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Abstract

The past two decades have witnessed an increasing focus on cold antimatter
physics, with the development of the Antiproton Decelerator at CERN as a
supply of low-energy antiprotons. Among the open questions concerning anti-
matter, the result of a gravity measurement on anti-atoms as a direct test of
the weak equivalence principle has attracted the interest of several collabora-
tions (AEḡIS, GBAR, ALPHA). This work describes the use of a Talbot-Lau
interferometer as a tool to perform a gravity measurement on antihydrogen.
This device, composed of two or three material gratings, has been successfully
used to reveal the wave behavior of different particle species and, in its clas-
sical limit, to perform inertial measurements on neutral and charged particles
in the past. In order to study its suitability as a gravimeter for antimatter,
systematic effects which can prejudice the outcome of the measurement are
analyzed in detail. These include misalignments of the interferometer and
influences of external field gradients. Simple mathematical formulas which
quantify their prominence are produced and tested via numerical simulations.
State-of-the-art production rates of cold antihydrogen are used to calculate
the time required to retrieve the sign of the gravitational acceleration of anti-
matter using this setup. The result is an estimation of the feasibility of this
measurement in the framework of the AEḡIS experiment.

Zusammenfassung

Mit der Entwicklung des Antiproton Decelerator am CERN, der niederener-

getische Antiprotonen erzeugt, hat sich in den letzten zwei Jahrzehnten die

Physik kalter Antimaterie zu einem aktiven Forschungsgebiet herausgebil-

det. Zu den ungelösten Problemen der Antimaterie, gehört auch die Frage

nach dem schwachen Äquivalenzprinzip. Mehrere Kollaborationen (ALPHA,

GBAR, AEḡIS) haben sich daher eine Gravitationsmessung an neutralen An-

tiatomen als Hauptziel genommen. Die vorliegende Arbeit beschreibt die An-

wendung eines Talbot-Lau Interferometers, um eine solche Gravitationsmes-

sung an Antiwasserstoff durchzuführen. Dieses Gerät, bestehend aus zwei oder

drei Gittern, wurde bereits erfolgreich verwendet, um sowohl die Wellennatur

von verschiedensten Teilchen zu zeigen, als auch, in seiner klassischen Vari-

ante, Trägheitmessungen an neutralen und geladenen Teilchen zu realisieren.

Systematische Effekte, die eine Gravitationsmessung verhindern könnten, wie

die Ausrichtung des Interferometers oder der Einfluss von Feldgradienten, wer-

den hier dargelegt. Diese Störeinflüsse werden in analytischer Form beschrie-

ben und durch numerische Simulationen bestätigt. Um eine Abschätzung der

benötigten Messzeit einer zukünftigen Gravitationsmessung zu geben, wird als

Ausgangspunkt die aktuell beste Produktionsrate von kaltem Antiwasserstoff

genommen. Das Resultat stellt eine Bewertung der Machbarkeit einer solchen

Messung im Rahmen des AEḡIS-Experiments dar.
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1.7 The AEḡIS experiment . . . . . . . . . . . . . . . . . . . 22

2 The Talbot-Lau interferometer 27
2.1 Operating principles . . . . . . . . . . . . . . . . . . . . 28

2.1.1 Description and physics . . . . . . . . . . . . . . 28
2.1.2 Origin of the rephasings: the Talbot carpet . . . . 30

2.2 Detecting the pattern: on the use of a third grating . . . 35
2.2.1 The third grating as a “scanner” . . . . . . . . . 37
2.2.2 The third grating as a “magnifier” . . . . . . . . 37

2.3 Inertial sensing with a two-gratings device . . . . . . . . 39
2.3.1 The force as a phase shift . . . . . . . . . . . . . 40
2.3.2 Sensitivity of the device . . . . . . . . . . . . . . 41

2.4 Signal calculation in Wigner representation . . . . . . . . 43
2.4.1 Free evolution of the Wigner function . . . . . . . 44
2.4.2 Passage through a grating . . . . . . . . . . . . . 45
2.4.3 Propagation through the interferometer . . . . . . 45
2.4.4 Explicit mathematical formula for the signal . . . 46
2.4.5 Signal of a three-gratings device . . . . . . . . . . 48
2.4.6 Shape of the pattern . . . . . . . . . . . . . . . . 49

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3 Alignment requirements for a Talbot-Lau interferometer 53
3.1 Longitudinal asymmetry . . . . . . . . . . . . . . . . . . 53

3.1.1 Idea behind the analytic approach . . . . . . . . . 55
3.1.2 Analytic formulation . . . . . . . . . . . . . . . . 56
3.1.3 Geometrical argument for the visibility minimum 60



8 Contents

3.1.4 Implications of the critical distance . . . . . . . . 60
3.1.5 Simulations in the wave regime . . . . . . . . . . 62

3.2 Rotational misalignment . . . . . . . . . . . . . . . . . . 62
3.2.1 The problem behind a rotation . . . . . . . . . . 63
3.2.2 Analytical treatment . . . . . . . . . . . . . . . . 66

3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4 Effects of energy spread and external forces 69
4.1 Signal averaging due to energy spread . . . . . . . . . . . 69
4.2 The effect of external forces . . . . . . . . . . . . . . . . 73

4.2.1 Charged particles . . . . . . . . . . . . . . . . . . 75
4.2.2 Neutral particles . . . . . . . . . . . . . . . . . . 83

4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5 Simulation of a gravity measurement with antihydrogen 89
5.1 Parameters of the antiproton source . . . . . . . . . . . . 90
5.2 Direct mixing . . . . . . . . . . . . . . . . . . . . . . . . 91

5.2.1 Theoretical background . . . . . . . . . . . . . . . 91
5.2.2 Experimental results . . . . . . . . . . . . . . . . 94
5.2.3 Assumptions for the subsequent evaluation . . . . 95

5.3 Charge exchange . . . . . . . . . . . . . . . . . . . . . . 95
5.3.1 Positronium . . . . . . . . . . . . . . . . . . . . . 95
5.3.2 Theoretical background . . . . . . . . . . . . . . . 96
5.3.3 Experimental results . . . . . . . . . . . . . . . . 97
5.3.4 Assumptions for the subsequent evaluation . . . . 99

5.4 Comparison of the considered parameters . . . . . . . . . 99
5.5 Measurement principle . . . . . . . . . . . . . . . . . . . 99
5.6 Details of the numerical model . . . . . . . . . . . . . . . 101
5.7 Velocity distributions . . . . . . . . . . . . . . . . . . . . 104
5.8 Constraints on the measurement volume . . . . . . . . . 107

5.8.1 Geometrical constraints . . . . . . . . . . . . . . 107
5.8.2 Cut-off velocity . . . . . . . . . . . . . . . . . . . 109
5.8.3 Summary of the constraints and design decisions . 111
5.8.4 Available space and possible configurations . . . . 111

5.9 Open questions on the design of the experiment . . . . . 113
5.10 Sensitivity for different configurations . . . . . . . . . . . 114

5.10.1 Short configuration, direct mixing . . . . . . . . . 115
5.10.2 Short configuration, charge exchange . . . . . . . 116
5.10.3 Remarks on the magnetic gradient limitations . . 120
5.10.4 Summary for the short configuration . . . . . . . 121
5.10.5 Long configuration, direct mixing . . . . . . . . . 121
5.10.6 Long configuration, charge exchange . . . . . . . 122
5.10.7 Summary for the long configuration . . . . . . . . 126

5.11 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 126



Contents 9

6 Conclusions and outlook 129
6.1 Outlook and developments . . . . . . . . . . . . . . . . . 130

Publications 133
Heidelberg group papers . . . . . . . . . . . . . . . . . . . . . 133
AEḡIS collaboration papers . . . . . . . . . . . . . . . . . . . 133

Appendix 137

A Armadillo: a software for the AEḡIS experiment 137
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Chapter 1

Introduction

Antimatter has been the subject of increasing research interest in the last
two decades. Since the commissioning of the Antiproton Decelerator at
CERN [Mau97; HW13] and the production of the first cold antihydrogen
atoms by the ATHENA collaboration in 2002 [Amo+02], the precision
with which the properties of antimatter have been known has increased
exponentially, now rivaling the measurements on matter. In 2015, the
BASE experiment performed a comparison between the charge-to-mass
ratios of protons and antiprotons with a precision of 69 parts per tril-
lion [Ulm+15], while in 2017 the very same collaboration managed to
measure the magnetic moment of the antiproton on a part-per-billion
level [Smo+17; Nag+17]. The ALPHA collaboration managed to put
a limit on the charge of antihydrogen in 2016 [Ahm+16], and later to
improve the trapping efficiency of antihydrogen [Ahm+17a], with impor-
tant results such as the measurement of its 1S-2S transition [Ahm+17b;
Ahm+18] and its hyperfine structure [Ahm+17c]. In recent years, the
interest in performing a gravity measurement on antimatter has become
a central point in this expanding field. On the one hand, there are sev-
eral theoretical arguments against the possibility that gravity acts in a
different way on antimatter, such as the Gedankenexperiment by Morri-
son [Mor58]. On the other hand, there are also theories which incorporate
significant differences between gravity and antigravity [Cha93]. A precise
experimental verification of how the gravitational interaction works on
antihydrogen would therefore be a precious contribution to the ongoing
research. Several proposals to measure the gravitational acceleration on
antimatter have been submitted by different scientific collaborations in
the last decade: the AEḡIS collaboration [Dro+07], the GBAR collabo-
ration [Cha+11] and the ALPHA collaboration, with the introduction of
the ALPHA-g setup [Han16].

Antihydrogen has been, as of today, the only neutral antimatter
species produced and trapped in significant numbers at cold tempera-
tures [Ahm+17a], making it the only suitable candidate for a pure anti-
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matter gravity measurement. Positronium (Ps), which is a bound state
between an electron and a positron, is a mixture between matter and
antimatter and has a lifetime of some hundreds of nanoseconds [THK06;
Agh+17], which is practically too short for this kind of inertial measure-
ments.

A first preliminary direct measurement, performed by the ALPHA
collaboration in 2013 [Amo+13], put weak bounds on the magnitude
and direction of the (anti)gravitational acceleration ḡ, concluding that
−65g < ḡ < 110g, with g being the gravitational acceleration constant on
matter. The measurement used the imbalance on annihilations on the top
and the bottom of a horizontal trap as a way to estimate the magnitude
of gravity. While this measurement has mostly been a byproduct of
the antihydrogen production runs, the ALPHA collaboration plans to
improve this result by using a vertical antihydrogen trap built exactly
for this purpose [Han16].

The AEḡIS collaboration, instead, proposed the use of a device known
as moiré deflectometer as a tool to measure gravity on antimatter. This
device, described in the work of Oberthaler et al. [Obe+96], is composed
by two or three material gratings and a particle detector and it consti-
tutes the classical limit of a Talbot-Lau interferometer [Tal36; Lau48].
This kind of interferometer has seen extended use in the field of matter
wave interferometry, with electrons [BGB13], atoms [CL94], and even
heavy molecules like C60 [Bre+02]. Given its achievable sensitivity, it
makes an interesting case of an atom optic tool which could be applied
to antimatter measurements. A proof-of-principle was achieved in 2014,
when a two-gratings device was used to reveal a fringe pattern for an-
tiprotons [Agh+14], while still operating in the classical regime. Followup
tests with a moiré deflectometer have been performed on the secondary
antiproton beamline GRACE [Pac+16] between 2015 and 2017 [Bil15].
Since modifying the distance between the gratings or their periodicity
can make the classical description not suitable for the system, the most
generic and correct way to approach the design of such a measurement
tool is to study the device in the wave regime and, in case it is justified by
the geometrical parameters, restrict the scope of the analysis to ballistic
trajectories.

The goal of this work is to present a feasibility study on a gravity
measurement on antihydrogen, using a Talbot-Lau interferometer. The
basic premise of the measurement combines interferometric techniques
developed in the last two decades with the proposal of the AEḡIS exper-
iment [Dro+07], of which our research group is part of. The original
idea of using a device composed by two or three material gratings in the
classical regime is expanded to include the wave behavior of the particles
and build a unitary framework for producing consistent evaluations. In
the end, we produce an estimation for the time needed to perform such
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a measurement for a precision sufficient to determine the direction of the
gravitational interaction.

1.1 Thesis outline

This thesis is focused on the use of a Talbot-Lau interferometer as a tool
to measure gravity on antimatter. The chapters are organized as follows:

In the remaining part of this section, we further discuss the physical
motivations, introducing the weak equivalence principle (WEP) and the
current indirect boundaries on antimatter gravity. We also introduce
the Antiproton Decelerator at CERN and the AEḡIS experiment, in the
context of which the measurement will be ideally carried out.

In Chapter 2, we introduce the Talbot-Lau interferometer and we
obtain analytic formulas to calculate the signal of such a device as a
function of its geometrical parameters.

In Chapter 3, we consider the effects of an imperfect alignment of the
interferometer and we deduce formulas for identifying the parameters
that are most critical while designing the device.

In Chapter 4, we study the effect of external forces acting on the
particles traveling through the interferometer and how they can affect
the quality of the signal.

Finally, in Chapter 5, we use the results and evaluations from the
previous chapters to obtain a time estimation for a gravity measurement
on antimatter, given the current status of the AEḡIS experiment and the
state-of-the-art numbers for antihydrogen production in different exper-
imental regimes.

1.2 The weak equivalence principle

One of the reasons why it is important to perform a precise gravity mea-
surement on antihydrogen, is to verify the weak equivalence principle on
antimatter. The weak equivalence principle (WEP) states that the gravi-
tational massmg of an object is equal to its inertial massmI . This means
that the acceleration of a body experiencing free-fall is independent on
its internal structure. This principle is a fundamental component of the
Einstein equivalence principle, together with the local Lorentz invariance
and the local position invariance. These two additional principles can be
summarized as follows [Wil14]:

• the outcome of any local non-gravitational experiment is indepen-
dent of the velocity of the freely-falling reference frame in which it
is performed (local Lorentz invariance);
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Figure 1.1: Part of the CERN Anitproton Decelerator facility as of De-
cember, 2017. The control rooms of the ASACUSA experiment [ABB97;
Wid99] and the ALPHA experiment [HB05] can be seen in the back-
ground.

• the outcome of any local non-gravitational experiment is indepen-
dent of where and when in the universe it is performed (local posi-
tion invariance).

We hereby provide an example on how the WEP can be experimen-
tally tested, in a similar fashion to the original formulation by Eötvös
[Eöt90]. Consider two large bodies with different internal structures (e.g.
two spheres made up of two different materials) with different inertial
masses m1 and m2 respectively. By applying Newton’s Second Law we
get {

m1a1 = mg1g

m2a1 = mg2g,
(1.1)

where g is the gravitational acceleration, a1 and mg1 are the accelera-
tion and the gravitational mass associated to the first body, while a2

and mg2 are the acceleration and the gravitational mass associated to
the second body respectively. If we negate the weak equivalence princi-
ple, implying that the inertial mass mI and the gravitational mass mg

are distinct physical quantities, then interactions due to internal forces
should produce a difference between mI and mg, such that

mg = mI +
∑

A

ηA
EA

c2
, (1.2)

where A marks a generic interaction, ηA is an adimensional parameter
which quantifies the WEP violation for said interaction, and EA is the
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Figure 1.2: The Eötvös ratio is a measure on how much the weak equiv-
alence principle (WEP) is satisfied. The formal expression of the Eötvös
ratio η is shown in Eq. (1.3). This quantity has been measured with
increasing precision in the last two decades, going down to a relative
precision of 1× 10−13. This infographic depicts the evolution on WEP
validation measurements from 1990 to the early 2000s. The free-fall and
Eöt-Wash experiments (torsion balance experiments, see [Wag+12]) were
originally performed to search for a fifth force (green region). The blue
band shows the bounds for η considering gravitating bodies from lunar
laser ranging (LLR), which indirectly sets limit on the WEP [Tal+88].
The figure is a vectorized reproduction of Fig. 1 from [Wil14] by Clifford
M. Will, released under a creative commons CC-BY-NC license.
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potential energy associated with A. If the WEP holds, ηA = 0∀A. By
using both Eq. (1.1) and (1.2), we can define the Eötvös ratio η as [Wil14]:

η
!
= 2

|a2 − a1|
|a2 + a1|

=
∑

A

ηA

(
EA

1

m1c2
− EA

2

m2c2

)
. (1.3)

The evaluation of this general parameter η as a result of an experiment
can be thus used to place limits on the WEP violation as well. Concern-
ing matter-matter interactions, several experiments have been performed
with increasing precision. A diagram showing the evolution of this trend
during the years is shown in Fig. 1.2. As of 2014, the Eötvös ratio has
been measured to be smaller than 10−12 [Sch+08], while there are no
measurements on antimatter with a comparable precision.

1.3 Gravity measurement on light atoms

Measuring gravitational effects on light atoms (or antiatoms) is in itself
a daunting task: the average fall ∆y due to gravitational acceleration
g = −gŷ for a particle with velocity v on a distance L is

∆y =
1

2
g
L2

v2
. (1.4)

If we consider a thermal source of particles at a temperature T , v can be
estimated as

√
kBT/m, with the Boltzmann constant kB = 1.38× 10−23 JK−1.

For light atoms, we can assume the mass m to be of the same order of
magnitude as the mass of hydrogen ≃ mH = 1.67× 10−27 kg. This makes
the fall ∆y per meter of path approximately given by

∆y = 1mmKm−2. (1.5)

At room temperature (T ≃ 300K), the fall of a hydrogen atom is there-
fore of the order of 1.5 µmm−1. In case we consider a divergent beam,
we see that it becomes challenging to measure a fall of this order of mag-
nitude by means of locating the center of mass of the detected particles
[Dro+07] - the major issue being the extremely low statistics achievable
nowadays in terms of produced anti-atoms. The idea of using a Talbot-
Lau interferometer represents an attempt at solving this issue, as the
gravitational fall is translated into a phase shift relative to the periodic-
ity of the gratings d, which can be as small as 100 nm on a surface of the
order of square millimeters [Sav+95]. Therefore, as long as the fall due to
gravity is of the same order of magnitude as the grating periodicity, this
tool constitutes a good alternative to perform this kind of measurement.
The Talbot-Lau interferometer and its application as an inertial sensor
are discussed in detail in Chapter 2.
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1.4 Indirect boundaries on antimatter grav-

ity

Despite the lack of conclusive experimental evidence, it is important to
notice that there have been already indirect measurements which can
place boundaries on a hypothetical asymmetry between matter and an-
timatter for what concerns the gravitational interaction. In this section,
we review two of those arguments: the effect on the lifetime of neutral
kaons and antikaons and the cyclotron frequency of trapped protons and
antiprotons. Both arguments conclude that it is not expected that matter
and antimatter behave differently under the influence of a gravitational
potential. However, a model-independent direct measurement would still
be crucial in order to verify this claim.

1.4.1 Neutral kaons decay as a WEP test

An asymmetry between hadronic matter and antimatter would mean that
there is a difference in their prime constituents, quarks and antiquarks.
It should be therefore possible to measure those effects on other particle
species which are composed by these constituents, such as mesons. The
CPLEAR collaboration reported in 1999 the results of a test of the weak
equivalence principle using the decay of neutral kaons K0 and antikaons
K̄

0
in charged pions π+ π− [Apo+99]. The neutral kaons mix via the

weak interaction, giving birth to two variations known as KS and KL,
where S stands for the short-lived state (lifetime τ ≃ 89 ps) and L for
the long-lived one (τ ≃ 51 ns). The mixing matrix for neutral kaons is
written as

M =

(
mK0 δm/2
δm/2 mK0 ,

)
(1.6)

with δm = mKL
−mKS

and mK0 = mK̄0 is the inertial mass of the neutral
(anti)kaon, which can be considered the same under the assumption that
the CPT symmetry holds [Apo+99]. However, the neutral kaons are not
eigenstates of the CP symmetry, therefore, they have to be written as lin-
ear combinations of the two eigenstates of CP, |K1⟩ = 1/

√
2(|K0⟩+ |K̄0⟩)

and |K2⟩ = 1/
√
2(|K0⟩− |K̄0⟩). The long-lived and short-lived states can

be therefore expressed as

|KL⟩ =
1√

1 + |ϵ|2
(|K1⟩+ ϵ |K2⟩) (1.7)

|KS⟩ =
1√

1 + |ϵ|2
(|K2⟩+ ϵ |K1⟩), (1.8)

where ϵ is a parameter which quantifies the CP violation. In case of a
difference between the gravitational interaction on antimatter ḡ and the
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gravitational acceleration on matter g, it is expected that this would alter
the gravitational mass mg of K̄

0
in respect to K0, effectively leading to

a violation of the WEP. More specifically, the presence of an anomalous
gravitational interaction would lead to an effective mass difference δmeff.
In the hypothesis of a spin-2 mediator (tensor interaction) for gravita-
tional force, for kaons with speed v this difference would assume the form
[Hug92]

δmeff = mK0(g − ḡ)
U

c2
1 + β2

1− β2
e−r/rg , (1.9)

with U being the gravitational potential, rg the range of the gravitational
interaction, and β = v/c. This expression changes in case we consider a
spin-1 mediator (vector interaction) or a spin-0 mediator (scalar interac-
tion) [Hug92]. For a vector interaction [Apo+99; Hug92]

δmeff = mK0(g − ḡ)
U

c2
1√

1− v2/c2
e−r/rg , (1.10)

while for a scalar interaction

δmeff = mK0(g − ḡ)
U

c2
e−r/rg . (1.11)

The difference in gravitational interaction should therefore cause a modi-
fications in the lifetimes of both KL and KS. The CPLEAR collaboration
analyzed a sample of 70 million K0(K̄

0
) → π+π− events, whose rate is

dependent on δm, collected over three years of activity. The events were
studied as a function of the variations of the gravitational potential of
the Earth, the Moon, and the Sun. Taking into account the fluctuations
in the potentials and the measured decay rates, limits were put on the
additional mass difference δmeff and therefore on |g − ḡ|. These limits
are summarized in Tab. 1.1. The experiment found no evidence of a dif-
ference between g and ḡ, setting an upper limit of the order of 1× 10−9

on the asymmetry between gravity and antigravity. Similar conclusions
were also drawn for variations of the gravitational potential due to the
Milky Way and the Shapley supercluster. However, the use of these two
sources require the additional hypotheses of setting an absolute gravita-
tional potential.

1.4.2 Cyclotron frequency of trapped (anti)protons

Another indirect limit on the asymmetry between gravitational inter-
actions on matter and antimatter can be obtained by measuring the
charge-to-mass ratio q/m of protons and antiprotons. Under the as-
sumption that CPT symmetry is conserved, this measurement can be
used to indirectly test the WEP [HH91]. The argument from Hughes and
Holzscheiter develops as follows: charged (anti)particles trapped into a
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Source S = 0 S = 1 S = 2
Earth 6.4× 10−5 4.1× 10−5 1.7× 10−5

Moon 1.8× 10−4 7.4× 10−5 4.8× 10−5

Sun 6.5× 10−9 4.3× 10−9 1.8× 10−9

Table 1.1: Upper limits on |ḡ − g| for difference sources of gravitational
potential and for different spins of the graviton mediator. The numbers
shown in the Table are cited from [Apo+99].

Penning trap experience an oscillatory motion defined by the cyclotron
frequency ωC = qB/m, where B is the intensity of the confining mag-
netic field. This frequency is identical for protons and antiprotons in
absence of a gravitational interaction. When immersed in a gravitational
field, these frequency should incur into gravitational redshift. If the weak
equivalence principle holds, ωC for protons presents no difference in re-
spect to ω̄C for antiprotons. On the contrary, if an asymmetry persists,
we expect ḡ = αg, with α ̸= 1. This requirement translates into the
condition [HH91]

ω̄C − ωC

ωC

= 3(α− 1)
U

c2
, (1.12)

with U being the gravitational potential. The choice of an absolute grav-
itational potential is required by the fact that, if the WEP is violated,
an offset in the gravitational potential would lead to different observed
behavior depending on the reference system chosen. Therefore we have
to fix a gauge in order to keep theory consistent with observations. A
reasonable choice is to set U such that it goes to zero at infinity, which
would be consistent with no variations in absence of gravitational fields.
Hughes and Holzscheiter quantified this asymmetry factor α based on
the highest precision measurements available in 1991 [Gab+90], obtain-
ing |α− 1| < 5× 10−4. As of the date of this work, the best result
has been obtained in 2015 by the BASE collaboration at CERN, which
reduced this boundary to |α− 1| < 8.7× 10−7 [Ulm+15]. As the pre-
vious example, this boundary is quite strict and seems to rule out the
possibility that the gravitational interaction would influence matter and
antimatter differently. The nature of this measurement is anyway in-
direct and a direct experimental verification of the gravitational fall of
antimatter is desirable to give a definite answer to this question.

1.5 The Antiproton Decelerator at CERN

The main facility which contributed to the development of experiments
on cold antimatter is the Antiproton Decelerator (AD) at CERN [Mau97;
HW13]. The antiprotons are produced by accelerating a beam of protons
up to 26GeV in the Proton Synchrotron (PS) and making it collide with
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an iridium target [HW13]. A schematic of the accelerator/decelerator
complex is shown in Fig. 1.3. The reaction reads

pbeam + ptarget −→ p + p + p + p̄, (1.13)

which satisfies conservation of mass, momentum, and total number of
nucleons. The antiprotons are then ejected with an energy of 3.6GeV,
which is subsequently cooled down to 5.3MeV. From a beam consist-
ing of 1.5× 1013 protons, the conversion and cooling yield a bunch of
3× 107 antiprotons, which are delivered to the experiments connected to
the AD. The cooling cycle has an average length of 100 s and only one
experiment can be served at any given time. This results in the residing
experiments taking turns and having a shift schedule of 8 h of beamtime
per day, resulting in about 280 p̄ shots per shift. The AD is usually active
for around seven months per year, from end of April to the first week of
December. Outside of this activity period, the experiments located on
the ring are usually performing hardware upgrades, measurements on po-
sitrons, or - in one specific case - keeping on measuring the properties of
the antiprotons caught during the AD activity (the BASE collaboration
holds the record as the only experiment on the AD which can run 365
days per year by virtue of their reservoir trap [Smo+15]). Notice that
the energy of the antiproton is still fairly high compared to that required
for trapping and cooling particles: the experiments at the AD usually
employ thin sheets of plastic or metallic material to further reduce the
energy of the antiprotons down to the keV regime [Amo+14; Amo+04b].

A further development of the antiproton decelerator facility is sched-
uled for 2019-2020 [PJ16], with the complete installation of the ELENA
ring (Extremely Low ENergy Antiprotons) [Bar+14], which is set to de-
liver four bunches of 4.5× 106 antiprotons with an energy of 100 keV
simultaneously to four experiments with a repetition rate of around
100 s. Though the total rate of antiprotons is lower in respect to the
AD, the lower initial energy and the increased density of the antipro-
ton beam should result in catching rates improved by among 10 and
100 times [PJ16; Pan17]. This claim is consistent with the results ob-
tained by the ASACUSA experiment at CERN [Kur+15]: by making use
of a radio frequency quadrupole decelerator on the so called MUSASHI
line [LPB01; Ima+09], the experiment managed to decelerate antipro-
tons from the AD down to 100 keV and observed and increased catching
rate on the same order as the one expected for ELENA.

1.6 The antihydrogen atom

The antihydrogen atom is the antimatter counterpart of the hydrogen
atom, and it is composed by an antiproton and a positron in a bound
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p

p

p p

Figure 1.3: Schematic of the Antiproton Decelerator (AD) at CERN.
Protons are accelerated by the Proton Synchrotron (PS) to an energy
of 26GeV and then sent colliding with an iridium target, generating
3.6GeV antiprotons. The so-produced antiprotons are cooled down and
decelerated by the AD in a 100 s cycle, and supplied to the experiments
at the lower energy of 5.3MeV [HW13]. Image created by user Tou-X at
Wikimedia Commons, released under a CC-BY-SA 3.0 Unported license
(https://creativecommons.org/licenses/by-sa/3.0/deed.en).

https://creativecommons.org/licenses/by-sa/3.0/deed.en
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state. The recent experiments performed on antiprotons by the BASE
collaboration found that its magnetic moment is compatible with the one
of the proton with a relative uncertainty of 2× 10−11 [Smo+17], while its
inertial mass has been found compatible with the one of the proton with
a relative uncertainty of 4× 10−8 [Gab+90]. Also, its charge-to-mass ra-
tio has been measured by the BASE collaboration in 2015 [Ulm+15] and
found compatible with that of the proton on a relative precision of 10−12.
The physical characteristics of the positron are known with a comparable
level of precision: the inertial mass of the positron is the same as the one
of the electron down to a relative precision of 8× 10−9 [Fee+93], while
the charge is the same to the level of 4× 10−8 [Par16]. It is therefore
reasonable to assume that when considering antihydrogen atoms in elec-
tric and magnetic field gradients, the same parameters as hydrogen can
be used to make reasonable predictions.

1.7 The AEḡIS experiment

The AEḡIS experiment (AntimatterExperiment: gravity, Interferometry,
Spectroscopy) started in 2007 with the proposal by Drobychev et al.
[Dro+07]. One of the leading goals of the collaboration is to perform
a gravity measurement on antihydrogen to verify the weak equivalence
principle (WEP) on antimatter. The experiment is currently located at
the CERN Antiproton Decelerator facility and it has entered its oper-
ation phase in 2013. The envisioned experimental cycle is schematized
with the help of a block diagram in Fig. 1.4: The production of antihy-
drogen goes through different phases:

• positrons (e+) are produced by a β+ radioactive 22Na source and
stored inside a Surko-type accumulator [MS92];

• slow antiprotons (p̄) provided by the CERN Antiproton Decelera-
tor are further decelerated with the use of a thin aluminum mem-
brane and trapped into an electromagnetic ion trap called Penning-
Malmberg trap [MGW06];

• the trapped antiprotons are transferred to a second Penning-Malmberg
trap and cooled down by means of sympathetic cooling through in-
teractions with electrons [RG89];

• when the positron accumulator reaches its maximum capacitance,
positrons are injected into the experimental apparatus. Antipro-
tons are released and sent to the antihydrogen production trap by
manipulating the potentials of the traps;

• positrons interact with electrons inside the channels of a film of
porous silica and form positronium [MBB10; Lis+12];
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• positronium is laser excited to a relatively high state in order to
maximize the production efficiency [Kra+16];

• positronium atoms interact with antiprotons and form antihydro-
gen in a high excited state. This production process is called charge
exchange reaction. A detailed treatment on the physics behind an-
tihydrogen production is presented in Chapter 5;

• the so-produced antihydrogen is employed for a variety of measure-
ments, including measurements on antimatter gravity.

As of the completion date of this work, the AEḡIS experiment has not
yet produced antihydrogen using this schematic, which shares similarities
with the proof of concept developed by the ATRAP experiment in 2004
[Sto+04]. This work uses therefore the latest available estimations from
the collaboration [Car17] to explore the feasibility of this approach. The
theoretical background behind this process and the expected antihydro-
gen yield are discussed in Sec. 5.3.
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Figure 1.4: This block diagram summarizes a typical experimental cycle
of the AEḡIS main apparatus: around 3× 104 antiprotons are trapped
in a Penning trap with a magnetic field of 4.46T over the course of
two or three production cycles from the Antiproton Decelerator. At the
same time, positrons are accumulated up to a nominal number between
1× 107 and 1× 108. This process usually requires several minutes. The
antiprotons are transferred to a second Penning trap, this time immersed
in a magnetic field of 1T, where they are cooled through interactions with
electrons. After the cooling, the antiprotons are injected into a smaller
Penning trap, where they can be stored for tens of seconds without major
losses. At this point, positrons are also ballistically transferred to the 1T
region and sent colliding with a target made of a porous material, which
causes positronium to be formed. The positronium is then laser excited
to increase the production rate and sent into the production trap to
interact with the antiprotons.
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Figure 1.5: AEḡIS experimental apparatus as of July 2014. Photo from
[Dem14b].





Chapter 2

The Talbot-Lau
interferometer

Our tool of choice to perform inertial measurements on antimatter is a
device called Talbot-Lau interferometer, from the names of English sci-
entist William Henry Fox Talbot and German physicist Ernst Lau. The
former found out in the early years of 1800 that, by letting light through
a periodic grating, a series of rephasings would show up right after the
grating, generating a shadow image of the grating itself at multiple in-
tegers of a fixed distance [Tal36], which was later named Talbot length
in his honor. This so called Talbot carpet, however, vanishes completely
if the illumination on the grating is incoherent, leaving nothing but a
uniform beam of light. Ernst Lau found out that, by placing a second
grating identical to the first one at certain distances, the carpet could
be partially recovered, as well as the periodic shadow images of the grat-
ings [Lau48]. The combination of these two effects led to the creation of
the Talbot-Lau interferometer, an optics tool that has garnered promi-
nent use not only in classical optics but also in the field of matterwave
optics: if the device is rescaled considering the de Broglie wavelength
of particles λdB, the behavior is exactly the same as for light. Since its
inception, this interferometer has been successfully employed to reveal in-
terference patterns from electrons [BGB13], atoms [CL94], up to heavier
molecules like C60 [Bre+02]. The classical version of this device has been
successfully used to measure gravity on argon atoms [Obe+96], electric
and magnetic fields on antiprotons [Agh+14] and on various hydrogen
ions [Lan+17], giving strong arguments in favor of the feasibility of the
measurement we are planning to perform. It is interesting to notice that
the de Broglie wavelength of the C60 molecules used in the experiment
from Brezger et al. [Bre+02], of the order of picometers, is of the same or-
der of magnitude as the one expected for keV (anti)hydrogen. Therefore,
a device with similar geometrical characteristics as the one employed in
those condition would also prove suitable for use with this kind of par-
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ticles. In the following, we introduce the working principle of this tool
and we go through an explanation on how this can be applied to iner-
tial sensing, also taking a closer look to the behavior of this device in
the classical limit. A closed formula to calculate the pattern generated
by the interferometer is also introduced, in order to provide a robust
mathematical tool to predict the outcome of a measurement.

Figure 2.1: When illuminating a single grating with a coherent beam of
light, multiple rephasings can be observed. The distance between the
rephasings is proportional to a typical length called Talbot length.

2.1 Operating principles

2.1.1 Description and physics

The traditional Talbot-Lau interferometer is composed by two identical
gratings and a position sensitive detector. The gratings have a periodicity
d and an open fraction η (i.e. the ratio between the open part and the full
period). The distance between the first and the second grating L1 = L
is equal to the distance between the second grating and the detector L2.
A schematic of the device, together with a reference coordinate system
is shown in Fig. 2.2. The pattern on the detector appears as a density
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modulation with the same periodicity d as the gratings. The typical
length scale of this type of interferometer is designed as Talbot length
LT, defined as

LT =
d2

λ
, (2.1)

where λ is the wavelength of the impinging light. When using this de-
vice with particles, λ can be replaced by the de Broglie wavelength λdB,
leading to

LT =
d2

λdB
=
d2

h

√
2mU, (2.2)

where h is the Planck constant, m the mass of the particle, and U is
the kinetic energy of the particles. Notice that the device described so
far can operate both in the classical, near-field and far-field regime: the
relation between L and LT determines the regime in which the device is
being used. When L≫ LT, the device operates in the far-field regime as
a Mach-Zehnder interferometer [GBB06]. In this specific configuration,
the contrast C of the pattern, defined as

C =
Imax − Imin

Imax + Imin

, (2.3)

Imax and Imin being the maximum and minimum intensity of the revealed
signal respectively, depends only on the geometrical characteristics of the
device and has no dependency on U [CSP09]. This is what is referred
in literature as an achromatic setup. If L ≃ LT, the device behaves
like a near-field interferometer, as the diffracted beams from the gratings
overlap. This configuration constitutes a proper Talbot-Lau interfero-
meter and is the one we elected to study in the context of this work.
In the Talbot-Lau configuration, the contrast of the pattern is strongly
dependent on the energy of the particles, since only particles with a spe-
cific energy have a LT which matches the length of the device. This
case will be discussed in detail in the next section. When L ≪ LT,
the signal recorded by the detector is no different than the one which
would be revealed if we considered geometrical trajectories instead of a
wave propagating through the device (classical regime). In this specific
case, the contrast of the pattern is again independent on U and com-
pletely determined by the periodicity d and the open fraction η of the
gratings. A device operating in this configuration is called moiré deflec-
tometer [Obe+96]. Notice that when L = nLT, n ∈ Z+, the pattern
generated by the Talbot-Lau interferometer is indistinguishable from its
classical counterpart, yielding the same contrast as a result. This is how-
ever only true if the beam is monoenergetic, as particles with different
energies match a different Talbot length. Choosing the length of the de-
vice appropriately thus becomes an important factor in the design of the
experiment and has to be thought in a way to get the maximum efficiency
out of the available energy range.
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A twist on this perspective is considering a device with fixed distance
L between the gratings and then tune the energy of the particles such that
L is equal to an integer multiple of the Talbot length. From Eq. (2.2),
this translates into a requirement for the kinetic energy U of the particles
which reads

U =
UT

n2
=

1

n2

h2L2

2md4
. (2.4)

In this framework, we can then set the geometrical parameters of the
device and see how the contrast of the pattern evolves as a function of
the energy of the particles. An example of this behavior is shown in
Fig. 2.3 for different open fractions.

L1

y

detector plane

x

z

diffuse illum
ination

L2 = L1

d

Figure 2.2: A schematic of a traditional Talbot-Lau interferometer. Two
identical gratings with periodicity d and open fraction η are illuminated
by a divergent source of particles (or light). The distance L1 between the
first and the second grating is equal to the distance L2 between the second
grating and a position sensitive detector. The first grating illuminates
the second grating with a coherent illumination, allowing for a revival of
the Talbot carpet. Figure adapted from Demetrio et al. [Dem+17].

2.1.2 Origin of the rephasings: the Talbot carpet

There are several ways to mathematically obtain the periodic rephasing
due to a plane wave traveling through a grating. The following derivation
is based on the work of Bergermann [Ber12] and its inclusion in the work
of Bräunig [Brä14] and employs the so-called plane wave decomposition.
For the sake of simplicity, we restrict our analysis in two dimensions (y
and z), while ignoring the dispersion in the x direction (reference system
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Figure 2.3: One of the characterizing properties of the periodic pattern
generated by a Tabot-Lau interferometer is its contrast as a function of
the energy. Here, the contrast is defined as (Imax − Imin)/(Imax + Imin),
with I(y) being the intensity of the signal at the position y on the de-
tector plane. When the energy of the incoming waves U satisfies the
relation U = UT/n

2, n ∈ Z+, with UT being the characteristic energy of
the interferometer (Eq. (2.4)), the signal is indistinguishable from that
which would be generated by the geometric trajectories of the particles
through the grating. In all other configurations, the signal shape changes,
modifying the contrast accordingly. The plots have been calculated using
the Wigner representation [Wig32] as described in [HSA04] and [Brä14]
and discussed in detail in Sec. 2.4. Figure adapted from Demetrio et
al. [Dem+17].
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from Fig. 2.2. A scalar field u(y, z), as the one impinging on the first
grating, can be decomposed in a superimposition of different waves by
expressing it as the inverse Fourier transform of its spectrum. By defining
the one-dimensional Fourier transform as

F{u(y, z = 0)} = ũ(ky) =

∫ ∞

−∞
dy u(y, z = 0)e−ikyy (2.5)

we can rewrite u(y, z = 0) as

u(y, z = 0) = F−1
ky

{ũ(ky)} =
1

2π

∫ ∞

−∞
dky ũ(ky)e

ikyy. (2.6)

If we consider monochromatic plane waves with a fixed wavelength λdB,
we get that the total wave vector k satisfies |k|2 = k2 = (2π/λdB)

2. This
restriction implies that the axial wave vector kz is bound to have a value
which is fixed once ky is set

kz = ±
√(

2π

λdB

)2

− k2y, (2.7)

where the sign matches the propagation direction (plus for propagation in
the positive z direction, minus for the negative z axis). In the following,
we consider waves traveling in the positive z direction, therefore keeping
only the positive solution. By propagating the wave in space, up to a
generic position z = z̄, it accumulates an additional phase eikz z̄. With
this in mind, we modify Eq. (2.6) to make it valid for every z

u(y, z) =
1

2π

∫ ∞

−∞
dky ũ(ky)e

ikzzeikyy

=
1

2π

∫ ∞

−∞
dky ũ(ky)e

iz

√(
2π
λdB

)2
−k2yeikyy.

(2.8)

If we define the propagator Pky(z) as

Pky(z) = e
iz

√(
2π
λdB

)2
−k2y , (2.9)

we can rewrite Eq. (2.8) in a way which gives us a hint on how to compute
the expression with the help of a computer program:

u(y, z) = F−1
ky

{Fy{u(y, 0)Pky(z)}}. (2.10)

The process is pretty straight-forward: once the intensity field at z = 0
is known, the wave front is discretized in vector of finite size. The vector
is transformed using an FFT algorithm and multiplied by the propaga-
tor, sampled with the same finesse. The result is then anti-transformed,
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in order to get the intensity field in direct space coordinates. In fact,
the Talbot carpet shown in Fig. 2.2 has been calculated by evaluating
Eq. (2.10) numerically at different positions z = z̄, by considering the
intensity

I(y, z) =
∑

θ

Iθ(y, z) =
∑

θ

uθ(y, z)u
∗
θ(y, z), (2.11)

with θ being the angle of incidence of the waves, summed up on a dis-
crete set in order to simulate a diffuse illumination. The action of the
wavefront passing through a grating can be expressed by multiplying the
wave front function u(y, z = zgrating) by the grating transparency func-
tion t(y; η), where η is the open fraction of said grating. Our ideal model
of a grating consists in an infinitely thin sheet of material which is either
completely transparent (t = 1) or completely opaque to the particles
(t = 0), depending on the considered coordinate y. We can explicitly
express t(y; η) as [Dem+17]

t(y; d, η) =

{
1 for mod(y, d) < ηd

0 otherwise.
(2.12)

If we consider an infinite grating, t(y; d, η) can be expressed as its Fourier
series as a function of the grating vector kd = 2π/d. The resulting
expression takes the general form [Ber12; Brä14]

t(y; d, η) =
∞∑

n=−∞

cne
inkdy =

∞∑

n=−∞

cne
ikny, (2.13)

where we replaced kn = nkd and cn is the n-th Fourier coefficient of the
series, which, for an infinite grating as the one in Eq. (2.12) is given
by [Brä14]

cn =
1

d

∫ d
2

− d
2

t(y; d, η)e−inkdy

= ηsinc(ηn)e−inkdyg

= c′ne
−inkdyg ,

(2.14)

with the initial grating phase 2πyg/d and the cardinal sine defined as
sinc(x) = sin(πx)/(πx). The dependence on the open fraction η is ab-
sorbed in the cn coefficients and it becomes again explicit when we calcu-
late a closed form for them. Now, consider a plane wave u(y, z) = eikyyeikzz

which impinges on a grating placed at z = 0. If we consider the light
field u(y, 0−) just before the grating, we can write u(y, 0+) as

u(y, 0+) = u(y, 0−) · t(y; d, η) =
∞∑

n=−∞

cne
i(ky+kn)y

=
∞∑

n=−∞

cne
i(k′n)y

(2.15)
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which describes a superimposition of plane waves with wave vectors
k′n = ky + kn. This formula should not strike as excessively odd to
the eye of the reader: the additional transverse wave vector is just a
mathematical formulation of the interference phenomenon from an ex-
tended grating. Once again, if the field behind the grating is known, it
can be retrieved at any position z = z̄ by applying the process described
in this section: Fourier transform, propagation, Fourier anti-transform.
Performing the operations in order, we first get ũ(ky)

ũ(ky) = F{u(y, 0+)} =

∫ ∞

−∞
dy u(y, 0+)e−ikyy

=
∞∑

n=−∞

cn

∫ ∞

−∞
dy ei(k

′
n−ky)y

=
∞∑

n=−∞

cnδ(k
′
n − ky).

(2.16)

Then, we multiply the result by the propagator Pky(z):

ũ(ky) · Pky(z) =
∞∑

n=−∞

cnδ(k
′
n − ky)e

iz

√(
2π
λdB

)2
−k2y . (2.17)

At last, we anti-transform the result, in order to get the desired light
field:

u(y, z) =
1

2π

∞∑

n=−∞

cn

∫ ∞

−∞
dkyδ(k

′
n − ky)e

iz

√(
2π
λdB

)2
−k2yeikyy

=
∞∑

n=−∞

cne
iz

√(
2π
λdB

)2
−k′n

2

eik
′
ny.

(2.18)

Now, we expand the square root to the first order in Taylor (paraxial
approximation) as

√(
2π

λdB

)2

− k′n
2 =

2π

λdB
− k′n

2λdB
4π

+O(k′n
4
). (2.19)

If we consider a single plane wave impinging on the grating with an angle
θ = 0, we have ky = 0 and, therefore k′n = kn = nkd = 2nπ/d. This leads
to

k′n
2λdB
4π

=
πn2λdB
d2

=
πn2

LT

(2.20)

where LT is the Talbot length as expressed by Eq. (2.2). When we
substitute this expression in Eq. (2.18), we finally obtain

u(y, z) = e
iz

√(
2π
λdB

)2 ∞∑

n=−∞

cne
iknye

−iπn2 z
LT . (2.21)
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This final equation underlines a fact we already mentioned while intro-
ducing the Talbot carpet: when z = 2mLT, m ∈ Z, the light field u(y, z)

is equal to u(y, 0), except for a global phase factor exp

(
iz

√(
2π
λdB

)2
)
.

This is the so called Talbot rephasing and the reason why in literature one
can find an alternative definition of the Talbot length which is L′

T = 2LT.
We analyze now Eq. (2.21) for odd integer multiples of our definition of
LT. Let m ∈ Z, z = (2m+ 1)LT. Then, we find that

e
−iπn2 z

LT = e−i2πn2m · e−iπn2

= e−i2π · e−in2π = e−inπ. (2.22)

We notice that, whatever the combination of n and m, 2mn2 is always
even, while n2 conserves the parity of n. This leads to

u(y, z = (2m+ 1)LT) = e
iz

√(
2π
λdB

)2 ∞∑

n=−∞

cne
iknye−inπ

= e
iz

√(
2π
λdB

)2 ∞∑

n=−∞

cne
in 2π

d
ye−inπ

= e
iz

√(
2π
λdB

)2 ∞∑

n=−∞

cne
in 2π

d
(y−d/2)

= u(y − d/2, z = 0).

(2.23)

This last equation shows that for odd multiples of LT the light field
constitutes a shadow image of the grating, albeit with a π phase shift (or
half a period shift).

2.2 Detecting the pattern: on the use of a

third grating

The shadow images generated by the rephasings described in the previ-
ous section share a non-negligible detail: the periodicity of the density
modulations is the same as that of the gratings. In order to highlight how
this can be critical, we remind the reader that a device geared toward
keV (anti)hydrogen with a length of 10 cm requires a periodicity as small
as 250 nm to match the Talbot length. Commercially available position
sensitive detectors rarely go below 1 µm resolution on large surfaces, ef-
fectively limiting our ability to retrieve the structures we are looking for.
There are effective workarounds to get rid of these limitations, based
on using a third grating, identical to the previous two, on the detector
plane. There are two possible configurations which yield the desired re-
sult of producing a readable pattern. In this section we analyze both of
them separately.
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Figure 2.4: SEM picture of a nanometric grating made out of
a 3mm2 × 3mm2 silicon nitride (Si3N4) via deep reacting ion-
etching [Sav+95]. The periodicity d of the grating is 257 nm, with an
open fraction η = 0.46. The main bars are supported by an additional
transverse structure with a periodicity of 1.5 µm and an open fraction of
around 60-70%. Grating courtesy of M. Arndt, SEM picture courtesy of
A. Kast.
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2.2.1 The third grating as a “scanner”

The first configuration we describe, used by Oberthaler et al.[Obe+96],
consists in using the third grating as a “scanning” tool, in conjunction
with a particle counter. The outcome of this measurement schematic is
represented in Fig. 2.5: in order to reveal the pattern we translate the
third grating in the y direction, according to the previously established
reference system and we simultaneously record the flux of particles going
through the additional grating. Intuitively, the maximum flux is expected
to be detected when the grating openings are matched to the maxima
of the pattern, while, on the contrary, we expect to find a minimum
when the grating has a shift of half a period in respect to the pattern.
This approach has the clear advantage that it resolves the issue with
the resolution of the detector by requiring no resolution at all. There
is also a possible disadvantage: in order to reconstruct the pattern with
a sufficient resolution, it is necessary to record several datapoints. De-
pending on the intensity of the source, this could require a non-negligible
amount of time and the measurement could be hindered by slow drifts
in intensity.

2.2.2 The third grating as a “magnifier”

The second method exploits a classical phenomenon called moiré beating
or moiré effect - the same name used for the classical limit of the Talbot-
Lau interferometer. The envisioned setup uses a third grating, identical
to the other two, tilted by a small angle α in respect to the fringe pattern
generated by the device. As shown in Fig. 2.6, the interaction between
the two patterns creates beatings whose periodicity is given by [Mül16]

dbeat =
d

2 sin(α
2
)
, (2.24)

where d is the original periodicity of the grating. Notice that for α = 0,
dbeat diverges, which means that no beatings are observed, since their
periodicity would be infinite. For α ≪ 1, we can approximate the above
formula as [Lan+17]

dbeat ≃
d

α
. (2.25)

If we consider a circular grating of radius r, the number of beatings Nbeat

is then given by

Nbeat = α
r

d
. (2.26)

We see immediately that even when considering d = 250 nm, and α as
small as 100 µrad, we get dbeat = 2.5mm, which means that the struc-
tures can be easily detected by a commercial position sensitive detector.
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Figure 2.5: By placing a third grating on the detector plane, followed by a
particle counter, we can reconstruct the pattern by translating the grating
in the transverse direction (orange arrow) and recording the number of
events which go through the additional grating [Obe+96; Dem+17].
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This method has the advantage that it allows direct detection of the in-
terference pattern in one shot, without need for repeated measurements
in different configurations. It works as if every vertical line of the grating
is a position in the scan process highlighted in Sec. 2.2.1. This has been
used in the work of Lansonneur et al. [Lan+17] in order to enlarge the
fringes of a moiré deflectometer with d = 40 µm to be detected by a MCP
with 100 µm resolution.

+ =+ =

intensity pattern tilted grating moiré fringes

Figure 2.6: A third grating, tilted by a small angle α, create macroscopic
beatings when illuminated by the periodic pattern from the first two
gratings [Brä14; Mül16; Lan+17]. Those beatings can then be revealed
by a position sensitive particle detector. The smaller the angle, the bigger
the fringes. Bigger angles translate into an increased number of fringes.
Figure from [Lan+17].

Now that we have introduced our tool of choice, it is important to
understand how it can be used effectively to measure forces acting on the
particles traveling between the gratings. The next section describes the
general idea behind the use of a Talbot-Lau interferometer for inertial
sensing and introduces a formula for the sensitivity of this device, which
will be central in the following discussion.

2.3 Inertial sensing with a two-gratings de-

vice

The goal of this work is to provide an estimation on the feasibility of
a gravity measurement on antihydrogen in the framework of the AEḡIS
experiment. Therefore, it is of utmost importance to have access to an
estimator for the sensitivity of our device of choice. The title of this
section is willingly generic, in that we start from the classical case (the
so-called moiré deflectometer) but the result we obtain can be applied to
any configuration, including the Talbot-Lau and Mach-Zehnder regime.
From Sec. 2.2 we have learnt that the the use of a third grating can
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help to reveal the underlining pattern. We consider the third grating
to be part of the detection system and focus instead on the physical
process which makes inertial sensing possible with the use of the first
two gratings. The classical case gives us indeed a rather intuitive way to
understand the principle and to extrapolate it later to the quantum case.

2.3.1 The force as a phase shift

If we consider geometrical trajectories, whatever is the distance between
the gratings and the energy of the particle, we will always obtain a shadow
pattern on the detector plane. When an external force acts on the particle
beam in the direction transverse to the grating pitch, this shadow image
of the grating gains a phase shift in respect to the unperturbed pattern.
Fig. 2.7 provides an example of the aforementioned process and sets
the axis reference system we use for the considerations expressed in this
section. To derive the phase shift due the force, we build up on the
formulation found in [Mül16]. Consider a beam of particles with axial
velocity vz, two identical gratings with periodicity d and open fraction η,
and a detector plane. The gratings and the detector plane are distanced
by L from each other, as in Fig. 2.7. Consider a uniform, constant
acceleration a = aŷ. We set our reference system such that the first
grating is located in the position z = 0, placing the second grating at
z = L and the detector at z = 2L. The time of flight τ between the
gratings is therefore equal to L/vz. This sets the times of crossing to
t = 0, t = τ , and t = 2τ , for the first grating, second grating, and
detector respectively. The trajectories of the particles are described by
the standard uniformly accelerated motion

y(t) =
1

2
at2 + v0yt+ y0, (2.27)

where v0y and y0 are the initial transverse velocity and the initial y po-
sition respectively. Since the gratings restrict the available trajectories,
this places a limitation on y(t). More precisely, y0 is limited to the
interval [nd, (n + η)d], n ∈ Z, while y(τ), which describes the cross-
ing point through the second grating, has to satisfy the requirement
y(τ) ∈ [md, (m + η)d], m ∈ Z. We choose two random elements from
these sets and we call them ȳ0 and ȳ1 respectively. This choice sets an
additional restriction on v0y, since the particle is now bound to cross the
second grating at y(τ) = ȳ1. The boundary is given by the equation

y(τ) = ȳ1 =
1

2
aτ 2 + v0yτ + ȳ0, (2.28)

which leads to

v0y =
ȳ1 − ȳ0
τ

− 1

2
aτ = v̄0y −

1

2
aτ. (2.29)
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With this treatment, we rewrite Eq. (2.27) as

y(t) =
1

2
at2 + (v̄0y −

1

2
aτ)t+ ȳ0, (2.30)

from which we can obtain the arrival position of the particle on the
detector at t = 2τ

y(2τ) = 2aτ 2 − aτ 2 + 2v̄0yτ + ȳ0 = c+ aτ 2. (2.31)

We find a clear dependence on the acceleration intensity a and we can
now calculate the expected shift from the force-free case (a = 0) as

∆y = aτ 2. (2.32)

In order to translate ∆y into a phase shift, we take into account the
periodicity of the grating, thus obtaining ∆φ as

∆φ =
2π

d
aτ 2. (2.33)

The classical result still holds in the wave regime, and the phase shift
expected in the wave regime is exactly the same as the one shown in
Eq. (2.33) [Obe+96]. By measuring ∆φ the magnitude of the accelera-
tion can be therefore retrieved. Notice that both detection techniques
discussed in Sec. 2.2 yield the same relative phase shift ∆φ. When using
a tilted third grating, the absolute shift is also magnified by a factor
dbeat/d, which results in the same phase shift ∆φ described in the previ-
ous equation, without any need for adjusting the formulas [Mül16].

2.3.2 Sensitivity of the device

Now that we have a measurable quantity for determining the acceleration,
it is important to also determine the sensitivity of the measurement de-
vice as a function of the number of detected events. Following [Obe+96],
we consider the resolution of the device as the partial derivative of the
phase shift as a function of the acceleration:

Rφ =

∣∣∣∣
∂∆φ

∂a

∣∣∣∣ =
2π

d
τ 2 =

2π

d

L2

v2z
. (2.34)

This is an intrinsic property of the measurement apparatus and does not
take into account the statistical nature of a measurement. By modeling
the detection as a poissonian event and considering, as a first approx-
imation, a periodic sinusoidal signal, the signal-to-noise ratio is given
by C

√
Ndet, where C is again the contrast of the pattern as defined by

Eq. (2.3) andNdet is the number of detected particles [Obe+96]. Combin-
ing these together, we can now define the sensitivity of our measurement
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Figure 2.7: In the classical scenario, when a transverse force is applied on
the particle beam traveling through the measurement device, the bending
of the trajectories causes a phase shift in the recorded pattern. This phase
shift is proportional to the time of flight between the gratings and to the
intensity of the force.

device, named from this point on as minimum detectable acceleration
(amin), as

amin =
d v2z

2πL2C
√
Ndet

. (2.35)

This equation outlines the main parameters we have to take care of in
order to perform the measurement. We see that the smaller d, the better
the sensitivity. Also, smaller vz and longer L make for a better device,
since the intrinsic resolution scales with the second power of both quan-
tities. This expression for the sensitivity of the device is central to our
discussion, since it constitutes the figure of merit when considering dif-
ferent designs for a gravity measurement on antimatter. In particular,
the contrast C is tightly bound to all the other parameters: as shown in
Fig. 2.3, by varying d, L, and vz what we get is a significant modulation
in contrast. This has to be taken into account when designing the device.

The next section focuses on the mathematical treatment needed to
extract the shape and the intensity of the signal independently on the
setup. This will give us the resources to further investigate the usage of
this atom optic tool for inertial sensing.
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2.4 Signal calculation in Wigner represen-

tation

In order to design a proper measurement device, we need to have access
to a reliable mathematical treatment of the expected pattern. While the
formulation introduced in Sec. 2.1.2 is useful for visualizing the rephas-
ing and building the pattern, its expansion to incoherent illumination
requires a lot of computation power in order to accomodate for the large
number of waves needed to simulate a divergent source. Moreover, the
smaller the wavelength of the incoming waves, the bigger the sampling
needed not to cause artifacts and aliasing, when implemented into a
computer program, as every period of the grating could contain several
hundreds of wave periods. In this section, we derive instead an expression
for the pattern by using the approach outlined in [Brä14], which builds
up closely on the work of Hornberger et al. [HSA04]. This approach ex-
ploits the Wigner formalism [Wig32] to extract a closed formula for both
the signal intensity and contrast. At the end of this section, the signal of
a Talbot-Lau interferometer will be expressed as a sum of terms which
can be easily implemented in a computer program, requiring less com-
putation power than the method proposed in Sec. 2.1.2. The respective
formula for the classical case is also retrieved and found structurally sim-
ilar to the quantum case, further strengthening the connection between
the two regimes.

If we consider a beam of particles with axial velocity vz much bigger
than its transverse velocity vr =

√
v2x + v2y , we can decouple the axial

and the transverse motion and, therefore, the axial and transverse wave
function. As such, we define the transverse wave function ψ(r), r = (x, y)
in the plane of the grating. The so-called Wigner function can be seen
as a quasi-probability distribution w(r,p) in the phase space, as it does
not fulfill all the normal properties of a proper probability density func-
tion, due to its abiding by Heisenberg’s uncertainty principle [Hei27] for
momentum p and position r. The Wigner function w(r,p) is defined
as [Wig32]

w(r,p) =
1

2π~

∫ ∞

−∞
d∆e−ip∆

~ ρ

(
r− ∆

2
, r+

∆

2

)
, (2.36)

where ρ(r, r’) is the density matrix which describes our system, written
as

ρ(r, r’) =

∫
dµg(µ)ψµ(r)ψ

∗
µ(r’), (2.37)

and ∆ = r − r’ is usually named as two-point separation. The Wigner
function is the Fourier transform of the density matrix and can be used
to reconstruct the pattern at the end of the interferometer, by following
a strategy similar to the one outlined in Sec. 2.1.2: interaction with
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the grating, transformation in the Wigner space, free propagation, anti-
transformation, repeated as many times as there are gratings on the path.
The next sections will focus on the free evolution of the Wigner function
and its interaction with the gratings respectively, in order to be able to
build a mathematical expression for the signal on the detector plane.

2.4.1 Free evolution of the Wigner function

In the paraxial approximation (Eq. (2.19)), the free evolution of the wave
function ψ(r) up until a position z = L can be written as [HSA04]

ψ(r) =
pz

2πi~L
e

ipzL
~

∫ ∞

−∞
dr0 exp

(
i
pz
~
|r− r0|2

2L

)
ψ0(r0)+O

( r
L

)
, (2.38)

with ψ0(r0) being the initial state. From this, we can also evolve ρ(r, r’)
as [Brä14]

ρ(r, r′) =
( pz
2π~L

)2 ∫
dr0 dr′0 exp

(
i
pz
~
|r− r0|2 − |r′ − r′0|2

2L

)

·
∫

dµ g(µ)ψµ
0 (r0)ψ

µ
0
∗(r′0)

=
( pz
2π~L

)2 ∫
dr0 dr′0 exp

(
i
pz
~
|r− r0|2 − |r′ − r′0|2

2L

)

· ρ(r0, r′0).

(2.39)

We thus use this formulation to describe the free evolution of the Wigner
function up to a distance L as [HSA04]

wL(r,p) =

(
1

2π~

)2 ( pz
2π~L

)2 ∫
d∆ e−ip∆

~

∫
dr0 dr′0

· exp
(
i
pz
~

∣∣r− ∆
2
− r0

∣∣2 −
∣∣r+ ∆

2
− r′0

∣∣2

2L

)
ρ(r0, r

′
0)

=

(
1

2π~

)2 ∫
d∆ e−ip∆

~

· ρ
(
r− L

pz
p− ∆

2
, r− L

pz
p+

∆

2

)

= w0(r−
L

pz
p,p),

(2.40)

with L
pz
p being the transverse motion which corresponds to an axial mo-

mentum pz travelling for a length L. This expression underlines an inter-
esting fact: the Wigner function at any position z = L is just a translation
of the initial Wigner function to the transverse position r− L

pz
p.
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2.4.2 Passage through a grating

As we discussed in Sec. 2.1.2, the effect of a grating on the wave function
is letting only part of the profile to be propagated through. The grating
transparency function expressed by Eq. (2.12) can by straightforwardly
expanded in two dimensions as

t(r; d, η) =

{
1 for mod(y, d) < ηd

0 otherwise.
(2.41)

Notice that t(r; d, η) is normalized such that the total transmittance
|t(r; d, η)|2 of this grating function integrated over r is equal to its open
fraction η < 1. If we consider a wave function ψi(r) impinging on
such a grating, the wave function right after the grating is given by
ψi+1(r) = t(r)ψi(r). Using this, in combination with Eq. (2.36) and the
definition of density matrix given by Eq. (2.37), we obtain an expression
for the Wigner function right after the grating:

wi+1(r,p) =

∫ ∞

−∞
d∆ e

ip∆
~ t

(
r− ∆

2

)
t∗
(
r+

∆

2

)

· ρi
(
r− ∆

2
, r+

∆

2

)
.

(2.42)

This formulation can be rewritten as a convolution with the kernel T (r,p)
given by

T (r,p) = A

∫ ∞

−∞
d∆ e

ip∆
~ t

(
r− ∆

2

)
t∗
(
r+

∆

2

)
, (2.43)

with a proper normalization factor A. This leads to the expression

wi+1(r,p) =

∫ ∞

−∞
dq T (r,q)wi(r,p− q). (2.44)

The convolution kernel represents the grating and is the key element to
reconstruct the signal of the device.

2.4.3 Propagation through the interferometer

Now that we have all the expressions we need, we can finally obtain a
formula for the detected signal. We start with an initial Wigner function
w(r,p) = 1, which just means that our wave function is uniformly spread
over the grating plane. Using equation Eq. (2.43), the passage through
the first grating yields

w1(r,p) = |t1(r; d, η)|2 . (2.45)
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Then, we use the free evolution from Eq. (2.40) to obtain the Wigner
function just before the second grating as

w2(r,p) = w1(r−
L

pz
p,p) =

∣∣∣∣t1
(
r− L

pz
p; d, η

)∣∣∣∣
2

. (2.46)

The effect of the second grating, described by the convolution kernel
T2(r,p), is then calculated following Eq. (2.44) and yields

w3(r,p) =

∫ ∞

−∞
dq T2(r,q)w2(r,p− q)

=

∫ ∞

−∞
dq T2(r,q)

∣∣∣∣t1
(
r− L

pz
(p− q); d, η

)∣∣∣∣
2

.

(2.47)

We still need to propagate w3(r,p) once more, up to the detection plane.
This leads to an expression for w4(r,p):

w4(r,p) = w3(r−
L

pz
p,p)

=

∫ ∞

−∞
dq T2(r−

p

pz
L,q)

∣∣∣∣t1
(
r− L

pz
p− L

pz
(p− q); d, η

)∣∣∣∣
2

=

∫ ∞

−∞
dq T2(r−

p

pz
L,q)

∣∣∣∣t1
(
r− 2

p

pz
L+

q

pz
L; d, η

)∣∣∣∣
2

.

(2.48)

The Wigner function w4(r,p) represents the signal on the detector plane.
In order to get an explicit expression for it, we need to write t1(r; d, η)
as a function of its Fourier coefficients.

2.4.4 Explicit mathematical formula for the signal

Now, we use the mathematics we developed in Sec. 2.1.2 in order to give
a close expression for the signal formula. We restrict ourselves to the
y direction in order to simplify the calculations, effectively reducing our
transmission function to t (y; d, η) as in Eq. (2.12). Using the coefficients
from Eq. (2.14), we can calculate |t1 (y; d, η)|2

|t1 (y; d, η)|2 = t1 (y; d, η) · t∗1 (y; d, η)

=

(∑

j∈Z

cje
ijkdy

)
·
(∑

h∈Z

c∗he
−ihkdy

)

=
∑

j,h∈Z

cjc
∗
he

i(j−h)kdy

=
∑

j,l∈Z

cjc
∗
l−je

ilkdy

=
∑

l∈Z

Cle
ilkdy,

(2.49)
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where we defined the coefficient Cl as

Cl =
∑

j∈Z

cjc
∗
l−j. (2.50)

If we make the dependence of the coefficients Cl on the initial phase of
the first grating y1 explicit, we get instead

|t1 (y; d, η)|2 =
∑

l∈Z

C ′
le

ilkd(y+y1), (2.51)

where we are considering the modified coefficients

C ′
l =

∑

j∈Z

c′jc
′∗
l−j. (2.52)

With similar arguments and using the same notation, we get for the
second grating

T2(y, py) =
∑

j,l∈Z

bjb
∗
l−je

ilkdyδ

(
py − ~π

2j − l

d

)

=
∑

j,l∈Z

b′jb
′∗
l−je

ilkd(y+y2)δ

(
py − ~π

2j − l

d

)
,

(2.53)

where y2 is the phase of the second grating and we restricted ourselves
to the y direction both for the position and the momentum. Notice that
bm = ηsinc(ηn)e−inkdy2 , with y2 being the phase of the second grating,
which is a perfectly analogous result to the expression found previously
for cm. By using Eq. (2.50) and Eq. (2.53), we can now further process
Eq. (2.48), from which we obtain the following expression:

w4(y, py) =
∑

m,j,l∈Z

Clbjb
∗
l−j exp

(
i(l + j)kdy − ikd(2l − j)

py
pz
L

)

· exp
(
iπl(2m− j)

L

LT

)
.

(2.54)

By integrating over the transverse momentum py, we can then get the
detectable signal on the observation plane [Brä14]:

w(y) =

∫ ∞

−∞
dpyw4(y, py)

∝
∑

m,l∈Z

Clbmb
∗
m+2l exp (ilkdy) exp

(
iπl(2m+ 2l)

L

LT

)

=
∑

m,l∈Z

ClB
T
−2l exp (ilkdy) ,

(2.55)
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where LT is again the Talbot length and the grating coefficient BT
j is

defined as

BT
j =

∑

m∈Z

bmb
∗
m−j exp

(
iπ
j2 − 2mj

2

L

LT

)
. (2.56)

We see from Eq. (2.55) that while the effect of the first grating is limited
to a multiplicative factor (the Cl coefficients), the second grating actually
performs a phase modulation which is dependent on the Talbot length.
This dependence is what distinguish the classical, geometrical trajectories
from the quantum wave propagation. We can prove that in case of no
quantum influence, or when L≪ LT, the B

T
j coefficients reduce to their

classical counterpart BC
j , whose definition is the same as the Cl described

by Eq. (2.50). We can in any case write BT
j in a way which makes the

dependence on the phase of the second grating y2 explicit, as in Eq. (2.51):

B′T
−2l = BT

−2le
i(−2l)kdy2 . (2.57)

Since only the terms with j = −2l are contributing to the sum of the
series in Eq. (2.55), we see that a phase shift on the level of the second
grating contributes twice as much as a phase shift on the level of the first
grating.

2.4.5 Signal of a three-gratings device

We argued in Sec. 2.2 that we can use a third grating to improve the
detection schematic while losing a fraction of the incoming particles. We
can readily expand the result from Eq. (2.55) to a three grating device
by considering the convolution with a third grating T3(y, py), such that
we can write the signal S(y) as

S(y) =

∫ ∞

−∞

∫ ∞

−∞
dp dq w4(y, q)T (y, q − p)

= w(y) |t3(y)|2
(2.58)

which can be integrated over y to get the total flux of particles going
through the three gratings

S =

∫ ∞

−∞
dy dq w(y) |t3(y)|2 . (2.59)

The signal still depends on the position of the three gratings, i.e. on
their initial phases, marked as y1, y2 and y3 respectively. By making the
integration explicit and considering a third grating identical to the first
one, we get

S(y1, y2, y3) ∝
∑

l∈Z

C ′
lB

′T
−2lC

′
l exp (ikdl(y1 + y3 − 2y2))

=
∑

l∈Z

(C ′
l)

2B′T
−2l exp (ikdl(y1 + y3 − 2y2)).

(2.60)
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We can thus extract the contrast C of the pattern in a similar fashion
as in Eq. (2.3) by considering the maximum signal Smax, obtained when
y1 + y3 − 2y2 = 2mπ,m ∈ Z, and the minimum signal Smin, obtained
when y1 + y3 − 2y2 = (2m+ 1)π,m ∈ Z. The contrast yields

C =
Smax − Smin

Smax − Smin

=

∑
l∈Z(C

′
l)

2B′T
−2l − (C ′

l)
2B′T

−2le
ilπ

∑
l∈Z(C

′
l)

2B′T
−2l + (C ′

l)
2B′T

−2le
ilπ

=

∑
l∈Z(C

′
l)

2B′T
−2l(1− eilπ)∑

l∈Z(C
′
l)

2B′T
−2l(1 + eilπ)

=

∑∞
n=1(C

′
2n−1)

2B′T
2−4n

1
2
(C ′

0)
2B′T

0 +
∑∞

n=1(C
′
2n)

2B′T
−4n

.

(2.61)

The contrast plots shown in this thesis have been produced by using
Eq. (2.59) and limiting the infinite sum to a small interval of indexes
(usually, n ≤ 30) for both the coefficients in Eq. (2.52), Eq. (2.57), and
Eq. (2.55). This limitation was required in order to keep the computation
time in the order of minutes (or tens of minutes) when implemented in
a computer program.

2.4.6 Shape of the pattern

We have now access to a set of formulas that can be used to describe
the expected signal shape after two or three gratings. By considering
the result from Eq. (2.60), we can write an analogous formula for a two
grating device:

S(y1, y2) ∝
∑

l∈Z

C ′
lB

′T
−2l exp (ikdl(y1 − 2y2)). (2.62)

Using these two equations let us visualize the pattern and predict its
shape. Examples of these calculations are shown in Fig. 2.8b and 2.8d
for two and three gratings respectively. For these figures, we set L = LT

and we evaluate the series using the first 50 terms. This approximation
yields an error of about 1.5% on the expected contrast of the fringes,
but requires a computation time a hundred times smaller than the one
required to get to a 0.1% error with an implementation of the equations
in MATLAB [MAT14] (see Fig. 2.9). We deem this trade-off acceptable
in our case, and we decide to stick to this convention in order to have
access to a faster way to produce test datasets at the expense of a small
reduction in precision. Compare them with Fig. 2.8a and 2.8c for two
and three gratings respectively, which show the signal for L = LT/2. The
comparison between these plots shows that the periodicity of the signal
is doubled when we choose a half-integer multiple of the Talbot length
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as our target distance and that for higher open fractions (e.g. η = 0.6)
the signal shows a higher contrast than in the classical case.
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Figure 2.8: Intensity profiles for a two or three grating device, obtained
by evaluating Eq. (2.60) numerically, using 50 terms for every series. The
open fraction η goes fro η = 0.6 (top) down to η = 0.1 (bottom). The
plot presents four different configurations: a. Two gratings, L = LT/2;
b. Two gratings, L = LT; c. Three gratings, L = LT/2; d. Three
gratings, L = LT, where LT is the Talbot length as in Eq. (2.1).

2.5 Summary

In this section, we discussed the physics behind a two-grating device and
its use for inertial sensing. We have first introduced the mathematics
behind the Talbot carpet, then we discussed how to detect the signal of
this kind of interferometer. We applied classical physics to extract an ex-
pression for the phase shift due to a constant force acting on the particles
during their travel through the device and found out the corresponding
phase shift which can be used to retrieve the magnitude of the acceler-
ation. A mathematical model for the free evolution has been developed
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Figure 2.9: Precision of the truncated series calculation vs. computa-
tion time needed for one specific configuration. The precision is calcu-
lated against the exact contrast for a known configuration (open fraction
η = 0.3, L = LT). The dashed line marks the 1% precision.

and solved in order to retrieve a value for the contrast of the expected
pattern depending on the geometrical characteristics of the setup. This
procedure will be employed in the following sections when discussing the
shortcomings and challenges related to building this device and operating
it in reasonable experimental conditions.





Chapter 3

Alignment requirements for a
Talbot-Lau interferometer

The results and formulas obtained in the previous chapter are all related
to a device in ideal conditions, with a perfect placement of every geomet-
rical component and infinite precision in the alignment of the gratings.
However, in a realistic experiment, there are intrinsic limitations on how
well an interferometer can be set up. The divergence α of the particle
source also plays a significant role in determining what is the maximum
allowed departure from the ideal setup before the signal vanishes.

In this chapter, we see how the various parameters of the experimen-
tal device affect the quality of the signal and its contrast, ultimately
finding an empirical formula which can be used to estimate the required
alignment precision. We begin by analyzing the effect of an asymmetry
∆L of the interferometer, then we proceed to independently discuss the
effect of rotations β around the beam axis. The schematic in Fig. 3.1
provides a visual guide to these parameters and is later used as a basis
to develop an analytic model for quantifying these effects. Notice that
the formulas have been obtained by considering the classical limit of the
Talbot-Lau interferometer, however their validity has been verified by
performing numerical simulations in the wave regime.

3.1 Longitudinal asymmetry

The ideal setup for a Talbot-Lau like interferometer that we considered
in Chapter 2 is composed by two or three identical gratings spaced by
equal distances L. The presence of a first gratings creates the spatial
coherence needed for illuminating the second grating with a coherent
wavefront, which can then produce the distinctive Talbot carpet. How-
ever, if the distance between the second grating and the detector L23 and
the distance L12 between the first two gratings are different, as in Fig. 3.1,
the position of the rephasing does not coincide with the position of the
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Figure 3.1: This figure schematically shows how the classical pattern is
calculated to estimate the effects of an asymmetry ∆L and an angular
misalignment β: for every point P on the detector, the region from which
particles can reach the point is calculated by projecting the second grat-
ing (G2) on the first one (G1), thus identifying the effective fraction of
particle which contributes to the intensity. The projected grating G′

2 has
a magnified periodicity d′, as in Eq. (3.3). When considering a source
with divergence α, the region from which a particle can reach the detec-
tor is limited by a cone with opening angle α equal to the divergence of
the source (bright region). The tilt angle β is considered when extending
the approach to three dimensions. The analytic treatment is explained
in detail in text. Figure reproduced from [Dem+17].
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detector, meaning that we obtain a signal with lower contrast than the
original. Furthermore, the bigger the initial divergence α of the beam, the
bigger the influence of this effect, as the size of the rephasing shrinks the
more the initial beam is divergent. Since the analytic formula retrieved
in Chapter 2 using the Wigner representation is valid only in case of an
ideal setup (that is, no difference between L23 and L12), and the method
based on the Fourier transform shown in Sec. 2.1.2 is computationaly ex-
pensive, we follow a different approach developed by Bergermann [Ber12]
and later adapted for [Dem+17]. This approach, schematized in Fig. 3.1,
works by considering classical trajectories through the interferometers, as
in the moiré regime, but its results have been verified performing numer-
ical simulations in the wave regime and proved valid also when applied
to a Talbot-Lau interferometer.

3.1.1 Idea behind the analytic approach

The problem of an asymmetry in the Talbot-Lau interferometer is not
completely new, as it has been previously discussed by [NH08; Hor+09]
The analysis presented in these papers has been performed in the wave
regime for a Talbot-Lau interferometer and, in the limit of a small di-
vergence angle (α ≪ 1), yields a maximum acceptable displacement
∆L = L23 − L12 given by

∆Lcrit =
d

2α
. (3.1)

If ∆L = ∆Lcrit, the contrast of the pattern is equal to zero, causing it
to vanish completely. In the following, we apply an alternative method
based on the classical description of the moiré deflectometer. We will
see that our method yields a result compatible with Eq. (3.1). The
calculation is performed in a way which can be non-intuitive without
a schematic: before delving into the detail we discuss the general idea
so that it is easier to follow the process, using Fig. 3.1 to underline
the key points. Instead of propagating a beam from the source (left
side of the reference figure) to the detector (right side of the reference
figure), we instead pick a point P on the detector plane and calculate
the relative intensity which can be recorded at that point, given a source
with divergence α. This is equivalent to integrating over the portion of
phase space which contains all the trajectories which can reach P by
starting from the source. This integral is what we want to retrieve, in
order to be able to build the pattern and calculate its contrast. With the
basics set, we begin with the calculation.
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3.1.2 Analytic formulation

Completely divergent source

Consider a completely divergent particle source (α = π/2 in two di-
mensions), and an device composed by two gratings, such that L12 = L,
L23 = L+∆L. Consider a point P on the detector plane. All the parti-
cles which reach P have to pass through both gratings, indicated as G1
and G2 respectively in the schematic figure, which limits their original
position to a specific region of space, given by the convolution of the first
grating G1 and the projection G2′ of the second grating at the position of
the first grating, using P as the projection vertex. The grating function
G as a function of the position y is defined exactly as the transparency
function t(y; d, η) we introduced in Eq. (2.12), with d being the periodic-
ity of the grating and η being the open fraction. We rewrite the definition
here for the sake of clarity:

G(y; d, η) =

{
1 if mod(y, d) < ηd,

0 elsewhere.
(3.2)

As shown in Fig. 3.1, the projected image G2′ can be described as a
grating with the same open fraction η and a magnified periodicity d′,
given by

d′ = d
L12 + L23

L23

= d
2L+∆L

L+∆L
. (3.3)

We now use the projection G2′ together with the first grating G1 to
retrieve the intensity of the signal at P . As per the schematic, while
moving the projection point by a distance y on the screen, the projection
G2′ moves in the opposite direction by a position y′ given by

y′ =
L

L+∆L
y, (3.4)

with the effect of translating the projection on the first grating, perform-
ing something similar to a convolution betweenG1 andG2′. In the follow-
ing, we express G1 and G2′ as a function of Eq. (3.2) as G1 = G(y; d, η),
G2′ = G(y′; d′, η). In the hypothesis of completely divergent source, the
intensity Idet at any position y on the detector plane is therefore given
by

Idet(y) ∝
∫ +∞

−∞
G(ξ; d, η)G(ξ + y′; d′, η)dξ. (3.5)

In this scenario, ∆L ̸= 0 causes the contrast of the fringes generated by
the first two gratings to vanish completely, as the rephasing is only seen
at integer multiples of L12. An example of this behavior is pictured in
Fig. 3.2 for increasing divergence angles: the farther we move towards
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a perfectly divergent source, the smaller the maximum ∆L which still
yields a signal.

As it was shown in Chapter 2, a third grating placed on the detector
plane can be used to reveal the periodic pattern. If we consider a grating
in scanning mode as in Sec. 2.2.1, the intensity modulation I after the
additional grating G3 = G(y; d, η) can be calculated as

I(yg) ∝
∫ +∞

−∞
Idet(ξ)G(ξ − yg; d, η)dξ, (3.6)

where yg is the position offset of the third grating, as discussed in Chap-
ter 2.

Source with limited divergence

Consider now a source with a fixed divergence α < π/2. Most of the
arguments we used in the previous case still hold. However, the lim-
its of the integrals are not ranging anymore from −∞ to +∞, but are
instead constrained to a region defined by ξ ∈ [y − ylim, y + ylim]. This
region represents the portion of space from which particles can reach the
detector, given the geometrical characteristics of the device. In this for-
mulation, ylim = (2L+∆L) tan(α) is the geometrical limit imposed by
the divergence angle α and y is the coordinate of the detector point at
which the pattern is calculated, as shown in Fig. 3.1. We notice that,
in the limit α → π/2, ylim tends to ∞, reproducing the equations from
Sec. 3.1.2. By proceeding further in the calculations, we get a new equa-
tion for Eq. (3.5) which takes into account the finite divergence of the
beam:

Iαdet(y) ∝
∫ y+ylim

y−ylim

G(ξ; d, η)G(ξ + y′; d′, η)dξ. (3.7)

The interaction with the third grating is calculated exactly as in Eq. (3.6),
thus obtaining for the total intensity on the detector Iα(yg):

Iα(yg) ∝
∫ +∞

−∞
Iαdet(ξ)G(ξ − yg; d, η)dξ. (3.8)

The contrast of the pattern as a function of ∆L shows a main peak at
∆L = 0, together with smaller secondary peaks of decreasing intensity.
An example of this behavior is shown in Fig. 3.3, where the contrast
is plotted as a function of ∆L for different divergence angles α. We
see again that for a completely divergent source (α → π/2), Eq. (3.8)
converges to Eq. (3.6), thus producing the same result.
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Figure 3.2: The maximum allowed asymmetry ∆L which causes the pat-
tern on the detector plane to vanish is strongly dependent on the diver-
gence angle α in relation to the periodicity of the grating d. From top
to bottom: pattern as a function of ∆L for increasing values of diver-
gence α. The dashed vertical line marks the position of the first zero
of the contrast, after which smaller periodic rephasings can be observed.
Theoretically, for a completely divergent beam, any ∆L ̸= 0 causes the
pattern to vanish completely. For small divergence angles, the position
of the first minimum is given by Eq. (3.1), while a more general formula
is given by Eq. (3.9).
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Figure 3.3: This figure shows the contrast of the classical moiré pat-
tern as a function of ∆L = L23 − L12. When the distance ∆L ̸= 0, the
contrast of the periodic pattern decays as a function of ∆L and the di-
vergence angle α. For ∆L = d/2 tan(π/2− α), the contrast is equal to
zero. The position of the zeros is completely determined by those two pa-
rameters and is not affected by the magnitude of L12. Figure reproduced
from [Dem+17].
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3.1.3 Geometrical argument for the visibility mini-
mum

By numerically solving Eq. (3.7), we find that the position of the minima
of the contrast is a function of ∆L and the divergence angle α. In this
section, we offer a geometrical argument on what is our expectation for
the position of the first contrast zero ∆Lcrit and we overlap the result on
the patterns produced by using the analytic process outlined above. A
schematic of this intuitive approach is provided in Fig. 3.4. Consider a
periodic intensity pattern with point-like intensity maxima spaced by an
equal distance d, and a beam divergence α. Due to the divergence, each
maximum expands into a cone with angular opening α, enlarging from
a point to a uniform spot of size d′ = ∆L tan(α) after a distance ∆L. If
d′ = d

2
, the intensity profile is a uniform, flat distribution without any

distinguishable features. By imposing ∆Lcrit tan(α) =
d
2
, we get [Mül17]:

∆Lmin =
d

2 tan(α)
=
d

2
tan
(π
2
− α

)
. (3.9)

This result is shown in Fig. 3.2 as the dashed vertical lines overlapped
to the contrast plots. Notice that, despite the huge simplification of
considering point-like structures, we derived a result which is completely
compatible with the one from Eq. (3.1) in the limit of small divergence
angles α ≪ 1, by using the Taylor expansion tan(α) = α + O(α3). This
argument can be extended to patterns with a spatial extension and it is
verified by means of numerical calculations in the following section.

3.1.4 Implications of the critical distance

The geometrical formula obtained by simple considerations in Sec. 3.1.3
holds very well when tested by integrating the equations. An example of
this behavior is shown in Fig. 3.2, where the position of the dashed red
line has been calculated by using Eq. (3.9) while the intensity plot is a
result of numerically integrating Eq. (3.8). In this subsection, we discuss
the implications of this formula. As Eq. (3.9) shows, ∆Lmin is indepen-
dent on L: once the diffusion angle and the periodicity of the gratings are
fixed, the other geometrical parameters are not playing any role in deter-
mining how the contrast is decaying. A consequence of this systematic
effect is that depending on the divergence of the source, there is a max-
imum acceptable displacement after which the contrast drops sharply,
which can be defined as the position of the first minimum expressed by
Eq. (3.9).
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Figure 3.4: If we consider a beam with divergence α and a periodic in-
tensity modulation, as the one generated by the two gratings of a moiré
deflectometer, the pattern vanishes if it is not revealed at the correct
position. Here, a displacement ∆Lcrit in respect to the position of the
pattern results in the detection of a uniform intensity profile which car-
ries no information. From this geometrical representation, we obtain
∆Lcrit = d/(2 tan(α)), as shown in Eq. (3.9).
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3.1.5 Simulations in the wave regime

We derived this simple geometrical formula by considering a purely clas-
sical system and particle trajectories through the gratings. However, we
have already seen how Eq. (3.9) converges to Eq. (3.1), which was cal-
culated in the wave regime [NH08; Hor+09], for small divergence angles
In order to verify the validity of our formula also for the Talbot-Lau
interferometer, we expand on the formulation introduced in Sec. 2.1.2
for simulating the Talbot carpet: take a wavefront, multiply it by the
grating function G(y; d, η), Fourier transform the result, propagate it to
the next grating using Eq. (2.9), antitransform as in Eq. (2.10), rinse and
repeat. With the intent of simulating a divergent source, we follow the
approach proposed in [Brä14] and we sum up incoherently plane waves
coming from different angles, by decomposing the wave vector k in the
two components ky and kz. This calculation process has been used for ex-
ample to produce Fig. 2.2 and can easily be adapted to be employed with
asymmetric distances between the gratings. Using this method, we find
that for a range of lengths around L = LT, the position of the first con-
trast minimum is consistent with the classical scenario. However, around
L = 0.5LT, the quantum pattern shows a half periodicity, which requires
d in formula Eq. (3.9) to be replaced by d/2, as it can be seen in Fig. 2.1
and 2.2. This is shown in Fig. 3.5, where we see that around L = 0.5LT

the position of the critical minimum moves to half the classical value.
However, for a large range of distances around the Talbot length, the
classical prediction still holds. Examples of these behaviors are shown
in Fig. 3.6. The classical result can be therefore still considered as the
maximum displacement allowed while working in this region.

3.2 Rotational misalignment

The situation and setup we have considered so far could be easily reduced
to two dimensions (y and z), as there was a translational symmetry
on the x axis. If we tilt the second grating by an angle β around the
beam axis, as shown in Fig. 3.1, however, we must also consider the
x component of the position when determining if the particles passed
through the gratings or not. The angle of the grating makes a difference
in the resulting contrast plot: the bigger the divergence, the more the
signal get degraded, even if ∆L = L2 − L1 = 0. In order to estimate
this effect, we extend the results obtained in Sec. 3.1 to two dimensions,
following an approach similar to the one presented in [Dem+17]. Our
goal is to find an expression for the critical angle βcrit which causes the
contrast of the pattern to vanish, in a similar fashion to Eq. (3.9).
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Figure 3.5: The critical asymmetry factor ∆Lcrit in the quantum regime
is the same as in the classical regime for L ≃ LT. Around L = 0.5LT,
however, the periodicity d of the pattern is halved, moving as well the
minimum to half the classical value. This behavior is consistent with
what is observed in Fig. 2.1 and 2.2.

3.2.1 The problem behind a rotation

As an intuitive explanation, consider once again the schematic presented
in Fig. 3.1: the first one placed in the xy-plane with slits parallel to the
y-axis and the second rotated by an angle β around the z-axis. Consider
also a divergence angle α in the yz-plane, while no diffusion is present
on the x direction. If we take a set of planes parallel to the yz-plane
and we use it to slice through the pattern for different values of x, we
get a collection of one-dimensional representations equivalent to the one
discussed in Sec. 3.1, with the difference that in every plane the pattern
of the second grating will gain an offset ∆y = x tan(β) in respect to
the original and a modified periodicity dβ = d/ cos(β). An explanatory
schematic is provided in Fig. 3.7. When a divergence in the x direction is
considered, all the slices which are between a cone with angular opening
α from the point on the screen the pattern is calculated onto have to
be summed up. The combination of these two factors is what smears
out the contrast of the generated pattern on the detection plane. In
the following, we build an analytical treatment for the two-dimensional
problem, by extending the formulas obtained in Sec. 3.1.
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Figure 3.6: As in the classical case, the functional dependence of the con-
trast on the diffusion angle in the Talbot-Lau regime shows periodic min-
ima, the first of which described by Eq. (3.9) (black vertical line). Notice
that the peak contrast changes with the length. Around L = n+ 1

2
LT, the

periodicity of the pattern doubles, moving the first minimum at half its
classical position (grey vertical line). The profiles shown are calculated
for a divergence angle α = 3mrad. Figure reproduced from [Dem+17].

β

y

x

y' = y  + x tan(β)

        dβ = d / cos(β)

Figure 3.7: A two-dimensional grating tilted by an angle β can be seen
as a series of one-dimensional gratings with periodicity dβ = d/ cos(β)
and an offset ∆y = x tan(β).
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Figure 3.8: The maximum allowed angular tilt β of the second grating
which causes the pattern on the detector plane to vanish is strongly
dependent on the divergence angle α in relation to the periodicity of the
grating d and the distance between the gratings L. From top to bottom:
pattern as a function of β for increasing values of divergence α. The
dashed vertical line marks the position of the first zero of the contrast,
after which smaller periodic rephasings can be observed.
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3.2.2 Analytical treatment

By using Fig. 3.7 as a reference, we introduce the two-dimensional grating
function G2D(x, y; β, d, η), defined as

G2D(x, y; β, d, η) =

{
1 if mod(y + x tan(β), d/ cos(β)) < ηd/ cos(β)

0 otherwise,

(3.10)
This allows us to extend Eq. (3.7) as

I2Ddet(x, y) ∝
∫ y+rlim

y−rlim

∫ x+
√

r2lim−(ξ−y)2

x−
√

r2lim−(ξ−y)2
G2D(u, ξ; 0, d, η)·

G2D(u+ x′, ξ + y′; β, d′, η) du dξ.

(3.11)

The limits on this integral are given by a cone centered on P = (x, y)
with angular opening 2α, which projects a circular overlapping area of
radius rlim = (2L + ∆L) tan(α) on the plane of the first grating. Here,
d′ is expressed by Eq. (3.3), while x′ and y′ are both defined by using
Eq. (3.4) on x and y respectively. Notice that, as an effect of the angular
difference, the resulting fringe pattern is tilted by an angle βpattern = 2β.
In order to retrieve the periodic pattern by using a third grating, Eq. (3.8)
is also expanded in two dimensions in a similar fashion.

We evaluate these equations numerically, in order to obtain an es-
timation for the contrast. The calculations show that even when the
asymmetry factor is taken out (∆L = 0), the contrast of the recorded
pattern decreases as the angle between the two gratings increases. An
example of this behavior is shown in Fig. 3.8, where a slice of the pattern
is shown as a function of β and α. Notice that this phenomenon is in-
dependent on the presence of a third grating, since the pattern becomes
uniform for a geometrical overlap of the trajectories due to the angular
difference between the two gratings. By performing the calculations for
several combinations of divergence α, length L, and periodicity d, we find
a formula which shows more than one similarity with Eq. (3.9) [Dem+17]:

tan βcrit = k
d

2L
tan
(π
2
− α

)
, (3.12)

where k is a constant factor, to be determined via a fit on the obtained
visibility profiles, some of which are shown in Fig. 3.9. The formula shows
the same functional dependence from the periodicity and the divergence
angle as the one found in the one-dimensional case.

If we consider the geometrical parameters used in [Dem+17], for a
divergence α = 1mrad, we see the first visibility minimum appearing for
a rotational misalignment β = 0.46± 0.01mrad. Repeating the simula-
tions for different geometrical configurations we obtain k = 0.61± 0.01
as the value for the constant.
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Figure 3.9: Depending on the divergence angle α, an angular difference β
between the second and the first grating causes the signal to vanish. The
position of the contrast minimum is linearly dependent on d and inversely
proportional to L. The function which describes this position is similar
to the one found for the one-dimensional case (compare Eq. (3.9) and
(3.12)). Figure reproduced from [Dem+17].

It is worth mentioning that, when using a third grating to scan the
pattern as in Sec. 2.2.1, the retrieved flux modulation is affected by a ro-
tation of the third grating, due to the same moiré effect that we exploited
in Sec. 2.2.2 to obtain macroscopic fringes out of a microscopic pattern.
If we consider a circular area πA, with radius

√
A, a new macroscopic

fringe appear when the tilting angle β3 of the third grating in respect to
the pattern is such that

sin

(
β3
2

)
=

d

2
√
A
, (3.13)

Therefore, in order to get rid of macroscopic structures which would
influence the flux measurement, the rotation angle β3 has to fulfill the
condition

sin

(
β3
2

)
≪ d

2
√
A
. (3.14)

3.3 Summary

We have analyzed the effects of both a linear asymmetry and an angular
misalignment in a device composed by two or three gratings. We found
out that if the device is not perfectly aligned, a divergent particle beam
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can strongly reduce the quality of the periodic pattern generated by the
interferometer. The effect of a longitudinal asymmetry ∆L is indepen-
dent on the distance between the gratings and is proportional to the
periodicity: smaller periodicities d cause the device to be more sensitive
to the asymmetries (Eq. (3.9)). On the contrary, the effect of a tilt of
the second grating β in respect to the first one, is proportional also to
the length, to the point that longer devices suffer from bigger divergence
angles the most (Eq. (3.12)). The expressions for the critical angle βcrit
and the critical asymmetry ∆Lcrit share the same functional dependence
on periodicity and beam divergence α. Moreover, the expression for ∆L
has been found compatible with a previously published result for small
angles [NH08; Hor+09]. The next chapter focuses on the effects of the
energy spread of the beam and how this affects the quality of the signal
in combination with external forces. The combination of misalignments
and forces constitutes the core of the systematic effects which have to
be taken into account when designing the experiment. Knowing these
limitations is an important step into approaching the construction of an
optimized interferometer.



Chapter 4

Effects of energy spread and
external forces

The physical and mathematical descriptions of a Talbot-Lau interferome-
ter presented until now are valid in the condition that the experiment is
carried out in a controlled environment without any unwanted force act-
ing on the particle beam. Once these are taken into account, however, the
expected pattern out of the interferometer undergoes severe alterations
which degrade the quality of the signal, especially if the source has a
non-null energy spread. This chapter focuses on the effects of energy
spread and external fields on the signal of a Talbot-Lau interferometer.
We obtain a set of formulas we can use to determine when these forces
become an issue for the measurement and identify specific expressions
for magnetic and electric fields when considering charged particles. The
same argument is then used for neutral particles to describe the effect of
forces such as gravity on the characteristics of the signal. The discussion
on charged particles is accessory to the goal of studying the feasibility
of a gravity measurement on antimatter. However, it provides us with
some general tools and concepts that could be applied in any scenario
related to ion interferometry, which is device-wise strictly correlated to
the work of this thesis.

4.1 Signal averaging due to energy spread

A quick analysis of Fig. 2.3 presents us an easy to recognize feature of the
Talbot-Lau interferometer: the contrast and the shape of the periodic
pattern described by Eq. (2.60) depend on the energy of the particles
flying through the device. If we consider particles with two different
de Broglie wavelengths λdB in the same quantity, we thus expect the
resulting signal to be a sum of the two patterns. This is schematized in
Fig. 4.1, when the pattern for particles with λdB which corresponds to
LT is mixed with the pattern from particles with λdB which corresponds
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to LT/2. A real particle source is rarely perfectly monochromatic: most
of the times, it has instead an energy distribution with a well-defined
spread. For simplicity reasons, we fix the particle species and consider
a single-species source, so that the changes in λdB are fully given by its
energy spread. If we mark the periodic pattern generated by particles
with kinetic energy U with S(U), we can express the total signal S as

S =

∫ ∞

−∞
dUf(U)S(U) (4.1)

where f(U) is the energy distribution of the source. We treat this func-
tion as a probability density, such that

∫ ∞

−∞
dUf(U) = 1 (4.2)

The nature of f(U) is strongly dependent on the geometry and the physi-
cal characteristics of the source. In order to produce quantitative estima-
tions, we have to restrict our analysis to specific parameters. While in a
real experimental scenario it is indeed required to know the full spectrum
of the source in order to predict the outcome of the experiment, for some
preliminary evaluations we can choose a Gaussian energy distribution
peaked on the central energy of the beam [Dem+17]. The energy spread
of the source is fixed to be the full width half maximum (FWHM) of the
distribution, which corresponds to ∆U = 2

√
2 ln 2 σ ≃ 2.355σ. In the

following, we consider therefore

f(U) =
1

σ
√
2π
e−

(U−Ū)

2σ2 , (4.3)

with Ū being the average kinetic energy of the particles emitted by the
source. We can now extend our test case to a continuous distribution of
energies with different spreads, as in Fig. 4.2. An example on how the
pattern changes is pictured in Fig. 4.3. As it can be seen from the figure,
the energy spread alone is not a critical disturbance to the measurement,
however, since its main effect is to average different patterns and generate
a sort of summed up intensity profile which could also present a higher
contrast than the pattern associated to the mean energy of the distribu-
tion. If we apply the same calculation to the full contrast profile shown
in Fig. 2.3, we get an idea of the extent of this effect as a function of the
energy. This is shown in Fig. 4.4. The picture becomes more complicate
when, together with an energy spread, forces acting on the particles are
taken into account. In the following section we see how this can be a
game changing issue, if not handled properly.



4.1. Energy spread 71

fraction of period
0 0.5 1 1.5 2

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

in
te

ns
ity

 [a
.u

.]

Figure 4.1: If we consider a source composed by particles with two dif-
ferent λdB, we send both of them through the interferometer and we
detect them without performing a selection, we expect to observe a pat-
tern (black dashed line) which is a linear combination of the patterns
associated with the two species (blue line and red line respectively).
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Figure 4.2: Using a Gaussian distribution for modeling the source spec-
trum, we are able to produce some quantitative predictions. This figure
shows a sample energy distribution centered on Ū = 2keV for different
energy spreads.



72 Chapter 4. Effects of energy spread and external forces

fraction of period
0 0.5 1 1.5 2

0.6

0.8

1

1.2

1.4

in
te

ns
ity

 [a
.u

.]

Figure 4.3: Signal shape for η = 0.4, mean energy Ū = UT, and different
energy spreads of a Gaussian distribution (see Fig. 4.2). Since Ū = UT

represents a relative minimum for the contrast (Fig. 4.4) the pattern
gets an increased contrast as a result of the averaging with neighboring
energies.
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Figure 4.4: This figure shows the same contrast plot from Fig. 2.3 for
a grating open fraction η = 0.4, for the energy spreads considered in
Fig. 4.3. In some regions, the contrast is higher than in the monochro-
matic counterpart, since it gets averaged by summing up different pat-
terns.
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4.2 The effect of external forces

A Talbot-Lau interferometer can be used for inertial sensing of constant,
uniform force fields, due to the fact that the phase shift exerted by the
forces acting on the beam is proportional to the acceleration to which
the particles are subjected. However, we remember from Eq. (2.32) that
the shift is also proportional to the square time of flight τ between the
gratings, given by L/vz. This means that particles with different axial
velocities vz will experience different shifts. While this is not an issue for
monoenergetic beams, when considering instead an energy distribution
things get more complicated. Consider for example a simple distribution
of particles with mass m and two possible energies, U1 and U2, which
correspond to two different time of flight τ1 and τ2, equally distributed.
Out of simplicity, we choose U1 and U2, with U1 > U2, such that the pat-
tern generated on the detector screen presents no appreciable difference
(e.g. U1 = UT and U2 = UT/9). If we now choose a force F = ma ŷ such
that the phase difference between the two components of the distribution
is equal to half a period d/2, the maxima of the first pattern will overlap
with the minima of the second pattern, causing a noticeable reduction in
contrast as we combine the two of them to retrieve the complete signal.
This specific situation is illustrated in Fig. 4.5. We can derive a formula
for expressing this phenomenon concretely. The value for the difference
∆y1 − ∆y2 which causes the summed up pattern to have the smallest
visibility is exactly half of the grating period d, which is equivalent to a
π shift. In order to draw further conclusions, we now express ∆y1 −∆y2
as a function of the energy difference between the two classes of parti-
cles. The result of this elaboration will be used in the following as a base
for treating a more generic case and drawing some conclusions useful to
our goal. The first step is making the dependence on the axial velocity
explicit:

∆y1 −∆y2 = a(τ 21 − τ 22 )

= aL2

(
1

vz21
− 1

vz22

)
.

(4.4)

If we now consider the axial velocity vz to be much bigger than the trans-
verse velocity vr for both particles, we can write v =

√
v2z + v2r ≃ vz. In

this approximation, the kinetic energy U can be expressed as U ≃ mv2z/2.
We can thus write v2z = 2U/m, leading to

∆y1 −∆y2 = a
mL2

2

(
1

U1

− 1

U2

)

= a
mL2

2

U2
2 − U2

1

U2
2U

2
1

.

(4.5)

We now express both U1 and U2 as a function of the mean energy
Ū = (U1 + U2)/2 and the energy spread ∆U = U1 − U2. With these
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conventions, we get

U1 = Ū +
∆U

2

U2 = Ū − ∆U

2
.

(4.6)

We can now further elaborate on Eq. (4.5):

∆y1 −∆y2 = a
mL2

2

4∆U

4Ū
2 −∆U2

. (4.7)

We apply once more a simplification and we assume that ∆U2/Ū
2 ≪ 1,

which is fairly reasonable up to ∆U ≃ 0.3Ū . This way, we can neglect
the ∆U term at the denominator, obtaining the expression

∆y1 −∆y2 ≃ a
mL2

2

∆U

Ū
2

= a
mL2

2

k

Ū

(4.8)

where, in the last step, we expressed the energy spread as ∆U = kŪ ,
k ∈ R. If we now consider a π shift (half a period, d/2), we can define a
critical acceleration acrit or, in an equivalent way, a critical force Fcrit by
using

d

2
!
= |∆y1 −∆y2| = |acrit|

mL2

2

k

Ū
, (4.9)

which leads to

|acrit| =
d

mL2

Ū

k

|Fcrit| = m |acrit| =
d

L2

Ū

k
.

(4.10)

The critical acceleration which causes a π phase shift between the two
particle families is directly proportional to the average energy, which
means that the faster the particles (on average), the bigger the acceler-
ation needed to split them by half a period. Understandably, it is also
proportional to the period, since a bigger period means that a higher
acceleration is needed to separate the species by half of it. It is inversely
proportional to the energy spread constant k, which means that the big-
ger the separation among the two energies, the smaller the acceleration
needed to get a π phase shift. Lastly, we see that it is inversely pro-
portional to L2, which means that the longer the path, the smaller the
needed acceleration to cause the critical shift. The quantities expressed
by Eq. (4.10) are restricted to this toy model with just two different
energies, but we can make use of them in a more realistic scenario. If
we consider a continuous distribution of energies as the ones shown in
Fig. 4.2, we can give a measure to the critical acceleration by considering
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the relative shift between the “fastest” particles with energy U fast and
the “slowest” particles with energy U slow. By equating the energy spread
∆U to the FWHM of the Gaussian distribution, we can map U fast and
U slow to U1 and U2 from Eq. (4.6) respectively. This leads to an identical
expression for acrit and Fcrit. We decide to use this expression as our
figure of merit in the following discussion, where we apply it to different
experimental scenario in order to get order-of-magnitude figures in order
to provide limits to the design of our device. This argument was used in
the work of Lansonneur et al. [Lan+17] and Demetrio et al. [Dem+17]
in order to quantify the maximum field allowed to act on the particles.
In the next section, we apply this formulation to different kind of forces
in order to derive expressions for the critical fields in different physical
conditions.

in
te

ns
ity

 [a
.u

.]

fraction of period
0 0.5 1 1.5 2

0

0.01

0.02

0.03

0.04

0.05

0.06

in
te

ns
ity

 [a
.u

.]

Figure 4.5: Particles with different energies U1 (blue line) and U2 (red
line) subjected to the same acceleration a will experience different phase
shifts due to their longer or shorter time of flight τ inside the inter-
ferometer. In the most pathological case, the two patterns can be in
opposition of phase on the detector, leading to a hugely reduced contrast
when summing up the signals (dashed black line).

4.2.1 Charged particles

Charged particles such as electrons and ions are subjected to the effects of
magnetic and electric fields, in addition to weaker forces such as gravity.
In this section, we derive expressions for the critical electric and magnetic
fields which satisfy Eq. (4.10). We consider two specific interactions: a
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Figure 4.6: This figure shows the same contrast plot from Fig. 4.4 with
an additional force acting on the particles, in particular the critical elec-
tric field calculated in Sec. 4.2.1. Such field is inversely proportional
to the energy spread, so this plot proves valid for any value of ∆U . A
mathematical expression for Ecrit n LT

is given in Eq. (4.19).

Lorentz force acting on a beam of charged particles and a simple model
for inner beam interactions due to Coulomb self-repulsion.

Lorentz force

If we consider a static electric field E and a static magnetic field B, the
Lorentz force acting on a particle with charge q can be written as

FLnz = q(v ×B+ E), (4.11)

where v is the velocity of the particle. Since our device is sensitive only
to the transverse component of the acceleration, we take into account
only Fy, which is therefore expressed by

Fy = q(vzBx − vxBz + Ey). (4.12)

There is a caveat: the Lorentz force is someway different from the general
case we considered in Sec. 4.2, as it effectively deflects the particles in a
circular trajectory, rather than in a parabolic one. However, in reasonable
experimental conditions (|B| ≃ 1G, vz ≫ vx, vz ≫ vy), we can consider it
as a parabolic motion [Mül16]. Out of simplicity, we thus work with the
assumption that the axial velocity vz remains the same during the flight
(∆vz/vz ≪ 1) and with a condition for the transverse force which reads
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v̇xBz ≪ v̇zBx, so that the acceleration in the y direction is independent on
Bz. In this framework, by elaborating on Eq. (4.12), we get an expression
for the acceleration ay

ay =
q

m
(vzBx + Ey). (4.13)

By using vz =
√

2Ū/m, we get

ay =
q

m

(√
2Ū

m
Bx + Ey

)
. (4.14)

If we compare this expression with the critical acceleration from Eq. (4.10),
we can separately obtain a formulation for the critical electric field Ecrit

and the critical magnetic field Bcrit, by setting the other field to zero
respectively. Thus we obtain [Dem+17; Lan+17]

Ecrit =
d

qL2

Ū

k
, for |B| = 0 (4.15)

Bcrit =
d

qkL2

√
mŪ

2
, for |E| = 0, (4.16)

To produce a concrete example, we consider the setup described in [Dem+17],
with L = 171.7mm, d = 256 nm, using ions withm = mp = 1.67× 10−27 kg,
we get the experimental fields

Ẽcrit = 8.7× 10−6 Ū

k
(4.17)

B̃crit = 6.3× 10−10

√
Ū

k
, (4.18)

with Ẽcrit expressed in units of Vm−1, B̃crit in tesla and Ū in eV. For an
energy of Ū = 2keV and k = 1%, we get that Ẽcrit = 1.74Vm−1 and
B̃crit = 28.2mG, going as low as Ẽcrit = 0.17Vm−1 and B̃crit = 8.9mG
for an energy ten times lower. Compare this with the average Earth
magnetic field being around 0.5G and average electric field at the Earth
surface level of 100Vm−1 [FLS15; Cha57] to see that active or passive
shielding is needed in order to perform any kind of measurement which
satisfy these limits.

If we fix the length of the device to an integer multiple n of the
Talbot length LT (Eq. (2.2)), we can get an additional expression for the
critical fields which is valid when the energy of the particles matches the
n-th Talbot energy. This formula can be of interest in some application
of the interferometer. By using Eq. (2.2) together with Eq. (4.15) and
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Eq. (4.16), we get [Dem+17]

Ecrit n LT
=

h2

2md3q

1

k

1

n2
, for |B| = 0 (4.19)

Bcrit n LT
=

h2

2
√
2md3q

1

kŪ

1

n2
, for |E| = 0. (4.20)

The last two equations underline an interesting fact: the critical field
associated with a multiple integer of LT is independent on the average
energy and it’s completely determined by the energy spread ratio k. Con-
versely, the critical magnetic field does depend on the square root of the
average energy, due to the fact that the magnetic force is proportional to
the velocity of the particles. The fields used to create the plot in Fig. 4.6
are calculated by using Eq. (4.19).

Inner beam interactions

z

y

x
v

B

FE

FB

E

Figure 4.7: The electric and magnetic field generated by a moving dis-
tribution of charge create a net radial force in opposite directions: the
electric fields tend to blow up the beam, while the magnetic field tends
to squeeze it. When considering non relativistic velocities, the effects of
magnetic fields are negligible compared to the electric force.

When we use charged beams, the mutual interaction between the
particles can lead to an effective phase shift and to the overlap of several
different patterns. The Coulomb repulsion becomes more important as
the intensity of the source increases, up to a point where the shift between
the two extremes of the beam is one full period d of the grating. In this
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section, we closely follow the approach highlighted in [Dem+17], based
on [Kal13; BSO14; Brä+15], in order to analyze this effect by means of
a simplified model and to extract an evaluation for this critical beam
intensity. Consider a particle species with mass m and charge q. The
beam is modeled as an infinite cylinder of radius r0, with uniform charge
density ρ, and fixed axial velocity vz. A moving distribution of charge
generates both an own electric field E and a magnetic field B due to the
motion of the particles. The transverse acceleration is produced by two
concurring effects: a radial electric force FE(r) = qE(r)r̂ and a magnetic
force FB(r) = qv × B(r), where r = (x, y) is the radial coordinate and
r =

√
x2 + y2 is the length of the vector. Notice that the magnetic

field generated by a moving charge distribution shows circular field lines
on a plane whose directional vector is the axis of the cylinder. This
fact orients the force exerted by the magnetic field on the particles in
the radial direction, contributing to the total transverse acceleration. A
schematic on how the fields act on the traveling particles is shown in
Fig. 4.7. The electric field inside a charge cylinder with r ≤ r0 can be
obtained using Gauss’s law and reads [Kal13; Brä+15]

E(r) =
ρr

2ϵ0
(4.21)

Using Ampere’s law, the intensity of the tangent magnetic field which
leads to a radial acceleration can be calculated as [Brä+15]

|B(r)| = µ0jr

2
=
µ0ρvz
2

, (4.22)

where the current density vector j is given by j = ρv = ρvzẑ and is
parallel to the axial velocity. Notice that the direction of the force pro-
duced by the magnetic field is opposite to the one of the electric field:
the expansion due to the Coulomb repulsion is opposed by a concurrent
compression effect due to the magnetic force. The combined radial force
is therefore given by

F(r) = q(E(r)− vzB(r)) = q

(
ρr

2ϵ0
− µ0ρv

2
z

2

)
r̂. (4.23)

In order to simplify this expression, we rewrite the magnetic portion of
the formula as

vzB(r) =
µ0ϵ0ρv

2
z

2ϵ0
=
v2z
c2

ρ

2ϵ0
=
v2z
c2
E(r), (4.24)

where we used the identity µ0ϵ0 = c−2, c being the speed of light in
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vacuum. This leads to

F(r) = q

(
1− v2z

c2

)
E(r)r̂

= q
1

γ2
E(r)r̂

=
1

γ2
qρr

2ϵ0
r̂

(4.25)

where γ is the Lorentz factor. From this moment on, we can let the γ
factor inside the equations as a modifier for the electric field. Notice,
however, that for non-relativistic cases (vz ≪ c) γ ≃ 1, and therefore the
effect of the magnetic field is negligible. In the following, we consider the
non-relativistic scenario out of simplicity and we set γ = 1. Eq. (4.21)
quantifies the field inside the charge distribution. In order to retrieve a
number for quantifying the shift, we consider the field just outside the
surface of the charge cylinder, given by [Kal13]

Eout(r) =
ρr20
2ϵ0r

. (4.26)

The field shows a maximum at r = r0 and then decreases monotonically.
During the travel through the measurement device, r is a function of
time t, since the beam keeps on expanding due to the self-repulsion. The
radial acceleration ar acting on a particle right at the border of the cloud
is then given by

r̈ = ar =
qEout(r)

m
. (4.27)

In order to find the trajectories as a function of the axial position, we
can perform a transformation and express ar as [Kal13]

ar =
d2r

dt2
= v2z

d2r

dz2
, (4.28)

which, by reversing the equation, let us deduce the implicit formula

d2r

dz2
=
ar
v2z

=
qρr20

2mϵ0v2zr
=
K

r
(4.29)

where K is a constant. The real trajectories can be then numerically
calculated by reversing the integral function

z =
r0√
2K

G

(
r

r0

)∫ r/r0

1

du√
ln(u)

. (4.30)

By setting a specific value for r, we can therefore get the associated
value for the axial component z which is needed to have that specific
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beam expansion. It is interesting to notice that for r/r0 ≃ 1, G
(

r
r0

)
can

be approximated by a simpler formulation. If we consider small beam
expansions, such that r− r0 ≪ r0, we can express the integrand through
a Taylor series around r/r0 = 1. Since we are looking for expansions
of the order of the grating period d, this assumption is reasonable until
d/r0 ≪ 1. By expanding the denominator around u = 1, we obtain

1√
ln(u)

≃ 1√
u− 1

. (4.31)

Replacing the integrand with its approximation, we finally obtain

G

(
r

r0

)
≃
∫ r/r0

1

du√
u− 1

= 2

√
r − r0
r0

, (4.32)

thus leading to

z =

√
2r0
K

√
r − r0
r0

, (4.33)

which is exactly the trajectory described by a particle subjected to a uni-
form, constant radial acceleration ar(r) = ar(r0). As shown in Fig. 4.8,
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Figure 4.8: By using Eq. (4.31), we can obtain integrable trajectories for
particles at the surface of a cylindrical charge distribution. The error
produced by the approximation is acceptably low for small deviation
from the original beam radius (i.e. r− r0 ≪ r0). Since we are interested
in shifts of the order of the grating period d, as long as d ≪ r0 the
approximation proves valid.

for r/r0 ≃ 1, the error caused by using the first order expansion is less
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than 1%, therefore we use the approximation in order to retrieve a figure
of merit in this situation. By considering the shift ∆y = r− r0, we have
that a particle at the surface will experience a phase shift equal to half
the period in respect to the center of the beam if

d

2
!
= ar(r0)τ

2

=
qρr0
2ϵ0m

L2

v2z
.

(4.34)

We now express ρ as a function of the incoming flux of particles Φin as

ρ = q
Φin

vz
, (4.35)

so that we obtain
d

2
=
q2Φinr0
2ϵ0m

L2

v3z
. (4.36)

We can invert Eq. 4.36 to find an expression for the critical flux Φin
crit

which would generate this kind of shift, which becomes the figure of
merit when a detailed analysis is needed:

Φin
crit = d

ϵ0m

q2r0

v3z
L2

=
2
√
2ϵ0

q2
√
mr0

d

L2
Ū

− 3
2 .

(4.37)

In the last passage we replaced the average axial velocity vz using the clas-
sical kinetic energy Ū = mv2z/2, in the hypothesis that vz ≫ vr. For the
test setup considered in [Dem+17], using m = mp and Ū = 2keV, this
translates into Φin

crit = 1.2× 1015m−2 s−1. With a cross section of 1mm2,
which is reasonable for a well collimated beam, we get Φin

crit = 1.2× 109Hz,
well in the range of ion sources like the one described in [Sor+10].

This derivation for the critical flux does not however take into ac-
count the energy spread ∆U = kŪ of the source. We can introduce a
second expression for the critical flux nearer in meaning to the original
formulation of the critical force expressed by Eq. (4.10). Therefore, we
define this critical flux Φ̄in

crit as the one which causes two particles with
energy U1 and U2, given by Eq. (4.6), to be separated by half a grating
period d/2 If we express the incoming flux Φin as in Eq. (4.35) in terms
of the mean energy Ū and we combine it with Eq. (4.9), we obtain

d

2
=

q2Φinr0

2ϵ0
√
2mŪ

mL2

2

k

Ū

= k
q2Φinr0

4
√
2ϵ0

√
mL2

Ū
3
2

.

(4.38)
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This leads to a very similar expression for Φ̄in
crit, which can be written as

Φ̄in
crit =

1

k
Φin

crit (4.39)

which means that Φ̄in
crit is always higher than Φin

crit when k < 1, which is
true for most of the particles sources consider in this kind of experiments.
Therefore, when designing a device for charged particles, it is more rea-
sonable to consider Φin

crit as the target figure of merit when performing
the experiment.

4.2.2 Neutral particles

Neutral particles are affected by forces which are vastly different from
the ones considered for charged particles. Some of them, such as gravity,
act also on ions or electrons but usually are weak compared to e.g. elec-
tromagnetic interactions and are therefore neglected in the subsequent
analysis. Others are just targeting neutral particles, like the ones con-
nected to the Zeeman split or the Stark dipolar force. In this section we
consider some examples and apply the generic formulas from Sec. 4.2.

Gravity

Gravity is as straightforward as a vertical, homogeneous force can be in
limited volumes of space. As its local effect directly translates into a
force F = −mgŷ, Eq. (4.10) can be applied to derive the average energy
Ū g which, given acrit = g would cause a split of half a period. If we set

g =
d

mL2

Ū g

k
, (4.40)

we obtain for an expression for Ū g

Ū g = k
gmL2

d
. (4.41)

By using for example the setup described in [Dem+17], with L = 171.7mm,
d = 256 nm, using m = mH = 1.67× 10−27 kg and |g| = 9.81m s−2, we
get

Ū g = k 1.2× 10−2 eV. (4.42)

For k = 1, this energy is equivalent to a temperature of around 137K
if we consider the corresponding thermal energy. This means that for
a temperature smaller than 137K, gravity can cause the signal to lose
contrast if the energy distribution is so broad that the FWHM is equal
to the mean energy. In more controlled conditions, e.g. k = 0.01, the
critical temperature becomes as low as 1.4K for the same geometrical
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parameters. In this particular case, increasing the period of the gratings
by e.g. ten times would take away the issue, since the limit energy
is directly proportional to it. We discuss this aspects of the planning
process and deal with thermal distributions in detail in Sec. 5, where we
analyze a possible design for a gravity measurement using a Talbot-Lau
interferometer.

Magnetic field gradients

Some neutral atoms and particles have a magnetic moment of the order
of the Bohr magneton µB = 9.274× 10−24 JT−1 [MNT16]. This quantity
can be expressed as a function of physical constants as [Cow81]

µB =
e~
2m

, (4.43)

where e = 1.6× 10−19C is the elementary charge. This magnetic moment
couples with magnetic field gradients, causing a net acceleration towards
the minimum of this magnetic potential (low field seekers) or, conversely,
towards its maximum (high field seekers). The magnetic moment M can
be in many cases approximated by

M = gj
q

2m
J, (4.44)

with gj being a suitable Landé g-factor [Lan21; Cow81] connected with
the angular momentum and J being the total angular momentum of the
particle. The potential energy associated with M is therefore

UM = −M ·B = −gj
e

2m
JBcos(θ), (4.45)

where B is the external magnetic field and θ is the angle between the
field and the direction of the angular momentum. If we consider M
independent on the position, the force acting on the particle is therefore

FM = −∇UM = gj
e

2m
J∇ |B| cos(θ). (4.46)

Here, particles with positive magnetic moment will be attracted by mag-
netic field minima, while particles with negative magnetic moment will
follow the field. The goal of this work is to discuss the application of a
Talbot-Lau interferometer for studying the gravitational interaction with
antimatter and our candidate species is antihydrogen, we perform our
evaluations in this specific framework. A detailed discussion on how mag-
netic fields gradient affect antihydrogen atoms in various energy states
can be found in [Dem14b]. As an approximation, we consider a first
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order Zeeman splitting as the source of the magnetic interaction in neu-
tral atoms. We can thus use an expression for the Landé factor gj given
by [Cow81]

gj = 1 + (ge − 1)
j(j + 1) + s(s+ 1)− l(l + 1)

2j(j + 1)
, (4.47)

with ge ≃ 2 being the electron gyromagnetic factor, j, s and l being the
quantum numbers associated with the total angular momentum J, the
intrinsic spin S, and the orbital angular momentum L. We consider ~mj

as the projection of the spin in the direction of the magnetic field, which
we consider as our quantization axis, leading to a force

FM = gj µB mj∇ |B| , (4.48)

where we used Eq. (4.43). By using Eq. (4.10), we obtain

gj µB mj |(∇ |B|)crit| =
d

L2

Ū

k
, (4.49)

which gives

|(∇ |B|)crit| =
1

gj µB mj

d

L2

Ū

k
. (4.50)

Since the maximum value for mj scales with the principal quantum num-
ber n, as j = l + s and l < n, a hydrogenoid atom in an excited state
experiences a magnetic force up to ∼n times bigger than in the ground
state, up to a maximum mj = n − s. Furthermore we see that if we
keep s = 1/2 as for an electron in an atomic orbital, the bigger j and
l become, the more gj approaches 1. In the following, we can thus con-
sider gj = 1 and mj = n− 1/2 which goes to mj ≃ n for large principal
quantum numbers n ≫ 10, since the goal of this section is to give an
order-of-magnitude estimation for the critical field gradient, leading to

|(∇ |B|)crit| ≃
1

µB n

d

L2

Ū

k
, (4.51)

which, as expected, shows an inverse dependence on the principal quan-
tum number n, meaning that for excited atoms the threshold for the
critical gradient is lowered in respect to ground-state atoms. For the test
device described in [Dem+17], with L = 171.7mm and d = 256 nm, we
get

|(∇ |B|)crit| ≃ 0.15
Ū

n k
, (4.52)

with (∇ |B|)crit expressed in Tm−1 and Ū in eV. This result proves that
in realistic experimental conditions the effect of the magnetic interaction
for neutral atoms can be neglected, unless in presence of really high
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field gradients, low-energies or high-order excitations for the atoms. We
can now compare this force to gravity, in order to draw a parallel with
Sec. 4.2.2. The magnetic field gradient (∇ |B|)g which is equivalent to
the gravitational acceleration is given by

|(∇ |B|)crit| ≃
mg

µB n
. (4.53)

For n = 1 and m = mH, this leads to the empirical value [Dem14a]

|(∇ |B|)crit| ≃ 2× 10−3Tm−1 = 0.2G cm−1. (4.54)

Notice that if the gradient is bigger than (∇ |B|)g, the gravitational ac-
celeration becomes shadowed by these forces, meaning that in order to
perform a proper measurement the homogeneity of the surrounding field
has to be properly taken under control. The most advisable experimental
condition would be having ∇ |B| at least one order of magnitude smaller
than g, in order to avoid systematic errors during the measurement.

Electric field gradients

Neutral particles can be also subjected to the effects of non-homogeneous
electric fields, due to their electric dipole moment. For a hydrogen atom
with principal quantum number n immersed in an electric field E, in ab-
sence of magnetic fields, the energy levels can be schematized as [Dro+07;
Gil14]

Un =
U0

n2
+ 3

ea0
2
k n |E| , (4.55)

where U0 = −13.6 eV, a0 ≃ 0.53× 10−10m [MNT16] is the Bohr radius,
e is the elementary charge, and k is the so-called parabolic quantum
number, which ranges from −(n − |m| − 1) to (n − |m| − 1) in steps of
two, where m is the magnetic quantum number [Dro+07; Gil14]. The
corresponding force is therefore given by

FE
n = −3

2
ea0k n∇ |E| . (4.56)

A hydrogen atom in the ground state has no electric dipole, therefore
the effect of this interaction is theoretically zero in the simplest scenario.
For our evaluation, we set k = n, in order to derive an upper limit to
the estimation of the critical gradient |(∇ |E|)crit|. By using once more
Eq. (4.10) we obtain

3

2
ea0n

2 |(∇ |E|)crit| =
d

L2

Ū

kU
, (4.57)

where we have re-labeled the energy dispersion constant k as kU in order
to avoid confusion. This leads to

|(∇ |E|)crit| =
d

L2

2

3ea0n2

Ū

kU
. (4.58)
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For the test device described in [Dem+17], with n = 1, L = 171.7mm
and d = 256 nm, we get the empirical formula

|(∇ |E|)crit| = 1.09× 105
Ū

kU
, (4.59)

with |(∇ |E|)crit| in Vm−2 and Ū in eV. We notice that this value is
huge, and therefore even with an energy dispersion kU = 100% should
not be of any concern, unless in specific experimental conditions. In a
similar fashion as in Sec. 4.2.2, we retrieve now the value of the electric
field gradient which can mimic the effects of gravity:

|(∇ |E|)crit| ≃
2mg

3ea0n2
. (4.60)

For n = 1 and m = mH, this leads to the empirical value

|(∇ |E|)crit| ≃ 1.3× 103Vm−2 = 13Vm−1 cm−1. (4.61)

This value indicates a field which changes by 13Vm−1 every cm, which
is not usually found in nature. We can ignore the effects of the electric
field if the experimental conditions do not cause a field which varies with
this order of magnitude. Notice however that, since the critical field goes
with n−2, a Rydberg state with n = 30 would decrease this value by
around three orders of magnitude, lowering it to the range of variations
we can witness in non-controlled environments.

4.3 Summary

In this chapter, we have studied the effects of the energy spread of the
particle source, in combination with external forces acting on the parti-
cles, and the consequent degradation of the pattern of the interferometer.
We discussed the influence of these two phenomena for both charged and
neutral particles, which identify two different application regimes for a
Talbot-Lau interferometer. We found a general formula which estab-
lishes the critical force Fcrit which causes a Gaussian energy distribution
to produce a pattern with severely reduced contrast. We applied this
formula first to interactions affecting charged particles, like electric fields
and magnetic fields. Then, we used it to retrieve critical values related to
gravity, electric field gradients, and magnetic field gradients. Since the
goal of this work is to discuss the feasibility of a gravity measurement on
antimatter, we performed as well calculations to see what is the magni-
tude of magnetic and electric field gradients which could mimic gravity.
The result is that, on ground state antihydrogen, a magnetic gradient of
0.2G cm−1 creates an interaction as strong as the gravitational acceler-
ation, while electric field gradients constitute a minor problem, starting
to emulate gravity at 13Vm−1 cm−1.





Chapter 5

Simulation of a gravity
measurement with
antihydrogen

Until now, we have mainly discussed systematic effects and perturbations
which have to be taken care of in order to perform any sort of inertial
measurement using a Talbot-Lau interferometer. Chapter 3 dealt with
the requirements for the alignment of the gratings in order to get a non-
zero signal, while Chapter 4 focused on the disturbances caused by forces
acting on the particles. This chapter is meant to wrap things up and offer
numerical estimations on the feasibility of a gravity measurement on
antihydrogen, taking into account realistic parameters for the antimatter
source.

The use of a two or three-grating device to measure forces is not a nov-
elty in the field of atomic and particle physics: the interested reader can
read details about past implementations of this technique in [Obe+96],
[Agh+14], and [Lan+17], where a similar device has been employed to
perform a variety of inertial measurements.

In 2007, this technique has been referenced in the proposal of the
AEGIS experiment [Dro+07], with the purpose of measuring the gravi-
tational acceleration which antihydrogen is subject to, though the char-
acteristics of the particle source were mostly evaluated from theoretical
calculations and had no experimental support at the time. As of today,
it is clear that to reach the envisioned 1% precision, a lot of not-yet-
available technological improvements are required. We focus therefore on
a so-called “sign measurement” of the gravitational acceleration, which
accounts for a 30% precision: since the gravitational acceleration g is
equal to around 9.81m s−2, having σ ≃ 3m s−2 would allow us to confirm
or reject antigravity with a confidence interval of 3σ. While this is still a
coarse measurement, it would be more accurate than the only experimen-
tal data available as of the date of this work [Amo+13]: currently, direct
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measurement on antimatter gravity constrain the (anti)gravitational ac-
celeration ḡ to the interval −65g < ḡ < 110g.

In the following, we consider two target levels of precision: the afore-
mentioned “sign measurement” and a 10% measurement (1m s−2), which
can be seen as the next step toward a higher accuracy.

This chapter represents the main result of this work and is divided
into several subsections.

We start by analyzing various procedures with which antihydrogen
has been experimentally produced, obtaining quantitative numbers for
the parameters of the source, such as intensity and temperature. Since
the first cold antihydrogen production in 2002 [Amo+02], two methods
have been successfully used for creating antihydrogen: direct mixing of
positrons and antiprotons [Amo+02; Amo+14] and charge exchange be-
tween antiprotons and positronium [Sto+04]. Both methods result in
the capture of a positron by an antiproton, forming a neutral antiatom.
These two mechanisms exploit different reactions and produce antihy-
drogen in vastly different quantities with unique physical properties. We
study them in detail at the beginning of the chapter

Afterwards, we build a numerical model to estimate the accuracy
of a gravity measurement, with emphasis on how to take into account
the geometry of the experiment. Since this work has been produced
in the framework of the AEḡIS collaboration, we consider the currently
available measurement volume contained in the main vacuum chamber
of the experiment.

Finally, we consider two different scenarios, namely a “short configu-
ration” (interferometer placed at the exit of the antihydrogen production
trap, inside the vacuum chamber of the main experiment), and a “long
configuration” (interferometer placed outside the main AEḡIS apparatus,
in its own vacuum chamber as a sub-unit of the experiment), which were
originally analyzed in an internal collaboration report by the author in
conjunction with the rest of the Heidelberg group [Brä+15]1. We use
part of this report as a basis for our evaluation, while developing some
additional techniques to take into account a wider range of effects.

5.1 Parameters of the antiproton source

As we have seen in Sec. 1.5, the only source of cold hadronic antimatter
currently available is the CERN Antiproton Decelerator (AD). This de-
celeration ring provides bunches of 3× 107 antiprotons at 5.3MeV, with a
repetition rate of around 100 s. Since the AD can not supply more than
one experiment at once, the experiments installed on the ring observe
eight hour shifts with a rotating schedule, resulting in a total of around

1a copy of this report is included in Appendix Sec. B
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288 antiproton shots per measurement day. We previously pointed out in
Sec. 1.5 that the improved ELENA ring will be activated in early 2020,
boosting the catching rate of antiprotons by a factor between 10 and 100.
However, since no direct measurement on the trapping efficiency on the
newly installed decelerator is already available, we use the current AD
data in the following evaluations.

The antiproton bunch from the AD is still too fast to be caught in
electromagnetic traps: as a rule of thumb, an electric potential of 1V is
required to stop the motion of a particle with a kinetic energy of 1 eV,
meaning that a 5.3MV potential would be needed to stop the antipro-
tons in their current status2. In order to trap a part of the bunch, thin
aluminum foils of different thickness are placed just after the extraction
point of the Antiproton Decelerator [Kra+13]. About half of the antir-
protons annihilate inside the foil, while the surviving part collide with the
atoms of the material and lose energy, emerging with a broad energy dis-
tribution which presents a consistent tail of particles with kinetic energy
smaller than 10 keV [Kra+13; Car17]. These are the particles which get
caught and subsequently cooled by the antimatter experiments placed on
the AD. Out of the 3× 107 antiprotons, a standard catching procedure
results in around 1× 104 antiprotons trapped per AD shot. These par-
ticles can be then used for a variety of experiments, including but not
limited to, antihydrogen formation.

5.2 Direct mixing

Direct mixing is a broad category which encompasses all the antihydrogen
production procedures based on the direct interaction between positrons
and antiprotons inside the same electromagnetic trap. The geometry of
the trap and the actual process vary between the experiments [Amo+04b;
And+11], leading to different results in terms of temperature and veloc-
ity distribution of the produced particles. In this section, we follow the
summary given by Holzscheiter et al. [HCN04] to introduce the princi-
pal formation mechanisms and their impact on the number of produced
antihydrogen atoms.

5.2.1 Theoretical background

The simplest reaction which leads to antihydrogen formation is in prin-
ciple the so-called spontaneous radiative recombination (SRR) with the
emission of a photon:

p̄ + e+ −→ H̄ + hν. (5.1)

2Delving into the physics of electromagnetic traps is outside the scope of this work.
A good introduction to the topic can be found in the work of Blaum et al. [BNW10].
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In this reaction, the photon is required to ensure that both momentum
and energy are conserved. However, for sufficiently low temperatures and
high density ρe of the positron plasma, the main reaction which leads to
antihydrogen formation is a three-body recombination process [GHA94]:

p̄ + e+ + e+ −→ H̄ + e+. (5.2)

According to Müller and Wolf [MW97], the antihydrogen formation re-
action can be seen as a complex process which includes three different
contributions: the aforementioned spontaneous radiative recombination,
a three-body reaction, and a a complex interplay between collisional and
radiative recombination. [SBD75]. With these considerations, the total
antihydrogen production rate αH̄ (cm3/s) is given by:

αH̄ = αSRR + αTBR + αrad. (5.3)

Here, αSRR is the recombination rate for SSR, αTBR is the production rate
for a three-body reaction, and αrad is the production rate due to collision-
radiative recombination. The expected density of produced antihydrogen
atoms ρH̄ per second is therefore [MK69]

dρH̄
dt

= αρeρp̄, (5.4)

if we ignore the antihydrogen atoms in excited states which ionize right
after their production. This leads to a total number of expected antihy-
drogen atoms NH̄ per second given by

dNH̄

dt
= αρeNp̄, (5.5)

with Np̄ being the number of antiprotons injected in the trap. The three
components of the production rate show different dependencies on the
temperature Te of the positron plasma. For the spontaneous radiative
recombination process [SBD75; MW97]:

αSRR = 4.3× 10−13

(
1 eV

kBTe

)0.63

cm3/s, (5.6)

where kB is Boltzmann constant. For the three-body recombination pro-
cess, we consider the recombination rate obtained by Pohl et al. [PVS08],
which builds up on the work of Mansbach and Keck [MK69]:

αTBR = kTBRρe

(
1 eV

kBTe

) 9
2

, (5.7)

where kTBR = 1.42× 10−27 cm6/s. This equation gives a valid approxi-
mation of the production rate if we assume that all Rydberg states with
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binding energy En < kBT are destroyed again by collisions inside the
plasma and if no magnetic field is considered [MW97]. In case of produc-
tion of antihydrogen in strong magnetic fields, the actual recombination
rate is reduced by at least one order of magnitude [GO91; Rad+14]. For
the collisional-radiative recombination [SBD75]:

αrad = [8.3× 10−18 cm3/s]
( ρe
1 cm3

)0.37( 1 eV

kBTe

)2.18

. (5.8)

In Fig. 5.1 we can see the evolution of the different production rates
as a function of Te for a typical positron density ρe = 107 cm−3. The
figure shows that for temperatures below 100K, the three body recom-
bination process is the leading reaction for antihydrogen production,
with collisional-radiative recombination becoming more prominent as the
temperature increases. Notice that the three body recombination pro-
cess strongly favors high-excited Rydberg states: the work of Pajek and
Schuch [PS97] shows that, if we consider a uniform velocity distribution,
the partial production rate αTBR

n for (anti)hydrogen with principal quan-
tum number n is proportional to n6, up to the limit where En ≃ kBT .
Thus, an imbalance towards high-excited Rydberg states is expected.
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Figure 5.1: Antihydrogen production rate for the different production
channels described in Eqs. (5.6), (5.7), and (5.8) as a function of the
positron cloud temperature Te, with positron density ρe = 107 cm−3.
Notice that for temperatures below 100K, the three body recombination
process becomes the dominant one, while the spontaneous recombination
becomes negligible by several orders of magnitude.
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5.2.2 Experimental results

The ATHENA collaboration [Amo+04a] and, subsequently, the ALPHA
collaboration [Amo+14] realized a series of experiments with antihydro-
gen produced via direct mixing, providing experimental numbers for the
production rate and its dependency on the temperature. The ATHENA
collaboration used a nested Penning trap design with electrodes cooled
at 15K in thermal equilibirum with a plasma of around 7× 107 positrons
(ρe = 1.7× 108 cm−3) [Amo+04b]. A cloud of about 104 antiprotons
with an average energy of 30 eV was then injected into the trap, allow-
ing for three minutes of continuous interaction. As shown in Fig. 5.1,
the dominant process in this configuration is the three body recombina-
tion, even considering the reduction due to the presence of a magnetic
field of several tesla. The collaboration reported a production rate of
around 2500 antiatoms per production cycle (around 450 s) [Amo+04a].
The velocity distribution was however found to be non-uniform, with
an equivalent axial temperature T∥ one order of magnitude bigger than
the transversal temperature T⊥ (T∥ = 150K, T⊥ = 15K) [Mad+05].
With these parameters, the intrinsic divergence of the particle source
α =

√
T⊥/T∥ was of the order of 300mmm−1, which means that after a

path of one meter the beam would expand to a diameter of around 60 cm.
The subsequent analysis performed by Fujiwara et al. [Fuj+08] showed
that the dependency of the production rate on the temperature of the po-
sitron cloud was not compatible with Eq. (5.7): the production rate was
found proportional to T 1.1±0.5

e instead of the expected T 4.5
e . This differ-

ence is to be imputed to the fact that antiprotons and positrons are not in
thermal equilibrium during the production process [Mad+05], resulting
in a non-isotropic temperature distribution, and the fact that Eq. (5.7)
has been derived in the hypothesis of infinite positron plasma [Fuj+08],
which is not compatible with the experimental data. Further simulations
by Radics et al. [Rad+14] seem to underline the fact that the shape and
initial conditions of the positron plasma are strongly affecting the scaling
of the production rate. These calculations predict a weaker dependence
on the temperature than the one from Eq. (5.7), which is at least quali-
tatively consistent with the measurements from ATHENA.

The ALPHA collaboration reported instead that the temperature of
their positron cloud reached 71± 10K despite the electrodes being cooled
down to about 7.5K, which increased to 194± 23K when the antipro-
tons were injected inside the trap [And+11]. Antiprotons and positrons
were then in thermal equilibrium, resulting in an isotropic production of
antihydrogen during a 1 s mixing process. With around 7× 106 positrons
(ρe = 7× 107 cm−3) and 4.5× 104 trapped antiprotons, the experiment
yielded on average around 2000 antihydrogen antiatoms per production
cycle, with a cycle lasting more than two AD shots [Amo+14].

Notice that in both experiments, the production of antiatoms is a
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continuous process which lasts as long as the two particle species inter-
act with each other, making it difficult to assign a precise time-of-flight
to every particle detected. This aspect plays an important role when de-
signing a measurement device for measuring forces acting on the system.

5.2.3 Assumptions for the subsequent evaluation

Combining the theoretical background from Sec. 5.2.1 with the exper-
imental numbers of Sec. 5.2.2, we can setup a realistic scenario for a
gravity measurement on antihydrogen by using direct mixing. In the
following, we consider an average length of four full AD cycles (400 s),
allowing for the stacking of two antiproton bunches and leaving three
minutes for cooling and mixing operations. Since the ALPHA production
schematic, which yields 2000 H̄/cycle with T∥ = T⊥ = 200K, produces
antihydrogen at both higher temperature, in smaller numbers and in a
uniform distribution, we can consider it worse than the ATHENA pro-
duction schematic in every aspect for our discussion. For the subsequent
evaluation, we therefore consider only the ATHENA experiment, which
yields 2500 H̄/cycle with T∥ = 150K and T⊥ = 15K.

5.3 Charge exchange

Another strategy to produce antihydrogen is the so-called charge ex-
change mechanism between antiprotons and positronium (Ps), a bound
state between an electron and a positron. This method has been success-
fully employed by the ATRAP collaboration in 2004 to produce antihy-
drogen [Sto+04] and it is planned to be used by the AEḡIS collaboration
as its primary mean to get cold antiatoms [Dro+07]. This section details
some properties of the positronium atom before presenting an introduc-
tion to the charge exchange production mechanism.

5.3.1 Positronium

Positronium is a bound state between a positron (e+) and an electron
(e−). Its existence was predicted in 1934 [Moh34], where it was labeled
as “electrum”, and was experimentally verified for the first time in 1951
[Deu51]. For all intents and purposes, positronium can be described
using the Hamiltonian of a hydrogen atom, by considering a reduced
mass µ = me/2, with me = 9.11× 10−31 kg. As hydrogen, positronium
can assume two different spin configurations S in its ground state: the
triplet state S = 1, also known as ortho-positronium (o-Ps) and the
singlet state S = 0, also known as para-positronium (p-Ps). Due to the
fact that this exotic atom is composed by a particle and its antiparticle,
it is inherently unstable and incurs into annihilation in a short period of
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time. Ortho-positronium decays into an odd number of photons, with
annihilation in three photons being the leading channel, with an average
lifetime [Kar04]

to-Ps =
1

Γ3γ

=
9π

2(π2 − 9)

~
mec2

α6 = 142 ns, (5.9)

where α = 1/137 is the fine structure constant and Γ3γ is the decay
rate. Para-positronium decays in an even number of photons, with two
photons being the main channel, with an average lifetime [Kar04]

tp-Ps =
1

Γ2γ

=
2~
mec2

α5 = 125 ps, (5.10)

where Γ2γ is the decay rate. It is interesting to point out that the 2s
state of the positronium is metastable with a lifetime of 1.1 µs, a factor
eight longer than the o-Ps lifetime [Coo+15].

5.3.2 Theoretical background

Charge exchange is a production process for antihydrogen which origi-
nates from the interaction between an antiproton p̄ and a positronium
atom Ps. Introduced for the first time by Deutch et al. in 1986 [Deu+86],
the reaction which leads to the formation of antihydrogen is the following:

p̄ + Ps −→ H̄ + e−. (5.11)

Quantum mechanics calculations by Kadyrov et al. [Kad+15] and Rawl-
ins et al. [Raw+16] based on the two-center convergent close-coupling
method [KB02] have shown that for a positronium principal quantum
number nPs ≤ 3, the cross section of this reaction scales with a n4

Ps

power law. A simulation by Krasnický et al. [Kra+16], using a classical
trajectory Monte Carlo (CTMC) method, has expanded this result for
higher principal quantum numbers (3 < nPs ≤ 50), finding the same be-
havior as the previous works. The simulation shows that the n4

Ps power
law is valid only in absence of magnetic fields. Moreover, the cross section
of the reaction is a function of the ratio kv between the velocity of the
center of mass vcm of the positronium and the classical orbital velocity
of the positron in the Ps atom. In a field-free environment, for kv < 0.3,
the cross section is proportional to a 1/EPs

cm, with E
Ps
cm being the center-

of-mass energy of the positronium. From these considerations, one could
argue that in order to increase the production rate of antihydrogen, it is
desirable to obtain highly excited Rydberg positronium (nPs ≫ 1) with
a low average velocity (low temperature). Thus the reaction to consider
is

p̄ + Ps∗ −→ H̄
∗
+ e−, (5.12)
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with both the original positronium and the antihydrogen atom in an
excited state with principal quantum numbers nPs and nH̄ respectively.
Notice that together with the aforementioned charge exchange interac-
tion, there are other reaction channels which result in simple scattering
between the positronium and the antiprotons, with no antihydrogen for-
mation. Among these, we find the following reactions:

p̄ + Ps∗(n, l,m) −→ p̄ + Ps∗(n, l,m)

p̄ + Ps∗(n, l,m) −→ p̄ + Ps∗(n′, l′,m′)

p̄ + Ps∗(n, l,m) −→ p̄ + e+ + e−,

(5.13)

where n, l, and m are the quantum numbers of the positronium atom
[Kra+16]. These reactions have to be separately considered in order to
determine the proper reaction rate and any realistic simulation has to
include these effects. Provided that no channel is neglected, in the re-
gion in which the cross section scales as 1/EPs

cm, the distribution of nH̄

is strictly dependent on nPs: the simulations performed by Krasnický
et al. [Kra+16] show that nH̄ has an asymmetric distribution peaked on
n0 =

√
2nPs, with a tail for nH̄ < n0 and a small spread (Fig. 5.2). The

presence of magnetic fields reduces the cross section of the production
process for every kv below a specific threshold value kxv , which depends
on the magnetic field. For a magnetic field B < 1T and nPs < 18, the
effect of the fields on the cross section are deemed tolerable [Kra+16].
Notice that due to the lack of experimental data, there is no consensus
on the actual dependence of the cross section on the quantum numbers
of the positronium: a subsequent quantum calculation by Kadyrov et
al. [Kad+17] argued that for nPs > 3 the formation of antihydrogen via
charge exchange is suppressed and evolves instead with a power law n2

Ps.
The nPs power law relation should still hold if the kinetic energy of the
positronium is such that its de Broglie wavelength is smaller than its size
(TPs > 20K), such that the quantum effects are shadowed by the classical
interactions [Com17]. This poses however a limit on the cooling of po-
sitronium atoms, requiring a balance between temperature and effective
cross section. However, it must be noted that this process is expected to
yield antihydrogen with the same velocity distribution as the underlying
antiprotons, meaning that the temperature of the antiproton cloud would
determine the temperature of the produced antiatoms without barely any
influence from the positronium [Kra+16; Sto+04].

5.3.3 Experimental results

As of the publication date of this thesis, the charge exchange process
has been successfully applied to protons to form hydrogen by Merrison
et al. in 1997 [Mer+97] and to antiprotons in a two-step approach by
the ATRAP collaboration in 2004 [Sto+04]. We analyze the latter, as
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Figure 5.2: Normalized distribution of the principal quantum number
nH̄ of the antihydrogen produced via charge exchange as a function of
the principal quantum number nPs of the positronium, for different val-
ues of the ratio kv between the velocity of the center of mass vcm and
the classical orbital velocity of the positron in the Ps atom. Reprinted
figure with permission from [Kra+16]. Copyright 2018 by the American
Physical Society.

it was carried out in physical conditions which can be compared to the
ones with which ALPHA and ATHENA achieved direct mixing, as seen
in Sec. 5.2.2. In order to get excited positronium to increase the charge
exchange cross section, the ATRAP collaboration took advantage of two
consecutive interactions, as envisioned by Hessels et al. in 1998 [HHC98]:

Cs∗ + e+ −→ Ps∗ + Cs+ (5.14)

p̄ + Ps∗ −→ H̄
∗
+ e−. (5.15)

The cesium atoms were laser excited up to n = 37 and were subsequently
injected into the positron trap, interacting with a positron plasma and
made interacting for around 100 s. Typically, around 8× 105 excited ce-
sium atoms were sent through 1.4× 106 positrons cooled at 4.2K, with a
conversion efficiency of around 25% of the trapped positrons [Spe+04].
The production peak was reached after 35 s of interaction, after an ex-
ponential growth [Sto+04; Spe+04]. The produced positronium was
then made interact with 2.4× 105 antiprotons accumulated in the span
of around 1800 s [Gab+02], yielding between 100 and 200 produced an-
tihydrogen atoms at around 4K, assuming an isotropic distribution. For
a quick estimation, this can be schematized as a source with T∥ = T⊥,
which would yield a divergence of around 1000mmm−1, even bigger than
for the ATHENA production schematic. This number is expected to in-
crease with the number of antiprotons and positrons [Sto+04]. In 2016,
McConnell et al. published an improved positronium production scheme
which provides a 100% positron-to-positronium conversion and would in-
crease the antihydrogen production rate by up to a factor 500 [McC+16].
In an optimistic scenario, this would result in up to 105 antihydrogen
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atoms for production cycle at a temperature of 1.2K, which constitutes
a huge improvement on the state-of-the-art numbers.

5.3.4 Assumptions for the subsequent evaluation

In the following, we consider three separate charge exchange scenar-
ios: the experimental result from ATRAP, the theoretical improvement
pointed out by [McC+16], and an estimated scenario for the AEḡIS ex-
periment. For the ATRAP scenario, we used the numbers from the orig-
inal paper of 2004, as they were experimentally achieved. The improve-
ment in the quantity of available positronium is considered as a simple
multiplicative factor on its original statistics. For both configurations
(experiment and theoretical boost), we fix the antihydrogen temperature
to 4K, which has been experimentally reached by the collaboration.

Since this work has been developed in the framework of the AEḡIS
collaboration, despite the lack of experimental data, we use a theoreti-
cal scenario based on the thesis of Caravita [Car17], which depicts the
current status and achievements of the experiment. The AEḡIS experi-
ment managed to trap and cool 1.8× 105 antiprotons by stacking three
AD shots in a cloud of about 200mm3. Considering 3× 107 positronium
atoms and the cross section from [Kra+16], an optimistic expectation
for numbers of produced antihydrogen is around 40 antihydrogen atoms
per 500 s production cycle for the lowest achieved positronium temper-
ature [Car17; Car18]. The measured antiproton temperature is of the
order of some tens of kelvin. In the following, we assume a test temper-
ature of 20K. Results can be scaled accordingly with relative ease.

5.4 Comparison of the considered param-

eters

In the following we apply the calculations for a gravity measurement on
the test conditions underlined in Sec. 5.2.3 and 5.3.4, analyzing them
separately. Table 5.1 acts as a summary of the scenarios outlined in the
previous sections and is used as a reference throughout the calculations.

5.5 Measurement principle

As we discussed in Chapter 2, the outcome of a force field measurement
using a Talbot-Lau interferometer has an intrinsic lower bound to its sen-
sitivity, in the form of a minimum detectable acceleration amin expressed
by Eq. (2.35), which we rewrite here for the sake of clarity:

amin =
d

2πCτ 2
√
Ndet

(5.16)
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Production type H̄/ cycle cycle [s] T∥ [K] T⊥ [K]
Direct mixing A (ATHENA) 2500 400 150 15
Direct mixing B (ALPHA) 2000 400 200 200
Charge exchange A (ATRAP) 200 1800 4 4
Charge exchange B (ATRAP) 100000 1800 4 4
Charge exchange C (AEḡIS) 40 500 20 20

Production type cycles/day H̄/day
Direct mixing A (ATHENA) 72 1.8× 104

Direct mixing B (ALPHA) 72 1.44× 104

Charge exchange A (ATRAP) 16 3.2× 103

Charge exchange B (ATRAP) 16 1.6× 106

Charge exchange C (AEḡIS) 58 2.32× 103

Table 5.1: A summary of the five production scenarios analyzed. The
last two entries in the tables (Charge Exchange B and C) are theoretical
scenarios based on simulations and experimental numbers for positro-
nium atoms and antiprotons. A “day” is defined here as a 8-hour shift,
in compliance with the Antiproton Decelerator schedule.

where d is the periodicity of the gratings, C is the contrast of the pattern
- which depends on the energy of the particles, Ndet is the number of
particles which reach the detector and τ is the time of flight between the
gratings when considering a force which doesn’t affect the axial velocity
of the particle. In order to put a lower boundary on the precision of the
measurement, we need to provide numbers for all these quantities. From
Chapter 4, we know that if the source is not monoenergetic, the resulting
contrast is heavily dependent on the shape of the distribution, which is
in turn dependent on the parameters of the source. This is also true for
the number of detected particles Ndet, which is dependent on both the
source and the geometry of the interferometer. A more precise formula
which would take into account all these parameters reads

amin =
d

2πCL2
√
η3Nprod

∫ ∞

v∥=0

f(u)u2du, (5.17)

where L is the distance between the gratings, v∥ is the axial velocity of the
particles, f(v∥) is the axial velocity distribution, η is the open fraction of
the gratings and Nprod is the number of produced particles. Notice that
f(v∥) depends on the geometrical acceptance of the device and must
be used needed to obtain Ndet from Nprod, while C is not constant and
depends in a non trivial way on the geometry of the interferometer and
on the shape of velocity distribution of the particles. In the following, we
develop a numerical model to fill the blanks in Eq. (5.17). The first part
deals with the parameters of the source, while the second considers the
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geometry of the interferometer. The results of both parts are combined in
order to produce a realistic estimation of the measurement time required
as a function of the desired measurement precision.

α
rD

L0 L L

H source

LD

intrinsic 
divergence

Figure 5.3: Schematic of the experimental procedure: antihydrogen H̄ is
produced inside a Penning trap and then sent through the interferometer.
The distance between the source point and the first grating is marked
as L0, while the distance between the elements of the interferometer is
equal to L. The detector radius rD determines the angular acceptance
and thus the maximum accepted divergence α = rD/LD which still lets
particles reach the detector.

5.6 Details of the numerical model

Given a circular particle detector with radius rD and detection efficiency
ηD placed at a distance LD from the particle source, as schematized in
Fig. 5.3, the fraction of particles which get detected is dependent on the
solid angle ΩD = πr2D/L

2
D. If we consider a divergent, monochromatic

particle source, this geometrical efficiency is quickly calculated as

Ndet =
ΩD

4π
Nprod. (5.18)

This is not generally true, as when it comes down to a more complex
velocity distribution an integration is required to retrieve the fraction of
particles effectively reaching the detector as a function of the axial veloc-
ity v∥. Given a velocity distribution f⊥(v⊥) such that

∫∞
−∞ f⊥(u)du = 1,



102 Chapter 5. Gravity measurement on H̄

v⊥ being the transverse velocity, the probability P (v∥) that a particle
with axial velocity v∥ reaches the detector is given by

P (v∥) =

∫ vmax
⊥

−vmax
⊥

f⊥(u)du ≤ 1, (5.19)

where vmax
⊥ is the maximum transverse velocity which allows a particle

with axial velocity v∥ to reach the detector:

vmax
⊥ = v∥

rD
LD

. (5.20)

Given a distribution of axial velocities g∥(v∥), such that
∫∞
−∞ g∥(u)du = 1,

the total fraction of particles reaching the detector is then given by:
(
Ndet

Nprod

)

geom

=

∫ ∞

0

g∥(u)P (u)du, (5.21)

where the integration is performed for v∥ ≥ 0 in order to exclude particles
which travel in the direction opposite to the detector. In order to get the
real number of detected particles, this number has to be multiplied by
the efficiency of the detector ηD and the transmission coefficient of the
interferometer, which is the product of the open fraction η of the single
gratings, yielding an additional factor η3. Taking this into account, we
proceed to write the fraction of detected particles as

Ndet

Nprod

= ηD η3
(
Ndet

Nprod

)

geom

(5.22)

Equation (5.19) and (5.22) are central to the following discussion. In
Chapter 2 we discussed how the signal of a Talbot-Lau interferometer
depends on the kinetic energy of the incoming particles, such that parti-
cles with different velocities generate different patterns. The de Broglie
wavelength λdB depends on the kinetic energy of the particles, and there-

fore on vtot =
√
v2∥ + v2⊥. The resulting signal Sv∥(y) associated with the

axial velocity v∥ has thus to be integrated over the distribution of trans-
verse velocities, by modifying Eq. (5.19):

Sv∥(y) =

∫ vmax
⊥

−vmax
⊥

f⊥(u)S(y;
√
v2∥ + u2)du, (5.23)

where S(y; v) is the pattern generated by particles with total velocity
v. This leads to a resulting signal S(y) which is obtained by integrat-
ing Sv∥(y) over g∥(u), in a similar fashion to Eq. (5.21), thus obtain-
ing [Brä+15]

S(y) =

∫ ∞

0

g∥(u)Su(y)du. (5.24)
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The contrast C of the signal is therefore calculated as

C =
max(S(y))−min(S(y))

max(S(y))−min(S(y))
. (5.25)

This expression, albeit being correct for the situation considered, is com-
putationally expensive: the signal of the interferometer has to be numer-
ically calculated for every possible total velocity, leading to long compu-
tation times when implemented in a computer program. It is therefore
reasonable to look for a valid simplification in order to speed up the
calculations. In the approximation vmax

⊥ ≪ v∥, we have that

vtot ≃ v∥ +
vmax
⊥

2

2v∥
= v∥

(
1 +

r2D
2L2

D

)
, (5.26)

which is obtained by using Eq. (5.20). If we consider relatively small an-
gular acceptances, such that r2D ≪ L2

D (paraxial approximation), we can

assume that S(y;
√
v2∥ + u2) in Eq. (5.23) is independent on the trans-

verse velocity and take it out of the integral as a constant. Therefore, we
can write an approximated equation for S(y) that is easier to compute
numerically. This approximation reads:

S(y) ≃
∫ ∞

0

g∥(u)P (u)S(y;u)du, (5.27)

where u is now the axial velocity of the particles.
Due to the numeric approach used in Chapter 2 for determining the

signal of the Talbot-Lau interferometer, we elect to perform again a nu-
merical calculation of the expected interferometric signal, discretizing
Eq. (5.24) by sampling both g∥(u) and f⊥(u) with a finite number of
points. The resulting discretized sum reads

S(y) ≃
n∑

i=0

g∥(ui)P (ui)S(y;ui)∆u, (5.28)

with ∆u being the velocity interval used for the sampling and n the num-
ber of points considered. An analogous operation is performed to calcu-
late P (ui). Considering cylindrical symmetry, we can consider f⊥(u) and
g∥(u) to be thermal distribution, in accordance to the physical properties
of the produced antihydrogen. Thus, we use a Maxwell-Boltzmann 1-
dimensional distribution for g∥(u) and a 2-dimensional Maxwell-Boltzmann
distribution for f⊥(u), to take into account the possibility of having dif-
ferent radial and axial temperatures (as it was for example found in the
ATHENA experiment - see Sec. 5.2.2). Now we have all the tools to
determine the expected signal and efficiency of a measurement, given the
geometrical parameters of the detector and the gratings.



104 Chapter 5. Gravity measurement on H̄

5.7 Velocity distributions

In the previous section, we discussed how to calculate the interferomet-
ric signal given arbitrary distributions for the axial and the transverse
component of the velocity. From Sec. 5.1, we conclude that a thermal
distribution is a reasonable candidate for both the transverse and axial
velocity profile. In particular, for the axial distribution g∥(v) we assume
a one-dimensional Maxwell-Boltzmann distribution, given by

g∥(v) =

√
m

2πkBT
e
− mv2

2kBT , (5.29)

with m being the mass of antihydrogen, kB being the Boltzmann con-
stant and T the temperature of the antihydrogen cloud in kelvin. For
the transverse distribution f⊥(v), we consider instead a two dimensional
Maxwell-Boltzmann speed distribution, given by

f⊥(v) =
mv

2πkBT
e
− mv2

2kBT . (5.30)

We use the data from Tab. 5.1 to assign values to both average tempera-
tures, according to the configuration which is simulated. These distribu-
tions are depicted in Fig. 5.4 for the parameters of the ATHENA exper-
iment, summarized in the aforementioned table. Once g∥(v) and f⊥(v)
are fixed, the signal S(y) from Eq. (5.28) is completely determined, as it
is its contrast C. Notice that the mean velocity of the particle reaching
the detector can in principle only be estimated once we know the geo-
metrical parameters of the detector, since these will cut out a significant
part of the produced particles, skewing the distribution in favor of faster
antiatoms. This effect is shown in Fig. 5.5. We also see in Fig. 5.7 that,
when considering a ratio 0.01 ≤ rD/LD ≤ 1, the mean velocity undergoes
a relative variation of only around 4%, despite being sensibly higher than
in the unconstrained case. This means that while the paraxial approxi-
mation rD/LD ≪ 1 holds, the velocity variation is not so prominent, and
also the shape of the contrast plots does not change significantly, as it
is shown in Fig. 5.6. Nevertheless, we perform this calculation for each
separate configuration.

As a side note, if we consider different open fractions η and perform
calculations for an array of possible choices, we find substantially different
results. An example of this effect is shown in Fig. 5.8, where we produce
a plot similar to Fig. 5.6 for η = 0.25, 0.3, 0.35, and 0.4 respectively. For
the following discussion, we fix η = 0.3, as it yields the best sensitivity
for detecting phase shifts [Obe+96].
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Figure 5.4: Velocity distributions for T∥ = 150K and T⊥ = 15K, de-
scribed respectively by Eqs. (5.29) and (5.30). This is the configuration
which corresponds to the ATHENA mixing process, as summarized in
Tab. 5.1. The vertical dashed lines mark the mean velocity of the par-
ticles for each distribution. Notice that for the axial distribution, only
positive values of the velocity are considered, since all particles generated
in the negative direction can not hit the detector
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Figure 5.5: Axial velocity distribution with and without geometrical re-
strictions (arbitrary units). When considering the angular acceptance of
the detector, the resulting axial velocity distribution is skewed towards
higher velocities, resulting in an increased average (dot-dashed line).
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Figure 5.6: Contrast C of the interference pattern obtained using the ve-
locity distribution shown in Fig. 5.5, for L = 5 cm and different geometric
ratios rD/LD. Notice that the profile shifts towards higher grating peri-
ods as the geometric ratio becomes bigger. This plot has been obtained
by considering an open fraction η = 0.3.
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Figure 5.7: Mean axial velocity distribution as a function of the geomet-
rical acceptance rD/LD, which defines the maximum transverse velocity
allowed to reach the target. Notice that while the average value is higher
than in the non-constrained case (see Fig. 5.5), the actual variation is
around 4%. For rD/LD → ∞, this velocity is expected to converge to
the original mean from the unconstrained distribution.
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Figure 5.8: Contrast C of the interference pattern obtained using the
velocity distribution shown in Fig. 5.5 for different open fractions η. In
this plot, a length L = 10 cm is considered, with the detector radius rD
adjusted such that we get a fixed geometric ratio rD/LD = 0.06.

5.8 Constraints on the measurement vol-

ume

The choice of geometry for the interferometer is strictly connected to
the available space in the target experiment and it is mainly dictated by
both theoretical and practical limits: on the one hand, a longer distance L
between the gratings induces a bigger phase shift due to the target force,
while, on the other hand, makes it more difficult to perform an alignment
which is compliant to the limits exposed in Chapter 3. Furthermore, a
longer L also means that the particles are exposed for a longer time
to spurious interactions, which could cause an additional phase shift or
degrade the signal.

5.8.1 Geometrical constraints

A huge geometrical acceptance is a requisite in order to increase the
ratio between detected and produced particles, while at the same time
putting a stricter limit on the maximum accepted misalignment between
the gratings. Moreover, the choice is also subsided to the available region
of space where the force due to the gradient of external fields (magnetic
and electric in the case of antihydrogen) are smaller than the gravitational
interaction.

A typical detector size that one can consider ranges from around 5 to



108 Chapter 5. Gravity measurement on H̄

40 cm2, as seen for commercial MCPs [Ham16], which is equivalent to a
radius between 1.25 and 8 cm. Another possibility is to build an array of
detectors using silicon chip detectors like the 2 cm2 Timepix3 [Poi+14],
in order to overcome detection area limitations, or to make an effective
use of scintillators to track down antimatter annihilation stars.

More stringent limitations are due to both the geometry of the an-
tiproton trapping system and the presence of field gradients which could
affect the measurement. For the former, if we consider the existing AEḡIS
apparatus, we have a maximum detector radius rmax

D = 32.5mm and a
maximum detector distance Lmax

D = 690mm [Brä+15]. For the latter, we
consider as a limit the region of space in which the effect of field gradi-
ents is sufficiently smaller than gravity. For ground-state antihydrogen,
this requirement translates into having a magnetic field with a gradi-
ent smaller than 0.2G cm−1 [Dem14a; Dem14b], as discussed in Chap-
ter 4. This value scales proportionally with 1/n, n being the principal
quantum number of the antiatom. Inside the current AEḡIS apparatus,
the region in which this condition is true for ground-state antihydro-
gen is restricted to a radius rsafeD = 1.5mm and a maximum distance
Lsafe
D = 10 cm [Brä+15], which becomes even smaller when considering

excited states. These parameters are summarized in Tab. 5.2. Reaching
the required magnetic field homogeneity in a future improvement, how-
ever, is not out of the realm of possiblities: NMR machines already have
magnets with fields above 1T with the target homogeneity on spherical
volumes of around 50 cm of radius [Kel06].

In the following, we ignore the field limitation and we consider rD ≤ rmax
D

and the total length of the device LD = 2L+L0 ≤ Lmax
D , where L0 is the

distance between the particle source and the first grating.

Lmax
D 690mm

Lsafe
D 100mm

rmax
D 32.5mm
rsafeD 1.5mm

Table 5.2: Geometrical parameters of the available experimental region
inside the AEḡIS apparatus. The parameters labeled with max are re-
ferred to the maximal geometrical space available for the measurement,
while the parameters labeled with safe are referred to the size of the
region whose magnetic field gradient is such that aB ≪ g, where aB
is the acceleration due to the magnetic field gradient on ground-state
antihydrogen. Values from the report by Bräunig et al. [Brä+15].



5.8. Constraints on the measurement volume 109

5.8.2 Cut-off velocity

An additional limitation is given by the length L which would cause the
particles to have a shift due to the gravitational acceleration g bigger
than the periodicity d of the grating, after which it is not possible to
determine its value effectively. For a particle with axial velocity v∥, this
sets the requirement

|g| τ 2 < d ⇒ |g| L
2

v2∥
< d (5.31)

leading to the condition

v∥ > vcut
!
= L

√
|g|
d
. (5.32)

This equation lets us define a cut-off velocity vcut below which the phase
shift of the pattern is too extensive to extract information and just con-
tributes to the background. Fig. 5.9 shows this formula applied to a
sample configuration, while Fig. 5.10 shows the dependence of vcut on
the periodicity d and the distance L between the gratings.

The particles for which v∥ does not fulfill Eq. (5.31) do not contribute
to the signal, creating a background which severely decreases the contrast
of the overall signal (see Fig. 5.11).
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Figure 5.9: Phase shift as a function of velocity for L = 5 cm and
d = 40 µm, considering the gravitational acceleration g = 9.81m s−1.
The vertical dashed line indicates the cut-off velocity vcut below which
the phase shift is bigger than the periodicity d of the gratings.



110 Chapter 5. Gravity measurement on H̄

d [um]

0 5 10 15 20 25 30 35 40

v
c
u
t [

m
/s

]

101

102

103

104

L = 30cm

L = 20cm

L = 10cm

L = 5cm
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the phase shift due to the action of gravitational acceleration is bigger
than one grating period, thus generating a background for the measure-
ment.
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Figure 5.11: Contrast C of the interference pattern for η = 0.3 in presence
of a gravitational acceleration for T∥ = 150K. Changing the length of
the device causes a drop in visibility due to the patterns of the slower
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5.8.3 Summary of the constraints and design deci-
sions

By considering all the above points, we decide to follow some general
guidelines:

• open fraction - we choose an open fraction η = 0.3, which is the one
which guarantees the best sensitivity as a function of the number
of particles detected [Obe+96];

• periodicity of the gratings - if we want to have an energy-independent,
robust measurement tool which has a limited dependence on the
geometrical acceptance of the detector (see Fig. 5.6), we could de-
cide to aim for having a visibility near to the classical result. This
advocates in favor of choosing d ≥ 20 µm, which would be a safe
assumption for a consistent part of the considered grating distances
L, as shown in Fig. 5.11. In spite of this, there is also the possibil-
ity to make a case by case decision and go for the smallest possible
grating periodicity which grants at least a 20% contrast, in order to
have a pattern which can be clearly reconstructed. In the following
we use this second assumption, since it leads to better results in
the estimation;

• cut-off velocity - we decide to discard all the configurations whose
combination of d and L cause more than 10% of the particles from
the distributions underlined in Sec. 5.7 to have a velocity lower than
the cut-off velocity. This last requirement is distribution-dependent
and must be determined on a case by case basis;

• information available on detection - we consider to have no infor-
mation on time of flight and we expect to be able to reconstruct
the shift based on the knowledge of the velocity distribution of
the produced particles. Therefore, we consider the particles indis-
tinguishable on an energy basis and the combined pattern as the
detected signal.

5.8.4 Available space and possible configurations

In the framework of the AEḡIS experiment, we have access to two dif-
ferent options when designing the measurement device: placing it inside
the main vacuum chamber, just outside the production trap, or plac-
ing it outside the main experimental chamber as its own sub-unit. A
schematic which depicts both choices is presented in Fig. 5.12. Both
approaches have different advantages and disadvantages.

As discussed in Sec. 5.8.1, inside the main vacuum chamber there is
a maximum available linear space of 690mm, with a radius of 32.5mm.
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Figure 5.12: Schematic (not to scale) of the AEḡIS experiment, with
the two proposed configurations for the interferometer. The orange line
marks the outer limit of the experimental vacuum chamber, containing
the superconducting magnets used to generate the magnetic field used for
the trapping system and the liquid helium vessel needed to keep them
at their operating temperature. More details about the experimental
apparatus can be found in [Car17]. The blue line marks the portion of
the vacuum chamber which hosts the traps and can (potentially) host the
interferometer in the short configuration. The three penning traps used
for antiprotons are depicted in black, with the production trap being
the source of antihydrogen. The short configuration consists in placing
the interferometer inside the 1T magnetic field, near the edge of the
production trap, while the long configuration is achieved by placing the
interferometer in its own sub-unit outside of the main vacuum chamber.
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Building the device nearer to the source has an advantage in terms of
statistics: since the source in the ATHENA scenario has a divergence of
300mmm−1 and in both the ATRAP and AEḡIS scenario an approxi-
mate divergence of 1000mmm−1, placing the detector nearer would grant
a higher yield of detected particles. On the converse side, cryogenic condi-
tions require additional care in the choice of materials, in order to avoid
that the thermal shrinking of the interferometer could affect its align-
ment. Moreover, the field gradients due to the surrounding magnetic
field of 1T have to be taken care of, as the magnetic dipole interaction
could mask the effect of gravity.

Placing the interferometer outside the main vacuum chamber shows
some notable advantages: the measurement device could be built in its
own vacuum chamber at room temperature, far enough from the super-
conducting magnets of the experiment to be considered in a field-free
region. Not having the geometrical limitations of the bore would also
allow for bigger detectors, even if probably not big enough to compen-
sate for the huge divergence of the source. The minimal distance from
the production trap in this scenario would be 80 cm, which would ac-
count for a beam diameter of - at minimum - 50 cm before entering the
interferometer.

In the following, we use the notation introduced in Fig. 5.3 and we
analyze both scenarios separately:

• a short configuration, with the distance L0 from the source to the
first grating equal to 10 cm and a detector radius rD of 3 cm;

• a long configuration, with the distance L0 from the source to the
first grating equal to 80 cm and a detector radius rD of 10 cm, taking
advantage of looser geometrical constraints.

A preliminary work on both scenarios has been presented to the col-
laboration in the form of an internal report by our research group in 2015
[Brä+15]. An unedited version of the report is included in Appendix B.

5.9 Open questions on the design of the

experiment

Aside from the technological challenges connected with the control of
field gradients and the alignment of the interferometer, there are some
open questions which could affect the design of the experimental device.
Most notably:

• how to obtain the “zero position” to which the gravitational phase
shift is referenced to;
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• how to determine that the measured shift is, indeed, due to gravity
and not to any other interaction.

Concerning the referencing issue, in 2014 the AEḡIS collaboration
measured a phase shift induced by electric fields on antiprotons by su-
perimposing a light interferometer using the same measurement device
[Agh+14; Brä14]. This allowed for the determination of an absolute ref-
erence position to quantify the phase shift. A similar technique could
be employed for a gravity measurement on antihydrogen, but this would
require a precise choice for the periodicity of the gratings and the length
of the device, such that the interferometer could be used both for light
and particles at the same time.

Concerning the question on how to make sure that the measured
interaction is indeed gravity, we could apply an interesting idea from the
so-called COW experiment, a neutron interferometric gravimeter who
took its name from Colella, Overhauser and Werner, who performed it
in 1975 [COW75]: if the particles are subjected to an acceleration g,
perpendicular to the grating slits, and the whole interferometer is rotated
by an angle θ around the axis, the resulting phase shift ∆φθ would be
given by

∆φθ =
2π

d
g cos(θ) τ 2 = ∆φ0 cos(θ), (5.33)

where ∆φ0 is the phase shift for the non-rotated device, d is the period-
icity of the gratings, and τ is the time of flight. Therefore, by performing
a series of measurements for different θ ̸= 0, the force can be identified as
purely vertical by measuring the evolution of the phase shift as a func-
tion of θ. In the most optimistic projection, this means that at least one
additional measurement would be required to conclude that gravity is
the force being measured.

The evaluations from the following sections are based on a scenario in
which one measurement is all that is required to obtain the gravitational
acceleration with a known precision. These results can be easily scaled
to other, more stringent, scenarios by multiplying the time needed for
one measurement to the number of measurements required to perform
the experiment in the desired configuration.

5.10 Sensitivity for different configurations

By putting together all the considerations from the previous sections,
we can now produce an estimation on the required measurement time for
performing a measurement with the required precision. The estimator for
this analysis is the minimum detectable acceleration times square root of
particles produced, amin

√
Nprod. This estimator expresses the sensitivity
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of the measurement device as a function of the number of produced parti-
cles and it can easily be scaled by knowing the total number of produced
antihydrogen atoms.

We begin by considering the short configuration highlighted in the
previous section. Afterwards, we analyze the long configuration, out of
the geometrical limits of the AEḡIS vacuum chamber. For both config-
urations, we consider four different values of the distance L between the
gratings, 5, 10, 20, and 30 cm, and a periodicity d of the grating between
250 nm and 100µm.

Concerning the systematic effects described in Chapter 3 and 4, we
assume a perfectly aligned interferometer (∆L = 0, β = 0) in absence of
external forces other than gravity to limit our analysis to the most ideal
case.

The analysis is split into two steps: first, we use consider the pro-
duction schematics which makes use of direct mixing (direct mixing A),
then the schematics which implement charge exchange (charge exchange
A/B/C ), as of Tab. 5.1.

5.10.1 Short configuration, direct mixing

The first configuration we analyze is the one related to the ATHENA
experiment (direct mixing A in Tab. 5.1). This amounts to using an axial
temperature of T∥ = 150K and a transverse temperature of T⊥ = 15K.
These temperature translate into an intrinsic beam divergence which
is given by the ratio between the average transverse and axial velocities
v⊥/v∥ =

√
T⊥/T∥ ≃ 300mmm−1. The result of the numerical evaluations

from Sec. 5.6 is shown in Fig. 5.13. Removing the particles below the
cut-off velocity, defined by Eq. (5.32), in this specific configuration does
not play a big role, as the contrast plot is just improved for L = 30 cm.

According to the plot, the configuration which offers the best sensi-
tivity is the one with d = 250 nm and L = 10 cm, which grants a pattern
with a contrast higher than 20% while keeping the same sensitivity as
L = 20 cm. Notice that this is not true anymore when increasing the
periodicity d, but the contrast remains higher for a broad range of con-
figurations. The maximum allowed divergence of the beam α is therefore
rD/(L0 + 2L) = 100mmm−1, smaller than the natural spread of the
beam. This results in a shift ∆yg of around 40 nm for the average ve-
locity, which corresponds to a relative phase φg = ∆yg/d ∼ π/3. By
using the estimation from Chapter 3, an interferometer designed to work
in these experimental conditions has a maximum allowed asymmetry
∆Lcrit = 1.3 µm due the divergence of the beam and a maximum al-
lowed angular misalignment βcrit = 8 µrad (see Eq. (3.9) and Eq. (3.12)
respectively), which can be experimentally challenging to reach.

If we consider the best configuration, the minimum detectable ac-
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celeration times square root of particles produced is of the order of
103. This translates into a requirement of 1× 106 particles produced
in order to get a sensitivity of 1m s−2 (∼10% of gravity), while around
1.1× 105 particles would be required for a sensitivity of 3m s−2 (∼30% of
gravity, the so-called sign measurement). With an estimated production
rate of 1.8× 104H̄/day, this sets a requirement of 6 days of continuous
measurement to reach a precision of 30%, while about 60 days of mea-
surement are required for reaching a 10% accuracy. These numbers point
out that a sign measurement could be feasible in this specific configura-
tion, provided that the magnetic field in the experimental volume can be
made as homogeneous as needed and the alignment requirements can be
satisfied with the due precision.

The configuration labeled as direct mixing B (ALPHA) shows an even
smaller number of produced antihydrogen atoms at higher temperature
in a uniform, non-directional distribution. It is therefore safe to assume
that the prediction for this measurement is worse than for the considered
ATHENA parameters.

5.10.2 Short configuration, charge exchange

We now analyze the three scenarios which make use of charge exchange,
namely ATRAP (experimental and theoretical) and AEḡIS. The advan-
tage in respect to direct mixing is a lower temperature for the produced
antihydrogen, which would lead to a higher sensitivity in a small volume.
The disadvantage is due to the non-directional, uniform distribution of
the produced particles, which leads to an increase in the losses due to the
geometrical acceptance of the detector. The results for the configuration
labeled as charge exchange A (ATRAP) are summarized in Fig. 5.14. In
this regime, we consider a uniform source with a temperature of 4K.
We see that due to the low velocity of the particles, the visibility drop
for longer L causes the sensitivity to get significantly worse for small
periodicities.

According to the Fig. 5.14, one possible configuration for a gravity
measurement has d = 1.8 µm and L = 5 cm. With this choice, the maxi-
mum divergence α of the beam is rD/(L0+2L) = 150mmm−1, while the
average fall due to gravity is of the order of 0.3 µm, which corresponds
to a phase shift of around π/3. By using the estimation from Chap-
ter 3, an interferometer designed to work in these experimental condi-
tions has a maximum allowed asymmetry ∆Lcrit = 7 µm and a maximum
allowed angular misalignment βcrit = 80 µrad. These parameters would
grant a contrast of around 20%, which is in the range we deem accept-
able for a measurement. The minimum detectable acceleration is around
2× 103ms−2

√
Nprod, which corresponds to about 4× 106 particles pro-

duced to get down to a sensitivity of 1m s−2 (∼10% of gravity) or around
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Figure 5.13: Direct Mixing A (ATHENA) from Tab. 5.1 (T∥ = 150K,
T⊥ = 15K) in a short configuration (rD = 3 cm, L0 = 10 cm). Top:
Contrast C of the interference pattern for η = 0.3 in presence of a grav-
itational acceleration. The plot lines start from the periodicity which
allows for more than 90% of the generated particles to be used, as de-
scribed in Sec. 5.8. Bottom: minimum detectable acceleration times
square root of particles produced amin

√
Nprod plotted for the same con-

figuration. A dashed line means that the contrast for that particular
configuration is smaller than 20% and is not considered viable for a
measurement according to the constraints we set. The configuration we
use in the measurement time calculations is marked by a black circle.
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Figure 5.14: Charge Exchange A/B (ATRAP) from Tab. 5.1
(T∥ = T⊥ = 4K) in a short configuration (rD = 3 cm, L0 = 10 cm).
Top: Contrast C of the interference pattern for η = 0.3 in presence of
a gravitational acceleration. The plot lines start from the periodicity
which allows for more than 90% of the generated particles to be used, as
described in Sec. 5.8. Bottom: minimum detectable acceleration times
square root of particles produced amin

√
Nprod plotted for the same con-

figuration. A dashed line means that the contrast for that particular
configuration is smaller than 20% and is not considered viable for a
measurement according to the constraints we set. The configuration we
use in the measurement time calculations is marked by a black circle.
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Figure 5.15: Charge Exchange C (AEḡIS) from Tab. 5.1
(T∥ = T⊥ = 20K) in a short configuration (rD = 3 cm, L0 = 10 cm).
Top: Contrast C of the interference pattern for η = 0.3 in presence of
a gravitational acceleration. The plot lines start from the periodicity
which allows for more than 90% of the generated particles to be used, as
described in Sec. 5.8. Bottom: minimum detectable acceleration times
square root of particles produced amin

√
Nprod plotted for the same con-

figuration. A dashed line means that the contrast for that particular
configuration is smaller than 20% and is not considered viable for a
measurement according to the constraints we set. The configuration we
use in the measurement time calculations is marked by a black circle.
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4.4× 105 particles produced for a sensitivity of 3m s−2 (∼30% of grav-
ity). If we consider the numbers from Tab. 5.1, we see that with the num-
bers from the 2004 experiment, this would still ask for about 140 days of
continuous measurement. However, if the hypothetical production boost
predicted in the work of McConnell et al. [McC+16] would prove true, the
measurement would prove feasible in one day of antihydrogen production
(scenario labeled charge exchange B in Tab. 5.1).

The AEḡIS scenario (charge exchange C ) shows even different prop-
erties and optimal conditions: by using the information from Fig. 5.15,
we see that due to the increased temperature of the particles, the drop in
contrast is less noticeable to the point that we can consider using grat-
ings with a periodicity as small as 350 nm and still retain more than 20%
contrast. We decide therefore to consider the configuration d = 350 nm
and L = 5 cm. This would however reduce the maximum allowed dis-
placements by almost one order of magnitude, down to ∆Lcrit = 1.1 µm
and a maximum allowed angular misalignment βcrit = 15 µrad. With this
choice, the average fall due to gravity is of the order of 60 nm, which
corresponds to a phase shift of around π/3. In this specific configura-
tion, the minimum detectable acceleration times square root of particles
is on the order of 103. In order to get down to a sensitivity of 1m s−2

(∼10% of gravity), 1× 106 particles are needed, while for a sensitivity of
3m s−2 (∼30% of gravity) we talk about 1.1× 105 particles. Compared
with the production rates of Tab. 5.1, this seems not as feasible, requiring
about 50 days of continuous integration for performing a sign measure-
ment. This becomes especially concerning if more than one repetition
of the measurement is needed to confirm the experimental result, as we
discussed in Sec. 5.9.

5.10.3 Remarks on the magnetic gradient limita-
tions

Before performing the calculations, we chose to use the full available mea-
surement volume inside the experimental vacuum bore. It is interesting
to check how these numbers would change when limiting ourselves to the
available gradient-free region. As mentioned in Tab. 5.2, the region of
space where the magnetic field gradient has an effect smaller than grav-
ity on ground-state antihydrogen is a small cylinder with a total length
Lsafe
D = 10 cm and a radius rsafeD = 1.5mm, placed at around 7 cm from

the center of the production trap [Brä+15]. We use the results from
Fig. 5.13, Fig. 5.14, and Fig. 5.15 to estimate what is the consequence
of restricting the measurement to this “safe volume”, by considering the
plots for L = 5 cm and scaling the minimum detectable acceleration by
a factor rmax

D /rsafeD = 20 to take into account the reduced size of the
detector. It is clear that an experiment in these conditions is not go-
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ing to work: by optimizing the setup for these geometrical restrictions,
we see that the minimum detectable acceleration amin

√
Nprod goes up

to 4× 104m/s2
√
Hz, which translates into a required number of parti-

cles of around 2× 109 for a 10% measurement and 2× 108 for a 30%
measurement, which represents a net increase of more than two orders
of magnitude in time. Therefore, we deem the measurement with the
current restrictions due to fields unfeasible and we keep considering the
maximum available volume for the rest of the discussion.

5.10.4 Summary for the short configuration

In Tab. 5.3 we summarize the best configurations found by analyzing
each one of the different production schematics for the so-called short
configuration (rD = 3 cm, L0 = 10 cm).

Configuration dbest Lbest amin

√
Nprod

Direct mixing A (ATHENA) 250 nm 10 cm 1× 103m/s2
√
Hz

Charge exchange A/B (ATRAP) 1.8 µm 5cm 2× 103m/s2
√
Hz

Charge exchange C (AEḡIS) 350 nm 5 cm 1× 103m/s2
√
Hz

Configuration days for 30% days for 10%
Direct mixing A (ATHENA) 6 56
Charge exchange A (ATRAP) 138 1250
Charge exchange B (ATRAP) < 1 2
Charge exchange C (AEḡIS) 48 435

Table 5.3: Optimal configurations for different production schematics in
a short configuration and estimated measurement time for both a sign
measurement (30% precision) and a 10% measurement

5.10.5 Long configuration, direct mixing

In this section, we perform numerical estimations for the so-called long
configuration in the direct mixing A production scenario (Tab. 5.1.

The analytical treatment is performed in the same way as for the short
configuration, with the advantage that we have now no constraints on
the maximum grating radius, aside from the several technical challenges
required to build them. We go as far as considering rD = 10 cm, which
would result in a ten times increase in detecting efficiency and a three
times smaller minimum detectable acceleration. Gratings of this size
have been effectively produced for a periodicity d = 40 µm [Hau12].

By performing the numerical analysis once more, we obtain the re-
sults shown in Fig. 5.16. We see that, despite the increase in detecting
efficiency, the overall minimum detectable acceleration is higher than in
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the short configuration, mostly due to the losses over an 80 cm path. For
a periodicity d = 250 nm, we get that the minimum detectable acceler-
ation times square root of particles produced is of the order of 2× 103

for L = 10 cm, if we keep our requirement of having at least 20% con-
trast. This translates into a requirement of 4× 106 particles produced
in order to get a sensitivity of 1m s−2 (∼10% of gravity), while around
4.4× 105 particles would be required for a sensitivity of 3m s−2 (∼30%
of gravity). In this geometry, the maximum allowed divergence is on
the same order as for the short configuration, asking for the same align-
ment precision. If we compare these numbers with the ones obtained in
Sec. 5.10.1, we see that the requirements are about four times higher,
causing a proportional increase on the measurement time - from five
days of continuous measurement to twenty just to obtain a 30% preci-
sion, unless the detector size is increased by an additional factor two, up
to rD = 20 cm, therefore cutting down the expected integration time by
a factor four.

Twenty days of continuous measurement are not completely out of
the realm of the possibility, but would still require the measurement
apparatus to remain stable for a prolonged period of time. As before, we
ignore the ALPHA scenario (direct mixing B), since it fares significantly
worse than the one considered in this section.

5.10.6 Long configuration, charge exchange

In this section we review the production processes labelled as charge
exchange A/B/C in Tab. 5.1.

For the ATRAP configuration (charge exchange A and charge ex-
change B), the results of the evaluations are shown in Fig. 5.17. When
comparing these numbers with the ones for the short configuration, we
see an increase in the minimum detectable acceleration by a factor 1.5,
which translates into three times more particles needed in order to reach
the same sensitivity as in Sec. 5.10.2. However, if the production boost
predicted by McConnell et al. [McC+16] is experimentally verified, the
measurement would be feasible also in this configuration.

When considering the AEḡIS configuration (charge exchange C -
T∥ = T⊥ = 20K), we witness a factor three increase in the minimum
detectable acceleration instead. This result is shown in Fig. 5.18.

We already discussed in Sec. 5.10.2 that the measurement is already
barely feasible in the short configuration, so an increase in measurement
time would predictably make the situation worse.
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Figure 5.16: Direct Mixing A (ATHENA) from Tab. 5.1 (T∥ = 150K,
T⊥ = 15K) in a long configuration (rD = 10 cm, L0 = 80 cm). Top:
Contrast C of the interference pattern for η = 0.3 in presence of a grav-
itational acceleration. The plot lines start from the periodicity which
allows for more than 90% of the generated particles to be used, as de-
scribed in Sec. 5.8. Bottom: minimum detectable acceleration times
square root of particles produced amin

√
Nprod plotted for the same con-

figuration. A dashed line means that the contrast for that particular
configuration is smaller than 20% and is not considered viable for a
measurement according to the constraints we set. The configuration we
use in the measurement time calculations is marked by a black circle.
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Figure 5.17: Charge Exchange A/B (ATRAP) from Tab. 5.1
(T∥ = T⊥ = 4K) in a long configuration (rD = 10 cm, L0 = 80 cm).
Top: Contrast C of the interference pattern for η = 0.3 in presence of
a gravitational acceleration. The plot lines start from the periodicity
which allows for more than 90% of the generated particles to be used, as
described in Sec. 5.8. Bottom: minimum detectable acceleration times
square root of particles produced amin

√
Nprod plotted for the same con-

figuration. A dashed line means that the contrast for that particular
configuration is smaller than 20% and is not considered viable for a
measurement according to the constraints we set. The configuration we
use in the measurement time calculations is marked by a black circle.
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Figure 5.18: Charge Exchange C (AEḡIS) from Tab. 5.1
(T∥ = T⊥ = 20K) in a long configuration (rD = 10 cm, L0 = 80 cm).
Top: Contrast C of the interference pattern for η = 0.3 in presence of
a gravitational acceleration. The plot lines start from the periodicity
which allows for more than 90% of the generated particles to be used, as
described in Sec. 5.8. Bottom: minimum detectable acceleration times
square root of particles produced amin

√
Nprod plotted for the same con-

figuration. A dashed line means that the contrast for that particular
configuration is smaller than 20% and is not considered viable for a
measurement according to the constraints we set. The configuration we
use in the measurement time calculations is marked by a black circle.
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5.10.7 Summary for the long configuration

In Tab. 5.4 we summarize the best configurations found by analyzing
each one of the different production schematics for the so-called long
configuration (rD = 10 cm, L0 = 80 cm).

Configuration dbest Lbest amin

√
Nprod

Direct mixing A (ATHENA) 250 nm 10 cm 2× 103m/s2
√
Hz

Charge exchange A/B (ATRAP) 1.8 µm 5cm 3× 103m/s2
√
Hz

Charge exchange C (AEḡIS) 350 nm 5 cm 3× 103m/s2
√
Hz

Configuration days for 30% days for 10%
Direct mixing A (ATHENA) 24 224
Charge exchange A (ATRAP) 414 3750
Charge exchange B (ATRAP) 2 6
Charge exchange C (AEḡIS) 432 3915

Table 5.4: Optimal configurations for different production schematics in
a long configuration and estimated measurement time for both a sign
measurement (30% precision) and a 10% measurement.

5.11 Summary

To conclude this section, we summarize the results of the simulations
for the configurations we considered in two tables, one for the short
configuration (Tab. 5.5) and one for the long configuration (Tab. 5.6).
The short configuration consists of gratings with a radius of 3 cm with a
maximum available linear extension of 69 cm, while the long configuration
has no hard limitations in both length and radius of the gratings, aside
from the vast technical challenges required to produce these components.

We see that, among the scenarios which use published experimental
data, the short configuration offers smaller measurement times for direct
mixing, as long as we can use the full extent of the AEḡIS vacuum cham-
ber: a device with a length of 20 cm and a radius of 3 cm placed at 10 cm
from the source would allow for a 30% precision in 6 days of continuous
measurement.

This is true in the hypothesis that the magnetic field gradients are
under control on the whole experimental volume: a gradient of 0.2G cm−1

would cause the same phase shift as gravity on ground state antihydrogen,
hindering the possibility to obtain a sensible result. Currently, the region
of space with a homogeneity which satisfies this boundary is a small
cylinder with a length of 10 cm and a radius of 1.5mm. If we restrict the
measurement to this region, the expected measurement time increases by
around 400 times.
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In a long configuration, the number of required days of measurement
is around three to four times higher. This is mostly due to the huge
intrinsic divergence of the particle source (greater than 300mmm−1),
which causes huge losses on a longer path. The field homogeneity required
to perform the measurement is the same as in the short configuration,
albeit on a bigger scale (rD up to 10 cm).

Short configuration days for 30% days for 10%
Direct mixing A (ATHENA) 6 56
Charge exchange A (ATRAP) 138 1250
Charge exchange B (ATRAP) < 1 2
Charge exchange C (AEḡIS) 48 435

Table 5.5: Days of continuous measurement needed to perform a gravity
measurement on H̄ for different production schematics in a short config-
uration.

Long configuration days for 30% days for 10%
Direct mixing A (ATHENA) 24 224
Charge exchange A (ATRAP) 414 3750
Charge exchange B (ATRAP) 2 6
Charge exchange C (AEḡIS) 432 3915

Table 5.6: Days of continuous measurement needed to perform a gravity
measurement on H̄ for different production schematics in a long configu-
ration.

In the ideal conditions, with the production rates achieved as of the
end of 2017, it seems not feasible to perform a gravity measurement on
antihydrogen using charge exchange production without extensive mea-
surement time (50 or more days in the most optimistic setup), especially
when considering the fact that a repetition of the measurement might be
needed to measure the gravitational interaction.

However, the improvement in positronium production achieved by the
ATRAP collaboration in 2016 [McC+16], which would lead to an expo-
nential increase in antihydrogen yield, together with the ten to one hun-
dredfold antiproton catching efficiency improvement due to the installa-
tion of the ELENA antiproton decelerator between 2019 and 2020 [Bar+14;
PJ16; Pan17], could make this measurement feasible in a reasonable
amount of time. Once the problems with the source efficiency are quenched,
the technological challenge connected to performing the experiment re-
side in stabilizing the interferometer, such that the alignment require-
ments highlighted in Chapter 3 are satisfied for the whole duration of
the measurement, and in producing a sufficiently field-free volume for
an unperturbed flight through the gratings, compliant with the limits
described in Chapter 4.





Chapter 6

Conclusions and outlook

The goal of this work was to present a feasibility study for a gravity
measurement on antihydrogen to be performed with the current, state-
of-the-art production rates for neutral antimatter.

We started by describing and analyzing our tool of choice, the Talbot-
Lau interferometer, an atom optic tool successfully used to verify the
wave nature of several kind of particles and, in its classical limit, to per-
form inertial measurements on a variety of species. We obtained analyt-
ical formulas and numerical procedures to calculate the expected signal
for this kind of device, considering both a two and a three-grating setup.
We then estimated the sensitivity of the device to external forces and its
possible application to measure gravity.

A special care has been reserved to the study of the systematic ef-
fects which degrade the quality of the generated patterns: in particular,
we studied the consequences of a misalignment and asymmetry of the
interferometer, obtaining quantitative formulas which can be used in the
design of an actual device. Those expression depend on the geometrical
parameters of the interferoemter, such as the periodicity of the gratings
and the distance between them, and on the divergence of the particle
source.

The effects of external forces, such as those due to magnetic and
electric field gradients, have also been discussed. We derived expressions
that can be employed to estimate the effects of unwanted interactions as
a function of the energy spread of the source.

We combined all of the previous into a theoretical framework to evalu-
ate the feasibility of the aforementioned gravitational measurement, con-
sidering different production mechanisms and geometries. Specifically,
two different antihydrogen production processes have been analyzed in
detail: direct mixing of positrons and antiprotons and charge exchange
between positronium and antiprotons.

The results of the evaluation, summarized in Tab. 6.1, show that,
with the state-of-the-art production rates for antihydrogen, direct mixing
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would provide a feasible strategy to perform a gravity measurement on
antimatter in the framework of the AEḡIS experiment: a compact setup
of around 20 cm of length and 6 cm diameter, placed at 10 cm from the
particle source would allow for a gravity measurement with an accuracy
of 30% in about six continuous days of measurement. This comes how-
ever at the cost of strict requirements on the robustness of the interfero-
metric setup (asymmetry tolerance smaller of the order 1µm, alignment
tolerance smaller than 10 µrad) and on the control of the external fields
(magnetic field gradient smaller than 0.2G cm−1, if the antihydrogen is
in the ground state). This last requirement sets a serious experimental
challenge, since the current homogeneity of the magnetic field in the ex-
perimental region is compliant with this limit only on a cylinder with
total length 10 cm and a diameter of 3mm. If these additional limita-
tions are not overcome, the measurement time increases by around a
factor four hundred.

The other antihydrogen production schematic, charge exchange, does
not currently seem to be a suitable candidate for a measurement, requir-
ing at its best around fifty days of continuous measurement in the short
configuration setup. However, with a projected five hundredfold increase
in production rate, as advocated by the ATRAP collaboration, and the
commissioning of the ELENA antiproton decelerator, this process could
be seen as a more alluring alternative, providing a smaller antimatter
temperature and an increased control over the source parameters.

Short configuration (rD = 3 cm, L0 = 10 cm)
Based on available data

Configuration days for 30% days for 10%
Direct mixing A (ATHENA) 6 56
Charge exchange A (ATRAP) 138 1250

Based on estimations
Configuration days for 30% days for 10%
Charge exchange B (ATRAP) < 1 2
Charge exchange C (AEḡIS) 48 435

Table 6.1: Days of continuous measurement needed to perform a gravity
measurement on H̄ for different production schematics in a short config-
uration. These scenarios have been discussed in detail in Chapter 5.

6.1 Outlook and developments

Since the AEḡIS collaboration our group is part of has yet to produce
antihydrogen, the focus of our local research group is the development of
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the measuring device. In particular, a Talbot-Lau interferometer is being
developed in Heidelberg and being tested in a side project to reveal the
wave nature of protons and antiprotons, which is in itself an ambitious
goal in the field of particle physics, as interference from antimatter is yet
to be observed. By performing research and development to reach this
achievement, we have to deal with the same kind of systematic effects
which can prevent the success of a gravity measurement: instead of hav-
ing to do with gradients, we have to reduce the effects of stray electric
and magnetic fields, as described in Chapter 4, while the alignment limits
described in Chapter 3 have to be taken care on a level which is of the
same order of magnitude as expected for the main experiment. In par-
ticular, the alignment procedures developed to reach this goal will be an
important cornerstone in the development of the device for the gravity
measurement. A picture of the interferometer is shown in Fig. 6.1: it is
currently composed of three gratings with periodicity d = 257 nm of the
type shown in Fig. 2.4, separated by L ≃ 1 cm and mounted on top of
mirror holders which can be used to improve the alignment of the device.
The mirror mounts are in turn fixed on piezo actuators for fine tuning
alignment. The interferometer is aligned using the Littrow reflection of
a blue laser on its grating structure, in order to reach a precision better
than 100 µrad. There has been preliminary work to design a system of
three independent Mach-Zehnder interferometers to monitor the align-
ment of the gratings in real time [Fri17], which could be implemented as
a future improvement.

The development of the prototype interferometer and the experimen-
tation on both the field and the alignment limits will prove crucial to
design the device for the gravity measurement, as most of the technical
challenges underlined in this work have to be properly solved to achieve
this intermediate result.
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Figure 6.1: Picture and schematic of the proton interferometer being
built in Heidelberg. Gratings with a period d = 257 nm are mounted on
piezo-actuators and mirror holders to take care of the alignment in the
limits discussed in Sec. 3. The distance between the gratings is around
1 cm, but it is planned to be increased up to around 10 cm in order
to observe the contrast modulation depicted in Fig. 2.3. The readout is
managed via a micro channel plate (MCP) followed by a phosphor screen,
whose signal is read via a CCD camera. A pinhole with diameter 20 µm
is placed in front of the device to reduce the divergence of the beam,
relaxing the alignment limits.
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“Emulsion detectors for the antihydrogen detection in AEgIS”.
Hyperfine Interact., 233.1-3 (2015): 29-34.

Testera, G., et al. (AEḡIS collaboration).
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Appendix A

Armadillo: a software for the
AEḡIS experiment

During my time as a member of the AEḡIS collaboration, I have de-
veloped a software utility to improve the efficiency of the measurement
process. Until end of 2014, the normal measurement pipeline in the
AEḡIS experiment went as follows:

• an excel (.xlsx) file is prepared by one of the members of the trap
group. Each row of the file represent an action over the electrodes
of the trap system or on the experiment hardware (positron accu-
mulator, electron gun, MCP...);

• the file is manually fed to a LabView program which parses it and
sends it row by row to a NI PXI Embedded Real-Time controller
(RT) using the time information from a column of the file;

• the data sent to the PXI are periodically downloaded by a Field-
Programmable-Gate-Array (FPGA), which in turn transmits the
information to the hardware, starting the experimental chain.

This process had an obvious flaw: the first step, writing the configura-
tion files, was not accessible to the average shifter since its complexity.
An error on a single setting could cause damage to the hardware severe
enough to require opening the vacuum chamber to fix. At the time of this
writing, only three people in the collaboration have the necessary knowl-
edge to write down those configuration files1. Moreover, this limited the
number of measurements during a shift and did not allow for quick mod-
ifications of the parameters, effectively losing a lot of beamtime in the
process.

At the end of 2014, I developed an original idea of Daniel Krasnický
to design a software interface which could make it easier for the average

1and for no reason they should be allowed to board the same plane at the same
time
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shifter to start a measurement without having to modify the underlying
excel files. The result of this work is a Visual C# application originally
named Run Manager for AEḡIS. Between 2014 and 2018, I have man-
tained and updated the application, leading to its current version, which
is used by the collaboration to run all measurements during a shift. The
original name of the application has been changed to Armadillo - AEḡIS
Run MAnager: Direct Interface for Low-Level Operations. The pro-
gram could be originally used to perform single measurements or scan on
multiple parameters in an automated way.

Figure A.1: The logo of Armadillo - AEḡIS Run MAnager: Direct
Interface for Low-Level Operations. Copyright c⃝: Andrea Demetrio,
2017

The measurement pipeline changed as follows:

• an expert writes a sample excel file for a measurement procedure
and an additional file with a list of parameters which can be modi-
fied. These parameters contain also hard limits for the values, such
that no hardware damage can be caused by an incorrect input;

• the people on shift open the procedure through Armadillo and mod-
ify the required parameters to run the measurement;

• Armadillo writes a new excel file using the original as a basis, with
the parameters modified by the shifter, then it updates a text file
with the run number and the current status;

• the original AEḡIS LabView interface reads the Armadillo output
and, when a new measurement is issued, it parses the excel files
and sends it to the PXI;
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• the FPGA downloads the information from the PXI and sends it
to the hardware, starting the experimental chain.

These changes allowed for non-expert personnel to run measurements
and modify the input files without having access to the underlying code
and increased the number of measurements per shift exponentially, espe-
cially for positron and electron experimental procedures [Car+15; Tes+15].

In 2016, the program was updated by Giovanni Cerchiari from the
AEḡIS collaboration to include a pipeline of measurements to act as an
automatic feed to the LabView program. In 2017, I modified this version
to implement some additional features, like expected measurement time
and parameters defined by mathematical formulas. This improvements
were possible due to some interactions with Davide Pagano, also from the
AEḡIS collaboration, who suggested to use multi-threaded operations for
making the measurement time calculations non-blocking when using the
interface.

In its current incarnation, Armadillo is consistently used to perform
experimental runs and it is part of the tools that new shifters have to
learn to run the experiment.

Figure A.2: The GUI of Armadillo, version 2.0.4. Left: the Measure-
ment Class column lists all the available measurement prototypes, each
of which can have several measurement types, listed in the Measure-
ment Type column. Center: the spreadsheet is used to edit parameters,
with color-coded cells to indicate whether the input was valid or not and
whether the default parameter was changed or not. Right: the mea-
surement pipeline, with additional information such as the number of
repetitions and expected measurement time.





Appendix B

Limits on a gravity
measurement with a
non-collimated antihydrogen
source

This appendix contains the original report (July, 2015) about the feasibil-
ity of a gravity measurement on antihydrogen in an unedited form. The
assumptions from this report present substantial differences compared
to the ones considered in this work. Refer to Chapter 5 for an in-depth
comparison between the approach developed for this disseration and the
one shown in this document. The main discrepancies are listed in the
following:

• in the report, the source parameters were largely overestimated,
both in terms of effective production rate (a factor 10 on direct
mixing) and of the length of the production cycle (100 s instead of
≥ 400 s);

• in the report, no third grating was considered, removing a multi-
plication factor η from the effective flux and increasing the amount
of particles reaching the detector by three times. In this work, we
decide to use three gratings, therefore requiring the additional η
factor;

• while working in the short configuration, we considered only the
so-called “safe volume” (see Tab. 5.2) instead of exploring the pos-
sibility of having a better control over the magnetic field;

• the shape of the velocity distributions was supposed to be a three-
dimensional Maxwell-Boltzmann for the axial direction. In this
work, we separated the three distributions in the three dimensions
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and analyzed them separately as a function of the geometry of the
interferometer;

• we assumed to have time-of-flight measurements for charge ex-
change. In this work, we considered the most general case of a
detector with no time resolution;

• in the original report, we did not consider any cut-off velocity.

The core concept of this report was presented during a collaboration
meeting in June 2015 [Dem+15] and subsequently summarized in the
following document.



Limits on a gravity measurement with a non-collimated

antihydrogen source

P. Bräunig, A. Demetrio, S. Müller and M. Oberthaler

Kirchoff-Institute for Physics, Heidelberg

This report examines the limits of a gravity measurement
within the AEḡIS framework. Special emphasis is put onto
the fringe pattern’s visibility to be expected if one reaches
the wave regime and on the scaling of the sensitivity with
the available volume. The goal of this report is to provide
an overview on what is the minimum volume in relation
to the number of produced particles which would grant
a gravity sign measurement with the currently available
technology. All the calculations in this report have been
carried out assuming ‖~g‖ ' 9.81 m s−2 for both matter
and antimatter.

1. Introduction

The performance of the gravity measuring device is ex-
pressed in terms of the minimal detectable acceleration[1,
2], i.e. the shot-noise limit for a given configuration and
number of detected antihydrogen atoms (H̄)

amin =
d

2π V τ2
√
Ndet

. (1)

In case of isotropic antihydrogen production, equation 1
can be written as a function of the number of produced
particles, leading to

amin =
d

2π V η r
︸ ︷︷ ︸
gratings

· 2(L1st + 2L)

L2

︸ ︷︷ ︸
geometry

· 2 kT
m

1√
Nprod︸ ︷︷ ︸

H̄ source

, (2)

where the following parameters are used:

d grating periodicity

V visibility of the fringe pattern

L1st distance between the source and the first grating

L grating separation

τ = L/v time of flight

η open fraction of the gratings

r radius of the gratings

Ndet number of detected atoms

Nprod number of produced atoms

It is important to note that equation 1 is only valid
for a sufficient number of particles detected, since it rep-
resents the central limit. Here, we consider a minimum

number of 1000 particles detected. Additionally, the vis-
ibility V is not a constant. In the simple case of a (clas-
sic) moiré deflectometer it depends solely on the grating’s
open fraction η. A three grating deflectometer using grat-
ings with an open fraction of 30 % results[1, 2] in a vis-
ibility ν of approximately 80 %. For a Talbot-Lau inter-
ferometer, the visibility is also a function of the Talbot
length LT = d2/λdB and the grating separation L

V = V(η, LT, L) . (3)

The de Broglie wavelength

λdB =
h

p
=

h

mv
(4)

leads to the Talbot length [3, 4]

LT =
d2

λdB
=
mv d2

h
. (5)

The visibility of a Talbot-Lau interferometer’s fringe pat-
tern is high if the grating separation equals a multiple
integer of the Talbot length L = n LT and is low if this is
not fulfilled. For a given configuration, the exact shape of
the fringe pattern, and thus its visibility, can elegantly be
determined using the free evolution of the Wigner function

w(r,p) =
1

2π~

∫
d∆ e

ip∆
~ ρ

(
r− ∆

2
, r +

∆

2

)
. (6)

A detailed discussion can be found in [5, 2]. The important
result of this derivation is the shape of the fringe pattern.
This is given by

S (y3, v) ∝
∑

l∈Z
(A′l)

2B
′(T)
2l (v) exp (kdil (y3 + ∆y)) , (7)

where kd = 2π/d is the grating vector, y3 is the position
of the (movable) third grating and ∆y = gτ2 = gL2/v2

is the phase shifted induced by gravity. The coefficient
A correspond to the first and the third grating (for this
reason this coefficient is squared) and B is a coefficient
that describes the influence of the second grating. A is
given by

A′l =
∑

j ∈Z
a′j a

′∗
j−l , (8)
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Figure 1: Visibility of a Talbot-Lau interferometer as a function of the grating periodicity (5 cm grating separation,
10 K antihydrogen temperature and η = 0.3 open fraction). For a large grating period, the system approaches the
classic regime. Two effects cause the visibility to decrease: (a) Different velocity classes are shifted due to gravity by a
different amount following ∆y = gτ2 = gL2/v2. This smears out the fringe pattern. It is important to note that this
also occurs in a classic moiré deflectometer. (b) Visibility decrease due to Talbot length mismatch for three exemplary
grating periods. The figure on the top depicts the Maxwell-Boltzmann-like velocity distribution. The three figures
below show the visibility of each velocity for the grating periods 20 µm, 10 µm and 4µm. One can see that that not all
velocities contribute to the fringe signal. In the classic regime, the visibility is nearly flat. For smaller grating periods,
the distinct peaks of high visibility correspond to the rephasing of the Talbot pattern which scales with d2.

where a are simply Fourier coefficients

an = η sinc(n η) · e−inkdyi = a′n · e−inkdyi (9)

of the Fourier series of an amplitude grating with open
fraction η described by

ti(y) =
∑

n∈Z
an exp (inkdy) . (10)

Thus, the coefficients of the first and third grating de-
scribe simple masking or shadowing of the beam. In
a Talbot-Lau interferometer, the influence of the second
grating is considerably different as it includes particle
diffraction at this grating’s passage. This is expressed in
the second coefficient

B
(T)
j (v) =

∑

m∈Z
bmb

∗
m−j exp

(
iπ
j2 − 2mj

2

L

LT

)
(11)

=
∑

m∈Z
bmb

∗
m−j exp

(
iπ
j2 − 2mj

2

L h

m v d2

)
,

(12)

which includes an additional phase factor that depends on
the Talbot length LT. With equation 7, one can extract
the visibility using a monochromatic beam with velocity v
via

V =
max(S)−min(S)

max(S) + min(S)
. (13)

For a given velocity distribution p(v), the visibility is not
the same for each velocity class as the condition L = n LT

can not simultaneously be fulfilled. Additionally, the
fringe patterns of the different velocity classes are shifted
by a different amount. This smearing of the pattern re-
sults in a further reduction of the visibility. Thus, if no
time-of-flight is available, the resulting fringe pattern is
given by the integral

S(y3) ∝
∫
S(y3, v) p(v) dv . (14)

In the following, we assume the velocities to be Maxwell-
Boltzmann distributed:

p(v) ∝ v2 exp

(
− mv2

2kBT

)
. (15)

Figure 1 shows the result of an exemplary configuration
(L = 50 mm, T = 10 K and η = 0.3) where one can grasp
the different effects that come into play considering the
visibility of the fringe pattern.

2. Scenarios

Two different experimental scenarios seem accessible in
the near future. The first one is the antihydrogen pro-
duction via charge exchange of antiprotons and positron-
ium. The second one is the direct mixing of antiprotons

2



and positrons. As flux, temperature and solid angle of
emission are quite different, these are treated separately.
Before describing the differences between the two scenar-
ios more closely, one can summarize the assumptions that
both have in common:

• The antihydrogen atoms are produced in a high Ry-
dberg state but decay to the ground state with the
hyperfine splitting quantum number F = 0, 1 before
entering the measurement volume.

• The magnetic field gradient in the measurement vol-
ume is considerably smaller than 0.2 G cm−1. For
ground-state antihydrogen, this corresponds to an ac-
celeration of approximately 10 m s−2 [6, 7].

• The detector has a quantum efficiency of 100 %.

• A shift of 8 hours with one antiproton shot every 100 s
leads to 288 shots per shift.

• A sign measurement of the gravitational acceleration
corresponds to a precision of 30 %, so that a null result
is excluded with 3σ.

One should note that the first two assumptions are critical
but the discussion how this could be realized goes beyond
the scope of this manuscript.

2.1. Available Volume

Two geometric configuration are considered here. The first
one is to place the measurement apparatus inside the 1 T
magnet, the second one is to place it on the outside.

2.1.1. Inside the 1T magnet

The available volume inside the chamber is approximately
a cylinder with a length of 690 mm from the end of the
antihydrogen production trap and a maximum radius of
32.5 mm in the narrowest point. The position of the first
grating has been set at the end of the production trap,
70 mm far from the estimated antihydrogen production
point.

Another limitation which has to be overcome in order
to perform the measurement in this region is the effect
of the magnetic field on the trajectories of the particles.
For ground-state antihydrogen, the region in which the
magnetic field gradient is significantly smaller than the
limit described in section 2 is approximately a cylinder
10 cm long from the end of the trap and 3 mm wide in the
radial direction [6, 7].

Here, we decided to analyse different geometric setups,
the longest of which would require an expansion of the
cryogenic chamber: the distance between the gratings
varies from 5 cm to 40 cm, while the radius of the grat-
ings varies from 1.5 mm to 25 mm, in order to fit these
restrictions. Notice that only the smallest measurement
device (L = 5 cm, r = 1.5 mm) would fit the region in
which the magnetic field effect is negligible.

2.1.2. Outside the 1T magnet

Outside the apparatus the volume constraints are less re-
strictive than inside. As a result, the maximum radius for
the gratings has been considered equal to 50 mm, which is
the current dimension of the 40 µm period gratings. The
distance between the antihydrogen production point and
the first grating has been considered equal to 800 mm.
The distance between the gratings varies from 50 mm to
400 mm.

40 cm

scale 1 cm

5 cm

1.5 mm 5 cm

L=

r =

 r =

grating

Small deflectometer 
(inside, nanometric gratings)

Long deflectometer
(outside, 40 µm period gratings)

L =

Figure 2: Scale drawing which compares the devices con-
sidered in this report: the smallest one is designed such as
it would fit the current magnetic field constraints inside
the bore, while the largest one has been designed to be
used with the biggest gratings available at the moment.

2.2. Charge Exchange

For this process, we assume that a temperature of 10 K is
reached in the first experimental realisation. The temper-
ature of the produced antihydrogen has been considered
equal to 10 K[8]. The emission is not isotropic, due to the
rotation of the p̄ plasma, but the efficiency at T = 10 K is
smaller only by a factor of the order of 10 % compared to
the isotropic emission (see figure 3). Thus, one can apply
formula 1, assuming a 4π isotropic formation. According
to reference [8], the production rate has been considered
equal to 3 antihydrogen atoms every 3 antiproton shots
( 300 s). Assuming 288 antiproton shots per shift, this
leads to a total production rate of ∼ 102 antihydrogen
atoms/shift. As shown in figure 8a, for small periodici-
ties the measurement of the time-of-flight would grant a
higher visibility than in direct mixing case, mostly due
to the fact that each velocity class can be grouped sepa-
rately. This production scheme has been considered only
for a measurement inside the existing apparatus (figure 9).

By knowing the production rate, one can estimate the
time needed to see at least 103 particles on the detector,
since - as mentioned in section 1 - this is a necessary con-
dition to run any statistical analysis. Assuming a sample
configuration, the number of detected particle is given by:

Ndet = η2 ∆Ω

4π
Nprod , (16)
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been obtained by means of a Monte Carlo simulation on
109 particles per point. The parameters of the simulation
have been set according to the calculations performed in
reference [8]. The asymptotic limit in the figure presented
is the isotropic 4π emission. Notice that for T = 10 K, the
loss in efficiency due the rotation of the antiproton plasma
is approximately 10% while compared with an isotropic
production.

where

∆Ω =
πr2

(L1st + 2L)2
. (17)

With L1st = 7 cm, L = 5 cm, r = 25 mm, and η = 0.3,
this yields:

Ndet ' 4.9 10−5Nprod , (18)

leading to Nprod ' 1.8 106 for Ndet = 1000. Assuming
the production rate stated above and 288 antiproton shots
per day, this leads to 1.8 103 days of integration ('5 years
of continuous measurement). An insight on this estima-
tion for different values of L and r is provided in figure 5.
This graph should be carefully considered when reviewing
the results shown in figure 9. Figure 13 summarizes the
situation in detail for the shortest inside configuration.

2.3. Direct Mixing

In the process of direct mixing, the emission of antihydro-
gen atoms is not isotropic. Following N. Madsen et al.
(Athena[9]), the radial temperature is factor 10 smaller
than the longitudinal temperature. Consequently, the ra-
dial velocity is reduced by a factor

√
10, causing the atoms

to leave the production volume in two cone-shaped beams
as depicted in figure 4. This also requires a small mod-
ification in the minimal detectable acceleration which is
given in this case by equation 19.

amin =
d

2π V η r
︸ ︷︷ ︸
gratings

· (L1st + 2L)

L2

︸ ︷︷ ︸
geometry

· v‖ · v⊥
︸ ︷︷ ︸
velocities

·
√

2√
Nprod︸ ︷︷ ︸

H̄ source

. (19)

production trap gratings

beam divergence

Figure 4: In the direct mixing production, the ra-
dial temperature is a factor 10 smaller than the axial
temperature[9]. The antihydrogen emission is therefore
not isotropic, instead, it can be described by two cones
defined by the radial and the longitudinal velocity.

No time-of-flight information is retrieved. As a result, the
shift due to gravity has to be smaller than half the period
of the grating. This condition is included in formula 1
and accounts for loss in sensitivity for small periodicities:
since the patterns due to different velocity classes cannot
be distinguished, the resulting fringe visibility will drop
for small periods (see figure 8b). However, it should be
noted that in this case there would be no problem due to
huge magnetic filed gradients before the measurement vol-
ume as far as the gradient inside the deflectometer is sig-
nificantly smaller than 0.2 G cm−1. In this configuration,
the expected production rate would be 1.5 104 particles
each antiproton shot (∼100 s). Assuming 288 antiproton
shots per shift, this leads to a total production rate of
∼ 4.3 106 antihydrogen atoms/shift.

This production scheme has been considered both for a
measurement inside (figure 10) and outside the cryogenic
chamber (figure 11).

Following the same motivations expressed in section 2,
one can estimate the time needed to detect 103 particles in
a similar fashion. Assuming the anisotropic distribution
expressed by equation 19, the number of detected particle
is given by:

Ndet = η2 r2

2 r2
beam

Nprod , (20)

where

rbeam = v⊥
L1st + 2L

v‖
=

L1st + 2L√
10

. (21)

Equation 20 can be then rewritten as

Ndet = η2 5 r2

(L1st + 2L)2
Nprod , (22)

With L1st = 7 cm, L = 5 cm, r = 25 mm, and η = 0.3,
this yields:

Ndet ' 9.72 10−3Nprod , (23)

leading to Nprod ' 105 for Ndet = 1000. Assuming the
production rate stated above and 288 antiproton shots per
day, this leads to less than one day of integration. An
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insight on this estimation for different values of L and r is
provided in figures 6 and 7. These two graphs should be
carefully considered when reviewing the results shown in
figures 10 and 11 respectively. Figure 14 summarizes the
situation in detail for the longest configuration.

Conclusions

Both production methods have been reviewed according
to the most recent data provided by the groups in the col-
laboration. According to the calculations shown, it seems
not feasible to perform a gravity measurement by means of
charge exchange production, mainly due to statistics: at
least 106 particles have to be produced in order to detect
103 particles on the detector, leading to ∼ 3.5 103 shifts
(10 years of continuous measurement), as shown in fig-
ures 9 and 5. Concerning direct mixing approach, in
the region in which magnetic field gradients are negligi-
ble (setup with L1st = 7 cm, L = 5 cm, r = 1.5 mm, and
d = 265 nm), about 1.5 108 particles have to be produced,
as shown in figure 10, leading to approximately 35 shifts
The number of detected particles would be higher than
103, thus satisfying the statistics required. However, it
seems not feasible to make antihydrogen atoms decay to
the ground state before reaching the first grating in this
configuration, thus limiting its use for the gravity mea-
surement.

If the deflectometer is instead placed outside the 1 T
magnet (thus removing the radial limitation due to the
internal space), the minimum distance from the produc-
tion point would be approximately 80 cm. In this case,
by employing direct mixing production, 50 mm radius
gratings, L = 40 cm and d = 40 µm, less than 10 shifts
would be required to perform a sign measurement (see fig-
ures 11 and 12).

Notice that this result could get worse due to a number
of factors, including but not limited to the actual pro-
duction rate achievable in two years, the performance of
the detector, the design of a measurement device and a
data analysis procedure which could actually achieve the
precision shown in this report.

Moreover, if time-of-flight information is not retrieved,
more than one configuration could be necessary to per-
form the measurement, thus increasing the required time.
Magnetic fields have also to be taken into account, since
a gradient of 0.2 G cm−1 could fake out gravity.
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Appendix C

Progress toward a large-scale
ion Talbot-Lau interferometer

This appendix contains the paper published on the alignment and field
constraints for a Talbot-Lau interferometer. The results and the formu-
las presented in this paper have been as a basis for the development in
Chapter 3 and Chapter 4. The formulas for the critical fields were origi-
nally introduced in [Lan+17], and subsequently improved for the paper
added in this appendix. The paper is reported in an unedited form,
in compliance with the copyright and terms of use from APS Journals,
concerning the use of an authored paper in a dissertation.
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The Talbot-Lau interferometer is a proven tool to perform measurements in the near-field regime. It has
been extensively used for investigating the wave nature of electrons, atoms, and complex organic molecules.
However, when designing devices with high geometrical acceptances, which would be desirable when dealing
with low-intensity sources of particles, the alignment requirements become much more stringent. Furthermore,
if the particles are charged, the influence of external fields becomes quickly non-negligible when increasing the
length of the device. This paper focuses on both the geometric and physical constraints of an ion Talbot-Lau
interferometer, with emphasis on the scaling of such constraints with the size of the device. Mathematical formulas
which set limits on the critical parameters are derived and applied to a test setup for protons.

DOI: 10.1103/PhysRevA.96.063604

I. INTRODUCTION

The wave-particle duality is one of the most defining phe-
nomena related to quantum mechanics. Since the experiment
performed by Davisson and Germer [1], this constitutive
property of matter has been verified several times, for different
kind of particles, ranging from electrons [2–4] to organic
compounds [5]. A common concept among these experiments
is the design and use of a setup which allows the wave
function of the particles to self-interfere or be macroscopically
diffracted. Among the devices designed for this purpose, the
Talbot-Lau near-field interferometer has seen prominent use
in the past two decades, having been successfully applied to
electrons [6], atoms [7], fullerenes [8], and, in its Kapitza-
Dirac variant, even larger organic molecules [9].

A device of this type has been proposed to be used with
antiprotons [10], dealing at once with charged particles heavier
than the electron and a low-luminosity, highly divergent
source. The latter constraint makes an interferometer with a
large active area necessary.

However, when scaling up the device to get a higher
geometrical acceptance, a precise alignment of all its elements
becomes critical. Moreover, when increasing the length of the
device, the influence of external forces acting on the particles
increases quadratically with its size, setting strict limits on their
maximum allowed energy spread, depending on the intensity
of the force.

This paper focuses on both the geometrical and the physical
constraints of such a device, with emphasis on electric and
magnetic interactions which would affect the design of an ion
Talbot-Lau interferometer.

II. TALBOT-LAU INTERFEROMETER

In its most common variant, the Talbot-Lau interferometer
is composed of two material gratings with periodicity d and
open fraction η. The two gratings are spaced by a distance L.
A diffusive beam of particles with de Broglie wavelength λdB

impinging on the first grating generates an interference pattern,

*Corresponding author: talbotsystematics@matterwave.de

as shown in Fig. 1. The pattern appears as a density modulation
with periodicity d and corresponding position φ = 2πy/d

when observed on a plane placed at the same distance L from
the second grating.

The device described so far can act in the classical regime,
in the near-field wave regime, or in the far-field wave regime,
depending on its geometrical parameters. The typical length
scale which is considered to distinguish the three regimes is
called the Talbot length and is defined as

LT = d2

λdB
= d2

h

√
2mU, (1)

with m being the mass of the particle, U the kinetic energy,
and h the Planck constant. If L � LT, the device operates in
the far-field regime as a Mach-Zehnder interferometer [11]. In
this configuration, the contrast of the pattern, defined as

C = Imax − Imin

Imax + Imin
, (2)

where Imax and Imin are the maximum and the minimum
intensity, respectively, reveals no dependence on the de Broglie
wavelength of the particles (achromatic setup) [12]. If L ≈ LT,
the device operates in the near-field regime and the contrast
shows a dependence on both the energy of the particles and
the open fraction η of the gratings, as shown in Fig. 2. This is
what is referred to as the Talbot-Lau interferometer. In the
limit of L � LT, the pattern is generated by the classical
trajectories of the particles. This is again an achromatic setup,
with the contrast of this pattern depending only on the open
fraction η. A device which operates in these conditions is
commonly referred to as the moiré deflectometer [13–15]. For
specific configurations satisfying L = nLT, with n ∈ Z+, the
Talbot-Lau interference pattern is indistinguishable from the
corresponding classical pattern [16,17]. The ideal configura-
tion to reveal the wave behavior of the test particles is therefore
not at this resonance condition.

In a typical experiment, the length of the device is fixed,
while the energy of the particles is tuned. Thus one expects
that for certain energies Un the condition L = nLT is fulfilled.

2469-9926/2017/96(6)/063604(8) 063604-1 ©2017 American Physical Society
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FIG. 1. Diffuse illumination (light, particles) impinging on a
Talbot-Lau interferometer generates the so-called Talbot carpet. The
first grating generates the spatial coherence, allowing the second
grating to create the pattern. A third grating can be used to read the
pattern.

These energies are directly derived from Eq. (1):

Un = UTalbot

n2
= h2L2

2md4

1

n2
, n ∈ Z+. (3)

In order to reveal quantum interference, these specific rephas-
ing distances (energies) are not useful, but a modulation of the
contrast as a function of the energy is a clear indicator of the
wave behavior of the test particles.

In an experimental realization of the device, the periodic
pattern can be read out with the use of a position-sensitive
detector. If the periodicity of the pattern is smaller than the
resolution of the detector, the use of a third grating, identical
to the first two, is required to extract the information: When the
additional grating is tilted around the beam axis, beatings with
periodicity inversely proportional to the rotation angle appear,

FIG. 2. Contrast of the pattern as a function of the energy of
a proton beam. This plot is valid for a device composed of three
gratings, the third one being scanned [13] or tilted [15] to read out the
pattern. The shape of the contrast profile is strongly affected by the
open fraction η of the gratings. The black markers highlight U = Un

for n = 1,2,3 where the Talbot-Lau signal is indistinguishable from
the classic moiré signal [see Eq. (3)]. The plot has been calculated
following the approach by Hornberger et al. [16], based on calculating
the intensity pattern using the Wigner representation [18]. The plots
are arranged from top to bottom, according to the legend.

making the interference pattern observable on a large scale
[15], thus allowing for the use of a detector with a significantly
reduced constraint on the spacial resolution. As an alternative,
the third grating can be used to scan the original pattern, by
translating it in the direction perpendicular to the slits and
recording the transmitted particle flux for every position [9,13].
The device considered in the following discussion employs a
scanned third grating.

It is worth mentioning that the Kapitza-Dirac variant of the
Talbot-Lau interferometer, which replaces the second grating
with a standing wave [9,19], does not provide a significant
advantage when working with ions. The interaction rate scales
like m−1/2, requiring a significantly higher laser power than
for electrons (which is of the order of GW cm−2) [20,21] to
achieve similar results, and the interaction area of the phase
grating cannot be scaled to larger sizes without defocusing the
laser and thus losing significant intensity. Furthermore, the use
of a pulsed laser with a continuous source of particles implies
that the duty cycle of the laser (≈10−7) directly translates into
a flux reduction within the interferometer.

III. CONTRAST REDUCTION DUE TO
SYSTEMATIC EFFECTS

While the ideal contrast of the interference pattern is only
dependent on the energy of the particles, once the device
geometry is fixed, in any experimental realization it is strongly
dependent on the alignment of the device and on the influence
of external forces, such as gravity or electric interactions.
In this section, we discuss three families of systematic
effects which concur in degrading the quality of the signal:
misalignment of the gratings, energy spread of the particle
source, and external forces acting on the particles. In the
latter, emphasis is put on the Lorentz force interaction, which
becomes prominent when dealing with charged particles.

For the following discussion, we use specific experimental
parameters which are currently available. The production of
nanometric gratings with thin silicon nitrate membranes, like
the ones described in Ref. [22], limits the energy of the charged
particles due to the limited stopping power of the material.
Thus we consider a proton source with tunable energy in
the keV regime, of the type covered in Ref. [23]. In this
configuration, λdB ≈ 1 pm. The geometrical parameters of the
device are d = 256 nm, L = 171.7 mm, and η = 0.4, thus
yielding UTalbot = 5.64 keV. The classical rephasing is thus
expected also for U2 = 1.41 keV and U3 = 627 eV.

A. Geometrical constraints

The pattern is extremely sensitive to deviations from the
ideal geometry: Differences in the distance between the grat-
ings and the detector plane or small relative tilts of the
gratings can consistently affect the quality of the signal. In the
following, we consider two specific scenarios: longitudinal
asymmetries and rotational misalignment around the beam
axis.

1. Longitudinal asymmetry

In the optimal configuration, the device can be operated
with a fully divergent source of particles and still produces
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FIG. 3. Schematic showing how the classical pattern is calcu-
lated. For every point P on the detector, the region from where
particles can reach the point is calculated by projecting the second
grating (G2) on the first one (G1), thus identifying the effective
fraction of the particle which contributes to the intensity. The
projected grating G′

2 has a magnified periodicity d ′, as in Eq. (5).
When considering a source with divergence α, the region from which a
particle can reach the detector is limited by a cone with opening angle
α equal to the divergence of the source (bright region). The tilt angle
β is considered when extending the approach to three dimensions.
The analytic treatment is explained in detail in the text.

a pattern with the expected maximal contrast. In any experi-
mental scenario, the divergence of the source puts constraints
on its geometrical characteristics: An asymmetry �L between
the distance from the first to the second grating L12 and the
distance from the second to the third grating L23 strongly
affects the contrast of the pattern. The effects of this asymmetry
can be calculated analytically in the simple case of a moiré
deflectometer, whose signal is equivalent to the Talbot-Lau
interferometer whenever the length of the device matches a
multiple of LT.

The process is schematized in Fig. 3. Consider a point
P on the detector plane. We calculate the intensity of the
signal which illuminates this point by considering the allowed
geometrical trajectories. All the particles which reach P have
to pass through both gratings, indicated as G1 and G2,
respectively, therefore limiting their original position to a
specific region of space. In the case of G2, this region can
be interpreted as its shadow image G2′, obtained using P

as a focal point. Suppose we have a source with divergence
α, L12 = L, L23 = L + �L, grating periodicity d, and open
fraction η. The grating function G as a function of the position
y is defined as

G(y; d,η) =
{

1 for mod(y,d) < ηd

0 otherwise. (4)

As a result, the projected image G2′ can be described as
a grating with the same open fraction η and a magnified
periodicity d ′, given by

d ′ = d
L12 + L23

L23
= d

2L + �L

L + �L
. (5)

To calculate the intensity at P , the grating G2 can therefore be
replaced by its projection G2′ on the plane of the first grating
[24]. As shown in Fig. 3, while moving the projection point by
a distance y on the screen, G2′ moves in the opposite direction
by a position y ′ given by

y ′ = L

L + �L
y. (6)

In the following, G1 = G(y; d,η), G2′ = G(y ′; d ′,η). If we
consider a completely divergent particle source, the intensity
Idet at any position y on the detector plane is given by

Idet(y) ∝
∫ +∞

−∞
G(ξ ; d,η)G(ξ + y ′; d ′,η)dξ. (7)

In this scenario, �L 
= 0 causes the contrast of the fringes
generated by the first two gratings to vanish completely, as
the rephasing is only seen at integer multiples of L12. As
mentioned in Sec. II, a third grating placed on the detector
plane can be used to read out the pattern. In this case, the
intensity I after the additional grating G3 = G(y; d,η) is given
by

I (yg) ∝
∫ +∞

−∞
Idet(ξ )G(ξ − yg; d,η)dξ, (8)

where yg is the position of the third grating. If we put
constraints on the divergence of the beam, the area from where
particles can hit the detector is limited to a region of space
ξ ∈ [y − ylim,y + ylim], where ylim = (2L + �L) tan(α) is the
geometrical limit imposed by the divergence angle α and y

is the coordinate of the detector point at which the pattern
is calculated (see Fig. 3). With these assumptions, Eq. (7)
becomes

Iα
det(y) ∝

∫ y+ylim

y−ylim

G(ξ ; d,η)G(ξ + y ′; d ′,η)dξ. (9)

The intensity Iα(yg) after the third grating is then calculated
as in Eq. (8):

Iα(yg) ∝
∫ +∞

−∞
Iα

det(ξ )G(ξ − yg; d,η)dξ. (10)

The contrast of the pattern as a function of �L shows a main
peak at �L = 0, together with smaller secondary peaks of
decreasing intensity. An example of this behavior is shown in
Fig. 4. For a completely divergent source (α → π/2), Eq. (10)
converges to Eq. (8), thus yielding the same result. For a given
angle 0 � α < π/2, the position of the first minimum can be
calculated via geometric considerations [25]:

�Lmin = d

2
tan

(π

2
− α

)
. (11)

In the limit of a small divergence angle (α � 1), this formula
is consistent with the one outlined in Ref. [26,27]. As the
equation shows, �Lmin is independent of L: Once the diffusion
angle and the periodicity of the gratings are fixed, the other
geometrical parameters do not play any role in determining
how the contrast decays. A consequence of this systematic
effect is that, depending on the divergence of the source, there
is a maximum acceptable displacement after which the contrast
drops sharply, which can be defined as the position of the first
minimum expressed by Eq. (11). Notice that for α ≈ π/2,
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FIG. 4. Contrast of the classical moiré pattern as a function of
�L = L23 − L12. When the distance �L 
= 0, the contrast of the
periodic pattern decays as a function of �L and the divergence
angle α. For �L = d/2 tan(π/2 − α), the contrast is equal to zero.
The position of the zeros is completely determined by those two
parameters and is not affected by the magnitude of L12.

�Lmin tends to zero (i.e., the contrast profile tends to a δ

centered in �L = 0), while for α = 0 (i.e., no divergence),
�Lmin goes to infinity, which means that the contrast is not
fading away with distance.

As previously pointed out, this mathematical formulation
is valid in the classical scenario, but can be verified also in
the wave regime by means of numerical simulations. The
simulations performed show that for a range of lengths around
L = LT, the position of the first contrast minimum is consistent
with the classical scenario. An example of this behavior
is shown in Fig. 5. The classical result can therefore still
be considered as the maximum displacement allowed while
working in this region.

FIG. 5. As in the classical case, the functional dependence of
the contrast on the diffusion angle in the Talbot-Lau regime shows
periodic minima, the first of which is described by Eq. (11) (black
vertical line). Notice that the peak contrast changes with the length.
Around L = n + 1

2 LT, the periodicity of the pattern doubles, moving
the first minimum at half its classical position (gray vertical line).
The profile shown is calculated for a divergence angle α = 3 mrad.

2. Rotational misalignment

In the ideal case, the two gratings which generate the
pattern have the same rotation angle with respect to the beam
axis. When this condition is not fulfilled, the contrast of the
pattern depends on the divergence of the source. In order to
estimate this effect, we extend the same approach discussed
in Sec. III A 1 to two dimensions, allowing for one or both
gratings to be tilted around the beam axis.

As an intuitive explanation, consider two gratings: the first
one placed in the xy plane with slits parallel to the y axis and
the second rotated by an angle β around the z axis (shown in
Fig. 3). Consider also a divergence angle α in the yz plane,
while no diffusion is present in the x̂ direction. If we take
a set of planes parallel to the yz plane and we use it to
slice through the pattern for different values of x, we get a
collection of one-dimensional representations equivalent to the
one discussed in Sec. III A 1, with the difference that in every
plane the pattern of the second grating will show an offset
φy = x tan(β) and a modified periodicity dβ = d/ cos(β).
When a divergence in the x̂ direction is considered, all the
slices which are between a cone with angular opening α and
the point on the screen at which the pattern is calculated have
to be summed up. The combination of these two factors is
what smears out the contrast of the generated pattern on the
detection plane. By introducing the two-dimensional grating
function G2D(x,y; β,d,η), defined as

G2D(x,y; β,d,η)

=
{

1 for mod(y − x tan(β),d/ cos(β)) < ηd/ cos(β)
0 otherwise,

(12)

Eq. (9) can be extended as

I 2D
det (x,y) ∝

∫ y+rlim

y−rlim

∫ x+
√

r2
lim−(ξ−y)2

x−
√

r2
lim−(ξ−y)2

G2D(u,ξ ; 0,d,η)

×G2D(u + x ′,ξ + y ′; β,d ′,η)du dξ. (13)

This formula considers a conical projection from the point
P = (x,y) and therefore a circular overlapping area of radius
rlim = (2L + �L) tan(α) on the plane of the first grating. Here
d ′ is expressed by Eq. (5), while x ′ and y ′ are both defined
by using Eq. (6) on x and y, respectively. Notice that, as an
effect of the angular difference, the resulting fringe pattern is
tilted by an angle βpattern = 2β. To retrieve the profile after a
third grating, Eq. (10) is also expanded in two dimensions in
a similar fashion.

The intensity profile can be evaluated numerically. The
calculations show that even when the asymmetry factor is
taken out (�L = 0), the contrast of the recorded pattern
decreases as the angle between the two gratings increases.
This phenomenon is independent of the presence of a third
grating, since the pattern becomes uniform for a geometrical
overlap of the trajectories due to the relative rotation of the
first two gratings. By geometric considerations, we derive the
following formula for the angular difference βcrit which causes
the contrast to drop to zero:

tan βcrit = k
d

2L
tan

(π

2
− α

)
, (14)
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FIG. 6. Depending on the divergence angle α, an angular differ-
ence β between the second and the first grating causes the signal to
vanish. The position of the contrast minimum is linearly dependent
on d and inversely proportional to L. The function which describes
this position is similar to the one found for the one-dimensional case
[compare Eqs. (11) and (14)].

where k is a constant factor, to be determined via numerical
calculations. Profiles for a different divergence angle α are
shown in Fig. 6. Notice that the formula shows the same
functional dependence as in the one-dimensional case [see
Eq. (11) as a comparison].

In the representative geometrical configuration, for a
divergence α = 1 mrad, the visibility minimum appears for
β = (0.46 ± 0.01) mrad. Repeating the simulations for differ-
ent geometrical configurations yields k = 0.61 ± 0.01 as the
value for the constant.

It is worth mentioning that, when using a third grating to
scan the pattern, the retrieved flux modulation is affected by a
rotation of the third grating, due to the moiré effect. Therefore,
the rotation angle β3 of the third grating with respect to the
pattern has to fulfill the condition

sin

(
β3

2

)
� d

2
√

A
, (15)

where A is the area over which the flux is integrated.

B. Energy spread of the particle beam

Experimental ion sources are not perfectly monochromatic:
The particle beam produced always has a nonzero energy
spread. As shown in Fig. 2, particles with different energies
generate patterns with different contrast: Having an energy
distribution means that different patterns get summed up,
leading to modifications to the recorded signal. A precise
knowledge of the energy distribution is therefore required in
order to calculate the expected contrast profile. If the averaging
effect is such that the contrast of the pattern becomes lower
than or equal to the classical value, the quantum nature of
the particle cannot be convincingly proven. Figure 7 shows
contrast plots for various energy spreads �U/U . In the
example, the energy distribution is modeled as a normalized
Gaussian distribution centered on each energy. The energy
spread is thus defined as the full width half maximum (FWHM)
of each distribution. As can be seen in Fig. 7, the effect is not

U / U
Talbot
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co
nt

ra
st

0

0.1

0.2

0.3

0.4

0.5

monochromatic
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FIG. 7. Contrast of the pattern as a function of the energy of the
particle beam for different values of the energy spread. The open
fraction considered in this plot is η = 0.4. Each curve is obtained by
considering a normal distribution centered on each energy value, with
a FHWM equal to the energy spread �U . For every point on the plot,
the ratio �U/U is fixed to the value shown in the legend. Notice that
for an energy spread up to 10%, there is only a negligible difference
from the monochromatic case.

dramatic, since even for an energy spread of 30% the contrast
modulation is still clearly visible and above the classical
expected value for a consistent part of the energy spectrum.
Once external forces are taken into consideration, the effect of
a nonmonochromatic beam is more accentuated.

C. External forces

If the particles are affected by an external force �F during
their crossing of the interferometer, the pattern recorded at
the detector position is subject to a phase shift which depends
on both the magnitude of the force and the time-of-flight τ

between the gratings. Assuming a constant acceleration ay

along the grating periodicity (see the coordinate system in
Fig. 1), the phase shift for a monochromatic beam is given
by [13]

�φ = 2π

d
ayτ

2, (16)

with

τ = L

vz

= L

√
m

2U
. (17)

Notice that, since the phase shift �φ is energy dependent,
a force acting on the particles lowers the contrast of the
pattern in the presence of an energy spread �U . A critical
force �Fcrit can therefore be defined as the force leading to a
phase shift of π between the fastest and the slowest particles
in the distribution. For a given Gaussian energy distribution
(mean energy U and FWHM �U ) we estimate the critical
force assuming Ufast = U + �U/2 and Uslow = U − �U/2.
By considering a uniform constant force, the critical force
intensity Fcrit is derived from Eq. (16) as

π
!= φslow − φfast = πFcrit

L2

d

(
�U

UfastUslow

)
, (18)
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which leads to

Fcrit = d

L2

1

4

4U 2 − (�U )2

�U
, (19)

which, in the limit of small energy spread, i.e., (�U )2 � U 2,
can be further simplified to

Fcrit ≈ d

L2

U 2

�U
. (20)

Notice that if a generic energy distribution is considered, an
integration is instead required to get a precise quantitative
result. In the following, two specific examples are considered:
a constant Lorentz force and the self-repulsive Coulomb
interaction inside a charged particle beam.

1. Lorentz force

Charged particles are susceptible to electric and magnetic
fields which make the observation of interference more
challenging. We therefore assume a Lorentz force for constant
uniform fields �E and �B. Since the interferometer is only
sensitive to force acting perpendicular to the grating slits, we
are interested in the transverse component of the Lorentz force,
which can be written as

�F Lorentz
y = q[Ey + (vzBx − vxBz)]ŷ, (21)

where q is the charge of the particle.
In the limit of vzBx � vxBz, which is a reasonable

assumption when working with collimated particle beams and
assuming the two components of the magnetic fields to have
the same order of magnitude, Eq. (21) can be written as

�F Lorentz
y = q(Ey + vzBx)ŷ. (22)

A definition for the critical electric field Ecrit and magnetic
field Bcrit is derived by setting ‖ �B‖ and ‖ �E‖ to zero,
respectively [15]:

Ecrit = d

L2

U 2

q�U
for ‖ �B‖ = 0, (23)

Bcrit = d

L2

√
m

2

U 3/2

q�U
for ‖ �E‖ = 0. (24)

In the geometric configuration considered, these fields assume
the form

Ẽcrit = 8.7 × 10−6 U

δ
, (25)

B̃crit = 6.3 × 10−10

√
U

δ
, (26)

where δ = �U/U , Ẽcrit is in units of V m−1, U is in eV,
and B̃crit is in tesla. Notice that, while the critical electric
field scales linearly with the energy, the magnetic field scales
just with the square root. Therefore, by increasing the energy,
the influence of the electric field is reduced faster than
that of the magnetic field. If we consider U = 2 keV and
δ = 1%, Eqs. (25) and (26) yield Ecrit = 1.74 V m−1 and
Bcrit = 28.2 mG, respectively. As a comparison, consider that
the fields measured in Ref. [15] in a similar experimental
setup are of the order of 1 V m−1 and 10 mG, respectively,
already lower than the critical values considered, although no

FIG. 8. Effects of external forces, combined with the energy
spread of the source, lower the contrast of the pattern. Here we
consider �U/U = 1%. Each line represents the expected contrast
for a given electric field in units of the critical field EcritnLT , defined
as in Eq. (27). No magnetic field is considered.

special care has been taken to minimize the fields. Hence, it
is reasonable to assume that lower fields are achievable via a
suitable electric and magnetic shielding.

Another specific situation which is relevant in this context
appears when the distance between the gratings is fixed to an
integer multiple of the Talbot length. There the contrast of
the pattern is the same as in the classical scenario: This can
be a desirable feature to get a reference signal in a known
configuration and compare it to the theoretical expectations.
Fixing L = nLT is equivalent to changing the length of the
device for every energy U used, which is the opposite approach
of what was considered above (tuning the energy of the
particles in a fixed-length device). With these specifications,
Eqs. (23) and (24) can be written as

Ecrit nLT = h2

2md3q

1

δ

1

n2
, (27)

Bcrit nLT = h2

2
√

2md3q

1

δ
√

U

1

n2
. (28)

The expressions underline an interesting fact: If the distance
between the gratings is fixed to a multiple of the Talbot length,
the critical electric field depends on the relative energy spread
δ but not directly on the energy. The same does not hold for
the critical magnetic field, which instead becomes smaller as
the energy increases. An application of Eq. (27) is shown in
Fig. 8, where different values of the electric field are applied to
a contrast profile with δ = 1%, calculated as the ones shown
in Fig. 7.

2. Inner beam interactions

When two or more charged particles are moving inside the
device, an additional field is generated by their interaction.
The particles mutually repel each other, effectively increasing
the size of the beam as well as the distance between the
center and the edges of the charge distribution. In order
to give an upper limit estimation on this effect, consider a
beam of particles with mass m and charge q. The beam
is homogeneous and cylindrical, with initial radius r0, axial
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velocity vz, and uniform charge density ρ. The beam is
assumed to be nonrelativistic (γ ≈ 1), which is a justified
approximation in the energy range considered. This has the
additional effect of making the contribution of the magnetic
fields generated by the moving charge distribution negligible
[28]. With these assumptions, the radial electric field ER(r) is
given by

ER(r) =

⎧⎪⎨
⎪⎩

ρr

2ε0
for r � r0

ρr2
0

2ε0r
otherwise.

(29)

The field has a maximum for r = r0, after which it decreases
monotonically. Using this construction, the expanded radius
rbeam at any axial position z can be calculated by numerically
inverting [28]

z = r0√
2K

F

(
rbeam

r0

)
= r0√

2K

∫ rbeam/r0

1

dy√
ln(y)

, (30)

where the constant K is given by

K = qρr2
0

2πε0mv2
z

. (31)

It is interesting to note that for rbeam/r0 � 1,

F

(
rbeam

r0

)
� 2

√
rbeam − r0

r0
, (32)

which is equivalent to considering a constant field ER(r0)
applied to the particles for the duration of the flight. When
rbeam/r0 � 1, the error introduced by considering this first-
order expansion is smaller than 1%. Since we are interested
in a beam divergence of the order of the periodicity d of the
grating, until d/r0 � 1, we can therefore consider a constant
radial acceleration �a = qER(r0)/mr̂ . This has the additional
benefit of allowing us to obtain a maximum acceptable value
for the particle flux. With this hypothesis, using Eqs. (16) and
(29), a particle on the cylinder’s surface subjected to ER(r0)
experiences a total phase shift

φ = 2πy

d
= 2π

d
aτ 2 = 2π

d

qρr0

2mε0

L2

v2
z

. (33)

By expressing ρ as a function of the particle flux �in, we obtain

φ = 2π

d
�inr0

q2

2mε0

L2

v3
z

= 2π

d
�inr0

q2√m

4
√

2ε0

L2U−3/2. (34)

In the case that the position shift y exceeds half the periodicity
d (�φ = π ), the contrast of the pattern will be consistently
reduced. Considering this as the limiting condition, we
estimate a critical flux �in

crit as

�in
crit = 2

√
2ε0

q2
√

mr0

d

L2
U 3/2. (35)

In the geometric configuration analyzed and choosing
protons as the test species, with U = 2 keV, it follows
that �in

crit = 1.2 × 1015 m−2 s−1. By considering, for example,
r0 = 1 mm, we get �in

critπr2
0 = 3.8 × 109 Hz. These intensities

are well in the range of sources of the type described in
Ref. [23], but still far higher than the requirements of a typical
experiment (which normally requires 102–103 detected parti-
cles on the detector surface to reveal the pattern). Therefore,
in the experimental conditions considered, this effect can be
consistently neglected.

IV. CONCLUSION

In this paper, several systematic effects which degrade the
signal of a scalable Talbot-Lau interferometer for charged
particles have been analyzed. These effects can be categorized
into three distinct families: effects related to the misalignment
of the gratings, the energy spread of the source, effects due to
the external fields.

A displacement of the detector plane in relation to the dis-
tance between the first two gratings causes a consistent reduc-
tion of the contrast. The displacement limit which makes the
contrast drop to zero is calculated and is found to be indepen-
dent of the distance between the gratings. Moreover, this dis-
placement is found to be the same both in the particle and in the
wave regime. A rotational misalignment between the gratings
of the interferometer leads to a reduced contrast as well. Nu-
merical simulations have been used to set limits on this effect in
the classical picture. Since both these effects are proportional
to the divergence of the beam, they become more restrictive
when considering large-area interferometers for low-intensity,
noncollimated sources, such as in antimatter experiments.

The energy spread of the source plays a role into averaging
the visibility, thus reducing the effective difference in contrast
for different energies. However, an energy spread as high
as 30% still allows for measuring the wave behavior of the
particles.

The presence of external electric or magnetic fields
combined with the aforementioned energy spread causes a
sharp reduction in contrast, depending on the geometrical
characteristics of the device. The limiting force which causes
the pattern to vanish is calculated and both the electric and
magnetic field intensities are separately obtained. The effects
of the inner beam interactions are evaluated and an expression
for the maximum flux allowed before said interactions cause
a significant drop in contrast is obtained.
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In: Nat. Commun. 5 (2014), p. 4538 (cit. on pp. 12, 27, 89,
114).

[Agh+17] S. Aghion et al. “Characterization of a transmission posi-
tron / positronium converter for antihydrogen production”.
In: Nucl. Instr. Meth. Phys. Res. B 407 (2017), pp. 55–66
(cit. on p. 12).

[Ahm+16] M. Ahmadi et al. “An improved limit on the charge of anti-
hydrogen from stochastic acceleration”. In: Nature 529.7586
(2016), pp. 373–376 (cit. on p. 11).

[Ahm+17a] M. Ahmadi et al. “Antihydrogen accumulation for funda-
mental symmetry tests”. In: Nat. Commun. 8.1 (2017) (cit.
on p. 11).

[Ahm+17b] M. Ahmadi et al. “Observation of the 1S–2S transition in
trapped antihydrogen”. In: Nature 541.7638 (2017), pp. 506–
510 (cit. on p. 11).

[Ahm+17c] M. Ahmadi et al. “Observation of the hyperfine spectrum
of antihydrogen”. In: Nature 548.7665 (2017), pp. 66–69
(cit. on p. 11).

[Ahm+18] M. Ahmadi et al. “Characterization of the 1S–2S transition
in antihydrogen”. In: Nature (2018) (cit. on p. 11).

[Amo+02] M. Amoretti et al. “Production and detection of cold anti-
hydrogen atoms”. In: Nature 419 (2002), pp. 456–459 (cit.
on pp. 11, 90).

[Amo+04a] M. Amoretti et al. “The ATHENA antihydrogen appara-
tus”. In: Nucl. Instr. Meth. Phys. Res. 518.3 (2004), pp. 679–
711 (cit. on p. 94).

https://cds.cern.ch/record/622250
https://cds.cern.ch/record/622250
http://dx.doi.org/10.1038/ncomms5538
http://dx.doi.org/10.1016/j.nimb.2017.05.059
http://dx.doi.org/10.1016/j.nimb.2017.05.059
http://dx.doi.org/10.1038/nature16491
http://dx.doi.org/10.1038/nature16491
http://dx.doi.org/10.1038/s41467-017-00760-9
http://dx.doi.org/10.1038/s41467-017-00760-9
http://dx.doi.org/10.1038/nature21040
http://dx.doi.org/10.1038/nature21040
http://dx.doi.org/10.1038/nature23446
http://dx.doi.org/10.1038/nature23446
http://dx.doi.org/10.1038/s41586-018-0017-2
http://dx.doi.org/10.1038/s41586-018-0017-2
http://dx.doi.org/10.1038/nature01096
http://dx.doi.org/10.1038/nature01096
http://dx.doi.org/https://doi.org/10.1016/j.nima.2003.09.052
http://dx.doi.org/https://doi.org/10.1016/j.nima.2003.09.052


166 References

[Amo+04b] M. Amoretti et al. “Antihydrogen production temperature
dependence”. In: Phys. Lett. B 583.1 (2004), pp. 59–67 (cit.
on pp. 20, 91, 94).

[Amo+13] C. Amole et al. “Description and first application of a new
technique to measure the gravitational mass of antihydro-
gen”. In: Nat. Commun. 4 (2013), p. 1785 (cit. on pp. 12,
89).

[Amo+14] C. Amole et al. “The ALPHA antihydrogen trapping ap-
paratus”. In: Nucl. Instr. Meth. Phys. Res. A 735 (2014),
pp. 319–340 (cit. on pp. 20, 90, 94).

[And+11] G. Andresen et al. “Search for trapped antihydrogen”. In:
Phys. Lett. B 695.1 (2011), pp. 95–104 (cit. on pp. 91, 94).

[Apo+99] A. Apostolakis et al. “Tests of the Equivalence Princi-
ple with neutral kaons”. In: Phys. Lett. B 452.3-4 (1999),
pp. 425–433 (cit. on pp. 17–19).

[Bar+14] W. Bartmann et al. “Extra Low Energy Antiproton ring
ELENA : from the conception to the implementation phase”.
In: CERN-ACC-2014-0144 (2014), 4 p (cit. on pp. 20, 127).

[Ber12] F. Bergermann. “Characterization of the moiré deflectome-
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[BSO14] P. Bräunig, J. Storey, and M. K. Oberthaler. AtliX - Anti-
matter Talbot-Lau Interferometry Experiment. Internal note
- AEgIS collaboration. 2014 (cit. on p. 79).

[Car+15] R. Caravita, O. Forslund, I. Larsen, L. Marx, Z. Mazzotta,
B. Rienacker, and S. Mariazzi. Advances in positron activity
in the main cryostat. AEgIS collaboration meeting. 2015
(cit. on p. 139).

[Car17] R. Caravita. “Towards measuring gravity on neutral anti-
matter”. PhD thesis. Università degli studi di Genova, 2017
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Philippe Bräunig, for having been my first contact with the Matter-
wave research group, the post-doc who drove our team and the friend who
helped me settling my life in Germany at the very beginning. Stating
that he saved me would be a euphemism.

Mio fratello Luca, per essermi stato vicino tutto il tempo, nonostante
ottocento chilometri e rotti di distanza. Senza di te, mi sarei perso più
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