula

is very good, i.e. �

(2)

� 1. Indeed, already after �ve re�nement steps it is very

lose to one.

For omparison, the next olumn of the table shows the respetive e�e-

tivity indies �

(3)

=

~

E

(3)




=J(e) for the dual solutions omputed with pieewise

polynomials of degree three, i.e. ~z

(3)

h

2 V

3

h

. We see that here

~

E

(3)




and

~

E

(2)




result in omparably good error estimation; on some re�nement levels, espe-
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DG(1) dual solution, patchwise extrapolated
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DG(3) dual solution
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j

J

(

u

)

�

J

(

u

h

)

j

# elements

Figure 3.1: Ringleb ow problem, J(u)=horizontal fore. Convergene of the

error on meshes produed using weighted indiators j~�

(~p)

K

j, with ~p = 1; 2 and 3.

ially on oarse meshes,

~

E

(3)




gives an even more aurate error estimation than

~

E

(2)




. However, for appliations, this di�erene in quality of the error estimation

is not signi�antly enough to justify the additional amount of work and time

required for the omputation of the dual solution ~z

(3)

h

2 V

3

h

in omparison to

the omputation of ~z

(2)

h

2 V

2

h

.

Additionally these results are ompared with the error estimation based on

a very heap variant of omputing the dual solutions. For this variant the dual

solution is omputed on the same mesh T

h

using polynomials of the same degree

as for the primal solution, i.e. ~z

h

2 V

1

h

. Then a higher order reovery is taken

resulting in a numerial dual solution ~z

h

2 V

2

2h

. In the last olumn of Table

3.1 we show the e�etivity indies �

(1)

of the approximate error representation

evaluated using ~z

h

2 V

2

2h

. We see that here the error estimation is far less

aurate than in the ase of ~z

h

2 V

2

h

.

Nevertheless, the meshes produed using the weighted indiators j~�

(1)

K

j are

as eÆient for evaluating the target funtional as the meshes produed using the

weighted indiators j~�

(2)

K

j and j~�

(3)

K

j. This an learly be seen in Figure 3.1 that

shows the onvergene of the target funtional evaluated for numerial solutions

omputed on adaptively re�ned meshes produed using the weighted indiators

j~�

(~p)

K

j, for ~p = 1; 2 and 3.

If not stated di�erently the dual solution will always be z

h

2 V

2

h

in the

following. This provides a good ompromise between aurate a posteriori error

estimation and the omputational expense of omputing the dual solution.



Chapter 4

Numerial examples of

adaptive mesh re�nement

and a posteriori error

estimation

This hapter provides a olletion of several numerial examples overing a

wide range of di�erent hyperboli problems: simple salar and linear problems

as well as omplex nonlinear problems pertained to the 2D ompressible Euler

equations. All examples illustrate aspets of adaptive mesh re�nement and a

posteriori error estimation for hyperboli problems. The variety of problems

allows a deep insight into the mehanism of information transport, soures and

transport of errors and the adaptive strategy that is employed to redue the

error measured in terms of spei� target funtionals.

The numerial examples highlight the advantages of designing an adaptive

�nite element algorithm based on the weighted error indiators j~�

K

j in ompar-

ison with traditional re�nement strategies whih do not require the solution of

the dual problem (3.3). From (3.17), we reall the weighted indiator j~�

K

j with

~�

K

=

Z

K

R(u

h

) ~z

h

dx+

Z

�K

r(u

h

) ~z

+

h

ds�

Z

K

"ru

h

� r~z

h

dx: (4.1)

It onsists of the �nite element residuals, see (3.10), multiplied by terms of

the approximate dual solution ~z

h

. Meshes produed using this indiator are

spei�ally tailored to the eÆient omputation of the quantity of interest, J(u).

The traditional re�nement involves the use of ad ho indiators that either

inlude residuals of the solution or simple smoothness information like gradients

or seond derivatives of the solution, only. Here, we onsider the ad ho error

indiator

�

adho

K

= khR(u

h

)k

L

2

(K)

+ kh

1=2

r(u

h

)k

L

2

(�K)

; (4.2)
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whih stems from a Type II a posteriori error analysis, f. [34℄.

In the following and if not stated di�erently, the primal problem will be

approximated with disontinuous pieewise bilinear funtions, i.e. u

h

2 V

1

h

and

the dual problem will be approximated by disontinuous pieewise biquadrati

funtions, i.e. ~z

h

2 V

2

h

. Furthermore, we note that all omputations are per-

formed with the �xed fration mesh re�nement algorithm with re�nement and

dere�nement frations set to 20% and 10%, respetively.

We begin this olletion of numerial examples by onsidering several in-

trodutive test ases inluding salar linear and nonlinear hyperboli problems.

For these examples it is easy to trak paths of information and error transport

and to understand the struture of the dual solution and the resulting adaptive

mesh re�nement. We then proeed with nonlinear hyperboli systems inlud-

ing 2D ompressible Euler ow omputations around airfoils at the end of this

hapter. In the following, we give a short overview of the examples.

4.1 Linear advetion equation. Simple introdutive example illustrating basis

of information and error transport and the adaptive re�nement tailored to

the eÆient omputation of an weighted integral over the outow bound-

ary. Comparison of meshes produed using ad ho and weighted indiator.

4.2 1D invisid Burgers equation in (x; t) plane. Solution inludes shoks.

Target quantity is a point value. The approximate error representation is

sharp whereas the Type I error bound largely overestimates the error. The

meshes produed using weighted indiators are signi�antly more eÆient

than those produed using ad ho indiators. Here, the omparison is

based on number of elements as well as on pu time.

4.3 Bukley-Leverett equation, an equation with non-onvex ux. Solution to

Riemann problem inludes shok and rarefation wave. Target funtional

is a point evaluation. Comparison of meshes produed by ad ho and

weighted indiator.

4.4 1D ompressible Euler equation. Shok-tube problem. Dual solution to

point evaluation onsists of three spikes orresponding to the three har-

ateristi diretions of this hyperboli system. Comparison of meshes pro-

dued by ad ho and weighted indiator.

4.5 2D ompressible Euler equation. Several examples inluding smooth solu-

tions (Ringleb ow problem), solutions with shoks (supersoni ow past a

wedge), and sub-, trans- and supersoni ows around airfoils. For a more

detailed overview of these examples, see the beginning of Setion 4.5.

We note that in some of the examples, mainly in the salar problems, the on-

vergene of the target quantities under adaptive re�nement is displayed beyond

relevant error sizes. These examples should be regarded as model problems only,

explaining and illustrating the main ingredients of the approah. However, the

airfoil omputations in the last subsetion are performed until a relevant size

(1% - 5%) of the relative error in the target quantity is obtained.
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(a) (b)

Figure 4.1: (a) Vetor �eld �; (b) Isolines of primal solution.

4.1 Linear advetion equation

In this �rst example we onsider the linear hyperboli equation

� � ru = f in 
;

u = g on �

�

;

with 
 = [0; 2℄� [0; 1℄ � R

2

and advetion diretion � =

~

�

j

~

�j

, where

~

�(x; y) =

�

(y; 1� x); for x < 1;

(2� y; x� 1); otherwise;

the vetor �eld is displayed in Figure 4.1(a). Furthermore, we presribe the

boundary value funtion g on the inow boundary to be

g(x; y) =

�

1; for (x; y) 2 [

1

8

;

3

4

℄� f0g;

0; otherwise:

The solution, see the isoline plot in Figure 4.1(b), inludes two disontinuities

originating from the two jumps of the boundary funtion that are transported

along the harateristi diretions given by the vetor �eld �.

Suppose that we are interested in the values of the solution on part

1

4

< y < 1

of the right outow boundary. We set the target funtional J(u) to be

J(u) =

Z

�


+

u ds;

where  is hosen to be a smooth weight funtion

 (x; y) =

�

exp

�

(

3

8

)

�2

� ((y �

5

8

)

2

�

3

8

)

�2

�

; for (x; y) 2 f2g � (

1

4

; 1);

0; otherwise.

In this ase also the orresponding dual solution is smooth, see Figure 4.2.

Thereby, the numerial dual solution ~z

h

is a very good approximation to the

exat dual solution z. This results in an approximate error representation

~

E
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Figure 4.2: Isolines of the dual solution.

that even on oarse meshes gives very sharp a posteriori error estimation of the

true error in the target funtional.

Figure 4.3 shows the meshes and the respetive numerial solutions gener-

ated using both the ad ho error indiator �

adho

K

and the weighted error indiator

j~�

K

j. In Figure 4.3() we see that the re�nement due to the ad ho indiator

takes plae in the neighborhood of the two disontinuities of the solutions re-

sulting in a very good resolution of both jumps, see Figure 4.3(a). In ontrast

to that, the mesh produed using the weighted indiator, see Figure 4.3(d), is

re�ned in the neighborhood of one of the jumps only, but it is totally unre�ned

at the position of the seond jump. Thereby, the �rst jump in the orrespond-

ing numerial solution, see Figure 4.3(a), is properly resolved but the solution

is very inaurate near the seond jump, thereby leading to very large residuals.

However, these residuals do not ontribute to the error in the target funtional

as the residuals in the error representation (3.8) are multiplied by loal weights

involving the dual solution that in turn are zero at the position of the seond

jump. This orresponds to the fat that the error of the solution in the neigh-

borhood of the seond jump does not belong to the domain of inuene of the

target funtional and thus does not a�et the error in the target funtional.

Comparing the two meshes shown in Figure 4.3 it is obvious that, in terms

of number of elements, the mesh produed using weighted indiators is more

eÆient for aurately omputing the value of the target funtional than the

mesh produed using the ad ho indiator. Indeed, although the number of

elements of the mesh in Figure 4.3(d) is less than half of the mesh in Figure

4.3(d), the numerial solutions on the two meshes have approximately the same

error in the target funtional. But, we need to emphasise, that for generating

the mesh produed using the weighting indiators, an approximate dual prob-

lem, see (3.14), must be solved numerially for eah adaptive re�nement step.

Given, that for this example, both, the primal and the dual problem, are linear

problems, and the dual problem is solved with higher order than the primal one,

in our ase ~z

h

2 V

2

h

when u

h

2 V

1

h

, the omputational ost of solving the dual

problem represents a signi�ant proportion of the total time required.

In order to provide an objetive omparison we additionally measure the time

needed to produe the meshes and solutions shown in Figure 4.3. This inludes

the omputation of the primal solutions as well as the solution of the dual
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(a) (b)

() (d)

Figure 4.3: Weighted boundary integral for the linear advetion equation: (a)

Numerial solution on mesh () onstruted using ad ho error indiator with

11345 elements (jJ(e)j = 1:088 � 10

�7

); (b) Numerial solution on mesh (d)

onstruted using weighted error indiator with 5087 elements (jJ(e)j = 1:096�

10

�7

).

problems needed for evaluating the weighted indiators. The present example

gives a omparison of 58.6se for the meshes produed using weighted indiators

versus 63.4se for the meshes produed using the ad ho indiator.

4.2 1D invisid Burgers equation

In this seond example we onsider the simplest salar nonlinear hyperboli

problem, the unsteady 1D invisid Burgers equation,

�

t

u+ u�

x

u = 0:

Writing F (u) = (

1

2

u

2

; u) and r = (�

x

; �

t

)

T

this problem may be represented as

a stationary problem in the (x; t) plane by

r � F (u) = �

t

u+ �

x

�

1

2

u

2

�

= 0;

f. (2.2). We onsider this problem on the (spae-time) domain (x; t) 2 
 =

[0; 1℄

2

subjet to the initial ondition

u(x; 0) = u

0

(x) =

8

>

>

<

>

>

:

1; for x � 0:1;

�2:5x+ 1:25; for 0:1 < x � 0:3;

0:5; for 0:3 < x � 0:7;

0; for x > 0:7:
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0

0.5

1

0 0.2 0.4 0.6 0.8 1

Figure 4.4: Burgers equation. Initial funtion u

0

(x).

(a) (b)

Figure 4.5: Point evaluation for the Burgers equation: (a) Isolines of the exat

(primal) solution; (b) Isolines of the dual solution.

This funtion inludes a linearly delined part and a disontinuity separated by

onstant states, see Figure 4.4.

Figure 4.5(a) shows the struture of the exat solution: as time inreases the

slope of the linear delined part of the solution inreases until a shok develops

that moves to the right. This shok eventually merges with a seond right

moving shok that originates from the initial disontinuity.

Now we onsider the point x = 0:875 at time t = 0:875 whih is plaed be-

tween the two shoks just a few moments before the two shoks merge. Assume

that the task is to deide numerially whether one, two or none of the shoks

have already rossed this point at this spei� time and alulate the value of

the solution at this point to high auray, i.e. we take the target funtional to

be the evaluation of the solution at the point of interest, i.e.

J(u) = u(x = 0:875; t = 0:875);

thereby the true value of the funtional is given by J(u) = 0:5.

In Table 4.1, we demonstrate the performane of the adaptive algorithm.

Here, we show the number of elements, the true error in the target funtional,

J(e), the omputed error representation

~

E




=

P

K

~�

K

, the omputed Type I a
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(a) (b)

Figure 4.6: Point evaluation for the Burgers equation problem. (a) Mesh on-

struted using ad ho error indiator with 25603 elements (jJ(e)j = 8:605 �

10

�6

); (b) Mesh onstruted using weighted error indiator with 18001 elements

(jJ(e)j = 9:316� 10

�12

).

posteriori error bound

~

E

j
j

=

P

K

j~�

K

j and the e�etivity indies �

1

=

~

E




=J(e)

and �

2

=

~

E

j
j

=jJ(e)j. We see that initially on the oarsest mesh the quality of

the omputed error representation formula

~

E




is poor, in the sense that �

1

is not

lose to one; however, as the mesh is re�ned the e�etivity index �

1

approahes

unity. On the other hand, we see that the Type I error bound

~

E

j
j

is not

sharp, in the sense that it largely overestimates the true error in the omputed

funtional. We reall that the Type I error bound

~

E

j
j

was derived from the error

representation formula by simply employing the triangle inequality. In fat, the

loss of sharpness of

~

E

j
j

is attributed to the loss of inter{element anellation

of the loal terms ~�

K

, when the triangle inequality is employed. Thereby, it

is lear that any further bounding performed en route to deriving a Type II

a posteriori estimate will further adversely a�et the quality of the omputed

error bound in the sense that the size of the resulting e�etivity index will be

even larger than �

2

.

In Figures 4.6(a) and (b) we show the solutions on meshes produed using the

ad ho and the weighted indiators, respetively. We see that in Figure 4.6(b)

there is almost no re�nement at the position of the two shoks. Both shoks

and also the margin of the linear part of the solution are not well resolved.

Most of the re�nement takes plae upstream of and in the neighborhood of the

point of interest in an area that oinides with the support of the dual solution,

see Figure 4.5(b). The shoks in the neighborhood of this point are resolved

suÆiently enough so that the error at these shoks does not a�et the solution

at the point of interest.
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# el. J(e)

~

E




�

1

~

E

j
j

�

2

1024 9.625e-02 8.457e-03 0.09 3.061e-01 3.18

1558 6.151e-02 7.822e-02 1.27 2.725e-01 4.43

2551 -9.866e-03 -1.106e-02 1.12 6.092e-02 6.17

3985 -3.016e-04 -3.756e-04 1.25 2.814e-03 9.33

6328 -2.318e-07 -2.695e-07 1.16 3.917e-06 16.90

10558 -4.377e-10 -4.448e-10 1.02 1.599e-08 36.54

18001 -9.316e-12 -9.443e-12 1.01 8.448e-11 9.07

Table 4.1: Point evaluation for the Burgers equation: Adaptive algorithm.
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Figure 4.7: Point evaluation for the Burgers equation problem. (a) Error in J(�)

vs. number of elements; (b) Error in J(�) vs. time in seonds.
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Finally, in Figure 4.7, we ompare the true error in the omputed funtional

J(�) using the two mesh re�nement strategies. Here, the true error J(e) is plot-

ted against the number of elements in Figure 4.7(a) and against the time needed

for solving the problems in Figure 4.7(b). The time measurement inludes the

time required for solving the primal problems and for evaluating the error indi-

ators as well as the time needed for the omputation of the approximate dual

solution ~z

h

and the evaluation of the approximation error representation when

the meshes are produed using the weighted indiators.

Here, we learly observe the superiority of the weighted a posteriori error

indiators; on the �nal mesh the true error in the linear funtional is six orders

of magnitude smaller than jJ(e)j omputed on the sequene of meshes produed

using the ad ho indiator.

4.3 Bukley-Leverett equation

The Bukley-Leverett equation [12℄ represents a simple model for two phase ow

in a porous medium. An appliation is the simulation of an oil reservoir. The

equation is given by

�

t

u+ �

x

f(u) = 0;

with the non-onvex ux funtion

f(u) =

u

2

u

2

+ a(1� u)

2

:

The solution to Riemann problems for salar equations with onvex uxes, like

Burgers equation, inludes either a shok or a rarefation wave. Equations with

non-onvex uxes, like the Bukley-Leverett equations, might involve both. A

standard example is the Riemann problem

u(0; x) = u

0

(x) =

�

1 for x � 0;

0 for x > 0;

modeling pure water (u = 1) for x < 0 and pure oil (u = 0) for x > 0 at initial

time t = 0. The Bukley-Leverett equation simulates the replaement of the

oil by water that is pumped from the left. This leads to a shok front at the

interfae between the oil and the water, followed by a rarefation wave, that

indiates for the time t > 0 a spei� proportion of water and oil in the porous

medium. The rarefation wave in x > 0 exists for all time t > 0, hene u < 1 for

all (x; t) 2 R

+

�R

+

, simulating the e�et that the total amount of oil may never

be reovered by this `seondary reovery' tehnique. The exat solution to this

problem an be determined analytially, see Appendix B.1 for more details.

We hoose the omputational domain to be (x; t) 2 
 = [�1; 1℄ � [0; 1℄, i.e.

we ompute the Riemann problem starting at the initial time t = 0. Here, the

target funtional is taken to be the value of the solution at point x = 0:5 at

�nal time t = 1, i.e.

J(u) = u(0:5; 1):
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Figure 4.8: Solution to Riemann problem of the Bukley-Leverett equation.
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Figure 4.9: Point evaluation for the Riemann problem of the Bukley{Leverett

equation. (a) Mesh onstruted using ad ho error indiator with 4532 elements

(jJ(e)j = 4:064 � 10

�4

); (b) Mesh onstruted using weighted error indiator

with 3845 elements (jJ(e)j = 1:953� 10

�5

).

The dual solution orresponding to this point value onsists of a `spike' orig-

inating from the point of interest. This spike is transported in the opposite

diretion to the harateristis within the support of the rarefation wave until

it is `squeezed' into the initial disontinuity of the primal problem. No matter

how far the mesh is re�ned in the neighborhood of the point (0; 0) where the

disontinuity in the primal problem enters 
, the dual solution an never be

numerially resolved there. This explains why for this example the approxi-

mate error representation does not provide as good error estimation as for the

previous example. Nevertheless, the mesh, see Figure 4.9(b), produed using

the weighted indiators turns out to be muh more eÆient than the mesh, see

Figure 4.9(a), produed using the ad ho indiators.
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0

1

-1 0 1 2

Figure 4.10: 1D Euler equation, shok-tube problem: Density %(x; 1).

4.4 1D ompressible Euler equation

In this setion we onsider the one dimensional time-dependent Euler equations

�

t

0

�

%

%v

e

1

A

+ �

x

0

�

%v

%v

2

+ p

v(e+ p)

1

A

= 0; (4.3)

where %, v and e represent the density, the veloity vetor and the total energy

per unit volume, respetively, see Appendix A.1 for more details. In partiular,

we look at the Riemann problem with the following initial ondition

u(0; x) = u

0

(x) =

�

u

L

; if x < 0;

u

R

; if x > 0;

(4.4)

with (%

L

; v

L

; p

L

) = (1; 0; 1) and (%

R

; v

R

; p

R

) = (0:125; 0; 0:1). The exat solution

to this Riemann problem, that is also referred to as Sod's test problem or shok{

tube problem, is known and is given in analytial form. The solution inludes a

left rarefation wave, a ontat disontinuity and a right shok, see Figure 4.10

and f. Appendix B.2 for a full desription.

Assume that we are not interested in the whole solution but that we only

are partiularly interested in the height of the intermediate state between the

ontat disontinuity and the tail of the rarefation wave. Hene we take the

target funtional to be J(u) = %(0:25; 1): the value of the solution at a point

inside this state. The question is, to what extend the features of the solution

like the shok and ontat disontinuity must be resolved to obtain an exat

value for this intermediate state.

Figure 4.11(a) shows the mesh produed using the ad ho indiators. As

expeted, most of the re�nement takes plae at the position of the shok. Fur-

thermore, there is some re�nement in the ontat disontinuity and at the head

of the rarefation wave. In omparison to that in Figure 4.11(b) we show the

mesh produed using the weighted indiators. This mesh shows some kind of

ombination of features of the primal and the dual solution. The dual solution,

see Figure 4.11(), orresponding to this point evaluation onsists of `spikes'

that are transported in the opposite diretion of the three harateristis, or-

responding to the eigenvalues v and v � , where  =

p

p=% denotes the speed

of sound.
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(a)

(b)

()

Figure 4.11: Point evaluation of the shok-tube problem for the 1D Euler equa-

tion: (a) Mesh onstruted using ad ho error indiator with 12578 elements

(jJ(e)j = 3:156 � 10

�5

); (b) Mesh onstruted using weighted error indiator

with 10310 elements (jJ(e)j = 6:630� 10

�6

); () Dual solution.
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4.5 2D ompressible Euler equations

Finally, we are onerned with the steady two{dimensional ompressible Euler

equations, see (2.2) and (2.4). In the following, we give a olletion of several

di�erent problems governed by these equations, inluding smooth solutions and

solutions with shoks like, for example, ows around airfoils. These problems

will be regarded in ombination with several di�erent target funtionals suh as

point evaluations and drag and lift oeÆients. In the following, we give a short

overview of the examples.

4.5.1 Ringleb ow problem. Computation of the horizontal fore omponent

exerted on the hannel walls. Comparison of meshes produed using ad

ho and weighted indiator and with meshes spei�ally designed by hand.

Comparison with mesh produed by weighted indiators orresponding to

a di�erent target quantity, namely a point evaluation.

4.5.2 Supersoni ow past a wedge inluding an inlined shok. Computation of

density values in front and behind the shok. Consequenes on the quality

of the approximate error representation. Comparison of meshes produed

using ad ho and weighted indiator.

4.5.3 Sub-, trans- and supersoni ows around airfoils. Computation of drag

and lift oeÆients and single pressure point values on pro�le. For a more

detailed overview of these examples see beginning of Setion 4.5.3.

4.5.1 Ringleb ow problem

First, we onsider the Ringleb ow problem, f. [47℄, that we already onsid-

ered in Setion 3.6. The solution to this problem is smooth and represents a

transoni ow in a hannel, see the omputational domain in Figure 4.12. The

left and right boundaries may be onsidered as onsisting of reetive walls, the

bottom and the top boundary are inow and outow boundaries, respetively.

All boundaries are aligned to the streamlines in the `hodograph plane' variables,

suh that the solution to this smooth and irrotational problem is known and

may be obtained via hodograph transformation, see [13℄ or Appendix B.5, for

example.

Horizontal fore omponent

At �rst we selet the target funtional to be the horizontal fore omponent

exerted on the hannel walls. More preisely, we hoose

J(u) =

Z

wall

( � n)p ds; (4.5)

where  = (1; 0), n denotes the unit outward normal vetor to the boundary

and p is the pressure; in this ase, the true value of the funtional on the exat

geometry is given by J(u) = �0:5744441759095. We note that in Setion 3.6
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Figure 4.12: (a) Geometry of the Ringleb ow problem; (b) Mesh onstruted

by re�ning elements near the hannel walls with 3056 elements; handmade mesh

for omputing the horizontal fore of the ow exerted on the wall, see (4.5), with

jJ(u)� J(u

h

)j = 2:789� 10

�5

.

we already onsidered this problem subjet to the same target funtional. In

Table 3.1 we already showed the performane of our adaptive algorithm and a

posteriori error estimation applied to this problem.

Here, we now show the meshes produed using both the ad ho error india-

tor �

adho

K

and our weighted error indiator j~�

K

j, see Figures 4.13(a) and 4.13(b),

respetively. We see that the mesh onstruted using �

adho

K

is largely onen-

trated in the region near the supersoni region at the right{hand wall, with

further almost uniform re�nement of the rest of the omputational domain. In

ontrast to that the mesh onstruted using the weighted error indiator j~�

K

j,

see Figure 4.13(a), is onentrated near the walls of the hannel. This in fat is

due to the dual solution being large in the viinity of the solid hannel walls.

Finally, in Figure 4.14 we ompare the true error in the omputed funtional

J(�) using the two mesh re�nement strategies. As before, we learly see that

our weighted a posteriori error indiator produes more eonomial meshes than

when the traditional ad ho error indiator is employed; on the �nal mesh the

true error in the omputed funtional is almost two orders of magnitude smaller

when the former error indiator is used. Additionally, in Figure 4.14 we also

ompare the performane of our weighted a posteriori error indiator j~�

K

j with a

mesh re�nement algorithm whih only re�nes elements adjaent to the hannel

walls, f. Figure 4.12(b). Given the hoie of the target funtional, and the

struture of the meshes produed using j~�

K

j, one may expet that this approah

should work quite well without the need to solve the dual problem. However,

we see that after an initial redution in the error in the omputed funtional

J(�), jJ(u) � J(u

h

)j beomes O(1) under additional mesh re�nement. This is

attributed to the fat that while it is important to re�ne the mesh near the
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(a) (b)

Figure 4.13: Ringleb ow problem. Horizontal fore. (a) Mesh onstruted

using ad ho error indiator with 3056 elements (jJ(u)�J(u

h

)j = 2:1622�10

�5

for J(u) as in (4.5)); (b) Mesh onstruted using dual error indiator with 2534

elements (jJ(u)� J(u

h

)j = 1:7504� 10

�7

).
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Figure 4.14: Ringleb ow problem. Horizontal fore. Convergene of jJ(u) �

J(u

h

)j using the weighted and ad ho error indiators, as well as simply re�ning

elements near the hannel walls.
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# el. J(e)

~

E




�

1

32 -5.082e-04 -4.769e-04 0.94

53 -9.473e-05 -8.138e-05 0.86

98 -6.732e-05 -6.085e-05 0.90

164 -3.910e-05 -3.613e-05 0.92

257 -2.339e-05 -2.122e-05 0.91

425 -1.226e-05 -1.131e-05 0.92

710 -3.856e-06 -3.539e-06 0.92

1205 -5.693e-06 -5.540e-06 0.97

1961 -3.593e-06 -3.544e-06 0.99

3323 -1.261e-06 -1.240e-06 0.98

Table 4.2: Ringleb ow problem, J(u) = �(�0:4; 2). Data of adaptive re�nement

by weighted indiators j~�

K

j.

hannel walls in order to redue the error in the target funtional J(�), some

mesh re�nement is also required in the interior of the omputational domain.

Here, the weighted a posteriori error indiators j~�

K

j give us information about

not only where to re�ne the mesh, but also by how muh; this leads to the

onsistent redution in jJ(u) � J(u

h

)j observed in Figure 4.14 as the �nite

element mesh is adaptively re�ned.

Point evaluation

As seond and more hallenging test ase we hoose the target funtional to be

J(u) = �(�0:4; 2):

We note that this target funtional is singular in the sense that it leads to a

onsiderably rough dual solution that mainly onsists of a single spike trans-

ported bakwards with respet to the diretion of the ow. Given that this dual

solution is obviously hard to approximate numerially it is remarkable that the

approximate error representation

~

E




based on the numerial dual solutions gives

an error estimation in terms of the onsidered point value that is very lose to

the exat error, f. Table 4.2.

In Figure 4.15 we show the adaptive mesh produed using the weighted in-

diators. Comparing this mesh with the mesh in Figure 4.13(b) we observe

that while the underlying (primal) problem has remained the same, the di�er-

ent hoie of a target funtional seleted, point evaluation vs. horizontal fore

exerted on the walls, leads to a di�erent dual solution and hene to a ompletely

di�erent mesh.

In ontrast, the ad ho error indiator has no information onerning the

target funtional of interest, and will produe the same mesh irrespetive of the

hoie of J(�), see Figure 4.13(a).
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Figure 4.15: Ringleb ow problem, J(u) = �(�0:4; 2). Mesh onstruted using

weighted indiator.

4.5.2 Supersoni ow past a wedge

In this example we study the formation of an oblique shok when supersoni

ow is deeted by a sharp objet or wedge. Here, we onsider a Mah 3 ow

with inow density � = 1 and pressure p = 1, over a ompression orner of angle

�; this leads to the development of a shok wave at an angle �, f. Figure 4.16.

By employing the Rankine{Hugoniot jump onditions, the analytial solution

to this problem for a given � may be determined , see Appendix B.4 for details.

Here, we selet the wedge angle � = 9:5

Æ

, f. [11℄; thereby, the angle of the

shok is given by � = 26:9308

Æ

. Furthermore, the true solution on the left{ and

right{hand side of the shok, in terms of onserved variables (�; �v

1

; �v

2

; e), are

given by

u

left

=

0

B

B

�

1

3:5496

0

8:8

1

C

C

A

and u

right

=

0

B

B

�

1:6180

5:2933

0:8858

13:8692

1

C

C

A

;

respetively.

In Table 4.3, we show the performane of our adaptive algorithm when the

target funtional is hosen to be the value of the density just in front of the

shok; more preisely, here

J(u) = �(5; 2:05):

As in the previous examples, we again see that the quality of the omputed

error representation formula (3.16) is quite poor on oarse meshes but �

1

tends

to unity, as the mesh is adaptively re�ned. Furthermore, the resulting Type

I a posteriori bound

~

E

j
j

overestimates the true error in the omputed target

funtional by about one{two orders of magnitude.
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Figure 4.16: Geometry for the supersoni ompression orner.

# el. J(u)� J(u

h

)

~

E




�

1

~

E

j
j

�

2

20 -3.428e-01 2.771e-02 -0.08 8.565e-02 0.25

35 -3.194e-01 -4.315e-02 0.14 8.134e-02 0.25

65 -3.320e-01 -6.235e-02 0.19 7.675e-02 0.23

128 -2.666e-01 -1.356e-01 0.51 1.819e-01 0.68

227 -2.164e-01 -1.665e-01 0.77 2.142e-01 0.99

386 -3.272e-03 -8.919e-02 27.26 2.094e-01 63.99

677 1.686e-02 1.077e-02 0.64 5.179e-02 3.07

1175 -5.475e-03 -5.887e-03 1.08 2.130e-02 3.89

1964 -3.383e-04 -3.635e-04 1.07 3.671e-03 10.85

3293 -4.208e-06 -3.837e-06 0.91 3.000e-04 71.30

5516 4.551e-07 5.056e-07 1.11 2.079e-05 45.67

Table 4.3: Supersoni ompression orner, point evaluation of the density in

front of the shok: Data of adaptive re�nement by weighted indiators j~�

K

j.
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# el. J(u)� J(u

h

)

P

K

~�

K

�

1

P

K

j~�

K

j �

2

20 2.548e-01 3.952e-02 0.16 9.546e-02 0.37

35 2.652e-01 -1.728e-02 -0.07 9.185e-02 0.35

68 2.226e-01 -1.148e-02 -0.05 4.927e-02 0.22

134 1.723e-01 6.407e-02 0.37 1.254e-01 0.73

209 1.259e-01 1.007e-01 0.80 1.369e-01 1.09

389 6.044e-02 9.786e-02 1.62 1.180e-01 1.95

650 -1.453e-02 -1.538e-02 1.06 5.050e-02 3.48

1124 5.425e-04 4.530e-03 8.35 3.220e-02 59.36

1997 4.470e-04 3.006e-03 6.73 2.733e-02 61.15

3395 2.888e-04 1.405e-03 4.86 2.401e-02 83.15

Table 4.4: Supersoni ompression orner, point evaluation of the density behind

the shok. Data of adaptive re�nement by weighted indiators j~�

K

j.

We end this example by onsidering the more interesting ase of estimating

the value of the density just behind the shok; to this end, we selet

J(u) = �(5; 2:01):

The performane of the adaptive algorithm in this ase is presented in Table

4.4. Here, we see that while again, the Type I error bound

~

E

j
j

overestimates

the true error by about one{two orders of magnitude, now also the ratio �

1

of

the (omputed) error representation formula

~

E




and J(u) � J(u

h

) no longer

tends to one as the �nite element mesh is re�ned; indeed, here we see that

(ignoring the �rst few re�nement steps) �

1

lies in the interval (0:8; 8:35). This

degradation in the quality of the omputed error representation formula when

the point of evaluation lies behind the shok is attributed to the e�ets of the

linearisation error and the error in the approximation to the Fr�ehet derivative

of the semi-linear form a(�; �) (with respet to its �rst argument), beoming

large in the viinity of the shok. In this ase, the weighting terms (f. (4.1))

involving the dual solution are poorly approximated in the neighbourhood of

the shok, where the residual terms R(u

h

) and r(u

h

), and the shok apturing

term "ru

h

are large, thereby leading to a poor approximation of the true error

in the target funtional J(�). We note that this does not our if the target

funtional is seleted upstream of the shok, sine then the dual solution no

longer interats with the shok; thereby, in the neighbourhood of the shok,

the weighting terms are negligibly small, and the omputed error representation

formula is extremely good, f. above. Thus, in order to guarantee the quality

of the omputed error representation formula, additional omputational work

is required to redue the e�ets of the linearisation error, the error stemming

from the approximation of a

0

[u

h

℄(�; v), v 2 V �xed, and the error generated in

the numerial approximation of the (approximate) dual problem; this is beyond

the sope of this work, but will be onsidered in [25℄.

Notwithstanding this redution in the quality of the omputed error repre-
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Figure 4.17: Supersoni ompression orner, point evaluation of the density

behind the shok. Convergene of jJ(u)�J(u

h

)j using the weighted and ad ho

error indiators.

(a) (b)

Figure 4.18: Supersoni ompression orner, point evaluation of the density

behind the shok (a) Mesh onstruted using dual error indiator with 3395

elements (jJ(u) � J(u

h

)j = 2:888 � 10

�4

); (b) Mesh onstruted using ad ho

error indiator with 3821 elements (jJ(u)� J(u

h

)j = 8:938� 10

�3

).



4.5. 2D COMPRESSIBLE EULER EQUATIONS 97

PSfrag replaements

spike 1

spike 2

spike 3

shok

PSfrag replaements

spike 4

spike 5

spike 6

spike 3

shok

(a) (b)

Figure 4.19: Supersoni ompression orner: z

1

omponent of dual solution for

the supersoni ompression orner for point evaluation of the density (a) in front

of shok (b) behind shok.

sentation formula when the point of interest lies behind the shok, the adaptively

re�ned meshes generated by employing the weighted error indiator j~�

K

j are sig-

ni�antly more eÆient than those produed using the traditional ad ho error

indiator �

adho

K

. Indeed, in Figure 4.17 we learly observe the superiority of the

former error indiator; on the �nal mesh the true error in the omputed fun-

tional is over an order of magnitude smaller when the weighted error indiator

is employed.

Finally, in Figure 4.18 we show the meshes produed using both error in-

diators. Here, we see that the mesh onstruted using �

adho

K

is onentrated

in the neighbourhood of the shok. In ontrast, the mesh produed using the

weighted error indiator j~�

K

j only re�nes the mesh in the viinity of the top

and bottom parts of the shok. To gain insight into the struture of this mesh,

in Figures 4.19(a) and 4.19(b) we show the dual solutions orresponding to the

point evaluation in front and behind the shok, respetively; for larity, here

we show the z

1

omponent of the dual solutions omputed on globally re�ned

meshes. The dual solution orresponding to the point evaluation of the density

in front of the shok, see Figure 4.19(a), onsists of three `spikes', labelled 1,

2 and 3 in Figure 4.19(a), originating from the point of interest. These spikes

are transported upstream along the harateristis orresponding to the three

eigenvalues �v and �v � , with �v =

p

u

2

+ v

2

denoting the veloity of the gas

and  =

p

p=� the speed of sound. We note that the support of this dual

solution does not interset the region of the omputational domain where the

shok in the primal solution is loated. In ontrast, the support of dual solu-

tion orresponding to the point evaluation of the density behind the shok, see

Figure 4.19(b), now intersets the region ontaining the shok; here, we observe

that z

1

has a rather ompliated struture. The two upper spikes of the dual

solution both ross the shok in the neighbourhood of the point of evaluation.
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At their rossing points they again eah split into a further three spikes. These

six spikes orrespond to the three pairs of spikes, labelled spikes 4, 5 and 6 in

Figure 4.19(b); the two spikes in eah pair annot be distinguished on the res-

olution shown, as they are extremely lose together. Spike 3, orresponding to

the same spike in Figure 4.19(a), is reeted o� the inlined wall and rosses the

shok at its bottom part. A omparison of the dual solution in Figure 4.19(b)

and the mesh in Figure 4.18(a) shows that the mesh has only been re�ned along

the support of spikes 3 and 6 in the viinity of the top part of the shok, and

in the neighbourhood of the point where spike 3 rosses the bottom part of the

shok. This demonstrates that it is not neessary to re�ne the entire shok in

this example to gain an aurate evaluation of the target funtional under on-

sideration, but only those parts that inuene the value of the target funtional

either by material transport (eigenvalue �v), or by information transported by

the sound waves (eigenvalues �v � ). Indeed, as seen in Figure 4.17, the meshes

produed using our weighted error indiator are muh more eonomial for om-

puting the value of the target funtional than meshes produed using the ad ho

error indiator.

4.5.3 Flows around airfoils

This setion is dediated to the simulation of gas ows around airfoils. The

fous of these omputations will be the evaluation of some important and phys-

ially relevant quantities of the ows like the drag or lift oeÆient of an airfoil

immersed into the invisid uid as well as density or pressure point values at

the leading edge of the airfoil. As in previous examples we assume that the

two major aims of these simulations are, �rstly, to ompute the spei� physi-

al quantity of the ow to best auray and, seondly, to provide a sharp and

reliable but not too expensive estimation of the error of the numerial solutions

in terms of the quantity of interest.

We have tested many di�erent problems inluding several di�erent airfoils

at several di�erent ow veloities and angles of attak and subjet to several

di�erent target funtionals. However, we present only a small olletion of test

problems, in the following, inluding two di�erent airfoils subjet to subsoni,

transoni and supersoni ow and three di�erent target funtionals suh as the

drag oeÆient, lift oeÆient and a pressure point value at the leading edge of

an airfoil. A short overview of the three test problems are given in the following:

1. Subsoni smooth ow around the NACA0012 airfoil. The drag on meshes

produed using weighted indiators onverges monotone in ontrast to a

`zig-zag' onvergene for the ad ho indiator. The approximate error rep-

resentation is very sharp and an be employed for enhaning the auray

of the omputed quantity. The approximate error representation indiates

that an aurate value of the lift is already attained on the oarsest mesh.

2. Transoni ow around the NACA0012 airfoil with small shok adjaent

the airfoil. Computation of the drag oeÆient. Despite the disontinuity

of the solution the approximate error representation is still very sharp.
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Figure 4.20: Subsoni NACA0012 ow: Mah number isolines M =

i

100

, i =

1; 2; : : : .

3. Supersoni ow around the BAC3-11 airfoil. Computation of pressure

value at leading edge. Meshes produed using weighted indiators are

muh more eÆient than ad ho re�ned meshes or handmade meshes that

are speially designed for the omputation of the spei� pressure value.

Due to the bow shok and the singular target funtional the approximate

error representation is not as good as in previous examples.

Subsoni ow around the NACA0012 airfoil

In this �rst example, we onsider the subsoni ow around a NACA0012 airfoil,

f. Figure 2.22 in Setion 2.10.1. The omputational domain 
 is de�ned to

be an annulus with inner boundary representing the geometry of the airfoil and

the outer boundary onsisting of a irle of radius 10 units, see Setion 2.10.

On the outer boundary, we presribe a Mah 0:5 ow at a zero angle of attak,

with far�eld density � = 1 and pressure p = 1. The solution to this problem

onsists of a stritly subsoni ow, symmetri about the x{axis, f. Figure 4.20.

In this example we are interested in omputing the drag and lift oeÆients

de�ned by

J

drag

(u) =

2

�

l��j�vj

2

Z

S

( 

d

� n) p ds; J

lift

(u) =

2

�

l��j�vj

2

Z

S

( 

l

� n) p ds;

respetively. Here, S denotes the surfae of the airfoil represented by g

�

de�ned

in (2.54),

�

l its hord length (equal to one), �v and �� denote the referene (or free-

stream) veloity and density, respetively, and

 

d

=

�

os(�) � sin(�)

sin(�) os(�)

��

1

0

�

;  

l

=

�

os(�) � sin(�)

sin(�) os(�)

��

0

1

�

;
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# el. J(u)� J(u

h

)

~

E




�

1

~

E

j
j

�

2

39 -3.902e-02 -2.729e-02 0.70 2.970e-02 0.76

66 -2.005e-02 -5.419e-03 0.27 1.035e-02 0.52

123 -1.339e-02 -1.540e-03 0.11 9.735e-03 0.73

210 -8.916e-03 -4.277e-03 0.48 9.144e-03 1.03

357 -4.212e-03 -3.237e-03 0.77 7.251e-03 1.72

582 -1.574e-03 -1.427e-03 0.91 3.542e-03 2.25

948 -5.494e-04 -5.264e-04 0.96 1.456e-03 2.65

1584 -2.270e-04 -2.238e-04 0.99 5.701e-04 2.51

2583 -9.428e-05 -9.288e-05 0.99 2.301e-04 2.44

4218 -4.758e-05 -4.573e-05 0.96 9.462e-05 1.99

6852 -2.303e-05 -2.082e-05 0.90 4.241e-05 1.84

Table 4.5: Subsoni NACA0012 ow. Adaptive algorithm for the evaluation of

the drag oeÆient.

where � denotes the angle of attak. We note that sine the pressure p is

derived from the onserved variables (�; �u; �v; �E) using the equation of state

(2.5), both target funtionals J

drag

(�) and J

lift

(�) are nonlinear. Given that the

angle of attak � = 0, the true value of both target funtionals J

drag

(�) and

J

lift

(�) are known to be exatly zero.

Let us �rst onsider the ase of estimating the drag on the surfae of the

airfoil, i.e. when J(�) � J

drag

(�). To this end, in Table 4.5 we show the perfor-

mane of our adaptive algorithm; here we see that the quality of the omputed

error representation formula is very good, with �

1

� 1 even on relatively oarse

meshes. Furthermore, the Type I a posteriori error bound

~

E

j
j

is sharper for

this smooth problem; here,

~

E

j
j

overestimates the true error in the omputed

funtional by about a fator 2{3, only.

The meshes produed using both our weighted error indiator j~�

K

j and the

ad ho error indiator �

adho

K

are shown in Figure 4.21. Here, we see that both

meshes are fairly similar in harater, in the sense that most of the re�nement

is onentrated in the neighbourhood of the leading and trailing edges of the

airfoil. However, we see that the mesh designed by the weighted error indiator

is also re�ned along the upper and lower surfaes of the airfoil. These extra

regions of re�nement are introdued as a result of the weighting terms present

in the error indiator j~�

K

j, f. (4.1). Indeed, in Figure 4.22, we see that while

there is a singularity in the dual solution at the leading edge of the airfoil, whih

is transported upstream along the harateristi with eigenvalue �v, ~z

1

also has

large gradients around the whole of the geometry.

In Figure 4.23 we ompare the true error in the omputed funtional J(�)

using the two mesh re�nement strategies. First we note that here the onver-

gene of jJ(u)� J(u

h

)j on the sequene of meshes produed with the weighted

error indiator is muh `smoother' than on the meshes designed with the ad

ho error indiator. Indeed, on �ner meshes the error is even monotone allowing
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Figure 4.21: Subsoni NACA0012 ow. Computation of the drag oeÆient.

(a) Mesh onstruted using ad ho error indiator with 6567 elements (jJ(u)�

J(u

h

)j = 1:086 � 10

�4

); (b) Mesh onstruted using dual error indiator with

6852 elements (jJ(u)� J(u

h

)j = 2:082� 10

�5

).

Figure 4.22: Subsoni NACA0012 airfoil. First omponent ~z

1

of the dual solu-

tion for the evaluation of the drag oeÆient.
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Figure 4.23: Subsoni NACA0012 ow. Computation of the drag oeÆient.

Convergene of jJ(u)� J(u

h

)j using the weighted and ad ho error indiators.

# el. J(u)� J(u

h

)

~

E




~

E

j
j

39 3.2e-16 -1.2e-14 1.7e-01

Table 4.6: Subsoni NACA0012 ow. Adaptive algorithm for the evaluation of

the lift oeÆient.

extrapolation of the value of the target funtional in omparison to the `zig{zag'

onvergene of jJ(u)�J(u

h

)j on the meshes designed by �

adho

K

. Again, as in the

previous example, we see that our weighted a posteriori error indiators pro-

due more eonomial meshes than when the traditional ad ho error indiator

is employed, though the di�erene is not as large as in previous examples. This

is due to the fat that in this example the meshes are too similar in harater.

However, the auray of the omputed quantity J(u

h

) an be enhaned by em-

ploying the approximate error representation

~

E




. Indeed,

~

J(u

h

) = J(u

h

) +

~

E




onverges with higher order, f. [34℄, than J(u

h

), see Figure 4.23.

Now we onsider the ase when J(�) � J

lift

(�). The exat value of this target

funtional is known to be J(u) = 0 due to the ow being symmetri around the

x{axis. Sine the oarse omputational mesh is symmetri, also the numerial

solution on that mesh is symmetri yielding an error J(e) � 0 in the target

funtional. This we an see in Table 4.6 that shows the data on the oarsest

mesh with 39 elements. Furthermore, we see that the approximate error repre-

sentation is

~

E




� 0 indiating that the lift oeÆient is orretly approximated

already on the oarsest mesh and no further re�nement is neessary. Note, that

in ontrast to that the Type I error bound

~

E

j
j

is 14 orders of magnitude larger

than

~

E




� 0.
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Figure 4.24: Transoni NACA0012 ow: Pressure isolines.

Transoni ow around the NACA0012 airfoil

In this example, we onsider the transoni ow around a NACA0012 airfoil;

here, we presribe a Mah 0:6 ow at an angle of attak � = 5

Æ

, with far�eld

density � = 1 and pressure p = 1. The ow has a small supersoni region on the

upper surfae of the airfoil; as the ow slows to subsoni a small shok develops,

f. Figure 4.24. Here, we onsider the evaluation of the drag oeÆient on the

surfae of the airfoil, i.e. J(�) � J

drag

(�). On the basis of a �ne grid omputation,

the referene value of the funtional is given by J(u) = 6:88� 10

�3

.

Figure 4.25 shows the meshes generated using both error indiators j�

K

j and

�

adho

K

. Given that the struture of both meshes is very similar in the sense that

they are both largely onentrated in the viinity of the leading and trailing

edges of the airfoil and in the neighborhood of the shok, it is remarkable that

the error in the drag oeÆient is approximately 40% smaller on the mesh

produed using the weighted error indiator than on the mesh (of about 30%

more elements) produed by �

adho

K

. Looking at the meshes in more detail, we

see that the former mesh is less re�ned in the neighborhood of the shok and the

trailing edge than the latter; moreover it shows an additional line of re�nement

upstream of the airfoil and, more prominent, along the upper and lower surfaes

of the airfoil. In Figure 4.26 we ompare the error in the target funtional using

the two re�nement strategies; at all re�nement steps we observe the superiority

of the weighted error indiators.

In Table 4.7 we ollet the data of the adaptive algorithm when employing

the weighted indiators. First we note that on all re�nement steps the orret

sign of the error is predited by the omputed error representation formula E




.

Furthermore, whereas on very oarse meshes the quality of E




is rather poor,

in the sense that �

1

= E




=(J(u) � J(u

h

)) is notieable smaller than one, we

see that already after �ve re�nement steps the omputed error representation

E




provides remarkably sharp error estimation resulting in e�etivity indies

�

1

2 [0:91; 1℄.
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Figure 4.25: Transoni NACA0012 ow. (a) Mesh onstruted using dual er-

ror indiator with 6087 elements (jJ(u) � J(u

h

)j = 9:800 � 10

�5

); (b) Mesh

onstruted using ad ho error indiator with 7863 elements (jJ(u)� J(u

h

)j =

1:656� 10

�4

).

# el. J(u)� J(u

h

)

~

E




�

1

39 -7.065e-02 -2.624e-02 0.37

63 -5.586e-02 -1.889e-02 0.34

105 -3.938e-02 -1.772e-02 0.45

177 -1.964e-02 -1.351e-02 0.69

288 -7.871e-03 -6.190e-03 0.79

483 -3.131e-03 -2.859e-03 0.91

807 -1.234e-03 -1.183e-03 0.96

1347 -5.983e-04 -5.651e-04 0.94

2226 -3.193e-04 -2.916e-04 0.91

3639 -1.601e-04 -1.507e-04 0.94

6087 -9.800e-05 -9.802e-05 1.00

Table 4.7: Transoni NACA0012 ow. Adaptive algorithm for the evaluation of

the drag oeÆient.
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Figure 4.26: Transoni NACA0012 ow. Convergene of jJ(u) � J(u

h

)j using

the weighted and ad ho error indiators.

Supersoni ow around the BAC3-11 airfoil

In this �nal example we study a supersoni ow around a BAC3-11 airfoil; this

unsymmetri airfoil, see Figure 4.27, was originally spei�ed in [2℄. Here, we

onsider a Mah 1.2 ow at an angle of attak � = 5

Æ

, with inow density � = 1

and pressure p = 1.

The solution to this problem inludes two shoks: one loated in front of

the leading edge of the airfoil and one originating from the trailing edge; see

Figure 4.28(a) and also Figure 4.29(b) whih shows a mesh that is re�ned at

the position of the two shoks. Here, Figure 4.28(a) shows the Mah 1 isolines

of the solution; the Mah M = 1 isoline to the left of the airfoil indiates the

position of the �rst shok. The M = 1 isolines that originate from the upper

and lower surfaes of the airfoil represent the transoni lines of the ow. The

ow left of the �rst shok is supersoni; it is simply theM = 1:2 ow presribed

on the inow boundary of the omputational domain. The ow in between the

shok and the transoni lines is subsoni; we note that the leading edge of the

airfoil is loated within this subsoni part of the ow. Finally, the ow behind

the transoni lines is supersoni again.

In this example we take the funtional of interest to be the value of the

pressure at the leading edge, i.e.

J(u) = p(0; 0);

f. Figure 4.27. We note that, as in the ase of estimating the drag and lift

oeÆients of a body immersed in an invisid uid, f. Setions 4.5.3 & 4.5.3,

this funtional is nonlinear as it depends on the pressure. A omputation on a

�ne mesh gives a referene value of J(u) = 2:393.

The struture of the dual solution ~z orresponding to this point evaluation is
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Figure 4.27: Pro�le of the BAC3-11 airfoil. Quantity of interest: pressure p at

leading edge.
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Figure 4.28: Supersoni BAC3-11 ow. (a) Mah 1 isolines of the primal solu-

tion; (b) ~z

1

isolines of dual solution.
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# el. J(e)

~

E




�

1

~

E

j
j

�

2

39 3.188e-01 2.773e-01 0.87 4.288e-01 1.35

63 2.313e-01 -1.501e-02 -0.06 2.003e-01 0.87

114 2.069e-01 7.275e-02 0.35 3.498e-01 1.69

192 7.398e-02 5.404e-02 0.73 2.680e-01 3.62

348 6.425e-02 2.695e-02 0.42 2.120e-01 3.30

609 2.876e-02 1.389e-02 0.48 1.839e-01 6.39

1065 5.066e-03 7.602e-03 1.50 1.171e-01 23.11

1803 3.042e-03 2.868e-03 0.94 1.028e-01 33.78

3045 1.561e-03 2.801e-03 1.79 1.067e-01 68.39

5643 5.790e-04 5.790e-04 1.00 5.551e-02 95.88

Table 4.8: Supersoni BAC3-11 ow. Adaptive algorithm for the point evalu-

ation of the pressure at the leading edge.

displayed in Figure 4.28(b). This �gure illustrates some priniples of information

transport in supersoni as well as in subsoni ow regions. To the right{hand

side of the transoni lines the dual solution is zero as no information, neither by

material transport nor even by information transport due to sound waves, an

enter the subsoni region from the supersoni one. Within the whole subsoni

region the dual solution is non-zero orresponding to the fat that sound waves

an reah the point of evaluation from any point in the subsoni area and that

all numerial errors whih our within this subsoni region an (even though

possibly to a small portion) a�et the value of the solution at the point of eval-

uation. However, the dual solution in the subsoni region is onentrated in a

thin spike that is transported upstream from the point of evaluation in dire-

tion of the ow. This spike orresponds to the path of material transport and

represents the main path of information transport. To the left of the airfoil, this

spike rosses the shok and splits into three spikes while entering the supersoni

region left of the shok. These spikes are transported upstream along the har-

ateristis orresponding to the three eigenvalues �v and �v � . We reall that

the harateristi orresponding to �v represents the path of material transport,

that in this example is given by the line inlined at 5 degrees, whereas the har-

ateristis orresponding to �v �  represent the paths of information transport

due to sound waves.

In Table 4.8 we show the performane of our adaptive algorithm. Here, we

see that on very oarse meshes the quality of the omputed error representation

formula

~

E




is quite poor, in the sense that the e�etivity index �

1

is not lose

to one. However, ignoring the �rst few re�nement steps, we see that �

1

lies in

the interval (0:94; 1:79). Moreover, as in previous examples, we observe that

the Type I error bound

~

E

j
j

overestimates the true error by several orders of

magnitude. Here, the e�etivity index �

2

is even inreasing as the mesh is

re�ned. This learly shows that any error estimate (a Type II error bound, for

example) derived by further bounding

~

E

j
j

will dramatially overestimate the
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Figure 4.29: Supersoni BAC3-11 ow. (a) Mesh onstruted using dual error

indiator with 1803 elements (jJ(u) � J(u

h

)j = 3:042 � 10

�3

); (b) Mesh on-

struted using ad ho error indiator with 13719 elements (jJ(u) � J(u

h

)j =

3:542� 10

�2

).

true error rendering the error estimate useless in pratie.

In Figure 4.29 we show the meshes produed using the weighted and the

ad ho error indiators. Here, we see that the mesh onstruted using �

adho

K

is onentrated in the neighbourhood of the two shoks. In ontrast, the mesh

produed using the weighted indiator j~�

K

j only re�nes the mesh in the viinity

of the point of evaluation and the part of the shok where the spike of the dual

solution, i.e. where the main part of information, rosses the shok. The other

parts of the shok are not resolved, as the numerial error in these regions only

has a small a�et on the auray of the solution at the point of evaluation. Also

there is no re�nement in the viinity of the shok emanating from the trailing

edge of the airfoil; thereby, this shok is not well resolved at all. Nevertheless, the

solution at the leading edge of the airfoil is not a�eted by this as no information

is transported upstream from the trailing edge, loated in a supersoni part of

the ow, to the leading edge, loated in the subsoni region. As in the previous

examples, we see that the adaptively re�ned meshes generated by employing the

weighted error indiator j~�

K

j are muh more eonomial than those produed

using the traditional ad ho error indiator �

adho

K

. Indeed, in Figure 4.30 we

learly observe the superiority of the former error indiator; on the �nal mesh

the true error in the omputed funtional is over two orders of magnitude smaller

when the weighted error indiator is employed.

Motivated by the struture of the mesh generated by the weighted error in-

diator, here we also onsider the performane of an alternative ad ho error

indiator based on a modi�ation of �

adho

K

, whereby only elements in a neigh-

bourhood of a region upstream of the point of interest are marked for re�nement.
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Figure 4.30: Supersoni BAC3-11 ow. Use of the weighted, the ad ho and the

modi�ed ad ho error indiators. Convergene of jJ(u)�J(u

h

)j vs. (a) number

of elements and (b) time in seonds.
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Figure 4.31: Supersoni BAC3-11 ow. (a) Cone C: domain where the modi�ed

ad ho error indiator is ative; (b) Mesh onstruted using the modi�ed ad ho

error indiator with 9516 elements (jJ(u)� J(u

h

)j = 7:924� 10

�3

).

More preisely, we write C to denote the one depited in Figure 4.31(a) with

apex half angle �, loated in the enter of the airfoil with symmetry axes in-

lined at � = 5

Æ

aording to the diretion of the inow. We now de�ne the

modi�ed ad ho indiator �

adho,C

K

as follows:

�

adho,C

K

=

�

�

adho

K

; if entroid(K) 2 C;

0; otherwise:

This modi�ation takes into aount that we are not interested in the ow �eld

in the whole domain, but only in the point value of the pressure at the leading

edge. Thereby, adaptive mesh re�nement is inhibited in the region downstream

of the airfoil inluding the neighbourhood of the shok emanating from the

trailing edge. Furthermore, re�nement of the shok in front of the leading edge

of the airfoil is prevented in regions that are plaed too far above or below

the airfoil sine a low resolution of this shok in these areas is believed to not

signi�antly degrade the auray of the pressure value at the leading edge, f.

Figure 4.29(a). In Figure 4.31(b) we show the mesh produed by employing

�

adho,C

K

with � = 45

Æ

.

Finally, in Figure 4.30 we see that the modi�ed ad ho indiator produes

meshes that are muh more eÆient for omputing the value of the pressure at

the leading edge of the airfoil in omparison to the (unmodi�ed) ad ho indiator

�

adho

K

. Nevertheless, the meshes produed using the weighted indiators are even

more eÆient than those designed by �

adho,C

K

; on the �nal mesh the true error

in the omputed funtional is over an order of magnitude smaller when the

weighted error indiator is employed. We note that the hosen shape and size

of the subdomain C and the resulting modi�ed indiator only represents an
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`attempt' to �nd a reasonable modi�ation of the ad ho indiator �

adho

K

that is

apable of eÆiently omputing the pressure at the leading edge of the airfoil

and to provide a `fair' omparison with the goal{oriented weighted indiator

j~�

K

j. Indeed, the value of the angle � may be hosen di�erently, though a priori

it is unlear whih parts of the shok in front of the leading edge of the airfoil

will inuene the target funtional. The angle � should not be hosen too small

as otherwise the lak of resolution of the shok in front of the leading edge of

the airfoil will impat on the omputed value of the pressure at the point of

interest; on the other hand hoosing � too large may lead to over{re�nement.

In ontrast, the weighted error indiator provides all the neessary information

in order to deide whih regions of the shok should be re�ned, and by what

extent.
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Conlusion

In this work, we have developed the a posteriori error analysis of the adaptive

disontinuous Galerkin �nite element method for systems of nonlinear hyper-

boli onservation laws.

Disretisation: We implemented a disontinuous Galerkin disretisation

for systems of onservation equations inluding the 2D ompressible Euler equa-

tions. This method satis�es both a global and a loal onservation property.

In order to avoid spurious osillations in the viinity of shoks, this method

is enhaned by onsistent shok-apturing terms. Furthermore, we employed

higher order approximations of urved reetive boundaries to avoid unphysial

solutions. For the disontinuous Galerkin method with pieewise polynomials

of degree 1, the DG(1) method, full order of onvergene was obtained when

at least a pieewise quadrati approximation of urved reetive boundaries

was employed. For the solution of the nonlinear problems we employed a New-

ton iteration method. This was found to be superior to pseudo-time iteration

methods as they are omputationally very expensive for stationary ows.

Error estimation: By employing a duality argument, we obtained a resid-

ual-based error representation formula and so{alled weighted or Type I a poste-

riori error bounds with respet to physially relevant quantities of the solution;

typial examples in aero-dynamis inlude the drag or lift of an airfoil, the pres-

sure di�erene between the leading nose and trailing edge of the airfoil or single

density or pressure values on the pro�le of the airfoil. The error representation

inludes the element{residuals multiplied by loal weights involving the solution

of a dual problem. To render the error representation formula omputable we

solved the dual problem numerially resulting in an approximative error repre-

sentation. Numerial experiments overing a wide range of hyperboli problems

have been presented to illustrate the quality of this approximate error represen-

tation formula. Furthermore, it was shown that Type I a posteriori estimates

will in general not be sharp; indeed, in some examples the Type I a posteriori

bound derived from the error representation formula by simply employing the

triangle inequality overestimates the error in the omputed target funtional

by several orders of magnitude. Thereby, any further bounding performed en

route to deriving Type II a posteriori estimates will further adversely a�et the

quality of the omputed error bound.

Adaptivity: Based on the so{alled weighted indiators ourring in the ap-

proximate error representation formula we designed and implemented an adap-

113
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tive algorithm that produes meshes spei�ally tailored to the eÆient om-

putation of the quantity of interest. The performane of the proposed adaptive

strategy was illustrated by a series of numerial experiments. In partiular, we

learly demonstrated the superiority of this approah over standard mesh re�ne-

ment algorithms whih employ ad ho error indiators as well as over hand-made

meshes spei�ally tailored to the eÆient omputation of the target quantity.

Outlook: Several open questions still remain; �rst of all the issue of well{

posedness of the dual problem whih, although being linear, is a non-standard

hyperboli problem in the sense that the oeÆients may be disontinuous.

The only known analytial results, whih hold in the one{dimensional ase,

are those by Tadmor [53℄. In addition, further numerial tests are neessary

onerning the quality of the (approximate) error representation formula in the

presene of shoks, f. [25℄. Another subjet of researh ativity will be the

so{alled multi{target adaptivity, see [28℄, that aims to design meshes for the

eÆient omputation of several di�erent quantities of interest simultaneously,

as for example the drag and lift oeÆient.

Finally, this work may at as basis for further researh in several di�erent

major diretions: Conerning adaptivity the approah proposed in this work

an be extended to hp-methods, see [34℄ and [52℄. Conerning the governing

equations, extensions are possible to all hyperboli and nearly hyperboli prob-

lems like visous ompressible gas ows, for example. Further extensions of

the a posteriori error estimation and adaptive mesh design are possible for the

time-aurate solution of the non-stationary ompressible Euler equations.



Appendix A

Governing equations

Here, we ollet some useful properties of the 1D and 2D ompressible Euler

equations of gas dynamis.

A.1 1D Euler equations

The one-dimensional time-dependent Euler equations are given by

�

t

u+ �

x

f(u) = 0; (A.1)

with the state vetor u = (u

1

; u

2

; u

3

) � (%; %v; e)

T

given in onservative variables

and the ux f(u) = (%v; %v

2

+ p; v(e + p))

T

, where %, v and e represent the

density, the veloity vetor and the total energy per unit volume, respetively.

Here, e onsists of two parts, e = e

kin

+ e

in

, the kineti energy e

kin

=

1

2

%v

2

and the internal energy e

in

= e

in

(p) that, for a ideal gas, sati�es the equation

e

in

= e

in

(p) =

p

(�1)

, with  =



p



v

denoting the ratio of spei� heats, for

example,  = 1:4 for dry air. Hene, the pressure is given by the following

equation of state of an ideal gas

p = ( � 1)(e�

1

2

%v

2

): (A.2)

In quasi-linear form the 1D Euler equations (A.1) are represented by
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(A.3)
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that represents the derivative of the ux f(u) with respet to onservative vari-

ables u

i

, i = 1; 2; 3.

Lemma A.1 (Eigenvalues and eigenvetors of A(u)) The eigenvalues of

the oeÆient matrix A(u) given in (A.3) are

�

1

= v � ; �

2

= v; �

3

= v + ;

with  :=

q

p

%

denoting the speed of sound. The orresponding right eigenvetors

are

r

(1)

=

0

�

1

v � 

H � v

1

A

; r

(2)

=

0

�

1

v

1

2

v

2

1

A

; r

(3)

=

0

�

1

v + 

H + v

1

A

;

with the total spei� enthalpy H and the spei� enthalpy h de�ned by

H =

e+ p

%

=

1

2

v

2

+ h; h =

e

in

+ p

%

; (A.4)

respetively.

Proof: see [54℄ for example. �

A.2 2D Euler equations

The two-dimensional time-dependent version of the Euler equation is given by
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x

1

+ f

2

(u)

x

2

= 0;

with the state vetor u = (u

1

; u

2

; u

3

; u

4

)

T

� (%; %v

1

; %v

2

; e)

T

given in onserva-

tive variables and the uxes

f

1

(u) =

0

B

B

�

%v

1

%v

2

1

+ p

%v

1

v

2

v

1

(e+ p)

1

C

C

A

; f

2

(u) =

0

B

B

�

%v

2

%v

1

v

2

%v

2

2

+ p

v

2

(e+ p)

1

C

C

A

;

the veloity vetor v = (v

1

; v

2

)

T

and the pressure p = ( � 1)(e�

1

2

%v

2

).

In quasi-linear form the stationary 2D Euler equations are given by

A

1

(u)u

x

1

+A

2

(u)u

x

2

= 0;

with the oeÆient matries A

i

(u) =

�f

i

�u

, i = 1; 2, where

A

1

(u) =

0

B

B

�

0 1 0 0

�v

2

1

+

1

2

( � 1)V

2

(3� )v

1

�( � 1)v

2

 � 1

�v

1

v

2

v

2

v

1

0

v

1

�

1

2

( � 1)V

2

�H

�

H � ( � 1)v

2

1

�( � 1)v

1

v

2

v

1

1

C

C

A

;

(A.5)
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A

2
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0 0 1 0
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1

0
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2

( � 1)V
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�( � 1)v
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(3� )v
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 � 1
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2

�

1

2

( � 1)V

2

�H

�

�( � 1)v

1

v

2

H � ( � 1)v

2

2

v

2

1

C

C

A

:

(A.6)

De�nition A.2 Given u 2 R

m

, n 2 R

d

and some matrix funtions A

i

: R

m

!

R

m�m

, i = 1; : : : ; d, we de�ne B(�; �) 2 R

m

� R

n

! R

m�m

by

B(u; n) =

d

X

i=1

A

i

(u)n

i

:

This orresponds to the de�nition of the matrix B in (2.3).

Lemma A.3 (Eigenvalues of B(u; n)) For the 2D Euler equations the eigen-

values of the matrix B(u; n) de�ned in De�nition A.2 are

�

1

= v � n� ; �

2

= �

3

= v � n; �

4

= v � n+ ;

with a :=

q

p

%

denoting the speed of sound. The orresponding right eigenve-

tors are

r

(1)

=

0

B

B

�

1

v

1

� 

v

2

H � v

1



1

C

C

A

; r

(2)

=

0

B

B

�

1

v

1

v

2

1

2

v

2

1

C

C

A

;

r

(3)

=

0

B

B

�

0

0

1

v

2

1

C

C

A

; r

(4)

=

0

B

B

�

1

v

1

+ 

v

2

H + v

1



1

C

C

A

;

with the total spei� enthalpy H and the spei� enthalpy h de�ned as in (A.4).

Proof: see [54℄ for example. �

In Setion 2.8.4 we even needed seond derivatives of the uxes f

i

(u), i =

1; 2. In order to ompute these derivatives, we replae v

1

and v

2

in (A.5) and

(A.6) by onservative variables u = (u

1

; u

2

; u

3

; u

4

) = (%; %v

1

; %v

2

; e) and H

by H =

u

4
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1

2

( � 1)

�

u

2

2

u

2
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u
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3

u
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1

�

resulting in following representation of the

Jaobians
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The derivatives of these matries are given in the following
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Appendix B

Analytial solutions to

hyperboli problems

B.1 Bukley-Leverett equation

Riemann problem

The Bukley-Leverett equation represents a simple model for two phase ow in

a porous medium. An appliation is the simulation of an oil reservoir. The

equation is given by

u

t

+ f(u)

x

= 0;

with the non-onvex ux funtion

f(u) =

u

2

u

2

+ a(1� u)

2

;

f

0

(u) =

2au(1� u)

(u

2

+ a(1� u)

2

)

2

:

(B.1)

The solution to Riemann problems for salar equations with onvex uxes, like

Burgers' equation, inludes either a shok or a rarefation wave. Equations with

non-onvex uxes, like the Bukley-Leverett equations, might involve both. A

standard example is the Riemann problem

u(0; x) = u

0

(x) =

�

1 if x < 0;

0 if x > 0;

(B.2)

modelling pure water (u = 1) for x < 0 and pure oil (u = 0) for x > 0 at initial

time t = 0. The Bukley-Leverett equation simulates the replaement of the

oil by water that is pumped from the left. This leads to a shok front at the

interfae between the oil and the water, followed by a rarefation wave, that

indiates for the time t > 0 a spei� proportion of water and oil in the porous

119
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0

1

u
(x

,t
)

x

(a)

0

0.5
u

*

1

t f’(u
*
) x, tf’(u)

u

A

B

(x,u(x))-plot
(t f’(u),u)-plot

(b)

Figure B.1: Riemann solution for Bukley-Leverett equation.

medium, see Figure B.1(a). The rarefation wave in x > 0 exists for all time

t > 0, hene u < 1 for all (x; t) 2 R

+

� R

+

, simulating the e�et that the total

amount of oil may never be reovered by this `seondary reovery' tehnique.

Exat solution to the Riemann problem: Using the equal area rule

(equalise areas A and B in Figure B.1(b)) in order to replae the triple-valued

solution in the (tf

0

(u); u(t)) - plot by a orret shok leads to the following

determinant equation at time t

Z

u

?

(t)

0

tf

0

(u) du = u

?

(t) tf

0

(u

?

(t));

with u

?

(t) denoting the post-shok value. Evaluating the integral and division

by t > 0 results in

f(u

?

(t))� f(0) = u

?

(t) f

0

(u

?

(t)): (B.3)

Using the expliit form (B.1) of the ux gives

(u

?

(t))

2

+ a(1� u

?

(t))

2

= 2a(1� u

?

(t)) (B.4)

leading to u

?

(t) = u

?

, with

u

?

=

�

a

1 + a

�

1

2

;
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a onstant value. The fat that this post-shok value is onstant in time is

known also due to the self-similarity of solutions to the Riemann problem. The

shok veloity is s = f

0

(u

?

), hene by using (B.3) and (B.4)

s = f

0

(u

?

) =

f(u

?

)

u

?

=

u

?

(u

?

)

2

+ a (1� u

?

)

2

=

u

?

2a (1� u

?

)

:

The solution to the Riemann problem (B.2) is given as follows

u(x; t) =

8

<

:

1 for x < 0;

u; with x = tf

0

(u) for 0 < x < st;

0 for x > st:

For general a the exat solution u(x; t) in the part 0 < x < st is too ompliated

to be given here. In the following, we only give the solution u(x; t) for a spei�

hoie of a. For a =

1

2

the solution u turns out to be

u(x; t) =

1

3

+

1

18

p

6u

2

(x; t)

+

1

18

p

x

 

�48(t+ x)� 6u

1

(x; t)� 24

(t� 2x)

2

u

1

(x; t)

+

36t

p

6

u

2

(x; t)

!

1

2

;

with the funtions u

1

(x; t) and u

2

(x; t) given by

u

1

(x; t) =

 

8(t� 2x)

3

+ 243xt

2

+ 9xt

�

3

x

�

16(t� 2x)

3

+ 243xt

2

�

�

1

2

!

1

3

;

u

2

(x; t) =

�

�4

�

1 +

t

x

�

+

u

1

(x; t)

x

+

4(t� 2x)

2

xu

1

(x; t)

�

1

2

:

B.2 1D Euler equations: Sod's test problem

This problem, also referred to as the shok-tube problem, is an initial value

problem for the 1D Euler equations subjet to the initial ondition

u(0; x) = u

0

(x) =

�

u

L

if x < x

0

;

u

R

if x > x

0

;

where (%

L

; v

L

; p

L

) = (1; 0; 1) and (%

R

; v

R

; p

R

) = (0:125; 0; 0:1). Aording to

[54℄ the solution to this Riemann problem inludes a left rarefation wave and a

right shok wave. The intermediate solution in the so alled star -region onsists

of two states u

?

L

and u

?

R

separated by a ontat disontinuity. The omplete

solution, also shown in Figure B.2, onsists of �ve parts separated by the right

shok with shok veloity

v

s

= v

R

+ a

R

�

 + 1

2

p

?

p

R

+

 � 1

2

�

1

2

;
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0

1

-1 0 1 2

Figure B.2: Solution to Sod's problem: %(0:5; x)

the ontat disontinuity with veloity
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and the tail and the head of the rarefation wave with veloities v

tail

= v

?

� a

?

L

and v

head

= v

L

� a

L

, respetively. For x < x

0

+ v

head

t and x > x

0

+ v

s

t the

solution equals the left and right initial values (%

L

; v

L

; p

L

) and (%

R

; v

R

; p

R

),

respetively. The rarefation wave in the region x

0

+ v

head

t < x < x

0

+ v

tail

t is

given by

%(x; t) = %

L

�

2

 + 1

+

 � 1

( + 1)a

L

�

u
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�

x
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�
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;

v(x; t) =
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 + 1

�

a
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;

p(x; t) = p

L

�
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 � 1

( + 1)a
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�
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�
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�
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;

the left star state u

?

L

is given by (%

?

L

; v

?

L

; p

?

L

) = (%

?

L
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?
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) and the right star

state u

?

R

by (%
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?
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) = (%

?
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�
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:

The last remaining unknown p

?

may be omputed by solving following nonlinear

equation

�

2

( � 1)

��

p

?

p
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� 1

��

1 +

 + 1

 � 1

p
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p
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�
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2

 � 1
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1�

�
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?

p

L

�

�1

2

!

:

For the Sod's problem we get

p

?

= 0:30313:
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B.3 1D Euler equations: Shok onditions

Here, we onsider the shok onditions of the 1D ompressible Euler equations

that also represent normal shok onditions of the 2D Euler equations. The

shok onditions are determined by the Rankine-Hugoniot jump ondition

f(u

(1)

)� f(u

(0)

) = s(u

(1)

� u

(0)

);

for the states u

(0)

and u

(1)

, upstream and downstream the shok, respetively.

For the stationary (i.e. s = 0) 1D ompressible Euler equations,

�

x

0

�

%v

%v

2

+ p

v(e+ p)

1

A

= 0;

the Rankine-Hugoniot jump ondition is given by the following equations (B.5)a,b

and :

0

�

%

0

v

0

� %

1

v

1

p

0

+ %

0

v

1

0

� p

1

� %

1

v

2

1

(e

0

+ p

0

)v

0

� (e

1

+ p

1

)v

1

1

A

= 0: (B.5)

Assuming that all quantities with suÆx 0 are known, we seek to �nd �, with

� =

%

0

%

1

=

v

1

v

0

:

To that end, we employ (B.5)a and e =

p

�1

+

1

2

�v, see the equation of state

(A.2), and replae (B.5) by



 � 1

p

0

%

0

+

1

2

v

2

0

=



 � 1

p

1

%

1

+

1

2

v

2

1

: (B.6)

Then we take



�1

1

%

1

� (B.5)b, to obtain



 � 1

p

0

%

0

�+



 � 1

v

1

v

0

=



 � 1

p

1

%

1

+



 � 1

v

2

1

;

and subtrat this equation from (B.6) to get



 � 1

p

0

%

0

(1� �) +

�

1

2

�



 � 1

�

�

v

2

0

= �

 + 1

2( � 1)

v

2

0

�

2

:

Now we use

p

�

= a

2

and divide by

v

2

0

�1

giving following quadrati equation

 + 1

2

�

2

�

�

 +

1

M

2

0

�

�+

 � 1

2

+

1

M

2

0

= 0:

One solution is � = 1 representing no hange aross the shok. Therefore,

(�� 1)

�

 + 1

2

��

 � 1

2

�

1

M

2

0

�

= 0;
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Figure B.3: Supersoni ow past a wedge problem.

resulting in

� =

%

0

%

1

=

v

1

v

0

=

 � 1

 + 1

+

2

 + 1

1

M

2

0

: (B.7)

To obtain p

1

we use (B.5)b

p

1

= p

0

+ %

0

v

2

0

� %

1

v

2

1

= p

0

+ %

0

v

2

0

(1� �)

and divide by p

0

to get

p

1

p

0

= 1 +

v

2

0

a

2

0

(1� �)

= 1 +

v

2

0

a

2

0

(1�

 � 1

 + 1

�

2

 + 1

1

M

2

0

)

= 1 +

2

 + 1

(M

2

0

� 1):

(B.8)

B.4 2D Euler equations:

Supersoni ow past a wedge

Now, we onsider a supersoni ow past a wedge inlined at an angle �. Having

a supersoni inow of veloity v

(0)

the ow is deeted through an angle � to

ensure that the veloity is parallel to the wedge surfae. This is ahieved by

having a shok at some angle � to the inow, see Figure B.3, with upstream and

downstream states u

(0)

and u

(1)

, respetively. Hene the normal and tangential

veloity omponents denoted by subsripts n and t are given by

v

(0)

n

= jv

(0)

j sin(�); v

(0)

t

= jv

(0)

j os(�);

v

(1)

n

= jv

(1)

j sin(� � �); v

(1)

t

= jv

(1)

j os(� � �):
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Realling from (B.7) and (B.8) that the normal shok onditions derived from

the Rankine-Hugoniot jump ondition applied to the 1D ompressible Euler

equations are given by

%

0

%

1

=

v

(1)

n

v

(0)

n

=

 � 1

 + 1

+

2

 + 1

1

(M

(0)

n

)

2

;

p

1

p

0

= 1 +

2

 + 1

((M

(0)

n

)

2

� 1);

with M

(0)

n

= M

(0)

sin(�) denoting the normal Mah number of the inow, and

furthermore realling that the tangential veloity is ontinuous aross the shok,

v

(1)

t

= v

(0)

t

;

we dedue that

tan(� � �) =

v

(1)

n

v

(1)

t

=

�

0

v

(0)

n

�

1

1

v

(1)

t

=

�

0

�

1

v

(0)

n

v

(0)

t

=

�

0

�

1

tan(�);

and onsequently

tan(� � �) =

�

 � 1

 + 1

+

2

 + 1

1

(M

(0)

sin(�))

2

�

tan(�): (B.9)

As example, we onsider a Mah 3 ow with inow density �

0

= 1 and pressure

p

0

= 1, over a wedge of angle � = 9:5

Æ

, a test ase previously regarded in [11℄.

Solving the nonlinear equation (B.9) for the angle � of the shok gives

� = 26:9308

Æ

:

All state variables in u

(1)

= (�

1

; �

1

v

(1)

1

; �

1

v

(1)

2

; e

1

) may then be determined, see

Setion 4.5.2 for the resulting state vetor.

B.5 2D Euler equations: Ringleb ow problem

Here, we onsider the Ringleb's ow problem, f. [47℄, of the stationary 2D

Euler equations, for whih an analytial solution may be obtained using the

hodograph method. Here, we briey extrat the solution to this problem from

[13℄.

Under the restrition of an irrotational ow a stream funtion  (x; y) an

be introdued in terms of whih the stationary 2D Euler equations redues to

the equation

�

1�

v

2

1



2

�

�

2

x

 � 2

v

1

v

2



2

�

x

�

y

 +

�

1�

v

2

1



2

�

�

2

y

 = 0;

where  denotes the speed of sound. By applying the Molenbrok-Tshapligin

transformation (for more information, see [13℄ and the referenes therein), this
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problem is transformed in the (V; �) plane, also alled the `hodograph plane',

where V and � denote the veloity and its deviation with respet to a referene

diretion. This leads to following equation

V

2

�

2

V

 + V

�

1 +

V

2



2

�

�

V

 +

�

1�

V

2



2

�

�

2

�

 = 0;

that may be solved by separation of variables. It is easy to verify that

 =

sin �

V

; (B.10)

is a solution to this problem. The streamlines in (B.10) are given in hodograph

variables. Transformation into the physial plane results in

x =

1

2

1

�

�

1

V

2

�

2

k

2

�

+

J

2

;

y = �

1

k�V

s

1�

�

V

2

k

2

�

;

where

k =

1

 

; (B.11)

J =

1

a

+

1

3a

3

+

1

5a

5

�

1

2

log

1 + a

1� a

; (B.12)

a =

r

1�

 � 1

2

V

2

; (B.13)

� = a

2=(�1)

: (B.14)

Furthermore, the onstant veloity lines are irles given by

�

x�

J

2

�

2

+ y

2

=

1

4�

2

V

2

: (B.15)

By hoosing two streamlines and regarding them as reetive walls the ow

represents a ow in a urved dut. For example, hoosing k

1

= 0:6 and k

2

= 0:98

results in the left and right walls of the dut shown in Figure B.4. The urved

top boundary is given by the irle for the onstant veloity V

1

= 0:43. This

is the same Ringleb geometry as onsidered [40℄. This problem represents a

transoni ow through a hannel; it is mostly subsoni, with a small supersoni

region near the right{hand side wall, f. Figure B.4.

The exat solution to this problem is omputed as follows: Given a point

(x; y) in the domain, the speed of sound  is determined impliitly by the non-

linear equation (B.15), where J = J(), V = V () and � = �() are given

by (B.12), (B.13) and (B.14). Having omputed , all other variables an be

evaluated.
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Appendix C

Curved elements

In many appliations the domain 
 is not a polygonal domain but inludes

urved boundaries. For these ases the boundary annot be represented exatly

by the triangulation T

h

. Approximating the boundary by a pieewise linear

boundary interpolation, i.e. by a polygonal boundary, may in some appliations

not be suÆient, see Setion 2.9 and [4℄. In these ases a higher order boundary

approximation, for example by pieewise quadrati or ubi boundary interpo-

lation, must be employed. This neessitates the use of urved elements at the

boundary of the domain. In �nite element methods it is ommon pratie to

deal with urved elements by employing higher order polynomial mappings of

the referene element

^

K to the element K in real spae.

In the following setion we ollet some formulae governing urved �nite ele-

ments that hold for all smooth mapping funtions. In the setion thereafter we

onsider some implementational details for a spei� lass of mapping funtions:

namely polynomial mapping funtions that are expressed in terms of Lagrangian

basis funtions and Lagrangian support points (nodes).

C.1 Elements with general mapping funtions

This setion provides a olletion of some basi formulae governing geometri

data of a urved element K, like the area of K and tangential or normal vetors

to the boundary �K of the element, as well as integrals or derivatives of funtions

on urved elements given in terms of integrals or derivatives of funtions on the

referene element. These formulae hold for all smooth mappings and do not

depend on the spei� hoie of the mapping funtion.

We begin by �rst introduing some notation. Let K 2 T

h

be an element of

the triangulation T

h

with K = �

K

(

^

K), where �

K

is a smooth bijetive mapping

of the referene element

^

K to the element K in real spae, see Figure C.1.

For simpliity we suppress the letter K in the subsript and write � instead

of �

K

in the following. For a funtion ' : K ! R we de�ne '̂ :

^

K ! R to

129
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Figure C.1: Mapping � of referene element

^

K to the element K in real spae.

satisfy

'̂(x̂) = '(�(x̂)); x̂ 2

^

K:

Di�erentiation with respet to variables x

j

and x̂

j

in real spae and in the spae

of the referene element, respetively, is denoted by �

j

:= �

x

j

and

^

�

j

:= �

x̂

j

.

Analogously, we de�ne r and

^

r to be the gradient vetor with respet to the

variables x and x̂, respetively.

Integration of funtions on elements K = �(

^

K) in real spae is performed

by mapping the integral to the referene element

^

K as follows

Z

K

'(x) dx =

Z

^

K

'̂(x̂)j detJ(x̂)j dx̂;

where J denotes the Jaobian matrix of the mapping �, i.e. J

ij

(x̂) :=

^

�

j

�

i

(x̂).

This results in

jKj =

Z

^

K

j detJ(x̂)j dx̂;

for the area jKj of the element K. The derivatives

^

�

j

'̂ and �

j

' are related by

^

�

j

'̂(x̂) =

^

�

j

'(�(x̂)) = �

i

'(�(x̂))

^

�

j

�

i

(x̂) = �

i

'(�(x̂))J

ij

(x̂)

and, with J

�1

denoting the inverse of J ,

�

l

'(x) = �

i

'(�(x̂))Æ

il

= �

i

'(�(x̂))J

ij

(x̂)J

�1

jl

(x̂) =

^

�

j

'̂(x̂)J

�1

jl

(x̂):

Thereby, r'(x) is given by the following ovariant transformation

r'(x) = J

�T

(x̂)

^

r'̂(x̂);

where J

�T

:= (J

�1

)

T

= (J

T

)

�1

.

Let x : R ! K be a parametri urve in real spae and x̂ : R !

^

K the or-

responding urve transformed into the referene element, with x(s) = �(x̂(s)).

The veloity vetor v(s) of urve x(s) at s is given by

v

i

(s) = �

s

x

i

(s) = �

s

�

i

(x̂(s)) =

^

�

j

�

i

(x̂(s))�

s

x̂

j

(s) = J

ij

(x̂(s))v̂

j

(s);
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hene v(s) is given by following ontravariant transformation

v(s) = J(x̂(s))v̂(s);

with v̂(s) denoting the veloity vetor of urve x̂(s). A (unit) tangential vetor

� is hene given by

� =

1

jvj

v:

The (unit) normal vetors are given by the ross produt of the tangential

vetors. Alternatively, they an be omputed by a ovariant transformation

~n = J

�T

n̂; n =

1

j~nj

~n;

of the (unit) normal vetors n̂ of the urve x̂(s).

C.2 Polynomial mappings of higher degree

A mapping funtion � that maps the referene element (unit square)

^

K to an

arbitrary quadrilateral element K, an be represented by a bilinear funtion,

i.e. by a Q

1

mapping. For the ase that K inludes urved boundaries it might

be neessary to employ polynomial mapping funtions of higher degree.

Given a degree p > 0, an element K 2 T

h

, and (p + 1)

d

mapping support

points p

i

2 K, i = 1; : : : ; (p+1)

d

, we de�ne a Q

p

mapping � 2 [Q

p

℄

d

as follows

�(x̂) =

(p+1)

d

X

i=1

p

i

�

i

(x̂): (C.1)

Here, �

i

, i = 1; : : : ; (p+ 1)

d

, denote the Lagrangian (interpolation) basis fun-

tions, that satisfy

�

i

(p̂

j

) = Æ

ij

; i; j = 1; : : : ; (p+ 1)

d

;

where p̂

i

, i = 1; : : : ; (p+ 1)

d

, denote the Lagrangian support points (nodes) on

the referene element

^

K. The de�nition of � (C.1) ensures that eah of the unit

support points p̂

i

is mapped onto the orresponding mapping support points p

i

,

i.e.

�(p̂

i

) = p

i

; i = 1; : : : ; (p+ 1)

d

: (C.2)

Analogous to Lagrangian �nite elements the unit Lagrangian support points

p̂

i

are equidistantly distributed on

^

K based on a tensor produt mesh. In the

following we only onsider the two{dimensional ase, d = 2. For that ase,

Figure C.2 shows the distributions of the unit support points p̂

i

, i = 1; : : : ; (p+

1)

2

, for degrees p = 1; : : : ; 4. Let the ordering and numbering of the unit

support points be as follows: �rst the orners, then the points on the edges and
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Figure C.2: Unit support points p̂

i

, i = 1; : : : ; (p+1)

2

, for degrees p = 1; : : : ; 4.

�nally the inner support points, see also Figure C.2. Thus the �rst 4p points

are plaed on the boundary �

^

K of the referene element, i.e.

p̂

k

2 �

^

K; k = 1; : : : ; 4p:

Aording to (C.2) these points are mapped to the mapping support points p

k

,

k = 1; : : : ; 4p that are hosen to be plaed in approximatively equal distanes

on the boundary of the element in real spae, i.e.

p

k

2 �K; k = 1; : : : ; 4p:

While the support points p

k

, k = 1; : : : ; 4p, on the boundary are given by the

boundary desription of the element K in real spae, the inner mapping support

points

p

i

2 K n �K; i = 4p+ 1; : : : ; (p+ 1)

2

;

are not uniquely determined. In the following we give two di�erent approahes

for omputing appropriate positions of the inner mapping support points in real

spae. First we present an approah that is simple but not appliable as it

produes degenerated mappings in some numerial tests. Then we introdue

a more sophistiated one that employs solutions to Laplae equations on the

referene element. This seond approah gives a smooth transformation of the

support points from the referene element to the element in real spae.

C.2.1 Computation of inner support points:

Simple approah

For p = 2 there exists only one inner mapping support point, p

9

. Here we set it

simply to the mean point of all points p

i

on the boundary,

p

9

=

1

8

8

X

i=1

p

i

:

For the ase of p = 3, four inner support points, p

i

, i = 13; : : : ; 16 need to

be omputed. Let �p be the mean point �p =

1

8

P

12

i=1

p

i

of all points p

i

on the
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Figure C.3: Q

1

�Q

4

mapping of an element. Inner mapping support points are

omputed by a simple approah only. For the Q

3

and Q

4

mapping, right two

ases, the mapping degenerates.

boundary. Then we set eah of the inner support points to a weighted mean

point of �p and the orresponding neighbouring orner. For example we set

p

13

=

2

3

�p+

1

3

p

1

;

and points p

14

, p

15

and p

16

aordingly, see third plot in Figure C.2.

Finally in the ase when p = 4, we simply set p

21

to the mean point

p

21

= �p =

1

16

16

X

i=1

p

i

of all points on the boundary, an inner orner point like p

17

to

p

17

=

1

2

�p+

1

2

p

1

;

points p

19

, p

23

and p

25

aordingly, see left plot in Figure C.2, and we set

p

18

=

1

2

�p+

1

2

p

6

;

and the points p

20

, p

22

and p

24

aordingly.

For all ases presented here, the position of the inner points are ompatible

with the points in arbitrary quadrilaterals (with straight boundaries) that arise

from a Q

1

mapping of the unit support points. Although this approah seems

to be quite reasonable at �rst sight, it auses problems in some ases when the

boundaries of the element K in real spae are urved.

As an example, here we onsider an element similar to the element K on

the right of Figure 2.11, whose shape is typial for elements that arise in the

neighbourhood of the leading edge of an airfoil wing. Figure C.3 shows the

images of the Q

1

-Q

4

mappings applied to the referene element

^

K that, for

demonstrating the behaviour of the mappings, is overed by a tensor produt

mesh of seven equal{sized parts in eah oordinate diretion. While the mesh in

the image of the Q

2

mapping looks quite smooth, the images of the Q

3

and Q

4

mapping show distorted meshes with degenerated parts in the neighbourhood

of the urved boundary. This behaviour is aused by the inner mapping support
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points whose positions apparently are not properly hosen. We note, that if the

element is slightly modi�ed suh that the urved boundary reahes even deeper

into the element, then even an overlapping of the mesh has been enountered.

In these degenerate regions the mapping � is not bijetive any more, and the

Jaobian matries J of the mappings degenerate and beome singular.

C.2.2 Computation of inner support points:

Smooth transformation

As seen in the last subsetion it is not a trivial task to de�ne the positions of

the inner mapping support points suh that the mapping does { in all ases

{ not degenerate. Therefore, here we employ an approah for the mapping

of the support points, that is in the style of the smooth transformations that

are used to transform strutured triangulations to math omplex boundary

desriptions, see Setion 2.10 or [21℄ for example. In the following, again for

notational onveniene, we onsider only the two{dimensional ase.

The smooth transformation mentioned above is based on solutions to the

Laplae equation that is solved on the referene element

^

K. Disrete boundary

onditions are imposed that are given by the oordinates of the mapping support

points p

k

, k = 1; : : : ; 4p, on the boundary of the element K in real spae.

To be more expliit, we de�ne a Laplae problem on

^

K

�

^

��

l

(x̂) = 0; x̂ 2

^

K;

�

l

(x̂) = g

l

j

�

^

K

(x̂); x̂ 2 �

^

K;

(C.3)

for eah omponent �

l

, l = 1; 2, of the Q

p

mapping �. Here, the disrete

boundary funtion g 2 [Q

p

℄

2

is given by

g

l

(x̂) =

4p

X

i=1

(p

i

)

l

�

i

(x̂); l = 1; : : : ; d; (C.4)

where (p

i

)

l

denotes the lth omponent of the support point p

i

, and �

i

the orre-

sponding Lagrangian interpolation basis funtion. We reall that the numbering

of the mapping support points involves p

k

2 �K for k = 1; : : : ; 4p. Substituting

~�

l

:= �

l

� g

l

; l = 1; 2; (C.5)

into the Laplae problem (C.3) yields the zero boundary value problem,

�

^

�~�

l

(x̂) =

^

�g

l

(x̂); x̂ 2

^

K;

~�

l

(x̂) = 0; x̂ 2 �

^

K;

(C.6)

that is equivalent to the following variational formulation

~�

l

2 H

1

0

(

^

K) : (

^

r~�

l

;

^

r�)

^

K

= �(

^

rg

l

;

^

r�)

^

K

8� 2 H

1

0

(

^

K):

Disretisation of this problem is given by

~�

l

2 Q

p

(

^

K) : (

^

r~�

l

;

^

r�

4p+i

)

^

K

= �(

^

rg

l

;

^

r�

4p+i

)

^

K

8i = 1; : : : ; (p� 1)

2

:
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Realling de�nitions (C.1), (C.5) and (C.4) gives

(p�1)

2

X

j=1

S

ij

(p

4p+j

)

l

= �

4p

X

k=1

T

ik

(p

k

)

l

; i = 1; : : : ; (p� 1)

2

; (C.7)

with the matries S

ij

2 R

(p�1)

2

�(p�1)

2

and T

ik

2 R

(p�1)

2

�4p

given by

S

ij

= (

^

r�

4p+i

;

^

r�

4p+j

)

^

K

; i; j = 1; : : : ; (p� 1)

2

;

and

T

ik

= (

^

r�

4p+i

;

^

r�

k

)

^

K

; i = 1; : : : ; (p� 1)

2

; k = 1; : : : ; 4p:

The solutions to problem (C.7) for l = 1; 2 are

(p

4p+j

)

l

= �

(p�1)

2

X

i=1

4p

X

k=1

S

�1

ji

T

ik

(p

k

)

l

; j = 1; : : : ; (p� 1)

2

;

that may be written in ompat form:

p

4p+j

=

4p

X

k=1



jk

p

k

; j = 1; : : : ; (p� 1)

2

; (C.8)

where 

jk

represents the oeÆient



jk

= �

(p�1)

2

X

i=1

S

�1

ji

T

ik

of the linear ombination (C.8), that represents the dependeny of the jth inner

mapping support point p

4p+j

on the support points p

k

, k = 1; : : : ; 4p, that are

plaed on the boundary of the element K. For a �xed degree p, these oeÆients



jk

are the same for the mapping of all ells K in real spae beause the 

jk

depend only on the referene element

^

K. Therefore the oeÆients 

jk

an be

pre-omputed and result in following linear ombinations.

For p = 2 the linear ombination turns out to be

p

9

=

1

16

4

X

k=1

p

k

+

3

16

8

X

k=5

p

k

;

see also Figure C.4(a). For p = 3 the oeÆients 

13;k

of the linear ombina-

tion for the inner mapping support point p

13

is shown in Figure C.4(b). The

oeÆients for the points p

14

, p

15

and p

16

may be obtained by rotation of the

oeÆients.

In Figure C.5 we show the images of the Q

1

-Q

4

mappings applied to the unit

ell

^

K that, like in the previous setion, is overed by a tensor produt mesh.

While the orresponding images in Figure C.3 show degenerated meshes for Q

p

mappings of degrees p = 3 and p = 4, here in Figure C.5, no suh behaviour

ours. Indeed, the images of the Q

3

and the Q

4

mappings are as smooth as

the one of the Q

2

mapping.
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PSfrag replaements

1

16

1

16

1

16

1

16

3

16

3

16

3

16

3

16

p

9

PSfrag replaements

80

1053

1

81

11

1053

1

81

25

117

44

351

7

117

16

351

7

117

16

351

25

117

44

351

p

13

(a) (b)

Figure C.4: (a) CoeÆients 

9;k

for a Q

2

mapping. (b) CoeÆients 

13;k

for a

Q

3

mapping.

Figure C.5: Q

1

� Q

4

mapping of a ell. Inner mapping support points are

omputed by a smooth transformation.
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