
Inaugural { Dissertation

zur

Erlangung der Doktorw

�

urde

der

Naturwissens
haftli
h{Mathematis
hen Gesamtfakult

�

at

der

Rupre
ht{Karls{Universit

�

at

Heidelberg

vorgelegt von

Diplom{Physiker Wolfgang Bangerth

aus Ost�ldern

Tag der m

�

undli
hen Pr

�

ufung: 12. Juli 2002





Adaptive Finite Element Methods for the

Identi�
ation of Distributed Parameters in

Partial Di�erential Equations

Guta
hter: Prof. Dr. R. Ranna
her

Prof. Dr. H. G. Bo
k



4



Contents

Introdu
tion 7

1 Parameter estimation for ellipti
 PDEs 13

1.1 A model problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2 Optimality 
onditions and stability . . . . . . . . . . . . . . . . . 18

1.2.1 First order 
onditions . . . . . . . . . . . . . . . . . . . . 18

1.2.2 Stability of solutions . . . . . . . . . . . . . . . . . . . . . 18

1.2.3 Se
ond order 
onditions . . . . . . . . . . . . . . . . . . . 22

1.2.4 First order 
onditions for the 
onstrained problem . . . . 23

1.3 Newton's method for the optimality 
onditions . . . . . . . . . . 23

1.4 Dis
retization of Newton steps . . . . . . . . . . . . . . . . . . . 27

1.5 The dis
retized problem . . . . . . . . . . . . . . . . . . . . . . . 29

1.6 Condition numbers of the linear problems . . . . . . . . . . . . . 30

1.7 Solution of the linear problems . . . . . . . . . . . . . . . . . . . 30

1.7.1 S
hur 
omplement methods . . . . . . . . . . . . . . . . . 32

1.7.2 Iterative solvers . . . . . . . . . . . . . . . . . . . . . . . . 33

1.7.3 Dire
t solvers . . . . . . . . . . . . . . . . . . . . . . . . . 33

1.7.4 Stopping 
riteria for the linear solvers . . . . . . . . . . . 34

1.8 Theoreti
al 
onsiderations . . . . . . . . . . . . . . . . . . . . . . 34

1.9 De�nition of test 
ases . . . . . . . . . . . . . . . . . . . . . . . . 37

2 Error estimates and adaptivity 41

2.1 Error estimates for the minimization fun
tional . . . . . . . . . . 41

2.1.1 Derivation of estimates . . . . . . . . . . . . . . . . . . . 42

2.1.2 Criteria for re�nement of the state mesh . . . . . . . . . . 45

2.1.3 Comparison of re�nement 
riteria . . . . . . . . . . . . . . 46

2.1.4 Reliability of error estimates . . . . . . . . . . . . . . . . 49

2.2 Estimates for the 
oeÆ
ient parameterization . . . . . . . . . . . 51

2.2.1 Criteria based on dis
retization 
onstraints . . . . . . . . 51

2.2.2 Criteria based on available information . . . . . . . . . . . 54

2.2.3 Comparison of re�nement 
riteria . . . . . . . . . . . . . . 54

2.2.4 Reliability of error estimates . . . . . . . . . . . . . . . . 56

2.3 Estimates based on stability . . . . . . . . . . . . . . . . . . . . . 57

2.4 Estimates for arbitrary fun
tionals . . . . . . . . . . . . . . . . . 59

2.4.1 Statement of estimates . . . . . . . . . . . . . . . . . . . . 59

2.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5



6 CONTENTS

2.5 Estimates for the 
onstrained problem . . . . . . . . . . . . . . . 63

2.5.1 Estimates for the minimization fun
tional . . . . . . . . . 64

2.5.2 Interpretation and evaluation . . . . . . . . . . . . . . . . 65

2.5.3 Reliability of estimates . . . . . . . . . . . . . . . . . . . . 67

2.5.4 Estimates for arbitrary fun
tionals . . . . . . . . . . . . . 68

2.6 Pra
ti
al aspe
ts of mesh re�nement . . . . . . . . . . . . . . . . 69

3 Bound 
onstraints on the parameters 71

3.1 Treating parameter bounds by a
tive sets . . . . . . . . . . . . . 71

3.2 Treating parameter bounds by transformation . . . . . . . . . . . 75

3.3 Treating parameter bounds by proje
tion . . . . . . . . . . . . . 76

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4 Multiple experiments 79

4.1 Mathemati
al formulation . . . . . . . . . . . . . . . . . . . . . . 79

4.2 Solution of the linear problems . . . . . . . . . . . . . . . . . . . 81

4.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.4 Appli
ation: Noise redu
tion . . . . . . . . . . . . . . . . . . . . 84

4.5 Appli
ation: Enfor
ing identi�ability . . . . . . . . . . . . . . . . 85

5 Inverse wave problems 89

5.1 Inversion in frequen
y spa
e . . . . . . . . . . . . . . . . . . . . . 89

5.2 Comparison with di�usion problems . . . . . . . . . . . . . . . . 93

5.3 Compli
ations of tomography . . . . . . . . . . . . . . . . . . . . 95

5.4 Error estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.5 Appli
ation: Identi�
ation of an in
lusion . . . . . . . . . . . . . 99

5.6 Appli
ation: Transmission tomography . . . . . . . . . . . . . . . 101

Outlook 105

Bibliography 107



Introdu
tion

When quantities 
annot be measured dire
tly, parameter estimation te
hniques


ome into play: with these, the unknown quantity is determined from mea-

surements of observables. This work deals with problems where the relation

between the observables and the desired information is a partial di�erential

equation. Su
h parameter estimation problems are then 
ommonly referred to

as Inverse Problems.

Inverse problems have vast appli
ations in s
ien
e and engineering. In this

work, we 
onsider problems where internal properties of media are of interest,

whi
h, however, are often not a

essible dire
tly. For example, in some ap-

pli
ations we are interested in determining the internal elasti
 
omposition of

bodies without destroying it, or would like to know the underground stru
ture

in sear
h of oil without a
tually drilling. These quantities appear as 
oeÆ
ients

in the partial di�erential equations (hen
eforth abbreviated by PDE ) whi
h are

used to des
ribe the response of the media to for
es, and the determination of

these 
oeÆ
ient naturally leads to inverse problems.

From a numeri
al point of view, inverse problems involving partial di�eren-

tial equations are very 
hallenging: unlike nonlinear partial di�erential equa-

tions, they do not only require the solution of one or few linearized subproblems

in ea
h nonlinear step, but many. Sin
e we are looking for distributed param-

eters whi
h may be dis
retized by thousands or tens of thousands degrees of

freedom, the number of linearized subproblems in ea
h nonlinear step may be

several hundreds or thousands. As an example, the transmission tomography

appli
ation dis
ussed in Se
tion 5.6 required a total of 2008 CG iterations, a
-


umulated over some 80 Newton steps. Sin
e 32 experiments were used, this

means a total of roughly 130,000 solutions of a Helmholtz equation. Computa-

tional 
onsiderations are therefore of outstanding importan
e in the design of

algorithms to solve su
h problems.

Consequently, the goal of this work is the development of te
hniques for

the eÆ
ient numeri
al solution of su
h inverse problems, based on adaptive

�nite element methods. After the statement of the problem in Chapter 1, we

will derive a posteriori error estimates for inverse problems in Chapter 2, both

for natural \energy type" quantities as well as for general fun
tionals, and

demonstrate their eÆ
ien
y. Although adaptivity and error estimation are now


ommonly a

epted in the numeri
al solution of partial di�erential equations,

they have not yet found their way into the solution of inverse problems. These

te
hniques are thus new to this �eld and promise a signi�
ant gain in eÆ
ien
y


ompared to present state-of-the-art algorithms.

7



8 INTRODUCTION

A se
ond, new aspe
t of this work is the in
lusion of bounds into the solu-

tion pro
ess in Chapter 3. In pra
ti
al appli
ations, physi
al upper and lower

bounds on possible values of the unknown 
oeÆ
ients are usually available, ei-

ther from prior knowledge of the parti
ular 
ase under investigation, or from

extremal material properties existing in nature. For example, when identifying

the underground stru
ture from seismi
 measurements, densities of ro
ks will

be between approximately 1 g/
m

3

(water) and 22 g/
m

3

(osmium and alike

metals). In pra
ti
e, su
h bounds are usually mu
h tighter, and alike bounds

are available for other properties as well, su
h as elasti
ity 
oeÆ
ients. The

eÆ
ient in
lusion of su
h bounds is dis
ussed in Chapter 3 where we develop an

A
tive Set Method in a 
ontinuous setting and show its eÆ
ien
y in enhan
ing

stability of identi�ed 
oeÆ
ients.

In Chapter 4, we extend the problems under 
onsideration to the 
ase that

more than just one measurement is available. This 
an be favorably used to

suppress the e�e
ts of measurement noise, and examples of this are shown.

It also allows to solve 
ertain 
lasses of problems in whi
h one measurement

is not suÆ
ient to identify the unknown 
oeÆ
ient. Beyond the already high


omputational requirements for distributed parameter identi�
ation in PDEs,

multiple measurements in
rease it even more. This requires using spe
ialized

algorithms tailored to the problem. However, their stru
ture allows for eÆ
ient

parallelization strategies, for example using 
lusters of 
omputers. The work

required for ea
h of the subproblems asso
iated with one measurement is thus

distributed to di�erent 
omputers. The stru
ture of a program doing this will

be introdu
ed in Chapter 4.

The te
hniques developed thus far at the Lapla
e equation will be applied

to parameter identi�
ation problems for the Helmholtz equation in Chapter 5.

Sin
e Helmholtz's equation is the frequen
y domain version of the wave equa-

tion, parameter estimation for this type of problems has many appli
ations in

geophysi
s. It will be shown that adaptive te
hniques and error estimation work

in this 
ontext as well, and that they lead to very eÆ
ient s
hemes. The most


omplex problems of this work will be 
onsidered in this 
hapter.

We 
on
lude with an outlook on the 
hallenges of inverse problems that are

not, or only brie
y, tou
hed in this work.

Two prototypi
al appli
ations

The te
hniques developed in this thesis should be 
onsidered in view of a
tual

appli
ations. To this aim, we introdu
e two prototypi
al appli
ations. The �rst

one, nondestru
tive testing, tries to determine the elasti
 properties of a mate-

rial by subje
ting it to a known for
e, and measuring the resulting de
e
tion.

The se
ond, ele
tri
al impedan
e tomography, uses ele
tri
al potentials applied

to the boundary of a body to image its interior.

Nondestru
tive testing. Assume we want to infer the sti�ness properties of

a body without taking it apart or destroying it otherwise, for example be
ause

it is pre
ious or be
ause an assessment of the body is required before it is
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force f(x)

Figure 1: Prin
iple of nondestru
tive testing by appli
ation of for
es. Left:

Membrane in rest state. Right: Membrane de
e
ted in rea
tion to an applied

external for
e �eld f(x).

deployed to use. This frequently o

urs in quality 
ontrol of parts in aerospa
e

industries, and many other appli
ations.

The idea of the method applied to a membrane of spatially varying elasti


properties is then as follows (see Figure 1): knowing the rest state of the mem-

brane in the absen
e of external for
es, we want to infer the desired material

properties by measuring the de
e
tion after applying a for
e of known spatial

distribution and strength.

A mathemati
ally 
on
ise de�nition of this problem will be given in Chap-

ter 1, so we only present a sket
h of a formulation: For the membrane under


onsideration, assume that its de
e
tion u is des
ribed by a Poisson equation

�r � (aru) = f;

where f is the applied body for
e and a = a(x) the spatially varying 
oeÆ
ient

we would like to re
over. For a 
omplete model, the equation is of 
ourse

augmented by suitable boundary 
onditions.

While we do not know the 
oeÆ
ient, we have measured the de
e
tion u of

the membrane under a
tion of the applied for
e. We denote this measurement

by z. Sin
e we 
an 
ompute a de
e
tion u for ea
h possible 
oeÆ
ient (bounded

away from zero), the problem of parameter identi�
ation 
an then be stated as

follows: �nd that 
oeÆ
ient for whi
h the 
orresponding de
e
tion u mat
hes the

measured de
e
tion z best. Methods for �nding this 
oeÆ
ient will be dis
ussed

in the next 
hapter.

Ele
tri
al impedan
e tomography. Another, 
losely related problem is

the determination of the ele
tri
al properties of a body from measurements at

its boundary. This has appli
ations in the dete
tion of interior 
ra
ks in metalli


parts in aerospa
e industries, but is also envisaged as an imaging te
hnique in

medi
al appli
ations. Here, see Figure 2, one tries to infer the internal ele
tri
al


ondu
tivities of a body by applying ele
trostati
 potentials to its boundary; the

observable quantity is then the resulting ele
tri
 �eld at the boundary, whi
h

depends on the potentials and the internal 
omposition of the body. From this

one hopes to invert for the interior. Be
ause this method tries to see into the
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apply specified 
electric potential 

measure electric
field

Figure 2: Prin
iple of ele
tri
al impedan
e tomography: subje
t a body to spe-


i�ed ele
tri
al potentials at its boundary, and measure the resulting ele
tri
al

�elds. Left: S
heme of measurements. Right: 
omputer tomographi
 image of

the human upper body, for whi
h ele
tri
al impedan
e tomography 
ould be an

alternative imaging te
hnique.

body only from measurements outside of it, it is often 
alled ele
tri
al impedan
e

tomography.

Mathemati
ally speaking, we now have a Lapla
e equation des
ribing the

ele
tri
 potential with a variable 
oeÆ
ient whi
h we would like to re
over. In-

stead of body for
es, we now have Diri
hlet boundary values (i.e. the applied

surfa
e potential) as sour
es, and the Neumann boundary values (i.e. the ele
-

tri
al �eld at the surfa
e) as observables. In this thesis, we do not dis
uss this

parti
ular problem for the Lapla
e problem, but for the Helmholtz equation.

Problems related to this one o

ur in a large number of appli
ations. It is

a re
urring theme in geophysi
s (see the books by Tarantola [63℄ and Parker

[54℄), where, for example, measurements of the gravimetri
 potential are used to

obtain information about underground stru
tures asso
iated with mass distri-

bution anomalies. If we extend the problems to time dependent ones, the seismi


inversion problem is also of this type: there the goal is to obtain information

about the underground from the measurement of seismi
 signals. Important

appli
ations of this are earthquake predi
tion and oil reservoir identi�
ation.

What is the solution of an inverse problem?

In this work, we try to identify the maximum likelihood point of a problem. To

keep with the membrane example above, this means that we seek the single one


oeÆ
ient for whi
h the predi
ted de
e
tion mat
hes the measured one best.

However, this is in some sense a rather restri
ted point of view: sin
e the mea-

surement usually 
ontains noise, any other noise realization of the measurement

would be equally valid, and for ea
h we might get a di�erent \best" 
oeÆ
ient.

The most appropriate de�nition of a solution therefore would be a proba-

bility distribution in 
oeÆ
ient spa
e: for ea
h noisy measurement o

urring

with a 
ertain probability, assign this probability to the 
orresponding \best"


oeÆ
ient.

For most parameter identi�
ation problems involving partial di�erential

equations, re
overing this probability density ex
eeds today's 
omputational

possibilities by far. We therefore restri
t our point of view to the identi�
ation
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of one distributed 
oeÆ
ient fun
tion, and note that this is also appropriate

for the 
ase of small noise, sin
e then the probability density is approximately

Gaussian with peak at this one 
oeÆ
ient and 
omputable width. This restri
-

tion must, however, be kept in mind when thinking about inverse problems.

For further dis
ussions in this dire
tion, see the outlook se
tion of this work

(page 105), and in parti
ular the book by Tarantola [63℄.

A word on notation

The s
ienti�
 
ommunities 
on
erned with the numeri
al solution of partial

di�erential equations, and with optimization maintain di�erent, in
ompatible


onventions of notation. For example the state variable is 
ommonly named u

in numeri
al analysis, while it is denoted by x, or y(x), in optimization theory.

Sin
e this work is mainly 
on
erned with numeri
al aspe
ts, in parti
ular the

�nite element approximation of optimization problems, we will use the notation


ommon in numeri
al analysis.
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Chapter 1

Parameter estimation for

ellipti
 problems

In this �rst 
hapter, we will give an outline of the way by whi
h we intend to

atta
k the problem of estimation of distributed parameters in ellipti
 partial

di�erential equations. We �rst dis
uss the formal setting of the problem in

mathemati
al terms, then formulate it as a 
onstrained minimization problem

for whi
h we seek the stationary point of a Lagrangian.

This 
onstrained problem is stated in a 
ontinuous setting in fun
tion spa
es.

For its solution, we employ Newton's method, again on a 
ontinuous level. The

individual Newton steps are then dis
retized using a �nite element method

that di�ers from the approa
hes used in the available literature in that we use

di�erent meshes and shape fun
tions for the di�erent types of variables present.

The rest of the 
hapter is devoted to the dis
ussion of the solution of the

linear subproblems and theoreti
al questions regarding the framework outlined

so far. The 
hapter 
loses with the de�nition of some ben
hmarks that will be

used in later 
hapters.

As already mentioned in the introdu
tion, the solutions we are seeking in this

work { by requiring the stationarity of a Lagrangian { are maximum likelihood

points in the model spa
e. What we 
all solution to the inverse problem is thus

only a 
ertain aspe
t of it. We do not 
onsider the identi�
ation of the full

posterior probability density fun
tion in the model spa
e whi
h would require

us to use signi�
antly di�erent te
hniques than we intend to dis
uss in this

work, as for example Monte Carlo sampling. Questions like resolution and

signi�
an
e, or varian
es and 
ross-varian
es are therefore not 
overed and are

left for future resear
h. For more details about these questions, we refer to the

book by Tarantola [63℄.

1.1 A model problem

This work is devoted to the identi�
ation of distributed 
oeÆ
ients in par-

tial di�erential equation equations. A model di�usion problem involving the

Lapla
e equation, as well as the ne
essary notation to des
ribe it, is introdu
ed

in this se
tion. This model problem will be used in all following 
hapters ex
ept

13



14 CHAPTER 1. PARAMETER ESTIMATION FOR ELLIPTIC PDES

for the last one where identi�
ation problems for the Helmholtz equation are


onsidered.

The problems 
onsidered here are of the following form: assume we have

measurements z of 
ertain physi
ally observable quantities, su
h as displa
e-

ments of a membrane, ele
tri
al �elds at the surfa
e of a body, or seismi
 signals.

We know that these signals are 
aused by some sour
es f and g lo
ated in the

interior and on the boundary of the domain, respe
tively, and that the physi
al

system 
an be des
ribed by a partial di�erential equation that allows a unique

solution u denoting the state the system is in. This equation depends on 
er-

tain material properties of the system, denoted by the variable a , whi
h 
annot

be observed dire
tly, but whi
h we would like to infer from the measurements.

The task is then to �nd su
h model parameters a for whi
h the output (i.e. the

state u of the system or 
ertain aspe
ts of it) mat
hes the observations best.

We parti
ularly assume that we are looking for spatially varying parameters

a = a(x) .

In pra
ti
al appli
ations we often have additional knowledge. For example,

information about the parameter of the form a

0

� a � a

1

may be available;

these bounds o

ur sin
e for model parameters su
h as elasti
ity 
oeÆ
ients,

density, or attenuation, lower and upper bounds are readily 
onstru
tible by


onsidering the extreme 
ases for the materials of whi
h the medium is 
om-

posed. This information will be in
orporated into the methods developed in

this work if possible.

Given the above, a formulation of the problem in words may be as follows:

Problem 1.1. Minimize the di�eren
e between u and z with respe
t to a

given mis�t fun
tional by varying the parameters a(x) , under the 
onstraint

that at the solution fu

�

; a

�

g the state equation is satis�ed, and that a

0

� a

�

�

a

1

.

Below, one mathemati
al formulation of this problem will be stated, see

Problem 1.7, and the resulting equations determining the solutions u

�

and a

�

are derived along with methods to solve them. We will frequently drop the

asterisk at the solution if no 
onfusion is possible.

While we use only one formulation of the parameter identi�
ation problem,

we note that there are many whi
h we do not tou
h here. Some of these are

mentioned at the end of this se
tion.

In order to state the problem of parameter identi�
ation in a 
on
ise way,

we �rst de�ne some notation for later use:

De�nition 1.2 (Fun
tion spa
es). Denote by H

p

(
) the usual Sobolev spa
e

of fun
tions over the domain 
 whi
h are in L

2

(
) and have derivatives up to

order p in L

2

(
), see Yosida [68℄. Let H

1

0

= fv 2 H

1

(
) : vj

�


= 0g, and

de�ne by H

�1

(
) = H

1

0

(
)

0

its dual.

Based on these spa
es, let H

1=2

(�) denote the normed spa
e of tra
es of

H

1

(
) fun
tions on �, with norm indu
ed by the tra
e operator (see S
hwab

[59℄). Finally, let �

D

� �
 and de�ne

V

g

= fv 2 H

1

(
) : vj

�

D

= gg;

V

0

= fv 2 H

1

(
) : vj

�

D

= 0g;
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with g 2 H

1=2

(�

D

).

De�nition 1.3 (State equation). Let 
 be a bounded, open subset of R

n

and

let

�r � (aru) = f; in 
;

u = g; on �

D

� �
;

a�

n

u = 0; on �

N

= �
� �

D

be the ellipti
 di�erential equation for whi
h we want to �nd the parameter a

from measurements z of the solution u . For simpli
ity, we assume 
 to

be polygonal. The state equation is understood to be in the weak sense, i.e. we

require that for u 2 V

g

satis�es

(aru;r') � (f; ') = 0 8' 2 V

0

(
); (1.1)

where

a 2 A = fa 2 L

1

(
) : 0 < � � ag;

f 2 H

�1

(
);

g 2 H

1=2

(�

D

):

In many appli
ations, we will also be able to exploit physi
al knowledge

about the parameter a. While for well-posedness of the state equation we only

need that a is bounded away from zero, known material properties of the

parameters often allow us to bound a

0

� a � a

1

, with a

0

; a

1

being 
onstant or

varying in spa
e. We will in
lude these bounds into the de�nition of A:

De�nition 1.4 (Parameter spa
e). Let the admissible set for the parameter

be

A = fa 2 L

1

(
) : 0 < � � a

0

(x) � a(x) � a

1

(x) <1g:

Furthermore, we de�ne the tangent 
one to A at position a by

A

0

[a℄ =

�

� 2 L

1

: �(x) � 0 for x 2 fx : a(x) = a

0

g;

�(x) � 0 for x 2 fx : a(x) = a

1

g

	

:

The problem we are 
on
erned with in this work involves the minimization

of the di�eren
e between the solution of an equation u and a measurement z.

We will now de�ne how we measure this di�eren
e:

De�nition 1.5 (Mis�t fun
tionals). Let u 2 V

g

be the solution of (1.1), and

z 2 M be the measurement. Let M : V

g

!M be a mapping from the spa
e of

solutions into the spa
e of measurements M. We will then measure the mis�t

between solution and measurement,

m(Mu� z);

with a 
onvex and 
ontinuous fun
tional m :M! R

+

0

, normalized to m(0) = 0.



16 CHAPTER 1. PARAMETER ESTIMATION FOR ELLIPTIC PDES

We will frequently write m(u � z) instead of m(Mu � z) if M is simply

the embedding of V

g

into another spa
e (e.g. into M = L

2

(
)), or a 
anoni
al

restri
tion (e.g. the restri
tion to a part 


0

� 
, or the tra
e mapping from

H

1

(
) into L

2

(�) with some 
urve �).

The �rst and se
ond derivative of m(�) at position u� z will be denoted by

m

0

(u� z; �) and m

00

(u� z; �; �), respe
tively. If m is quadrati
 in its argument,

m

00

(u� z; �; �) does not depend on u� z.

Examples for mis�t fun
tionals 
orresponding to domain measurements are

m(u� z) =

1

2

ku� zk

2

L

2

(
)

; or m(u� z) =

1

2

kru� zk

2

L

2

(
)

:

These are used if measurements of the state variable or its gradient are avail-

able everywhere. Measurements on the boundary are also possible, as well as

weighted norms. More 
ompli
ated measurement fun
tionals may be tailored

to the statisti
al properties of measurement noise. Examples in
lude L

1

norms

of value or gradient, or smoothed variants thereof, su
h as Huber's or Ekblom's

measure (see, for example, Amundsen [2℄ and Farquharson and Oldenburg [35℄).

Due to noise in the measurement z we usually need to add a regularization

term to the fun
tional we want to minimize. Its form is stated in the following

de�nition:

De�nition 1.6 (Regularization fun
tionals). The regularization fun
tion-

als used in this work are denoted by r : A ! R

+

0

. They are assumed to be


onvex and di�erentiable, and normalized to r(0) = 0.

Again, �rst and se
ond derivatives are denoted by r

0

(a; �) and r

00

(a; �; �),

respe
tively. Common 
hoi
es for r(�) in
lude

r(a) =

1

2

kak

2

L

2

(
)

; or r(a) =

1

2

krak

2

L

2

(
)

;

or again other fun
tionals su
h as the ones mentioned above. In general, the


hoi
e of the regularization fun
tional should be guided by physi
al insight

into the problem at hand, as regularization should penalize 
ertain undesirable

properties of 
oeÆ
ients.

Note that fun
tionals operating on ra are not de�ned for the weak assump-

tions on A of De�nition 1.4, but 
an be repla
ed by di�eren
e quotients after

dis
retization of the equations.

Adding a regularization fun
tional as de�ned above, 
ommonly referred to

as Tikhonov regularization, is not the only possible method of regularization,

although it is used in the vast majority of publi
ations on parameter identi�-


ation. See the book by Engl, Hanke, and Neubauer [32℄ for an overview of

methods.

Using the de�nitions above, Problem 1.1 
an be stated as follows:

Problem 1.7 (Continuous problem). Minimize the regularized deviation

J(u; a) = m(u� z) + �r(a)
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of u from the measurement z , with � � 0 being a regularization parameter,

subje
t to the 
onstraints:

(aru;r')� (f; ') = 0 8' 2 V

0

;

uj

�

D

= g;

a

0

� a � a

1

:

Solvability and uniqueness for this problem 
ru
ially depend on the exa
t

form of the fun
tionals m(�) and r(�), and the fun
tion spa
es on whi
h they

operate. These questions are tou
hed brie
y in Se
tion 1.8.

Before going on with the dis
ussion of methods for solving the 
onstrained

optimization problem 1.7, we would like to point out that the 
onstraints are

of very di�erent nature:

� The state equation: Sin
e we expe
t to �nd the unknown parameter only

approximately, it would be useless to require u to satisfy the state

equation exa
tly in every step of the pro
ess.

� Diri
hlet boundary 
onditions: Being linear, these 
an be observed ex-

a
tly by setting the initial iterate u

0

su
h that it satis�es the boundary


onditions exa
tly, and then take all updates Æu from the linear subspa
e

that has zero boundary 
onditions on �

D

.

� Bounds: The lower bound 0 < � � a needs to be satis�ed exa
tly, sin
e

it guarantees well-posedness and solvability of the problem and also 
on-

tains essential physi
al meaning. The a
tual bounds a

0

� a � a

1

may be

violated slightly but their enfor
ement stabilizes the pro
ess, see Chap-

ter 3.

It must be stressed that Problem 1.7 is only one possible formulation of the

problem of parameter estimation. It has, among many other examples, been

used very su

essfully for parameter identi�
ation and optimization problems

in ODE and DAE systems by Bo
k et al. [22, 23, 57, 29℄, S
hulz [58℄, and Be
ker

et al. [16, 18℄. Haber and Oldenburg [38℄ use it for appli
ations in parameter

estimation problems involving ellipti
 partial di�erential equations. However,

there are many other possible formulations. For example, it is 
ommon pra
ti
e

in applied s
ien
es to treat the state variable as dependent on the parameter,

thus eliminating the expli
it state equation 
onstraint, see for example Kravaris

and Seinfeld [47℄ and Haber et al. [38℄. The resulting formulation is often

referred to as Output Least Squares (OLS) be
ause it tries to minimize the

square of the di�eren
e between measurement and the output of the di�erential

equation operator for a given set of parameters. Furthermore, the state equation


onstraint 
an be treated using a primal-dual strategy (Bergounioux et al. [20℄),

or using an augmented Lagrangian approa
h (Kunis
h et al. [42℄). For further

possible duality methods, see for example Chavent et al. [24, 26℄.
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1.2 Optimality 
onditions and stability

In the following se
tions, we will develop an approa
h to solve the 
onstrained

minimization problem 1.7 by using a Lagrangian formulation and Newton's

method. In a �rst step, we state the ne
essary 
onditions for an optimum in

this se
tion, and prove stability of solutions under suitable 
onditions. We then

dis
uss se
ond order 
onditions, and �nally show the �rst order 
onditions for

the 
onstrained problem. For the time being, we defer the in
lusion of the

bound 
onstraints a

0

� a(x) � a

1

to Chapter 3 and assume that they are

ful�lled even if not expli
itly in
luded in the problem.

1.2.1 First order 
onditions

Assuming that the inequality 
onstraints a

0

� a(x) � a

1

are non-existent, or

ina
tive at the solution, we formulate Problem 1.7 by introdu
ing a Lagrange

multiplier for the state equation 
onstraint and sear
hing for a stationary point

of the 
orresponding Lagrangian fun
tional.

Problem 1.8 (Un
onstrained �rst order 
onditions). Let � 2 V

0

(
) be a

Lagrange multiplier and let

L(u; a; �) = m(u� z) + �r(a) + (r�; aru)� (�; f) (1.2)

denote the Lagrangian of the problem, then the solution

x = fu; a; �g 2 X

g

= V

g

�A� V

0

of problem 1.7, with inequality 
onstraints a

0

� a � a

1

negle
ted, is determined

by the �rst order ne
essary 
onditions

r

x

L(x; y) = 0 8y = f'; �;  g 2 X

0

= V

0

�A� V

0

: (1.3)

In expli
it form, equation (1.3) reads: Find x = fu; a; �g 2 X

g

su
h that for

all y = f'; �;  g 2 X

0

r

u

L(x;') � m

0

(u� z;') + (r�; ar') = 0; (1.4)

r

a

L(x;�) � �r

0

(a;�) + (r�; �ru) = 0; (1.5)

r

�

L(x; ) � (r ; aru)� ( ; f) = 0: (1.6)

The validity of the 
hara
terization of solutions of (1.3) relies on the exis-

ten
e of a Lagrange multiplier �. This is proven, for example, in Ito and

Kunis
h [42℄.

1.2.2 Stability of solutions

Existen
e and uniqueness of solutions 
an be based on stability. In the following,

we �rst show inf-sup stability for the simpler 
ase that we are looking for a single

s
alar parameter only, and afterwards show it for the general 
ase for a subset of

parameters satisfying some smoothness property. Due to this latter restri
tion,
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the result 
annot be used to prove existen
e and uniqueness, but nevertheless

reveals the dependen
e of solutions on perturbations in the data.

The �rst proposition proves stability for the 
ase that we are trying to

identify a 
onstant parameter. For the proof, we require the existen
e of a reg-

ularization term, whi
h seems unne
essary for this simple 
ase. We nevertheless

state this 
ase as it sets the stage for the following proof 
on
erning distributed


oeÆ
ients, but note that we 
onsider it likely that the inf-sup 
onstant 
an be

made independent of the regularization parameter.

Proposition 1.9 (Stability for 
onstant parameters). Assume we want to

identify a 
onstant parameter a 2 R. Let m(u�z) =

1

2

kr(u�z)k

2

, r(a) =

1

2

jaj

2

,

and assume for simpli
ity that u has zero boundary values. Then the solution

x = fu; a; �g 2 X

0

= H

1

0

� R �H

1

0

of (1.3) satis�es the system

A(x; y) = (rz;r') + (f;  ) 8y = f'; �;  g 2 X

0

;

arising from (1.3) by reordering of terms, with the semilinear form de�ned as

A(x; y) = (ru;r') + (r�;r')a + (ru;r )a+ �a�+ (ru;r�)�:

Then with kxk

2

X

= kruk

2

L

2

+ jaj

2

+ kr�k

2

L

2

there exists 
 > 0 su
h that the

inf-sup 
ondition

sup

y2X

0

A(x; y)

kyk

X

� 
kxk

X

;

holds for all x = fu; a; �g 2 X

0

satisfying 0 < a

0

� a <1.

Proof. For ea
h x = fu; a; �g, we 
hoose a test fun
tion ŷ = f�;

1

�

a

2

; u � (

1

a

+

a

�

)�g su
h that �rst we have

A(x; ŷ) = akxk

2

X

by 
an
ellation of the 
ross-terms (ru;r�). On the other hand, ŷ is 
hosen in

su
h a way that we 
an bound kŷk

X

by kxk

X

, by absorbing the 
ross-term into

the norms of u; �, and 
hoosing the fa
tors su
h that the 
omponents of kŷk

X

are balan
ed. To see this, we 
ompute the norm of ŷ:

kŷk

2

X

= kruk

2

+

�

a

�

�

2

jaj

2

+

�

1 +

�

1

a

+

a

�

�

2

�

kr�k

2

�2

�

1

a

+

a

�

�

(ru;r�):

Using Young's inequality and 
omparing the relative sizes of the fa
tors in front

of the norms of the 
omponents of x, we then have

kŷk

2

X

�

�

3

4

+

�

1

2

+

1

a

+

a

�

�

2

�

kxk

2

X

:

Thus,

sup

y2X

0

A(x; y)

kyk

X

�

A(x; ŷ)

kŷk

X

� 
kxk

X
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with


 = min

a

0

�a<1

a�

r

3

4

�

2

+

�

�

2

+

�

a

+ a

�

2

=

a

0

�

r

3

4

�

2

+

�

�

2

+

�

a

0

+ a

0

�

2

:

The proof 
arries over dire
tly to the 
ase of dis
retized state and adjoint

variable.

It is not possible to extend the proof of the theorem to the 
ase of a dis-

tributed 
oeÆ
ient in a simple way, sin
e then the 
hoi
e of a test fun
tion

ŷ depending on x in a nonlinear way is not possible any more. However, the

following result holds:

Theorem 1.10 (Stability for the distributed 
ase). For the 
ase of a

distributed 
oeÆ
ient, let

~

A � A be the set of fun
tions a 2 A satisfying the

bound a � a

0

almost everywhere and for whi
h we 
an �nd fun
tions �� whi
h

satisfy the smoothness 
ondition

sup

'2H

1

0







r'� ar(

1

��

')







kr'k

� " < a

0

; (1.7)

and for some 
onstant M the 
ondition










1

��

+

a

0

�










W

1;1

�M <1: (1.8)

Then there exists 
 > 0 su
h that the inf-sup 
ondition

sup

y2X

0

A(x; y)

kyk

X

� 
kxk

X

;

holds for all x 2 H

1

0

�

~

A�H

1

0

, where

A(x; y) = (ru;r') + (ar�;r') + (aru;r ) + �(a; �) + (ru�r�; �);

and kxk

2

X

= kruk

2

L

2

+ kak

2

L

2

+ kr�k

2

L

2

.

Proof. The proof follows the same ideas as that of Proposition 1.9. However,

sin
e the 
oeÆ
ient is no more a s
alar, we 
an't use fa
tors of it in the test

fun
tions, sin
e we will have to take gradients of it. Rather, we use a smoothed

version �� of the 
oeÆ
ient a as fa
tor for u and �.

For the proof, we 
onsider for ea
h given x the spe
ial test fun
tion ŷ =

f�;

a

0

�"

�

a; u� (

1

��

+

a

0

�"

�

)�g. Then,

A(x; ŷ) = (aru;ru) + (ar�;r�) + (a

0

� ")kak

2

+

�

ru;r�� ar(

1

��

�)

�

:

Using the bound a � a

0

in the �rst two terms and 
ondition (1.7) for the last

term, we have

A(x; ŷ) � a

0

kruk

2

+ a

0

kr�k

2

+ (a

0

� ")kak

2

� "kruk kr�k

� (a

0

� ")kxk

2

X

:
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By assumption, the fa
tor a

0

� � is positive.

On the other hand, let ! =

1

��

+

a

0

�"

�

. Then

kŷk

2

= kruk

2

+ kr�k

2

+

�

a

0

� "

�

�

2

kak

2

+ 2 (ru;r(!�)) + kr(!�)k

2

:

We estimate kr(!�)k by using the boundedness of ! inW

1;1

due to assumption

(1.8), and by Poin
ar�e's inequality on the norm of � 2 H

1

0

, to obtain

kr(!�)k � k!k

1

kr�k+ kr!k

1

k�k � C




k!k

W

1;1
kr�k = C




Mkr�k:

Thus,

kŷk

2

� kruk

2

+ kr�k

2

+

�

a

0

� "

�

�

2

kak

2

+ 2C




Mkrukkr�k + C

2




M

2

kr�k

2

;

� (1 + C




M)kruk

2

+ (1 + C




M + C

2




M

2

)kr�k

2

+

�

a

0

� "

�

�

2

kak

2

� max

(

1 + C




M + C

2




M

2

;

�

a

0

� "

�

�

2

)

kxk

2

X

;

and the 
laimed result holds with


 =

a

0

� "

max

n

q

3

4

+ (

1

2

+ C




M)

2

;

�

a

0

�"

�

�o

:

Theorem 1.10 shows that the stability properties of solutions deteriorate

as expe
ted if the amount of regularization is redu
ed, sin
e 
 < �. On the

other hand, for �xed �, the result shows that physi
ally meaningful solutions

satisfying the 
ondition on the parameter are stable if a

0

is suÆ
iently large.

Remark 1.11. The requirement (1.7) on the elements of

~

A 
an be rewritten

as follows: for ea
h a 2

~

A there must be a fun
tion �� satisfying

sup

'2H

1

0







(1�

a

��

)r'+ '

a

��

r��

��







kr'k

� " < a

0

:

Using Poin
ar�e's inequality on ' 2 H

1

0

, this 
ondition is satis�ed if we 
an �nd

an approximation �� to a su
h that










1�

a

��










+ C
















a

��

r��

��













� " < a

0

:

This implies 
loseness of �� to a as well as smallness of r��. The theorem

shows that the stability deteriorates as " grows.
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If we are looking for Lips
hitz 
ontinuous 
oeÆ
ients, then the 
ondition

is satis�ed if a � a

0

> 0 and krak � "a

0

< a

2

0

, by 
hoosing �� = a. For


onstant 
oeÆ
ients, we have that " = 0; A =

a

0

�

, and we 
an re
over the result

of Proposition 1.9, but with 
 worse by a 
onstant fa
tor of C




.

Remark 1.12. Theorem 1.10 still holds if we repla
e the L

2

-norm on A by any

other norm, if the regularization term is 
hosen a

ordingly. For example, the

theorem holds if kxk

2

X

= kruk

2

L

2

+ kak

2

H

1

+ kr�k

2

L

2

and r(a) =

1

2

kak

2

H

1

.

1.2.3 Se
ond order 
onditions

As for �nite dimensional problems, the se
ond order ne
essary 
onditions for

an optimum fu; ag are that

r

2

fu;ag

L(x; fÆu; Æag; fÆu; Æag) > 0 (1.9)

holds for all dire
tions fÆu; Æag tangential at x to the feasible set de�ned by

�r�(aru) = f , i.e. for all Æu; Æa satisfying

�r�(arÆu) �r�(Æaru) = 0;

see, e.g., Maurer and Zowe [50℄.

For a spe
ial, although slightly unrealisti
, 
hoi
e of measurement and reg-

ularization fun
tionals, it is simple to show that these 
onditions always hold

for an optimum of Problem 1.8 if measurement noise is small enough, or is


ountered by a suÆ
iently large regularization parameter:

Proposition 1.13. Assume m(') =

1

2

kr'k

2

, r(�) =

1

2

k�k

2

k

; k > dim
=2.

Assume further that 
 is a bounded domain with Lips
hitz 
ontinuous boundary,

and that at the solution x = fu; a; �g the mis�t is m(u � z) < ". Then the

se
ond order ne
essary optimality 
onditions for the Hessian (1.9) hold for all

perturbations Æu 2 H

1

0

; Æa 2 H

k

.

Proof. By assumed 
ontinuity, 
onvexity, and positivity of m(�), we infer from

m(u � z) < " that there exists Æ > 0, lim

"!0

Æ(") = 0, growing stri
tly

monotonously with � su
h that km

0

(u � z; �)k

H

�1
< Æ. Due to (1.4) and us-

ing standard ellipti
 estimates, we therefore have k�k

H

1
< Æ=a

0

.

On the other hand, by 
onvexity of m(�) and r(�), there are 
onstants

� > 0; � > 0 with � = inf

Æu

m

00

(Æu; Æu)=kÆuk

2

H

1

, � = inf

Æa

r

00

(a; Æa; Æa)=kÆak

2

k

.

Finally, using the de�nition of the Lagrangian, the 
ondition reads

r

2

fu;ag

L(x; fÆu; Æag; fÆu; Æag) = m

00

(Æu; Æu) + �r

00

(a; Æa; Æa) + (r�; ÆarÆu)

� �kÆuk

2

H

1

+ ��kÆak

2

k

� k�k

H

1
kÆak

0;1

kÆuk

H

1

� �kÆuk

2

H

1

+ ��kÆak

2

k

�

C

e

Æ

a

0

kÆak

k

kÆuk

H

1
;

where in the last step we have made use of the Sobolov inequality kÆak

0;1

�

C

e

kÆak

k

that holds for the 
hosen 
lass of domains 
. Thus, if � large enough,

or Æ and thus " small enough, the entire term is larger than zero and the se
ond

order 
ondition holds.
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The result shows that large noise may lead to irregular points in the La-

grangian unless it is 
ountered by an in
reased regularization parameter � >

C

2

e

Æ

2

=(4a

2

0

��). Note that this then implies stability of the solution a with

respe
t to perturbations in the measurements z. However, as in the stability

theorems above, the stability 
onstant is only proportional to �. For pra
ti
al

purposes, the proposition above is rather uninteresting, sin
e the regularization

fun
tional has to be 
hosen too strong.

1.2.4 First order 
onditions for the 
onstrained problem

Previously, we have assumed that inequality 
onstraints a

0

� a � a

1

either do

not exist or are ina
tive. Although we will base the rest of this 
hapter on this

assumption and present their in
lusion into the numeri
al pro
edure only in

Chapter 3, we state the �rst order 
onditions of the bound 
onstrained problem

for 
ompleteness. For this, let us �rst de�ne the 
one C and dual 
one C

+

C = fa 2 L

1

: a � 0g; C

+

= f� 2 L

1

: h�; ai � 0 8a 2 Cg: (1.10)

Then, the 
onstrained 
ontinuous problem 
an be stated in the following

form:

Problem 1.14 (Constrained �rst order 
onditions). Let � 2 V

0

and �

i

2

C

+

; i = 1; 2, be Lagrange multipliers for the state equation and lower and upper

bounds, respe
tively, and let

L(u; a; �; �

0

; �

1

) = m(u� z) + �r(a) + (r�; aru)� (�; f)

+ (�

0

; a� a

0

) + (�

1

; a

1

� a)

(1.11)

denote the Lagrangian of the problem, then the solution x = fu; a; �; �

0

; �

1

g of

Problem 1.7 is determined by the �rst order ne
essary 
ondition

r

fu;a;�g

L(x; y) = 0 8y = f'; �;  g 2 X

0

= V

0

�A

0

[a℄� V

0

;

r

�

i

L(x; 
) � 0 8
 2 C

+

; i = 1; 2;

(�

0

; a� a

0

)

L

2

= 0;

(�

1

; a

1

� a)

L

2

= 0:

A proof of this under slightly di�erent 
onditions 
an be found in Ito and

Kunis
h [42℄.

1.3 Newton's method for the optimality 
onditions

Due to their nonlinearity, a dire
t solution of the �rst order 
onditions (1.3) is

not possible; we therefore employ a Newton iteration to generate a sequen
e

of iterates x

k

= fu

k

; a

k

; �

k

g hopefully 
onverging to the exa
t solution x =

fu; a; �g of (1.3) as k ! 1. The treatment of bound 
onstraints a

0

� a � a

1

will later be in
luded into the 
omputation of Newton steps, but we defer this

to Chapter 3.
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Newton's method, as applied here, 
onsists of two steps: �rst 
ompute a

sear
h dire
tion Æx

k

in whi
h the updates for x

k

to get to x

k+1

will be 
hosen.

Then, the length of the step in this dire
tion is 
hosen. These two steps will

be dis
ussed in the following. We note that the approa
h 
hosen here is fully

equivalent to the Sequential Quadrati
 Programming (SQP) method as long as

bound 
onstraints are not in
orporated.

Con
eptually, the method proposed here 
an be des
ribed either on a 
on-

tinuous or a dis
rete level: either we �x a dis
retization and apply a number

of Newton steps until we are satis�ed with the 
onvergen
e on this mesh; we

then repeat the same steps on a �ner dis
retization, of 
ourse using the old

solution as a starting value. Or, alternatively, we 
onsider the steps on a 
on-

tinuous level and 
ompute an approximation of the 
ontinuous sear
h dire
tion

by separately dis
retizing ea
h step, using a priori unrelated dis
retizations; in

pra
ti
e, dis
retizations will be 
hanged after a few steps if we are satis�ed with

the redu
tion of the residual on this mesh.

Although formally equivalent, we prefer to view the algorithm the se
ond

way. We then have an iteration in in�nite dimensional fun
tion spa
es, whi
h

is more natural sin
e we are interested in the solution of the problem in these

spa
es, rather than on any arbitrarily 
hosen �xed dis
retization. The residual

of the optimality 
ondition is thus measured in 
ontinuous norms, and errors

are 
omputed with respe
t to the 
ontinuous solution. Also, the dis
ussion of

a stopping 
riterion for iteration on a �xed mesh is repla
ed by a 
riterion for


hoosing a di�erent dis
retization for the next Newton step.

A

ordingly, the following dis
ussion of Newton's method will be based on

a purely 
ontinuous level, with dis
retization of ea
h step being treated in the

next se
tion.

Computing the Newton sear
h dire
tion. In ea
h step, Newton's method


omputes the next sear
h dire
tion by using a lo
al approximation of the fun
-

tion whi
h we want to �nd a zero of, i.e., of r

x

L. This is done by �tting a

quadrati
 approximation to L, and taking the dire
tion to the saddle point of

this quadrati
 approximation as next sear
h dire
tion.

The 
onditions determining this sear
h dire
tion Æx

k

= fÆu

k

; Æa

k

; Æ�

k

g 2 X

0

are then the following equations:

r

2

x

L(x

k

; Æx

k

; y) = �r

x

L(x

k

; y) (1.12)

for all test fun
tions y = f'; �;  g 2 X

0

, or expli
itly:

m

00

(u

k

� z; Æu

k

; ') + (r�

k

; Æa

k

r') + (rÆ�

k

; a

k

r') = �r

u

L(x

k

;');

(r�

k

; �rÆu

k

) + �r

00

(a

k

; Æa

k

; �) + (rÆ�

k

; �ru

k

) = �r

a

L(x

k

;�);

(r ; a

k

rÆu

k

) + (r ; Æa

k

ru

k

) = �r

�

L(x

k

; ):

(1.13)

The Gau�-Newton method. From the �rst order 
onditions (1.4) we see

that � is small whenever m

0

(u� z; �) is small. This holds at least near the solu-

tion, if the model (i.e. the state equation) 
hosen to des
ribe the measurements

z is 
orre
t, and if z does not 
ontain too mu
h noise. For the problems treated
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in this work, we assume that these 
onditions are satis�ed; su
h problems are

termed small residual problems.

It is then a 
ommon simpli�
ation to omit the terms 
ontaining � from

the Hessian in the Newton step, resulting in the following equations instead of

(1.13):

m

00

(u

k

� z; Æu

k

; ') + (rÆ�

k

; a

k

r') = �r

u

L(x

k

;');

�r

00

(a

k

; Æa

k

; �) + (rÆ�

k

; �ru

k

) = �r

a

L(x

k

;�)

(r ; a

k

rÆu

k

) + (r ; Æa

k

ru

k

) = �r

�

L(x

k

; ):

(1.14)

The resulting methods are 
alled Gau�-Newton methods and have found very

su

essful appli
ations in parameter estimation and optimization (see, e.g.,

Bo
k et al. [22, 23℄, S
hulz [58℄, or Pratt et al. [55℄). This modi�
ation makes

the problem to be solved in ea
h iteration simpler, sin
e the S
hur 
omplement

with respe
t to the regularization blo
k be
omes positive de�nite under suit-

able 
onditions (see Lemma 1.21), while the original problem will be inde�nite

usually. Also, the 
omputation of the S
hur 
omplement is simpler.

For the problems 
onsidered in this work, the pure Newton and Gau�-

Newton methods perform equally well when 
omparing the number of iterations

ne
essary for a 
ertain a

ura
y. We have usually used the latter, in view of the

simpli�
ations o

urring and in parti
ular 
onsidering the size of the problems

to be treated in Chapters 4 and 5. A 
omprehensive 
omparison of the suit-

ability of Newton and Gau�-Newton sear
h dire
tions in parameter estimation

problems 
an be found in Bo
k [23℄.

Computing the step length. On
e the sear
h dire
tion is known, the se
-

ond part of a safeguarded Newton method is to determine the step length �

k

,

by whi
h we de�ne the next iterate as x

k+1

= x

k

+ �

k

Æx

k

. This is ne
essary

sin
e in pra
ti
e the quadrati
 approximation of the Lagrangian is not an a
-


urate des
ription of the true behavior, ex
ept in the vi
inity of x

k

. Thus,

safeguarding the length of a step in dire
tion Æx

k

is ne
essary.

To 
ompute a step length �

k

, several methods are in 
ommon use, for

example using the Goldstein-Armijo 
onditions. In general, they 
hoose �

k

as an approximation of the minimizer �

�

k

of some obje
tive fun
tion p(�

k

) =

p(x

k

+ �

k

Æx

k

). For 
onstrained problems, this penalty fun
tion has to in
lude

the minimization fun
tional J(�) as well as an appropriately weighted norm of

the residual of the 
onstraint.

Sin
e the 
onstru
tion of a suitable weight for the norm of the 
onstraints

is diÆ
ult if the 
onstraints are partial di�erential equations, we 
hoose to

minimize the norm of the residual of the optimality 
ondition r

x

L = 0 instead.

The proper norm for this residual would by the norm of the dual spa
e X

0

of

X

g

= V

g

�A� V

0

. Sin
e this involves H

�1

norms, it is impra
ti
al to evaluate.

Therefore, we evaluate its dis
rete analogon, i.e. the norm on the dual X

0

h

of

the dis
retization spa
e X

h

= V

h

� A

h

� V

h

to be de�ned in the next se
tion.

For this, the following representation holds:
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Lemma 1.15. Denote by g = (g

u

; g

a

; g

�

)

T

the dis
rete gradient of the La-

grangian L(x), i.e.

(g

u

)

i

= r

u

L(x;'

i

); (g

a

)

i

= r

a

L(x;�

i

); (g

�

)

i

= r

�

L(x; 

i

);

where '

i

; �

i

;  

i

are sets of fun
tions forming a basis of the dis
retization spa
e

X

0;h

= V

0;h

� A

h

� V

0;h

to be de�ned in the next se
tion. Then the following

identity holds:

kr

x

L(x; �)k

2

X

0

h

� sup

y

h

2X

h

L(x; y

h

)

2

ky

h

k

2

X

= g

T

u

A

�1

g

u

+ g

T

a

M

�1

g

a

+ g

T

�

A

�1

g

�

;

where A;M are Lapla
e and mass matri
es, de�ned by A

ij

= (r'

i

;r'

j

),M

ij

=

(�

i

; �

j

), respe
tively. Furthermore, there holds

kr

x

L(x; �)k

X

0

h

� kr

x

L(x; �)k

X

0

:

Proof. The �rst part follows immediately from the de�nition of norms on dual

spa
es, using that X

h

is �nite dimensional. The se
ond part is obvious sin
e

X

h

� X .

Sin
e the evaluation of the X

0

h

norm only involves the inversion of two

Lapla
e matri
es and one mass matrix, it is roughly as expensive as one eval-

uation of the S
hur 
omplement of the Hessian, see Se
tion 1.5 below, and is

thus 
omparably 
heap.

The following lemma states that this norm is a valid penalty fun
tional:

Lemma 1.16. Let

p(�) = kr

x

L(x

k

+ �Æx

k

; �)k

2

X

0

h

:

Then full Newton sear
h dire
tions Æx

k

are dire
tions of des
ent of p, i.e. p

0

(0) <

0.

Proof. As shown in Lemma 1.15, the norm on X

0

h

is indu
ed by a s
alar produ
t.

With g(x

k

+�Æx

k

) the proje
tion of r

x

L(x

k

+�Æx

k

) as de�ned in Lemma 1.15,

we have

p(�) = kg(x

k

+ �Æx

k

)k

2

[A

�1

;M

�1

;A

�1

℄

= kg

u

(x

k

+ �Æx

k

)k

2

A

�1

+ kg

a

(x

k

+ �Æx

k

)k

2

M

�1

+ kg

�

(x

k

+ �Æx

k

)k

2

A

�1

;

with kvk

2

B

= v

T

Bv. Then

p

0

(0) = 2




g(x

k

);

d

d�

g(x

k

+ �Æx

k

)

�

�

�=0

�

[A

�1

;M

�1

;A

�1

℄

By de�nition of g and of the full Newton sear
h dire
tion Æx

k

, there holds

d

d�

g(x

k

+ �Æx

k

)

�

�

�=0

= �g(x

k

);

and the 
laim follows by positive de�niteness of A

�1

and M

�1

.
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If the quadrati
 approximation of the Lagrangian used for the Newton step

were exa
t, then p(�) would be a quadrati
 fun
tion, and sin
e p

0

(0) = �2p(0),

it would have its minimum at � = 1, i.e. the resulting step length would be

optimal. Numeri
al experiments indi
ate that 
omparably good step lengths


an be obtained by repla
ing A

�1

in the evaluation of the inverse norm byM

�1

,

whi
h is signi�
antly 
heaper to evaluate. Even diagonal approximations of the

matri
es result in good step lengths, keeping in mind that step length sele
tion

is only an aid in �nding the solution and that we are in general not interested

in optimal step lengths.

1.4 Dis
retization of Newton steps

For a
tual 
omputations, we need to dis
retize the problem. As dis
ussed above,

we do this separately for ea
h Newton step. The 
hoi
e of meshes and dis
rete

spa
es used here di�ers from 
ommon pra
ti
e in the majority of the available

literature in that the 
oeÆ
ient is dis
retized separately. In this se
tion, we give

a short de�nition of the �nite element spa
es we use, and then explain their use

in the dis
retization and the 
onne
tions to the meshes we use.

We start by brie
y de�ning the usual pie
ewise polynomial spa
es used in

�nite element methods:

De�nition 1.17 (Spa
es on unit 
ells). Let

^

K be the unit element [0; 1℄

d

,

i.e. the unit square in two and the unit 
ube in three spa
e dimensions. Then

the Lagrange interpolation spa
e of order r on

^

K is de�ned by

^

Q

r

(

^

K) =

n

' :

^

K ! R j ' =

d

Y

i=1

r

X

j=0




ij

x

j

i

o

:

De�nition 1.18 (Spa
es on real 
ells). Let K be an element of a mesh,

su
h that there exists a (bi-, tri-)linear mapping � :

^

K ! K from the unit 
ell

to the 
ell in real spa
e. Then the Lagrange interpolation spa
es are de�ned as

follows:

Q

r

(K) =

n

'(x) : K ! R j 9'̂(
^
x) 2

^

Q

r

(

^

K); '(x) = '̂(�

�1

(x))

o

:

De�nition 1.19 (Meshes). Let the domains on whi
h we 
onsider partial

di�erential equations in this thesis, be bounded open subsets 
 of R

d

; d = 1; 2; 3.

Assume 
 is polygonal. A subdivision T = fKg is 
alled a mesh in the 
ontext

of this thesis if it satis�es the following properties:

� K

i

\K

j

= ;, for K

i

;K

j

2 T; i 6= j;

S

K

K = 
;

� ea
h 
ell K 2 T is the image of the unit 
ell

^

K = [0; 1℄

d

under a polynomial

mapping, i.e. the 
ells are lines, quadrilaterals, or hexahedra, depending

on the spa
e dimension.

For various estimates, we also require the regularity 
ondition that the eigen-

values of the Ja
obian matrix of the mapping between unit 
ell

^

K and real 
ells

K are bounded from below and above.
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De�nition 1.20 (Spa
es on meshes). Let T = fKg be a mesh as de�ned

above. Then the spa
es of 
ontinuous fun
tions of pie
ewise polynomials of

degree r on T are de�ned by

Q

r




(T) =

�

' : 
! R j ' 
ontinuous on 
;

'j

K

2 Q

r

(K) 8K 2 T

	

;

and the respe
tive spa
es of dis
ontinuous fun
tions are

Q

r

d

(T) =

�

' : 
! R j 'j

K

2 Q

r

(K) 8K 2 T

	

:

With these de�nitions, we 
an dis
uss the fun
tion spa
es and mesh types

used in the dis
retization of the Newton steps:

Finite Element Spa
es. Of 
entral importan
e is the 
hoi
e of the dis
rete

�nite element spa
es U

h

;A

h

; �

h

for the primal variable u, the parameter a ,

and the adjoint variable �. By symmetry of the formulation of the problem, it

is reasonable to 
hoose �

h

= U

h

, and for U

h

to take the usual pie
ewise tensor

produ
t polynomial fun
tion spa
es Q

r




(T) of degree r on a given mesh T.

Formally, we 
hoose the following �nite element spa
es:

� for the dis
retized state and adjoint variables u

h

; �

h

: U

h

= �

h

= Q

r




(T),

i.e., the spa
es of globally 
ontinuous fun
tions made up of pie
ewise

tensor produ
t polynomials of degree r over a mesh T;

� for the dis
retized parameter a

h

: A

h

= Q

r

0




(T

a

) or A

h

= Q

r

0

d

(T

a

), i.e., the

spa
es of 
ontinuous or dis
ontinuous fun
tions of pie
ewise polynomial

degree r

0

over a mesh T

a

.

Choosing di�erent spa
es for U

h

and A

h

is an aspe
t in whi
h this work

deviates from usual pra
ti
e in the literature. There, most often spa
es of

pie
ewise bilinear fun
tions are used for both primal and dual variables, as well

as the 
oeÆ
ient, mostly for 
onvenien
e (almost all publi
ations 
ited within

this work fall into this 
ategory). Note however Banks and Kunis
h [13, 3℄

for examples where di�erent spa
es are used although restri
ted to the use of

�xed uniformly re�ned meshes in only one spa
e dimension. See also Chavent

and Bissell [25℄ and Ben Ameur et al. [19℄ for some experiments on 
hoosing a

dis
retization of the 
oeÆ
ient.

Meshes. In most of the available literature, not only the same �nite element

spa
es for state, adjoint and parameter variable are used, seemingly all also

use the same mesh. We pursue a more general approa
h by taking di�erent,

though related meshes for state and adjoint variable on the one hand and the

parameter variable on the other hand.

This has advantages both on the analyti
al as well as on the numeri
al side:

� Choosing di�erent meshes for state/adjoint and 
oeÆ
ient variables allows

to resolve the lo
al features of both independently.
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� Choosing 
oarser meshes and lower-order fun
tion spa
es for the 
oeÆ-


ient a
ts as an additional regularization, sin
e it redu
es the possibilities

for variation in the parameter. This is sometimes referred to by regulariza-

tion by dis
retization (see Banks and Kunis
h [13℄ and Kaltenba
her [46℄),

although this is usually meant in the 
ontext of �xed meshes. Choosing

adaptive meshes allows for lo
ally di�erent amounts of regularization.

� Stability properties of the dis
retized saddle point problems are a�e
ted

by the 
hoi
e of dis
rete fun
tion spa
es. Numeri
al experien
e indi
ates

that it is bene�
ial to use a 
oarser mesh and/or lower order polynomials

for the parameter variable.

� Choosing a 
oarser dis
retization for the 
oeÆ
ient 
an be understood

as adaptive model redu
tion. This greatly redu
es the numeri
al e�ort

needed to 
ompute solutions.

� We are anti
ipating extension to time dependent problems, where di�erent

meshes have to be 
hosen anyway: the mesh for the state variable 
hanges

with time, while the 
oeÆ
ient is usually 
onstant in time. Furthermore,

regularity levels of state variable and 
oeÆ
ient di�er.

In this work, we will therefore use two meshes, T and T

a

, for state and

adjoint variable, and the parameter, respe
tively. For implementational reasons,

we require that T 
an be obtained from T

a

by re�nement. Taking T

a

= T is

in
luded as a spe
ial 
ase.

1.5 The dis
retized problem

In ea
h Newton step, the sear
h dire
tion is 
omputed approximately by dis-


retizing (1.12) using the spa
es de�ned in the last se
tion. Choosing bases

f'

i

g; f�

i

g and f 

i

g and expanding the updates Æu; Æa and Æ� with respe
t to

these bases yields the following Karush-Kuhn-Tu
ker (KKT) matrix system:

0

�

M B

T

A

T

B R C

T

A C 0

1

A

0

�

Æu

k

Æa

k

Æ�

k

1

A

=

0

�

F

1

F

2

F

3

1

A

: (1.15)

The individual blo
ks in matrix and right hand side are de�ned by

M =

�

m

00

(u

k

� z;'

i

; '

j

)

�

ij

; F

1

=

�

�m

0

(u

k

� z;'

i

)� (a

k

r�

k

;r'

i

)

�

i

;

B =

�

(�

i

;r� � r'

j

)

�

ij

; F

2

=

�

��r

0

(a

k

;�

i

)� (r�

k

� ru

k

; �

i

)

�

i

;

A =

�

(a

k

r'

i

;r 

j

)

�

ij

; F

3

=

�

� (a

k

ru

k

;r 

i

) + (f;  

i

)

�

i

;

R =

�

�r

00

(a

k

;�

i

; �

j

)

�

ij

; C =

�

(ru

k

�r 

i

; �

j

)

�

ij

;
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whereM 
orresponds to the mis�t fun
tional, R to the regularization fun
tional,

B and C to hyperboli
 transport operators r� � r+�� and ru � r, and A is

the matrix asso
iated with the state equation.

By blo
k elimination, (1.15) 
an be reformulated to yield a system where

we �rst solve for Æa

k

, and only afterwards for Æu

k

and Æ�

k

. The equation for

Æa

k

resulting from the full Newton equation has the form
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; (1.16)

where the system matrix on the left hand side is 
alled the S
hur 
omplement

of the KKT matrix (1.15) with respe
t to the R blo
k. The updates for Æu

k

and Æ�

k

are then obtained from

A Æu

k

= F

3

�CÆa

k

;

A

T

Æ�

k

= F

1

�B

T

Æa

k

�MÆu

k

:

(1.17)

If we use the Gau�-Newton method, the blo
k B in (1.15) is dropped, and the

S
hur 
omplement solution requires the subsequent solution of the following

three equations:
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k
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� CÆa

k

;
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T

Æ�

k

= F

1

�MÆu

k

:

(1.18)

1.6 Condition numbers of the linear problems

The 
hoi
e of solvers for the linear problems to be solved in ea
h Newton step


ru
ially depends on the 
ondition number of the Newton and S
hur 
omple-

ment matri
es. Fig. 1.1 shows a typi
al eigenvalue distribution of these matri
es.

Table 1.1 displays the eigenvalues of minimal and maximal absolute value of a

sequen
e of Newton matri
es, along with the 
ondition number in the spe
tral

norm. The 
ondition number of the whole Newton matrix grows as h

�6

, for the

L

2

mis�t minimization, and h

�4

for H

1

minimization. The 
ondition number

of the whole matrix is not signi�
antly 
hanged by dropping the B blo
k in the

Gau�-Newton method and does also not vary mu
h as iterations pro
eed on

one mesh.

Contrary to this, Table 1.2 shows that the 
ondition number of the S
hur


omplement matri
es is O(h

�4

) and O(h

�2

), depending on the 
hoi
e of the

mis�t fun
tional, and thus by two orders better than that of the full Newton

matrix (this has previously been observed in As
her and Haber [4℄).

1.7 Solution of the linear problems

For the solution of the linear systems (1.15) arising in ea
h Newton step, sev-

eral methods have been tested. The most su

essful, robust, and extensible
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Figure 1.1: Left: Spe
trum of the whole Newton matrix (left) and its S
hur


omplement (right) for a typi
al dis
retization with 81 degrees of freedom for

u

h

and �

h

ea
h, and 16 degrees of freedom for a

h

. The 
ondition numbers are

� � 1:5�10

5

and � � 600, respe
tively.
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Table 1.1: Minimal and maximal eigenvalues �

i

, and 
ondition number with

respe
t to the spe
tral norm for the whole Newton matrix for two di�erent mis�t

fun
tionals m(�). The dis
retization is as in Fig. 1.1 (whi
h 
orresponds to

h = 2

�3

). The mesh for h = 2

�7

has roughly 50,000 degrees of freedom.
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Table 1.2: Minimal and maximal eigenvalues �

i

, and 
ondition number with

respe
t to the spe
tral norm for the S
hur 
omplements of the same matri
es

as in Table 1.1. Note that the minimal eigenvalues are identi
al to those of the

full Newton matrix.
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approa
h was solving the S
hur 
omplement form (1.18), when using the Gau�-

Newton modi�
ation. We will des
ribe this approa
h �rst. Other, less su

essful

methods have also been tried, and will be dis
ussed brie
y afterwards.

1.7.1 S
hur 
omplement methods

S
hur 
omplement methods are known to be very eÆ
ient in many 
ases (see

S
hulz [58℄ for an overview of some S
hur 
omplement methods for optimization

problems, or Turek [65℄ for 
ow problems). Sin
e the S
hur 
omplement of the

full Newton matrix (1.16) is too 
ompli
ated for pra
ti
al purposes, we invert

the Gau�-Newton S
hur 
omplement (1.18) instead. This system may be solved

by a Krylov spa
e method for the (small) S
hur 
omplement, and a standard

method to invert the Lapla
e matri
es in ea
h iteration.

The S
hur 
omplement matrix is not known expli
itly, as A

�1

and A

�T

are only de�ned impli
itly by solving a linear system with a spe
i�ed right

hand side. Thus, unless one wants to re
over it by forming n matrix ve
tor

multipli
ations with it, we 
an only use iterative methods to invert the S
hur


omplement matrix.

However, unlike the full Gau�-Newton matrix, the following lemma shows

that the S
hur 
omplement is symmetri
 positive de�nite under reasonable 
on-

ditions. We 
an then use the Conjugate Gradient method with its good 
on-

vergen
e properties. By standard arguments, we have the following lemma:

Lemma 1.21 (Properties of Gau�-Newton S
hur 
omplement). If the

matrix R is symmetri
 positive de�nite and M symmetri
 and at least positive

semide�nite, or if R is symmetri
 positive semide�nite and M is symmetri


positive de�nite and C has full 
olumn rank, then the S
hur 
omplement matrix

R+ C

T

A

�T

MA

�1

C is symmetri
 positive de�nite.

It is obvious that for the se
ond 
ase, the 
ondition thatM has to be positive

de�nite 
an be repla
ed by the 
ondition that it must be positive de�nite on the

subspa
e Y = fy : y = A

�1

Cx; x 2 N(R)g, where N(R) denotes the null spa
e

of R. However, it is diÆ
ult to 
hara
terize Y in order to 
he
k whether M is

positive on it, in parti
ular sin
e it impli
itly depends on the present iterates

u

k

; a

k

through A and C.

The requirements stated in the lemma are what 
an usually be expe
ted:

the symmetry ofM and R is given by the symmetry of se
ond derivatives; their

positive semide�niteness is given by the assumed 
onvexity of the fun
tionals

m(�) and r(�). Positive de�niteness 
an be a
hieved, for example, by 
hoosing

one of the two to be a norm. The 
ondition on C in the se
ond possibility of

the lemma 
an be shown to be equivalent to the 
ondition that u

k

must not

be 
onstant on 
ertain pat
hes of 
ells; as this 
an hardly be guaranteed in

pra
ti
e, it is better to 
hoose R positive de�nite.

Note that when using the full Newton system, i.e. without the Gau�-Newton

modi�
ation, then the S
hur 
omplement is symmetri
 but may not be positive

de�nite. We are then for
ed to use a more expensive method than CG. Also,

multipli
ations with the S
hur 
omplement of the full Newton matrix take four
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instead of two multipli
ations with A

�1

or A

�T

, making the iterative solution

signi�
antly more expensive.

1.7.2 Iterative solvers

Alternatively, it is possible to invert the original KKT matrix (1.15) instead

of its S
hur 
omplement. Sin
e it is not positive de�nite, only iterative solvers

su
h as the Minimized Residual (MinRes) or Generalized Minimized Residual

(GMRes) method 
an be used. For their eÆ
ien
y, good pre
onditioners would

be ne
essary. Their 
onstru
tion, though, is not simple due to the saddle-point

stru
ture and inde�niteness. In parti
ular, MinRes requires a positive de�nite

symmetri
 pre
onditioner. In general, solving the whole Newton system with

an iterative solver is 
onsidered a hard problem, due to the size of the problem,

its ill-
onditioning, and the stru
ture of the matrix, see Saad [56℄ and Haber

and As
her [37℄.

The most eÆ
ient solver for the whole linear problem would probably be

a multigrid solver, or an iterative method pre
onditioned by multigrid. Unfor-

tunately, the �nite element library used in this work does not have multigrid

methods fully implemented yet.

In absen
e of a multigrid solver, two linear solvers have been used in the

programs that implement the methods of this se
tion. The �rst is MinRes

(see Paige and Saunders [53℄) with a diagonal s
aling as pre
onditioning. Even

though the pre
onditioning improved the performan
e signi�
antly, the method

often did not 
onverge in a number of iterations less than the size of the full

Newton matrix. This makes the method unsuitable for the problems we 
on-

sider.

As a se
ond alternative, we also tried GMRes (see Saad [56℄), whi
h al-

lows for non-symmetri
 and even inde�nite pre
onditioners. We used ILU or

Vanka type pre
onditioners [66℄, or, if multi-pro
essor ma
hines are available,

blo
k variants thereof. While it is known that Vanka type methods are better

smoothers than solvers, even ILU did not yield good performan
e of the solver,

due to the high 
ost of 
onstru
ting and applying the pre
onditioner. For larger

problems, GMRes did not 
onverge in a reasonable number of iterations, too.

As a last method, we tried to use the CG method on the normal equations,

H

2

Æx = Hf;

with H the global matrix in (1.15). Unfortunately, H

2

is so ill-
onditioned that

the CG method either took many iterations, or failed altogether.

Con
luding this se
tion, neither 
hoi
e of iterative linear solvers produ
ed

satisfa
tory results.

1.7.3 Dire
t solvers

Instead of the iterative solvers above, we also used dire
t solvers for the Newton

matri
es. Due to memory 
onsiderations and the 
omplexity of the task, only

solvers that take sparsity into a

ount 
an be used.
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In our experiments, we have used the sparse dire
t solvers MA27 and MA47

from the Harwell Subroutine Library (see Du� and Reid [30, 31, 40℄). They are

spe
ialized to symmetri
 inde�nite systems of linear equations, and use a sparse

variant of Gaussian elimination (MA27) or a multifrontal Gaussian elimination

solver with 2�2 pivots similar to the Bun
h-Parlett fa
torization (MA47). The


hoi
e between the two algorithms depends on a trade-o� between memory


onsumption and 
omputing time: MA47 is often signi�
antly faster, but takes

mu
h more memory (up to a fa
tor of �ve) than MA27 to 
ompute the sparse

de
omposition.

Although requiring signi�
antly more memory than iterative solvers, the

main advantage of the dire
t solvers is that they never fail to �nd the solution

of the linear subproblems; iterative solvers sometimes break down or take an

ex
essive number of iterations, in whi
h 
ase the Newton algorithm may also

break down due to an insuÆ
ient sear
h dire
tion.

The 
omputing time required by dire
t solvers is less than or 
omparable to

that of iterative solvers for the whole system for sizes up to at least 10

5

degrees

of freedom.

1.7.4 Stopping 
riteria for the linear solvers

Unless we use a dire
t solver for the linear system (1.15), we do not solve

ea
h Newton step to very high a

ura
ies, sin
e Newton updates only approxi-

mate the step to the solution of the stationarity 
ondition anyway. Su
h meth-

ods are usually termed trun
ated or inexa
t Newton methods, see No
edal and

Wright [51℄.

In pra
ti
e, the inner solution is stopped on
e the linear residual in the

l

2

norm has been redu
ed by a 
ertain fa
tor, say 10

3

. Sin
e the size of the

linear systems grows due to mesh re�nement as the outer nonlinear iterations

pro
eed, redu
tion by a �xed fa
tor amounts to in
reasing a

ura
y per degree

of freedom in the Newton updates, eventually turning the trun
ated into an

exa
t Newton method.

1.8 Theoreti
al 
onsiderations

It is not at all trivial to infer that the method proposed above works from

a theoreti
al point of view. Beyond what is 
overed in this work, there are

several theoreti
al questions that we would like to tou
h as they are needed to

guarantee 
onvergen
e to the solution of the original 
ontinuous problem 1.7.

Sin
e they are beyond the s
ope of this work, we only mention them, without

giving answers.

Existen
e, uniqueness, and stability of solutions. These questions are

dis
ussed in a very general framework in Kravaris and Seinfeld [47℄, and in

the book by Banks and Kunis
h [13℄, where many results are proven without

referen
e to 
on
rete fun
tionals or spa
es. These results 
an then be 
he
ked

for a
tual appli
ations. However, results of this type usually require unduly

high smoothness.
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Probably the most general existen
e result for the problem treated in this


hapter is given in Chavent et al. [26℄, where it is shown that there exist solutions

on the rather weak assumptions that u

�

2 H

1

; a

�

2 A � f� 2 L

1

; 0 < a

0

�

� � a

1

g if m(') =

1

2

kr'k

2

. For stability of solutions, refer to Theorems 1.9

and 1.10.

Validity of the Lagrange prin
iple. The question whether the state equa-

tion 
onstraint allows an augmentation to a Lagrangian in
luding both the

minimization fun
tional as well as the augmented state equation is dis
ussed

extensively in papers dealing with the Augmented Lagrangian formulation of

the parameter estimation problem, see for example Ito and Kunis
h [42, 41℄.

We quote here Theorem 2.1 of Ito and Kunis
h [42℄, in whi
h existen
e

and uniqueness of a Lagrange multiplier is proven for a parti
ular 
hoi
e of

fun
tionals:

Theorem 1.22 (Ito and Kunis
h). Let x = fu; a; �g 2 H

1

0

�H

2

�H

1

0

and

m(u� z) =

1

2

ju� zj

2

H

1

; r(a) =

1

2

krak

2

+

1

2

kr

2

ak

2

;

L(x) = m(u� z) + �r(a) + (aru;r�)� (f; �):

Then there exists a unique Lagrange multiplier �

�

su
h that the solution x

�

=

fu

�

; a

�

; �

�

g of Problem 1.7 is 
hara
terized by the �rst order 
onditions given

in Problem 1.8.

The proof is given in Ito and Kunis
h [42℄ for d � dim
 = 2; 3, for whi
h

the Sobolev inequality kvk

L

1

� Ckvk

H

2
holds. For d = 1, one 
an also apply

the theorem for r(a) =

1

2

krak

2

.

In the 
ited paper, it is also shown that 
onstraints of the form a � a

0


an be treated as well by adding a 
orresponding term h�; a� a

0

i

H

2

to the

Lagrangian, with a Lagrange multiplier � 2 C

+

, with

C = fw 2 H

2

: w � 0g; C

+

= f� 2 H

2

: h�;wi � 0 8w 2 Cg:

This multiplier is shown to exist and to be unique.

Convergen
e of 
ontinuous Newton steps. Rates of 
onvergen
e 
an usu-

ally be stated in the form of a so-
alled sour
e 
ondition: if F is the op-

erator mapping the parameter to the state spa
e, i.e. in the present 
ontext

F (a) = (�r�(ar))

�1

f : A ! V

g

with �xed f ,

F

0

(a)Æa = �[�r�(ar)℄

�1

[�r�(Æar)℄[�r�(ar)℄

�1

f

its derivative in dire
tion Æa, and F

0

(a)

�

the adjoint, and if the di�eren
e be-

tween initial estimate a

0

and exa
t solution a

�

allows a representation

a

�

� a

0

2 range

�

(F

0

(a

�

)

�

F

0

(a

�

))

�

�

(1.19)
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for some real number � � 0, then under 
ertain additional 
onditions (see, for

example, Deu
hard et al. [28℄, and Kaltenba
her [46℄) the rate of 
onvergen
e

is, even in the noise free 
ase with Æ = 0, only

ka

n

� a

�

k = O

�

n

��

�

; ku

n

� u

�

k = O

�

n

���1=2

�

;

where n denotes the number of the Newton step.

If we negle
t the possibility that we put a priori knowledge of potential non-

smoothness into the initial iterate a

0

, the sour
e 
ondition 
an be interpreted

as follows: sin
e F

0

(a) mapping from the tangent spa
e A

0

[a℄ of A to V

g

has

smoothing properties, the 
ondition requires a

�

to be smooth in order to obtain

reasonable rates of 
onvergen
e, i.e. � signi�
antly greater than zero. If su
h

smoothness is missing, then the rate of 
onvergen
e 
an be arbitrarily slow.

As an example, for one dimensional problems, an index � =

1

2

already 
or-

responds to a

�

�a

0

2 fa 2 H

3

\H

1

0

:

R




�a=

�

r(�r�(a

�

r))

�1

f

�

= 0g while for

� =

1

4

the requirements are loosened to H

2

instead of H

3

, see Kaltenba
her [46℄.

In pra
ti
e, su
h smoothness requirements are rarely met. In general, we are

thus only able to guarantee qualitative 
onvergen
e ka

n

� a

�

k = o(1).

Existen
e, uniqueness, and stability of dis
retized Newton dire
tions.

For the Gau�-Newton modi�
ation, existen
e and uniqueness of dis
rete sear
h

dire
tions is given by Lemma 1.21 under reasonable 
onditions on the fun
tion-

als. However, this is not suÆ
ient in general, as we want a stable solution as

the mesh width h! 0. For this 
ase, refer to Banks and Kunis
h [13℄.

Convergen
e of dis
rete solutions. As we generate a sequen
e of solu-

tions a

�

h

on su

essively re�ned meshes, we are interested in rates of 
onver-

gen
e against the solution a

�

of the 
ontinuous problem. Su
h rates are proven

in Falk [34℄, and also in Banks and Kunis
h [13, Theorem IV.3.1 and Remark

IV.3.6℄, but rely on rather strong assumptions on the smoothness of the un-

known solution a

�

and the proofs in Banks and Kunis
h [13℄ also require to use

H

2

�nite elements. For 
ompleteness, we brie
y restate Theorem IV.3.1 from

[13℄, whi
h is for the 
ase of no regularization:

Theorem 1.23 (Banks and Kunis
h). Let s > 1. If a

�

2 H

s

, f 2 H

s�1

,

z 2 H

s+1

, u

�

2 H

s+1

\ W

2;p

; p > dim
, where u

�

= [�r�(a

�

r)℄

�1

f . Let

a

h

; u

h

be dis
retized by �nite elements with quadrati
 
onvergen
e order in the

L

2

norm, and under additional smoothness assumptions on the �nite element

spa
es, there exists C > 0 su
h that the following weighted estimate holds:







(a

�

h

� a

�

)jru

�

j

2







L

1

(
)

< C

�

h

�2

d+ h

s�1

�

;

where d is the distan
e of the measurement z from the attainable set fu :

�r�(aru) = f; for a 2 Ag.

Obviously, these smoothness requirements are too strong for pra
ti
al pur-

poses. For a
tual smoothness levels, rates of 
onvergen
e are 
oupled to the
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index of the sour
e 
ondition dis
ussed above. In most 
ases, only qualitative


onvergen
e 
an be expe
ted.

For numeri
al indi
ations to this phenomenon, see Se
tion 2.1.3 and in par-

ti
ular Fig. 2.2, where we display the 
onvergen
e of the parameter in 
ompu-

tations for the test 
ases de�ned in Se
tion 1.9; only for the �rst test 
ase and

in the noise free 
ase is the sour
e 
ondition satis�ed, with � =

1

2

. It is not

satis�ed for all other test 
ases even in the noise free 
ase sin
e there a

�

62 H

1

.

Note also that the theorem states that without regularization we have to

expe
t a deterioration of approximation under mesh re�nement if the measure-

ment is not attainable; this, as well, 
oin
ides with pra
ti
al experien
e. For

the reason why the weighting in the norm of the estimate is ne
essary, see

Se
tion 4.5.

Convergen
e of dis
retized Newton steps. As we do not solve the exa
t

Newton step (1.12) but a dis
rete approximation of it, we have to show that

Newton's method still 
onverges to the 
orre
t solution (at least if h! 0 as we

pro
eed with Newton steps). In �nite dimensional optimization, it is usually

shown that the true and the approximate KKT matrix do not di�er too mu
h,

i.e. here

krL(x

k

)�

~

H

k

(x

k

� x

�

)k � Ckx

k

� x

�

k

2

:

where

~

H

k

=

�

(P

h

r

x

L(x

k

))

y

P

h

�

�1

is the dis
retized Hessian, P

h

is the X

g

-

orthogonal proje
tor onto the �nite dimensional subspa
e X

h

, and B

y

is the

generalized inverse of B.

While this 
ondition is diÆ
ult to prove for the present 
ontext, it is also

not very appropriate in the 
ontext of ill-posed problems. For a dis
ussion of

this topi
, see Kaltenba
her [46, Se
tion 2.1℄.

1.9 De�nition of test 
ases

In the following 
hapters, we will demonstrate various aspe
ts of the methods

dis
ussed at some test 
ases, whi
h we de�ne in this se
tion. Parameters and

state variables are plotted in Fig. 1.2 for the di�erent test 
ases and for x 2 R

2

.

Test 
ase 1.1 (Smooth parameter). Let

a(x) = 1 + jxj

2

; u(x) = jxj

2

; f = �r � (aru):

On the boundary �

D

= �
, we set g = u.

Test 
ase 1.2 (Dis
ontinuous parameter). Let

a(x) =

�

1 for jxj <

1

2

8 else,

u(x) =

�

jxj

2

for jxj <

1

2

1

8

jxj

2

+

7

32

else,

and f = �r � (aru) = �2d for x 2 R

d

. Note that here the lo
ations of

dis
ontinuities in a and in ru mat
h, and the right hand side is a smooth

fun
tion; this mat
hes the 
ase usually found in stationary physi
al appli
ations.

We 
hoose as Diri
hlet boundary �

D

= �
, with g = u there.
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Figure 1.2: Parameter a(x) (left) and state variable u(x) (right) for the

di�erent test 
ases.
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Test 
ase 1.3 (Singular solution). Let 
 be the slit domain (0; 1)

d

nfx =

1

2

; y �

1

2

g, and

a = 1; f = 1; u = [�r�(ar)℄

�1

f; uj

�


= 0:

For this example, the quantitative resolution of the singularity is de
isive

for eÆ
ient algorithms. Although the 
oeÆ
ient is 
onstant, we dis
retize it as

a distributed one as for the other test 
ases.

Test 
ase 1.4 (Criss-
ross parameter). Let 
 = fx 2 R

d

: kxk < 1g, and

a 2 f1; 2; 6; 7g; f = 1� kxk

2

; u = [�r�(ar)℄

�1

f; uj

�


= 0:

The 
oeÆ
ient has pie
ewise 
onstant values in the four se
tors of the do-

main divided by the lines y = �

x

3

, as shown in Fig. 1.2. For this 
ase, a sin-

gularity in u is generated at the point where di�erent values of the 
oeÆ
ient

meet.

For all test 
ases, the measurement z is obtained from the exa
t displa
ement

u by adding some noise:

z(x) = u(x) + Æ(x);

The noise Æ(x) is a Gaussian random fun
tion with zero mean.

We remark that even in the noise free 
ase, i.e. Æ = 0, the optimal solution

fu

�

, a

�

g of Problem 1.7 is not identi
al to the fun
tions fu; ag de�ned above if

we add regularization, i.e. � 6= 0.
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Chapter 2

Error estimates and adaptivity

In this 
hapter, we dis
uss error estimates and strategies for re�nement of the

dis
retization. We will primarily base these strategies on error representations

derived using duality arguments, see Be
ker and Ranna
her [17℄ and Be
ker [15℄,

but will also 
onsider other approa
hes su
h as stability or Lagrange multiplier

estimates 
orresponding to dis
retization 
onstraints.

Starting this 
hapter, we dis
uss error representation formulae with respe
t

to the minimization fun
tional J(�), and 
orresponding mesh re�nement 
riteria.

For this parti
ular 
ase, the use of weighted error estimates does not involve the

solution of an additional problem when solving optimization problems. Thus,

the evaluation of the error estimates basi
ally 
omes at the same pri
e as the

evaluation of heuristi
 indi
ators. The resulting indi
ator is 
ompared to other

indi
ators with respe
t to its eÆ
ien
y, and its reliability as an error estimator

is veri�ed.

After this, we derive estimates and 
riteria for the 
oeÆ
ient parameteriza-

tion. As the dis
retization of the parameter variable is 
hosen mostly indepen-

dent of that of the state variable, 
riteria for this parti
ular purpose may be

best suited for this. Again, we 
ompare estimates and a

ura
y for eÆ
ien
y.

We then 
onsider estimates based on stability and estimates based on te
h-

niques involving the dual problem to the �rst order ne
essary 
onditions. These

allow for error representation formulae and re�nement 
riteria tailored to ar-

bitrary fun
tionals of the solution. Finally, estimates for the problem with


onstraints on the parameter are dis
ussed.

To the author's best knowledge, there is nothing in the available literature

where adaptive methods based on the a
tual optimization problem are employed

for distributed parameter estimation problems, despite their obvious appli
a-

bility in many 
ases. There are, however, some uses for optimization problems,

see for example Be
ker et al. [16, 17, 15℄.

2.1 Error estimates for the minimization fun
tional

In this se
tion, we will derive a representation of the error in the minimization

fun
tional J de�ned in Problem 1.7, i.e. for the quantity J(x) � J(x

h

), where

x and x

h

are 
ontinuous and dis
rete solutions, respe
tively. First, we state

41
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its abstra
t form only involving the Lagrangian of the problem (Theorem 2.1),

then spe
ialize it for the ellipti
 problem introdu
ed in the previous 
hapter

(Theorem 2.2). We will then dis
uss two ways for the pra
ti
al evaluation of

this error representation, assess their pra
ti
al performan
e 
ompared to more

heuristi
 approa
hes, and also 
he
k their eÆ
ien
y as error estimates.

2.1.1 Derivation of estimates

For the derivation of an error representation formula, re
all that 
ontinuous

and dis
rete solutions satisfy the variational equalities

r

x

L(x; y) = 0 8y 2 X

0

; (2.1)

r

x

L(x

h

; y

h

) = 0 8y

h

2 X

h

; (2.2)

respe
tively. The de�nition of the Lagrangian and of the fun
tion spa
es is

given in Problem 1.8. With these equalities, Galerkin orthogonality for this

nonlinear problem reads:

r

x

L(x; y

h

)�r

x

L(x

h

; y

h

) = 0 8y

h

2 X

h

: (2.3)

Using this identity, an expression for the error in the target fun
tional is derived

in the following theorem.

Theorem 2.1. Let x and x

h

be solutions to (2.1) and (2.2), respe
tively. Then

the dis
retization error with respe
t to J is given with e = x� x

h

by

J(x)� J(x

h

) =

1

2

r

x

L(x

h

;x� y

h

) +R(x; x

h

) 8y

h

2 X

h

; (2.4)

where the remainder term R(x; x

h

) is given by

R(x; x

h

) =

1

2

Z

1

0

r

3

x

L(x

h

+ se; e; e; e) s(s� 1) ds:

Proof. At the solution points the state equations are satis�ed, therefore

J(x) � J(x

h

) = L(x)� L(x

h

):

On the other hand,

L(x)� L(x

h

) =

Z

1

0

r

x

L(x+ se; e)ds;

with e = x� x

h

, and by approximation by the trapezoidal rule

L(x)� L(x

h

) =

1

2

r

x

L(x; e) +

1

2

r

x

L(x

h

; e)

+

1

2

Z

1

0

r

3

x

L(x

h

+ se; e; e; e) s(s� 1) ds:

The �rst term vanishes by the optimality 
ondition (2.1). In view of Galerkin

orthogonality (2.3) and the dis
rete identity (2.2), we have that

r

x

L(x

h

; e) = r

x

L(x

h

;x)�r

x

L(x

h

;x

h

) = r

x

L(x

h

;x)

= r

x

L(x

h

;x)�r

x

L(x

h

; y

h

) = r

x

L(x

h

;x� y

y

)

for any y

h

2 X

h

. The assertion then follows.
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For the di�usion equation introdu
ed in the previous 
hapter, and for the

parti
ular 
ase that mis�t and regularization fun
tionals are quadrati
, the error

representation (2.4) with an arbitrary y

h

= f'

h

; �

h

;  

h

g has the following form:

J(x)� J(x

h

) =

1

2

�

�

u

(x

h

;x� y

h

) + �

�

(x

h

;x� y

h

) + �

a

(x

h

;x� y

h

)

�

+R

(2.5)

with residuals

�

u

(x

h

;x� y

h

) = m

0

(u

h

� z;u� '

h

) + (a

h

r�

h

;r(u� '

h

));

�

�

(x

h

;x� y

h

) = (a

h

ru

h

;r(��  

h

))� (f; ��  

h

);

�

a

(x

h

;x� y

h

) = �r

0

(a

h

; a� �

h

) + (r�

h

�ru

h

; a� �

h

));

and remainder term

R = �

1

12

((a� a

h

)r(�� �

h

);r(u � u

h

)):

The remainder term does not 
ontain intermediate points any more, sin
e the

state equation was assumed to be quadrati
.

From this representation, we 
an obtain a lo
alized error estimate. We

demonstrate this for a parti
ular 
hoi
e of dis
retization spa
es and fun
tionals,

but it is straightforward to generalize it to other situations.

Theorem 2.2. Let mis�t and regularization fun
tional be

m(u� z) =

1

2

ku� zk

2

; r(a) =

1

2

kak

2

:

Then, the following error representation holds:

J(x)�J(x

h

) =

1

2

X

K2T

�

(�f�r�(a

h

ru

h

); �� i

h

�)

K

+

1

2

(n�[a

h

ru

h

℄; �� i

h

�)

�K

+ (u

h

� z �r�(a

h

r�

h

); u� i

h

u)

K

+

1

2

(n�[a

h

r�

h

℄; u� i

h

u)

�K

�

+

1

2

X

K

a

2T

a

(�a

h

+r�

h

�ru

h

; a� i

h

a)

K

a

�

1

12

((a� a

h

)r(�� �

h

);r(u � u

h

));

(2.6)

with a generi
 interpolation operator i

h

a
ting on X ! X

h

or single 
omponents,

depending on 
ontext. For edges 
 � �K between a 
ell K and a neighbor K

0

,

we de�ne the jump terms by

n�[a

h

r'

h

℄ =

�

n� (a

h

j

K

0

r'

h

j

K

0

� a

h

j

K

r'

h

j

K

) if 
 6� �
;

2n�a

h

r'

h

if 
 � �
:

Proof. Split the integrals in (2.5) into sums over all 
ells and integrate by parts

on ea
h 
ell. Then ex
hange half of the boundary terms on ea
h 
ell with the

neighbors to obtain optimal order lo
ally. Set y

h

= i

h

x.
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Sin
e the error representation above involves the exa
t solution x, we eval-

uate it approximatively by using a guess ~x of x; for te
hniques to obtain su
h

guesses, we refer to the overview arti
le by Be
ker and Ranna
her [17℄. With

this, we de�ne the following approximate error representation by repla
ing x

by ~x = f~u; ~a;

~

�g, i

h

x by x

h

, and negle
ting the remainder term:

�

DWR1

=

X

K2T

�

K

+ �

�K

+

X

K

a

2T

a

�

K

a

;

�

K

=

1

2

�

(u

h

� z �r�(a

h

r�

h

); ~u� u

h

)

K

�

�

f +r�(a

h

ru

h

);

~

�� �

h

�

K

�

;

�

�K

=

1

2

�

1

2

(n�[a

h

r�

h

℄; ~u� u

h

)

�K

+

1

2

�

n�[a

h

ru

h

℄;

~

�� �

h

�

�K

�

;

�

K

a

=

1

2

X

K

a

2T

a

(�a

h

+r�

h

�ru

h

; ~a� a

h

)

K

a

:

(2.7)

If we 
annot or do not want to provide a guess ~x for x, then the following

theorem may still help us to develop an error estimate:

Theorem 2.3. Let U

h

= �

h

= Q

1




(T), A

h

= Q

0

d

(T

a

). Under the same as-

sumptions as in Theorem 2.2, and assuming that for the exa
t solution we have

u; � 2 H

2

, a 2 H

1

, there holds the following a posteriori estimate for the error:

jJ(x)� J(x

h

)j � � +

1

12

j((a� a

h

)r(�� �

h

);r(u� u

h

))j

� = C

1

I

X

K2T

�

�

u

K

!

u

K

+ �

u

�K

!

u

�K

+ �

�

K

!

�

K

+ �

�

�K

!

�

�K

�

+ C

2

I

X

K

a

2T

a

�

a

K

a

!

a

K

a

; (2.8)

with residuals and weights

�

u

K

=

1

2

ku

h

� z �r�(a

h

r�

h

)k

K

; !

u

K

= h

2

K







r

2

u







K

;

�

u

�K

=

1

4

kn�[a

h

r�

h

℄k

�K

; !

u

�K

= h

3=2

K







r

2

u







K

;

�

�

K

=

1

2

kf +r�(a

h

ru

h

)k

K

; !

�

K

= h

2

K







r

2

�







K

;

�

�

�K

=

1

4

kn�[a

h

ru

h

℄k

�Kn�


; !

�

�K

= h

3=2

K







r

2

�







K

;

�

a

K

a

=

1

2

k�a

h

+r�

h

�ru

h

k

K

a

; !

a

K

a

= h

K

a

krak

K

a

:

From a pra
ti
al point of view, the interpolation 
onstants C

1

I

; C

2

I

are usually

in the range 0:1 : : : 1.

Proof. Use the Cau
hy-S
hwartz inequality to separate the s
alar produ
ts in

(2.6). Assuming the indi
ated regularity of the exa
t solution, we 
an use the

Bramble-Hilbert lemma to estimate ku� i

h

uk

K

� Ch

2

K

kr

2

uk

K

, ku� i

h

uk

�K

�

Ch

3=2

K

kr

2

uk

K

, and likewise for �, and ka � i

h

ak

K

a

� Ch

K

a

krak

K

a

, where

i

h

is a generi
 interpolation operator V ! V

h

or A ! A

h

, depending on its

argument.
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For �

�

�K

, note that for fa
es �K � �
 there holds � � i

h

�j

�K

= 0 sin
e

�j

�


� 0. Thus, these jump residuals give no 
ontribution at the boundary,

whi
h we take into a

ount by setting them to zero sin
e this information is

lost when estimating k� � i

h

�k

�K

= 0 by Ch

3=2

K

kr

2

�k

K

� 0. Note, however,

that this does not hold for �

u

�K

sin
e in general u� i

h

u 6= 0 at �
.

Again, the weights ! 
ontain the exa
t solution x. However, sin
e no relation

to the dis
rete spa
e X

h

is involved this time, we 
an hope to get a good

approximation of � by substituting kr

2

uk

K

! kr

2

h

u

h

k

K

with some dis
rete

approximation r

h

to the gradient r, e.g. a di�eren
e quotient, and likewise for

the norms in the other weights. For referen
e below, we de�ne the following

approximate error estimate using this substitution:

�

DWR2

= C

1

I

X

K2T

�

�

u

K

~!

u

K

+ �

u

�K

~!

u

�K

+ �

�

K

~!

�

K

+ �

�

�K

~!

�

�K

�

+C

2

I

X

K

a

2T

a

�

a

K

a

~!

a

K

a

;

(2.9)

with residuals and approximate weights de�ned by

�

u

K

=

1

2

ku

h

� z �r�(a

h

r�

h

)k

K

; ~!

u

K

= h

2

K







r

2

h

u

h







K

;

�

u

�K

=

1

4

kn�[a

h

r�

h

℄k

�K

; ~!

u

�K

= h

3=2

K







r

2

h

u

h







K

;

�

�

K

=

1

2

kf +r�(a

h

ru

h

)k

K

; ~!

�

K

= h

2

K







r

2

h

�

h







K

;

�

�

�K

=

1

4

kn�[a

h

ru

h

℄k

�Kn�


; ~!

�

�K

= h

3=2

K







r

2

h

�

h







K

;

�

a

K

a

=

1

2

k�a

h

+r�

h

�ru

h

k

K

a

; ~!

a

K

a

= h

K

a

kr

h

a

h

k

K

a

:

Remark 2.4. The regularity assumed in Theorem 2.3 is not very pra
ti
al. In

parti
ular, sin
e the Lagrange multiplier has to satisfy the equation

�r�(ar�) = �(u� z);

it will not be in H

2

if the optimal 
oeÆ
ient a is not smooth, or if the

domain 
 is not 
onvex. Similar 
onsiderations hold for u. Nevertheless,

taking di�eren
e quotients in the weights in (2.9) is well-de�ned and yields at

pla
es of missing regularity negative powers of the mesh width, resulting lo
ally

in the 
orre
t order.

2.1.2 Criteria for re�nement of the state mesh

In this se
tion, we propose several re�nement 
riteria for the state equation

mesh T. We will then 
ompare these for example problems.

Re�nement indi
ator �

DWR1

K

(dual weighted residuals). Starting from

the representation (2.6), we use the approximate error representation (2.7) as

re�nement indi
ator.
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Re�nement indi
ator �

DWR2

K

(dual weighted residuals). We 
an also

base a re�nement 
riterion on the error estimate (2.8), and use the approximate

error estimate (2.9) as re�nement indi
ator. Sin
e the meshes produ
ed by this

and the previous re�nement 
riterion perform almost identi
al, we do not list

this indi
ator in most 
harts.

Re�nement indi
ator �

rru

K

(smoothness of u

h

). As a �rst heuristi
 re-

�nement 
riterion, we may use an indi
ator measuring solely the smoothness of

the primal variable:

�

rru

K

= h

(d+3)=2

K

kr

2

h

u

h

k

K

: (2.10)

This indi
ator is well known from the Lapla
e equation.

Besides the heuristi
 argument, the indi
ator 
an be made plausible by sim-

pli�
ation of the dual error estimator (2.9): assume � 2 H

2

and r�(aru) 2

L

1

(
), and assume 
onvergen
e of the term kn�[a

h

r�

h

℄k

�K

! khr�(ar�)k

K

�

h

d=2

kr�(ar�)k

1;K

= h

d=2

ku� zk

1;K

� h

d=2

ku� zk

1;


� 


s

h

d=2

with a stabil-

ity 
onstant 


s

= ku � zk

1;


. Then the se
ond term in the error bound (2.8)


an be estimated as

�

u

�K

!

u

�K

� 


s

h

(d+3)=2

~

K

kr

2

uk

~

K

:

The indi
ator (2.10) then arises by using �nite di�eren
e quotients instead of

derivatives, repla
ing the exa
t value u by u

h

, and dropping the 
onstant fa
tor




s

whi
h is irrelevant for re�nement.

We would like to stress that the derivation sket
hed above is rather heuristi


and does not stand formal 
riteria. For example, numeri
al experiments suggest

that in general, the assumed 
onvergen
e kn�[a

h

r�

h

℄k

�K

! khr�(ar�)k

�K

does not hold on non-uniform, possibly lo
ally re�ned meshes with hanging

nodes. However, re�nement indi
ators like the one shown above are used su
-


essfully in pra
ti
e. Therefore, we use them for 
omparison.

Re�nement indi
ator �

rr�

K

(smoothness of �). Using a similar line of

reasoning, take the �rst term in (2.8) and obtain the following re�nement indi-


ator:

�

rr�

K

= h

(d+3)=2

K

kr

2

h

�

h

k

K

; (2.11)

2.1.3 Comparison of re�nement 
riteria

The performan
e of the various re�nement 
riteria with respe
t to the redu
tion

of J(x

h

) and the resolution of the unknown parameter is 
ompared in Fig.s 2.1

and 2.2, using the test 
ases de�ned in Se
tion 1.9.

Before dis
ussing the results, we note that driving re�nement by setting up

an error estimator for the value of J(�) is, beyond the fa
t that it is essentially

for free, reasonable sin
e the value of J(x

h

) may be used to stop an iteration

if it falls below the noise level. As m(u � z) is bounded from below by noise,

we would only resolve this noise if we redu
ed J further. However, this would
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Figure 2.1: Comparison of value of the minimization fun
tional J(x

h

) for var-

ious re�nement 
riteria. Top left: Test 
ase 2 (dis
ontinuous 
oeÆ
ient). Top

right: Test 
ase 3 (slit domain). Bottom: Test 
ase 4 (
riss-
ross parameter).

not lead to a better resolution of the parameter. Monitoring the value J(x

h

)

and 
omparing it with an improved estimate therefore helps to stop iterations

when this happens.

The results of 
omputations are visualized in Fig.s 2.1 and 2.2. They 
an

be summarized as follows:

� The 
riterion �

DWR1

K

based on the dual error representation formula per-

forms better than or equal to all other 
riteria under investigation for all

examples.

� For most examples, the dual weighted error estimate and the �

rr�

K

indi
a-

tor perform equally well. They are always better than the other re�nement

indi
ators.

� Only for test 
ase 4 is the dual weighted estimate signi�
antly better than

�

rr�

K

.

Meshes generated by the various re�nement 
riteria are shown in Fig.s 2.3 and

2.4 for test 
ases 3 and 4. They are only slightly di�erent for all test 
ases,

even for test 
ase 4 where the duality based estimator is signi�
antly better

quantitatively.

The fa
t that the dual weighted error estimate does not perform better as

mesh re�nement 
riterion than the more ad ho
 indi
ator �

rr�

K

, defeats intu-

ition at �rst. However, 
omparing the relative sizes of the 
ontributions to the

dual weighted error representation (2.7) reveals that in a
tual 
omputations the
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Figure 2.2: Comparison of various mesh re�nement 
riteria with respe
t to the

error in the 
oeÆ
ient ka

h

�a

exa
t

k. Top row: Test 
ases 2 and 3. Bottom left:

Test 
ase 4. Bottom right: For 
omparison ka

h

� a

exa
t

k for test 
ase 1, where

all re�nement indi
ators work equally well. Note that here the error is s
aled

logarithmi
ally (see also the dis
ussion of 
ondition (1.19)).

Figure 2.3: Test 
ase 3 (slit domain): Comparison of meshes generated by


riteria �

DWR1

K

, �

rru

K

, �

rr�

K

(from left to right). Top row: Meshes T for state

and adjoint variable. Bottom row: Meshes T

a

for the parameter a.
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Figure 2.4: Test 
ase 4 (
riss
ross parameter): Comparison of meshes generated

by 
riteria �

DWR1

K

, �

rru

K

, �

rr�

K

(from left to right). Top row: Meshes T for state

and adjoint variable. Bottom row: Corresponding meshes T

a

for the parameter

a.

term �

K

a

is small 
ompared to the other terms, at least in those 
ases where the

two re�nement 
riteria perform equally. On the other hand, se
ond derivatives

of the Lagrange multiplier or 
omparable terms appear in the two other terms

r

u

L(x

h

;u � i

h

u) and r

�

L(x

h

;� � i

h

�), either as residuals or weights. Sin
e

these terms in the weighted estimator 
onsist of produ
ts of fun
tions of u and

of �, it 
an only show fundamentally di�erent behavior than the �

rr�

K

indi
ator

if the regions of roughness of u and � do not 
oin
ide. However, this 
an not

happen sin
e the Lagrange multiplier satis�es �r�(ar�) = �(u� z), and if no

noise is present then u � z is proportional to r

2

u, i.e. u and � have the same

lo
al smoothness properties.

On the other hand, for test 
ase 4, where the dual weighted estimator per-

formed better, the term �

K

a

in (2.7) is not small 
ompared to the other terms.

These 
onsiderations explain why the dual weighted indi
ator and the �

rr�

K

indi
ator perform equally well in most situations, and in whi
h situations the

former is better.

2.1.4 Reliability of error estimates

Besides providing re�nement 
riteria, the error indi
ators (2.7) and (2.9) may

be used to assess the quality of the �nite element approximation x

h

of (2.2)

with respe
t to the true solution x = fu; a; �g of (2.1). In this se
tion, we

dis
uss how reliable these estimates for the quantity J(x)� J(x

h

) are.

Sin
e for the general problem the exa
t solution is usually unknown, we

restri
t ourselves to the 
ase of � = 0, and that z is a feasible point. We 
an

then assume that we 
an �nd a parameter a su
h that for the 
orresponding

primal variable u = z holds, and thus m(u� z) = 0. Sin
e � = 0 we have that

J(x) = 0 and the exa
t error is given by J(x)�J(x

h

) = �J(x

h

) = �m(u

h

�z).
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Figure 2.5: Comparison of error estimates DWR1 (2.7) and, for test 
ase 1,

DWR2 (2.9) with the approximate true error

~

E. For the �rst example we also

show the linearization error in (2.5).

0

0.5

1

1.5

2

1000 10000 100000

Total number of degrees of freedom

Test case 1

DWR1: Ratio estimated/true error

0

0.5

1

1.5

2

1000 10000 100000

Total number of degrees of freedom

Test case 3

DWR1: Ratio estimated/true error

Figure 2.6: Ratio of error estimates (2.7) (DWR1) and the approximate true

error

~

E, for test 
ases 1 and 3.

Assuming that the s
heme 
onverges to the global solution, we 
an then 
ompare

the error estimates with this value.

On the other hand, if � > 0, then at the solution �r(a) > 0, andm(u�z) > 0

sin
e in general u 6= z. The exa
t error is then unknown. However, if � is small,

the noise level large, or the 
omputational mesh 
oarse, thenm(u

h

�z)� �r(a

h

)

in the range of the x

h

whi
h we resolve in the 
ourse of our 
omputations, and

we 
an still expe
t that the quantity

~

E = �m(u

h

� z) is a good approximation

to the true error E = J(x)� J(x

h

). In Fig.s 2.5 and 2.6 we 
ompare this value

~

E with the estimates (2.7) and (2.9).

It is seen that the error estimates using (2.7) are in very good agreement

with the a
tual error for test 
ases 1 and 3, showing the same 
onvergen
e

behavior and having a ratio between estimated and true error very 
lose to the

optimal value of 1. For test 
ases 2 and 4, where bounds are posed on the

unknown solution, the estimates are unreliable; an extension of the estimates

for the 
onstrained problem is dis
ussed in Se
tion 2.5.

For test 
ase 1, Fig. 2.5 also shows the values of estimate (2.9) where we

have taken residuals and weights apart by the Cau
hy-S
hwarz inequality. We

have 
hosen the interpolation 
onstants equal to C

I

= 0:3. As seen from the

�gure, the estimates are too large, with overestimation fa
tors growing from 50
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to roughly 250 under mesh re�nement. For other examples, the ratio usually

remains bounded, but is signi�
antly too large as well.

Finally, Fig. 2.5 shows that the linearization term in (2.5), here 
omputed

using the exa
t solution, is suÆ
iently small that negle
ting it in the error

estimates is justi�ed. This also holds for the other test 
ases.

2.2 Error estimates and adaptivity for the 
oeÆ
ient

parameterization

In this se
tion, we will des
ribe methods of re�nement of the parameter mesh

T

a

. We will dis
uss an idea to use linearized sensitivities to re�ne the mesh

based on a novel approa
h 
onsidering dis
retization as a 
onstraint. Alterna-

tively, mesh re�nement will be based on heuristi
 arguments, or, if available,

on information from the dual weighted residual error estimator derived in the

last se
tion.

Intuitively, one would like to base mesh re�nement for the parameterization

on sensitivities with respe
t to the state equation: we should re�ne the mesh

where we know that the parameters are resolved best. For the dis
rete problem,

the un
ertainties are 
omputed from the diagonal elements of the 
ovarian
e

matrix

C

M

0

= (C

T

A

�T

MA

�1

C)

�1

;

see Tarantola [63℄. Thus, the 
ovarian
e matrix is the inverse of part of the

S
hur 
omplement of the Gau�-Newton matrix whi
h we need in ea
h step

anyway. Given the 
omplexity of 
omputing C

M

0

(this would involve n forward

and n ba
kward solutions), this approa
h is not feasible, though. A se
ond

drawba
k is that it is not 
lear that re�ning where sensitivities are high is also

ne
essarily a good strategy for the approximation of the parameter. For these

reasons, we have used alternative re�nement 
riteria for the parameter mesh,

whi
h we will dis
uss below.

2.2.1 Criteria based on dis
retization 
onstraints

Here, we will �rst derive re�nement 
riteria based on an un
onventional ap-

proa
h in whi
h we 
onsider sensitivities with respe
t to dis
retization, whi
h

we take as a 
onstraint here. It will be shown that re�nement indi
ators 
an be

based on the Lagrange multipliers asso
iated with the dis
retization 
onstraint.

We show the derivation of su
h 
riteria for the un
onstrained 
ase, show an a

posteriori bound on the error, and then extend the method to the 
onstrained


ase.

Sin
e we are only 
on
erned with the parameter dis
retization, assume for

the derivation that the parameter is dis
retized, while state and adjoint variable

may or may not be dis
retized but that the spa
e

~

V = V or V

h

from whi
h

they are 
hosen is not subje
t to dis
ussion. Negle
ting bound 
onstraints, the
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parameter identi�
ation then has the form:

min

u2

~

V ; a

h

2A

h

J(u; a

h

); subje
t to (a

h

ru;r') = (f; ') 8' 2

~

V :

In order to view dis
retization of a as a 
onstraint, we �rst rewrite this

minimization problem as one over a 
ontinuous spa
e A, but then again restri
t

a

h

expli
itly to A

h

. The above problem is then equivalent to �nding u 2

~

V ; a

h

2

A and numbers �

i

su
h that

min

u2

~

V ; a

h

2A

J(u; a

h

);

subje
t to (a

h

ru;r') = (f; ') 8' 2

~

V ;

ha

h

� �

i

�

i

�

i

; �i = 0 8� 2 A

0

;

(2.12)

where the �

i

are the shape fun
tions of A

h

. Introdu
ing a Lagrange multiplier


 2 A

0

for the last 
onstraint, the optimality system for this problem 
ontains

the equations of Problem 1.8, (1.3), but also

h
; �

h

i = 0 8�

h

2 A

h

; (2.13)

r

a

L(x;�) + h
; �i = 0 8� 2 A; (2.14)

with L the Lagrange fun
tional already introdu
ed in Problem 1.8. The La-

grange multiplier of the dis
retization 
onstraint 
an thus be identi�ed with the

residual �r

a

L, whi
h is orthogonal to A

h

with respe
t to the duality pairing

h�; �i.

Note that by the reformulation, we have extended the test spa
e for the

equation 
on
erning r

a

L from A

h

to A in (2.14). However, this in
rease is


ountered by the additional term in (2.14), whi
h deletes that part of r

a

L that

is not orthogonal to the surplus test spa
e AnA

h

.

Remark 2.5. If we have dis
retized u; � to u

h

and �

h

, and if r(a) =

1

2

kak

2

,

then by (2.14) we have the expli
it representation


 = �a

h

+ru

h

�r�

h

:

Sin
e Lagrange multipliers represent the �rst order response of the obje
tive

fun
tion to a small 
hange in the 
onstraints, 
 gives an indi
ation how a

relaxation of the dis
retization 
onstraint would 
hange the value of J(u; a).

Thus, if we would weaken the dis
reteness 
onstraint in (2.12) to a��

i

�

i

�

i

= g,

then

J(x)� J(~x) = hg; 
i +O(kgk

2

); (2.15)

with x; ~x the solutions of the original problem with dis
reteness 
onstraint, and

of the problem with perturbed 
onstraint, respe
tively.

The mesh should then be re�ned in su
h a way that the obje
tive fun
tion

de
reases maximally, whi
h we assume to 
oin
ide with the best strategy for

the identi�
ation of the unknown 
oeÆ
ient. Re�ning a 
ell then 
orresponds
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to enri
hing the spa
e A

h

by the shape fun
tions of A

h=2

, so we have to 
he
k

the 
hange in J(�) for fun
tions g 2 A

h=2

. As re�nement indi
ator we then take

�




K

a

=

X

i

�

�




g

i

K

a

; 


�

�

�

; (2.16)

where the g

i

K

a

form a basis of A

h=2

on the 
ell K

a

.

Remark 2.6. If A

h

= Q

0

d

(T

a

), then we 
an 
hoose the 
hara
teristi
 fun
tions

of the 
hild 
ells K




a

of K

a

as basis of A

h=2

. Then, (2.16) redu
es to

�




K

a

=

X

K




a

�

�

�

�

�

Z

K




a


 dx

�

�

�

�

�

:

Remark 2.7. The re�nement indi
ator �




K

a


an be related to the residual �

a

K

a

from the approximate error estimate (2.9). For example, for A

h

= Q

0

d

(T

a

) we

have

�




K

a

�

p

jK

a

jk
k

K

a

=

p

jK

a

j�

a

K

a

:

The s
aling fa
tor equals the weight !

a

K

a

= h

K

a

kr

h

a

h

k if the 
oeÆ
ient is

dis
ontinuous sin
e then !

a

K

a

� Cka

h

k � C

p

a

1

p

jK

a

j.

Further exploiting the approa
h dis
ussed above, we 
an derive a lower error

bound for the 
oeÆ
ient from (2.15) under 
ertain additional assumptions:

Theorem 2.8. Let x = fu; a; �g and x

h

= fu

h

; a

h

; �

h

g be exa
t and dis
rete

solutions. Assume that the state dis
retization allows to resolve state and dual

variable exa
tly, and that for the error in the 
oeÆ
ient ka � a

h

k

A

< Æ with

some �xed Æ � 0. Furthermore, assume that we have a lower estimate for the

error in the obje
tive fun
tional, � � jJ(x)�J(x

h

)j, then there exists a 
onstant

C > 0 su
h that

ka� a

h

k

A

�

� � CÆ

2

k
k

A

0

:

Proof. If we perturbed the dis
reteness 
onstraint in (2.12) to a� �

i

�

i

�

i

= g

with g = e

a

= a� a

h

, then the exa
t solution a is on this 
onstraint surfa
e.

The solution ~x of the perturbed problem is thus the exa
t solution x sin
e we

have assumed that state and adjoint variable 
an be identi�ed exa
tly. We then

have by (2.15) that

� � jJ(x)� J(x

h

)j � j he

a

; 
i j+ CÆ

2

;

with some C > 0 bounding the higher order sensitivities in (2.15). The 
laim

then follows by simple transformations.

The relevan
e of the bound lies in the fa
t that as ka � a

h

k ! 0, the

quadrati
 term CÆ

2

on the right hand side tends to zero with higher order.

This unknown se
ond order term thus vanishes asymptoti
ally.
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By now, we have negle
ted the existen
e of bound 
onstraints on a in

the derivation of 
 and �




K

a

. By (2.14), we know that 
 
an be expressed in

terms of the residual r

a

L(x), whi
h should be zero for the exa
t 
ontinuous

solution x = fu; a; �g. However, if a is at one of its bounds, the gradient

of the un
onstrained Lagrangian is nonzero, but is 
ountered by the Lagrange

multiplier 
orresponding to this 
onstraint, see (1.11). Thus, we 
hange the

de�nition of 
 for the 
onstrained problem to

h~
; �i = r

a

L(x

h

;�) 8� 2 A(


0

); (2.17)

where 


0

is the union of 
ells where the parameter is not at one of its bounds.

For 
ells where the parameter is at either bound, ~
 is extended by zero.

2.2.2 Criteria based on available information

Alternatively to (2.16), we have used other re�nement 
riteria for the parameter

mesh T

a

:

� If the dual weighted estimators (2.7) or (2.9) are used, we 
an use one

of the following terms de�ned on the 
ells K

a

of the parameter mesh for

re�nement:

�

DWR1

K

a

= �r

0

(a

h

; ~a� i

h

a) + (r�

h

�ru

h

; ~a� i

h

a)

K

a

;

�

DWR2

K

a

= �

a

K

a

~!

a

K

a

:

(2.18)

Due to their derivation, we do not expe
t signi�
ant di�eren
es in their

abilities as mesh re�nement 
riteria and therefore only investigate the �rst

one.

� If the state mesh was re�ned with one of the heuristi
 
riteria de�ned in

Se
tion 2, then we 
an also use a more heuristi
 
riterion for the re�nement

of the parameter mesh. For a pie
ewise 
onstant approximation of the

parameter we used

�

ra

K

a

= h

1+d=2

kr

h

a

h

k

1;K

; (2.19)

where r

h

is a di�eren
e quotient approximation to the gradient.

2.2.3 Comparison of re�nement 
riteria

To assess the quality of the three re�nement 
riteria �




K

a

(2.16), �

DWR1

K

a

(2.18),

and �

ra

K

a

(2.19), we �rst look at the size of the re�nement indi
ators for test


ase 2 (see page 37). Obviously, re�nement should be dire
ted entirely into the


ir
ular jump of the 
oeÆ
ient. Fig 2.7 shows the 
oeÆ
ient after the �rst few

iterations on the initial mesh, as well as the distribution of the three indi
ators

listed above.

In this 
ase where the 
oeÆ
ient is well identi�ed, all indi
ators roughly

indi
ate the same 
ells for re�nement. However, a 
ommon observation is that

the DWR indi
ator only marks a very small number of 
ells for re�nement,
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Figure 2.7: Comparison of re�nement 
riteria for the parameter mesh (test


ase 2). Left: Re
overed parameter on 
oarse mesh. Center left: Values of �




K

a

.

Center right: Values of �

DWR1

K

a

. Right: Values of �

ra

K

a

.
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Figure 2.8: Comparison of re�nement 
riteria for the parameter mesh (test 
ase

1 with added noise). Left: Re
overed parameter on 
oarse mesh. Center left:

Values of �




K

a

. Center right: Values of �

DWR1

K

a

. Right: Values of �

ra

K

a

.

leading to slow re�nement of the parameter mesh. In addition, some re�ned


ells are 
oarsened again in the next step. Thus, the DWR estimator often leads

to rather unpredi
table behavior unless a signi�
ant amount of heuristi
s are

added. Due to this, no suitable re�nement strategy 
ould be found for some

examples.

In 
ontrast to this, �




K

a

marks the 
ells around the 
ir
le in a more pre-

di
table way, while �

ra

K

a

of 
ourse pro�ts from the good approximation of the

parameter and therefore has no problems indi
ating the 
orre
t 
ells.

As a se
ond example, we 
onsider the solution of test 
ase 1 (see page 37),

with 1.5% noise added. The presen
e of noise leads to a bad re
onstru
tion of

the parameter, whi
h is ampli�ed by the fa
t that we use pie
ewise 
onstant

elements for the parameter and only penalize the size, but not the roughness of

the parameter by regularization.

The results of this experiment are shown in Fig. 2.8. While �




K

a

seems

relatively una�e
ted by the bad re
onstru
tion and indi
ates those 
ells for

re�nement where the gradient of the exa
t solution is large (i.e. outwards from

the 
enter towards the 
orners) as should be expe
ted, both the DWR and the

ra indi
ator seems badly out of tou
h with the situation, proposing rather

random 
ells for re�nement.

As a summary, in general �




K

a

is the most robust one, while �

DWR1

K

a

and �

ra

K

a

were too unpredi
table in their behavior and often su�ered in the presen
e of

noise. From the indi
ated relation between �




K

a

and �

DWR1

K

a

, it seems probable

that the la
king robustness of the latter indi
ator is due to unreliable weights
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Figure 2.9: Comparison of true error ka

h

� a

exa
t

k

L

2
and error estimates �

1

a

and �

2

a

. Left: Test 
ase 1. Center: Test 
ase 2. Right: Test 
ase 2, but with

the estimate ~
 in
orporating bound 
onstraints instead of the original 
.

~a�a

h

, whi
h is readily explained by la
king smoothness in a

h

. If the appli
ation

permits it, penalizing roughness might help in this 
ase.

2.2.4 Reliability of error estimates

In order to 
he
k the a

ura
y of the lower error bound provided by Theo-

rem 2.8, we 
onsider the solution of two of the examples de�ned in Se
tion 1.9.

As a �rst test, we solve test 
ase 1, with the regularization parameter � = 0 and

no added noise. With these parameters, we know the exa
t solution a

exa
t

of the

problem and 
an 
ompare the true error and the estimate. We also know the ex-

a
t error in the fun
tional J , sin
e J(x) = 0 and thus jJ(x)� J(x

h

)j = jJ(x

h

)j.

However, we do not know the value of the 
onstant C appearing in the theorem.

Negle
ting this higher order term, we are led to 
ompare ka

h

� a

exa
t

k

L

2
with

the estimates

�

1

a

= jJ(x

h

)j=k
k

L

2
; �

2

a

= j�

DWR1

j=k
k

L

2
:

The latter is 
omputable even if the exa
t value of J(x

h

) is unknown. The true

error in the 
oeÆ
ient ka

h

�a

exa
t

k

L

2
, as well as the two estimates are reported

in Fig. 2.9. It is seen that �

1

a

provides a reliable lower bound for the error. �

2

a

is too large at the beginning sin
e �

DWR1

initially overestimates the true error

J(x)� J(x

h

).

In a se
ond example, we take test 
ase 2 to 
he
k the a

ura
y of the lower

error bound. In 
ontrast to the �rst example, here the bounds on the parameter

are a
tive in large areas of the domain. We thus expe
t that negle
ting this fa
t

in the derivation of 
 will lead to an overestimated value of k
k and thus to an

underestimated value of ka � a

h

k. This 
an indeed be seen in the middle and

right panel of Fig. 2.9, where the true error ka� a

h

k along with the estimates

are shown that are obtained using 
 and ~
. It is 
lear that negle
ting bound


onstraints leads to ineÆ
ient error bounds, while the estimate ~
 in
orporating

bounds performs better.
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2.3 Estimates based on stability

Besides the duality based strategies to get a posteriori error estimates, we brie
y

dis
uss another possibility for their 
onstru
tion. It is based on stability prop-

erties. The result 
ontains a stability 
onstant revealing the worst 
ase stability

of solutions instead of a dual solution representing the stability properties of

a parti
ular solution; the estimate will therefore greatly ex
eed the error in

most 
ases. The 
onstru
tion of su
h an estimate is nevertheless shown as an

alternative way.

Theorem 2.9. Assume that the dis
retization spa
e X

h

= U

h

�A

h

��

h

admits

the following interpolation estimate

inf

y

h

2X

h

ky � y

h

k � Chkyk

X

;

for all y 2 X , with kxk

2

X

= kruk

2

L

2

+ kak

2

H

1

+ kr�k

2

L

2

. Assume further that

the inf-sup 
ondition

sup

y2X

0

A(x; y)

kyk

X

� 
kxk

X

8x 2 X (2.20)

holds (see, e.g., Theorems 1.9 and 1.10), with m(') =

1

2

kr'k

2

and r(�) =

1

2

k�k

2

H

1

, and

A(x; y) = (ru;r') + (ar�;r') + (aru;r )

+ �(a; �) + �(ra;r�) + (ru�r�; �):

Let x

�

; x

�

h

be 
ontinuous and dis
rete solutions, respe
tively. Then the a poste-

riori estimate

kek

X

�

C




(

X

K

h

�

�

u

K

+ �

a

K

+ �

�

K

�

+ h

1=2

�

�

u

�K

+ �

a

�K

+ �

�

�K

�

)

+O(kek

2

);

for the error e = x

�

� x

�

h

holds with

�

u

K

= kf +r�(a

h

ru

h

)k

K

; �

u

�K

= k[�

n

u

h

℄k

�K

+ k[a

h

�

n

u

h

℄k

�K

�

�

K

= k�(u

h

� z) +r�(a

h

r�

h

)k

K

; �

�

�K

= k[a

h

�

n

�

h

℄k

�K

;

�

a

K

= k�(a

h

��a

h

) +ru

h

�r�

h

k

K

; �

a

�K

= k[�

n

a

h

℄k

�K

:

Proof. Set x = e = x

�

� x

�

h

. Using Galerkin orthogonality, we have

kek

X

�

1




sup

y2X

A(e; y)

kyk

X

=

1




sup

y2X

inf

y

h

2X

h

A(e; y � y

h

)

kyk

X

:

Integrating by parts in A(�; �), using the Cau
hy-S
hwarz inequality and the as-

sumed interpolation estimate yields the following estimate (we drop the asterisk
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on the elements of x

�

and x

�

h

for brevity):

kek

X

�

Ch




(

X

K

k ��u+�u

h

�r�(ar�) +r�(a

h

r�) +r�(ar�

h

)

�r�(a

h

r�

h

)k

K

+

X

K

k �r�(aru) +r�(a

h

ru) +r�(aru

h

)�r�(a

h

ru

h

)k

K

+

X

K

k�(a� a

h

��a+�a

h

)

+ru�r��ru

h

�r��ru�r�

h

+ru

h

�r�

h

k

K

+

X

K

1

2

h

�1=2

�

k[�

n

u

h

℄k

�K

+ k[a

h

�

n

u

h

℄� ([a

h

�

n

u℄ + [a�

n

u

h

℄)k

�K

+ k[a

h

�

n

�

h

℄� ([a

h

�

n

�℄ + [a�

n

�

h

℄)k

�K

+ k[�

n

a

h

℄k

�K

�

)

:

Using the optimality 
onditions for the 
ontinuous solution, we then obtain

kek

X

�

Ch




(

X

K

k(��(u

h

� z)�r�(a

h

r�

h

))� (r�(e

a

r�) +r�(are

�

))k

K

+

X

K

k(�f �r�(a

h

ru

h

))� (r�(e

a

ru) +r�(are

u

))k

K

+

X

K

k(�(a

h

��a

h

) +ru

h

�r�

h

) + (re

u

�r�+ru�re

�

)k

K

+ jump terms as above

)

:

By tangentiality, r�(e

a

r�) = �r�(are

�

) + O(kek

2

) and likewise for 
orre-

sponding terms in the se
ond parentheses of the other 
ell terms, as well as for

the parentheses in the jump terms. We 
an thus split o� these higher order

terms and obtain the 
laimed result.

Remark 2.10. The result of Theorem 2.9 impli
itly 
ontains an estimate of

the error in the parameter, sin
e

ka� a

h

k

H

1
� kek

X

:

Nevertheless, the theorem is of little pra
ti
al value sin
e it in
orporates the


onstant 
, denoting the worst 
ase stability properties of A(�; �). It does not, in

general, re
e
t the stability of a parti
ular solution and will thus lead to a large

overestimation of the error. Exploiting the a
tual stability of a solution is only

possible by taking into a

ount the solution of a 
orresponding dual problem.

To illustrate the overestimation, note that in appli
ations with small noise

it is often possible to identify the parameter well with very small values of �;

if, for example, � = 10

�8

, then

1




> 10

8

.
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2.4 Estimates for arbitrary fun
tionals

In some 
ases, we may be interested in bounding the error with respe
t to fun
-

tionals of the solution|in
luding error fun
tionals of the re
overed parameter.

In this se
tion, we will derive an error representation for arbitrary fun
tionals.

First, we state the abstra
t form, only involving the Lagrangian of the problem,

in Theorem 2.11, then apply it to the ellipti
 problem introdu
ed in Chapter 1.

Sin
e the ne
essary 
omputation of a dual quantity is too expensive for pra
ti
al

purposes, a modi�
ation is dis
ussed that makes this feasible.

2.4.1 Statement of estimates

Theorem 2.11. Let E : X

g

! R be an error fun
tional. Let x 2 X

g

be the

solution of the stationarity 
ondition rL(x; y) = 0 for all y 2 X

0

, and x̂ 2 X

0

be the solution of the dual problem

r

2

x

L(x; x̂; y) = �r

x

E(x; y) 8y 2 X

0

: (2.21)

Then the a posteriori error estimate

E(x)�E(x

h

) =

1

2

f�(x

h

; x̂� i

h

x̂) + �̂(x

h

; x̂; x� i

h

x)g+R(x; x

h

; x̂; x̂

h

);

(2.22)

holds with residuals

�(x

h

; y) = r

x

L(x

h

; y);

�̂(x

h

; x̂; y) = r

x

E(x

h

; y) +r

2

x

L(x

h

; x̂; y)

and remainder term

R(x; x

h

; x̂; x̂

h

) =

1

2

Z

1

0

n

r

3

x

E(x

h

+ se; e; e; e)

+r

3

x

L(x

h

+ se; e; e; e) +r

4

x

L(x

h

+ se; x̂+ sê; e; e; e)

o

s(s� 1) ds;

where e = x� x

h

, ê = x̂� x̂

h

, and x̂

h

the solution of a dis
rete 
ounterpart of

(2.21).

Proof. Let � = fx; x̂g 2 X

g

�X

0

, then x and x̂ satisfy the identity

r

�

�(�; �) = 0 8� 2 X

0

�X

0

;

with the joint Lagrangian �(�) = E(x) +r

x

L(x; x̂) 
ontaining the Lagrangian

L(x) of the �rst order 
onditions, see Problem 1.8. The proof 
ontinues in the

same manner as the proof of Theorem 2.1, yielding

E(x)�E(x

h

) =

1

2

r

�

�(�

h

; e

�

) +

1

2

Z

1

0

r

3

�

�(�

h

+ se

�

; e

�

; e

�

; e

�

) s(s� 1) ds;
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where e

�

= � � �

h

with �

h

= fx

h

; x̂

h

g. The 
laim then follows by observing

that

r

�

�(�

h

; e

�

) = r

x

E(x

h

; e) +r

2

x

L(x

h

; x̂; e) +r

x

L(x

h

; ê);

with ê = x̂� x̂

h

, and using Galerkin orthogonality on these terms to repla
e e

by x� i

h

x, and ê by x̂� i

h

x̂. For the remainder term,

r

3

�

�(�

h

+ se

�

; e

�

; e

�

; e

�

) = r

3

x

E(x

h

+ se; e; e; e)

+r

3

x

L(x

h

+ se; e; e; e) +r

4

x

L(x

h

+ se; x̂+ sê; e; e; e):

For the parti
ular ellipti
 problem 
onsidered here, the error estimate above,

negle
ting the remainder term R, assumes the following form:

E(x)�E(x

h

) �

1

2

n

�

u

(x

h

; x̂� i

h

x̂) + �

a

(x

h

; x̂� i

h

x̂) + �

�

(x

h

; x̂� i

h

x̂)

+ �̂

u

(x

h

; x̂; x̂� i

h

x̂) + �̂

a

(x

h

; x̂; x̂� i

h

x̂) + �̂

�

(x

h

; x̂; x̂� i

h

x̂)

o

;

with the residuals

�

u

(x

h

; x̂� i

h

x̂) = m

0

(u

h

� z; û� i

h

û) + (a

h

r�

h

;r(û� i

h

û))

�

a

(x

h

; x̂� i

h

x̂) = �r

0

(a

h

; â� i

h

â) + (r�

h

�ru

h

; â� i

h

â));

�

�

(x

h

; x̂� i

h

x̂) = (a

h

ru

h

;r(

^

�� i

h

^

�))� (f;

^

�� i

h

^

�);

�̂

u

(x

h

; x̂

h

; x� i

h

x) = m

00

(u

h

; û

h

; u� i

h

u) + (r�

h

�rû

h

; a� i

h

a)

+ (a

h

rû

h

;r(�� i

h

�)) +r

u

E(x

h

;u� i

h

u)

�̂

a

(x

h

; x̂

h

; x� i

h

x) = �r

00

(a

h

; â

h

; a� i

h

a) + (â

h

r�

h

;r(u� i

h

u))

+ (â

h

ru

h

;r(�� i

h

�)) +r

a

E(x

h

; a� i

h

a)

�̂

�

(x

h

; x̂

h

; x� i

h

x) = (a

h

r

^

�

h

;r(u� i

h

u)) + (ru

h

�r

^

�

h

; a� i

h

a)

+r

�

E(x

h

;�� i

h

�):

For lo
alized re�nement 
riteria, these residuals should be evaluated only after


ell-wise integration by parts, resulting in 
ell and fa
e terms. The negle
ted

remainder term has the form

R = �

1

12

((a�a

h

)r(���

h

);r(u�u

h

))+

1

2

Z

1

0

r

3

x

E(x+se; e; e; e) s(s�1) ds:

In order to evaluate the error representation pra
ti
ally, we need the exa
t

dual solution x̂, or an approximation to it. Sin
e the dis
rete 
ounterpart of

(2.21) is equivalent to one Newton step, the e�ort for the 
omputation of some

x̂

h

equals the 
omputation of one sear
h dire
tion for the full Newton method.

Regarding the a
tual evaluation of the error estimate, the same possibilities

exist as in Se
tion 2.1.

Sin
e the possibility of solving for exa
t Newton updates was already dis-


arded for the solution of the inverse problems, the solution of (2.21) is too
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expensive for the evaluation of an error estimate. Rather, we would like to

use an approximate solution that satis�es a Gau�-Newton-type equation. The

following theorem derives an estimate based on this idea:

Theorem 2.12. With the same notation as in Theorem 2.11, split the Hessian

as follows:

r

2

x

L(x; x̂; y) = H

1

(x; x̂; y) +H

2

(x; x̂; y);

where H

2


ontains all se
ond-order terms involving �, and H

1

all other terms.

Let now x̂ 2 X

0

be the solution of the Gau�-Newton system

H

1

(x; x̂; y) = �r

x

E(x; y) 8y 2 X

0

: (2.23)

Then there holds the a posteriori error estimate

E(x)�E(x

h

) =

1

2

f�(x

h

; x̂� i

h

x̂) + �̂(x

h

; x̂; x� i

h

x)g+R

0

(x; x

h

; x̂; x̂

h

);

(2.24)

with remainder term

R

0

(x; x

h

; x̂; x̂

h

) = R(x; x

h

; x̂; x̂

h

) +

1

2

H

2

(x; x̂; e);

where e = x� x

h

and ê = x̂� x̂

h

, and residuals and remainder R as in Theo-

rem 2.11.

Proof. With the same Lagrangian �(�) as in the proof of Theorem 2.11, we

again have by approximation of the integral by the trapezoidal rule that

E(x)�E(x

h

) =

1

2

r

�

�(�; e

�

) +

1

2

r

�

�(�

h

; e

�

)

+

1

2

Z

1

0

r

3

�

�(�

h

+ se

�

; e

�

; e

�

; e

�

) s(s� 1) ds:

However, sin
e x̂ is now the solution of a perturbed problem, we no more have

that r

�

�(�; �) = 0 for all test fun
tions � 2 X

0

� X

0

so that the �rst term

vanishes. Rather, we only have that

r

x̂

�(�; y) = r

x

L(x; y) = 0 8y 2 X

0

;

r

x

�(�; y) = r

x

E(x; y) +r

2

x

L(x; x̂; y) = H

2

(x; x̂; y) 8y 2 X

0

;

by the de
omposition of r

2

x

L de�ned above. The remainder R

0

is thus the sum

of the previous remainder R and the new residual term involving H

2

.

The e�ort to obtain an approximation of the dual solution x̂ used in this

error identity is now equivalent to solving one additional Gau�-Newton step.

Note that the main part of the error representation is the same as in the previous

Theorem 2.11, only the remainder term 
hanges.

For the ellipti
 equation 
onsidered so far, the residuals are those de�ned

after Theorem 2.11, while the remainder term now has the additional part

H

2

(x; x̂; e) = (r�; âr(u� u

h

)) + (r��rû; a� a

h

):

In the noise free 
ase, if the measurement z is a
tually attainable, i.e. at the

solution u = z, we have that � = 0 and the additional term in the remainder

vanishes.
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Figure 2.10: Left: Mesh as produ
ed by duality based estimate. Center: Mesh

as produ
ed by estimator with respe
t to J(�). Right: Error redu
tion for re�ne-

ment by \energy indi
ator" (2.7) and by dual estimator (2.24).

2.4.2 Results

In pra
ti
al appli
ations of distributed parameter estimation problems, the in-

teresting quantities are usually values of the unknown 
oeÆ
ient at points or

in subdomains. Sin
e point values might not be de�ned properly, we repla
e

them by mean values in a small neighborhood of the interesting point. We will

therefore only 
onsider examples of error fun
tionals E(�) a
ting on fu; a; �g of

the form

E(fu; a; �g) =

Z




 (x) a(x) dx;

where  is a weighting fun
tion.

Example 1. Consider test 
ase 1 (see page 37) and assume we are interested

in the value of the 
oeÆ
ient at the point x

0

= (�

2

3

;�

2

3

). Using " = 0:05, we

set the weighting fun
tion to

 (x) =

�

1=(�"

2

) if jx� x

0

j < ";

0 otherwise:

Fig. 2.10 shows typi
al meshes as produ
ed by the duality error representa-

tion of Theorem 2.12 with respe
t to the fun
tional E(�), and by the estimate

(2.7) with respe
t to J(�). While the latter mostly sees the uniformly good ap-

proximation of a quadrati
 fun
tion by bilinear elements on a globally re�ned

mesh, the former adapts the mesh towards the evaluation point (�

2

3

;�

2

3

). The

�gure also shows the superiority as re�nement 
riterion of the dual estimator

(2.24) over the \energy indi
ator" (2.7).

Example 2. In order to 
he
k the a

ura
y of (2.24) for the a
tual estimation

of errors, we 
onsider a more 
hallenging example: take test 
ase 4 (page 39) and

as target fun
tional use the mean error in the left se
tor, whi
h is 
hara
terized

by the weight

 (x) =

�

1 if

x

1

3

� x

2

< �

x

1

3

; x

1

< 0;

0 otherwise:



2.5. ESTIMATES FOR THE CONSTRAINED PROBLEM 63

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1000 10000 100000

E
rr

o
r

Total number of degrees of freedom

Actual error E(e)
Estimated error

0

1

2

3

4

5

1000 10000 100000

R
a

ti
o

 b
e

tw
e

e
n

 e
s
ti
m

a
te

d
 a

n
d

 t
ru

e
 e

rr
o

r

Total number of degrees of freedom

Figure 2.11: Left: Comparison of a
tual error E(x � x

h

) and estimate (2.24).

Right: Overestimation ratio.

Fig. 2.11 shows that the error estimates have the 
orre
t order of magnitude,

but are not quite a

urate. This also holds for other examples. The reason for

this is presently un
lear.

2.5 Estimates for the 
onstrained problem

In this 
hapter, we have up to now derived error estimates for Problem 1.7

under the assumption that inequality 
onstraints 
an be negle
ted. We will

extend these estimates to the 
onstrained 
ase in this se
tion.

The basi
 problem in the in
orporation of inequality 
onstraints is that the

�rst order ne
essary 
onditions as stated in Problem 1.14 in
lude inequality


onstraints as well, although only impli
itly in the de�nition of the dual 
one

C

+

in (1.10) from whi
h the respe
tive Lagrange multipliers are 
hosen. The

solution is thus 
hara
terized by a variational inequality.

A general framework for error estimation for variational inequalities has

been proposed by Suttmeier and Blum, see [21, 62, 61℄. Although we obtain

related results, we will rather derive estimates for this problem by reformulating

it as an equality 
onstrained one whi
h we obtain by presuming that we know

the regions of the domain where the 
oeÆ
ient is at its bounds. For this, de�ne

by

I

0

= fx : a(x) = a

0

g; I

1

= fx : a(x) = a

1

g;

the sets where the exa
t solution a is at its bounds. Likewise, let

I

0

h

= fx : a

h

(x) = a

0

g; I

1

h

= fx : a

h

(x) = a

1

g;

be the sets where the numeri
al approximation is at its bounds. With this,

de�ne a Lagrangian by

L(x; �

0

; �

1

;S

0

; S

1

) = L(x) + h�

0

; a� a

0

i

S

0

+ h�

1

; a

1

� ai

S

1

; (2.25)

where L is the original Lagrangian as de�ned in Problem 1.7, and S

i

are sets

where 
onstraints a = a

i

will be pres
ribed. Then 
ontinuous and dis
rete
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solutions trivially satisfy the stationarity 
onditions of problems with equality


onstraints on the parameter:

r

x

L(x; �

0

; �

1

;I

0

;I

1

; y) = 0 8y 2 X

0

;

h


i

; a� a

i

i

I

i

= 0 8


i

2 L

1

; i = 0; 1;

(2.26)

and

r

x

L(x

h

; �

0;h

; �

1;h

;I

0

h

;I

1

h

; y

h

) = 0 8y

h

2 X

h

;

h


i;h

; a

h

� a

i

i

I

i

h

= 0 8


i;h

2 A

h

; i = 0; 1:

(2.27)

Here, the Lagrange multipliers are dis
retized by the same spa
es as the param-

eters, and the a
tive sets impli
itly depend on the solution. Sin
e the Lagrange

multipliers are de�ned only on the a
tive sets, we are free to extend them by

zero to the whole domain.

2.5.1 Estimates for the minimization fun
tional

With the 
onditions above, we �rst derive the following a posteriori estimate

with respe
t to the fun
tional J(�) for the bound 
onstrained problem. An

intuitive interpretation is given afterwards.

Theorem 2.13. Let � = fx; �

i

g and �

h

= fx

h

; �

i

h

g; i = 1; 2; be the solutions of

the inequality 
onstrained problems (2.26) and (2.27). De�ne by

I

i

+

= I

i

nI

i

h

; I

i

�

= I

i

h

nI

i

; i = 1; 2

that parts of the 
ontinuous and dis
rete a
tive set that are not in the 
ommon

subset of the two. Then there holds the error representation

J(x)� J(x

h

) =

1

2

h

r

x

L(x

h

;x� y

h

) + h�

0;h

; a� �

h

i

I

0

h

� h�

1;h

; a� �

h

i

I

1

h

i

+Q+R;

(2.28)

for all y

h

= f'

h

; �

h

;  

h

g 2 X

h

, with

Q =

1

2

n

h�

0;h

; a� a

0

i

I

0

�

� h�

0

; a

h

� a

0

i

I

0

+

o

�

1

2

n

h�

1;h

; a� a

1

i

I

1

�

� h�

1

; a

h

� a

1

i

I

1

+

o

;

and the nonlinear remainder R as in Theorem 2.1:

R = �

1

12

((a� a

h

)r(�� �

h

);r(u � u

h

)):

Proof. As upper and lower bounds are treated in exa
tly the same way, we only

show the proof of the theorem for the terms involving the lower 
onstraint and

denote the Lagrange multiplier for this 
onstraint by � = �

0

, the a
tive set by

I = I

0

, and likewise for I

h

;I

+

;I

�

. The derivation of the respe
tive terms for

the upper 
onstraint is straightforward based on the proof.
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Sin
e at the solutions �; �

h

, state equation and bounds are satis�ed with

respe
t to 
orresponding test spa
es, we have that

J(�)� J(�

h

) = L(�;I)�L(�

h

;I

h

)

= L(�;I

h

)�L(�

h

;I

h

)

| {z }

A

1

+L(�;I)�L(�;I

h

)

| {z }

A

2

:

The two parts are treated separately. For the �rst one, all integrals extend over

the same domains. Denoting e

�

= � � �

h

, we have by the same argument used

for the other estimates that

A

1

=

1

2

r

�

L(�;I

h

; e

�

) +

1

2

r

�

L(�

h

;I

h

; e

�

) +

1

2

Z

1

0

r

3

�

L(�

h

;I

h

; e

�

; e

�

; e

�

)s(s� 1)ds:

Sin
e the bounds terms in L are only quadrati
 in the variables, the third

derivative of L equals the third derivative of L, yielding the remainder term

R. For the �rst term, we use the stationarity 
ondition (2.26) to 
an
el the

terms involving domain integrals and to separate the integrals over the a
tive

sets into di�erent parts to obtain

r

�

L(�;I

h

; e

�

) = r

�

h

L(�;I) + h�; a� a

0

i

I

� h�; a� a

0

i

I

h

i

(e

�

)

= r

�

h

h�; a� a

0

i

I

+

� h�; a� a

0

i

I

�

i

(e

�

):

Using that aj

I

+

= a

0

, a

h

j

I

�

= a

0

, and �j

I

�

= 0, this term further redu
es to

r

�

L(�;I

h

; e

�

) = �h�; a

h

� a

0

i

I

+

+ h�

h

; a� a

0

i

I

�

Likewise, we �nd

r

�

L(�

h

;I

h

; e

�

) = r

x

L(x

h

; e) + h�

h

; a� a

h

i

I

h

+ h�� �

h

; a

h

� a

0

i

I

h

;

where the last term vanishes. By the �rst optimality 
ondition in (2.27), we


an repla
e the weight ê by any x� y

h

for y

h

2 X

h

.

The se
ond term A

2

, using 
an
ellation, redu
es to integrals over the a
tive

sets. Again noting that aj

I

= a

0

, �j

I

�

= 0, we have

A

2

= h�; a� a

0

i

I

� h�; a� a

0

i

I

h

= 0:

Putting it all together, and treating the terms due to the upper bound alike,

we obtain the 
laimed result.

2.5.2 Interpretation and evaluation

The error representation derived above has an intuitive interpretation. First,

note that if we identi�ed the a
tive set 
orre
tly, i.e. I

i

= I

i

h

; i = 1; 2, then the

term denoted by Q vanishes sin
e I

i

�

� ;. For this 
ase,

r

x

L(x

h

; �

0;h

; �

1;h

; �) = r

x

L(x

h

; �) + h�

0;h

; �i

I

0

� h�

1;h

; �i

I

1
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is the residual of the �rst optimality 
ondition in (2.26). As usual in a posteriori

energy estimates, this residual is weighted by some x � y

h

with an arbitrary

y

h

2 X

h

.

In the other 
ase, when we have not identi�ed the a
tive sets 
orre
tly, the

term Q does not vanish. However, it is quadrati
 in the error: for example, for

the �rst term in Q note that �

0

j

I

0

�

= 0 and a

h

j

I

0

�

= a

0

. Thus

h�

0;h

; a� a

0

i

I

0

�

= �h�

0

� �

0;h

; a� a

h

i

I

0

�

:

We may thus negle
t it and only work with the main part of the error repre-

sentation.

In Chapter 3, methods for the a
tual in
lusion of bounds into the solution

pro
ess are dis
ussed. The method of 
hoi
e there is an a
tive set method

whi
h in
ludes estimates for the Lagrange multipliers without expli
itly 
om-

puting them. The evaluation of the error representation above is therefore not

straightforward sin
e the �

i

h

are la
king. The following lemma states that the

evaluation is possible nevertheless:

Lemma 2.14. Denote by g

h

2 A

h

the dis
rete proje
tion of r

a

L(x

h

; �), i.e.

(g

h

; �

h

) = r

a

L(x

h

;�

h

) 8�

h

2 A

h

:

Then the main part of the error representation in Theorem 2.13 
an be written

as

r

x

L(x

h

;x� y

h

) + h�

0;h

; a� �

h

i

I

0

h

� h�

1;h

; a� �

h

i

I

1

h

= r

u

L(x;u� '

h

) +r

a

L(x; a� �

h

)� (g

h

; a� �

h

) +r

�

L(x;��  

h

):

Proof. Sin
e the Lagrange multipliers �

i

h

are only de�ned on the dis
rete a
tive

sets, we 
an de�ne

�

h

(x) =

8

<

:

�

0;h

for x 2 I

0

h

,

��

1;h

for x 2 I

1

h

,

0 elsewhere:

Sele
ting now the a-derivative in the optimality 
ondition (2.27), we have that

0 = r

a

L(x

h

; �

0;h

; �

1;h

;I

0

h

;I

1

h

; y

h

) = r

a

L(x;�

h

) + h�

0;h

; �

h

i

I

0

h

� h�

1;h

; �

h

i

I

1

h

= r

a

L(x;�

h

) + h�

h

; �

h

i

for all dis
rete test fun
tions �

h

2 A

h

. We thus see that g

h

= ��

h

and

h�

0;h

; a� �

h

i

I

0

h

� h�

1;h

; a� �

h

i

I

1

h

= h�

h

; a� �

h

i = � (g

h

; a� �

h

) :

The result shows that even if we did not 
ompute the Lagrange multipliers,

the error estimate 
an be evaluated: the missing multipliers 
an be obtained

by proje
tion of the gradient of the Lagrangian. Sin
e this proje
tion is lo
al

for the dis
ontinuous shape fun
tions of A

h

, and sin
e g

h

= ��

h

is zero outside

the a
tive sets, this is 
heap.
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Figure 2.12: Comparison of true error, and error estimates in
luding bound


onstraints (2.29), and negle
ting these 
onstraints (2.7). Left: Values of error

and estimates; values with the wrong sign are plotted at �1. Right: Ratio

between estimated and true error.

Remark 2.15. If the linear fun
tional r

a

L(x; �) allows a Riesz representation

g 2 L

1

= A

0

, then the identity in Lemma 2.14 
an be written in a way more

appealing to intuition as

r

x

L(x

h

;x� y

h

) + h�

0;h

; a� �

h

i

I

0

h

� h�

1;h

; a� �

h

i

I

1

h

= r

u

L(x;u� '

h

) + (g � P

h

g; a� �

h

) +r

�

L(x;��  

h

);

where P

h

g is the proje
tion of g onto A

h

. In some 
ases, this representation g


an be obtained simply. For example, if r(a) =

1

2

kak

2

, then the Riesz represen-

tation g of r

a

L(x

k

; �) is

g = �a

k

+ru

k

� r�

k

:

Given the above 
onsiderations, lo
alized re�nement 
riteria 
an be obtained

from the error representation using the same method as in Se
tion 2.1, i.e. by


ell wise integration by parts of the individual terms and approximation of the

weights using the dis
rete solution.

2.5.3 Reliability of estimates

In this se
tion, we assess the quality of error estimates based on Theorem 2.13

and Remark 2.15. We only 
onsider the main part of the error representation

in Theorem 2.13, i.e.

� =

1

2

fr

u

L(x;u� '

h

) + (g � P

h

g; a� �

h

) +r

�

L(x;��  

h

)g ; (2.29)

where the individual terms are expanded into 
ell and fa
e 
ontributions as

shown in Theorem 2.2.

Fig. 2.12 shows the value of this estimate 
ompared to the true error for test


ase 2, where the exa
t 
oeÆ
ient is at either bound everywhere. Also shown

is the value of the error estimate (2.7) whi
h was derived under the assumption

of no bound 
onstraints.
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While the estimate negle
ting bounds does not a

urately tra
k the error

and even mispredi
ts its sign, the estimate in
luding bounds is relatively a

u-

rate, with overestimation fa
tors bounded and in the range

1

2

: : : 3.

2.5.4 Estimates for arbitrary fun
tionals

The ideas used in Se
tions 2.4 and 2.5.1 
an be 
ombined to obtain an error

representation for the 
onstrained problem with respe
t to arbitrary fun
tionals:

Theorem 2.16. Let E : X

g

! R be an error fun
tional a
ting on x = fu; a; �g,

i.e. it does not evaluate the Lagrange multipliers �

i

of the bound 
onstraints.

Let � = fx; �

i

g and �

h

= fx

h

; �

i

h

g; i = 1; 2; be the solutions of the inequality


onstrained problems (2.26) and (2.27), and de�ne by

^

�;

^

�

h

the solutions of the

dual problems

r

2

�

L(�;I

0

;I

1

;

^

�; �) = �r

�

E(�; �) 8� 2 X

0

� L

1

� L

1

; (2.30)

r

2

�

L(�

h

;I

0

;I

1

;

^

�

h

; �

h

) = �r

�

E(�

h

; �

h

) 8�

h

2 X

h

�A

h

�A

h

; (2.31)

with L as de�ned in (2.25). Then the a posteriori error estimate

E(x)�E(x

h

) =

1

2

n

�(�

h

;

^

� � i

h

^

�) + �̂(�

h

;

^

�; � � i

h

�)

o

+Q+R; (2.32)

holds with residuals

�(�

h

; �) = r

�

L(�

h

; �);

�̂(�

h

;

^

�; �) = r

�

E(�

h

; �) +r

2

�

L(�

h

;

^

�; �);

and remainder terms

Q(�; �

h

;

^

�;

^

�

h

) =

1

2

n

h�̂

0

; a

h

� a

0

i

I

0

+

�h�̂

0;h

; a� a

0

i

I

0

�

+h�

0

; â

h

i

I

0

+

�h�

0;h

; âi

I

0

�

o

�

1

2

n

h�̂

1

; a

h

� a

1

i

I

1

+

� h�̂

1;h

; a� a

1

i

I

1

�

+ h�

1

; â

h

i

I

1

+

� h�

1;h

; âi

I

1

�

o

and

R(x; x

h

; x̂; x̂

h

) =

1

2

Z

1

0

n

r

3

x

E(x

h

+ se; e; e; e)

+r

3

x

L(x

h

+ se; e; e; e) +r

4

x

L(x

h

+ se; x̂+ sê; e; e; e)

o

s(s� 1) ds;

where e = x� x

h

, ê = x̂� x̂

h

.

Proof. We use the same te
hniques as in the proofs of Theorems 2.11 and 2.13.

Steps that were already performed there are not dis
ussed again. For simpli
ity,

we again restri
t attention to the lower bounds and denote � = �

0

, et
 as in

the proof of Theorem 2.13. The terms due to the upper bound 
an easily be

added.

Let � = fx; �; x̂; �̂g. Then 
ontinuous and dis
rete primal and dual solutions

are solutions to

r

�

�(�; I; �) = 0; r

�

�(�

h

;I

h

; �

h

) = 0;
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for all 
ontinuous and dis
rete test fun
tions �; �

h

, with the joint Lagrangian

�(�;S) = E(x) +r

x

L(x;S; x̂);

where the Lagrangian L as de�ned in (2.25). Then,

E(x)�E(x

h

) = �(�; I)� �(�

h

;I

h

)

= �(�;I

h

)� �(�

h

;I

h

)

| {z }

A

1

+�(�; I)� �(�; I

h

)

| {z }

A

2

:

The integrals in the term denoted by A

1

extend over the same domains and 
an

be transformed as in all previous examples to yield

A

1

=

1

2

r

�

�(�; I

h

; e

�

)

| {z }

B

1

+

1

2

r

�

�(�

h

;I

h

; e

�

)

| {z }

B

2

+

1

2

Z

1

0

r

3

�

�(�

h

+ se

�

;I

h

; e

�

; e

�

; e

�

)s(s� 1) ds

| {z }

B

3

:

The four terms A

2

; B

1

; B

2

; B

3

will now be dis
ussed separately.

First, expanding A

2

yields

A

2

= h�̂; a� a

0

i

I

+

� h�̂; a� a

0

i

I

�

+ h�; âi

I

+

� h�; âi

I

�

Sin
e aj

I

+

= a

0

and � 
an be extended by zero to I

�

, the �rst, se
ond, and

fourth term vanish. Using the de�ning equations for the dual solution x̂, we see

that âj

I

+

= 0 if as assumed E(x) does not depend on �; the fourth term thus

vanishes as well.

As in previous proofs, the terms B

1

, B

2

and B

3

yield the term Q, the main

part of the error representation, and the remainder term R, respe
tively.

Regarding the evaluation of this error representation, or of its main part

for pra
ti
al purposes, the same possibilities exist as dis
ussed in Se
tions 2.4

and 2.5.1. In parti
ular, the use of a nearby Gau�-Newton system for the dual

solution instead of the full Newton system is possible, resulting in the same

additional term H

2

as in Theorem 2.12.

2.6 Pra
ti
al aspe
ts of mesh re�nement

In this 
hapter, a number of a posteriori estimates have been derived. Besides

some that used other te
hniques, we presented several that were derived using

Galerkin orthogonality and the Lagrangian stru
ture of the problem:

� (2.4) for the error with respe
t to the minimization fun
tional J(�);

� (2.22) and (2.24) for the error with respe
t to arbitrary fun
tionals E(�)

of the solution;

� (2.28) for the error with respe
t to J(�) of the bound 
onstrained problem;
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� (2.32) for arbitrary fun
tionals for the 
onstrained problem.

These estimates had in 
ommon that their pra
ti
al evaluation involves inte-

grating by parts the given terms, thus splitting the estimates into 
ell and fa
e

residuals. These residuals are either weighted by a quantity derived from the

solution itself (in 
ase of estimates for J(�)) or from the solution of a dual prob-

lem (in 
ase of estimates for arbitrary fun
tionals). The pro
ess of integrating

by parts and splitting into di�erent terms has been made expli
it for the �rst

estimate above in Se
tion 2.1.1 and exemplary in Theorem 2.2. For all other

estimates, this pro
ess is implied and ne
essary for useful estimates that 
an

also be used for re�nement.

After splitting the estimates into 
ell-wise terms, we obtain sums over the


ells of the state mesh T and of the mesh used for the parameter dis
retization

T

a

. These terms are not split up arbitrarily but rather possess a natural asso
i-

ation with either of these meshes. It is readily seen that 
oarsening of one mesh

does not imply that the quantities on the other mesh generate a larger residual,

and vi
e versa for re�nement. Therefore, the resulting re�nement 
riteria for

the two meshes are independent of ea
h other.

Ex
ept for the 
ases dis
ussed in Se
tion 2.2.3 where the a
tual evaluation

of the estimates in
luding the approximation of weight fa
tors presented some

diÆ
ulties, the estimates listed above 
an therefore be used to drive re�nement

of both meshes without additional heuristi
s.



Chapter 3

Bound 
onstraints on the

parameters

In this 
hapter, we will dis
uss methods to enfor
e bound 
onstraints

a

0

� a(x) � a

1

:

Of 
ourse, at least guaranteeing a lower bound 0 < � � a(x) is essential for

the well-posedness of the 
ontinuous problem, but enfor
ement of bounds with

physi
al values a

0

; a

1

is an important goal when trying to identify parameters

that a
tually bear physi
al meaning.

Within this 
hapter, we will �rst dis
uss a su

essful method { a modi�ed

a
tive set strategy { to enfor
e these bounds, then brie
y mention two methods

{ transformation and proje
tion { that did not work as well as expe
ted. An

appli
ation is shown at the end.

3.1 Treating parameter bounds by a
tive sets

One very su

essful approa
h to treating inequality 
onstraints in �nite dimen-

sional optimization is the use of so-
alled a
tive set methods. In this se
tion,

we propose an a
tive set strategy that di�ers from the usual methods (see, e.g.,

No
edal and Wright [51℄) in two respe
ts:

� It s
ales the Lagrange multipliers in a

ordan
e with the size of the 
ells

on whi
h they are de�ned. This allows to view them as dis
retized versions

of a 
ontinuous fun
tion, and avoids ill-
onditioned problems for lo
ally

re�ned meshes.

� It modi�es the strategy by whi
h the a
tive set is determined, guarantee-

ing the eÆ
ien
y of the method.

A
tive set methods work by identifying a set of a
tive 
onstraints in ea
h non-

linear step that are then 
onsidered as equalities. If this set is 
hosen appropri-

ately, then it 
an be guaranteed that the set of 
onstraints that are a
tive at

the solution is identi�ed at some point in the pro
ess. Choosing the a
tive set

is not 
ompli
ated and 
an be done using a simple prepro
essing step before

71
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ea
h iteration and is parti
ularly 
heap if, as is the 
ase here, the 
onstraints

are simple bounds.

In order to des
ribe the a
tive set strategy that was used, we brie
y review

how a
tive sets work in the �nite dimensional 
ase �rst, then how they 
an be

de�ned in the setting of a �nite element dis
retization of 
ontinuous problems.

The �nite dimensional 
ase

A
tive set strategies for �nite dimensional problems with inequality 
onstraints




i

(x) � 0 are based on the observation that if x

�

2 R

n

is a lo
al solution of the

inequality 
onstrained problem

min

x

f(x); su
h that 


i

(x) � 0; i 2 I;

then it trivially is also a solution of the following problem:

min

x

f(x); su
h that 


i

(x) = 0; i 2 I

a

� I; (3.1)

where the a
tive set I

a

of 
onstraints is de�ned by I

a

= fi 2 I : 


i

(x

�

) = 0g. If

we knew the a
tive set I

a

, we 
ould restate the inequality 
onstrained problem

as an equality 
onstrained one. Unfortunately, the a
tive set depends impli
itly

on the unknown exa
t solution x

�

. A
tive set methods therefore work with

approximations W

k

� I to the exa
t a
tive set I

a

, and try to make sure that

W

k

! I

a

.

In order to derive an algorithm by whi
h we 
an identify W

k

for the spe
ial

appli
ation dis
ussed in this work, let x = fu; a; �g and 
onsider the Lagrangian

for the 
onstrained dis
rete problem,

L




(x; �) = L(x) + �

T


(a);

where L(x) is the Lagrangian of the problem without inequalities, and 


i

(a) =

a

i

� a

0

(for simpli
ity, we only 
onsider lower bounds). Then the optimality


ondition in
ludes the equations

r

a

L




(x

�

; �

�

) = r

a

L(x

�

) +r
(a

�

)

T

�

�

= 0; �

i

� 0: (3.2)

Due to the spe
ial stru
ture of the bound 
onstraints, r
 = 1, and for the

optimal Lagrange multiplier

�

�

= �r

a

L(x

�

) (3.3)

holds. If we have not yet found the optimum, the residual of the �rst equation

in (3.2) will in general not vanish. However, we 
an de�ne by

�

k

= �r

a

L(x

k

) (3.4)

an approximation to the exa
t Lagrange multiplier. Sin
e the gradient of the

Lagrangian is a �rst order approximation of the dire
tion in whi
h a variable

will move in the next step, we 
an take the sign of the entries of �

k

to estimate
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whether the respe
tive 
omponent of a

k

will move into the feasible or infeasible

dire
tion in the next step, if it is at the bounds now. A
tive set methods

then �x those parameters a

i

k

at the bound a

0

if they are already at the bound

and are expe
ted to move into the infeasible dire
tion. In order to guarantee


onvergen
e W

k

! I

a

, pra
ti
al methods impose a set of additional rules on

the 
hoi
e of W

k

in ea
h step.

The dis
retized 
ase

If we 
onsider the dis
retized Newton steps, we need to de�ne whi
h parameter

degrees of freedom we want �x in ea
h step. The working sets W

k

are again

sets of indi
es i and 
an be determined by Lagrange multipliers that we will

dis
retize in the same way as the parameter a

h

itself. A semi-formal derivation

yields that in analogy to (3.4), a 
ontinuous Lagrange multiplier 
an be de�ned

by

(�

k

; �)

L

2
= �r

a

L(x

k

; �) 8� 2 A:

Without attempting to justify this formula in a stri
t sense, we dis
retize the

Lagrange multiplier. For this purpose, re
all that as basis for the parame-

ter spa
e A

h

we have 
hosen the shape fun
tions f�

i

g from Q

r

d

(T

a

). Then,

a

k;h

=

P

i

a

i

k;h

�

i

, and we likewise de�ne a dis
rete Lagrange multiplier by

�

h

=

P

i

�

i

h

�

i

. With this, we de�ne the approximate Lagrange multiplier by

(�

h

; �

h

) = �r

a

L(x

k

; �

h

) 8� 2 A

h

;

i.e. �

h

is the L

2

proje
tion of �r

a

L(x

k

; �) onto A

h

. This quantity is easily


omputed, as the right hand side is already available as right hand side of the

Newton step, and the left hand side only involves a mass matrix. The latter

is parti
ularly simple if dis
ontinuous elements are used. Using this multiplier

estimate, we 
an de�ne the dis
retized working set by

W

k

=

�

i : a

i

k;h

= a

0

^ �

i

h

< 0

	

:

Remark 3.1. De�ning the Lagrange multipliers dire
tly on the dis
retized

Newton step instead of the 
ontinuous level would lead to worse s
aling proper-

ties. This is re
ognized from the observation that with the de�nition above, we

obtain for �

h

the expression

�

h

= �M

�1

a

J

a

;

with (J

a

)

i

= r

a

L(x

k

;�

i

), while a de�nition of the Lagrange multipliers on the

dis
rete set would yield a similar formula but with the mass matrix M

a

on A

h

repla
ed by the identity matrix. For nonuniform meshes, this results in Lagrange

multipliers of whi
h the sizes are no more 
omparable.

Sele
ting the a
tive set

Most standard a
tive set methods are not suited for large numbers of 
on-

straints, or in�nite dimensional problems, sin
e they allow only one 
onstraint
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to be added or removed from the working set in ea
h step, and require that a

quadrati
 problem is solved upon ea
h 
hange in the working set. This results

in an exponential growth of the worst 
ase numeri
al e�ort with the number

of 
onstraints. Although this worst 
ase behavior rarely o

urs in pra
ti
e,

the a
tual number is still prohibitively high (at least linear in the number of

parameters) for the problems 
onsidered in this work.

These methods are therefore not appli
able for the problems we 
onsider

here, for at least two reasons:

� We 
onsider problems with up to several thousand parameters, ea
h 
on-

strained by lower and upper bounds. Thus, any attempt to solve one

quadrati
 subproblem per 
hange in the a
tive set is doomed to ex
eed


omputational possibilities.

� On ea
h grid, we only make a small number of Newton steps. Sin
e we

do not aim for high a

ura
y on a �xed grid, there is not point in aiming

at identifying the a
tive set exa
tly.

Therefore, we use a modi�ed approa
h where we 
hoose the a
tive set inde-

pendently in ea
h Newton step, and only solve one quadrati
 problem with this

set rather than iterating with the same quadrati
 model until we have found the

exa
t a
tive set for this step. This has the drawba
k that we 
annot prove that

we do not run into a 
y
ling a
tive set, but it has the advantage that we 
an

treat even very large problems. In pra
ti
e, this strategy has proven su

essful

in all appli
ations.

The 
omplexity of the method 
an be inferred from the following 
onsider-

ations:

� Before ea
h step, the a
tive set is determined by looking at those parame-

ters that are already at their bounds, and the gradient with respe
t to the


oeÆ
ient. Sin
e this gradient is available for the Newton step anyway,

this is 
heap.

� We then �x some parameters and solve for the Newton step with these

equality 
onstrained parameters. Sin
e �xing these parameters is equiv-

alent to deleting the respe
tive rows and 
olumns of the full or redu
ed

Hessian and the right hand side, this step is not more expensive than

solving the un
onstrained problem.

� Deleting rows and 
olumns is simple even if a matrix is not known ex-

pli
itly but only by appli
ation to a ve
tor. Therefore, this approa
h is

simple to implement also for the 
ase of the S
hur 
omplement (redu
ed

Hessian) method used in this thesis (see Se
tion 1.7).

� As an iterative s
heme is used to invert the S
hur 
omplement matrix, we

note that deleting �xed parameters redu
es the size of the matrix and the


ondition number of the resulting matrix is at least not larger than before.

Sin
e often a non-negligible number of parameters is �xed, the 
ondition

number may even be signi�
antly smaller, a

elerating 
onvergen
e.
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Figure 3.1: S
aling fun
tions for the parameter.

Summarizing, the proposed method yields a very eÆ
ient s
heme that is su
-


essfully applied even to very large problems with several thousand parameter

degrees of freedom.

3.2 Treating parameter bounds by transformation

As an alternative to the a
tive set method introdu
ed in the previous se
tion,

we tried to handle parameter bounds by transformation. To do so, we introdu
e

a new variable q(x) and de�ne a unique, stri
tly monotone fun
tion a = a(q)

su
h that

0 < � � inf

q2R

a(q) � a

0

;

a

1

� sup

q2R

a(q) � 1:

One may 
hoose in�mum and supremum of a(q) equal to a

0

and a

1

, respe
tively,

in whi
h 
ase the bound 
onstraints are satis�ed exa
tly. In pra
ti
e, however,

it may be better to allow for a 
ertain violation of these bounds and only enfor
e

0 < � � inf

q

a(q) stri
tly, in order to redu
e the nonlinearity in the working

range a

0

� a � a

1

, and to avoid bad s
aling. Possible s
aling fun
tions that

were tried are

a

1

(q) =

�

a

0

(exp(q) + 1) for q < 0,

a

0

(q + 2) for q � 0;

a

2

(q) =

2


1

�

ar
tan(q) + 


2

;

where for the se
ond fun
tion 


1

=

1

2

(~a

1

� ~a

0

), 


2

=

1

2

(~a

1

+ ~a

0

), ~a

0

> 0, and

[~a

0

; ~a

1

℄ � [a

0

; a

1

℄ is an interval that in
ludes (but may be larger than) the range

of physi
al parameters. Fig. 3.1 shows a plot of these two s
aling fun
tions,

with ~a

i

= a

i

; i = 1; 2. To help in the 
onvergen
e of Newton steps, one should

in pra
ti
e use a smoother version of a

1

, for example in C

2

or even C

1

.

Compared to the a
tive set strategy, enfor
ing bounds by transformation did

not work too well. This 
an, among other fa
tors, be attributed to the in
rease

in nonlinearity, for
ing small step lengths and thus slowing down 
onvergen
e.
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Figure 3.2: Comparison of identi�ed 
oeÆ
ient for various s
aling fun
tions.

Furthermore, the approximation of the exa
t 
oeÆ
ient was not as good as

when the a
tive set strategy was used, again due to the fa
t that an exa
t

enfor
ement of the bounds is only possible at the 
ost of strong nonlinearities.

Fig. 3.2 shows the results of a 
omparison for a one-dimensional version

of test 
ase 2 (see page 37). The \identity s
aling" used a(q) = q, while the

\exponential" and \ar
 tangent" s
aling used the fun
tions de�ned above with


onstants set su
h that the allowed range is slightly larger than the exa
t max-

imal and minimal values. For the \stri
t ar
 tangent" s
aling, the bounds are

enfor
ed exa
tly. The identity s
aling was in
luded for 
omparison.

Although in this noise free 
ase all s
alings should theoreti
ally re
over the

solution well, it is obvious that the identity s
aling is the best strategy. This

holds for other 
ases as well, unless the re
overed 
oeÆ
ient be
omes negative

where the identity s
aling fails, of 
ourse.

Summarizing, this approa
h is signi�
antly less well suited to the problems

under 
onsideration, 
ompared to the a
tive set strategy. It is useful to enfor
e

positivity of 
oeÆ
ients but its drawba
ks prevent its use for more pra
ti
al

appli
ations.

3.3 Treating parameter bounds by proje
tion

Another, simpler, but equally unsu

essful, alternative is to 
ompute the sear
h

dire
tion Æx

k

as in the Newton step without any 
onstraints on the bounds, but

then only 
onsider the proje
tion onto the feasible set with respe
t to these

bounds,

x

k+1

= P

[a

0

;a

1

℄

(x

k

+ �

k

Æx

k

) ;
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where the proje
tor P

[a

0

;a

1

℄

applied to x = fu; a; �g is de�ned by

P

[a

0

;a

1

℄

u = u; P

[a

0

;a

1

℄

a =

8

<

:

a

0

if a < a

0

a if a

0

� a � a

1

a

1

if a > a

1

; P

[a

0

;a

1

℄

� = �:

Unfortunately, this approa
h fails sin
e the sear
h dire
tions are be
oming

almost perpendi
ular to the 
onstraint. Only ba
k-proje
ting the parameters

while not tou
hing the state variable a

ordingly then introdu
es a strong vio-

lation of the state equation, whi
h for
es us to take small steps.

The solution to this is to �rst proje
t the new parameter onto the feasible

set, and from this 
ompute state and adjoint variable. The drawba
k of this

is that, again, we proje
t away the larger part of the 
omputed parameter

update on
e sear
h dire
tions are be
ome mostly orthogonal to the 
onstraints.

However, if we do not solve the linear equations to very high equations, the

remaining small tangential 
omponent of the update is then dominated by the

iteration error and is useless as a sear
h dire
tion.

Thus, if we do not want to solve the linear Newton steps to high a

ura
y,

it is ne
essary to proje
t away 
onstrained parameters before, rather than after

solving. This is what the a
tive set strategy dis
ussed above basi
ally does.

3.4 Results

In this 
hapter, three methods for the in
orporation of bound 
onstraints have

been dis
ussed. While the approa
h using a transformation of the parameter

su�ers from ill-
onditioning, the 
hosen a
tive set strategy allows to solve even

very large problems, with up to thousands of parameters, at the same or even

lower numeri
al 
ost as for the un
onstrained problem.

A third approa
h using a proje
tion of the sear
h dire
tion, was shown to

be related to the a
tive set method, but su�ered from problems when linear

systems are not solved to high a

ura
ies. In that 
ase, the remaining update

dire
tion after proje
tion in
ludes the ampli�ed error from the inexa
t iterative

inversion of the matrix. In usual appli
ations, the inversion of the Hessian is

only performed up to a redu
tion in linear residual of 10

�2

or 10

�3


ompared

to the initial residual. This explains why the resulting sear
h dire
tions of the

proje
tion method are too ina

urate for pra
ti
al purposes. Therefore, the

proje
tion method 
an only be used if a signi�
antly higher numeri
al 
ost is

a

epted. Sin
e this is hardly possible for the large s
ale problems dis
ussed

here, the proje
tion method is not an option.

Finally, we brie
y present one example of using bounds in the identi�
ation

pro
ess. The method used was the a
tive set strategy dis
ussed above. We


onsider test 
ase 2, where the exa
t 
oeÆ
ient varies between a

0

= 1 and

a

1

= 8. Fig. 3.3 shows the identi�ed 
oeÆ
ient after a number of iterations,

with and without noise, and for di�erent bounds imposed. The situation in the

right 
olumn where we impose exa
t bounds 
orresponds to an identi�
ation

problem where we know that the material is 
omposed of two parts, but the

interfa
e is unknown.
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Figure 3.3: E�e
t of in
orporating bounds. Top row: No measurement error.

Bottom row: 2% measurement error. The a
tual bounds imposed in ea
h 
olumn

are stated in the middle.

It is 
lear that in
orporating bounds a
ts as a stabilization, even if not

the exa
t lower and upper bounds are 
hosen. In the 
ase of no bounds (left


olumn), the identi�ed 
oeÆ
ient transgresses the shown range in some parts

of the domain already for the 
ase of no noise. On the other hand, with noise

added, the identi�
ation using bounds is rather stable.



Chapter 4

Multiple experiments

In many appli
ations we have multiple measurements z

i

. For example, we

may have a situation where we have a high noise level in our measurements

and 
hoose to measure several times for the same situation, or for di�erent

sour
es, in order to redu
e the e�e
t of the noise to the un
ertainties in the

re
overed 
oeÆ
ients. Or, we may be in a situation where one measurement

is not even suÆ
ient to re
over the 
oeÆ
ients. A similar situation arises if

experiments are not set up willingly, but if naturally o

urring situations are

used for measurements, for example signals generated by earthquakes; we will

subsume this 
ase likewise with the term multiple experiments.

A similar situation is so-
alledmulti-physi
s inversion: we try to re
over pa-

rameters from di�erent types of experiments. For example, subsurfa
e imaging

in geophysi
al prospe
tion is often 
ondu
ted by 
olle
ting data from entirely

di�erent sour
es, for example from seismi
 imaging, gravimetry data (re
ording

the lo
al gravitational for
e on a unit weight at di�erent pla
es, usually mea-

sured by 
ying a gravimeter over the target area), magnetotelluri
 data (re
ord-

ing the lo
al magneti
 �elds), DC resistivity (measuring the ele
tri
 �eld for a

given potential), et
. These measurements are des
ribed by a set of di�erent

state equations, but depend in some way or other on the same set of parameters

(density, elasti
ity, ...) whi
h we would like to re
over. Sin
e ea
h measurement

alone may have little or no sensitivity for 
ertain parameters, joint inversion is

often the only possibility to obtain a set of 
onsistent parameters.

In this 
hapter, we dis
uss a mathemati
al formulation for multiple exper-

iments potentially des
ribed by multiple physi
s and brie
y des
ribe a frame-

work for the implementation of su
h a program. Examples will be given for

the 
ase of multiple experiments for the ellipti
 equation 
onsidered in the pre-

vious 
hapters. Further appli
ations involving the Helmholtz equation will be

dis
ussed in the �nal 
hapter.

4.1 Mathemati
al formulation

Multiple experiment 
ase. Based on the statement of the problem in Chap-

ter 1, the extension of the parameter estimation problem for measurements de-

s
ribed by the same state equation is simple. Considering the 
ase that the state

79
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equation is the parameter-dependent di�usion equation dis
ussed in previous


hapters, ea
h measurement now is 
hara
terized by a di�erent set of applied

boundary data g

i

and right hand sides f

i

. For the set of all these experiments,

let us de�ne the ve
tors z = fz

1

; : : : ; z

N

g of measurements, u = fu

1

; : : : ; u

N

g

of solutions, and � = f�

1

; : : : ; �

N

g of Lagrange multipliers, where N denotes

the number of experiments made. We assume that in all realized experiments

the parameter a(x) is un
hanged. Goal is then the minimization of deviations

m(u

i

�z

i

) subje
t to the 
onstraint that the u

i

2 V

g

i

satisfy the state equations

�

aru

i

;r'

�

= (f

i

; ') 8' 2 V

0

:

Assuming equal noise levels on all measurements, i.e. giving all observations the

same weight, we de�ne the Lagrangian in analogy to Problem 1.8 to be

L(x) =

N

X

i=1

m(u

i

� z

i

) + �r(a) +

N

X

i=1

��

aru

i

; �

i

�

� (f

i

; �

i

)

�

; (4.1)

where x = fu; a;�g 2 X

g

= V

g

1
�� � ��V

g

N

�A�V

0

�� � ��V

0

. The 
orresponding

�rst order 
onditions for solutions x 2 X

g

then read:

r

x

L(x; y) = 0 8y 2 X

0

; (4.2)

where X

0

= V

0

� � � � � V

0

� A

0

[a℄ � V

0

� � � � � V

0

is the tangential 
one to X

g

.

This nonlinear system is solved using Newton's method in the same way as in

Se
tion 1.3.

Multi-physi
s 
ase. Generalizing the formulation above to the 
ase of dif-

ferent state equations des
ribing the di�erent measurements, joint inversion is

des
ribed by the following quantities:

� The solutions u

i

are now di�erent quantities, having di�erent units and

meanings, ea
h denoting the measured quantity of one experiment.

� The single 
oeÆ
ient a is now in general a whole set of parameters, some

of them possibly spa
e or time dependent.

� The governing equations are des
ribed by di�erent operators A

i

and right

hand sides f

i

. Not all experiments need to be sensitive to all 
oeÆ
ients,

i.e. ea
h A

i

may depend on only a subset of a.

� The measurement fun
tionals m

i

(�) are di�erent. For example, they may

evaluate time series, s
alar or spatially distributed values. Also, they may

have di�erent noise and 
on�den
e levels asso
iated with them, whi
h we

in
orporate by asso
iating di�erent weights �

i

to ea
h of them.

All this is in
luded in the following joint formulation, analogous to Problem 1.7:

Problem 4.1 (Continuous problem). Minimize the regularized deviation

J(u) =

N

X

i=1

�

i

m

i

(u

i

� z

i

) + �r(a)
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of the u

i

from the measurements z

i

, with � being a regularization parameter,

subje
t to the state equations

A

i

(a;u

i

'

i

)� (f

i

; '

i

) = 0 8'

i

2 V

i

;

where A

i

(�; �; �) are the semilinear forms asso
iated with the operators A

i

and

the set of parameters a, as well as to boundary and initial 
onditions and


onstraints on the parameters

a

0

� a � a

1

:

This problem is transformed into a Lagrangian formulation in the same way

as in Se
tion 1.2.

4.2 Solution of the linear problems

After de�ning and dis
retizing the Newton step for the multiple experiment


ase in the same way as in Se
tion 1.5, we are fa
ed with the solution of the

following system of linear equations in ea
h Newton step 
ompletely analogous

to the system (1.15):

0

�

M B

T

A

T

B R C

T

A C 0

1

A

0

�

Æu

k

Æa

k

Æ�

k

1

A

=

0

�

F

1

F

2

F

3

1

A

: (4.3)

Matri
es and ve
tors are now 
omposed of blo
ks for the di�erent experiments.

By 
onsidering the dimension of this system,

n =

N

X

i=1

#u

i

k

+#a

k

+

N

X

i=1

#�

i

k

;

where #' denotes the number of degrees of freedom in the dis
retized variable

', it is obvious that a dire
t or iterative solution of the entire system is not

possible if we have more than a small number of experiments.

However, sin
e measurements and state equations for di�erent experiments

are independent of ea
h other and are only 
oupled by the 
ommon set of

parameters, the system matrix above has the following blo
k stru
ture:

Using the Gau�-Newton modi�
ation, the S
hur 
omplement of this matrix

allows the reformulation of (4.3) to the following equation for Æa

k

,

(

R+

N

X

i=0

C

T

i

A

�T

i

M

i

A

�1

i

C

i

)

Æa

k

= F

2

�

N

X

i=1

C

T

i

A

�T

i

�

F

i

1

�M

i

A

�1

i

F

i

3

�

; (4.4)
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and then in turn for the single experiment state and adjoint variables Æu

k

and

Æ�

k

Æu

i

k

= A

�1

i

(F

i

3

� C

i

Æa

k

); (4.5)

Æ�

i

k

= A

�T

i

(F

i

1

�M

i

Æu

i

k

): (4.6)

Therefore, assuming we have a solver for the single operator matri
es A

i

, we


an invert the large system with an e�ort that is proportional to the num-

ber of experiments N . Furthermore, sin
e the solution of forward and adjoint

equations for di�erent experiments, as well as setting up the right hand sides

is independent between experiments, the solution of the system 
an easily be

parallelized.

4.3 Implementation

If many experiments are involved in one inversion, the numeri
al solution 
an

be 
hallenging: as ea
h experiment requires memory resour
es of the same order

as one forward problem, single 
omputers 
an qui
kly be
ome too small for a

multiple experiment inversion problem. Also, sin
e we need many nonlinear

steps and many solutions of forward and ba
kward problems are ne
essary in

ea
h nonlinear step, 
omputing time requirements are even higher.

For this reason, an approa
h has been developed to abstra
t the imple-

mentation of experiments to a simple interfa
e between a master pro
ess and

slaves, ea
h slave representing one experiment. Using this abstra
tion, individ-

ual experiments are sealed entities of whi
h only the interfa
e exists outside.

While this makes the implementation of the master pro
ess more 
omplex, it

allows the simple pla
ement of slaves on di�erent 
omputers, thus using the


omputational resour
es of workstation 
lusters.

In Fig. 4.1, the requirements on the interfa
es of the three most important


lasses representing the master and the individual experiment slaves, as well

as the des
ription of parameters are listed. In the a
tual implementation, the

obje
ts need to provide a few additional fun
tions that are used mostly for

bookkeeping, su
h as 
omputing the mis�ts or errors.

The interfa
es of the di�erent 
lasses are stri
tly separated and kept mini-

mal. Information 
ow between distin
t modules of the program is restri
ted to

a minimum, and di�erent obje
ts only 
ommuni
ate through their interfa
es,

rather than by a

essing mutual data. This way, it is possible to only provide

the interfa
e on one 
omputer while 
omputations are a
tually performed on

a di�erent one, thus parallelizing the 
omputations for di�erent experiments.

Sin
e passing parameter ve
tors to fun
tions from this interfa
e is relatively


heap 
ompared to the a
tual 
omputations done on them, the speed-up when

using multiple 
omputers is almost optimal.

Furthermore, sin
e the interfa
e above is �xed, it is simple to extend the

program with additional equations des
ribing di�erent settings; for the master

pro
ess, the addition of a new experiment type is transparent.
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Master obje
t

Manages data:

� Manages slave obje
ts

� Manages representation of the

parameter

� Present value a

k

of the param-

eters

Provides fun
tions:

� 
ompute rhs,


ompute updates,

perform updates,


ompute residual: distribute

work to respe
tive fun
tions of

parameter representation and

slaves

� solve:

{ out: solution Æa of the �rst

equation of the S
hur 
om-

plement system (4.4)

Parameter representation

Manages data:

� Des
ription of parameters,

e.g. dis
retization of a dis-

tributed �eld

� Des
ription of bounds on ea
h

parameter

Provides fun
tions:

� 
ompute rhs:

{ out: F

2

� multiply by R/M:

{ in: a

{ out: Ra, M

a

a

Ea
h slave obje
t

Manages data:

� State mesh T

i

� Present values u

i

k

; �

i

k

of the

state and adjoint variables

� Copy of present parameter a

k

Provides fun
tions:

� 
ompute rhs:

{ 
ompute: F

i

1

; F

i

3

{ out:

C

T

i

A

�T

i

(F

i

1

�M

i

A

�1

i

C

i

F

i

3

)

� forward ba
kward:

{ in: test ve
tor Æa

{ out: C

T

i

A

�T

i

M

i

A

�1

i

C

i

Æa

� 
ompute updates:

{ in: update Æa

k

{ 
ompute and store:

Æu

i

k

= A

�1

i

(F

i

3

� C

i

Æa

k

)

Æ�

i

k

= A

�T

i

(F

i

1

�M

i

Æu

i

k

)

� perform updates:

{ in: step length �

k

, Æa

k

{ 
ompute and store:

u

i

k+1

= u

i

k

+ �

k

Æu

i

k

�

i

k+1

= �

i

k

+ �

k

Æ�

i

k

� 
ompute residual:

{ in: test step length �

k

,

Æa

k

{ out: residual for this step

length

Figure 4.1: Des
ription of the three basi
 interfa
es of 
lasses upon whi
h the

multiple experiment program is built. Sin
e the interfa
es are stri
tly separated,

it is not important on whi
h 
omputer a 
ertain obje
t resides as long as its

interfa
e is available to 
allers.
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Figure 4.2: Measurements z(x) for di�erent levels of added noise. Left: no

noise. Center: " = 0:05. Right: " = 0:2.

4.4 Appli
ation: Noise redu
tion

As a �rst example for the use of multiple experiments, we demonstrate noise re-

du
tion by multiple measurements of the same quantity. If our measurement z

is subje
t to measurement error and other noise, then we 
an in general not ex-

pe
t to re
over the exa
t 
oeÆ
ient. If we measure more than on
e, either with

the same sour
e or with di�erent ones, ea
h of these measurements will again

have its un
ertainties, but the 
oeÆ
ient that mat
hes all the measurements

best will be 
loser to the \
orre
t" one be
ause it averages over the di�erent

measurements and their errors.

In order to show the e�e
t of measuring several times on the quality of

the re
overed parameter, we take test 
ase 1 (see page 37), and put as the

measurement

z

i

(x) = u

i

(x) + Æ

i

"

(x);

where Æ

i

"

(x) is a fun
tion with random normally distributed values with mean

value zero and " being the standard deviation, i.e. the noise level. The a
-

tual representation of the noise Æ

i

"

is 
hosen di�erently for ea
h measurement.

Fig. 4.2 shows typi
al measurements for di�erent levels of added noise. Using

these measurements, we invert for the unknown parameter on a �xed, uniformly

re�ned mesh. For this dis
retization, a dire
t 
al
ulation shows that the best

L

2

approximation is inf

a

h

ka

h

� a

exa
t

k

L

2
= 0:1177:::. Throughout this se
tion,

the grid is �xed to allow for 
omparisons. However, the results also hold for

general, possibly adapted meshes.

The left panel of Fig. 4.3 shows the results without any regularization,

i.e. � = 0: as the noise level in
reases, the resolution of the parameter be
omes

in
reasingly worse if only one experiment is made. If multiple measurements

are available, the e�e
t of the noise is 
learly suppressed. The error 
an be

�tted well by the dependen
e ka

h

� a

exa
t

k / ("=

p

N)

3=4

whi
h 
orresponds to

the well-known fa
t that N independent measurements redu
e the un
ertainty

by a fa
tor of

p

N .

The right panel of Fig. 4.3 shows the same experiment if we 
hoose an opti-

mal amount of regularization (determined by experimenting). Noise is greatly

suppressed with already one experiment, yet more measurements signi�
antly

improve identi�
ation of the parameter over the 
ase of only one experiment.

The error now grows as ka

h

� a

exa
t

k / ("=

p

N)

1=3

, indi
ating the e�e
t of
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Figure 4.3: Error ka

h

� a

exa
t

k in the re
overed 
oeÆ
ient for various levels

of noise and numbers of measurements. Left: No regularization, i.e. � = 0.

Right: Optimal value for �. The dotted line denotes the theoreti
al limit of

approximation.
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Figure 4.4: Same as Fig. 4.3, but with di�erent experiments using di�erent right

hand sides.

regularization in the exponent.

The e�e
t of noise 
an be even further suppressed by using di�erent for
ing

fun
tions in di�erent experiments. Fig. 4.4 shows the results for this situation.

As right hand side we use the one given in the de�nition of the test 
ase (see

page 37) only for the �rst experiment. For subsequent experiments, we use

f

i

= 4�

2

jk

i

j

2

sin(2�k

i

�x) with k

i

2 N

d

being ve
tors with modulus in
reasing

with the index i. Again, the use of several experiments 
an greatly improve the

identi�
ation of the unknown parameter.

4.5 Appli
ation: Enfor
ing identi�ability

Sometimes, the unknown 
oeÆ
ient is not identi�able at some points without

regularization. For example, in the one-dimensional 
ase, assuming no noise,

the parameter identi�
ation problem reads: �nd a(x) su
h that

u = z; �

�

au

0

�

0

= f:
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Figure 4.5: Example of non-identi�able 
oeÆ
ient in one spa
e dimension. Left:

Exa
t displa
ement and measurement u = z = sin(2�x). Right: Re
overed


oeÆ
ient, without imposition of bounds.

Inserting the �rst identity into the se
ond yields a �rst order di�erential equa-

tion for the 
oeÆ
ient with analyti
al solution

a(x) = �

1

z

0

(x)

Z

x

x

0

f(�)d� + a(x

0

); (4.7)

where x

0

denotes the left end of the interval 
, and where a(x

0

) must be

spe
i�ed in advan
e. It is obvious that a(x) is not identi�able at pla
es where

z

0

= 0. Likewise, the 
oeÆ
ient is not identi�able in higher dimensions at pla
es

where rz = 0, although the proof of ill-posedness there is more diÆ
ult (see,

for example, Banks and Kunis
h [13℄).

This 
on
ept of identi�ability only 
on
erns single points. For L

1


oeÆ-


ients, we 
ould simply ignore su
h points. However, the 
oeÆ
ient is usually

badly resolved also in their environment, spoiling the identi�
ation pro
ess.

Fig. 4.5 shows this in one spa
e dimension. We 
hoose u = sin(2�x), no noise

(i.e. z = u), a = 1 and thus f = �u

00

. We do not use regularization and do

not impose bounds on the 
oeÆ
ient. The re
overy of the 
oeÆ
ient is 
learly

insuÆ
ient near points where u

0

= 0.

Adding regularization to the minimization problem allows to identify a 
o-

eÆ
ient although it is solely determined by the regularization at points where

z

0

= 0, not by measurement. The left panel of Fig. 4.6 shows the result for

an optimal amount of regularization. After the last iteration, the error is

ka

h

� a

exa
t

k = 0:17.

Instead, we 
an also perform several experiments in su
h a way that at

no point all measurements have (u

i

)

0

= 0. For example, we might 
hoose the

for
es f

i

su
h that u

1

= sin(2�x) and u

2

= sin(3�x). The result is shown in

Fig. 4.6. The error in the 
oeÆ
ient after the last iteration is now ka

h

�a

exa
t

k =

0:00013, i.e. approximately a fa
tor of 1000 smaller than the result obtained

with regularization.

The importan
e of this lies in the fa
t that for some setups of physi
al

experiments, whole regions are unidenti�able. For example in an imaging ex-

periment, entire regions may lie in the shadow. Then, several experiments
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Figure 4.6: Example of non-identi�able 
oeÆ
ient in one spa
e dimension. Left:

Re
overed 
oeÆ
ient with optimal regularization and one experiment. Right:

Re
overed 
oeÆ
ient without regularization and two experiments. Note the dif-

ferent maximal errors 
ompared to Fig. 4.5.

illuminating from di�erent angles may help to identify the solution. Multiple

measurements with di�erent sour
es are therefore 
ommonly used in seismi


imaging experiments.
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Chapter 5

Inverse wave problems

In this 
hapter, we will apply the te
hniques previously developed for the di�u-

sion equation to parameter identi�
ation problems for the Helmholtz equation.

Sin
e this is the frequen
y domain version of the time dependent wave equation,

this 
lass of problems is used in many appli
ations where time dependent data

is measured, for example seismi
 data in geophysi
s.

We will, in this 
hapter, �rst derive the 
omplex valued Helmholtz equation

and boundary 
onditions that des
ribe the problems we 
onsider here. Based on

this, the inverse problem is formulated, and a brief 
omparison of the solution

of inverse problems for wave problems in the time and frequen
y domains is

given, to set a ba
kground for the methods we use here.

In the then following two se
tions, we brie
y dis
uss the di�eren
es between

inverse problems for the Helmholtz and the di�usion equation, then tou
h the

two main mathemati
al obsta
les for inverse wave problems, nonlinearity and

non-uniqueness. Next, the error estimates derived in Chapter 2 are adapted to

the present situation.

Finally, appli
ations are given, that illustrate the general 
oeÆ
ient resolv-

ing properties of the dis
ussed methods. Furthermore, the superior performan
e

of weighted error estimator driven re�nement over more ad ho
 approa
hes is

shown, and the a

ura
y of error estimates is dis
ussed.

5.1 Inversion in frequen
y spa
e

In order to state the inverse problem to be treated in this 
hapter in a 
on
ise

way, we �rst de�ne the forward problem in this se
tion, and based on this

derive the stru
ture of the inverse problem. Although we 
onsider a stru
turally

time dependent problem, we formulate it in the frequen
y domain as a family

of Helmholtz equations. The reasons for this and the resulting advantages

parti
ular to inverse problems will be dis
ussed in a �nal subse
tion.

Formulation of the forward problem

In order to derive the equations des
ribing the forward problem, we start with

the time dependent wave equation, transfer it to frequen
y spa
e by applying

89
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a Fourier transform, and �nally write it in weak form.

As starting point, we 
hoose the time dependent wave equation on a bounded

domain 
 and in a time interval I = (0; T ),

�

2

t

u�r� (aru) = 0; (x; t) 2 
� I; (5.1)

with Neumann, Diri
hlet, and simple absorbing boundary 
onditions on por-

tions �

N

;�

D

, and �

A

of the boundary �
, respe
tively:

n�aru = 0 (x; t) 2 �

N

� I;�

N

� �
; (5.2)

u = g (x; t) 2 �

D

� I;�

D

� �
; (5.3)

n � aru+

p

a�

t

u = 0 (x; t) 2 �

A

� I;�

A

� �
: (5.4)

The absorbing boundary 
onditions 
hosen here are those of Bayliss and Turkell

[14℄, whi
h are equivalent to those of Engquist and Majda [33℄. Note that

these boundary 
onditions make the spe
trum 
omplex valued and in general


ontinuous, even on bounded domains.

Sin
e here we are only interested in identi�
ation of elasti
 properties, we

have assumed that the density usually appearing before the term �

2

t

u in (5.1)

is 
onstant. We 
an then s
ale it out of the equations. Thus, the 
oeÆ
ient a

has the interpretation of the square of a wave speed.

We seek the solution of this set of equations in frequen
y spa
e by introdu
-

ing the Fourier transform u

!

of the solution u as

u(x; t) =

1

p

2�

Z

1

�1

e

i!t

u

!

(x) d!:

Likewise, we de�ne the Fourier transform g

!

of g. Inserting these fun
tions into

equations (5.1){(5.4) then yields

�!

2

u

!

�r� (aru

!

) = 0 x 2 
; (5.5)

n�aru

!

= 0 x 2 �

N

; (5.6)

u

!

= g

!

x 2 �

D

; (5.7)

n � aru

!

+ i!

p

au

!

= 0 x 2 �

A

: (5.8)

These equations have to be solved for ea
h member u

!

of a family indexed by

! 2 R.

The problem is transformed into a weak formulation in the usual way. It

then reads: �nd u

!

2 V

g

!

= fu

!

2 H

1

(
! C ) : u

!

j

�

D

= g

!

g, su
h that for all

' 2 V

0

= f' 2 H

1

(
! C ) : 'j

�

D

= 0g there holds

�(!

2

u

!

; ')




+ (aru

!

;r')




+ (i!

p

au

!

; ')

�

A

= 0;

again for every frequen
y !. Splitting this equation into its real and imaginary

parts, and denoting u

!

= v

!

+iw

!

, we obtain the �nal form of the state equation

for ea
h 
omponent in !-spa
e:
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Problem 5.1 (Forward problem). For ea
h ! 2 R, �nd the solution u

!

=

fv

!

; w

!

g 2 V

g

!

= fu

!

2 H

1

(
 ! R)

2

: v

!

+ iw

!

j

�

D

= g

!

g, su
h that for all

' = f�; �g 2 V

0

= f' 2 H

1

(
! R)

2

: 'j

�

D

= 0g there holds

A

!

(a;u

!

; ') = 0; (5.9)

with the bilinear form

A

!

(a;u

!

; ') = �(!

2

v

!

; �)




+ (arv

!

;r�)




� (!

p

aw

!

; �)

�

A

+ (!

2

w

!

; �)




� (arw

!

;r�)




� (!

p

av

!

; �)

�

A

:

Note that we have deliberately reversed the sign of the equation de�ning the

imaginary part, making A

!

symmetri
, i.e. A

!

(a;u

!

; ') = A

!

(a;'; u

!

). This

has positive e�e
ts on the solvability of the dis
retized equations using iterative

s
hemes.

The inverse problem

The inverse problem of estimating the distributed parameter a in (5.9) is for-

mulated similar to the one dis
ussed throughout previous 
hapters. Adopting

the same notation regarding mis�t and regularization fun
tionals m(�) and r(�),

the inverse problem in the single experiment 
ase reads in analogy to Prob-

lem 1.7:

Problem 5.2. Minimize the regularized deviation

J(u; a) = m(u

!

� z

!

) + �r(a)

of u

!

= fv

!

; w

!

g from the measurement z, with � being a regularization param-

eter, subje
t to the state equation (5.9), and the additional 
onstraints

u

!

j

�

D

= g

!

;

a

0

� a � a

1

:

The 
hara
terization of the solution by a Lagrange fun
tional and its sta-

tionary points then follow in the same way as in Problem 1.8.

In general, one is not interested in inverting only one measurement with

only one frequen
y 
omponent. In this 
ase, the mis�t fun
tional m(�) will


ontain a sum over those frequen
ies !

i

for whi
h measurements exist. The

di�erent frequen
y 
omponents u

!

i

then ea
h have to satisfy a state equation

with semilinear forms A

!

i

, resulting in a multiple experiment situation as dis-


ussed in Chapter 4. We will only 
onsider this multiple experiment 
ase in the

following. The 
orresponding formulation of the identi�
ation problem then is

as in Problem 4.1. We expli
itly show it here for later referen
e:

Problem 5.3. Solutions of the multiple experiment Helmholtz inversion prob-

lem are 
hara
terized by stationary points

r

x

L(x; y) = 0 8y 2 X

0

;
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of the Lagrangian L(x), where x = fu

!

1

; : : : ; u

!

N

; a; �

!

1

; : : : ; �

!

N

g 2 X

g

, X

g

=

(

Q

N

i=1

V

g

!

i

)�A�V

N

0

, X

0

= V

N

0

�A�V

N

0

, and V

g

!

; V

0

as de�ned in Problem 5.1.

The Lagrangian is de�ned by

L(x) = J(x) +

N

X

i=1

A

!

i

(a;u

!

i

; �

!

i

); (5.10)

with the form A

!

as in Problem 5.1, and

J(x) =

N

X

i=1

m(u

!

i

� z

!

i

) + �r(a):

Applying Newton's method to the optimality 
ondition, and dis
retizing

ea
h step then leads to a system of linear equations equivalent to (4.4){(4.6),

where we now have the matri
es

M

i

=

�

M 0

0 M

�

; A

i

=

�

A

!

i

�G

!

i

�G

!

i

�A

!

i

�

; C

i

=

�

C

1

(v

!

i

)� !

i

C

2

(w

!

i

)

�C

1

(w

!

i

)� !

i

C

2

(v

!

i

)

�

;


omposed of the following blo
ks:

M

kl

= (m

i

)

00

(u

!

i

;'

k

; '

l

); A

!

i

;kl

= �(!

2

i

'

l

; '

l

)




+ (ar'

l

;r'

l

)




;

G

!

i

;kl

= (!

i

p

a'

i

; '

j

)

�

A

;

C

1

(p)

kl

= (rp�r'

k

; �

l

)




; C

2

(p)

kl

=

�

1

2

p

a

p '

k

; �

l

�

�

A

;

with '

k

; �

l

being the trial fun
tions for primal and dual variables, and param-

eter variables, respe
tively.

Comparison between time and frequen
y domain

Above, we have used the frequen
y domain to formulate the problem of identi-

�
ation of parameters in a time dependent wave equation. While 
on
eptually

solving in the time or the frequen
y domain is equivalent, there are signi�
ant

di�eren
es when numeri
ally approximating the forward solution on a 
om-

puter:

� In the time domain, a time-stepping s
heme is used to solve the sub-

problems on subsequent time steps. This generates the sought solution

dire
tly, but ea
h time step depends on the prior solution of the last time

step. In ea
h time step, the solutions of at least two time steps have to

be kept in memory. The number of time steps is roughly proportional to

the highest frequen
y o

urring.

� In the frequen
y domain, the solutions u

!

i

for di�erent frequen
ies !

i

do

not depend on ea
h other. This allows for simple parallelization. However,

if we are interested in the wave �eld in the time domain, this 
an only be


omputed by overlaying the solutions of all 
omponents and forming the

Fourier ba
k-transform of it. The number of frequen
y 
omponents that
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have to be 
omputed for a given a

ura
y of the time dependent wave

�eld is proportional to the size of the frequen
y band that is ex
ited by

sour
es.

For the present appli
ation, solution in the frequen
y domain is more adequate

for three reasons:

� We are not interested in the time dependent wave �eld, but only in the


omparison to given measurements. This 
an be done in the time and

frequen
y domains equally well.

� In appli
ations, often only small frequen
y bands are ex
ited. While in the

time domain, the numeri
al e�ort is proportional to the highest frequen
y,

in the frequen
y domain it is only proportional to the size of the frequen
y

band. As an extreme 
ase, 
onsider time harmoni
 ex
itations: we would

then only have to solve one problem in the frequen
y domain, but still

many time steps in the time domain.

� Sin
e the problems in frequen
y domain are independent of ea
h other,

we 
an use this to parallelize the problem in the same way as des
ribed

in Chapter 4.

As will be explained in Se
tion 5.3, an additional reason for inverting in

the frequen
y domain is the stabilization of the problem if one starts with low

frequen
ies, as this redu
es the nonlinearity.

5.2 Comparison with di�usion problems

Compared to the stati
 problems governed by a di�usion equation dis
ussed in

the previous 
hapters, the problems 
onsidered here di�er in several respe
ts


on
erning 
omputational 
omplexity. In this se
tion, we brie
y review why the

problems of this 
hapter are more 
hallenging. A dis
ussion of mathemati
al

problems arising with typi
al inverse problems for the Helmholtz equation is

given in the next se
tion.

The foremost reason for the higher 
omplexity is that solving the Helmholtz

equation numeri
ally is more diÆ
ult than the Lapla
e equation. This has three

main reasons:

� The inde�niteness of the operator disallows the use of simple 
onjugate

gradient methods. If !

2

is too 
lose to an eigenvalue of the Lapla
e

operator, the problem is also ill-
onditioned.

� The traveling wave 
hara
ter of solutions of the Helmholtz equation re-

sults in solutions that do not de
ay qui
kly with the distan
e to sour
es,

requiring mesh re�nement in large parts of the domain.

� Solutions of the Helmholtz equation are os
illatory, where the wavelength

of solutions is � / 1=!. This requires �ne meshes espe
ially for high

frequen
ies. For good resolution, the mesh width should satisfy at least

�=h � 10.
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Figure 5.1: Typi
al solution u

!

= v

!

+ iw

!

of Helmholtz equation with ! = 50.

Left: Real part. Right: Imaginary part. The solution is the same as in Fig. 5.4.

A typi
al solution of the state equation showing the last two points is displayed

in Fig. 5.1. For this example, there are absorbing boundary 
onditions at the

bottom, right, and top boundary, and waves are inje
ted at the 
enter of the

left boundary.

From these 
onsiderations, it is 
lear that solving the Helmholtz equation

is more expensive from a numeri
al point of view than the Lapla
e equation.

In parti
ular, in d spa
e dimensions, the e�ort grows with the frequen
y ! as

!

d

sin
e the mesh width must be proportional to the wave length. For typi
al

appli
ations, diam 
=� � 10 : : : 100, requiring a number of 
ells in the range of

at least 100

d

: : : 1000

d

. Finally, we remark that solving on an insuÆ
iently �ne

grids leads to unusable solutions sin
e the dispersion of �nite elements results

in a phase shift between exa
t and numeri
al solution. It is thus often not even

possible to start on a relatively 
oarse mesh.

Further aspe
ts to be taken into 
onsideration when 
omparing inversion for

wave and di�usion problems is that for the former we often only have boundary

measurements, but in a multiple experiment setting. The fa
t that measure-

ments are only on the boundary requires us to solve to relatively high a

ura
ies.

Both aspe
ts further in
rease the numeri
al e�ort.

As a �nal 
omparison between wave and di�usion problem, we 
onsider

the 
ondition numbers of S
hur 
omplement matri
es. Fig. 5.1 shows the de-

penden
e on the mesh width for the Helmholtz equation with ! = 10, for an

otherwise 
omparable 
on�guration as Table 1.2 (page 31) shows for the dif-

fusion equation. While the growth of the 
ondition number as the mesh is

re�ned follows the same orders as for the di�usion equation, their absolute size

is smaller, at least for the more important 
ase of L

2

measurements, making

the Newton steps simpler to solve.

On the other hand, these 
ondition numbers also depend on the frequen
y,

and on the number of experiments performed. Generally, the 
ondition number

de
reases with higher frequen
ies and more experiments, making up for part of

the otherwise higher 
omplexity.



5.3. COMPLICATIONS OF TOMOGRAPHY 95

m(u� z) =

1

2

ku� zk

2




m(u� z) =

1

2

kr(u� z)k

2




h min j�

i

j max j�

i

j �

2

min j�

i

j max j�

i

j �

2

2

�3

0:00195 0:339 170 0:717 32:2 45

2

�4

9:76 � 10

�5

0:160 1600 0:0916 14:8 160

2

�5

2:05 � 10

�6

0:0499 24000 0:00657 4:49 680

2

�6

3:97 � 10

�8

0:013 3:5 � 10

5

0:000479 1:20 2500

2

�7

7:09 � 10

�10

0:0035 4:9 � 10

6

3:73 � 10

�5

0:324 8:7 � 10

3

O(h

6

) O(h

2

) O(h

�4

) O(h

4

) O(h

2

) O(h

�2

)

Table 5.1: Minimal and maximal eigenvalues �

i

, and 
ondition number with

respe
t to the spe
tral norm for the S
hur 
omplement.

5.3 Compli
ations of tomography

In the appli
ations dis
ussed in this 
hapter, we only 
onsider 
ases where the

sour
es of the Helmholtz equation are lo
ated on part of the boundary, as this is

typi
al for appli
ations. If measurements are also performed only on the bound-

ary, then this mode is 
alled tomography. Depending on whether measurements

are made at the same part of the boundary where sour
es are lo
ated, or on an

opposite part, this is 
alled re
e
tion tomography or transmission tomography

in the 
ontext of wave problems.

For the Lapla
e equation, the main problem of tomography is an extreme

ill-posedness in the interior of the domain, sin
e information entering at the

boundary of the domain de
ays qui
kly as a fun
tion of the distan
e to the

boundary. For the Helmholtz equation, just as for inversion in the time domain,

this ill-posedness away from the boundary does not exist, sin
e the 
orrespond-

ing Green's fun
tion has di�erent de
ay properties. Nevertheless, inverting

wave signals poses a number of mathemati
al pe
uliarities. Among these are

strong nonlinearities of the obje
tive fun
tion as well as non-identi�ability in


ertain fun
tion spa
es. We will brie
y dis
uss these diÆ
ulties in this se
tion

to illustrate the typi
al 
ompli
ations of inversion for wave problems.

Nonlinearity of the inverse problem

In 
ontrast to the di�usion problem 
overed in previous 
hapters, the obje
tive

fun
tional usually has many lo
al minima for the Helmholtz equation, and

getting stu
k in one of them is simple. To illustrate this, 
onsider the following

one dimensional example: assume we have a string of length L with 
onstant

but unknown wave propagation velo
ity 
 whi
h we would like to re
over within

the range 
 2 [


0

; 


1

℄. We ex
ite the string at the left end at x = 0 with a time-

periodi
 signal with frequen
y ! and amplitude and phase '(!) 2 C . We

measure the displa
ement and its phase at x = L, where we assume that an

absorbing end is pla
ed. The frequen
y is 
hosen su
h that the wave length is

small 
ompared to L, i.e. ! � L=2�
.
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Figure 5.2: Visualization of the nonlinearity o

urring in inverse problems for

wave equations. Left: Time dependent sour
e at the left end. Right: Mis�t

fun
tional m(
) as fun
tion of the wave speed 
.

This situation 
an be des
ribed by the following set of equations:

�!

2

u

!

� 


2

�

2

x

u

!

= 0; u

!

(0) = '(!); (i! + 
�

x

)u

!

(L) = 0: (5.11)

The last boundary 
ondition represents perfe
tly absorbing boundary 
ondi-

tions at x = L. The solution of this problem is u

!

(x) = '(!) 
os(!x=
).

In the inverse problem, we are given a measurement z

!

of u

!

(L). In the

noise free 
ase, z

!

= '(!) 
os(!L=


�

) with the \true" wave speed 


�

. We then

seek to minimize the mis�t integrated over all frequen
ies,

m(
) = m(u(L)� z) =

1

2

Z

ju

!

(L)� z

!

j

2

d!

=

1

2

Z

j'(!)(
os(!L=
) � 
os(!L=


�

))j

2

d!

on the range of admissible wave speeds 
 2 [


0

; 


1

℄. Note that by de�nition

of the Fourier transform, the mis�t in the time and the frequen
y domain are

equivalent:

R

ju

!

(L)� z

!

j

2

d! =

R

ju(L; t)� z(t)j

2

dt.

While the solution of this problem is obvious, the mis�t fun
tional is strongly

nonlinear. For example, assume we use the signal f(t) shown in the left panel of

Fig. 5.2. A

ordingly '(!) is the Fourier transform of this signal. With 


�

= 1,

the mis�t fun
tional m(
) is shown in the right panel of Fig. 5.2.

The nonlinearity of the obje
tive fun
tional is striking. At the 
enter, the

os
illations result from measurement and simulation being shifted relatively to

ea
h other by a �xed number of periods in the time domain and likewise by

2� in the frequen
y domain; small variations then bring the two fun
tions out

of phase, yielding a higher value of the mis�t fun
tional, until the wave speed


hanges so mu
h that minima and maxima mat
h on
e again. This phenomenon

is 
ommonly referred to as aliasing, sin
e os
illations of the simulated solution

mat
h, i.e. alias, the wrong os
illations of the measurement.

The distan
e between two lo
al minima, and so also the domain of attra
tion

of a minimum, 
orresponds to the size of 
hanges in the 
oeÆ
ient ne
essary

to displa
e measurement and predi
ted solution by one wavelength. Thus, it is
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larger for low frequen
ies. In pra
ti
e, low frequen
y measurements are there-

fore often used to obtain a good initial guess, whi
h is then used to pro
eed

with high frequen
ies.

This nonlinearity is mostly generi
 for wave problems, and also exists in

higher spatial dimensions. In appli
ations, this usually leads to solutions being

trapped in lo
al minima, unless the parameter identi�
ation pro
ess is started

in the 
lose vi
inity of the true solution. In applied geophysi
al inversion, many

te
hniques have been developed to either generate good initial guesses, or for

global optimization. The amount of literature on this is so vast that we do not

attempt to give an overview. As we do not endeavor to develop te
hniques in

this area, we will always assume that we have starting values 
lose enough to

�nd the desired optimum with lo
al sear
h te
hniques su
h as the Gau�-Newton

method.

Non-uniqueness of solutions

Another diÆ
ult aspe
t of waveform inversion is that smooth variations of the

velo
ity, often 
alled the ba
kground velo
ity, are hard to determine. In fa
t, in

one spa
e dimension, it is not identi�able at all: let 


�

be the optimal spatially


onstant wave speed, then in the example of the previous se
tion all spatially

varying wave speeds 
(x) = 


�

+ ~
 with smooth fun
tions ~
 with zero mean

value will generate the same measurements at x = L. The reason, of 
ourse,

is that we only measure the arrival times of signals, not whether it traveled

faster or slower on parts of the string. The same holds, if 


�

is not 
onstant,

but pie
ewise 
onstant: what we see is only the arrival times of transmitted

and re
e
ted signals; these signals only 
ontain the position of dis
ontinuities

(via the arrival times) and the height of the jumps (through the re
e
tion

amplitudes), but not the smooth variations between the jumps.

The situation is better in more than one spa
e dimension, sin
e there smooth

variations refra
t waves, i.e. wave dire
tions are bent smoothly by the ba
k-

ground velo
ity, but in general the problem of determining the smooth varia-

tions is signi�
antly more ill posed than that of re
overing dis
ontinuities.

Con
lusions for examples

Sin
e the goal of this work is not to develop te
hniques to work around the two

problems mentioned above, we 
hoose the examples of this 
hapter su
h that

� the sought 
oeÆ
ients are pie
ewise 
onstant, and

� initial values are 
lose to the exa
t values, but 
onstant; therefore, the

initial values do not 
ontain a priori knowledge about the positions of

jumps in the 
oeÆ
ient.

Both assumptions are often pra
ti
able in geophysi
al appli
ations, as media

in the underground are usually strati�ed, i.e. pie
ewise 
onstant. Furthermore,

good initial guesses 
an, for example, be obtained by traveltime inversion, whi
h

only uses the time a signal arrives, but not its amplitude and phase, thus

avoiding the nonlinearity problem.
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5.4 Error estimation

In this se
tion, we brie
y state the form of error estimates for the problem


onsidered in this 
hapter. Sin
e the general form of estimates in terms of the

Lagrangian has already been given in Chapter 2, we only show this for estimates

with respe
t to the minimization fun
tional J(�). The form of the estimates for

arbitrary fun
tionals and for the bound 
onstrained 
ase 
an then easily be

derived from this and the material of Chapter 2.

Theorem 5.4. For the multiple experiment Helmholtz inversion problem 5.3,

the error with respe
t to the fun
tional J(�) 
an be represented by

J(x)� J(x

h

) =

1

2

N
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with terms relating to the residuals of the state equation,
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terms relating to the adjoint equation
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and �nally terms involving the 
ontrol equation
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The remainder term is

R =

1

2

Z

1

0

r

3

x

L(x
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+ se; e; e; e) s(s� 1) ds:
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clamped

boundary

time-
harmonic
excitation

Figure 5.3: Identi�
ation of an in
lusion. Layout of example.

Here, x and x

h

are 
ontinuous and dis
rete solutions, respe
tively, and i

h

is

a generi
 interpolation operator a
ting on X ! X

h

or single 
omponents, de-

pending on 
ontext.

Proof. Use the general form of the estimate in terms of the Lagrangian, given

in Theorem 2.1, expand the Lagrangian (5.10), and integrate by parts on ea
h


ell.

We will 
he
k the a

ura
y of this formula with the appli
ations at the end

of this 
hapter. Note that the other error representation formulae derived in

Chapter 2 have similar forms.

5.5 Appli
ation: Identi�
ation of an in
lusion

As a �rst example of parameter identi�
ation for the Helmholtz equation, 
on-

sider the situation depi
ted in Fig. 5.3: a plate of elasti
 material is 
lamped

at its left side and pla
ed in dampers absorbing all waves at all other fa
es.

A time periodi
 for
e is applied at portions of the 
lamped side. The position

and frequen
y of the ex
itation is varied in di�erent experiments. Finally, we

assume that amplitude and phase of the resulting periodi
 motion of the plate


an be measured at all positions; su
h measurements are possible with lasers,

for example. The goal is to re
over an unknown in
lusion in the material by

inverting for the spatially varying 
oeÆ
ient a(x).

Given this setup, the problem 
an be des
ribed as follows: let the index 1 �

i � N denote the number of the experiment, then u = fu

!

1

; : : : ; u

!

N

g; u

!

i

2 V

g

i

!

are the solutions of the state equations

A

!

i

(a;u

!

i

; ') = 0 8' 2 V

0

;

subje
t to boundary 
onditions u

!

i

j

�

D

= g

i

!

, see Problem 5.1. With this 
on-

straint, the minimization problem reads

minJ(u; a) =

N

X

i=1

1

2

ku

!

i

� z

i

k

2




+

�

2

r(a);
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Figure 5.4: Identi�
ation of an in
lusion. ju

!

j

2

= jv

!

+ iw

!

j

2

for two solutions

with di�erent sour
e positions. In both 
ases, ! = 50.
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Figure 5.5: Identi�
ation of an in
lusion. Left: Identi�ed 
oeÆ
ient with

bounds 1 � a � 1:3. Right: With bounds 0:5 � a � 5.

where z

i

is the measurement for the ith experiment. For two experiments

di�ering in the position of the ex
itation, the absolute values ju

!

j

2

= jv

!

+iw

!

j

2

are shown in Fig. 5.4. For both the frequen
y is ! = 50. While the waves

inje
ted in the �rst experiment travel through the domain largely una�e
ted,

those of the se
ond are de
e
ted at an a priori unknown s
atterer.

For the inversion, we 
onsider 24 experiments with 8 equidistantly spa
ed

sour
e positions and frequen
ies !

i

2 f30; 40; 50g. For these frequen
ies, the

wavelengths are between 0.125 and 0.21. The in
lusion to be identi�ed is a


ir
le of radius 0.15 with a = 1:3 embedded in a material with a = 1.

Fig. 5.5 shows the identi�ed 
oeÆ
ient for two 
ases. In the left, the two

materials are known, so that sharp bounds 1 � a � 1:3 
an be posed. Instead,

if we do not know the materials, we only use a rough guess 0:5 � a � 5 and

obtain the 
oeÆ
ient displayed on the right of the �gure. No regularization was

used in both 
ases.

In Fig. 5.6, the performan
e of the weighted error estimate (5.12) as a mesh

re�nement 
riterion is 
ompared to global re�nement and the �

rru

indi
ator

(2.11), whi
h performed best after the weighted estimator for the Lapla
e equa-
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Figure 5.6: Identi�
ation of an in
lusion. Left: Redu
tion of target fun
tional

J(x

h

) for various re�nement 
riteria, as fun
tion of the sum of the numbers of

degrees of freedom of all 24 experiments. Right: Redu
tion of error ka� a

h

k.
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Figure 5.7: Identi�
ation of an in
lusion. Comparison of a
tual and estimated

error.

tion (see Se
tion 2.1.3). As 
an be seen, the weighted indi
ator is signi�
antly

better than the other 
riteria, both in terms of redu
tion of the target fun
tional

J(�), and of the error ka

h

� a

exa
t

k whi
h is of greater pra
ti
al interest. Thus,

it is obvious that using this indi
ator 
an redu
e the e�ort to solve the identi-

�
ation problem to a given a

ura
y greatly. Finally, Fig. 5.7 shows that the

estimated errors in the target fun
tional J(�) mat
h the true ones reasonably

good on �ner meshes.

5.6 Appli
ation: Transmission tomography

As se
ond example, we 
onsider a similar layout as in the previous example, but

for the mu
h more 
hallenging 
ase that measurements are only available at the

right boundary. This is the typi
al mode for so-
alled 
ross-hole, or transmission

tomography in geophysi
s, where explosives are pla
ed in one bore-hole, and

re
eivers in a se
ond hole a 
ertain distan
e away.

A sket
h of the layout of this example is given in Fig. 5.8. As an abstra
t

des
ription of this situation, we 
hoose the same domain as in the previous
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Figure 5.8: Transmission tomography. Layout of example.

example, but with homogeneous Neumann boundary 
onditions at the top to

simulate the free boundary earth surfa
e. At the left, the sour
es are rep-

resented by Diri
hlet values, and at the right and bottom simple absorbing

boundaries are given again, to indi
ate that these are arti�
ial boundaries. The

measurements are the Neumann values along the right borehole, i.e.

m(u

!

i

� z) =

1

2

k�

n

u

!

i

� zk

2

�

; � = �
 \ fx = 1g:

The goal is the identi�
ation of the medium between the two boreholes. As an

idealized situation, we 
hoose the same 
oeÆ
ient stru
ture as in the previous

example, i.e. a 
ir
ular in
lusion, but with smaller variation 1 � a � 1:1. The

size of this variation in the 
oeÆ
ient is 
ommon for geophysi
al media. The

setting of this example is 
omparable to that used by Pratt et al. [55℄, but we

use a signi�
antly higher resolution.

For the identi�
ation problem, we use 8 lo
ations for sour
es along the left

borehole, and the frequen
ies ! = f20; 25; 30; 35g at ea
h lo
ation, making a

total of 32 experiments.

As pointed out in Se
tion 5.3, this problem is diÆ
ult sin
e relatively small


hanges in the 
oeÆ
ient 
an shift the phase of the wave at the re
eiver positions

by more than half a wavelength, leading to identi�
ation of a lo
al minimum

instead of the global one. Therefore, we start with the 
onstant value 1:05,

whi
h is 
lose enough for the identi�
ation pro
ess to �nd the global optimum.

Nevertheless, this initial value does not reveal information about the stru
ture

of the sought 
oeÆ
ient. The problem is also 
hallenging sin
e it is ne
essary

to solve the state equation to rather high a

ura
y.

The results of 
omputations 
an be seen in Fig.s 5.9{5.11. In the �rst �gure,

the identi�ed 
oeÆ
ient is shown. Its stru
ture is 
learly resolved, although the

verti
al extension of the in
lusion is not 
omputed a

urately. However, given

the limited amount of information used for the inversion, this resolution is

already very good. Unfortunately, the 
omputation 
ould not be extended to

higher numbers of degrees of freedom due to 
omputational restri
tions.

In the se
ond �gure, 5.10, the redu
tion of target fun
tional J(x

h

) and the

error ka

h

�a

exa
t

k is shown for the same two re�nement 
riteria as above, i.e. the
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Figure 5.9: Transmission tomography. Identi�ed 
oeÆ
ient.
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Figure 5.10: Transmission tomography. Left: Redu
tion of target fun
tional
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) for two re�nement 
riteria, as fun
tion of the sum of the numbers of

degrees of freedom of all 24 experiments. Right: Redu
tion of error ka� a

h

k.

weighted error estimate (5.12) and the �

rru

indi
ator (2.11). Unlike in the

previous appli
ation, but as for some of the 
ases dis
ussed in Se
tion 2.1.3, the

weighted error indi
ator is not better than the one using se
ond derivatives of

the Lagrange multiplier. The weighted error estimator even shows an irregular

behavior on 
oarse grids.

On the other hand, Figure 5.11 shows that estimated and true errors with

respe
t to the target fun
tional J(�) 
oin
ide almost perfe
tly and the ratio is

very 
lose to one, despite the initial irregular behavior of J(x

h

).
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Outlook

Inverse problems asso
iated with partial di�erential equations provide plenty of

subje
ts for resear
h. EÆ
ient te
hniques for adaptivity, error estimation, and

the treatment of bound 
onstraints have been dis
ussed in this thesis. However,

at least the following three topi
s for further resear
h immediately 
ome to mind

that have not or only brie
y been tou
hed in this work:

Un
ertainty quanti�
ation and inversion for probability distributions.

In this work, we have 
on
entrated on solving for one parameter fun
tion that

best des
ribes the measured observation. However, this leaves one aspe
t en-

tirely out of view: measurements are usually noisy, i.e. the measurement we

have used is only one instan
e of a family of measurements that satisfy a 
er-

tain probability law. From ea
h possible noisy measurement there follows an

inverted parameter to whi
h we assign the same probability that the measure-

ment has from whi
h it was 
omputed. The true solution of an inverse problem

would therefore be a probability density in the spa
e of parameters, i.e. a fun
-

tional that assigns ea
h element of the parameter spa
e a probability value.

Knowing this probability distribution would give us enormous information.

For example, it would be simple to assess the lo
al or global resolution, i.e. the

a

ura
y with whi
h the parameter was resolved globally or at 
ertain points of

the domain. This would be ne
essary to evaluate the reliability of the solution.

If we are not satis�ed with the resolution, we 
ould make more experiments.

Knowledge of the probability distribution 
ould also be used for experimental

design, whi
h tailors experimental set-ups su
h that they yield maximal reso-

lution, again either globally or lo
ally.

The downside, of 
ourse, is the likewise enormous 
omplexity of the task.

Little has been a
hieved in this �eld sin
e the in
uential book by Tarantola

[63℄ appeared in 1987 and made this aspe
t of inverse problems available to the

greater publi
 in applied s
ien
es. In a few approa
hes (see, for example, Banks

and Bihari [12℄ and Wojtkiewi
z et al. [67℄) the measurement spa
e was sampled

to obtain respe
tive samples in parameter spa
e, but by and large probability

density re
overy has been avoided for the pra
ti
al solution of PDE 
onstrained

parameter estimation problems.

Truly inverting for the probability density beyond re
overing half-widths

in linear least squares problems with Gaussian noise o�ers an ex
iting �eld of

resear
h. With the re
ent advent of massively parallel 
lusters of workstations,

the ne
essary 
omputing power to solve the literally thousands or millions of

forward problems seems already in pla
e to do this for small problems.
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Optimal 
hoi
e of regularization. As O'Leary [52℄ puts it, \
hoosing the

regularization parameter is an art based on good heuristi
s and prior knowl-

edge of the noise in the observation". Although we have negle
ted this question

entirely in this work, any reliable approa
h to inversion needs to have an au-

tomati
 strategy for the sele
tion of the regularization parameter. A large

number of approa
hes for this exist, see for example the book by Engl, Hanke

and Neubauer [32℄ on the subje
t. However, most of these approa
hes only

have a theoreti
al foundation for linear problems and/or require the solution of

a signi�
ant number of additional problems, and only few seem to be suited for

the large s
ale nonlinear problems asso
iated with partial di�erential equation.

One 
an probably say that these strategies have not yet found their way

into the solution of nonlinear PDE 
onstrained problems and the aspe
t of

\art" and \heuristi
s" prevails to date. This 
alls for further resear
h in the

�eld. Duality and sensitivity as tou
hed in this work 
ould well be one building

blo
k for approa
hes for this. In parti
ular they might help in an extension

where we make the regularization parameter a spa
e dependent fun
tion: set it

to a large value where not enough information is available to re
over the desired

information, but set it to a small value where we have this information and do

not need mu
h regularization.

EÆ
ient solution of large s
ale problems. Compared to some pra
ti
al

appli
ations, the examples in this work are toy problems. Inversion of seismi


data is frequently listed among the most 
omputationally intensive appli
ations

presently solved in industry, for a good reason: it usually involves PDEs stated

in three spa
e and one time dimension, these PDEs are wave equations with high

frequen
y solutions and are thus hard to solve, the number of measurements

goes into the thousands, and the required resolution is high. Handling the

amount of data, measurements in the range of many gigabytes, is a 
hallenge

in itself. The 
omputational 
omplexity of this task is not one or two orders of

magnitude away from the examples in this work, but several.

Yet, the programs used in pra
ti
e are algorithmi
ally simple. They do not

usually use adaptivity for the solution of the PDE, or in
lude error estimation.

They often do not even involve multiple experiment stru
tures but invert for one

dataset after the other. Combining the algorithms and mathemati
al methods

of this work with pra
ti
al appli
ations is likely to gain a signi�
ant redu
tion

of numeri
al e�ort, and an in
rease in resolving power. However, the expe
ted


omplexity of su
h programs 
alls for a very 
areful design that in itself justi�es

resear
h.

Outlook. It is probably safe to assert that PDE 
onstrained inverse and op-

timization problems will be
ome a major subje
t of resear
h in the near future.

Adaptive methods and error estimation will be
ome as pervasive as they are now

in the numeri
al solution of partial di�erential equation. Given the 
hallenges

and the potential pra
ti
al appli
ations, this promises to be
ome an interesting

�eld!
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