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Introduction

When quantities cannot be measured directly, parameter estimation techniques
come into play: with these, the unknown quantity is determined from mea-
surements of observables. This work deals with problems where the relation
between the observables and the desired information is a partial differential
equation. Such parameter estimation problems are then commonly referred to
as Inverse Problems.

Inverse problems have vast applications in science and engineering. In this
work, we consider problems where internal properties of media are of interest,
which, however, are often not accessible directly. For example, in some ap-
plications we are interested in determining the internal elastic composition of
bodies without destroying it, or would like to know the underground structure
in search of oil without actually drilling. These quantities appear as coefficients
in the partial differential equations (henceforth abbreviated by PDFE) which are
used to describe the response of the media to forces, and the determination of
these coefficient naturally leads to inverse problems.

From a numerical point of view, inverse problems involving partial differen-
tial equations are very challenging: unlike nonlinear partial differential equa-
tions, they do not only require the solution of one or few linearized subproblems
in each nonlinear step, but many. Since we are looking for distributed param-
eters which may be discretized by thousands or tens of thousands degrees of
freedom, the number of linearized subproblems in each nonlinear step may be
several hundreds or thousands. As an example, the transmission tomography
application discussed in Section 5.6 required a total of 2008 CG iterations, ac-
cumulated over some 80 Newton steps. Since 32 experiments were used, this
means a total of roughly 130,000 solutions of a Helmholtz equation. Computa-
tional considerations are therefore of outstanding importance in the design of
algorithms to solve such problems.

Consequently, the goal of this work is the development of techniques for
the efficient numerical solution of such inverse problems, based on adaptive
finite element methods. After the statement of the problem in Chapter 1, we
will derive a posteriori error estimates for inverse problems in Chapter 2, both
for natural “energy type” quantities as well as for general functionals, and
demonstrate their efficiency. Although adaptivity and error estimation are now
commonly accepted in the numerical solution of partial differential equations,
they have not yet found their way into the solution of inverse problems. These
techniques are thus new to this field and promise a significant gain in efficiency
compared to present state-of-the-art algorithms.
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8 INTRODUCTION

A second, new aspect of this work is the inclusion of bounds into the solu-
tion process in Chapter 3. In practical applications, physical upper and lower
bounds on possible values of the unknown coefficients are usually available, ei-
ther from prior knowledge of the particular case under investigation, or from
extremal material properties existing in nature. For example, when identifying
the underground structure from seismic measurements, densities of rocks will
be between approximately 1 g/cm?® (water) and 22 g/cm?® (osmium and alike
metals). In practice, such bounds are usually much tighter, and alike bounds
are available for other properties as well, such as elasticity coefficients. The
efficient inclusion of such bounds is discussed in Chapter 3 where we develop an
Active Set Method in a continuous setting and show its efficiency in enhancing
stability of identified coefficients.

In Chapter 4, we extend the problems under consideration to the case that
more than just one measurement is available. This can be favorably used to
suppress the effects of measurement noise, and examples of this are shown.
It also allows to solve certain classes of problems in which one measurement
is not sufficient to identify the unknown coefficient. Beyond the already high
computational requirements for distributed parameter identification in PDEs,
multiple measurements increase it even more. This requires using specialized
algorithms tailored to the problem. However, their structure allows for efficient
parallelization strategies, for example using clusters of computers. The work
required for each of the subproblems associated with one measurement is thus
distributed to different computers. The structure of a program doing this will
be introduced in Chapter 4.

The techniques developed thus far at the Laplace equation will be applied
to parameter identification problems for the Helmholtz equation in Chapter 5.
Since Helmholtz’s equation is the frequency domain version of the wave equa-
tion, parameter estimation for this type of problems has many applications in
geophysics. It will be shown that adaptive techniques and error estimation work
in this context as well, and that they lead to very efficient schemes. The most
complex problems of this work will be considered in this chapter.

We conclude with an outlook on the challenges of inverse problems that are
not, or only briefly, touched in this work.

Two prototypical applications

The techniques developed in this thesis should be considered in view of actual
applications. To this aim, we introduce two prototypical applications. The first
one, nondestructive testing, tries to determine the elastic properties of a mate-
rial by subjecting it to a known force, and measuring the resulting deflection.
The second, electrical impedance tomography, uses electrical potentials applied
to the boundary of a body to image its interior.

Nondestructive testing. Assume we want to infer the stiffness properties of
a body without taking it apart or destroying it otherwise, for example because
it is precious or because an assessment of the body is required before it is
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Figure 1: Principle of nondestructive testing by application of forces. Left:
Membrane in rest state. Right: Membrane deflected in reaction to an applied
external force field f(x).

deployed to use. This frequently occurs in quality control of parts in aerospace
industries, and many other applications.

The idea of the method applied to a membrane of spatially varying elastic
properties is then as follows (see Figure 1): knowing the rest state of the mem-
brane in the absence of external forces, we want to infer the desired material
properties by measuring the deflection after applying a force of known spatial
distribution and strength.

A mathematically concise definition of this problem will be given in Chap-
ter 1, so we only present a sketch of a formulation: For the membrane under
consideration, assume that its deflection u is described by a Poisson equation

—V - (aVu) = f,

where f is the applied body force and a = a(x) the spatially varying coefficient
we would like to recover. For a complete model, the equation is of course
augmented by suitable boundary conditions.

While we do not know the coefficient, we have measured the deflection u of
the membrane under action of the applied force. We denote this measurement
by z. Since we can compute a deflection u for each possible coefficient (bounded
away from zero), the problem of parameter identification can then be stated as
follows: find that coefficient for which the corresponding deflection u matches the
measured deflection z best. Methods for finding this coefficient will be discussed
in the next chapter.

Electrical impedance tomography. Another, closely related problem is
the determination of the electrical properties of a body from measurements at
its boundary. This has applications in the detection of interior cracks in metallic
parts in aerospace industries, but is also envisaged as an imaging technique in
medical applications. Here, see Figure 2, one tries to infer the internal electrical
conductivities of a body by applying electrostatic potentials to its boundary; the
observable quantity is then the resulting electric field at the boundary, which
depends on the potentials and the internal composition of the body. From this
one hopes to invert for the interior. Because this method tries to see into the
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Figure 2: Principle of electrical impedance tomography: subject a body to spe-
cified electrical potentials at its boundary, and measure the resulting electrical
fields. Left: Scheme of measurements. Right: computer tomographic image of
the human upper body, for which electrical impedance tomography could be an
alternative imaging technique.

body only from measurements outside of it, it is often called electrical impedance
tomography.

Mathematically speaking, we now have a Laplace equation describing the
electric potential with a variable coefficient which we would like to recover. In-
stead of body forces, we now have Dirichlet boundary values (i.e. the applied
surface potential) as sources, and the Neumann boundary values (i.e. the elec-
trical field at the surface) as observables. In this thesis, we do not discuss this
particular problem for the Laplace problem, but for the Helmholtz equation.

Problems related to this one occur in a large number of applications. It is
a recurring theme in geophysics (see the books by Tarantola [63] and Parker
[54]), where, for example, measurements of the gravimetric potential are used to
obtain information about underground structures associated with mass distri-
bution anomalies. If we extend the problems to time dependent ones, the seismic
inversion problem is also of this type: there the goal is to obtain information
about the underground from the measurement of seismic signals. Important
applications of this are earthquake prediction and oil reservoir identification.

What is the solution of an inverse problem?

In this work, we try to identify the mazimum likelihood point of a problem. To
keep with the membrane example above, this means that we seek the single one
coefficient for which the predicted deflection matches the measured one best.
However, this is in some sense a rather restricted point of view: since the mea-
surement usually contains noise, any other noise realization of the measurement
would be equally valid, and for each we might get a different “best” coefficient.

The most appropriate definition of a solution therefore would be a proba-
bility distribution in coefficient space: for each noisy measurement occurring
with a certain probability, assign this probability to the corresponding “best”
coefficient.

For most parameter identification problems involving partial differential
equations, recovering this probability density exceeds today’s computational
possibilities by far. We therefore restrict our point of view to the identification



INTRODUCTION 11

of one distributed coefficient function, and note that this is also appropriate
for the case of small noise, since then the probability density is approximately
Gaussian with peak at this one coefficient and computable width. This restric-
tion must, however, be kept in mind when thinking about inverse problems.
For further discussions in this direction, see the outlook section of this work
(page 105), and in particular the book by Tarantola [63].

A word on notation

The scientific communities concerned with the numerical solution of partial
differential equations, and with optimization maintain different, incompatible
conventions of notation. For example the state variable is commonly named u
in numerical analysis, while it is denoted by z, or y(z), in optimization theory.
Since this work is mainly concerned with numerical aspects, in particular the
finite element approximation of optimization problems, we will use the notation
common in numerical analysis.
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Chapter 1

Parameter estimation for
elliptic problems

In this first chapter, we will give an outline of the way by which we intend to
attack the problem of estimation of distributed parameters in elliptic partial
differential equations. We first discuss the formal setting of the problem in
mathematical terms, then formulate it as a constrained minimization problem
for which we seek the stationary point of a Lagrangian.

This constrained problem is stated in a continuous setting in function spaces.
For its solution, we employ Newton’s method, again on a continuous level. The
individual Newton steps are then discretized using a finite element method
that differs from the approaches used in the available literature in that we use
different meshes and shape functions for the different types of variables present.

The rest of the chapter is devoted to the discussion of the solution of the
linear subproblems and theoretical questions regarding the framework outlined
so far. The chapter closes with the definition of some benchmarks that will be
used in later chapters.

As already mentioned in the introduction, the solutions we are seeking in this
work — by requiring the stationarity of a Lagrangian — are maximum likelihood
points in the model space. What we call solution to the inverse problem is thus
only a certain aspect of it. We do not consider the identification of the full
posterior probability density function in the model space which would require
us to use significantly different techniques than we intend to discuss in this
work, as for example Monte Carlo sampling. Questions like resolution and
significance, or variances and cross-variances are therefore not covered and are
left for future research. For more details about these questions, we refer to the
book by Tarantola [63].

1.1 A model problem

This work is devoted to the identification of distributed coefficients in par-
tial differential equation equations. A model diffusion problem involving the
Laplace equation, as well as the necessary notation to describe it, is introduced
in this section. This model problem will be used in all following chapters except

13



14 CHAPTER 1. PARAMETER ESTIMATION FOR ELLIPTIC PDES

for the last one where identification problems for the Helmholtz equation are
considered.

The problems considered here are of the following form: assume we have
measurements z of certain physically observable quantities, such as displace-
ments of a membrane, electrical fields at the surface of a body, or seismic signals.
We know that these signals are caused by some sources f and g located in the
interior and on the boundary of the domain, respectively, and that the physical
system can be described by a partial differential equation that allows a unique
solution u denoting the state the system is in. This equation depends on cer-
tain material properties of the system, denoted by the variable a , which cannot
be observed directly, but which we would like to infer from the measurements.
The task is then to find such model parameters a for which the output (i.e. the
state u of the system or certain aspects of it) matches the observations best.
We particularly assume that we are looking for spatially varying parameters
a=a(x).

In practical applications we often have additional knowledge. For example,
information about the parameter of the form ay < a < a; may be available;
these bounds occur since for model parameters such as elasticity coefficients,
density, or attenuation, lower and upper bounds are readily constructible by
considering the extreme cases for the materials of which the medium is com-
posed. This information will be incorporated into the methods developed in
this work if possible.

Given the above, a formulation of the problem in words may be as follows:

Problem 1.1. Minimize the difference between w and z with respect to a
given misfit functional by varying the parameters a(x) , under the constraint
that at the solution {u*,a*} the state equation is satisfied, and that ay < a* <
aq.

Below, one mathematical formulation of this problem will be stated, see
Problem 1.7, and the resulting equations determining the solutions u* and a*
are derived along with methods to solve them. We will frequently drop the
asterisk at the solution if no confusion is possible.

While we use only one formulation of the parameter identification problem,
we note that there are many which we do not touch here. Some of these are
mentioned at the end of this section.

In order to state the problem of parameter identification in a concise way,
we first define some notation for later use:

Definition 1.2 (Function spaces). Denote by HP(Q2) the usual Sobolev space
of functions over the domain Q which are in L*(Q)) and have derivatives up to
order p in L?(Q2), see Yosida [68]. Let Hf = {v € HY(Q) : v|pn = 0}, and
define by H=1(Q) = HY(Q)' its dual.

Based on these spaces, let HI/Z(F) denote the normed space of traces of
H'(Q) functions on T, with norm induced by the trace operator (see Schwab

[59]). Finally, let T'p C 09 and define
Vo ={ve H'(Q): vl, = g},
Vo={ve H'(Q): v|FD = 0},
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with g € HY/2(Tp).

Definition 1.3 (State equation). Let Q2 be a bounded, open subset of R* and
let

-V - (aVu) = f, in €,
u=gq, on I'p C 09,
alp,u = 0, onT'ny =00 -Tp
be the elliptic differential equation for which we want to find the parameter a
from measurements z of the solution w . For simplicity, we assume Q to

be polygonal. The state equation is understood to be in the weak sense, i.e. we
require that for u € V satisfies

(aVu, V) = (f,¢) =0 Vo € Vo (), (L.1)
where

a€A={a€eL*Q):0<a<a},
feH (),
g € H'?(Tp).
In many applications, we will also be able to exploit physical knowledge
about the parameter a. While for well-posedness of the state equation we only
need that a is bounded away from zero, known material properties of the

parameters often allow us to bound ay < a < ay, with ag,a; being constant or
varying in space. We will include these bounds into the definition of A:

Definition 1.4 (Parameter space). Let the admissible set for the parameter
be

A={a € L>®(Q):0 < a<ay(x) <a(x) <ai(x) < oo}.
Furthermore, we define the tangent cone to A at position a by
A'la] = {x € L : x(x) >0 for x € {x:a(x) = ao},
x(x) <0 for x € {x:a(x) = a1 }}.

The problem we are concerned with in this work involves the minimization
of the difference between the solution of an equation u and a measurement z.
We will now define how we measure this difference:

Definition 1.5 (Misfit functionals). Let u € V, be the solution of (1.1), and
z € M be the measurement. Let M : Vy, — M be a mapping from the space of
solutions into the space of measurements M. We will then measure the misfit
between solution and measurement,

m(Mu — z),

with a convex and continuous functional m : M — ]Rf")', normalized to m(0) = 0.
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We will frequently write m(u — z) instead of m(Mu — z) if M is simply
the embedding of V; into another space (e.g. into M = L?()), or a canonical
restriction (e.g. the restriction to a part Q' C €, or the trace mapping from
H'(Q) into L*(I") with some curve T').

The first and second derivative of m(-) at position u — z will be denoted by
m'(u — z;-) and m”(u — z;-,-), respectively. If m is quadratic in its argument,
m"(u — z;+,-) does not depend on u — z.

Examples for misfit functionals corresponding to domain measurements are

m(u — z) = %HU—ZH%z(Q), or m(u—z) = %||Vu—z||%2(ﬂ).

These are used if measurements of the state variable or its gradient are avail-
able everywhere. Measurements on the boundary are also possible, as well as
weighted norms. More complicated measurement functionals may be tailored
to the statistical properties of measurement noise. Examples include L' norms
of value or gradient, or smoothed variants thereof, such as Huber’s or Ekblom’s
measure (see, for example, Amundsen [2] and Farquharson and Oldenburg [35]).

Due to noise in the measurement z we usually need to add a regularization
term to the functional we want to minimize. Its form is stated in the following
definition:

Definition 1.6 (Regularization functionals). The regularization function-
als used in this work are denoted by r : A — Rar They are assumed to be
convex and differentiable, and normalized to r(0) = 0.

Again, first and second derivatives are denoted by 7'(a;-) and r”(a;-,-),
respectively. Common choices for r(-) include

r(a) = 5llallzag), or r(a) = 5]|Vallza(),

or again other functionals such as the ones mentioned above. In general, the
choice of the regularization functional should be guided by physical insight
into the problem at hand, as regularization should penalize certain undesirable
properties of coefficients.

Note that functionals operating on Va are not defined for the weak assump-
tions on A of Definition 1.4, but can be replaced by difference quotients after
discretization of the equations.

Adding a regularization functional as defined above, commonly referred to
as Tikhonov reqularization, is not the only possible method of regularization,
although it is used in the vast majority of publications on parameter identifi-
cation. See the book by Engl, Hanke, and Neubauer [32] for an overview of
methods.

Using the definitions above, Problem 1.1 can be stated as follows:

Problem 1.7 (Continuous problem). Minimize the reqularized deviation

J(u,a) = m(u — 2) + Br(a)
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of u from the measurement z , with 8 > 0 being a reqularization parameter,
subject to the constraints:

(aVu, Vo) — (f,9) =0 Vo € Vo,
U|FD =g,
apg <a<a.

Solvability and uniqueness for this problem crucially depend on the exact
form of the functionals m(-) and r(-), and the function spaces on which they
operate. These questions are touched briefly in Section 1.8.

Before going on with the discussion of methods for solving the constrained
optimization problem 1.7, we would like to point out that the constraints are
of very different nature:

e The state equation: Since we expect to find the unknown parameter only
approximately, it would be useless to require wu to satisfy the state
equation exactly in every step of the process.

e Dirichlet boundary conditions: Being linear, these can be observed ex-
actly by setting the initial iterate ug such that it satisfies the boundary
conditions exactly, and then take all updates du from the linear subspace
that has zero boundary conditions on I'p.

e Bounds: The lower bound 0 < a < a needs to be satisfied exactly, since
it guarantees well-posedness and solvability of the problem and also con-
tains essential physical meaning. The actual bounds ay < a < a; may be
violated slightly but their enforcement stabilizes the process, see Chap-
ter 3.

It must be stressed that Problem 1.7 is only one possible formulation of the
problem of parameter estimation. It has, among many other examples, been
used very successfully for parameter identification and optimization problems
in ODE and DAE systems by Bock et al. [22, 23, 57, 29], Schulz [58], and Becker
et al. [16, 18]. Haber and Oldenburg [38] use it for applications in parameter
estimation problems involving elliptic partial differential equations. However,
there are many other possible formulations. For example, it is common practice
in applied sciences to treat the state variable as dependent on the parameter,
thus eliminating the explicit state equation constraint, see for example Kravaris
and Seinfeld [47] and Haber et al. [38]. The resulting formulation is often
referred to as Output Least Squares (OLS) because it tries to minimize the
square of the difference between measurement and the output of the differential
equation operator for a given set of parameters. Furthermore, the state equation
constraint can be treated using a primal-dual strategy (Bergounioux et al. [20]),
or using an augmented Lagrangian approach (Kunisch et al. [42]). For further
possible duality methods, see for example Chavent et al. [24, 26].
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1.2 Optimality conditions and stability

In the following sections, we will develop an approach to solve the constrained
minimization problem 1.7 by using a Lagrangian formulation and Newton'’s
method. In a first step, we state the necessary conditions for an optimum in
this section, and prove stability of solutions under suitable conditions. We then
discuss second order conditions, and finally show the first order conditions for
the constrained problem. For the time being, we defer the inclusion of the
bound constraints ay < a(x) < a1 to Chapter 3 and assume that they are
fulfilled even if not explicitly included in the problem.

1.2.1 First order conditions

Assuming that the inequality constraints ag < a(x) < a; are non-existent, or
inactive at the solution, we formulate Problem 1.7 by introducing a Lagrange
multiplier for the state equation constraint and searching for a stationary point
of the corresponding Lagrangian functional.

Problem 1.8 (Unconstrained first order conditions). Let A € V() be a
Lagrange multiplier and let

L(u,a,\) = m(u — z) + pr(a) + (VA,aVu) — (A, f) (1.2)
denote the Lagrangian of the problem, then the solution
z={u,a,\} € Xy =V, x Ax V)

of problem 1.7, with inequality constraints ag < a < a1 neglected, is determined
by the first order necessary conditions

ViL(z;y) =0 Vy={p,x;¥} € Xo =Vy x Ax V). (1.3)

In explicit form, equation (1.3) reads: Find z = {u,a,\} € X, such that for
all y = {p,x, ¥} € X

VuL(z;0) = m/(u — 2;0) + (VX,aVyp) =0, (1.4)
VoL(z;x) = Br'(a; x) + (VA xVu) =0, (1.5)
VAL (o) = (Ve,aVu) - (6, f) =0.  (16)

The validity of the characterization of solutions of (1.3) relies on the exis-
tence of a Lagrange multiplier A. This is proven, for example, in Ito and
Kunisch [42].

1.2.2 Stability of solutions

Existence and uniqueness of solutions can be based on stability. In the following,
we first show inf-sup stability for the simpler case that we are looking for a single
scalar parameter only, and afterwards show it for the general case for a subset of
parameters satisfying some smoothness property. Due to this latter restriction,
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the result cannot be used to prove existence and uniqueness, but nevertheless
reveals the dependence of solutions on perturbations in the data.

The first proposition proves stability for the case that we are trying to
identify a constant parameter. For the proof, we require the existence of a reg-
ularization term, which seems unnecessary for this simple case. We nevertheless
state this case as it sets the stage for the following proof concerning distributed
coefficients, but note that we consider it likely that the inf-sup constant can be
made independent of the regularization parameter.

Proposition 1.9 (Stability for constant parameters). Assume we want to

identify a constant parameter a € R. Let m(u—z) = ||V (u—2)|?, r(a) = 3|al?,

and assume for simplicity that u has zero boundary values. Then the solution
= {u,a,\} € Xy = H} x R x H} of (1.3) satisfies the system

A(z,y) = (Vz, Vo) + (f,9) Yy = {o, x, ¥} € X,
arising from (1.3) by reordering of terms, with the semilinear form defined as

A(z,y) = (Vu, Vo) + (VN\,Vy)a + (Vu, Vip)a + Bax + (Vu, VA)x.

Then with ||z||% = [[Vull2: + |a|?> + [|[VA||2, there exists v > 0 such that the
inf-sup condition

sup Az, y)

> vz,
yexo Nyllx

holds for all x = {u,a,\} € Xy satisfying 0 < ap < a < o0.
Proof. For each x = {u,a, A}, we choose a test function g = {}, %aQ,u — (% +
§)A} such that first we have

A(z,§) = allz|%

by cancellation of the cross-terms (Vu, VA). On the other hand, ¢ is chosen in
such a way that we can bound ||g||x by ||z||x, by absorbing the cross-term into
the norms of u, A\, and choosing the factors such that the components of ||§||x
are balanced. To see this, we compute the norm of 3:

2
N a a 2 a
I = 19+ (5 )l 1+ (5+8) 192 (3 + 8) (7w, 9.

Using Young’s inequality and comparing the relative sizes of the factors in front
of the norms of the components of z, we then have

2
I < [+ (5 + 3+ 8)] ol
Thus,

Alz, Az, g
sup A@Y) S A@D)

vexo lyllx — lllx
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with

_ aof
= min

ap<a<oo 2.
8p2 4 (648 +a B2+ (5+4 +00>

O

The proof carries over directly to the case of discretized state and adjoint
variable.

It is not possible to extend the proof of the theorem to the case of a dis-
tributed coefficient in a simple way, since then the choice of a test function
7 depending on z in a nonlinear way is not possible any more. However, the
following result holds:

Theorem 1.10 (Stability for the distributed case). For the case of a
distributed coefficient, let A C A be the set of functions a € A satisfying the
bound a > ag almost everywhere and for which we can find functions & which
satisfy the smoothness condition

Vo —aV(%
sup [Ve (z)] <e < ap, (1.7)
Vel
and for some constant M the condition
1
=+ %0 —_— <M < oo. (1.8)

Then there exists v > 0 such that the inf-sup condition

A(z,y)
sup
vexo vl

> |,

holds for all z € H} x A x H}, where
and |lz]% = [Vull7z + llallf + [IVA[I7..

Proof. The proof follows the same ideas as that of Proposition 1.9. However,
since the coefficient is no more a scalar, we can’t use factors of it in the test
functions, since we will have to take gradients of it. Rather, we use a smoothed
version & of the coefficient a as factor for u and .

For the proof, we consider for each given x the special test function ¢ =
{A aogea,u (L4 %)A} Then,

a

Az, 9) = (aVu, Vu) + (aVA, V) + (ag — €)||al|® + + (Vu, VA — aV(éA))

Using the bound a > ag in the first two terms and condition (1.7) for the last
term, we have

A, 9) 2 aol[Vull* + ao[VAII* + (ao — e)llall® — e[| Vul [VA]

>
> (ag — &) [l%-
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By assumption, the factor ag — € is positive.
On the other hand, let w = £ + 4272, Then

apgp — €

g

2
1912 = [7ul2 + [ VA2 + ( ) lall? +2 (Vu, V(@A) + [V @)

We estimate ||V (w)|| by using the boundedness of w in W1 due to assumption
(1.8), and by Poincaré’s inequality on the norm of A € H{, to obtain

V(@) < llwllao VAl + IVwlloo Al < Callwlwre VAl = CoM[[VA.

Thus,

2
~ apgp — €
19112 < [Vall? + [VAIZ + (T) lalP

+2Co M||Vul[[| VA + CEM?|| VA%,

2
< (14 CaM)||Vaul? + (1 + CaM + CEM?)||VA|? + (“05 5) al|?

2
< max{l L CoM 1 CRAP, (“05 ) } lell%,

and the claimed result holds with

apg — €

T max{\/%-l'(%-l-CQM)Qa (‘“’5’5)}.

O

Theorem 1.10 shows that the stability properties of solutions deteriorate
as expected if the amount of regularization is reduced, since v < . On the
other hand, for fixed f, the result shows that physically meaningful solutions
satisfying the condition on the parameter are stable if ag is sufficiently large.

Remark 1.11. The requirement (1.7) on the elements of A can be rewritten
as follows: for each a € A there must be a function & satisfying

(1 - $)Ve + g 2|
oot Vel :

Using Poincaré’s inequality on ¢ € H&, this condition is satisfied if we can find
an approximation & to a such that

Hl — gH + Cq
o

aVa
—— || L e <ap.
a o

This implies closeness of « to a as well as smallness of Va. The theorem
shows that the stability deteriorates as € grows.
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If we are looking for Lipschitz continuous coefficients, then the condition
is satisfied if @ > ag > 0 and ||Va| < eag < a2, by choosing & = a. For
constant coefficients, we have that e =0, A = %0, and we can recover the result
of Proposition 1.9, but with v worse by a constant factor of Cq.

Remark 1.12. Theorem 1.10 still holds if we replace the L?-norm on A by any
other norm, if the reqularization term is chosen accordingly. For example, the
theorem holds if ||z||3 = ||Vu||%2 + ||a||12ql + ||V>\||%2 and r(a) = %||a||125,1

1.2.3 Second order conditions

As for finite dimensional problems, the second order necessary conditions for
an optimum {u,a} are that

Vi Ui {0u, 6a}, {ou, da}) >0 (1.9)

holds for all directions {0u,da} tangential at z to the feasible set defined by
—V-(aVu) = f, i.e. for all du, da satisfying

—V-(aVou) — V-(6aVu) = 0,

see, e.g., Maurer and Zowe [50].

For a special, although slightly unrealistic, choice of measurement and reg-
ularization functionals, it is simple to show that these conditions always hold
for an optimum of Problem 1.8 if measurement noise is small enough, or is
countered by a sufficiently large regularization parameter:

Proposition 1.13. Assume m(p) = %||Vol?, r(x) = 3lxl%,k > dimQ/2.

Assume further that € is a bounded domain with Lipschitz continuous boundary,
and that at the solution x = {u,a,\} the misfit is m(u — z) < e. Then the
second order necessary optimality conditions for the Hessian (1.9) hold for all
perturbations du € H}, da € HF*.

Proof. By assumed continuity, convexity, and positivity of m(-), we infer from
m(u — z) < e that there exists 6 > 0, lim.,0d(¢) = 0, growing strictly
monotonously with e such that [|m'(u — z;-)||z-1 < §. Due to (1.4) and us-
ing standard elliptic estimates, we therefore have ||A||g1 < §/ap.

On the other hand, by convexity of m(-) and r(-), there are constants
p>0,p >0 with = infs, m” (du, du)/[|6ul|%., p = infse 7" (a; da, da)/||dall}.
Finally, using the definition of the Lagrangian, the condition reads

V%u’a}L(:zr; {0u,da}, {0u,da}) = m" (6u,du) + Br'(a; da,da) + (VA, 6aViu)

> pllullt + Bolldalli — I\ 16allo o0 lloull 1
> plldull3p + Bplldali — S lsallklloull

ag

where in the last step we have made use of the Sobolov inequality ||da||p,c0 <
Ce||0al|; that holds for the chosen class of domains €. Thus, if 8 large enough,
or § and thus e small enough, the entire term is larger than zero and the second
order condition holds. O
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The result shows that large noise may lead to irregular points in the La-
grangian unless it is countered by an increased regularization parameter 5 >
C262/(4a2up). Note that this then implies stability of the solution a with
respect to perturbations in the measurements z. However, as in the stability
theorems above, the stability constant is only proportional to 8. For practical
purposes, the proposition above is rather uninteresting, since the regularization
functional has to be chosen too strong.

1.2.4 First order conditions for the constrained problem

Previously, we have assumed that inequality constraints ag < a < a1 either do
not exist or are inactive. Although we will base the rest of this chapter on this
assumption and present their inclusion into the numerical procedure only in
Chapter 3, we state the first order conditions of the bound constrained problem
for completeness. For this, let us first define the cone C and dual cone C*

C={a€L>:a>0}, Ct={xeL':(x,a)<0VaecC} (1.10)

Then, the constrained continuous problem can be stated in the following
form:

Problem 1.14 (Constrained first order conditions). Let A € V and p; €
C*,i=1,2, be Lagrange multipliers for the state equation and lower and upper
bounds, respectively, and let

L(u,a, X, po, 1) = m(u — z) + pr(a) + (VA,aVu) — (A, f)

+ (1o, a — ag) + (1,01 — a) (1.11)

denote the Lagrangian of the problem, then the solution x = {u,a, X\, po, 1} of
Problem 1.7 is determined by the first order necessary condition

V{u,a,)\}L(a:;y) =0 Vy = {%Xﬂﬁ} € X =V x Al[a] x Vo,
V#zL(IafY) SO V’YGC+77’:1727
(o0 — ag) 2 = 0,

(p1,a1 —a)r2 = 0.

A proof of this under slightly different conditions can be found in Ito and
Kunisch [42].

1.3 Newton’s method for the optimality conditions

Due to their nonlinearity, a direct solution of the first order conditions (1.3) is
not possible; we therefore employ a Newton iteration to generate a sequence
of iterates zy = {ug,ar, \r} hopefully converging to the exact solution z =
{u,a,\} of (1.3) as k — oo. The treatment of bound constraints ag < a < a;
will later be included into the computation of Newton steps, but we defer this
to Chapter 3.
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Newton’s method, as applied here, consists of two steps: first compute a
search direction dzj in which the updates for z; to get to xyy; will be chosen.
Then, the length of the step in this direction is chosen. These two steps will
be discussed in the following. We note that the approach chosen here is fully
equivalent to the Sequential Quadratic Programming (SQP) method as long as
bound constraints are not incorporated.

Conceptually, the method proposed here can be described either on a con-
tinuous or a discrete level: either we fix a discretization and apply a number
of Newton steps until we are satisfied with the convergence on this mesh; we
then repeat the same steps on a finer discretization, of course using the old
solution as a starting value. Or, alternatively, we consider the steps on a con-
tinuous level and compute an approximation of the continuous search direction
by separately discretizing each step, using a priori unrelated discretizations; in
practice, discretizations will be changed after a few steps if we are satisfied with
the reduction of the residual on this mesh.

Although formally equivalent, we prefer to view the algorithm the second
way. We then have an iteration in infinite dimensional function spaces, which
is more natural since we are interested in the solution of the problem in these
spaces, rather than on any arbitrarily chosen fixed discretization. The residual
of the optimality condition is thus measured in continuous norms, and errors
are computed with respect to the continuous solution. Also, the discussion of
a stopping criterion for iteration on a fixed mesh is replaced by a criterion for
choosing a different discretization for the next Newton step.

Accordingly, the following discussion of Newton’s method will be based on
a purely continuous level, with discretization of each step being treated in the
next section.

Computing the Newton search direction. In each step, Newton’s method
computes the next search direction by using a local approximation of the func-
tion which we want to find a zero of, i.e., of VL. This is done by fitting a
quadratic approximation to L, and taking the direction to the saddle point of
this quadratic approximation as next search direction.

The conditions determining this search direction dxy = {dug, dag, A} € X
are then the following equations:

ViL(xk; 0z, y) = —VaL(zk;y) (1.12)
for all test functions y = {p, x, 9%} € Ap, or explicitly:
m" (uy, — z; 0ug, ) + (VA dag V) + (Vg ax V) = =V L(zk; ¢),

(V Ak, xVoug) + Br'(ak; dak, x) + (Vg xVug) = =V L(zk; x), (1.13)
(V, a, Vouy,) + (V4, 6arVuy,) = —ViL(zp; ).

The Gauf3-Newton method. From the first order conditions (1.4) we see
that A is small whenever m/(u — z;-) is small. This holds at least near the solu-
tion, if the model (i.e. the state equation) chosen to describe the measurements
z is correct, and if z does not contain too much noise. For the problems treated
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in this work, we assume that these conditions are satisfied; such problems are
termed small residual problems.

It is then a common simplification to omit the terms containing A from
the Hessian in the Newton step, resulting in the following equations instead of
(1.13):

m" (ug, — z; dug, @) + (VoA ap V) = =V L(zk; @),
Br'’(ag; dag, x) + (Vo g, xVug) = =VoL(zg; x)  (1.14)
(V, arVouy) + (V4 da, Vuy) = —VaL(z; ).

The resulting methods are called Gauf$-Newton methods and have found very
successful applications in parameter estimation and optimization (see, e.g.,
Bock et al. [22, 23], Schulz [58], or Pratt et al. [55]). This modification makes
the problem to be solved in each iteration simpler, since the Schur complement
with respect to the regularization block becomes positive definite under suit-
able conditions (see Lemma 1.21), while the original problem will be indefinite
usually. Also, the computation of the Schur complement is simpler.

For the problems considered in this work, the pure Newton and Gauf-
Newton methods perform equally well when comparing the number of iterations
necessary for a certain accuracy. We have usually used the latter, in view of the
simplifications occurring and in particular considering the size of the problems
to be treated in Chapters 4 and 5. A comprehensive comparison of the suit-
ability of Newton and Gau3-Newton search directions in parameter estimation
problems can be found in Bock [23].

Computing the step length. Once the search direction is known, the sec-
ond part of a safeguarded Newton method is to determine the step length «y,
by which we define the next iterate as zpy1 = xj + ardxrg. This is necessary
since in practice the quadratic approximation of the Lagrangian is not an ac-
curate description of the true behavior, except in the vicinity of zj. Thus,
safeguarding the length of a step in direction dzj is necessary.

To compute a step length «y, several methods are in common use, for
example using the Goldstein-Armijo conditions. In general, they choose «y
as an approximation of the minimizer o of some objective function p(ay) =
p(zp + agdzy). For constrained problems, this penalty function has to include
the minimization functional J(-) as well as an appropriately weighted norm of
the residual of the constraint.

Since the construction of a suitable weight for the norm of the constraints
is difficult if the constraints are partial differential equations, we choose to
minimize the norm of the residual of the optimality condition VL = 0 instead.
The proper norm for this residual would by the norm of the dual space X’ of
Xy =V, x Ax V. Since this involves H ~! norms, it is impractical to evaluate.
Therefore, we evaluate its discrete analogon, i.e. the norm on the dual X} of
the discretization space X}, = Vj, X A X V}, to be defined in the next section.
For this, the following representation holds:
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Lemma 1.15. Denote by ¢ = (gu,ga,gx)" the discrete gradient of the La-
grangian L(x), i.e.

(9u)i = VuL(z;0;), (9a)i = VaL(z;x5), (9r)i = VaL(z; 1),

where ©;, xi,P; are sets of functions forming a basis of the discretization space
Xon = Vo, X Ay x Vo1, to be defined in the next section. Then the following
identity holds:

V. Lz )2, = L(l’;yh)2_ T 4-1 T a1 T 41
IVl (@l = sup s 9 AT gt 9 Mg+ A gy
Yn€Xn X

where A, M are Laplace and mass matrices, defined by A;j; = (Vi, V;), M;j =
(Xi, X;j), respectively. Furthermore, there holds

IVaL(z; )ay < IVaL(a;-)]|xr.

Proof. The first part follows immediately from the definition of norms on dual
spaces, using that A}, is finite dimensional. The second part is obvious since
A, C X. O

Since the evaluation of the X} norm only involves the inversion of two
Laplace matrices and one mass matrix, it is roughly as expensive as one eval-
uation of the Schur complement of the Hessian, see Section 1.5 below, and is
thus comparably cheap.

The following lemma states that this norm is a valid penalty functional:

Lemma 1.16. Let
p(a) = |[|ViL(zy + adzy; ')||gv,g-

Then full Newton search directions dxy, are directions of descent of p, i.e. p'(0) <
0.

Proof. As shown in Lemma 1.15, the norm on &} is induced by a scalar product.
With g(zx + adxy) the projection of V, L(xy + adxy) as defined in Lemma 1.15,
we have

p(a) = llg(ak + adzp)[f4=1 pr-1,a1)

= [lgu(zr + adzi) %1 + ga(p + adz) 13,1 + llga(zn + adag) |1,
with [[v||4 = vT Bv. Then
pl(o) =2 <g($k)7 %9(«7719 + a6$k)‘a:0>[A*1,M*1,A*1]
By definition of ¢ and of the full Newton search direction dxj, there holds
A g(z + admy)| _y = —g(zk),

and the claim follows by positive definiteness of A~! and M. O
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If the quadratic approximation of the Lagrangian used for the Newton step
were exact, then p(a) would be a quadratic function, and since p'(0) = —2p(0),
it would have its minimum at a = 1, i.e. the resulting step length would be
optimal. Numerical experiments indicate that comparably good step lengths
can be obtained by replacing A~ in the evaluation of the inverse norm by M1,
which is significantly cheaper to evaluate. Even diagonal approximations of the
matrices result in good step lengths, keeping in mind that step length selection
is only an aid in finding the solution and that we are in general not interested
in optimal step lengths.

1.4 Discretization of Newton steps

For actual computations, we need to discretize the problem. As discussed above,
we do this separately for each Newton step. The choice of meshes and discrete
spaces used here differs from common practice in the majority of the available
literature in that the coefficient is discretized separately. In this section, we give
a short definition of the finite element spaces we use, and then explain their use
in the discretization and the connections to the meshes we use.

We start by briefly defining the usual piecewise polynomial spaces used in
finite element methods:

Definition 1.17 (Spaces on unit cells). Let K be the unit element [0,1]?,
i.e. the unit square in two and the unit cube in three space dimensions. Then
the Lagrange interpolation space of order r on K is defined by

d r
Q" (K) = {w KR | o= HZCW?}-
i=1 =0
Definition 1.18 (Spaces on real cells). Let K be an element of a mesh,
such that there exists a (bi-, tri-)linear mapping ® : K — K from the unit cell
to the cell in real space. Then the Lagrange interpolation spaces are defined as

follows:
Q) ={px): KR | 3p(%) € Q(K),p(x) = $(37 (%)}

Definition 1.19 (Meshes). Let the domains on which we consider partial
differential equations in this thesis, be bounded open subsets Q of R, d = 1,2, 3.
Assume Q is polygonal. A subdivision T = {K} is called a mesh in the context
of this thesis if it satisfies the following properties:

OKiﬂKj:(b,fOT‘Ki,KjET,i;éj; UKKZQ;

e cach cell K € T is the image of the unit cell K= [0, 1]¢ under a polynomial
mapping, i.e. the cells are lines, quadrilaterals, or hexahedra, depending
on the space dimension.

For various estimates, we also require the regularity condition that the eigen-
values of the Jacobian matriz of the mapping between unit cell K and real cells
K are bounded from below and above.
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Definition 1.20 (Spaces on meshes). Let T = {K} be a mesh as defined
above. Then the spaces of continuous functions of piecewise polynomials of
degree v on T are defined by

Qi(T)={p:Q2—=R | ¢ continuous on €,
vl € Q"(K) VK €T},

and the respective spaces of discontinuous functions are
Qi) ={¢: Q=R | ¢lx€Q(K) VKeT}.

With these definitions, we can discuss the function spaces and mesh types
used in the discretization of the Newton steps:

Finite Element Spaces. Of central importance is the choice of the discrete

finite element spaces U}, Ay, *p, for the primal variable u, the parameter a ,

and the adjoint variable A. By symmetry of the formulation of the problem, it

is reasonable to choose *;, = U}, and for U}, to take the usual piecewise tensor

product polynomial function spaces Q% (T) of degree r on a given mesh T.
Formally, we choose the following finite element spaces:

e for the discretized state and adjoint variables up, \p: Uy, = *, = QL(T),
i.e., the spaces of globally continuous functions made up of piecewise
tensor product polynomials of degree r over a mesh T;

e for the discretized parameter ay,: Ay = Q% (T,) or Aj, = QQ,(TQ), i.e., the
spaces of continuous or discontinuous functions of piecewise polynomial
degree ' over a mesh T,.

Choosing different spaces for U and Aj, is an aspect in which this work
deviates from usual practice in the literature. There, most often spaces of
piecewise bilinear functions are used for both primal and dual variables, as well
as the coefficient, mostly for convenience (almost all publications cited within
this work fall into this category). Note however Banks and Kunisch [13, 3]
for examples where different spaces are used although restricted to the use of
fixed uniformly refined meshes in only one space dimension. See also Chavent
and Bissell [25] and Ben Ameur et al. [19] for some experiments on choosing a
discretization of the coefficient.

Meshes. In most of the available literature, not only the same finite element
spaces for state, adjoint and parameter variable are used, seemingly all also
use the same mesh. We pursue a more general approach by taking different,
though related meshes for state and adjoint variable on the one hand and the
parameter variable on the other hand.

This has advantages both on the analytical as well as on the numerical side:

e Choosing different meshes for state/adjoint and coefficient variables allows
to resolve the local features of both independently.
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e Choosing coarser meshes and lower-order function spaces for the coeffi-
cient acts as an additional regularization, since it reduces the possibilities
for variation in the parameter. This is sometimes referred to by requlariza-
tion by discretization (see Banks and Kunisch [13] and Kaltenbacher [46]),
although this is usually meant in the context of fixed meshes. Choosing
adaptive meshes allows for locally different amounts of regularization.

e Stability properties of the discretized saddle point problems are affected
by the choice of discrete function spaces. Numerical experience indicates
that it is beneficial to use a coarser mesh and/or lower order polynomials
for the parameter variable.

e Choosing a coarser discretization for the coefficient can be understood
as adaptive model reduction. This greatly reduces the numerical effort
needed to compute solutions.

e We are anticipating extension to time dependent problems, where different
meshes have to be chosen anyway: the mesh for the state variable changes
with time, while the coefficient is usually constant in time. Furthermore,
regularity levels of state variable and coefficient differ.

In this work, we will therefore use two meshes, T and T,, for state and
adjoint variable, and the parameter, respectively. For implementational reasons,
we require that T can be obtained from T, by refinement. Taking T, = T is
included as a special case.

1.5 The discretized problem

In each Newton step, the search direction is computed approximately by dis-
cretizing (1.12) using the spaces defined in the last section. Choosing bases
{¢i},{x:} and {4;} and expanding the updates du, da and d\ with respect to
these bases yields the following Karush-Kuhn-Tucker (KKT) matrix system:

M BT AT ouy, Fy
B R CT||ba|=|F]. (1.15)
A C 0 Sk F3

The individual blocks in matrix and right hand side are defined by

M= - m (uy, — 2394, 95) :|”7 F = - —m/(ug, — 2;0i) — (axV A, Vi) ].,
I i i ;
B = - (xi, VA - V) ]”, F, = - —Br'(ag; xi) — (VMg - Vug, xi) ].,
I ij i i
a=[@veve) | o A= | @V v+ |
I i i ;
R= -IBTII(GMXian) ]”, C= - (Vuk'VT/Jz',Xj)]_/

L L
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where M corresponds to the misfit functional, R to the regularization functional,
B and C to hyperbolic transport operators VA -V + AX and Vu -V, and A is
the matrix associated with the state equation.

By block elimination, (1.15) can be reformulated to yield a system where
we first solve for dai, and only afterwards for du, and dA;. The equation for
day, resulting from the full Newton equation has the form

0 At BT
{R— [ B CT ] A_T —A_TMA_l ] |: C ]}6%
0 A1 Fy
AfT _AfTMAfl ] |: F3 ]7 (1'16)

where the system matrix on the left hand side is called the Schur complement
of the KKT matrix (1.15) with respect to the R block. The updates for duy
and 0\, are then obtained from

A 6uk = F3 — Cdak,
AT6>\k = F1 — BTéak — M(Suk

=F-[B OT][

(1.17)

If we use the GauBi-Newton method, the block B in (1.15) is dropped, and the
Schur complement solution requires the subsequent solution of the following
three equations:

{R+CTATTMA™'C} da, =F, —CTA TP + CTAT"MA™'F;,
A Suy, = F3 — Cdayg, (1.18)
AT6N, = Fy — Méuy,.

1.6 Condition numbers of the linear problems

The choice of solvers for the linear problems to be solved in each Newton step
crucially depends on the condition number of the Newton and Schur comple-
ment matrices. Fig. 1.1 shows a typical eigenvalue distribution of these matrices.
Table 1.1 displays the eigenvalues of minimal and maximal absolute value of a
sequence of Newton matrices, along with the condition number in the spectral
norm. The condition number of the whole Newton matrix grows as h =6, for the
L? misfit minimization, and A~* for H' minimization. The condition number
of the whole matrix is not significantly changed by dropping the B block in the
GaufB-Newton method and does also not vary much as iterations proceed on
one mesh.

Contrary to this, Table 1.2 shows that the condition number of the Schur
complement matrices is O(h~*) and O(h~2), depending on the choice of the
misfit functional, and thus by two orders better than that of the full Newton
matrix (this has previously been observed in Ascher and Haber [4]).

1.7 Solution of the linear problems

For the solution of the linear systems (1.15) arising in each Newton step, sev-
eral methods have been tested. The most successful, robust, and extensible
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[ T
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Figure 1.1: Left: Spectrum of the whole Newton matriz (left) and its Schur
complement (right) for a typical discretization with 81 degrees of freedom for
up, and Ap each, and 16 degrees of freedom for ap. The condition numbers are
k ~ 1.5:-10° and k = 600, respectively.

m(u—z) = 5lu— 2|3 m(u—z) = 5||V(u—2)[§

h min ;| | max | Ko min |p;| | max | K2
273 | 5.06-107° 7.62 1.5-10° | 6.24-1073 9.74 1.6-10°
2-4 | 7.84-10°7 7.90 1.0-107 | 3.96-10~4 10.1 2.6-10*
2751 1.22-10~8 7.98 6.5-108 | 2.49-107° 10.2 4.1-10°
276 11.91.10710 7.99 4.2-10'0 | 1.56-1076 10.2 6.6-10°
2771 2.99.107 ! 8.00 |2.7-10" | 9.74-1078 10.2 1.1-108
om’) | o) |om® | omh | o) | on

Table 1.1: Minimal and mazimal eigenvalues u;, and condition number with
respect to the spectral norm for the whole Newton matriz for two different misfit
functionals m(-). The discretization is as in Fig. 1.1 (which corresponds to
h =273). The mesh for h =277 has roughly 50,000 degrees of freedom.

m(u—z) = gllu— 2zl m(u—z) = 5/|V(u—2)[3
h min |p;] max |(;] K2 min |p;| | max | K2
273 | 5.06-10~° | 3.03-10~2 | 6.0-10%> | 6.26-10=3 | 1.70-10~" 27
2—4 | 7.84-10°7 | 8.14-1073 | 1.0-10* | 3.96-10~* | 5.27-10~2 130
27% | 1.22:107% | 2.08-1073 | 1.7-10° | 2.49-107° | 1.48-1072 590
27611.91.107'° | 5.21-107* | 2.7-10% | 1.56-107% | 4.35-1072 | 2800
27129910712 | 1.31-107% | 4.4-107 | 9.74-10~8 | 1.31-10°3 | 13000
O(h®) O(h?) | O™ ") | O(hY) O(h?) | O(h™?)

Table 1.2: Minimal and mazimal eigenvalues u;, and condition number with
respect to the spectral norm for the Schur complements of the same matrices
as in Table 1.1. Note that the minimal eigenvalues are identical to those of the
full Newton matriz.
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approach was solving the Schur complement form (1.18), when using the Gauf-
Newton modification. We will describe this approach first. Other, less successful
methods have also been tried, and will be discussed briefly afterwards.

1.7.1 Schur complement methods

Schur complement methods are known to be very efficient in many cases (see
Schulz [58] for an overview of some Schur complement methods for optimization
problems, or Turek [65] for flow problems). Since the Schur complement of the
full Newton matrix (1.16) is too complicated for practical purposes, we invert
the GauBl-Newton Schur complement (1.18) instead. This system may be solved
by a Krylov space method for the (small) Schur complement, and a standard
method to invert the Laplace matrices in each iteration.

The Schur complement matrix is not known explicitly, as A~' and A~7"
are only defined implicitly by solving a linear system with a specified right
hand side. Thus, unless one wants to recover it by forming n matrix vector
multiplications with it, we can only use iterative methods to invert the Schur
complement matrix.

However, unlike the full Gau-Newton matrix, the following lemma shows
that the Schur complement is symmetric positive definite under reasonable con-
ditions. We can then use the Conjugate Gradient method with its good con-
vergence properties. By standard arguments, we have the following lemma:

Lemma 1.21 (Properties of Gau3-Newton Schur complement). If the
matriz R is symmetric positive definite and M symmetric and at least positive
semidefinite, or if R is symmetric positive semidefinite and M 1is symmetric
positive definite and C has full column rank, then the Schur complement matriz
R+CTATMA-IC is symmetric positive definite.

It is obvious that for the second case, the condition that M has to be positive
definite can be replaced by the condition that it must be positive definite on the
subspace Y = {y : y = A~'Cz,z € N(R)}, where N(R) denotes the null space
of R. However, it is difficult to characterize Y in order to check whether M is
positive on it, in particular since it implicitly depends on the present iterates
ug, ap through A and C.

The requirements stated in the lemma are what can usually be expected:
the symmetry of M and R is given by the symmetry of second derivatives; their
positive semidefiniteness is given by the assumed convexity of the functionals
m(-) and r(-). Positive definiteness can be achieved, for example, by choosing
one of the two to be a norm. The condition on C' in the second possibility of
the lemma can be shown to be equivalent to the condition that w; must not
be constant on certain patches of cells; as this can hardly be guaranteed in
practice, it is better to choose R positive definite.

Note that when using the full Newton system, i.e. without the Gaufl-Newton
modification, then the Schur complement is symmetric but may not be positive
definite. We are then forced to use a more expensive method than CG. Also,
multiplications with the Schur complement of the full Newton matrix take four



1.7. SOLUTION OF THE LINEAR PROBLEMS 33

instead of two multiplications with A=! or A~T, making the iterative solution
significantly more expensive.

1.7.2 TIterative solvers

Alternatively, it is possible to invert the original KKT matrix (1.15) instead
of its Schur complement. Since it is not positive definite, only iterative solvers
such as the Minimized Residual (MinRes) or Generalized Minimized Residual
(GMRes) method can be used. For their efficiency, good preconditioners would
be necessary. Their construction, though, is not simple due to the saddle-point
structure and indefiniteness. In particular, MinRes requires a positive definite
symmetric preconditioner. In general, solving the whole Newton system with
an iterative solver is considered a hard problem, due to the size of the problem,
its ill-conditioning, and the structure of the matrix, see Saad [56] and Haber
and Ascher [37].

The most efficient solver for the whole linear problem would probably be
a multigrid solver, or an iterative method preconditioned by multigrid. Unfor-
tunately, the finite element library used in this work does not have multigrid
methods fully implemented yet.

In absence of a multigrid solver, two linear solvers have been used in the
programs that implement the methods of this section. The first is MinRes
(see Paige and Saunders [53]) with a diagonal scaling as preconditioning. Even
though the preconditioning improved the performance significantly, the method
often did not converge in a number of iterations less than the size of the full
Newton matrix. This makes the method unsuitable for the problems we con-
sider.

As a second alternative, we also tried GMRes (see Saad [56]), which al-
lows for non-symmetric and even indefinite preconditioners. We used ILU or
Vanka type preconditioners [66], or, if multi-processor machines are available,
block variants thereof. While it is known that Vanka type methods are better
smoothers than solvers, even ILU did not yield good performance of the solver,
due to the high cost of constructing and applying the preconditioner. For larger
problems, GMRes did not converge in a reasonable number of iterations, too.

As a last method, we tried to use the CG method on the normal equations,

H? §x = Hf,

with H the global matrix in (1.15). Unfortunately, H? is so ill-conditioned that
the CG method either took many iterations, or failed altogether.

Concluding this section, neither choice of iterative linear solvers produced
satisfactory results.

1.7.3 Direct solvers

Instead of the iterative solvers above, we also used direct solvers for the Newton
matrices. Due to memory considerations and the complexity of the task, only
solvers that take sparsity into account can be used.
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In our experiments, we have used the sparse direct solvers MA27 and MA47
from the Harwell Subroutine Library (see Duff and Reid [30, 31, 40]). They are
specialized to symmetric indefinite systems of linear equations, and use a sparse
variant of Gaussian elimination (MA27) or a multifrontal Gaussian elimination
solver with 2 x 2 pivots similar to the Bunch-Parlett factorization (MA47). The
choice between the two algorithms depends on a trade-off between memory
consumption and computing time: MA47 is often significantly faster, but takes
much more memory (up to a factor of five) than MA27 to compute the sparse
decomposition.

Although requiring significantly more memory than iterative solvers, the
main advantage of the direct solvers is that they never fail to find the solution
of the linear subproblems; iterative solvers sometimes break down or take an
excessive number of iterations, in which case the Newton algorithm may also
break down due to an insufficient search direction.

The computing time required by direct solvers is less than or comparable to
that of iterative solvers for the whole system for sizes up to at least 10> degrees
of freedom.

1.7.4 Stopping criteria for the linear solvers

Unless we use a direct solver for the linear system (1.15), we do not solve
each Newton step to very high accuracies, since Newton updates only approxi-
mate the step to the solution of the stationarity condition anyway. Such meth-
ods are usually termed truncated or inexact Newton methods, see Nocedal and
Wright [51].

In practice, the inner solution is stopped once the linear residual in the
Iy norm has been reduced by a certain factor, say 10%. Since the size of the
linear systems grows due to mesh refinement as the outer nonlinear iterations
proceed, reduction by a fixed factor amounts to increasing accuracy per degree
of freedom in the Newton updates, eventually turning the truncated into an
exact Newton method.

1.8 Theoretical considerations

It is not at all trivial to infer that the method proposed above works from
a theoretical point of view. Beyond what is covered in this work, there are
several theoretical questions that we would like to touch as they are needed to
guarantee convergence to the solution of the original continuous problem 1.7.
Since they are beyond the scope of this work, we only mention them, without
giving answers.

Existence, uniqueness, and stability of solutions. These questions are
discussed in a very general framework in Kravaris and Seinfeld [47], and in
the book by Banks and Kunisch [13], where many results are proven without
reference to concrete functionals or spaces. These results can then be checked
for actual applications. However, results of this type usually require unduly
high smoothness.
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Probably the most general existence result for the problem treated in this
chapter is given in Chavent et al. [26], where it is shown that there exist solutions
on the rather weak assumptions that u* € H',a* € A C {x € L®,0 < ay <
x < a1} if m(p) = 3||Vp|?. For stability of solutions, refer to Theorems 1.9

and 1.10.

Validity of the Lagrange principle. The question whether the state equa-
tion constraint allows an augmentation to a Lagrangian including both the
minimization functional as well as the augmented state equation is discussed
extensively in papers dealing with the Augmented Lagrangian formulation of
the parameter estimation problem, see for example Ito and Kunisch [42, 41].

We quote here Theorem 2.1 of Ito and Kunisch [42], in which existence
and uniqueness of a Lagrange multiplier is proven for a particular choice of
functionals:

Theorem 1.22 (Ito and Kunisch). Let v = {u,a,\} € H} x H? x H} and

m(u—z) = $lu— 2|7, r(a) = §IVal* + §IV?al?,
L(z) =m(u — 2) + fr(a) + (aVu, V) = (f, A).

Then there exists a unique Lagrange multiplier \* such that the solution x* =
{u*,a*, \*} of Problem 1.7 is characterized by the first order conditions given
in Problem 1.8.

The proof is given in Ito and Kunisch [42] for d = dim Q = 2,3, for which
the Sobolev inequality ||v||z < C||v||f2 holds. For d = 1, one can also apply
the theorem for r(a) = 1(|Val/?.

In the cited paper, it is also shown that constraints of the form a > ag
can be treated as well by adding a corresponding term (u,a — ag) > to the
Lagrangian, with a Lagrange multiplier u € CT, with

C={weH”:w>0}, CT={peH*: (uw) <0VuweC}.

This multiplier is shown to exist and to be unique.

Convergence of continuous Newton steps. Rates of convergence can usu-
ally be stated in the form of a so-called source condition: if F is the op-
erator mapping the parameter to the state space, i.e. in the present context
F(a) = (=V-(aV))~'f: A = V, with fixed f,

F'(a)da = =[=V-(aV)] " [=V-(8aV)][-V-(aV)] ' f

its derivative in direction da, and F’'(a)* the adjoint, and if the difference be-
tween initial estimate ag and exact solution a* allows a representation

a* — ag € range ((F'(a*)*F'(a*))") (1.19)



36 CHAPTER 1. PARAMETER ESTIMATION FOR ELLIPTIC PDES

for some real number v > 0, then under certain additional conditions (see, for
example, Deuflhard et al. [28], and Kaltenbacher [46]) the rate of convergence
is, even in the noise free case with é = 0, only

Han - a*” =0 (n—V) : “Un _ u*H -0 (n—u—l/Q) ,

where n denotes the number of the Newton step.

If we neglect the possibility that we put a priori knowledge of potential non-
smoothness into the initial iterate ag, the source condition can be interpreted
as follows: since F'(a) mapping from the tangent space A'[a] of A to V, has
smoothing properties, the condition requires ¢* to be smooth in order to obtain
reasonable rates of convergence, i.e. v significantly greater than zero. If such
smoothness is missing, then the rate of convergence can be arbitrarily slow.

As an example, for one dimensional problems, an index v = % already cor-
responds to a* —ag € {a € H*NH} : [ Aa/ [V(=V-(a*V))~'f] = 0} while for
v = 1 the requirements are loosened to H? instead of H3, see Kaltenbacher [46].
In practice, such smoothness requirements are rarely met. In general, we are
thus only able to guarantee qualitative convergence |la, — a*|| = o(1).

Existence, uniqueness, and stability of discretized Newton directions.
For the Gaul-Newton modification, existence and uniqueness of discrete search
directions is given by Lemma 1.21 under reasonable conditions on the function-
als. However, this is not sufficient in general, as we want a stable solution as
the mesh width h — 0. For this case, refer to Banks and Kunisch [13].

Convergence of discrete solutions. As we generate a sequence of solu-
tions aj on successively refined meshes, we are interested in rates of conver-
gence against the solution a* of the continuous problem. Such rates are proven
in Falk [34], and also in Banks and Kunisch [13, Theorem IV.3.1 and Remark
IV.3.6], but rely on rather strong assumptions on the smoothness of the un-
known solution a* and the proofs in Banks and Kunisch [13] also require to use
H? finite elements. For completeness, we briefly restate Theorem IV.3.1 from
[13], which is for the case of no regularization:

Theorem 1.23 (Banks and Kunisch). Let s > 1. Ifa* € H, f € H"!,
z € H" L w* € HsPLnW?2P p > dimQ, where u* = [-V-(a*V)] ' f. Let
ap,up, be discretized by finite elements with quadratic convergence order in the
L? norm, and under additional smoothness assumptions on the finite element
spaces, there exists C > 0 such that the following weighted estimate holds:

[(ah, = a®) IV || 1y < O (h72d + B,

where d is the distance of the measurement z from the attainable set {u :
—V-(aVu) = f, for a € A}.

Obviously, these smoothness requirements are too strong for practical pur-
poses. For actual smoothness levels, rates of convergence are coupled to the
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index of the source condition discussed above. In most cases, only qualitative
convergence can be expected.

For numerical indications to this phenomenon, see Section 2.1.3 and in par-
ticular Fig. 2.2, where we display the convergence of the parameter in compu-
tations for the test cases defined in Section 1.9; only for the first test case and
in the noise free case is the source condition satisfied, with v = % It is not
satisfied for all other test cases even in the noise free case since there a* ¢ H'.

Note also that the theorem states that without regularization we have to
expect a deterioration of approximation under mesh refinement if the measure-
ment is not attainable; this, as well, coincides with practical experience. For
the reason why the weighting in the norm of the estimate is necessary, see
Section 4.5.

Convergence of discretized Newton steps. As we do not solve the exact
Newton step (1.12) but a discrete approximation of it, we have to show that
Newton’s method still converges to the correct solution (at least if » — 0 as we
proceed with Newton steps). In finite dimensional optimization, it is usually
shown that the true and the approximate KKT matrix do not differ too much,
i.e. here

IVL(ax) — Hy(zg — 2)|| < Cllag — 2*|1%.

where H, = [(P;ZVIL(:%))TP;%]_1 is the discretized Hessian, P, is the X,-
orthogonal projector onto the finite dimensional subspace A}, and B is the
generalized inverse of B.

While this condition is difficult to prove for the present context, it is also
not very appropriate in the context of ill-posed problems. For a discussion of
this topic, see Kaltenbacher [46, Section 2.1].

1.9 Definition of test cases

In the following chapters, we will demonstrate various aspects of the methods
discussed at some test cases, which we define in this section. Parameters and
state variables are plotted in Fig. 1.2 for the different test cases and for x € R?.

Test case 1.1 (Smooth parameter). Let
alx) = 1+xP,  ux) =[x f=-V-(aVa).

On the boundary I'p = 09, we set g = u.

Test case 1.2 (Discontinuous parameter). Let

1 for|x| <3  xP? for |x| < 3
a(x) = { 8 else, u(x) = X2+ 5 else,
and f = —V - (aVu) = —2d for x € RY. Note that here the locations of

discontinuities in a and in Vu match, and the right hand side is a smooth
function; this matches the case usually found in stationary physical applications.
We choose as Dirichlet boundary I'p = 09, with g = u there.
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Test case 1.1

—NWROO~N®

Test case 1.2

u(x)
0.05
A1H R
Test case 1.3 o L A
2 IR 1
S 08

ak) u(x)

Test case 1.4

Figure 1.2: Parameter a(x) (left) and state variable wu(x) (right) for the
different test cases.
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Test case 1.3 (Singular solution). Let Q be the slit domain (0,1)%\{z =
5y < 3}, and

a=1, f=1, u=[-V-(aV)]7f, ulaq = 0.

For this example, the quantitative resolution of the singularity is decisive
for efficient algorithms. Although the coefficient is constant, we discretize it as
a distributed one as for the other test cases.

Test case 1.4 (Criss-cross parameter). Let Q = {x € R? : ||x|| < 1}, and
ac {172767 7}7 f =1- “X“2, u = [_v'(av)]ilfa u|3Q = 0.

The coefficient has piecewise constant values in the four sectors of the do-
main divided by the lines y = %, as shown in Fig. 1.2. For this case, a sin-
gularity in u is generated at the point where different values of the coefficient
meet.

For all test cases, the measurement z is obtained from the exact displacement

u by adding some noise:
z(x) = u(x) + §(x),

The noise §(x) is a Gaussian random function with zero mean.

We remark that even in the noise free case, i.e. § = 0, the optimal solution
{u*, a*} of Problem 1.7 is not identical to the functions {u,a} defined above if
we add regularization, i.e. 8 # 0.
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Chapter 2

Error estimates and adaptivity

In this chapter, we discuss error estimates and strategies for refinement of the
discretization. We will primarily base these strategies on error representations
derived using duality arguments, see Becker and Rannacher [17] and Becker [15],
but will also consider other approaches such as stability or Lagrange multiplier
estimates corresponding to discretization constraints.

Starting this chapter, we discuss error representation formulae with respect
to the minimization functional J(-), and corresponding mesh refinement criteria.
For this particular case, the use of weighted error estimates does not involve the
solution of an additional problem when solving optimization problems. Thus,
the evaluation of the error estimates basically comes at the same price as the
evaluation of heuristic indicators. The resulting indicator is compared to other
indicators with respect to its efficiency, and its reliability as an error estimator
is verified.

After this, we derive estimates and criteria for the coefficient parameteriza-
tion. As the discretization of the parameter variable is chosen mostly indepen-
dent of that of the state variable, criteria for this particular purpose may be
best suited for this. Again, we compare estimates and accuracy for efficiency.

We then consider estimates based on stability and estimates based on tech-
niques involving the dual problem to the first order necessary conditions. These
allow for error representation formulae and refinement criteria tailored to ar-
bitrary functionals of the solution. Finally, estimates for the problem with
constraints on the parameter are discussed.

To the author’s best knowledge, there is nothing in the available literature
where adaptive methods based on the actual optimization problem are employed
for distributed parameter estimation problems, despite their obvious applica-
bility in many cases. There are, however, some uses for optimization problems,
see for example Becker et al. [16, 17, 15].

2.1 Error estimates for the minimization functional

In this section, we will derive a representation of the error in the minimization
functional J defined in Problem 1.7, i.e. for the quantity J(z) — J(z1), where
z and x5 are continuous and discrete solutions, respectively. First, we state

41
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its abstract form only involving the Lagrangian of the problem (Theorem 2.1),
then specialize it for the elliptic problem introduced in the previous chapter
(Theorem 2.2). We will then discuss two ways for the practical evaluation of
this error representation, assess their practical performance compared to more
heuristic approaches, and also check their efficiency as error estimates.

2.1.1 Derivation of estimates

For the derivation of an error representation formula, recall that continuous
and discrete solutions satisfy the variational equalities

ViL(z;y) =0 Yy € Xy, (2.1)
Ve L(zp;yn) =0 Vyn € Xn,

respectively. The definition of the Lagrangian and of the function spaces is
given in Problem 1.8. With these equalities, Galerkin orthogonality for this
nonlinear problem reads:

ViL(z;yn) — VoL(zh;yn) =0 Yy € Xh. (2.3)

Using this identity, an expression for the error in the target functional is derived
in the following theorem.

Theorem 2.1. Let x and xj, be solutions to (2.1) and (2.2), respectively. Then
the discretization error with respect to J is given with e = x — xp by

J(x) = J(zn) = 3Val(zn;® —yn) + R(z,z0)  Yyn € X, (24)

where the remainder term R(x,xzp) is given by

R(z,zp) = %/01 V3L(xy + seje, e e) s(s — 1) ds.
Proof. At the solution points the state equations are satisfied, therefore

J(x) = J(zp) = L(z) — L(zs).
On the other hand,
L(z) — L(zp) = /01 ViL(z + se;e)ds,
with e = £ — xj, and by approximation by the trapezoidal rule
L(z) — L(zp) = $V,L(z;e) + 3VaL(zp;e)
+ 3 /01 V3 L(zy, + se;e, e e) s(s — 1) ds.

The first term vanishes by the optimality condition (2.1). In view of Galerkin
orthogonality (2.3) and the discrete identity (2.2), we have that
VeL(zpse) = Vo L(zp;z) — Ve L(wp;zp) = Vi L(zh; 7)
= VelL(zp;z) — Vel(zn;yn) = Vel(zp;z — yy)

for any y, € &j,. The assertion then follows. O
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For the diffusion equation introduced in the previous chapter, and for the
particular case that misfit and regularization functionals are quadratic, the error
representation (2.4) with an arbitrary y, = {©n, Xn,¥n} has the following form:

J(z) = J(zp) = 1{/)u(%;ﬂc —yn) + oA(@n; T — yn) + palzn;z — yh)} +R

2
(2.5)

with residuals

pu(zn; e — yp) = m'(up — 20 — @) + (@R VAR, V(e — @p)),
px(zh;x — yn) = (apVup, VX =) — (f, A — 9n),
pa(Th;z —yp) = Br'(an;a — xp) + (VAp-Vup,a — xp)),

and remainder term
R=——((a—ap)V(A =), V(u —up)).

The remainder term does not contain intermediate points any more, since the
state equation was assumed to be quadratic.

From this representation, we can obtain a localized error estimate. We
demonstrate this for a particular choice of discretization spaces and functionals,
but it is straightforward to generalize it to other situations.

Theorem 2.2. Let misfit and reqularization functional be
m(u—2) = gllu - z|?, r(a) = glal>.

Then, the following error representation holds:

J(x)—J(zp) = % Z {(—f—V-(ahVuh), A —inA) g + 5 (n:[anVup), A — ipA) g
KeT

+ (Uh —Z — V-(ahV)\h),u - ihu)K + % (n-[ahV)\h],u - ih’u,)aK}
1 )
+ 3 Z (Ban + V\,-Vup,a — zha)Ka
Ka€Ta
1
= 3@ =an) V(A= An), V(u—up)),

(2.6)

with a generic interpolation operator iy, acting on X — X, or single components,
depending on context. For edges v C OK between a cell K and a neighbor K',
we define the jump terms by

_ _ | n-(anlxVoulxr —an|kVonlk) if v € 09,
wlanVion] = { 2n-a,Voy if v C Q.

Proof. Split the integrals in (2.5) into sums over all cells and integrate by parts
on each cell. Then exchange half of the boundary terms on each cell with the
neighbors to obtain optimal order locally. Set y;, = ipx. ]
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Since the error representation above involves the exact solution z, we eval-
uate it approximatively by using a guess Z of z; for techniques to obtain such
guesses, we refer to the overview article by Becker and Rannacher [17]. With
this, we define the following approzimate error representation by replacing z
by & = {@,a, A}, iz by z,, and neglecting the remainder term:

PV = Z Nk + Mok + Z NKq»

KeT K.€Tq
| ~ .

NK = 5{(’[},}1 —Z— V'(ahvkh)au - uh)K - <f + V-(ahvuh), A= Ah)K}’
1{, 1 A

nor = 533 (W[anVAn], & —un)p + 3 (n'[ahvuh]’ A Ah)aK ’
1 ~

K, = 5 Z (Bap + Vp-Vuy,a — ah)Ka :

Ko.€T,

(2.7)

If we cannot or do not want to provide a guess T for z, then the following
theorem may still help us to develop an error estimate:

Theorem 2.3. Let U, = A, = QLT), Ay, = QYT,). Under the same as-
sumptions as in Theorem 2.2, and assuming that for the exact solution we have
u,\ € H%, a € H', there holds the following a posteriori estimate for the error:

T() — T(an)] < 0+ = |((a — an) V= An), V(1 — up))]

12
n=Ct> (pkwi + phruwbr + Pkwi + mdxwdi) + CF Y p.wk,, (28)
KeT Kq.€eT,
with residuals and weights
P = %Huh—z—v-(ahV)\h)HK, Wi = h? HV2UHK,
i = 7 ] Wi = il VPull
P = SIF + V-(anVun)ll wic = hic|| V2N .
o = 7 ImlanV o oo i = K|V
Pk, = 3lBan + V-Vl ., wk, = hk,[IVal g, -

From a practical point of view, the interpolation constants C},C% are usually
in the range 0.1...1

Proof. Use the Cauchy-Schwartz inequality to separate the scalar products in
(2.6). Assuming the indicated regularity of the exact solution, we can use the
Bramble-Hilbert lemma, to estimate ||u —ipul|x < Ch? ||V2u]|K, lu—ipul|lor <

Chi(/QHV?uHK, and likewise for A, and ||a — ipal|x, < Chk,||Vallk,, where

iy 18 a generic interpolation operator V. — Vj or A — Ay, depending on its
argument.



2.1. ERROR ESTIMATES FOR THE MINIMIZATION FUNCTIONAL 45

For pgK, note that for faces 0K C 99 there holds A — ipA|sx = 0 since
Aaag = 0. Thus, these jump residuals give no contribution at the boundary,
which we take into account by setting them to zero since this information is
lost when estimating ||A — i A||sx = 0 by Ch?l’(/QHVQ)\HK > 0. Note, however,
that this does not hold for p% since in general u — ipu # 0 at O0f. O

Again, the weights w contain the exact solution zz. However, since no relation
to the discrete space A} is involved this time, we can hope to get a good
approximation of n by substituting ||V2u|x — ||Vius|/x with some discrete
approximation Vj, to the gradient V, e.g. a difference quotient, and likewise for
the norms in the other weights. For reference below, we define the following
approximate error estimate using this substitution:

PV = O} 7 (ki + ol + okik + o) + € Y ok, Ok,
KeT Ka€Ta
(2.9)

with residuals and approximate weights defined by

Pl = Sllun — 2 = V-(an V)l e, @ = bl [ Vi
i = 7] @xc = 1502 |V unl
px = LI + V- (anVun) |, ox = W | Vil o
o = InlanFunllre, e = WL VM
P, = Sl1Ban + VA Vupl| ., Wi, = hi, [IVhanl g, -

Remark 2.4. The regularity assumed in Theorem 2.3 is not very practical. In
particular, since the Lagrange multiplier has to satisfy the equation

—V-(aVA) = —(u — 2),

it will not be in H? if the optimal coefficient a is not smooth, or if the
domain 2 is not convex. Similar considerations hold for w. Nevertheless,
taking difference quotients in the weights in (2.9) is well-defined and yields at
places of missing reqularity negative powers of the mesh width, resulting locally
in the correct order.

2.1.2 Criteria for refinement of the state mesh

In this section, we propose several refinement criteria for the state equation
mesh T. We will then compare these for example problems.

Refinement indicator n2"' %! (dual weighted residuals). Starting from
the representation (2.6), we use the approximate error representation (2.7) as
refinement indicator.
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Refinement indicator n2"'%2 (dual weighted residuals). We can also
base a refinement criterion on the error estimate (2.8), and use the approximate
error estimate (2.9) as refinement indicator. Since the meshes produced by this
and the previous refinement criterion perform almost identical, we do not list
this indicator in most charts.

Refinement indicator 7).V" (smoothness of uj). As a first heuristic re-
finement criterion, we may use an indicator measuring solely the smoothness of
the primal variable:

ey = W2 2| (2.10)

This indicator is well known from the Laplace equation.

Besides the heuristic argument, the indicator can be made plausible by sim-
plification of the dual error estimator (2.9): assume A € H? and V-(aVu) €
L*>(€), and assume convergence of the term ||n-[apVp]llox — [|AV:(aVA)||k <
hY2||V-(aV )|l oo:k = BY2 ||t — 2||ooiic < b 2|t — 2|l soi < ¢sh¥? with a stabil-
ity constant ¢; = [|u — z||oc;0. Then the second term in the error bound (2.8)
can be estimated as

d+3 2
Phrwin < esh &2Vl 4.

The indicator (2.10) then arises by using finite difference quotients instead of
derivatives, replacing the exact value u by up, and dropping the constant factor
¢s which is irrelevant for refinement.

We would like to stress that the derivation sketched above is rather heuristic
and does not stand formal criteria. For example, numerical experiments suggest
that in general, the assumed convergence |n:[a,VAplllok — [|hV-(aVA)|lax
does not hold on non-uniform, possibly locally refined meshes with hanging
nodes. However, refinement indicators like the one shown above are used suc-
cessfully in practice. Therefore, we use them for comparison.

Refinement indicator 7y."* (smoothness of )\). Using a similar line of
reasoning, take the first term in (2.8) and obtain the following refinement indi-
cator:

d 3 2
e = W2 V2 0k, (2.11)

2.1.3 Comparison of refinement criteria

The performance of the various refinement criteria with respect to the reduction
of J(x) and the resolution of the unknown parameter is compared in Fig.s 2.1
and 2.2, using the test cases defined in Section 1.9.

Before discussing the results, we note that driving refinement by setting up
an error estimator for the value of J(-) is, beyond the fact that it is essentially
for free, reasonable since the value of J(x;) may be used to stop an iteration
if it falls below the noise level. As m(u — z) is bounded from below by noise,
we would only resolve this noise if we reduced J further. However, this would
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Figure 2.1: Comparison of value of the minimization functional J(xp) for var-
ious refinement criteria. Top left: Test case 2 (discontinuous coefficient). Top
right: Test case 3 (slit domain). Bottom: Test case 4 (criss-cross parameter).

not lead to a better resolution of the parameter. Monitoring the value J(zp)
and comparing it with an improved estimate therefore helps to stop iterations
when this happens.

The results of computations are visualized in Fig.s 2.1 and 2.2. They can
be summarized as follows:

e The criterion nI?WRl based on the dual error representation formula per-

forms better than or equal to all other criteria under investigation for all
examples.

e For most examples, the dual weighted error estimate and the n[V(V/\ indica-

tor perform equally well. They are always better than the other refinement
indicators.

e Only for test case 4 is the dual weighted estimate significantly better than
VVA
Mk "

Meshes generated by the various refinement criteria are shown in Fig.s 2.3 and
2.4 for test cases 3 and 4. They are only slightly different for all test cases,
even for test case 4 where the duality based estimator is significantly better
quantitatively.

The fact that the dual weighted error estimate does not perform better as
mesh refinement criterion than the more ad hoc indicator nIV(V/\, defeats intu-
ition at first. However, comparing the relative sizes of the contributions to the

dual weighted error representation (2.7) reveals that in actual computations the
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Figure 2.2: Comparison of various mesh refinement criteria with respect to the
error in the coefficient ||an — Gegact||. Top row: Test cases 2 and 3. Bottom left:
Test case 4. Bottom right: For comparison ||ap, — Gegact|| for test case 1, where
all refinement indicators work equally well. Note that here the error is scaled
logarithmically (see also the discussion of condition (1.19)).
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Figure 2.3: Test case 3 (slit domain): Comparison of meshes generated by

criteria nID(WRl, nIV{Vu, n[V{V/\ (from left to right). Top row: Meshes T for state

and adjoint variable. Bottom row: Meshes T, for the parameter a.
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Figure 2.4: Test case 4 (crisscross parameter): Comparison of meshes generated
by criteria pRWEL n¥Vu nVVA (from left to right). Top row: Meshes T for state
and adjoint variable. Bottom row: Corresponding meshes T, for the parameter
a.

term g, is small compared to the other terms, at least in those cases where the
two refinement criteria perform equally. On the other hand, second derivatives
of the Lagrange multiplier or comparable terms appear in the two other terms
VuLl(zp;u —ipu) and VyL(zp; A — ipA), either as residuals or weights. Since
these terms in the weighted estimator consist of products of functions of u and
of A, it can only show fundamentally different behavior than the n[V(V/\ indicator
if the regions of roughness of 4 and A do not coincide. However, this can not
happen since the Lagrange multiplier satisfies —V-(aV\) = —(u — 2), and if no
noise is present then u — z is proportional to V?u, i.e. u and X have the same
local smoothness properties.

On the other hand, for test case 4, where the dual weighted estimator per-
formed better, the term 7, in (2.7) is not small compared to the other terms.
These considerations explain why the dual weighted indicator and the nIV(V)‘
indicator perform equally well in most situations, and in which situations the

former is better.

2.1.4 Reliability of error estimates

Besides providing refinement criteria, the error indicators (2.7) and (2.9) may
be used to assess the quality of the finite element approximation z; of (2.2)
with respect to the true solution z = {u,a, A} of (2.1). In this section, we
discuss how reliable these estimates for the quantity J(z) — J(z,) are.

Since for the general problem the exact solution is usually unknown, we
restrict ourselves to the case of f = 0, and that z is a feasible point. We can
then assume that we can find a parameter a such that for the corresponding
primal variable u = z holds, and thus m(u — z) = 0. Since 5 = 0 we have that
J(z) = 0 and the exact error is given by J(z) — J(zp) = —J (1) = —m(up — 2).



50 CHAPTER 2. ERROR ESTIMATES AND ADAPTIVITY
Test case 1 Test case 3
0.01 T T 1e-07 g T T
True error —+— True error —+—
0.0001 [ Estimated error DWR1 ---x--- - Estimated error DWR1 ---x---
"X .. Esfimated error DWR2 ------
1e-06 e ‘MQ@gﬁ;zﬁlion error g o 1e-08
1e-08 | S T
<] Hoog 5
= 1e-10 b £ 1e-09
w BE o w
1e-12 E
fe-14 BrBrag B 1e-10
1e-16 [ R beg]
1e-18 Lt L L 1e-11 b L L
1000 10000 100000 1000 10000 100000

Total number of degrees of freedom

Total number of degrees of freedom

Figure 2.5: Comparison of error estimates DWR1 (2.7) and, for test case 1,
DWR2 (2.9) with the approximate true error £. For the first example we also
show the linearization error in (2.5).
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Figure 2.6: Ratio of error estimates (2.7) (DWRI1) and the approzimate true
error &, for test cases 1 and 3.

Assuming that the scheme converges to the global solution, we can then compare
the error estimates with this value.

On the other hand, if 5 > 0, then at the solution r(a) > 0, and m(u—z) > 0
since in general u # z. The exact error is then unknown. However, if 3 is small,
the noise level large, or the computational mesh coarse, then m(u,—z) > Br(ap)
in the range of the z;, which we resolve in the course of our computations, and
we can still expect that the quantity & = —m(uy — z) is a good approximation
to the true error & = J(z) — J(zp). In Fig.s 2.5 and 2.6 we compare this value
& with the estimates (2.7) and (2.9).

It is seen that the error estimates using (2.7) are in very good agreement
with the actual error for test cases 1 and 3, showing the same convergence
behavior and having a ratio between estimated and true error very close to the
optimal value of 1. For test cases 2 and 4, where bounds are posed on the
unknown solution, the estimates are unreliable; an extension of the estimates
for the constrained problem is discussed in Section 2.5.

For test case 1, Fig. 2.5 also shows the values of estimate (2.9) where we
have taken residuals and weights apart by the Cauchy-Schwarz inequality. We
have chosen the interpolation constants equal to C;r = 0.3. As seen from the
figure, the estimates are too large, with overestimation factors growing from 50
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to roughly 250 under mesh refinement. For other examples, the ratio usually
remains bounded, but is significantly too large as well.

Finally, Fig. 2.5 shows that the linearization term in (2.5), here computed
using the exact solution, is sufficiently small that neglecting it in the error
estimates is justified. This also holds for the other test cases.

2.2 Error estimates and adaptivity for the coefficient
parameterization

In this section, we will describe methods of refinement of the parameter mesh
T,. We will discuss an idea to use linearized sensitivities to refine the mesh
based on a novel approach considering discretization as a constraint. Alterna-
tively, mesh refinement will be based on heuristic arguments, or, if available,
on information from the dual weighted residual error estimator derived in the
last section.

Intuitively, one would like to base mesh refinement for the parameterization
on sensitivities with respect to the state equation: we should refine the mesh
where we know that the parameters are resolved best. For the discrete problem,
the uncertainties are computed from the diagonal elements of the covariance
matrix

Cur = (CTATMAIC) Y,

see Tarantola [63]. Thus, the covariance matrix is the inverse of part of the
Schur complement of the GauB-Newton matrix which we need in each step
anyway. Given the complexity of computing C; (this would involve n forward
and n backward solutions), this approach is not feasible, though. A second
drawback is that it is not clear that refining where sensitivities are high is also
necessarily a good strategy for the approximation of the parameter. For these
reasons, we have used alternative refinement criteria for the parameter mesh,
which we will discuss below.

2.2.1 Criteria based on discretization constraints

Here, we will first derive refinement criteria based on an unconventional ap-
proach in which we consider sensitivities with respect to discretization, which
we take as a constraint here. It will be shown that refinement indicators can be
based on the Lagrange multipliers associated with the discretization constraint.
We show the derivation of such criteria for the unconstrained case, show an a
posteriori bound on the error, and then extend the method to the constrained
case.

Since we are only concerned with the parameter discretization, assume for
the derivation that the parameter is discretized, while state and adjoint variable
may or may not be discretized but that the space V. = V or Vj, from which
they are chosen is not subject to discussion. Neglecting bound constraints, the



52 CHAPTER 2. ERROR ESTIMATES AND ADAPTIVITY

parameter identification then has the form:

min  J(u,ayp), subject to (apVu, Vo) = (f,¢) VoeV.
ueV, ap €Ay

In order to view discretization of @ as a constraint, we first rewrite this
minimization problem as one over a continuous space A, but then again restrict
ap, explicitly to Ay. The above problem is then equivalent to finding u € f/, ap €
A and numbers «; such that

min  J(u,ap),

u€eV, ap €A
subject to (apVu, V) = (f, ) Vo € f/’ (2.12)
(an — Tiaixi,n) =0 Vn e A,

where the y; are the shape functions of Aj. Introducing a Lagrange multiplier
v € A’ for the last constraint, the optimality system for this problem contains
the equations of Problem 1.8, (1.3), but also

(vsxn) =0 Vxp € Ap, (2.13)
VaoL(z;x) + {7, x) =0 Vx €A, (2.14)

with L the Lagrange functional already introduced in Problem 1.8. The La-
grange multiplier of the discretization constraint can thus be identified with the
residual —V,L, which is orthogonal to A; with respect to the duality pairing
().

Note that by the reformulation, we have extended the test space for the
equation concerning V,L from A, to A in (2.14). However, this increase is
countered by the additional term in (2.14), which deletes that part of V,L that
is not orthogonal to the surplus test space A\Aj,.

Remark 2.5. If we have discretized u, X to uj, and A, and if r(a) = 3|la|?,

then by (2.14) we have the explicit representation
v = Bap + Vup-VAy.

Since Lagrange multipliers represent the first order response of the objective
function to a small change in the constraints, vy gives an indication how a
relaxation of the discretization constraint would change the value of J(u,a).
Thus, if we would weaken the discreteness constraint in (2.12) to a—X;a5x; = g,
then

J(x) = J(&) = (9,7) + Ollgl*), (2.15)

with z,  the solutions of the original problem with discreteness constraint, and
of the problem with perturbed constraint, respectively.

The mesh should then be refined in such a way that the objective function
decreases maximally, which we assume to coincide with the best strategy for
the identification of the unknown coefficient. Refining a cell then corresponds
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to enriching the space Aj, by the shape functions of Ay, /2, 80 we have to check
the change in J(-) for functions g € Aj /5. As refinement indicator we then take

Me, = > (g% M| (2.16)
7

where the gﬁ(a form a basis of Ay, 5 on the cell K,.

Remark 2.6. If Ay, = Q%(T,), then we can choose the characteristic functions
of the child cells K of K, as basis of Apjp. Then, (2.16) reduces to

n’YKa:Z /Kc*ydx

c
K¢§ a

Remark 2.7. The refinement indicator 777Ka can be related to the residual pf
from the approzimate error estimate (2.9). For example, for A, = QY(T,) we
have

k. < VIEKalllk, = VEKalpk,

The scaling factor equals the weight w§ = hk,||[Vhayl if the coefficient is
discontinuous since then wg < Cllap|| < Cy/a1\/|Kal.

Further exploiting the approach discussed above, we can derive a lower error
bound for the coefficient from (2.15) under certain additional assumptions:

Theorem 2.8. Let © = {u,a,\} and z, = {up,ap, \p} be exact and discrete
solutions. Assume that the state discretization allows to resolve state and dual
variable ezactly, and that for the error in the coefficient |la — ap||la < & with
some fized § > 0. Furthermore, assume that we have a lower estimate for the
error in the objective functional, n < |J(z)—J(xp)|, then there exists a constant
C > 0 such that B

n— C6?

la = anlla = Z——-
[y ILar

Proof. Tf we perturbed the discreteness constraint in (2.12) to a — Z;a5x; = g
with ¢ = e, = a — ay,, then the exact solution a is on this constraint surface.
The solution Z of the perturbed problem is thus the exact solution z since we
have assumed that state and adjoint variable can be identified exactly. We then
have by (2.15) that

1 < |J(x) = T(zn)] < [{eas )|+ C8,

with some C' > 0 bounding the higher order sensitivities in (2.15). The claim
then follows by simple transformations. O

The relevance of the bound lies in the fact that as ||a — ap|| — 0, the
quadratic term Cd2? on the right hand side tends to zero with higher order.
This unknown second order term thus vanishes asymptotically.
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By now, we have neglected the existence of bound constraints on a in
the derivation of v and 7}, . By (2.14), we know that v can be expressed in
terms of the residual V,L(x), which should be zero for the exact continuous
solution z = {u,a,A\}. However, if a 1is at one of its bounds, the gradient
of the unconstrained Lagrangian is nonzero, but is countered by the Lagrange
multiplier corresponding to this constraint, see (1.11). Thus, we change the
definition of 7 for the constrained problem to

(7,x) = VoL(zn;x)  Vx € AQ), (2.17)
where ' is the union of cells where the parameter is not at one of its bounds.
For cells where the parameter is at either bound, % is extended by zero.

2.2.2 Criteria based on available information

Alternatively to (2.16), we have used other refinement criteria for the parameter
mesh T,:

e If the dual weighted estimators (2.7) or (2.9) are used, we can use one
of the following terms defined on the cells K, of the parameter mesh for

refinement:
s = Br'(an; @ — ipa) + (VAn-Vup, @ — ipa) i,
K = Prian (2.18)
Nk, = PK,YK,-

Due to their derivation, we do not expect significant differences in their
abilities as mesh refinement criteria and therefore only investigate the first
one.

e If the state mesh was refined with one of the heuristic criteria defined in
Section 2, then we can also use a more heuristic criterion for the refinement
of the parameter mesh. For a piecewise constant approximation of the
parameter we used

e = W2V gap oo, (2.19)

where V}, is a difference quotient approximation to the gradient.

2.2.3 Comparison of refinement criteria

To assess the quality of the three refinement criteria 7 (2.16), nID(ZVRl (2.18),
and nlv(g (2.19), we first look at the size of the refinement indicators for test
case 2 (see page 37). Obviously, refinement should be directed entirely into the
circular jump of the coefficient. Fig 2.7 shows the coefficient after the first few
iterations on the initial mesh, as well as the distribution of the three indicators
listed above.

In this case where the coefficient is well identified, all indicators roughly
indicate the same cells for refinement. However, a common observation is that
the DWR indicator only marks a very small number of cells for refinement,
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Figure 2.7: Comparison of refinement criteria for the parameter mesh (test
case 2). Left: Recovered parameter on coarse mesh. Center left: Values of 777[(0,-
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Figure 2.8: Comparison of refinement criteria for the parameter mesh (test case
1 with added noise). Left: Recovered parameter on coarse mesh. Center left:
Values of n'yKa. Center right: Values of nI?ZVRl. Right: Values of UIV(Z-

leading to slow refinement of the parameter mesh. In addition, some refined
cells are coarsened again in the next step. Thus, the DWR estimator often leads
to rather unpredictable behavior unless a significant amount of heuristics are
added. Due to this, no suitable refinement strategy could be found for some
examples.

In contrast to this, 777}(& marks the cells around the circle in a more pre-
dictable way, while n;v(fj of course profits from the good approximation of the
parameter and therefore has no problems indicating the correct cells.

As a second example, we consider the solution of test case 1 (see page 37),
with 1.5% noise added. The presence of noise leads to a bad reconstruction of
the parameter, which is amplified by the fact that we use piecewise constant
elements for the parameter and only penalize the size, but not the roughness of
the parameter by regularization.

The results of this experiment are shown in Fig. 2.8. While 77?(& seems
relatively unaffected by the bad reconstruction and indicates those cells for
refinement where the gradient of the ezact solution is large (i.e. outwards from
the center towards the corners) as should be expected, both the DWR and the
Va indicator seems badly out of touch with the situation, proposing rather
random cells for refinement.

As a summary, in general 777}(& is the most robust one, while n}?ZVRl and n;v(fj
were too unpredictable in their behavior and often suffered in the presence of
noise. From the indicated relation between 777}(& and n}?}f/m, it seems probable

that the lacking robustness of the latter indicator is due to unreliable weights
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Figure 2.9: Comparison of true error ||ap — Gegact||r> and error estimates n)
and n2. Left: Test case 1. Center: Test case 2. Right: Test case 2, but with
the estimate 4 incorporating bound constraints instead of the original .

a—ay, which is readily explained by lacking smoothness in ay. If the application
permits it, penalizing roughness might help in this case.

2.2.4 Reliability of error estimates

In order to check the accuracy of the lower error bound provided by Theo-
rem 2.8, we consider the solution of two of the examples defined in Section 1.9.
As a first test, we solve test case 1, with the regularization parameter 8 = 0 and
no added noise. With these parameters, we know the exact solution aegqq of the
problem and can compare the true error and the estimate. We also know the ex-
act error in the functional J, since J(z) = 0 and thus |J(z) — J(zp)| = |J(xp)|-
However, we do not know the value of the constant C' appearing in the theorem.
Neglecting this higher order term, we are led to compare ||ap — Gegqct|| 2 With
the estimates

e = |J(@p)/ IVl 12, ne = """ /llvIl 2

The latter is computable even if the exact value of J(z}) is unknown. The true
error in the coefficient ||ap — @epact |12, as well as the two estimates are reported
in Fig. 2.9. It is seen that 1! provides a reliable lower bound for the error. n2
is too large at the beginning since n”"W ! initially overestimates the true error
J(x) = J(xp).

In a second example, we take test case 2 to check the accuracy of the lower
error bound. In contrast to the first example, here the bounds on the parameter
are active in large areas of the domain. We thus expect that neglecting this fact
in the derivation of v will lead to an overestimated value of ||y|| and thus to an
underestimated value of ||a — ap||. This can indeed be seen in the middle and
right panel of Fig. 2.9, where the true error ||a — ay|| along with the estimates
are shown that are obtained using v and 4. It is clear that neglecting bound
constraints leads to inefficient error bounds, while the estimate 4 incorporating
bounds performs better.
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2.3 Estimates based on stability

Besides the duality based strategies to get a posteriori error estimates, we briefly
discuss another possibility for their construction. It is based on stability prop-
erties. The result contains a stability constant revealing the worst case stability
of solutions instead of a dual solution representing the stability properties of
a particular solution; the estimate will therefore greatly exceed the error in
most cases. The construction of such an estimate is nevertheless shown as an
alternative way.

Theorem 2.9. Assume that the discretization space Xj, = Uy, X Ap, X Ay, admits
the following interpolation estimate

inf |ly —ull < Ch
y;thHy ynll < Chllyllx,

for all y € X, with ||z]|3 = |Vull2, + l|lal|%: + [[VA2,. Assume further that
the inf-sup condition

A(z,y)
sup
vexo vl

>qlzlle Ve (2.20)

holds (see, e.g., Theorems 1.9 and 1.10), with m(p) = 1||[Ve||? and r(x) =
1142
3lIxll5 > and

A(z,y) = (Vu, Vo) + (aVA, Vo) + (aVu, Vi)

Let x*,x} be continuous and discrete solutions, respectively. Then the a poste-
riori estimate

C U a U a
lell < = {}jh (0% + o + i) + 1172 (s + b +p3K)} +O(]le]?),
K

for the error e = x* — x} holds with

Pk = If + V-(anVuy)| k, pox = ll[Onun]llor + llanOnunlllor
Pk = 1 A(un — 2) + V(@ ,V\)lIk,  p5x = llandnrn]llok,
0% = |Blan — Aap) + Vur-Vullk,  phr = [l[Onan]llor-

Proof. Set x = e = x* — xj. Using Galerkin orthogonality, we have

A 1 A —
||e||X < = sup (67y) = = sup inf (67y yh).

Y yex yllx _’YyEthEXh llyllx

Integrating by parts in A(:, ), using the Cauchy-Schwarz inequality and the as-
sumed interpolation estimate yields the following estimate (we drop the asterisk
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on the elements of 2* and z} for brevity):

Ch
llellx < T{Z | — Au+ Aup, — V-(aVA) + V-(ap, V) + V-(aVAp)
K
- V-(ahV)\h)HK
+ Z | = V-(aVu) + V-(ap,Vu) + V-(aVuy) — V-(apVup)|

-I-ZHB (a —ap — Aa + Aay)
K
+ Vu-VA — Vup -V = Vu-VA, + Vur- VLl x

+> %h_1/2<”[anuh]”6k' + llandpun] — ([andnu] + [adpun]) lox
K

+ [lanOnAn] — ([an0nA] + [a0n An])llok + ||[3nah]||aK) }

Using the optimality conditions for the continuous solution, we then obtain

leflx < —{Z [(=A(up = 2) = V-(anVAn)) — (V-(€aVA) + V-(aVey)) Ik
+ 3 (= f = Ve(anVun)) = (V-(ea V) + V-(aVey)) ||k
K

+ ) l(Blan — Aap) + V- V) + (Ve VA + Vu-Vey )|
K
+ jump terms as above}.

By tangentiality, V-(e,VA) = —V:(aVey) + O(|le/|?) and likewise for corre-
sponding terms in the second parentheses of the other cell terms, as well as for
the parentheses in the jump terms. We can thus split off these higher order
terms and obtain the claimed result. U

Remark 2.10. The result of Theorem 2.9 implicitly contains an estimate of
the error in the parameter, since

la = anll < [leflx-

Nevertheless, the theorem is of little practical value since it incorporates the
constant vy, denoting the worst case stability properties of A(-,-). It does not, in
general, reflect the stability of a particular solution and will thus lead to a large
overestimation of the error. FExploiting the actual stability of a solution is only
possible by taking into account the solution of a corresponding dual problem.

To illustrate the overestimation, note that in applications with small noise
it is often possible to identify the parameter well with very small values of ;
if, for example, 8 = 1078, then % > 108.
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2.4 Estimates for arbitrary functionals

In some cases, we may be interested in bounding the error with respect to func-
tionals of the solution—including error functionals of the recovered parameter.
In this section, we will derive an error representation for arbitrary functionals.
First, we state the abstract form, only involving the Lagrangian of the problem,
in Theorem 2.11, then apply it to the elliptic problem introduced in Chapter 1.
Since the necessary computation of a dual quantity is too expensive for practical
purposes, a modification is discussed that makes this feasible.

2.4.1 Statement of estimates

Theorem 2.11. Let E : X; — R be an error functional. Let x € X, be the
solution of the stationarity condition VL(x;y) = 0 for ally € Xy, and & € X
be the solution of the dual problem

ViL(z;#,y) = Vi E(z;y) Vy € Xp. (2.21)

Then the a posteriori error estimate

1 R . . . o A
E(l’) - E(xh) = 5 {p(l’h,f - th) + p(fh,I,f - th)} + R(f,fh,f,fh),
(2.22)

holds with residuals

,O(xh, y) = VIL(Iha y)a
p(@h, &,y) = Ve B(zh;y) + VEL(2h; 2,y)

and remainder term

1
R(Q?,Q?h,f,i’h) = %/ {V:;E(xh + seje, e, 6)
0
+ V3L(zp + se;e,e,e) + VEL(xy, + se; & + sé, e, e, e)}s(s —1) ds,

where e = ¢ — xp, € = T — Ty, and Ty, the solution of a discrete counterpart of
(2.21).

Proof. Let E = {z,2} € X; x Xp, then = and Z satisfy the identity
V=A(E;€) =0 VE € Xy x Ap,
with the joint Lagrangian A(E) = E(z) + V,L(x;Z) containing the Lagrangian

L(z) of the first order conditions, see Problem 1.8. The proof continues in the
same manner as the proof of Theorem 2.1, yielding

1
E(z) — E(zp) = $V=A(E),e2) + %/ VEA(E) + sezjez, ez, ez) s(s — 1) ds,
0
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where ez = £ — E;, with £, = {z},Z,}. The claim then follows by observing
that

VEA(Eh; 65) = VCCE(xha 6) + ViL(l’h, ia 6) + VCL‘L(fo é)a

with é = £ — &5, and using Galerkin orthogonality on these terms to replace e
by z —ipx, and é by T — 2. For the remainder term,

VEA(E) + sez, ez, ez, ez) = Vo E(z), + se;e, e, e)
+ V3L(zp, + se;e, e e) + VEL(z), + se; 4 sé, e, e, e).

O

For the particular elliptic problem considered here, the error estimate above,
neglecting the remainder term R, assumes the following form:

1 L A L
E(z) — E(zp) =~ §{pu(xh;:1: —inZ) + pa(Th; & — in%) + pa(zh; & — in2)

o pulwni B, = inB) + Paloni 8,8 — inB) + pr(oni 7,5 — ind) |,

with the residuals

+ (apVip, VA —ipN\) + VyE(zh;u — ipu)
pa(@h; Tn, x — ipz) = Br(an;an, a — ipa) + (@ VA, V(u — ipu))

+ (apVup, VX —ip0\)) + Vo E(zp;a — ipa)
ox(zh; Tp,x —ipz) = (ahVS\h, V(u—ipu)) + (Vuh-VS\h, a—ipa)

+ VaE(zp; A —ip)).

For localized refinement criteria, these residuals should be evaluated only after
cell-wise integration by parts, resulting in cell and face terms. The neglected
remainder term has the form

1

R:—E

1 !
((a—ah)V()\—Ah),V(u—uh))+§/O V3E(z+se;e,e,e) s(s—1) ds.

In order to evaluate the error representation practically, we need the exact
dual solution Z, or an approximation to it. Since the discrete counterpart of
(2.21) is equivalent to one Newton step, the effort for the computation of some
Iy, equals the computation of one search direction for the full Newton method.
Regarding the actual evaluation of the error estimate, the same possibilities
exist as in Section 2.1.

Since the possibility of solving for exact Newton updates was already dis-
carded for the solution of the inverse problems, the solution of (2.21) is too
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expensive for the evaluation of an error estimate. Rather, we would like to
use an approximate solution that satisfies a Gau-Newton-type equation. The
following theorem derives an estimate based on this idea:

Theorem 2.12. With the same notation as in Theorem 2.11, split the Hessian
as follows:

where Hy contains all second-order terms involving X, and Hy all other terms.
Let now & € Xy be the solution of the Gauf-Newton system

Hy(z;%,y) = =V E(z;y) Yy € Xp. (2.23)

Then there holds the a posteriori error estimate

1
E(I) - E(Ih) = 5 {p(Ihaj - Zhi) + [A)(il?h,i,I - ZhI)} + RI(Ithajaih)a
(2.24)
with remainder term
R,(l’, Th, j:a j:h) = R(ﬁ, Ths j;a ih) + %HQ(Q:; j:a 6)7
where e = x — xp, and é = T — I, and residuals and remainder R as in Theo-
rem 2.11.
Proof. With the same Lagrangian A(Z) as in the proof of Theorem 2.11, we
again have by approximation of the integral by the trapezoidal rule that
E(z) — E(zy) = $V=A(E, ez) + 1V=A(E), e2)
1
+ %/0 VEA(E) + sezjez, ez, ez) s(s — 1) ds.

However, since Z is now the solution of a perturbed problem, we no more have
that V=A(Z;¢&) = 0 for all test functions £ € Xy x Xy so that the first term
vanishes. Rather, we only have that

V:A(E;y) = VoL(z;y) =0 Yy € Xy,
VoA(E;y) = VoE(z;y) + VaL(z; &,y) = Ho(z;2,y) Vy € Xp,

by the decomposition of V2L defined above. The remainder R’ is thus the sum
of the previous remainder R and the new residual term involving Ho. O

The effort to obtain an approximation of the dual solution Z used in this
error identity is now equivalent to solving one additional Gaufl-Newton step.
Note that the main part of the error representation is the same as in the previous
Theorem 2.11, only the remainder term changes.

For the elliptic equation considered so far, the residuals are those defined
after Theorem 2.11, while the remainder term now has the additional part

Hy(z;2,e) = (VAN aV(u —up)) + (VA-Vi,a — ap).

In the noise free case, if the measurement z is actually attainable, i.e. at the
solution u = z, we have that A = 0 and the additional term in the remainder
vanishes.
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Figure 2.10: Left: Mesh as produced by duality based estimate. Center: Mesh
as produced by estimator with respect to J(-). Right: Error reduction for refine-
ment by “energy indicator” (2.7) and by dual estimator (2.24).

2.4.2 Results

In practical applications of distributed parameter estimation problems, the in-
teresting quantities are usually values of the unknown coefficient at points or
in subdomains. Since point values might not be defined properly, we replace
them by mean values in a small neighborhood of the interesting point. We will
therefore only consider examples of error functionals F(-) acting on {u,a, A} of
the form

B({u,a,\}) = /Q (x) alx) dr,

where 1) is a weighting function.

Example 1. Consider test case 1 (see page 37) and assume we are interested
in the value of the coefficient at the point xy = (—%, —%) Using ¢ = 0.05, we
set the weighting function to

[ 1/(me?) if |x — x| <,
h(x) = { 0 otherwise.

Fig. 2.10 shows typical meshes as produced by the duality error representa-
tion of Theorem 2.12 with respect to the functional E(-), and by the estimate
(2.7) with respect to J(-). While the latter mostly sees the uniformly good ap-
proximation of a quadratic function by bilinear elements on a globally refined

mesh, the former adapts the mesh towards the evaluation point (=2, —2). The

3:73
figure also shows the superiority as refinement criterion of the dual estimator

(2.24) over the “energy indicator” (2.7).

Example 2. TIn order to check the accuracy of (2.24) for the actual estimation
of errors, we consider a more challenging example: take test case 4 (page 39) and
as target functional use the mean error in the left sector, which is characterized
by the weight

1 if% <9 < —%1,:1:1 <0,
0 otherwise.

v ={
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Figure 2.11: Left: Comparison of actual error E(x — xzp,) and estimate (2.24).
Right: Owverestimation ratio.

Fig. 2.11 shows that the error estimates have the correct order of magnitude,
but are not quite accurate. This also holds for other examples. The reason for
this is presently unclear.

2.5 Estimates for the constrained problem

In this chapter, we have up to now derived error estimates for Problem 1.7
under the assumption that inequality constraints can be neglected. We will
extend these estimates to the constrained case in this section.

The basic problem in the incorporation of inequality constraints is that the
first order necessary conditions as stated in Problem 1.14 include inequality
constraints as well, although only implicitly in the definition of the dual cone
C* in (1.10) from which the respective Lagrange multipliers are chosen. The
solution is thus characterized by a variational inequality.

A general framework for error estimation for variational inequalities has
been proposed by Suttmeier and Blum, see [21, 62, 61]. Although we obtain
related results, we will rather derive estimates for this problem by reformulating
it as an equality constrained one which we obtain by presuming that we know
the regions of the domain where the coefficient is at its bounds. For this, define
by

70 = {x:a(x) = ap}, T'={x:a(x) = a1},
the sets where the exact solution a is at its bounds. Likewise, let
Iy = {x: ap(x) = ao}, T, = {x : an(x) = a1},

be the sets where the numerical approximation is at its bounds. With this,
define a Lagrangian by

E(il?,uo,ﬂ,l; Soa Sl) = L(I) + (H’Uaa - a0>5‘0 + (H’laal - a>,5’1 ) (225)

where L is the original Lagrangian as defined in Problem 1.7, and S° are sets
where constraints a = a; will be prescribed. Then continuous and discrete



64 CHAPTER 2. ERROR ESTIMATES AND ADAPTIVITY

solutions trivially satisfy the stationarity conditions of problems with equality
constraints on the parameter:

ViL(z, o, p1; 20, Ty) =0 Vy € Ay,

2.26
<7i7a_ai>Ii =0 VP}IZ ELl,’iZO,l, ( )

and

Vol (h, o 1ns Lh, Iriyn) =0 Yyu € X,

. 2.27
(i — i)z =0 Yin € Ay = 0,1 (2.27)

Here, the Lagrange multipliers are discretized by the same spaces as the param-
eters, and the active sets implicitly depend on the solution. Since the Lagrange
multipliers are defined only on the active sets, we are free to extend them by
zero to the whole domain.

2.5.1 Estimates for the minimization functional

With the conditions above, we first derive the following a posteriori estimate
with respect to the functional J(-) for the bound constrained problem. An
intuitive interpretation is given afterwards.

Theorem 2.13. Let & = {z,p'} and &, = {xy, ut },i = 1,2, be the solutions of
the inequality constrained problems (2.26) and (2.27). Define by

IV =1\1;, I =T)\T', i=1,2

that parts of the continuous and discrete active set that are not in the common
subset of the two. Then there holds the error representation

1
J(z) — J(zp) = 3 [VxL(xh;«T —yn) + (on,a — Xh)Ig — (M1,p,a — Xh>1é
+ Q+ R,
(2.28)
for all yp, = {on, xXn, Yn} € Xp, with
Q = {(ona = aogo — (o, an — ao)zo }
-1 {(m,h,a —a1)p — (p1,ap — al)zi} ,

and the nonlinear remainder R as in Theorem 2.1:

R = (@~ m) VO~ 2), Vo~ ).
Proof. As upper and lower bounds are treated in exactly the same way, we only
show the proof of the theorem for the terms involving the lower constraint and
denote the Lagrange multiplier for this constraint by u = pg, the active set by
T = IO, and likewise for Zp,7Z,,7 . The derivation of the respective terms for
the upper constraint is straightforward based on the proof.
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Since at the solutions &, &), state equation and bounds are satisfied with
respect to corresponding test spaces, we have that

J(&) = J(&n) = L(&T) — L(ns Th)
= L(&Th) — L(En; Tn) + L(GT) — L& Th) -

~~ ~~

A1 A2

The two parts are treated separately. For the first one, all integrals extend over
the same domains. Denoting e; = £ — {j,, we have by the same argument used
for the other estimates that

1
Ay = IVeL(&Thee) + AV L(ER; Thsee) + %/V?E(ﬁh;Ih; eg, eg, e¢)s(s — 1)ds.
0

Since the bounds terms in £ are only quadratic in the variables, the third
derivative of £ equals the third derivative of L, yielding the remainder term
R. For the first term, we use the stationarity condition (2.26) to cancel the
terms involving domain integrals and to separate the integrals over the active
sets into different parts to obtain

VeL (& Thiee) = Ve |L(&T) + (10— ao)z — (1,0 — aody, | (e¢)
= Ve [(u,a —ao)z, —(ma— ao)z_] (ee)-
Using that a|z, = ag, an|z_ = ao, and p|z_ = 0, this term further reduces to
VeL(&Thieg) = — (s an — ao)z, + (ph,a — ao)z_
Likewise, we find
VeL(Ens Insec) = VaL(znse) + (pn,a — an)z, + (1t — fthy ah — ao)7, »

where the last term vanishes. By the first optimality condition in (2.27), we
can replace the weight é by any x — y, for y, € &},.

The second term A,, using cancellation, reduces to integrals over the active
sets. Again noting that a|z = ag, p|z_ = 0, we have

Ay = (p,a = ag)y — (p,a — aU)Ih = 0.
Putting it all together, and treating the terms due to the upper bound alike,
we obtain the claimed result. O
2.5.2 Interpretation and evaluation

The error representation derived above has an intuitive interpretation. First,
note that if we identified the active set correctly, i.e. Z* = 7} ,% = 1,2, then the
term denoted by @ vanishes since Z%. = (). For this case,

Ve L(Th, o,y 1,05 +) = VaL(Th;+) + (pons )70 — (Bipy )11
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is the residual of the first optimality condition in (2.26). As usual in a posteriori
energy estimates, this residual is weighted by some = — y;, with an arbitrary
yn € Xp.

In the other case, when we have not identified the active sets correctly, the
term () does not vanish. However, it is quadratic in the error: for example, for
the first term in @ note that uglz0 = 0 and ap|70 = ag. Thus

(Hon,a — ao>Ig = — (1o — pops @ — ah>19 :

We may thus neglect it and only work with the main part of the error repre-
sentation.

In Chapter 3, methods for the actual inclusion of bounds into the solution
process are discussed. The method of choice there is an active set method
which includes estimates for the Lagrange multipliers without explicitly com-
puting them. The evaluation of the error representation above is therefore not
straightforward since the ,uﬁl are lacking. The following lemma states that the
evaluation is possible nevertheless:

Lemma 2.14. Denote by g, € Ay, the discrete projection of V,L(xp;-), i.e.

(9n> xn) = VaL(zn; xn) Vxn € Ap.
Then the main part of the error representation in Theorem 2.13 can be written
as
VaoLl(zp;z —yn) + (pop, a — Xh)l'g — (p1,p,0 — Xh>1é
= VuL(z;u — ¢n) + VaL(z50 — x1) — (9h,a — Xn) + VaL(@5 A — tp).

Proof. Since the Lagrange multipliers u}; are only defined on the discrete active
sets, we can define

1o, for x € I}?,
pn(x) =4~y for x € I,
0 elsewhere.

Selecting now the a-derivative in the optimality condition (2.27), we have that

0= VaoLl(@h, oh 1,03 L Ihsyn) = VaL(zsxn) + (Mo,th)Ig - <N1,h7Xh>I}1L
= Vo L(z; xn) + (th, Xn)

for all discrete test functions xp, € Ap. We thus see that g, = —py and

(to,ny @ = Xn)zo = (1,n, @ = Xn) g1 = (s @ = Xn) = = (gh, @ = Xn) -
O

The result shows that even if we did not compute the Lagrange multipliers,
the error estimate can be evaluated: the missing multipliers can be obtained
by projection of the gradient of the Lagrangian. Since this projection is local
for the discontinuous shape functions of Ay, and since g;, = —puy, is zero outside
the active sets, this is cheap.
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Figure 2.12: Comparison of true error, and error estimates including bound
constraints (2.29), and neglecting these constraints (2.7). Left: Values of error

and estimates; values with the wrong sign are plotted at —oo. Right: Ratio
between estimated and true error.

Remark 2.15. If the linear functional V,L(z;-) allows a Riesz representation
g € L' = A, then the identity in Lemma 2.1} can be written in a way more
appealing to intuition as

VaL(zh;x = yn) + (pons @ = Xn)zo = (1,0, = Xn) 12
= VuL(z;u — @p) + (9 — Phg,a — xn) + VaL(z; A — ),

where Pyg is the projection of g onto Ap. In some cases, this representation g
can be obtained simply. For example, if r(a) = 5||a||%, then the Riesz represen-
tation g of VoL(zy;-) is

g = Bap + Vug - V.

Given the above considerations, localized refinement criteria can be obtained
from the error representation using the same method as in Section 2.1, i.e. by
cell wise integration by parts of the individual terms and approximation of the
weights using the discrete solution.

2.5.3 Reliability of estimates

In this section, we assess the quality of error estimates based on Theorem 2.13
and Remark 2.15. We only consider the main part of the error representation
in Theorem 2.13, i.e.

1
n=-{Vul(z;u — n) + (9 — Prg,a — xn) + VaL(z; A —9p)},

5 (2.29)

where the individual terms are expanded into cell and face contributions as
shown in Theorem 2.2.

Fig. 2.12 shows the value of this estimate compared to the true error for test
case 2, where the exact coefficient is at either bound everywhere. Also shown
is the value of the error estimate (2.7) which was derived under the assumption
of no bound constraints.
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While the estimate neglecting bounds does not accurately track the error
and even mispredicts its sign, the estimate including bounds is relatively accu-
rate, with overestimation factors bounded and in the range % .3

2.5.4 Estimates for arbitrary functionals

The ideas used in Sections 2.4 and 2.5.1 can be combined to obtain an error
representation for the constrained problem with respect to arbitrary functionals:

Theorem 2.16. Let E : X; — R be an error functional acting on x = {u,a, A},
i.e. it does not evaluate the Lagrange multipliers u; of the bound constraints.
Let & = {z,pu'} and &, = {zp, pt},i = 1,2, be the solutions of the inequality
constrained problems (2.26) and (2.27), and define by &, &), the solutions of the
dual problems

VEL(ET, TN Em) = —VeE(n) Vi € Xy x L' x L', (2.30)
VEL(ER IO, T  €nymn) = —VeE(Eimn) Vi € Xy x Ay x Ay, (2.31)

with L as defined in (2.25). Then the a posteriori error estimate

B(a) ~ Blan) = 3 {p(ené —ind) + 6,66~} +Q+ B, (232
holds with residuals

p(&nsn) = VeL(&nin),

and remainder terms

Q(&,&n, &, &) = %{(ﬂo, an, = ao) 7o —(fio,h, @ = ao)z0 +{tk0, @n) 10 — (o p; fl)zg}
= 3l an = 1) = (o = an)p + (u,an)zy — )y |

and

1
R(I,xh,i,fh) = %/ {V?I’E(Ih + seje, e, 6)
0
+ V3L(xp + seje,e,e) + VaL(xy + se; 2 + sé, e, e, e)}s(s — 1) ds,

where e =x —xp, € =1 — Ip,.

Proof. We use the same techniques as in the proofs of Theorems 2.11 and 2.13.
Steps that were already performed there are not discussed again. For simplicity,
we again restrict attention to the lower bounds and denote y = pg, etc as in
the proof of Theorem 2.13. The terms due to the upper bound can easily be
added.

Let 2 = {x, i, Z, 4}. Then continuous and discrete primal and dual solutions
are solutions to

V=A(E;Z;¢) =0, V=A(En; In; &n) = 0,
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for all continuous and discrete test functions &, &5, with the joint Lagrangian
A(E;S) = E(z) + Vo L(z; S; ),
where the Lagrangian £ as defined in (2.25). Then,

BE(z) — E(zn) = M5 1) — AEn; In)
= AME;Zn) = AMEp; Tn) + AE; T) — A(E; Th) -

~
~~ ~~

Ay Az

The integrals in the term denoted by A; extend over the same domains and can
be transformed as in all previous examples to yield

A1 = 5 V=AE; T ez) +5 V=AER; Tn; ez)

B1 B2

1
+ %/ V%A(Eh + se=; Iy ez, ez, ez)s(s — 1) ds.
0

/

S
The four terms As, By, By, B3 will now be discussed separately.
First, expanding A, yields

A2 = (ﬂaa - a0>1'+ - (ﬂaa - aO)I_ + <M7&>I+ - <Mad>l'_

Since alz, = ap and p can be extended by zero to Z_, the first, second, and
fourth term vanish. Using the defining equations for the dual solution Z, we see
that a|z, = 0 if as assumed F(z) does not depend on y; the fourth term thus
vanishes as well.

As in previous proofs, the terms By, By and Bj yield the term (), the main
part of the error representation, and the remainder term R, respectively. U

Regarding the evaluation of this error representation, or of its main part
for practical purposes, the same possibilities exist as discussed in Sections 2.4
and 2.5.1. In particular, the use of a nearby Gaufl-Newton system for the dual
solution instead of the full Newton system is possible, resulting in the same
additional term H5 as in Theorem 2.12.

2.6 Practical aspects of mesh refinement

In this chapter, a number of a posteriori estimates have been derived. Besides
some that used other techniques, we presented several that were derived using
Galerkin orthogonality and the Lagrangian structure of the problem:

e (2.4) for the error with respect to the minimization functional J(-);

e (2.22) and (2.24) for the error with respect to arbitrary functionals E(-)
of the solution;

e (2.28) for the error with respect to J(+) of the bound constrained problem;
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e (2.32) for arbitrary functionals for the constrained problem.

These estimates had in common that their practical evaluation involves inte-
grating by parts the given terms, thus splitting the estimates into cell and face
residuals. These residuals are either weighted by a quantity derived from the
solution itself (in case of estimates for J(-)) or from the solution of a dual prob-
lem (in case of estimates for arbitrary functionals). The process of integrating
by parts and splitting into different terms has been made explicit for the first
estimate above in Section 2.1.1 and exemplary in Theorem 2.2. For all other
estimates, this process is implied and necessary for useful estimates that can
also be used for refinement.

After splitting the estimates into cell-wise terms, we obtain sums over the
cells of the state mesh T and of the mesh used for the parameter discretization
T,. These terms are not split up arbitrarily but rather possess a natural associ-
ation with either of these meshes. It is readily seen that coarsening of one mesh
does not imply that the quantities on the other mesh generate a larger residual,
and vice versa for refinement. Therefore, the resulting refinement criteria for
the two meshes are independent of each other.

Except for the cases discussed in Section 2.2.3 where the actual evaluation
of the estimates including the approximation of weight factors presented some
difficulties, the estimates listed above can therefore be used to drive refinement
of both meshes without additional heuristics.



Chapter 3

Bound constraints on the
parameters

In this chapter, we will discuss methods to enforce bound constraints

ap < a(x) < ay.

Of course, at least guaranteeing a lower bound 0 < a < a(x) is essential for
the well-posedness of the continuous problem, but enforcement of bounds with
physical values ag, a; is an important goal when trying to identify parameters
that actually bear physical meaning.

Within this chapter, we will first discuss a successful method — a modified
active set strategy — to enforce these bounds, then briefly mention two methods
— transformation and projection — that did not work as well as expected. An
application is shown at the end.

3.1 Treating parameter bounds by active sets

One very successful approach to treating inequality constraints in finite dimen-
sional optimization is the use of so-called active set methods. In this section,
we propose an active set strategy that differs from the usual methods (see, e.g.,
Nocedal and Wright [51]) in two respects:

e It scales the Lagrange multipliers in accordance with the size of the cells
on which they are defined. This allows to view them as discretized versions
of a continuous function, and avoids ill-conditioned problems for locally
refined meshes.

e It modifies the strategy by which the active set is determined, guarantee-
ing the efficiency of the method.

Active set methods work by identifying a set of active constraints in each non-
linear step that are then considered as equalities. If this set is chosen appropri-
ately, then it can be guaranteed that the set of constraints that are active at
the solution is identified at some point in the process. Choosing the active set
is not complicated and can be done using a simple preprocessing step before
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each iteration and is particularly cheap if, as is the case here, the constraints
are simple bounds.

In order to describe the active set strategy that was used, we briefly review
how active sets work in the finite dimensional case first, then how they can be
defined in the setting of a finite element discretization of continuous problems.

The finite dimensional case

Active set strategies for finite dimensional problems with inequality constraints
¢i(z) > 0 are based on the observation that if z* € R™ is a local solution of the
inequality constrained problem

min f(z), such that ¢;(z) >0, i € Z,
x
then it trivially is also a solution of the following problem:
min f(z), such that ¢;(z) =0, i € Z, C Z, (3.1)
x

where the active set Z, of constraints is defined by Z, = {i € T : ¢;(z*) = 0}. If
we knew the active set Z,, we could restate the inequality constrained problem
as an equality constrained one. Unfortunately, the active set depends implicitly
on the unknown exact solution z*. Active set methods therefore work with
approximations W; C 7 to the exact active set Z,, and try to make sure that
Wk — Ty,

In order to derive an algorithm by which we can identify W}, for the special
application discussed in this work, let = {u,a, A} and consider the Lagrangian
for the constrained discrete problem,

Le(w,n) = L(z) + " e(a),

where L(z) is the Lagrangian of the problem without inequalities, and ¢;(a) =
a; — ag (for simplicity, we only consider lower bounds). Then the optimality
condition includes the equations

VoLe(z*,11*) = Vo L(z*) + Ve(a®) T p* =0, wi < 0. (3.2)

Due to the special structure of the bound constraints, Ve = 1, and for the
optimal Lagrange multiplier

p* = —=V,L(z*%) (3.3)

holds. If we have not yet found the optimum, the residual of the first equation
in (3.2) will in general not vanish. However, we can define by

Ui = —VaL(xk) (3.4)

an approximation to the exact Lagrange multiplier. Since the gradient of the
Lagrangian is a first order approximation of the direction in which a variable
will move in the next step, we can take the sign of the entries of pj to estimate
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whether the respective component of a; will move into the feasible or infeasible
direction in the next step, if it is at the bounds now. Active set methods
then fix those parameters afc at the bound aq if they are already at the bound
and are expected to move into the infeasible direction. In order to guarantee
convergence W — 7,, practical methods impose a set of additional rules on
the choice of Wy, in each step.

The discretized case

If we consider the discretized Newton steps, we need to define which parameter
degrees of freedom we want fix in each step. The working sets W), are again
sets of indices ¢ and can be determined by Lagrange multipliers that we will
discretize in the same way as the parameter a;, itself. A semi-formal derivation
yields that in analogy to (3.4), a continuous Lagrange multiplier can be defined
by

(/J’/%X)LQ = —VQL(ilTk,X) VX € A.

Without attempting to justify this formula in a strict sense, we discretize the
Lagrange multiplier. For this purpose, recall that as basis for the parame-
ter space A;, we have chosen the shape functions {x;} from Q7(T,). Then,
Qeh = 2 a};’hxi, and we likewise define a discrete Lagrange multiplier by

Ph = M%Xi- With this, we define the approximate Lagrange multiplier by

(ths xn) = —VaL(xk, Xn) Vx € Ap,

i.e. pp, is the L? projection of —V,L(zy;-) onto Aj. This quantity is easily
computed, as the right hand side is already available as right hand side of the
Newton step, and the left hand side only involves a mass matrix. The latter
is particularly simple if discontinuous elements are used. Using this multiplier
estimate, we can define the discretized working set by

Wk:{i: a};’h:ag A u2<0}.

Remark 3.1. Defining the Lagrange multipliers directly on the discretized
Newton step instead of the continuous level would lead to worse scaling proper-
ties. This is recognized from the observation that with the definition above, we
obtain for up the expression

Up = _Ma,_l‘]aa

with (J%); = VoL(zk;xi), while a definition of the Lagrange multipliers on the
discrete set would yield a similar formula but with the mass matriz M, on A,
replaced by the identity matriz. For nonuniform meshes, this results in Lagrange
multipliers of which the sizes are no more comparable.

Selecting the active set

Most standard active set methods are not suited for large numbers of con-
straints, or infinite dimensional problems, since they allow only one constraint



74 CHAPTER 3. BOUND CONSTRAINTS ON THE PARAMETERS

to be added or removed from the working set in each step, and require that a
quadratic problem is solved upon each change in the working set. This results
in an exponential growth of the worst case numerical effort with the number
of constraints. Although this worst case behavior rarely occurs in practice,
the actual number is still prohibitively high (at least linear in the number of
parameters) for the problems considered in this work.

These methods are therefore not applicable for the problems we consider
here, for at least two reasons:

e We consider problems with up to several thousand parameters, each con-
strained by lower and upper bounds. Thus, any attempt to solve one
quadratic subproblem per change in the active set is doomed to exceed
computational possibilities.

e On each grid, we only make a small number of Newton steps. Since we
do not aim for high accuracy on a fixed grid, there is not point in aiming
at identifying the active set exactly.

Therefore, we use a modified approach where we choose the active set inde-
pendently in each Newton step, and only solve one quadratic problem with this
set rather than iterating with the same quadratic model until we have found the
exact active set for this step. This has the drawback that we cannot prove that
we do not run into a cycling active set, but it has the advantage that we can
treat even very large problems. In practice, this strategy has proven successful
in all applications.

The complexity of the method can be inferred from the following consider-
ations:

e Before each step, the active set is determined by looking at those parame-
ters that are already at their bounds, and the gradient with respect to the
coefficient. Since this gradient is available for the Newton step anyway,
this is cheap.

e We then fix some parameters and solve for the Newton step with these
equality constrained parameters. Since fixing these parameters is equiv-
alent to deleting the respective rows and columns of the full or reduced
Hessian and the right hand side, this step is not more expensive than
solving the unconstrained problem.

e Deleting rows and columns is simple even if a matrix is not known ex-
plicitly but only by application to a vector. Therefore, this approach is
simple to implement also for the case of the Schur complement (reduced
Hessian) method used in this thesis (see Section 1.7).

e As an iterative scheme is used to invert the Schur complement matrix, we
note that deleting fixed parameters reduces the size of the matrix and the
condition number of the resulting matrix is at least not larger than before.
Since often a non-negligible number of parameters is fixed, the condition
number may even be significantly smaller, accelerating convergence.
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Figure 3.1: Scaling functions for the parameter.

Summarizing, the proposed method yields a very efficient scheme that is suc-
cessfully applied even to very large problems with several thousand parameter
degrees of freedom.

3.2 Treating parameter bounds by transformation

As an alternative to the active set method introduced in the previous section,
we tried to handle parameter bounds by transformation. To do so, we introduce
a new variable ¢(x) and define a unique, strictly monotone function a = a(q)
such that

0 < a < inf a(q) < ag,
geR

a1 < supa(q) < oco.
qER

One may choose infimum and supremum of a(q) equal to ag and aq, respectively,
in which case the bound constraints are satisfied exactly. In practice, however,
it may be better to allow for a certain violation of these bounds and only enforce
0 < o < inf,a(q) strictly, in order to reduce the nonlinearity in the working
range a9 < a < a1, and to avoid bad scaling. Possible scaling functions that
were tried are

alfq) = { Py ot ?(0) = L arctan(a) + e
where for the second function ¢; = (a1 — @), c2 = 3(@1 + ao), o > 0, and
[ag,a1] D [ap,a1] is an interval that includes (but may be larger than) the range
of physical parameters. Fig. 3.1 shows a plot of these two scaling functions,
with a; = a;,7 = 1,2. To help in the convergence of Newton steps, one should
in practice use a smoother version of a', for example in C? or even C™.
Compared to the active set strategy, enforcing bounds by transformation did
not work too well. This can, among other factors, be attributed to the increase
in nonlinearity, forcing small step lengths and thus slowing down convergence.
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Figure 3.2: Comparison of identified coefficient for various scaling functions.

Furthermore, the approximation of the exact coefficient was not as good as
when the active set strategy was used, again due to the fact that an exact
enforcement of the bounds is only possible at the cost of strong nonlinearities.

Fig. 3.2 shows the results of a comparison for a one-dimensional version
of test case 2 (see page 37). The “identity scaling” used a(q) = ¢, while the
“exponential” and “arc tangent” scaling used the functions defined above with
constants set such that the allowed range is slightly larger than the exact max-
imal and minimal values. For the “strict arc tangent” scaling, the bounds are
enforced exactly. The identity scaling was included for comparison.

Although in this noise free case all scalings should theoretically recover the
solution well, it is obvious that the identity scaling is the best strategy. This
holds for other cases as well, unless the recovered coefficient becomes negative
where the identity scaling fails, of course.

Summarizing, this approach is significantly less well suited to the problems
under consideration, compared to the active set strategy. It is useful to enforce
positivity of coefficients but its drawbacks prevent its use for more practical
applications.

3.3 Treating parameter bounds by projection

Another, simpler, but equally unsuccessful, alternative is to compute the search
direction dx} as in the Newton step without any constraints on the bounds, but
then only consider the projection onto the feasible set with respect to these
bounds,

Thyl = P[ao,tlﬂ (zx + apdzy),
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where the projector Py, 4,] applied to z = {u,a, A} is defined by

ap ifa<ag
P[ao,al}u = u, P[ao,al]a = a ifag<a<a , P[ao,a1}>‘ =)\
a1 ifa>a

Unfortunately, this approach fails since the search directions are becoming
almost perpendicular to the constraint. Only back-projecting the parameters
while not touching the state variable accordingly then introduces a strong vio-
lation of the state equation, which forces us to take small steps.

The solution to this is to first project the new parameter onto the feasible
set, and from this compute state and adjoint variable. The drawback of this
is that, again, we project away the larger part of the computed parameter
update once search directions are become mostly orthogonal to the constraints.
However, if we do not solve the linear equations to very high equations, the
remaining small tangential component of the update is then dominated by the
iteration error and is useless as a search direction.

Thus, if we do not want to solve the linear Newton steps to high accuracy,
it is necessary to project away constrained parameters before, rather than after
solving. This is what the active set strategy discussed above basically does.

3.4 Results

In this chapter, three methods for the incorporation of bound constraints have
been discussed. While the approach using a transformation of the parameter
suffers from ill-conditioning, the chosen active set strategy allows to solve even
very large problems, with up to thousands of parameters, at the same or even
lower numerical cost as for the unconstrained problem.

A third approach using a projection of the search direction, was shown to
be related to the active set method, but suffered from problems when linear
systems are not solved to high accuracies. In that case, the remaining update
direction after projection includes the amplified error from the inexact iterative
inversion of the matrix. In usual applications, the inversion of the Hessian is
only performed up to a reduction in linear residual of 10~2 or 10~3 compared
to the initial residual. This explains why the resulting search directions of the
projection method are too inaccurate for practical purposes. Therefore, the
projection method can only be used if a significantly higher numerical cost is
accepted. Since this is hardly possible for the large scale problems discussed
here, the projection method is not an option.

Finally, we briefly present one example of using bounds in the identification
process. The method used was the active set strategy discussed above. We
consider test case 2, where the exact coefficient varies between ag = 1 and
a1 = 8. Fig. 3.3 shows the identified coefficient after a number of iterations,
with and without noise, and for different bounds imposed. The situation in the
right column where we impose exact bounds corresponds to an identification
problem where we know that the material is composed of two parts, but the
interface is unknown.
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Figure 3.3: Effect of incorporating bounds. Top row: No measurement error.
Bottom row: 2% measurement error. The actual bounds imposed in each column
are stated in the middle.

It is clear that incorporating bounds acts as a stabilization, even if not
the exact lower and upper bounds are chosen. In the case of no bounds (left
column), the identified coefficient transgresses the shown range in some parts
of the domain already for the case of no noise. On the other hand, with noise
added, the identification using bounds is rather stable.



Chapter 4

Multiple experiments

In many applications we have multiple measurements z'. For example, we
may have a situation where we have a high noise level in our measurements
and choose to measure several times for the same situation, or for different
sources, in order to reduce the effect of the noise to the uncertainties in the
recovered coefficients. Or, we may be in a situation where one measurement
is not even sufficient to recover the coefficients. A similar situation arises if
experiments are not set up willingly, but if naturally occurring situations are
used for measurements, for example signals generated by earthquakes; we will
subsume this case likewise with the term multiple experiments.

A similar situation is so-called multi-physics inversion: we try to recover pa-
rameters from different types of experiments. For example, subsurface imaging
in geophysical prospection is often conducted by collecting data from entirely
different sources, for example from seismic imaging, gravimetry data (recording
the local gravitational force on a unit weight at different places, usually mea-
sured by flying a gravimeter over the target area), magnetotelluric data (record-
ing the local magnetic fields), DC resistivity (measuring the electric field for a
given potential), etc. These measurements are described by a set of different
state equations, but depend in some way or other on the same set of parameters
(density, elasticity, ...) which we would like to recover. Since each measurement
alone may have little or no sensitivity for certain parameters, joint inversion is
often the only possibility to obtain a set of consistent parameters.

In this chapter, we discuss a mathematical formulation for multiple exper-
iments potentially described by multiple physics and briefly describe a frame-
work for the implementation of such a program. Examples will be given for
the case of multiple experiments for the elliptic equation considered in the pre-
vious chapters. Further applications involving the Helmholtz equation will be
discussed in the final chapter.

4.1 Mathematical formulation

Multiple experiment case. Based on the statement of the problem in Chap-
ter 1, the extension of the parameter estimation problem for measurements de-
scribed by the same state equation is simple. Considering the case that the state
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equation is the parameter-dependent diffusion equation discussed in previous
chapters, each measurement now is characterized by a different set of applied
boundary data ¢* and right hand sides f*. For the set of all these experiments,
let us define the vectors z = {z',..., 2"} of measurements, u = {u',... u™}
of solutions, and A = {A!,..., AN} of Lagrange multipliers, where N denotes
the number of experiments made. We assume that in all realized experiments
the parameter a(x) is unchanged. Goal is then the minimization of deviations
m(u’ — ') subject to the constraint that the u’ € Vi satisfy the state equations

(aVu', Vo) = (f',p) Vo € V.

Assuming equal noise levels on all measurements, i.e. giving all observations the
same weight, we define the Lagrangian in analogy to Problem 1.8 to be

Zm (u’ — 2') + Br(a) + Z aVu )\Z (fi,)\i)] , (4.1)
=1
where z = {u,a,A\} € Xy = Vi x- - - x Vv x AxVp x- - - x V. The corresponding
first order conditions for solutions z € X, then read:

ViL(z;y) =0 Yy € X, (4.2)

where Xy =V x -+ x Vo x A'[a] x Vy x --- x V} is the tangential cone to X,.
This nonlinear system is solved using Newton’s method in the same way as in
Section 1.3.

Multi-physics case. Generalizing the formulation above to the case of dif-
ferent state equations describing the different measurements, joint inversion is
described by the following quantities:

e The solutions u’ are now different quantities, having different units and
meanings, each denoting the measured quantity of one experiment.

e The single coefficient a is now in general a whole set of parameters, some
of them possibly space or time dependent.

e The governing equations are described by different operators A’ and right
hand sides f’. Not all experiments need to be sensitive to all coefficients,
i.e. each A* may depend on only a subset of a.

e The measurement functionals m!(-) are different. For example, they may
evaluate time series, scalar or spatially distributed values. Also, they may
have different noise and confidence levels associated with them, which we
incorporate by associating different weights o to each of them.

All this is included in the following joint formulation, analogous to Problem 1.7:

Problem 4.1 (Continuous problem). Minimize the reqularized deviation

N
= Z o'm'(u’ — 2') + Br(a)
i=1
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of the u' from the measurements z*, with B being a reqularization parameter,
subject to the state equations

Al(a;u'o") — (f19") =0 V' e VY,

where A'(-;-,-) are the semilinear forms associated with the operators A" and
the set of parameters a, as well as to boundary and initial conditions and
constraints on the parameters

ag <a<aj.

This problem is transformed into a Lagrangian formulation in the same way
as in Section 1.2.

4.2 Solution of the linear problems

After defining and discretizing the Newton step for the multiple experiment
case in the same way as in Section 1.5, we are faced with the solution of the
following system of linear equations in each Newton step completely analogous
to the system (1.15):

M BT AT\ [6éu F
B R CT||éax|=[F]. (4.3)
A C 0 Sk F3

Matrices and vectors are now composed of blocks for the different experiments.
By considering the dimension of this system,

N N
n= Huj+Hap+ ) #N,

i=1 i=1
where #¢ denotes the number of degrees of freedom in the discretized variable
©, it is obvious that a direct or iterative solution of the entire system is not
possible if we have more than a small number of experiments.

However, since measurements and state equations for different experiments

are independent of each other and are only coupled by the common set of
parameters, the system matrix above has the following block structure:

B, [
Gt T
T,
Y

Using the GauB-Newton modification, the Schur complement of this matrix
allows the reformulation of (4.3) to the following equation for day,

N N
{R +> cf AiTMiAilc’i} dar =F, =Y CTA;T (Fi — M;A;'F}), (4.4)
=0 i=1
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and then in turn for the single experiment state and adjoint variables duy and
Ok

Sup, = A; H(Fy — Ciday), (4.5)

i

oN = ATT(F] — M;oul). (4.6)

Therefore, assuming we have a solver for the single operator matrices A;, we
can invert the large system with an effort that is proportional to the num-
ber of experiments N. Furthermore, since the solution of forward and adjoint
equations for different experiments, as well as setting up the right hand sides
is independent between experiments, the solution of the system can easily be
parallelized.

4.3 Implementation

If many experiments are involved in one inversion, the numerical solution can
be challenging: as each experiment requires memory resources of the same order
as one forward problem, single computers can quickly become too small for a
multiple experiment inversion problem. Also, since we need many nonlinear
steps and many solutions of forward and backward problems are necessary in
each nonlinear step, computing time requirements are even higher.

For this reason, an approach has been developed to abstract the imple-
mentation of experiments to a simple interface between a master process and
slaves, each slave representing one experiment. Using this abstraction, individ-
ual experiments are sealed entities of which only the interface exists outside.
While this makes the implementation of the master process more complex, it
allows the simple placement of slaves on different computers, thus using the
computational resources of workstation clusters.

In Fig. 4.1, the requirements on the interfaces of the three most important
classes representing the master and the individual experiment slaves, as well
as the description of parameters are listed. In the actual implementation, the
objects need to provide a few additional functions that are used mostly for
bookkeeping, such as computing the misfits or errors.

The interfaces of the different classes are strictly separated and kept mini-
mal. Information flow between distinct modules of the program is restricted to
a minimum, and different objects only communicate through their interfaces,
rather than by accessing mutual data. This way, it is possible to only provide
the interface on one computer while computations are actually performed on
a different one, thus parallelizing the computations for different experiments.
Since passing parameter vectors to functions from this interface is relatively
cheap compared to the actual computations done on them, the speed-up when
using multiple computers is almost optimal.

Furthermore, since the interface above is fixed, it is simple to extend the
program with additional equations describing different settings; for the master
process, the addition of a new experiment type is transparent.
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Master object

Manages data:

e Manages slave objects

e Manages representation of the
parameter

e Present value a; of the param-
eters

Provides functions:

e compute_rhs,
compute_updates,
perform updates,
compute_residual: distribute
work to respective functions of
parameter representation and
slaves

e solve:
— out: solution da of the first
equation of the Schur com-
plement system (4.4)

Each slave object

Parameter representation

Manages data:

e Description of parameters,
e.g. discretization of a dis-
tributed field

e Description of bounds on each
parameter

Provides functions:
e compute_rhs:
— out: Fy
e multiply by R/M:
—n: a

— out: Ra, M,a

Manages data:

e State mesh T

e Present values ufc, }C of the
state and adjoint variables

e Copy of present parameter ay
Provides functions:

e compute_rhs:
— compute: F}, F}
— out:

CTA; T (F} — M;A; ' C; FY)

forward_backward:

— in: test vector da
— out: CTA;TM; A7 Cida

e compute_updates:
— 4n: update day,
— compute and store:
5qu = A;I(Fg — Cjday)
oA = ATT(F} — M;oul)

e perform updates:
— in: step length ay, dai
— compute qnd store:
Up oy = up + apduy
bl = AL T ardA

e compute _residual:
— in: test step length oy,

day,
— out: residual for this step

length

Figure 4.1: Description of the three basic interfaces of classes upon which the
multiple experiment program is built. Since the interfaces are strictly separated,
it 18 not important on which computer a certain object resides as long as its

interface is available to callers.
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No noise Noise 0.05 Noise 0.2

Figure 4.2: Measurements z(x) for different levels of added noise. Left: no
noise. Center: € = 0.05. Right: ¢ = 0.2.

4.4 Application: Noise reduction

As a first example for the use of multiple experiments, we demonstrate noise re-
duction by multiple measurements of the same quantity. If our measurement z
is subject to measurement error and other noise, then we can in general not ex-
pect to recover the exact coefficient. If we measure more than once, either with
the same source or with different ones, each of these measurements will again
have its uncertainties, but the coefficient that matches all the measurements
best will be closer to the “correct” one because it averages over the different
measurements and their errors.

In order to show the effect of measuring several times on the quality of
the recovered parameter, we take test case 1 (see page 37), and put as the
measurement

2 (%) = ul(x) + 3} (x),

where §%(x) is a function with random normally distributed values with mean
value zero and e being the standard deviation, i.e. the noise level. The ac-
tual representation of the noise ¢ is chosen differently for each measurement.
Fig. 4.2 shows typical measurements for different levels of added noise. Using
these measurements, we invert for the unknown parameter on a fixed, uniformly
refined mesh. For this discretization, a direct calculation shows that the best
L? approximation is inf,, ||an — @egqct| 2 = 0.1177.... Throughout this section,
the grid is fixed to allow for comparisons. However, the results also hold for
general, possibly adapted meshes.

The left panel of Fig. 4.3 shows the results without any regularization,
i.e. B =0: as the noise level increases, the resolution of the parameter becomes
increasingly worse if only one experiment is made. If multiple measurements
are available, the effect of the noise is clearly suppressed. The error can be
fitted well by the dependence ||aj, — Gegact|| o (€/v/N)3/* which corresponds to
the well-known fact that N independent measurements reduce the uncertainty
by a factor of V'N.

The right panel of Fig. 4.3 shows the same experiment if we choose an opti-
mal amount of regularization (determined by experimenting). Noise is greatly
suppressed with already one experiment, yet more measurements significantly
improve identification of the parameter over the case of only one experiment.
The error now grows as ||ay — Gegact|  (£/v/N)'/3, indicating the effect of
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Figure 4.3: Error ||ap — Gegact]| in the recovered coefficient for various levels
of noise and numbers of measurements. Left: No regularization, i.e. § = 0.
Right: Optimal value for B. The dotted line denotes the theoretical limit of
approzimation.
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Figure 4.4: Same as Fig. 4.3, but with different experiments using different right
hand sides.

regularization in the exponent.

The effect of noise can be even further suppressed by using different forcing
functions in different experiments. Fig. 4.4 shows the results for this situation.
As right hand side we use the one given in the definition of the test case (see
page 37) only for the first experiment. For subsequent experiments, we use
f# = 4n?|k;|? sin(27k;-x) with k; € N? being vectors with modulus increasing
with the index ¢. Again, the use of several experiments can greatly improve the
identification of the unknown parameter.

4.5 Application: Enforcing identifiability

Sometimes, the unknown coefficient is not identifiable at some points without
regularization. For example, in the one-dimensional case, assuming no noise,
the parameter identification problem reads: find a(x) such that

U = Z, — (au')/ = f.
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Figure 4.5: Ezample of non-identifiable coefficient in one space dimension. Left:
Ezact displacement and measurement v = z = sin(2wx). Right: Recovered
coefficient, without imposition of bounds.

Inserting the first identity into the second yields a first order differential equa-
tion for the coefficient with analytical solution

1
2 (z)

a(x) = —

/ " 1()de + alao), (4.7)

where zy denotes the left end of the interval 2, and where a(xg) must be
specified in advance. It is obvious that a(x) is not identifiable at places where
2" = 0. Likewise, the coefficient is not identifiable in higher dimensions at places
where Vz = 0, although the proof of ill-posedness there is more difficult (see,
for example, Banks and Kunisch [13]).

This concept of identifiability only concerns single points. For L coeffi-
cients, we could simply ignore such points. However, the coefficient is usually
badly resolved also in their environment, spoiling the identification process.
Fig. 4.5 shows this in one space dimension. We choose u = sin(27z), no noise
(i.e. 2 =wu), a =1 and thus f = —u”. We do not use regularization and do
not impose bounds on the coefficient. The recovery of the coefficient is clearly
insufficient near points where v’ = 0.

Adding regularization to the minimization problem allows to identify a co-
efficient although it is solely determined by the regularization at points where
z = 0, not by measurement. The left panel of Fig. 4.6 shows the result for
an optimal amount of regularization. After the last iteration, the error is
llan, — Gegact|| = 0.17.

Instead, we can also perform several experiments in such a way that at
no point all measurements have (u’)’ = 0. For example, we might choose the
forces f' such that u! = sin(2rz) and u? = sin(37z). The result is shown in
Fig. 4.6. The error in the coefficient after the last iteration is now ||ap —aepact|| =
0.00013, i.e. approximately a factor of 1000 smaller than the result obtained
with regularization.

The importance of this lies in the fact that for some setups of physical
experiments, whole regions are unidentifiable. For example in an imaging ex-
periment, entire regions may lie in the shadow. Then, several experiments
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Figure 4.6: Ezample of non-identifiable coefficient in one space dimension. Left:
Recovered coefficient with optimal reqularization and one experiment. Right:
Recovered coefficient without reqularization and two experiments. Note the dif-
ferent mazimal errors compared to Fig. 4.5.

illuminating from different angles may help to identify the solution. Multiple
measurements with different sources are therefore commonly used in seismic
imaging experiments.
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Chapter 5

Inverse wave problems

In this chapter, we will apply the techniques previously developed for the diffu-
sion equation to parameter identification problems for the Helmholtz equation.
Since this is the frequency domain version of the time dependent wave equation,
this class of problems is used in many applications where time dependent data
is measured, for example seismic data in geophysics.

We will, in this chapter, first derive the complex valued Helmholtz equation
and boundary conditions that describe the problems we consider here. Based on
this, the inverse problem is formulated, and a brief comparison of the solution
of inverse problems for wave problems in the time and frequency domains is
given, to set a background for the methods we use here.

In the then following two sections, we briefly discuss the differences between
inverse problems for the Helmholtz and the diffusion equation, then touch the
two main mathematical obstacles for inverse wave problems, nonlinearity and
non-uniqueness. Next, the error estimates derived in Chapter 2 are adapted to
the present situation.

Finally, applications are given, that illustrate the general coefficient resolv-
ing properties of the discussed methods. Furthermore, the superior performance
of weighted error estimator driven refinement over more ad hoc approaches is
shown, and the accuracy of error estimates is discussed.

5.1 Inversion in frequency space

In order to state the inverse problem to be treated in this chapter in a concise
way, we first define the forward problem in this section, and based on this
derive the structure of the inverse problem. Although we consider a structurally
time dependent problem, we formulate it in the frequency domain as a family
of Helmholtz equations. The reasons for this and the resulting advantages
particular to inverse problems will be discussed in a final subsection.

Formulation of the forward problem

In order to derive the equations describing the forward problem, we start with
the time dependent wave equation, transfer it to frequency space by applying

89
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a Fourier transform, and finally write it in weak form.
As starting point, we choose the time dependent wave equation on a bounded
domain 2 and in a time interval I = (0,7),

Otu — V- (aVu) =0, (x,t) € Q2 x 1, (5.1)

with Neumann, Dirichlet, and simple absorbing boundary conditions on por-
tions I'y, I'p, and T'4 of the boundary 0, respectively:

n-aVu = 0 (x,#) € Tx x I,T'y C 99, (5.2)
u=gq (x,t) e 'p x I,T'p C 09, (5.3)
n-aVu+ vadu =0 (x,t) €Ty x I,T'4 C 0. (5.4)

The absorbing boundary conditions chosen here are those of Bayliss and Turkell
[14], which are equivalent to those of Engquist and Majda [33]. Note that
these boundary conditions make the spectrum complex valued and in general
continuous, even on bounded domains.

Since here we are only interested in identification of elastic properties, we
have assumed that the density usually appearing before the term d?u in (5.1)
is constant. We can then scale it out of the equations. Thus, the coefficient a
has the interpretation of the square of a wave speed.

We seek the solution of this set of equations in frequency space by introduc-
ing the Fourier transform w,, of the solution u as

1 *©
u(x,t) = E/ ety (x) dw.

Likewise, we define the Fourier transform g,, of g. Inserting these functions into
equations (5.1)-(5.4) then yields

—w?u, — V- (aVu,) =0 x € Q, (5.5)
n-aVu, =0 x € 'y, (5.6)

Uy = Gu x € 'p, (5.7)

n - aVu, + iwvau, =0 x € T'4. (5.8)

These equations have to be solved for each member u,, of a family indexed by
weR

The problem is transformed into a weak formulation in the usual way. It
then reads: find u, € Vy, = {uy, € H'(Q = C) : uy|rp, = gu}, such that for all
peVo={pe H(Q — C) : ¢|r, =0} there holds

— (WU, ©)a + (aVuy,, Vo)o + (iwvau,, p)r, =0,

again for every frequency w. Splitting this equation into its real and imaginary
parts, and denoting u,, = v, +iw,, we obtain the final form of the state equation
for each component in w-space:
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Problem 5.1 (Forward problem). For each w € R, find the solution u, =
{vg, wy} €V, = {u, € HY(Q — R)? : v, + iwy|r, = gu}, such that for all
p=1{¢¢& eVo={pe H (Q = R)? : ¢|r, =0} there holds

Aw(a;uuh(p) =0, (59)

with the bilinear form

Ay (a5, 0) = —(W0u, (o + (aVy, V()a — (w/aw,, {)r,
+ (w2wwa€)9 - (avwanS)Q - (W\/C_ww,f)pA.

Note that we have deliberately reversed the sign of the equation defining the
imaginary part, making A, symmetric, i.e. Ay, (a;u,,p) = Ay(a;p,u,). This
has positive effects on the solvability of the discretized equations using iterative
schemes.

The inverse problem

The inverse problem of estimating the distributed parameter a in (5.9) is for-
mulated similar to the one discussed throughout previous chapters. Adopting
the same notation regarding misfit and regularization functionals m(-) and r(-),
the inverse problem in the single experiment case reads in analogy to Prob-
lem 1.7:

Problem 5.2. Minimize the reqularized deviation
J(u,a) = m(uy — 2,) + pr(a)

of uy, = {vw,w,} from the measurement z, with 3 being a reqularization param-
eter, subject to the state equation (5.9), and the additional constraints

uw|FD — ng

ap < a<aj.

The characterization of the solution by a Lagrange functional and its sta-
tionary points then follow in the same way as in Problem 1.8.

In general, one is not interested in inverting only one measurement with
only one frequency component. In this case, the misfit functional m(-) will
contain a sum over those frequencies w; for which measurements exist. The
different frequency components u,, then each have to satisfy a state equation
with semilinear forms A,,,, resulting in a multiple experiment situation as dis-
cussed in Chapter 4. We will only consider this multiple experiment case in the
following. The corresponding formulation of the identification problem then is
as in Problem 4.1. We explicitly show it here for later reference:

Problem 5.3. Solutions of the multiple experiment Helmholtz inversion prob-
lem are characterized by stationary points

VeL(z;y) =0 Vy € X,
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of the Lagrangian L(x), where = {ty,, ..., Uy, 0 Ay Awy } € Xy, Xy =
(Hfil qui) xAxVN, Xy = VI x AX VY, and V,,,, Vy as defined in Problem 5.1.
The Lagrangian is defined by

L(z) = J(z) + Z Ay (05U, Ay, (5.10)

with the form A, as in Problem 5.1, and

N
J(I) = Zm(uwl - ZUJi) + Br(a).
=1

Applying Newton’s method to the optimality condition, and discretizing
each step then leads to a system of linear equations equivalent to (4.4)—(4.6),
where we now have the matrices

- M 0 o A, =Gy, o & (Uwi) —w;Cy (wwi)
w=[ o |oas] g T S

I3

composed of the following blocks:

My = (m")" (e, 9k, ©1), Ay, i = —(Wlon o1)a + (aVer, Vor)a,
G, ol = (wivapi, o)1 ,,
1
Ci(P)k = (Vp-Vor, xi)a, Co(p)k = (— P <Pk,Xz> ,
NG .

with g, x; being the trial functions for primal and dual variables, and param-
eter variables, respectively.

Comparison between time and frequency domain

Above, we have used the frequency domain to formulate the problem of identi-
fication of parameters in a time dependent wave equation. While conceptually
solving in the time or the frequency domain is equivalent, there are significant
differences when numerically approximating the forward solution on a com-
puter:

e In the time domain, a time-stepping scheme is used to solve the sub-
problems on subsequent time steps. This generates the sought solution
directly, but each time step depends on the prior solution of the last time
step. In each time step, the solutions of at least two time steps have to
be kept in memory. The number of time steps is roughly proportional to
the highest frequency occurring.

e In the frequency domain, the solutions w,, for different frequencies w; do
not depend on each other. This allows for simple parallelization. However,
if we are interested in the wave field in the time domain, this can only be
computed by overlaying the solutions of all components and forming the
Fourier back-transform of it. The number of frequency components that
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have to be computed for a given accuracy of the time dependent wave
field is proportional to the size of the frequency band that is excited by
sources.

For the present application, solution in the frequency domain is more adequate
for three reasons:

e We are not interested in the time dependent wave field, but only in the
comparison to given measurements. This can be done in the time and
frequency domains equally well.

e In applications, often only small frequency bands are excited. While in the
time domain, the numerical effort is proportional to the highest frequency,
in the frequency domain it is only proportional to the size of the frequency
band. As an extreme case, consider time harmonic excitations: we would
then only have to solve one problem in the frequency domain, but still
many time steps in the time domain.

e Since the problems in frequency domain are independent of each other,
we can use this to parallelize the problem in the same way as described
in Chapter 4.

As will be explained in Section 5.3, an additional reason for inverting in
the frequency domain is the stabilization of the problem if one starts with low
frequencies, as this reduces the nonlinearity.

5.2 Comparison with diffusion problems

Compared to the static problems governed by a diffusion equation discussed in
the previous chapters, the problems considered here differ in several respects
concerning computational complexity. In this section, we briefly review why the
problems of this chapter are more challenging. A discussion of mathematical
problems arising with typical inverse problems for the Helmholtz equation is
given in the next section.

The foremost reason for the higher complexity is that solving the Helmholtz
equation numerically is more difficult than the Laplace equation. This has three
main reasons:

e The indefiniteness of the operator disallows the use of simple conjugate
gradient methods. If w? is too close to an eigenvalue of the Laplace
operator, the problem is also ill-conditioned.

e The traveling wave character of solutions of the Helmholtz equation re-
sults in solutions that do not decay quickly with the distance to sources,
requiring mesh refinement in large parts of the domain.

e Solutions of the Helmholtz equation are oscillatory, where the wavelength
of solutions is A o 1/w. This requires fine meshes especially for high
frequencies. For good resolution, the mesh width should satisfy at least
A/h > 10.
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Figure 5.1: Typical solution u, = v, + tw, of Helmholtz equation with w = 50.
Left: Real part. Right: Imaginary part. The solution is the same as in Fig. 5.4.

A typical solution of the state equation showing the last two points is displayed
in Fig. 5.1. For this example, there are absorbing boundary conditions at the
bottom, right, and top boundary, and waves are injected at the center of the
left boundary.

From these considerations, it is clear that solving the Helmholtz equation
is more expensive from a numerical point of view than the Laplace equation.
In particular, in d space dimensions, the effort grows with the frequency w as
w? since the mesh width must be proportional to the wave length. For typical
applications, diam Q/X = 10... 100, requiring a number of cells in the range of
at least 1007 ...1000%. Finally, we remark that solving on an insufficiently fine
grids leads to unusable solutions since the dispersion of finite elements results
in a phase shift between exact and numerical solution. It is thus often not even

possible to start on a relatively coarse mesh.

Further aspects to be taken into consideration when comparing inversion for
wave and diffusion problems is that for the former we often only have boundary
measurements, but in a multiple experiment setting. The fact that measure-
ments are only on the boundary requires us to solve to relatively high accuracies.
Both aspects further increase the numerical effort.

As a final comparison between wave and diffusion problem, we consider
the condition numbers of Schur complement matrices. Fig. 5.1 shows the de-
pendence on the mesh width for the Helmholtz equation with w = 10, for an
otherwise comparable configuration as Table 1.2 (page 31) shows for the dif-
fusion equation. While the growth of the condition number as the mesh is
refined follows the same orders as for the diffusion equation, their absolute size
is smaller, at least for the more important case of L? measurements, making
the Newton steps simpler to solve.

On the other hand, these condition numbers also depend on the frequency,
and on the number of experiments performed. Generally, the condition number
decreases with higher frequencies and more experiments, making up for part of
the otherwise higher complexity.
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m(u—z) = 5lu— 2|3 m(u— z) = 5|V (u— 2)[§
h min || max | ;] Ko min ;| | max |u; K2
273 | 0.00195 0.339 170 0.717 32.2 45
2741 9.76-107° | 0.160 1600 0.0916 14.8 160
2751 2.05-107% | 0.0499 | 24000 0.00657 4.49 680
2761 397-107% | 0.013 | 3.5-10° | 0.000479 1.20 2500
2771 7.09-10719 | 0.0035 |4.9-10° | 3.73-107° | 0.324 | 8.7-10°
O(h®) O(?) | O(h™) | O O(h?) | O(h™?)

Table 5.1: Minimal and mazimal eigenvalues p;, and condition number with
respect to the spectral norm for the Schur complement.

5.3 Complications of tomography

In the applications discussed in this chapter, we only consider cases where the
sources of the Helmholtz equation are located on part of the boundary, as this is
typical for applications. If measurements are also performed only on the bound-
ary, then this mode is called tomography. Depending on whether measurements
are made at the same part of the boundary where sources are located, or on an
opposite part, this is called reflection tomography or transmission tomography
in the context of wave problems.

For the Laplace equation, the main problem of tomography is an extreme
ill-posedness in the interior of the domain, since information entering at the
boundary of the domain decays quickly as a function of the distance to the
boundary. For the Helmholtz equation, just as for inversion in the time domain,
this ill-posedness away from the boundary does not exist, since the correspond-
ing Green’s function has different decay properties. Nevertheless, inverting
wave signals poses a number of mathematical peculiarities. Among these are
strong nonlinearities of the objective function as well as non-identifiability in
certain function spaces. We will briefly discuss these difficulties in this section
to illustrate the typical complications of inversion for wave problems.

Nonlinearity of the inverse problem

In contrast to the diffusion problem covered in previous chapters, the objective
functional usually has many local minima for the Helmholtz equation, and
getting stuck in one of them is simple. To illustrate this, consider the following
one dimensional example: assume we have a string of length L with constant
but unknown wave propagation velocity ¢ which we would like to recover within
the range ¢ € [cg, c1]. We excite the string at the left end at z = 0 with a time-
periodic signal with frequency w and amplitude and phase p(w) € C. We
measure the displacement and its phase at x = L, where we assume that an
absorbing end is placed. The frequency is chosen such that the wave length is
small compared to L, i.e. w > L/2mc.
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Figure 5.2: Visualization of the nonlinearity occurring in inverse problems for
wave equations. Left: Time dependent source at the left end. Right: Misfit
functional m(c) as function of the wave speed c.

This situation can be described by the following set of equations:
—wluy — A0, =0,  u,(0) = W), (iw+cdp)uy(L) =0.  (5.11)

The last boundary condition represents perfectly absorbing boundary condi-
tions at x = L. The solution of this problem is u, (z) = ¢(w) cos(wz/c).

In the inverse problem, we are given a measurement z, of u,(L). In the
noise free case, z, = p(w) cos(wL/c*) with the “true” wave speed c*. We then
seek to minimize the misfit integrated over all frequencies,

1

mle) =m(u(l) — 2) = 5 [ fa(L) - 2 d

_ %/|<p(w)(cos(wL/c) — cos(wI/c*))2 dw

on the range of admissible wave speeds ¢ € [cp,c1]. Note that by definition
of the Fourier transform, the misfit in the time and the frequency domain are
equivalent: [ |u, (L) — 2,|? dw = [ |u(L,t) — 2(t)|? dt.

While the solution of this problem is obvious, the misfit functional is strongly
nonlinear. For example, assume we use the signal f(¢) shown in the left panel of
Fig. 5.2. Accordingly ¢(w) is the Fourier transform of this signal. With ¢* = 1,
the misfit functional m(c) is shown in the right panel of Fig. 5.2.

The nonlinearity of the objective functional is striking. At the center, the
oscillations result from measurement and simulation being shifted relatively to
each other by a fixed number of periods in the time domain and likewise by
27 in the frequency domain; small variations then bring the two functions out
of phase, yielding a higher value of the misfit functional, until the wave speed
changes so much that minima and maxima match once again. This phenomenon
is commonly referred to as aliasing, since oscillations of the simulated solution
match, i.e. alias, the wrong oscillations of the measurement.

The distance between two local minima, and so also the domain of attraction
of a minimum, corresponds to the size of changes in the coefficient necessary
to displace measurement and predicted solution by one wavelength. Thus, it is
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larger for low frequencies. In practice, low frequency measurements are there-
fore often used to obtain a good initial guess, which is then used to proceed
with high frequencies.

This nonlinearity is mostly generic for wave problems, and also exists in
higher spatial dimensions. In applications, this usually leads to solutions being
trapped in local minima, unless the parameter identification process is started
in the close vicinity of the true solution. In applied geophysical inversion, many
techniques have been developed to either generate good initial guesses, or for
global optimization. The amount of literature on this is so vast that we do not
attempt to give an overview. As we do not endeavor to develop techniques in
this area, we will always assume that we have starting values close enough to
find the desired optimum with local search techniques such as the Gaufl-Newton
method.

Non-uniqueness of solutions

Another difficult aspect of waveform inversion is that smooth variations of the
velocity, often called the background velocity, are hard to determine. In fact, in
one space dimension, it is not identifiable at all: let ¢* be the optimal spatially
constant wave speed, then in the example of the previous section all spatially
varying wave speeds c¢(z) = ¢* + ¢ with smooth functions ¢ with zero mean
value will generate the same measurements at £ = L. The reason, of course,
is that we only measure the arrival times of signals, not whether it traveled
faster or slower on parts of the string. The same holds, if ¢* is not constant,
but piecewise constant: what we see is only the arrival times of transmitted
and reflected signals; these signals only contain the position of discontinuities
(via the arrival times) and the height of the jumps (through the reflection
amplitudes), but not the smooth variations between the jumps.

The situation is better in more than one space dimension, since there smooth
variations refract waves, i.e. wave directions are bent smoothly by the back-
ground velocity, but in general the problem of determining the smooth varia-
tions is significantly more ill posed than that of recovering discontinuities.

Conclusions for examples

Since the goal of this work is not to develop techniques to work around the two
problems mentioned above, we choose the examples of this chapter such that

e the sought coefficients are piecewise constant, and

e initial values are close to the exact values, but constant; therefore, the
initial values do not contain a priori knowledge about the positions of
jumps in the coefficient.

Both assumptions are often practicable in geophysical applications, as media
in the underground are usually stratified, i.e. piecewise constant. Furthermore,
good initial guesses can, for example, be obtained by traveltime inversion, which
only uses the time a signal arrives, but not its amplitude and phase, thus
avoiding the nonlinearity problem.
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5.4 Error estimation

In this section, we briefly state the form of error estimates for the problem
considered in this chapter. Since the general form of estimates in terms of the
Lagrangian has already been given in Chapter 2, we only show this for estimates
with respect to the minimization functional J(-). The form of the estimates for
arbitrary functionals and for the bound constrained case can then easily be
derived from this and the material of Chapter 2.

Theorem 5.4. For the multiple experiment Helmholtz inversion problem 5.3,
the error with respect to the functional J(-) can be represented by

N
1 . . k| ik, 1
J(@) = T(wn) =5 ) (ni’K+nZ,;K+n2’ +17¢ )+§ > m +R,
1=1 KeT; Ky€T,

(5.12)

with terms relating to the residuals of the state equation,

ot = (=wvy, — Ve(an, Vo), Cu; — inCuwi)

+ 3 (n[an Vo], Cor = inle) o o0

+ (0 ap Vv, — wiv/anWe, by Co; — hlwi) grenr, -
ﬂf&K = — (—w?wwi — V-(ar,Vwy,), & — ihfw)K

— 5 (n:[anVwy,), o, — inéu) o\ 00

+ (_n : ahvwwi — Wi/ ApVw; by éwi - ihéUJi)aKﬂFA y

terms relating to the adjoint equation

N = (v — Re 2w, + (w03 — V-(an Vo)), v, — i) ¢
+ 3 (0:[an Vuy p)s vy — ihVu;) o\ o
+ (0 ap Vi, n — Wiv/an€w, b Vuw; — 7;sz')aImFA ’
né’K = (wwi,h —Im z,, — (—w?{“wi,h — V-(anVu, n)), W, — ihwwi)K
- % (n-[anVEu, nl, ww; — ihwwi)aK\aQ
+ (= - ap Ve, b — win/anCu; by We; — ihwwi)aKmFA )

and finally terms involving the control equation

a

N
Ka = B . — B . — 9
Ma (5% + ; (Vi VU b — V€ VW, 1), a Zha)K

N
Wi .
-5 Weo; hGuw; b+ U, hEwish)s @ —Zha)

OKonT A

The remainder term is

1
et [ Skt s o i
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Figure 5.3: Identification of an inclusion. Layout of example.

Here, x and xp, are continuous and discrete solutions, respectively, and iy is
a generic interpolation operator acting on X — X or single components, de-
pending on context.

Proof. Use the general form of the estimate in terms of the Lagrangian, given
in Theorem 2.1, expand the Lagrangian (5.10), and integrate by parts on each
cell. U

We will check the accuracy of this formula with the applications at the end
of this chapter. Note that the other error representation formulae derived in
Chapter 2 have similar forms.

5.5 Application: Identification of an inclusion

As a first example of parameter identification for the Helmholtz equation, con-
sider the situation depicted in Fig. 5.3: a plate of elastic material is clamped
at its left side and placed in dampers absorbing all waves at all other faces.
A time periodic force is applied at portions of the clamped side. The position
and frequency of the excitation is varied in different experiments. Finally, we
assume that amplitude and phase of the resulting periodic motion of the plate
can be measured at all positions; such measurements are possible with lasers,
for example. The goal is to recover an unknown inclusion in the material by
inverting for the spatially varying coefficient a(x).

Given this setup, the problem can be described as follows: let the index 1 <
i < N denote the number of the experiment, then u = {uy,, ..., Uy, }, Uw; € Vi
are the solutions of the state equations

Ay, (a;uy,,0) =0 Yo e W,
subject to boundary conditions wu,|r, = g%, see Problem 5.1. With this con-
straint, the minimization problem reads

N

) 1
minJ(u,a) = Z §||Uw, — 7l +
i=1

g

Er(a)a
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Figure 5.4: Identification of an inclusion. |uy|? = |v, + iw,|? for two solutions
with different source positions. In both cases, w = 50.

Figure 5.5: Identification of an inclusion. Left: Identified coefficient with
bounds 1 < a < 1.3. Right: With bounds 0.5 < a < 5.

where z; is the measurement for the ith experiment. For two experiments
differing in the position of the excitation, the absolute values |u,|? = |v, +iw,|?
are shown in Fig. 5.4. For both the frequency is w = 50. While the waves
injected in the first experiment travel through the domain largely unaffected,
those of the second are deflected at an a priori unknown scatterer.

For the inversion, we consider 24 experiments with 8 equidistantly spaced
source positions and frequencies w; € {30,40,50}. For these frequencies, the
wavelengths are between 0.125 and 0.21. The inclusion to be identified is a
circle of radius 0.15 with a = 1.3 embedded in a material with a = 1.

Fig. 5.5 shows the identified coefficient for two cases. In the left, the two
materials are known, so that sharp bounds 1 < a < 1.3 can be posed. Instead,
if we do not know the materials, we only use a rough guess 0.5 < a < 5 and
obtain the coefficient displayed on the right of the figure. No regularization was
used in both cases.

In Fig. 5.6, the performance of the weighted error estimate (5.12) as a mesh
refinement criterion is compared to global refinement and the nVV* indicator
(2.11), which performed best after the weighted estimator for the Laplace equa-
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Figure 5.6: Identification of an inclusion. Left: Reduction of target functional
J(xp) for various refinement criteria, as function of the sum of the numbers of
degrees of freedom of all 2/ experiments. Right: Reduction of error ||a — ap]|.
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Figure 5.7: Identification of an inclusion. Comparison of actual and estimated
error.

tion (see Section 2.1.3). As can be seen, the weighted indicator is significantly
better than the other criteria, both in terms of reduction of the target functional
J(-), and of the error ||aj — @ezact|| Which is of greater practical interest. Thus,
it is obvious that using this indicator can reduce the effort to solve the identi-
fication problem to a given accuracy greatly. Finally, Fig. 5.7 shows that the
estimated errors in the target functional J(-) match the true ones reasonably
good on finer meshes.

5.6 Application: Transmission tomography

As second example, we consider a similar layout as in the previous example, but
for the much more challenging case that measurements are only available at the
right boundary. This is the typical mode for so-called cross-hole, or transmission
tomography in geophysics, where explosives are placed in one bore-hole, and
receivers in a second hole a certain distance away.

A sketch of the layout of this example is given in Fig. 5.8. As an abstract
description of this situation, we choose the same domain as in the previous
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Figure 5.8: Transmission tomography. Layout of example.

example, but with homogeneous Neumann boundary conditions at the top to
simulate the free boundary earth surface. At the left, the sources are rep-
resented by Dirichlet values, and at the right and bottom simple absorbing
boundaries are given again, to indicate that these are artificial boundaries. The
measurements are the Neumann values along the right borehole, i.e.

1
m(uw; = 2) = 5|0t = z||%, I=00n{z=1}

The goal is the identification of the medium between the two boreholes. As an
idealized situation, we choose the same coefficient structure as in the previous
example, i.e. a circular inclusion, but with smaller variation 1 < a < 1.1. The
size of this variation in the coefficient is common for geophysical media. The
setting of this example is comparable to that used by Pratt et al. [55], but we
use a significantly higher resolution.

For the identification problem, we use 8 locations for sources along the left
borehole, and the frequencies w = {20,25,30,35} at each location, making a
total of 32 experiments.

As pointed out in Section 5.3, this problem is difficult since relatively small
changes in the coefficient can shift the phase of the wave at the receiver positions
by more than half a wavelength, leading to identification of a local minimum
instead of the global one. Therefore, we start with the constant value 1.05,
which is close enough for the identification process to find the global optimum.
Nevertheless, this initial value does not reveal information about the structure
of the sought coefficient. The problem is also challenging since it is necessary
to solve the state equation to rather high accuracy.

The results of computations can be seen in Fig.s 5.9-5.11. In the first figure,
the identified coefficient is shown. Its structure is clearly resolved, although the
vertical extension of the inclusion is not computed accurately. However, given
the limited amount of information used for the inversion, this resolution is
already very good. Unfortunately, the computation could not be extended to
higher numbers of degrees of freedom due to computational restrictions.

In the second figure, 5.10, the reduction of target functional J(zj) and the
error ||ap —aegact|| is shown for the same two refinement criteria as above, i.e. the
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Figure 5.10: Transmission tomography. Left: Reduction of target functional
J(xp) for two refinement criteria, as function of the sum of the numbers of
degrees of freedom of all 2/ experiments. Right: Reduction of error ||a — ap]|.

weighted error estimate (5.12) and the nVV* indicator (2.11). Unlike in the
previous application, but as for some of the cases discussed in Section 2.1.3, the
weighted error indicator is not better than the one using second derivatives of
the Lagrange multiplier. The weighted error estimator even shows an irregular
behavior on coarse grids.

On the other hand, Figure 5.11 shows that estimated and true errors with

respect to the target functional J(-) coincide almost perfectly and the ratio is
very close to one, despite the initial irregular behavior of J(z},).
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Outlook

Inverse problems associated with partial differential equations provide plenty of
subjects for research. Efficient techniques for adaptivity, error estimation, and
the treatment of bound constraints have been discussed in this thesis. However,
at least the following three topics for further research immediately come to mind
that have not or only briefly been touched in this work:

Uncertainty quantification and inversion for probability distributions.
In this work, we have concentrated on solving for one parameter function that
best describes the measured observation. However, this leaves one aspect en-
tirely out of view: measurements are usually noisy, i.e. the measurement we
have used is only one instance of a family of measurements that satisfy a cer-
tain probability law. From each possible noisy measurement there follows an
inverted parameter to which we assign the same probability that the measure-
ment has from which it was computed. The true solution of an inverse problem
would therefore be a probability density in the space of parameters, i.e. a func-
tional that assigns each element of the parameter space a probability value.

Knowing this probability distribution would give us enormous information.
For example, it would be simple to assess the local or global resolution, i.e. the
accuracy with which the parameter was resolved globally or at certain points of
the domain. This would be necessary to evaluate the reliability of the solution.
If we are not satisfied with the resolution, we could make more experiments.
Knowledge of the probability distribution could also be used for ezperimental
design, which tailors experimental set-ups such that they yield maximal reso-
lution, again either globally or locally.

The downside, of course, is the likewise enormous complexity of the task.
Little has been achieved in this field since the influential book by Tarantola
[63] appeared in 1987 and made this aspect of inverse problems available to the
greater public in applied sciences. In a few approaches (see, for example, Banks
and Bihari [12] and Wojtkiewicz et al. [67]) the measurement space was sampled
to obtain respective samples in parameter space, but by and large probability
density recovery has been avoided for the practical solution of PDE constrained
parameter estimation problems.

Truly inverting for the probability density beyond recovering half-widths
in linear least squares problems with Gaussian noise offers an exciting field of
research. With the recent advent of massively parallel clusters of workstations,
the necessary computing power to solve the literally thousands or millions of
forward problems seems already in place to do this for small problems.
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Optimal choice of regularization. As O’Leary [52] puts it, “choosing the
regularization parameter is an art based on good heuristics and prior knowl-
edge of the noise in the observation”. Although we have neglected this question
entirely in this work, any reliable approach to inversion needs to have an au-
tomatic strategy for the selection of the regularization parameter. A large
number of approaches for this exist, see for example the book by Engl, Hanke
and Neubauer [32] on the subject. However, most of these approaches only
have a theoretical foundation for linear problems and/or require the solution of
a significant number of additional problems, and only few seem to be suited for
the large scale nonlinear problems associated with partial differential equation.

One can probably say that these strategies have not yet found their way
into the solution of nonlinear PDE constrained problems and the aspect of
“art” and “heuristics” prevails to date. This calls for further research in the
field. Duality and sensitivity as touched in this work could well be one building
block for approaches for this. In particular they might help in an extension
where we make the regularization parameter a space dependent function: set it
to a large value where not enough information is available to recover the desired
information, but set it to a small value where we have this information and do
not need much regularization.

Efficient solution of large scale problems. Compared to some practical
applications, the examples in this work are toy problems. Inversion of seismic
data is frequently listed among the most computationally intensive applications
presently solved in industry, for a good reason: it usually involves PDEs stated
in three space and one time dimension, these PDEs are wave equations with high
frequency solutions and are thus hard to solve, the number of measurements
goes into the thousands, and the required resolution is high. Handling the
amount of data, measurements in the range of many gigabytes, is a challenge
in itself. The computational complexity of this task is not one or two orders of
magnitude away from the examples in this work, but several.

Yet, the programs used in practice are algorithmically simple. They do not
usually use adaptivity for the solution of the PDE, or include error estimation.
They often do not even involve multiple experiment structures but invert for one
dataset after the other. Combining the algorithms and mathematical methods
of this work with practical applications is likely to gain a significant reduction
of numerical effort, and an increase in resolving power. However, the expected
complexity of such programs calls for a very careful design that in itself justifies
research.

Outlook. It is probably safe to assert that PDE constrained inverse and op-
timization problems will become a major subject of research in the near future.
Adaptive methods and error estimation will become as pervasive as they are now
in the numerical solution of partial differential equation. Given the challenges
and the potential practical applications, this promises to become an interesting
field!
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