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Zusammenfassung:

In der intensitätsmodulierten Protonentherapie ist eine patientenspezifische Analyse und Mini-
mierung von Unsicherheiten unumgänglich. Als Alternative zu Methoden, die mit Fehlersze-
narien arbeiten, beschreibt diese Arbeit die Implementierung, Anwendung und konzeptionelle
Erweiterung der von Bangert, Hennig und Oelfke (2013) eingeführten Analytischen Probabilisti-
schen Modellierung (APM) von Dosisunsicherheiten. APM setzt dabei auf geschlossene Ausdrü-
cke um die Momente der Wahrscheinlichkeitsverteilung über die Dosis aus Set-Up- und Reich-
weitenunsicherheit herzuleiten und ermöglicht so auch probabilistische Optimierung.

Zuerst wurde APM in MITKrad, einem von Grund auf neu konzipierten Bestrahlungsplanungs-
Plugin für MITK, implementiert. Eine Validierung der Berechnungen von APM gegen Stichpro-
benstatistik zeigte annähernd perfekte Übereinstimmung. Dabei wurden Laufzeiten von wenigen
Minuten für eine probabilistische Optimierung und Evaluation von Bestrahlungsplänen erreicht.

Eine Umformulierung von APM erlaubte lineare Separation der Modelle in zufällige und syste-
matische Unsicherheiten. Dadurch konnten Unsicherheiten über das komplette Fraktionierungs-
spektrum modelliert und optimiert werden, wozu nur eine Vorberechnung nötig war. Dabei
konnte gezeigt werden, dass probabilistische Optimierung die Bestrahlung in Fraktionen aus-
nutzt um Risikoorgane zu schonen.

APM wurde dann mit probabilistischen Modellen zur Beschreibung von klinisch relevanten
Qualitätsindikatoren erweitert. Erwartungswert und Varianz von Dosis-Volumen-Histogrammen
sowie mittlerer Organdosis konnten präzise modelliert werden. Näherungen für equivalent uni-
form dose (lit. “homogene Äquivalenzdosis”) und minimale sowie maximale Organdosis führten
hingegen nicht zu zuverlässigen Ergebnissen.

Schließlich wurden die neuen Modelle genutzt um ein Konzept zur probabilistischen Opti-
mierung mit Nebenbedingungen vorzuschlagen. Neben neuen probabilistische Zielfunktionen
konnten auch Nebenbedingungen für Quantile der entsprechenden Qualitätsindikatoren reali-
siert werden. Aufgrund der gestiegenen Berechnungskomplexität, die die neuen Modelle mit sich
bringen, wurde der Machbarkeitsnachweis zunächst anhand eines eindimensionalen Prototypen
erbracht.

Zusammenfassend schafft die Erweiterung von APM ein probabilistisches Analogon zu be-
währten nominellen Planevaluierungs- und Optimierungskonzepten. Wenn in Zukunft die Be-
rechnungskomplexität weiter reduziert werden kann, könnte klinische Implementierung in greif-
bare Nähe rücken.
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Abstract:

The sensitivity of intensity-modulated proton therapy to uncertainties requires case-specific un-
certainty assessment and mitigation. As an alternative to scenario-based methods, this thesis de-
scribes the implementation, application and conceptual extension of the Analytical Probabilistic
Modeling (APM) framework introduced by Bangert, Hennig, and Oelfke (2013). APM represents
moments of the probability distribution over dose in closed-form, providing a probabilistic ana-
log to nominal pencil-beam dose calculation subject to range and setup uncertainties that further
enables probabilistic optimization.

First, APM was implemented in MITKrad, a treatment planning plugin for MITK built completely
from scratch. APM’s computations were validated against sample statistics, showing nearly per-
fect agreement. Run-times within minutes could be realized for uncertainty assessment and prob-
abilistic optimization on patient data.

Reformulation of APM enabled linear separation of the computations into random and sys-
tematic uncertainty components. Uncertainty over the full fractionation spectrum could then be
modeled and optimized with a single pre-computation. It could be shown that fractionation is
exploited in optimization with APM for additional organ at risk sparing.

APM was then extended to propagation of uncertainties from dose to clinically relevant plan
quality metrics. Expectation and variance could be modeled accurately for organ mean dose and
dose-volume histograms. However, approximations for equivalent uniform dose and minimum
and maximum dose values did not provide reliable results.

Finally, the closed-form plan metrics were used to conceptualize constrained probabilistic op-
timization. Besides novel probabilistic objectives, confidence constraints could be established.
Due to increased computational complexity of the new models, the proof-of-concept was pro-
vided through evaluations on a one-dimensional prototype anatomy.

In conclusion, the herein extended APM framework is able to provide probabilistic analogs
to established nominal concepts of dose calculation, plan quality metrics, and constrained opti-
mization. If computational hurdles can be overcome in the future, clinical application would be
within reach.
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Preface

Never tell me the odds!

Han Solo
The Empire Strikes Back (1980)

Fortunately, not everybody treats uncertainties like Han Solo. The author is thankful to be able
to build on previous work of such more considerate people (Bangert, Hennig, and Oelfke 2013).

Disclosure: Chapter III is a recap of the introduced Analytical Probabilistic Modeling framework
by Bangert, Hennig, and Oelfke (2013). Further scientific findings from this thesis have been
published before submission, in accordance with the regulations of the Faculty of Physics and
Astronomy of the University of Heidelberg. Chapter IV is largely based on Wahl et al. (2017) and a
conference contribution at ICCR 2016 (Wahl, Hennig, and Bangert 2016). Wahl et al. (2018a) is the
basis of Chapter V. At the time this manuscript was prepared, the findings of Chapters VI and VII
were not yet published in print, but partly presented at ESTRO 2018 (Wahl et al. 2018b; Wahl et al.
2018c). A full disclosure of all publications released during the makings of this dissertation can
be found at the end of this manuscript.

Furthermore, the findings of this thesis regarding extension of Analytical Probabilistic Model-
ing have been made available as MATLAB-code on GitHub as “APMToolbox”.1

Animaঞons: This dissertation features PDF-animations that can be viewed on screen. Accord-
ing to the documentation of the respective LATEX-package animate2, these are displaying cor-
rectly when viewing the PDF in Adobe Acrobat Reader3 (non-mobile), PDF-XChange4 and Foxit
Reader5. The animations are of illustrative value, thus no significant information will be lost when
using other viewers or reading in print. Figures containing animations are annotated accordingly.

1https://github.com/e0404/APMtoolbox [accessed 29.04.2018]
2https://ctan.org/pkg/animate [accessed 29.04.2018]
3https://get.adobe.com/reader/ [accessed 29.04.2018]
4https://www.pdf-xchange.de/ [accessed 29.04.2018]
5https://www.foxitsoftware.com/pdf-reader/ [accessed 29.04.2018]
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Chapter I

Introducঞon

Uncertainty is the motor of physical research. Unavoidable inaccuracies in experimental work
nurture the search for better, more exact experiments while at the same time giving rise to new
theories that can be later extended or discarded due to improved confidence. In practical applica-
tions of physics methodology, however, inevitable uncertainties not only undermine the success
of an experiment or confirmation of a hypothesis; here uncertainties may have undesired real life
implications that require adequate mitigation themselves.

Radiation therapy (RT) is such an application where precision is of uttermost importance. In
RT, ionized radiation is used to destroy localized cancerous tissue. To spare healthy tissue, high
target conformity is required. Under presence of uncertainty, however, the actually delivered
dose deviates from the planned distribution. This can lead to compromised target coverage or
overdosage of critical healthy organs. Hence, knowledge and mitigation of the associated uncer-
tainties is crucial for the clinical outcome of a radiation treatment.

Already Goitein (1985) opted for a case-specific assessment of uncertainties. Conventional RT
with photons, however, usually mitigates the associated risks with safety margins. The guidelines
for such margins are mostly based on generic probabilistic assumptions (Herk 2004; Herk et al.
2000), and not based on the specific treatment itself. The reason for this is that in most cases, pho-
ton dose distributions behave comparably static under, for example, displacements of the patient
(Bortfeld, Jiang, and Rietzel 2004). Additionally, case-specific methods increase computational
complexity with regard to inverse treatment plan optimization, where the dose distribution—and
thus its uncertainty estimate—changes during each iteration in the dose optimization process.

Over the last ten years, however, case-specific methods, mostly based on dose scenario samples,
have been on the rise. While this is on the one hand facilitated by an increase in computation
power and more complex photon therapy modalities, especially the interest for irradiation with
ionized particles drives this development.

Leaving uncertainties aside, particles are ideally suited for use in RT, since their characteristic
energy loss in matter results in a dose peak at a certain range. This Bragg-peak, however, due
to the strong dose gradient it induces, makes particle therapy particularly prone to uncertainties
which cannot be sufficiently quantified using static approximations (Lomax 2008a; Lomax 2008b).

While adaptations of the margin concept (e. g. Knopf et al. 2013) are discussed, research in
proton therapy mainly focuses on stochastic and robust optimization (e. g. Fredriksson 2012; Liu
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Chapter I Introducঞon

et al. 2012b; Unkelbach et al. 2009). These require the computation of sampled or worst-case dose
scenarios, which are then used for uncertainty evaluation and during optimization.

Eventually, such methods provide no insight in the actual model connecting uncertainty over
input parameters with uncertainty over dose and derived plan metrics. Consequently, disad-
vantages of such methods are, for example, the aforementioned requirement of re-computations
during optimization, limited choices for optimization routine and objective functions and upper
bounds on the complexity of the uncertainty model. Furthermore, at least from an academic point
of view, a sound uncertainty propagation model may be preferable as it aids in understanding
the intrinsic mechanisms connecting input and output uncertainty in RT.

Few attempts have been made to overcome this lack of model. These approaches do, however,
tackle the problem from behind; for example, they reconstruct an uncertainty model based on
Gaussian process regression (Sobotta, Söhn, and Alber 2012) or numerical integration for poly-
nomial chaos expansion (PCE) (Perkó et al. 2016). Hence, these approaches also rely on the com-
putation of discrete scenarios at last, yet with more accurate reproductive character and possibly
reduced computational complexity.

A forward approach to analytically model the relationship between input uncertainties and
uncertainties over dose was proposed by Bangert, Hennig, and Oelfke (2013). Their Analytical
Probabilistic Modeling (APM) framework inherently re-formulates dose calculation for proton
(and photon) therapy in a way that allows for closed-form propagation of uncertainties from
treatment plan parameters to dose. Thus, no samples need to be drawn for robustness analysis.
Bangert, Hennig, and Oelfke (2013) proposed to use this method for computationally efficient
probabilistic analysis and optimization, as well as description of more complex uncertainty mod-
els, particularly in the context of fractionation.

This thesis picks up APM in the conceptual state from Bangert, Hennig, and Oelfke (2013)
and brings the proposed concepts to application on full-fledged 3D patient cases. The proposed
methodology is conceptually extended and re-formulated and consequently efficiently imple-
mented and evaluated on patient data. The thesis further proposes extensions to APM to an-
alytically model propagation to uncertainties in dose-dependent treatment plan metrics. With
derived closed-form expressions, an approach for probabilistically constrained treatment plan-
ning is conceptualized. As such, it becomes possible to gradually move between expectation and
worst-case robustness by constraining on concrete, desired confidence levels.

The remainder of this thesis is organized in distinct chapters. Chapter II gives a brief intro-
duction into the principles of RT physics and treatment planning as well as literature relevant for
this work. The APM framework by Bangert, Hennig, and Oelfke (2013) is explained separately in
Chapter III. Chapter IV then describes implementation and validation of APM. The implementa-
tion is used in Chapter V to investigate fractionated probabilistic treatment planning. Chapter VI
extends APM to model uncertainties in selected treatment plan metrics. Chapter VII takes these
models to propose a concept for constrained probabilistic optimization. Thereby, Chapters IV
to VII follow similar structure; they begin with a short introduction and literature overview, fol-
lowed by a description of methodology, consequent presentation of the results and conclude with
a discussion. The thesis closes with a summarizing conclusion in Chapter VIII.
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Chapter II

Background & Literature Review

This chapter introduces and briefly explains the main quantities and general environment con-
stituting the basis of the scientific work in this thesis. This includes the physical basis of proton
therapy in Section II.1, followed by Section II.2 lining out the treatment planning workflow and
Section II.3 concluding this chapter with a discussion of similar academic approaches tackling
mitigation of uncertainties in treatment planning.

This chapter does not serve as an in-depth introduction and explanation of the aforementioned
much broader fields. The interested reader might be referred to Paganetti (2012a) or Newhauser
and Zhang (2015).

II.1 Proton therapy physics

The physical aspects of proton therapy comprise fundamental physics, i. e., interactions of the
protons with the patient tissue, as well modeling and computation of the respective energy dose.

II.1.1 Characterisঞcs of proton irradiaঞon

First, the fundamental principles underlying treatment with protons will be introduced, i. e., dosi-
metric characteristics of proton irradiation. This includes the definition of dose and how this dose
is distributed due to fundamental interactions.

II.1.1.1 Energy dose

The killing of tumor cells and the sparing of healthy tissue is dependent on the energy dose d. It
is given as the differential energy dE deposited in the infinitesimal mass element dm, i. e.,

d =
dE
dm

=
1
ρ

dE
dV

, (II.1)

where additionally the mass density ρ in the respective infinitesimal volume element dV was
factored out.

3



Chapter II Background & Literature Review

For radiation therapy, computation of Eq. (II.1) hence requires modeling of the energy deposi-
tion characteristics of the irradiation beam as well as knowledge over the patient anatomy. The
latter is obtained through medical imaging. The energy deposition depends on the type of irra-
diation, and is, in general, driven by an interplay of multiple interaction processes.

II.1.1.2 The Bragg-curve

For protons (and other charged heavy particles), the (expected) energy loss along the particle path
in z-direction is described by Eq. (II.2) attributed to Bethe (1930) and Bloch (1933),

−dE
dz

=
4πneq2

mec2β2

(
e2

4πε0

)2 [
ln
(

2mec2β2

I (1 − β2)

)
− β2

]
, (II.2)

with electron density of the material ne, incoming particle charge q, electron mass me, speed of
light c, the ratio of particle velocity and speed of light β = v /c, vacuum permittivity ε0 and ion-
ization potential of matter I. While Eq. (II.2) describes properties of a particle traversing matter,
it can also be interpreted as a material parameter, and is then called the stopping power S.

In Eq. (II.2), the energy loss is proportional to v−2. Hence, while the particle slows down, it loses
more and more energy until it stops. At this point v = 0, in Eq. (II.2), a singularity is reached.
The distance traveled up to this point is called the particles’ range in that material, which may be
approximated with the continuous slowing down approximation (CSDA),

R(E0) =
∫ E0

0

1
−dE

dz

dE , (II.3)

where E0 is the initial energy of the incoming particle. Note that the CSDA assumes that the parti-
cle is continuously decelerated, which is not the case when observing a single particle. However,
as the mean over multiple particles, it can serve to estimate the range of a particle beam with ini-
tial energy E0. In total, the single particles will exhibit slightly different ranges, an effect known as
range straggling. Taken together, the expected energy loss of a particle beam along its impinging
axis dependent on traveled distance z will slowly increase, exhibit a maximum shortly before the
mean range, and then suddenly fall of to zero. This Bragg-curve (named after its discoverer) is
illustrated in Fig. II.1 for a proton beam penetrating a water phantom.

II.1.1.3 Mulঞple Coulomb sca�ering

Particles traversing matter not only loose energy due to inelastic scattering with hull electrons.
While inelastic scattering of the incoming particle with material nuclei may also occur, the nuclear
interactions are predominantly elastic, and the incoming particles will change their trajectory in
each scattering event.

Such single elastic scattering events are well described by Rutherford’s theory, but the multiple
case is theoretically more complex to evaluate (Newhauser and Zhang 2015). One of the most
completely developed theories stems from Molière (for a recent review see Bednyakov 2014),
requiring complex and lengthy computations. Since scattering under large angles rarely occurs,
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Figure II.1: Normalized energy loss dE /dz of a proton beam in water along the impinging axis z (i. e., the Bragg-
curve), with a range of R = 187 mm and initial energy E0 ≈ 170 MeV. Based on data from matRad, which assumes an
initial energy spectrum of non-zero width and corresponding range straggling (Wieser et al. 2017b).

Gottschalk et al. (1993) discussed approximations that neglect the respective higher order terms
developed by Molière. In particular, Gottschalk et al. (1993) showed that two-dimensional cylin-
drical Gaussian approximations are suited for representing the angular distribution for small
angles θ with characteristic angle θ0:

f (θ) =
1

2πθ2
0

exp

[
−1

2

(
θ

θ0

)2
]

. (II.4)

During the particles journey through the material, the characteristic angle θ0 increases. Hence,
the energy loss distributes over a widening lateral profile which has approximately cylindrical
Gaussian form.

II.1.2 Pencil-beam dose calculaঞon

For computational treatment planning before patient irradiation, the physical principles briefly
outlined above have to be translated into computer algorithms. The dose d(r) at a coordinate
r is delivered through external beams created by a particle accelerator, i. e., a synchrotron or a
cyclotron. While there are multiple ways to create the desired irradiation fluence, this thesis’ work
is based on an active scanning technique with full 3D intensity-modulation of the irradiation field
(Lomax 1999). This means that the fluence of a beam is generated through nB focused, each itself
nearly monoenergetic pencil-beams. The particle fluence of these individual pencil-beams is then
represented through a fluence vector w ∈ R

nB
+ , where R

nB
+ is the positive orthant within the nB-

dimensional real space. This allows representation of the irradiation dose d at a coordinate r as

d(r) = ∑
j

Dj(r)wj , (II.5)
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where Dj(r) is the normalized dose influence of pencil-beam j in coordinate r.
In a common therapeutic setting, a computed tomography (CT) image, where the patient is

positioned as intended for treatment, is taken for the computerized planning process. Such a CT
image is discretized into small volumetric elements called voxels (i. e., the 3D analog to pixels),
each providing a photon attenuation value measured in Hounsfield units (HU). Structures rele-
vant for the treatment planning workflow, denoted as volume of interests (VOIs), are segmented
by clinical staff and define target structures as well as organs at risk (OARs).

The discretization also translates to dose d and dose influence Dj(r), such that dose is repre-
sented as a vector d ∈ R

nV
+ with number of voxels nV . This gives D ∈ R

nV×nB
+ the shape of a

matrix, where the dose di in all voxels i is computed by a matrix multiplication

di = ∑
j

Dijwj ⇒ d = Dw (II.6)

with the fluence vector w.

II.1.2.1 Pencil-beam scanning grid

To compute the dose, steering information for the irradiating machine has to be generated or
provided. Besides selection of beam angles, for intensity-modulated particle therapy (IMPT) this
means the definition of the scanning grid, i. e., the distribution of Bragg-peaks inside the target,
by selection of appropriate energies, as depicted in Fig. II.2.

xray
zray

Figure II.2: Schematic illustration of the definition of the pencil-beam scanning grid. The goal is to place Bragg-
peaks ( ) within a target ( ). To do so, from the virtual beam source ( ) the appropriate range/energy has to
be determined by ray-casts ( ) through the image. With appropriate lateral spacing, a set of central rays ( )
is selected, on which multiple energies are selected to create a spread out Bragg-peak with respective pencil-beams.
Note that in the “real world” setting, the source is much further away from the patient’s skin ( ), and therefore the
rays are nearly parallel. Also the coordinate system of the ray is, in general, different from the voxel grid in the patient
coordinate system indicated in the background. Adapted from the matRad Wiki.1

II.1.2.2 Water-equivalent path length

For such a placement of Bragg-peaks within the target, the appropriate range/energy has to be
determined. For this, the stopping power of the patient is required, as described above in Sec-

1https://github.com/e0404/matRad/wiki/Dose-influence-matrix-calculation [accessed 28.04.2018]
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II.1 Proton therapy physics

tion II.1.1.2. The CT scan, in general, only provides HU values for every voxel. Using a look-up
table (LUT), based on measurements and calculations, the HU values are usually converted to a
relative stopping power compared to water (Newhauser and Zhang 2015).

Performing a ray-cast, i. e., a line integral, through this converted image (Siddon 1985) from the
beam’s source now generates a water-equivalent path length (WEPL) for each (relevant) voxel per
beam. Since the range of a proton beam in water can be computed or measured beforehand, this
allows for selection of the required energies as soon as the WEPL within the patient is available.
Furthermore, the now available ray-cast images, each of them providing the WEPL as seen from
each beam’s source, can be used for calculation of the actual dose as described below.

II.1.2.3 Coordinate separaঞon

The physics outlined in Section II.1 is described within the coordinate system of the incoming
particle beam, i. e., the beam’s eye view (BEV). This suggests computation of dose directly in the
BEV, since then the dose calculation can be separated into computation of a depth-dependent
part Z, and lateral components Lx and Ly (Hong et al. 1996). An element of the dose influence
matrix Dij may hence be written as

Dij = Lx
ij
(

xij; zij,WEPL; E0,j
)

Ly
ij

(
yij; zij,WEPL; Ej

)
Zij
(
zij,WEPL; E0,j

)
, (II.7)

with the lateral coordinates xij and yij of voxel i in the respective ray coordinate system (compare
Fig. II.2), its WEPL zij,WEPL and the initial energy E0,j of pencil-beam j. Note that in Eq. (II.7) also
the lateral components depend on the respective effective depth zij,WEPL in voxel i, as described
by Schaffner, Pedroni, and Lomax (1999).

II.1.2.4 Base data

In Eq. (II.7) all components are parametrized by the initial pencil-beam energy E0,j. Since the
other coordinates are merely of geometrical nature, it is in general possible to use analytical ap-
proximations to compute all components Z, Lx, Ly (Bortfeld 1997; Gottschalk et al. 1993; Hong
et al. 1996).

A in clinical applications more common alternative is to tabulate data gained from measure-
ments or Monte Carlo simulations of the dose deposited by a pencil-beam in water. That is, for
each available initial energy, the Bragg-curve (compare Fig. II.1) is stored in a LUT dependent
on the WEPL, integrated along the respective lateral spectrum. This allows to represent the lat-
eral components as normal distributions, whose width/variance [λx/y

j (zi,WEPL)]
2 can be similarly

stored in a WEPL dependent LUT.
The dose influence element Dij from Eq. (II.7) is then expressed as

Dij = N
(

xij; µx
j , (λx

ij)
2
)
N
(

yij; µ
y
j , (λy

ij)
2
)

Zij , (II.8)

where the lateral position µ
x/y
j of the central ray corresponding to pencil-beam j vanishes, if

Eq. (II.8) is computed directly in the coordinate system of the respective ray.

7



Chapter II Background & Literature Review

That is, the components can be defined based on the combination on voxel index i and pencil-
beam index j, since the respective geometrical coordinates, WEPLs and pencil-beam energy are
known and can be used to query and interpolate values stored in the LUTs.

II.2 Inverse treatment planning

Modern clinical treatment plans are not completely manually defined. Instead, a set of basic pa-
rameters is given by the planner, i. e., beam geometry, modality etc., complemented by a set of
objectives and constraints for an inverse planning routine that optimizes the irradiation beam flu-
ences to create therapeutic dose distribution. From a clinical point of view, the goal is to maximize
tumor control probability (TCP) while keeping normal tissue complication probability (NTCP)
at a minimum. Due to difficulties on modeling consistent and correctly normalized TCP and
NTCP, treatment planning relies on mathematical objectives and constraints based on surrogate
plan metrics from which NTCP and TCP can be estimated (see e. g. Marks et al. 2010).

In the following, indicators relevant for this thesis will be introduced, and their usage in treat-
ment plan optimization will be outlined shorty, together with a brief introduction into the opti-
mization problem and routine.

II.2.1 Clinical endpoints & treatment plan quality metrics

Note that in the following, all indicators are usually related to a VOI v. For the rest of this section,
d will represent the dose vector over nv voxels belonging to an arbitrary VOI.

II.2.1.1 Dose-volume histograms

Dose-volume histograms (DVHs) are amongst the most widely used plan metrics used for evalu-
ation of treatment plans. A DVH is a normalized cumulative histogram of the dose within a VOI.
Hence, a DVH-point, i. e., a dose-volume DVH(d̂), represents the volume fraction that is covered
by at least dose d̂. DVH(d̂) can be represented with the Heaviside step function Θ(x) as

DVH(d̂; d) =
1
nv

∑
i∈v

Θ
(

di − d̂
)

. (II.9)

Note that the first derivative w. r. t. dose yields a conventional, yet normalized histogram of the
dose values d. The DVH is of special importance, since all following plan metrics can be also
reasonably well approximated from a computed DVH with a sufficient number of histogram bins.

II.2.1.2 Extreme values & mean dose

Plan metrics also include trivial statistics over the dose vector d. This includes minimum dose
min d and maximum dose max d as well as the mean dose d̄ in the VOI:

d̄ =
1
nv

∑
i∈v

di . (II.10)
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Since minimum and maximum dose are particularly sensitive, often weaker criteria are used
which can be deducted from the inverse DVH−1(v̂; d) as

dv̂(d) = DVH−1(v̂; d) , (II.11)

where dv̂ corresponds to the minimal dose received by the volume fraction v̂ = DVH(dv̂; d). For
example, d98 %, i. e., the minimal dose that is received by 98 % of the volume of the VOI, could
serve as a surrogate for min d. For the maximum, one could analogously use the minimal dose
received by 2 % of the VOI’s volume. In general, these values correspond to order statistics of the
dose vector d in VOI v.

II.2.1.3 Equivalent uniform dose

An alternative to order statistics, i. e., the inverse DVH-points, is given by equivalent uniform dose
(EUD). EUD as introduced by Niemierko (1997) aims at defining a VOI-specific dose level EUD(d)
derived from d that induces the same radio-biological effect on the tissue when homogeneously
irradiated with. For example, a single cold spot in the tumor is extremely significant and may
lead to unintended survival of tumor cells, and thus the EUD in the tumor will be lower than the
respective mean dose from Eq. (II.10) if such a cold spot is present.

Niemierko (1999) later generalized the concept to be represented by the generalized mean for-
mula

EUDκ(d) =

[
1
nv

∑
i∈v

dκ
i

] 1
κ

, (II.12)

where the exponent κ can also take non-integer values. While EUD defined by Eq. (II.12) is also
often denoted as “gEUD”, the prefix “g” will be omitted and further use of the term EUD in this
thesis will refer to the definition from Eq. (II.12).

EUD as defined in Eq. (II.12) yields two interesting limits. If κ approaches positive infinity,
i. e., κ → ∞, one has EUDκ(d) → max d, and similarly for κ → −∞ one has EUDκ(d) → min d.
Between this extremes, choice of κ continuously determines sensitivity to heterogeneities.

In practice, κ may be referenced as a “tissue-parameter” that describes the sensitivity of distinct
organ and tumor types. As such, EUD is of particular importance in modeling NTCP (e. g. Marks
et al. 2010).

II.2.2 Computaঞonal treatment plan opঞmizaঞon

For treatment plan optimization, the goal is to shape the dose distribution d such that it approx-
imates the prescribed dose d∗ as good as possible. In general, d∗ contains the desired tumor
dosage in all voxels inside target structures, and is zero otherwise. However, the dose distribu-
tion d cannot be arbitrarily shaped, but linearly depends on the particle fluence vector w (com-
pare Eq. (II.6)). Consequently, healthy tissue is necessarily irradiated when covering the target.
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Hence, one attempts to approximate d∗ by parameterizing a set of objectives and constraints, pos-
sibly representing the clinical endpoints described above, to factor in and trade off different tissue
and tumor responses.

II.2.2.1 Opঞmizaঞon problem

An optimal fluence w∗ can be found by solving the optimization problem

w∗ = arg min
w

F (d(w)) = ∑
s

psFs (d(w))

subject to w ≥ 0

ci (d(w)) ≤ 0 i = 1, . . . , m

hj (d(w)) = 0 j = 1, . . . , p

(II.13)

with objective function F , possibly composed out of sub-objectives Fs weighted by a manually
defined penalty ps. 0 denotes the vector of zeros to bound the fluence w to physically sensible
positive values during optimization, and ci and hj are inequality and equality constraints, respec-
tively. Note that within the scope of this thesis, objective and constraints indirectly depend on w
through d, separating the problem into a dose-dependent and fluence-dependent part. Implica-
tions of this separation will be addressed further below. Also, equality constraints have limited
applications in radiation therapy, but are named for the sake of completeness.

Opঞmizaঞon technique: Several techniques exist to solve optimization problem (II.13). In gen-
eral, optimization of problems with non-linear constraints is based on replacing the constrained
problem with an unconstrained one through penalty methods (for inequality constraints) and
augmented Lagrangian methods (for equality constraints) (Nocedal and Wright 2006). The sci-
entific work described by this thesis relies on interior-point optimization using the open-source
optimizer IPOPT (Wächter and Biegler 2006), and alternatively the fmincon2 routine from the
“Optimization Toolboox” of MATLAB.

Interior-point methods base on formulating inequality constraints as logarithmic barrier func-
tions using slack variables to create an unconstrained problem whose objective function is defined
in an “interior space” (hence the name) bounded by the constraints. The unconstrained prob-
lem is then optimized with a Quasi-Newton algorithm using an L-BFGS approximation. For a
thorough introduction into the optimization method, the interested reader may be forwarded to
Nocedal and Wright (2006) and Wächter and Biegler (2006).

Quasi-Newton & derivaঞves: Where Newton-methods require the first and second derivatives
of the objective function, i. e., its gradient and its Hessian w. r. t. the optimization variable, quasi-
Newton methods require only the gradient and approximate the Hessian (Nocedal and Wright
2006).

2https://de.mathworks.com/help/optim/ug/fmincon.html [accessed 28.04.2018]
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II.2 Inverse treatment planning

Due to the dependence of objective and constraints on the optimization variable w through d
in problem (II.13), computation of the gradient ∇wF separates into

∇wF =
∂F
∂w

=

[
∂d
∂w

]T

· ∂F
∂d

= DT ∂F
∂d

, (II.14)

by application of the chain rule. Similar separations in d and w are applicable for the constraint
functions, where the Jacobian Jc,h over all constraint functions is required.

Equation (II.14) is particularly convenient when the objective function is composed of several
sub-objectives as in Eq. (II.13). Then, during an iterate in optimization, first the derivatives w. r. t.
d of all objectives can be efficiently evaluated based on the current dose. Afterwards, the com-
putationally expensive product involving the transposed dose influence matrix DT in Eq. (II.14)
needs only to be exercised once to obtain the derivatives w. r. t. w.

II.2.2.2 Objecঞve Funcঞons

In the following, common objectives relevant for this thesis are outlined below. Interested readers
might, at this point, also be referred to Wu and Mohan (2000).

(Piece-wise) Squared Deviaঞon: The most basic objective function is based on a penalized least-
squares fit of the dose distribution d to the prescribed dose d∗ (Oelfke and Bortfeld 2001).

For a VOI v with nv voxels, for example, the least-squares objective FLS(d) is computed over
all voxels i ∈ v via

FLS(d) =
1
nv

∑
i
(di − d∗i )

2 . (II.15)

When composing the overall objective function according to Eq. (II.13) with multiple objectives
that are only of type (II.15), F can be compactly written in matrix notation as

FLS (d) = (d − d∗)
T P (d − d∗) , (II.16)

where P = n−1
v diag(p1, p2, . . . , pnV ) is a diagonal matrix encoding normalized volume based

penalties pv per voxel.

Piece-wise definition: To better include tolerances of OARs to small doses, it may be desirable
to relax the objective (II.15) up to a certain tolerance dose value dmax. Such a relaxation can be
incorporated using step-functions as positivity operators, under which Eq. (II.15) becomes

FLS+(d) =
1
nv

∑
i

Θ (di − dmax
i ) (di − dmax

i )2 . (II.17)

Objective (II.17) now has no contribution if the dose falls below dmax.
Note that such relaxations are also possible when exceeding a threshold dmin by changing the

sign of the argument of the Heaviside step Θ(−x).
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Mean dose & EUD: The open-source treatment planning toolkit matRad (Wieser et al. 2017b)
includes mean dose and equivalent uniform dose as bare minimizers of dose in healthy tissue.
Consequently, they are trivially formulated as

FEUDκ

(d) = EUDκ(d) (II.18)

Fmean(d) = EUDκ=1(d) = d̄ , (II.19)

i. e., directly represented by Eqs. (II.10) and (II.12) used for their computations.
Due to their importance for NTCP-modeling (Marks et al. 2010), more complex objectives, es-

pecially based on EUD, exist (Choi and Deasy 2002; Mohan et al. 1992; Wu et al. 2002). However,
these are not relevant for the scientific work described by this thesis, and therefore omitted.

Dose-volume histogram objecঞves: Objectives based on DVHs intend to give better control over
the dose distribution (Wu and Mohan 2000), particularly avoiding local cold- or hot-spots that can
arise when optimizing with objective functions (II.15) & (II.17).

The definition from Wu and Mohan (2000) for a maximum DVH-objective, also used by Wieser
et al. (2017b), complements the piece-wise least squares objective from Eq. (II.17) with an addi-
tional Heaviside step Θ(dv̂ − di) where dv̂ is the (minimal) dose to the prescribed volume fraction
v̂ is receiving according to Eq. (II.11):

FDV+(d) =
1
nv

∑
i

Θ (di − d∗v)Θ
(
dv̂ − di

)
(di − d∗v)

2 . (II.20)

When now prescribing a relative volume v̂ and a dose d∗v to a VOI, the term Θ(dv̂ − di) excludes
values below dv̂. This means that as soon as DVH(d∗v; d) ≤ v̂, the objective function is minimal,
namely zero. Similar considerations apply for minimum DVH-objectives by changing the sign of
the arguments of the Heaviside-steps.

II.2.2.3 Constraints

Wieser et al. (2017b) formulate inequality constraints for EUD, mean dose and DVH-points di-
rectly based on the formula used to compute the respective plan metric for evaluation (compare
Eqs. (II.9), (II.10) and (II.12)). Hence those are not explicitly stated.

For minimum and maximum dose constraints, however, a “LogSumExp”-approximation is
used to avoid the definition of voxel-wise constraint functions for computational efficiency,

cmax d = κ ln

[
∑

i
exp

(
di − dmax

κ

)]
≤ 0 , (II.21a)

cmin d = κ ln

[
∑

i
exp

(
dmin − di

κ

)]
≤ 0 . (II.21b)

where κ is a parameter to control the steepness of the smooth approximation. matRad, for exam-
ple, uses a value of κ = 1 × 10−3.
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II.3 Uncertainঞes in proton therapy and their miঞgaঞon

Conducting a radiation treatment requires control of several parameters for the patient, the ma-
chine and treatment plan computation. Due to the fundamental presence of uncertainty in any
experimental or engineered set-up, the actual treatment is merely an unknown realization from
the probability distributions of these parameters. This uncertainty in parameters propagates to an
uncertainty in dose (Goitein 1985), which needs to be considered and mitigated in any radiation
treatment planning, regardless of radiation type.

This section gives a state-of-the-art review of quantifying and mitigating uncertainties in pro-
ton therapy. Note that distinct aspects are more or less important for the work with APM in
Chapters III to VII, and therefore a more specialized review is given at the beginning of each
respective chapter.

II.3.1 Sources of uncertainty

Sources of uncertainty in radiotherapy are omnipresent. Particle therapy, however, is especially
sensitive to geometric and calculational uncertainties. There, the Bragg-peak is at the same time a
blessing and a curse; the localized energy loss at the range of the particles allows precise shaping
of conformal dose distributions, however, inexact knowledge of the tissue traversed up to the
peak may induce significant uncertainty in the dose distribution (Lomax 2008b), which is to the
same extent not the case in photon therapy. Such inexact knowledge may not only be caused
by calculational errors in the treatment planning process, but also displacements and inter-field
motions (Lomax 2008a).

This thesis will focus on three aspects of uncertainty, which will be introduced below: (1) spa-
tial set-up uncertainty, i. e., a displacement error of the anatomy relative to the irradiating beam,
(2) calculational range uncertainties, i. e., the miscomputation of WEPL, and (3) aspects on both
previous uncertainties under fractionation where they separate into systematic and random com-
ponents. Furthermore, at the end of this section, additional sources of uncertainties are discussed,
which are not evaluated in this thesis but play a critical role nevertheless.

II.3.1.1 Set-up uncertainঞes

As explained in Section II.1.2.1, the definition and optimization of a treatment plan is usually
based on a pre-treatment planning CT. When the patient is set-up in the treatment room, it has
to be ensured that the patient’s position is consistent with the CT image. This is usually achieved
by skin markers which are matched with laser positioning systems, and/or x-ray images within
the treatment room to evaluate anatomic differences and misalignments.

The efforts made show the importance of patient positioning for generation of accurate treat-
ment plans. A misalignment of the patient not only means a static spatial shift of the dose distri-
bution within the patient, but also changes the irradiated anatomy. Especially in particle therapy,
this may lead to range changes and thus non-trivial distortions of the dose distribution. Figure II.3
gives an example for such a misalignment.
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Figure II.3: Examplary error scenarios for a prostate case irradiated with a single proton beam. (a) shows the orig-
inally optimized dose distribution, while in (b) the patient is misaligned by 3 mm in cranial direction, i. e., a lateral
displacement relative to the beam axis. (c) simulates a systematic underestimation of WEPL by 3.5 %, resulting in a
corresponding range overshoot.

II.3.1.2 Range uncertainঞes

Another source for potential errors lies in the conversion from the acquired CT, given in HUs,
to particle stopping power (compare Section II.1.2.2). Incorrect knowledge of the exact tissue
composition, and therefore in particular of the ionization potential I, as well as imaging artifacts
contribute to a consequent uncertainty over the WEPL.

Lomax (2008b) suggests an uncertainty of±3 % based on measurements of the calibration curve
for converting HU to stopping power (see also Schaffner, Pedroni, and Lomax 1999) and on es-
timates of CT acquisition uncertainties. A more pessimistic estimate is provided by Paganetti
(2012b) who suggests values between 2.7 % to 4.6 % plus an additional absolute component of
1 mm when analytical pencil-beam models are used, compared to ±2.4 % + 1 mm when using a
dosimetrically more accurate Monte Carlo simulation of the dose distribution.

While these uncertainties affect the complete path of the particle, they are usually called range
errors, since they induce the largest dose uncertainty in the vicinity of the Bragg-peak, i. e., near
the range of the particle, which corresponds to the region with the largest depth-dose gradients.

An example for the distortion of the dose distribution subject to a 3.5 % underestimation of the
WEPL is shown in Fig. II.3. Note that such “overshoot” scenarios as in Fig. II.3c assume perfect
correlation of the range uncertainty over all all pencil-beams. The validity of this assumption
has been questioned by certain authors (e. g. Pflugfelder, Wilkens, and Oelfke 2008; Unkelbach
et al. 2009). They suggest alternatives, in which the range errors are only perfectly correlated
for pencil-beams traversing the same tissue. Such correlation models will be introduced in more
detail in Section III.6 and evaluated in Chapter IV.

II.3.1.3 Fracঞonaঞon - random and systemaঞc uncertainঞes

Radiation treatments are in general applied across several treatment fractions. Hence errors oc-
curring during the daily routine compared to errors that realize once in the computed treatment
plan exhibit different autocorrelations across fractions. The first kind, i. e., errors that indepen-
dently occur during the daily fraction, are subject to no autocorrelation and therefore of random
nature. Systematic errors are formed by the second kind, which exhibit perfect correlation through
all treatment fractions. As a consequence, over the course of a fractionated treatment random un-
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certainties might cancel out and become less significant compared to systematic errors.
Of course these assumptions are simplifying, yet common in academic literature. Recent scien-

tific publications assessing the interplay of random and systematic uncertainties (like e. g. Kraan
et al. 2013; Lowe et al. 2016; Park et al. 2013; Perkó et al. 2016) usually rely on respective autocor-
relation assumptions over random and systematic uncertainty. As magnitude for the expected
uncertainties Park et al. (2013) assumed 2 mm for a mix of treatment sites (i. e., prostate, lung,
and brain cancer) and modalities (i. e., passive scattered and actively scanned beams) for system-
atic and random error. Perkó et al. (2016) uses similar assumptions for head-and-neck patients.
Lowe et al. (2016), focusing only on thoroughly immobilized head and spinal patients, assumed
much smaller uncertainties with sub-mm systematic and ≈ 1 mm random uncertainties. Kraan
et al. (2013) simulated a variety of magnitudes ranging from 1 mm to 3 mm for oropharyngeal
cancer.

II.3.1.4 Addiঞonal sources of uncertainঞes

In addition to the above discussed uncertainties, which base on geometrically static displacements
and relative errors of the WEPL, other sources of uncertainty can be identified. These include
additional inter-fractional as well as intra-fractional affects, i. e., uncertainties that span multiple
fractions and uncertainties that occur during dose delivery, respectively, which are not sufficiently
modeled by definition of random and systematic range or set-up uncertainties (Kraan et al. 2013;
Thörnqvist et al. 2013).

For example, in-between fractions anatomical deformations might occur, i. e., OARs and tumor
could move or shrink, or cavities could get filled or emptied. During a fraction, movement inter-
plays with the delivery pattern of the scanning grid (Liu et al. 2012a). In particular, respiratory
motion during delivery can lead to heavy distortions in the actually delivered dose distributions
(Knopf et al. 2013; Ulrich et al. 2017).

Modeling of these uncertainties inherits difficulties from the respective imaging problem, as for
example accurate deformable image registration and dose accumulation on these images. Also, it
implicates advanced aspects on treatment delivery which are still in its early stages, as for example
treatment plan adaptation using volumetric in-room imaging (Veiga et al. 2016). Consequently
this thesis does not model such uncertainties, as the focus lies on more fundamental aspects of
probabilistic modeling and optimization.

II.3.2 Uncertainty propagaঞon & miঞgaঞon

The above review of uncertainty sources and their magnitudes not yet captures the difficulty in
modeling and mitigating those. While already Goitein (1985) suggested uncertainty modeling
specific to the dose distribution at hand, e. g. by recalculation of dose under error scenarios, un-
certainty assessment in photon therapy has been based on heuristic assumptions (Herk et al. 2000)
that are derived from a static dose-cloud assumption, i. e., the dose distribution does not change
its geometrical shape yet its relative location under displacements and deformations (Bortfeld,
Jiang, and Rietzel 2004). It was quickly realized that the robustness of a proton treatment is inad-
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equately addressed with heuristic margin concepts because the static dose cloud assumption is
invalid (Albertini, Hug, and Lomax 2011; Lomax 2008a; Lomax 2008b). Consequently, the dose
distribution depends on the patient anatomy at hand and requires a case-specific assessment and
mitigation of those uncertainties.

II.3.2.1 Margin recipes

To keep the familiar margin concept, i. e., the definition of a planning target volume (PTV) around
the clinical target volume (CTV) to capture uncertainties, adaptation techniques have been pro-
posed to define margins that are suitable for use with proton or other particle beams. Knopf et
al. (2013), for example, suggested to compute WEPL variations based on a CT image time series
(4DCT), and adapt the margin contour accordingly. While their work focused on intra-fractional
motions, it would also be applicable to inter-fractional motion and other uncertainty sources, and
could rely on sampled WEPL computations if no 4DCT is available.

Such margins were suggested by Park et al. (2012) on beam specific basis. Using re-computations
of WEPL under lateral shifts and range variations, a margin was constructed based on the local
density variations. These showed significantly better robustness of CTV coverage (min. 94 %)
under simulations of error scenarios than when using the heuristic margin concept (min. 67 %).

Mitigation of the “margin problem” is further attempted through optimization for single-field
uniform dose (SFUD). In SFUD-optimized treatment plans, the degrees of freedom are limited to
separate optimization of beams, such that each each beam homogeneously irradiates the target
(Lomax 1999). Such treatment plans are argued to be more robust against uncertainties when
relying on a generic safety margins (Albertini, Hug, and Lomax 2010; Liu et al. 2012a; Zhu et
al. 2014). However, they can be seen as a sub-set of more advanced techniques which could, in
general, add SFUD optimization on top of their respective framework.

II.3.2.2 Robust & stochasঞc opঞmizaঞon

The adaptation techniques discussed above may, however, be seen as tools to bypass a direct
incorporation of uncertainty into the treatment plan optimization procedure. Since they partly
rely on re-computations under possible error scenarios, this poses the question why not to use
these scenarios directly within treatment optimization.

Over the last years, numerous approaches have been presented to incorporate uncertainties into
the optimization of proton treatment plans, mainly differentiating into worst-case approaches
(Chen et al. 2012; Fredriksson, Forsgren, and Hårdemark 2011; Liu et al. 2012a; Liu et al. 2012b;
Lowe et al. 2017; Pflugfelder, Wilkens, and Oelfke 2008; Steitz et al. 2016), or probabilistic ap-
proaches (Unkelbach, Chan, and Bortfeld 2007; Unkelbach et al. 2009). Note that also for photon
intensity-modulated radiation therapy (IMRT), numerous techniques have been proposed regard-
ing the worst-case (Bortfeld et al. 2008; Chan, Bortfeld, and Tsitsiklis 2006; Chan and Mišić 2013;
Chu et al. 2005) and probabilistic (Bohoslavsky et al. 2013; Sobotta, Söhn, and Alber 2010; Unkel-
bach and Oelfke 2004) approaches. Such techniques may often generalize to IMPT and may be
used with respective adaptations.
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Worst-case opঞmizaঞon: The worst-case approach generally tries to minimize the implications
of a pre-defined worst-case over the input uncertainties. For example, the range overshoot of 3.5 %
as depicted in Fig. II.3c, might be defined as the worst-case scenario. Worst-case optimization
now tries to optimize the plan to find a more robust fluence w̃∗ such that the implications of the
3.5 % overshoot are decreased. Hence, a less distorted dose distribution than in Fig. II.3c may be
achieved under realization of the same worst-case WEPL underestimation.

Worst-case optimization approaches differ in their definition of worst-cases and how they are
included in optimization. For example, a number of worst-case scenarios ds(w) can be defined for
a fluence w, which then get optimized with a minimax approach (Fredriksson 2012; Fredriksson,
Forsgren, and Hårdemark 2011):

w̃∗ = arg min
w

max
s

F (ds(w)) . (II.22)

Hence, after optimization the worst realization over all scenarios should have reached its minimal
objective value.

An alternative approach developed by Pflugfelder, Wilkens, and Oelfke (2008) and picked up
by Lomax (2008a) and Lomax et al. (2004) relies on definition of a voxel-wise worst-case distri-
bution dWC. dWC contains, for each voxel i, the minimum observed dose for target voxels or the
maximal observed dose in OARs across the respective worst-case scenarios ds:

dWC
i =

min ds
i i ∈ target

max ds
i i ∈ OAR

. (II.23)

Such a worst-case distribution might then be incorporated into optimization (compare Pflugfelder,
Wilkens, and Oelfke 2008; Steitz et al. 2016) via a (here simplified) composite objective function

F̃ (d, dWC) = F (d) + pWCF (dWC) . (II.24)

In addition to the objective function valueF (d) evaluated on d (compare Section II.2), the function
value F (dWC) evaluated on dWC is added and penalized with a worst-case penalty pWC.

Stochasঞc opঞmizaঞon: Stochastic optimization, also referred to as probabilistic optimization
(Unkelbach et al. 2009), does not rely on worst-case scenarios, but on the full probability dis-
tribution over the input uncertainties. Objectives are then optimized based on their probability
distribution, which is determined by stochastic scenario sampling from the distribution over the
input parameters. Unkelbach, Chan, and Bortfeld (2007) and Unkelbach et al. (2009), for example,
optimize an expected value E[F ] of the objective F using stochastic gradient descent. Their work
focuses on minimization of the expectation of the least-squares objective from Eq. (II.15).

Other works by Sobotta, Söhn, and Alber (2010) parametrize different objectives, for example
EUD from Eq. (II.18), with a normal distribution based on stochastic estimates and then minimize
the width of a respective confidence interval to achieve robustness.
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Limitaঞons: Both approaches suffer from specific advantages and limitations (Casiraghi, Alber-
tini, and Lomax 2013; Fredriksson 2012). Construction of either worst-case scenarios or samples
for stochastic optimization is expensive and has to be performed at each optimization step after
change of the fluence vector w. Unkelbach et al. (2009), for example, report run-times of sev-
eral hours for a stochastic treatment plan optimization. Further limitations concern the concepts
themselves. In the worst-case approach it is not clear what physical meaning, for example, the
voxel-wise worst-case distribution has. Also, it may yield overly conservative treatment plans
based on the defined worst-case. On the other other side, stochastic optimization might not be
conservative enough, since optimization of the expected value may not adequately ensure the
robustness against worst-cases. Eventually, both worst-case and stochastic approaches depicted
above will make treatment plans more robust, while however the degree of robustness is only
indirectly quantifiable.

II.3.2.3 Alternaঞve approaches

To overcome the limitations of worst-case and stochastic optimization, different intermediate ap-
proaches have been proposed (Fredriksson 2012; Gordon and Siebers 2009; Gordon et al. 2010;
Mescher, Ulrich, and Bangert 2017; Moore et al. 2009). Fredriksson (2012) for example, proposed
conditional value-at-risk optimization (Rockafellar and Uryasev 1997), which allows to scale the
optimization problem between expected value optimization and worst-case optimization. Gor-
don and Siebers (2009), Gordon et al. (2010), and Moore et al. (2009), for photon IMRT propose
to optimize coverage criteria based on dose-volume coverage maps (DVCMs). DVCMs represent
the cumulative probability distribution over all DVH-points, i. e., the probability P(v ≤ DVH(d̂))
that the volume v lies below the respective DVH-point at dose d̂:

DVCM(v, d̂) = P(v ≤ DVH(d̂)) . (II.25)

From these DVCMs, one can deduct quantile dose-volume histograms (α-DVHs), which corre-
spond to lines of iso-probability α within the DVCM:

α-DVH(d̂) = v ⇔ P(v ≤ DVH(d̂)) = α . (II.26)

Hence, α-DVHs represent the quantile functions of the distributions over all DVH-points.
Optimizing probabilities on a DVCM or α-DVH-points (e. g. similar to a DVH objective from

Eq. (II.20)) now gives a more direct control over the desired robustness. Mescher, Ulrich, and
Bangert (2017) extended this concept to enable DVCM constraints for IMRT for photons, giving
the possibility to prescribe a certain probability to a DVH point.

The discussed approaches, however, also rely on discretely computed scenarios, which are
either sampled randomly from an underlying probability distribution or placed on an evenly
spaced grid. This induces problems regarding accuracy and computational efficiency for opti-
mization. Grid-based sampling suffers from the curse of dimensionality, and thus may be only
efficiently used within low-dimensional uncertainty models or as worst-case estimates. Compu-
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tation of random samples allows to mitigate the problem with higher-dimensional multivariate
models, but still require a lot of samples to capture tails over the probability distribution of the
outcome. This is especially a problem in optimization of fractionated treatments, under which
sample approaches get computationally too expensive (Kraan et al. 2013; Park et al. 2013), and
simplifications have to be made (Lowe et al. 2017) for optimization.

There exists a limited amount of approaches to reduce the computational requirements of sce-
nario sampling approaches while maintaining or improving accuracy. For example, Perkó et al.
(2016) build a PCE of the probability distribution over dose using numerical integration on sparse
grids. This allows to achieve high accuracy of the probability distribution over dose with few
hundred samples incorporating the interplay of random and systematic errors, however only for
low dimensionality of the uncertainty model. Also, a generalization to optimization is difficult,
since the full expansion would need to be re-constructed as soon as the dose changes. Perkó et al.
(2016) report construction times of approximately 1 h. Consequently, PCE might serve as an accu-
rate tool for uncertainty analysis, but does not improve the situation regarding re-computations
during optimization.

Sobotta, Söhn, and Alber (2012), on the other hand, propose to model the response of treat-
ment plan metrics using Gaussian processes. They report a reduction of sample numbers by
approximately one magnitude to achieve similar accuracy as with random sampling. Still, the
required re-computations when the dose distribution changes during optimization, demand pa-
tience when waiting for an optimization result.

Both alternative approaches, however, still rely on sampled dose scenarios at their core, yet
they are drawn in a “smarter” way. The question is if it is possible to not use scenario samples
at all. That means a mathematical mapping from the input, i. e., the fluence generating the dose
distribution and the input uncertainties, to the output, i. e., uncertainty in dose and, more general,
treatment plan quality, has to be found. An approach introduced by Bangert, Hennig, and Oelfke
(2013) follows this idea, and since it forms the backbone of this thesis’ work, will be thoroughly
described in the following chapter.
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Chapter III

The Analyঞcal Probabilisঞc Modeling Framework

This chapter describes Analytical Probabilistic Modeling (APM) for radiation therapy, a concept
introduced by Bangert, Hennig, and Oelfke (2013). Instead of using statistics from scenario sam-
pling, APM uses approximations to a pencil-beam dose calculation algorithm in order to derive
closed-form approximations of expectation value and covariance of the dose distribution subject
to uncertainties over treatment parameters. Since APM lays the foundations for this dissertation,
this chapter recaps the derivations by Bangert, Hennig, and Oelfke (2013) and adjusts them to the
notation used throughout this manuscript. Note that during the preparation of this thesis, the
in the following described functionalities of APM were published by the author and Hans-Peter
Wieser and Mark Bangert within the APMToolbox.

III.1 Overview

At p given uncertain parameters/coordinates, denoted as random vector R ∈ Rp, the ν-th mo-
ment of the probability distribution over dose d(R), where fR is the probability density over R,
can be obtained by solving the volume integral

E [d(R)ν] =
∫

Rp
d(r)ν fR(r)dr . (III.1)

Attempting to solve Eq. (III.1) reveals multiple pitfalls: First of all, the random parameter set
R is composed of non-trivial quantities, i. e., WEPL, coordinates on a deformable anatomy etc.
Thus its uncertainty model is, in general, difficult to define and quantify (compare Section II.3).
Furthermore, the dose d(r) is a function which is difficult to represent analytically, and usually
computed numerically based on tabulated data values (compare Section II.1.2). Hence, to find
an analytical solution, a representation of the parameter space needs to be found in which an
uncertainty model fR(r) and an analytically tractable representation of dose d(r) can be defined.

Bangert, Hennig, and Oelfke (2013) approach the integral directly in the pencil-beam coordi-
nate frame used for computation of the dose influence matrix D (compare Section II.1.2) with
discrete spatial coordinates, i. e., voxel indices. Their uncertainty model reduces to lateral shifts
of pencil-beams, described by the random vectors ∆X/Y ∈ RnB , and offsets to the computed WEPL
∆Z ∈ RnB , where nB is the number of pencil beams. The uncertainty over those offsets is described
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by a multivariate distribution

f∆X/Y/Z (∆x, ∆y, ∆z) = f∆X (∆x) f∆Y (∆y) f∆Z (∆z) (III.2)

factorizing into the spatial components.
In this parametrization, using d = Dw, integral (III.1) can be written as

E
[(

D
(

∆X, ∆Y, ∆Z
)

w
)ν]

=
∫∫∫

R3·nB
(D (∆x, ∆y, ∆z)w)ν f∆X/Y/Z (∆x, ∆y, ∆z)d∆xd∆yd∆z .

(III.3)

Following the spatial factorization from Eqs. (II.7) and (III.2), integral (III.3) may be solved for
each spatial dimension independently.

A closed-form solution now requires an approximation of D (∆x, ∆y, ∆z) to be integrable against
the probability density f∆X/Y/Z (∆x, ∆y, ∆z). Bangert, Hennig, and Oelfke (2013) chose a multivari-
ate normal distribution for f∆X/Y/Z , i. e.,

f∆X/Y/Z (∆x, ∆y, ∆z) = N (∆x; 0, Σx)N (∆y; 0, Σy)N (∆z; 0, Σz) (III.4)

with zero means and covariance matrices Σx, Σy, Σz ∈ RnB×nB . Then they constructed D (∆x, ∆y, ∆z)

completely from (superpositions of) Gaussian functions along each spatial dimension, allowing
the use of Gaussian algebra (compare Appendix A.1.4) to solve integral (III.3).

Section III.2 will explain this approximation, and Sections III.3 and III.4 will summarize the
solutions of Eq. (III.3) for the first two moments ν = 1 and ν = 2, respectively. Section III.6 will
then introduce uncertainty models to parametrize f∆X/Y/Z .

III.2 The Gaussian pencil-beam dose model

Considering the lateral spread Lx/y of a pencil-beam, analytical pencil-beam dose calculation al-
gorithms model Lx/y as (a superposition of) Gaussians anyway (compare Eq. (II.8)). However,
the depth-dose component Z, i. e., the Bragg-curve, is often just stored as a LUT of depth-dose
values at indexed depths, where such LUTs are then computed for set of energies that can be pro-
vided by the accelerator (see Section II.1.2). While analytical models for the Bragg-curve do exist
(Bortfeld 1997), their analytical integration against Gaussian probabilities is not straightforward,
especially when higher moments (ν > 1) shall be computed. For this reason Bangert, Hennig,
and Oelfke (2013) suggested to model the Bragg-curve with a superposition of Gaussian func-
tions up to desired accuracy, allowing them to solve all necessary integrals analytically with the
same principle along all three spatial dimensions.

For the Gaussian model of the Bragg-curve, Bangert, Hennig, and Oelfke (2014) empirically de-
termined that with ten Gaussian components sufficient accuracy is obtained; then they “observe
less than 0.3 % average deviation of the Gaussian parametrization [i. e., Eq. (III.5)] from the […]
proton depth dose curve for proton ranges R ≤ 35 cm.” The resulting depth-dose contribution
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Zij of a pencil-beam j to voxel i using a superposition of ten Gaussian components is then given
by

Zij =
10

∑
k=1

ωjkN
(

zij; µz
jk, δ2

jk

)
, (III.5)

where zij is the WEPL from the source of pencil-beam j to voxel i. µz
jk and δ2

jk are mean and variance
of the k-th Gaussian component weighted with ωjk, which are obtained by a fit to reference pencil-
beam base data.

This approximations is accompanied by the Gaussian lateral components

Lx
ij = N

(
xij; µx

j , λ2
ij

)
(III.6)

as in Eq. (II.8), where xij is the geometrical distance of voxel i to the central beam-axis along the
x-dimension in BEV, and µx

j refers to the respective lateral position of the central pencil-beam ray.
λ2

ij describes the broadening of the pencil-beam j in depth and is assumed to be the same along
both lateral coordinates x and y. Consequently, it increases with the respective WEPL zij. Please
note Eq. (III.6) only depicts lateral profiles shaped by single Gaussian components. However,
since all following computations generalize to superpositions of Gaussian components as used
in Eq. (III.5), also multiple Gaussian components could be used to provide a more accurate lateral
beam model (Bellinzona et al. 2015).

Using the Gaussian model, the random dependence of the dose influence D (∆x, ∆y, ∆z) on the
spatial offsets ∆x/y/z can now be easily incorporated into all spatial components from Eqs. (III.5)
and (III.6) as

Zij

(
∆z

j

)
=

10

∑
k

ωjkN
(

zij + ∆z
j; µz

jk, δ2
jk

)
, (III.7)

Lx
ij

(
∆x

j

)
= N

(
xij + ∆x

j ; µx
j , λ2

ij

)
. (III.8)

The computations for Ly are analogous to Eq. (III.8).

III.3 Expectaঞon value

Computation of the expectation value requires the analytical evaluation of Eq. (III.3) for ν = 1,
i. e., computation of the first raw moment. For the lateral component, this results in

Lx
ij

!
= E

[
Lx

ij

(
∆X

j

)]
=
∫ ∞

−∞
Lx

ij

(
∆x

j

)
f∆X

j

(
∆x

j

)
d∆x

j

=
∫ ∞

−∞
N
(

xij + ∆x
j ; µx

j , λ2
ij

)
N
(

∆x
j ; 0, Σx

jj

)
d∆x

j

= N
(

xij; µx
j , λ2

ij + Σx
jj

)
������������:1∫ ∞

−∞
N
(

∆x
j ; µ̃, σ̃2

)
d∆x

j

(III.9)
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where, in step two, Eq. (A.12) was applied.

The expectation value Zij = E[Zij] is computed analogously for all weighted components read-
ing

Zij =
10

∑
k=1

ωjkN
(

zij; µz
jk, δ2

jk + Σz
jj

)
(III.10)

This yields an expected dose influence matrix D ∈ RnV×nB with elements

Dij = E
[
Dij
]
= Lx

ijL
y
ijZij . (III.11)

Hence, D is of similar structure as D, with the difference of slightly broader Gaussian compo-
nents. Conveniently, this enables use of similar algorithms for expected as well as nominal dose
computations.

For instance, the expected dose influence matrix D maps the pencil-beam weights w to the
expected dose vector E[d] via the linear transformation

E [d] = Dw , (III.12)

analogous to the nominal dose d = Dw.

III.4 Covariance

Computation of the second moment follows a similar principle like computation of the expecta-
tion value explained in Section III.3. Solving Eq. (III.3) for ν = 2 gives the second raw moment
E[D2

ij] of a dose influence matrix element Dij, allowing the computation of the second central
moment, i. e., the variance

Var
[
Dij
]
= E

[
D2

ij

]
− E

[
Dij
] 2 = E

[
D2

ij

]
−D2

ij (III.13)

using the results from Eq. (III.11). To generalize computation to the covariance, however, instead
of Eq. (III.13) the derivations to come will find expressions for E[DijDlm] to obtain

Cov
[
Dij, Dlm

]
= E

[
DijDlm

]
− E

[
Dij
]

E [Dlm] = E
[
DijDlm

]
−DijDlm . (III.14)

Since spatial independence had been assumed (compare Eq. (III.4)), computation of E[DijDlm]

can again be factorized into its spatial components, requiring an integral against the bivariate
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marginal distribution f∆X
j;m

describing the uncertain positioning of pencil-beams j and m:

Υx
ijlm

!
= E

[
Lij

(
∆X

j

)
Llm

(
∆X

m

)]
=
∫

R2
Lx

ij

(
∆x

j

)
Lx

lm (∆x
m) f∆X

j;m

(
∆x

j;m

)
d∆x

j;m

=
∫

R2
N
(

x(ij);(lm) + ∆x
j;m; µx

j;m, diag
(

λ2
ij, λ2

lm

))
N
(

∆x
j;m; 02, Σx

j;m

)
d∆x

j;m

(III.15)

Similar to Eq. (III.9), the integrand was expressed as a product of two multivariate normal dis-
tributions—this time with two dimensions. Notation for marginals follows definition at the be-
ginning of this thesis, i. e., x(ij);(lm) corresponds to the vector with elements (xij, xlm)

T, µj;m =

(µj, µm)T etc. After carrying out the product with Eq. (A.12), the integral can be solved and a
bivariate normal distribution remains:

Υx
ijlm = N

(
x(ij);(lm); µx

j;m, diag
(

λ2
ij, λ2

lm

)
+ Σx

j;m

)
. (III.16)

The computations for the depth component are similar, yet more cumbersome due to the su-
perimposing Gaussian components, and yield

Ξijlm
!
= E

[
Zij

(
∆Z

j

)
Zlm

(
∆Z

m

)]
= ∑

kn
ωjkωwnN

(
z(ij);(lm); µz

j;m, diag
(

δ2
jk, δ2

mn

)
+ Σz

j;m

)
.

(III.17)

Combining all spatial components, one can obtain a four-dimensional covariance influence “ten-
sor”1 C ∈ RnV×nB×nV×nB

Cijlm = Υx
ijlmΥy

ijlmΞijlm︸ ︷︷ ︸
C̃ijlm

−DijDlm (III.18)

in analogy to Eq. (III.11). C̃ijlm will be called the “raw contribution” to Cijlm, as it describes the
influence on the raw second moment of dose.

Hence, a tensor element Cijlm can be understood as the contribution of the marginal bivari-
ate probability distribution—dependent on the uncertainty model and respective correlation as-
sumptions—over the coordinates of pencil-beams j and m to the dose covariance in voxels i and
l. Contracting C two times with the pencil-beam weight vector w therefore maps them to the
covariance in dose d, giving an element of the dose covariance matrix Σd as

Σd
il = ∑

jm
Cijlmwjwm . (III.19)

1The term “tensor” has been put in quotation marks, since C is quite different from common physical tensors taking
geometrical vectors in space or spacetime as arguments. Since the indices i and l denote points in space for which
covariance shall be computed, C could be more accurately interpreted as a tensor field of second order (0,2)-tensors
on the domain of a dose covariance function kd(x, x′) = Cmj(x, x′)wjwm (using Einstein notation). Similar, D and
D can be understood as covector fields Dj(x) and Dj(x), respectively. Denoting C as a fourth order tensor does,
however, allow connection of tensor operations to quantities with physical meaning.
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(a) lateral profile (b) depth profile
(This figure is animated in the electronic PDF version of this thesis.)

Figure III.1: Visualization of the dose approximation and moment computation (expectation value and standard devi-
ation) for exemplary pencil-beam components L and Z. (a) illustrates the lateral component under uncertainty, while
(b) displays the Bragg-curve and the respective behavior of the expectation value of the ten Gaussian components
shown as gray lines.

While the variance is now given as the diagonal entries of Σd, it can also be directly computed
as

Var [di] = ∑
jm

Cijimwjwm , (III.20)

without explicit computation of elements i 6= l, which also allows designation of a sub-tensor
Vijm = Cijim with V ∈ RnV×nB×nB as variance influence tensor.

In Fig. III.1 results of the computation of expectation value and standard deviation of the spatial
components with APM are illustrated based on a single pencil-beam.

III.5 Opঞmizaঞon

Bangert, Hennig, and Oelfke (2013) also demonstrated feasibility of probabilistic optimization,
i. e., optimization of the expectation value of an objective function F , to find an optimal fluence
w∗:

w∗ = arg min
w

E [F (d(w))]

subject to w ≥ 0
. (III.21)

The derivations of Bangert, Hennig, and Oelfke (2013) are restricted to the expectation value
of the penalized least-squares objective E[FLS] from Eq. (II.16). Assuming d − d∗ follows a mul-
tivariate normal distribution, FLS follows a generalized χ2-distribution with expectation value
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E
[
FLS (d(w))

]
= tr

(
PΣd (w)

)
+ (E [d (w)]− d∗)

T P (E [d (w)]− d∗) , (III.22)

where P is the diagonal voxel penalty matrix from Eq. (II.16).

Using the expected dose influence matrix D derived in Section III.3, evaluation of the penal-
ized squared-deviation term (E[d (w)]− d∗)

T P (E[d (w)]− d∗) is of the same computational
complexity as evaluation of Eq. (II.16). This is, at first glance, not the case for tr

(
PΣd (w)

)
in

Eq. (III.22). Yet Bangert, Hennig, and Oelfke (2013) pointed out that it may be rewritten as

tr
(

PΣd (w)
)
= ∑

i
pi ∑

jm
Cijlmwjwm

= ∑
jm

wjwm ∑
i

piCijim︸ ︷︷ ︸
!
=Ωjm

= wTΩw

(III.23)

for optimization of problem (III.21) with a positive-definite (since Var[d] > 0) matrix Ω ∈ RnB×nB .
Ω can be interpreted as the penalized integral variance induced by co-varying pencil-beam com-
binations. Derivation of the gradient w. r. t. w is straightforward:

∇wE
[
FLS

]
= ∇w (E [d (w)]− d∗)

T P (E [d (w)]− d∗) +∇w tr
(

PΣd
)

= 2DTP (Dw − d∗) + 2Ωw .
(III.24)

Hence precomputation of Ω allows to avoid storage of C during optimization which in turn
avoids re-computation of Σd due to changes in w in-between successive iterations of the numer-
ical optimization routine.

III.6 Uncertainty model

Section II.3.1 explained that the definition of uncertainty models in radiation therapy is not triv-
ial. For range uncertainties, literature statements vary and give values from approximately 2 %
to 5 % (Lomax 2008b; Paganetti 2012b), and for set-up uncertainties values depend on the ap-
plied heuristics (see e. g. Lomax 2008a; Lowe et al. 2016). Furthermore, validity of correlation
assumptions of the respective uncertainties are debated (Unkelbach et al. 2009).

In general, APM is able to include a variety of uncertainty assumptions, and substantial amounts
of efforts could be put in an accurate definition of those. This thesis, however, does not focus on
finding the best suited uncertainty model, since it demonstrates first applications of APM and fur-
ther extensions. For this scope, the thesis relies on suggestions from literature to be represented
within the APM framework.
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III.6.1 Magnitude of the uncertainঞes

Literature statements (compare Section II.3.1) were boiled down to using a relative range uncer-
tainty of a few percent, and set-up uncertainties within few millimeters. Usually, magnitude of
the uncertainties is assumed to be constant across all pencil-beams. That is, all pencil-beams
are subject to range uncertainties of similar relative magnitude and to set-up uncertainties with
similar absolute magnitude. Relativeness of range error can be justified with the particle travers-
ing the tissue, where uncertainty WEPL piles up along the particle’s path. The absolute lateral
uncertainty corresponds to absolute displacements.

Assumptions used in Fig. III.1 reflect their magnitude, where relative range uncertainty is given
by σz = ±3.5 % of the WEPL, and a lateral set-up uncertainty of σx/y = ±2.5 mm was assumed.
Note that for the depth component, Eq. (III.10) and Eq. (III.17) do not explicitly model a rela-
tive uncertainty. The respective adaptations to the equations are, however, straightforward and
omitted.

In addition to the magnitude, assumptions over the correlations across pencil-beams and dif-
ferent fractions have to be made, as discussed in the following sections.

III.6.2 Correlaঞon model

The moment computations derived with APM allow arbitrary correlation models for the multi-
variate normal density in Eq. (III.4). Moreover, the computational complexity does not depend
on the the correlation model, yet optimizations are possible for certain patterns as explained in
Chapter IV. For example, if all spots of the same beam are expected to be shifted similarly in an
error scenario, this can be encoded in block structured covariance matrices Σ∆x/y . Alternatively,
other proposed uncertainty models (Bangert, Hennig, and Oelfke 2013; Pflugfelder, Wilkens, and
Oelfke 2008; Unkelbach et al. 2009) can be assumed. Examples for correlation models are illus-
trated based on their respective correlation matrix Cρ in Fig. III.2.

Note that even singular covariance matrices (i. e., perfect correlation) can be defined, since in
the resulting Gaussians from Eqs. (III.16) and (III.17) the respective marginal matrices are added
to the diagonal matrix composed of the width of the Gaussian components of the pencil-beam
algorithm. While this would, in theory, a priori require a more careful approach on handling
the degenerate multivariate distribution within the Gaussian integrals (i. e., a suitable subspace
measure with existing density has to be defined), this manuscript, as well as Bangert, Hennig,
and Oelfke (2013), omits detailed discussion of the respective computations leading to similar
results. Furthermore, the validity of the expressions (III.16) and (III.17) for singular covariance
matrices will be empirically tested through validation of the APM method in Chapter IV.

The APM framework would also allow dropping the spatial factorization in Eq. (III.4) to imple-
ment correlation models across spatial dimensions. This facilitates, for example, more complex
displacement patterns that do not neatly factorize in the BEV. The Computations in Sections III.3
and III.4 would then become integrals against three-dimensional Gaussians and six-dimensional
Gaussians, respectively. While this will increase computational cost due to the more challenging
covariance matrix inversion compared to the trivial one- and two-dimensional case, the general
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algebraic formulation remains.
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(c) Cρ, “beam-wise” correlation

Figure III.2: Exemplary correlation matrices of proposed correlation models for 10 pencil beams along a single spatial
dimension. The solid line separates pencil-beams from two different beams, e. g. pencil-beams 1 to 5 come from gantry
angle α and pencil-beams 6 to 10 come from gantry angle β. The dashed line separates pencil-beams into rays, i. e., the
respective pencil-beams share the same lateral positioning yet different energies (compare Fig. II.2). (a) corresponds
to no correlation at all, and is always the correlation structure of the Σuncorr covariance matrix used for modeling
fractionation. (b) depicts a “ray-wise” correlation matrix, in which all pencil-beam lying on the same lateral position,
i. e., the same ray, are perfectly correlated (Unkelbach et al. 2009, range correlation “Model 3”; Pflugfelder, Wilkens, and
Oelfke 2008, range correlation model). In (c) all pencil-beams applied within the same beam are perfectly correlated
(typical lateral correlation model, also range correlation from Unkelbach et al. 2009, “Model 2”).

III.6.3 Fracঞonaঞon

In fractionated treatments, the input uncertainties are commonly separated into random and sys-
tematic components (compare Section II.3.1.3). A systematic error realizes once throughout a
fractionated treatment, i. e., it is the same for all applied fractions. This could, for example, be
miscalculated WEPLs on a single treatment planning CT. Random errors, e. g. offsets in the daily
patient position, realize independently per fraction. Bangert, Hennig, and Oelfke (2013) proto-
typed the incorporation of fractionation effects on dose uncertainty subject to such random and
systematic errors uncertainties within the APM framework.

In principle, APM could incorporate all kinds of linear correlation assumptions connecting
uncertainties over fractions. However, from the definition of random and systematic errors, ran-
dom errors can be modeled as uncorrelated over all fractions, while systematic errors are then
perfectly correlated over all fractions. As a consequence, the APM framework then allows for a
full incorporation of random and systematic errors at limited computational overhead.

For example, in a fractionated treatment with n f fractions the lateral component L accumulates
the components L f of each fraction f , which is subject to systematic and random errors realizing
as ∆sys and ∆rand

f , respectively:

L =
n f

∑
f=1

1
n f

L f

(
∆sys + ∆rand

f

)
. (III.25)
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That is, in each fraction, L f depends on the same the systematic displacement ∆sys and an inde-
pendently realized ∆rand

f . Note that for clarity the superscript of L denoting the lateral dimension
has been dropped.

Assuming the probability distribution over ∆rand
f is the same for each fraction, Eq. (III.9) can

be extended to model systematic and random uncertainties through the respective covariance
matrices Σsys and Σrand over the lateral position. For the lateral component this becomes

Lij = N
(

xij; µj, λ2
ij + Σsys

jj + Σrand
jj

)
, (III.26)

while resulting in

Zij =
10

∑
k=1

ωjkN
(

zij; µz
jk, δ2

jk + Σz,sys
jj + Σz,rand

jj

)
, (III.27)

for the depth component.
For the covariance influence, where correlations between pencil-beams come into play, two

different cases have to be evaluated for handling random uncertainties. Within a fraction, the
assumed spatial correlation model for our random uncertainties is valid (e. g. “beam-wise” cor-
relations as in Fig. III.2c), and the respective covariance matrix will be denoted as Σcorr. Across
fractions, the random uncertainties over the pencil-beams are uncorrelated, and thus correspond
to a diagonal matrix Σuncorr = diag (Σcorr) (compare Fig. III.2a). Using Σcorr and Σuncorr, the lateral
contribution to the covariance influence from Eq. (III.16) can be now written as

Υijlm =
1

n f

[
N
(

x(ij);(lm); µj;m, diag(λ2
ij, λ2

lm) + Σcorr
j;m + Σsys

j;m

)
︸ ︷︷ ︸

Υcorr
ijlm

+
(
n f − 1

)
N
(

x(ij);(lm); µj;m, diag(λ2
ij, λ2

lm) + Σuncorr
j;m + Σsys

j;m

)
︸ ︷︷ ︸

Υuncorr
ijlm

]
.

(III.28)

Intuitively, Υcorr
ijlm describes the influence of uncertainties on the raw moment assuming a single

fraction, while Υuncorr
ijlm corrects for fraction number dependent effects as the canceling out of inde-

pendent error scenarios. For the second lateral component as well as the depth component, the
computations are analogous and therefore omitted.

Equations (III.26) and (III.28) demonstrate that APM enables computation of the first two mo-
ments of the probability distribution over dose for any fraction number n f within constant time
complexity, incorporating the non-trivial interplay of random and systematic errors. Chapter V
will elaborate on the implications of these possibilities within the APM framework, and extend
functionality.

Please bear in mind that the here demonstrated uncertainty computations for fractionated treat-
ments are only valid for the physical dose, which is sufficient for the scope of this manuscript.
For extensions of APM to uncertainties in biological dose or effect, the reader shall be referenced
to Wieser et al. (2017a).
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Chapter IV

Analyঞcal Probabilisঞc Modeling: from Concept to

Applicaঞon

This chapter discusses the implementation of the APM concept developed by Bangert, Hennig,
and Oelfke (2013) and its application within a realistic treatment planning workflow on three-
dimensional patient datasets. Besides a general proof of work on patient data, it focuses upon
computational performance aspects as well as validation of the moment computations described
in Chapter III.

IV.1 Overview

The analytical computations of the APM framework laid out in Chapter III operate at the heart
of dose calculation. APM transforms conventional dose calculation for a single scenario to a
probabilistic dose calculation that simultaneously considers a continuum of all possible scenar-
ios as specified by a Gaussian probability density. This imposes that for application of APM
to patient data, a full pencil-beam dose calculation algorithm has to be implemented—or at least
adapted—following the exclusively Gaussian dose model explained in Section III.2. Furthermore,
the newly conceptualized moment computations from Sections III.3 and III.4 require a new kind
of input, i. e., a multivariate uncertainty model. They increase the computational complexity from
linearity in number of voxels nV and number of pencil-beams nB for nominal and expected dose
calculation, i. e., O (nVnB), to O

(
n2

Vn2
B
)

for covariance (and to O
(
nVn2

B
)

for variance) calcula-
tions.

These requirements prohibit the use of a closed source, commercial treatment planning system
for implementation of a full-fledged 3D APM prototype. In such commercial systems, internal
dose computation routines are not accessible, and interfacing often has to be done through script
interfaces. Additionally, since the field of particle therapy is comparably new in radiation ther-
apy, access to manipulable source code is scarce. Only few projects, as for example the ongoing
developments in the MATLAB based matRad (Wieser et al. 2017b) or latest activities regarding the
C++ toolkit “SlicerRT” (Desplanques 2015; Pinter et al. 2012) steer in the direction of open-source
treatment planning with particles.

MATLAB, whilst well suited for prototyping and optimized for standard linear algebra prob-
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lems arising in conventional treatment planning, was ruled out as candidate for efficient imple-
mentation of APM. One of the reasons was the increased dimensional complexity of computa-
tions required by APM. Usage of SlicerRT (which at the time investigated also did not include a
full-fledged proton dose calculation) was overruled by the advantages of using MITK (Nolden et
al. 2013; Wolf et al. 2005), which as in-house developed open-source image-processing software
facilitated shorter communication paths regarding development support. Since some RT devel-
opment for MITK was already going on its branch “DIPP”, the decision was made to use DIPP /
MITK as a backbone for the development of APM’s algorithms. Developments were bundled in a
treatment planning plugin called MITKrad, with MATLAB and matRad aiding in prototyping and
data analysis.

Due to the expertise available through matRad, the implementation of the necessary back-
ground algorithms, i. e., conventional pencil-beam dose calculation, ray-casting, optimization
etc., was comparably straightforward apart from programming technicalities. Unlike the dose
calculation algorithms of matRad, the corresponding twin implementations in MITKrad have not
been thoroughly benchmarked against a validated treatment planning system as this was not
the scientific scope of this thesis. Given substantial overlap between the two implementations,
however, this can made up for in the future.

Validation of a novel probabilistic dose calculation engine like APM, however, is a non-trivial
task. While Bangert, Hennig, and Oelfke (2014) already quantified the APM pencil-beam algo-
rithm to be accurate compared to conventional pencil-beam dose calculation, this does not imply
accuracy of the resulting expectation value and covariance of dose, even under the assumption
that the pencil-beam dose computation accurately models reality. This is mainly due to the non-
trivial relationship between WEPL changes under lateral shifts.

Further, no academic let alone clinical protocol exists to validate probabilistic dose calculations,
apart from single academic attempts on quantifying the accuracy of dose uncertainty estimates.
Casiraghi, Albertini, and Lomax (2013), for example, benchmark the accuracy of a voxel-wise
worst-case estimate from few shifts with selected random samples. Perkó et al. (2016) explicitly
validate samples from their PCE model with a γ-analysis (see Section IV.2.3.3). Due to being
based on dose scenarios, these approaches are, however, specific to the method and do not cover
APM’s computational capabilities which do not rely on scenario samples.

Therefore, this work proposes a method to directly evaluate the distributions of expectation
value and standard deviation, based on a “ground truth” obtained through sample statistics cal-
culated from a large number of random samples of the input uncertainty space. APM’s com-
putations within MITKrad are evaluated against this benchmark, in comparison with weighted
statistics obtained through common grid sampling approaches.

In addition, this chapter features an analysis of the performance of the implemented algo-
rithms. For computation of the standard deviation with APM, an additional GPGPU approach
is proposed. Furthermore, approximation techniques are conceptualized and evaluated. These
allow to explicitly explore the trade-off between accuracy and computational speed within the
APM framework, both for probabilistic treatment plan analysis and probabilistic treatment plan
optimization.
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The remainder of this chapter is organized as follows. Section IV.2 will introduce methodol-
ogy, by first explaining the MITKrad development and the APM algorithms, followed by a de-
scription of the validation benchmark and the approximation techniques. A proof-of-work will
be presented in Section IV.3, together with quantitative validation as well as demonstration and
evaluation of the approximation techniques. A discussion concludes this chapter in Section IV.4.

IV.2 Methods

This section begins with a description of the MITKrad plugin of MITK and DIPP. Readers who
are more interested in the physical aspects of this section, are invited to skim over the following
technical part mainly focusing on implementation details, and get back to a more careful reading
from Section IV.2.3 on.

IV.2.1 MITKrad

Since MITK and DIPP lacked functionality for full-fledged external beam therapy, MITKrad’s treat-
ment planning functionality was built completely from scratch to support

1) interactive definition of an external beam geometry and segmented patient data through
the MITK graphical user interface (GUI), as well es GUI-based workflow execution,

2) a ray-casting algorithm adapted from Heinrich et al. (2014), Siddon (1985), and Siggel et al.
(2012),

3) definition of the pencil-beam scanning grid, i. e., energy selection and geometrical position-
ing of Bragg-peaks for IMPT (compare Section II.1.2.1),

4) a particle pencil-beam dose calculation algorithm using a generic base-data set, comparable
to implementations based on Hong et al. (1996) and Schaffner, Pedroni, and Lomax (1999),

5) full nominal and probabilistic dose computation with APM based on the analytical formu-
lations in Chapter III,

6) nominal and probabilistic treatment plan optimization using IPOPT (Wächter and Biegler
2006), and

7) random and grid sampling based uncertainty analysis using the implemented dose calcu-
lation engines.

IV.2.1.1 Integraঞon of MITKradwithin DIPP/MITK

At the time this manuscript was prepared, MITKrad was developed as a branch of DIPP using
MITK’s plugin and module mechanism. Figure IV.1 visualizes the role of MITKrad within the com-
plete framework. Efforts were made to decouple the algorithmic side of MITKrad from the MITK
GUI; MITKrad’s algorithms therefore exhibit less external dependencies (some of them shared
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with MITK), but not on MITK modules itself. Hence, separating MITKrad’s algorithms from DIPP
and bundling them in a self-contained library would be possible at limited overhead. In the long
run, this could ease the development of interfaces for other platforms as for example matRad
through MATLAB’s C++ interface (MathWorks 2017), or publishing of an open-source treatment
planning library itself.

DIPP

MITK
MITK

Plugins

MITK
Modules

DIPP
Plugins

DIPP
Modules

MITKrad Plugin

MITKrad Modules

RTPlanning
RTPlanningUI

IPOPT

External
dependencies

Registration
Algs.,

RTToolbox
etc.

ITK
VTK
CTK
Qt

BOOST
Eigen

…

Figure IV.1: Illustration of the DIPP/MITK structure. DIPP as application contains MITK and extends it with external
software packages and additional plugins and modules that can communicate with the integrated MITK plugins and
modules. MITKrad implements a plugin for the communication with MITK workbench, the modules containing algo-
rithmic development are, in general, independent of other MITK or DIPP modules, while making use of the integration
of dependencies like e. g. ITK or Eigen in MITK.

At the core of MITKrad lies the treatment planning plugin RTPlanning, comprising all algo-
rithmic developments as well as structures for handling and storing treatment plan information.
The module is accompanied by a GUI-module RTPlanningUI, which provides Qt based widgets
for user interaction regarding workflow, e. g. definition of optimization objectives. Both modules
work independently of the MITK/DIPP workbench. Communication between modules and the
workbench is handled by the MITKrad plugin, which prepares and transfers data (references) be-
tween workbench and modules, and also provides visualization of defined beam configurations.
Through the workbench, other functionalities of MITK and DIPP can be accessed, e. g. image pro-
cessing algorithms or segmentation tools. The availability of such tools within MITK and DIPP as
well as the management of important dependencies like ITK or Eigen were the main reason for
development directly within the DIPP application.

IV.2.1.2 MITKrad design

Additional efforts were put into software design considerations of MITKrad. The goal was to
create a framework in which, in the long run, additional treatment algorithms, e. g. dose calcu-
lation engines for more modalities, could be implemented easily, encouraging code re-usage and
hence increase maintainability. While MITKrad currently implements only the aforementioned
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algorithms required for this project, in parallel an abstract class hierarchy was put into place,
such that the workflow can be handled using the abstract interface with the correct implementa-
tions selected at run-time. The software design, including some implementations which will be
described in Section IV.2.2, is illustrated in Fig. IV.2.

When using MITKrad through the user interface, the data and workflow management is mainly
handled within the RTPlanningManager. Through factory instantiation, matching algorithms can
be selected at run-time, e. g. a pencil-beam particle dose computation engine is only available with
the corresponding base-data and precomputed steering information. Multiple, virtual inheri-
tance is possible; APM, for instance, provides pencil-beam dose calculation as well as function-
alities for robustness analysis (i. e., dose standard deviation and expectation value computation).
For optimization, the abstract hierarchy with a defined interface (e. g. providing objective function
value and gradient) allows straightforward implementation of new objectives and constraints.

IV.2.2 Dose calculaঞon and APM-related computaঞons

The probabilistic dose calculation is the heart of APM. Hence, its implementation (including the
nominal pencil-beam dose calculation with APM) is outlined below.

Nominal dose influence computaঞon: Within MITKrad, the responsibilities for computing the
dose influence Dij of a pencil-beam j in a voxel i are shared between the base-data and dose engine
implementation. Since pencil-beam algorithms are able to provide the dose influence in any voxel
i just given its WEPL as well as geometrical coordinates within the coordinate system of pencil-
beam j and its parameters, in MITKrad the base-data needs to implement an interface returning
the respective dose influence values. The pencil-beam dose calculation engine, on the other hand,
is responsible for providing the respective coordinates, WEPL, and pencil-beam parameters, i. e.,
energy in the case of particles, for every combination ij.

Base-data: APM’s base-data contains integrated depth-dose profiles up to a range of 350 mm
WEPL described with the 10 Gaussian depth components, which were fitted to the generic proton
base-data set contained in matRad (Wieser et al. 2017b). The generic base-data, i. e., using tabu-
lated depth dose curve, is also available within MITKrad. The base-data is indexed with range and
energy, whereas the range resolution is 1 mm of WEPL. The lateral contributions are modeled
with single Gaussian components, which are, just as for many conventional pencil-beam algo-
rithms, tabulated dependent on WEPL, also with a resolution of 1 mm of WEPL. This applies for
the APM as well as the generic base-data set.

Cut-off: In order to reduce memory requirements and computational load, MITKrad only com-
putes dose where there are significant contributions from individual pencil-beams. As the pro-
tons stop within the patient and scattering is predominantly restricted to small angles, compu-
tations can be cut-off both in lateral direction and in depth. In MITKrad, the threshold for lateral
contributions defaults to 3λij, i. e., at less than 0.27 % of the maximum of the dose at the respective
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Workflow & Data Management

RTAlgorithms

Base Data

Linear Algebra Templates

RTPlanningManager TreatmentPlan BeamConfiguration VolumeOfInterest

RTAlgorithmBase SteeringInformationProcessorBase StfProcessorSpotScanning
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BaseDataParticle BaseDataPencilBeamParticle BaseDataAPMParticle

MatrixBase MatrixDenseBase MatrixEigen

MatrixSparseBase MatrixSparseEigen

VectorBase

Vector

Figure IV.2: (Reduced) class diagram of MITKrad illustrating algorithmic implementations as well as data and work-
flow management. The algorithmic side of MITKrad, e. g. dose calculation, uses a hierarchical system to maximize code
re-usability and facilitate new implementations. Hence, also the base-data follows a hierarchical system with virtual
inheritance to define interfaces based on treatment modality to enable implementation of custom base-data. For linear
algebra, e. g. products involving the dose influence matrix and weight vector, MITKrad defines wrappers, which in the
current implementation interface to Eigen, but enable incorporation of other optimized functionality (compare, for ex-
ample, Ziegenhein et al. (2008)). For vectors, also memory maps (e. g. to common container types) are implemented,
yet not shown in the diagram.
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depth is neglected and values are set to 0. For the depth component, the cut-off is hardwired into
the base-data due to range of the tabulated data.

Ray-casting: While the computation of the geometrical transformations is trivial, calculation
of the correct WEPL is not, as explained in Section II.1.2.2. Within MITKrad, dose calculation
requires a WEPL value per beam for each voxel i from the respective beam’s source (Schaffner,
Pedroni, and Lomax 1999). This allows for a single precomputation of a WEPL cube per beam.
The respective ray-cast algorithm is implemented based on Siddon (1985) and Siggel et al. (2012)
through code adaption from Heinrich et al. (2014). The selection of rays ensures that each voxel
is visited by the algorithm at least once, and selects the closest ray in case multiple rays cast
through the same voxel. Additionally, MITKrad provides an abstract ray-casting interface that
enables implementation (or wrapping) of other ray-casting algorithms (e. g. provided by ITK).

Uncertaintymodel: The uncertainty models described in Section III.6 and illustrated in Fig. III.2
are represented as individual objects, separating into random and systematic component. The
corresponding classes enable the definition of arbitrary, linearly correlated uncertainty models.
For simplicity, pre-defined implementations rely on representations of the correlation matrices
from Fig. III.2 and set all lateral pencil-beam positions with equal absolute variance as well as
similar relative variance for WEPL (compare Section III.6).

Expected dose influence computaঞon: The computation of the expected dose influence is simi-
lar to the nominal APM pencil-beam dose calculation described before. Basically, the only differ-
ence lies in the addition of the variance to the squared width of the spatial Gaussian components
(compare Eqs. (III.26) and (III.27)). In principle the computation of the expected dose influence
matrix D with APM is possible at minimal overhead compared to its nominal dose calculation.
The additional broadening of the Gaussian components requires, however, readjustment of the
lateral cutoff with the respective standard deviation σj to 3(λ2

ij + σ2
j )

1
2 . This increases computation

time (since more values need to be computed) as well as memory consumption.
Further, in anticipation of the coming (co)variance computations, one can use the expected

value computation to cache certain quantities that will be required, as explained below. This adds
significant overhead to the computation, which however stays within worst-case complexity of
voxels times pencil beams O (nVnB). This is an advantage over computing these quantities once
again in the covariance computation with its increased dimensionality and therefore complexity.

(Co)variance computaঞon: The computations required for APM laid out in Chapter III are on
the lowest level element-wise Gaussian kernels executed on combinations of voxels and pencil-
beams. The required input variables (i. e., geometrical information and particle base-data) and
kernel output are clearly separated. Also, the kernels exhibit no interdependence. Hence, the
problem of evaluating all Gaussian kernels can be seen as an “embarrassingly parallel” (Herlihy
and Shavit 2012) computation problem. This straightforward parallelism was exploited on CPU
and GPU architecture.
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For common data sizes of patient cases (e. g. relevant nV ≈ 1 × 106, nB ≈ 1 × 105), the full
tensors C or even V are, however, too large to be stored despite their sparsity. Hence, the variance
or covariance are computed on the fly. In the same pass, it is possible to compute the matrix Ω
proposed by Bangert, Hennig, and Oelfke (2013) (compare Section III.5). The computations work
with data cached from the calculation of D explained above. This cache is indexed by voxel
index and contains, for each voxel i expecting non-zero dose, a list of impinging pencil-beams
j including their geometrical distance to the voxel i in their respective coordinate frame, their
energy, and the expected dose influence value Dij.

With this information, (co)variance may be calculated as a loop over the voxel indices while
avoiding slow access patterns (e. g. matching voxels to correlated pencil-beams, slow access of
individual elements of a sparse matrix etc.).

Computation on the CPU: On the CPU, computations are parallelized by dynamically assigning
chunks of voxels to multiple threads. This parallelization is straightforward; writing the variance
to a voxel i or the covariance to a voxel combination il is independent from the other threads.
Updates of the matrix Ω according to Eq. (III.23) are then, however, not thread-safe per se. The
updates can be, however, performed as atomic operations, i. e., indivisible addition that can not
be interrupted by a concurrent process.

All remaining operations on shared data are read-only and necessary computations can be
performed within the thread scope, implying good scalability of the algorithm. Parallelization
is realized programmatically using OpenMP-directives. Hence, parallel computation is, so far,
only scaling on shared-memory systems. For distributed memory systems, adaptations using,
for example, the MPI standard would be required. However, the goal of the implementation is to
be feasible on common desktop computer hardware (as used in the clinics), and thus distributed
computing systems exceed the scope of this manuscript.

Computation on the GPU with CUDA: The computations of a single covariance influence ele-
ment given the indices i, l, j and m directly translates to a program that returns a desired set
of values for a specific index combination through the same algorithm. This structure is ideally
suited for implementation as a kernel for GPGPU (Cook 2013).

In such GPGPU programs, first the necessary data will be copied from the host system’s mem-
ory (i. e., RAM) to the respective GPU devices. Then, multiple instances of the kernel are arranged
on a multi-dimensional grid intrinsically defining the index combination to be evaluated. After
concurrent evaluation of the kernel grid, the results are copied back to the host.

GPGPU programming with CUDA does, however, only support three dimensional kernel
launches—that is, only three indices are intrinsically available in a CUDA program. While this is
sufficient to define a kernel for operation on all elements of V , at least full covariance computa-
tions have to be chunked into several kernel launches.

Memory requirements, additional limits on kernel dimensionality and kernel execution time-
out (on desktop machines with single GPU) may interfere with execution of the complete three-
dimensional kernel. Furthermore, not always all pencil-beam combinations jm have a significant
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contribution to the (co)variance in a voxel (combination). Consequently, the actual implementa-
tion launches a 2D CUDA kernel over only the subset of significant pencil-beam combinations for
each voxel (combination). The (simplified) kernel code is appended to this manuscript in Code
Listing B.1. In its most memory saving form, the kernel only requires the cached geometrical
information of the current voxel in the device memory, also generalizing to large cases. Heuris-
tic performance tests also showed that preparation of the next voxel cache for the device can be
efficiently handled on the host during the current kernel execution. Hence, the transfer of the
consequent voxel cache alongside the next kernel launch imposes minimal overhead compared
to preparing the full cache on the device beforehand.

IV.2.2.1 Opঞmizaঞon

Optimization of the conventional problem (II.13) and the probabilistic problem (III.21) is imple-
mented via an interface to IPOPT (Wächter and Biegler 2006). IPOPT is an interior-point optimizer
allowing to solve large-scale non-linear (sparse) continuous problems, accepting inequality and
equality constraints, and supporting the L-BFGS-algorithm for low-memory Hessian approxima-
tions. The availability of a C++ interface and experience with its MATLAB interface from use in
matRad made IPOPT the ideal choice for the APM implementation in MITKrad.

Adaptaঞon of the pencil-beam scanning grid: The pencil-beam scanning grid generated for con-
ventional dose calculation and treatment plan optimization usually does not (or rather only in
rare exceptions) consider pencil-beams with Bragg-peaks outside of the target volume. This is
justified by their major dose contribution lying outside of the target volume, hence it is expected
that their weights will be optimized to approximate zero anyway.

For probabilistic optimization, however, due to the additional uncertainty assumptions, pencil-
beams not predominantly contributing dose to the target volume in the nominal case may yet
have influence on the probability distribution of dose in the target. Therefore, in steering file
generation, additional pencil-beams must be placed, with Bragg-peaks located within a margin
around the target volume. For the patient cases investigated within this manuscript, the size of
these margins was heuristically chosen based on the uncertainty magnitudes. They are listed in
Table C.1,

Structure based Ω-matrices: As explained in Section III.5, Bangert, Hennig, and Oelfke (2013)
suggested the use of a precomputed helper matrix Ω (compare Eq. (III.23)). When using volume-
based penalty factors pv, i. e., they are the same for all voxels belonging to VOI v, a VOI-based Ωv

matrix can be computed:

Ωv
jm = ∑

i∈v
Cijim = ∑

i∈v
Vijm (IV.1)
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This Ωv matrix is independent of the optimization penalty, and Eq. (III.23) can then be rewritten
as a sum over the volume-based contributions:

tr
(

PΣd
)
= ∑

v
pvwTΩvw . (IV.2)

Equation (IV.2) then allows subsequent probabilistic optimization runs with changing penalties
without re-computation of Ωv. Additionally, this accompanies a modular, VOI-based imple-
mentation approach of the optimization, where VOI-based objectives are encapsulated in objects
which can be dynamically added and removed from the optimization problem.

IV.2.3 Validaঞon

IV.2.3.1 Random sampling benchmark

To establish a ground truth for the expectation value and variance of the dose for a certain treat-
ment setup and corresponding uncertainty model, sample statistics from excessive random sam-
pling can be used. Since the sample mean and sample variance are, by nature, only estimators
for the true expectation value and variance, it has to be ensured that their estimates are accurate
enough to allow a validation with limited noise. This may be done using estimators for the er-
rors of the sample mean, sample standard deviation and/or sample covariance. The number of
samples to calculate may then be conditioned on their relative magnitude.

Standard error of the sample mean: The accuracy of the sample mean d̄ can be quantified by the
commonly known standard error of the sample mean σd̄, which decreases with increasing sample
number nS,

σd̄ =
σ̂d√
nS

, (IV.3)

where σ̂d is the sample standard deviation.

Standard error of the sample covariance: One could also quantify the standard error for the
sample covariance of dose, i. e., the scatter matrix Σ̂d. If Σ̂d is estimated from nS samples from a
multivariate normal distribution N

(
0, Σd), Σ̂d follows a Wishart-distribution (Muirhead 1982),

i. e., (nS − 1)Σ̂d ∼ WnV

(
nS − 1, Σd), with nS − 1 degrees of freedom and with variance

Var
[
(nS − 1)Σ̂d

ij

]
= (nS − 1)

[
Σd

ij
2
+ Σd

iiΣ
d
jj

]
. (IV.4)

The Wishart-distribution is the matrix-variate generalization of the χ2-distribution. This means
that in the special case of sample variance σ̂2

di
= Σ̂d

ii in a voxel i one has (nS − 1)σ̂2
di

σ−2
di

∼ χ2
nS−1

where χ2
nS−1 has variance 2(nS − 1). Hence, for the sample variance σ̂2

d of the whole distribution
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d, a standard error σσ̂2
d

/σ2
d relative to the true variance σ2

d can be given as

σσ̂2
d

σ2
d
=

√
2

nS − 1
. (IV.5)

Standard error of the sample standard deviaঞon: For the quantification of “error bars” the stan-
dard deviation is commonly used. Since the sample standard deviation σ̂d =

√
σ̂2

d follows a
chi-distribution

√
nS − 1σ̂d /σd ∼ χn−1, its standard error exhibits a more complicated form com-

pared to Eq. (IV.5).
The corresponding derivations shall be omitted here, since for large sample numbers n, its

relative standard error converges to

σσ̂d

σ̂d
≈ 1√

2 (nS − 1)
for large nS. (IV.6)

A compact overview of the necessary analytical computations is given in Ahn and Fessler (2003)
for the interested reader.

Choosing the sample number nS: In summary, relative standard errors for sample variance and
standard deviation have a compact form while at the same time only depending on the sample
number nS. For sample mean and covariance, the relative error additionally depends on other
quantities than nS, i. e., the standard deviation and variance, respectively, which makes condi-
tioning on their accuracy solely depending on the sample number hardly possible. Furthermore,
by Eqs. (IV.3) and (IV.4) it is ensured that the relative error of sample mean and elements of the co-
variance matrix is always smaller or equal to the relative error of sample standard deviation and
variance, respectively. This encourages conditioning of the sample number nS on the accuracy of
standard deviation and/or variance.

A relative accuracy of σσ̂d /σ̂d ≤ 1 %, for example, is achieved when using nS > 5,000 random
samples to compute the sample statistics. Therefore, for the validation of the expectation value
and standard deviation computations of APM, the sample statistics of nS = 5,000 samples were
used as the “true” reference for APM’s moment computations.

IV.2.3.2 Grid sampling approaches

Instead of random sampling, grid-based importance sampling approaches are often used to quan-
tify uncertainty, commonly motivated with specific error or worst case scenarios. These methods
define a (usually evenly spaced) grid in the space of uncertain parameters. Due to the “curse of di-
mensionality” (Bellman 1961), sufficient grid sampling over a high-dimensional parameter space
is more or less infeasible. Also, correlation models in general introduce complex combinatorics.
Therefore, methods based on sampled grids often only use independent points along the respec-
tive parameter axis, i. e., selective spatial shifts of the patient or range over- and undershoots (e. g.
Lomax 2008a).
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To compare APM’s computations against these common grid sampling approaches, the stan-
dard deviation and expectation value is explicitly computed for three grid sampling methods
with different coverage of the multivariate sample space. Using APM’s “beam-wise” uncertainty
model, i. e., spatial and range uncertainties are correlated within a beam and uncorrelated other-
wise, the corresponding sample grid has d · nB dimensions where nB is the number of beams and
d is the number of spatial dimensions. Then, the complexity of the three models can be defined
by the resulting sample number nS as follows, when nP is the number of grid sample points per
dimension:

WI: Full negligence of combinatorics, i. e., error scenarios are computed independently per di-
mension; nS = (nP − 1) · nBd + 1

WII: Combination of spatial dimensions, but not beams; nS = (nd
P − 1) · nB + 1

WIII: Full combinatorics across spatial dimensions and beams; nS = nd·nB
P

In the beam coordinate frame used for defining APM’s uncertainty model, the dimensionality is
given by d = 3 (x, y and WEPL). All sample numbers nS include the nominal scenario once.

For each dose sample ds on the grid, one can define the respective weight ws as the value of the
probability density (reduced to the subspace representing the respective dimensionality) at the
grid point’s coordinates. Estimates of the weighted arithmetic mean d̄W and weighted covariance
matrix Σ̂d

W can then be computed through

d̄W =
1

∑nS
s=1 ωs

·
nS

∑
s=1

ωsds , (IV.7)

Σ̂d
W =

∑nS
s=1 ωs(

∑nS
s=1 ωs

)2 − ∑nS
s=1 ω2

s

·
nS

∑
s=1

ωs
(
ds − d̄W

)T (ds − d̄W
)

, (IV.8)

respectively (Galassi et al. 2016). The factors preceding the sums over the samples normalize the
weights and, in Eq. (IV.8), apply Bessel’s correction to obtain an unbiased estimate. If all weights
are equal, Eqs. (IV.7) and (IV.8) become the common expressions for sample mean and unbiased
sample covariance.

IV.2.3.3 γ-analysis

In dosimetric analyses, the γ-analysis introduced by (Low et al. 1998) is commonly used in the
treatment planning workflow to quantify the agreement between two, e. g. simulated and mea-
sured, dose distributions. In comparison to other tests like measuring absolute or relative de-
viations, the concept of γ-analysis relies on “distance-to-agreement”; instead of comparing two
doses corresponding to the same exact location in both distributions, a pre-defined neighborhood
is searched for best agreement.
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Definiঞon: In its original definition (Low et al. 1998), the analysis quantifies this agreement by
returning a distribution γ (r) at the respective coordinates r given by

γ (r) = min


√

|rc − r|2

∆r̃2 +
(dc (rc)− d (r))2

∆d̃2
, ∀rc

 (IV.9)

where dc and rc correspond to the dose and coordinates to compare to, respectively, and ∆r̃ and
∆d̃ are pre-defined criteria describing the acceptance tolerance in distance and dose, respectively.
Geometrically, the criteria ∆r̃ and ∆d̃ are half-axes of an ellipse in the space of distance |rc − r|2

vs. dose deviation (dc (rc)− d (r))2, with points lying within or on the ellipse passing and points
lying outside the ellipse failing a γ analysis:γ (r) ≤ 1 , passed

γ (r) > 1 , failed .
(IV.10)

It is possible to distinguish between local or global γ-tests; local tests define a relative dose crite-
rion ∆d̃ based on the local dose value, whereas global tests base ∆d̃ on the maximum global dose
value to be robust against failing voxels with very low dose.

Implementaঞon: For computation of the γ-index from Eq. (IV.9) in practice one has to consider
two main pitfalls. First, dose values are stored in voxels at discretized spatial coordinates, which
can be arbitrarily intersected by the corresponding acceptance ellipsoids. This leads to a depen-
dence of the γ-values on voxel resolution. Second, Eq. (IV.9) compares to all coordinates in the
comparison distribution, meaning that trivial application of Eq. (IV.9) would be of complexity
O
(
n2

V
)

with number of voxels nV .
In the following analyses using γ-distributions, the γ-index implementation from matRad was

used (Wieser et al. 2017b). In this implementation, the resolution dependence was reduced by
interpolation of the comparison image, i. e., while the γ-distribution gets computed at original
resolution of the distribution to evaluate, comparisons are performed against the interpolated
reference image with higher resolution. Note that this approach can only keep or increase the
acceptance rate—or, respectively, keep or decrease the γ-values—since in Eq. (IV.9) the minimum
of all comparisons is selected. Second, the implementation uses a patch-based scan of the image,
i. e., restricting the search to a confined neighborhood enclosing the agreement distance parame-
ter, reducing the computation time. Pass rates are not affected by this reduction of the comparison
to the respective neighborhood patch, but in some cases γ-values of failing voxels might be over-
estimated.

IV.2.4 Approximaঞve computaঞon techniques

The dose variance as well as the matrix Ω are computed as large sums of element-wise oper-
ations. In the case of variance, for each voxel a quadratic form needs to be computed (com-
pare Eq. (III.20)). For computation of Ω, V is summed up over all voxels (compare Eqs. (III.23)
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and (IV.1)). Instead of computing the complete sum, estimates of arbitrary accuracy may be com-
puted by only sampling a subset of the respective sums. In the following, this approach will be
outlined for obtaining an approximate standard deviation and Ω-matrix.

IV.2.4.1 Approximaঞng σd with pencil-beam sub-sampling

Since the standard deviation of dose σdi in a voxel i is computed through variance, at first a strat-
egy will be derived for approximating the variance. To do so, a set JM := {j, m | j > m} is
defined containing all pencil beam combinations where j > m (since Vijm = Vimj). Evaluat-
ing all pencil-beams with index combinations jm ∈ JM in Eq. (III.20) is (exactly) of complexity
O
((

n2
B − nB

)
/2
)
. Evaluation of the remaining diagonal elements j = m, which always have a

contribution to variance, is of linear complexity O (nB). Hence, the evaluation over the index
set JM represents the computationally expensive part of the variance calculation, and may be
approximated by a randomly sampled subset ĴM ⊂ JM on top of evaluation of the diagonal
elements.

An approximation σ̂2
di

of the variance from Eq. (III.20) can then be obtained through

σ̂2
di
= ∑

j
w2

j Vijj + 2 · nJM

n ĴM
∑

jm∈ ĴM

wjwmVijm ≈ ∑
jm

wjwmVijm︸ ︷︷ ︸
Eq. (III.20)

(IV.11)

where nJM and n ĴM are the number of combinations in the population and the sample, respec-
tively.

Due to sampling error negative estimates for σ̂2
d can occur. Here, these are simply projected to

zero when computing the final estimate of the standard deviation

σ̂di =


√

σ̂2
di

σ̂2
di
≥ 0

0 σ̂2
di
< 0

(IV.12)

The noise in σ̂2
d could be reduced by application of a denoising filter.

Theoretically, simultaneous computation of an estimate of Ω is feasible using weighted sam-
pling statistics. This approach was, however, not pursued since the random selection of index
combinations jm ∈ ĴM does not guarantee the estimate of Ω to be positive semi-definite, which
is required for optimization. While it could, in principle, be possible to correct such an approx-
imated Ω matrix (e. g. by finding the nearest symmetric positive definite matrix as described by
Higham (1988)), a more straightforward method based on voxel subsets will be presented below.

IV.2.4.2 Approximaঞng Ω with voxel sub-sampling

Given a voxel population I, e. g. all voxels belonging to some VOI, the corresponding Ω-matrix
may be estimated evaluating a sample Î from the sum ΩI

jm = ∑i∈I piVijm. The estimated Ω̂I is
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then given by

Ω̂I
jm =

nI

n Î
∑
i∈ Î

piVijm ≈ ∑
i∈I

piVijm (IV.13)

where nI and n Î are the number of voxels in the population and the sample, respectively.

IV.3 Results

To evaluate the described MITKrad implementation, three patient datasets were imported into
MITK; a prostate case, a paraspinal case, and an intracranial case. Treatment plans were defined
to embody different set-ups in which errors are expected to have varying impacts.

The prostate case is prone to large range uncertainties at the distal tumor edge due to the large
distance particles have to travel through the pelvis, while the most important OARs, i. e., bladder
and rectum, are positioned laterally and therefore subject to lateral set-up errors.

For the intracranial case, with the brainstem directly located next to the CTV, a set-up to induce
dose uncertainty mainly subject to range errors within the OAR was chosen. Therefore, a beam
geometry was defined with both beams’ distal fall-off lying within the brainstem. While in the
plan a PTV margin was delineated, treatment planning was performed on the CTV.

The paraspinal case was chosen, on the one hand, for comparability of results to works by
(Unkelbach, Chan, and Bortfeld 2007; Unkelbach et al. 2009). Also, it can be seen as a “worst-
case” anatomy regarding range and set-up uncertainty, with the significant OAR, i. e., the spinal
cord, being surrounded by the target to be irradiated.

Information on all three datasets is given in Table C.1, containing the respective irradiation
geometry, assumed uncertainties, dose prescription and complexity, i. e., voxel resolution as well
as number of pencil-beams.

The results shown slightly differ from published results (Wahl et al. 2017). The present and up-
to-date results in this section feature no fractionation, and were computed on newer hardware
with an updated implementation.

IV.3.1 Proof-of-work

MITKrad was used to create a set of conventional as well as probabilistic treatment plans for three
patient cases; an intracranial case, a paraspinal case and a prostate case. While lateral set-up
uncertainties where always assumed to be perfectly correlated within a beam, corresponding to
lateral shifts of the patient in the BEV as depicted in Fig. III.2c, two range correlation models
were evaluated for all patient cases: First, likewise to the set-up uncertainties, a “beam-wise”
correlation was assumed. Second, perfect correlation “ray-wise” as illustrated in Fig. III.2b was
evaluated.

One standard deviation for range uncertainties was quantified with ±3.5 % systematic and
±1 mm random component. Set-up uncertainties were expected to have a bigger random com-
ponent of±2 mm compared to their systematic component±1 mm. The uncertainty assumptions
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are also stated in Table C.1, since they apply throughout the whole manuscript. Despite separat-
ing the uncertainty model into systematic and random components, only single fraction cases
are presented within this section, with fractionation being thoroughly evaluated and discussed
in Chapter V.

Figure IV.3 displays nominal and probabilistic APM computations by means of an exemplary
slice of the prostate case after a conventional optimization, i. e., optimization with the nominal
dose influence matrix with objective function (II.16).
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Figure IV.3: Exemplary axial slice of (a) a conventionally optimized treatment plan using a dose influence matrix
computed with APM’s dose approximation. Further, the expected dose could be computed (b) which is independent of
the correlation model. Finally, the standard deviation of dose was computed, once assuming “beam-wise” correlations
(c) and once assuming “ray-wise” correlations (d) for the range errors for a single fraction.

The expected dose distribution in Fig. IV.3b appears as the “blurred out” nominal dose dis-
tribution from Fig. IV.3a; a result from the broadening of the Gaussian dose influence compu-
tation components through addition of component width and variance as given in Eqs. (III.9)
and (III.10). As the expectation value of dose only depends on the variances defined in the un-
certainty model, no dependency on the correlation assumptions exists.

For the computation of standard deviation, however, these correlations factor in and lead to
drastically different standard deviation distributions for the different correlation models explained
in Section III.6. If range uncertainties are correlated per beam, as defined in the “beam-wise” un-
certainty model, at the respective distal edges of the tumor high variance is observed (Fig. IV.3c).
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At this point, particles have traveled a comparably far distance through the tissue which, due
to the relative nature of the assumed range uncertainties (i. e., 3.5 %), may be subject to signif-
icant over- or undershoots of the complete beam. For the “ray-wise” correlation model, while
the relatively expected range over- or undershoots are still of the same magnitude, they occur for
pencil-beams on the same path independently, and may therefore cancel each other out through
lateral scatter contributions from neighboring beams, resulting in reduced dose variance at the
distal edges of the tumor.

Similar considerations apply for the remaining paraspinal and intracranial case. Exemplary
slices for both cases can be found in Figs. C.1 and C.3, respectively. During optimization, the
variance contribution in the unclassified tissue had been neglected, due to its low optimization
penalty.

Figure IV.4 displays the same axial slice as in Fig. IV.3, this time after probabilistic optimization
as proposed in Eq. (III.22), i. e., the expected objective function as presented in Bangert, Hennig,
and Oelfke (2013). For the intracranial and paraspinal case, similar illustrations can be found
in Figs. C.2 and C.4. Two plans were optimized using both the “ray-wise” and “beam-wise”
correlation model, respectively.

For both plans, the nominal dose distributions in Figs. IV.4a and IV.4b exhibit a growth of the
targets’ high dose regions (recognizable from the isodose lines), similar to the definition of a mar-
gin. For the “beam-wise” model, the high dose region appears to be stretched in the direction of
the beams’ distal tumor edges in Fig. IV.4a, which is not so pronounced for the “ray-wise” model
in Fig. IV.4b. This behavior comes from the “beam-wise” model inducing a much larger uncer-
tainty on dose at the distal tumor edges due to the perfectly correlated range error, which needs
to be compensated by pushing the dose-fall of away from the target. In the “ray-wise” model,
where contributions of neighboring pencil-beams may cancel out, this uncertainty is reduced,
and its compensation may also be achieved by re-modulation of the respective pencil-beams.

The expectation value of dose distributions in Figs. IV.4c and IV.4d now show better coverage
of the targets, which is more comparable to the nominal dose coverage after conventional opti-
mization in Fig. IV.3a. This is accompanied by an overall reduction of the integrated variance
for both correlation models (Figs. IV.4e and IV.4f) and especially within the targets (as they are
bound to the highest optimization penalty).

This variance reduction can also be identified in the standard deviation volume histograms (SD-
VHs) presented in Fig. IV.5, this time for all three investigated patient cases. SDVHs are analogons
to conventional DVHs from Eq. (II.9) for standard deviation instead of dose distributions. In the
targets, the integrated standard deviation is roughly reduced about a factor of two in all cases. In
particular, volumes of high as well as low dose variability get reduced, although the reduced stan-
dard deviation can still reach substantial maximum values of up to 13 % of the prescribed dose.
In the OARs, especially the standard deviation peaks are reduced, while the volume exhibiting
low dose variability actually increases. This can be argued with the optimization prioritizing ho-
mogeneous expected dose with low variance in the target over OARs. Hence, dose gradients are
pushed out into the healthy tissue—i. e., a margin around the target is produced—which pushes
dose variability into OARs. This effect can only be partly mitigated by additional, non-trivial
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Figure IV.4: Exemplary axial slices of distributions of nominal (a-b), expected (c-d) and standard deviation (e-f) of dose
resulting from probabilistic optimization. For the plan shown in the left column (a,c,e), the “beam-wise” correlation
model was assumed fro probabilistic optimization. The right column (b,d,f) illustrates a probabilistically optimized
plan under assumption of the “ray-wise” correlation model. Both treatment plans were optimized under 1 fraction.
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modulations of the fluence.
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0 4 8 12
0

20

40

60

80

100

σd [Gy]

vo
lu

m
e

[%
]

CTV
spinal cord

(e) paraspinal, “ray-wise”

0 4 8 12 16 20
0

20

40

60

80

100

σd [Gy]

vo
lu

m
e

[%
]

CTV
brainstem

(f) intracranial, “ray-wise”

Figure IV.5: SDVHs after conventional optimization (dotted lines / / / ) and probabilistic optimization (solid
lines / / / ) for all three patient cases. In (a-c), the “beam-wise” correlation model was assumed while (d-f)
modeled “ray-wise” correlations.

IV.3.2 Validaঞon of probabilisঞc dose calculaঞon

For validation of APM’s computation of expectation value and standard deviation of dose, 5,000
multivariate random dose samples (i. e., 5,000 treatment scenarios with a single fraction) were
computed using the “beam-wise” uncertainty model as a benchmark. At this sample number the
standard error of the sample standard deviation can be estimated to be approximately 1 % (as
explained in Section IV.2.3.1), with even higher precision of the expectation value.

Distribution of sample mean and standard deviation from the sampling benchmark were used
as reference for the distributions computed with APM, using the γ-criterion with two distance-
to-agreement parameters of 3 %/3 mm and 2 %/2 mm. Three interpolation points were used to
compensate for image resolution. Exemplary axial slices for γ-distributions using the weaker
3 %/3 mm are shown in Fig. IV.6. Table IV.1 provides the γ-pass rates corresponding to Fig. IV.6
and adds mean absolute error, i. e., the bias, to the analysis as well as comparison to the grid
sampling approaches introduced in Section IV.2.3.2.

The global γ-analyses show that validation of the expected value results in better γ-pass rates
than the validation of the standard deviation. This may be, on the one hand, explained through
the benchmark standard deviation being less accurate (relatively) than the expectation values; an
expected dose value of 60 ± 10 Gy, for example, will have a relative standard error of 0.2 % com-
pared to the standard deviation’s 1 %, inflicting less noise on the γ-computation. On the other
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Figure IV.6: γ3 %/3 mm-distributions validating APM’s computations of expectation value (left column) and standard
deviation (right column) against the respective sampled moment from the random sampling benchmark for exemplary
axial slices of all three patient cases. The acceptance threshold of γ = 1 is indicated as a color jump in the used
colormap and through display of isolines at γ = 1. Bear in mind that due to good agreement not all depicted slices
show threshold violations.
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hand, the standard deviation computations are geometrically more complex as pair-wise com-
binations of pencil-beams are evaluated with additional dependence on the correlation model.
Therefore, possible deficiencies intrinsic to the APM framework are expected to condense mainly
in inaccurate standard deviation, consequently leading to lower γ-pass rates.

Table IV.1 also includes γ-pass rates and bias compared to the random sampling benchmark for
multiple weighted sampling approaches as discussed in Section IV.2.3.2. For all evaluations, at
the basis a positive and a negative shift of ±1.5σx/y/z along each spatial dimension (and, respec-
tively, their combinations) was considered, i. e., d = 3 and nP = 3, requiring 6nB + 1 scenarios for
WI, 26nB + 1 scenarios for WII and 27nb scenarios for WIII, depending on the number of beams
nB. For the paraspinal case, evaluation of WIII would thus already require approximately 20,000
scenarios, which is why a WIII-analysis on the case was omitted. The γ-tests confirm that grid
sampling consistently underestimates standard deviation (i. e., negative bias) when not consid-
ering the full combinatorics. Even when relying on the complete combinatorial space, the agree-
ment of grid sampled moments is worse than for the moments computed analytically with APM.
The weighted sample mean on the other hand, which is not dependent on possible correlations
and therefore combinatorics, yields good agreement near γ-pass rates of 100 %. Despite the good
agreement, APM is also consistently subject to a negative bias. This slight underestimation of the
respective moments comes from the the cut-off used to restrict computations to significant voxels.

Table IV.2 details the γ-validation ofAPM by providing additional pass rates, broken down by
VOIs and separated into global and local analyses with 3 %/3 mm and 2 %/2 mm criteria. Even
with the more strict 2 %/2 mm, global γ-pass maximally drop by 5.5 percentage points in the
right lung of the paraspinal case as an exception, but are in general stable within approximately
two percentage points.

The local analysis shows good agreement between APM computations and sampled moments
within the target (> 95 %) for local γ-analyses. For OARs, the pass rates are, in general, tenth
of percents smaller. While this may look alarming, the effect may be explained by the afore-
mentioned cut-offs applied in the nominal and probabilistic dose computation. In the sampling
scenario, a single, improbable sample is enough to contribute to the sample moments within a
voxel which is, on the other hand, neglected by APM. In the local analysis, this voxel is then
most likely doomed to fail the γ-test. In Tables IV.3a to IV.3c, this effect reflects in lowest γ-pass
rates in OARs which are only affected in a few voxels, e. g. the lungs in the paraspinal case, and
higher pass rates in OARs containing a larger fraction of significant voxels. While this effect can
be factored out, it was decided to stick with the results to be consistent in all γ-analyses and, as
quantified in Table IV.1, neglecting significant voxels via a cut-off induces a negative bias into
APM computations which should be kept in mind.

IV.3.3 Performance

IV.3.3.1 Computaঞonal performance of APM within MITKrad

The computational performance of nominal and probabilistic dose calculation and optimization
using the APM framework within MITKrad was evaluated on a desktop machine running Win-
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Table IV.1: Global γ3 %/3 mm-pass rates and bias of moment computations with APM and grid-based sampling.

patient & moment γ pass rates [%] mean error / bias [Gy]
APM WI WII WIII APM WI WII WIII

intracranial E[d] 100.0 100.0 100.0 100.0 −0.06 0.05 0.02 −0.03
σd 99.8 66.7 87.6 99.1 −0.14 −1.00 −0.48 0.31

paraspinal E[d] 99.9 100.0 100.0 – −0.24 −0.05 −0.05 –
σd 99.0 29.9 47.6 – −0.20 −1.67 −1.17 –

prostate E[d] 100.0 99.8 100.0 100.0 −0.20 0.03 0.01 0.03
σd 100.0 63.0 80.8 98.8 −0.11 −1.44 −0.74 0.31

Table IV.2: γ-pass rates [%] of APM validation for all cases including sub-analyses for relevant VOIs.

(a) prostate

VOI
global analysis local analysis

3 %/3 mm 2 %/2 mm 3 %/3 mm 2 %/2 mm
E[d] σd E[d] σd E[d] σd E[d] σd

all 100.0 100.0 100.0 99.8 89.2 75.7 82.5 69.2
boost 100.0 100.0 100.0 100.0 100.0 99.9 100.0 99.2

prostate 100.0 100.0 100.0 99.9 100.0 99.9 100.0 99.5
rectum 100.0 99.8 99.7 97.3 92.5 70.7 84.5 62.8

bladder 100.0 100.0 100.0 99.9 95.7 68.0 87.7 61.5
left femur 100.0 100.0 100.0 100.0 99.3 94.0 98.3 89.8

right femur 100.0 100.0 100.0 100.0 98.8 93.2 97.1 89.0

(b) paraspinal

VOI
global analysis local analysis

3 %/3 mm 2 %/2 mm 3 %/3 mm 2 %/2 mm
E[d] σd E[d] σd E[d] σd E[d] σd

all 99.9 99.0 99.5 97.0 69.4 54.3 61.8 47.5
CTV 99.2 100.0 97.2 99.3 99.1 99.4 97.1 95.5

spinal cord 100.0 100.0 100.0 100.0 86.1 81.4 80.4 75.5
left lung 100 99.4 100 98.2 50.6 29.0 42.4 24.2

right lung 100 96.8 99.9 91.3 50.0 32.2 42.6 27.2

(c) intracranial

VOI
global analysis local analysis

3 %/3 mm 2 %/2 mm 3 %/3 mm 2 %/2 mm
E[d] σd E[d] σd E[d] σd E[d] σd

all 100.0 99.8 99.9 99.3 86.5 64.3 78.3 58.8
CTV 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

brainstem 100.0 99.8 100.0 97.5 99.2 67.8 96.6 62.2
optic chiasma 100.0 100.0 100.0 98.3 100.0 60.8 98.3 45.3
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dows 7 on a Intel® Core™ i7-2600 CPU @ 3.4 GHz able to run 8 parallel logical threads and with
a single nVidia GeForce GTX 970 GPU.

Runঞmes: Table IV.4 displays runtime analyses on all three patient cases. For the standard de-
viation, the given runtimes are differentiated into architecture, i. e., GPU and CPU, as well as in-
corporated voxels, i. e., all voxels full σd-distributions and only voxels in targets and OARs needed
for Ω-matrices for optimization. As before, a single fraction was assumed.

Table IV.4: Runtimes (in seconds) for nominal and probabilistic dose/moment calculation and optimization for
fractionated treatment plans of all three patient cases. The table differentiates between CPU and GPU

implementations for the full σd-calculation and the Ω-matrix calculation without normal tissue for optimization (in
parentheses). (—”—) indicates that values are, within measurement accuracy, the same as the value above.

patient & model d E[d]
σd (Ω) F opt. E[F ] opt.CPU GPU

intra-cranial “ray-wise” 10.1 32.1 390.7 ( 64.3) 83.9 ( 14.6) 17.6 9.6
“beam-wise” —”— —”— 2,218.8 ( 300.1) —”— —”— —”— 10.1

para-spinal “ray-wise” 16.2 40.3 976.5 ( 451.4) 222.9 (107.2) 30.1 47.1
“beam-wise” —”— —”— 4,292.8 (1,852.6) —”— —”— —”— 43.2

prostate “ray-wise” 31.2 111.2 1,040.2 ( 386.1) 201.5 ( 74.8) 41.8 33.7
“beam-wise” —”— —”— 5,365.4 (1,633.1) —”— —”— —”— 36.3

A consequence of neglecting the unclassified normal tissue for optimization is the reduction in
computation time by approximately a factor three to eight. It should be noted that this reduction
does not directly correspond to the fraction of voxels that is discarded. The APM implementation
within MITKrad only computes the contribution of the relevant subset of pencil-beams impinging
on the respective voxels, which varies extensively from voxel to voxel, especially in multiple beam
plans.

Table IV.4 also proves that APM is particularly suited for massive parallel GPU computations,
which can be more than a magnitude faster than on the CPU. Furthermore, GPU computations
are not depending on the correlation model in the used kernel implementation (compare Code
Listing B.1).

Accuracyvs. performance analysis: The runtime analysis in Table IV.4 can be combined with the
accuracy analysis in Table IV.1. Figure IV.7 shows the accuracy compared to the runtime equiv-
alent of number of computed dose scenarios nS. While the expected dose is accurately modeled
by all sampling approaches, APM’s expected value computation clearly outperforms other meth-
ods regarding computation time. This is due to the low overhead in APM’s computation of D
which stays in computational complexity of O (nVnB), while computation of the sample mean is
of complexity O (nVnBnS).

For the standard deviation in Fig. IV.7b, APM is not, in general, the fastest method (when eval-
uated on the CPU), however proves to be the fastest in obtaining accuracies near 100 % γ-pass
rate. Evaluation on the GPU, however, has run-times equivalent to approximately 10 dose calcu-
lations, and therefore nearly outperforms even the sparsest and most inaccurate grid sampling
approach WI. It should be noted that the analyses in Fig. IV.7 have only been performed with the
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“beam-wise” correlation model. Using the “ray-wise” correlation substantially decreases run-
time of APM (on the CPU) while increasing complexity and therefore runtime of the grid-based
sampling approaches. As such, results presented in Fig. IV.7b can be considered a worst case
estimation of the speed to accuracy trade-off for APM.
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Figure IV.7: Accuracy of uncertainty propagation with APM and sampling methods vs. the runtime equivalent of nS
that need to be calculated. The analysis is shown for the expectation value (a) and the standard deviation of dose (b).

To put the accuracy into more context regarding random sampling, additional γ-tests were
performed to obtain the accuracy achieved when using lower numbers of multivariate random
samples. Random sampling approaches exhibited nearly perfect γ-pass rates for both expectation
and standard deviation when using & 100 samples, comparably to computation with APM on
the GPU. One has to consider, however, that APM precomputed the helper matrix Ω at the same
time, allowing optimization with minimal overhead. To achieve the same accuracy with random
samples, the dose scenarios need to be re-computed in every iteration. This is computationally
inefficient, especially when the dose influence for every scenario cannot be held in RAM due to
memory limitations.

IV.3.4 Feasibility of approximaঞve computaঞons

IV.3.4.1 Quality of approximated σd-distribuঞons

First, the approximative standard deviation distributions σ̂d are evaluated for different sizes of
the pencil-beam combination subsample. Combining methodology used in the analyses in Sec-
tions IV.3.2 and IV.3.3 before, the generated approximative distributions are evaluated based on
the γ-technique and with runtime measurements.

To illustrate the noise induced by sub-sampling the sum over the pencil-beam combinations
explained in Eq. (IV.11), exemplary slices for all cases are shown in Fig. IV.8. Additional to the
raw, noisy approximate distributions, they were, as a proof-of-concept, denoised using the total
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variation denoising filter implemented in MITK1 using only 2 iterations and λ = 0.1. In Table IV.5

Table IV.5: RMSE [Gy] and γ-pass rates [%] for approximated σd-distributions of all cases

patient processing s = 50 % s = 25 % s = 10 % s = 5 %
RMSE γ RMSE γ RMSE γ RMSE γ

intracranial raw 0.15 99.7 0.26 99.0 0.44 97.3 0.64 95.0
filtered 0.64 94.9 0.64 95.4 0.66 95.0 0.68 94.4

paraspinal raw 0.20 99.3 0.35 97.1 0.61 93.0 0.84 89.1
filtered 0.70 95.0 0.70 95.0 0.73 93.7 0.76 92.6

prostate raw 0.91 85.6 1.30 78.6 1.90 70.5 2.50 64.5
filtered 0.75 94.3 0.82 92.6 0.97 89.9 1.10 81.0

the root-mean-square deviation (RMSE), used as a noise measure, increases with decreasing sam-
ple size, as expected. For the smallest sample size s = 5 %, the RMSE reaches relative values of
up to ≈ 3− 4 % of the maximum standard deviation. Throughout Table IV.5 the RMSE is highest
in the prostate case, and smallest in the intracranial case. This indicates correlation between the
spacing of the Bragg-peak grid (compare Table C.1) and RMSE; the accuracy of the sub-sampling
increases in cases where more pencil-beams contribute to a voxel.

γ-pass rates are comparable or better than the ones achieved with importance sampling ap-
proaches in Section IV.3.2. The γ values of the noisy distributions have, however, to be interpreted
carefully, since usage of the interpolation method enables coverage a large range of values. This
explains the high pass rates of the noisy distribution in, for example, the intracranial case, with
different results being published in Wahl et al. (2017) using no interpolation.

IV.3.4.2 Quality of probabilisঞc plans opঞmized with approximate Ω̂-matrix

For plans optimized with the estimated Ω̂-matrix from sum sub-sampling, a statistical assess-
ment, e. g. based on RMSE like in Section IV.3.4.1, is inadequate since noise in Ω̂ systematically
influences the optimization routine through its iterations, consequently leading to systematically
different treatment plans. Hence, the treatment plans were qualitatively analyzed based on ex-
emplary absolute difference slices, and quantitatively examining difference of resulting plan vari-
ability through SDVHs. The analysis is illustrated in Fig. IV.9 comparing plans optimized with
exact Ω and estimated Ω̂ at a sampling probability s ≈ 1.6 %.

Figures IV.9a to IV.9c show the absolute difference in the nominal, expected and standard de-
viation of dose distributions for the prostate case, optimized with Ω and estimated Ω̂. Positive
as well as negative differences of up to ≈ ±5 % of the prescribed dose manifest in nominal dose
through single pencil-beams being differently weighted after optimization with approximated Ω̂.
Differences are smaller for the expected value. For the standard deviation, differences are below
±1 Gy.

In a global assessment of the plan variability using the SDVHs in Figs. IV.9d to IV.9f, global
plan variability is slightly higher, especially in the target, when the approximate Ω̂ is used. For
OARs, the effects are negligible. Results published in Wahl et al. (2017), which are based on a

1MITK implements the itkTotalVariationDenoisingImageFilter based on Chan, Osher, and Shen (2001).
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Figure IV.8: Axial slices of σ̂d distributions (in Gy) for all three cases from exact (a-c) and sampled (d-l) calculations
at relative sample sizes s. In (j-l) the approximated distributions were post-processed with total variation filtering.
Note that no isolines are displayed in (a-i) due to the noise in the sampling methods. A single fraction and “ray-wise”
correlation was assumed.
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Figure IV.9: Probabilistic treatment plans optimized with estimated Ω̂ vs. exact Ω. Difference within exemplary dis-
tributions slices for the prostate case are shown for nominal dose (a), expected dose (b) and standard deviation (c).
The relative sample size was 10 % for a single fractioned treatment. For all three cases, (d-f) compare plan variability
based on SDVHs when optimized with exact Ω (solid / ) and with estimated Ω̂ (dash-dotted / ) to the
conventional plan (dotted / ).

treatment plan optimized under 5 fractions, show that differences vanish when multiple fractions
are assumed. This is reasonable, since for a single fraction the variance is higher, and therefore
noise in Ω̂ has a larger impact on the optimization outcome. Hence, for treatment plans subject
to large variance, usage of the approximations requires larger sub-samples than for plans subject
to low variance to obtain robustness similar to a plan generated with exact computations.

IV.3.4.3 Performance of sub-sampling approximaঞons

Using the approximation Ω̂ from sum sub-sampling, the runtime is expected to decrease linearly
with as the relative sample size gets smaller. Hence, instead of providing numerical runtime
values, it is evaluated if the runtime ts needed to compute the approximation for relative sample
size s follows the linear model

s !
= a

ts

texact
+ b , (IV.14)

where texact is the runtime needed for exact computation, i. e., s = 1. Ideal values in Eq. (IV.14) are
a = 1 and b = 0. The same model was evaluated for the approximation of the standard deviation
approximation, since the sample is chosen from the off-diagonal pencil-beam combinations j 6=
m, and thus also linearly decreases complexity of evaluating the respective sum. This scenario,
however, expects b > 0, since the diagonal entires j = m are always evaluated. The resulting
value of b is then a good estimate of the relative run-time needed to evaluate the diagonal, and
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can thus be used also used as an estimator of the time that would be required to evaluate APM
on a completely uncorrelated uncertainty model (compare Fig. III.2a).

Linear regression of measured relative run-times comparing to the sample size, averaged over
all cases, found

Ω-approximation: a = 0.99 b = 1.02 × 10−2,
σd-approximation: a = 0.93 b = 7.33 × 10−2,

i. e., nearly linear decrease when sub-sampling voxels, and more significant run-time overhead
when sub-sampling pencil-beam combinations.

IV.4 Discussion

This chapter described the successful implementation and evaluation of a probabilistic pencil-
beam dose calculation engine for proton therapy based on the APM framework. As backbone
for the implementation of APM, a module for MITK—called MITKrad—has been implemented
from scratch, providing essential treatment planning functionality. MITKrad’s structure was de-
signed in an effort to maximize code re-usability and encourage sustainable use and extendabil-
ity. Relying on optimized linear algebra structures and operations from the Eigen package and
the optimizer IPOPT yielded competitive run-times for dose calculation as well as optimization
(compare to e. . Wieser et al. 2017b). MITKrad’s objective oriented design allowed straightforward
implementation of the APM dose calculation and base data. For example, the nominal dose cal-
culation can be performed with the same dose engine for common tabulated depth dose data
and APM’s representation, for which only the base data interface needed to be re-implemented.
Most scientific programs used across this thesis for treatment plan evaluation were hard-coded
using MITKrad’s interface for sub-programs. However, basic generation of treatment plans and
robustness analysis with APM is possible through a basic GUI widget allowing to set treatment
plan parameters such as beam geometry and optimization objectives.

MITKrad enabled efficient implementation of APM’s analytical probabilistic dose calculation,
which would have hardly been realizable within MITKrad’s MATLAB-“twin” matRad (compare,
for example, to the MATLAB run-times for APM of several hours reported by Wieser et al. (2017b)).
This is due to the increased complexity of the computations of the second moment going be-
yond the thoroughly optimized linear algebra operations with matrices and vectors in MATLAB.
The “embarrassingly parallel” nature of the element-wise Gaussian kernels could be exploited,
especially within GPGPU, achieving run-times equivalent to a few nominal dose calculations.
Together with complementary results from Wahl et al. (2017), good scalability of the implemen-
tations is attested, encouraging future use in distributed computer systems—maybe even based
on commercial cloud systems. Note that through modification of the CUDA-kernel in Code List-
ing B.1 to only accepting standard data-types, it could be called directly from MATLAB using
its CUDAKernel interface. Alternatively, the MEX-interface may be used to build an interface be-
tween, for example, matRad and faster implementations from MITKrad.

From the physical side, the probabilistic plans shown in Section IV.3.1 which were generated
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with the APM implementation in MITKrad are in accordance with literature results discussing
similar probabilistic treatment plan analysis and optimization approaches (i. e., Unkelbach, Chan,
and Bortfeld 2007; Unkelbach et al. 2009). The APM computations proved to be accurate, achiev-
ing global γ-pass rates of nearly 100 % in γ-validation tests at criteria of 3 %/3 mm and 2 %/2 mm
of expectation value and standard deviation of dose. The numbers presented in Section IV.3.2
are, at least for the standard deviation, at the limit of the relative accuracy of the “ground truth”,
which was obtained using 5,000 multivariate normal random samples using the “beam-wise”
correlation model. The work of Wieser et al. (2017a), extending APM to biological dose in carbon
therapy, confirm these accuracy measurements, suggesting that the APM framework can be seen
as providing highly accurate estimates of the first two moments of the dose distribution. Con-
sequently, it might be even considered as a benchmark for prototyping other, new uncertainty
propagation methods using a pencil-beam dose computation engine.

APM’s strength particularly manifests in the accuracy to runtime trade-off. An analysis in
Fig. IV.7 shows that computation of expected value as well as standard deviation is magnitudes
faster than the computation of a comparably accurate sample statistics, and even outperforms
sparse grid sampling approaches as used in worst case approaches that are at the very heart inac-
curate through neglecting spatial combinatorics. However, further comparisons with sampling
relying on GPGPU accelerated dose calculation algorithms might mitigate the observed run-time
benefits of using APM.

In this context, comparison to a more accurate reference, as for example a Monte Carlo dose
calculation algorithm, would also be of interest. While pencil-beam algorithms and Monte Carlo
algorithms are often compared regarding nominal accuracy and then discouraged (e. g. Taylor,
Kry, and Followill 2017), it is unclear whether their inferiority to Monte Carlo amplifies or dis-
solves when uncertainty shall be estimated. Monte Carlo implementations are, however, compa-
rably slow, such that computation of sample numbers necessary for benchmarking would be an
ordeal.

Since especially the GPGPU implementation of the standard deviation computation is inde-
pendent of the underlying correlation assumptions in the uncertainty model, highly complex
uncertainty models may be accurately evaluated, which could barely be evaluated using a com-
binatorial grid sampling approach. On the other hand, APM’s uncertainty model is, in its current
implementation, restricted to lateral shifts in the BEV and errors in WEPL. Modeling of other
kinds of uncertainties, i. e., deformable anatomies, would require a different approach, presum-
ably in the patient coordinate frame. While this could be, in theory, also realized within the APM
framework, the computational implications can, at this point, not be explicitly quantified.

As discussed and shown before, APM’s implementation already exhibits reasonable run-times
on a desktop computer using a common end-user GPU. Nevertheless, additionally two approxi-
mation techniques based on sum sub-sampling were proposed to linearly trade runtime against
accuracy. These enable estimation of standard deviation as well as the helper matrix Ω used for
optimization.

The estimated standard deviation distributions exhibit visible noise, but may be used for a
qualitative assessment of regions with high uncertainty in dose. This is particularly convenient,
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as with more dense placement of Bragg-peaks the sub-sampling accuracy increases, which may
allow further reduction of sample size in these especially computationally expensive scenarios.
As proof-of-concept, also denoised distributions were produced using total variation filtering.
Since the magnitude of the noise can, however, be quantified through the sample and population
size, more sophisticated denoising methods may be used explicitly working with the noise model,
to achieve even better approximations.

Using the estimated Ω̂-matrices in optimization generated plans with different modulation,
while achieving similar to slightly worse plan variability, for single fractioned treatments. These
results may be discussed complementary to the results from Wahl et al. (2017), where treatments
with 5 fractions were investigated while using the same uncertainty model, with even smaller
difference between plans optimized with Ω̂ and Ω. Hence, generation of probabilistic treatment
plans using Ω estimates from APM may be exploited within standard uncertainty assumptions
for fractionated treatments. However, in a case where only a single fraction should be optimized,
or the plan is subject to uncommonly large uncertainty, perfect computations should be preferred.
To suppress random modulation effects, which might lead to under- or overdosage in undesired
areas, voxels could be sub-sampled on, for example, regular grids. Alternatively, additional objec-
tives or non-linear (in)equality constraints are possible within the optimization framework using
IPOPT, to impose restrictions on the expected or nominal dose distribution.

The previous paragraphs already addressed important issues; fractionation as well as extension
of the optimization. The effect of fractionation on dose uncertainty and probabilistic optimization
will be throughly examined in the following chapter. The transition to analytical probabilistic
modeling of advanced planning metrics and objective and constraint functions is then the topic
of Chapters VI and VII.
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Chapter V

Probabilisঞc Treatment Planning Under

Fracঞonaঞon

In this chapter APM’s capabilities of incorporating the non-trivial interplay of random and sys-
tematic setup and range errors in fractionated treatments is investigated. More than a plain im-
plementation of the analytic computations explained in Section III.6.3, the model is refined to
completely separate covariance influence into independent random and systematic components,
generalizing to uncertainty analysis and optimization. Further, a simulation study is conducted
to quantify the benefits of using probabilistic optimization with explicit consideration of the num-
ber of fractions.

In general, the methodology and the results discussed in this chapter have already been pub-
lished in Wahl et al. (2018a). Differences between this chapter and the respective publications
arise due to re-computation of results for consistency across this manuscript, and due to supple-
mentary results omitted or not yet presented in Wahl et al. (2018a).

Also note that the methodology introduced in Section V.2 has been made publicly available as
MATLAB code within the APMToolbox.

V.1 Overview

Chapter IV demonstrated that the APM framework is suited for computations on patient data
sets, featuring competitive run-times and accuracy encouraging its use within or on top of typical
treatment planning workflows to facilitate probabilistic plan analysis and optimization.

A key attribute of APM’s computations thereby is that random and systematic uncertainties
may be included into the uncertainty model at constant computational complexity, as explained
in Section III.6.3. This inclusion of (arbitrary) interplay of random and systematic errors in the
uncertainty model is a non-trivial problem investigated in academia and usually worked around,
due to the overhead for conventional sampling approaches (compare Section II.3.2). Difficulties
arise especially when using fractionation in optimization, where often re-computations of the re-
spective models are necessary within optimization under fractionation. Therefore, worst-case or
probabilistic optimization is often only tackled for a single fraction (e. g. Unkelbach et al. 2009). If
fractions are considered, simplifications on the uncertainty model are imposed, as e. g. the afore-

61



Chapter V Probabilisঞc Treatment Planning Under Fracঞonaঞon

mentioned strict separation by Lowe et al. (2016) or assumption of infinite fractions. The latter
is based on the rapid decrease of the random component in dose uncertainty with increasing
fraction number (see e. g. Park et al. 2013; Perkó et al. 2016), however requiring additional coun-
termeasures against the resulting dose heterogeneity when used in optimization (Chan, Bortfeld,
and Tsitsiklis 2006; Fredriksson 2012; Unkelbach and Oelfke 2004). For example, Lowe et al.
(2016) and Lowe et al. (2017) separate by dimension into the spatial error components being either
of random or of systematic nature. Eventually, the studies actually incorporating a larger num-
ber of multiple randomly sampled combinations align themselves with “Big Data” approaches
to derive general insights on specific treatment sites (Kraan et al. 2013; Park et al. 2013).

Probabilistic approaches, on the other hand, exhibit the possibility to intrinsically incorpo-
rate this interplay. Perkó et al. (2016) managed to “compress” a PCE to incorporate random and
systematic errors. However, still several hundred scenario computations are required while con-
structing the PCE with numerical integration, yet without generalizing to optimization. Also the
methodology proposed by Sobotta, Söhn, and Alber (2010) and Sobotta, Söhn, and Alber (2012)
may allow intrinsic incorporation. Their generalization to probabilistic or robust optimization
under fractionation is, however, not trivial.

With APM, this generalization can directly be made for optimization with the expected least-
squares objective from Eq. (III.22) using the precomputed helper matrix Ω as in Eq. (III.23). The
latter is precomputed based on the covariance influence elements, for which Bangert, Hennig, and
Oelfke (2013) and Wahl et al. (2017) already demonstrated feasibility of computing and optimiz-
ing uncertainties for a desired fraction number at constant time complexity. Yet the formulations
by Bangert, Hennig, and Oelfke (2013), recapped in Section III.6.3, are not the end of the road,
and further optimizations of the model are possible.

As a matter of fact, this chapter will introduce a reformulation of the fraction number depen-
dence allowing a separation of the covariance influence into a linear combination of random and
systematic covariance influence components in Section V.2. While these reformulations stay in
constant time complexity at none to limited overhead, they enable computation of the complete
fractionation spectrum of the covariance influence, with generalization to dose (co)variance and
the helper matrix Ω. To evaluate these computations, a random sampling study under fractiona-
tion (similar to Section IV.2.3.1 but with fewer treatment samples) is set up to quantify the effect
of consideration of the fraction number on the outcome of probabilistic optimization. Within
Section V.3 the uncertainty spectrum of the non-trivial interplay of random and systematic un-
certainties under fractionation is then evaluated. The results of the random sampling studies are
used to quantify the benefit of considering the fraction number over just applying a probabilis-
tic plan for a single fraction in multiple fractions. Finally, Section V.4 discusses the results and
concludes this chapter.
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V.2 Methods

V.2.1 The linear covariance influence model

Section III.6.3 shows that for incorporation of fractionation effects, the raw contribution to the spa-
tial covariance influence elements need to be decomposed into a “correlated” and “uncorrelated”
component, modeling correlations across fractions and only within a single fraction, respectively.

For a covariance influence element Cijlm, the raw contribution C̃ijlm subject to a number of frac-
tions n f decomposes into

Cijlm =
C̃ corr

ijlm + (n f − 1)C̃ uncorr
ijlm

n f︸ ︷︷ ︸
C̃ijlm

−DijDlm . (V.1)

Therein, C̃ corr contains the full correlation model that holds within a single fraction. The re-
maining fractions are described by C̃ uncorr which considers the full correlation model only for
systematic errors while treating random errors as completely uncorrelated. Both compose the
raw contribution C̃ to the full covariance influence C as defined in Eq. (III.18). The last term in
Eq. (V.1) then subtracts the mixed expectation value of dose influence DijDlm.

Theoretically, C̃ corr and C̃ uncorr would only require a single precomputation, from which C

could then be computed dynamically for any number of fractions n f with available expected
dose influence matrix D.

However, when expanding Eq. (V.1) to

Cijlm =
1

n f
·
[
C̃ corr

ijlm − C̃ uncorr
ijlm

]
+
[
C̃ uncorr

ijlm −DijDlm

]
, (V.2)

denoting C rand
ijlm = C̃ corr

ijlm − C̃ uncorr
ijlm and C

sys
ijlm = C̃ uncorr

ijlm −DijDlm, those can be linearly combined
in the much more clean formulation

Cijlm =
1

n f
· C rand

ijlm + C
sys
ijlm . (V.3)

In Eq. (V.3), C rand now describes the covariance influence caused by random errors, while C sys

describes the systematic contributions. This can be deducted from above definitions of C̃ uncorr

and C̃ corr; in C rand = C̃ corr − C̃ uncorr, all systematic components subtract to zero, while C̃ uncorr

already considers only systematic correlation assumptions.

While this reformulation may seem merely as a mathematical technicality, it facilitates APM’s
computations for fractionated treatments in certain aspects. Besides obtaining a more illustrative
description of the impact of random and systematic uncertainties, for example, one can directly
investigate the infinite fraction assumption n f → ∞. Also generalization to the dose covariance
and to optimization is straightforward, as explained below in Section V.2.2.
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V.2.2 Generalizaঞon to probabilisঞc analysis and opঞmizaঞon

The linear model derived in Eq. (V.3) separates into two distinct summands. This generalizes to
the sum from Eq. (III.19) used to compute (co)variance components

Cov [di, dl ] (n f ) = ∑
jm

wjwm

[
1

n f
C rand

ijlm + C
sys
ijlm

]
=

1
n f

∑
jm

wjwmC rand
ijlm︸ ︷︷ ︸

Σd
il

rand

+∑
jm

wjwmC
sys
ijlm︸ ︷︷ ︸

Σd
il

sys

⇒ Σd(n f ) =
1

n f
Σdrand

+ Σdsys (V.4a)

⇒ σ2
d(n f ) =

1
n f

(σrand
d )2 + (σ

sys
d )2 , (V.4b)

such that random and systematic covariance components Σdrand and Σdsys and variance compo-
nents (σrand

d )2 and (σ
sys
d )2, respectively, can be obtained.

Similarly, the sum to compute the helper matrix Ωv described in Eqs. (III.23) and (IV.1) factor-
izes into its the random and systematic component Ωv,rand and Ωv,sys:

Ωv
jm(n f ) = ∑

i∈v

[
1

n f
C rand

ijim + C
sys
ijim

]
=

1
n f

∑
i∈v

V rand
ijm︸ ︷︷ ︸

Ωv,rand
jm

+∑
i∈v

V
sys

ijm︸ ︷︷ ︸
Ωv,sys

jm

⇒ Ωv(n f ) =
1

n f
Ωv,rand + Ωv,sys . (V.5)

When using APM for uncertainty propagation, the separations exercised from Eqs. (V.1) to (V.5)
are especially convenient; separated terms can be computed independently and on-the-fly for any
requested set of voxels or pencil-beams. Hence, from a single run of APM’s computations of ex-
pected value and (co)variance, the full fractionation spectrum of (co)variance is available. Using
then Eq. (V.4a) or Eq. (V.4b), (co)variance for any fraction number—including the assumption of
infinite fractions—may be queried and used for further analysis.

Using Ωv(n f ) in probabilistic optimization of the expected objective function in Eq. (III.22) in-
duces dependence on the number of fractions n f in the variance term (see Eq. (III.23)). This means
that for a change in n f Eq. (III.22) needs to be re-optimized, but since Ωv(n f ) can be separated
with Eq. (V.5), no re-computation of the uncertainty mapping is needed between optimization
runs.

V.2.2.1 Use within other methods

Equations (V.1) to (V.5) apply equally to other methods capable of evaluating elements of C for
the same correlation model for fractionation. If instead of C only a derived quantity like σ2

d(n f ) is
available for several fraction numbers, Eq. (V.4b) would still be valid and the respective systematic
and random components could be inferred from the derived quantities.

For example, assume the case of common estimation of σ2
d through sampling methods, when
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σ2
d(n f = np

f ) is available for P fractionation schemes indexed by p. Looking at individual voxels
i, the relationship of estimates σ2

di
(np

f ) and its random and systematic components can be repre-
sented as linear system

σ2
di
(n1

f )

σ2
di
(n2

f )
...

σ2
di
(nP

f )

 =


1 (n1

f )
−1

1 (n2
f )

−1

...
...

1 (nP
f )

−1


(

σ
sys
di

2

σrand
di

2

)
+ ε (V.6)

with error ε ∈ RP.
A straightforward approach to solve model (V.6) is linear regression by, for example, least

squares/minimization of |ε|2 or matrix inversion algorithms. Exercised for each voxel i, an esti-
mate for (σsys

d )2 and (σrand
d )2 may be obtained.

Note that this approach will just be used qualitatively for comparison, and is thus not further
developed; a quantitative approach would, at least, need to constrain the random and systematic
comparison to the positive domain. Further implications will be discussed in Section V.4

V.2.3 Random sampling study

To quantitatively analyze the methodology derived above, a random sampling study was set up,
similar to the random sampling benchmark in Section IV.2.3.1, but with reduced sample num-
ber. Using less samples is a consequence of the increased complexity under fractionation; each
treatment sample is now the accumulated dose of in turn randomly sampled fractions n f . This
now requires nS = nT · n f sample dose calculations in total, where nT is the number of desired
(fractionated) treatment samples.

In the investigated scenario, i. e., random and systematic uncertainties for lateral pencil-beam
displacement and WEPL under a static anatomy, the accumulated dose for a treatment sample dt

is simply given by

dt =
n f

∑
f=1

dt, f (V.7)

with the respective fraction dose of the treatment sample dt, f . The fraction dose samples dt, f are
computed by first drawing a displacement sample from the multivariate distribution describing
systematic uncertainties, proceeding from which then n f samples are drawn from the respective
distribution describing the random uncertainties. Sample statistics for the fractionated treatment
can then be deducted from all sampled treatment doses dt similar to Section IV.2.3.1.

The sampling study shall aim at investigating the behavior of dose uncertainty for (a) a given
treatment dose that may be applied in different fractionation schemes, (b) treatment plans that are
probabilistically optimized under fractionation, (c) probabilistic treatment plans optimized for a
single fraction, but applied in multiple fractions. To derive this information, one conventional
treatment plan shall be generated, as well as probabilistic treatment plans for a set of p increasing
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fraction numbers {n1
f , n2

f . . . , np
f }, such that np

f is the maximum number of investigated fractions.
For each single one of this treatment plans, now treatment samples with np

f fractions are com-
puted. This enables the analysis of all p + 1 created treatment plans considering fractionation
schemes from the interval [1, np

f ]. It should be pointed out that this approach entails autocorrela-
tions in the fraction samples, since the accumulated dose up to a fraction depends on the previous
fractions. Between sufficiently small subsets of fractions, this autocorrelation might be avoided
by choosing the subsets from different fraction samples.

V.3 Results

This section presents results based on similar uncertainty assumptions as used for the validation
in Chapter IV. That is, range and set-up errors are perfectly correlated for pencil-beams belonging
to the same beam, i. e., impinging from the same gantry angle, and uncorrelated otherwise. The
fractionation model was added, i. e., random errors are completely uncorrelated across differ-
ent fractions, while systematic errors exhibit perfect correlation. The magnitude of the assumed
uncertainties as well as parameters of the patient data and treatment plans is given in Table C.1.

V.3.1 Uncertainty analysis of the full fracঞonaঞon spectrum

The separated variance from Eq. (V.4b) could be computed within a single run of APM’s covari-
ance computation routine. As exemplary illustration, Fig. V.1 depicts the prostate case, similar
to Fig. IV.3, but this time constructing the random and systematic component of standard devi-
ation. Further, in Fig. V.1e the linear model is illustrated (in the maximum variance voxel), com-
paring APM’s perfectly linear variance modeling with the result from linear regression (compare
Eq. (V.6)) using nT = 100 treatment samples according to Section V.2.3. APM’s linear variance
model is then used to construct fractionated dose cubes, shown in Fig. V.1f.

The separated components in Figs. V.1c and V.1d exhibit different structure, according to the
respective assumption made in the input uncertainty space. Systematic range uncertainties dom-
inate the picture of Fig. V.1c, manifesting in the peak uncertainties at the distal tumor edge. Ran-
dom lateral set-up errors lead to a tubular high-variance enclosure of the beams’ dose, especially
pronounced near the rectum and bladder where the dose is high. Figure V.1f shows that un-
der fractionation, with increasing fraction number the random error quickly loses impact due to
possible cancellation of random error scenarios across multiple fractions.

The relative contribution of random and systematic dose uncertainty to uncertainty of the full
fractionated treatment is different across patient anatomies and beam geometries. To illustrate
this behavior, the (separated) standard deviation is also shown in Fig. V.2 for the paraspinal and
the intracranial case by means of exemplary slice distributions. For the intracranial case, the
systematic error has a large impact on the composed full standard deviation, which can be at-
tributed to both beams impinging from the same lateral half circle with only 60◦ separation, i. e.,
“sharing” their distal tumor edge. The paraspinal case exhibits comparable influence from both
components.
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Figure V.1: Exemplary axial slice of nominal dose (a), expectation value (b) and corresponding separated systematic
(c) and random (d) component of the standard deviation. With the linear variance model—depicted in (e) for the
maximum variance voxel—it is possible to deduct the standard deviation for the desired number of fractions (f). The
maximum variance voxel is indicated by a square marker in the distributions. In (e) the with APM computed variance
for n f fractions (blue points) is compared against the sample variance (orange squares, error bars correspond to ±1σ).
Additionally, the respective linear models computed on-the-fly by APM (blue line) and based on linear regression on
the sample statistics (orange dashed line) are shown.
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Figure V.2: Exemplary slices of separated random and systematic standard deviation of dose for the paraspinal (a,c,e)
and the intracranial case (b,d,f). Similarly presented in Wahl et al. (2018a).

68



V.3 Results

A more quantitative analysis of the behavior of the standard deviation of dose with changing
fraction number can be done by using fractionated standard deviation volume histograms (FS-
DVHs). Figure V.3 shows FSDVHs for a target and an OAR for all three patient cases across the
complete fractionation spectrum. The analysis underpins the first insights gained from the qual-
itative view at exemplary slices in Figs. V.1 and V.2. With increasing fraction number, the overall
standard deviation decreases rapidly towards the systematic contribution, such that a treatment
with 30 fractions has almost no sensitivity to random errors, i. e., is nearly similar to a treatment
with infinite fractions.

This confirms other analyses of the behavior of dose variability subject to random errors by
Lowe et al. (2016), Park et al. (2013), and Perkó et al. (2016).
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Figure V.3: FSDVHs for 1, 5, 30 and theoretically ∞ fractions of all cases for a target (top row) and OAR (bottom row),
respectively. Furthermore, the complete fractionation spectrum is illustrated by the gray-shaded area, in which color
transitions to a darker shade correspond to the SDVHs of a treatment with one more fraction.

V.3.2 Probabilisঞc fracঞonated treatment plans

As the next step, the APM framework was used to optimize the expected objective function (III.23)
to generate treatment plans for n f = {1, 5, 30} fractions, using the helper matrix Ωv. Based on
the separation of Ωv (for the respective VOIs v) given in Eq. (V.5), only a single computation of
the random and systematic components Ωv,sys and Ωv,rand, respectively, was required to perform
all three probabilistic optimizations. After the probabilistic optimizations, for each plan E[d] as
well as the standard deviation components σrand

d and σ
sys
d were computed.

Furthermore, for all treatment plans, i. e., the conventional and the three probabilistic ones, a
random sampling study was performed as explained in Section V.2.3 with nT = 100 treatment
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samples. For all sampled treatments, the respective DVHs were computed to derive α-DVHs
(compare Eq. (II.26)).

V.3.2.1 Effect of fracঞonaঞon on fluence modulaঞon

Compared to Section IV.3.1, where plans optimized for n f = 1 have been shown, optimization
with n f > 1 decreases contribution of the variance term in Eq. (III.22), while especially the ran-
dom component’s relative contribution decreases with increasing n f in Eq. (V.5). As random
components are uncorrelated through the treatment, this enables independent modulation of w
in optimization of Eq. (III.22) without substantial increase in variance.

Figure V.4 demonstrates this effect by showing the dose contribution for the 270◦ beam for the
prostate case. In conventional optimization, the beam is sharply modulated, especially in the
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Figure V.4: Comparison of prostate beam modulations achieved by conventional and probabilistic optimization under
fractionation. The 270◦ beam’s nominal dose [Gy] for the conventional plan (a) and probabilistically optimized plans
(b-d) is shown with n f = {1, 5, 30} fractions. Similarly presented in Wahl et al. (2018a).

vicinity of the rectum. The resulting high dose gradients are especially prone to the input uncer-
tainties, and therefore probabilistic optimization creates smoother beam fields. With increasing
fraction number, modulation increases since random errors are able to cancel each other out. The
sharp modulation from the conventional plan is, however, not recreated, since the systematic
contribution persists independently of the number of fractions.

V.3.2.2 DVH staঞsঞcs

For the prostate case, the sampled DVHs and α-DVHs are shown in Fig. V.5. Similar illustrations of
the DVH-statistics for the paraspinal and the intracranial case are given in the section in Figs. C.6
and C.7, respectively.

The DVH-statistics show, in general, different effects in targets and in OARs. For OARs, the me-
dian DVHs are close to the nominal DVH. In the prostate and the intracranial case, the median
DVH shows a slightly steeper descent, and on average the low-dose volume is increased. For the
targets, the conventional plans exhibit steep nominal DVHs, which is, however, extremely un-
likely to occur; the median DVH is significantly less steep, i. e., even the 5 % and 95 % α-DVHs do
not enclose the nominal DVH. This effect is compensated with probabilistic optimization, pro-
ducing a nominal scenario with a DVH that is much more close to its median and, in general,
enclosed by the 5 % and 95 % α-DVHs.

Regarding fractionation, the DVHs for the conventional treatment plan exhibit the aforemen-
tioned rapid decrease in variability with increasing fraction number. This decrease in variability
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Figure V.5: Sampling based DVH-statistics for fractionated conventional and probabilistic treatment plans for the
prostate case. (a,c,e) show the statistics for the conventionally optimized treatment planned applied in 1, 5 and 30
fractions, while (b,d,f) show the corresponding probabilistically optimized treatment plans. Nominal DVHs are rep-
resented by solid lines ( / ) while dashed lines ( / ) represent median DVHs (i. e., 50 % α-DVHs). The
thin dotted ( / ) and dash-dotted lines ( / ) enclosing the shaded areas refer to the 5 % to 95 % α-DVHs and
25 % to 75 % α-DVHs quantiles, respectively. The underlying DVHs for the treatment samples are indicated by the thin
grayed out solid lines ( / ) in the background. The vertical dashed black line ( ) indicates the prescribed dose
to the respective target. Similarly presented in Wahl et al. (2018a).
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does, however, not compensate for the observed difference between median and nominal DVH
in the target. For the probabilistic treatment plans, the optimizer is able to compensate for this
difference in the target to a similar extent across all investigated fractionation schemes. Within
OARs, the variability persists, which can be attributed to the optimization penalty, favoring ex-
pected target coverage over OAR robustness and sparing during optimization.

Figures V.5, C.6 and C.7 are not ideal for a quantitative investigation of the differences between
expected treatments with either conventional or probabilistic plans. Therefore, Fig. V.6 directly
compares only the median DVHs for the different plans. For each of the three patient cases,
respective targets (Figs. V.6a to V.6c) and OARs (Figs. V.6d to V.6f) are investigated.
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Figure V.6: Median DVHs from sampling statistics for conventional and probabilistic treatment plans under fraction-
ation using 1, 5 and 30 fractions. For each case, a target (a-c) and an OAR (d-f) is investigated. The dashed lines
( / / ) show the median DVHs for the conventional treatment plans, the solid lines ( / / ) repre-
sent the median DVHs for the respective probabilistic treatment plan. The additional dotted line ( ) shows the
median DVH for a plan probabilistically optimized for a single fraction, but applied in 30 fractions. The dashed black
line ( ) indicates the prescribed dose to the respective target. Similarly presented in Wahl et al. (2018a).

From conventional to probabilistic plans a general trend towards higher integral doses in prob-
abilistic plans is evident, for both targets and OARs. For targets, the higher dose combined with
a steeper descent of the median DVH leads to a higher target coverage probability and a me-
dian scenario comparably close to the seen nominal scenario. For a treatment with larger fraction
number, in generally slightly steeper median DVHs are observed in the target, however, this ef-
fect is minimal. For the OARs, the probabilistic treatment plan optimized for a single fraction
experiences highest median dose coverage, which is reduced by optimization for a larger num-
ber of fractions. This is due to the random component’s contribution to the variance term in the
expected objective function (III.22), shifting focus on the term minimizing the squared deviation
of the expected dose to the prescribed dose.
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V.3.2.3 Generalizaঞon of probabilisঞc treatment plans across fracঞon numbers

In Fig. V.6 the additional median DVHs for a probabilistic treatment plan optimized for a single
fraction, but applied in 30 fractions, are shown. Compared to the respective probabilistic treat-
ment plans directly optimized and consequently applied in 30 fractions, they indicate worse OAR
sparing and none to only slight improvement of the median target DVH. This effect is visible in
the spinal cord, but also apparent in the brainstem. For the prostate case, only a slightly increased
median dose in the rectum can be observed.

Figure V.7 analyzes statistics of selected target and OAR quality metrics, the latter based on
indicators used in QUANTEC (Marks et al. 2010). For the targets, the D95 % indicator, i. e., the
minimal dose covering 95 % of the targets’ volume, is evaluated as surrogate for the minimum
dose. For the paraspinal and the intracranial case, D5 % surrogates the maximum dose in spinal
cord and brainstem, and for the rectum the volume covered by 50 Gy, i. e., V50 Gy, is chosen.

For the targets, probabilistic optimization shifts the probability mass to higher doses, i. e., in-
creasing target coverage probability. Behavior of the more extreme quantiles i. e., the 5 % and
95 % percentiles, is inconsistent, which can be attributed to the low treatment sample number
of nT = 100. From the 25 % and 75 % percentiles, a reduction of the variance can be deducted
compared to the conventional plan. A plan optimized for a single fraction, but applied in multi-
ple fractions is, in general, slightly less variant and has slightly better target coverage than a plan
optimized for the respective fraction number.

For the OARs, maximum dose/covered volume are expected to increase after probabilistic op-
timization, i. e., OAR sparing is traded against target robustness. Similar to the targets, proba-
bilistic optimization therefore shifts the probability mass to higher dose(-volume)s. Probabilistic
optimization neglecting multiple fractions is confirmed to result in expected higher maximum
dose or dose-volume, as observed above.

This effect of probably overdosing the OARs while getting slightly better expected target cov-
erage is caused by the importance of the variance term during optimization of Eq. (III.23). When
optimizing for a single fraction, the variance term has higher contribution, which gives the opti-
mizer less incentive to conform the expected dose than when optimizing with the reduced vari-
ance contribution in a multi-fractioned treatment. Paired with the observations so far that the
median dose does, in general, not change significantly when changing the fraction number (for
the same planned fluence), this leads to increased expected OAR dose. This is underpinned by
Fig. V.8, showing FSDVHs for multiple combinations of optimized and applied fraction numbers.

Figure V.8 shows that an increased variance contribution in the optimization increases the in-
centive for the optimizer to reduce the integral variance in the respective VOI. This effect is mostly
pronounced for targets. There, application of a probabilistic treatment plan, which was initially
optimized for a single fraction, in multiple fractions consequently leads to a higher reduction of
variance than in the plan specifically optimized for this number of fractions. Vice versa a plan
optimized for 30 fractions and then applied in only a single fraction underestimates the variance
contribution for optimization, and finally leads to the highest variability of target dose.

For the OARs, this effect is reduced up to nearly similar FSDVHs under changes the fraction
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Figure V.7: Statistical analysis of probabilistic treatment plan quality of conventional (Cn f ) and probabilistic treatment
plans Pno

n f using box plots. n f is the number of fractions the treatment plan is applied in. no equals the number of
fractions used for probabilistic optimization. The D95 % is shown as surrogate for minimal target dose in (a-c). (d-f)
analyze OARs based on suggested QUANTEC indicators. In analogy to Figs. V.5 and C.6 the whiskers enclose the
5 % and 95 % quantiles while the box encloses 25 % and 75 %. The vertical line represents the median value while the
cross gives the arithmetic mean. Additionally, the corresponding value from the nominal plan is indicated by a circle.
Similarly presented in Wahl et al. (2018a).

number in application. The spinal cord in the paraspinal case stands out, which can be attributed
to it being located in the center of the target.

In summary, optimization for a single fraction—followed by application in multiple fractions—
trades expected OAR sparing against only slight improvement on expected target coverage, com-
pared to optimization directly for the applied fraction number.

V.4 Discussion

With a slight reformulation of the covariance influence computation within the APM framework,
the linear model of variance subject to random and systematic errors under fractionation can be
computed at constant time complexity. This allows for analysis of expected value and standard
deviation of the full fractionation spectrum by separation into the random and systematic compo-
nents of standard deviation. With APM, this linear model can be incorporated into probabilistic
optimization, i. e., optimization of the expected value of a penalized least squares objective func-
tion (Eq. (III.23)), using precomputed separated helper matrices (compare Eq. (V.5)).

The linear variance model is a direct consequence of the definition of random and systematic
uncertainties common in literature (Fredriksson 2012; Kraan et al. 2013; Lowe et al. 2016; Lowe
et al. 2017; Park et al. 2013; Perkó et al. 2016; Unkelbach et al. 2009). Hence, the linear model itself
is generally not a novel “discovery” and also other probabilistic methods (e. g. Perkó et al. 2016;
Sobotta, Söhn, and Alber 2012) are, in general, suited for its computation. Comparing to previous
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Figure V.8: FSDVHs for treatment plans analyzed under combinations of n f = {1, 5, 30} fractions used for probabilistic
optimization and following treatment application. The number of fractions chosen for application is indicated by color
in the legends. Line style refers to the fraction number used for probabilistic optimization: solid lines ( / / )
for 1 fraction, dashed lines ( / / ) for 5 fractions and dotted lines ( / / ) for 30 fractions. Similarly
presented in Wahl et al. (2018a).

work by Park et al. (2013) and Perkó et al. (2016), behavior of dose uncertainty under fractionation
could be confirmed with APM’s computations. Statistical methods, which are able to compute
(estimates of) the variance for at least two fractionation schemes (e. g. Kraan et al. 2013; Park
et al. 2013; Unkelbach and Oelfke 2004), may rely on linear regression as indicated in Fig. V.1e
and in Wahl et al. (2018a). The regression method is, however, subject to sampling uncertainty,
which may lead to unphysical results like negative random or systematic error components if
not handled carefully. Also, generalization to probabilistic optimization of the aforementioned
methods is not in all cases trivial or feasible within reasonable computational complexity and
accuracy.

While this study used an uncertainty model based on common assumptions in literature, it
excludes a set of non-trivial uncertainties. Amongst these are, for example, deforming anatomies
due to motion or tumor shrinking (Chan and Mišić 2013; Knopf et al. 2013; Kraan et al. 2013; Liu et
al. 2012b; Lomax 2008a). Preparation of more sophisticated uncertainty models adapting to clin-
ical workflows and protocols, e. g. image guidance, is yet to be addressed throughout academic
methodologies. For the actual quantification of such non-linear effects the linear variance model
would no longer be applicable. Some other protocols, however, like prescribed dose depending
on the fractionation scheme, could be easily incorporated in APM. Other effects, like varying un-
certainty mitigation efforts depending on the fraction number would require re-computations. In
these scenarios an APM-based method can still provide fast decision guidance for practical uncer-
tainty mitigation efforts under fractionation, potentially relying on the qualitative sub-sampling
approximations discussed in Chapter IV.
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For all generated treatment plans (conventional as well as probabilistic for different fraction
numbers), the analytical computation with APM was complemented with an analysis based on
random samples (compare Kraan et al. 2013; Park et al. 2013). The increasing complexity (for each
treatment sample, 30 fractions were computed) enforced reduction of treatment sample num-
ber. Based on Fig. IV.7, 100 treatment samples were chosen, yielding reasonable accuracy for
both expectation value and standard deviation. More extreme quantiles (e. g. the 5 % and 95 %
percentiles) have yet to be interpreted carefully, since they are subject to only few samples and
therefore inaccurate. Hence, the analysis in this study focused mainly on median DVHs.

Probabilistic optimization under fractionation based on APMs computations demonstrated
fractionation-dependent trade-offs between nominal dosage and treatment plan robustness. This
trade-off was realized through more pronounced modulation in the optimized beam fluences as
the number of fractions increase. The reason for this increase in modulation relies in the de-
creased random variance influence component, which corresponds to a possible cancellation of
error scenarios across fractions. APM’s capability to model the full interplay between system-
atic and random components within optimization is at least challenging to reproduce in other
frameworks. Within photon therapy, fractionation effects on probabilistic or robust optimization
have already been evaluated (Chan, Bortfeld, and Tsitsiklis 2006; Unkelbach and Oelfke 2004).
In proton therapy, however, the exact incorporation of the number of fractions usually requires
further simplifications. Lowe et al. (2016) and Lowe et al. (2017), for example, completely sepa-
rate random and systematic errors by dimension, i. e., range errors are purely systematic while
set-up errors are purely random. Unkelbach, Chan, and Bortfeld (2007) only evaluate systematic
errors. In other approaches, an infinite amount of fractions is assumed while additionally im-
posing uncertainty on the random errors’ probability distribution itself, allowing computation in
the infinite limit (i. e., no random dose variance component) while avoiding over-modulation of
fluences to encourage random error cancellation which would lead to extremely heterogeneous
dose distributions (Fredriksson 2012; Unkelbach and Oelfke 2004).

The random sampling studies performed have run-times of several days, compared to compu-
tation of a full fractionation spectrum including optimization with APM within minutes. This
encourages clinical application. However, limitations of the underlying pencil-beam algorithm
as well as a limited uncertainty model are drawbacks for certain treatment sites, for example in
lung treatments (Taylor, Kry, and Followill 2017).

So far APM has only proven within expected value optimization of the penalized least-squares
objective. In state-of-the-art treatment planning, however, more complex objective functions than
penalized least-squares and constraints are used (compare Section II.2). Within statistical meth-
ods based on scenarios, statistical representations of those functions are easily obtained; within
the APM framework, they require analytical probabilistic representations. Furthermore, opti-
mization of the expectation value is a non-conservative method (Fredriksson 2012), i. e., while the
result is more robust than the conventional plan, it is not particular robust against worst-cases.
Continuously “sliding” between worst-case robustness and expectation improvement could be
realized by conditional value-at-risk optimization (Fredriksson 2012; Rockafellar and Uryasev
1997; Romeijn et al. 2003), which would, however, require analytical representations of the re-
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spective objectives within APM. Analytical probabilistic representations of constraint functions
would even allow optimization subject to exact quantification of the desired robustness. The fol-
lowing Chapters VI and VII will address these issues; First, by defining probabilistic representa-
tions of a set of treatment plan metrics in Chapter VI, and second by conceptualizing probabilistic
optimization using novel probabilistic objective functions and quantile constraints based on these
plan metrics.
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Chapter VI

Analyঞcal Models for Probabilisঞc Treatment Plan

Quality Metrics

This chapter approaches further propagation of uncertainty from the uncertain dose distribution
to plan metrics used in the clinic. Similar to the originally proposed APM concept explained in
Chapter III, the goal is to model expectation value and variance, i. e., the first two moments, of
the respective plan metrics in closed-form. Thereby the probability distribution over dose, which
is assumed to be a multivariate normal distribution, is used as a clean start. This facilitates gen-
eralization of the models to other methods that are able to provide at least the first two moments
of the probability distribution over dose.

The analytical computations are validated against sample statistics on patient data. Further,
new visualization techniques are developed which may possibly aid treatment planners to assess
uncertainties.

VI.1 Overview

Clinical decisions are not taken by solely performing a visual inspection of the dose distribution,
but also based on mainly dose-based treatment plan metrics for the VOIs. So far, APM can only
provide expected value and covariance in dose. While from these moments certain quality met-
rics for robustness can be derived, i. e., the SDVHs and FSDVHs used in Chapters IV and V, uncer-
tainty over dose-dependent treatment plan quality metrics is not directly available, but requires
new explicit probabilistic models. Therefore, to strengthen the argument for using an analytical
method like APM clinically, the framework needs to be extended to address uncertainty in the
clinically relevant plan metrics.

As laid out in Chapter III, APM’s analytical computations differ from other established meth-
ods. Where other methods provide statistical estimates of the moments of the probability dis-
tribution over dose, APM provides an approximation computed from mathematically exact ex-
pressions in closed-form. One advantage of scenario-based methods is, however, that computed
dose scenarios also directly allow statistics on dose-dependent plan metrics, e. g. extreme doses
or DVH statistics.

When using a rigorous analytical approach like APM, which provides a parametrization of the
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probability distribution over dose, one may, for example, sample from this distribution to deduct
the plan metrics’ statistics. Perkó et al. (2016), for example, use this technique, however based on
a numerically constructed PCE. APM, providing expectation value and covariance of dose, may
do the same based on marginal multivariate normal distributions within respective VOIs.

Alternatively, dose uncertainty may be propagated analytically with exact or approximate
closed-form expressions. Based on the statistical moments of the probability distribution over
dose, such analytical expressions would generalize further to scenario sampling using the sam-
ple mean and sample covariance, for example.

In radiation therapy, approaches for developing analytical representations of treatment plan
quality metrics are, however, few and far between. Henríquez and Castrillón (2008a), for example,
derive the expected value of DVHs using heuristic assumptions for the dose’s probability distri-
bution, by modeling the possible contribution to a histogram bin as Bernoulli experiments. Their
heuristic assumption lacks, however, a correlation model and is therefore not suited for quantifi-
cation of higher moments of a DVH. Analytical propagation of uncertainties through plan metrics
like EUD or minimum and maximum dose has—to the best of the author’s knowledge—not yet
been attempted in literature in the area of radiation therapy. Yet, such problems are not unknown
to mathematics, where, for example, extreme value statistics is an area of extensive research with
applications in finance, meteorology, and other fields (Coles 2001).

Application of mathematical results on probabilistic modeling of treatment plan quality met-
rics is, however, problematic. Often, analytically proven results exist for assumptions not valid
in the context of a dose distribution. For example, extreme value statistics is well studied for
i. i. d. random variables, where the extreme value theorem shows that under certain conditions
their maximum can be represented with the generalized extreme value distribution (Coles 2001;
Mcfadden 1978). This is not applicable for the dose’s probability distribution, which is physi-
cally bound to correlations. For the general case of correlated and dependent random variables,
current mathematical research tackles the derivation of order statistics or generalized extreme
value distributions (e. g. Bertin and Clusel 2006; Majumdar and Pal 2014). While some identities
and simplifications about the distribution of order statistics are applicable under special condi-
tions (Chen 2014; Kotz, Johnson, and Balakrishnan 2000; Tong 1990), a general exact theory is not
yet available. A long known iterative method for approximating moments of the maximum of a
multivariate normal is given by Clark (1961). Arellano-Valle and Genton (2008) derived exact ex-
pressions for the resulting distributions under assumption of multivariate normals or Student’s
t. However, they are difficult to handle with large numbers of variables due to the dependency
on the full multivariate cumulative distribution.

For the generalized mean (representing EUD), a literature research revealed no general at-
tempts of analytically deriving its probability distribution or its moments. Some engineering
research, particularly in hydrology, evaluated statistical properties of the generalized mean when
the averaged random samples are following a log-normal distribution (Jensen 1998). Also for spe-
cial cases of the generalized mean, i. e., the harmonic mean where κ = −1 (Limbrunner, Vogel,
and Brown 2000) and the geometric mean for κ → 0 (Landwehr 1978), studies of their expecta-
tion and variance exist. These studies, however, are usually based on independent log-normal
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samples, and are therefore only partly applicable to the correlated problem at hand.
The approaches shortly reviewed may work under conditions that are not given in the case of a

dose distribution on a discretized voxel grid with a large number of voxels. Thus, in the following,
mainly based on a multivariate normal model of the probability distribution over dose, analytical
representations for the first two moments, i. e., expectation value and variance, are derived based
on two approaches. At first, an approach similar to the existing APM-framework is applied.
Second, if no solution can be found, a Taylor expansion of the respective function describing the
plan metric is used to compute the first two moments. These derivations are evaluated based on
the three patients already used in Chapters IV and V.

While concrete values of mean and standard deviation of such plan metrics might already be
helpful for evaluation of plan robustness (McGowan et al. 2015), it stays difficult to understand
implications on the dose distribution within the full probability space. The assessment of single
scenarios, i. e., worst-case or random, gives a single snapshot which is difficult to bring into line
with other, possible realizations, especially regarding their probability.

Here, the multivariate normal dose model can be exploited, since it can be used to regener-
ate scenario samples with desired properties. Based on a method proposed by Hennig (2013),
marginal distributions, i. e., over a slice through the dose cube or the dose within a VOI, are
deducted and sampled such that they form a series of equiprobable samples. This thesis qualita-
tively investigates and presents such visualizations created with the methods of Hennig (2013).

The remainder of this chapter begins with definition of the multivariate model and deriva-
tion of analytical uncertainty propagation expressions for certain plan metrics in Section VI.2.
Within the same section, the sampling technique for generation of smooth animations is intro-
duced. Section VI.3 evaluates the derived analytical expressions on their validity and compares
to sample statistics, finalizing with exemplary sample series used for animation. The chapter con-
cludes with a discussion of the results in Section VI.4 under critical evaluation of the underlying
assumptions.

VI.2 Methods

VI.2.1 The mulঞvariate dose model

As a function of spatial coordinates r, the dose d (r) under uncertainty can be understood as a
random field. Since APM enables the computation of the expectation value of dose at a coordinate
r as well as the covariance between dose values at two spatial coordinates, a Gaussian random
field may be used as descriptor. As the computations are applied on the discretized patient data,
this corresponds to assuming that the (random) dose vector d describing the dose in all voxels
is distributed as a multivariate normal distribution with mean vector µ and covariance matrix Σ,
i. e.,

d ∼ N (µ, Σ) . (VI.1)
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Note that, contrary to previous chapters, Eq. (VI.1) spares indexing of µ and Σ with d, for better
readability of the derivations to come.

Assumption Eq. (VI.1) is, of course, debatable for various reasons and requires short discus-
sion: First, the dose physically can never be negative, which is inherently violated by assumption
of a multivariate normal distribution which has infinite support. Second, the common assump-
tions on input uncertainty, i. e., spatial setup and calculational range uncertainties (compare Sec-
tion II.3), impose strong correlations across pencil-beams, such that the central limit theorem does
not deliver a basis for argumentation since the sources of uncertainty are not independent.

On the other hand, calculations with and on multivariate Gaussians are well understood, es-
pecially in the multivariate case. Therefore, it is well suited for a first model to approach em-
pirical investigation. Use of other multivariate distributions comes with additional implications,
i. e., they have limitations considering arbitrary linear correlations (compare e. g. Kotz, Johnson,
and Balakrishnan 2000). As an exception, for example, the multivariate log-normal distribution,
which is a logarithmic transformation of the multivariate normal distribution, may be named and
also find its use in Section VI.2.3.3. Further, the application of treatment plans over multiple frac-
tions may resolve correlation and enable argumentation with the central limit theorem. Hence,
the following derivations will rely mainly on the assumption of Eq. (VI.1), and more discussion
on this issue will be exerted in Section VI.4.

VI.2.2 Analyঞcal uncertainty propagaঞon methods

Approaches for analytical uncertainty propagation through a function I(d) describing a dose
metric may either attempt to compute or approximate a full probability distribution with density
f I(d), or to find representations for lower-order moments like E[I(d)] and E[I(d)2]. Considering
that the underlying assumption (VI.1) of the probability distribution over dose is approximate,
derivation of a full probability distribution over a dependent metric I(d) would comprise an
accurate description where, in principle, there is none.

Instead, the initial motivation of APM, i. e., the computation of lower moments of I(d), is fol-
lowed. Besides the analytical computation of moments by integration used in the original works
by Bangert, Hennig, and Oelfke (2013) (compare Section III.1, esp. Eq. (III.1)), uncertainties are
commonly propagated through a function with the commonly known (and taught) first-order
Taylor expansion (Farrance and Frenkel 2012; Ku 1966), often neglecting correlations. Both meth-
ods are summarized below, with the Taylor-based method being expanded to second order (for
the expectation value) under presence of correlations.

VI.2.2.1 Integraঞon

To find the ν-th moment of a treatment plan metric I(d) dependent on the dose distribution d in
n voxels by integration, one needs to solve

E [I(d)ν] =
∫

Rn
I(d̃)ν fd

(
d̃; µ, Σ

)
dd̃ (VI.2)
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where fd is the probability density function (PDF) over dose d, parametrized by its mean µ and
covariance Σ. When applying the initial assumption of Eq. (VI.1), one has fd = N

(
d̃; µ, Σ

)
.

Since most of the plan metrics introduced in Section II.2.1 are, in some way, expressed as sums
I(d) ∝ ∑i g(di) over functions g(di) of voxel doses di within the respective structure, one can
outline a general recipe for solving Eq. (VI.2) for ν = {1, 2}.

For the first central moment, i. e., ν = 1, setting I(d) !
= ∑i g(di), Eq. (VI.2) becomes

E
[

I(d)ν=1
]
=
∫

Rn

[
∑

i
g(di)

]ν=1

fd
(
d̃; µ, Σ

)
dd̃ (VI.3a)

= ∑
i

∫
Rn

g(di) fd
(
d̃; µ, Σ

)
dd̃ (VI.3b)

= ∑
i

∫
R

g(di) fdi

(
d̃i; µi, σ2

i
)

dd̃i . (VI.3c)

In step (VI.3a) the sum rule for integration was used to pull the sum out of the integral. Then,
using the definition of marginal probability densities (Eq. (A.1)), one can “marginalize” the inte-
grals to obtain Eq. (VI.3c).

For ν = 2, analogous steps can be taken, using [∑i g(di)]
2 = ∑il g(di)g(dl):

E
[
I(d)ν=2] = ∫

Rn

[
∑

i
g(di)

]2

fd
(
d̃; µ, Σ

)
dd̃ (VI.4a)

= ∑
il

∫
Rn

g(di)g(dl) fd
(
d̃; µ, Σ

)
dd̃ (VI.4b)

= ∑
il

∫∫
R2

g(di)g(dl) fdi;l

(
d̃i;l ; µi;l , Σi;l

)
dd̃idd̃l . (VI.4c)

Hence the computations simplify into a sum over integrals of mixed terms g(di)g(dl) against
bivariate marginal densities over components i and l. Note that this approach is on a higher
level similar to the computations exercised for the general APM framework by Bangert, Hennig,
and Oelfke (2013) presented in Chapter III. There, to evaluate the uncertainty of dose at a certain
coordinate, sums over the pencil-beams with uncertain positioning need to be evaluated, also
making use of the respective univariate and bivariate marginal distributions.

VI.2.2.2 Taylor expansion

As alternative to finding an exact solution for integral (VI.2), uncertainty might be estimated
expanding the function I (d) as a Taylor series around the mean dose vector µ. Up to second
order, this results in

I(d) ≈ I(µ) + (d − µ)T[∇I](µ) +
1
2
(d − µ)T HI(µ)(d − µ) , (VI.5)

where [∇I](µ) denotes the gradient and HI(µ) the Hessian matrix evaluated at µ.
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Using E[d − µ] = 0, E[(d − µ)T (d − µ)] = Σ and Var[I(d)] = E[I(d)2] − E[I(d)]2 one can
derive the following approximations for expectation value and variance of I (Benaroya and Mi
Han 2005; Gustafsson and Hendeby 2012):

E [I(d)] = I (µ) +
1
2

tr (HI (µ)Σ) , (VI.6a)

Var [I(d)] = [∇I(µ)]T Σ∇I(µ) . (VI.6b)

Note that in Eq. (VI.6a), the trace term tr(HI(µ)Σ) can be efficiently evaluated using the element-
wise (i. e., Hadamard) product using tr(HI(µ)Σ) = ∑il(HI(µ) ◦ Σ)il . Note that while Eq. (VI.6a)
includes the approximation up to second order, only the first order approximation was kept in
Eq. (VI.6b). The reason for this is that a higher-order term in Eq. (VI.6b) would increase compu-
tational complexity beyond dimensionality of the covariance matrix, which was reasoned to be
out of scope for this chapter, yet might be worth investigation in the future.

VI.2.3 Analyঞcal computaঞons

In this section the derivations for the first non-central moment, i. e., the expectation value, and
second central moment, i. e., the variance, of several clinical plan quality metrics will be described.
In case of the DVH derivations, additionally the covariance between single dose-volumes is com-
puted.

Since the presented clinical plan metrics make most sense when applied to a subset of dose
voxels, i. e., a VOI, all derivations should be understood to be carried out for the marginal distri-
bution in the voxel-space of the respective VOI. More precisely, the random dose vector is now
marginalized to d = (d1, d2, . . . , dn)

T over the voxels i = 1, 2, . . . , n contained in an arbitrary VOI
with n voxels, following the multivariate normal distribution N (µ, Σ).

VI.2.3.1 Dose-volume (histograms)

Henríquez and Castrillón (2008a) already derived analytical expressions for the expectation value
and an upper bound on the variance of a DVH. Their derivations are based on a heuristic assump-
tion of the underlying probability distribution to be uniform with unknown correlation. Other
types of distributions can been investigated (Henríquez and Castrillón 2008b). However, since
they do not make assumptions on correlation of uncertainty between two dose voxels, these in-
vestigations are limited to expectation value of dose. In the following, their result for the expecta-
tion value will be confirmed by using explicit integration as described in Section VI.2.2, and then
extended to an explicit quantification of the (co)variance of a DVH.

Henríquez and Castrillón (2010) also claimed to be able to derive α-DVHs with their approach.
Their model is, however, based on independent contributions of the voxel doses to the DVH ac-
cumulation and is therefore to be seen critically. A short recap of the method is given in at the
end of this section.
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ExpectaঞonValue: For the computation of the expectation value of a DVH, Henríquez and Cas-
trillón (2008a) noticed that for a single point of the DVH, i. e., a dose-volume DVH(d̂) at a given
dose value d̂, the evaluation of the step function term Θ

(
di − d̂

)
within Eq. (II.9) corresponds to

a Bernoulli experiment in case of uncertain di:

E
[
Θ
(

di − d̂
)]

= p (VI.7)

where the Bernoulli-parameter p is the probability obtained from di’s cumulative distribution
function (CDF) Fdi as p = 1 − Fdi(d̂).

Through linearity of the expectation value, Henríquez and Castrillón (2008a) deducted that the
expectation of a dose-volume E[DVH(d̂)] is then given by

E
[
DVH(d̂; d)

]
= E

[
1
n ∑

i
Θ
(

di − d̂
)]

=
1
n ∑

i
E
[
Θ
(

di − d̂
)]

=
1
n ∑

i

[
1 − Fdi(d̂)

]
.

(VI.8)

Equation (VI.8) holds true for any kind of distribution function Fdi , and can therefore be seam-
lessly applied with the multivariate normal uncertainty model from Eq. (VI.1) with the respective
marginal, i. e., a univariate normal CDF.

The result of Eq. (VI.8) may also be confirmed by explicit evaluation of the integral (VI.2). Since
the respective computations are helpful to understand following derivations for the (co)variance
of dose-volume histograms, the explicit steps to obtain the same result as in Eq. (VI.8) are given
below, using the “marginalization” demonstrated in Eq. (VI.3):

E
[
DVH(d̂; d)

]
=
∫

Rn
DVH(d̂; d̃) fd(d̃)dd̃ (VI.9a)

=
∫

Rn

1
n ∑

i
Θ
(

di − d̂
)

fd(d̃)dd̃ (VI.9b)

=
1
n ∑

i

∫ ∞

−∞
Θ
(

di − d̂
)

fdi(d̃i)dd̃i (VI.9c)

=
1
n ∑

i

∫ ∞

d̂
fdi(d̃i)dd̃i (VI.9d)

E
[
DVH(d̂; d)

]
=

1
n ∑

i

[
1 − Fdi(d̂)

]
(VI.9e)

Here, in step (VI.9d) the zero-valued part of the Heaviside function was canceled out by adapta-
tion of the integration limits. Equation (VI.9e) then directly follows from Eq. (VI.9d) through the
definition of the CDF itself.

Applying the initial assumption (VI.1) that dose follows a multivariate normal distribution,
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Eq. (VI.9e) can be written as

E
[
DVH(d̂; d)

]
=

1
n ∑

i

[
1 −

∫ d̂

−∞
N
(
δ; µi, σ2

i
)

dδ

]

=
1
n ∑

i

[
1 − 1

2

(
1 + erf

(
d̂ − µi

σi
√

2

))]

=
1
n ∑

i

1
2

erfc

(
d̂ − µi

σi
√

2

) (VI.10)

using the complementary error function erfc(x) = 1 − erf(x). Note that the error function is not
an elementary analytical function but merely a shorter representation, since the integral over the
normal distribution in Eq. (VI.10) cannot be analytically solved.

Variance: For the variance of a dose-volume Var[DVH(d̂)], Henríquez and Castrillón (2008a)
only gave an upper bound

Var
[
DVH(d̂)

]
≤ 1

n ∑
i

[
1 − Fdi(d̂)

]
Fdi(d̂) , (VI.11)

presumably due to the lack for a sophisticated uncertainty model including correlations.

Yet, if the probability distribution over dose, including correlations, is available, the second
non-central moment of a dose-volume point may be obtained by solving

E
[
DVH(d̂; d)2

]
=
∫

Rn
DVH(d̂; d)2 fd(d̃)dd̃ . (VI.12)

To solve Eq. (VI.12) a similar approach as exercised in Eq. (VI.9) can be taken, now using the
bivariate “marginalization” from Eq. (VI.4):

∫
Rn

(
DVH(d̂; d)

)2
fd(d̃)dd̃ =

∫
Rn

[
1
n ∑

i
Θ
(

d̃i − d̂
)]2

fd(d̃)dd̃ (VI.13a)

=
1
n2

∫
Rn

∑
il

[
Θ
(
di − d̃

)
Θ
(
dl − d̃

)]
fd(d̃)dd̃ (VI.13b)

=
1
n2 ∑

il

∞∫
d̂

∞∫
d̂

fdi;l (d̃i;l)dd̃ldd̃i (VI.13c)

=
1
n2 ∑

il

[
1 − Fdi;l (d̂ · 1)

]
(VI.13d)

This result is analogous to Eq. (VI.9e), now involving the double sum over all voxel combinations
il evaluating the marginal bivariate CDF Fdi;l (d̂ · 1).
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The variance of the dose-volume Var[DVH(d̂; d)] is now given by

Var
[
DVH(d̂; d)

]
= E

[
DVH(d̂; d)2

]
− E

[
DVH(d̂; d)

]
2

=
1
n2 ∑

il

[
1 − Fdi;l (d̂ · 1)

]
−
{

1
n ∑

i

[
1 − Fdi(d̂)

]}2

.
(VI.14)

Under assumption of a multivariate normal distribution, Eq. (VI.14) thus boils down to eval-
uations of univariate and bivariate normal probabilities. While both univariate and bivariate
probabilities can not be analytically evaluated, at least for the univariate case expression with the
error function is well established, and most programming languages deliver accurate implemen-
tations. For the bivariate case, which is less common, such numerically accurate evaluations can
be performed with, for example, the works from Genz (2004).

Note that then, due to the symmetry of the covariance matrix Σ = ΣT and the invariance of the
Heaviside-step under powers Θ(x)a = Θ(x), the complexity of the evaluation of term (VI.13d)
within Eq. (VI.14) may be reduced:

Var
[
DVH(d̂; d)

]
=

1
n2 ∑

i

1
2

erfc

(
d̂ − µi

σi
√

2

)
+

2
n2 ∑

l>i

∞∫
d̂

∞∫
d̂

N
(

d̃i;l ; µi;l , Σi;l

)
dd̃ldd̃i . (VI.15)

Covariance: With only slight changes in the above computations, also the covariance of two
DVH-points, i. e., Cov[DVH(d̂p; d), DVH(d̂q; d)] with respective dose parameters d̂p and d̂q, can
be computed by computation of E[DVH(d̂p; d)DVH(d̂q; d)]:

E
[
DVH(d̂p; d)DVH(d̂q; d)

]
=
∫

Rn
DVH(d̂p; d̃)DVH(d̂q; d̃) fd(d̃)dd̃ (VI.16a)

=
1
n2

∫
Rn

[
∑

i
Θ
(

d̃i − d̂p

)] [
∑

l
Θ
(

dl − d̂q

)]
fd(d̃)dd̃

(VI.16b)

=
1
n2 ∑

il

∞∫
d̂p

∞∫
d̂q

fdi;l (d̃i;l)dd̃ldd̃i (VI.16c)

Analogous to Eq. (VI.14), the covariance is then given by

Cov
[
DVH(d̂p; d), DVH(d̂q; d)

]
= E

[
DVH(d̂p; d)DVH(d̂q; d)

]
− E

[
DVH(d̂p; d)

]
E
[
DVH(d̂q; d)

]
.

(VI.17)

Under the assumption of a multivariate normal, the numerical evaluation of Eq. (VI.16) is, as for
the variance, possible with methodology developed by Genz (2004).
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Computaঞon of α-DVHs and DVCMs: Henríquez and Castrillón (2010), based on their afore-
mentioned earlier work (Henríquez and Castrillón 2008a; Henríquez and Castrillón 2008b),
claimed to be able to compute confidence levels α for DVHs, i. e., α-DVHs. They model an α-
DVH based on the assumption that the respective α value restricts the probability of dose voxels
contributing to the DVH (compare their Bernoulli model from Eq. (VI.8)) independently to define

α-DVH(d̂; µ, Σ) !
=

1
n ∑

i
Θ
[
1 − α − Fdi

(
d̂; µi, Σii

)]
. (VI.18)

Note that Eq. (VI.18) only depends on the respective marginal CDF Fdi , which contradicts the
observations made in Eqs. (VI.12) to (VI.16) that the the variability of a DVH depends on the full
covariance of dose Σ. Consequently their approach must be seen critically and will therefore be
explicitly evaluated in Section VI.3.

With the computations from Eqs. (VI.10) to (VI.16), however, a different approach might be
taken to compute α-DVHs and DVCM. With the expectation value and (co)variance, available
for the DVH-points, it is possible to parameterize a probability distribution over the DVH. With
marginal probabilities, DVCMs (Gordon and Siebers 2009; Gordon et al. 2010) can be computed
(compare Section II.3.2.2). DVCMs were originally based on sample statistics of all DVH-points.
They give an approximation to the two-dimensional map of the probability for the desired volume
fractions v and dose thresholds d̂ (see Eq. (II.25)).

Using the expected value and variance over all computed DVH-points, one may parametrize
a probability distribution to substitute P(v ≤ DVH(d̂)) = F(v; E[DVH(d̂)], Var[DVH(d̂)]) in
Eq. (II.25) with the CDF F:

DVCM(v, d̂) = F
(

v; E[DVH(d̂)], Var[DVH(d̂)]
)

(VI.19)

While the DVH-points could be, again, assumed to be normally distributed, this violates the
physical and mathematical constraint of v ∈ [0, 1]. A probability measure over such volume frac-
tions might be better represented using a beta distribution (compare Appendix A.1.3). While the
beta-distribution is usually parametrized by two shape parameters, parametrization with mean
and variance is also possible using the transformation rules given in Eq. (A.11). As desired for
DVH-point modeling, the beta distribution then has only support in the interval [0, 1].

VI.2.3.2 Mean Dose

Since the arithmetic mean d̄ of the dose d is a linear function of dose, its moments can be exactly
derived with a first order Taylor expansion as given in Eq. (VI.6). Alternatively, also integration
can be applied, where the solution can be directly achieved using Eqs. (VI.3) and (VI.4) with
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g(di) = din−1. Hence, the (trivial) result can be directly stated as

E
[
d̄
]
=

1
n ∑

i
E [di] , (VI.20a)

Var
[
d̄
]
=

1
n2 ∑

il
Σil =

1
n2

(
∑

i
σ2

i + 2 ∑
l>i

Σil

)
. (VI.20b)

VI.2.3.3 Equivalent uniform dose

EUD, as explained in Section II.2.1.3, uses a generalized mean (see Eq. (II.12)) to encode the sen-
sitivity of structures to inhomogeneity in dose, e. g. hot-spots in OARs. At this point, the reader
should be notified ex ante that analytical formulation of the expectation value and variance of
EUD turned out to be of particular difficulty, and the derivations do not successfully lead to the
exact desired solution. The derivations are included in this manuscript nevertheless, since they
might be of interest for certain readers. Others might skip the following paragraphs and re-enter
reading at the end of this section, when the Taylor series expansion is exerted.

Analyঞcal integraঞon: Attempting to compute the ν-th moment of EUD by integration, i. e.,
Eq. (VI.2), would require solving

E [EUDκ(d)ν] =
∫

Rn

( 1
n ∑

i
d̃κ

i

) 1
κ

ν

fd
(
d̃; µ, Σ

)
dd̃

=
∫

Rn

(
1
n ∑

i
d̃κ

i

) ν
κ

fd
(
d̃; µ, Σ

)
dd̃ .

(VI.21)

Integral (VI.21) is in several ways problematic. First, the “marginalization” explained in Sec-
tion VI.2.2.1 for ν = 1 and ν = 2 is not applicable, due to the non-integer exponent νκ−1; instead,
one would need to apply, for example, the generalized multinomial theorem for non-integer expo-
nents, expanding into infinite series. Second, the assumption of fd being a multivariate normal
density raises problems for κ < 1 if κ ∈ R, since the multivariate normal is supported on the
complete real space, opposed to the physical reality of the dose being always positive.

To deal with the first problem, i. e., the non-integer power of the sum within Eq. (VI.21), an
ansatz for a step-wise solution can be tried, by first finding the expectation value of the sum of
powers

E

[(
∑

i
dκ

i

)ν]
=
∫

Rn

[
∑

i
d̃κ

i

]ν

fd
(
d̃; µ, Σ

)
dd̃ (VI.22)

and afterwards propagating the result in a second step through the inverse exponent κ−1. Equa-
tion (VI.22) can now be “marginalized” according to Eqs. (VI.3) and (VI.4). For ν = 1, Eq. (VI.22)
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reduces to the elementary problem of finding

E [dκ
i ] =

∫ ∞

−∞
d̃κ

i fdi

(
d̃i; µi, σ2

i
)

dd̃i . (VI.23)

For κ ∈ N, Eq. (VI.23) represents the respective raw moments of fdi . In the following, two at-
tempts to solve Eq. (VI.22) via Eq. (VI.23) will be presented.

An ansatz for d ∼ N (µ, Σ): In case of a normal distribution, the raw integer moments can
be directly obtained from generalized Hermite polynomials (compare Eq. (A.14) and Roman and
Rota 1978). For non-integer κ, solution of integral (VI.23) is not trivial. Alternatively, with the
help of fractional calculus a fractional moment for κ > 0 can be defined by evaluating the fractional
derivative of the moment generating function of fdi at its origin (Cressie, Borkent, and Gupta
1986). In the case of fdi

(
d̃i; µi, σ2

i
)
= N

(
d̃i; µi, σ2

i
)
, alternatively integral (A.13) from Gradshteĭn

and Ryzhik (2000) may be used to find the solution

E [dκ
i ] =

∫ ∞

−∞
d̃κ

i N
(
d̃i, µi, σ2

i
)

dd̃i

= σκ
i · (−i

√
2)κU

(
−κ

2
,

1
2

,−
µ2

i
2σ2

i

)
, κ > −1 ,

(VI.24)

where U(α, β, ζ) denotes Tricomi’s confluent hypergeometric function, also known as Kummer’s
confluent hypergeometric function of the second kind (Olver et al. 2010; Slater 1960). A simi-
lar solution is also given in a summary on moments of the normal distribution by Winkelbauer
(2012).

To find a moment constrained to the positive dose domain—in the hope to find a simpler ex-
pression than Eq. (VI.24)—solutions for the absolute raw moment E[|di|κ] could be of value.
Winkelbauer (2012) provide a solution as

E
[
|di|κ

]
=
∫ ∞

−∞

∣∣d̃i
∣∣κ N (

d̃i, µi, σ2
i
)

dd̃i

= σκ
i · 2

κ
2

Γ
( 1+κ

2

)
√

π
F1 1

(
−κ

2
,

1
2

,−
µ2

i
2σ2

i

)
, κ > −1 ,

(VI.25)

where F1 1 (α, β, ζ) is Kummer’s confluent hypergeometric function of the first kind (Olver et al.
2010; Slater 1960). Hence, using the absolute value |di| does not facilitate computation of the
expectation E[|di|κ], since both U and 1F1 require evaluation of a hypergeometric series.

Solving Eq. (VI.22) for ν = 2 to find the second raw moment, even makes things more compli-
cated; now, the bivariate integrals

E

(∑
i

dκ
i

)2
 = ∑

il

∫∫
R2

d̃κ
i d̃κ

l fdi;l

(
d̃i;l ; µi;l , Σi;l

)
dd̃i;l (VI.26)

are involved. Despite literature research and usage of symbolic programming languages, no
successful ansatz could be defined to solve Eq. (VI.26). Hence, to stay within the scope of this
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manuscript, and also because the solutions for ν = 1 are not able to capture −∞ < κ < ∞, this
approach was disbanded for dose following a multivariate normal distribution.

The complexity of Eqs. (VI.22) to (VI.26) and their solutions was mainly attributed to the normal
distribution being supported on the full real space Rn, since exponentiation xκ with κ ∈ R is not
consistently defined for negative base x. One may, however, chose a PDF which is supported
only within the positive orthant Rn

+. To keep the handiness of the multivariate normal with
respect to the posed problem, usage of the log-normal distribution suggests itself, since mean
and covariance exhibit straightforward transformation rules (compare Appendix A.1.2). In the
following, the respective derivations are exercised.

A workaround with the log-normal distribution: Given the mean µ and covariance Σ over dose,
the parameters µ̃ and Σ̃ of the corresponding log-normal distribution LN (µ̃, Σ̃) can be computed
with the transformations (A.8). The parameters µ̃ and Σ̃ then correspond to the mean and co-
variance of the logarithm of dose supposedly following a multivariate normal distribution, i. e.,
ln d ∼ N (µ̃, Σ̃).

The considerations of Jensen (1998) for independent log-normal samples already showed that
setting fd(µ, Σ) = LN (µ̃, Σ̃) in Eqs. (VI.23) and (VI.26) leads to the solution

E [dκ
i ] =

∫ ∞

0
d̃κ

i LN
(
d̃i; µ̃i, σ̃2

i
)

dd̃i

= exp
(

κµ̃i +
κ2σ̃2

i
2

) (VI.27)

to compute the first moment. Note that this solution can be directly obtained from the moment-
generating function Mln d(t) = E[exp(t · ln d)], i. e., the moments of a log-normally distributed
random variable are given from the moment-generating function of the normal distribution of its
logarithm evaluated at t = 1 (compare Appendix A.1.2).

Similarly, integral (VI.26) can then be solved as

E [dκ
i dκ

l ] =
∫∫

R2
+

d̃κ
i d̃κ

l LN
(

d̃i;l ; µ̃i;l , Σ̃i;l

)
dd̃i;l

= exp
[

κ (µ̃i + µ̃l) + κ2
(

Σ̃ii + Σ̃ll

2
+ Σ̃il

)] (VI.28)

to compute the second moment.
With the expectation value and the variance of the sum of powers available, the second step,

i. e., the propagation through the κ-th root, can be performed with the result obtained from
Eq. (VI.22). Note that this assumes a log-normal distribution for the sum of powers based on
its obtained expected value and covariance. In reality, this distribution may, however, exhibit
completely different shapes for large negative or positive κ, and cannot be deducted from the
previous derivations (however, it is possible to compute higher moments when assuming dose
following a log-normal distribution). Therefore results with this two-step approach, which again
assumes a log-normal distribution at the second step, should be handled carefully.
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Using Taylor expansion: Due to the complexity of the integration ansatz, uncertainty propaga-
tion using Taylor expansion is of interest for EUD, for which the gradient and the Hesse matrix
of Eq. (II.12)

∇dEUDκ(d) =
EUDκ(d)

∑i dκ
i

d◦(κ−1) , (VI.29)

HEUDκ (d) = (κ − 1)
EUDκ(d)(

∑i dκ
i

)2 ·
[
∑

i
dκ

i ·
(

d◦(κ−2)
)T

I − d◦(κ−1)
(

d◦(κ−1)
)T
]

, (VI.30)

are required, where I is the unit matrix and the operation d◦κ denotes element-wise exponentia-
tion of d with exponent κ.

Equations (VI.29) and (VI.30) may then be inserted in Eq. (VI.6) to obtain an approximation for
E[EUDκ(d)] and Var[EUDκ(d)].

VI.2.3.4 Minimum / Maximum dose

The minimum and maximum of dose within a VOI is not a smooth function of the dose vector d.
This is not an issue in determination of its nominal value, but as soon as differentiation or inte-
gration is involved, i. e., for optimization or, in this case determining its moments with Eq. (VI.2)
or Eq. (VI.6), other methods or workarounds have to be found.

As indicated in Section VI.1, mathematical theory exists within extreme value theory. For se-
quences of i. i. d. random variables, a family of the so called generalized extreme value distributions
can be defined, to which the maximum of the sequence converges with increasing length of the
sequence.

The random dose vector d is, however, not an i. i. d. sequence of random numbers, but a dis-
cretization of a three-dimensional random field with complex correlation patterns, represented
as multivariate normal distribution (see Eq. (VI.1)). Such generalized extreme value statistics to
sets of correlated random variables are investigated in literature (Bertin and Clusel 2006; Ma-
jumdar and Pal 2014), and iterative approaches have been known since the work of Clark (1961)
to approximate the first and second moment of the maximum or the full PDF of the maximum
(Arellano-Valle and Genton 2008). Those approaches however, are often unsuited due to compu-
tational issues when the number of random variables is large, or work under restrictions that are
not given directly in the problem of the random dose vector at hand.

In optimization, however, extrema are often handled by smooth approximations. matRad, for
example, uses a smoothly approximated maximum using a variation of the “LogSumExp” func-
tion max(x) ≈ L(x) = ln (∑i exp xi) (Wieser et al. 2017b), which can serve as smooth, convex
maximum or minimum approximation.

More interestingly, since the generalized mean is the basis of EUD (compare Section II.2.1.3),
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EUD can be used as a smooth approximation of the minimum and maximum itself:

min(d) = lim
κ→−∞

EUDκ (d) , (VI.31a)

max(d) = lim
κ→+∞

EUDκ (d) . (VI.31b)

Consequently, using the generalized mean/EUD as smooth maximum approximation, directly
allows us to recycle the derivations from above (Section VI.2.3.3). When choosing a large absolute
κ ≫ 0, expectation and variance of the maximum of dose may then be approximated with

E [max(d)] ≈ E [EUDκ (d)] , (VI.32a)

Var [max(d)] ≈ Var [EUDκ (d)] . (VI.32b)

For the minimum, Eq. (VI.32) holds analogously with κ ≪ 0.

VI.2.4 Smooth visualizaঞons

Visualization of uncertainties is an important aspect to encourage patient-specific treatment plan
uncertainty analysis—and eventually robust and probabilistic treatment planning—within clin-
ical workflows. Sampling based uncertainty propagation has the advantage of being able to di-
rectly supply the treatment planner with explicit dose scenarios computed from a sample from
the input uncertainty space. Such samples are not generated when using a forward probabilistic
approach like APM. Since APM is able to provide mean and covariance of dose, however, the
assumption of dose being normally distributed made in Eq. (VI.1) allows to generate dose vector
samples ds.

The usual approach for the computation of samples from a multivariate normal distribution, in
this case given by N (µ, Σ), is to factorize the covariance matrix with a Cholesky-decomposition
such that LLT = Σd. With the upper triangular matrix L, it is then possible to generate a sample ds

through linear transformation of a sample us from the multivariate standard normal distribution
N (0, I):

ds = µ + Lus . (VI.33)

The i. i. d. samples us can be easily generated with numerous pseudo-random number generators.
Alternatively, instead of using the Cholesky-decomposition, an eigenvalue or singular-value

decomposition can be used.

VI.2.4.1 The method by Hennig (2013)

While Eq. (VI.33) now allows generation of random scenarios, selection of samples can also be
done on purpose. Hennig (2013) describes a method to draw a series of equiprobable samples
that, displayed one after each other, result in a smooth looped animation of samples of a Gaussian
process. This is achieved by choosing the standard normal samples us such that they define a
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circular path on the hyper-sphere in the space of N (0, I). Linearly transformed with Eq. (VI.33),
these samples are then located on an ellipse on an ellipsoid.

The workflow described by Hennig (2013) is summarized below:

1. Draw a random start sample u1 from the multivariate standard normal.

2. Compute a direction t that is a tangent on the hyper-sphere on which u1 is located. This is
done by drawing a second multivariate standard normal sample v, and then use the Gram-
Schmidt process for orthogonalization to obtain t = v − (vTu)u.

3. Choose a number of frames F (for the animation) and distribute F + 1 grid points ls equidis-
tantly in [0, 2π] (the last point lF+1 is discarded, as in the grand circle l1 and lF+1 correspond
to the same coordinate). Use the exponential map us = Exp(u1, lst) to obtain samples us on
the grand circle on the hyper-sphere.

When all us are available, one can apply transformation (VI.33) to obtain the corresponding
sample animation for a general multivariate normal N (µ, Σ).

The method of Hennig (2013) draws a random start coordinate u1. With high probability, this
starting coordinate falls into a thin shell with radius

√
n where nearly all probability mass is

located for large dimensionality n of the sample vectors (Mackay 2005). Therefore, in almost all
cases, reasonably probable samples are produced.

VI.3 Results

VI.3.1 Technical evaluaঞon of the analyঞcal models

At first, a short technical evaluation of the analytical models derived in Section VI.2.3 was per-
formed. As benchmark, the 5,000 samples used in Chapter IV for validation of the moment com-
putations were recycled to produce marginal sample mean vectors µ̂v and covariance matrices Σ̂v

for respective VOIs v. For the latter, the CTV and the brainstem were evaluated.
First, the accuracy with respect to the underlying assumed probability distribution is evalu-

ated. Hence, artificial multivariate random samples were generated to evaluate the accuracy of
the analytical models under perfect conditions (i. e., the dose actually follows the assumed prob-
ability distribution). Since, in most cases, a multivariate normal distribution was assumed as
the underlying probability distribution of dose, random samples could be easily generated using
Eq. (VI.33).

VI.3.1.1 Mean dose

Figure VI.1 compares sample statistics of mean dose in the respective VOI to its analytical com-
putation within APM with Eq. (VI.20) and d ∼ N (µ̂v, Σ̂v). The normalized histograms present
values from the 5,000 sampled dose scenarios and from the 5,000 re-samples based on Eqs. (VI.1)
and (VI.33). Their difference in shape clearly shows that the multivariate model from Eq. (VI.1)
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is not a perfectly accurate description of reality. The obtained expected value and variance of
the mean dose d̄, however, are accurate within sample accuracy. Thus their Gaussian represen-
tations are almost indistinguishable. This behavior is expected, as the first two moments of the
mean dose are exactly described by a Taylor approximation up to first order, and thus independent
of higher moments of the probability distribution underlying d.
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Figure VI.1: Technical evaluation of analytical probabilistic mean dose for the CTV (a) and the brainstem (b) of the
intracranial patient. Sampled values from the original 5,000 dose scenarios as well as from 5,000 re-samples using
the multivariate normal dose model are shown as histograms. Their sample mean (vertical solid lines) and sample
standard deviation are compared to the analytically computed mean and standard deviation by displaying the respec-
tively parametrized normal distributions NS , NR and NA. Thereby NS is derived from the dose scenario samples
and NR is derived from the re-sampled scenarios. NA gives the normal distribution obtained from APM’s moment
computations. The vertical dashed line indicates the mean dose value obtained from the nominal dose scenario.

VI.3.1.2 Dose-volume histogram-points

A similar analysis was performed for DVH-points in Fig. VI.2. Here, mean and variance derived
from th re-sampled data show small, yet significant differences to mean and variance. Since
APM’s novel analytical computations from Eqs. (VI.10) and (VI.14) are exact under assumption
of a multivariate normal distribution, they match almost perfectly with the sample statistics based
on the re-sampled data.

Figure VI.2 additionally proposes an alternative description of the underlying probability dis-
tribution of a DVH-point. Since DVHs represent relative volumes and are therefore bound to
the interval, a beta distribution B(α, β) with shape parameters α and β is assumed (compare Ap-
pendix A.1.3). Since the Beta-distribution itself has only support on the interval [0, 1], it can serve
as a more physically sensible representation of the probability distribution of volume fractions.
Transforming the expected value and variance obtained by APM with Eq. (A.11), the respective
PDFs could be computed.

Based on Fig. VI.2 one can qualitatively argue that the beta-distribution better captures the
skewness of the sampled distribution. To quantify this statement comparisons to cumulative
probabilities obtained through DVCMs (compare Section II.3.2.3, Eq. (II.25)) were exerted in
Fig. VI.3, based on the sample statistics. DVCMs display the probability P(v ≤ DVH(d̂)) for
all (desired) combinations of dose parameter d̂ and volumes v.
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Figure VI.2: Technical evaluation of analytical probabilistic dose-volume for the CTV (a) and the brainstem (b) of the
intracranial patient. Sampled values from the original 5,000 dose scenarios as well as from 5,000 re-samples using the
multivariate normal dose model are shown as histograms. Their sample mean (vertical solid lines) and sample stan-
dard deviation are compared to the analytically computed mean and standard deviation by displaying the respectively
parametrized normal distributions NS , NR and NA. Thereby NS is derived from the dose scenario samples and NR
is derived from the re-sampled scenarios. NA gives the normal distribution obtained from APM’s moment compu-
tations. The vertical dashed line indicates the DVH-point obtained from the nominal dose scenario. Additionally, an
exemplary beta-distribution B(α, β) was parametrized using the transformation rules from Eq. (A.11).

To compare to the assumption of a normal distribution and a beta distribution, the respective
DVCMs were computed through their quantile functions. The difference of the DVCMs from
sample statistics and the DVCMs deducted from parametrized normal distributions are shown
in Figs. VI.3c and VI.3d. For the beta distribution, a similar analyses are given in Figs. VI.3e
and VI.3f. Additionally, α-DVHs (compare Eq. (II.26)) for three values of α = {0.05, 0.5, 0.95}
corresponding to the 5-th percentile, the median, and the 95-th percentile DVH. Additionally,
the α-DVHs are compared to evaluate the methodology proposed by Henríquez and Castrillón
(2010).

Figure VI.3 shows that the assumption of beta distributed DVH-points is more accurate than as-
sumption of a normal distribution, especially for the CTV. There, differences between the sampled
DVCM and the DVCM reconstructed from normal probabilities frequently exceed 20 % (of max-
imum probability 1), while comparison with the DVCM constructed from beta distributions ex-
ceeds 10 % probability difference only in the maximum dose area. For the OAR, also the beta dis-
tribution induces large differences of about 20 %, yet such differences are still more pronounced
in the approximation with a normal distribution. These differences are partly mitigated when
in α-DVHs computation. There, assumptions of a normal distribution might be also acceptable;
difference does not exceed 5 % relative volume, yet the α-DVHs deducted from the beta distribu-
tion are accurate within 2 % relative volume. The method suggested by Henríquez and Castrillón
(2010) leads to substantially deviating α-DVHs, with differences in relative volume of up to 60 %
in the target.
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Figure VI.3: Assessment of the cumulative distribution of a DVH displayed as DVCM. (a) and (b) show the cumulative
distribution based on the 5,000 scenario samples, i. e., P(v ≤ DVH(d̂)) for the CTV and the brainstem, respectively.
From the DVCMs α-DVHs were derived for α = 0.05, 0.5, 0.95, based on the sampled statistics (S) and based on the
method proposed by Henríquez and Castrillón (2010) (H). In (c,d) the difference between the sampled DVCMS and
the DVCMN obtained from assumption of marginal normal distributions is displayed, together with the respective
α-DVHs. (e,f) display the analogous difference of sampled DVCMS to DVCMB derived by assumption of marginal
beta distributions.
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VI.3.1.3 EUD approximaঞons

Figure VI.4 evaluates the approaches used for computing expectation and variance of EUD. For
the CTV, κ = −20.5 was assumed, i. e., the CTV is sensitive to cold-spots in dose (compare Sec-
tion II.2.1.3). For the OAR increased sensitivity to hot-spots was assumed with κ = 5.1. The
values were chosen to demonstrate feasibility with fractional exponents κ /∈ N and were based
on Niyazi et al. (2013) and Wu et al. (2002).

Considering the analytical computations, especially for the CTV with κ = −20.5, significant
differences between the analytical computations and sample statistics can be observed. The ex-
pected value of EUD computed with Taylor expansion underestimates the sample mean, serving
as a benchmark, substantially by 10 %. The approach using the multivariate log-normal model
in Fig. VI.4b for dose heavily overestimates the expected value by approximately 50 %. Compa-
rable deviations are present for the standard deviation. In the EUD approximation for the OAR,
the differences are smaller for the Taylor expansion, which slightly overestimates the expected
value and accurately models standard deviation. The log-normal model failed completely for
numerical reasons, and is therefore not shown.

As a substitute for the failing log-normal approach, a different combined approach is shown
in Fig. VI.4d. There, the expressions for the fractional moment of a normal distribution from
Eq. (VI.24) were used to estimate the expected value of the sum of powers. Since no expressions
could be derived for the variance of this sum, it was approximated with Taylor expansion. The
moments of the EUD were then derived using—again—Eq. (VI.24) to propagate the moments of
the sum of powers through the κ-th root. This approach yields a too compact Gaussian approxi-
mation over the resulting EUD while overestimating the expected value.

The failure of the log-normal approach can be mainly attributed to large variance in combi-
nation with the comparably heavy tail of the log-normal distribution. For the CTV, where the
variance is usually smaller than the prescribed dose, this already yields substantial overestima-
tion. For the OAR, in which dose gradients manifest and therefore the variance might be more
than ten times higher than the actual value, the covariance term in Eq. (VI.26) for estimation of the
sum of powers becomes numerically unstable, and even if it can be correctly evaluated, results in
an unreasonably high variance estimate for the sum of powers compared to the expectation value.
The large variance also leads to deviations in the Taylor-based approach, where the limitations of
a first and second order approximation become more and more prominent with increasing |κ|.

Hence, also the maximum and minimum approximation with large absolute EUD exponents
(|κ| = 100) relying on the Taylor approximated moments show large deviations. At first sight, it
might surprise that now the minimum is overestimated and maximum is underestimated, con-
trary to evaluation in Fig. VI.4. Reasons for this might be also found in the imperfect approxima-
tion with a non-infinite exponent, which underestimates the absolute extrema in general.

Across all evaluations, comparisons of the re-sampled statistics show slight, yet significant
(w. r. t. sampling error) deviation from the EUD sample statistics obtained from the dose sce-
narios for both CTV and OAR. Yet qualitatively the differences between Gaussians parametrized
from the original and re-sampled appear marginal, especially for the EUD computation of the
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Figure VI.4: Technical evaluation of analytical probabilistic EUD for the CTV with κ = −20.5 (a,b) and the brainstem
with κ = 5.1 (c,d) of the intracranial patient using Taylor expansion (a,c) and the Log-normal approximation (b). (d)
shows an alternative approach that combines Taylor expansion for variance with the Gaussian approach. Sampled
values from the original 5,000 dose scenarios as well as from 5,000 re-samples using the multivariate normal dose
model are shown as histograms. Their sample mean (vertical solid lines) and sample standard deviation are com-
pared to the analytically computed mean and standard deviation by displaying the respectively parametrized normal
distributions NS , NR and NA. Thereby NS is derived from the dose scenario samples and NR is derived from the
re-sampled scenarios. NA gives the normal distribution obtained from the respective analytical computation with
APM. The vertical dashed line indicates the EUD obtained from the nominal dose scenario.

OAR.

VI.3.2 Evaluaঞon of analyঞcal models on all paঞents

To better pin down the results from above, analytical treatment plan metric calculation was per-
formed on conventionally optimized treatment plans for all three patient datasets already used
in Chapters IV and V. Sample statistics were estimated from the 100 treatment samples used in
Chapter V for using a single fraction and 30 fractions. The analysis under more fractions was
included to investigate behavior of the analytical models under decreasing variance.

Figure VI.6 illustrates means and their one standard deviation error bars for selected plan met-
rics. As expected from Section VI.3.1, the best agreement can be seen again for the mean dose d̄.
Largest differences occur for the expected minimum and maximum estimates based on Taylor ex-
pansion of EUD. In general, Fig. VI.6 confirms that probabilistic EUD based on Taylor expansion
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Figure VI.5: Technical evaluation of analytical probabilistic dose extrema using EUDκ=100 for the maximum dose
approximation in the CTV (a) and EUDκ=−100 for the minimum approximation in the brainstem (b). Sampled values
from the original dose scenarios as well as from the re-sampling using the multivariate normal dose model are shown
as histograms. Their sample mean and sample standard deviation are compared to the analytical computed mean and
standard deviation by displaying the respectively parametrized normal distribution.

shows larger disagreement with increasing exponent |κ|. Extreme deviations occur especially in
the prostate case, which also exhibits the largest relative dose variance because of larger range
error due to longer WEPLs and the assumption of a bigger random spatial set-up uncertainty.

The two dose-volume points evaluated per case in Fig. VI.6 show maximum deviations of up to
9 % in mean and up to 15 % in standard deviation. These maximum values realize in the intracra-
nial case. Hence, the deviations in the mean value correspond to deviations already observed
in Fig. VI.2. The differences in standard deviations are larger. Note that the reference sampling
calculations rely on 100 scenarios only, which according to Eq. (IV.6) translates into relative sam-
pling errors of 7 % for the standard deviation. The accuracy of probabilistic DVH-computation
was further evaluated by comparing the analytical first and second moment computations against
their sample statistics for full DVHs, as displayed in Fig. VI.7.

Figure VI.7 shows a good agreement between analytical and sampled computations for the
prostate and the paraspinal case. There, differences between analytic and sampled expected DVH
are within 1 % to 3 %, and differences in standard deviation reach 4 % to 5 %, only exceeding this
values in the vicinity of the maximum dose where the DVH falls to zero. For the intracranial
case, however, the larger deviations observed before remain. An explanation might be given by
the smaller VOIs, increasing sensitivity to local shape of the real probability distribution. Further-
more, since for all DVHs a treatment with 30 fractions was assumed, the strong relative sensitivity
of the intracranial case to systematic errors in brainstem and CTV leads to larger deviations from
the true probability distribution over dose to a multivariate normal distribution. The reason for
this is that with larger sensitivity to random errors, with increasing fraction number the shape
of the probability distribution over dose will become more and more similar to a multivariate
normal according to the central limit theorem. This effect can also be seen in the comparison of
scalar plan metrics in Fig. VI.6.
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Figure VI.6: Comparison of plan metrics computed from the sample covariance matrix using APM and their direct
sample statistics for all three patient datasets. Results are presented for conventionally optimized treatments applied
in a single (left column, a,c,e) and in 30 fractions (right column, b,d,f). EUDs, mean and minimum/maximum dose
(approximated with EUD−100/EUD100, respectively) are given in Gy on the horizontal axis, dose-volumes are given in
% of VOI-volume. The subscript T indicates computation for the respective target (prostate: boost, paraspinal: CTV,
intracranial: CTV). On the other hand, the subscript O indicates computation for a OAR (prostate: rectum, paraspinal:
spinal cord, intracranial: brainstem).
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Figure VI.7: Analytically computed expected DVHs and their standard deviation compared to DVHs from sample
statistics for all three patient cases. 30 fractions were assumed. For each patient case, the DVH for a target and an OAR
is shown.
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VI.3.3 Visualizaঞon examples

The method described in Section VI.2.4 was applied to exemplary produce (a) a smooth sample
animation of a dose slice and (b) a smooth sample animation of a DVH for the paraspinal case in
Fig. VI.8 for two treatment plans: one was generated using conventional, the other one using prob-
abilistic optimization. To do so, the marginal covariances within the slice (for the slice animation)
as well as the CTV (for the DVH animation) were computed with APM under the assumptions of
5 fractions. Computations of scenario samples subject to the input uncertainty model were thus
not required. Comparing to the respective standard deviation bounds, the sample path is qual-
itatively reasonable for the DVH. Similar observations can be made when comparing the slice
distributions to the respective standard deviation in Fig. V.2e. The visualizations provide an in-
tuitive qualitative understanding where uncertainties might occur. As illustrated in Fig. VI.8 they
can be used for a quick comparison of treatment plans with different robustness settings.

(a) dose samples [Gy], conv. opt., 5 fractions (b) dose samples [Gy], prob. opt., 5 fractions

(c) prob. opt.,CTV, 5 fractions (d) conv. opt., CTV, 5 fractions, all DVHs
(This figure is animated in the electronic PDF version of this thesis.)

Figure VI.8: Looped smooth animations of a dose slice (a,b) and a DVH (c) based on the para-spinal case. (a) depicts
samples drawn according to Section VI.2.4.1 from a conventionally optimized, non-probabilistic treatment plan. (b)
shows similar samples from the probabilistically optimized plan, for which (c) adds the corresponding DVHs for the
CTV, where the animated sample ( ) is shown with the expected DVH ( ) with the one standard deviation
bound ( ). (d) displays all samples from (c) in a three-dimensional static image, in case the animations are not
playing or the print version is at hand. The number of frames equals 40 for (a,b) and 60 for (c,d), with the animation
running for 4 s.
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VI.4 Discussion

This chapter introduced exact as well as approximative analytical expressions for the expected
value and the variance of clinical plan metrics. The computations were based on the assumption
of a multivariate normal probability distribution over the dose vector d.

As one of the more trivial treatment plan indicators, the mean dose could be computed at high
accuracy due to its linear dependence on the dose distribution. Focus was laid especially on the
exact derivation of expressions for expected value and variance DVH-points, since they are an
omnipresent metric in treatment plan evaluation. For the expected DVH, derivations previously
exercised by Henríquez and Castrillón (2008a) could be confirmed, and extended by analytically
exact computations of (co)variance of DVHs, which generalize to other multivariate distributions
over dose as long as the CDF exists and can be parametrized with mean and covariance. Note that
these results contradict later work of Henríquez and Castrillón (2010), who claim to have derived
α-DVHs without dependence on the covariance of dose, which would inherently yield variance
without regard for correlations between dose voxels. That this is not the case is clearly proven
by the requirement of the marginal bivariate CDFs. The results from Henríquez and Castrillón
(2010) are further undermined in Fig. VI.3, and therefore their methodology should not be applied
when accurate α-DVHs estimates are desired.

Evaluations of the probabilistic DVH computation on patient data showed reasonable accuracy,
with larger deviations arising in the intracranial case. The reason for that is the dominance of
systematic error in the evaluated VOIs, which is expected to be reflected in a more non-Gaussian
probability distribution over dose. For the probability distribution over single DVH-points, the
use of a beta distribution was qualitatively suggested, since the beta distribution is only defined
on the interval [0, 1] and therefore able to provide a physically sound probabilistic model over a
volume fraction.

Furthermore, analytical derivations for other treatment plan metrics were attempted; for EUD
it was shown that exact analytical derivations are particularly difficult due to the fractional ex-
ponents that may be used. Under the assumption of normally distributed dose, this requires
computation of fractional moments of dose, which was possible for the expected value but could
not be solved for the second fractional moment. The computations might, however, become ana-
lytically tractable under assumption of different probability distributions that are not supported
on the negative orthant Rn

−, which was demonstrated by assuming a multivariate log-normal dis-
tributions. However, in particular this assumptions yields problems when the variance is large
due to the heavy tail of the log-normal distribution. Hence, the approach of exact analytical com-
putation was not further pursued for the EUD. However, also the negative results in this approach
might be worthy for future attempts or when new mathematical theory regarding multivariate
fractional moments of normal distributions is developed, or when other multivariate probabil-
ity distributions are pulled up. For example, the recently introduced “generalized multivariate
log-gamma distribution” (Demirhan and Hamurkaroglu 2011) with better control over its shape
might be a candidate.

As an alternative for exact analytical probabilistic computations of EUD an approximation us-
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ing Taylor expansion was suggested. The Taylor-approximation yielded significantly deviating
results, which may be, however, qualitatively useful, especially in cases where the absolute expo-
nent |κ| does not take large values. It was also tried to re-use the Taylor expansion on minimum
or maximum approximations using large |κ|, where especially the expectation value exhibits un-
acceptable deviations. The variance, however, had better approximative quality throughout most
probabilistic EUD computations, with the exception of the prostate case.

An alternative for extreme value expectations and variance might be the derivation of those
quantities from the inverse probabilistic DVHs and DVCMs. Gordon and Siebers (2009) and Gor-
don et al. (2010) derived a dose coverage probability from DVCM by taking iso-volume slices of
the DVCM. Such iso-slices might be used as a workaround to obtain extreme value statistics as
well as order statistics for the dose coverage of a specific volume, that is finding approximate
probability distributions over inverse DVH-points (compare Section II.2.1.2). An analysis of the
quality of such approximations has, however, been omitted, since this chapter focused on provid-
ing purely analytical expressions and approximations. The numeric inversion of the probabilistic
DVH dose not fall into this concept.

Furthermore, a new visualization technique was suggested and demonstrated. This technique
bases on the considerations of Hennig (2013) for animated sampling of Gaussian processes such
that the samples are smoothly connected. Since in this chapter the dose is modeled as a dis-
crete representation of a Gaussian random field, i. e., a three-dimensional Gaussian process, the
method is directly applicable.

Such animations, as exemplary presented in Fig. VI.8, may provide added value to the assess-
ment of uncertainties, also in clinical environments. First, they are easy to compute, when a
marginal mean vector and covariance matrix are available. These can be not only obtained by
analytical methods like APM, but also computed up to respective accuracy (compare Chapter IV)
using sampled scenarios, and are therefore comparably versatile. Relying on APM for compu-
tation of expected value and covariance of dose, however, opens up new possibilities. Using
the separated covariance matrices introduced in Chapter VI, influence of random and systematic
components may be directly investigated intuitively, without tedious computation of fraction-
ated treatment samples. Since only the marginal Gaussian approximation is required, they are
lightweight to compute for sub-slices or within VOIs. Again, however, the biggest disadvantage
is the multivariate Gaussian model, which does not give a completely accurate representation of
the “true” probability distribution over dose.
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Chapter VII

Constrained Probabilisঞc Opঞmizaঞon

This chapter proposes a framework for probabilistic optimization with non-linear constraints
on explicit quantiles of treatment plan quality metrics. Contrary to stochastic optimization ap-
proaches relying on sample statistics, a full analytical pipeline is established relating probabilistic
objectives and constraints to the optimization variable, i. e., the pencil-beam weights. Thereby
APM enables direct control over probabilities in inverse treatment planning.

VII.1 Overview

Robust and probabilistic treatment planning is usually approached with worst-case and stochastic
optimization techniques, respectively, particularly scenario-based expected value approximation
(e. g. Unkelbach et al. 2009, using stochastic gradient descent) and minimax worst case optimiza-
tion (Fredriksson 2012).

This restriction to scenario-based and stochastic optimization techniques goes hand in hand
with the limited pool of likewise scenario-based uncertainty propagation methods. Alternatively,
for photon therapy, suggestions exist to base optimization on probability distributions to allow
probabilistic optimization with closed-form objective functions (e. g. Sobotta, Söhn, and Alber
2010; Unkelbach and Oelfke 2004).

Probabilistic optimization using expected objective functions, as exercised in Chapters IV and V,
may be classified as a non-conservative method (Fredriksson 2012); while the probability mass
is shifted to improve expectation of the desired objective, robustness against worst cases is not
guaranteed. Methods optimizing for the worst case, on the other hand, squeeze the probability
mass into a confidence interval without explicit optimization of expectation.

To find a balance between both methods, Fredriksson (2012), for example, discussed condi-
tional value at risk optimization. Sobotta, Söhn, and Alber (2010) defined closed-form objectives
on confidence intervals of the approximate normal distribution of volume-based treatment plan
quality indicators, to minimize their variation.

APM, in its interpretation as a probabilistic dose engine provides the probabilistic analogues
to the dose influence matrix, i. e., the expected dose influence matrix and the covariance influence
tensor (compare Chapter III). This parallelism in formulation for mapping pencil-beam weights to
the moments of the probability distribution over dose can be continued to optimization. With the
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derivations form Chapter VI, objectives or constraints can be defined based on an approximative
probability distribution over treatment plan metrics. Instead of the nominal dose gradient, these
then require the dose’s expected value and (co)variance gradient. With probabilistic optimiza-
tion of Eq. (III.22) based on APM, this approach is already partly implemented. There, only the
variance gradient is needed for minimization of the integral variance. This is, however, directly
bypassed by usage of the helper matrix Ω (compare Eqs. (III.23) and (III.24)).

To extend probabilistic optimization beyond the closed-form probabilistic penalized least-
squares from Eq. (III.22), this chapter attempts to generalize the probabilistic optimization prob-
lem to, in principle, arbitrary objective and constraint functions depending on expected dose
and dose covariance. Based on Chapter VI, new objectives are proposed, including a generaliza-
tion of the probabilistic penalized least-squares to piece-wise penalized least-squares (Eq. (II.17)).
Furthermore, constraints based on quantiles of an approximative Gaussian distribution are intro-
duced.

The methodology including the analytical formulations of the objective and constraint func-
tions for optimization are conceptualized in Section VII.2. Section VII.3 then provides a proof-of-
concept by exemplary optimization of treatment plans on a one-dimensional prototype anatomy.
All concepts are made available online as open-source MATLAB code on GitHub within the
“APMToolbox”.1 The chapter is concluded by a critical discussion considering computational
applicability of the proposed methodology on full-grown patient datasets.

VII.2 Methods

The following methodological principles will introduce constrained probabilistic optimization,
based on the models from Chapter VI. Thereby, an approach parallel to nominal dose concepts
is followed. That is, optimization of nominal dose (compare Section II.2.2) is translated to opti-
mization of mean and covariance over dose, nominal objectives are substituted by its expectation
values, and constraints shall work similar to nominal dose constraints, yet with an additional
desired confidence parameter.

VII.2.1 The constrained probabilisঞc opঞmizaঞon problem

First, the optimization problem from Eq. (II.13) needs to be adapted to mean and covariance of
dose. Instead of optimizing F , its expectation E[F ] or similar probabilistic objectives are opti-
mized. These, as well as confidence constraints, will not depend on the nominal dose distribution,
but on its expectation value µ and covariance Σ.

As for nominal dose d, µ and Σ depend on the fluence vector w, with the relationship expressed
with the help of the APM framework (Eqs. (III.12) and (III.19)). With objectives and constraints
depending on µ and Σ, this allows a separation of the problem analogous to the case of nominal
dose. The optimization problem can then be expressed in terms of a composite expected objective

1https://github.com/e0404/APMtoolbox
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E[F ] and likewise composite m inequality and p equality constraints ci and hj:

w∗ = arg min
w

E [F (d(w))] = E [F ] (µ(w), Σ(w))

subject to w ≥ 0

ci(w) = ci(µ(w), Σ(w)) ≤ 0 i = 1, . . . , m

hj(w) = hj(µ(w), Σ(w)) = 0 j = 1, . . . , p

(VII.1)

Optimization of problem (VII.1) to find an optimal fluence w can then be approached with a
quasi-Newton interior-point solver2 like problems (II.13) & (III.21) before.

The required first-order derivatives can then, analogous to Eq. (II.14), separated into (a) the
derivatives of objective and constraints w. r. t. µ and Σ, and (b) derivatives of µ and Σ w. r. t. the
fluence vector w. For a better understanding, the derivatives w. r. t. to µ and Σ will now be dis-
cussed separately.

First, consider a scalar function f (µ(w)). The derivative of f w. r. t. w can be found analogously
to Eq. (II.14) and is given by

∂ f
∂w

=

[
∂µ

∂w

]T

· ∂ f
∂µ

= DT ∂ f
∂µ

, (VII.2)

with the expected dose influence matrix D.

For a second scalar function g(Σ(w)) depending on the covariance, the situation is a little more
complicated. Petersen and Pedersen (2012) give a general expression for derivatives of such mul-
tivariable function compositions as

∂g(Σ)
∂wj

= ∑
il

∂g(Σ)
∂Σil

∂Σil

∂wj
= tr

[(
∂g(Σ)

∂Σ

)T ∂Σ
∂wj

]
. (VII.3)

Hence, each element of Σ needs to be derived by each element of w. Since the elements of Σ are
computed as quadratic forms over sub-matrices of C (compare Eq. (III.19)), the derivative can
then be expressed as a dot product of the fourth dimension of C with w:(

∂Σ
∂w

)
ijl

= 2 ∑
m

Cijlmwm ⇔ ∂Σ
∂w

= 2C ·4 w , (VII.4)

where a more compact notation ·4 for the dot product along the 4-th dimension C of was intro-
duced.

Consequently, one can express Eq. (VII.3) as

∂g(Σ)
∂w

= 2 (C ·4 w) :1,3
∂g
∂Σ

(VII.5)

2Within the APMToolbox, fmincon from MATLAB’s optimization toolbox was used with an L-BFGS approximation
of the Hessian matrix.
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introducing the double-dot product :1,3 along the first and third dimension as[
(C ·4 w) :1,3

∂g
∂Σ

]
j
= ∑

il
(C ·4 w)ijl

(
∂g
∂Σ

)
il
= ∑

ilm
Cijlmwm

(
∂g
∂Σ

)
il

. (VII.6)

For the example of an expected objective E[F ](µ(w), Σ(w)) depending on µ and Σ, combi-
nation of the separated problems outlined in Eqs. (VII.2) to (VII.6) allows expression of the full
gradient w. r. t. µ as

∂E[F ]

∂w
= DT ∂E[F ]

∂µ
+ 2 (C ·4 w) :1,3

∂E[F ]

∂Σ
. (VII.7)

Depending on the form of the mean and covariance derivatives, this product may be expressed
more compactly on-the-fly. On this level of abstraction, however, a general procedure for defini-
tion of probabilistic objective functions can be outlined: For each probabilistic objective function
depending on (a marginal of) the multivariate dose, i. e., on µ and Σ, its gradient w. r. t. µ and
matrix derivative w. r. t. Σ have to be found. The same holds true for probabilistic constraints,
since Eqs. (VII.2) to (VII.6) also generalize to constraint functions depending on µ and Σ.

VII.2.2 Probabilisঞc objecঞves & constraints

In the following, probabilistic objectives and inequality constraints for use in optimization prob-
lem Eq. (VII.1) will be proposed. For the objectives, this section will limit on the extension of
probabilistic least-squares minimization to a piece-wise least-squares approach, while the ana-
lytical models from Chapter VII will be picked up to enable quantile constraints.

VII.2.2.1 Expected piece-wise squared deviaঞon

In Chapters III to V, probabilistic treatment planning based on APM was limited to optimization
of an expected least-squares objective, stated in Eq. (III.22) as introduced by Bangert, Hennig,
and Oelfke (2013). A least-squares objective cannot implement tolerance doses in OARs and is
therefore limited in customizability. Hence, it became standard to instead use a piece-wise version
of the objective—at least in the OARs—where the contribution of the objective function is limited
to positive (or negative) deviations of a defined maximum (or minimum) tolerance dose (compare
Section II.2.2.2 and e. g. Wu and Mohan 2000).

Heurisঞc approach: It is, however, common to extend the least-squares objective function FLS

with tolerances, e. g. dmax as introduced in Eq. (II.17) and denoted as FLS+. One may think of a
heuristic adaptation of the probabilistic least squares approach by applying the Heaviside step to
the expected value deviation:

E[FLS(d)]+
!
=

1
n ∑

i

[
Σii + Θ (µi − dmax

i ) (µi − dmax
i )2

]
. (VII.8)
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Equation (VII.8), however, has its limitations. A voxel with expected value µi slightly below
the threshold dmax

i will now only contribute with its variance. This strongly simplifies the situa-
tion; there might, depending on the variance, still be a high probability that this voxel’s nominal
dose realization exceeds this threshold, in which case the expected value should be further re-
duced. Furthermore, a voxel dose that is far below the threshold, may be allowed to exhibit larger
variance, which is also not considered.

Exact approach: To incorporate this effect, the following derivations target a closed-form solu-
tion for the expected value of Eq. (II.17):

E
[
FLS+(d)

]
= E

[
1
n ∑

i
Θ (di − dmax

i ) (di − dmax
i )2

]

=
∫

Rn

[
1
n ∑

i
Θ
(
d̃i − dmax

i
) (

d̃i − dmax
i
)2
]

fd
(
d̃
)

dd̃ .

(VII.9)

Here, the first moment is again computed via integration, following the general concept of APM
as in Chapters III and VI.

From the lessons learned in Chapter VI, Eq. (VII.9) can be solved by “marginalization”, i. e.,
pulling the sum out of the integral and then integrate against the marginal probability density
fdi :

E
[
FLS+(d)

]
=

1
n ∑

i

∫ ∞

−∞
Θ
(
d̃i − dmax

i
) (

d̃i − dmax
i
)2 fdi

(
d̃i
)

dd̃i . (VII.10)

Assuming fd
(
d̃
)
= N

(
d̃; µ, Σ

)
. Through the linear transformation/substitution x = di − dmax

i

and µ̃ = µi − dmax
i and dropping the subscript σ = σi for clarity, the integral in Eq. (VII.10)

reduces to the elementary problem

E
[
Θ (x) x2] = ∫ ∞

−∞
Θ (x̃) x̃2N (x̃; µ̃, σ2)dx̃

=
∫ ∞

0
x̃2N (x̃; µ̃, σ2)dx̃ .

(VII.11)

Note that without the Heaviside step Θ(x), Eq. (VII.11) would resolve to the second raw mo-
ment of N (x, µ̃, σ2), i. e., σ2 + µ̃2, leading to Eq. (III.22). The step, however, changed the inte-
gration bounds in Eq. (VII.11). Hence the integration has to be exercised explicitly, e. g. through
partial integration. A solution can be found by rearranging the integral (A.15) from Owen (1980)
as shown in Eq. (A.16) to obtain:

E
[
Θ (x) x2] = [− (µ̃2 + σ2)Φ

(
µ̃ − x

σ

)
− σ2 (x + µ̃)N

(
x; µ̃, σ2)]x=∞

x=0

=
(
µ̃2 + σ2)Φ

(
µ̃

σ

)
+ µ̃σ2N

(
0; µ̃, σ2) ,

(VII.12)

where Φ (x) is the CDF of the standard normal distribution.
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Now µ̃ just needs to be re-substituted in Eq. (VII.12) to obtain

E
[
FLS+

]
=

1
n ∑

i

[
(µi − dmax

i )2 + σ2
i

]
Φ
(

µi − dmax
i

σi

)
+ (µi − dmax

i ) σ2
i N

(
0; µi, σ2

i
)

. (VII.13)

Figure VII.1 illustrates the difference in expectation value E[FLS+] imposed by the positivity
operator compared to E[FLS]. When the mean deviation falls below zero, i. e., µ̃ = µi − dmax

i < 0,
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Figure VII.1: Comparison of the expected value of the least-squares objective E[FLS] and the least-squares objective
E[FLS+] with positivity operator for a single voxel i. Dependence of the mean deviation µ̃ = µi − dmax

i is shown under
assumption of three different variances.

the expectation value gradually decreases. Note that at µ̃ = 0, the expected values are exactly
2E[FLS+] = E[FLS]. Further, Fig. VII.1 shows that simple heuristics, i. e., applying the positivity
operator directly on the expected deviation in E[FLS], would overestimate the importance of the
variance contribution.

All derivations up to here can be analogously carried out for a minimum tolerance value to
obtain E[FLS−].

Derivaঞves: For efficient optimization of both the heuristic objective E[FLS(d)]+ from Eq. (VII.8)
and the exact objective E[FLS+] from Eq. (VII.12) with a quasi-Newton method, their first order
derivatives w. r. t. w are required. With Eq. (VII.7), the derivatives w. r. t. w are computed from
the derivatives w. r. t. µ and Σ. Since both expected objective functions do not depend on the
off-diagonal elements of Σ, only the derivatives w. r. t. variance have to be derived.

For the heuristic approach from Eq. (VII.8), these derivatives can be trivially obtained from
Eq. (III.24). For Eq. (VII.12), they are more tedious but also straightforward, resulting in

∂E[FLS+]

∂µi
=

2
n
·
[

σ2
i N

(
0; µ̃i, σ2

i
)
+ µ̃iΦ

(
µ̃i

σi

)]
, (VII.14)

∂E[FLS+]

∂σ2
i

=
1
n
· Φ
(

µ̃i

σi

)
. (VII.15)

where for clarity the substitution µ̃i = µi − dmax
i was used as before.
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VII.2.2.2 Constraints on the α-DVH

In Section VI.2.3.1 closed-form solutions for the expected value and the (co)variance of a DVH
were presented, based on mean and covariance of a multivariate normal probability distribu-
tion over dose. Further, it was shown in Section VI.3.1 and illustrated in Fig. VI.3 that using
the computed expected value and the variance, marginal probabilities over the DVH-points can
be parametrized to obtain DVCMs and therefore also α-DVHs. α-DVHs correspond to the α-
quantiles of the underlying probability distribution, and can be represented with the quantile
function Q(α; E[DVH], Var[DVH]) of the probability distribution over a DVH-point. Then, mini-
mum and maximum α-DVH-constraints can be defined as

cmin α-DVH = vmin − Q(α; E [DVH] , Var [DVH])
!
≤ 0 , (VII.16a)

cmax α-DVH = Q(1 − α; E [DVH] , Var [DVH])− vmax
!
≤ 0 . (VII.16b)

Equation (VII.16a) ensures that a DVH-point obeys the inequality P(DVH ≤ vmin) ≤ α, i. e.,
the DVH-point may fall below vmin in α · 100 % of all scenarios. To have a similar definition of
the maximum constraint in Eq. (VII.16b), the probability argument for Q is changed to 1 − α;
Equation (VII.16b) then only allows α · 100 % of scenarios to exceed vmax.

In principle, the choice of Q is not restricted to a single specific probability distribution over the
respective DVH-point. For example, Fig. VI.3 showed that, compared to a normal distribution,
choosing a beta distribution yielded a more accurate description of the probability over the DVH-
points. However, in the following a normal distribution N (E[DVH], Var[DVH]) will be assumed
for the sake of clarity, since the beta distribution requires transformations of expected value and
variance of the DVH-point, and, to make matters worse, its quantile function is given by the
inverse regularized incomplete beta function.

Then the quantile function Q(α; E[DVH], Var[DVH]), i. e., the inverse of the CDF, is given by

Q(α; E [DVH] , Var [DVH]) = E [DVH] +
√

2 Var [DVH] erf−1 (2α − 1) . (VII.17)

For efficient optimization, the derivatives of Q w. r. t. to the mean µ and covariance Σ of dose are
required. Since the first summand of Q in Eq. (VII.17) is just given by E[DVH], which is computed
as a sum over marginal CDFs (compare Eq. (VI.10)), its first order derivatives w. r. t. µ and Σ can
be obtained through the definition of the CDF:

∂E[DVH]

∂µi
=

1
n
· N

(
d̂; µi, Σii

)
, (VII.18a)

∂E[DVH]

∂Σii
=

1
n
·

(
d̂ − µi

)
N
(

d̂; µi, Σii

)
2Σii

. (VII.18b)

In Eq. (VII.18b), only the diagonal elements, i. e., the variance derivatives, are required because
E[DVH] does not depend on covariance elements of Σ.

The derivatives in Eq. (VII.18) would already suffice to construct a median (in the case of
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N (E[DVH], Var[DVH]) corresponding to an expected) DVH constraint, since at α = 0.5 the sec-
ond summand in Eq. (VII.17) vanishes. This may be convenient, because then the more costly
evaluation of the covariance of dose is not required.

Moreover, the second summand in Eq. (VII.18) w. r. t. µ and Σ requires differentiation of√
Var[DVH]. With the differentials

d
(√

2 Var [DVH] erf−1 (2α − 1)
)
=

erf−1 (2α − 1)√
2 Var[DVH]

d Var [DVH] (VII.19a)

d
(
E
[
DVH2]− E [DVH] 2) = dE

[
DVH2]− 2E [DVH]dE [DVH] (VII.19b)

the problem reduces to finding the derivatives of E[DVH2] w. r. t. µ and Σ, as the derivatives of
E[DVH] have already been obtained in Eq. (VII.18).

The raw second moment E[DVH2] is, according to Eq. (VI.14), given by a sum over bivariate
normal probabilities. While the derivatives w. r. t. µ and Σ of the PDF are well known (e. g. for
likelihood methods), the derivatives of the CDF are more cumbersome than in Eq. (VII.18).

If one denotes F2(x; µ, σ, ρ) as the bivariate normal CDF of a bivariate normal distribution with
mean µ, variances σ2 = (σ2

1 , σ2
2 )

T and correlation coefficient ρ, the partial derivatives along the
first dimension x1 are given as (Kotz, Johnson, and Balakrishnan 2000)

∂F2(x; µ, σ2, ρ)

∂x1
= N (x1; µ1, σ1) F1

(
x2 − µ2

σ2
; ρ

x1 − µ1

σ1
; 1 − ρ2

)
, (VII.20)

where F1 is then the CDF of the respective univariate normal distribution.

Kotz, Johnson, and Balakrishnan (2000) also state the partial derivatives w. r. t. ρ of a standard-
ized bivariate normal CDF:

∂F2(x; 02, 12, ρ)

∂ρ
= N (x; 02, 12, ρ) . (VII.21)

From Eqs. (VII.20) and (VII.21), using substitution/change of variables, the partial derivatives
of E[DVH2] = n−2 ∑il [1 − F2(d̂ · 1; µi;l , Σi;l)] w. r. t. µ and Σ become

∂E[DVH2]

∂µi
=

1
n2 · N

(
d̂; µi, Σii

)
∑

l
F1

 d̂ − µl√
Σll

;
ρil

(
d̂ − µi

)
√

Σii
, 1 − ρ2

il

 , (VII.22a)

∂E[DVH2]

∂Σii
=

1
n2 ·

(
d̂ − µi

)
N
(

d̂; µi, Σii

)
2Σii

∑
l

F1

 d̂ − µl√
Σll

;
ρil

(
d̂ − µi

)
√

Σii
, 1 − ρ2

il

 , (VII.22b)

∂E[DVH2]

∂Σi 6=l
= − 1

n2 · N
(

d̂ · 1; µi;l , Σi;l

)
. (VII.22c)

Together with Eq. (VII.19), this allows computation of the covariance derivative of
√

Var[DVH].
Hence, all derivatives required for optimization with the constraint functions from Eq. (VII.16)
could be obtained analytically.
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VII.2.2.3 Mean dose

In Section II.2.2.2, the mean dose objective function F d̄ was introduced in Eq. (II.19) as a bare lin-
ear minimizer of the mean dose d̄. The probabilistic analog to such an objective, i. e., the expected
objective E[F d̄] is straight forward due to linearity of the expectation value as the arithmetic mean
over µ (compare Eq. (VI.20)):

E
[
F d̄
]
= E

[
d̄
]
= µ̄ . (VII.23)

Its gradient is given by

∇µµ̄ =
1
n

1 , (VII.24)

with the vector 1 comprised of unit elements.
With Eq. (VI.20) it is possible to add a variance minimization objective

Var
[
F d̄
]
= Var

[
d̄
]
=

1
n2 ∑

il
Σil (VII.25)

with covariance derivative

∂ Var[F d̄]

∂Σ
=

1
n2 11T , (VII.26)

where 11T yields the n × n matrix of all ones.
Combining Eqs. (VII.25) and (VII.26) with Eq. (VII.7), objective and gradient may also be com-

puted directly with a pre-computed helper matrix similar to Ω introduced in Eq. (III.23). To do
so, a contraction-like operation on C along the voxel dimensions must be applied:

Ω̌jm = ∑
il

Cijlm . (VII.27)

Similar to Eqs. (III.23) and (III.24) objective and gradient w. r. t. w are then simplified to

Var
[
F d̄
]
= wTΩ̌w , (VII.28a)

∇w Var
[
F d̄
]
= 2Ω̌w . (VII.28b)

A mean dose variance objective Var[F d̄] could thus be efficiently optimized with low memory
requirements.

Note that the derivations from Eqs. (VII.23) to (VII.28) also directly translate to the implemen-
tation of probabilistic constraints on expected mean dose and variance. Furthermore, when as-
suming d̄ ∼ N

(
E[d̄], Var[d̄]

)
, constraints on the α-quantiles of d̄ similar to the α-DVH constraints

from Eq. (VII.16) can be implemented, using the respective quantile function Q(α; E[d̄], Var[d̄]).
By substitution of Var[DVH] with Var[d̄] in the differential Eq. (VII.19a), also the required deriva-
tives are directly available.
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VII.2.2.4 Equivalent uniform dose

In Section II.2.2.2 objectives for minimizing nominal EUD were introduced as used in matRad
(Wieser et al. 2017b). Using the Taylor-approximated moments from Section VI.2.3.3, analogous
to the previously established mean dose objectives, the expected value and variance of the nom-
inal objective from Eq. (II.18) can be directly based on the considerations from Section VI.2.3.3.

Objective and gradient w. r. t. µ of expected EUD are then given by

E
[
FEUDκ

(d)
]
≈ EUDκ(µ) +

1
2

tr
(

HEUDκ(µ)Σ
)

, (VII.29)

∂E[FEUDκ
]

∂µ
≈ EUDκ(µ)

∑i µα
i

µ◦(α−1) , (VII.30)

Note that in Eq. (VII.30) the gradient of the second order term w. r. t. µ was omitted to facilitate
efficient computation, which at the same time also leads to a vanishing covariance gradient.

The covariance gradient of EUD variance can be similarly approximated by

∂ Var[FEUDκ
]

∂Σ
≈ ∇µEUDκ(µ)

[
∇µEUDκ(µ)

]T . (VII.31)

As the case for mean dose above, Eqs. (VII.29) to (VII.31) apply for constraints on expected EUD
or its variance, and can also be used for the definition of α-quantile constraints.

VII.3 Results

In the following, the in Section VII.2.2 introduced probabilistic objective and constraint functions
are evaluated on a one-dimensional prototype anatomy from the APMToolbox, where the full
tensor C can be stored and thus the expressions from Section VII.2 can be evaluated without
approximations.

This “1D prototype” represents a target structure of 25 mm width with directly adjacent OAR
of half the target’s size. The anatomy is discretized into 100 “voxels” (which are actually one-
dimensional line elements in this case), as shown in Fig. VII.2a, and is irradiated with a lateral
profile of pencil-beams. The prototype features 20 artificial Gaussian pencil-beams with a dense
spacing of 2 mm and a width of λx = 2.5 mm. Lateral set-up uncertainty over the pencil-beam
positions of ±(1 mmsys + 2 mmrand) (one standard deviation) was assumed for the probabilistic
computations, with all pencil-beams exhibiting perfect correlation. A dose of d∗ = 1 was pre-
scribed to the target. For optimization, penalties on the objectives of pT = 5,000 for the target,
pOAR = 200 for the OAR and pNT = 1 for the unclassified normal tissue were chosen. All analyt-
ical derivatives from the previous section were validated with finite difference checks.

VII.3.1 Evaluaঞon of probabilisঞc objecঞves

Figure VII.2 shows nominal and probabilistic lateral dose profiles on the 1D prototype after nom-
inal and expected optimization with the common least-squares and the novel piece-wise least-
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squares objective. The corresponding nominal and probabilistic DVHs are supplied in Fig. VII.3.
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Figure VII.2: Comparison of the expected least squares objective and piece-wise least squares objective. Nominal dose
as well as its expected value and standard deviation are shown. Plans optimizing the nominal objectives are shown as
dashed lines, while plans optimizing the expected objectives are shown as solid lines. (a) shows the lateral profile after
nominal and probabilistic optimization with a common least squares objective FLS. (b) shows optimization with the
piece-wise least squares objective FLS+ and its novel expectaion model as derived in Eq. (VII.12). Thereby tolerance
doses of dmax OAR = 0.4 and dmax NT = 0.6 were used on the OAR and the unclassified normal tissue, respectively.

As already shown in Chapters IV and V in the full-fledged patient analyses, the minimization
of an expected least-squares objective improves conformity of the expected dose compared to
the conventionally optimized plan. This is achieved by automatically generating a margin on the
one side, and induction of increased dose modulation of the nominal dose at the interface of tar-
get to OAR. These results line up with findings from Chapter V and from literature (Fredriksson
2012; Unkelbach and Oelfke 2004). These state that increasing the number of fractions leads to in-
creased modulation of the nominal dose profile, due to the random fraction realizations blurring
the heterogeneous nominal dose into a smooth expectation value of dose over all fractions.

In the conventionally optimized plan, introduction of a piece-wise squared objective relaxes
the dose penalization within the OAR coverage (compare, in particular, the DVHs in Fig. VII.3a
and Fig. VII.3b). The newly introduced expected piece-wise squared objective E[FLS+] carries this
relaxation to probabilistic optimization, and mitigates the strong modulation effect of nominal
dose to some extent, visible in the profile in Fig. VII.2b and the DVHs in Fig. VII.3d. This can
be explained with the reduced “height” of the step from OAR to target, due to the non-zero
maximum dose tolerance value.

In general, the introduction of the relaxation with the objective function FLS+ has more im-
pact in probabilistic optimization. For example, when comparing Figs. VII.3b and VII.3d, the
E[DVH(d̂ = 0.4)] increases from a volume fraction of about 0.25 in Fig. VII.3b to 0.38 in Fig. VII.3d
in the OAR. With the common least-squares objective, the corresponding volume fraction equals
0.22 and increases only to 0.28. On the other hand, the piece-wise least-squares objective results
in more robust target coverage. Hence, the expected piece-wise least-squares objective trades
expected OAR sparing against improved expected target coverage.
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(a) DVHs to Fig. VII.2a, FLS opt.
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(b) DVHs to Fig. VII.2b, FLS+ opt.
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(c) DVHs to Fig. VII.2a, E[FLS] opt.
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(d) DVHs to Fig. VII.2b, E[FLS+] opt.

Figure VII.3: DVHs corresponding to the dose profiles in Fig. VII.2, i. e., the lateral profiles optimized with nominal
(a,b) and expected (c,d) least squares (a,c) and piece-wise least squares (b,d) objective. Solid lines refer to E[DVH] in the
target ( ) and the OAR ( ). The dashdotted lines ( / ) correspond to the±1 standard deviation bounds.
The respective nominal DVHs are complementary given as dashed lines ( / ). The maximum tolerance dmax

for the piece-wise objective in the OAR is indicated by the vertical dashed line ( ) in the DVHs.

Substituting the exact expected piece-wise squared objective with the heuristic adaptation from
Eq. (VII.8) leads to substantial differences in optimization outcome as shown in Fig. VII.4. Below
the tolerance value dmax, no more reduction of the expected dose is intended by the objective
in the OAR, which leads to unnecessary increase of the expected as well as the nominal dose.
This results in a flattening of the expected dose profile below dmax in the OAR. The reason for
this flattening lies in remaining variance term in Eq. (VII.8). When the expected dose falls below
dmax, further minimization of the variance goes hand in hand with a reduction of the expected
dose gradient, i. e., a flattening of the profile.

Reducing the number of fractions, as exemplary shown for an optimization of E[FLS+] under
assumption of a single fraction in Fig. VII.5, forces the optimizer to create a flat dose profile in
the target. Due to the larger uncertainty in the single fraction case, a bigger margin has to be
created than in the 30 fraction plan from Figs. VII.2b and VII.3d, substantially compromising
OAR sparing. Similar effects were observed with E[FLS] in Chapter V and by Unkelbach and
Oelfke (2004).
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(b) prob. DVH

Figure VII.4: Probabilistic dose profile (a) and DVH (b) after optimization with the “fake” piece-wise expected value
from Eq. (VII.8) under assumption of 30 fractions.
Legends in (a) are similar to Fig. VII.2, i. e., the dotted lines lines represent nominal dose ( ), its expected value
( ) and standard deviation ( ) after optimization with the nominal objective FLS+, whereas the respective solid
lines ( / / ) represent the profiles after optimization with the “fake” E[FLS]+.
In (b), legends are similar to Fig. VII.3; the E[DVH] within the target ( ) and the OAR ( ) is shown with the
respective standard deviation bounds ( / ) and the corresponding nominal DVH ( / ).

VII.3.2 Opঞmizaঞon with α-DVH constraints

VII.3.2.1 Minimum α-DVH constraint on the target

Based on the ratio behind classical margins for photon therapy (Herk et al. 2000), the treatment
planner may want to constrain the optimization to ensure that 95 % of the target are covered
with 95 % of the prescribed dose. In the DVH of the conventionally optimized lateral profile
(Fig. VII.2b), this minimum DVH constraint is already met by the nominal DVH (Fig. VII.3b).
Considering uncertainty, however, this constraint is hardly met, which is also reflected by the
expected DVH and the associated standard deviation bands fallowing below this point. After
probabilistic optimization the situation improves, i. e., the probability mass is shifted producing
more conformal expected dose and smaller standard deviation bands (compare also the results
from Chapter V). However, the inverse planning process does not provide explicit control over
the confidence that this constrained is met.

To enable this control, a minimum α-DVH constraint as introduced in Section VII.2.2.2 may be
used. In Fig. VII.6, the constraint function from Eq. (VII.16a) with α = Φ(−1) ≈ 0.159 was added
to optimization, enforcing the α-DVH corresponding to the lower one standard deviation bound
to stay above the original nominal constraint. That is, in approximately 84 % of all cases, 95 % of
the target must be covered in at least 95 % of the prescribed dose.

Fulfillment of the minimum α-DVH constraint to the target requires more dose to the OAR
and remaining healthy tissue, i. e., target robustness is traded against OAR sparing. Compared
to using only the objective, the constraint yields control over the respective α-DVH. In Fig. VII.6b,
the inequality constraint corresponds to the lower one standard deviation bound, and is thus
precisely fulfilled after optimization.

119



Chapter VII Constrained Probabilisঞc Opঞmizaঞon

0 10 20 30 40
0

0.5

1

x [mm]

re
l.

do
se

(a) profile, 1 fraction

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

rel. dose

re
l.

vo
lu

m
e

(b) prob. DVH, 1 fraction

Figure VII.5: Probabilistic dose profile (a) and DVH (b) after optimization with expected piece-wise least-squares
objective E[FLS+] under assumption of a single fraction.
Legends in (a) are similar to Fig. VII.2, i. e., the dotted lines lines represent nominal dose ( ), its expected value
( ) and standard deviation ( ) after optimization with the nominal objective FLS+, whereas the respective solid
lines ( / / ) represent the profiles after optimization with E[FLS+].
In (b), legends are similar to Fig. VII.3; the E[DVH] within the target ( ) and the OAR ( ) is shown with the
respective standard deviation bounds ( / ) and the corresponding nominal DVH ( / ).

VII.3.2.2 Maximum α-DVH constraint on the OAR

Similarly, a maximum α-DVH constraint can be applied to the OAR. Figures VII.6c and VII.6d
shows the results for a treatment plan optimized with a relaxed piece-wise objective (dmax = 0.6
in the OAR), but a maximum α-DVH constraint ensuring that the upper standard deviation bound
does not exceed a volume fraction of 30 % at d̂ = 0.5. Contrary to before, now target coverage
is traded against OAR robustness. However, please bear in mind that in the conventionally opti-
mized plan without DVH constraint (Fig. VII.3b), the constraint was already fulfilled (nominally
as well as probabilistically), however at substantially worse expected target coverage than after
probabilistic optimization with the enabled α-DVH constraint.

Additionally, Fig. VII.6e and Section VII.3.2.1 exemplary show the situation with a maximum α-
DVH constraint in the case of a single fraction. As discussed before, the typical oscillations under
multiple fractions disappear. Furthermore, the increased uncertainty makes it more difficult to
enforce the α-DVH constraint, leading to an even larger decrease of the expected target coverage,
which cannot be sustained under the increased plan variability.

VII.3.2.3 Dependence on the uncertainty model

Note that behavior of the optimization changes under assumption of different correlation models
over the pencil-beam uncertainties, especially for the constraints. So far, under assumption of
perfect correlation, the uncertainty could be mitigated by creating a margin and the oscillating
modulations near the interface of target and OAR, because the perfect correlation induces near-
zero variance when the dose is homogeneous.

Figure VII.7 shows how the optimization changes under a different uncertainty model; there,
the correlation matrix Cρ exhibits Toeplitz structure, i. e., with increasing distance of the pencil-

120



VII.3 Results

0 10 20 30 40
0

0.5

1

x [mm]

re
l.

do
se

(a) cmin α-DVH target, profile, 30 fractions

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

rel. dose

re
l.

vo
lu

m
e

(b) cmin α-DVH target, prob. DVH, 30 fractions
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(c) cmax α-DVH OAR, profile, 30 fractions
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(d) cmax α-DVH OAR, prob. DVH, 30 fractions
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(f) cmax α-DVH OAR, prob. DVH, 1 fraction

Figure VII.6: Lateral profiles (a,c,d) and probabilistic DVHs (b,d,e) after optimization with α-DVH constraints. (a,b)
show a treatment applied in 30 fractions enforcing a minimum α-DVH constraint ( ) on the target at DVH(0.95) ≥ 0.95
on the lower standard deviation bound, i. e., α = Φ(−1). In (c,d) the minimum α-DVH constraint was substituted by a
maximum α-DVH constraint on the OAR (with similar probability). (e,f) shows a plan with similar criteria as in (c,d)
under assumption of only a single fraction.
Remaining figure legends in (a,c,e) are similar to Fig. VII.2, i. e., the dotted lines lines represent nominal dose ( ), its
expected value ( ) and standard deviation ( ) after optimization with the nominal objectives and constraints,
whereas the respective solid lines ( / / ) represent the profiles after probabilistic optimization.
In (b,d,f) legends are similar to Fig. VII.3; the E[DVH] within the target ( ) and the OAR ( ) is shown with the
respective standard deviation bounds ( / ) and the corresponding nominal DVH ( / ).
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(b) DVH, Σ Toeplitz

Figure VII.7: Lateral dose profile optimized with a minimum α-DVH-constraint on the target. The correlation matrix
over pencil-beam uncertainties exhibits Toeplitz structure with a slight exponential decrease of exp [−κ|∆n|] with
α = ln(10) · 10−2, where ∆n is difference in pencil-beam index.
Figure legends in (a) are similar to Fig. VII.2, i. e., the dotted lines lines represent nominal dose ( ), its expected
value ( ) and standard deviation ( ) after optimization with the nominal objectives and constraints, whereas
the respective solid lines ( / / ) represent the profiles after probabilistic optimization.
In (b) legends are similar to Fig. VII.3; the E[DVH] within the target ( ) and the OAR ( ) is shown with the
respective standard deviation bounds ( / ) and the corresponding nominal DVH ( / ).

beams their displacement correlation slightly decreases. This leads to a non-zero variance even if
the dose is perfectly homogeneous, which requires the expected dose in the target to be increased
to exceed the prescribed dose by approximately one standard deviation (i. e., the constraint re-
quirement).

VII.3.3 Opঞmizaঞon with probabilisঞc EUD & mean dose constraints

Chapter VI also derived approximate results for EUD, since the attempted analytically exact ap-
proaches turned out to be unsuitable. These approximate results, however, did not yield stable
results, especially with large (negative) exponents as used for the target or when used as min-
imum / maximum approximation. For OARs however, the approximations lead to reasonable
results, and therefore this section will briefly present results comparing a probabilistic mean dose
constraint with a probabilistic EUD constraint.

Figure VII.8 displays the results after using quantile mean and EUD (with κ = 5.5) constraints
on the OAR combined with probabilistic (piece-wise) least squares objectives. A strict probability
constraint of α = 0.95 was selected, i. e., only 5 % of scenarios are allowed to violate the mean /
EUD value of 0.4d∗.

Since the EUD constraint aggravates the sensitivity to high doses compared to the mean dose,
the DVHs get pushed to the left, with increased low-dose coverage. Both EUD and mean dose
quantile constraints. Again, since multiple fractions were assumed, the constraints are often mit-
igated with the help of “oscillating” nominal dose in the target. Both mean dose and EUD con-
straints are not violated significantly.
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(b) quantile d̄ constraint, prob. DVH
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(c) quantile EUD constraint, profile
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(d) quantile EUD constraint, prob. DVH

Figure VII.8: Comparison of mean dose and EUD quantile constraints. (a) shows the lateral profile after optimization
with a mean dose quantile constraint P(d̄ > 0.4) ≤ 0.05, which was substituted in (c) with an EUD quantile constraint
P(EUDκ > 0.4) ≤ 0.05. (b,d) show corresponding nominal and probabilistic DVHs, where the approximated Gaussian
of analytically computed mean/EUD is shown ( ). The constraints are visualized as solid black lines ( ), and
the nominal value indicated ( ).
The remaining figure legends in (a,c) are similar to Fig. VII.2, i. e., the dotted lines lines represent nominal dose ( ),
its expected value ( ) and standard deviation ( ) after optimization with the nominal objectives and constraints,
whereas the respective solid lines ( / / ) represent the profiles after probabilistic optimization.
In (b,d) legends are similar to Fig. VII.3; the E[DVH] within the target ( ) and the OAR ( ) is shown with the
respective standard deviation bounds ( / ) and the corresponding nominal DVH ( / ).

VII.4 Discussion

This chapter demonstrated a novel method enabling probabilistic optimization of expected ob-
jectives and quantile constraints. These objective and constraint functions used the findings of
Chapter VI, and therefore base on a completely analytical propagation from the input space,
i. e., pencil-beam weights and the respective uncertainty model. This facilitated implementa-
tion of the optimization as the “probabilistic analog” to nominal dose optimization relying on
a quasi-Newton interior-point algorithm provided with analytical objective and constraint first-
order derivatives and Hessian approximation via L-BFGS.

Similar to nominal dose optimization as, for example, used in matRad (Wieser et al. 2017b), the
computation of the objective and constraint derivatives factorizes; they can be computed w. r. t.
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the respective marginal expected value and covariance over dose (compare Chapter VI), and af-
terwards multiplied with the expected value and covariance derivatives of the probabilistic dose
influence provided by the original APM framework.

This makes the novel concept versatile and difficult to handle at the same time. Versatile, be-
cause it also generalizes to other methods that can provide the expected value and covariance
gradient of probabilistic dose influence. Difficult to handle, because especially the covariance in-
fluence C , despite being sparse, is voluminous with its dimensionality both squared in number
of voxels and pencil-beams. For a rule-of-thumb estimate of the complexity, note that the dense
covariance influence for the evaluated prototype stores 1002 × 202 elements and thus already
requires 30 MB of RAM, compared to the dense expected dose influence only storing 100 × 20
elements, i. e., 16 kB, in RAM. These numbers show that for actual application on large-scale 3D
patient cases, where a sparse expected dose influence matrix easily has several million non-zero
entries, it is infeasible to store the full C , even in a sparse format. Hence, its values require, for
example, on-the-fly computation whenever the pencil-beam weights change, which may be time
consuming when using either common sampling based methods or the APM framework. While
the latter exhibited the possibility to precompute certain calculations (i. e., the helper matrix Ω),
this does not generalize to the more complex objective and constraint functions required for, most
importantly, α-DVHs.

The ability of APM to efficiently evaluate single elements Cijlm on request may encourage the
use of decomposing approximation techniques on C (Grasedyck, Kressner, and Tobler 2013).
Such approximations of large tensors are of big interest in academic as well as commercial appli-
cations. For example, on the tested 1D lateral profile protoype used within this chapter, heuristic
attempts of computing CANDECAMP/PARAFAC (Acar, Dunlavy, and Kolda 2011; Acar et al.
2011) or Tucker decompositions (Kolda and Sun 2008) of C using the MATLAB Tensor Toolbox
(Bader and Kolda 2015) showed promising results in terms of size reduction and speed-up of
the evaluation of Eqs. (VII.4) and (VII.7), i. e., the gradient computations, and Eq. (III.19), i. e.,
the covariance evaluation. Additionally, tensor train decompositions (Oseledets 2011a; Oseledets
2011b; Oseledets, Tyrtyshnikov, and Zamarashkin 2011) may be an alternative. In the future,
such approximations may be explicitly implemented and evaluated w. r. t. computational feasi-
bility and approximative quality on the full-fledged problem on patient cases. Also, considering
that the dose covariance matrix exhibits strong spatial structure depending on the input correla-
tion model, functional representations of the spatial component (i. e., voxel indices i and l), might
facilitate a representation of C that allows usage on larger, real world patient datasets.

Evaluation on the prototype, nonetheless, successfully demonstrated the theoretical applica-
bility of the developed concepts. The derived objectives and constraints could be easily used with
standard interior-point optimization methods using analytical gradients, without implementing
custom adaptations to the optimization routine.

Regarding probabilistic quantile constraints, the implementation and evaluation of α-DVH con-
straints was highlighted. These allowed definition of concrete probabilities, under which the
respective DVH-point inequality should be enforced. For both such minimum and maximum
quantiles, the interior-point optimization was able to follow those constraints, by creating dose
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distributions that intrinsically define a margin around the patient, but also in exploiting frac-
tionation assumptions. The automatic generation of margins is a desired effect, which is under-
lined by other works trying to adapt conventional margin adaptations schemes from the photon
world (Herk 2004; Herk et al. 2000) to robust proton therapy optimization (e. g. Fredriksson and
Bokrantz 2016; Knopf et al. 2013). The exploitation of the fractionation scheme, i. e., inducing het-
erogeneity to the nominal dose since the profile “flattens” when multiple scenarios cancel each
other, is often classified as an undesired effect, and may be mitigated by additionally imposing
uncertainty on the random error assumption (Fredriksson 2012; Unkelbach and Oelfke 2004).
One should consider that these “oscillations” of the nominal dose profile are only that severe
because of the ideal anatomy in the evaluated prototype. When multiple beams imping on the
target subject to multiple uncertainty sources, these effects are not as strong, which was already
demonstrated within this thesis in Chapter V.

In addition to the α-DVH constraints, also EUD and mean dose quantile constraints were eval-
uated, where optimization also provided sensible results. Such constraints might be useful since
often clinical objectives are based on those indicators (Marks et al. 2010). In this context, the mean
dose quantile constraint—which on top could be efficiently implemented—may be used without
any problems, since its analytically exact quantification is accurate according to the results from
Chapter VI. Caution should be used, however, with EUD, since the approximations derived in
Chapter VI are not particularly stable, especially when the absolute exponents are large. If larger
accuracy is required for the α-DVH-constraints, one could rely on the quantile function of a beta
distribution. This would require some additional calculations including handling of the regular-
ized incomplete beta function, but is in general, within the realms of possibility.

Not implemented and evaluated were expected objectives or constraints using minimum dose
and maximum dose, despite the evaluation of approximations with EUD discussed in Chapter VI.
The reason for this is the insufficient accuracy/stability that was concluded from the respective
results in Chapter VI. For the experimental reader, however, it would be straightforward to con-
tinue on one’s own behalf using the EUD quantile constraint.

Focus regarding new probabilistic objectives was laid on extension of the expected least-squares
objective to the expected value of a piece-wise extension which is more commonly used in con-
ventional treatment planning. An exact analytical solution could be found that can overcome
limitations of heuristic adaptations to simulate such an objective. Its evaluation is, however,
more expensive than the expected least squares objective, which allowed pre-computations of
the helper matrix Ω. Note that the derivations made for probabilistic α-DVHs, EUD and mean
dose constraints may also be used to implement objectives to optimize their expectation value or
variance, comparable to the works by Sobotta, Söhn, and Alber (2010).

Hence, concluding this chapter, one has to highlight the versatility of this concept once again.
First, it offers a clear, closed-form description between the probabilistic optimization objective
and the dose uncertainty. The parametrization of the plan metrics with a probability distribu-
tion allows for a continuous transition between robustness against exactly defined worst-cases
(i. e., high/low probability quantile constraints) or probabilistic expected value optimization (i. e.,
probabilistic objectives or median probability quantile constraints). Constraints behave like their
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nominal counterpart, and require just a single additional parameter, i. e., the desired confidence.
This gives freedom to the treatment planner, who can “play around” with different settings, while
at the same time lightens the workload with respect to ensuring treatment plan robustness.

It is, however, to evaluate how the concept competes with other established approaches, when
the aforementioned computational hurdles are overcome. Especially these computational re-
quirements, are a risk factor in proving the concepts applicability. Even if future studies ren-
der the concept disadvantageous, it might, however, still be of educational and conceptual value
to understand the relation between input uncertainties and output plan metrics. Furthermore,
the analytical models within APM as well as the optimization are separated into two problems,
namely (a) modeling of the expected dose distribution µ and its covariance Σ depending on flu-
ence w, and (b) modeling of the probability over plan metrics based on µ and its covariance
Σ. Hence, the methodology from this chapter could be also used in other frameworks able to
approximate µ and Σ and their derivatives. Then, the closed-form expressions of the here pre-
sented objectives and constraints could be realized and also be helpful to implement an efficient
optimization routine within these frameworks.
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Chapter VIII

Conclusion

VIII.1 Summary

Based on the Analytical Probabilistic Modeling framework introduced by Bangert, Hennig, and
Oelfke (2013), this thesis developed probabilistic analogs to conventional proton treatment plan-
ning concepts. This includes implementation of APM as a probabilistic dose calculation engine
as well as the first application to patient data, mainly covered by Chapters IV and V. In the re-
maining chapters, novel models were developed to enable a closed-form probabilistic description
of treatment plan metrics that can be used as objectives or constraints in probabilistic treatment
planning workflows.

APM was implemented into the image processing platform DIPP/MITK as a plugin (MITKrad),
which was developed completely from scratch. With careful software design it was attempted
to build a platform that encourages extension and sustainable use, while also archiving the de-
veloped algorithms relevant for this thesis. To showcase the developed concepts and enable re-
producibility, especially of the newly developed concepts from Chapters VI and VII, simplified
MATLAB code has been provided online within the APMToolbox.

Chapter IV described the implementation of MITKrad, which enables basic treatment planning
workflows including the definition of beam geometry, nominal dose calculation and treatment
plan optimization (using IPOPT) including display of the final result. APM was incorporated into
MITKrad as a probabilistic dose engine, i. e., with an extended interface APM’s nominal dose can
be computed and optimized, as well as the first and second moment of dose. The implemen-
tations were then used to create exemplary non-probabilistic as well as probabilistic treatment
plans on thee patient datasets, which were comparable with results achieved through other aca-
demic methods. Further, the probabilistic dose calculation, i. e., the computed expectation value
and standard deviation of dose, were validated against multivariate random sampling, show-
ing nearly perfect agreement. While a run-time measurement showed competitive computation
times for APM, particularly when it comes to optimization, approximation techniques were pro-
posed and evaluated. These enable qualitative approximations for probabilistic analysis as well
as treatment plan optimization.

Thereafter, in Chapter V, the by Bangert, Hennig, and Oelfke (2013) proposed method to handle
fractionation within APM was overhauled and evaluated. The original formulation by Bangert,
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Hennig, and Oelfke (2013) was already of constant time complexity in the number of fractions, but
required re-computations when the number of fractions changed. The new formulation, however,
allowed the expression of covariance influence as linear combination of a systematic and random
term. Hence, only a single computation is required for probabilistic evaluation and optimiza-
tion under varying fractionation schemes. This was exploited in the creation of treatment plans
under different fractionation assumptions, where the assumptions of more fractions allowed the
optimization to reduce dose to OARs while maintaining relative robustness of target coverage.
Plans that are probabilistically optimized under assumption of a single fraction, but then applied
in multiple fractions, did not share this reduction of dose to the OARs.

With Chapters IV and V working in the domain of propagation of parametric uncertainties to
dose, Chapter VI attempted to carry the propagation to dose-dependent clinical plan metrics. Ex-
act analytical expressions where found for the first two moments of DVHs and mean VOI dose,
which yielded accurate results under the assumption of a multivariate normal distribution over
dose. For EUD, analytically exact and applicable representations could not be derived. Approxi-
mations were attempted with a Taylor-expansion on EUD, which were also used to approximate
minimum and maximum. However, evaluation on the three patient datasets shows that these
were less accurate than the exact derivations for DVH and mean dose.

Last but not least, Chapter VII used the closed-form expressions from Chapter VI to concep-
tualize constrained probabilistic optimization on treatment plan metrics with an interior-point
method. To do so, the constrained probabilistic optimization problem was formulated analo-
gously to the nominal constrained optimization problem, with expected dose and covariance
over dose replacing nominal dose. Assumption of normal distributions over the respective treat-
ment plan metrics enabled the definition of quantile constraints, which extend the nominal con-
straint function with a confidence probability. Furthermore, the previously used probabilistic
least-squares objective was extended to allow positivity operators/tolerance values. On a one-
dimensional test anatomy, lateral pencil-beam profiles were successfully optimized under various
parametrizations of the different constraint functions, proving the concept.

VIII.2 Innovaঞon

This thesis provided the first implementation of a probabilistic dose calculation engine, based on
the APM framework introduced by Bangert, Hennig, and Oelfke (2013). Compared to other con-
cepts, for example the PCE approach by Perkó et al. (2016) or the Gaussian process model from
Sobotta, Söhn, and Alber (2012), probabilistic analogs to the dose influence are provided, enabling
direct usage for probabilistic treatment plan analysis and optimization. Furthermore, it is the first
implementation that does not require multiple computations of dose scenarios. Instead, anal-
ogous to the nominal pencil-beam algorithm, distinct elements of expected dose influence and
covariance influence can be independently computed, allowing novel approximation techniques
and re-formulations.

The introduced re-formulation for fractionated treatments further distinguish the scientific
work herein from previous attempts. That is the analysis of treatment plans under optimiza-
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tion with different fractionation assumptions, where APM is capable of computing the complete
fractionation spectrum of the covariance influence. Compared to other works attempting the
modeling of random and systematic uncertainties (Lowe et al. 2016; Lowe et al. 2017; Perkó et al.
2016) in proton therapy, the methodology described herein is, to the best of the author’s knowl-
edge, the first able to model the full-fledged interplay of systematic and random errors without
simplifications at constant time complexity while also generalizing to optimization.

Closed-form uncertainty propagation from dose uncertainty to uncertainty in treatment plan
metrics, and its subsequent use for prototyping constrained probabilistic optimization comprises
the main conceptual scientific contribution. The closed-form derivations of probabilistic DVHs
surpass the sole found previous approach (Henríquez and Castrillón 2008a; Henríquez and Cas-
trillón 2008b), which was limited to exact expectation value and heuristic, yet inexact modeling
of α-DVHs. The transition to probabilistic constraint functions gives the first method that enables
a scenario-free incorporation of such confidence constraints, which allow to prescribe a desired
probability to the respective plan metric that is enforced during optimization, if possible. This
exceeds the capabilities of other methods relying on computed scenarios (Mescher, Ulrich, and
Bangert 2017, for photon therapy; Fredriksson 2012, using conditional value-at-risk optimization).

VIII.3 Limitaঞons & Outlook

This thesis proved the applicability of an analytical method to describe random and systematic
uncertainties over the course of a radiation treatment. The model for random and systematic un-
certainties so far does, however, neglect numerous other sources of uncertainty. Amongst these
are intra- and inter-fractional anatomical motion and deformation (Knopf et al. 2013; Liu et al.
2012a; Lomax 2008a; Ulrich et al. 2017). Also, biological effects and uncertainties of particle irra-
diation are not considered in this work, but already part of ongoing research with APM (Wieser
et al. 2017a). Future work needs to address these issues; either by introduction of voxel-based
uncertainty assumptions or through an approximate projection into the BEV uncertainty model.
APM is especially suited for such incorporation of high-rank correlation models. The closed-form
mapping may, in this context, also prove valuable to estimate this uncertainty model.

In Chapter IV, it was shown that APM provides accurate estimates of expected dose and stan-
dard deviation of dose subject to common uncertainty assumptions over the input parameters.
This validation, however, compared to the nominal formulation of the analytical pencil-beam
dose calculation within APM. It has been shown, however, that nominal analytical pencil-beam
dose calculation algorithms themselves have their limitations with extremely heterogeneous
anatomies as given, for example, in the case of lung treatments (Taylor, Kry, and Followill 2017).
While the nominal inaccuracy might be mitigated by relying on Monte Carlo dose calculation, it
has to be quantified if the superior accuracy of Monte Carlo dose calculation is also advantageous
in the presence of uncertainties, or if the probability space neutralizes this effect and a probabilis-
tic dose calculation engine like APM might be applicable nevertheless. Furthermore, accuracy of
APM’s underlying pencil-beam algorithm might be improved by using multiple lateral Gaussian
components (Bellinzona et al. 2015) or pencil-beam fine-sampling (Soukup, Fippel, and Alber
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2005). Also, the extension to biologically effective dose—which is part of ongoing research for
carbon-ions (Wieser et al. 2017a)—deserve an investigation for protons since recent studies chal-
lenge the assumption of constant radio-biological effectiveness of protons compared to photons
(Jones 2016; Mohan et al. 2017).

Regarding the analytical models developed in Chapter VI, further work could focus on finding
more accurate probabilistic models for EUD and extreme values. For the latter, academic devel-
opments regarding extreme value/order statistics should be kept track of. Suggested methods to
derive probabilistic estimates for extreme values or order statistic for correlated random variables
do, however, mostly rely on rely in some way on iterative evaluations, and it is unclear if exact
theory that is computationally feasible in the radiotherapy context with thousands of correlated
random dose voxels will be available in the near future. If only used for probabilistic analysis, it
might be more reasonable to re-sample from the approximate multivariate normal distribution
to estimate such extreme values. Additionally, α-DVHs constraints, which could be successfully
established within this thesis, can be used as surrogates to evaluate and control uncertainty over
extreme dose values in treatment planning.

The true potential of the derived analytical models is revealed when used in optimization.
However, if the concepts from Chapter VII shall find their way into clinical application, it is cru-
cial to find a way for efficient handling or approximation of the covariance influence information.
There, collaboration with the machine learning community could be of value, who often inves-
tigate problems in which the complete computation or storage of the model is infeasible due to
dimensionality. For example, tensor decompositions could be evaluated (e. g. Grasedyck, Kress-
ner, and Tobler 2013). In particular, careful analysis and exploitation of structure of the covariance
influence tensor could be of value, since patient and irradiation geometry impose characteristic
spatial structure. Alternatively, massive parallelism on distributed computer systems would be
an option. The growing availability of commercial cloud systems could also make such solutions
feasible and affordable in clinical environments without sophisticated computing infrastructure.

VIII.4 Closing words

In conclusion, the findings of this thesis show that APM in its original form might be valuable
for fractionated treatments in comparably static indications, as uncertainty estimates can be effi-
ciently computed and mitigated with probabilistic optimization for the full fractionation spec-
trum. Extension of the uncertainty model and the underlying pencil-beam algorithm could en-
able use in more complex indications. Further, a merge with ongoing research would generalize
to biological effective dose and thus also heavier particles. With the extensions of APM to model
uncertainty in clinical treatment plan metrics, probabilistic analogs to accepted nominal dose
concepts in inverse treatment planning are now available. If future works can overcome com-
putational hurdles, the novel presented models can serve as powerful tools adding the desired
confidence as additional parameter to treatment plan optimization.
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Appendix A

Mathemaঞcal Appendix

A.1 Probability distribuঞons

A.1.1 Marginal distribuঞons

Marginal cumulaঞve distribuঞon funcঞon: If the random vector X = (X1, X2, . . . , Xn)
T has the

multivariate cumulative distribution function FZ : Rn ⇒ [0, 1], the marginal cumulative distri-
bution function over X i;j;k;... is given by

FX i;j;k;...

(
xi;j;k;...

)
= FX

(
∞, . . . , ∞, xi, xj, xk, . . . , ∞

)
. (A.1)

Marginal probability density funcঞon: Analogous to Eq. (A.1), if X has the probability density
fX , one can define marginal probability densities for X i;j;k;... as

fX i;j;k;...

(
xi;j;k;...

)
=

∞∫
−∞

· · ·
∞∫

−∞

fX
(
∞, . . . , xi, xj, xk, . . . , ∞

)
dx1 · · ·dxp 6=i,j,k,... · · ·dxn , (A.2)

meaning that integration will be performed along all dimensions not indexed by i, j, k, . . .

A.1.2 Log-normal distribuঞon

Univariate case: A random variable X follows a log-normal distribution when its natural loga-
rithm Y = ln X follows a normal distribution ln X ∼ N (µ, σ) (Johnson, Kotz, and Balakrishnan
1994a). Its probability density is given by

fX(x) =
1
x

1
σ
√

2π
exp

(
− (ln x − µ)2

2σ2

)
. (A.3)

The t-th moments of the Log-normal distribution can be directly calculated from the moment-
generating function of the normal distribution over Y through the logarithmic relationship be-
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tween Y and X:

MY(t) = E
[
etY
]
= E

[
Xt] = exp

(
µt +

1
2

σ2t
)

. (A.4)

Mulঞvariate case: In the multivariate case, if Y is now an n-dimensional random vector follow-
ing a multivariate normal distribution Y ∼ Nn (µ, Σ), then X = exp Y follows a multivariate
log-normal distribution (Kotz, Johnson, and Balakrishnan 2000). Its density is given by

fX(x) =
1

(2π)
n
2
√
|Σ|∏n

i xi
exp

[
−1

2
(ln x − µ)T Σ−1 (ln x − µ)

]
(A.5)

with the expectation value

E [Xi] = exp
(

µi +
1
2

Σii

)
(A.6)

and covariance

Cov [Xi, Xl ] = exp
[

µi + µj +
1
2
(
Σii + Σjj

)]
·
(

eΣij − 1
)

. (A.7)

Note that the inverse transformations of Eqs. (A.6) and (A.7) can be stated as

µi = ln
(

E [Xi]−
σ2

i
2

)
, (A.8a)

Σij = ln
(

Cov[Xi, Xj]

E[Xi]E[Xj]
+ 1
)

. (A.8b)

A.1.3 Beta distribuঞon

The beta distribution B(α, β) with shape parameters α and β is defined through its density

f (x) = B(x; α, β) =
1

B(α, β)
xα−1(1 − x)β−1 , (A.9)

where B(α, β) is the Beta-function. The beta distribution is supported on the interval x ∈ [0, 1]
(Johnson, Kotz, and Balakrishnan 1994b).

Expectation value and variance of a Beta-distributed random variable X are given by

E [X] =
α

α + β
, (A.10a)

Var [X] =
αβ

(α + β)2 (α + β + 1)
. (A.10b)

If (estimates of) expectation value and variance are given, e. g. through sample statistics, shape
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α, β can be computed using the transformations

α = E [X]
E[X](1 − E[X])

Var[X]
− 1 , (A.11a)

β = (1 − E [X])

(
E[X](1 − E[X])

Var[X]
− 1
)

, (A.11b)

valid for Var[X] ≤ E[X](1 − E[X]).

A.1.4 Gaussian algebra & idenঞঞes

Products ofmulঞvariate normal distribuঞons: The product of two multivariate normal distribu-
tions can be again expressed with a multivariate normal distribution multiplied by a Gaussian
normalization:

N (x; µ1, Σ1)N (x; µ2, Σ2) = N (µ1; µ2, Σ1 + Σ2)N (x; µ, Σ)

with Σ−1 = Σ−1
1 + Σ−1

2 and µ = Σ
(

Σ−1
1 µ1 + Σ−1

2 µ2

)
.

(A.12)

A.2 Used Integrals

Fracঞonal moment integral

Equation (3.462) from Gradshteĭn and Ryzhik (2000) was used in Section VI.2.3.3 to derive the
k-th fractional moment of a Normal distribution. It is given by

∫ ∞

−∞
(ix)k exp

(
−β2x2 − iqx

)
dx = 2−

k
2
√

πβ−k−1 exp
(
− q2

8β2

)
Dk

(
q

β
√

2

)
(A.13)

valid for <[β] > 0, <[k] > −1 and arg ix = π
2 sign x using the parabolic cylinder function Dk.

Equation (3.463) from Gradshteĭn and Ryzhik (2000) can be used to derive the n-th integer
moments∫ ∞

−∞
xn exp

[
− (x − β)2

]
dx = (2i)−n√πHen (iβ) (A.14)

using the n-th Hermite polynomials Hen(x).

Indefinite integral for the second moment

Owen (1980) states the indefinite integral

∫
x2φ(a + bx)dx =

a2 + 1
b3 Φ (a + bx)−

(
bx − a

b3

)
φ (a + bx) (A.15)

with the probability density function φ (x) and the cumulative distribution function Φ (x) of the
standard normal distribution.
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Equation (A.15) can be reformulated to give an anti-derivative for the integral required to obtain
the second raw moment of a normal distribution:

∫ x2

σ
φ

(
µ − x

σ

)
dx =

1
σ

µ2

σ2 + 1

− 1
σ3

Φ
(

µ − x
σ

)
− 1

σ

− x
σ − µ

σ

− 1
σ3

φ

(
µ − x

σ

)
(A.16a)

⇒
∫

x2N
(
x, µ, σ2)dx = −

(
µ2 + σ2)Φ

(
µ − x

σ

)
− σ2 (x + µ)N

(
x, µ, σ2) . (A.16b)
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Code

__global__ void voxelKernel_uniformBlockCorre lat ions ( double∗ p_covVal , f l o a t ∗ p_omega ,
BaseDataLibrary baseData , UniformBlockCovariance_3D err_R , UniformBlockCovariance_3D err_S ,
unsigned i n t numSpots , const f l o a t ∗ p_Weights , unsigned i n t numCurrentSpots_i , unsigned i n t
numCurrentSpots_l , const VoxelSpotInfo ∗ p_voxelSpotInfo_i , const VoxelSpotInfo ∗
p_voxelSpotInfo_l , u in t16_ t nrOfFract ions )

{
unsigned i n t cur ren tSpo t_ j = blockIdx . x ∗ blockDim . x + threadIdx . x ;
unsigned i n t currentSpot_m = blockIdx . y ∗ blockDim . y + threadIdx . y ;

cudaReal tensor_element = 0 . 0 ;

i f ( cur ren tSpo t_ j < numCurrentSpots_i && currentSpot_m < numCurrentSpots_l )
{

const VoxelSpotInfo ∗ voxe lSpot In fo_ j = &p_voxelSpot Info_ i [ cur ren tSpo t_ j ] ;
const VoxelSpotInfo ∗ voxelSpotInfo_m = &p_voxelSpot Info_ l [ currentSpot_m ] ;

//Simple Naming , the compiler should not use ex t ra r e g i s t e r s fo r tha t
const i n t s i _ j = voxe lSpot Info_ j−>spotIndex ;
const auto dX_j = voxe lSpot Info_ j−>distanceX ;
const auto dY_j = voxe lSpot Info_ j−>distanceY ;
const auto dE_j = voxe lSpot Info_ j−>e d i j ;
const auto r g _ j = voxe lSpot Info_ j−>range ;
const auto rD_j = voxe lSpot Info_ j−>radDepth ;
const auto bw_j = p_Weights [ s i _ j ] ;

const unsigned i n t r g I x _ j = unsigned i n t ( r g _ j ) ;
const BaseDataEntry ∗ bdEntry_j = &(baseData . e n t r i e s [ r g I x _ j ] ) ;
const auto widthSq_j = addSquared ( bdEntry_j−>in i t i a l S igma , bdEntry_j−>la t e ra lS igmas [

unsigned i n t ( rD_j ) ] ) ;

const i n t si_m = voxelSpotInfo_m−>spotIndex ;
const auto dX_m = voxelSpotInfo_m−>distanceX ;
const auto dY_m = voxelSpotInfo_m−>distanceY ;
const auto dE_m = voxelSpotInfo_m−>e d i j ;
const auto rg_m = voxelSpotInfo_m−>range ;
const auto rD_m = voxelSpotInfo_m−>radDepth ;
const auto bw_m = p_Weights [ si_m ] ;

const unsigned i n t rgIx_m = unsigned i n t ( rg_m ) ;
const BaseDataEntry ∗ bdEntry_m = &(baseData . e n t r i e s [ rgIx_m ] ) ;
const cudaReal widthSq_m = addSquared ( bdEntry_m−>in i t i a l S igma , bdEntry_m−>la t e ra lS igmas [

unsigned i n t (rD_m) ] ) ;

CovarianceInfo covR_tmp , covS_tmp ;
//Calcu la te the Elements
//X
GetCovariance ( covR_tmp , s i _ j , abs ( dX_j ) , si_m , abs (dX_m) , err_R . errX ) ;
GetCovariance ( covS_tmp , s i _ j , abs ( dX_j ) , si_m , abs (dX_m) , err_S . errX ) ;
//rand
cudaReal tensor_e lement_corr = gauss2D<cudaReal >( dX_j , dX_m,

widthSq_j + covR_tmp . j j + covS_tmp . j j ,
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covR_tmp . jm + covS_tmp . jm ,
widthSq_m + covR_tmp .mm + covS_tmp .mm) ;

//sys
cudaReal tensor_element_uncorr = 1 . 0 ;
i f ( nrOfFract ions > 1)
{

tensor_element_uncorr ∗= gauss2D<cudaReal >( dX_j , dX_m,
widthSq_j + covR_tmp . j j + covS_tmp . j j ,
covS_tmp . jm ,
widthSq_m + covR_tmp .mm + covS_tmp .mm) ;

}

//Calcu la te the Elements
//Y
GetCovariance ( covR_tmp , s i _ j , abs ( dY_j ) , si_m , abs (dY_m) , err_R . errY ) ;
GetCovariance ( covS_tmp , s i _ j , abs ( dY_j ) , si_m , abs (dY_m) , err_S . errY ) ;
//rand
tensor_e lement_corr ∗= gauss2D<cudaReal >( dY_j , dY_m,

widthSq_j + covR_tmp . j j + covS_tmp . j j ,
covR_tmp . jm + covS_tmp . jm ,
widthSq_m + covR_tmp .mm + covS_tmp .mm) ;

//sys
i f ( nrOfFract ions > 1)
{

tensor_element_uncorr ∗= gauss2D<cudaReal >( dY_j , dY_m,
widthSq_j + covR_tmp . j j + covS_tmp . j j ,
covS_tmp . jm ,
widthSq_m + covR_tmp .mm + covS_tmp .mm) ;

}

//Z Factor
GetCovariance ( covR_tmp , s i _ j , rD_j , si_m , rD_m, err_R . errZ ) ;
GetCovariance ( covS_tmp , s i _ j , rD_j , si_m , rD_m, err_S . errZ ) ;

//Pre−s to r e covar iance
const auto tmp_covZ_jj = covR_tmp . j j + covS_tmp . j j ;
const auto tmp_covZ_mm = covR_tmp .mm + covS_tmp .mm;
const auto tmp_covZ_jm_uncorr = covS_tmp . jm ;
const auto tmp_covZ_jm_corr = covR_tmp . jm + covS_tmp . jm ;

const APM_Gaussian∗ gauss_ j = bdEntry_j−>GaussianDD ;
const APM_Gaussian∗ gauss_m = bdEntry_m−>GaussianDD ;

cudaReal zElement_uncorr = 0 . 0 ;
cudaReal zElement_corr = 0 . 0 ;

fo r ( i n t k = 0 ; k < bdEntry_j−>nDepthGaussians ; k++)
{

fo r ( i n t n = 0 ; n < bdEntry_m−>nDepthGaussians ; n++)
{

//rand
zElement_corr += gauss_ j [ k ] .A ∗gauss_m [ n ] .A∗

gauss2D<cudaReal >( rD_j − gauss_ j [ k ] .mu, rD_m − gauss_m [ n ] .mu,
gauss_ j [ k ] . sigma∗ gauss_ j [ k ] . sigma + tmp_covZ_jj ,
tmp_covZ_jm_corr ,
gauss_m [ n ] . sigma∗gauss_m [ n ] . sigma + tmp_covZ_mm) ;

//sys
i f ( nrOfFract ions > 1)
{

zElement_uncorr += gauss_ j [ k ] .A ∗gauss_m [ n ] .A∗
gauss2D<cudaReal >( rD_j − gauss_ j [ k ] .mu, rD_m − gauss_m [ n ] .mu,
gauss_ j [ k ] . sigma∗ gauss_ j [ k ] . sigma + tmp_covZ_jj ,
tmp_covZ_jm_uncorr ,
gauss_m [ n ] . sigma∗gauss_m [ n ] . sigma + tmp_covZ_mm) ;

}
}

}

tensor_e lement_corr ∗= zElement_corr ;
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tensor_element_uncorr ∗= zElement_uncorr ;

tensor_element = ( tensor_e lement_corr + cudaReal ( nrOfFrac t ions − 1) ∗
tensor_element_uncorr ) / cudaReal ( nrOfFrac t ions ) ;

//Subs t rac t the square of the expec ta t ion value
tensor_element −= dE_j ∗dE_m;

//Store to omega matrix
p_omega [ s i _ j ∗numSpots + si_m ] += tensor_element ;

//Multiply with beamlet weights fo r var iance values
tensor_element ∗= bw_j∗bw_m;

customAtomicAdd<double >( p_covVal , tensor_element ) ;
}

}

Listing B.1: CUDA kernel for evaluating (co)variance in a voxel (combination). Note that certain required functions
as well as required data structures are not explicitly defined.
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Addiঞonal Data & Results

C.1 Informaঞon on Paঞent Data

Table C.1: Information on the three patient datasets used for evaluation.

patient intracranial paraspinal prostate
beam angles 60◦, 120◦ 135◦, 180◦, 225◦ 90◦, 270◦

d∗
v : CTV (Boost) 60 Gy 60 Gy 70 Gy (76 Gy)

d∗
v : OARs 0 Gy 0 Gy 0 Gy

pv
CTV: 1500

brainstem: 130
CTV: 3000

spinal cord: 500

PTV: 3000
boost: 3500
rectum: 200
bladder: 200

scanning grid 3 mm 4 mm 5 mm
grid margin 5 mm 5 mm 10 mm

#pencil-beams 1705 13274 6803
resolution (1.2 × 1.2 × 3)mm3 (3 × 3 × 3)mm3 (2 × 2 × 3)mm3

setup error (1 mm)sys + (2 mm)rand (1 mm)sys + (2 mm)rand (1 mm)sys + (3 mm)rand

range error (3.5 %)sys + (1 mm)rand (3.5 %)sys + (1 mm)rand (3.5 %)sys + (1 mm)rand
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C.2 Supplementary to Chapter IV
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Figure C.1: Exemplary axial slice of (a) a conventionally optimized paraspinal treatment plan using a dose influence
matrix computed with APM’s dose approximation. Further, the expected dose could be computed (b) which is inde-
pendent of the correlation model. Finally, the standard deviation of dose was computed, once assuming “beam-wise”
correlations (c) and once assuming “ray-wise” correlations (d) for the range errors for a single fraction.
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Figure C.2: Exemplary axial slices of distributions of nominal (a-b), expected (c-d) and standard deviation (e-f) of
dose resulting from probabilistic optimization on the paraspinal case. For the plan shown in the left column (a,c,e),
the “beam-wise” correlation model was assumed fro probabilistic optimization. The right column (b,d,f) illustrates
a probabilistically optimized plan under assumption of the “ray-wise” correlation model. Both treatment plans were
optimized under 1 fraction.
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Figure C.3: Exemplary axial slice of (a) a conventionally optimized intracranial treatment plan using a dose influence
matrix computed with APM’s dose approximation. Further, the expected dose could be computed (b) which is inde-
pendent of the correlation model. Finally, the standard deviation of dose was computed, once assuming “beam-wise”
correlations (c) and once assuming “ray-wise” correlations (d) for the range errors for a single fraction.
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Figure C.4: Exemplary axial slices of distributions of nominal (a-b), expected (c-d) and standard deviation (e-f) of
dose resulting from probabilistic optimization on the intracranial case. For the plan shown in the left column (a,c,e),
the “beam-wise” correlation model was assumed fro probabilistic optimization. The right column (b,d,f) illustrates
a probabilistically optimized plan under assumption of the “ray-wise” correlation model. Both treatment plans were
optimized under 1 fraction.
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Figure C.5: γ2 %/2 mm-distributions validating APM’s computations of expectation value (left column) and standard
deviation (right column) against the respective sampled moment from the random sampling benchmark for exemplary
axial slices of all three patient cases. The acceptance threshold of γ = 1 is indicated as a color jump in the used
colormap and through display of isolines at γ = 1.
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Figure C.6: Sampling based DVH-statistics for fractionated conventional and probabilistic treatment plans for the
paraspinal case. (a,c,e) show the statistics for the conventionally optimized treatment planned applied in 1, 5 and
30 fractions, while (b,d,f) show the corresponding probabilistically optimized treatment plans. Nominal DVHs are
represented by solid lines ( / ) while dashed lines ( / ) represent median DVHs (i. e., 50 % α-DVHs). The
thin dotted ( / ) and dash-dotted lines ( / ) enclosing the shaded areas refer to the 5 % to 95 % α-DVHs and
25 % to 75 % α-DVHs quantiles, respectively. The underlying DVHs for the treatment samples are indicated by the thin
grayed out solid lines ( / ) in the background. The vertical dashed black line ( ) indicates the prescribed dose
to the respective target.
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Figure C.7: Sampling based DVH-statistics for fractionated conventional and probabilistic treatment plans for the
intracranial case. (a,c,e) show the statistics for the conventionally optimized treatment planned applied in 1, 5 and
30 fractions, while (b,d,f) show the corresponding probabilistically optimized treatment plans. Nominal DVHs are
represented by solid lines ( / ) while dashed lines ( / ) represent median DVHs (i. e., 50 % α-DVHs). The
thin dotted ( / ) and dash-dotted lines ( / ) enclosing the shaded areas refer to the 5 % to 95 % α-DVHs and
25 % to 75 % α-DVHs quantiles, respectively. The underlying DVHs for the treatment samples are indicated by the thin
grayed out solid lines ( / ) in the background. The vertical dashed black line ( ) indicates the prescribed dose
to the respective target.

146



Disclosure of Publicaঞons

This is a list of publications and conference contributions from the years 2015 to 2018 during my
doctorate studies, disclosing possible relation to this thesis:

As main author:

Wahl et al. (2015) conference contribution (poster) of thesis findings

Kommer, Tugendhat, and Wahl (2015) textbook, not related to doctoral studies

Wahl et al. (2016) journal article, not related to doctoral studies

Wahl, Hennig, and Bangert (2016) conference contribution (oral presentation) of thesis
findings

Wahl et al. (2017) journal article, contains thesis findings

Wahl et al. (2018a) journal article, contains thesis findings

Wahl et al. (2018b) conference contribution (poster) of thesis findings

Wahl et al. (2018c) conference contribution (poster) of thesis findings

As co-author:

Wieser et al. (2016) conference contribution (oral presentation), related to
the thesis’ project, but not included or discussed in
detail

Wieser et al. (2017b) the software presented in this publication was used
in the thesis, however the contributions to it by the
author are unrelated to the thesis content

Wieser et al. (2017a) related to the findings of this thesis, related to the the-
sis’ project, but not included or discussed in detail

Wieser et al. (2018) conference contribution (oral presentation), related to
the thesis’ project, but not included or discussed in
detail

147





Bibliography

Acar, E., D. M. Dunlavy, and T. G. Kolda (2011). “A scalable optimization approach for fitting
canonical tensor decompositions”. In: Journal of Chemometrics 25.2, pp. 67–86.

Acar, E. et al. (2011). “Scalable tensor factorizations for incomplete data”. In: Chemometrics and
Intelligent Laboratory Systems 106.1, pp. 41–56.

Ahn, S. and J. A. Fessler (2003). Standard Errors of Mean, Variance, and Standard Deviation Estimators.
Tech. rep.

Albertini, F., E. B. Hug, and A. J. Lomax (2010). “The influence of the optimization starting con-
ditions on the robustness of intensity-modulated proton therapy plans.” In: Physics in Medicine
& Biology 55.10, pp. 2863–78.

– (2011). “Is it necessary to plan with safety margins for actively scanned proton therapy?” In:
Physics in Medicine & Biology 56.14, pp. 4399–4413.

Arellano-Valle, R. B. and M. G. Genton (2008). “On the exact distribution of the maximum of abso-
lutely continuous dependent random variables”. In: Statistics & Probability Letters 78.1, pp. 27–
35.

Bader, B. W. and T. G. Kolda (2015). MATLAB Tensor Toolbox, Version 2.6. Available Online at http:
//www.tensortoolbox.org/.

Bangert, M., P. Hennig, and U. Oelfke (2014). “Analytical probabilistic proton dose calculation
and range uncertainties”. In: Journal of Physics: Conference Series. Vol. 489. 1. IOP Publishing,
p. 012002.

Bangert, M., P. Hennig, and U. Oelfke (2013). “Analytical probabilistic modeling for radiation
therapy treatment planning.” In: Physics in Medicine & Biology 58.16, pp. 5401–19.

Bednyakov, A. A. (2014). “On the Molière theory of multiple scattering of charged particles (1947–
1948) and its critique in subsequent years”. In: Physics of Particles and Nuclei 45.5, pp. 991–999.

Bellinzona, V. et al. (2015). “On the parametrization of lateral dose profiles in proton radiation
therapy”. In: Physica Medica 31.5, pp. 484–492.

Bellman, R. E. (1961). Adaptive control processes: a guided tour. 1st ed. Princeton University Press.
Benaroya, H. and S. Mi Han (2005). “Probability Models in Engineering and Science”. In: Mechan-

ical Engineering 48.4, p. 740.
Bertin, E. and M. Clusel (2006). “Generalised extreme value statistics and sum of correlated vari-

ables”. In: Journal of Physics A: Mathematical and Theoretical 39, p. 7607.
Bethe, H. (1930). “Zur Theorie des Durchgangs schneller Korpuskularstrahlen durch Materie”.

In: Annalen der Physik 397.3, pp. 325–400.
Bloch, F. (1933). “Zur Bremsung rasch bewegter Teilchen beim Durchgang durch Materie”. In:

Annalen der Physik 408.3, pp. 285–320.
Bohoslavsky, R. et al. (2013). “Probabilistic objective functions for margin-less IMRT planning”.

In: Physics in Medicine & Biology 58.11, pp. 3563–3580.
Bortfeld, T. et al. (2008). “Robust Management of Motion Uncertainty in Intensity-Modulated Ra-

diation Therapy”. In: Operations Research 56.6, pp. 1461–1473.
Bortfeld, T. (1997). “An analytical approximation of the Bragg curve for therapeutic proton beams”.

In: Medical Physics 24.12, pp. 2024–2033.

149

http://www.tensortoolbox.org/
http://www.tensortoolbox.org/


Bibliography

Bortfeld, T., S. B. Jiang, and E. Rietzel (2004). “Effects of motion on the total dose distribution”.
In: Seminars in Radiation Oncology 14.1, pp. 41–51.

Casiraghi, M., F. Albertini, and A. J. Lomax (2013). “Advantages and limitations of the ’worst
case scenario’ approach in IMPT treatment planning.” In: Physics in Medicine & Biology 58.5,
pp. 1323–1339.

Chan, T. C. Y., T. Bortfeld, and J. N. Tsitsiklis (2006). “A robust approach to IMRT optimization.”
In: Physics in Medicine & Biology 51.10, pp. 2567–2583.

Chan, T. C. Y. and V. V. Mišić (2013). “Adaptive and robust radiation therapy optimization for
lung cancer”. In: European Journal of Operational Research 231.3, pp. 745–756.

Chan, T. F., S. Osher, and J. Shen (2001). “The Digital TV Filter and Nonlinear Denoising”. In: IEEE
Transactions on Image Processing 10.2, pp. 231–241.

Chen, E. J. (2014). “Selection and order statistics from correlated normal random variables”. In:
Discrete Event Dynamic Systems 24.4, pp. 659–668.

Chen, W. et al. (2012). “Including robustness in multi-criteria optimization for intensity-modulated
proton therapy”. In: Physics in Medicine & Biology 57, pp. 591–608. arXiv: arXiv:1112.5362v1.

Choi, B. and J. O. Deasy (2002). “The generalized equivalent uniform dose function as a basis
for intensity-modulated treatment planning”. In: Physics in Medicine & Biology 47.20, pp. 3579–
3589.

Chu, M. et al. (2005). “Robust optimization for intensity modulated radiation therapy treatment
planning under uncertainty”. In: Physics in Medicine & Biology 50.23, pp. 5463–77.

Clark, C. E. (1961). “The Greatest of a Finite Set of Random Variables”. In: Operations Research 9.2,
pp. 145–162. arXiv: 1602.01379.

Coles, S. (2001). An Introduction to Statistical Modeling of Extreme Values. Springer Series in Statistics.
London: Springer London, p. 208.

Cook, S. (2013). CUDA programming: a developer’s guide to parallel computing with GPUs. Waltham,
MA: Morgan Kaufmann.

Cressie, N., M. Borkent, and R. P. Gupta (1986). “The moment generating function has its mo-
ments”. In: Journal of Statistical Planning and Inference 13, pp. 337–344.

Demirhan, H. and C. Hamurkaroglu (2011). “On a multivariate log-gamma distribution and the
use of the distribution in the Bayesian analysis”. In: Journal of Statistical Planning and Inference
141.3, pp. 1141–1152.

Desplanques, M. (2015). “An Open Source Software for Proton Teatment Planning”. PhD Thesis.
Politecnico di Milano.

Farrance, I. and R. Frenkel (2012). “Uncertainty of Measurement: A Review of the Rules for Calcu-
lating Uncertainty Components through Functional Relationships.” In: The Clinical biochemist.
Reviews 33.2, pp. 49–75.

Fredriksson, A. (2012). “A characterization of robust radiation therapy treatment planning meth-
ods—from expected value to worst case optimization”. In: Medical Physics 39.8, p. 5169.

Fredriksson, A. and R. Bokrantz (2016). “The scenario-based generalization of radiation therapy
margins”. In: Physics in Medicine & Biology 61.5, pp. 2067–2082. arXiv: 1510.03300.

Fredriksson, A., A. Forsgren, and B. Hårdemark (2011). “Minimax optimization for handling
range and setup uncertainties in proton therapy”. In: Medical Physics 38.3, p. 1672.

Galassi, M. et al. (2016). GNU Scientific Library Reference Manual.
Genz, A. (2004). “Numerical computation of rectangular bivariate and trivariate normal and t

probabilities”. In: Statistics and Computing 14.3, pp. 251–260.
Goitein, M. (1985). “Calculation of the uncertainty in the dose delivered during radiation ther-

apy”. In: Medical Physics 12.5, pp. 608–612.
Gordon, J. J. and J. V. Siebers (2009). “Coverage-based treatment planning: optimizing the IMRT

PTV to meet a CTV coverage criterion.” In: Medical Physics 36.3, pp. 961–973.

150

https://arxiv.org/abs/arXiv:1112.5362v1
https://arxiv.org/abs/1602.01379
https://arxiv.org/abs/1510.03300


Bibliography

Gordon, J. J. et al. (2010). “Coverage optimized planning: probabilistic treatment planning based
on dose coverage histogram criteria.” In: Medical Physics 37.2, pp. 550–563.

Gottschalk, B. et al. (1993). “Multiple Coulomb scattering of 160 MeV protons”. In: Nuclear Instru-
ments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 74.4,
pp. 467–490.

Gradshteĭn, I. S. and I. M. Ryzhik (2000). “Definite Integrals of Elementary Functions”. In: Table of
Integrals, Series, and Products. Ed. by A. Jeffrey and D. Zwillinger. 6th ed. San Diego: Academic
Press. Chap. 3-4, pp. 243–614.

Grasedyck, L., D. Kressner, and C. Tobler (2013). “A literature survey of low-rank tensor approx-
imation techniques”. In: arXiv: 1302.7121.

Gustafsson, F. and G. Hendeby (2012). “Some Relations Between Extended and Unscented Kalman
Filters”. In: IEEE Transactions on Signal Processing 60.2, pp. 545–555.

Heinrich, H. et al. (2014). “GPU-accelerated ray-tracing for real-time treatment planning”. In: Jour-
nal of Physics: Conference Series 489, p. 012050.

Hennig, P. (2013). Animating Samples from Gaussian Distributions. Tech. rep. 8. Tübingen: Max
Planck Institute for Intelligent Systems.

Henríquez, F. C. and S. V. Castrillón (2008a). “A Novel Method for the Evaluation of Uncertainty
in Dose-Volume Histogram Computation”. In: International Journal of Radiation Oncology*Biol-
ogy*Physics 70.4, pp. 1263–1271.

– (2008b). “The effect of the different uncertainty models in dose expected volume histogram
computation”. In: Australasian Physical and Engineering Sciences in Medicine 31.3.

– (2010). “Confidence intervals in dose volume histogram computation”. In: Medical Physics 37.4,
pp. 1545–1553.

Herk, M. van (2004). “Errors and margins in radiotherapy”. In: Seminars in Radiation Oncology
14.1, pp. 52–64.

Herk, M. van et al. (2000). “The probability of correct target dosage: dose-population histograms
for deriving treatment margins in radiotherapy”. In: International Journal of Radiation Oncol-
ogy*Biology*Physics 47.4, pp. 1121–1135.

Herlihy, M. and N. Shavit (2012). The art of multiprocessor programming. Rev. 1. Waltham, MA:
Morgan Kaufmann, p. 508.

Higham, N. J. (1988). “Computing a nearest symmetric positive semidefinite matrix”. In: Linear
Algebra and its Applications 103, pp. 103–118.

Hong, L. et al. (1996). “A pencil beam algorithm for proton dose calculations”. In: Physics in
Medicine & Biology 41.8, pp. 1305–1330.

Jensen, J. L. (1998). “Some statistical properties of power averages for lognormal samples”. In:
Water Resources Research 34.9, pp. 2415–2418.

Johnson, N. L., S. Kotz, and N. Balakrishnan (1994a). Continuous univariate distributions, Volume 1.
2nd ed. Wiley.

– (1994b). Continuous univariate distributions, Volume 2. 2nd ed. Wiley.
Jones, B. (2016). “Why RBE must be a variable and not a constant in proton therapy”. In: The British

Journal of Radiology 89.1063, p. 20160116.
Knopf, A.-C. et al. (2013). “Adequate margin definition for scanned particle therapy in the inci-

dence of intrafractional motion”. In: Physics in Medicine & Biology 58.17, pp. 6079–6094.
Kolda, T. G. and J. Sun (2008). “Scalable Tensor Decompositions for Multi-aspect Data Mining”.

In: 2008 Eighth IEEE International Conference on Data Mining. IEEE, pp. 363–372.
Kommer, C., T. Tugendhat, and N. Wahl (2015). Tutorium Physik fürs Nebenfach. 1st ed. Berlin, Hei-

delberg: Springer Spektrum.
Kotz, S., N. L. Johnson, and N. Balakrishnan (2000). Continuous multivariate distributions, Volume

1: Models and Applications. 2nd ed. Wiley.

151

https://arxiv.org/abs/1302.7121


Bibliography

Kraan, A. C. et al. (2013). “Dose uncertainties in IMPT for oropharyngeal cancer in the pres-
ence of anatomical, range, and setup errors”. In: International Journal of Radiation Oncology*Bi-
ology*Physics 87.5, pp. 888–896.

Ku, H. (1966). “Notes on the use of propagation of error formulas”. In: Journal of Research of the
National Bureau of Standards, Section C: Engineering and Instrumentation 70C.4, p. 263.

Landwehr, J. M. (1978). “Some properties of the geometric mean and its use in water quality
standards”. In: Water Resources Research 14.3, pp. 467–473.

Limbrunner, J. F., R. M. Vogel, and L. C. Brown (2000). “Estimation of Harmonic Mean of a Log-
normal Variable”. In: Journal of Hydrologic Engineering 5.1, pp. 59–66.

Liu, W. et al. (2012a). “Influence of robust optimization in intensity-modulated proton therapy
with different dose delivery techniques.” In: Medical Physics 39.6, pp. 3089–101.

Liu, W. et al. (2012b). “Robust optimization of intensity modulated proton therapy”. In: Medical
Physics 39.2, p. 1079.

Lomax, A. J. (2008a). “Intensity modulated proton therapy and its sensitivity to treatment uncer-
tainties 2: the potential effects of inter-fraction and inter-field motions”. In: Physics in Medicine
& Biology 53.4, pp. 1043–1056.

Lomax, A. (1999). “Intensity modulation methods for proton radiotherapy”. In: Physics in Medicine
& Biology 44.1, pp. 185–205.

Lomax, A. J. (2008b). “Intensity modulated proton therapy and its sensitivity to treatment uncer-
tainties 1: the potential effects of calculational uncertainties.” In: Physics in Medicine & Biology
53.4, pp. 1027–1042.

Lomax, A. J. et al. (2004). “The clinical potential of intensity modulated proton therapy.” In:
Zeitschrift fur medizinische Physik 14.3, pp. 147–52.

Low, D. A. et al. (1998). “A technique for the quantitative evaluation of dose distributions.” In:
Medical Physics 25.5, pp. 656–61.

Lowe, M. et al. (2016). “Incorporating the effect of fractionation in the evaluation of proton plan
robustness to setup errors”. In: Physics in Medicine & Biology 61.1, pp. 413–429.

Lowe, M. et al. (2017). “A robust optimisation approach accounting for the effect of fractionation
on setup uncertainties”. In: Physics in Medicine & Biology 62.20, pp. 8178–8196.

Mackay, D. J. C. (2005). Information Theory, Inference, and Learning Algorithms. 4th ed. Cambridge
University Press.

Majumdar, S. N. and A. Pal (2014). “Extreme value statistics of correlated random variables”. In:
Arxiv, pp. 1–14. arXiv: 1406.6768.

Marks, L. B. et al. (2010). “Use of normal tissue complication probability models in the clinic.” In:
International Journal of Radiation Oncology*Biology*Physics 76.3 Suppl, S10–S19.

MathWorks (2017). MATLAB: C/C++, Fortran, Java, and Python API Reference.
Mcfadden, D. (1978). “Modeling the Choice of Residential Location”. In: ransportation Research

Record 673, pp. 72–77.
McGowan, S. E. et al. (2015). “Defining robustness protocols: a method to include and evaluate

robustness in clinical plans.” en. In: Physics in Medicine & Biology 60.7, pp. 2671–84.
Mescher, H., S. Ulrich, and M. Bangert (2017). “Coverage-based constraints for IMRT optimiza-

tion”. In: Physics in Medicine & Biology 62.18, N460–N473.
Mohan, R. et al. (1992). “Clinically relevant optimization of 3-D conformal treatments”. In: Medical

Physics 19.4, pp. 933–944.
Mohan, R. et al. (2017). “Radiobiological issues in proton therapy”. In: Acta Oncologica 56.11,

pp. 1367–1373.
Moore, J. A. et al. (2009). “Comparisons of treatment optimization directly incorporating random

patient setup uncertainty with a margin-based approach.” In: Medical Physics 36.9, pp. 3880–90.
Muirhead, R. J. (1982). Aspects of Multivariate Statistical Theory. Wiley Series in Probability and

Statistics. Hoboken, NJ, USA: John Wiley & Sons, Inc.

152

https://arxiv.org/abs/1406.6768


Bibliography

Newhauser, W. D. and R. Zhang (2015). “The physics of proton therapy”. In: Physics in Medicine
& Biology 60.8, R155–R209.

Niemierko, A. (1997). “Reporting and analyzing dose distributions: A concept of equivalent uni-
form dose”. In: Medical Physics 24.1, pp. 103–110.

– (1999). “A generalized concept of equivalent uniform dose (EUD)”. In: Medical Phyics 26, p. 1100.
Niyazi, M. et al. (2013). “Analysis of equivalent uniform dose (EUD) and conventional radiation

treatment parameters after primary and re-irradiation of malignant glioma”. In: Radiation On-
cology 8.1, p. 287.

Nocedal, J. and S. J. Wright (2006). Numerical Optimization. eng. 2nd ed. Springer Series in Oper-
ations Research and Financial Engineering. New York, NY: Springer-Verlag New York.

Nolden, M. et al. (2013). “The Medical Imaging Interaction Toolkit: challenges and advances 10
years of open-source development”. In: International Journal of Computer Assisted Radiology and
Surgery 8, pp. 607–620.

Oelfke, U. and T. Bortfeld (2001). “Inverse planning for photon and proton beams.” In: Medical
Dosimetry 26.2, pp. 113–124.

Olver, F. W. J. et al., eds. (2010). NIST handbook of mathematical functions. 1st ed. New York, NY:
Cambridge University Press, p. 951.

Oseledets, I. V. (2011a). “Tensor-Train Decomposition”. In: SIAM Journal on Scientific Computing
33.5, pp. 2295–2317.

Oseledets, I. (2011b). “DMRG Approach to Fast Linear Algebra in the TT-Format”. In: Computa-
tional Methods in Applied Mathematics 11.3.

Oseledets, I. V., E. E. Tyrtyshnikov, and N. L. Zamarashkin (2011). “Tensor-Train ranks for matrices
and their inverses”. In: Comput. Meth. Appl. Math, pp. 1–13.

Owen, D. B. (1980). “A table of normal integrals”. In: Communications in Statistics - Simulation and
Computation 9.4, pp. 389–419.

Paganetti, H., ed. (2012a). Proton therapy physics. 1st ed. CRC Press/Taylor & Francis.
– (2012b). “Range uncertainties in proton therapy and the role of Monte Carlo simulations”. In:

Physics in Medicine & Biology 57.11, R99–R117.
Park, P. C. et al. (2013). “Statistical assessment of proton treatment plans under setup and range

uncertainties”. In: International Journal of Radiation Oncology*Biology*Physics 86.5, pp. 1007–1013.
Park, P. C. et al. (2012). “A Beam-Specific Planning Target Volume (PTV) Design for Proton Ther-

apy to Account for Setup and Range Uncertainties”. In: International Journal of Radiation Oncol-
ogy*Biology*Physics 82.2, e329–e336.

Perkó, Z. et al. (2016). “Fast and accurate sensitivity analysis of IMPT treatment plans using Poly-
nomial Chaos Expansion.” In: Physics in Medicine & Biology 61.12, pp. 4646–64.

Petersen, K. B. and M. S. Pedersen (2012). The Matrix Cookbook.
Pflugfelder, D., J. J. Wilkens, and U. Oelfke (2008). “Worst case optimization: a method to ac-

count for uncertainties in the optimization of intensity modulated proton therapy.” In: Physics
in Medicine & Biology 53.6, pp. 1689–700.

Pinter, C. et al. (2012). “SlicerRT: Radiation therapy research toolkit for 3D Slicer”. In: Medical
Physics 39.10, pp. 6332–6338.

Rockafellar, R. T. and S. Uryasev (1997). “Optimization of conditional value-at-risk”. In: Journal of
Risk 2, pp. 21–41. arXiv: 1011.1669v3.

Roman, S. M. and G.-C. Rota (1978). “The umbral calculus”. In: Advances in Mathematics 27.2,
pp. 95–188.

Romeijn, H. E. et al. (2003). “A novel linear programming approach to fluence map optimization
for intensity modulated radiation therapy treatment planning.” In: Physics in Medicine & Biology
48.21, pp. 3521–3542.

153

https://arxiv.org/abs/1011.1669v3


Bibliography

Schaffner, B., E. Pedroni, and A. Lomax (1999). “Dose calculation models for proton treatment
planning using a dynamic beam delivery system: an attempt to include density heterogeneity
effects in the analytical dose calculation”. In: Physics in Medicine & Biology 44.1, pp. 27–41.

Siddon, R. L. (1985). “Fast calculation of the exact radiological path for a three-dimensional CT
array”. In: Medical Physics 12.2, p. 252.

Siggel, M. et al. (2012). “Boosting runtime-performance of photon pencil beam algorithms for
radiotherapy treatment planning”. In: Physica Medica 28.4, pp. 273–280.

Slater, L. J. (1960). Confluent Hypergeometric Functions. 1st ed. Cambridge University Press, p. 247.
Sobotta, B., M. Söhn, and M. Alber (2010). “Robust optimization based upon statistical theory”.

In: Medical Physics 37.8, pp. 4019–4028.
Sobotta, B., M. Söhn, and M. Alber (2012). “Accelerated evaluation of the robustness of treatment

plans against geometric uncertainties by Gaussian processes”. In: Physics in Medicine & Biology
57.23, pp. 8023–8039.

Soukup, M., M. Fippel, and M. Alber (2005). “A pencil beam algorithm for intensity modulated
proton therapy derived from Monte Carlo simulations”. In: Physics in Medicine & Biology 50.21,
pp. 5089–5104.

Steitz, J. et al. (2016). “Worst case optimization for interfractional motion mitigation in carbon ion
therapy of pancreatic cancer”. In: Radiation Oncology 11.1, p. 134.

Taylor, P. A., S. F. Kry, and D. S. Followill (2017). “Pencil Beam Algorithms Are Unsuitable for Pro-
ton Dose Calculations in Lung”. In: International Journal of Radiation Oncology*Biology*Physics
99.3, pp. 750–756.

Thörnqvist, S. et al. (2013). “Degradation of target coverage due to inter-fraction motion during
intensity-modulated proton therapy of prostate and elective targets”. In: Acta Oncologica 52.3,
pp. 521–527.

Tong, Y. L. (1990). The Multivariate Normal Distribution. Springer Series in Statistics. New York, NY:
Springer New York.

Ulrich, S. et al. (2017). “Impact of respiratory motion on variable relative biological effectiveness
in 4D-dose distributions of proton therapy”. In: Acta Oncologica 56.11, pp. 1420–1427.

Unkelbach, J. and U. Oelfke (2004). “Inclusion of organ movements in IMRT treatment planning
via inverse planning based on probability distributions.” In: Physics in Medicine & Biology 49.17,
pp. 4005–4029.

Unkelbach, J., T. C. Y. Chan, and T. Bortfeld (2007). “Accounting for range uncertainties in the
optimization of intensity modulated proton therapy.” In: Physics in Medicine & Biology 52.10,
pp. 2755–73.

Unkelbach, J. et al. (2009). “Reducing the sensitivity of IMPT treatment plans to setup errors and
range uncertainties via probabilistic treatment planning.” In: Medical Physics 36.2009, pp. 149–
163.

Veiga, C. et al. (2016). “First Clinical Investigation of Cone Beam Computed Tomography and De-
formable Registration for Adaptive Proton Therapy for Lung Cancer”. In: International Journal
of Radiation Oncology*Biology*Physics 95.1, pp. 549–559.

Wächter, A. and L. T. Biegler (2006). “On the implementation of an interior-point filter line-search
algorithm for large-scale nonlinear programming”. In: Mathematical Programming 106.1, pp. 25–
57.

Wahl, N., P. Hennig, and M. Bangert (2016). “Probabilistic proton treatment planning using ac-
celerated analytical probabilistic modelling”. In: Proceedings of the 18th International Conference
on the Use of Computers in Radiation Therapy. London.

Wahl, N. et al. (2015). “Robust Planning for Intensity-modulated Proton Therapy using Analyt-
ical Probabilistic Modeling”. In: Proceedings to the 54 th Annual Meeting for the Particle Therapy
Cooperative Group (PTCOG) and the 2 nd Annual Meeting of PTCOG – North America. International
Journal of Particle Therapy 2015. Vol. 2. 1, 314f.

154



Bibliography

Wahl, N. et al. (2016). “Physically constrained voxel-based penalty adaptation for ultra-fast IMRT
planning”. In: Journal of Applied Clinical Medical Physics 17.4, pp. 172–189.

Wahl, N. et al. (2017). “Efficiency of analytical and sampling-based uncertainty propagation in
intensity-modulated proton therapy”. In: Physics in Medicine & Biology 62.14, pp. 5790–5807.

– (2018a). “Analytical incorporation of fractionation effects in probabilistic treatment planning
for intensity-modulated proton therapy”. In: Medical Physics 45.4, pp. 1317–1328.

– (2018b). “Analytical probabilistic models for dose quality metrics and optimization objectives”.
In: ESTRO 37 Abstract Book. Barcelona: ELSEVIER, S486–S487.

– (2018c). “Smooth animations of the probabilistic analog to worst-case dose distributions”. In:
ESTRO 37 Abstract Book. Barcelona: ELSEVIER, S1030.

Wieser, H.-P. et al. (2016). “Analytical probabilistic modeling of range and setup uncertainties in
carbon ion therapy planning”. In: Proceedings of the 18th International Conference on the Use of
Computers in Radiation Therapy. London.

Wieser, H.-P. et al. (2017a). “Analytical probabilistic modeling of RBE-weighted dose for ion ther-
apy”. In: Physics in Medicine & Biology 62.23, pp. 8959–8982.

Wieser, H.-P. et al. (2017b). “Development of the open-source dose calculation and optimization
toolkit matRad”. In: Medical Physics 44.6, pp. 2556–2568.

Wieser, H.-P. et al. (2018). “Simultaneous consideration of biological and physical uncertainties
in robust ion therapy planning”. In: ESTRO 37 Abstract Book. Barcelona: ELSEVIER, S44–S45.

Winkelbauer, A. (2012). “Moments and Absolute Moments of the Normal Distribution”. In: arXiv
2, pp. 1–3. eprint: 1209.4340.

Wolf, I. et al. (2005). “The medical imaging interaction toolkit”. In: Medical Image Analysis 9.6,
pp. 594–604.

Wu, Q. and R. Mohan (2000). “Algorithms and functionality of an intensity modulated radiother-
apy optimization system.” In: Medical Physics 27.4, pp. 701–711.

Wu, Q. et al. (2002). “Optimization of intensity-modulated radiotherapy plans based on the equiv-
alent uniform dose”. In: International Journal of Radiation Oncology*Biology*Physics 52.1, pp. 224–
235.

Zhu, X. R. et al. (2014). “A single-field integrated boost treatment planning technique for spot
scanning proton therapy.” In: Radiation Oncology 9, p. 202.

Ziegenhein, P. et al. (2008). “Speed optimized influence matrix processing in inverse treatment
planning tools.” In: Physics in Medicine & Biology 53, N157–N164.

155

1209.4340




List of Used So[ware

MITKrad

A research treatment planning plugin for use within DIPP/MITK. Developed by the author
of this thesis, as well as Hans-Peter Wieser and Mark Bangert for the purpose of efficient
computations that are part of this thesis’ work. Described in more detail in Section IV.2.1.
iv

matRad

An “open-source dose calculation and optimization toolkit” (Wieser et al. 2017b), written
in MATLAB, with contributions from the author of this thesis. Accessible under http:
//www.matrad.org [accessed 29.04.2018]. 5

APMToolbox

An open-source collection of MATLAB code to compute prototype problems with APM
methodology. Developed by the author of this thesis, as well as Hans-Peter Wieser and
Mark Bangert for the purpose of providing research results to encourage reproducibility.
Contains novel models developed for the scope of this thesis, and also extended models for
biological optimization subject to uncertainty with carbon ions (e. g. Wieser et al. 2017b).
Available on https://github.com/e0404/APMToolbox [accessed 29.04.2018]. xv

DIPP

A DKFZ-internal branch of MITK (Nolden et al. 2013; Wolf et al. 2005) bundling internal de-
velopments regarding RT and image processing. Accesible under https://phabricator.
mitk.org/project/profile/26/ [accessed 29.04.2018]. 32

Eigen

“Eigen is a C++ template library for linear algebra: matrices, vectors, numerical solvers, and
related algorithms.” (http://eigen.tuxfamily.org/ [accessed 29.04.2018]). 34

IPOPT

A software library for large-scale nonlinear optimization, originally developed by Wächter
and Biegler (2006) and maintained by https://projects.coin-or.org/ [accessed 29.04.2018].
10

ITK

An open-source collection of algorithms for image processing, especially registration and
segmentation. Accessible under https://itk.org/ [accessed 29.04.2018]. 34

MATLAB

A numerical computing environment based on the eponymous proprietary scripting lan-
guage, developed by MathWorks. https://www.mathworks.com [accessed 29.04.2018]. xv
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List of Used So[ware

MATLAB Tensor Toolbox

A toolbox for MATLAB facilitating computations with various tensor formats and decom-
position methods (Bader and Kolda 2015). http://www.sandia.gov/~tgkolda/TensorToolbox/
index-2.6.html [accessed 29.04.2018]. 124

MITK

An open-source software development toolkit for medical interactive image processing,
based on ITK and VTK. Accesible under https://mitk.org/ [accessed 29.04.2018]. iv

MPI

The Message Passing Interface is a standard for communication protocols in distributed
computing systems. Information on http://www.mcs.anl.gov/research/projects/mpi/
[accessed 29.04.2018]. 38

OpenMP

An interface for writing parallel programs in C++, C and Fortran for shared-memory multi-
processor systems. Information on http://www.openmp.org/ [accessed 29.04.2018]. 38

Qt

A cross-platform toolkit for development of GUIs, available as proprietary or open-source
software. https://www.qt.io/ [accessed 29.04.2018]. 34

VTK

An open-source toolkit for 3D visualization, image processing, and computer graphics. Ac-
cessible under https://www.vtk.org/ [accessed 29.04.2018]. 158
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