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A B S T R A C T

Fluorescence guided surgery supports doctors by making unrecog-
nizable anatomical or pathological structures become recognizable.
For instance, cancer cells can be targeted with one fluorescent dye
whereas muscular tissue, nerves or blood vessels can be targeted by
other dyes to allow distinction beyond conventional color vision.

Consequently, intraoperative imaging devices should combine mul-
tispectral fluorescence with conventional reflectance color imaging
over the entire visible and near-infrared spectral range at video rate,
which remains a challenge.

In this work, the requirements for such a fluorescence imaging de-
vice are analyzed in detail. A concept based on temporal and spectral
multiplexing is developed, and a prototype system is build. Experi-
ments and numerical simulations show that the prototype fulfills the
design requirements and suggest future improvements.

The multispectral fluorescence image stream is processed to present
fluorescent dye images to the surgeon using linear unmixing. How-
ever, artifacts in the unmixed images may not be noticed by the sur-
geon. A tool is developed in this work to indicate unmixing inconsis-
tencies on a per pixel and per frame basis.

In-silico optimization and a critical review suggest future improve-
ments and provide insight for clinical translation.
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Z U S A M M E N FA S S U N G

Fluoreszenz kann Chirurgen während Operationen unterstützen, in-
dem ansonsten mit bloßem Auge nicht erkennbare anatomische Struk-
turen sichtbar gemacht werden. So können zum Beispiel Tumorzel-
len mit einem Farbstoff markiert werden und Muskelgewebe, Ner-
venstränge oder Blutgefäße mit anderen Farbstoffen gefärbt werden.
Somit kann zwischen den verschiedenen Gewebearten besser diffe-
renziert werden.

Die gleichzeitige Aufnahme von Fluoreszenz- und konventionellen
Farbbildern im sichtbaren und nahinfrarot Bereich in Videorate stellt
nach wie vor eine Herausforderung dar.

Diese Arbeit analysiert und spezifiziert zuerst die Anforderungen
an ein solches Gerät. Daraufhin wird ein Konzept, welches auf spek-
tralem und zeitlichem Multiplexing beruht, entwickelt und ein Proto-
typ wird realisiert. Experimente und numerische Simulationen bele-
gen, dass der Prototyp die Anforderungen erfüllt.

Die multispektralen Bilddaten müssen verarbeitet werden, um den
Chirurgen mit den diagnostisch relevanten Informationen versorgen
zu können. Artefakte in diesen Bildern werden vom Chirurgen unter
Umständen nicht erkannt. Eine neuartige Methode wird entwickelt,
welche Inkonsistenzen in den diagnostischen Informationen für jeden
Pixel auf Basis eines einzelnen Bildes vorhersagt.

Die numerische Optimierung von Systemparametern und eine ab-
schließende kritische Betrachtung liefern Ansatzpunkte für zukünfti-
ge Verbesserungen und zeigen den Weg zur klinischen Anwendung
auf.
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1
I N T R O D U C T I O N

Cancer is one of the major causes of death due to noncommunicable
diseases worldwide. Every year around 2‰ of the world population
are diagnosed with cancer and in 2010 1 out of 7 deaths was caused
by cancer [1, 2]. This highlights the need to develop novel treatments.
Three major treatments exist and complement each other: surgical
cancer resection, pharmaceutical therapy, and radiotherapy.

For cancer diagnostics, a variety of volumetric 3D imaging tech-
niques have been clinically established: computed tomography (CT),
positron emission tomography (PET), magnetic resonance spectros-
copy (MRS), magnetic resonance tomography (MRI), and ultrasound
(US) [3, 4]. These imaging techniques revolutionized diagnostic pro-
cedures and improved treatment planning and evaluation.

During cancer resection surgeons rely for the most part on their vi-
sion [5]. But the tissue that needs to be resected is not always easy to
distinguish from the surrounding tissue by eye as illustrated in Fig-
ure 1.1. In fact, hemoglobin is a very strong absorber and often domi-
nates the appearance of tissue. As a result, some structures like nerve
tracts may inadvertently be severed if they remain hidden. Also, scar
tissue, which is typically caused by repetitive surgeries can be hard to
distinguish from cancer tissue [6]. However, accurate cancer bound-
ary identification is important because complete cancer resection is
beneficial for the outcome for many cancer types [7–11].

organ blood
vessels cancernervecancer

color
vision

fluorescence
information

fluorescence
guided surgery=+

Figure 1.1: Impact of fluorescence guided surgery: Schematic illustration of
an organ with cancer tissue, nerves and blood vessels. In the
color image, which corresponds to the view of the surgeon, it is
very challenging to identify the cancer. Both nerves and blood
vessels cannot be identified. In fluorescence guided surgery, can-
cer tissue, nerves, and blood vessels are labeled with different
fluorescent dyes. Only these dyes are seen in the fluorescence
image. The final image which is presented to the surgeon during
fluorescence guided surgery fuses the color image with informa-
tion from the fluorescence image.
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2 introduction

Consequently, advanced imaging technologies are required to sup-
port the surgeon. Though, integrating the established imaging tech-
nologies (CT, MRI, MRS, PET, and US) into the surgical work-flow is
challenging – all the information generated by these techniques needs
to be combined in real-time with what the surgeon can see [6].

Fluorescence guided surgery has the potential to close that gap.
It enhances the color vision of a doctor with functional, anatomical
or pathological information by fluorescence imaging. For example, it
can help surgeons to accurately resect a cancer without damaging
a hidden nerve. It has therefore become increasingly popular and
gained acceptance in the medical community over the last decade.
Nevertheless, only few applications have been clinically established
so far and still lack of flexible targeting strategies [5, 12–16].

Recent advances in biomedical research demonstrate the capacity
of fluorescence guidance in combination with specific targeting strate-
gies. Clinical trials combining modern dyes with antibodies are awaited
[17–21].

One example of a clinical scenario in which the labeling of cancer
tissue supports the surgeon to distinguish cancerous from healthy
tissue is shown in Figure 1.2A. The experiment, published by van
Dam et al., combines color imaging with a specific antibody to identify
ovarian cancer tissue using a single fluorescent dye [22].

But the capabilities of clinical fluorescence imaging go far beyond
imaging one single dye. Additional dyes facilitate identification of
different structures. For example, Whitney et al. marked cancer tissue
with one dye and labeled nerve tissue with a second dye to visualize
both tissues separately, as shown in Figure 1.2B [23].

In all medical targeting techniques, dye molecules attach to every
tissue type when circulating in the body with a different affinity. This
can result in non-perfect labeling. To overcome this issue, Tichauer
et al. combine two dyes: one with affinity to cancer and another dye
with no affinity to the cancer [24]. Figure 1.2C shows a color image of
the cancer, the distributions of both dyes and a combined fluorescence
image with an improved cancer-to-background ratio.

With numerous novel staining techniques and dyes being devel-
oped and pushed towards clinical translation, which challenges re-
main to make fluorescence guided surgery a clinical gold standard?

On the one hand, the biomedical targeting techniques need to be
further translated into clinical practice and the performance needs to
be evaluated in clinical studies. On the other hand, the sophisticated
imaging scenarios call for advanced instrumentation with seamless
integration into clinical scenarios. Thus, a new imaging method is
required which delivers combined color and fluorescence images in
real-time to the surgeon.
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C

Untargeted Targeted DualWhite light

B

A

White light Fluorescence

Figure 1.2: Clinical and preclinical example images demonstrating the po-
tential of fluorescence guided surgery. A) White light color im-
age and fluorescence image ex vivo of human tissue containing
ovarian carcinoma labeled with the fluorescent dye FITC [22].
Adapted by permission from Macmillan Publishers Ltd: Nature
Medicine [22], copyright 2011. B) Dual labeling scenario to differ-
entiate nerve and cancer tissue: The white light color image on
the left shows part of the sciatic nerve (white arrow) in a mouse
with a mammary cancer. The center image displays the color im-
age combined with the nerve fluorescence signal (FAM-NP41) in
cyan. The right image shows the color image combined with the
cancer fluorescence (Cy5-ACPPD) in green [23]. Adapted by per-
mission from Macmillan Publishers Ltd: Nature Biotechnology
[23], copyright 2011. C) Improved cancer to background ratio
by combining the information of a targeted and an untargeted
fluorescent label of a brain cancer in a mouse model: Cancer-
ous and healthy tissue does not show a clear boundary (white
arrows) in the white light color image. Both targeted and untar-
geted fluorescence images do not have good contrast between
cancer and background, whereas the image using the combined
information of both dyes exhibits best cancer to background ra-
tio [24]. Adapted version reproduced from Kenneth M. Tichauer,
Kimberley S. Samkoe, Kristian J. Sexton, Jason R. Gunn, Tayyaba
Hasan, Brian W. Pogue, "Improved cancer contrast achieved by
single time point dual-reporter fluorescence imaging," Journal of
Biomedical Optics 17(6), 066001 (5 June 2012).
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First-generation fluorescence imaging devices, used in surgical mi-
croscopy or endoscopy, produce either fluorescence or reflectance
color images. Also, only one single fluorescent dye is typically im-
aged. Recent experimental devices allow multispectral fluorescence
image acquisition but at the expense of imaging speed and color-
imaging capabilities.

These limitations call for novel imaging technologies that combine
multispectral fluorescence detection with high-quality color-imaging
in real-time.

organ
blood

vesselsnerve cancer

true diagnostic
information

displayed diagnostic
information with artifact

artifact diagnostics
T-score

artifact identified artifact

Figure 1.3: Artifact diagnostics: A) Fluorescence guided surgery enhances
the color image for example by highlighting cancer tissue, hid-
den nerves, and blood vessels. B) Perturbations in the fluores-
cence image data may result in artifacts in the diagnostic infor-
mation, which is displayed to the surgeon. C) Unmixing artifacts
can be identified by the developed T-score metrics.

This thesis describes a novel imaging method and presents a proto-
type system for real-time multispectral fluorescence and color imag-
ing for surgical applications.

This short introduction to the topic is followed by a review of the
state-of-the-art and of the limitations of fluorescence guided surgery
in Chapter 2. In addition, it introduces the theoretical basics of color
and fluorescence imaging.

The question of how the novel system should be designed and why
it should be designed that way is answered in detail in Chapter 3.
As a result, a set of design requirements is fixed. Hereafter, differ-
ent imaging methods are discussed in detail and a selection for the
prototype system is made. Subsequently, Chapter 4 introduces the de-
veloped system concept and describes the technical realization of the
prototype system.

Chapter 5 investigates if each of the design requirements is fulfilled.
All in all, the system is analyzed conducting experiments and numer-
ical simulations. The requirements are grouped into four parts. First,
numerical simulations analyze the spectral system sensitivity. Second,
the ability of the system to reproduce colors is numerically assessed.
Third, the capabilities of the system to image and unmix fluorescence
are experimentally tested. Finally, the optics of the prototype system
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are inspected. Each requirement is analyzed in a separate section that
is divided into a methods, results and discussion part.

Owing to the impact of noise in fluorescence imaging, Chapter 6

develops an understanding of noise propagation through unmixing
as well as a model to estimate noise based on a single image. As a
result, a metric (called T-score) is developed to evaluate unmixing ar-
tifacts. Unmixing artifacts pose an obstacle to the clinical introduction
of multispectral imaging, since the reliability of the fluorescence infor-
mation needs to be guaranteed. Figure 1.3 illustrates a hypothetical
scenario in which the T-score helps identify unmixing artifacts.

Chapter 7 answers the question of how much the system can be
improved. The signal to noise ratio of the fluorescence images is opti-
mized by finding the optimal combination of dyes and filter configu-
rations.

The final Chapter 8 discusses whether the design requirements are
fulfilled and gives an outlook on future work. Limitations of the sys-
tem are discussed, and the concept of an ideal device is presented.
The system is also compared with related work in retrospect. An out-
look summarizes future research directions and shows the next steps
towards clinical translation of the system. Finally, conclusions about
the impact and the main achievements of the thesis are drawn.





2
R E L AT E D W O R K A N D T H E O RY

The use of fluorescence imaging during surgery has first been re-
ported in 1948 to visualize features beyond human color vision [25].
Since then, the field has considerably evolved. In 1958 indocyanine
green as first infrared dye was used to study liver perfusion [6]. In
1994 methylene blue has been reported to highlight sentinel lymph
nodes during breast cancer resection [26] and in 1998 fluorescence
guided surgery for glioblastoma brain cancer resection was intro-
duced and eventually evaluated in a randomized multi-center clinical
trial [12, 27, 28]. Since then, the field has experienced a technologi-
cal boost: surgical microscopes and even endoscopes for fluorescence
imaging are commercially available. Fluorescence guided surgery has
become clinical practice in several fields.

At the same time, novel staining techniques and modern dyes were
developed in biomedical research. These advances have the potential
to revolutionize surgical procedures by visualizing features for the
surgeon which would otherwise be invisible. However, new instru-
mentation approaches to complement the biomedical advances are
required. As a result, more and more image acquisition techniques
emerged and have been published.

This chapter gives an overview of the state-of-the-art in fluores-
cence guided surgery. First, Section 2.1 gives an overview on clini-
cal applications and recent advances in research. Subsequently, Sec-
tion 2.2 summarizes the related work on instrumentation. The chap-
ter subsequently introduces the theory of color imaging in Section 2.4
and of fluorescence imaging in Section 2.5. The mathematical descrip-
tion of fluorescence detection and unmixing can be found in Sec-
tion A.1.

2.1 current state of fluorescence in surgery

2.1.1 Fluorescence guided surgery

During the last decades, intraoperative fluorescence imaging has been
introduced to clinical practice in various disciplines [15, 38, 39]. Neu-
rosurgeons have for example the opportunity to visualize cancer tis-
sue during resection or urologists can also specifically stain bladder
cancer tissue for cystoscopic resection [12–14]. Another example for
a clinically established procedure is perfusion monitoring for anasto-
mosis of the big bowel or for reconstructive surgery [40, 41].
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Figure 2.1: A) Excitation (dotted lines) and emission spectra (solid lines)
of the clinically relevant fluorescent dyes � fluorescein, �
methylene blue, � protoporphyrin IX and � indocyanine
green. B) Estimated scattering and absorption coefficient in tis-
sue. Range of minimal (lung [29]) and maximum (epidermis [30])
scattering coefficient � µa at 500 nm for tissue with a simplified
model [31]. Absorption coefficient µa of � breast tissue, �
abdominal tissue and � skin with an simplified model [31].
Breast tissue absorption µa � is simulated with a hemoglobin
concentration of 23.6 µm, oxygen saturation of 67.6%, 14.4% rela-
tive water and 65.6% relative fat content [32]. Abdominal tissue
absorption µa � is simulated with a hemoglobin concentra-
tion of 12.5 µm, oxygen saturation of 76.0 %, 11.0% relative wa-
ter and 69.0% relative fat content [33]. Skin tissue absorption µa
� is simulated with a hemoglobin concentration of 9.6 µm, an
oxygen saturation of 99.2%, 26.1% relative water, 22.5% relative
fat and 1.15% melanin content [34]. Measured absorption spec-
tra of hemoglobin [35], water [36] and fat [37] are used whereas
melanin absorption is modeled [31]

Currently, four fluorescent dyes dominate the field of fluorescence
guided surgery: fluorescein sodium, protoporphyrin IX (PPIX), methy-
lene blue (MB) and indocyanine green (ICG). The excitation and emis-
sion emission spectra of these dyes range from the UV (PPIX excita-
tion) to the near infrared (ICG emission) as shown in Figure 2.1A.

Both, the photons of the excitation light and of the fluorescence
emission of a dye interact with the surrounding tissue. Basically, two
major types photon tissue interaction are relevant here: elastic scatter-
ing and absorption. Both effects strongly depend on the wavelength
and on the tissue. Mathematically, both effects can be described by
the Beer-Lambert law [31] with the spectrally dependent scattering
coefficient µs and absorption coefficient µa.

Figure 2.1B shows scattering and absorption coefficients for differ-
ent tissue types. The blue band on the top displays variation of the
scattering coefficient µs in tissue. Basically, scattering is the dominant
effect in tissue. The tissue absorption coefficient µa is displayed for
the examples of skin, breast and abdominal tissue.

The absorption of photons in tissue is caused by numerous sub-
stances with the main contributors being hemoglobin (oxygenated
and deoxygenated), water, fat and melanin. Melanin is a very strong
absorber and dominates absorption in skin. For other tissue types
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which are perfused by blood, hemoglobin typically causes highest ab-
sorption in the visible. Around 600 nm, hemoglobin absorption drop
exhibits a steep drop. Above 900 nm, the absorption of water increases
strongly and restricts light penetration. As a result, a transparent win-
dow between 650 nm and 900 nm allows maximum light penetration
in tissue. For the displayed Figure 2.1B, µa is modeled taking into ac-
count the major absorbers at realistic concentrations for skin, breast
and abdominal tissue.

Fluorescence guided surgery is mostly a surface based imaging
technique with minimal penetration of light into tissue. In contrast,
3D volumetric imaging techniques like US, CT, MRI or PET imaging
allow to look into the body. Penetration of light into tissue is below
100 µm in the UV and blue spectral region, between 100 µm and 1 mm
in the green and between 1 and 3 mm in the red and NIR [42].

Exciting dyes in the UV region is not only critical because of the
high absorption and scattering, but it also tends to excite autofluo-
rescence and the radiation may damage the tissue. Dyes working in
the NIR have a higher penetration depth and thus fluorescence from
deeper tissue layers can still be seen. Also, autofluorescence is typi-
cally not excited above 650 nm and tissue damage is not as critical.
Therefore, future developments aim at developing dyes for the spec-
tral window between 650 nm and 900 nm.

This section will first give an overview over state-of-the-art clinical
practice sectioned by the used dyes protoporphyrin IX, indocyanine
green, fluorescein sodium and methylene blue.

Clinical use of protoporphyrin IX

During the 1990s two mayor oncologic treatment cases have been es-
tablished: fluorescence guided resection of glioblastoma and urothe-
lial carcinoma.

Glioblastoma multiforme is an aggressive form of brain cancer which
expresses the fluorescent dye protoporphyrin IX upon oral adminis-
tration of 5-aminolevulinic acid [43]. This mechanism is used to ac-
cumulate an enhanced red fluorescent dye in cancerous cells. The
goal of the fluorescence guided resection is to have a better margin
delineation helping the surgeon to resect the cancer as good as pos-
sible and thus improving the outcome of the treatment [11, 43, 44].
Clinical studies have shown an improved clinical outcome favoring
fluorescence guidance for glioblastoma multiforme resection [12].

Still, there is plenty of room to further improve the procedure. So
far, the surgeon can either see the fluorescence or the reflectance color
image. The emission filters of these systems are designed to leak some
of the blue excitation light so that the surgeon can see some of the
parts reflectance image in purple, while the fluorescent emission is
red. This concept exhibits some disadvantages. First, the amount of
leakage of excitation light limits the range of concentrations of PPIX
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which can be detected and therefore limits the dynamic range of the
system. Additionally, the surgeon will perceive weak signals as a mix-
ture of blue and red. This means, that if a dye emits with the same
color, the color perceived by the surgeon may depend on the fluores-
cence intensity and thus require extensive training for surgical per-
sonnel before being able to perform glioblastoma resections [39]. Sur-
geons suggest that a change in fluorescent color to a slightly different
tone of red could be a hint that a different type of tissue is present
at the respective site. So far, the situation is not conclusive whether
this effect is caused by a different photochemical state of PPIX in the
different tissue or if the effect is caused by weaker fluorescence [45].
In any case, the surgeon needs to remember the fluorescent image
and switch to reflectance mode to continue surgery. As switching to
fluorescence mode also requires switching off all lights in the surgical
theater, the effort is rather high.

As previously mentioned, the second oncologic fluorescence guided
intervention is the resection of urothelial carcinoma. PPIX accumu-
lates in cells of carcinoma in situ of the bladder upon topical adminis-
tration of hexaminolevulinate solution [14]. Fluorescence guided cys-
toscopy can help to detect neoplastic tissue that would otherwise be
missed [14, 46]. A first clinical trial by Kriegmair et al. in 1996 already
suggested improved sensitivity [13]. Up to date, various clinical stud-
ies suggest an improved sensitivity to detect carcinoma in situ, but
the low specificity is the biggest criticism of the procedure [14]. Also,
different studies do not agree whether fluorescence diagnostic helps
to improve the recurrence rate. Different instrumentation options are
available on the market: rigid or flexible cystoscopes can be used for
photodynamic diagnostics (PDD) [47]. But all options on the market
have similar drawbacks than the neurosurgical systems. The surgeon
can switch between white light mode and fluorescence mode which
leaks some of the excitation light, so the conventional color image
can be seen in blue while cancers are glowing red. This filter design
limits the dynamic range of fluorophore concentration which can be
through the camera dynamic range. Recording fluorescence and re-
flectance simultaneously and overlaying the different images is not
yet clinically available.

Clinical use of indocyanine green

The infrared dye indocyanine green is clinically approved by the FDA
and EMA [20] and is currently used for various fluorescence guided
surgery applications. A good overview can be found in the reviews by
Schaafsma et al., Alander et al., Hong et al., Orosco et al., Mondal et al.,
Majlesara et al. and Zhu. [15, 18, 20, 39, 48–50]. Popular applications
include visualization of perfusion or finding sentinel lymph nodes
during cancer resection.
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To find sentinel lymph nodes, ICG is injected subcutaneously [48].
Successful use of ICG to detected sentinel lymph nodes has been
demonstrated for various interventions, including breast cancer [51],
skin cancer, squamous cell carcinoma, gastrointestinal cancer and gas-
tric cancer [15].

In a different set of clinical experiments, ICG is clinically used to
visualize perfusion. A bolus of the dye is intravenously injected to
the bloodstream and both the arterial influx of fluorescent dye to the
tissue under observation as well as the venal outflux of the fluores-
cent dye can be investigated to ensure proper perfusion. For healthy
patients, ICG is usually excreted via the liver on a timescale of ap-
proximately 10 min.

The review articles above draw a more extensive picture of the cur-
rent use of ICG. Experimental off-label use of the dye has also been re-
ported. For example, experiments showed a delayed clearance of ICG
in glioblastomas which could in future improve fluorescence guided
surgery [52].

There are different devices on the medical market to image ICG
in different situations. For neurosurgical interventions, surgical mi-
croscopes such as the Zeiss Pentero or Leica FL800 can be used [48].
Novadaq offers systems for both open and laparoscopic surgery [15,
53, 54].

In conclusion, ICG is currently the workhorse for fluorescence guided
surgery but no specificity to bind to a certain tissue is required for
most of the current applications.

Clinical use of flurescein sodium

Fluorescein was historically the first dye with intraoperative usage
which has been reported in literature in 1948 [15, 25]. Since then, fluo-
rescein sodium has been used for angiography outside the operating
theater. Experiments to specifically target cancer tissue with a specific
staining technique have been reported [15, 22, 55]. Another potential
usage in future could be glioma resection, as fluorescein sodium was
shown to have a higher uptake in gliomas [52].

However, fluorescein is optimally excited in the blue spectral range
which also excites autofluorescence. Therefore, image analysis must
consider background autofluorescence to avoid artifacts. The blue ex-
citation light also has a lower penetration depth in tissue than NIR
light and thus only superficial fluorescein accumulation can be im-
aged in vivo. Likewise, the green spectral range in which the fluores-
cence is emitted is essential for color imaging. Thus, recording a color
image and a fluorescence image at the same time is almost impossible
for fluorescein sodium and systems for fluorescence guided surgery
are more challenging than for imaging a NIR dye.

Overall, fluorescein sodium is a clinically well-established dye for
the visible range which is mostly used for unspecific imaging.
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Clinical use of methylene blue

Methylene blue is a dark blue dye which has been introduced to clin-
ical practice before an approval by the FDA or EMA was required [5,
18]. It is also a fluorescent dye for the NIR range with excitation and
emission maximums between 650 nm and 700 nm. Methylene blue is
mostly non-specific to target tissue [18] upon injection.

It has recently been used in preclinical and clinical experiments for
cardiovascular and lymphatic imaging as well as imaging of the bile
duct and gastrointestinal tract or to visualize the ureter [5, 18, 56].
Additionally, experiments in the field of fluorescence guided cancer
resection have been reported [5, 18].

2.1.2 Molecular targeting approaches

Some medical applications like angiography, visualization of perfu-
sion or detection of sentinel lymph nodes can be achieved by injecting
a fluorescent dye into the blood stream or into lymphatic channels. In
this case the fluorescent dye is used as a non-specific contrast agent.

However, fluorescence guided surgery can deliver its full poten-
tial only in combination with specific targeting. This means that the
fluorescent agent targets cells of a specific tissue type like cancers,
metastasis, blood vessels or nerves. This section gives a very short
overview of state-of-the-art targeting techniques and their potential
future use for clinical fluorescence guided surgery.

Antibody targeting

Antibodies are an essential part of the immune system. They bind
specifically to antigens which are for example located on the surface
of cells. Combining fluorescent contrast agents with antibodies which
are known to stick to specific cells allows a specific staining.

Antibody staining has been established as a gold standard in fluo-
rescence microscopy. Novel clinical agents for chemotherapy combine
antibody specificity with cytotoxins. In preclinical experiments, vari-
ous cancers have been successfully targeted by antibodies. The next
step requires to translate these results to clinical practice in trials.

Activatable cell penetrating peptides

Cell penetrating peptides (CPP) can penetrate the cell membrane
and thus enter cells. These peptides can be combined with small
molecules such as fluorescent dyes, quantum dots, gadolinium or
other drugs to be delivered into the cell.

When injecting the activatable CCP to a patient, it is deactivated
and cannot stick or penetrate cells. In presence of the specific can-
cer the CPP is activated by a protease reaction and can then stick to
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cells and penetrate those. The specificity is obtained by the chemical
reaction of the activation process.

This technique has first been presented in 2009 [57] and was de-
signed for medical applications. Since then, numerous promising pre-
clinical experiments have been published [7, 21, 23, 58, 59]. Its chances
to be established as a key staining tool for fluorescence guided surgery
are good, but clinical trials and regulatory approval are pending.

Fluorescent proteins

Fluorescent proteins are encoded in the DNA of a cell and thus pro-
duced by the cell itself. In biological research, the genetic information
can be artificially added to the DNA or RNA in a process called trans-
fection. Various transfection methods depending on the application
have been established.

Historically, the green fluorescent protein (GFP) has been found in
the jellyfish aquorea victoria. The work of Douglas Prasher on the
genetics of GFP allowed biologists to use the GFP as a tool [60]. Sub-
sequently, the community continued to modify GFP to improve it and
also to develop other fluorescent proteins [61, 62]. Today, fluorescent
proteins in various colors can be specifically transfected.

The method has the possibility to target cells with very high speci-
ficity which means that for example only cancer or nerve cells show
fluorescence, whereas there is no fluorescence in surrounding tissue.
But the DNA of these cells is modified. The risk which is associated
with modifying cells of a patient is too high to use this method in
clinical practice in close future.

Specific accumulation of PPIX

Protoporphyrin IX (PPIX) is a fluorescent dye which is produced in
the mitochondria of cells in low doses. Some cancers accumulate high
doses of PPIX upon administration of 5-aminolevulinic acid (5-ALA)
which is metabolized to PPIX. This technique has been established as
a clinical standard fluorescence guided surgery for bladder carcinoma
in situ and glioblastoma multiforme [15, 21, 51].

2.1.3 Clinical advantages of multispectral fluorescence imaging

There are numerous advantages of imaging multiple fluorophores.
For example, different anatomical or functional structures can be im-
aged or the information of multiple fluorophores targeting the same
structure can be combined for better results. Herein, some promising
example techniques are presented.
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Multiple staining

The most intuitive option to use multiple fluorophores is to stain dif-
ferent structures with different fluorescent dyes. One impressive ap-
plication has been published by Whitney et al. targeting nerves with
one fluorescent dye and cancer with a second fluorescent dye [23].
Both dyes could be imaged and overlaid in pseudocolors on the re-
flectance image.

During cancer resection, the malignant tissue must be completely
removed but in contrast nerves must not be transected accidentally.
In many surgical scenarios, an optical distinction based on the hu-
man vision is challenging. In such cases fluorescence guidance can
improve the outcome and potentially also speed up the intervention.

Another scenario would be to target cancer and metastasis or sen-
tinel lymph nodes with different dyes. All in all, any application us-
ing a single dye can in principle be combined with another using
multispectral fluorescence detection.

Multispectral detection of PPIX

As described earlier, fluorescence guided glioma resection using PPIX
fluorescence is a clinically established technique. Though the weak
emission has been reported to be a key issue of the procedure. Sur-
geons need to decide whether fluorescence signal is caused by the
cancer or not, based on their experience and visual perception.

To tackle this approach, the PPIX fluorescence can be detected
quantitatively using multispectral image acquisition and advanced
normalization approaches [63–67]. This approach has been shown to
detect residual cancer tissue which would was not seen by conven-
tional fluorescence detection in a clinical experiment. Though, the
device is not able to run at video rate and the findings would require
to be validated in a larger study.

The fluorescence of PPIX has shown to change its spectrum depend-
ing on the chemical environment and the current photochemical state
of PPIX. Three distinct spectra of PPIX were found and biopsy find-
ings suggest that the different spectra allow distinction between solid
cancer and the infiltration zone [45, 68]. This finding is undermined
by surgeons’ experience that the PPIX fluorescence shows different
tones of red. Further clinical experiments resulting in multispectral
fluorescence data are required, but the initial findings suggest a huge
potential for improvement.

Improved specificity

Any fluorescent dye which is injected to the blood stream has some
affinity to any type of tissue. If targeting a specific cancer, the affinity
for this cancer tissue is supposed to be very high, whereas for other
tissue types it is as low as possible. Knowing the affinity for a tissue
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of interest of various dyes allows to combine the information of all
these dyes.

A study by Tichauer et al. has demonstrated that the specificity and
sensitivity of cancer detection can be improved by injecting one tar-
geted and one untargeted dye and combining the information [24].
The publication demonstrates the improved contrast to noise ratio for
four different cancer types. This approach can be directly translated
to clinical applications combining any novel targeted agent with an
untargeted dye like ICG or FITC.

One future example application might be fluorescence guided glioma
resection using PPIX. It is clinically established, but both sensitiv-
ity and specificity can still be improved. Clinical experiments using
ICG showed increased uptake and slower excretion and thus cancers
could be made visible [52]. Fluorescein sodium signal has shown to
increase in glioblastomas, most likely due to increased vasculariza-
tion [52]. Combining this information may improve cancer resection
in future, but in return requires multispectral fluorescence detection.

Autofluorescence

Autofluorescence of intrinsic fluorophores like NADH can be used
for diagnostic purposes. This requires multispectral detection as aut-
ofluorescent agents can be found in many tissue types and thus typ-
ically no strong contrast in bare fluorescence intensity allow simple
distinction. But relative intensity changes and spectral variations can
be observed and exploit for diagnostic purposes. The big advantage
is that no agents need to be injected and thus no agent requires phar-
maceutical approval.

One example for using autofluorescence is the diagnosis of cervi-
cal neoplasia. Spectroscopic measurements of tissue autoflourescence
have been conducted to find a way to separate malignant and healthy
tissue [69]. Subsequently, systems relying on excitation scanning [70]
or emission scanning [71] to differentiate between the different tissue
types have been developed and tested.

2.2 related work

This section will summarize the related work and recent develop-
ments on instrumentation for fluorescence guided surgery. First, ap-
proaches to combine reflectance and fluorescence imaging for clinical
applications are introduced. Subsequently, an overview over differ-
ent published technologies to record multispectral image data is pre-
sented.

A more complete overview of the field of hyperspectral imaging
can be found for example in the following review papers [72, 73]. The
following sections are partially based on these reviews.
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2.2.1 Combining color and fluorescence imaging

Intraoperative fluorescence imaging has first been reported by Moore
et al. in 1948 [3, 15, 25]. Since then, technological advances have driven
progress of the used imaging devices. Combining fluorescence and
color imaging continues to pose a challenge on the design of any
system.

Two major categories of solutions have been established: In the first
option, fluorescence and color image detection are temporarily split.
This means that either fluorescence or color images are recorded. The
second category splits the spectral range into two parts: One for fluo-
rescence imaging and one for color imaging. This is usually chosen if
IR fluorescent dyes are used and the full visible spectral range does
not affect fluorescence detection.

Accordingly, this section reviews the related work grouped in these
two categories.

2.2.1.1 Spectral splitting

Figure 2.2: Combining fluorescence and color imaging using different spec-
tral domains: Schematic spectral illustration of the spectral split-
ting concept using dichroic mirrors [51]. Reflectance color images
can be recorded from from the blue throughout the red spectral
range. Fluorescence is recorded in two NIR channels. Adapted
by permission from Springer Customer Service Centre GmbH:
Springer Nature, Annals of Surgical Oncology, The FLARETM In-
traoperative Near-Infrared Fluorescence Imaging System: A First-
in-Human Clinical Trial in Breast Cancer Sentinel Lymph Node
Mapping, Susan L. Troyan, Vida Kianzad, Summer L. Gibbs-
Strauss, Sylvain Gioux, Aya Matsui, Rafiou Oketokoun, Long
Ngo, Ali Khamene, Fred Azar, and John V. Frangioni, coyright
2009.
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Splitting the spectrum into a part for fluorescence detection and
one for color imaging is particularly appealing if the fluorescence
emission is outside the visible range. One such example system is
presented in Figure 2.2 and Figure 2.3.

Typical clinical scenarios falling into this category involve the dye
ICG, which has an emission maximum around 800 nm. The available
systems for clinical and preclinical use with ICG have been compared
in various reviews [5, 48, 74, 75]. Some of the devices offer fluores-
cence imaging only, whereas others additionally offer a color view.
But only few devices allow a real-time overlay of fluorescence and
color images.

Figure 2.3: Image of the entire surgical imaging system in the operating
room [51]. The imaging head is placed close to the patient. It con-
tains the optical assembly. Adapted by permission from Springer
Customer Service Centre GmbH: Springer Nature, Annals of Sur-
gical Oncology, The FLARETM Intraoperative Near-Infrared Flu-
orescence Imaging System: A First-in-Human Clinical Trial in
Breast Cancer Sentinel Lymph Node Mapping, Susan L. Troyan,
Vida Kianzad, Summer L. Gibbs-Strauss, Sylvain Gioux, Aya
Matsui, Rafiou Oketokoun, Long Ngo, Ali Khamene, Fred Azar,
and John V. Frangioni, coyright 2009.

The fluorescence information can be projected into the field of view
of the surgeon using goggles in case of open surgery [76–78]. If us-
ing a surgical microscope, the fluorescence image information can be
injected in the optical path of the microscope [79].

Vargas et al. present a system featuring two IR channels and thus be-
ing able to image fluorescence multispectrally [80]. Similarly, the com-
mercial system Curadel Lab-Flare R1 and the Quest Spectrum can both
image one dye around 700 nm and a second dye at approx. 800 nm.
Using a separate sensor for color imaging and for each fluorescent
dye allows to adjust imaging parameters like integration time inde-
pendently.
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The laboratory of Frangioni at the Massachusetts General Hospi-
tal developed the experimental FLARE system in 2002 [81]. It has
been used in many preclinical and clinical studies including sentinel
lymph node detection in case of breast cancer [51], cervical cancer or
vulvar cancer [82].

Another experimental device which uses spectral beam splitting
with dichroic mirrors has been presented by Themelis et al. [83] and
subsequently been used in clinical experiments to identify ovarian
cancer by a targeted contrast agent [22].

Undoubtedly, many systems to image ICG have been developed
and some are even commercially available for clinical use. Each of
these systems is tailored for a specific scenario. The disadvantage of
these systems it that they split the spectral range into one for fluores-
cence and one for color imaging. This restricts the use of these devices
to IR dyes.

2.2.1.2 Temporal splitting

reflectance fluorescenceA B

Figure 2.4: Combination of fluorescence and color imaging using temporal
multiplexing. The same color sensor records fluorescence and
color images in an alternating sequence. A) Photography of an
exemplary setup for a rigid laparoscope showing the light guide,
the coupling element, the optical filter and the digital camera.
Adapted with permission from ref [84], OSA. B) Intraoperative
reflectance color image and corresponding fluorescence images
showing nerves of a rodent. The red arrow points at the brachial
nerve, the yellow arrow points at the phrenic nerve. The bar on
the right side corresponds to 1 mm. Adapted with permission
from ref [84], OSA.

Recording fluorescence and reflectance images at the same wave-
lengths is not feasible at the same time. Thus, they are often recorded
at different time points. For example, the fluorescent dye PPIX emits
in the red spectral region between 600 nm and 700 nm. Classical surgi-
cal microscopes which are dedicated to PPIX imaging can be switched
manually between a fluorescent mode and a color reflectance mode.

Gray et al. present a laparoscopic system which is able to record flu-
orescence and reflectance images with a single camera in the visible
range at 15 fps [84]. The system switches the broadband color illumi-
nation and the laser fluorescence excitation on and off every second
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frame. A photograph of the laparoscope and example images from
preclinical experiments are shown in Figure 2.4.

Novadaq has filed a patent application with an approach in which
the fluorescence excitation and only the red color illumination are
switched on and off in every second image to record reflectance and
fluorescence images with only one sensor [85]. The red and green
illumination are constantly kept on. This results in a higher framerate
for the color information of the blue and green channel than for the
red one.

In open surgery, the fluorescence images may be contaminated
by ambient light and the surgical illumination, unless that light is
also triggered. Time multiplexing can help in this scenario to correct
the fluorescence images for signal from ambient light. Sexton et al.
present a system with modulated excitation light and a modulated
gain an intensified CCD (ICCD) to eliminate ambient light for detec-
tion of PPIX [66]. Similarly, Zhu et al. also use modulated excitation
and an ICCD to detect red fluorescent protein in preclinical experi-
ments [86].

A very compact sensor design to detect ICG has been presented
by Chen et al. [87]. The prototype system uses acquisition in multi-
ple phases combined with a sensor with 4 different pixels: red, green,
blue and IR to record color images, fluorescence of ICG and allow
continuous surgical illumination. On the one hand, this allows to
combine fluorescence and color imaging in one single sensor. But the
sensitivity of the system is limited compared to monochrome fluores-
cence imaging systems. Additionally, fluorescence excitation is only
used when recording every second frame to be able to eliminate the
effect of surgical illumination.

All in all, temporal multiplexing allows to combine fluorescence
and color imaging in the same spectral region. The presented sys-
tems show the high potential of this technique. But the emission fil-
ters need to be placed in the optical path and thus the fluorescent
dye needs to be fixed in advance. Also, either expensive ICCDs are
necessary or the framerate is reduced by temporal multiplexing.

2.2.2 Multispectral imaging in medicine

Numerous efforts to combine multispectral imaging with biomedical
applications have been published. In comparison with the previous
chapter, which focused on progress to combine intra-operative fluo-
rescence and color imaging, this section is dedicated to progress in
the filed of multispectral imaging.

This chapter selects the most relevant references and summarizes
the related work structured by technology.

For each technology, the publication which covers best multispec-
tral fluorescence and reflectance imaging is selected with highest
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priority. Publications presenting multispectral fluorescence imaging
have second priority and publications which only refer to multispec-
tral reflectance imaging have lower priority in this section.

First, snapshot systems which record a complete multispectral im-
age in one single acquisition are presented. Second, technologies are
presented recording a complete spatial image at a time and sequen-
tially recording the spectral information. Third, approaches to record
the entire spectral information of a location simultaneously and to
scan spatially are summarized.

A review of the current state of the art has been published in liter-
ature, for example by Lu et al. or Calin et al. [73, 88].

2.2.2.1 Snapshot hyperspectral imaging systems

During the last decade, snapshot hyperspectral imaging systems (HSI)
which allow to record a complete hyperspectral data cube in one sin-
gle acquisition became increasingly popular.

Numerous techniques to record the data have been established and
will be discussed in detail in literature [72]. Here, an overview over
realized setups in biomedical applications is given. The different ap-
proaches are grouped by acquisition technique.

Image mapping spectrometer

A B

Figure 2.5: Schematic drawing explaining the functionality of an image map-
ping spectrometer. A) The original image is split on a pixel level
and rearranged on the sensor. In the illustration, the individual
parts correspond to one pixel row in x direction. The pixel order
is maintained in x direction, whereas the different rows are rear-
ranged in y direction to make space to obtain spectral informa-
tion. The light of each row is into its spectral components using a
dispersive element. The image needs to be mapped electronically
to its original composition. Adapted version reproduced from
Robert T. Kester, Noah Bedard, Liang S. Gao, Tomasz S. Tkaczyk,
"Real-time snapshot hyperspectral imaging endoscope," Journal
of Biomedical Optics 16(5), (2011). B) One possible element to
split the image is a slicer mirror in an image plane splitting the
different rows. Adapted version reproduced from Nathan Hagen
and Michael W. Kudenov. “Review of snapshot spectral imaging
technologies”. Optical Engineering 52.9 (2013).

One variant of snapshot HSI devices are image mapping spectrom-
eters, which typically record data sets with 10 to 40 spectral bands.
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In this technique, the image is split for example by placing a micro-
structured mirror in the image plane which relocates the location of
the pixels on the sensor as illustrated in Figure 2.5. An additional
dispersive element reveals the spectral components.

One example setup has been implemented by Gao et al. and Kester
et al. for fluorescence microscopy with a data cube size (x × y × λ)
of 285 · 285 · 60 ≈ 5MP [89, 90]. But the fluorescence images were
integrated for 1 s, which would be too long for intraoperative applica-
tions. Subsequently, the same technology was adapted to a fiberscope
[91], recording images at 5.1fps with a data cube size (x × y× λ) of
350× 350× 29 ≈ 3.5MP.

Lavagnio et al. also present an IMS adapted to a fluorescent micro-
scope [92]. The device records with a data cube size of (x× y× λ) of
320× 210× 60 ≈ 4MP.

All in all, IMS offers a high transmission efficiency and is therefore
suitable for fluorescence detection. Spectral and spatial resolution can
be selected as needed. However, the systems exhibit a big form factor
which is hard be miniaturize and the fabrication of micro-structured
elements poses a challenge.

Integral field spectroscopy

Figure 2.6: Schematic illustration of integral field spectroscopy. The object is
imaged using an objective lens onto an optical fiber bundle. Each
fiber corresponds to one single pixel in the final image. The fibers
are rearranged on the other side in a linear manner. This means
that the complete xy plane is stretched out in one dimension.
The light is spectrally split in the other spatial dimension and im-
aged using a monochromatic 2D detector array. Reprinted from
Nathan Hagen and Michael W. Kudenov. “Review of snapshot
spectral imaging technologies”. Optical Engineering 52.9 (2013).

Integral field spectroscopy (IFS) uses different techniques to rear-
range the pixels in the image and to obtain the spectral information,
for example fibers (IFS-F, illustrated in Figure 2.6), microlens arrays
(IMS-L) or micro-structured mirrors (IMS-M) [90].
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A multispectral snapshot fiberscope (IFS-F) was presented by Lim
et al. [93] for fluorescence and reflectance spectroscopy. The system
trades high spectral resolution for spatial resolution. The presented
spatial resolution is restricted by 100 pixels in total (10 · 10), limited
through the number of fibers in the bundle. Accordingly, the spectral
data is recorded in 756 spectral channels (from 400 nm to 1000 nm).

An IFS-L device adapted to a fluorescence microscope was pre-
sented by Dwight et al. [94]. It records hyperspectral images at a data
cube size of (x× y× λ) of 88× 88× 46 ≈ 0.35MP or 200× 200× 27 ≈
1MP at framerates above 1 fps.

My conclusion is that IFS is a promising technology which com-
bines high spectral resolution with good detection efficiency and is
therefore used for fluorescence detection. But spatial resolution is not
high enough for surgical microscopy or endoscopy.

Computed tomography imaging spectrometer

Figure 2.7: In computed tomography imaging spectroscopy, a Kinoform
grating is placed in an conjugated imaging space as key ele-
ment as depicted in the schematic. The resulting image, which is
recorded on the detector array consists of a superposition of spec-
tral and spatial information. The mathematical treatment which
is necessary untangle the combined information is equivalent to
the mathematical treatment of computed tomography. Reprinted
from Nathan Hagen and Michael W. Kudenov. “Review of snap-
shot spectral imaging technologies”. Optical Engineering 52.9
(2013).

Computed Tomography Imaging Spectrometers (CTIS) have a Ki-
noform grating dispenser placed in the aperture. It causes a mixed
detection of spatial and spectral information on the sensor as illus-
trated in Figure 2.7. The hyperspectral data cube needs to be recon-
structed with algorithms known from computer tomography.

Jonson et al. describe a fundus camera to determine oxygen satura-
tion by reflectance imaging [95]. A full hyperspectral data cube with
a size (x× y× λ) of 208× 208× 50 ≈ 0.35MP is recorded in ≈ 3 ms.
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In general, CTIS systems can be realized in a very compact form
which is ideal for surgical applications in which confined space is
a fundamental limitation. But they require complicated design and
fabrication of the dispenser element as well as complex image recon-
struction which potentially introduces artifacts.

Coded aperture snapshot imager

Coded Aperture Snapshot Imagers (CASSI) work like slit spectrome-
ters where the slit is replaced by a binary mask in the image aperture.
Subsequently, the image data needs to be reconstructed to obtain the
HSI data cube [72].

A CASSI system adapted to a fluorescent microscope was realized
by Cull et al. showing fluorescence detection in 31 bands ranging from
450 nm to 750 nm at a framerate of 15 fps [96].

The computational burden of reconstruction remains extensive which
poses a fundamental challenge on real-time systems.

Spectrally resolving detector arrays

Figure 2.8: Spectrally resolving detector arrays are the most common kind of
hyperspectral snapshot imaging as they are used in most conven-
tional RGB sensors on the market. In this technique, a spectral fil-
ter is placed on each pixels. The set of spectral filters are usually
arranged in a repeating pattern. Depending on the application,
the number of filters in the pattern can be adjusted. Processing
is required to interpolate for the missing spatio-spectral informa-
tion. Reprinted from Nathan Hagen and Michael W. Kudenov.
“Review of snapshot spectral imaging technologies”. Optical En-
gineering 52.9 (2013).

Spectrally Resolving Detector Arrays (SRDA) are well-known from
color imaging, in which a periodic pattern of red, green and blue
filters is placed on top of the individual sensor pixels. This concept
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can be generalized for a higher number of freely chosen filters as
displayed in Figure 2.8.

According to Kaluzny et al., a system to image the retina with a set
of 16 filters arranged in a periodic 4× 4 grid has been realized [97,
98]. The system records a hyperspectral video stream at ≈ 20 fps with
a data cube size (x× y× λ) of 512× 256× 16 ≈ 2MP.

Chen et al. present a system with only four spectral channels to
combine color and IR fluorescence imaging: red, green, blue and IR.
The setup combines high-quality color imaging with IR fluorescence
detection in a very compact way. But the spectral resolution and the
fluorescence detection efficiency are compromised in return [87].

In short, SRDA is very potent technology because the systems are
very compact and can be combined with any optical system. By con-
trast, the systems are very complicated to fabricate, favoring mass
production. The technique is also not very suitable for fluorescence
imaging because most of the light is blocked and the light does not
pass the filter perpendicularly. In any case, the recorded information
is spread over the hyperspectral space in a way which requires inter-
polation and thus may cause artifacts.

Multiaperture filter camera

Multiaperture field cameras use microlens arrays which each forms
an image. Each lens has its individual aperture with a filter placed in
front of it. An ultra-compact system to record 18 bands ranging from
the visible to NIR at an image size around 0.5 MP has been presented
[99] . The system was used to diagnose wound healing by multispec-
tral reflectance imaging [100]. It was subsequently adapted to a fun-
dus camera to determine the oxygen saturation of blood vessels in
the retina [101].

In my opinion, the compactness of the camera is impressive. But the
entrance aperture is divided between 18 individual imaging lenses,
which reduces the photon collection efficiency. Therefore, the reduced
sensitivity might be an obstacle for fluorescence imaging. Moreover,
the different images are not formed by a single imaging path. Specu-
lar reflections and scenarios in which the light intensity has a strong
dependence will cause artifacts.

Summary

Snapshot hyperspectral imaging is a very potent technology, which
will become more powerful in the future. The drawbacks are the op-
tically complicated and bulky setups, and the data handling. Still,
due to the high data rates, most setups do not run at 30 fps and so
far the concepts do not allow to simultaneously record fluorescence
and reflectance out of the box, but they can be used for either. If the
spectral bands are fine enough, a color image can be reconstructed.
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These systems have superior spectral resolution compared to micro-
filter Bayer sensors, but still lack of spatial and temporal resolution
and additionally struggle to unify color and fluorescence.

2.2.2.2 Spectral scanning systems

Recording a multispectral image data set sequentially by acquiring
one spectral channel at a time is the most widely used technique in
fluorescence microscopy. Consequently, such systems have also been
translated to clinical applications. This section is structured by scan-
ning techniques.

Filter wheels

A B

Figure 2.9: Filter wheels are the most popular in fluorescence microscopy
as size (and often speed) are not the primary concern. Different
spectral filters can be mechanically switched into the imaging
path to obtain spectrally distinct images. A) Schematic illustra-
tion and B) photography of the multispectral fluorescence colpo-
scope presented by Benavides et al.. The presented version use
one filter wheel to filter the excitation light as well as another
filter wheel to filter the emission. Adapted with permission from
ref [70], OSA.

The most simple and straightforward technique to sequentially record
images with varying spectral information is to place different filters
in front of the sensor using a filter wheel.

A series of papers using filters wheels for is published by a group
from Arizona centered around Rebecca Richards-Kortum [69–71, 102,
103]. filter wheels to scan both, excitation and emission wavelengths
for fluorescence imaging have been implemented and clinically tested.

A cost effective multispectral colposcope was developed to iden-
tify cervical neoplasia by autofluorescence diagnostics. Initial exper-
iments recorded the EEM of diseased and healthy tissue [69, 102].
Subsequent publications focus on minimizing the necessary spectral
information and on faster recording. Benavides et al. present a system,
displayed in Figure 2.9, which uses two different excitation lights and
a color sensor to record the emission at 2 fps [70]. Renkoski et al. ex-
cite autofluorescence at one wavelength and record fluorescence at 8
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different bands by switching filters in a clinical study with 50 patients
[71]. Color reflectance images are recorded using a red, green, blue
and IR filters. The system does not report a framerate but suggests
framerates around 1 fps.

The series of publications is very interesting for this work in two
perspectives: On the one hand, it demonstrates the path from initial
experiments in which the entire autofluorescence EEM is recorded
to identifying the important spectral bands for distinction between
benign and malignant tissue.

To summarize, all the approaches using filter wheels are far from
recording a complete multispectral image data set in video rate. Ad-
ditionally, the setups are bulky and not suitable for miniaturization.

Besides, the work on cervical neoplasia demonstrates how to find
the relevant wavelength bands for discrimination based on reduced
acquisition.

Liquid crystal tunable filters

Figure 2.10: Liquid cristal tunable filters (LCTF) are used to spectrally scan
the fluorescence emission light. A) Schematic illustration of a
modified surgical microscope. The modification of this micro-
scope is shown on the top right part of the schematic. An addi-
tional sensor in combination with an liquid crystal tunable filter
is used to capture multispectral fluorescence images. B) Hyper-
spectral fluorescence imaging element consisting of an imaging
lens, the LCTF and the sensor (left to right). C) Photography of
the hyperspectral surgical microscope. The modified elements
are shown on the right side. Reprinted with permission from
ref [64], OSA.

Liquid crystal tunable filters allow to spectrally filter light and con-
trol the band structure of the filter electronically. The disadvantage of
effect LCTF over interference bandpass filters is that they do not have
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a strong off band rejection ratio and the edges are not as steep. More-
over, the maximum transmission ratio of LCTSs is typically around
50% and they are sensitive to polarization. The advantage is the op-
tion to change the filter characteristics fast and electronically.

Multiple preclinical and experimental clinical devices have been
published [63, 104–106]. The resolution of the images depends on
the respective sensor placed behind the filter. Gebhart et al. present
a system for brain cancer identification. It records fluorescence and
reflectance multispectrally from 400 nm to 720 nm in steps of 5 nm.
Recording of an image requires 2 minutes. Another system to visu-
alize cancer vascularization has been presented by Sorg et al.. It also
allows to multispectrally detect reflectance and fluorescence images.

The system of Mitra et al. records multispectral fluorescence from
650 nm to 750 nm in 2 nm intervals. It is used for ICG fluorescence
imaging of the bile duct of a porcine model.

A group from Dartmouth College in Hannover has built a system
shown in Figure 2.10 to spectrally resolve intra-operative fluorescence
images for neurosurgical glioblastoma resections. The combination of
a liquid crystal tunable filter with a monochrome camera was used to
sequentially record the entire fluorescence emission spectrum of PPIX
intraoperatively with a spectral resolution of 3 nm in 2 to 8 seconds
[64, 107]. Additionally, the group has empirically developed a method
to convert the raw fluorescence intensity data to be more quantitative
and remove the dependence of absorption and scattering of the brain
tissue [107–109]. Fitting the spectral signature of PPIX to the data has
proven to show better results than conventional imaging and was able
to detect cancer tissue that would have been undetected in a clinical
scenario [107]. For spectral fitting, the quality of the results depends
on the model used for the fit. Using a χ2 goodness of fit test can help
to verify the quality of the fit and therefore make the method more
robust [110].

Overall, the presented systems and results are very promising. The
big advantage of the LCTF systems is the flexibility to select the
needed multiband filter structure. Compared to switching interfer-
ence filters these systems are a lot faster but do not yet allow to record
in real time.

Acousto optical tunable filters

Acousto optical tunable filters (AOTF) use acoustic ultrasound waves
in an optical crystal to realize wavelength dependent filters. As AOTFs
allow to switch wavelengths very quickly, numerous setups with such
devices have been implemented for clinical experiments [111–114].

Arnold et al. and Leitner et al. introduced an endoscopy system for
hyperspectral color reflectance imaging with fast switching rates. The
system shown in Figure 2.11 can either record a multispectral data
cube with a spatial size of 1MP and with 8 spectral bands at 5 fps or
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A B C

Figure 2.11: Acousto optical filters can be used to filter fluorescent light. A)
Acoustical actuators produce waves in an optical crystal. As
an effect, the density waves inside the crystal function as a
grating for incoming light. The light of a selected wavelength
can be split from the other wavelengths. Using this effect, the
AOTF can work as a filter. Reprinted from [111], © 2010 IEEE.
B) Spectral transmission curves for different acoustical waves.
Reprinted from [111], © 2010 IEEE. C) Photography of a setup
for hyperspectral fluorescence imaging with a surgical endo-
scope. Reprinted from [111], © 2010 IEEE.

with 51 spectral bands at 0.8 fps. The system performance is demon-
strated imaging clinical biopsies ex situ [111, 114].

Kong et al. and Martin et al. present a fiberscope system which re-
cords multispectral fluorescence and color images. The system is demon-
strated in preclinical experiments identifying skin cancer [112] and
muscle cancer [113]. The spectrum is recorded from 440 nm to 640 nm
in steps of 10 nm and results are displayed at 1 fps.

Both presented systems are the fastest of the spectral scanning sys-
tems. But still video-rate imaging has not been successfully realized
to my knowledge.

2.2.2.3 Spatial scanning systems

In contrary to spectral scanning systems, the spatial scanning sys-
tems record all spectral data simultaneously, but they form an image
by sequentially assessing different parts of the field of view. One big
advantage of this technique is that motion artifacts do not result in
spectral artifacts. First, a point scanning macroscopic imaging system
is introduced. Subsequently, parallelization approaches, named line
scanning are summarized. Finally, efforts to miniaturize a point scan-
ning device into an fiber endoscope are presented.

Point scanning

Constantinou et al. have presented the fourth generation of an ad-
vanced macroscopic imaging device using galvanometric mirrors to
scan medical samples point by point [115]. The device may record flu-
orescence images, reflection images, transmission images, differential
phase contrast images and hyperspectral images. All images can be
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recorded at resolutions as high as 385 MP for a field of view of 2.2 cm
× 7.0 cm (pixel width of 2 µm/pixel). In this view, recording an im-
age of an area of 1 cm cm with an integration time per pixel of 5 µs for
fluorescence images leads to a total recording time of 8 min and for
hyperspectral images with 200 µs/pixel to a appox. 80 min recording
time. The system is indeed a striking example for the versatility and
flexibility of point scanning systems. But the major drawback of the
system also becomes clear: the times are far off video rate.

Multispectral line scanning in medicine

A B

Figure 2.12: Hyperspectral imaging using line scanning: A) Schematic illus-
tration of a line scanning system. The sample is placed on a
translation stage. At each point in time, a hyperspectral image
of a line perpendicular to the translation movement is recoded
by the system. B) Hyperspectral data cube of a sample show-
ing the extracted spectrum of one single pixel. Reprint acknowl-
edgment for both subfigures: Adapted version reproduced from
Eivind L. P. Larsen, Lise L. Randeberg, Elisabeth Olstad, Olav A.
Haugen, Astrid Aksnes, and Lars O. Svaasand. “Hyperspectral
imaging of atherosclerotic plaques in vitro”. Journal of Biomed-
ical Optics 16.2 (2011).

To overcome the obstacle of low framerates, one option is to par-
allelize the recording in one spatial direction and always record all
the spectral data of one line at a time. The second spatial dimension
which is perpendicular to the recorded line needs to be scanned. This
technique, often referred to as push broom or line scanning, is widely
used in applications where a linear movement is anyways present. In-
tuitive examples are satellite observations of the earth or imaging
objects on a conveyor belt like diary products [116].

Larsen et al. presented a medical system scanning reflectance and
autofluorescence from 410 nm to 1000 nm in steps of 3.7 nm to char-
acterize arteriosclerotic lesions [117]. The system which is displayed
in Figure 2.12 may acquire up to 160 spectral bands at HD resolution,
but it requires as long as 30 s to record one complete data set. The
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investigated biopsy samples are placed on a translation stage and
moved under the system.

Khoobehi et al. introduced a system to image multispectral reflec-
tance images on a fundus camera [118, 119]. The multispectral cam-
era is mounted on a linear translation stage and moved to scan the
field of view. The covered spectral range covers 410 nm to 950 nm in
steps of 2.5 nm. But recording of 1024 px× 256∆λ× 100 lines requires
8 s.

Most line scanning systems use an entrance slit and a grating or
prism to split the light into its individual spectral contributions. In
contrast a system presented by Luthmann et al. uses a special 2D sen-
sor [120]. Numerous stripes of different bandpass filters are placed
on top of the sensor. Each line images a different location and a dif-
ferent spectral band. A complete image is created by moving either
the object or the camera in one direction. The system was able to un-
mix phantoms containing 7 fluorescent dyes with emission in the red
and near infrared spectral range. Preclinical experiments allowed to
discriminate between 4 different fluorescent dyes (ranging from the
red to near infrared) in vivo. But the system is reported to require 4

minutes to record a complete multispectral image. Thus, the technol-
ogy is not suitable for video-rate fluorescence imaging. Each of the
bandpass filters rejects the majority of the incident photons. Motion
during integration will lead to both, spectral and spatial artifacts. My
conclusion is that the results and experiments look very promising,
but the technology is unfortunately not fast and efficient enough for
video-rate fluorescence imaging. Additionally, the detection principle
has a very low detection photon collection efficiency.

The presented publications show the potential of line scanning de-
vices. They may record multispectral data cubes at high spatial and
spectral resolution and superb accuracy. But at the same time, they
also show the major drawback: the integration time for one single
image is in the order of seconds to minutes and thus far too long.

Rotating fiber endoscopy

Lee et al. present a point scanning endoscope with only 1 mm diam-
eter which runs at 30 fps video-rate [121]. Piezo actuators move the
single illumination fiber at high frequency so that it illuminates the
object field in a spiral pattern as illustrated in Figure 2.13. The light
to be detected is either collected by the same fiber or from a bun-
dle of fibers which are placed around the central illumination fiber.
Therefore, detection aperture of these devices is very small, particu-
larly if the object is far away from the fiber tip. The resolution is still
below 1 MP, but the technology has shown primosing results espe-
cially for applications with require ultra-small endoscopes. Example
images are displayed in Figure 2.14.
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Figure 2.13: Rotating fiber endoscopy technology: The endoscope records all
the spectral information of one single pixel at the same time us-
ing a rotating fiber. The fiber is spatially translated by piezo ac-
tuators located at the tip of the endoscope to sequentially scan
the field of view in a spiral pattern. The right side magnifies
the key elements: the mounting collar with the piezo actuators
and the illumination optical fiber. The technique allows to pro-
duce very compact endoscopes. Figure reproduced from [121]:
Cameron M. Lee, Christoph J. Engelbrecht, Timothy D. Soper,
Fritjof Helmchen, and Eric J. Seibel: Scanning fiber endoscopy
with highly flexible, 1 mm catheterscopes for wide-field, full-
color imaging. Journal of Biophotonics. 2010. 3. 385-407. Copy-
right Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced with
permission.

Figure 2.14: Rotating scanning fiber endoscopy (SFE): Comparison between
the scanning fiber endoscope and a conventional bronchoscope.
The left part compares the size of the convetional brochoscope
with 6 mm diameter with the novel SFE. The images on the right
showcase porcine airways and compare images recorded with
the conventional broonchoscope (top) and the SFE (bottom). Fig-
ure reproduced from [121]: Cameron M. Lee, Christoph J. Engel-
brecht, Timothy D. Soper, Fritjof Helmchen, and Eric J. Seibel:
Scanning fiber endoscopy with highly flexible, 1 mm catheter-
scopes for wide-field, full-color imaging. Journal of Biophoton-
ics. 2010. 3. 385-407. Copyright Wiley-VCH Verlag GmbH & Co.
KGaA. Reproduced with permission.

2.2.3 Limitations of current technologies

All technologies which are known so far struggle to combine all three
aspects which are crucial for fluorescence guided surgery:
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1. Simultaneous acquisition of fluorescence and reflectance images
over the entire visible and near infrared range.

2. Multispectral acquisition of the fluorescence data to be able to
image multiple dyes.

3. Video-rate acquisition to allow a fluent perception for the sur-
geon and a seamless integration in the medical work-flow.

In the previous section various devices and technologies have been
presented. Here, the shortcomings of these devices are shortly sum-
marized.

Combined fluorescence and reflectance imaging

First-generation fluorescence surgery systems showed a very poor
combination of fluorescence and color imaging. The surgeon needed
to switch between the two modes pushing a pedal and memorizing
the information visible in the other mode.

More recent advances allow to record both, fluorescence and re-
flectance to combine the information. But this is usually achieved by
dividing the spectral range into one part for fluorescence and another
part for color imaging.

Other systems record fluorescence and reflectance in the two sub-
sequent temporal phases using alternating illumination. But in this
case, there is usually a lack of multispectral image acquisition limit-
ing separation between different dyes.

Multispectral acquisition

Current clinically used systems are restricted to image one fluores-
cent dye at a time, as multi-dye applications are to be translated to
clinical practice. But using multiple dyes at the same time promises a
better outcome.

Prototype systems for clinical research with the ability to record
multiple dyes and to differentiate between them have been presented.
But these systems usually do not run at video-rate and also lack of
the ability to combine fluorescence and color imaging.

Video rate imaging

The clear majority of devices in the field recording multispectral fluo-
rescence images cannot run at video rate. But the possibility to visual-
ize and record at video rate is crucial for intraoperative applications
and an easy integration into the clinical work-flow. Therefore, this
point is emphasized here as it limits the applicability for some of
the available technologies. For example, endoscopic setups running
at video rate are unlikely to be realized by switching filters with me-
chanical filter wheels. In contrast, novel sensors with faster readout
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may easily allow video-rate acquisition for snapshot hyperspectral
imaging in future. Still those technologies do not fulfill all other re-
quirements.

Therefore, a novel imaging method for fluorescence guided surgery
running at video-rate is developed in this thesis. The method is intro-
duced in Chapter 4 after analyzing the requirements in Chapter 3.

2.3 relevance of the field

Cancer is the worldwide dominant cause of death among noncommu-
nicable diseases with estimated 8 million deaths in 2012 and around
14 million new cancer cases [1]. This means that worldwide about 2

out of 1000 people were affected per year by a new cancer (world
population 2012 estimated to be 7.06 billion).

Treating and potentially curing cancer can be done by surgery, ra-
diotherapy and chemotherapy or a combination of these means. Gen-
erally, accurate cancer margin delineation is beneficial for the out-
come of surgical cancer resection.

Fluorescence guided surgery has the potential to provide the sur-
geons with a tool which may help to differentiate cancer tissue from
other tissue even if distinction with conventional color vision was nor-
mally impossible. Therefore, it is important to establish fluorescence
guided surgery as a standard tool for improved cancer resection. A
novel imaging method may directly improve many different types of
surgery as it can be adapted to the respective needs.

For this reason alone, it is worth to develop novel imaging methods
for fluorescence guided surgery. Ongoing developments in the field of
fluorescent contrast agents which exploit specific targeting strategies
underline this urge.

But fluorescence guided surgery can also provide diagnostic infor-
mation for other types of surgeries. It can for example be used for
retinal or cardiovascular angiography or simply to check the perfu-
sion of tissue during surgery.

This need for research on novel methods is also reflected by the
increase in number of publications containing the key words ’fluo-
rescence guided surgery’ (search in PubMed central) during the last
decades. The number of publications increased from a few annually
until the year 2000 up to 165 publications in 2016 (time line shown in
Figure 2.15A).

2.4 theory of color vision and imaging

Color vision and perception

For human vision, the image is captured by light sensitive cells in
the retina. Two different types of neural cells are known to convert
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Figure 2.15: Publication trend and sensitivities of the human eye: A) Num-
ber of publications for the search term ’fluorescence guided
surgery’ on PubMed. B) CIE 2 degree rgb color matching func-
tions resemble the spectral perception of the primary colors �
red, � green and � blue. C) Stockman and Sharpe 2 degree
cone fundamentals reflect the wavelength dependent sensitiv-
ity of the � long, � medium and � short cones in the retina
(data by the University College London). D) CIE 2 degree xyz
color matching functions with the� x,� y and� z chromaticity
coordinates (data provided by the University College London).

photons in neuronal output: rods and cones. The rods are more sensi-
tive than cones but cannot resolve color. In contrast, cones exist with
three different spectral sensitivities and can therefore capture spectral
differences of the incoming light. Figure 2.15C shows the spectral sen-
sitivities of the small, medium and long cones. The neuronal signals
are already being processed in the retina. The final visual perception
is formed in the visual cortex of the brain. Thus, color perception
depends strongly on the processing which takes place after the sensa-
tion by photo receptors.

To create a mathematical model for color representation, the theory
of three primary colors was created. Accordingly, all colors can be
represented as a mixture of red, green and blue light. To determine
the relative contribution of the red, green and blue light to match a
color of monochromatic light, experiments have been conducted. In
these experiments monochromatic light was shine onto a screen. Next
to the monochromatic spot a spot of three mixed monochrome lights
(red, green and blue) is placed and observers are asked to adjust the
relative intensity of the red, green and blue light to match the color
the monochromatic beam. This was done for different wavelengths of
the monochrome light. The resulting relative intensities r, g and b are
shown in Figure 2.15B. Between 450 nm and 550 nm the intensity of
the red color is negative. This means that some intensity of the red
light needs to be shined to the monochrome spot to make it possible
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to match the color of the two spots. The r, g and b curves represent
the relative perceptual spectral sensitivity of the three channels in the
trichromatic model. But a sensor with a negative sensitivity is very
hard to realize.

To solve this issue, the CIE proposed in 1931 so-called 2 degree
color matching functions x, y and z. These color matching functions
are linear combinations of the functions r, g and b and are positive for
all wavelengths. The associated color space CIEXYZ has proven to be
a versatile standard for color imaging. If the color sensitivities of cur-
rent sensors are linear combinations of the color matching functions
x, y and z, the measured signals can also be transformed linearly
into the CIEXYZ color space. From there, transformations into vari-
ous available color spaces are defined and implemented.

Color spaces

All in all, numerous color spaces are used and have been historically
developed. The scientifically most basic color space is the CIEXYZ
color space based on the color matching functions x, y and z. Most
modern color spaces have been developed for a specific application.
They represent a specific color in a different coordinate system. But
some colors may only be present in some color spaces which means
that they may just partially overlap. For example, the standard RGB
(sRGB) color space is optimized to represent signals for projection
on a screen, the CMYK color space is designed for printing and the
YCbCr color space is commonly used for digital imaging.

One color space which plays a special role for the color imaging
in this work is the CIE L*a*b* color space which was developed to
reflect human color perception homogeneously. This means that a
distance in color space should be proportional to the perceived color
distance. Therefore, most metrics to quantify color differences have
been developed in the CIE L*a*b* color space.

Quantifying color differences

In order to quantify the difference between two colors, different for-
mulas evolved historically. The most easy and straight forward method
is to simply calculate the Euclidean distance between the two colors
in an RGB space. But unfortunately, the metric does not quantify the
perceived color differences very well. The same color difference be-
tween two green tones might be perceived very differently compared
to the difference between two blue color tones.

This was first discussed by MacAdams in 1948 introducing the so-
called McAdams ellipses [122]. These ellipses characterize just per-
ceivable color differences at different locations in color space. In an
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ideally uniform color space these ellipses should be circles of the
same size, but in the real color spaces like CIE XYZ they are not.

Even though the CIE L*a*b* color space has been developed to be
uniform for human color perception the Euclidean distance ∆Ea*b*
does not perfectly predict the perceived color differences. Thus, in
CIE L*a*b* color space, the MacAdams ellipses are not circles.

In order to overcome this issue more experimental datasets have
been produced and evaluated. The developments eventually resulted
in the proposal of a improved color difference formula in 1995 by
the CIE: the CIEDE94 formula ∆E94. But research showed that the
formula could still be improved. Combining experimental data from
many experiments finally resulted in the currently recommended for-
mula CIEDE2000 ∆E00.

Also, the developed formula ∆E00 will not be the final answer to
quantify color differences as already several critical points have been
made in literature [123, pp. 52]. For example, the shape of curves with
constant ∆E00 is supposed to match the shape of MacAdams ellipses.
But for blue colors, the shape of the curves is not completely convex.
Another critical point is that ∆E00 was developed by combining many
different experimental data sets. The different experimental data sets
were not acquired under completely standardized conditions. And
color perception depends for example on the size of the color target,
the colors of the surrounding environment and on previous visual
stimuli.

Overall, CIEDE2000 is currently the most widespread metric in the
field and therefore used in this work.

2.5 theory of fluorescence imaging

Quantum mechanical description

Fluorescence describes a phenomenon in which a dye, typically a
molecule, absorbs light and subsequently emits light at a higher wave-
length. The Jablonski diagram shown in Figure 2.16A illustrates the
different electronic states of a molecule as well as the transition pro-
cesses excitation and emission.

For the theory of fluorescence excitation, the molecule is expected
to be in the electronic ground state S0. During excitation, the molecule
absorbs a photon and undergoes a transition from the electronic ground
state S0 an the excited state of S1. Usually, the initially excited state is
a higher vibrational state of the electronic state S1. From the higher
vibrational state, the molecule undergoes a transition (approximately
10−11 to 10−14 s) into the vibrational ground state of S1 by thermal
interaction with the environment. Alternatively, the molecule may
transit into a triplet state (not shown in Figure 2.16A), in which it
can undergo reactions causing to the destruction of the fluorescent
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Figure 2.16: A) Jablonski diagram of a fluorescent dye showing the energy
levels of the ground state S0 and the excited state S1 as well as
different vibrational states of S0 and S1. The transition between
S0 and a vibrational state of S1 (� excitation) is caused by ab-
sorption of a photon. The transition between S1 and a vibra-
tional state of S0 (� emission) is characterized by the emission
of a photon. B) Example fluorescence excitation and emission
spectra of a fluorophore. C) Basic fluorescence imaging setup,
including excitation light, excitation filter (F1), objective lens
(OL), object (sample), dichroic mirror (BS), emission filter (F2)
and a sensor (S).

molecule. Therefore, the probability for transition into a triplet state
should be minimal for the stability of a fluorescent dye.

During fluorescence emission, the dye undergoes a transition from
the excited electronic state S1 to the electronic ground state S0 and
emits a photon.

Due to the existence of higher vibrational states, the energy of the
absorbed photon is usually higher than the energy of the emitted
photon. Consequently, the spectrum of the emission light is shifted
towards higher wavelengths compared to the excitation light.

Fluorescent dyes can be characterized by their absorption spectrum,
excitation spectrum and emission spectrum.

The absorption spectrum measures the relative absorption of light
depending on the wavelength when shined onto the dye. In contrast
the excitation spectrum measures how much fluorescence is emitted
depending on the wavelength of the excitation light. These two quan-
tities are related but not equal, as the dye may for example be more
efficient to convert in emitting fluorescent light for some wavelengths
of excitation light than for others.

The emission spectrum quantifies the intensity of emitted fluores-
cent light depending on the wavelength of the light. To measure the
emission spectrum, the dye is usually excited at the excitation maxi-
mum.

In fluorescence spectroscopy, excitation and emission of a fluores-
cent dye are described by so-called excitation-emission matrices (EEM).
An EEM quantifies the relative intensity of the emitted light of a flu-
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orescent dye depending on both the excitation and emission wave-
length.

Fluorescence imaging

Fluorescence imaging is widely used for biomedical applications. The
biggest advantage of fluorescence imaging is that a fluorescent dye
emits light at a different wavelength region than the wavelength re-
gion of the excitation light. Thus, the excitation light can be blocked
by filters and only emission light remains to be imaged. This effect re-
sults in images where the fluorescent objects appear glowing on black
background. The images effectively represent the bio distribution of
dye molecules.

The full potential of fluorescence imaging can be exploited combin-
ing the fluorescent dyes with biological targeting strategies. Various
staining techniques exist to make structural or functional characteris-
tics visible. For example, the cell nucleus can be stained by one dye,
whereas the actin filaments and the micro-tubules of the cells can be
stained with other dyes. Undoubtedly, the ability to image the bio
distribution of molecules combined with the potency of staining tech-
niques which allow to bring the molecules to specific locations have
made fluorescence imaging a workhorse in biomedical research.

However, fluorescence imaging also comes along with some disad-
vantages. The most prominent disadvantage is the low light inten-
sity of the fluorescence emission compared to the excitation. Typical
emission intensities are 4 to 6 orders of magnitude smaller than the
respective excitation intensities. This requires expensive optical imag-
ing systems which capture as many photons as possible. Accordingly,
low SNR is often a limiting factor for fluorescence imaging applica-
tions.

Interaction of light with tissue can alter biomedical fluorescence
imaging. Typically, two dominant effects are regarded: absorption
and elastic scattering.

Various substances in tissue absorb light with different absorption
spectra. One of the most prominent examples is the absorption of
light by hemoglobin, which depends on the oxygenation state of the
hemoglobin. As a result, the spectrum of the excitation or emission
depend on the depth of the dye in tissue and the type of tissue. Ab-
sorption also limits the imaging depth in tissue typically to below
1 mm for UV light and to several mm for NIR light. Since absorption
changes the spectral shape of the excitation and the emission, it may
cause artifacts when separating different dyes or when quantifying
the signal.

Elastic scattering does not absorb energy of a photon but changes
the direction of propagation. For this reason, scattering in combina-
tion with tissue absorption influences the overall photon spectrum for
example in different tissue layers. Thus, the deeper a stained structure
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is in tissue, the more scattering events a photon will undergo on its
way to the sensor. Hence, the structures appear smoothened and the
light intensity in deeper layers is reduced, and the spectrum might be
shifted. In tissue, a scattering event is typically more likely than an
absorption event to take place.

Some molecules which are naturally present in tissue also fluoresce.
This type of fluorescence is called autofluorescence. In some imag-
ing applications autofluorescence plays and important role and the
autofluorescent dyes must be considered in the imaging scenario to
avoid unmixing artifacts. Though, in most applications autofluores-
cence is weaker than the fluorescence of specifically stained structures
with modern synthetic dyes.

Image processing

The recorded multispectral fluorescence images need to be processed
and statistically evaluated. In this work, linear unmixing is used to
convert the multispectral fluorescence data sets into fluorescent com-
ponent images reflecting the individual dye contributions. This re-
quires knowledge of the spectral signatures of the fluorescent dyes,
which are obtained by spectral fitting of image data of phantoms con-
taining pure dyes.

A detailed mathematical description of the mixing, unmixing, pa-
rameter estimation, fitting of spectral signatures and a theory of im-
age noise can be found in Section A.1.





3
D E S I G N R E Q U I R E M E N T S A N D T E C H N O L O G Y
C O N S I D E R AT I O N S

This chapter is dedicated to answer the question what would be the
ideal imaging system for fluorescence guided surgery. The title “Real-
time multispectral fluorescence and reflectance imaging for intraop-
erative applications” suggests that the system must fulfill four basic
criteria: First, it must be real-time with respect to human perception
so that the surgeon can use it for the surgical procedure. Second, it
is required to image fluorescence multispectrally so that multiple dyes
can be imaged simultaneously. Third, accurate color images must be
recorded in parallel to the fluorescence images. And fourth, the sys-
tem is required to integrate well within the clinical routines so that it
supports the surgeon and does not hinder him.

The previous Chapter 2 has summarized recent technological de-
velopments for multispectral fluorescence acquisition with a focus on
related work in the field of fluorescence guided surgery in Section 2.2.
The review of related work revealed that none of the devices is suit-
able to match all the requirements listed above. Consequently, a new
system is derived in Chapter 3 and Chapter 4 to match all require-
ments.

This chapter first analyzes all the requirements which are put on
the system to be developed and translates the requirements into tech-
nical specifications in Section 3.1. Subsequently, in Section 3.2, dif-
ferent available multispectral imaging technologies are evaluated in
detail and considered to be incorporated in the system. The most
suitable combination of technologies is selected in Section 3.3 to sub-
sequently develop a system concept in Chapter 4.

3.1 design requirements

This section analyses the performance requirements of the system re-
garding fluorescence detection, color imaging quality, framerate, op-
tical aspects like resolution and finally clinical considerations such as
available space and compatibility with room lights.

3.1.1 Fluorescence imaging

This section reasons in detail why specific requirements are put on
the system with respect to fluorescence imaging. These are split into
a part discussing the spectral detection range to be covered, the ne-
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cessity to detect multiple fluorophores in parallel, the required sensi-
tivity and finally aspects related to quantification.

Spectral detection range

The key feature of the system is multispectral fluorescence detection
over the entire visible and near infrared range from 400 nm to 900 nm.

Four fluorescent dyes are currently in clinical use: Protoporphyrin
IX (PPIX), fluorescein, methylene blue (MB) and indocyanine green
(ICG) [18, 74]. A more detailed discussion on their clinical usage can
be found in Section 2.1.1. Their emission spans over the entire vis-
ible and near infrared range. Fluorescein emits in the green around
500 nm, PPIX and MB emit between 600 nm and 700 nm, whereas ICG
emits in the IR above 800 nm. Alternatively, endogenous fluorescent
dyes, produced by the cells, can be imaged. Some of the most promi-
nent autoflurescent dyes are Melanin (emission 500 nm – 700 nm) and
NADH (emission 400 nm – 600 nm).

Imaging in the IR offers higher penetration depth because of less
tissue absorption and thus better diagnostic opportunities. In the blue
visible range, 1 mm of blood or tissue is sufficient to block all fluores-
cence. The literature envisions additional IR windows for intraopera-
tive fluorescence imaging in future: the first emits closest to the visible
between 650 nm and 800 nm, the second dye, for example ICG emits
between 800 nm and 900 nm while a third dye emits further in the IR
above 1000 nm [18, 31, 124].

All in all, the system is required to image any of the currently clini-
cally available dyes emitting in between 400 nm and 900 nm. As dyes
for the proposed second IR window between 1000 nm and 1400 nm
are not close to any clinical application, this window will not be con-
sidered for imaging in this project [18, 124].

Multispectral detection

One of the key features of the system is to image multiple fluorescent
dyes simultaneously. The benefit of imaging multiple dyes has been
shown in various clinical and preclinical studies.

One of the most intuitive applications labels different tissue types
with different agents to distinguish for example between nerve tissue
and cancerous tissue [21, 23].

Alternatively, the diagnostic information for a single tissue type
can be improved combining the information of multiple dyes. In med-
ical applications, the targeted agents also show a non-cancer specific
uptake. Tichauer et al. developed a method to improve the signal to
background ratio combining the information of a targeted agent with
an untargeted agent [24, 125].

Valdes et al. developed a method to quantify PPIX fluorescence
during glioblastoma resection and presented a clinical example in
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which residual cancer could not be seen with conventional fluores-
cence imaging, but it was identified by multispectral imaging separat-
ing the cancer PPIX fluorescence signal from autofluorescence [107].
Montcel et al. even suggest that different photochemical states of PPIX
and autofluorescence can be detected individually by multispectral
imaging. The different photochemical states may allow to draw diag-
nostic conclusions about the status of the cancer cells [45].

Most of the listed examples image two dyes only. Though, it is
very likely that in future more dyes will be used in clinical scenar-
ios. Therefore, the minimum number of fluorophores that the sys-
tem needs to image and unmix simultaneously is set to three for this
work.

Unmixing artifacts

To convert the recorded multispectral fluorescence images into flu-
orescent component images corresponding to relevant clinical infor-
mation, a mathematical calculation is necessary. In this work linear
unmixing as the most wide-spread algorithm is used. Though, it re-
quires to calibrate the spectral signatures of the individual fluorescent
component signatures. In biomedical imaging scenarios the recorded
multispectral signal of a pure dye may deviate from the calibrated sig-
nal due to ambient light, tissue absorption or molecular interactions
of the dye. Such a change in the detected signal leads to unmixing
artifacts. The algorithm will always provide unmixed component im-
ages, but the contained information may be falsified by the artifacts.

In the field of fluorescence microscopy, this problem is often ap-
proached by finding the spectral signatures from the recorded in-
formation of the image itself. Such approaches include non-negative
matrix factorization NMF [126], spectral phasor analysis [127], paral-
lel factorization PARAFAC [128] or independent component analysis
ICA [129]. Most of these approaches put prerequisites like knowledge
about pure dye signal for some pixels on the imaging scenario. How-
ever, the biggest issue for intraoperative applications is that the algo-
rithms may produce wrong results. So, it cannot be guaranteed that
the algorithm always detects for example nerve and tissue and clas-
sifies it correctly. Thus, these techniques were not considered in this
work. Instead, the spectral signatures of the individual components
are pre-calibrated.

As unmixing artifacts may well be present in the images which
are to be presented to the surgeon, a diagnostic method needs to be
developed to judge on the quality of the unmixed information. This
diagnostic is best calculated on basis of a single image and does not
require extensive statistical evaluation of multiple images so that the
diagnostics can also run at video rate.
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Number of detection channels

Unmixing multiple fluorescent dyes requires multispectral or hyper-
spectral detection. In order to unmix three fluorescent dyes, at least
three channels are mathematically necessary if no further assump-
tions are available. Additional detection channels can improve the
separation between different dyes in channel space and therefore im-
prove the SNR after unmixing. Also, additional channels can make
the imaging scenario more robust against numerous inferring sig-
nals which are often present in biomedical scenarios. Neher et al. have
shown for a few examples that the SNR of the unmixed fluorescent
components improves when increasing number of well-chosen chan-
nels [130]. However, for their example of three dyes, the improvement
was well observable up to 6 or 8 channels, but additional channels
then only caused minimal improvement. Even though their work just
treats some special cases it makes an important point: unmixing three
fluorescent dyes does not necessarily require recording a high num-
ber of channels ranging over the entire spectrum.

Detection limit

The detection limit is the lowest concentration of a fluorescent dye
which can be imaged with a system. However, the limit depends on
many factors besides concentration. The excitation and emission spec-
tra of the dye need to match with the spectral shape of the excitation
light and the spectral system sensitivity. Additionally, the quantum
yield influences the emission intensity. However, the detection limit
is also influenced by tissue optical properties. Absorption and scat-
tering of light in tissue reduces the number of photons and thus the
lowest detection limit is higher for a labeled structure which is deeper
inside tissue.

Overall, a typical dye concentration for a clinical scenario is fixed
here as design requirement so that the system can reasonably perform
in medical experiments.

Molecular concentrations of fluorescent dyes differ over orders of
magnitude for different clinical applications. The highest concentra-
tions in a clinical application can be found for ICG bolus injections
which are as high as 1 mm [74]. For targeted molecular fluorescence
imaging scenarios, concentrations are lowest, because the dye is left
in the body to circulate and bind to the tissue of interest whereas it
is washed out from the surrounding tissue. Therefore, the concentra-
tions for tracer applications are supposed to range roughly between
1 nm and 1 µm [74].

Typical concentrations for current clinical applications range in be-
tween these two extreme scenarios. For example, concentrations of
the clinically used fluorescent dye PPIX in cancer tissue for neurolog-
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ical glioma resection are reported to range between approx. 350 nm

and 10 µm [107].
The requirements for the system are set to detect realistic intraop-

erative concentrations which is in the center of the clinically available
concentration range. It is not necessary to tune the system directly
for maximum sensitivity and thus for very low concentrations. Thus,
the system is required to image multiple dyes each with a concentra-
tion below 10 µm. As a result, the final system will be evaluated using
phantoms with fluorescent dye concentrations in the range of 1 µm to
10 µm. Future developments can further improve system sensitivity,
for example by modifying the filter bandpass structure, the optical
efficiency or increasing the excitation intensity.

Spatial resolution

In clinical practice, volumetric 3D imaging techniques such as mag-
netic resonance imaging or computed tomography are well-established.
Alternatively, surface based video-rate 2D imaging is used for exam-
ple in endoscopy or surgical microscopy. This work aims to enhance
2D surface image data with fluorescence information but not to open
an additional imaging dimension.

Fluorescence microscopy allows 3 dimensional imaging of micro-
scopic or even small macroscopic structures with an extend in the
range of mm [131]. However, recording 3D fluorescence images at
video rate for objects with the dimension of several cm as required
for intraoperative imaging is not possible. Therefore, fluorescence im-
ages are only used as 2D surface images in this work.

However, light is not completely reflected from the first layer of tis-
sue and thus the surface images contain also some information from
deeper tissue layers. The behavior of light in tissue mainly depends
on the scattering and absorption properties of the tissue. In general,
the intensity drops to 1/ exp (approx. 37%) after 50 µm to 100 µm for
UV light, after 100 µm to 500 µm for green light and after 1 mm to
3 µm for IR light [42]. This results in an roughly estimated imaging
depth of 1 mm for blue light, 1.5 mm for green light, 3 mm for red
light and up to 1 cm for IR light [132]. Fluorescence of a dye in the
NIR can be imaged deeper in tissue than a dye in the blue. One of the
main causes for this effect is the absorption of hemoglobin.

Scattering of light penetrating into tissue also influences the spatial
resolution at which different objects can be resolved. In the VIS/NIR
range, the scattering coefficient of tissue is generally higher than the
absorption coefficient. If a photon is scattered it changes the direction
resulting in diffuse images of a sharp object under a scattering layer.
The deeper an object is placed in tissue, the more scattering events
the light undergoes on its way and thus the more the image will be
blurred.
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Sub-millimeter resolution is desirable for fluorescence imaging to
distinguish between different structures. Optical resolutions in the
scale of micrometers is not necessary for fluorescence diagnosis be-
cause the detected fluorescence information is blurred by scattering
of light in tissue. The extend of blurring depends on the wavelength
and the tissue. For the system, the optical resolution required by re-
flectance color imaging is higher than the resolution needed for fluo-
rescence imaging and will be presented in Section 3.1.5.

Quantification

The ability to absolutely quantify fluorescent dye concentrations in
situ adds diagnostic information as the field moves to specific molec-
ular staining [74, 132]. Therefore, future systems are required to pro-
vide some sort of specific measure to quantify in situ.

Absolute quantification is based on many factors: excitation illu-
mination, optical detection efficiency, geometrical arrangement of the
tissue relative to the imaging device, object distance from the imaging
device, wavelength dependent tissue scattering and absorption prop-
erties, wavelength dependent sensitivity of the sensor and optical sys-
tem and the depth of the fluorescent tissue in other surrounding tis-
sue just to name the most important factors. Therefore, it is extremely
complicated to report absolute fluorescent dye concentrations in situ.
Current commercial systems do not yet provide this ability, but dif-
ferent approaches have been published: Multiple tracers can be used
for quantification using the relative intensities and pharmacokineti-
cal models [74, 125, 133]. An alternative approach uses multispectral
detection and corrects for tissue absorption and scattering of brain
tissue in PPIX guided glioblastoma resection [107].

These approaches require and extensive effort to report absolute
concentrations or intensities instead of relative ones for a specified
device and application. Substantial research is required to develop
and validate quantification concepts.

In this work, the focus was not put onto the ability to absolutely
quantify fluorescence concentrations, even though it is an important
aspect. No quantification concept is yet available to cover all the po-
tential usages of the system. However, future research to develop
quantification concepts with the system for specific applications is
of high clinical relevance.

3.1.2 Color imaging

The perceived color of an object mainly depends on the reflectivity
spectrum of the object and the illuminant spectrum. Additionally,
psycho-physiological effects which depend on the observer influence
color perception in human vision.
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Intraoperative imaging systems are required to accurately repre-
sent colors as they appear to the surgeon under normal lighting con-
ditions. As additional psycho-physiological effects depend on the in-
dividual observer, they are not considered in this work. To match the
colors closely, first the normal lightning conditions need to be spec-
ified and second a metric to quantify color differences needs to be
selected.

Daylight is the most basic illumination at which colors are usually
observed. The quality of artificial white light sources is evaluated
with the color rendering index which measures how well the color
reproduction of a set of colors matches the impression under daylight.
Therefore, the color reproduction of the system needs to match colors
under CIE D65 daylight as well as possible.

Various metrics have been developed during the last decade to
quantify the difference between two colors. In this work the color
difference metric CIEDE2000 ∆E00 is selected as it quantifies percep-
tual differences well. Color differences smaller than ∆E00 = 0.5 are
hardly perceivable, up to ∆E00 = 1.5, the differences are slightly per-
ceivable. Above ∆E00 = 1.5, the color differences are noticeable [134].
As color differences should not be noticeable for a surgical system,
the average ∆E00 is required to be smaller than ∆E00 = 1.5.

3.1.3 Framerate and delay

This section summarizes the established knowledge about timing for
the interaction between humans and video input and specifies re-
quirements for an intra-operative system.

The title of this thesis names the real-time aspect and puts emphasis
on its importance. Usually, real-time is defined in the context of a
closed loop system. In this work, the multispectral imaging system
and the surgeon together form the closed loop.

Digital imaging systems have two different timing aspects which in-
fluence the performance: framerate fsystem and delay time tdelay. The
framerate describes how many images are recorded per second while
the delay time (also called latency) characterizes how much time
passes between an event and the display of that event on the screen.
Both are equally important for the overall system performance.

The framerate is fundamentally limited by the integration time of
the system, while the delay time is limited by the framerate, but can
also be higher:

tintegration ≤
1

fsystem
≤ tdelay

Various studies investigated the effect of framerate and latency on
the user perception and the performance to work with the system
[135–144].
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The first question to ask is at what framerate a video stream of
images is perceived to be satisfyingly fluent. The answer depends on
the scene to be recorded.

Claypool et al. tested both, performance and perception of players
in video games for different framerates [140]. Perception clearly im-
proved with increasing framerate up to 30 frames per second. Accord-
ingly, the performance also improved with higher framerates, even
when increasing the framerate from 30 fps to 60 fps. So between 30 fps
and 60 fps the improvement in perception is not as big as the improve-
ment in performance. This means that even though a video stream
appears fluent, higher framerates supposedly help to further improve
the resulting performance. The study also showed that tasks which
require rapid and accurate response are more sensitive to framerate
compared to tasks that require less precision and slower responses.
Similarly, medical experiments revealed that tasks like suturing or
knot tying are more sensitive towards timing than others.

This finding is undermined by a study asking about what is the
minimum time for human vision to perceive a very quickly showed
image. Potter et al. [144] have shown that human vision can iden-
tify images displayed for only 13 ms in a stream of 12 images. So,
humans are able to perceive image information from such small inte-
gration times. Frame rates up to fsystem = 77 fps can thus be beneficial
even though the stream of images might be perceived fluent at lower
framerates.

The second question to answer is in what way system latency influ-
ences the perception of the surgeons and also their performance. This
is particularly important because the doctors are actively involved in
a surgical setup and not only passive observers. Therefore, various
authors have been investigating how system latency influences the
outcome of laparoscopic surgery or telesurgery. A good summary of
studies can be found in the study of Kamucu et al. [136]. Most of these
studies agree that high latency dramatically increases the time needed
for the intervention [136]. Additionally, more complicated tasks like
suturing could not be performed at higher latency times.

The time these studies report vary between a total delay of 60 ms
and several hundred milliseconds, depending on the setup and the
investigated tasks. The tested latency in these studies range from typ-
ically 100 ms up to around 1 s. Most studies agree that the lowest
delays with less than 100 ms allow to perform the tasks comparably
well while delays as high as 1 s are reported to be dangerous and
inefficient to perform surgery. However, the studies do report differ-
ent thresholds in between, because the studies have been designed
differently. One recent study even reports advantages for latencies as
low as 60 ms in combination with haptic feedback [143]. Addition-
ally, several papers report that doctors switch to a »move–and–wait«
approach from a certain delay on, depending on the task itself.
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Further research with more carefully designed studies taking into
account framerate, latency and training status of the test persons are
needed for conclusive results on the combined effect of latency and
framerate on surgical outcome.

In conclusion, an effective framerate of at least 30 fps and a total la-
tency of no more than time 160 ms (tdelay ≤ 160 ms) are important for
fluent perception. Optimally, the system should run with more than
77 fps and a latency below 60 ms. But since the best available research
is still fragmented and inconclusive, it is quite possible that future
research will show that even higher standards would be beneficial
for surgical scenarios, especially as most studies did not focus their
investigation on short times.

For this work, it is important to ensure that the developed concept
can fulfill even the optimal demands ( fsystem ≥ 77 fps; tdelay ≤ 60
ms). However, for the technical realization of a prototype system in this
work aims at fulfilling state-of-the-art requirements ( fsystem ≥ 30 fps;
tdelay ≤ 160 ms).

3.1.4 Clinical requirements

The intended use for the developed system concept is intra-operative
imaging and thus this work must also consider clinical aspects.

State-of-the-art operating theaters are equipped with a high num-
ber of devices mounted to carts on the floor or hanging from the
ceiling. Additionally, surgeons, assistants and nurses gather around
the patient. This leaves little space for additional clinical equipment.
Hanna et al. have reported that the placement of the monitor is rel-
evant for performance and required time for endoscopic surgeries
[145]. Therefore, it is important to make the imaging device small to
leave sufficient space to the surgeon and to allow flexible placement
of equipment such as monitors.

All in all, a small form factor is required for a final device. The pro-
totype must not yet fulfill this criterion, but the concept must allow
for miniaturization.

For intraoperative imaging in applications like glioblastoma resec-
tion the surgeon is working with surgical tools between the micro-
scope objective lens and the patient. Thus, a larger working distance
improves the usability of the system. Current state of the art surgical
microscopes allow a minimal working distance of 20 cm which can be
extended up to 60 cm [146, 147]. Modern clinical and preclinical ICG
imaging systems provide a working distance of 10 cm to 75 cm [74].
Thus, the required minimal working distance for the system is set to
10 cm, it should be 20 cm and can optimally be increased up to 75 cm.

The system must not only add medical benefit to the surgical out-
come but also integrate well into the clinical work-flow to succeed.
Every minute of surgery is estimated to cost between 40–50 Euro
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[148]. One publication by Busse claims a higher variation of reported
costs from 10 Euro – 120 Euro per minute [149] depending on author
motivation and calculation schematics. In any case, every minute of
surgery is extremely expensive and adding time must be reasoned
well also in terms of the economical perspective. Good clinical device
integration allows to speed up surgeries and therefore allows hospi-
tals to operate more economically. This would help to introduce a
novel concept into the market, additionally to the diagnostic benefit.

One of the major obstacles for a seamless integration of fluores-
cence imaging devices into the surgical procedure is the requirement
to switch off the room lights when imaging fluorescence to avoid
leakage of the room lights into the fluorescence detection [66, 74]. For
systems which only detect fluorescence in the IR, the spectrum can
be divided into the visible for color imaging and the IR for fluores-
cence imaging [74]. If the application requires fluorescence imaging
in the visible, such as PPIX guided resection of glioblastoma or blad-
der cell carcinomas, the spectrum cannot be split. Published concepts
to unify fluorescence and color imaging include pulsed illumination
with gated sensors or modulated sensors with a lock-in detection con-
cept [66, 86]. For this work it is important that the system concept can
be combined with surgical illumination.

3.1.5 Optical requirements

The first prototype system aims at macroscopic surgical imaging, which
is comparable to surgical microscopy. It should also be usable for
small animal imaging. Therefore, a the field of view (FOV) of at least
5 cm × 5 cm and sub-millimeter resolution is required. Endoscopic
surgeons are accustomed to strong vignetting on the edges of the
images in exchange for a larger field of view. Therefore, the field of
view is defined in this work as the area within 50% vignetting.

A major application of fluorescence guided imaging is cancer re-
section, in which it is essential for the surgeon to be able to see small
cancers and the cancer boundaries [15]. The optical resolution of the
imaging system is required to be at least as good as the visual resolu-
tion of a surgeon.

The optical performance of human vision at MTF = 0.5 is deter-
mined to be less than 10 lp/deg [150, 151]. This means that with hu-
man vision a maximum of 10 line pairs can be resolved within one
angular degree of the visual field of view (at reduced contrast of 0.5
reflected by the condition MTF = 0.5). With an estimated distance of
50 cm between the eye of the surgeon and the patient, this translates
into 1.15 lp/mm which is set as lower limit for the optical perfor-
mance of the system. A higher resolution would be desirable, but as
the focus of this work is on a proof of concept to unify multispectral
fluorescence imaging with color imaging, the requirements are kept
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reasonable at this point. In future, the optical system can be improved
independent of the detection concept.

A sensor size with high definition standard has been established
with 106 pixels (1 MP) as state-of-the-art for neurosurgical imaging
[146, 152, 153]. Thus, the minimum required sensor size for the sys-
tem is 1MP. Novel clinical systems even in endoscopic applications
allow to record video streams at 4K resolution (3840 px × 2160 px or
4096 px × 2160 px corresponding to more than 8 MP) [154, 155].

The technology will be translated to endoscopy in a second step.
Because miniaturization technically more challenging and not as flex-
ible during the development process, this task is left for a follow up
project and this work focuses on the method development.

Fluorescence detection calls for high photon collection efficiencies
to allow detection of small fluorescence signals. This translates into a
numerical aperture on the object side.

To summarize, the system requires a FOV ≥ 5 cm× 5 cm, an optical
imaging resolution higher than 1.15 lp/mm at MTF = 0.5 and a
sensor pixel resolution of at least 1 MP.

3.1.6 Summary of the design requirements

The derived design requirements for an intra-operative imaging sys-
tem are summarized here:

fluorescence Multispectral fluorescence detection from 400 nm to
900 nm, unmixing of at least three fluorescence dyes at typical
clinical concentrations ranging between 1 µm and 10 µm.

Develop a diagnostic method which allows to judge on the qual-
ity of the unmixed fluorescence information on basis of an indi-
vidual image.

color imaging Good color reproduction, average difference be-
tween reproduced system colors after correction better than ∆E00 ≤
1.5 compared to the colors as perceived at CIE D65 daylight.

timing Imaging minimally at 30 fps, better at 60 fps with delays be-
low 160 ms, best less than 60 ms.

optics Field of view of FOV ≥ 5 cm× 5 cm (at 50% intensity drop
due to vignetting).

Submillimeter resolution with spatial frequencies≥ 1.15 lp/mm
at MTF = 0.5; Sensor pixel resolution must be at least 1MP, op-
timal resolution of 4K.

The numerical aperture should be as high as possible for high
photon collection efficiency of the system and thus good SNR.

clinical aspects The developed method aims at intraoperative
imaging, but the prototype is not dedicated to laboratory and
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preclinical experiments. Therefore, only the concept is required
to fulfill the clinical requirements.

Adaptability to clinical devices and procedures like surgical
microscopes and endoscopes. Potential for miniaturization for
chip on the tip endoscopes. Overlay of fluorescence and reflec-
tance images must be possible.

Concept must allow to integrate with room lights.

Free working distance must be at least 10 cm, should be 20 cm
and can optimally be extended up to 75 cm.

3.2 technology considerations : multispectral imaging

approaches
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Figure 3.1: Comparison of how different multispectral image acquisition
methods fill the hyperspectral image data cube. A) Snapshot hy-
perspectral imaging fills the entire cube in one acquisition. B)
Spatial scanning records all spectral channels in one acquisition
but needs to scan over the spatial coordinates (here a push broom
acquisition in x direction is shown) C) Emission spectral scan-
ning records the entire spatial image for one spectral band at a
time (here the acqusition of the red channel is displayed).

This section compares different approaches to record multispectral
fluorescence data. The core capacities of the system is to image multi-
ple fluorescent dyes simultaneously (see Section 3.1.1). This requires
multispectral imaging.

In hyperspectral imaging, the data recorded for each frame consists
of a complete three-dimensional data cube as shown in Figure 3.1A.
To combine fluorescence and reflectance imaging, each single frame
of the video stream needs to record a complete three-dimensional
hyperspectral data cube for color and fluorescence images separately.

In contrast, conventional camera sensors based on silicon detectors
can only detect light on a two-dimensional pixel array and thus spec-
tral information is lost in the recording.

Various suitable acquisition strategies can be found in literature to
record hyperspectral data cubes, each making compromises specific
to the technology. An overview of experimental systems based on
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these technologies is presented in Section 2.2. Five established meth-
ods are selected for further comparison compared:

1. spectral emission scanning

2. spatial scanning

3. snapshot hyperspectral imaging

4. excitation scanning

5. micro-structured color sensors.

Each of these five different methods is evaluated regarding color
imaging capabilities, real-time performance, multispectral acquisition
quality, detection efficiency, potential for miniaturization and robust-
ness to be used in a clinical scenario.

3.2.1 Spectral emission scanning

Spectral emission scanning records images of spectrally filtered light
while changing the filters over time. It is the most intuitive and widely
used method of hyperspectral imaging. To fill the hyperspectral data
cube, multiple acquisitions with different filters are necessary (see
Figure 3.1). Most commonly, this is technically implemented using fil-
ter wheels with bandpass filters, liquid crystal tunable filters (LCTF)
or acousto optical tunable filters (AOTF) [70, 104, 107, 111, 112, 114].
Bandpass filters have the advantage that it is very easy to customize
the filter shapes, but the setup is very slow, bulky and impossible to
miniaturize. In contrast LCTF and ATOF systems can be controlled
electronically and are more suitable for intraoperative applications.
Still, all spectral images need to be recorded sequentially resulting in
a low framerate. If only 20 spectral bands are recorded for each hyper-
spectral frame, this leaves 1.7 ms on average only for each individual
frame and requires the sensor to record at 600 fps. In practice, these
systems do not run at high framerates.

Movement will result in spectral unmixing artifacts because objects
will be misplaced in different spectral channels of the same image.

The overall detection efficiency decreases linearly with the num-
ber of recorded bands, because on average most of the light is being
blocked and only a little proportion can reach the sensor. Thus, this
technique is not suitable for fluorescence imaging.

Color imaging with good color reproduction can be achieved either
by specific color filters causing the recording sensitivity to match that
of the human tristimulus values or alternatively by recording a com-
plete spectral reflectance data cube and computing the intensity in
the different color channels.

Overall, spectral scanning is a very powerful and versatile tech-
nique if intensity and time are no constraints. However, for real-time
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fluorescence imaging applications, the sensitivity and speed are not
sufficient.

3.2.2 Spatial scanning

Spatial scanning fills the 3D data cube by sequentially recording the
full set of spectral information from individual locations. In such a
setup, as the detector arrangement can be sophisticated and flexible
because no spatial image needs to be maintained in the optical detec-
tion path.

For example, confocal laser scanning microscopes scan each pixel
individually using galvanometric mirrors to direct the laser spot across
the sample. Industrial and airspace hyperspectral imaging applica-
tions often use push broom techniques, parallelizing the spatial record-
ing in one dimension (see Figure 3.1).

The biggest challenge for spatial scanning is the available record-
ing time per pixel: recording for example sequentially 106 pixels per
frame at 30 fps, the resulting overall integration time per pixel is 34 ns
to record both fluorescence and reflectance spectral data. Such short
integration times are very challenging for state-of-the-art photo de-
tectors. Avalanche photo diodes can count up to 1010 photons per
second, resulting in a maximum of approximately 300 photons per
pixel for homogeneous images.

The illumination can be increased compared to widefield techniques
as only the recorded spot or line needs to be illuminated and thus the
recorded light intensity can be increased. However, in medical imag-
ing when living tissue is illuminated, the intensity must be limited
for patient safety.

Object motion results in spatial artifacts which can become visible
in combination with the scanning pattern, but it does not cause spec-
tral artifacts. If data is only processed in the spectral dimension, this
is very favorable for the algorithm. Obviously, the spatial artifacts will
remain after processing, but users will be able to recognize artifacts
up to a certain extend.

Devices with galvanometric scanners have a big form factor and
it does not seem possible to miniaturize them to endoscopic sys-
tems. Recently introduced micromechanical mirror scanning devices
(MEMS) could replace galvanometric scanners in future [156] with
small form factors. Another approach tailored for endoscopy uses
piezo actuators to move the illumination fiber end and thereby scan-
ning the field of view [40, 157].

Reflectance color imaging does not come with spatial scanning, but
it can be included for example by illuminating with spectrally shaped
light.
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All in all, spatial scanning offers good spectral resolution and a
high detection efficiency, but it is not suitable if high framerates and
high-resolution is not possible.

3.2.3 Snapshot hyperspectral imaging

Snapshot hyperspectral imaging technologies record an entire hyper-
spectral data cube at the same time. Various methods have been de-
veloped to optically split the three-dimensional information so it can
be recorded by two-dimensional sensor arrays.

Some examples among the popular methods are integral field spec-
trometry (IFS), multispectral beam splitting (MSBS), computed to-
mography image spectroscopy (CTIS) and image mapping spectrom-
etry (IMS) [72]. IFS and IMS use various assemblies like fiber guides,
micro structured mirrors and lenslet arrays to redistribute the 3D hy-
perspectral data cube on a 2D silicon detector for recording. In con-
trast, CTIS uses a dispenser element in the aperture causing the light
to spread in a mixed spectral and spatial form onto the 2D sensor
plane. The necessary computational reconstruction is based on algo-
rithms originally developed for computed tomography. A method to
record less than 10 spectral bands is MSBS, in which the imaging
path is split depending on the wavelength of light. This results in
multiple images representing the respective spectral regions. Strictly
speaking, color sensor arrays also belong to the category of HSI, but
this technology is listed separately in Section 3.2.5.

All snapshot hyperspectral imaging techniques share the advan-
tage, that object motion does not cause any artifacts due to image ac-
quisition. Though, some techniques show artifacts, due to the record-
ing itself, but not linked to object motion. For example, CTIS can
produce artifacts [72].

Thus, the sensor generally needs a high number of pixels which is
directly linked to high data rates. To avoid this difficulty, most real-
ized technologies compromise either the spatial or spectral resolution.
As an example, to record hyperspectral images at 1MP spatially and
in 20 spectral bands (resolution of 20 nm from 400 nm to 800 nm), the
total number of pixels required are x · y · λ = 1000 · 1000 · 20 = 20MP.
Transferring and processing image data of 20MP · 16 bit in real-time
at framerates of 30 fps results in a data stream of 1.2 GB/s. Increasing
the optical resolution to 4K (4096 × 2160 px) results in approximately
10.6 GB/s which is above the capability of standard computers to be
transferred, processed and recorded.

Still, there are interesting approaches becoming increasingly ap-
pealing in future due to new developments in the sensor technology
and FPGAs based image processing directly in the camera.

As the field of snapshot technologies is very wide, the robustness
and form factor vary widely. While MSBS and CTIS setups can be
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built very compact, some IMS setups are very bulky and cannot be
miniaturized sufficiently. In the same manner, the detection efficiency
varies among the techniques. While all photons of well implemented
MSBS, IFS and IMS setups are directed to the sensor, CTIS only has
an optical efficiency below on third. Detection of colors is not intrinsi-
cally included in the setup, but if enough spectral bands are acquired,
the reflectance color images can be calculated computationally.

To summarize, snapshot hyperspectral imaging techniques are pow-
erful but also difficult to implement. The systems require precise op-
tical and advanced mechanical designs as well as high data transfer.
Unfortunately, current systems make some trade-off regarding either
framerate or spatial resolution and thus do not fulfill the require-
ments. Though, it is a very potent technique that will come up in
future.

3.2.4 Excitation scanning with monochrome sensors

Widefield fluorescence imaging systems are in most cases equipped
with monochrome sensors, as they show the highest available quan-
tum efficiency. To record multiple fluorescent components, the emis-
sion is recorded for different excitation lights. The 3D data cube con-
sists in the spectral dimension of different illumination wavelengths,
not of different emission wavelengths. This is a fundamental differ-
ence between excitation and emission scanning in the type of data.

The excitation needs to be selected so that different fluorophores ca
be separated well.

As excitation scanning generally separates fluorescence quite well,
a rather low number of channels is necessary. For example, to record
six fluorescence channels, six sequential acquisitions are necessary to
record 6 fluorescence channels. Running a system with the clinically
required 30 fps results in an overall framerate of 180 fps. Transferring
the required resolution of 1 MP with such a framerate is technically
hardly feasible. Also, the fluorescence integration time τ < 6 ms
resulting in rather noisy images. Moreover, the different excitation
lights need to be blocked in the detection path which complicates the
optical design.

Color imaging can also be facilitated by sequentially illuminating
with different lights to record the red, green and blue color channels.
The missing spectral sensitivity of the sensor would need to be en-
coded in the respective illumination spectra. This requires spectral
shaping of the different color channel illumination lights, which need
to be strong for medical applications.

Object motion will result in spectral artifacts as all channels are
recorded at different time points. A big advantage of the concept is,
that the excitation light can be merged into a fiber and subsequently
directed to the setup. Thus, the bulkiest part can be easily kept out-
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side the medical setup. Various manufacturers offer high-resolution
monochrome sensors on the tip of an endoscope. Thus, the concept
is suitable for the medical environment in terms of robustness.

To summarize, excitation scanning requires sequential recording,
leading to high framerates, short integration times and potentially
causes spectral artifacts. Therefore, the concept was only partially se-
lected to be realized in the system.

3.2.5 Color sensors

Micro structured mosaic filter patterns such as the RGB Bayer filter
pattern are commonly used in consumer imaging sensors but are not
widespread in scientific applications. The 3D multispectral data cube
is only partially recorded (see Figure 3.1). Each pixel only has one
spectral information, while the neighboring pixels have different spec-
tral information. However, the spectral cube is filled homogeneously
(having double the number of green pixels than red and blue). The
missing fields are spatially interpolated using various techniques. The
most well-known is bilinear interpolation, but more sophisticated al-
gorithms show improved performance for example at sharp edges
[158].

The spectral sensitivity of the combination of filters and sensors
corresponds to the human tristimulus curves x, y and z as well as pos-
sible. The individual color filters reject photons resulting in roughly
50% detection sensitivity compared to the respective monochrome
sensor.

Motion does not result in major artifacts because all spectral infor-
mation is acquired at the same time. Though, sharp edges cause spec-
tral and spatial artifacts during interpolation. Potential consequences
of this effect need to be investigated for the application of fluores-
cence unmixing.

Color sensors using a Bayer pattern are mechanically robust and
can be miniaturized into chip on the tip endoscopes with diameters
around 1 mm. High resolution images (4k imaging standard) can be
transferred with more than 30 fps with the data transfer speed being
the limiting factor for higher framerates.

Advanced patterns with a higher number of micro-structured fil-
ters than the RGB Bayer pattern have been developed. For example,
16 different filters can be arranged in a 4× 4 pixel pattern or 25 fil-
ters can be realized on a 5× 5 pixel pattern. This method increases
the number of spectral channels on the cost of spatial resolution and
usually also on cost of detection efficiency. As the filters need to be
fabricated on the sensor, the initial production cost is rather high, and
the filter design cannot be flexibly changed afterwards. Overall, the
concept offers very compact and robust sensors which are suitable
for various applications [51, 97].
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First developments to construct sensor arrays in which a single
pixel can detect multispectrally started even before the Bayer pattern
was developed [159]. Usually these pixels consist of a wavelength de-
pendent sensitivity in depth that is resolved. Different approaches,
also for the IR range, have been made, but no more than 3 spectral
channels were successfully realized. So far, these technologies are still
waiting for their breakthrough [51, 160–165].

3.3 technology selection

This short section collects the condensed technological evaluation of
different technologies regarding the required usage of multispectral
imaging technologies.

Table 3.1: Comparison of different imaging methods to acquire a multispec-
tral fluorescence and color image data cube regarding aspects
which are relevant in the design requirement: color imaging ca-
pability, real time performance, spatial resolution, quality of the
multispectral image data, fluorescence detection efficiency, form
factor reflecting the miniaturization potential, robustness for us-
age and the impact of artifacts. Ratings (+/+/−) are reasoned in
the text in detail.
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form factor + + − + −

robustness + + + + +

artifacts + − − − +

The detailed evaluation of the different multispectral acquisition
technologies is summarized in Table 3.1. The different aspects are
ordered by importance for the described intra-operative application.
The compared technologies are also ranked in the table starting with
the technology that has best performance in the most important as-
pects.

The scope of this work is to bring multispectral imaging into the
operating room. Though, clinical usability is the key factor translating
the technology to clinical practice.
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Therefore, color and real-time imaging capabilities at high-resolution
are even more essential than advanced multispectral performance
and ranked first in the table. Third important is the multispectral
performance, which is the key aspect of this work. This means that
multispectral detection is to be added to current technology while
real-time color imaging must be maintained and cannot be compro-
mised. Otherwise the technology would face obstacles when translat-
ing to the clinics.

A high quantum efficiency of the technology to detect photons is
also important because high signal levels lead to a good signal to
noise ratio. A small form factor with the ability to miniaturize would
be favorable, but technology evolves rapidly. Even if the system is not
yet miniaturized it is more important that future developments have
the option for miniaturization.

Another important factor to consider between different technolo-
gies is the potential for artifacts, mostly caused by motion. Motion
can be limited in scenarios such as brain surgeries, but in endoscopy
the image moves very rapidly (change of entire field of view only in
several images).

Micro-structured sensors with RGB Bayer pattern on the chip are
developed for color imaging and thus record quality color images in
high resolution at real-time. Therefore, it is ranked first in the tech-
nology comparison and excitation scanning as second.

In Chapter 4, a novel system concept is described based on these
two technologies. The combination of excitation scanning in two phases
with two micro-structured RGB sensors allows both fluorescence and
reflectance imaging.

Spectral scanning or spatial scanning both exhibit very good multi-
spectral performance but the recess in color imaging at high-resolution
in real time is too big to be acceptable for surgical applications. Snap-
shot hyperspectral imaging has a big potential, but technical limita-
tions are still too big to be overcome, especially for high resolution
real-time imaging.
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S Y S T E M D E S I G N A N D R E A L I Z AT I O N

The goal of this thesis is to advance the field of fluorescence guided
surgery by developing an improved imaging system. This chapter
presents the key elements of the thesis: the developed system concept
and the technical implementation of the realized prototype system.

The previous chapters revealed that systems used in clinical prac-
tice for fluorescence guided surgery suffer from technical limitations.
As an example, numerous state-of-the-art systems either record fluo-
rescence or reflectance color images but not both at the same time. A
detailed review of related work is presented in Section 2.2.

Hence, this thesis focuses on harmonizing multispectral fluores-
cence detection and high quality color imaging at video-rate.

The requirements analysis in Chapter 3 revealed that fluorescence
and color images need to be recorded over the visible (and NIR) spec-
tral range. However, recording fluorescence and reflectance color im-
ages of a wavelength cannot be done simultaneously. To fulfill the re-
quirements, a combination of spectral and temporal multiplexing is
developed. Section 3.3 has identified that a combination of RGB color
sensors with multiple illumination lights is most suitable to realize a
system in the context of this work.

This chapter consists of two major parts: in Section 4.1 a system
concept is developed and in Section 4.2 the technical realization of
the prototype system is described.

Following this chapter, the system performance is evaulated ex-
perimentally and theoretically in Chapter 5. Subsequently, a metric
(named T-score), is developed in Chapter 6 to predict the quality
of unmixed fluorescence information to ensure diagnostic reliability.
Besides, Chapter 7 presents system optimization approaches to de-
termine which system parameters can be varied to further improve
fluorescence detection.

The system concept and variations of it have been published in
peer-reviewed publications and patent applications [166–169].

4.1 system concept

The following section introduces the spectral system concept step by
step. First, in Section 4.1.1 a conventional color imaging scenario and
single band fluorescence imaging scenario are presented. These help
to emphasize the differences between conventional imaging and the
developed system. Subsequently, the concept of multiband fluores-
cence imaging and multiband color imaging using a single sensor are
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introduced. The possibility to record these two distinct images at the
same time by adding a second sensor is shown.

Section 4.1.2 works out the combination of spectral and temporal
multiplexing and how the information of different phases comple-
ments each other. Subsequently, Section 4.1.3, focuses on the image
processing which takes the series of images as an input and produces
a fused image to be presented to the surgeon. However, the system
concept also comes with limitations which are shortly discussed in
Section 4.1.4. Finally, the concept and the major implications are sum-
marized in Section 4.1.5.

4.1.1 Spectral multiplexing concept

This section will introduce the spectral multiplexing concept step by
step. It starts by presenting a conventional color imaging setup and
a conventional single band fluorescence imaging setup. Subsequently,
multiband filters are introduced to image multiple fluorophores at
the same time. To allow high performance fluorescence and color
imaging, a second sensor and a second phase are introduced. The
figures in this section will use the schematic illustration of Figure 4.1
displaying an organ containing an invisible cancer boundary, nerves
and blood vessels.

Reflectance color imaging

organ

blood
vessels

tumor

nerve
tumor

A B

Figure 4.1: Schematic illustration of the imaged object to introduce the sys-
tem concept: A) Organ as seen by the human eye. Visual percep-
tion allows to identify a cancer on the right side, but accurate
cancer boundary delineation remains challenging. B) The can-
cerous area, a hidden nerve and hidden blood vessels are artifi-
cially highlighted, which can be achieved by fluorescence guided
surgery.

Reflectance color imaging records pictures which correspond to the
image information seen by the human eye. A schematic illustration of
a typical scenario is shown in Figure 4.2. The object, an organ in the
illustration, is illuminated with white light. The light interacts with
the matter of the object and is reflected off the surface. The spectral
reflective properties of the object determine the color of the object.



4.1 system concept 63

color
sensor

excitation
light

organ

recorded image

white light sensor sensitivity

se
ns

iti
vi

ty
 [a

.u
.]

in
te

ns
ity

 [a
.u

.]

λ [nm]λ [nm]

Figure 4.2: Schematic illustration of the color imaging scenario. The object,
here an organ, is illuminated by a light source and the reflected
light is detected using a silicon color sensor. On the planar sensor
S, pixels with � red, � green and � blue sensitivity are arranged
in a periodic 2× 2 pattern. Exemplary illumination spectra and
sensor sensitivity spectra are displayed in the lower part.

As a result, the spectral intensity of the detected light depends on
the illumination spectrum and the object reflectivity. To detect the
object color, the reflected light is detected by sensor with multiple
channels, mimicking the spectral sensitivity of the human eye. More
precisely, the spectral sensitivity of the sensor ought to be a linear
transformation of the eye sensitivities.

The vast majority of commercially available silicon color sensors
use microsctructed pixel detectors. Red, green and blue pixels with
distinct spectral sensitivities are arranged in periodic mosaic pattern
on the sensor. As a consequence, only one of the three color signals
is recorded per pixel. The neighboring pixels record different spectral
channels. To obtain full resolution for all channels, the missing infor-
mation is obtained by an interpolation process, named demosaicing.

Before presenting the recorded signal to the user, it is usually fur-
ther processed to improve color representation, brightness and con-
trast.

Singleband fluorescence imaging

Fluorescence imaging has been established as a standard tool in biomed-
ical research as it allows to record the bio distribution of fluores-
cent dye molecules. Anatomical, functional or pathological structures
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Figure 4.3: Schematic illustration of singleband fluorescence imaging. For
fluorescence imaging, the spectral illumination band must be of
lower wavelength than the detection band. The illumination is
partially reflected by the organ and partially absorbed by fluo-
rescent dyes in the organ. The emitted fluorescent light is orders
of magnitude weaker than the excitation light. To detect only flu-
orescence, an emission filter is placed in front of the sensor.

can be stained with a fluorescent dye which is then visualized. The
recorded images show the dye signal on dark background. A detailed
description of fluorescence is presented in Section 2.5.

Figure 4.3 shows how a fluorescent dye is excited by illuminating
the sample with spectrally confined light at a suitable wavelength.
The excited dye molecules spontaneously emit photons (emission) at
a higher wavelength. The emission light mixes with the excitation
light. To detect only the emitted photons, the shorter wavelength ex-
citation light is blocked by an optical filter. As a consequence, the sen-
sor records pure excitation light. To ensure high detection efficiency,
monochromatic sensors are often chosen to detect fluorescence.

Provided that multiple distinct dyes need to be imaged in a sample,
multiple images can be acquired by switching excitation lights and
emission filters. Alternatively, multiband filters can be employed for
rapid acquisition.

Multiband fluorescence imaging

Multiband fluorescence imaging allows to record multiple fluores-
cent dyes simultaneously for applications in which integration time
is sparse. For multiband imaging, both the excitation light as well as
the emission filter require multiple spectral bands which must not
overlap to prevent any leakage of excitation light into the emission
path. Such a scenario is illustrated in Figure 4.4. In the most simple
scenario, the excitation spectrum of each dye matches to one of the
excitation bands and the emission matches to one of the emission fil-
ter bands. The monochrome sensor needs to be replaced by a multi
channel sensor to allow spectral separation of the dyes.
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Figure 4.4: Multiband illumination and detection allows to detect multiple
fluorescent dyes simultaneously. The illumination light source
and the emission filter need to have complementary blocking
and transmission bands (schematic illustration on the right). In
this case, various fluorescent dyes which emit at different col-
ors, can be detected at the same time using a color sensor. Con-
sequently, the individual fluorescent dyes may be separated by
color.

Essentially, a combination of multiband illumination, multiband
emission filters and color sensors is used as system concept for this
work.

Multiband color imaging

excitation
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organ

filter

sensor
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Figure 4.5: Color imaging scenario using multiband illumination and de-
tection. The object is illuminated with multiband light and the
reflected light can pass an emission filter and reach the sensor,
where it is detected. Fluorescence emission may be spread over
the entire spectral range. Usually it is partially blocked and par-
tially be transmitted to the sensor. Because it is orders of mag-
nitude weaker than the reflected excitation light, its contribution
to the color image is minimal and can usually not be observed.
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Figure 4.6: Combining fluorescence and color image acquisition: To record
multiple fluorescent dyes and reflectance images at the same
time, two color sensors are used. The fluorescent light can pass
the multiband filter F2 whereas the excitation light L1 is blocked
and is detected by sensor S2. A second sensor S1 with a filter F1

is used to record the reflectance light. As the transmission bands
of F1 are complementary to F2, the excitation light can pass to
S1 and a reflectance color image is recorded. Light from multi-
ple spectral regions contribute to the formation of the reflectance
color image, but approximately half of the spectrum is blocked.
This may impeach the color perception. As a solution, the miss-
ing spectral bands can be recoded in a second phase.

For fast image acquisition, color reflectance images and fluores-
cence images are ideally acquired simultaneously. Since the fluores-
cence sensor is required to record only fluorescence, a second sensor
is used.

This sensor is identical to the sensor detecting fluorescence, but
no emission filter is required in front of the sensor as shown in Fig-
ure 4.5. The object is illuminated with multiband excitation light to
match the requirements of fluorescence imaging. The photons of the
reflected excitation light are detected for color reflectance imaging.
The recorded color image from spectrally restricted bands may look
reasonable after applying color correction algorithms.

However, the object is not illuminated with light covering the en-
tire visible range. Consequently, information on the object reflectivity
in spectral regions which are not illuminated can not be contained
in the recorded image data. Therefore, color images with reasonable
appearance cannot be guaranteed to exhibit high color reproduction
accuracy. For example, if the recorded signal of two pixels is identi-
cal, the object reflectivity may be very different in the visible spectral
regions which are not recorded. From a medical perspective, this re-
stricts the usability of a single sensor for diagnostic purposes.

Figure 4.6 illustrates the parallel recording of fluorescence and color
images using the same illumination. The color sensor is equipped
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with a filter that matches the illumination spectrum. It allows the illu-
mination light to pass and is not vital for this phase, but is essential
for further development of the system concept.

The subsequent section shows how the concept can be further ex-
tended to record fluorescence and color reflectance images of the en-
tire spectral region using a second phase.

Dual-phase multiband fluorescence imaging
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Figure 4.7: A second temporal phase is introduced to record the spectrally
complementary part of the fluorescence and reflectance color im-
ages. The object is illuminated with light L2 that is spectrally
complementary to L1. Both sensors and filters are identical as
in phase 1. Sensor S2 records a reflectance color image because
the illumination light L2 can pass filter F2. In contrast, sensor
S1 records fluorescence because the filter F1 blocks the illumina-
tion light L2. The recorded color and fluorescence information is
spectrally complementary to the information recorded in phase
1.

A second temporal phase is introduced to record the missing fluo-
rescence and color information.

In this phase, the object is illuminated with spectrally complemen-
tary light compared to the first phase. However, the sensors and fil-
ters remain as illustrated in Figure 4.7. The reflected light L2 can pass
through filter F2 because the spectral bands match. Consequently, sen-
sor S2 records a reflectance color image in this phase. In contrast, the
reflected light cannot pass though filter F1 and only fluorescent light
is recorded by sensor S1.

4.1.2 Spectral and temporal multiplexing

The spectral and temporal multiplexing concept is illustrated in Fig-
ure 4.8. It allows to record fluorescence and reflectance color images



68 system design and realization

over the entire spectral range. The system runs in two alternating
phases with two sensors and records two color and two fluorescence
images in each cycle. To record information at video rate, the acquisi-
tion of the set of images must be repeated at video rate.

When illuminating in phase 1 with light in the spectral bands of
L1, a reflectance color image is recorded by S1. Sensor S2 detects
fluorescence because filter F2 is placed in front of the sensor and the
excitation light cannot pass to the sensor.

When illuminating in phase 2 with light in the spectral bands of
L2, a color reflectance image is recorded by sensor S2 in the bands
of F2, whereas fluorescence is recorded with sensor S1 in the spectral
transmission bands of F1.

Combining the information of the two phases results in image in-
formation from the bandpass regions of F1 and F2. Ideally, these add
up to cover the complete spectral range detected with the red, green
and blue sensitivities.
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Figure 4.8: Schematic illustration of the combined spectral and and tempo-
ral multiplexing concept. Each of the four displayed images con-
tains different information, which is recorded by the two sen-
sors in the two phases. The upper row shows images, which are
recorded by S1, the lower row images which recorded by S2. Dur-
ing phase 1, the object is illuminated with light L1. Consequently,
sensor S1 records a reflectance color image, whereas sensor S2

records a fluorescence image. During the next phase, phase 2,
the object is illuminated with light L2, which is spectrally com-
plementary to L1. Consequently, S1 records fluorescence during
phase 2 as the illumination light is blocked by the filter in front
of S1. Accordingly, sensor S2 records reflectance color images
during phase 2.

Fluorescence coverage

To analyze the spectral coverage for fluorescence detection, the detec-
tion range for the phases is marked in an excitation-emission-matrix
(EEM) plot in Figure 4.9. When combining the two sensitivities, the
EEM plot shows that half of the plot is not covered. This is not a big
issue if gaps are not bigger than the width of excitation and emission
bands.
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Figure 4.9: Illustration of the system sensitivity for fluorescence detection
of S1 and S2 in the form of an excitation-emission-matrix. The
range of detectable fl uorescence is restricted by the filters � F1

and � F2 as defined in Figure 4.14B. Colored bars on the outer
side of the plot mark the respective transmission regions of the
filters, black boxes mark the spectral window in the EEM plot at
which fluorescence can be detected with the filter configuration.
A) Fluorescence detection of sensor S2 when using � F1 as exci-
tation filter and � F2 as emission filter B) Fluorescence detection
of sensor S1 when using � F2 as excitation filter and � F1 as
emission filter.

4.1.3 Image processing

The previous section describes in detail how color and fluorescence
images can be recorded over the entire spectral range using two sen-
sors and two phases in which a spectrally complementary illumina-
tion is applied. The acquired four images need to be processed to
obtain both high quality color images and fluorescence component
images. Finally, a fused image needs to be created from the color and
the fluorescence images visualizing the combined information. This
section presents an overview on the image processing.

Fluorescence image processing

One of the two sensors records a fluorescence image in each phase.
Figure 4.10 schematically illustrates how the images are combined in
a six channel fluorescence image after background correction, regis-
tration and normalization.

Since the signals of different fluorescent components add linearly,
a linear transformation is required to separate the components. This
transformation, usually refered to as linear unmixing, is well estab-
lished in fluorescence image processing. Here, the transformation is
represented by the unmixing matrix u.

Various methods to obtain the parameters of the unmixing matrix
have been published for fluorescence imaging applications. These in-
clude fitting techniques from calibration data sets or blind techniques.
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Figure 4.10: Fluorescence images F1 and F2 recorded by sensor S1 and sen-
sor S2 in subsequent phases have 3 channels each (R, G and
B). The images are pre-processed to combine all channels into
a single six channel image (in the center). The pre-processing
includes background subtraction, intensity correction and reg-
istration. Subsequently, the six channel image is unmixed us-
ing the unmixing matrix u into the individual components. In
this example, the components reflect cancer tissue, blood ves-
sels and nerves.

Algorithms of the category of blind unmixing techniques such as
non negative matrix factorization or independent component analysis
only rely on the fluorescence images.

Section 5.3 is dedicated to evaluate the fluorescence imaging ca-
pacity of the system. In this section, fluorescence image processing is
described in more detail.

Color image processing

During the two phases, two spectrally complementary color images
are recorded. Each image consists of three channels, an R, G and B
channel. To combine the images as illustrated in Figure 4.11 in one sin-
gle six channel image, the images need to be preprocessed to remove
variations between the two different sensors and to spatially register
the images. A linear transformation mM between sensor color space
and CIE XYZ color space is used for color correction. The parameters
of this transformation can be chosen for optimal color representation
of the final image.

A detailed analysis on accuracy of the final color images and op-
timization strategies to find the best possible color correction matrix
mM are presented in Section 5.2.
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Figure 4.11: Color image processing: the images recorded in phase 1 and
phase 2 contain spectrally complementary information. The im-
ages are pre-processed and combined into one single six chan-
nel image (illustrated in the center by six stacked grayscale im-
ages). The six channel image is processed using a linear trans-
formation matrix mM to obtain a three channel color image
which corresponds to the visual perception of the surgeon as
close as possible.

Fusing fluorescence and color images

The key advantage of the system is its ability to enhance high quality
color images with functional, structural or pathological information
which is gained by fluorescence imaging. In the series of illustrations,
this corresponds to combining image information of the cancer, the
blood vessels and nerves with the color image.

Various methods can be imagined to fuse the different images to-
gether. In Figure 4.12, the different fluorescence components are com-
bined into one pseudocolor image which is overlaid on top of the
color image. The processing may require to choose pseudocolor maps
and transparency functions to obtain appropriately fused images [170].
The final video stream, formed by processed image data streams from
sensors S1 and S2, is displayed in Figure 4.13.

All fusing methods need to enrich the color image with fluores-
cence information while avoiding loss of information in the color im-
age. Generally, overlay techniques tend to hide parts of the color im-
ages at the risk of missing essential information. Thus, more sophis-
ticated image fusion techniques could only modify the color appear-
ance of regions while maintaining features of the background color
image. One example would be to convert the background color image
into a grayscale image and then only colorize the fluorescent regions
with pseudo color tones. Alternatively, brightness and saturation of
the background color can be maintained whereas the hue channel is
modified to indicate fluorescence. This is an ongoing field of research
which is not the focus of this thesis.
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Figure 4.12: Combining color and fluorescence image information: The color
image, which corresponds to the view of the surgeon, needs to
be fused with the diagnostic fluorescence information. Each of
the three fluorescence component images may reflect to the bio
distribution of a fluorescent marker in tissue. In the example
shown here, fluorescence intensity of the first component can
be translated into prescence of cancer cells, the second fluores-
cence component indicates blood vessels and the third compo-
nent nerve tissue. Various methods exist to fuse the fluorescence
images. Here, the most simple way is illustrated: The three flu-
orescence components are combined into a single pseudocolor
fluorescence image which is overlaid to top of the color image.

S1

S2

Figure 4.13: Illustration of the final video stream (lower image series) which
is presented to the surgeon. It is composed of processed image
data acquired by S1 and S2. The final stream has half the frame
of the sensors S1 and S2.
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4.1.4 Concept limitations

The presented concept also comes with some limitations. These will
be shortly presented here. A more detailed discussion which also
considers the experimental results of the realized system is presented
in the final discussion in Section 8.1:

1. The overall sensitivity of RGB color sensors is lower than the
sensitivity of the respective monochrome sensors (loss in effi-
ciency of approx. 50%). This is the tradeoff which is made to
record spectral information.

2. Fast object movement may results in spectral artifacts because
the spectral information of color and fluorescence imaging is
recorded in two subsequent phases.

3. In case of open surgery, temporal multiplexing with different il-
lumination of the surgical field causes flickering. For low imag-
ing framerates, this may be disturbing for the surgeon.

4. As a result of the mosaic pattern, the spectral information of the
different channels at a pixel location is partially reconstructed
from neighboring pixels. This may cause artifacts if the recon-
struction is not optimal, for example at steep intensity bound-
aries.

5. Fluorescence images are recorded in total with six spectral chan-
nels. Theoretically, this may be sufficient to unmix up to 6 differ-
ent fluorescent dyes. Further analysis is required to show how
well fluorescence can be unmixed in reality. Section 5.1 theoret-
ically investigates the sensitivity of the system, Section 5.3 ex-
perimentally investigates unmixing and Chapter 7 shows opti-
mization approaches to investigate the boundaries of detectable
dye combinations.

Even though these limitations exist, they are expected to have a mi-
nor impact as the concept is tailored for fluorescence guided surgery.
The capabilities of a realized prototype system will be investigated
experimentally and theoretically in the subsequent chapters of this
thesis.

4.1.5 Summary

The purpose of the system is to record both fluorescence and reflec-
tance color images with sensitivity over the entire visible and near
infrared range. This is realized using a concept of spectral and tem-
poral multiplexing:

spectral multiplexing : Fluorescence imaging requires to elimi-
nate any excitation light from the emission wavelength region,
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Figure 4.14: A) Schematic illustration of the imaging concept during the
two phases. Simplified setup with two lights L1 and L2 and
the two sensors S1 and S2, both equipped with the complemen-
tary bandpass filters F1 and F2. B) Transmission bands of two
exemplary complementary filters F1 and F2 with 5 bands each.
C) Timing concept of the light sources L1 and L2 and the two
sensors S1 and S2. During each phase, one sensor records fluo-
rescence and one sensor records reflectance color images.

because the fluorescent light is orders of magnitude weaker
than the excitation. Thus, the spectral region must be split into
at least two complementary multiband regions.

temporal multiplexing : Two temporal phases are used to record
fluorescence and color images for each of the spectral multi-
band regions using two spectrally complementary illumination
lights.

In order to unify fluorescence and color imaging over the entire
spectral range with no moving parts, two temporal phases and two
sensors are needed.

In the presented approach, the VIS/NIR spectrum is split into two
complementary regions using multi-bandpass filters F1 and F2. One
of the sensors, sensor S1 is equipped with an emission filter F1. In
contrast, the other sensor S2 is equipped with a filter F2 transmitting
light in the complementary bands as illustrated in Figure 4.14.

Fluorescence can be observed in all parts of the visible and near
infrared spectrum with only minor gaps.

The major advantage of this method is that in each phase fluo-
rescence and color is recorded by using the fluorescence excitation
light also for reflectance imaging. The approach will therefore pro-
vide rapid image acquisition. In both phases, each of the sensors re-
cords relevant information for the imaging scenario. Thus, the tech-
nique is very efficient to record a maximum of information during
the available time.

In the following Section 4.2, each of the different system compo-
nents is discussed and a solution for the prototype is presented. Sub-
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sequently, in Chapter 5, the system is evaluated regarding the design
requirements which are put on it in Section 3.1.

4.2 technical realization

So far, the theoretical concept was introduced and reasoned, but no
specific parts for the realization were selected. This section describes
the technical realization and explains in detail the sensor, filters, imag-
ing lens light source and optical design choices.

The realized prototype system has been published by Dimitriadis
et al. [167].

4.2.1 Sensor selection

Table 4.1: Comparison of selected sensor models regarding technology, res-
olutions (res) in pixel, maximum quantum efficiency (qe) in %,
readout noise (noise) in e− and framerate (fps) at maximum reso-
lution in s−1. Values are obtained from camera manufacturer spec-
ifications sheets [171, 172]. The reported framerate corresponds to
the respective camera model for each of the sensors as reported
in the references. The sensor as is may allow different framerates
with a different readout electronic.

model type res qe noise fps

[px] [%] [e−] [s−1]

CIS2521 sCMOS 2560×2160 45 1.67 100

ICX674 CCD 1440×900 53 8.85 35

CMV4000 CMOS 2048×2048 45 17.25 90

EV76C570 CMOS 1600×1200 40 6.69 47

IMX265 CMOS 2048×1536 66 2.22 55

The selected concept puts very high requirement on the sensor, as
it needs to be suitable for both, high sensitivity fluorescence imaging
as well as accurate color reproduction.

For fluorescence imaging, the sensor needs to detect low light in-
tensities. Therefore, it needs to be as sensitive as possible. This is
achieved by a sensor with high quantum efficiency that adds as little
noise as possible in the detection process to the image.

For color imaging, the sensor is usually read out at higher light
intensity levels than for fluorescence imaging. In this case, a the high
sensitivity and low noise are also beneficial, but not as essential as
for fluorescence imaging. To obtain a good color reproduction, an
RGB microfilter Bayer pattern with spectral filter transmission curves
matching the tristimulus values of the human eye are used [123, 173,
174].
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Figure 4.15: Comparison of the application specific performance of the sen-
sors CIS2521 (Fairchild), ICX674 (Sony), SMV4000 (CMOSIS),
EV76C570 (e2V) and IMX265 (Sony). A) Effective integration
time tint per frame depending on framerate for CIS2521 for dif-
ferent region of interest (1440 px × 900 px - (1); SXGA+ 1400 px
× 1050 px - (2); full size 2650 px × 2160 px). The line at 60 fps
marks the framerate required for fluent visual perception. B)
Light intensity required on a sensor pixel to trigger enough elec-
trons in order to obtain a SNR of 10 for each frame at the max-
imum quantum efficiency wavelength depending on the fram-
erate. C) Dependency of the required photon flux on the image
SNR for a fixed framerate of 60 fps. D) Magnification of C) for
better visibility of the SNR between 5 and 50.

The sensor market is constantly evolving with options ranging from
charge-coupled device (CCD) sensors, complementary metal-oxide
semiconductor (CMOS) sensors, scientific CMOS (sCMOS) sensors to
electron-multiplying CCD (EMCCD) sensors. The following overview
of sensors compares selected model as representatives for a closer
evaluation regarding their performance in combination with the con-
cept:
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cis2521 The sensor CIS2521 (Fairchild) belongs to a class of so-called
scientific CMOS (sCMOS) sensors. It combines high-resolution,
good timing, 16bit A/D conversion and high framerates with
very low readout noise. Additionally, it is available as color and
monochrome sensor.

icx674 The ICX674 (Sony) sensor is a typical CCD sensor. It com-
bines high quantum efficiency with reasonable noise performance,
but is rather slow in the readout process and thus is hardly able
to run at high framerates.

cmv4000 CMV4000 (CMOSIS) is a fast CMOS sensor with high read-
out noise and a rather low quantum efficiency.

ev76c570 EV76C570 (e2v) combines low readout noise with a de-
cent quantum efficiency and good sensor readout speed.

imx265 IMX265 represents a state-of-the-art CMOS sensor which be-
came available in 2016. It combines high-resolution, high fram-
erates, versatile triggering options using a global shutter mode,
very low readout noise and good color reproduction. This sen-
sor was released to the market after the system was built, but it
is considered here to show what novel sensor technology could
add.

emccd EMCCD sensors are able to capture images at very low light
intensities by amplifying the signal before sensor readout. Un-
fortunately, they have typically low resolution of 128x128 pixels
and only exist in a monochrome version.

iit Image intensifiers tubes (IIT) are very useful for low light applica-
tions, but they also suffer from low resolution and only exist as
monochrome versions. Additionally, they are very fragile and
expensive.

EMCCD sensors and IIT play a significant role in fluorescence imag-
ing due to their high SNR at low light intensities. Recent publications
have suggested higher detection sensitivity for intraoperative fluores-
cence imaging using an EMCCD instead of a state of the art mono-
chrome CMOS camera [67]. However, both EMCCD and IIT are not
available as color sensors and are therefore excluded from further
considerations.

Table 4.1 compares the introduced models in terms of resolution,
quantum efficiency, readout noise and framerate at full resolution.
As all the selected sensors exhibit a microfilter Bayer pattern with
spectral filter characteristics closely matching the human tristimulus
curves, color imaging with adequate color reproduction is expected
for all models.

For a fluent intraoperative perception, the system needs to run at 30
Hz so the sensor needs to be able to deliver images at 60 Hz (detailed



4.2 technical realization 79

considerations regarding framerate and perception can be found in
Section 3.1.3). To compare the performance of the different sensors
at this speed, Figure 4.15 displays the performance of the cameras
depending on framerate and the resulting SNR.

Further sensor selection is done by comparing the capability of the
sensors to record fluorescence images at 60 fps.

The CIS2521 is a sCMOS sensor running in rolling shutter mode
and thus requires time to read out each frame depending on the
number of lines used to record before the next frame can be recorded.
Thus, less integration time is available per frame (Figure 4.15A). At
60 fps, the 16:9 format resolution of 1440 px × 900 px requires to read-
out 900 lines and thus only 12.5 ms instead of ideally 16.7 ms (corre-
sponding to approx. 75%) are available to integrate photons. For the
higher resolution of 1400 px × 1050 px the integration time is further
reduced to 11.9 ms per frame and for full sensor size of 2560 px ×
2160 px only 6.8 ms are available for integration of the light.

Figure 4.15 relates the SNR for a certain pixel with the photon flux
and framerate with given parameters for quantum efficiency, sensor
readout times and readout noise from Table 4.1. According to Sec-
tion A.1.3, the SNR for a photon count number Y is related with the
sensor readout noise according to by the following equation:

SNR =
Y√

var
[
Y
] =

Y√
Y + σ2

readout + σ2
dark

.

As the used integration times are below 1 second, the dark current
noise is neglected because σreadout � σdark. Replacing the number of
detected photons in one pixel during integration of one frame with
the Y = q.e. · tint ·ΦPhot allows to calculate the SNR depending on the
photon flux arriving at the sensor per pixel for sensor comparison.

The necessary light intensity to detect signals at fixed SNR of 10 is
shown in Figure 4.15B for the different sensor models depending on
the framerate. The sensor IMX265 is the best choice at any condition,
but it was just released by Sony in 2016. Therefore, it will be excluded
from the discussion here.

For the realized setup, the pco.edge 5.5 color (PCO AG, Kehlheim,
Germany) sCMOS camera incorporating the CIS2521 sensor was se-
lected since it performs best at low light conditions. The camera com-
bines high framerates with high sensitivity and low readout noise.

4.2.2 Filter selection

The system concept requires to select a multiband filter pair splitting
the spectrum in two complementary parts. This section is dedicated
to considering different approaches and to select the filter of choice.

Filter sets for fluorescence imaging require good blocking charac-
teristics which are at least 4 – 6 OD, because the intensity of fluores-
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Figure 4.16: Illustration of different filter concepts for splitting the spectral
range with a multiband filter pair with the individual filter
transmission plotted as � and � into a total number of A) 3

bands, B) 10 bands and C) 30 bands.

cent light is orders of magnitude smaller than the excitation. Leakage
of excitation or ambient light into the fluorescence detection channel
will pose a limit on the detection sensitivity and cause unmixing arti-
facts. The clinical dye PPIX has a Stokes shift of more 200 nm, so the
transition between excitation and emission is not very challenging.
However, other dyes like ICG or FITC have a Stokes shift of less than
30 nm and thus sharp edges in the band structure are required [74].

It is necessary to find a filter pair, splitting the wavelength region
from 380 nm to 900 nm into two complementary multiband regions.
Three different hypothetical scenarios are shown in Figure 4.16. In
Figure 4.16A, the spectrum is split into 3 bands. The bandpass filter
pair for this concept can be relatively easily produced and the reflec-
tance color image suffers only from minor spectral gaps. However,
the fluorescence imaging capabilities are severely compromised. Any
fluorophore can be excited, but the chance that the emission falls onto
a band of the other filter is not very high, because there are only two
band transitions present in the concept. Though, a concept with few
bands may work if the edge wavelengths are tailored for a specific
scenario.

In other extreme would be to split the spectrum into as many parts
as possible. In Figure 4.16C, a total number of 30 bands is displayed.
However, the concept can be increased to even more bands. As reflec-
tance spectra are quite smooth over the spectral range, both sensors
will detect effectively the same color information. The information
carried by light which passes through one band will be almost iden-
tical to the information of light carried by light passing through the
neighboring band. So, the bands themselves do not add any informa-
tion, though information can be added by illuminating with different
lights in the two phases. Fluorescence of any dye can be detected with
the setup because the band spacing is closer than a typical emission
width. Unless different excitation schematics are used, the two sen-
sors will provide the same signal. Overall, only half of the emitted
fluorescence intensity is transmitted to the sensor, so the efficiency of
the filter is equally bad for all dyes.

The optimum is achieved somewhere in between. The neighboring
filter bands should be spaced such that the fluorescence can be ex-
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cited in one band and detected in the next band. This is achieved if
the band widths correspond approximately to the excitation width,
the emission width and the Stokes shift. In such a case if the bands
match well, the fluorescence can be efficiently excited and most of
the emitted photons are detected. The multispectral signal of two flu-
orophores whose spectra differ by around the bandwidth are very
different. Unmixing a set of dyes emitting for example at 530 nm, at
565 nm and at 610 nm (as shown in Section 5.3.1) is only possible be-
cause the multispectral imaging uses differentiation by excitation and
emission. So, a combination of excitation and emission unmixing is
employed and makes the system very powerful separating dyes with
spectral differences in the magnitude of the bandwidths. Separating
dyes whose emission is spectrally far apart can be done using the
information of the RGB color sensor.

t  
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q 
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]
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Figure 4.17: A) Quantum efficiency curves q(λ) for the � red, � green and
� blue channel of the sensor CIS2521 IR; B) Filter transmission
of the two Semrock interference filters � FF01-387-485-559-649

and � FF01-440-521-607-694-809. Adapted with with permis-
sion from ref [167], OSA.

Generally, the higher the number of bands, the lower the average
transmission of the filter pair. This is caused by gaps in between to
neighboring bands in which both filters must completely block the
light. Such gaps, which are in reality as wide as 10 nm are required
to avoid leakage. In both imaging setups photons do not pass the
filter necessarily perpendicular, but in a slight variation of angles. In-
terference filters are sensitive to the angle of incidence [74]. Different
angles result in a slight shift of the bandpass structure (also depend-
ing on polarization). Therefore, spectral security gaps are required to
allow some angular variation in the optical path. The optical setup is
designed for minimal angular variation of all image rays as described
in Section 4.2.3.

For the realized setup, a commercially available filter set with a
bandpass width of approx. 25 nm to 60 nm covering the VIS/NIR
spectral range is selected. The best match and spectral coverage was
found for FF01-387-485-559-649 and FF01-440-521-607-694-809 (Sem-
rock Inc. , Rochester, USA). The transmission spectra of these filters
are shown in Figure 4.17B.
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It is obvious, that the choice contains many compromises which
were necessary to realize the setup: the bands neither optimized for
the used LEDs, for the sensor sensitivity curves nor for a dye of inter-
est. However, they satisfy the basic conditions quite well.

Though, the spectra reveal two minor problems of the choice. First,
the IR band of F2 between 700 nm and 760 nm is blocked. Thus, no
emission or reflectance information can be detected in that wave-
length range. Such an additional IR band would be suitable to image
IR dyes. The separation between the different IR dyes would also be
very powerful, because each of the IR dyes would be mainly detected
on one of the different sensors.

The complementary bandpass set is designed for excitation with
the band structure of F2 and detection with the band structure of F1.
Therefore, the individual bands of F2 are quite narrow compared to
the bands of F1. This will result in lower signal strength on S2. These
shortcomings can be fixed by designing and manufacturing a custom
bandpass pair optimized for a specified application as introduced in
Section 7.2.

4.2.3 Lens selection
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Figure 4.18: Schematic illustration of the optical path of different lens ar-
rangements. Possible filter placement and maximum angle of
incidence on the filter for a single imaging lens (A) and two
imaging lenses in 4f configuration (B), both drawn for one sen-
sor only. Corresponding setup with the two sensor approach for
a single imaging lens per path (C) and the 4f imaging approach
with two lenses per path. Labels: xobject: object size; x f ilter: filter
diameter; d: object distance; S1, S2: sensor 1,2; F1,F2: filter 1,2;
LO: objective lens; L1,L2: imaging lens for path 1,2; BS: beam
splitter cube.

Different imaging lens assembly options are discussed here for the
selection of a suitable commercially available system. For the concept,
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lenses are considered to be ideal lenses. Though, in reality single ideal
lenses are realized by an assembly of lenses to minimize aberrations.

First, a conventional single imaging lens system as shown in Fig-
ure 4.18A is considered. It is small, compact, low cost and offers good
imaging performance. As it is essential to place the emission filter in
the optical path at a position with minimal angle of incidence to en-
sure blocking of excitation light. As the sensor size (xsensor = 10.4 mm)
is smaller than the object size (xobject = 50 mm), the total magnifica-
tion m = 10.4 mm

50 mm ≈ 0.2 � 1 resulting in a higher numerical aperture
on the image side than on the object side of the lens. In this case, the
filter is placed directly in front of the lens with the same aperture
as the lens to save space. Figure 4.18A shows schematically how the
maximum angle α in which light can pass the filter can be estimated
as

α ≈ arctan
(

xobject + xfilter

2 · d

)
, (4.1)

where xobject ≈ 50 mm, xfilter ≈ 25 mm and the working distance d ≈
200 mm resulting in α ≈ 10.6◦.

An alternative approach is to build a 4f imaging setup with two
lenses, an objective lens L0 and an camera lens L1 as shown in Figure
Figure 4.18B. In this case, the filter is placed between the lenses in
an infinity corrected space. The maximal angle for the light to pass
through the imaging system can be calculated as

α ≈ arctan
(

xobj

2 · d

)
. (4.2)

For the same constrains, the maximum transmission angle α ≈ 7.1◦.
Therefore, it is better to place the filter in infinity corrected space. The
maximum transmission angle is then determined by the field of view
and does not additionally depend on the focusing aperture.

To realize a dual sensor system with spectrally complementary
paths, the imaging path needs to be split and the two sensors with
complementary multi-bandpass filters need to be placed in the path
after it is split. In Figure 4.18C and D the two possible scenarios are
compared. Figure 4.18C shows the option of an individual objective
lens for each sensor. In this case, the two individual objective lenses
need to be aligned and focused separately. In contrast, the concept
visualized in Figure 4.18D splits the path in the infinity corrected op-
tical part. In this case, the tolerances of the alignment towards lateral
and angular misalignment of the individual camera objective lenses
is much higher. Also, the two lenses L1 and L2 only once need to
be focused individually. Distance variations between camera and ob-
ject do not cause different magnification, as an axial displacement in
infinity corrected space does not cause any magnification. Addition-
ally, for the beam splitting device the angles of incidence are smaller
which is desirable for the performance.
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In conclusion, various reasons, summarized in Table 4.2, show a
preference to use a 4f lens arrangement in which the beam is split
and filtered in infinity corrected space. The only drawback of a 4f
imaging assembly is that with the given constrains the photon collec-
tion efficiency on the object side tends to be low and the size tends
to be big. A detailed evaluation of the photon collection efficiency is
presented in Section 5.4.4.

To realize such a setup, the Leica Z6 (Leica Microsystems, Heer-
brug, Switzerland) imaging system is selected. The modular system
is equipped with an objective lens, a zoom lens part and camera ob-
jective lens.

Table 4.2: Comparison between a single lens and a 4f lens arrangement
as optical concept regarding numerical aperture, registration ro-
bustness, astigmatism, filter transmission angle, zoom option and
form factor. Ratings (+/−) are reasoned in the text in detail.

single lens 4f arrangement

numerical aperture + −

registration robustness − +

astigmatism (with BS plate) − +

filter angle − +

zoom option − +

form factor + −

4.2.4 Optomechanical system

A B C D

Figure 4.19: Optomechanical design: A) Optical concept where the optical
arms for the sensors are orthogonally aligned. Elements include
the objective lens, the zoom system Z6, the beam splitter, the
filters, the camera lenses and the sensors. B) Optical path where
the second path is mirrored by 90 degrees to align the sensors
in parallel. C) CAD rendered planning of the optomechanical
elements. D) Photography of the realized system setup.
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In this section, the development and realization of the optomechan-
ical system is described. This section is specific to the realized pro-
totype system for this work whereas most of the considerations in
the previous chapters can be generalized for any system aiming at
combined color and fluorescence imaging.

Development, realization and evaluation of the optomechanics was
performed in collaboration with Tobias Behr. His work is published
in the form of his master’s thesis [175].

As described in Section 4.2.3, the favored optical concept uses a 4f
lens assembly as shown in Figure 4.18 with the Z6 system. The object
is imaged in an infinity corrected part of the image path using an
objective lens, a zoom lens and two camera objective lenses. There,
the path is split to obtain two paths, where the light is spectrally
filtered and then focused individually onto the sensors.

Figure 4.19A shows the finalized optomechanical design of the
imaging system which is based on the design concept displayed in
Figure 4.18D. Such an assembly would result in a very bulky setup,
as the path of sensor S2 horizontally sticks out of the vertical path.
Such a setup would not fulfill the requirements to integrate easily
into a surgical scenario. Additionally, the heavy camera on that op-
tical arm has a strong torque due to the long arm in combination
with the weight of the camera. This requires a stable and thus heavy
mount and makes the optical alignment challenging.

To circumvent both of these issues, the imaging path to sensor S2

is folded by 90° using a mirror. This moves the two sensors S1 and
S2 close together and allows easier mounting. The optical elements
like beam splitter, lenses and mirror can be aligned independently of
the cameras and do not need to carry the weight of the sensors. This
makes the system more robust and the alignment less fragile. In order
to realize this setup, the individual lenses of L2 need to be split and
mounted individually. A detailed description of the optomechanical
design concept and adjustment can be found in [175].

Some of the mounting elements of the presented work in T. Behr’s
thesis [175] were manufactured using 3D printing from plastic ma-
terials. These turned out not to be robust enough to maintain the
adjustment and calibration of the setup reliably over days of use. To
compensate for this, these parts were redesigned and manufactured
from metals, favorably from aluminum.

4.2.5 Illumination light source

The light source for the system is used for both color reflectance imag-
ing and fluorescence imaging. This section discusses different illumi-
nation options and chooses the most suitable light source.
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Classical lights

Most surgical microscopes being able to image color and fluorescence
use classical light sources such as incandescent, halogen, or Xenon
lights up to date [74]. These light sources have a very wide spectrum
and high intensity illumination can be generated. Though, the light
emanates in the source from a rather big area in high angles. Such a
light distribution is very hard to collimate due to the Abbe sine con-
dition. Thus, filtering with multiband interference filters with small
spectra gaps between excitation and emission bands is very challeng-
ing and will most likely result in leakage of excitation light in the
fluorescence emission path. As these sources have a very wide light
spectrum, a lot of light is blocked at the emission filters with results in
a high amount of heat dissipation. It is usually not possible to switch
incandescent and Halogen light sources on and off in time intervals
in the order of 10 µs. Though, flashlight Xenon light sources can be
triggered at 100 Hz but have a rather low lifetime of around 300 h
[176, 177].

White LEDs

White LED sources continue to be integrated into medical equipment
because they combine several advantages: small size, high intensity
output, fast trigger options and comparably low heat dissipation. The
spectrum of a white LED is confined between 400 nm and 700 nm
with two major intensity peaks. The first peak is usually sharp at
around 450 nm whereas the second peak is wider around 550 nm. An
example for a white LED spectrum is shown in Figure 5.8. If the
excitation wavelength fits to one of the two intensity peaks, the result
might be acceptable, but for example FITC is excited at 490 nm where
white LEDs usually show an intensity minimum. Thus, the resulting
filtered excitation light intensity would be a small fraction of the total
light intensity.

Generally, white LEDs with different light temperature are avail-
able and allow good color reproduction.

To obtain high light intensities for excitation, the area of the LED
must be large. Additionally, the radiation angle of high power LEDs is
wide and therefore the light cannot be collimated well. Consequently,
white LEDs are hard to filter using dielectric filters and are therefore
not suitable for fluorescence excitation.

Lasers

Lasers are commonly used for fluorescence excitation in research lab-
oratories as they show various advantages for fluorescence imaging.
A single mode beam can be filtered very well. Many lasers such as
diode lasers can also be easily triggered. The intensity can be con-
fined at a specific wavelength to be selected for fluorescence exci-
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tation. However, regulatory safety issues regarding power limits re-
quire to diffuse the beam reliably and thus pose an obstacle on the
usability. Some imaging devices for clinical ICG fluorescence imaging
such as Fluobeam (Fluoptics), Spy (Novadaq), LAB-Flare (Curadel)
and the Iridium (VisionSens) use a laser for excitation [74]. These de-
vices usually split the illumination for color imaging in the visible
range and fluorescence excitation in the NIR. Lasers usually emit at
a single wavelength, and thus reflectivity information is only mea-
sured at those wavelengths. Further research is required to evaluate
if this information is adequate for good color reproduction in clinical
applications.

Multiple narrowband LEDs

Narrowband LEDs emit the lion’s share of the light intensity in a
confined spectral region of approximately 15 nm to 50 nm. Thus, for
an illumination solution different modules must be combined. These
LED modules can be triggered independently and at sufficiently high
frequencies. The light of the modules can be collimated acceptably to
be filtered by individual bandpass filters and thus offers flexibility
in filtering. High output intensities can be obtained combining the
individual modules using dichroic mirrors. Additionally, the intensity
of the individual LED modules is independently adjustable allowing
to extend the dynamic range for fluorescence imaging.

System light sources

Considering all these options (summarized in Table 4.3), a set multi-
ple narrowband LEDs which can be individually filtered, is selected
as illumination device for the system. The light of the individual
LEDs is merged into a common path using dichroic mirrors. The
set of the commercially available light sources pE-4000 (CoolLED
Ltd. ,Andover, UK) and LEDHub (Omicron-Laserage Laserprodukte
GmbH, Rodgau-Dudenhofen, Germany) are used with the system.
The white LED light source ZLED CLS 9000 MVW (WILD GmbH,
Völkermarkt, Germany) can be used for dedicated color imaging in
one phase as described in [166].
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Table 4.3: Performance comparison between the different light source tech-
nologies multi LED, white LED, laser, halogen or Xenon regarding
suitability for fluorescence imaging, color imaging and triggering.
Ratings (+/+/−) are reasoned in the text in detail.

illumination fluorescence color trigger

multi LED + + +

white LED − + +

laser + − +

halogen − + +

Xenon + + +

Illumination power

The following part will estimate the maximum and realistic light flux
in the field of view. Currently available narrowband LEDs with a
spectral width of typically 10 nm - 50 nm are commercially available
in multi LED light sources for the entire VIS/NIR spectral range with
output powers ranging from 50 mW up to 1000 mW. The field of view
is specified to be at least 5cm× 5cm, which requires to illuminate at
least 25 cm2 [178–180]. The final system will have around 10 spectral
bands at which the sample can be illuminated. Thus, the maximum
light flux Φmax is estimated as

Φmax =
10 · 1000 mW

25 cm2 = 400 mW cm−2. (4.3)

This is still well below the maximum permissible exposure of 2000
mW cm−2 for human tissue [42].

For a more realistic scenario, light is lost before being delivered
to the object area inside the field of view by many factors: excita-
tion filters require to spectrally cut off the illumination for fluores-
cence imaging, light guides absorb or reflect some light and usu-
ally light is distributed over a larger area than the field of view to
avoid vignetting of color artifacts on the edges of the image. Com-
bining all factors together results in a realistic light flux per band
of 100 µW cm−2 [166] on the lower end and up to 10 mW cm−2 for
stronger light sources and optimized optical illumination. This im-
plies that illumination can be further increased up to 100 times by
choosing stronger light sources. This would allow fluorescence imag-
ing at lower concentrations or increasing the SNR at the same dye
concentration.

DSouza et al. published an optical irradiance ranging from 4 mW cm−2

up to 31 mW cm−2 in an review comparing different clinical fluores-
cence imaging systems for ICG [74]. The overall irradiance of the
system presented here is at the same order of magnitude than other
imaging systems.
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Recent developments in molecular imaging allow to specifically tar-
get various tissue types with different fluorescent dyes. During sur-
gery, these can be visualized to the surgeon, even though their visual
appearance would not allow distinction. Overall, surgical imaging
can be enriched by the capacities of molecular imaging which is al-
ready clinically established for example for PET imaging.

This thesis focuses on developing a system for next generation flu-
orescence guided surgery. The requirements for the system are based
on the intended use as described in Chapter 2. Subsequently the de-
sign requirements were translated in detailed technical specifications
in Chapter 3. Moreover, Chapter 4 presents a novel system which
combines real-time high-quality color imaging with multispectral fluo-
rescence detection. The system is based on a combined spectral and
temporal multiplexing approach using a complementary multiband
filter pair and two color sensors.

This chapter is dedicated to evaluating the performance of the re-
alized system. First, the spectral sensitivity of the system is analyzed
and the ability to detect any dye throughout the visible and near
infrared region is demonstrated in Section 5.1. In Section 5.2, the ca-
pacity of the system to accurately image and reproduce colors is nu-
merically tested. In Section 5.3, the fluorescence imaging capacity is
experimentally tested. Finally, in Section 5.4, the optical performance
of the system is evaluated.

All in all, the system fulfills the design requirements and the novel
imaging method is found to be suitable for fluorescence guided sur-
gery.

The system has been published by Dimitriadis et al. and conse-
quently experiments, data and concepts from the publications in ref
[166, 167] are reused in this chapter.

5.1 system sensitivity

This section analyzes the spectral sensitivity of the designed system.
First, the overall quantum efficiency of the system is calculated. Sec-
ond, the efficiency to detect dyes over the entire visible and near in-
frared range is analyzed.

Some of the concepts, simulations and results which are presented
in this section have been published in the peer reviewed publications
[166, 167] by Dimitriadis et al..

89
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5.1.1 Spectral quantum efficiency

In this section first the spectral quantum efficiency curves of the in-
dividual channels are computed and compared with the respective
efficiency of a monochrome sensor. Second, the section will display
the quantum efficiency in terms of an excitation-emission-matrix as it
is common for dyes in fluorescence spectroscopy.

5.1.1.1 Methods

The quantum efficiency of a system sensor channel c f is computed as
the product of spectral sensor quantum efficiency qc(λ) and spectral
filter transmission t f (λ).

qc f (λ) = qc(λ) · t f (λ) (5.1)

for all combinations of filter bands f ∈ {1, 2} and c ∈ {R, G, B}, so
c f ∈ {R1, G1, B1, R2, B2, G2}. The averaged sensor quantum efficien-
cies qS1 and qS2 are calculated as

qS1(λ) =
1
4
· qR1(λ) +

1
2
· qG1(λ) +

1
4
· qB1(λ) (5.2)

and

qS2(λ) =
1
4
· qR2(λ) +

1
2
· qG2(λ) +

1
4
· qB2(λ). (5.3)

The overall quantum efficiency is defined by

qS(λ) = qS1(λ) + qS2(λ). (5.4)

Accordingly, the quantum efficiency of a monochrome system is
computed for the two sensors as

qM1(λ) = qM(λ) · t1(λ), qM2(λ) = qM(λ) · t2(λ) (5.5)

and

qM(λ) = qM1(λ) + qM2(λ). (5.6)

The filter transmission spectra of the filters FF01-440-521-607-694-
809 and FF01-387-485-559-649 (both from Semrock, see Section 4.2.2)
are obtained from the manufacturer website [181] and data is interpo-
lated for the numerical calculation on a grid ranging form 365 nm to
900 nm in steps of 0.1 nm. Relative sensor spectra had previously been
recorded in the laboratory by illuminating the sensor with monochro-
matic light and measuring the power of the monochrome light (not
part of this thesis) [167]. The wavelength of the light was scanned
at 365 nm, 385 nm and from 405 nm to 900 nm in steps of 5 nm us-
ing a monochromator. At each wavelength the power was measured
with a calibrated power meter. The sensor sensitivity is converted
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from power spectral density (electron counts per illumination power)
to electron counts per photon. The sensitivity is scaled so that the
curves match the maximum quantum efficiency as specified by the
manufacturer [171]. For the numerical calculations here, the data is
interpolated on the same grid as the filter transmission spectra from
365 nm to 900 nm in steps of 0.1 nm.

For the excitation-emission-matrix (EEM) sensitivity plots, the emis-
sion sensitivity is multiplied with an excitation intensity. Here, a con-
stant excitation of 1 in a. u. is assumed for wavelengths which are
complementary to the emission. An additional gap of 5 nm between
all excitation and the complementary emission bands is chosen for
illustration because it would be necessary in a real system to avoid
leakage of excitation light to the emission channels.

5.1.1.2 Results
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Figure 5.1: Spectral quantum efficiency q of the system channels � R1, �
G1, � B1, � R2, � G2 and � B2, for the sensor � S1 and �
S2 (averaged over channels) and for a system with monochrome
sensors � M1 and � M2. Curves are calculated by multiplying
the sensor quantum efficiency curves with the respective filter
transmission spectrum at each wavelength. Adapted with with
permission from ref [167], OSA.

Calculated quantum efficiency spectra qc f displayed in Figure 5.1
include the effect of the multiband emission filters, the color filters of
the sensor pixels mask as well as the monochrome quantum efficiency
of the silicon sensor.

The curves resemble the complementary multiband structure of
the emission filters with strong separation between different bands
as well as the wide sensitivity curves of the color channels. The sen-
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sitivity ranges from around 380 nm up to around 855 nm. Quantum
efficiency curves of the sensors show only minimal gaps between the
detection channels which are between 5 nm and 10 nm wide. One
band around 750 nm is missing on both sensors, so the system has no
sensitivity at these wavelengths.

Maximum quantum efficiency is very similar for both sensors. For
sensor S1 the maximum q. e. is found to be 40% for the green channel
at approximately 528 nm, for S2 the maximum is 40% also for the
green channel around 550 nm.

The average quantum efficiency of the system (meanλ

[
qS(λ)

]
≈

11%) is approximately 2.4 times higher than the sensitivity of the
monochrome system (meanλ[qM(λ)] ≈ 27%) .

No error could be estimated for maximum and average quantum
efficiencies of the sensor because no error is provided with the quan-
tities on which the calculation relies. More precisely, the calculation
requires knowledge of the emission filter spectra, the relative sen-
sor sensitivity curves as well as the maximum quantum efficiency.
Both emission filter spectra and maximum quantum efficiency are
provided by the manufacturer without error. The measured relative
sensitivities appear reasonable in comparison with the manufacturer
specified sensitivities in the visible range. But for these spectra, also
no error estimation is available. Consequently, the presented data is
not presented with errors.

Visualizing the quantum efficiency of the channels in the form of
an EEM plot in Figure 5.2 shows that the system channels cover a
wide range of dyes with different sensitivities. A detailed analysis on
the sensitivity towards different dyes is presented in Section 5.1.2.
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Figure 5.2: System efficiency visualized as excitation-emission matrix.
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5.1.1.3 Discussion

The sensitivity of the system ranges over the VIS/NIR which is re-
quired for both fluorescence and color reflectance imaging as defined
in Section 3.1.6. Thus, the overall sensitivity range is sufficient. The
gaps between the complementary bands will not affect fluorescence
imaging but may alter color reproduction. This issue will be analyzed
in detail in Section 5.2.2. The missing band around 700 nm does not
affect color imaging at all as color imaging is restricted to the visible
range. However, it limits the versatility for NIR fluorescence imaging.
If that band was instead available, fluorescence imaging with three
dyes in the deep red and NIR would be feasible: one dye emitting at
650 nm, a second dye emitting around 730 nm and a third dye emis-
sion above 750 nm should be easy to unmix due to the complementary
structure of the bands. In a future version of the system a novel set of
bandpass filters can easily improve this aspect.

The detection efficiency of the color system compared to a mono-
chrome system is a factor of 2.4 lower. This loss in efficiency which is
attributed to the RGB Bayer pattern is the price tag for color imaging
and multispectral fluorescence detection. The monochrome system
would just have 2 channels instead of 6. For this analysis, the sen-
sitivities of the two channels have been added. As the sensitivities
are spectrally complementary this is feasible. However, during im-
age acquisition as intended for the system, the images of the sensors
are recorded at different time points and thus the quantum efficiency
would need to be divided by two to correspond to a temporal average
efficiency.

The measured transmission spectra of the filters F1 and F2 are spec-
ified for orthogonal light incidence. If the light transmits the filter in
another angle, the blocking- and pass-bands shift in wavelength. This
shift also depends on polarization of the incident light, potentially
changing the polarization of light when passing one of the filters.

The light passes the optical filters in infinity corrected space, so the
spatial information of the object is encoded in the angle of light to
the optical axis. Thus, light being detected at different pixel locations
may show slightly different spectral sensitivity due to filtering. In
the setup used here, no strong spectral artifacts with a fixed spatial
pattern are observed. This is most likely due to low light propagation
angles which are below 10° in the setup but such artifacts may occur.

Overall, the spectral quantum efficiency is sufficient for the system,
but it is reduced due to the color imaging ability.

5.1.2 Fluorescence detection efficiency

The system is required to detect dyes over the entire visible and near
infrared range from 400 nm to 900 nm. This section investigates how
efficient a fluorescent dye can be detected by the system.
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First, the dye emission spectrum is modeled by a Gaussian shaped
profile with the center being shifted. This allows to estimate the de-
tection efficiency of an arbitrary dye in the VIS/NIR range.

Subsequently, the system detection efficiency is calculated for dyes
whose emission spectra are obtained from a library and compared
with the Gaussian emission spectra.

Methods

Measured fluorescent dye emission spectra usually report the rela-
tive energy per wavelength Epsd(λ) in units of power spectral density

as
[

W
nm

]
. Sensor quantum efficiency curves determine the probability

of that an incoming photon hitting the sensor triggers an electron on
the sensor and thus results into a count. Therefore, the power spectral
density emission spectrum needs to be converted to an emission spec-
trum Ephoton(λ) in units of photons numbers per wavelength

[
Photons

nm

]
to simulate the response of the sensor channels to emitted light:

Epsd(λ) = Ephoton(λ) ·
h · c

λ
(5.7)

where h is the Planck constant and c the speed of light.
For the simulation, the response of the sensor to a certain dye emis-

sion intensity is desired. Therefore, all spectra are normalized so that
the spectra show the spectral emission profile of a single photon:

e(λ) =
Ephoton(λ)∫
Ephoton(λ)dλ

(5.8)

The detection efficiency of a sensor channel c ∈ {R1, G1, B1, R2, G2, B2}
for a fluorescent dye with emission spectrum e(λ) is calculated as

η(c, λ) =
∫

e(λ) · q(c, λ) dλ. (5.9)

For the numerical implementation, all dye emission spectra Epsd(λ)

are interpolated to a finite set of bins ranging from 365 nm to 900 nm
in steps of 0.1 nm. In the next steps, the dye intensity is converted
to photon counts and normalized. The sensor quantum efficiency is
interpolated onto the bin centers from 365 nm to 900 nm in steps of
0.1 nm. Dye emission intensities which is out of the sampling range
of the sensitivity are cropped. The system is calculated according to
Equation 5.9 maintaining the numerical quantization. Overall average
sensor sensitivities η(S1, λ) and η(S2, λ) are calculated by averaging
the respective set of channels:

ηS1(λ) =
1
4
· ηR1, (λ) +

1
2
· ηG1(λ) +

1
4
· ηB1(λ) (5.10)

and accordingly

ηS2(λ) =
1
4
· ηR2(λ) +

1
2
· ηG2(λ) +

1
4
· ηB2(λ). (5.11)



5.1 system sensitivity 95

Gaussian emission spectra with width σ and center emission wave-
length λc are defined as

Ephoton(λ|λc, σ) =
1

σ
√

2π
exp−

(λ−λc)2

2σ2 . (5.12)

The Bayer micropattern of the sensors is of the form »RGGB«. For
the numerical calculation the numbers are created using the Matlab
pre-implemented function normpdf. Fluorescent dye emission is sim-
ulated for dyes with a center wavelength of λc = 395 nm . . . 870 nm
in steps of 1 nm for a emission width σ = 20 nm, σ = 30 nm and
σ = 40 nm.

A selection of 701 dyes with emission maxima above 400 nm from
a library of existing fluorescent dyes with emission and excitation
spectra provided by the TU Graz are used to calculate the detection
efficiency of the system for real dyes [182]. The names of all used dyes
are listed in Section A.3. As the dye emission was interpolated on a
grid ranging from 390 nm to 900 nm, the emission maxima inside this
range are determined.

Results

Numerical results of a selection of the simulated detection efficiencies
of the dyes are displayed together with the efficiency curves of the
parametrized Gaussian emission in Figure 5.3.

The statistical properties mean, median, minimum and maximum
of the numerical results regarding emission curves and emission ef-
ficiency for the real dyes obtained from the library are provided in
tabular format in Section A.2 together with the individual values for
a selection of dyes.

The efficiencies η of the Gaussian emission curves oscillate with the
filter bands characteristics. If the center emission wavelength matches
the centers of a filter band, η has a local maximum. In contrast η is
minimal if the center wavelength falls within a filter gap. Among the
different emission widths, oscillations are strongest for σ = 20 nm,
smaller for σ = 30 nm and quite small for σ = 40 nm.

Most of the values which are plotted as points in Figure 5.3 of
library dyes scatter around the three Gaussian curves. For regions
of high curve slopes, the points representing real dyes tend to lie
at lower wavelength regions compared to the respective Gaussian
shaped dye.

Both Gaussian shaped and real dye transmission efficiencies are
overall higher for sensor S1 than for S2. Highest detection efficiencies
can be found in the NIR above 700 nm.

The overall detection efficiency ηS1+S2 is obtained by summing up
the two efficiencies ηS1 and ηS2. In Figure 5.3, the oscillations of ηS
are minimal over VIS compared to the plot of ηS1 and ηS2. However,
in the NIR spectral range, the intensities oscillate.
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Figure 5.3: Detection efficiency η for a set of 701 measured fluorescence
emission spectra and for parametrized Gaussian shaped emis-
sion with varying center wavelength λc and widths of σ = 20 nm
(dashed line), σ = 30 nm (bold line) and σ = 40 nm (dotted line).
Efficiencies of the existing dye spectra are plotted depending on
the respective emission maxima. Filter transmission bands of fil-
ter � F1 and � F2 are plotted on top of the plots. Plots
are extended from a respective plot in [167]. Adapted with with
permission from ref [167], OSA.

No errors are provided for the calculation because all results rely
on the sensor quantum efficiency which is specified by the manufac-
turer without specifying its error. Also the relative sensor sensitivity
curves, the filter transmission and the dye emission spectra do not
provide errors.

Discussion

The data shows that the detection efficiency of real dye spectra is
slightly distinct from the parametrization model, but most dyes are
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very close to one of the models. This allows to conclude that the
model to parameterize the fluorescence emission with a Gaussian
emission curve with σ between 20 nm and 40 nm is suitable. Though,
it is important to keep in mind that real dyes have distinct spectra
and thus show a different spectral behavior.

One shortcoming of the model is that Gaussian spectra are sym-
metric whereas real fluorophore spectra are skewed. This explains
the lower shift of slopes for real dyes to lower wavelengths.

The parametric model shows that different σ values result in simi-
lar overall ηS1+S2 efficiencies, but the oscillations between S1 and S2

are much higher for smaller σ. Thus, the overall number of detected
photons of a dye with spectrally narrow emission will be the same
as with wide emission given both emit the same number of photons.
However, the variation of the spectral signatures for small changes in
wavelength will be stronger for narrow emission profiles. Thus, it is
easier to unmix two dyes which are spectrally close if they have nar-
row emission spectra (σ = 20 nm) compared to wide emission spectra
(σ = 40 nm).

Computing ηS1+S2 can be misleading, as it assumes that the fluo-
rescence emission is equal in both phases for all dyes. This is hardly
ever the case. Depending on the integration time in both phases and
the excitation lights, the sensor efficiencies need to be weighted for
each dye individually. The dyes can thus also be separated by the ex-
citation, leading to even stronger unmixing of spectrally close dyes.

The quadband emission filter F2 is missing a spectral band in the
NIR around 750 nm. This leads to low detection efficiencies at that
wavelength and fluctuations of the efficiencies. The easiest solution to
circumvent this issue would be to use a custom designed filter with
an additional band at 750 nm. If modifying the filter, the transmission
bands of S2 could be made broader and the bands of S1 could be
made smaller in return so that the widths are equal for both filters.
This would result in more similar detection efficiencies for the two
sensors.

Generally, the system is very sensitive in the NIR because neither of
the three microfilters in the RGB Bayer pattern blocks the light. Thus,
the sensor quantum efficiency in the NIR is close to the quantum
efficiency of a monochrome sensor. For intraoperative fluorescence
imaging, the wavelength region between 650 nm and 850 nm is very
attractive because tissue absorption is minimal.

Conclusion

The simulation using a set of real dyes and additionally a parametriza-
tion model has shown that model can reasonably replace real spectra
with some limitations. This parametric model will be used in Chap-
ter 7 to optimize the system.
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The simulation proofs that the system can detect any dye over the
visible and near infrared range and thus fulfills this design require-
ment.

5.2 color correction

This section investigates the capacity of the developed multispectral
imaging system to accurately reproduce colors. It is split into three
parts. First, the capacity of Luther-Ives criterion, as a well-established
method to correct colors in imaging is applied to the system. Second,
a linear correction algorithm is developed resulting in minimal per-
ceptual color deviation between ideal and corrected colors. It’s per-
formance is compared with the Luther correction. Third, the linear
color correction is evaluated for different illumination scenarios that
are relevant for the clinical application.

Color sensors typically record reflectance images in a red, green
and blue channel. Ideally, these signals should correspond to the red,
green and blue visual perception of the human eye represented by the
color matching functions x, y and z. However, deviations of the cam-
era sensitivity spectra to the color matching functions require to cor-
rect the signals before displaying. Additionally, color perception in-
volves neural processing steps which include for example brightness
and color adaption depending on many factors such as the surround-
ing scene, the immediate history of visual impressions and many
more.

The developed multispectral imaging system does not have three
color channels with close spectral response to the color matching
functions. Instead, it has six channels which exhibit a multiband struc-
ture with steep spectral edges. Therefore, a transformation from sen-
sor channel space to a normed color space corresponding to human
perception is required. The CIE XYZ color space corresponds to hu-
man perceptual sensation and is therefore selected here as target color
space for color correction.

Various different approaches to transform the signal from sensor
space to CIE XYZ space have been published. Among these approaches
are lookup tables, polynomial or neural network based algorithms
[183]. For algorithms with a higher number of parameters improved
correction results are expected. Hong et al. presented higher order
polynomial methods with superior performance compared to linear
transformation [184]. Adding an offset term and a term proportional
to the product of all three camera channels caused strongest improve-
ments. Cheung et al. compared polynomial based transformations with
neural networks [185]. Both approaches result in similar performance,
though neural networks require tedious training. Therefore, the pub-
lication favors polynomial based approaches over neural networks.
One of the most important prerequisites is that a correction algorithm
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needs to be computationally light because the calculation needs to be
executed for each image in video refresh rate [183]. Lookup tables
measure the entire color space and linearly interpolate in between
the measurements. On the one hand, the method only relies on the
measurement which can capture all sort of effects. Accordingly, er-
rors in some measurements will lead to errors in the correction. Also,
interpolation for values in between the lookup table may influence
the result. Lookup tables need to be calibrated once and cannot be
updated in real-time [183]. As the illumination of the imaging may
change to adapt for better fluorescence unmixing, lookup tables are
not used here.

In this work, all color correction approaches use a linear transfor-
mation between camera signal space and CIE XYZ color space. Linear
transformations are computationally easy to implement and can be
modified quickly if necessary.

Different methods to find the best estimate for the parameters of
the linear correction algorithm will be investigated here. First, the
Luther-Ives condition is applied, which tries to spectrally match the
spectral sensor sensitivity curves to the color matching functions in
Section 5.2.1. As the spectral matching does not work well for sensi-
tivities with sharp edges, a perceptual performance based method is
used to estimate the best set of correction coefficients. It minimizes
the deviation between the ideally perceived colors by the human eye
and the corrected color values for a set of colors. This method is sup-
posed to have superior performance compared to the spectral based
method, but the illumination needs to be fixed as presented in Sec-
tion 5.2.2. The last part (Section 5.2.3) investigates whether for all il-
lumination scenarios a good estimate for the parameters of the linear
correction algorithm can be found.

Some of the concepts, simulations and results which are presented
in this section have been published in the peer reviewed publications
[166, 167] by Dimitriadis et al..

5.2.1 Color image correction by Luther criterion

According to the Luther-Ives criterion, a linear transformation be-
tween the sensor sensitivity curves and the color matching functions
x, y and z should exist for good color reproduction [123, 173, 174].
In this section, the closest estimate for the linear transformation, the
Luther matrix mL, is obtained for some sensor configurations. The
Luther error, corresponding to the root mean square deviation be-
tween the color matching functions and the linearly transformed sen-
sor sensitivities is minimized.

The biggest advantage of the Luther criterion is that it does not
depend on illumination. Accordingly, sensors and systems can be
compared independent of the illumination light source they are used
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with. However, the result does not consider the actual visual impres-
sion. This section investigates whether the Luther-Ives criterion and
the associated Luther error is a good measure to evaluate the color
reproduction of the system.

Additionally, different sensor configurations are compared with the
system. The standard CIS2521 sensor is compared as it is the normal
color imaging sensor. Additionally, the impact of extending the sensi-
tivity to the IR, of adding multiband filters with sharp spectral edges
or of using only one single sensor of the system on color reproduction
is investigated.

5.2.1.1 Methods

The measured quantum efficiency curves of the sensor CIS2521 (see
Section 5.1.1) are converted from spectral quantum efficiency qc(λ) to
spectral response in units of power spectral density:

s(c, λ) ∼ qc(λ) ·
λ

h · c0
(5.13)

and the sensitivity s(c, λ) is normalized for each channel c to be max-
imally one.

For the numerical calculations, a fixed wavelength grid with 5 nm
wide bins and bin centers from 380 nm to 780 nm is used. The sensitiv-
ity spectra on the grid are computed as the average over the respective
bins using linear interpolation if necessary.

The CIE published in 1931 sensitivity curves for a linear photo de-
tector, displayed in Figure 5.5, which represents the sensation of the
eye, called the CIE 2 degree color matching functions [186–188]:

seye(c, λ) =
[

x(λ), y(λ), z(λ)
]
. (5.14)

Here, the matrix mL is calculated so that the spectral sensitivity
curves of the sensor match the color matching functions as close as
possible:

arg min
mL

[ 1
nλ

nλ

∑
λ

(
sS(ceye, λ)−∑

cS

mL(ceye, cS) · sS(cS, λ)︸ ︷︷ ︸
sL,S(ceye,λ)

)2]
(5.15)

This ensures good color reproduction as stated by the Luther-Ives
condition [123, 173, 174].

The Luther matrix is calculated using the Matlab pre-implemented
function mrdivide. It minimizes the Luther error δS for a sensor S,
defined as

δS =

√√√√ 1
3 · nλ

∑
ceye

nλ

∑
λ

(
sS(ceye, λ)− sL,S(ceye, λ)

)2
. (5.16)
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Table 5.1: Overview of the Luther error δS for the selected sensor configura-
tions.

CIS2521 CIS2521 IR System S1+S2 S1 S2

δ 0.1892 0.2505 0.2519 0.2845 0.3324 0.4374

S1 S2

CIS2521 IR

System S1+S2

wavelength [nm]

CIS2521

450 600 750
wavelength [nm]
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Figure 5.4: Luther plots of the sensor sensitivity spectra of A) the sensor
CIS2521, B) CIS2521 IR (no cutoff filter), C) the dual sensor sys-
tem with S1 and S2, D) the system adding the sensor sensitivities
S1+S2 and the two individual sensors E) S1 and F) S2. For each
sensor, normalized raw channel sensitivities are plotted as dotted
lines in � red, � green and � blue for the respective channels.
Sensor sensitivity sL,S(ceye, λ) after correction with the Luther
matrix are plotted as solid lines. The area between the Luther
sensitivity and the respective color matching function is filled.
The reported rms error in Table 5.1 corresponds to the sum of
the rms of the marked areas.

5.2.1.2 Results

Figure 5.4 shows Luther sensitivities sL,S(ceye, λ) for six different sen-
sor configurations which are related to the developed system: the
basic sensor CIS2521 in the most common configuration with an IR
blocking filter, the sensor CIS2521 IR with sensitivity in the IR region,
the dual sensor system with both sensors S1 and S2, the individual
sensor sensitivities S1 and S2 and finally the addition of the two sen-
sors S1 + S2.

All results need be put into perspective with the sensor CIS2521

(δCIS2521 = 0.1892) because the other systems are based on it. Adding
IR sensitivity to the system by removing the IR cutoff filter results in
an increase in δ of approximately 32%. As the color matching func-
tions do not have any sensitivity in the IR, sensitivity of a sensor
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channel results in too low sensitivity of the corrected curve in the
visible. This increases the Luther error.

The dual sensor system has almost the same Luther error (δsystem =

0.2519) as the CIS2521 IR sensor, but different areas in the Luther plot
accumulate the error: the dual sensor system shows that the curves
follow the color matching functions well, but the sharp edges of the
multiband filters cause a high Luther error. In contrast, CIS2521 IR ac-
cumulates δ in the IR, which is blocked by the specific multi-bandpass
filter pair used in the system.

Adding the sensitivity of the two individual sensors results in a sen-
sitivity corresponding to the CIS2521 IR with additional bandgaps
due to the emission filter. It shows Luther sensitivity curves corre-
sponding to the CIS2521 IR, but has additional errors due to the filter
bands. Thus, the higher error (δS1+S2 = 0.2845) is expected.

Both individual sensors S1 (δS1 = 0.3324) and S2 (δS1 = 0.4374) have
very high Luther errors. The intensities match in some band regions,
but for most of the spectrum the curves cannot match because of the
multiband structure of the sensitivities.

No error is specified for the presented Luther error results δ, be-
cause no error is available for the basic quantities required for the
calculations. The absolute quantum efficiency scaling of the sensor
sensitivity spectra is not important for the color representation, as
color is not defined by the absolute channel sensitivities but rather by
the relative response of the different color channels. The color match-
ing functions are taken as a defined standard and thus no error is
provided. The remaining source of error are the sensor sensitivity
spectra, for which no error is specified (see Section 5.1.1). All systems
(but CIS2521) rely on the same sensitivity measurement. Thus, any er-
ror would be introduced in all remaining 5 calculations, but it would
be weighted differently and thus contribute differently to the result.
In short, the number of digits of the results is not associated with an
error calculation.

5.2.1.3 Discussion

The dual sensor system has only a slightly higher Luther error than
the sensor CIS2521 IR alone, but it consists of different contributions:
the basic sensor CIS2521 IR has big contributions in the IR and in the
visible range due to too low sensitivity. In contrast, most of the error
of the system is based on the filter gaps.

For conventional consumer color cameras, Luther errors between
0.12 and 0.26 have been reported [189]. So, the basic sensor CIS2521

has a rather high Luther error but is still inside the range for color
sensors. The IR version of the sensor and the dual sensor system are
at the upper end of the range of Luther errors of normal color sensors.
All other configurations have higher Luther errors than conventional
color sensors.
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Sensitivity in the IR is generally problematic for color reproduction,
because the color matching functions do not have any sensitivity in
the IR. However, it is necessary for many fluorescence imaging appli-
cations. The Luther-Ives condition does not handle this aspect very
well, because it deforms the curves in the visible part to compensate
for the IR sensitivity.

Adding multiband filters to the sensor causes additional errors. The
sharp gaps between filters and the blocking regions with no sensitiv-
ity in any of the channels result in a higher Luther error. As the rms
error is minimized, the Luther sensitivity is matched as close as possi-
ble to the color matching functions. The algorithm cannot compensate
for small wavelength gaps in the sensitivity for example by increasing
the sensitivity in the vicinity. Such a strategy is supposed to perform
well because reflectivity spectra of colors are spectrally smooth and
are not sensitive to small spectral gaps.

A thought experiment demonstrates the issue: Assuming that a sen-
sor would have sensitivity curves corresponding exactly to the color
matching functions but at every second nm the sensitivity is zero. So,
approximately half of the light is transmitted, but the color response
of the sensor is supposed to match to the response of the color match-
ing functions because reflectivities are usually very wide compared
to 1 nm. On the contrary, the Luther error would be big, because ev-
ery second wavelength value matches perfect or completely deviates.
Multiband filters with sharp edges face this problem.

Therefore, I would like to conclude that the Luther-Ives condition,
which is a widespread criterion to evaluate the quality of color sen-
sors, is not sufficient to describe the performance of systems with
sharp edges of the spectral sensitivity.

To get a more realistic evaluation of the color imaging performance
of the system, the system is evaluated regarding perceptual differ-
ences instead of sensitivity differences in the next section. For this
analysis, the illumination needs to be specified and is therefore no
more a pure evaluation of the sensitivity itself.

The Luther-Ives analysis showed that the error of the system is at
the higher end compared to commercial sensors, but still acceptable.
As a big part of the error originates from sharp wavelength drops, re-
sults will be perceived better than expected from the following anal-
ysis.

5.2.2 Color imaging quality with Munsell colors

This section develops a linear correction approach by optimizing the
color representation as perceived by the human eye for a fixed set of
colors.

So far, color correction was performed by minimizing at spectral
sensitivity deviations as proposed by Luther and Ives [123, 173, 174].
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However, the Luther error δ is not suitable to characterize color imag-
ing systems with sharp spectral edges in the sensitivity curves as
discussed in Section 5.2.1.3.

Alternatively, the parameters for the linear transformation can be
estimated to obtain best perceptual performance. Therefore, the set
of parameters is chosen so that the corrected colors of the system
are perceived as similar as possible to the colors as perceived by the
human eye under D65 illumination as similar as possible.

This requires specifying a metric measuring color differences. In
this work the elaborate and complex metric CIEDE2000 ∆E00 is used.
It aims at reporting small color differences as perceived by the eye and
has been sequentially developed from CIEDE74 and CIEDE96 [190].
CIEDE2000 was also chosen because it has been extensively validated
and is used widely in the scientific community. Even though some
issues remain, an overall acceptable performance is guaranteed.

The hypothesis is that the perceived color difference is not as big
as with the Luther-Ives condition, because the sharp spectral edges
in the system sensitivity do not cause strong perceptual effects due
to smooth reflectance spectra. The Luther-Ives criterion does not re-
quire any knowledge for the illumination light source and is therefore
universal.

In contrast, the illuminant spectra of medical imaging systems are
well-known as it is defined by the manufacturer supplied light source.
Therefore, the flexibility to account for unknown light sources is not
necessary. The known light spectra are required to ensure knowledge
of the white point for color transformations.

For the analysis, the color signal of the used sensor and configura-
tions of it are simulated for standardized daylight illumination CIE
D65 and a set of reflectivity spectra representing 1269 Munsell colors.

5.2.2.1 Methods
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Figure 5.5: Illumination and reflectivity and color matching function spectra.
A) Spectral power distribution of D65 daylight. B) Reflectivity
spectra of the Munsell colors � 2.5R 6/10; � 5YR 6/10; � 5B
4/6; � 10GY 7/1; � 5RP 5/12. C) Color matching functions x,
y and z.
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Measured reflectivity spectra r(t, λ) of the 1269 matt Munsell col-
ors t with t = 1, . . . , 1269 are obtained from the ”Color Research
Laboratory of the University of Eastern Finland” [191] from 380 nm
to 780 nm with a spacing of 1 nm. If necessary, reflectivity spectra
r(t, λ) are extrapolated using the respective nearest neighbor assum-
ing smooth reflectivity curves.

The reflectivities are averaged over the numerical bins ranging from
380 nm to 780 nm with a spacing of 5 nm in the same way as the
sensitivities (see Section 5.2.1.1 for a detailed description).

Illuminant l spectra L(l, λ) for D65 daylight and equal energy illu-
minant A are provided by the CIE [192]. The spectrum of the halogen
light source was obtained from the Rochester Institute of Technology
[193].

The color matching functions seye(c, λ) are described in Equation 5.14

and Figure 5.5C.
The response Beye(l, t, c) of the human eye in CIE XZY color space

with c ∈ {x, y, z} for Munsell colors t with reflectivities r(t, λ) illumi-
nated by L( l, λ) is calculated as

Beye(l, t, c) = k ·
∫ 782.5 nm

λ=377.5 nm
L( l, λ) · r(t, λ) · seye(c, λ) dλ (5.17)

with

k =
∫ 782.5 nm

λ=377.5 nm
L( l, λ) · seye(2, λ) dλ. (5.18)

The sensor response AS(l, t, c) to the Munsell colors t illuminated
with light l is computed as

AS(l, t, c) = k ·
∫ 782.5 nm

λ=377.5 nm
L(l, λ) · r(t, λ) · sS(c, λ) dλ. (5.19)

This sensor signal is transformed from sensor color space to XYZ
color space using the color correction matrix mM

BS(l, t, c) = ∑
cS

mM(c, cS) · AS(l, t, cS). (5.20)

Each illumination spectrum may require a different color correction
matrix mM for optimal performance. Consequently, the matrix mM

may depend on the illumination.
The signal of the color tiles is then transformed to L*a*b* color

space with c ∈ {L∗, a∗, b∗} as

Beye(l, t, c)
D65−−→ Ceye(l, t, c). (5.21)

using D65 illumination as the white point. This transformation from
XYZ to L*a*b* color space was done using the xyz2lab Matlab func-
tion [174, 188][p. 13, pp. 209–210]. The series of transformations can
be schematically written as

AS(l, t, cS)
mM−−→ BS(l, t, c)

D65−−→ CS(l, t, c). (5.22)
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The best correction matrix mM is estimated by minimizing the aver-
age error ∆E00 for each detection scenario.

The average color difference for nt Munsell colors between the cor-
rected colors obtained by the camera and the color seen by the human
eye (under D65 illumination) is calculated as

∆E00 =
1
nt
·

nt

∑
t=1

∆E00

(
CS(l, t, c), Ceye(D65, t, c)

)
. (5.23)

The best color correction matrix mM for all Munsell color targets is
calculated by minimizing the average color difference

arg min
mM

[
1
nt
·

nt

∑
t=1

∆E00

(
AS(c, t)

mM ,D65−−−−→ CS(c, t), Ceye(c, t)
)]

. (5.24)

The optimization is implemented using the Matlab predefined fminunc

function.
The starting value of mM for the local optimization is taken as

mM0 =

1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1

 (5.25)

in case of six sensor channels and

mM0 =

1 0 0
0 1 0
0 0 1

 (5.26)

in case of 3 sensor channels.
The Matlab optimization function fminunc with standard parame-

ters is used because of the unconstrained and multivariable nature of
optimization problem. As no Hessian matrix of the fitness function is
directly supplied to the algorithm, the quasi-newton algorithm with
standard parameters is used.

The sensitivity of a sensor being corrected with the optimized ma-
trix mt on basis of the Munsell tiles is calculated as

s t,s(ceye, λ) = ∑
cs

mM(ceye, cs) · ss(cs, λ). (5.27)

5.2.2.2 Results

The error ∆E00 for each of the Munsell colors is calculated using
the optimized correction matrix mM for each of the systems. The
boxplot for all Munsell colors in Figure 5.7 shows a statistical analysis
of the error ∆E00 and Table 5.2 reports the statistical properties mean,
median, minimum, maximum, 5% and 95% quantile. Additionally,
the exit flag of the optimization algorithm fminunc is provided.
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Table 5.2: Statistical analysis reporting the mean, median, minimum, maxi-
mum, 5% quantile and 95% quantile of the color error ∆E00 for the
1269 Munsell colors for the different imaging systems using CIE
D65 illumination after optimization. Exit reasons for the optimiza-
tion: 0: number of function evaluations or iterations exceeded a
threshold; 1: gradient was smaller than a threshold; 5: predicted
change of the fitness function is smaller than a threshold.

mean median min max 5% q. 95% q. exit

CIS2521 1.20 0.84 0.03 6.61 0.20 3.69 5

CIS2521 IR 1.61 1.10 0.06 19.32 0.35 4.52 5

System 0.75 0.47 0.02 11.82 0.15 2.43 0

S1+S2 2.15 1.30 0.06 16.23 0.38 7.06 1

S1 4.05 3.31 0.12 18.80 0.89 9.48 5

S2 1.28 0.92 0.09 12.94 0.31 3.52 0

S1 S2
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Figure 5.6: Reporting of optimized mM as Munsell corrected sensitivity
spectra sM(ceye, λ) for the CIS2521, CIS2521 IR sensor, the dual
sensor system, S1+S2 and the individual sensors S1 and S2 dis-
played as solid lines. The corresponding ideal color matching
function x, y and z are displayed as dotted lines, the corrected
Luther spectra sL,S(ceye, λ) are displayed as dashed lines. Chan-
nels: � red, � green and � blue.

For all system configurations, the error ∆E00 of the optimized cor-
rection matrix is smaller than the error ∆E00 of the Luther corrected
colors (see Figure 5.7). The system performs best in terms of mean
and median error even though it has sensitivity in the IR and spec-
tral gaps. The conventional sensor CIS2521 performs better than the
sensor with IR sensitivity CIS2521 IR, because signal in the IR can
only lead to altered color signals. The combined sensitivity S1+S2
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A B

Figure 5.7: Boxplot of ∆E00 for a set of Munsell colors of different sen-
sor configurations and correcting A) by using the Luther-Ives
criterion or B) by optimizing ∆E00. The different sensor config-
urations are the pure sensor CIS2521, the IR extended version
CIS2521 IR, the realized six channels system, the addition of the
channels of S1 and S2 sensitivity per channel and the two indi-
vidual sensitivities of S1 and S2 with the emission filters.

has on average a higher error than the sensor itself and than the IR
extended version. This sensor demonstrates that IR sensitivity and
a band structure with only three channels does not result in a good
color reproduction. Both sensors of the system S1 and S2 individually
perform very poor compared to the other configurations.

Munsell sensitivities are shown in Figure 5.6 to represent the best
estimated color correction matrices mM. These Munsell sensitivities
s t, s(ceye, λ) in general follow the color matching functions better than
the curves corrected with the Luther-Ives criterion. For the sensors
CIS2521 and CIS2521 IR the differences are minor. For the system
and scenario S1+S2, the Munsell sensitivities are higher if spectral
gaps are close and compensate for the gaps in the vicinity. Both single
sensor systems S1 and S2 compensate the big spectral gaps with zero
sensitivity by increasing the sensitivity in the close by bands so that
the brightness matches.

No errors are specified for the CIEDE2000 results, because neither
sensor sensitivity spectra nor illumination spectra or Munsell colors
are provided with an error. The presented accuracy of the results is
chosen to allow identification of differences between the scenarios,
but is not associated with an error calculation.

5.2.2.3 Discussion

For all the investigated sensor systems, the color correction using
the estimated Munsell matrix mM results on average in a perceived
smaller color deviation than correcting using the Luther matrix mL.

As the illuminant has been fixed to D65 daylight, the correction
matrix only holds for this illuminant. In contrast, the Luther matrix
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mL is independent of the used illuminant but the error ∆E00 depends
on the used illuminant. For intraoperative imaging the illuminant is
well-known so this restriction is not relevant, but each illumination
requires its own Munsell matrix mM.

The good match of Munsell spectra and Luther spectra for CIS2521

and CIS2521 IR shows that for smooth reflectivity spectra, the Luther-
Ives criterion and estimated optimal correction matrices for visual
perception of Munsell tiles both perform well. However, the analysis
also shows that the system performs way better estimating the Mun-
sell matrix mM because the band structure with sharp edges is not
handled well by the Luther-Ives criterion.

Jiang et al. report the color correction error CIE ∆E00 for 28 com-
mercially available digital color camera sensors correcting with the
Luther-Ives criterion ranging between approximately ∆E00 ≈ 1.5 and
∆E00 ≈ 15 [189]. Valazques-Corral et al. present two different color
correction algorithms to find the best correction matrix for a set of
37 sensors relying on least squares optimization or alternatively on a
spherical sampling technique. The reported error CIE ∆E00 ranges be-
tween ∆E00 ≈ 1.1 and ∆E00 ≈ 7.3 [194]. Thus, our imaging system is
on average better than any of the presented sensors with ∆E00 = 0.75.
However, all of the presented results by Valazques-Corral et al. and
Jiang et al. do not fix the illumination as done in this work. Also, all
the presented commercially available sensors only have 3 channels
whereas the dual sensor system has 6 channels resulting in 18 pa-
rameters to be estimated instead of 9. More parameters in a model
usually lead to better results.

The dataset of 1269 Munsell color reflectivity spectra was used for
both, optimization to obtain the best mM and also for the evaluation
of ∆E00. In general, this can be problematic as the correction might
just be good for the sample it is optimized for but not for other colors.
As the number of samples (1269 Munsell colors) exceeds the number
of parameters (max. 18 matrix entries) by far and because the Munsell
colors are distributed equally over the entire color space, this is not
expected to have a strong influence.

The color correction can be further specialized for medical applica-
tions by selecting a set of medically relevant reflectivity spectra for
the optimization, for example of human organs and tissue. Alterna-
tively, the medically relevant colors in the set of Munsell colors can
be given a higher weight in the optimization.

The method matches colors detected by the system as close as pos-
sible to the perceived colors by the human eye under D65 daylight,
because this is the illumination under which humans are used to
perceive and interpret colors. Alternatively, the detected color values
could be matched to the perceived value under a different illumina-
tion, for example surgical light illumination. It can be argued that
surgeons are not used to seeing organs under daylight, because sur-
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gical theaters often do not have windows but are instead equipped
with strong artificial illumination. Alternatively, the color difference
between certain tissue types can be maximized by finding a specific il-
lumination scenario [195–197]. Though, this alters the known natural
color perception which is a big obstacle for the clinical introduction.
Olympus introduced narrow band imaging, which modifies the color
appearance to highlight superficial versus deeper blood vessels for
example in bladder cystoscopy [198]. In this work, the color repro-
duction is tried to be as close as possible to the human perception.
Future work can investigate the possibility to highlight certain struc-
tures using a modified algorithm.

The result of the local optimization algorithm fminunc generally
depends on the starting point. Choosing an (extended) unity matrix
is intuitive, but different starting values may lead to better results.
The algorithm terminated for various reasons (see Table 5.2). For the
system, a computational limit was exceeded. This means that no local
minima was reached yet and it is very likely that more computational
time would lead to a better result. All the reported results show that
the systems are at least that good, but better color correction with
another Munsell matrix mM might as well be possible.

The sensor signals are transformed into CIE XYZ color space using
a linear matrix transformation. Alternatively, a nonlinear transforma-
tion could be used for better results [184, 185]. However, the linear
approach used here still remains very popular also because the trans-
formation must be applied to every image in the video stream and
linear transformations can be easily implemented.

The CIE ∆E00 formula is an elaborate measure for color differences.
However, it was derived from multiple sets of experimentally deter-
mined perceived color differences. As such experiments depend on
the subjective perception of the set of test persons, there have been
scientific arguments about the exact conditions for which this data
can be used [123, p. 53]. Additionally, some effects were observed
which have not been considered in the development of ∆E00 [123,
188]. Thus, novel developments of improved color spaces and color
differences formulas are an ongoing area of research [188, pp. 66]
and can be used in future to further improve the calculation of ∆E00.

The average difference of the corrected system is below ∆E00 = 1.5,
which is reported as the limit for a slightly perceivable color differ-
ence. Thus, the average color reproduction of the system can be val-
ued as very good.

To summarize, the above analysis has shown that a linear color
correction matrix which is found by minimizing the perceived color
difference error ∆E00 produces superior results compared to finding
the matrix using the Luther-Ives criterion for the developed dual sen-
sor system. The proposed correction algorithm matches the corrected
colors as close as possible to the perceptual appearance for the hu-
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man eye under D65 daylight because this is the way humans identify
colors.

5.2.3 Color correction for variable illumination

So far, the performance of the system to reproduce colors accurately
was done using the Luther-Ives criterion to match sensitivity curves
and alternatively simulated for a set of Munsell colors. To simulate
the response of the system for Munsell colors, the illumination is spec-
ified as the standardized CIE D65 daylight spectrum [123, 199, p. 34].
This section will investigate the system’s ability to record and accu-
rately render colors for illumination scenarios other than CIE D65.
This is necessary because the illumination in surgical applications
will be different from daylight. The selected illumination scenarios
are an incandescent lamp (CIE A), a white LED light and a set of
multiband illuminations. For all scenarios, the colors are corrected to
ideally match the impression of human eye under normal daylight
(CIE D65), because all people are accustomed to the impression of
colors under daylight.

First, the color rendering of the system with respect to an incan-
descent lamp (CIE A) and to a white LED are simulated and the best
color correction matrix with minimal ∆E00 is calculated for each of
the two scenarios. This evaluates the usability of the designed system
with two common types of light sources: halogen lights and more
modern white LED illumination systems.

Though, for fluorescence imaging the imaging system combines
best with multiband LED sources because excitation of different flu-
orophores can be balanced. This leads to improved SNR of the in-
dividual fluorescence components. However, it requires a different
color correction matrix with good color reproduction for each indi-
vidual combination of LED light intensities. To investigate the depen-
dency from the imaging setup, a set of different multiband illumi-
nation spectra is created. For each illumination, an estimate for the
correction matrix is computed and evaluated regarding performance.

5.2.3.1 Methods

The mathematical calculations of the color signals of the system and
the eye, the correction algorithm and the perceived color difference
∆E00 are described in detail in Section 5.2.2.1.

The spectra of CIE D65 and CIE A light are obtained from the
CIE [192] and the illumination spectrum of the white LED source
CLS9000 MV-W (ZETT OPTICS GmbH, Braunschweig, Germany) is
obtained from the manufacturer. For the optimization, the spectra are
interpolated on a finite grid with 5 nm bins ranging from 377.5 nm to
782.5 nm.
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The transmission spectra of the multiband filter pair of the system
as described in Section 4.2.2 is used to create a set of multi band
illuminants. The band edge wavelengths are fixed to the 10% trans-
mission limit of the filter bands. The last excitation band has no trans-
mission in any of the two filters, therefore it is not considered. The
light will never fall into any of the sensors. The highest wavelength
emission band is not required to excite fluorescent dyes and is there-
fore not used for further analysis. In the remaining 8 bands, a flat
illumination power spectral density was assumed. All 6561 combina-
tions of 3 relative power levels at 1

3 , 2
3 or 1 per band are taken into

account as displayed in Figure 5.8C. For each illuminant an estimate
for the color correction matrix is obtained by minimizing ∆E00. For
the first illuminant, the maximum number of function evaluations
of the fminunc algorithm is set to 2000 and starting with the matrix
shown in Equation 5.25. For each of the other illuminants, the best
estimation of the Munsell matrix of the previous illuminant is used
as starting parameter. The maximum number of function evaluations
is set to 1000 for each optimization.

5.2.3.2 Results

Halogen and white-LED illumination

Statistical parameters for the best estimated Munsell matrix are listed
in Table 5.3. The optimization terminated in all three scenarios be-
cause the number of function evaluations or iterations exceeded the
standard threshold. For all three illuminants the average color differ-
ence ∆E00 is below one and the 95% quantile is below 3. For the white
LED illumination, the 95% quantile is even below 1. The boxplot in
Figure 5.8B displays that the error ∆E00 for the best estimated color
correction is better for LED illumination than for CIE D65 illumina-
tion. In contrast, CIE A illumination does not perform not as good as
CIE D65 illumination.

As reasoned before, no errors can be specified for the CIEDE2000

results, because neither sensor sensitivity spectra nor illumination
spectra or Munsell colors are provided with an error. The presented
accuracy of the results is chosen to allow identification of differences
between the scenarios, but is not associated with an error calculation.

Multi-LED illumination

For the multi-LED scenario, the algorithm terminated for all approaches
because the maximum number of iterations or the maximum number
of function evaluations was exceeded. The average error ∆E00 ranges
from ∆E00 = 0.575 to ∆E00 = 1.782. Figure 5.8 shows a histogram of
all ∆E00 for the 6561 illuminants.
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Figure 5.8: Optimizing color correction for Munsell colors with variable illu-
mination. A) Normalized illumination spectra of CIE D65 (aver-
age daylight), CIE A (incandescent lamp as blackbody radiator
at 2856K) and of a white LED lamp. Spectra are in units of power
spectral density. B) Boxplot of the color reproduction error CIE
∆E00 for the set of Munsell colors for illumination with CIE D65,
CIE A and LED light. C) Illumination spectra when illuminating
with multiband light matching the band structure of the emission
filters. All possible combinations of the 8 individual band inten-
sities at 1/3, 2/3 or 1 are schematically illustrated. D) Histogram
of the best optimization results for each of the 6561 multiband
illumination scenarios.

Table 5.3: Statistical evaluation of the mean, median, minimum, maximum,
5% quantile and 95% quantile of ∆E00 of the Munsell colors after
optimization for the different illumination scenarios. The mean
is used as Figure of Merit for the optimization. Exit reasons for
the optimization algorithm: 0 number of function evaluations or
iterations exceeded the standard threshold.

illumination mean median min max 5% q. 95% q. exit

CIE D65 0.75 0.47 0.02 11.82 0.15 2.43 0

CIE A 0.96 0.66 0.04 11.26 0.17 2.70 0

LED 0.29 0.21 0.01 4.85 0.06 0.74 0

5.2.3.3 Discussion

Halogen and white-LED illumination

For CIE D65 illumination and CIE A illumination the color correction
is on average good, because for most colors a difference ∆E00 < 1
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is observed. In the worst case for the LED illumination ∆E00 = 4.85,
so the deviation for this color is between noticeable and apprecia-
ble [134]. The worst corrected color for CIE D65 and CIE A is above
∆E00 = 10, so the perception of the color difference for that color is
between appreciable and much [134]. Such interpretations must be
taken with caution because color perception depends on the individ-
ual observer.

Section 5.2.2 shows that detecting light in the IR is always problem-
atic for color imaging in the visible range. The detected light alters
color perception because the color matching functions x, y and z
have almost no sensitivity in the IR above 700 nm. This may explain
the good color reproduction performance of the LED illumination
which has hardly any intensity above 700 nm. In this case the highest
wavelength detection band of sensor S1 will not receive any light. In
contrast, the highest band detects a relatively big amount of light for
CIE D65 and CIE A illumination as shown in Figure 5.8. The white
LED has a color temperature of approx. 6200K, whereas medically
used LED lights tend to have lower color temperature around 4500K.
The difference in color temperature is usually achieved by balancing
the two peak intensities of the LED illumination shown in Figure 5.8
differently. For lower color temperature the spectrum of LEDs has
typically the same spectral range and thus also only little intensity
above 700 nm.

The CIE A illuminant represents an incandescent lamp which can
be close to the illumination of a halogen light source. Commercial
light sources often contain additional elements causing strong spec-
tral lines. These may add a high amount of light intensity at a single
wavelength and seriously deteriorate the color reproduction.

As discussed before, the optimization algorithm fminunc is looking
for the closest local minimum. It is therefore always possible that the
extended unity matrix as starting point leads to a better minimum for
the LED illumination than for the D65 or the A illumination.

Multi-LED illumination

The previous chapter has shown that applying the Luther-Ives crite-
rion to the designed multispectral imaging system does not lead to
satisfying results. It is better to calculate the color correction matrix
for each illuminant individually on basis of perceptual color differ-
ences, but this requires specifying the illumination. In contrast, flu-
orescence imaging performs best with multiband illumination for
which the individual light intensities can be freely adjusted. There-
fore, the set of 6561 illumination scenarios was successfully tested.

The obtained results for any of the tested illuminations are in lower
range for published commercial color sensors, but these use different
correction approaches [189, 194].
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The permutations of multiband light intensities are very coarse and
can be made finer on the cost of computational power. It is beneficial
that all the bands have at least some reasonable light intensity. This
ensures that no channel is required to be extremely amplified in the
transformation and thus noisy color images after color correction are
avoided. However, it restricts the flexibility needed for certain fluores-
cence imaging scenarios. Very low light intensities of the illumination
in a band may lead to noisy images after color correction. Thus, the
evaluation performed here gives an idea about the potential of color
correction for reasonable scenarios, for extreme scenarios color cor-
rection might be deteriorated or noisy. However, if such scenarios are
needed by all means for fluorescence imaging, a third phase can be
introduced dedicated only to color imaging. For such a phase, the
light intensity of the individual bands can be optimized for best color
reproduction.

In reality, bigger spectral security gaps are required, and each LED
has its specific spectral profile. Thus, the results give an estimate of
the possible color reproduction of the system. For clinical systems
and use-cases, the specific estimate of mM must be computed and
∆E00 must be evaluated.

Moreover, the same aspects as previously discussed in Section 5.2.2.3
apply for the optimization itself. As all optimization scenarios in this
section terminated because of a threshold in the number of iterations
and function evaluations, higher thresholds promise to result in bet-
ter correction matrices. However, this demands more computational
power. In general, fminunc is a local optimization algorithm and it
is possible that the algorithm is running into a local minimum and
misses the absolute minimum. However, as the results are superior
compared to the Luther correction, the optimization improved the
color correction and can be used in a real scenario. Though, a better
color correction matrix may exist.

Conclusion

All in all, this section has demonstrated that color correction for the
novel dual sensor imaging system performs well with light sources
which are commonly used for medical illumination: CIE A illumina-
tion and LED illumination. Additionally, it is implied by varying the
multiband illumination intensities that the system can reproduce col-
ors independent of the multiband illumination, as long as it is within
boundaries and each band has at least some minimal intensity.
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5.3 fluorescence imaging

This section analyzes the system performance regarding fluorescence
imaging of up to three fluorescent dyes as specified in the design
requirements.

First, phantom experiments of the dyes Atto532, Atto565 and Atto610

with strong overlap of the emission spectra are presented. These ex-
periments demonstrate the strong separation power in unmixing dyes.

Second, the performance of single sensor systems is evaluated. For
medical applications like endoscopy, available space to fit the sensor
is restricted and thus using a single sensor might be desirable. In this
part, the same phantom scenario as before is analyzed on basis of
a single sensor system. Additionally, phantoms containing the dyes
Atto488, Atto655 and Atto740 are imaged. These experiments show
that propagation of noise in unmixing can deteriorate the image qual-
ity.

Concepts, experiments, the underlying data set and results which
are presented in this section have been published in the peer reviewed
publications [166, 167] by Dimitriadis et al..

5.3.1 Fluorescence imaging and unmixing

This section describes imaging experiments to evaluate the fluores-
cence imaging performance of the developed dual sensor approach.
Fluorescent phantoms with strongly overlapping spectra are prepared
and imaged. The data is successfully unmixed into the individual flu-
orescent dye components.

5.3.1.1 Methods

Phantom preparation

Table 5.4: Peak absorption (λabs), peak fluorescence (λfl) and dye concentra-
tions, intralipid and agar content in vials I to VI. Adapted with
with permission from ref [167], OSA.

λabs λfl I II III IV V VI
nm nm µM µM µM µM µM µM

Atto532 532 552 2.5 2.5 - - - 2.5
Atto565 565 590 - 2.5 2.5 2.5 - -
Atto610 610 633 - - - 2.5 2.5 2.5

intralipid [%] 0.93 0.90 0.93 0.90 0.93 0.90

agar [mg] 5.6 5.4 5.6 5.4 5.6 5.4

Phantoms containing the fluorescent dyes Atto532, Atto565, Atto610

(all Atto-Tec GmbH, Siegen, Germany) are prepared. The peak emis-
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Figure 5.9: A) Arrangement of the phantoms containing the fluorescent dyes
� Atto532, � Atto565 and � Atto610. Solid vials contain
only one dye, the hatched vials contain two dyes each. B) Excita-
tion spectra (dashed lines) and emission spectra (solid lines) of
the dyes show strong overlap. Colored boxes on top indicate the
filter bands of � F1 and � F2. Adapted with with permission
from ref [167], OSA.

sion wavelengths of the three dyes lie within less than 85 nm. Excita-
tion and emission spectra are displayed in Figure 5.9B. Six vials (I to
VI) each with a total volume of 500 µl containing different mixtures
of the dyes with Intralipid as scatterer and agar are prepared. The
agar (Sigma Aldrich, Germany) is dissolved in pure water and boiled.
When cooling down, Intralipid (Sigma Aldrich, Germany) and flu-
orescent dye solutions are added. To homogenize the solution, the
final content is mixed and vortexed while cooling down. Table 5.4
provides a detailed description of the final concentrations for each of
the phantom vials.

Imaging

Images of the phantom are recorded with the presented imaging sys-
tem as described in Section 4.2. The vials are arranged in a circular
holder as displayed in Figure 5.9A. Fluorescence is excited in two
phases using two multispectral LED light sources (LedHub, Omicron-
Laserage Laserprodukte GmbH, Germany). In phase one, LED mod-
ules with peak wavelengths at 455 nm, 550 nm and 625 nm illuminate
the sample, while in phase two LED modules with peak wavelengths
at 470 nm, 550 nm and 655 nm illuminate the sample. The excitation
light of each module is spectrally filtered so that the light cannot pass
to the sensor imaging fluorescence light in that phase.

For each of the two excitation scenarios, 100 consecutive images
Y (ξ) with an integration time of 50 ms are recorded.
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Image processing

The raw images are (1) background subtracted, (2) demosaiced, (3) in-
tensity corrected with an electron conversion factor and (4) registered
to obtain an image Y (ξ) for further processing:

1. Background subtraction: the mean over 100 dark camera images
is subtracted from all the recorded images.

2. Debayering: images are debayered here by collapsing the four
neighboring pixels with the spectral RGGB filters into one pixel
with four spectral channels. The spatial resolution is reduced
by a factor of two in each dimension and no spatial averaging
is done.

3. Conversion factor: the intensity of the digital raw image is pro-
portional to the number of electrons measured by A/D con-
verter of the sensor. The number of electrons is the Poisson dis-
tributed quantum mechanical property which determines the
shot noise [15, 200]. The conversion factor is obtained from the
camera manufacturer.

4. Registration: test images with geometrical markers are recorded
with both cameras and an affine transformation matrix is com-
puted. Nearest neighbor image classification is used to maintain
pixel intensities and to avoid spatial smoothing.

Averaging in the debayering process and registration is avoided for
this analysis to ensure that the noise characteristics of the images are
not altered.

Spectral signatures κ are obtained by fitting recorded averaged
fluorescence data Y (ξ) of pure emission signal as described in Sec-
tion A.1.2. Images Y i(ξ) are unmixed to fluorescence component im-
ages X i(ξ) as described in Section A.1.

5.3.1.2 Results

Fit results for the signatures of the dyes Atto532, Atto565 and Atto610

are presented in Table 5.5. The splitting ratio of the signatures shows
that Atto565 is mainly detected by sensor S1 while Atto532 and Atto610

are detected mainly by sensor S2. The signature values for G1 and G1*
as well as for G2 and G2* are supposed to be identical. However, the
deviation between these channels is one order 1 for signatures nor-
malized to 100. To estimate the error of the measurement, bootstrap-
ping for 95% confidence bounds obtained by 1000 repetitions was
used. The estimated errors were below 0.1 for the individual compo-
nents. This shows that the statistical bootstrapping error is too small
to describe the actual error of the measurement.

The »monochrome« fluorescence image Y i(ξ) which is presented
in Figure 5.10A displays the sum of the electrons which have been
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Table 5.5: Estimates of the spectral signatures of the dyes Atto532, Atto565

and Atto610 normalized to 100.

Channel κAtto532 κAtto565 κAtto610

R1 2.6 38.6 7.9
G1 1.3 14.4 2.6
G1* 1.2 14.4 2.8
B1 0.7 8.2 2.2
R2 8.7 7.1 49.1
G2 38.3 7.5 12.7
G2* 38.8 7.6 13.5
B2 8.4 2.3 9.3
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Figure 5.10: Raw fluorescence image of the phantom containing mixtures
of the dyes Atto532, Atto565 and Atto610. A) Monochrome im-
age as sum over all spectral channels, B) individual channel
intensities Y(c, ξ); channels G1* and G2* are not shown as they
correspond to G1 and G2. C) Unmixed fluorescence component
intensities X(c, ξ). All images are scaled from zero to the 0.9999

quantile of the data: A) monochrome: 5597; B) R1: 572; G1: 224;
B1: 145; R2: 846; G2: 2001; B2: 507; C) Atto532: 4780; Atto565:
1257; Atto610: 807. All subplots are based on the same underly-
ing data set as the respective plots in [167]. Adapted with with
permission from ref [167], OSA.

triggered per pixel in all spectral channels. It shows strongest inten-
sity for vial VI containing the dyes Atto532 and Atto610, the vial V
containing only Atto532 appears weakest. Images of the individual
channels confirm that most of the intensity of Atto565 is detected by
sensor S1, whereas most of the intensity of Atto532 and Atto610 is
detected by sensor S2.
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Unmixed fluorescent component images (Figure 5.10C) for each
fluorescent dye shows strong signal at the position of vials containing
that dye, while no intensity is visible at positions where the respective
dye is not contained in the vial. Thus, no crosstalk is visible. Each dye
is present in three phantom vials in the same concentration. Though,
the unmixed component intensities of the same dye vary.

5.3.1.3 Discussion

The deviation of the spectral signature channels G1 and G1* as well as
G2 and G2* must be due to systematic errors, because the statistical
error is approximately one order of magnitude smaller. The system-
atic difference between the channels G and G* can be attributed to the
fact that the channels G and G* record signal at different locations. So,
if the sample signal shows some spatial intensity gradient over the se-
lected data, one of the channels will always record smaller signals
than the other. That intensity gradient might be due to a dye concen-
tration gradient, an intensity gradient in the excitation light, an inten-
sity gradient in the filter transmission, an optical transmission gradi-
ent due to vignetting or due to the relative imaging angle with the
object surface. Strong gradient effect could be reduced by interpolat-
ing the signal when debayering. Alternatively, different transmission
characteristics of the microfilter pattern for different locations on the
sensor are possible. Overall, the systematic error between the G and
the G* channels is around 1%, which proves to be sufficiently small
not to cause observable unmixing artifacts. To obtain more robust dye
signatures, images of different scenarios (different phantoms, differ-
ent location, etc. ) can be recorded.

The fluorescence images are unmixed successfully as no artifacts
or intensity crosstalk is visible. The difference in intensity between
different vials containing the same dye concentration in the mixture
can be explained by the positioning of the individual vials. Neither
the illumination nor the surface of the vials is orthogonal to the im-
age plane. Thus, different vials will be illuminated and imaged at a
different angle explain variations of the recorded intensity. This effect
does not interfere with the unmixing, but it shows that detected flu-
orescence intensities must not be translated directly to dye phantom
concentrations.

5.3.1.4 Conclusion

The experiments of recorded phantoms containing dye mixtures dem-
onstrate that the system can unmix data of three fluorescent dyes with
strongly overlapping spectra without artifacts or crosstalk.

As expected, unmixed component images also reveal that detected
intensity does not directly correspond to dye concentrations. Recent
advances allow to report dye concentrations in the field of view for
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neurosurgical applications [107]. Future work is needed to translate
the published normalization concepts to the system presented here.

5.3.2 Fluorescence unmixing with a single sensor systems

Detecting fluorescence with only one single sensor of the system has
advantages over using both sensors: miniaturized endoscopic sys-
tems can be implemented in confined space. Alternatively, the dual
sensor system can run with one phase only to avoid flickering and
movement artifacts.

Single sensor systems require the excitation and emission spectra
of the dyes to match the band structure of the filters. Also, separating
different dyes by unmixing relies only on the emission.

To experimentally investigate the effect of restricting the fluores-
cence recording to one single sensor, two experiments are performed.
First, the data recorded in Section 5.3 is evaluated using only the in-
formation of one of the sensors at a time. Second, experiments with
dyes whose emission spans over the VIS/NIR range are performed.
Both experiments have been published [166, 167].

5.3.2.1 Methods

The fluorescent data recorded in Section 5.3.1 with two sensors in
two phases is analyzed per sensor. The fluorescence image channels
R1, G1, G1* and B1 of sensor S1 are unmixed using these channels
of the spectral signatures. Analogously, fluorescence information of
sensor S2 is unmixed using only data and signature channels R2, G2,
G2* and B2. The data is otherwise handled as described in Section 5.3.
Angles between the spectral signatures κ1 and κ2 are defined by the
inner product 〈·, ·〉:

cos(α) =
〈κ1, κ2〉

〈κ1, κ1〉 · 〈κ2, κ2〉
. (5.28)

Transmission efficiencies η for a set of channels C are calculated on
basis of the spectral signatures (for the dual sensor system):

η(C) = 1

∑Nc
c=1 κ(c)

·∑
C

κ(c). (5.29)

Fluorescent phantoms of the dyes Atto488, Atto655 and Atto740 are
prepared diluting stock solutions of the respective dyes down (us-
ing ethanol and/or water depending on the dye solubility) to a final
concentration of 5 µm and 500 nm. The final solutions are filled into
vials VII, VIII and IX each with a volume of 500 ul and placed in the
imaging system as shown in Figure 5.11A. Dye concentrations and
fluorescence properties are summarized in Table 5.6. Fluorescence im-
ages are recorded with sensor S1. The dyes are excited by two filtered
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Figure 5.11: A) Arrangement of the phantoms containing the fluorescent
dyes � Atto488, � Atto655 and � Atto740. B) Excita-
tion spectra (dashed lines) and emission spectra (solid lines) of
the dyes ranging over the VIS/NIR spectral range. Bars on top
indicate the filter bands used for detection. Adapted with with
permission from ref [166], OSA.

multi LED light sources (pE-4000, CoolLED Ltd. , Andover, UK) with
peak emission at 490 nm, 550 nm, 660 nm and 740 nm.

The fluorescent images are background subtracted and debayered.
To obtain the spectral signatures of each dye, regions containing a
pure dye are manually selected in the intensity images Y (ξ). The se-
lected data of phantoms with a dye concentration of 5 uM and 500 nM
(not shown) is used to compute the spectral signature κ of each dye
as described in Section A.1.2. Subsequently, the raw fluorescence im-
ages Y (ξ) are unmixed to fluorescence component images X (ξ) using
the spectral signatures as described in Section A.1. Gaussian image
filtering is performed with the MATLAB pre-implemented function
imgaussfilt.

Table 5.6: Peak absorption (λabs), peak fluorescence (λfl) and dye concentra-
tions of Atto488, Atto655 and Atto740 in vials VII, VIII and IX.

λabs λfl VII VIII IX
nm nm µM µM µM

Atto488 500 520 5 - -
Atto655 663 680 - 5 -
Atto740 743 763 - - 5

5.3.2.2 Results

Fluorescence intensity images of Atto532, Atto565 and Atto610 as if
recorded with a single sensor are presented in Figure 5.12. All images
appear very noisy in both dark and bright fluorescence intensity re-
gions. It also seems that unmixing fails because all vials are visible
in all component images, even in the ones that should not show any
signal appearing as a salt and pepper noise. The line profiles in Fig-
ure 5.12 C, D and E show that intensity fluctuations in the component
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Figure 5.12: Unmixed fluorescence intensity of Atto532, Atto565 and
Atto610 using only A) sensor S1 or B) sensor S2. All graphs
are scaled identically to Figure 5.10C. C), D) and E) show inten-
sity profiles of Atto532, Atto565 and Atto610 along the white
circular profile of S1 as in A (green), of S2 as in B (yellow) and
S1+S2 (black) as in Figure 5.10C. Subfigures A) and B) are based
on the same underlying data set as the respective plots in [167].
Adapted with with permission from ref [167], OSA.

images are higher if fluorescence intensity is present in any compo-
nent compared to dark regions with low intensity for all components.
For several of the component intensities, the noise exceeds the ampli-
tude of the fluorescence intensity. Also, the noise from high intensity
regions of one component is spilled to the other components at that
region. This effect leads to ghost images which appear as unmixing ar-
tifacts. Overall, the SNR is dramatically decreased by unmixing with
signatures which are very close together in channel space.

Comparing the transmission efficiencies in Table 5.7 shows that
most photons emitted by Atto565 are detected by sensor S1, whereas
most photons originating from Atto532 and Atto610 are detected by
sensor S2. Thus, Atto565 can be unmixed from the other dyes based
on information gained in the two phases. Atto532 and Atto610 are
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Table 5.7: Comparison of single and dual sensor system: detection efficiency
and separation angles in channel space. Upper part: efficiency to
detect a photon in the respective system. Lower part: separation
angle between spectral signatures of the dyes in the dual sensor
system (S1 and S2) and the two single sensor systems (sensor S1

or sensor S2). Values are calculated from the spectral signatures
in Table 5.5. Adapted with with permission from ref [167], OSA.

S1 + S2 S1 S2

η(Atto532) 100% 6% 94%
η(Atto565) 100% 76% 24%
η(Atto610) 100% 15% 85%

](Atto532, Atto565) 71◦ 6◦ 24◦

](Atto532, Atto610) 59◦ 8◦ 59◦

](Atto565, Atto610) 67◦ 4◦ 35◦

both mainly detected by sensor S2 and good unmixing of these two
dyes is based on spectral emission information of sensor S2.

The angles in channels space between the three dyes recorded with
the two-sensor system are big enough to allow for good unmixing.
Comparing the angles with both single sensor systems shows that
the spectral emission information on sensor S1 results in very small
angles between the dye signatures. Sensor S2 shows that the angle
between Atto532 and Atto610 is sufficiently high to unmix these two
dyes on basis of the emission information. Angles between Atto532

and Atto610 for sensor S2 are smaller.
Raw fluorescence images of phantoms containing Atto488, Atto655

and Atto740 are shown in Figure 5.13A. Raw images of one single
acquisition can be successfully unmixed as shown in Figure 5.13B. In
each of the images, only one of the vials is supposed to show intensity.
Though, noisy ghost images of the vials containing another fluores-
cent dye are visible. These vanish after smoothing the images with a
4× 4 pixel Gaussian filter (see Figure 5.13C). Intensity profiles along
the white curve of the unmixed signal and the respective Gaussian
smoothed signal are plotted in Figure 5.13D, E and F. As expected,
unmixed signal shows little noise in dark regions on the background.
Locations with high intensity show higher noise in all components.
However, locations with low intensity in one channel and high in-
tensity in other channels also show high noise in the channel with
low intensity. At these locations, the noise is centered around zero
resulting in negative values for some pixels. In the intensity images
displayed in Figure 5.13C, the negative values are set to zero whereas
the positive values are displayed. This effect results in the noisy ghost
images appearing as unmixing artifacts. After applying the Gaussian
filter the effect of ghost images is reduced. The Gaussian filtered im-
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Figure 5.13: Unmixing of Atto488, Atto655 and Atto740. A) Raw images of
the sensor channels R, B and G. B) Unmixed intensity of the
three dyes Atto488, Atto655 and Attto740. C) Gaussian 4 × 4
filtered unmixed intensity. Adapted with permission from ref
[166], OSA. Intensity profile Y(ξ) of the dyes D) Atto488, E)
Atto655 and F) Atto740 along the white curve plotted in color
for the unmixed component intensities as in B) and plotted as
black curve for the Gaussian filtered curve as in C). Scaling: im-
ages are scaled between 0 and max, which is individually speci-
fied per image. Max values: A) R: 153, G: 172, B: 89; B) Atto488:
225, Atto655: 237, Atto740: 360; C) Atto488: 185, Atto655: 175,
Atto740: 206. Subfigures A) - C) are based on the same underly-
ing image data set as the corresponding plots in [166]. Adapted
with permission from ref [166], OSA.
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age and the respective line profiles hardly show ghost images or un-
mixing artifacts.

5.3.2.3 Discussion

The presented experimental results show that unmixing fluorescence
recorded with a single sensor works if the filter bands match the dye
emission and if the spectral signatures are separated well enough.
This is mostly guaranteed by selecting dyes with non-overlapping
emissions profiles.

Evaluating the dual sensor phantom experiments shows that if the
dye emission does not match the filter bands, as it is the case for sin-
gle sensor systems, the dyes cannot be successfully unmixed. Atto532

has the lowest photon detection ratio on sensor S1 which results in
an expected decrease in the SNR by a factor of 5 (due to 6% photon
detection ratio). However, the experimentally measured decrease in
SNR is orders of magnitude higher. Analyzing the angles between
the dyes for the different sensor systems shows that the two single
sensor systems have higher angles between the dyes and thus un-
mixing does not amplify the noise as much. Comparing angles for
the dual sensor system versus the single sensor systems translates in
comparing angles between 4D channel space and 8D channel space.
Here, it is also assumed that all sensors integrate for the same time.
Strictly speaking, the single sensor systems may integrate longer as
no fluorescence needs to be recorded in the second phase and thus
collect up to twice the number of photons. For a direct comparison
this is not feasible, but it allows a maximum increase in SNR of

√
2,

which is not a significant contribution in this analysis.
To summarize, the analysis shows in detail that the dual sensor

system does not only collect additional photons, but also increases
the separation between spectral signatures using the combination of
excitation and emission multiplexing.

The phantom experiments using Atto488, Atto655 and Atto740 show
that fluorescence data recorded with a single sensor can successfully
be unmixed. The dye emission is distributed over the entire VIS/NIR
range, but the dyes are chosen to match the filter bands. Noise is
spilled in the unmixing process between components. Applying a
Gaussian filter reduces ghost images of the unmixed images. The
sacrifice in spatial resolution appears acceptable as intra-operative
fluorescence data in biomedical applications usually does not exhibit
sharp edges due to tissue scattering, though it is visible in the images.

5.3.2.4 Conclusion

In this section, an imaging scenario using single sensor data is pre-
sented. Experimental data of three dyes (Atto488, Atto655 and Atto740)
is unmixed successfully. Unmixing artifacts originating from noise ap-
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pear as ghost images and can be eliminated to some extend by spatial
smoothing of the final unmixed images. In this scenario, the dye emis-
sion spectra range over the VIS/NIR, but they match the emission
filter bands.

In contrast, the dyes Atto532, Atto565 and Atto610 in the second
imaging scenario do not match the filter bands of neither of the two
single sensor systems. The overlapping emission profiles result in sim-
ilar spectral signatures. A detailed analysis comparing spectral signa-
tures between single and dual sensor systems reveals that the dual
sensor system using a combination of excitation and emission multi-
plexing is more flexible and has higher separation power.

Both scenarios show that noise in the unmixed fluorescence com-
ponent images may deteriorate the image quality. In extreme cases
the noise makes images useless, even though the raw fluorescence
images show sufficient fluorescence intensity. To further investigate
this effect, noise propagation in unmixing is investigated in detail in
Section 6.1.

All in all, single sensor systems show inferior unmixing perfor-
mance compared to dual sensor systems. However, if the spectral
characteristics of the dyes and the system match, the performance
of a single sensor system is acceptable. This is appealing for devices
such as chip on the tip endoscopes with constrained space available
for sensors.

5.4 optical performance analysis

The realized optical system which is described in detail in Section 4.2
is tested in this section whether it fulfills the requirements of Sec-
tion 3.1.6. First, the requirements regarding field of view (FOV) and
vignetting are checked. Second, the optical resolution and the con-
nected modulation transfer function of the optics are tested and com-
pared with the requirements. Both sections use raw data and results
published by Tobias Behr [175]. Finally, the free working distance and
the available numerical aperture are analyzed and discussed. This
analysis is purely based on specifications and theoretical considera-
tions.

5.4.1 Field of view and vignetting

The requirements for the imaging system are specified in Section 3.1.6
are set to have a FOV with a diameter of at least 5 cm and a resolution
of at least 1 MP. This section analyzes if these two conditions are
fulfilled by both sensors of the developed system. For unmixing and
color reproduction, homogeneous detection sensitivity is important.
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5.4.1.1 Methods

White raw reflectance image data for both imaging paths is reused
from the thesis of Tobias Behr [175]. The thesis contains further details
about the optical system, image acquisition and image processing. Af-
ter image acquisition, the raw images are debayered and a grayscale
image is computed by averaging the channels.
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Figure 5.14: Vignetting of the imaging system for sensor S1 (left side) and
sensor S2 (right side). Grayscale images of sensors A) S1 and B)
S2 scaled from zero (black) to the maximum value (white). The
drawn black contour lines indicate the 75% and 50% intensity
levels. The cross in the image center indicates the location of the
line profiles. C), D) Horizontal intensity line profile across the
FOV. E), F) Vertical line profile across the FOV. The upper plots
of C),D),E) and F) show the individually normalized intensity
profiles of the � blue, � green, � red channel and the � com-
bined average in arbitrary units. The individual profiles of the
different channels are vertically shifted. Below each intensity
plot, the relative ratio between the � red and the blue channel
and the relative ratio between the � green and blue channel are
displayed.
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The center of the FOV is determined finding the most inner 50%
intensity barriers on the line horizontal and vertical profiles at the
image center. The pixel line which is closest to the center of the two
50% barriers is selected for the line profiles.

The relative response of the red channel is computed dividing the
normalized intensities of the line profile of the red channel by the
blue channel per pixel. Analogously, the green channel intensity is
divided by the blue intensity per pixel.

Minimum and maximum pixels of the field of view are reported
for an intensity drop in the grayscale image to 75% and 50%. The
reported pixels correspond to the first pixel at which the intensity
drops below the limit. The determined FOV in pixels (px) is converted
to mm in the object plane using the minimal magnification of the
imaging lens assembly and the pixel size of 6.5 µm for both sensors.
The total magnification is calculated as the product of the individual
magnification factors

msystem = mobjective ·mzoom ·msensor (5.30)

with mobjective = 0.5, msensor = 0.63 and with variable magnification of
the zoom element mzoom = 0.57 . . . 3.6 the resulting magnification is

meff,min = 0.5 · 0.57 · 0.63 ≈ 0.18 (5.31)

meff,max = 0.5 · 3.6 · 0.63 ≈ 1.13. (5.32)

The individual magnification values are obtained from the manufac-
turer manual without error specification [201].

5.4.1.2 Results

Both grayscale images in Figure 5.14 A) and B) show a bright center
followed by a region which shows vignetting and is surrounded by
dark pixels because the sensor is bigger than the size of the image.
Besides, the contour lines of S1 at 75% of the maximum intensity are
blurred at the right top and the contour line does not form a circle.
Instead, it shows stronger vignetting at the upper right part of the
FOV. Similarly, the image on sensor S2 shows vignetting at the 75%
intensity contour on the right side.

Though, both images show patches with varying intensity in the
bright part of the image which is due to a structure in the imaged ob-
ject. Besides, the image of S1 shows a small horizontal stripe close to
the the center which can be observed if zooming in closely. However,
that stripe can most likely be attributed to some artifact and can be
neglected because its intensity change is below 10%.

To evaluate the color constancy of the system, the horizontal and
vertical channel ratios show deviations of less than ±15% for both
images inside the 50% vignetting region. Nevertheless, the intensity
profiles of S1 and S2 show slightly different tendencies. Providing
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Table 5.8: Field of view for the imaging paths of sensors S1 and S2 for rel-
ative vignetting limits of 75% and 50% of the maximum intensity.
Lowest and highest horizontal (x) and vertical (y) pixels and the
differences are reported. The distance in pixels is converted to
FOV in mm using the minimum magnification of the system and
a pixel size of 6.5 µm. The number of pixels in megapixels (MP)
in the area A is computed using the reported coordinates as the
corners of a tetragon.

S1 S2

0.50 0.75 0.50 0.75

ymin [px] 303± 20 485± 75 267± 20 386± 75
ymax [px] 1932± 20 1834± 75 1874± 20 1758± 75
∆y [px] 1629± 40 1349± 150 1607± 40 1372± 150
∆ymax [mm] 58.8± 1.4 48.7± 5.4 58.0± 1.4 49.5± 5.4

xmin [px] 473± 20 615± 75 459± 20 568± 75
xmax [px] 2107± 20 1993± 75 2083± 20 1935± 75
∆x [px] 1634± 40 1378± 150 1624± 40 1367± 150
∆xmax [mm] 59.0± 1.4 49.8± 5.4 58.6± 1.4 49.4± 5.4

A [MP] 1.33± 0.05 0.93± 0.14 1.30± 0.05 0.94± 0.15

that information of both sensors is used for unmixing or color correc-
tion, this may lead to some unmixing artifacts and deviations in color
correction.

Specifying an intensity drop of 50% as acceptable vignetting re-
sults in a roughly circular field of view with a horizontal spread of
(5.88± 0.14) cm for S1 and (5.80± 0.14) cm for S2. The vertical spread
is (5.90± 1.40) cm for S1 and (5.86± 0.14) cm for S2 (see Table 5.8).
The available sensor size corresponds to (1.33± 0.05)MP for S1 and
(1.30± 0.05)MP for S2.

Errors are estimated by considering (±1%) intensity variation at
the 50% intensity level and at the 75% intensity level. For the 50%
level, the measurements variations are estimated to be below 20 px,
for the 75% intensity level, the variations are estimated to be below 75
px. These are thus estimated to be the errors of the determined pixel
locations. Errors of calculated quantities are propagated accordingly.

The errors describe the uncertainty to determine the position at
respective intensity levels. Additionally, systematic errors relating to
the setup may be contained in the results. For example, inhomoge-
neous illumination and an inhomogeneous white background may
contribute to systematic errors. However, inhomogeneous illumina-
tion effects would also be present during intraoperative imaging.
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5.4.1.3 Discussion and conclusion

Both the minimal resolution and the minimal FOV are fulfilled if
accepting vignetting up to 50%. The non-circular shapes of the vi-
gnetting contour lines originate most likely from inaccurate lens align-
ment in the two imaging paths and calls for a more robust and better
aligned optomechanical system.

One option to improve the vignetting performance is to close the
aperture. In this case the light intensity is reduced resulting in more
noisy fluorescence images.

For this FOV, the ratio between the different color channels of each
sensor seems to be acceptable as it is lower than ±15% for both sen-
sors. For this reason, color correction and spectral unmixing are con-
sidered to be spatially invariant.

Inhomogeneities of images may originate from inhomogeneous il-
lumination, an inhomogeneous diffuse white reflectance object or sen-
sor field gain inhomogeneities.

Additionally, an extensive study combining all channels would give
a more conclusive picture of the relative channel intensities. However,
six channel unmixing experiments presented in Section 5.3 suggest
that the detection is constant enough to unmix different dyes which
are spectrally very close.

To summarize, the field of view and the resolution slightly exceed
the minimum requirements. However, vignetting is present and leads
to dark edges which are well-known from imaging systems with a
large FOV. For example, endoscopic surgeons prefer a large field of
view and in return accept strong vignetting on the edges of the im-
ages.

5.4.2 Spatial resolution and modulation transfer function

This section determines the spatial resolution, characterized by the
modulation transfer function (MTF) of the imaging system and checks
whether it fulfills the requirements put on the system in Section 3.1.6.
The results of the analysis are reused from the experimental data
of the Master’s thesis of Tobias Behr [175]. Thus, the methods and
results are shortly summarized in this section. However, a more com-
plete and extensive analysis can be found in the original thesis.

5.4.2.1 Methods

The MTF of digital imaging systems can be determined using the
slanted edge method [202]. Images of both optical paths of the well-
adjusted system are recorded. The object is a target with a sharp edge
which is placed in different parts of the object plane. The slanted
edge allows to compute an oversampled edge spread function which
is converted to a line spread function and subsequently to the MTF.
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The MTF is analyzed at five different locations, the image center,
top, right, bottom and left side. At each location the meridional and
sagittal MTF are measured and the spatial frequency at MTF = 0.1
and MTF = 0.5 are reported for grayscale images. Mean and stan-
dard deviations of the outer image locations are calculated for merid-
ional and sagittal MTF = 0.5 and MTF = 0.1. The results as pre-
sented in Table 5.10.

Table 5.9: Spatial frequencies in lp/mm for meridional (mer. ) and sagittal
(sag. ) MTF = 0.1 and MTF = 0.5 at the object locations center,
right, bottom, left and top and for both sensors. The overview is
compiled from the experimental data published in [175].

S2 S1

sag. mer. sag. mer.

MTF = 0.5 0.1 0.5 0.1 0.5 0.1 0.5 0.1

center 3.2 9.4 3.1 10.5 3.3 9.1 3.3 9.0
right 3.1 9.5 2.7 6.1 3.1 8.8 2.3 5.1
bottom 3.1 8.6 2.2 5.0 3.0 8.3 2.0 5.0
left 3.5 10.3 2.2 4.8 3.1 8.6 2.3 5.4
top 3.1 8.7 2.7 5.5 3.0 8.0 2.3 5.2

5.4.2.2 Results

The spatial frequencies of the corresponding measured MTF curves
are reported in Table 5.9 in lp/mm. The spatial frequencies at MTF =

0.1 range between 4.8 lp/mm and 10.5 lp/mm for the different lo-
cations and sensors. The sagittal frequencies of MTF = 0.1 per-
forms better than the meridional MTF with between 8.0 lp/mm and
10.3 lp/mm. However, the meridional MTF = 0.1 at outer locations
has lower spatial frequencies of 4.8 lp/mm to 6.1 lp/mm. The fre-

Table 5.10: Mean and standard deviation of the MTF results of the outer
image positions (center excluded). This evaluation contains sta-
tistical as well as some systematic errors caused by different im-
age positions. The condition MTF = 0.5 exceeds the required
1.15 lp/mm at all image locations..

MTF = 0.5 0.1

sag. (3.13± 0.16) lp/mm (8.85± 0.73) lp/mm
mer. (2.34± 0.24) lp/mm (5.26± 0.41) lp/mm

quencies at MTF = 0.5, which is relevant for the system specifi-
cations, are spatially more homogeneous. The respective spatial fre-
quencies range from 2.0 lp/mm to 3.5 lp/mm (sagittal: 3.0 lp/mm to
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3.5 lp/mm; meridional: 2.2 lp/mm to 3.3 lp/mm). There is no clear
difference in performance between S1 and S2.

The statistical evaluation in Table 5.10 shows that all spatial fre-
quency mean values exceed the requirements.

5.4.2.3 Discussion

All the measured frequencies for MTF = 0.5 are bigger than the re-
quired 1.15 lp/mm. Thus, the imaging system with opened aperture
and zoomed out has superior optical performance compared to the
natural vision of a surgeon looking at the object from a distance of
50 cm. If zooming further in, even finer object structures can be re-
solved.

Large high-resolution displays could display even more informa-
tion to the surgeon. The resolution is not limited by the digital res-
olution of the sensor, but by the optical resolution of the imaging
system.

Thus, it might be beneficial for the color imaging performance to
design an imaging system with a better resolving power. In contrast,
fluorescent objects usually appear rather wide due to scattering in tis-
sue. If the optical resolving power exceeds the digital resolution limit
given by the pixels, the lateral displacement between the red, green
and blue channels will cause artifacts. Such artifacts have been ob-
served and reported in Section 6.3 and [167]. An optical point spread
function which is wider than the distance between pixels will smooth
the performance and thus improves unmixing.

In this analysis, only grayscale images are considered. As the sensor
has two times more green pixels than red or blue pixels, the spatial
MTF of the green channel shows a better performance than the red
or blue MTF. A more detailed analysis of this effect can be found in
[175].

5.4.3 Working distance

Most clinical open field fluorescence imaging systems specified for
ICG have a working distance of 10 cm to 30 cm [74]. Thus, a free
working distance of at least 10 cm is required, 20 cm are better and
30 cm are best. For the selected lens configuration with an objective
lens with magnification of mobj = 0.5, the working distance is 18.7 cm
[201]. This distance will be reduced by sterile drapes by a couple of
cm. The remaining approx. 15 cm free working distance are more than
minimally required. Thus, the minimal condition is fulfilled.

This working distance is necessary for intraoperative imaging as
the surgeon is required to handle surgical tools in the remaining
space. A higher free working distance would be better and future
optical developments should focus on this aspect.
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5.4.4 Numerical aperture

As fluorescence of tissue samples is usually very weak, a high collec-
tion efficiency for light of the imaging lens is desirable. The numerical
aperture on the object side is a quantitative measure for the collection
efficiency of the lens system:

ηlens ∼ NA2
obj. (5.33)

The numerical aperture of the system is given by the combination of
objective lens and zoom system. The manufacturer only specifies the
numerical aperture of the m = 2× objective lens as NAobj = 0.04 and
for the m = 1× objective lens as NAobj = 0.02, but not for the m =

0.5× objective lens which is used here [201]. Accordingly, the object
side numerical aperture of the system is estimated to be NAobj ≈ 0.01.

In fluorescence microscopy objective lenses with no immersion me-
dium have numerical apertures as high as NAobj = 0.95 (for example
CFI Plan Apo Lambda 40X, Nikon Instruments Europe). However, the
field of view and working distance of typical microscopy objective
lenses with 40× magnification are less than 1 mm. Thus, lenses of
that size can be manufactured.

In contrast, for the required working distance of 187 cm, the first
objective lens would require a diameter of at least 1.14 m to allow a
NAobj = 0.95. This example illustrates that high numerical apertures
as known in microscopy are absolutely unreasonable for macroscopic
imaging.

A more reasonable comparison is made with high aperture ma-
chine vision objective lenses. If replacing the imaging system with a
single objective lens, the corresponding focal length would be f ≈
28.5 mm. High numerical aperture lenses for macroscopic imaging
which would fit to the imaging scenario are for example Otus 1.4/28

or Distagon 2.0/28 (both Carl Zeiss AG, Oberkochen, Germany). The
object side numerical aperture is calculated using the optics tool Sys-
tem PreDesigner (Qioptiq Photonics GmbH & Co. KG, Goettingen,
Germany) for a focal length f = 28 mm, an object distance as free
working distance of 187 mm, a FOV of 54 mm and an f number when
focusing at infinity of f/2.0 and f/1.4. The resulting aperture on the
object side is NAobj, f/1.4 = 0.053 and NAobj, f/1.4 = 0.037. These num-
bers are more reasonable than microscopy objectives as estimate of
what can be expected as maximum numerical aperture for an imag-
ing system. Still, these objectives are expected to collect between 13×
and 28× more light than the used lens configuration.

All in all, the aperture of the designed system is by far not as big
as for high end objectives with the same magnification and working
distance. However, the lens system was selected because it is suitable
for beam splitting and filtering in infinity corrected space. Future im-
provements of the optical system may include increasing the numer-
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ical aperture which can improve optical photon collection efficiency
by one order of magnitude.





6
N O I S E M O D E L A N D U N M I X I N G A RT I FA C T
D I A G N O S T I C S

Fluorescence guided surgery has shown to benefit from simultaneous
detection of multiple dyes. This requires multispectral imaging and
subsequent unmixing to display multiple fluorescent dye component
images. Unmixing comes with two aspects altering the image quality:
First, unmixing may amplify noise and cause noise crosstalk between
the individual component images. As fluorescent light is usually de-
tected at low intensities, image noise is always an issue to be consid-
ered. Second, deviations from the intended imaging scenario in the
raw fluorescent images which may be caused by tissue absorption,
autofluorescence or ambient light lead to artifacts in the unmixed
raw images. These artifacts may potentially result in wrong medical
decisions.

This chapter is dedicated to investigating the effects of noise for
imaging scenarios and to develop a method which indicates unmix-
ing artifacts.

First, the effects of noise on the unmixing results are demonstrated
with an experimental phantom imaging scenario in Section 6.1. Sub-
sequently a noise model of the fluorescence detection to estimate the
noise per image and per pixel on basis of an individual image is intro-
duced and established using the experimental data in Section 6.2. The
noise estimation is used subsequently to indicate unmixing artifacts
and also to optimize the system for minimal noise.

Unmixing artifacts may be caused if the detected raw data does
not correspond to the expected scenario with the respective spectral
signatures. For clinical scenarios it is essential to spot such artifacts
to avoid altered diagnostic information. A novel method to indicate
such artifacts is introduced in Section 6.3. The metric, called T-score,
puts the unmixing residuals in relation with the expected noise. Its
potential is demonstrated unmixing the experimental phantom im-
ages with correct and on purpose with wrong spectral signatures.

Concepts, experiments, the underlying data set and results which
are presented in this section have been published in the peer reviewed
publication [167] by Dimitriadis et al..

6.1 propagation of noise in unmixing

One of the most important criteria to evaluate image quality is the
SNR of the final images. In this work, the unmixed fluorescence com-
ponent images are to be displayed. Phantom experiments in Section 5.3.1

137
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have shown good signal to noise ratio for the unmixed fluorescence
component images, while Section 5.3.2 showed examples with dete-
riorated SNR. Unmixing with similar signatures in channel space re-
sults in amplification of noise.

This section will analyze noise and the resulting SNR of unmixed
images in detail.

Methods

Each image of the stream of i = 1 . . . 100 of identically acquired im-
ages Y i(ξ) is individually unmixed (same data as in Section 5.3.1):

X i(ξ) = u · Y i(ξ). (6.1)

The mean of the images mean
[
Y i(ξ)

]
is calculated as

X(ξ) = mean
[

X i(ξ)
]
=

Ni

∑
i=1

1
Ni
· X i(ξ). (6.2)

The image noise on each pixel is the empirical standard deviation
calculated as

∆X(ξ) = std
[

X i(ξ)
]
=

√√√√ 1
Ni − 1

·
Ni

∑
i=1

(
X i(ξ)−mean

[
X i(ξ)

])2

(6.3)

with Ni = 100. The SNR of the image is calculated as

SNRX( f , ξ) =
X( f , ξ)

∆X( f , ξ)
. (6.4)

Results

Figure 6.1 displays the mean fluorescence intensity, the temporal imag-
ing noise (standard deviation) and the SNR. In the Figure 6.1B we can
see that image regions in which no fluorescence intensity is present in
any channel have very little noise as these regions are dominated by
the low intensity readout noise of the sensor. Though, if high fluores-
cence intensity is present in any component at a location, all compo-
nents are contaminated with noise of approximately the same order
of magnitude.

So, the signal to noise ratio for a component increases with in-
creasing component intensity (see Figure 6.1C). High fluorescence
intensity causes high SNR of a fluorescent component after unmix-
ing. But the noise of other components at this location is also high
even though the intensity of that component is low. This effect can
best be observed in Figure 6.1D, E and F.
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Figure 6.1: Noise propagation in unmixing. A) Unmixed fluorescence inten-
sity X( f , ξ) of Atto532, Atto565 and Atto610 (mean over 100

images), scaled between 0 and the maximum (maximum of
Atto532: 4780; Atto565: 1257; Atto488: 807). B) Temporal image
noise ∆X( f , ξ) (standard deviation over 100 images) per pixel
scaled between 0 and the maximum (maximum of Atto532: 101;
Atto565: 55; Atto488: 68) C) SNRX( f , ξ) per pixel scaled between
0 and the maximum value (maximum of Atto532: 62; Atto565: 30;
Atto488: 21). D), E) and F) line profiles of the intensity of Atto532,
Atto565 and Atto610 along the white circle shown in A). Inten-
sity mean drawn as black line and [5%, 95%] confidence bounds
as colored background. Subfigure B) is based on the same under-
lying data set as the respective plot in [167]. Adapted with with
permission from ref [167], OSA.
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Discussion

Image noise is determined as the variation over a stack of identically
acquired images. As all images in the stack have been acquired iden-
tically, the only variation should be noise. This evaluation could be
disturbed by temporal fluctuations of the excitation light intensity or
camera readout sensitivity. Both effects are minimized as the sensors
are temperature stabilized and the light source output power is stabi-
lized.

Conclusion

The findings show a fundamental limitation of all unmixing scenarios.
Intensity in a single channel causes noise in all other channels. If all
channels show equal intensity at a specific location, this is of minor
importance. But if one channel is strong and others are weak, the
signal of the weak channel becomes very noisy. If looking at a video
of unmixed images, this will cause noisy signal on pixels with high
intensity of another channel.

In the following section a theoretical noise model which allows
to estimate the noise per pixel on basis of a single image is devel-
oped (see Section 6.1). The model can be used to optimize the system
for best unmixing performance (see Chapter 7). Also, a diagnostic
measure of the unmixing performance based on the noise model is
developed (Equation 6.3).

Developing a theoretical noise model allows to estimate the noise
per pixel on basis of a single fluorophore.

6.2 single frame noise estimation

In this section, a method to estimate the noise for each pixel of a
fluorescence image after unmixing on basis of single image without
knowledge of previous or future images is introduced. The noise es-
timation is based on the noise model described in the EMVA 1288

standard [200]. The noise model is approximated for the used sen-
sor model and application scenario here. In addition, the noise of the
raw images is propagated to the unmixed fluorescence component
images.

The noise estimation method of the unmixed component images
based on the intensity of these unmixed components can be used to
further develop an unmixing artifact diagnostics and to optimize the
imaging system for best SNR.
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Methods

The EMVA 1288 standard describes a noise model to characterize
image noise of modern silicon sensors such as the sensor CIS2521

(Fairchild), which is used in this work [171, 200, 203]. However, the
EMVA 1288 noise model describes the image data and the associated
noise for a grid of scalar pixel values. In this work, multispectral im-
age data, in which each pixel consists of a vector of multispectral
values, is used. Since each data point in the multispectral image data
is acquired by one planar silicon pixel, the EMVA 1288 noise model
can be applied here for each data point independently (assuming in-
dependence of the pixels). For consistency with the multispectral im-
age data, the variance in the noise model is therefore substituted by
covariance matrices as described in detail in Section A.1.3.

Here, the individual contributions are listed and approximated for
fluorescence guided surgery. The noise of a fluorescence image Y(c, ξ),
mathematically described by the covariance matrix ΣY(ξ), is com-
posed of the sensor readout noise ΣR(ξ), the sensor dark current
noise ΣI(ξ), quantization noise ΣQ(ξ) and photon shot noise ΣY,S(ξ).
The individual contributions, which are described in detail in Sec-
tion A.1.3, are summed to obtain ΣY(ξ):

ΣY(ξ) = ΣY,P(ξ) + ΣR(ξ) + ΣI(ξ) + ΣQ(ξ). (6.5)

All covariance matrices of the acquired images Y(c, ξ) are assumed to
be diagonal, because the noise of different channels is assumed to be
independent.

Readout noise

For the used sensors, the readout noise is specified by the manufac-
turer as σ0, which is approximated to be constant for all pixels [171].
This results in diagonal entries of the covariance matrix of

ΣR(c, c, ξ) = σ2
0 ≈ (1.67 e−)2. (6.6)

This approximation assumes that the readout noise of all pixels and
(in the setup used here) all sensors has the same value. As the domi-
nant source of noise for fluorescence guided surgery is the shot noise,
this simplified approach is reasonable.

Dark Current Noise

The diagonal entries of the covariance matrix caused by dark current
is given by

ΣR(c, c, ξ) = Idark · tint. (6.7)
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The dark current is specified for the sensor as 3 e−/s, so for frames
with a comparably large integration time of 50 ms, the dark current
noise [171] is approximated as

ΣR(c, c, ξ) ≈ 0.15 e−2. (6.8)

which is negligible compared to the readout noise and the photon
shot noise [171, 174, 200]. In general, the dark current is strongly
temperature dependent. Thus, spatial temperature variations on the
sensor may lead to spatially dependent dark current noise contribu-
tions.

Quantization noise

The quantization noise is introduced when digitalizing the measured
pixel values into a fixed 16 bit representation (for CIS2521) [200, 204].
For an equidistant spacing ∆g of gray values g, the diagonal entries
of the covariance matrix are given by

ΣQ(c, c, ξ) =
1

K2
1

12
· ∆g (6.9)

Here, with K = 2.22 /e− [171] and ∆g = 1, the overall quantization
noise added to each frame is in the range of

ΣQ(c, c, ξ) ≈ 0.017 e−2. (6.10)

The quantization noise itself only depends on the quantization and
not on the actual image. But as the noise contributions are analyzed
in terms of e−, the factor K is incorporated in the covariance matrix.
In theory, the conversion factor K may slightly vary from sensor to
sensor and also from pixel to pixel.

Shot noise

As the intensity image Y(c, ξ) corresponds to the number of Poisson
distributed electrons e−, the diagonal entries of the covariance matrix
correspond to the respective image intensities Section A.1.3:

ΣY,S(c, c, ξ) ≈ Y(c, ξ). (6.11)

Both quantum efficiency q(λ) and conversion factor K are supposed
to be spatially homogeneous. The low photo response non-uniformity
(PRNU ≤ 0.5%) of the sensor guarantees sufficient signal homogene-
ity.

Noise estimation

For fluorescence guided surgery, high intensity signals for best SNR
have pixel count rates of more than 1000 e− per pixel and frame. Im-
ages with fluorescence signal in the order of 100 e− allow reasonable
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Table 6.1: Overview of different noise contributions in the form of covari-
ance matrices as described by the EMVA 1288 model with an esti-
mate for the used sensor CIS2521 running in global shutter mode
with tint = 50 ms [171, 200, 204].

noise type formula estimated value [e−2]

shot ΣY,S(c, c, ξ) ≈ Y(c, ξ)

readout ΣR(c, c, ξ) = σ2
0 ≈ 1.672

dark current ΣD(c, c, ξ) = Id · tint ≈ 0.16, (tint = 50 ms)
quantization ΣQ(c, c, ξ) ≈ 0.017

approx. image noise ΣY(c, c, ξ) ≈ Y(c, ξ) + σ2
0

imaging quality and signals of at least 10 e− are needed for real-time
fluorescence guided surgery. This allows to estimate the influence of
each individual contribution to the overall noise and only consider
the dominant effects as summarized in Table 6.1.

The overall noise covariance matrix is approximated as

ΣY(c, c, ξ) = Y(c, ξ) + σ2
0 (6.12)

for all channels c and pixels ξ on basis of a single image Y(c, ξ).
In this formula, all pixels of all sensors are assumed to exhibit iden-

tical noise characteristics. This is mathematically expressed by the
constants Idark, K and σ0 which are identical for all pixels and sen-
sors.

To obtain Y(c, ξ), the recorded raw image was background sub-
tracted and converted to e− using the conversion factor K. The con-
version to e− is necessary to determine the shot noise. The subtracted
dark image was obtained by averaging individually acquired dark im-
ages.

Noise propagation in unmixing

To calculate the covariance matrix ΣX(ξ) of the unmixed fluorescence
component intensities X(c, ξ), the covariance matrix needs to be trans-
formed from ΣY(ξ) by

ΣX(ξ) = uΣY(ξ)uᵀ. (6.13)

The image noise of the individual fluorescent components f is deter-
mined by the diagonal elements of the covariance matrix:

∆X2(ξ) = diag ΣX(ξ). (6.14)

6.2.0.1 Experimental image processing

Unmixed noise of the phantoms fluorescence images (see Section 5.3.1)
is estimated on basis of a single image using Equation 6.13 and Equa-
tion 6.14. Results are compared with the experimentally determined
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temporal noise over a stack of 100 sequentially acquired images (as
described in Section 6.1).

Results

Atto532 Atto565 Atto610
A

B

C

0

max

0

max

0

2

Figure 6.2: Comparison between theoretical predicted noise based on the
described model and experimentally determined noise. A) Inten-
sity of a single unmixed fluorescence image. B) Estimated fluo-
rescence noise based on the model and the intensity information
of a single image. C) Ratio between predicted noise shown in
B) and experimental noise (see Figure 6.1B). Noise estimate on
basis of the individual image shown in A). Scaling maxima of
A) Atto532: 4780; Atto565: 1257; Atto488: 807; of B) Atto532: 101;
Atto565: 55; Atto488: 68. Subfigure A) is based on the same un-
derlying data set as the respective plot in [167]. Adapted with
with permission from ref [167], OSA.

Figure 6.2 shows the comparison between experimentally deter-
mined temporal noise of the unmixed data and the estimated noise
on basis of the pure intensity of a single image. For all three dyes, ex-
perimentally measured and theoretically estimated noise are in good
agreement. Figure 6.2C shows that the ratio between theoretical and
experimental noise is close to one for regions with fluorescence inten-
sity of any dye present. In dark image regions where no fluorescence
is captured, the theoretically estimated noise is bigger than the exper-
imentally determined noise.
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Discussion

These results support the noise model, considering both sensor read-
out and shot noise to be appropriate for the intended use. Also, the
noise propagation in the unmixing process (as derived in Equation A.1.1)
allows to estimate the noise per pixel on basis of a single unmixed
frame.

The deviation between estimated noise and the measured noise is
only high at pixels with very low light intensity, whose noise behav-
ior is of minor importance. Though, future work also considering the
complex noise behavior of the readout electronics may further im-
prove the prediction for areas with low light intensity. In this work,
estimating the noise in regions with fluorescence intensity is suffi-
cient.

The noise per pixel has been measured in literature by sequentially
recording a stack of images and calculating the standard deviation
over the stack.

Estimating the image noise of each component by recording only
a single image is advantageous for real-time applications. It allows
to evaluate the unmixing quality (see Equation 6.3) for a fluent video
stream and does not require to record and process multiple identical
images.

Additionally, the analytical noise calculation is used to optimize
the SNR varying system parameters. For the user, the SNR of the
final unmixed fluorescent component images is important and thus
an analytical calculation of noise allows a computationally efficient
implementation of the fitness function.

6.3 unmixing artifact diagnostics

Fluorescence unmixing may produce artifacts in the unmixed fluores-
cence component images due to tissue absorption, autofluorescence
or the presence of dyes which are not expected and thus not consid-
ered. In this section a metric named T-score is developed to indicate
unmixing artifacts. In a second step, the performance and statistical
significance of the T-score are investigated using experimental phan-
tom image data. Finally, the sensitivity of the T-score for bad unmix-
ing scenarios with missing signatures is demonstrated.

Methods

In this section, the standardized vectorial residual ε(ξ) and the T(ξ)-
score as the corresponding scalar measure are introduced to evalu-
ate the unmixing performance. The measured fluorescence intensity
Y (ξ) is unmixed using the spectral signatures κ1, ..., κN . If the num-
ber of spectral channels is higher than the number of dyes, some of
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the measured fluorescence data points are expected to be outside the
subspace spanned by κ1, ..., κN due to noise.

An example unmixing for two dyes is presented in Figure 6.3A. The
vectorial residual RY(ξ) of an observation Y (ξ) is defined as the dif-
ference between the measured data point Y (ξ) and the corresponding
closest point muY (ξ) in the subspace spanned by the dyes:

RY(ξ) = Y (ξ)−muY (ξ). (6.15)

The standardized residual εY(c, ξ) is defined as the ratio between the
residual components RY(c, ξ) and the expected noise covariance com-
ponents ΣR(c, c, ξ)

1
2 :

εY(c, ξ) =
RY(c, ξ)

ΣR(c, c, ξ)
1
2

(6.16)

with the covariance matrix of the residual given as

ΣR(ξ) = cov
[
RY(ξ), RY(ξ)

]
= cov

[
Y (ξ)−muY (ξ), Y (ξ)−muY (ξ)

]
= ΣY(ξ) + muΣY(ξ)uᵀmᵀ −muΣY(ξ)− ΣY(ξ)uᵀmᵀ.

(6.17)

The scalar TY(ξ) score is obtained by summing over the squared vec-
torial components of εY(c, ξ):

TY(ξ) =
Nc

∑
c=1

εY(c, ξ)2. (6.18)

Assuming the statistical variation of the detected fluorescence signal
is normal distributed

Y(c, ξ) ∼ N
(

µY(c, ξ), ΣY(c, c, ξ)
)

(6.19)

then the channel components of the residual vector are also normal
distributed

RY(c, ξ) ∼ N
(

0, ΣR(c, c, ξ)
)

(6.20)

leading to

εY(c, ξ) ∼ N
(

0, 1
)

(6.21)

for all c and thus

TY(ξ) ∼
Nc

∑
c=1
N
(

0, 1
)2

= χ2(k), (6.22)

where k = Nc−N f are the degrees of freedom [205]. So, the standard-
ized residuals are χ2 distributed if the observations of the random
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variable are normal distributed. If the random variables are not nor-
mal distributed in the first place (see Equation 6.19), the normalized
residual will not be χ2 distributed.

For real-time video-rate imaging applications, the TY(ξ)-score needs
to be calculated for each frame individually. Thus, an estimation of
the covariance ΣR(c, c, ξ) matrix of RY(ξ) on basis of the image in-
formation of the single frame is required. Using the noise estimation
on basis of a single frame described in Section A.1.3 combined with
Equation 6.17 allows to estimate the covariance of the residual on
basis of a single image.

The standardized residuals RY(ξ) and the TY(ξ)-score are calcu-
lated using Matlab and the pre-implemented multiprod function
[206] for one individually recorded image as described in Section 5.3.1.
To display the unmixed fluorescence signal in a compact way, the
unmixed component images of Atto532, Atto565 and Atto610 are in-
dividually scaled from zero to the 0.9999 quantile of the data and
subsequently fused as R, G and B channels of an RGB image.

Visible yellow patches or structures in the T-score plot mean that
for those regions the residual is higher than expected by the estimated
noise. In the same way, dark blue regions mean that the noise estima-
tion is too small, while brighter blue regions with noise appear as
well unmixed.

In order to demonstrate the effect of wrongful unmixing, the dyes
are unmixed with an unmixing matrix that is missing at least one
of the dye signatures on purpose. So, the data is unmixed with an
unmixing matrix created on basis of only one or two of the spectral
signatures, whereas all three spectral signatures of Atto532, Atto565

and Atto610 are needed for correct unmixing. Unmixed images and
the T-score is calculated for all combinations of unmixing with one or
two dyes only.

Results

The unmixed fused RGB fluorescence component image is displayed
in Figure 6.3B. This underlying data is the same as in Figure 5.10, so
the image shows good unmixing with close to zero crosstalk. The vial
containing pure signal of the dye Atto532 is displayed in blue (bottom
left), pure signal of Atto565 is displayed in green (top left) and pure
signal of Atto610 is displayed in red (right).

The individual standardized residuals are shown in Figure 6.3C for
each channel individually. Most channels show a horizontal stripe
pattern especially visible in the background. Image regions where
vials with high fluorescence intensity show a gradual change from
positive to negative values over the vial or from negative to positive,
depending on the vial location and channel.
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Figure 6.3: Diagnostic T-score for the unmixing procedure. A) Systematic
example scatter plot of one measured data point Y(c, ξ) in chan-
nel space spanned by c1, . . . , cN . The measured data is unmixed
with signatures κ1 and κ2 to component contributions X(1, ξ)
and X(2, ξ), which sum up to the closest point in the component
subspace (here, the component space is the plane spanned by
κ1 and κ2). Y. The residual vector RY(c, px) connects the closest
point in the component subspace with the measured data point
Y(c, ξ). B) Unmixed fluorescence image with Atto532 intensity
as red channel, Atto565 intensity as green channel and Atto610

intensity as blue channel. C) Individual channel contributions of
the normalized residual εY(c, ξ). D) T-score TY(c, ξ) characteriz-
ing the unmixing quality. E) Histogram of the T-score values for
all pixels, high fluorescence intensity values and the dark regions.
Subfigure D) is replotted based on the same underlying data set
as the respective figure in [167]: Adapted with with permission
from ref [167], OSA.

The T-score image is displayed in pseudocolors in Figure 6.3D. The
stripes visible in the standardized residuals of the individual chan-
nels are not as prominent as in the T-score image. Both fluorescent
and dark regions appear in blue, which means that the majority of
the pixels is inside the confidence bounds. The T-score of the dark
regions appears to be lower compared to the high intensity regions.
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Figure 6.4: Unmixing the raw data presented in Figure 5.10 using mixing
matrices for different dye combinations: A) Correct unmixing for
all dyes Atto532, Atto565 and Atto610, B) unmixing for Atto532

and Atto565, C) unmixing for Atto532 and Atto610, D) unmixing
for Atto565 and Atto610, E) unmixing for Atto532, F) unmixing
for Atto565 and G) unmixing for Atto610. Upper images display
the three unmixed components as scaled RGB image. Lower im-
ages show the T-score value of the unmixed dyes. H) Histogram
of the T-score unmixed as in A), B), C) and D). I) Histogram of
the T-score unmixed as in A), E), F) and G). Lower part of subfig-
ure A) is replotted based on the same underlying data set as the
respective figure in [167]: Adapted with with permission from
ref [167], OSA.

The edges of the vials especially on the right side of the image show
high T-scores. Figure 6.3E shows a histogram of all the pixels, the
dark image regions and the high intensity image regions separately.
T-scores of the dark regions are generally lower than the T-scores of
the high intensity regions.

Figure 6.4 presents examples for correct and wrong unmixing. All
unmixing attempts result in a fluorescence component image and
comparison with Figure 6.4A reveals for which vials the unmixing
did not work correctly. The corresponding T-score plots of each of
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the unmixing scenarios indicates in yellow which of the vials were
not unmixed correctly. Histograms of the T-score images are shown
in Figure 6.4H and I.

Discussion

Readout noise in CMOS sensors typically causes stripe patterns in
the images. The stripes visible in Figure 6.2B can thus most likely be
attributed to the readout of the two sensors and in combination with
demosaicing and spatial registration.

The gradual slope in the standardized residual images in regions of
high fluorescence intensity can be explained by the mosaic pattern on
the sensor. If the fluorescence intensity is not constant over a region,
the micro-filter pattern will result in a too small or too big intensity
value depending on the location of the pixel in the micro-pattern. This
theory is undermined by the complementary behavior of the channels
G2 and G2* which should show the same spectral behavior. In the T-
score image, the gradual slopes of the standardized residuals of the
different channels seem to compensate each other and average out.

The high T-score on the edges of some vials appears to be caused by
a high intensity gradient of the dyes in combination with the micro-
pattern on the sensors and miss-registration between the two sensor.

The lower T-scores in dark image regions compared to the vials
can be attributed to non-Gaussian readout noise and thresholding
for negative intensities when estimating the noise (see Section 6.2).
The gradual slopes in the standardized residual images indicate that
the micro-pattern has a relevant contribution to the T-score. This is a
systematic error which is not considered in the noise estimation.

The T-scores of both fluorescence and dark regions in the correctly
unmixed component images are rather low (up to 20) compared to
the T-score of wrongfully unmixed pixels, which goes up to several
hundreds.

The statistical interpretation of the T-score as being χ2 distributed
is only applicable if photon shot noise and readout noise are normal
distributed and no systematic errors are present. Strictly speaking,
the signal in dark regions (readout noise dominant) is not normal
distributed. But for high count numbers the noise of the fluorescence
signal governs the overall noise and can be well approximated by a
normal distribution (see Section 6.1). In case of non-Gaussian statis-
tics of the underlying properties the T-score can still be calculated and
can also perform well. In this case the T-score is not χ2 distributed and
thus interpretations containing probabilities and confidence bounds
must then be treated with caution.

The T-score is a statistical consistency check of the unmixing. High
T-scores indicate that the pixels have most likely not been unmixed
well. But low T-scores do not guarantee good unmixing, it just indi-
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cates that the residual is comparable or lower than the expected noise.
In this analysis the T-score proved to be very sensitive for data points
with wrong unmixing. If a measured fluorescent data point is mod-
ified inside the subspace spanned by the unmixing signatures, the
residual vectors are not changed, because differences inside the sub-
space spanned by the signatures cannot be measured. The higher the
number of fluorescence channels and the lower the number of compo-
nents to unmix for, the lower the chances that invisible modifications
of the spectral signatures occur.

Calculating the T-score for each pixel in real-time is more challeng-
ing than unmixing, as the processing involves several steps. The com-
putationally most heavy operation is the calculation of the covariance
matrix of the residuals, because it involves several matrix multiplica-
tions. But if the computational load is too extensive to be performed
in the main processor, it can either be outsourced to a FPGA or the
GPU.

Conclusion

Unmixing always results in component images no matter how accu-
rate those results might be. It is up to the user to judge on the quality
of the unmixed images without clear indications. The introduced T-
score indicates regions for which the data is not unmixed correctly
on basis of a single image.

Intraoperative fluorescence imaging is sensitive to various derange-
ments such as ambient light, autofluorescence or tissue absorption in
combination with scattering. In contrast, surgeons must rely on the
unmixed fluorescence data to take medical decisions based on the
data. Thus, the developed T-score may pave the way for video-rate
intraoperative fluorescence imaging of multiple components.

Application specific research is needed to evaluate the most com-
mon derangements and the sensitivity of the T-score towards these
effects.
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S Y S T E M O P T I M I Z AT I O N

So far, this thesis has been focusing on developing a system for next
generation fluorescence guided surgery. First literature was reviewed
in Chapter 2. Subsequently, design requirements were specified in
Chapter 3 and a prototype system was realized in Chapter 4. When
building the prototype, compromises were made to accommodate
technical constrains. Chapter 5 revealed that the system fulfills the
specified design requirements even with the technical constrains. How-
ever, this chapter aims on estimating how good a system could poten-
tially be neglecting some of the technical constrains.

A noise model which allows to estimate the image noise based on
a single image was derived in Chapter 6. This model is used here to
optimize the system by minimizing the noise of the final fluorescence
component images.

The system is optimized for specific scenarios and leads to an es-
timation on how much the system can be further improved. In this
context, the following questions will be answered:

1. What is the ideal combination of dyes for the system? How well
can the system unmix 2, . . . , 6 dyes in the best case?

2. For a given set of dyes, what is the ideal multiband filter? How
many bands should the two complementary multiband filters
have?

These questions are answered in Section Section 7.1 and Section 7.2.
Similar optimization approaches with different parameters as em-
ployed in this section have been published in [167].

7.1 the optimal dye combination

Having the system build and tested as described in Chapter 4 and
Chapter 5, the question arises what would be the ideal dye or combi-
nation of dyes for the system? This section will answer this question.

Optimization methods

To optimize the system, the performance of the system needs to be
quantified in the so-called figure of merit. In this section, the overall
SNR of the final unmixed images is maximized varying the emis-
sion center wavelengths for a fixed number of dyes as illustrated in
Figure 7.3. Thus, the noise of unmixed fluorescent components for a
given number of emitted photons needs to be expressed.

153
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Figure 7.1: Schematic illustration of the numerical optimization flow: Fluo-
rescent dyes f are parameterized as a Gaussian profile with the
center wavelength λ f as optimization parameter. Subsequently,
the emission is mixed, split into two paths, filtered by the filters
F1 and F2 and detected by the sensors S1 and S2 with a total of
eight channels. The green channels are doubled to take care of
the effect of the RGGB Bayer pattern on the sensor. The estimated
signal to noise after unmixing is computed for each dye and an
absolute SNR is calculated as figure of merit.

A detailed description of the mathematical formulation of mixing,
unmixing, fitting of spectral signatures and noise theory can be found
in Section A.1. An experimentally validated noise model of the sys-
tem, which is reused here, is described in detail in Section 6.1.

Figure of merit

A set of fluorescent dyes f = 1 . . . nd each emits N0 photons, which
are all assumed to be imaged onto the sensor. On the sensor S, the
number of photons Yf (c) is detected due to the spectral sensitivity

Yf (c) = η(c, f ) · N0 = κ(c, f ) · ηS( f ) · N0 (7.1)

Summing over the different fluorescent dye emissions and combining
with Equation A.15 leads to the vectorial formulation

Y = m · ηS · N0︸ ︷︷ ︸
ν

. (7.2)

The number of photons which are detected by the system of a dye
f is expressed as ν f . All formulas here correspond are formulated
for one location or intensity value. This means that the location in-
dex ξ is not written for all formulas here because the formulas need
to be optimized for one intensity value only. The noise ∆X2 of the
unmixed component images X is given by the diagonal elements of
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the covariance matrix ΣX(ξ) according to equations Equation 6.1 to
Equation 6.14 as

∆X2 = diag ΣX = diag
[
u · ΣY · uᵀ

]
(7.3)

with

ΣY(c, c) = ∑
f

m(c, f ) · X( f ) + σ2
0 . (7.4)

The signal to noise ratio SNR f for a fluorescent dye f is defined by

SNR f =
X( f )

∆X( f )
. (7.5)

For the optimization the absolute signal to noise ratio is required.
Here, the inverted root mean square is used to combine the individual
SNR ratios as figure of merit:

|SNR| =

 1
n f

∑
f

SNR−2
f

− 1
2

(7.6)

The rms is inverted so that the absolute SNR becomes zero if any of
the individual SNR values is zero. Without inversion, one single zero
SNR value would still be okay for the overall SNR. However, all dyes
must be unmixed well, so a single value with very bad SNR would
not be acceptable. The root mean square was chosen over the normal
average to favor solutions which are closer together. Thus, similar
SNR values for the individual components are favored over some
very high and some very low SNR values by this figure of merit.

Reporting SNR values can be rather complicated to understand as
SNR values are not intuitive. Thus, the SNR values can be converted
into an apparent photon number [130].

If Ξ f Poisson distributed photons are detected, the statistical vari-
ance corresponds to the expectation value if no further sources of
noise are present:

SNR =
Ξ f p

std[Ξ f ]
=
√

Ξ f , (7.7)

which can be written as

Ξ f = SNR2
f . (7.8)

In this section, the SNR of individual dyes is reported as an apparent
number of photons Ξ f . Perfect detection of Ξ f photons results in
the same SNR than the real detection process.

In short, theoretically the number N0 of photons for one dye f
could be detected, but due to reduced quantum efficiency only ν f =

ηS( f ) · N0 photons are detected. Unmixing further decreases the SNR
of the unmixed images as if only Ξ f had been detected.
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System parameterization

The fitness function of the optimization procedure maximizes the root
mean square signal to noise ratio by varying the peak emission wave-
lengths for a fixed number of fluorescent dyes.

All fluorescent dye photon emission spectra are assumed to have a
Gaussian emission profile with parameter σ = 32 nm for all dyes. The
fluorescent dye model is described in Section 5.1.2. This corresponds
approximately to the median standard deviation of the library of flu-
orescent dyes shown in Section A.2. The system is parameterized as
described in Section 5.1.2.

The spectrum is sampled on a fixed finite grid of spectral intensity
bins with equidistant spacing of 0.1 nm from 365 nm to 900 nm. The
filter transmission and the sensor sensitivity are both re-sampled on
the bin centers and the number of photons emitted by each dye into
the detection system is assumed to be N0 = 10 000. This assumption
is rather arbitrary but necessary. This can result in the detection on
average of up to 100 photons per channel and per frame which is a
realistic number.

In order to calculate the spectral signature of each dye for the given
system the fraction of photons reaching the sensor is calculated.

Numerical implementation

The numerical calculations have been implemented in Matlab. For
the scenario of two fluorescent dyes (nd = 2), the entire parameter
space of λ1 = 395 nm . . . 870 nm and λ2 = 395 nm . . . 870 nm has been
evaluated in steps of 1 nm. The measures Ξ1, Ξ2 , and |Ξ| are calcu-
lated for each combination of λ1 and λ2.

The MATLAB GlobalSearch algorithm with fmincon was used to
find an optimal solution.

The boundaries for the fluorescent dye emission center wavelengths
were set to be 395 nm ≤ λ f ≤ 870 nm. Additionally, the minimal dis-
tance between the center emission wavelength of two dyes is λ f+1 −
λ f ≥ 10nm for all fluorophores f to ensure a minimal spacing be-
tween two dyes.

Results
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Figure 7.2: Numerical results for Ξ1 , Ξ2 , and |Ξ| sampling the entire pa-
rameter space of λ1 and λ2. A) Ξ1 , Ξ2 , and |Ξ| for N0 = 10000
photons. The green, red and black lines mark the position line
profiles. Contour lines at 100, 200, 300, 400 and 500 are plotted.
B) Line profiles along λ1 (left) and λ2 (right) for Ξ1 , Ξ2 and |Ξ|
cross in the optimum of |Ξ|. � ν1 profile on the left and ν2 pro-
file on the right indicate how many photons have been detected
for the respective fluorescent dyes and the apparent number of
photons � Ξ1, � Ξ2 and � |Ξ|. Due to the symmetry of
the problem, λ1 ≤ λ2 is fixed, which results in solutions for the
upper right parts in A) and the cutoff in transmission efficiency
in B).
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Table 7.1: Optimization results to find the optimal combination of emission center wavelengths for Gaussian shaped dye emission spectra. Upper part
reports the SNR as apparent photon numbers Ξ and detected photon numbers ν of potentially detectable 10000 photons. Lower part of the
table lists the respective emission center wavelengths.

rms dye 1 dye 2 dye 3 dye 4 dye 5 dye 6

nd |SNR| |Ξ| Ξ1 ν1 Ξ2 ν2 Ξ3 ν3 Ξ4 ν4 Ξ5 ν5 Ξ6 ν6

2 21 434 376 818 513 935
3 12 135 194 644 80 562 218 806
4 8 66 44 425 129 820 49 553 100 684
5 6 33 23 340 30 752 32 799 36 551 68 619
6 4 14 12 311 12 652 12 818 11 768 21 549 38 552

λ1 λ2 λ3 λ4 λ5 λ6

2 555 nm 811 nm
3 483 nm 643 nm 835 nm
4 447 nm 547 nm 649 nm 774 nm
5 432 nm 505 nm 574 nm 651 nm 768 nm
6 426 nm 484 nm 535 nm 588 nm 654 nm 762 nm
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Figure 7.3: Optimal choice of emission center wavelengths for a scenario of
n f = 2 . . . 6 dyes for the imaging system with Gaussian shaped
emission spectra.

The numerical results for the evaluation of Ξ1 , Ξ2 and |Ξ|
for the entire parameter space are shown in Figure 7.2. The maxi-
mum |Ξ|matches to the solution found by the optimization algorithm
within the numerical limits. The results of the optimization algorithm
are shown in detail in Table 7.1 and schematically illustrated in Fig-
ure 7.3.

The line profiles in Figure 7.2B illustrate that the figure of merit is
continuous and smooth. As expected, the number of photons of the
initially 10000 photons which are detected by the sensor range be-
tween around 200 and almost 1000, depending on the exact emission
center wavelengths. The unmixing reduces the SNR further as if only
between 350 and 550 photons would have been detected of the 10000

photons.
The |Ξ| reduces dramatically when increasing the number of dyes.

As a rule of thumb in this case, each additional dye reduces the |Ξ|
at least by a factor of two.

Discussion and conclusion

In case of nd = 2, the results of the optimization algorithm match
to the results of the sampled parameter space. The optimization cer-
tainly improved |Ξ| for all nd = 2 . . . 6 compared to the initial starting
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point, though a better solution might exist. This means that the algo-
rithm may converge to a local minimum and not to the global min-
imum. The sampling intervals of λ f have been chosen smaller than
the width of the emission profiles (1 nm ≤ 32 nm). This ensures that
no effects are lost in between the sampling points. The used noise
model has been validated in Section 6.2.

The performance of the system can be seriously deteriorated if non
optimal dye combinations are chosen (see Figure 7.2). Thus, it is es-
sential to check if a combination of dyes is suitable for the system
before going to experiments.

For a high number of dyes (n f = 4 . . . 6), the SNR is increasingly
deteriorated by unmixing. Even the optimized scenarios do not show
good SNR of the unmixed components. Neher et al. showed that it is
beneficial for an imaging scenario if the number of detector channels
exceeds the number of dyes by a few. This is not the case for n f =

4 . . . 6, thus increasing the number of channels by a different sensor
design may help.

The mixing matrix was based only on the emission of the dyes
which means that they are identically excited in both phases. How-
ever, in real applications, excitation varies in the two phases and usu-
ally adds separation power. This effect can dramatically improve the
unmixing performance of the system. Thus, all conclusions drawn
here can only apply for continuous excitation which is identical for
both phases.

In future, a more complex simulation and improved numerical
models may include also the excitation process and use excitation-
emission-matrices instead of emission spectra only. This would give
a more accurate estimate of how well the system performs for ex-
ample with multiband excitation. Such a simulation would allow to
additionally optimize the excitation bands and excitation power.

The simulation could also be improved replacing the Gaussian dye
emission by a more realistic dye model which is for example also
skewed and might allow translation to real dyes more easily.

Moreover, the number of photons emitted was set to N0 = 10000
counts per dye. This quantity needs to be fixed and may influence the
results. Thus, for other intensity combinations the optimal solutions
may vary. Future work could be dedicated to find a figure of merit
which is independent of N0. If optimizing a specific scenario, different
emission intensities for the different dyes can be chosen.

Tissue interactions like absorption or scattering can alter the spec-
tral measurements and cause unmixing artifacts in the worst case. It
would also be interesting to design a figure of merit favoring robust
solutions for spectral artifacts.

All in all, the simulation shows that the concept suits well it’s in-
tended use to simultaneously image multiple dyes for fluorescence
guided surgery.
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7.2 finding the optimal filter configuration

For a real imaging scenario with a given dye combination it is of high
interest to know what would be the best possible filter combination
for the given scenario. The results show how much improvement in
imaging SNR can be obtained by replacing the current filter pair by
the best possible one. This is quite relevant, because filter companies
can produce custom multiband filter sets with specified filter band
combinations on demand.

Methods
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Figure 7.4: Simulation schematic to optimize the multiband structure of the
emission filters for the dyes Atto532, Atto565 and Atto610. Each
dye emits 10 000 photons during the acquisition of one image on
one single pixel. The photons are spectrally distributed accord-
ing to the respective emission spectrum. All emitted photons are
added up in one single beam which is subsequently split by a
neutral density beam splitter into two separate paths for the two
different sensors. The photons of each path are filtered with one
of the complementary multiband filters. The band structure of
the filters is parameterized by the wavelengths λ1 . . . λnb+1 which
are optimized here. Two identical color sensors detect the pho-
tons of the three dyes. Subsequent unmixing of the multispectral
signal allows to determine the SNR of the three dyes Atto532,
Atto565 and Atto610 and the overall |SNR| which is used as fig-
ure of merit for the optimization algorithm.

Figure 7.4 illustrates numerical implementation schematically. The
optimization implemented almost identically as in Section 7.1. Here,
only the differences are mentioned.

The Gaussian emission spectra are replaced by real photon emis-
sion spectra of the dyes Atto532, Atto565 and Atto610. Details on the
spectral processing of the dye emissions are specified in Section 5.1.2.

The transmission spectrum of the ideal multiband filter pair is pa-
rameterized for the optimization. The bands are assumed to have per-
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fect transmission or perfect blocking characteristics. The edge wave-
lengths between the bands can be varied with fixed number of bands
nb. The multiband filter pairs always need to have a spectral gap
in between two neighboring bands which is fixed to ∆λ = 0.5 nm.
The specified edge wavelengths λb are the center of the gap, where
both filters do not transmit. As an exception, the first and the last
edge have coincided with the respective wavelength, because there
is no other band to follow. In blocking wavelength regions, the filter
has zero transmission, in passing wavelength regions the filters are
expected to have complete transmission of 1. If the filter edge falls
within a bin and not on the bin edge, the effective transmission of the
bin is calculated as the average transmission between 0 and 1 over
the respective range. The minimal distance between two subsequent
band edges is λb+1 − λb ≥ 3 nm. The bands are restricted to be all
between 500 nm and 800 nm.

As starting point, the edge wavelengths are linearly distributed
over the available range, leaving space on the outer edges.

Results
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Figure 7.5: Visualization of the optimal filter band structures depending on
the number of bands nb after unmixing based on emission only.
The bandpass structure of the multiband filter pair used for the
system is illustrated as S. The top part illustrates the emission
spectra of the three dyes Atto532, Atto5565 and Atto610 with
strong spectral overlap.
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Table 7.2: Optimization results of the filter bandpass structure with the fluo-
rescent dyes Atto532, Atto565 and Atto610. The imaging scenario
was optimized for each number of filter bands nb separately for
best |SNR| and the respective |Ξ|. Additionally, the apparent num-
ber of photons of the initial starting filter configuration |Ξ0| is re-
ported. For each dye, the apparent photon number Ξ and the
number of detected photons ν as well as the exit reason for opti-
mization algorithm is listed in the table. Exit reasons for the algo-
rithm: 0: number of iterations or number of function evaluations
exceeded standard setting; 1: gradient is smaller than standard tol-
erance; 2: change in band edge wavelength λb was small than the
standard step tolerance.

rms Atto532 Atto565 Atto610

nb |SNR| |Ξ| |Ξ0| Ξ ν Ξ ν Ξ ν exit

2 9.7 93 0.4 124 1115 52 980 208 835 1
3 13.9 193 17.7 192 1108 212 961 177 786 1
4 13.9 192 6.0 191 1108 211 965 178 798 1
5 13.9 192 63.6 191 1109 212 965 177 795 1
6 13.9 192 95.2 191 1109 212 965 178 795 1
7 13.9 192 34.3 190 1109 212 966 178 798 1
8 13.9 192 20.7 190 1109 211 968 178 803 2
9 13.9 192 15.2 189 1109 211 968 178 805 1

10 13.8 192 7.1 189 1109 211 970 178 810 1
25 13.3 176 1.1 185 1090 193 952 154 804 0
50 11.3 128 1.1 149 1050 125 928 115 774 0

The optimization results are listed in Table 7.2 and the optimal
bandpass configurations are visualized in Figure 7.5. The |SNR| is
best for 3 bands, which corresponds to the number of dyes. Most opti-
mal filters cover the majority of the wavelength region, but may block
all light on the edges where hardly any emission is present. The solu-
tions between nb = 3 and nb = 10 perform almost equally well with
a performance variation below 1%. These band structures are very
similar at the region of high emission intensity and will thus result
in very similar spectral signatures. The transition edges are aligned
with the crossing of the emission profiles. The additional bands are
scattered on the edges and seem to be obsolete.

For nb = 25 bands, the rms apparent number of photons |Ξ| is 176

and thus quite close to the best result with 193 photons for 3 bands.
Also, long bands can be found at the emission peaks of the dyes. For
nb = 50 bands, a rms apparent number of 128 photons is detected.

The performance |Ξ0| of the starting bandstructure (bands equally
distributed) ranges from 0.4 (nb = 2) up to 95.2 (nb = 6). Here, the
optimization algorithm improves the SNR of the imaging scenario in
all cases at least by a factor of 2 and up to over 200 times for nb = 2.
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Discussion

The results show that a band structure which is aligned with the emis-
sion spectra will result in an optimal overall SNR of the unmixed im-
ages. In effect, one band of the multiband pair is dedicated mainly
to one fluorophore. The edges of the bands are at the wavelengths
at which the different emission spectra cross each other. This corre-
sponds to an intuitive choice, which would have been made by a
scientist who is familiar with the field.

For all number of bands nb, the optimal solution found by the algo-
rithm improves the unmixing compared to the starting configuration,
in which the bands were equally distributed. The performance of the
starting configuration appears to be random.

The number of detected photons is almost equally good for all filter
choices which means that the changes in SNR are due to modification
of the spectral separation in channel space. The filter configurations
with many bands (25 and 50) have slightly reduced detection efficien-
cies compared to the other filter configurations. This is expected as
the configuration with nb = 50 has 49 transition gaps between adja-
cent bands and the configuration with nb = 3 has only 2 gaps where
no photons are transmitted. However, this effect plays a minor role as
the gaps are chosen to be unrealistically small here.

The unmixing scenario is very challenging due to the spectral over-
lap of the emission spectra. Consequently, an apparent photon num-
ber of around 200 it is reasonable. Though, the algorithm may have
found a local optimum only instead of not the global optimum. Also,
other solutions which perform close to optimal may exist.

However, the narrow band structures of the scenarios with nb = 25
and nb = 50 somehow reduces the spectral separation between the
dyes. This case was already discussed when designing the system
in Section 4.2.2. Though, it is very likely that the optimization could
not successfully find the global optimum in for these scenarios. In-
tuitively a scenario with the three bands aligned with the dyes and
all other bands squeezed into the edges should have superior per-
formance. The case demonstrates very well that a higher number of
band is not always beneficial and that the band structure needs to be
designed for each set of dyes.

Relevant aspects regarding sampling, the chosen figure of merit
and the used optimization algorithm apply as discussed in Section 7.1.

Further research is required to fully parameterize the imaging sce-
nario and the system. The scenario which is optimized here does not
consider the fluorescence excitation. This corresponds to equal excita-
tion during both phases for all dyes. In general, the system can gain
separation power between dyes due tailored excitation in each phase.

Overall, this optimization approach has shown that it is important
to choose the right filter band structure depending on the used dyes.
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D I S C U S S I O N , O U T L O O K A N D C O N C L U S I O N

This chapter will finalize the thesis by putting the developed imaging
method and prototype in perspective with the intended clinical use.

Fluorescence guided surgery supports the surgeon by highlight-
ing anatomical, functional or pathological structures which would
otherwise be invisible. Labeling cancer tissue with a certain fluores-
cent agent while concurrently labeling nerve tissue with a different
agent will help surgeons to achieve complete cancer removal while
preserving healthy tissue. For this purpose, the utilized imaging de-
vice is required to record a video stream of multispectral fluorescence
and high-quality color images simultaneously which still poses a chal-
lenge to instrumentation.

After a short introduction to the topic in Chapter 1, the state-of-the-
art in fluorescence guided surgery and the associated instrumentation
is analyzed in Chapter 2. Subsequently, the requirements for such
an imaging device are derived in Chapter 3 and a suitable imaging
method is developed in Chapter 4. This method is based on a com-
bination of spectral and temporal multiplexing to record multispec-
tral fluorescence and high-quality reflectance images over the entire
VIS/NIR in only two alternating phases. Accordingly, the method can
run at video-rate – therefore enhancing the color video stream with di-
agnostic fluorescence information. A prototype system is developed
as part of this thesis and systematically investigated in Chapter 5 with
experiments and numerical simulations.

One generic issue, common to any multispectral fluorescence imag-
ing devices, is addressed in the thesis: many artifacts in the mul-
tispectral raw data lead to altered diagnostic information after un-
mixing, without the user being aware of this phenomenon. A novel
indicator, called T-score, is developed in Chapter 6. It provides a self-
consistency check for the unmixed images by relating the unmixing
residuals with the expected noise.

The noise model is used to optimize the system performance in
Chapter 7 to provide best signal to noise ratio for the unmixed flu-
orescent dye images. First, the fluorescent dye is parameterized, re-
placing the emission spectra with Gaussian shaped emission spec-
tra. With this, the optimal combination of dyes is determined and it
is shown how well the optimal combinations of 2, 3, . . . , 6 dyes per-
forms. The method provides sufficient insight to selecting suitable
combinations of dyes for the system. The results also show that more
different dyes cause more image noise after unmixing. Thus, imag-
ing more than 3 dyes results in increasingly noisy unmixed images.

165
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As a remedy, additional detection channels can decrease the spectral
mixing and thus improve the result. Subsequently, the multiband fil-
ter pair of the imaging system is parameterized to vary the spectral
design of the bands. With this model, the system is optimized for the
detection of the dyes Atto532, Atto565 and Atto610. In this scenario,
the optimal bandpass structure aligns with the fluorescence emission
of the dyes mentioned above. The edges of the bandpass filter align
with the crossing points of the dye emission spectra. In general, the
two optimization example scenarios demonstrate the potential of this
technique. Not only is a best-case scenario being demonstrated but,
more importantly, the amount of improvement which can be expected
with this best-case scenario is shown.

In this last chapter, it is firstly discussed to what degree the de-
veloped imaging method and the prototype system meet the design
requirements. Subsequently, limitations of the system regarding effi-
ciency, unmixing performance, surgical illumination and clinical as-
pects are discussed. Furthermore, a section of this chapter is dedi-
cated to presenting a vision of an ideal device and discussing the
technical limitations which will hinder the realization of such a de-
vice. The last part of the discussion puts the system in perspective
with the relevant academic and research work in this field.

Next, an outlook points out the steps towards clinical translation
and improvements of technical aspects. Finally, conclusions about the
major achievements of this work are drawn.

8.1 design requirements and system performance

This section discusses which of the design requirements have been
realized and shows possible directions for future improvements. Ta-
ble 8.1 compares design requirements with the system performance
regarding the aspects of color imaging, fluorescence imaging, timing,
optical assembly and clinical aspects. The table references the relevant
sections of the thesis.

Color

Recorded reflectance images need to be processed to provide a good
color reproduction. Here, colors are corrected with a linear approach
to match the color perception of the human eye under sunlight as
closely as possible. The system records color information in 6 chan-
nels whose combined sensitivity is supposed to correspond to the
sensitivity of the human eye. Color differences are quantified using
the CIEDE2000 norm which reflects perceptual color differences well.
This approach has reached adequate performance levels in numerical
simulations for various illumination scenarios (CIE D65, CIE A and
white LED illumination). Even flexible multiband illumination seems
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to be acceptable. For most colors, the differences are only slightly per-
ceivable. The color imaging performance might be further improved
using more complex correction algorithms. Alternative sensor sensi-
tivity curves may additionally improve the color image quality. Ex-
periments using clinical relevant colors are necessary to validate the
numerical results. Having color information provided by six differ-
ent channels may, in future, allow advanced processing to enhance
contrast between certain tissue types.

Fluorescence

The system is specified to detect dyes over the entire visible and
near infrared range and to successfully unmix three different fluo-
rescent dyes at medically relevant concentrations. Simulations show
that practically any fluorescent dye emitting in the VIS/NIR can be
detected. Phantom experiments with exemplary sets of three differ-
ent dyes show good unmixing performance levels. The performance
can be further improved by optimizing the selection of filter bands
for the system.

A metric, called T-score, has been developed and successfully tested
for the ability to indicate unmixing artifacts. It combines unmixing
residuals with a noise model of the system to allow calculation of
the T-score per frame and per pixel based on a single image. For ex-
ample, the metric has shown to be very sensitive to detect additional
fluorescent dyes which were not regarded for unmixing at relevant
concentrations.

All in all, the fluorescence imaging capabilities match the require-
ments successfully.

Timing

For good human-machine interaction, fluorescence guided surgery
systems must perform at high framerates and with short delay times.
In other words, it must run in real-time.

The selected imaging method requires only two phases to record
fluorescence and reflectance images over the VIS/NIR range. In terms
of framerate, the chosen method thereby fulfills the design require-
ments. The delay between the occurrence of an event and the appear-
ance on the screen is only restricted by the recording time of two
subsequent frames. Thus, potential delays may be caused by compu-
tational processing time. Realizing a system which fulfills the timing
requirements calls for extensive efforts in software design and inter-
facing of high data rates up to 2 GB/s. To ensure that the design
requirements are met, it is advisable to implement the processing
on FPGAs. Therefore, the prototype system was not tested regarding
timing as this aspect was specifically excluded from this work.
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Optics

The optical prototype setup exceeds the requirements in terms of
FOV, digital resolution and spatial resolution. In future, a costly cus-
tom design may further improve the optical performance. Section 8.2.1
discusses in detail how the efficiency of the setup could be further op-
timized.

Clinical

All in all, the setup can in future be translated to a clinical environ-
ment as the design requirements are fulfilled.

The working distance of 18 cm is acceptable for surgeons. The OR
room lights can be adapted to the system illumination. However, the
flickering at current framerates still poses an issue. Moving towards
high frequencies with ultrafast acquisition would eliminate this diffi-
culty. The used illumination intensity is well below clinical limits and
can thus even be increased to further improve fluorescence detection.

In future, the system can be miniaturized aiming at implementa-
tions as compact as chip-on-the-tip endoscopes.

As the design requirements regarding clinical usability are met, the
translation process including certification, clinical experiments and
validation, can be initiated.

Table 8.1: Summary of design requirements and system performance.

design requirement system performance

color

• correction of color images so
that displayed colors match the
object colors as close as possi-
ble as seen under CIE D65 il-
lumination with the human eye.
Color deviations should only be
slightly perceivable which corre-
sponds to ∆E00 ≤ 1.5

• linear color correction algorithm
results in sufficiently good color
reproduction for CIE D65 illu-
mination, CIE A illumination
and white LED illumination
with only slightly perceivable
color differences; variable inten-
sity multiband illumination sce-
narios produce good color cor-
rection with ∆E00 ≤ 1.5 for most
of the tested scenarios (see Sec-
tion 5.2)

fluorescence

• detect any dye with 400 nm ≥
λem ≥ 900 nm

• numerical calculation of the sys-
tem detection efficiency for an
ideal Gaussian emission profile
in Section 5.1.2 and for real dyes
in Section A.2
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Table 8.1: (continuation)

design requirement system performance

• experimental detection of
Atto488, Atto655 and Atto740 at
5 µm (see Section 5.3.2) and of
Atto532, Atto565 and Atto610 at
2.5 µm (see Section 5.3.1)

• detect and successfully unmix
three dyes with concentrations
of 1 µm to 10 µm

• experimental images of phan-
toms containing pure dyes and
mixtures of Atto532, Atto565

and Atto610 show good unmix-
ing performance in Section 5.3.1

• unmixing amplifies imaging
noise according to Section 6.1

• unmixing artifact diagnostics on
basis of a single image for live
video rate analysis

• developed T-score diagnostics
put the unmixing residuals in re-
lation with the expected noise
and provide real-time unmixing
diagnostics for each pixel on ba-
sis of each image itself, details in
Section 6.2 and Section 6.3

timing

• recording images minimally at
30 fps, best at 60 fps with de-
lays below 160 ms, best less than
60 ms

• framerate and delays were not
investigated with for prototype
as these aspects depend on
a developed software solution
which is not part of this thesis.
However, the imaging method
and the selected hardware (light
sources and cameras) are gen-
erally capable to fulfill the re-
quirements. Future technology
promises to exceed these re-
quirements (see Section 8.3)

optics

• FOV ≥ 5.0 cm× 5.0 cm for each
sensor

• requirements are fulfilled
with FOVS1 ≈ (5.9± 1.0)
cm × (5.9± 1.0) cm, FOVS2 ≈
(5.8± 1.0) cm × (5.9± 1.0) cm;
see Section 5.4.1

• digital resolution at least 1.0 MP • requirements are exceeded with
a resolution of (1.33± 0.05)MP
for sensor S1 and (1.30± 0.05)
MP for sensor S2 as discussed in
Section 5.4.1
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Table 8.1: (continuation)

design requirement system performance

• spatial resolution at least 1.15
lp/mm at MTF = 0.5 for each
sensor

• requirements exceeded with
measured spatial resolution
ranging between 2.0 lp/mm
and 3.3 lp/mm depending on
the sensor, location and merid-
ional or sagittal direction (see
Section 5.4.2)

clinical aspects

• free working distance between
at minimally 10 cm and 30 cm

• free working distance of the
prototype is 18.5 cm, see Sec-
tion 5.4.3

• concept must allow for miniatur-
ization aiming at chip-on-the-tip
endoscopes

• miniaturization requires to mod-
ify the sensors and optical setup,
but the method is suitable

• flexible multiband illumination
light source, power adjustable
per band, total intensity must
not exceed maximum permissi-
ble irradiant of Φmax = 2000
mW cm−2

• multi-LED light source provides
an adjustable, filtered multi-
band illumination which can
be triggered and the intensity
can be adjusted; estimated max-
imum irradiant of Φmax = 400
mW cm−2 is well below the per-
missible limit (see Section 4.2.5);
power measurements suggest
even lower irradiant intensities
[166]

• concept must allow to be com-
bined with surgical room lights

• currently possible only with per-
ceivable flickering, future devel-
opments for sensors with super-
fast acquisition promise seam-
less integration with surgical il-
lumination concepts, for details
see Section 8.3

8.2 limitations and possible improvements

It is clear that any prototype system can be further improved as tech-
nical choices usually come with a set of limitations. This section dis-
cusses the potential for future improvements of the method and the
prototype system.

First, the potential for an efficiency improvement is discussed. Sub-
sequently, the limitations of unmixing are debated, followed by a de-
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tailed analysis of the impact of surgical illumination. Finally, limita-
tions of clinical usability aspects are examined.

8.2.1 System efficiency

The prototype setup was designed to detect multiple fluorescent dyes
and reflectance color images. Thus, the focus of this work is on fast
multispectral image acquisition and not on detection of the very low-
est concentrations as specified in Section 3.1.1. Compromises regard-
ing sensitivity were made on purpose. Therefore, the potential of dif-
ferent endeavors to improve efficiency of the prototype system is sum-
marized in Table 8.2.

The microfilter Bayer pattern on the sensor detects approximately
half of the light over the entire spectral detection range that a mono-
chrome sensor would detect. This restriction is directly linked to the
need for color sensors. In future, color sensors with stacked detec-
tion channels like the Foveon X3 sensor [207] may provide a higher
detection efficiency.

Ideally, the sensor can detect photons on any pixel at all times.
Unfortunately, the selected sensor CIS2521 causes a fixed dead time
during the readout process. This puts a high penalty on higher fram-
erates. Between 20 fps and 40 fps half of the available time is used to
read out the sensor (readout time depends on digital resolution). Lat-
est sensor technology such as the one used for example for the Sony
IMX265, which was not yet available when realizing the prototype,
supports a global shutter without significant dead time for the sen-
sor readout. This sensor outperforms the sensors considered in this
work as shown in Figure 4.15. The current rapid progress in sensor
technology will most certainly further improve future systems. All in
all, the developed concept will benefit from future developments of
advanced sensors.

The illumination intensity can be increased by a factor 10×−100×
before reaching the maximum exposure limits for human tissue. The
simplest but not economically feasible solution would be to replicate
the light sources as often as needed. LED lights with higher output
power or with angularly invariant excitation filters could simplify the
illumination and allow high power illumination.

The optical photon-collection efficiency of the system is low com-
pared to state-of-the-art objective lenses with higher numerical aper-
ture as shown in Section 5.4.4. However, these objective lenses do
not allow access to the imaging path in infinity corrected space and
thus do not allow best filter placement. Additionally, such fast imag-
ing lenses require focusing the image on each sensor individually.
Though, a comparison shows that a customized development may
improve the detection efficiency by a factor 10× – 30×. The devel-
oped optical system should allow placing the filters in the optical
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path or having the filter directly deposited on the surface of one of
the lenses.

A 50:50 beam splitting cube was used in the setup due to its avail-
ability as a commercial standard part. Exchanging the beam splitter
cube with a specially fabricated optically flat dichroic beam splitter
plate to ensure good imaging quality can in principle double the de-
tection efficiency in a final clinical system.

If all the improvements in efficiency are successful, the sensitivity
of the system could be improved by a factor as high as 60 000 com-
bining all the discussed effects. This promises sensitivity in the pm

range for modern dyes with the same image quality as the phantom
images in Section 5.3. The sensitivity would then even be able to com-
pete with state-of-the-art clinical imaging systems which do not offer
to image multiple dyes over the VIS/NIR range simultaneously with
color images [74].

Table 8.2: Summary of estimated system efficiency improvements and ref-
erence to the part of this work where the aspect is discussed in
detail.

element factor reference

Bayer pattern 2× Section 3.2.5, Sec-
tion 4.1

sensor readout 2×−5× Section 4.2.1, Table 4.1,
Figure 4.15

illumination intensity 10×−100× Section 4.2.5
optical photon collection 10×−30× Section 5.4.4
optical beam splitter 2× Section 4.2.3

8.2.2 Unmixing performance

In the recorded multispectral raw data, the different components are
recorded in a mixed fashion. Unmixing the fluorescence images al-
lows separating different fluorescent components but also comes with
its limitations.

The major disadvantage of unmixing is that it can amplify image
noise in the final images and noise can also be transferred between
different channels. This effect increases if the spectral signatures of
the dyes are close. Therefore, it is essential to assess whether the dyes
used in a scenario can be unmixed well. For the scenarios tested here,
the system was able to unmix all the tested fluorescent dyes at clin-
ically relevant concentrations. As a rule of thumb, the system per-
formed reasonable if the different dye emissions fell into different
bands of the multiband filter. It has been designed and been success-
fully tested to differentiate different fluorescent dyes and successfully
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unmixed mixtures of Atto532, Atto565 and Atto610 whose emission
maximums fall within less than 100 nm.

Artifacts in the raw data resulting from rapid object movement or
due to tissue absorption will cause spectral artifacts in the compo-
nent images. In this thesis, the novel T-score metric was introduced
to indicate unmixing artifacts.

The prototype system detects fluorescence images in 6 spectral
channels and thus theoretically up to 6 different fluorescent dyes can
be unmixed. In practice, it is nevertheless favorable to use a smaller
number of dyes than available channels. Any additional dye typically
increases the amount of spectral mixing and therefore causes an ad-
ditional amplification of noise in unmixing. Moreover, to be able to
compute the T-score, the number of detection channels needs to be
higher than the number of components (dyes).

To further optimize the unmixing performance, the exact design
of the complementary multiband filter pair can be optimized for a
specific scenario. Additional color channels besides the conventional
RGB pixels could be added to the sensors. The spectral sensitivity
curve of these pixels could be optimized for better dye distinction.
For very challenging unmixing scenarios, additional phases can be in-
troduced to separate dyes by excitation multiplexing. However, each
additional phase reduces the photon yield during other phases as the
integration times need to be shortened.

In brief, unmixing multiple dyes is a very delicate procedure which
may amplify noise and introduce artifacts. Noise amplification can
be controlled by the spectral design of the system. Unmixing artifacts
cannot be avoided, but can be indicated using the T-score.

8.2.3 Flickering and ambient light

For the prototype presented in this work, images could only be recorded
with up to maximally 100 fps. High framerates lead to shorter integra-
tion time because the cameras need a higher fraction of the available
time for the sensor readout.

As a result, framerates between 10 fps and 50 fps are chosen for
experiments with the prototype system to allow longer fluorescence
integration times. Undoubtedly, the flickering of the illumination at
these framerates is perceived as very disruptive. In conclusion, an
openly operated clinical system requires higher framerates of at least
100 fps. Nevertheless, fast movements of the surgeon still appear dis-
turbing and call for even higher framerates. Recent developments in
the field of CMOS sensor technology combine high-resolution, high
dynamic range, fast global shutter sensor readout at high framerates
and powerful image processing on a FPGA close to the sensor. There-
fore, future developments promise a technical solution to this issue
and will make the method even more attractive.
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Ambient light, which is shined onto the object or directly enters
the imaging system will result in artifacts. As a matter of fact, fluores-
cent light is usually at least 3 orders of magnitude weaker than the
ambient light. Thus, relatively weak ambient light can bias the weak
fluorescent image even though it does not interfere with the color
image.

8.2.4 Clinical usability

So far, the system has been tested in technical experiments with fluo-
rescent phantoms containing a scatterer. However, the effect of light
absorption has not been investigated in this work. Tissue absorption
is wavelength dependent and may therefore change the spectrum of
the excitation light and of the emitted fluorescence light. In a first
step, the effect of the most common absorbers in the human body on
a specific unmixing scenario need to be schematically investigated in
phantom experiments. Subsequently, it is desirable to find an algo-
rithm which can unmix the used dyes independent of the tissue ab-
sorption and minimize artifacts. Alternatively, the knowledge gained
from the phantom experiments can be used to optimize the spec-
tral design for robust unmixing in the presence of absorption. In a
next step, the capacity of the system to reliably image the used dyes
and the impact of perturbations both need to be tested in preclinical
experiments to generate conditions as close as possible to the clini-
cal scenario. Finally, clinical experiments are required to analyze the
medical benefits of the imaging scenario and the system.

The prototype system is designed for technical laboratory experi-
ments and initial preclinical experiments. It is evident that the pro-
totype system does not yet fulfill the requirements for clinical use.
For instance, the design does not fulfill sterility requirements such as
smooth edges of the casing to prevent damage to the required sterile
drapes. Yet another issue to be solved is the temperature stabilization
of the used sensors. In case of cooling tubes, any leakage of cooling
liquid to the surgical field must be prevented. Alternative air cooling
with a fan inside a sterile drape is also problematic.

In addition, current surgical lights are not designed to be triggered
or spectrally filtered. While spectral filtering remains an unsolved is-
sue, triggering of modern surgical LED lights is technically feasible.
Current neurosurgical systems for imaging of PPIX do not harmo-
nize fluorescence detection with the ambient room illumination. Con-
sequently, their usability is seriously impeded.

An easy and intuitive user concept needs to be developed to in-
tegrate well with the surgical work-flow. An additional key aspect
is to intuitively combine the fluorescence information with the color
image video stream. Elliott et al. [170] have compared different meth-
ods to overlay the information. However, more conclusive studies are
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required to fuse the diagnostic fluorescence information with color
images. The key question is how to intuitively and reliably display
the fluorescence information while maintaining all the relevant color
image information.

To summarize, a series of efforts related to product design are re-
quired for full clinical compatibility of the prototype system.

8.3 ideal device and technical limitations

When designing the prototype system which is presented and eval-
uated in this work, compromises due to technical constrains were
made to match the design requirements. This chapter will ignore
all constrains and discuss how an ideal system using the described
method would look like and how the ideal sensors, filters, optics and
lights would influence the system performance.

Timing

Frame rates higher than 60 fps will most likely not further improve
the surgical outcome as described in detail in Section 3.1.6. However,
in open surgery the surgical room lights need to be triggered at the
same frequency than the sensor. Flickering lights at 60 Hz will be
perceived as very disturbing. Higher framerates can eliminate this ef-
fect. Additionally, higher frequencies reduce artifacts caused by object
movement.

Therefore, an ideal sensor should acquire images at very high fram-
erates, for example at 1200 fps or even higher. At sensor acquisition
of 1200 fps, a complete multispectral image data set is acquired at
600 fps, but the video stream only needs to be presented to the sur-
geon at 60 fps. So, a moving average filter will smooth the image
information of 10 subsequent images. The time difference between
the acquisition of the two sensors is then 10% of the time, which is
used for the total acquisition of the combined image presented to the
surgeon. Movement artifacts will thus be reduced and the perceived
flickering will vanish.

The moving average filter will maintain the shot noise (which is the
dominating source of noise in this work) at the same level as if acquir-
ing the image for a longer time, because in total the same number of
photons is collected. However, other sources of noise (whose contri-
butions were minor in this work), need to be reconsidered. Besides,
applying a moving standard deviation filter can replace the model
based noise estimation required to calculate the T-score by an actual
measurement.

If the signal to noise ratio of the video stream is not sufficient, it
can be digitally improved by increasing the number of images of the
moving average filter without changing sensor readout frequencies.
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Recent sensor development has enabled image acquisition at 960
fps for consumer products, but only for a very short time [208, 209].
These developments show that the required feature seems to be tech-
nically feasible in future. The filters can be implemented within the
camera electronics and thus the data stream between camera and com-
puter can even be reduced.

Sensor

The used RGB Bayer pattern has shown two major limitations: it re-
duces the detection efficiency by more than 50% compared to mono-
chrome silicon sensors and causes unmixing artifacts on strong inten-
sity variations of the object.

Thus, an ideal sensor may exhibit a pixel structure in which the
detection elements for the individual channels (like RGB) are stacked.
In this way, each pixel detects all the sensor channels and no demo-
saicing is required. If each channel only absorbs the photons to be
detected and transmits the other photons to the next layer detect-
ing a specific channel, the efficiency could in theory be up to 100%.
Also, more than three channels could be realized per pixel. To ensure
high-quality color imaging, it must be possible to express the spectral
channel sensitivities as a linear transformation of the color matching
functions x, y and z. One appealing example would be to have three
channels for the color detection and additional channels with sensi-
tivity in the IR region.

Extensive research has been conducted in this field of sensor devel-
opment. One example of a commercially available color sensor using
three stacked channels is the Foveon X3 [207]. Sensors with a higher
number of channels have been proposed and prototypes have been
realized. A summary can be found in a review by Hagen et al. [72].

Sensors with stacked channels promise higher sensitivity and no
artifacts compared to micro-structured filters, but they do not yet play
a significant role in the color sensor market. Though, the system could
benefit greatly from such sensors.

Filter

Increasing the number of filter bands arbitrarily does not result in an
improved detection as demonstrated with numerical optimization in
Chapter 7. In contrast, the information acquired in the two phases
will become more and more identical resulting in worse spectral sep-
aration between dyes compared to filters with fewer bands.

The other extreme would be to implement only one or two trans-
mission bands per filter. In that case, the distinction between fluo-
rophores is mainly based on the smooth color sensitivity curves. This
would not result in ideal separation.
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In practice, separation between dyes works best if the bandwidths
correspond to the width of the excitation spectrum, the emission
spectrum and the Stokes shift. Optimization of an example scenario
showed best unmixing performance if the number of bands matches
the number of dyes (excitation was neglected).

The most critical characteristic of the multiband filters is the angu-
lar dependence of the spectral transmission profile. To avoid leakage
of excitation light into the fluorescence detection, gaps are required
between adjacent bands. Though, the gaps reduce the detection effi-
ciency.

All in all, an ideal filter would show strong blocking bands of 6

orders of magnitude, steep transitions between the bands and show
no angular dependence. Such filters would simplify the optical setup
dramatically and allow the use of high aperture imaging optics and
thus high transmission angles. This would simplify the filter design
and allow the design of a more compact and miniaturized system.
Angular invariance of the excitation filters makes illumination design
without a collimated path possible and thus facilitates more simple
and compact illumination. Ultimately, this allows to increase the LED
surface and thus the illumination intensity.

Most importantly, the band structure of the filters should best be
chosen for optimal separation of the fluorescent dyes relevant for the
application.

Optics

The optical lens assembly is supposed to be as compact as possible,
while maintaining high optical performance. If the setup is equipped
with a color sensor relying on a Bayer pattern, the PSF should not
be smaller than the pitch between pixels. Optical smoothing reduces
interpolation artifacts but limits the optical performance. For best fil-
ter performance, the optical concept should allow to place the beam
splitter and filter in an infinity corrected optical path.

Commercially available solutions with high apertures and an in-
finity corrected path exist in the field of microscopy aiming at high
magnification and close object distance. Macroscopic objectives which
fulfill the required magnification and working distance do not offer
an infinity corrected imaging space for filter placement. A custom
design promises a good compromise within theoretical limitations.

Light sources

The ideal light source intensity would be freely scalable for excita-
tion at maximum permissible radiation limits. Additionally, is should
exhibit the spectral characteristics matching the emission band struc-
ture, therefore making excitation filters obsolete. The spatial power
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distribution on the object must be identical for both phases to allow
spatially invariant unmixing. To minimize specular reflections of wet
tissue, the illumination should be diffuse.

The selected light sources are suitable for the application but do
not offer enough power to fully exploit the maximum tolerable power
limits for tissue. Also, they require bandpass filters to avoid leakage
into the fluorescence detection bands. All lights are unified in one
single fiber to make the illumination during different phases as equal
as possible and enable spatially invariant unmixing.

8.4 related work

The field of fluorescence guided surgery is well-established and thus
numerous publications in the field are available. However, to my
knowledge no other system has been published which fulfills the de-
sign requirements specified in this thesis. Even though many other
systems outperform the prototype in one aspect, they perform weaker
in other aspects or do not investigate those.

This section compares the prototype with other technologies and
systems. First, related work focusing on combining fluorescence and
color imaging in a clinical setting is collected and compared. However,
these systems generally do not allow to image multiple fluorophores.
Therefore, the second part presents systems developed for the record-
ing of multispectral images and relates them to the prototype. These
systems generally perform very well in acquiring multispectral data,
but in contrast do not allow to record color and fluorescence in video-
rate.

8.4.1 Clinical fluorescence imaging devices

This section compares available fluorescence imaging devices for clin-
ical and preclinical use with the prototype system and discusses the
differences.

Spectral splitting

Several devices to image ICG have been presented and are also com-
mercially available for clinical use [74]. These devices usually split the
spectral range into two parts: the VIS part is used for color reflectance
imaging and the NIR part is used for fluorescence imaging.

Possibly the biggest advantage of these systems is that the two
imaging modalities are mostly autonomous. Parameters like framer-
ate, illumination intensity or even pixel size and optical magnification
can be chosen independently. This allows to combine very different
imaging modalities in one device. Accordingly, these devices show
higher sensitivity for IR dyes than the prototype device presented in
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this work. Nevertheless, they are not flexible and most only allow to
image one single dye. Many of these devices can be combined with
room lights, run at video rate and are already translated to the clinical
environment. The disadvantage is that these devices do not offer the
capacity for multispectral imaging and at least imaging of multiple
dyes in the visible is excluded per se.

In future, clinical fluorescence imaging with targeted fluorescent
agents will focus on the NIR, because tissue absorption is relatively
low in this region [5, 42]. Thus, a device with color imaging capac-
ity in the visible and multispectral fluorescence imaging capacity in
the NIR might be a promising scenario for multispectral fluorescence
guided surgery. In that case, the method of spectral and temporal
multiplexing presented here could be adapted to just cover the NIR
part.

Overall, splitting the spectral range into one for color imaging and
one for fluorescence imaging is very effective, if applicable for the
required scenario. For the example of imaging only ICG, this solution
is chosen for the clear majority of devices on the market and shows
overall good performance. However, the devices miss the essential
requirement to image multispectral fluorescence over the VIS/NIR
spectral range.

Temporal splitting

The second well-established approach to unify fluorescence and color
imaging in one device is to temporarily split the two modalities. This
approach is popular for PPIX imaging in surgical microscopy and
cystoscopy. For both applications, most clinical systems require man-
ual switching between the two modes. This means that the surgeon
will have to push a pedal to toggle between fluorescence and color
imaging mode.

Various systems of this type have already been presented for clin-
ical use. In this regard, these systems lead over the prototype in the
sense that they are already translated and adapted to match clinical
demands. However, the surgeon only sees either color or fluorescence.
In consequence, the surgeon needs to memorize the fluorescence im-
age during cancer resection, switch to color mode and continue re-
section using the memorized information. In contrast, the prototype
combines fluorescence and reflectance imaging and offers real-time
combination of the images.

Several approaches to accelerate the switching have been reported
[84, 85]. In this respect, these systems use electronic switching like
the prototype. However, they also share one common issue: flicker-
ing illumination will be disruptive for the user, unless it cannot be
perceived anymore. Thus, this approach is most promising for endo-
scopic applications where the illumination light is not seen by the
surgeon. Besides, the presented systems are usually designed to im-
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age only one fluorescent dye, they are not developed for multispectral
imaging.

Placing a filter permanently in front of the sensor is the simplest
optical solution to block the fluorescence excitation light. If the exci-
tation light source is a laser, a single spectrally narrow blocking band
is required. The influence on color images is supposed to be minimal,
because the spectral width of the filter gap can be made very small
compared to the typical width of color reflectance spectra. However,
if multiple dyes should be excited with LEDs, the blocking will be
significant and the color images may be altered.

In short, systems which use temporal switching to image fluores-
cence and color have been developed and are commercially available.
Even though they may show superior performance to image one sin-
gle dye, they do not allow flexible multispectral imaging as required
for this work.

8.4.2 Multispectral image acquisition

Macroscopic point scanning

In comparison to the prototype system point scanning systems are
very flexible. Excitation and emission paths can be easily reconfigured
as needed. However, traditional systems with galvanometric mirrors
scanning the optical beam across the sample are not fast enough for
video-rate imaging. Our prototype system clearly outperforms scan-
ning systems such as the one presented by Constantinuou et al. in
terms of speed [115]. In contrast, this system has a numerical aper-
ture of NA = 0.35 and thus collects approximately 1000 times more
photons than the prototype system.

Recent developments in the fabrication process of micro electrome-
chanical systems (MEMS) allow the production of miniaturized scan-
ning mirrors. These MEMS devices promise scanning at video rate
and in HD resolution [156]. However, such resolutions require a pixel
clock frequency between 100 MHz and 1 GHz and thus leave very lit-
tle integration time to collect photons for each individual pixel. More-
over, technical aspects like mirror size and scan angles still require to
be harmonized with scanning systems.

To sum up briefly, point scanning with galvanometric mirrors will
not be fast enough to realize a system for clinical use, but novel
MEMS devices may be a game changer in future.

Scanning fiber endoscopy

Fiber endoscopes using a single fiber to deliver light and piezo actu-
ators to scan the object have been presented with diameters as low
as 1 mm [40]. Up until now, no chip-on-the-tip endoscope with such
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a small diameter has been presented [40] and most likely fiber scan-
ning endoscopes will continue to spearhead technical development
in this field. From the current point of view, the presented prototype
system can be further miniaturized, but not down to a 1 mm diameter
endoscope.

Endoscopes with such small diameter might be beneficial for some
applications. However, sub-millimeter endoscopes have to be handled
with caution to not accidentally perforate tissue. Colonoscopes and
cystoscopes for example do not require dramatic further miniaturiza-
tion of the instrument diameter. Still, the smaller the imaging channel,
the more room remains for the working channels and instruments.

Fluorescence detection requires collecting as many photons as pos-
sible. A major factor for the photon collection capability of any sys-
tem is the size of the first lens. Consequently, a miniaturized detection
lens is problematic for fluorescence imaging as it opposes high pho-
ton collection efficiencies.

The presented fiberscopes run at video framerate (30 fps), but only
has an image size of 196 kpx.

The main advantage of any point scanning setup is the flexibility
in building a suitable detection unit.

All in all, scanning fiber endoscopes are a promising technology.
In scenarios where space is the fundamental limitation (diameter ≤
1 mm), scanning fiber endoscopes are the first choice. Having said
that, for high-resolution fluorescence endoscopy at video-rate with
permissible catheter diameters around 1 cm, the prototype system re-
mains the technology of choice.

Line scanning

In retrospect, the image size of line scanning systems is comparable to
the presented prototype system [117, 118, 120]. Though, their superior
spectral resolution comes at the expense of framerate. In this regard,
none of the compared systems runs close to the required framerate
of 30 fps and can therefore not be seen as a potential replacement
technology. The high-quality of the spectral information of the system
for example presented in Luthman et al. allows to unmix challenging
scenarios in vivo using multiple dyes which are close together [120].
It would be very interesting to directly compare the images produced
by such a system as a reference mark with the images produced by
the presented prototype.

Snapshot hyperspectral imaging

In terms of spatial resolution, the presented prototype system outper-
forms the clear majority of snapshot hyperspectral imaging systems.
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These systems generally distribute all the multispectral data points
on a 2D monochrome sensor using various methods.

As an effect, the spatial resolution of these snapshot systems tends
to be far below 1 MP because many pixels are used to record spectral
information. An extreme choice is for example a fiberscope published
by Lim et al. claiming to record images of 10 × 10 pixels with each
having 756 spectral bands [93]. However, more suitable selections can
also be made: Basiri et al. distribute 9 MP into 18 spectral images of
0.5 MP each.

Framerates of the related work and of the prototype should be com-
parable as they purely depend on the sensor readout time and sensor
electronics.

As many different snapshot technologies are available, the size of
the setup varies. CTIS, for example, allows the building of compa-
rably compact HSI setups. Most of the snapshot HSI methods are
efficient in terms of photon detection. If all wavelengths need to be
detected simultaneously, it is not very suitable to block most of the
wavelengths as it is often done by scanning techniques.

So far, none of the snapshot HSI technologies dominates the field.
Future research is necessary to push forward these technologies.

However, high-resolution sensors with up to 150 MP are projected
to enter the sensor market in 2018 [210]. As a result, it would be
possible to record hyperspectral data with an image size of 5 MP at 30
spectral bands simultaneously. For such sensors, the data transfer is
expected to be the bottleneck. This issue can be solved by processing
the images directly in the camera with FPGAs and transferring only
the relevant diagnostic image data from the sensor to the computer
and screen.

Snapshot imaging technologies are expected to become increas-
ingly popular as they complement with developments on the sensor
market. They are likely candidates to prevail in medical applications,
especially because movement does not result in artifacts.

Spectral scanning with filter wheels

Comparing in retrospect the presented prototype system with sys-
tems allowing to record multispectral fluorescence with filter wheels
reveals that the prototype outperforms the other systems in terms of
recording speed by far [70, 71]. By contrast, systems with filter wheels
can be reconfigured with different filters very flexibly. Changing one
band of the prototype system requires the redesign of all multiband
filters.

Although the prototype system is of the same size as published
setups with filter wheels [70, 71], the prototype system can be minia-
turized. In contrast, the size of filter wheels cannot be easily reduced.
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The system of Benavides et al. uses a color sensor and two differ-
ent excitation lights for time multiplexing [70]. The prototype sys-
tem allows rapid acquisition of fluorescence images with different
excitation lights. Thus, the concept could be translated. Numerical
simulations of the scenario would show the optimal multiband filter
structure for the prototype system (analogously to Chapter 7). The re-
sults would also allow to judge about the system performance for the
example to identify cervical neoplasia by autofluorescence detection.

Spectral scanning with liquid crystal tunable filters

Recent publications present systems for scanning the spectral range
using LCTFs instead of filter wheels [63, 104–106]. The achievable
spectral resolution is far superior than that of the prototype system,
the spatial resolution is acceptable or can easily be fixed by replacing
the sensor. Framerates (if reported) are below video-rate, but still bet-
ter than using filter wheels. As LCTF blocks most of the light when
scanning over the spectrum, the technique is generally not very suit-
able for fluorescence imaging. Also, current LCTF are not suitable to
be miniaturized for example in chip-on-the-tip endoscopes.

In brief, LCTF systems do not fulfill the systems design require-
ments and therefore cannot replace the system. Nevertheless, they
allow to build high-quality systems which are necessary for initial
clinical experiments. For example, Valdes et al. demonstrated clinical
advantages of multispectral fluorescence guided glioblastoma resec-
tion with such a system. It is of high interest to see if the same results
could be achieved with an adapted version of the prototype system.

Spectral scanning with acousto optical tunable filters

The fastest spectral scanning systems work with AOTFs to filter spe-
cific wavelength ranges (compared to filter wheels or LCTF). The pre-
sented systems [111–114] show framerates up to 5 fps and are thus
quite close to fulfilling the requirements in terms of framerate (only
a factor 6 is missing). The crystals inside the filters themselves are
very small so they could also potentially be miniaturized. However, a
major part of the photons is eliminated in this technique and thus the
detection efficiency is supposed to be limited. Additionally, motion
will lead to spectral artifacts. At the same time, out of all the avail-
able spectral scanning techniques, it is so far the most promising one.
Future work will show if the technology is competitive and can be
introduced into the medical device market.
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8.5 outlook

This section gives an outlook on the next steps for follow-up projects.
These are categorized by topic into clinical translation, technical ad-
vances, algorithm development and miniaturization for endoscopy.

Clinical translation

Future work in translating the system to clinical applications promises
good results. This thesis has worked out a method to combine flu-
orescence and color imaging and has analyzed its implications. To
translate the method for an introduction into clinical practice, appli-
cation specific systems are required. In this process, firstly, the imag-
ing scenario needs to be specified. This includes fixing the dyes to be
distinguished. Secondly, numerical simulation and optimization of
the spectral system characteristics will provide optimal spectral de-
sign parameters for the system and predict how well the system will
be able to distinguish the dyes of interest. Even though an intuitive
choice of spectral bands may result in a performance close to optimal,
it is not possible to predict how well the dyes can be separated and
thus how much noise will be amplified by unmixing. Thirdly, a proto-
type needs to be designed, realized, tested and potentially improved.
This loop of improvement needs to be continued until the test results
are satisfactory. For testing, technical laboratory experiments should
be performed. This step will be followed by preclinical and finally
clinical experiments. It is desirable for efficiency, simplicity and for
ethical reasons to keep this order and to only progress to the next
step when the system has successfully passed all tests. Searching for
system components when designing the prototype should be oriented
toward the vision of an ideal system described in Section 8.3.

So far, established clinical applications for fluorescence guided sur-
gery are based on imaging one single dye only. New clinically ap-
proved (NIR-) dyes and staining scenarios using multiple dyes are
waiting to be translated to the clinics. In the meantime, combining
clinically established and approved dyes, for example imaging PPIX,
ICG and FITC simultaneously for glioma resection is a promising di-
rection.

Moreover, preclinical experiments suggest that multispectral detec-
tion of PPIX itself can improve the diagnostic information for glioma
resection.

Another example where initial clinical experiments promise supe-
rior diagnostic performance is multispectral autofluorescence detec-
tion for diagnosis of cervical neoplasia.

These are example applications in which clinical translation can
already be brought forward and do not require to wait for admission
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of novel agents. In future, clinical dyes in the NIR imaging region are
expected to be available for clinical use.

Technical improvements

The prototype system has shown to fulfill the design requirements.
However, the extensive testing and technological progress point to
possible future improvements.

The used sensors Fairchild CIS2521 have shown a good, but not
overwhelming color imaging performance. It seems that superior mi-
cro color filters could further improve the color imaging quality.

Unfortunately, the sensor has a fixed readout time per frame in
which no new frame can be recorded. At high framerates this in-
creasingly reduces the system efficiency. Novel sensors which have
overcome this obstacle are already available on the market.

The current pixel design of color sensors is a 2× 2 R-G-G-B Bayer
pattern. Other designs such as R-G-IR-B (replacing one green by an IR
pixel) or R-G-M-B (replacing one green by a monochrome pixel) can
be imagined. The final aim would be to find a pixel design which im-
proves color reproduction, enhances the spectral separation between
dyes and has a high detection efficiency.

The optics of the prototype performed within the specifications.
The development was focused on flexibility and high-quality filtering
of the emission light and thus leaves space for improvement. A cus-
tom optics design promises a more compact setup which would ide-
ally combine good filtering with a high photon collection efficiency
and superior image quality.

Algorithm development

A big field of future work lies in the direction of algorithm devel-
opment. Here, potential regions of work are identified for the fields
of improved numerical system optimization, artifact free unmixing,
accurate color correction and finding the limitations of the T-score
algorithm.

The numerical simulations of the spectral performance allow find-
ing the optimal spectral design and to estimate the system perfor-
mance for the respective application. The simulation can be further
extended optimizing even more parameters like excitation lights or
the RGB sensor sensitivity curves. This leads to a high dimensional
optimization problem which requires studying the problem more rig-
orously in order to find the global optimum.

In this work, the fluorescent dyes were unmixed using linear un-
mixing based on the spectral images. These images have been ac-
quired at different times and the spectral information has been inter-
polated in the debayering process. Both effects have shown to result
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in unmixing artifacts. In future, a novel algorithm which takes the
temporal, spectral and spatial shift of information in the raw data
into account, can be developed for improved unmixing performance.

The T-score metric has been developed in this thesis and has demon-
strated in initial experiments to spot unmixing artifacts. However, it
is not directly clear if any unmixing error must necessarily result
in a higher T-score. Therefore, future work is required to determine
which artifacts can be spotted well and to find the limitations of the
algorithm. Along this development, the statistical interpretation of
the T-score can be developed to convert the score into statistical state-
ments.

Another field in which new algorithms promise a better perfor-
mance is color correction.

The linear correction approach results in sufficiently corrected im-
ages, but literature has shown that adding constant parameters or
higher order polynomials may further improve color correction. Even
though literature has not yet found superior performance using neu-
ral networks, new insights in this dynamic field may also improve
their performance for color correction.

Estimating the best set of parameters for color correction was com-
putationally expensive and the algorithm may only converge to a lo-
cal optimum.

The color correction algorithm used in this work tries to reproduce
the colors as perceived by the human eye when illuminated with sun-
light. Alternatively, algorithms which increase color contrast between
specific tissue types could be developed. A historic example for a
visualization which sacrifices color reproduction for the benefit of en-
hancing features is narrow band imaging. Recording six channel color
information might be sufficient to develop similar algorithms to aid
the surgeon.

All in all, work on algorithms development for color correction is
still pending and shows promises for advancement.

Endoscopy & miniaturization

The prototype system was designed for open surgery imaging. How-
ever, the concept can also be adopted to realize a chip-on-the-tip endo-
scope. Beam splitting in chip-on-the-tip endoscopes has already been
established in commercial solutions. Thus, the technical challenge to
place a beam splitter and two sensors in the tip of an endoscope
(diameter approx. 1 cm) has been solved. However, combining these
setups with the necessary emission filters requires further work on
the optical imaging design. The illumination can be filtered and re-
alized outside the endoscope and then guided to the tip in optical
fibers. Overall, miniaturization seems feasible but poses a challenge
to optical design.
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8.6 conclusion

Recent preclinical and clinical experiments indicate the potential of
fluorescence guided surgery to improve surgical outcome. These ad-
vances include improved cancer margin delineation or identification
of anatomical or functional structures. For instance, cancer cells can
be stained with one fluorescent dye whereas muscular tissue, nerves
or blood vessels can be targeted by other dyes and allow distinction
beyond conventional color vision.

However, current imaging methods and the equipment do not yet
fully exploit the potential of fluorescence guided surgery. Therefore,
this work is dedicated to developing an imaging method and present
a prototype device which allows combined multispectral fluorescence
and color imaging over the entire VIS/NIR spectrum in video-rate.
Additionally, the method must allow seamless integration into the
current medical work-flow.

Prototype performance

The selected method explores combined spectral and temporal mul-
tiplexing to allow recording of fluorescence and reflectance images
over the entire VIS/NIR range. The spectral multiplexing is realized
with complementary multi-bandpass filters, the temporal multiplex-
ing by illuminating the object in two subsequent phases with the two
complementary multiband lights. As only two temporal phases are
necessary to record fluorescence and conventional reflectance images
over the entire spectral range, the system can run at video-rate.

All in all, the performance of the prototype system satisfies the
requirements very well. Colors can be accurately reproduced even
for varying illumination which can be adjusted for best fluorescence
detection. Likewise, experiments have shown good unmixing perfor-
mance even for challenging scenarios such as three fluorescent dyes
with strong spectral overlap. The good separation power of the sys-
tem is attributed to the combined excitation and emission multiplex-
ing.

Live artifact diagnostics

Imaging multiple dyes with spectral overlap always requires a mathe-
matical transformation to separate the unmixed signals. In this work,
linear unmixing as the most common method to separate the signals
is used. As a matter of fact, the algorithm will always provide some re-
sult independent of the correctness. Effects like wrongful calibration,
tissue absorption or ambient light may lead to artifacts and arbitrar-
ily falsify the result. Consequently, all information must be treated by
the surgeon with extreme caution, as no guarantee on the quality of
the information can be given.
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In this work, a new score, called T-score, is developed. It provides
a consistency check on the unmixed images on a per pixel and per
image basis. Thus, the T-score image can be calculated for each in-
dividual image of the video-stream. The algorithm requires the raw
image data, the unmixing coefficients, which are needed in any case
for unmixing, and a noise model of the detection process as input.
Structures with a high T-score indicate the occurrence of unmixing
artifacts and tell the surgeon to treat the signal of that image region
with caution.

The unique feature of this work is that the signal noise is estimated
on basis of a single measurement. This allows calculating the T-score
in video rate for each pixel and each frame. To my knowledge, there
is so far no diagnostic method established, which allows to judge on
the unmixing quality at video-rate for multispectral imaging applica-
tions.

Undoubtedly, the method is one of the fundamental developments
of this work and can be reused for any multispectral imaging appli-
cation.

Towards clinical application

For some applications, such as bladder cancer resection, fluorescence
guided surgery is already clinically established. Moreover, numerous
experimental clinical and preclinical experiments using fluorescence
targeting with multiple dyes have been reported. Since these targeting
techniques complement the work of this thesis very well, their clinical
translation will boost the impact of the developed imaging system.

In future, the prototype system needs to be adapted for each ap-
plication individually. For example, the optical design needs to be
different for laparoscopic applications versus open surgery. However,
an application specific spectral design is equally important as the
power of the system to separate different dyes strongly depends on
the spectral characteristics of the system. Thus, after fixing a medical
use case, it is worth to optimize the spectral design.

Yet another point of future work is further miniaturization of the
prototype system to make it more attractive for its use in a clinical
environment. It is technically feasible to miniaturize the setup up to
the point of a chip-on-the-tip endoscope. Besides, implementation of
stronger light sources, faster sensor readout in global shutter mode
and a custom optics with higher numerical aperture can improve the
performance.

Next generation fluorescence guided surgery

In short, recent advances in molecular biotechnology provide state-of-
the-art staining techniques. These techniques are expected to be trans-
lated into clinical practice in the next decade. The developed imaging
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method allows realizing miniaturized devices which combine reliable
diagnostic fluorescence information with high-quality color imaging.

All in all, combining novel fluorescent drugs with the developed
imaging method can pave the way for next generation fluorescence
guided surgery.





A
A P P E N D I X

a.1 mathematical formulation of multispectral image

processing

a.1.1 Fluorescence detection and unmixing

An imaging sensor counts the number of photons X(ξ) emitted by a
dye on a pixel location ξ in the image during the integration time tint.
The number of detected photons is described by the Poisson statistics
with the parameter µY(ξ):

Y(ξ) ∼ P
(

µY(ξ)
)

(A.1)

with probability density

fY

(
y, µY(ξ)

)
=

µY(ξ)
y

y!
exp−µY(ξ) . (A.2)

Photon count numbers are Poisson distributed because coherent ef-
fects can be neglected which means that the individual photons are
independent.

This consideration can be generalized to the case when the fluores-
cent dyes f = 1 . . . N f emit Y( f , ξ) photons at the pixel location ξ. The
number of photons emitted by each dye f are independently Poisson
distributed with the parameters µX( f , ξ)

X( f , ξ) ∼ P
(

µX( f , ξ)
)

. (A.3)

The photons of the dyes add up when being detected as

Y(ξ) =
N f

∑
f=1

X( f , ξ) ∼
N f

∑
f=1
P
(

µX( f , ξ)
)

d
= P

(
µY(ξ)

)
, (A.4)

which is again a Poisson distribution with

µY(ξ) =
N f

∑
f=1

µX( f , ξ). (A.5)

and d means equality in distribution. Additionally, it is important
to consider that the photons emitted from each fluorophore are split
into Nc detector channels c = 1 . . . Nc as each channel has its own
spectral detection sensitivity. The random variable Y(c, ξ) describing
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the number of photons detected in each channel c is calculated as the
weighted sum

Y(c, ξ) =
N f

∑
f=1

m(c, f ) · X( f , ξ) (A.6)

and accordingly

µY(c, ξ) =
N f

∑
f=1

m(c, f ) · µX( f , ξ). (A.7)

The same set of equations can be written in matrix notation where m
is the mixing matrix with coefficients m(c, f ), µY(·) and µX(·) are the
parameter vectors of the Poisson distributions:

µY(ξ) = m · µX(ξ). (A.8)

If a photon is detected by the sensor, it needs to be detected by one
of the sensor channels. Therefore, the mixing matrix is normalized as

Nc

∑
c=1

m(c, f ) = 1. (A.9)

With this normalization the number of photons which are detected
by the sensor in different channels is maintained. Of course, not all
photons emitted by a dye will be detected as they can for example
not be imaged onto the sensor or not trigger an electron due to the
finite detection efficiency of the detector.

If the number of sensor channels Nc is greater or equal than the
number of dyes N f , a generalized inverse of the mixing matrix is
computed using the Moore-Penrose pseudoinverse [211, p. 409]. In
case of Nc > N f , this corresponds to the least squares solution of the
overdetermined linear equation system [205]. This allows to obtain
the fluorescence intensity originating from each dye:

µX(ξ) = u · µY(ξ), (A.10)

where

u = m+. (A.11)

In this work, the parameter µ̂Y(ξ) is estimated using the maximum
likelihood estimator (MLE). As the number of detected photons of
an observation Y i(ξ) is Poisson distributed, the MLE µ̂Y(ξ) of the
distribution parameter µY(ξ) is determined by the mean (empirical
expectation value) of N observations:

µ̂Y(ξ) =
1
N

N

∑
i=1

Y i(ξ). (A.12)
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In real-time imaging applications it is not feasible to record multi-
ple values Y i(ξ). Instead, only one (N = 1) observation is used to
estimate µ̂Y(ξ).

An image with values Y(ξ) correspond to the number of electrons
triggered by incoming photons, which are distributed around a mean
µY(ξ). To obtain the image Y(ξ), the raw image Y ′(ξ) needs to be cor-
rected for dark signal µd(ξ) and the conversion factor (see Figure A.1).
Therefore, the noise ΣY(ξ) of an image Y(ξ) is no longer purely Pois-
son distributed, but also contains noise contributions from the read-
out process, the dark current and from quantization. These effects are
described in detail in Section A.1.3.

Nevertheless, mixing and unmixing of components can be performed
as is, since the mean µY(ξ) corresponds to the mean number of trig-
gered electrons in the sensor.

a.1.2 Fitting spectral signatures

In order to unmix fluorescent images, the spectral signature of the
individual fluorescent dyes needs to be determined. This section de-
scribes how the image data is mathematically processed to obtain the
signatures from experimental data of pure samples. For this purpose
technical phantoms with pure dyes are imaged to produce data with
only one single dye signature contained per pixel. The image data
used for the spectral calibration is manually selected.

In an ideal scenario, in which neither systematic nor statistical er-
rors are present, the detected signal Y (ξ) of a single fluorescent dye
at a certain location ξ is proportional to the signature κ

Y (ξ) = α(ξ) · κ, (A.13)

where the scalar scaling factor α(ξ) represents the total intensity of
the fluorescent signal.

To obtain the spectral signature κ of a fluorescent dye, the pure
sample data Y (ξ) is fitted for the selected data points ξ using the
linear model (see Equation A.13) by minimizing the residuals

min
κ∈
{
<Nc
≥0|∑

Nc
c=1 κ(c)=1

}
∑

ξ

Nc

∑
c=1

(
Y(c, px)− α(ξ) · κ(c)

)2

 , (A.14)

where the scaling factor α(ξ) is determined by the scalar product
α(ξ) = Y (ξ) · κ and the total length of each signature is fixed as
∑Nc

c=1 κ(c) = 1.
The mixing matrix m (see Equation A.6) is obtained by concatenat-

ing the spectral signatures κ( f(·)) of the fluorescent dyes f1, f2, . . . , fN f :

m =
[
κ( f1), κ( f2), . . . , κ( fN f )

]
. (A.15)



194 appendix

This minimization approach corresponds to orthogonal distance re-
gression, which in case of a linear relation is equivalent to the first
component of principle component analysis. Therefore, the pre-implemented
MATLAB principle component analysis function pca was used to fit
the sample data.

The minimized orthogonal distance residuals are mainly due to im-
age noise, but may also be due to systematical errors such as absorp-
tion. The statistical error of the spectral signatures can be estimated
calculating the confidence bounds by bootstrapping [212]. These con-
fidence bounds are estimated by statistical variation in the data. How-
ever, the procedure does not take into account systematic errors. The
statistical variation in the data can be minimized as the number of
data points used for the fit can be increased by recording multiple
pictures of the pure samples. Thus, the systematic error will then fi-
nally govern the signature uncertainty.

The most robust way to obtain a reliable spectral signature is to
record the calibration data with exactly the same system configura-
tion and set of parameters as for the desired imaging scenario. Ad-
ditionally, it is desirable to record pure fluorescent data of each dye
ranging over the entire dynamic range of the sensor. If this cannot be
realized during one sensor integration, multiple scenarios with differ-
ent excitations or different dye concentrations can be combined.

Such additional scenarios can also be used trying to estimate the
systematic error in the spectral signature.

a.1.3 Imaging noise

This section introduces a mathematical description of the noise that
will be present in the sensor data and how this noise propagates
through unmixing. The used sCMOS sensor model CIS2521 (Fairchild)
can be described well by the EMVA 1288 standard [200, 203]. This
standard describes a noise model which is scalar with respect to
sensor channels. In contrast, each pixel of a multispectral image is
described by a vector and accordingly the noise of the vector is de-
scribed by the associated covariance matrix ΣY(ξ). It is assumed to
be diagonal with elements

ΣY(c, c, ξ) = var
[
Y(c, ξ)

]
= cov

[
Y(c, ξ), Y(c, ξ)

]
(A.16)

for all channels c = 1 . . . Nc. According to the EMVA 1288 standard,
the main sources of noise are:

shot noise The detected photons are Poisson distributed. In the
same way, the electrons triggered by the photons are Poisson
distributed. For high intensities (and thus high number of pho-
tons), this is the dominant source of noise which cannot be over-
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μe, σeμp, σp μY', σY'

sensor

η κ
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μY, σY

+

σq

processing

Figure A.1: Sensor noise model according to the EMVA 1288 standard [200].
The figure describes the noise contributions for one sensor pixel.
Incident photons are temporally Poisson distributed with mean
µp and variance σ2

p . The quantum efficiency of the sensor η(λ)

reduces the number of electrons ( e−), triggered by the incident
photons, to µe and variance σ2

e (also Poisson distributed). A dark
image with a mean µd and variance σ2

d is added to the signal dur-
ing the detection process. The dark effects can be approximated
by two separate processes: a dark readout image and variance
at zero integration time and a dark current which increases sig-
nal and variance linearly with integration time. Subsequently
the signal is amplified by a conversion factor and digitalized.
Digitalization adds a quantization noise σ2

q since the signal is
binned to a finite grid of output values. The raw image values
are distributed with a mean µY′ and a variance σ2

Y′ . The signal
is processed so that µY = µe, because this signal is proportional
to the number of incident photons and is in units of electrons
[ e− ] which determine the Poisson noise of the signal. How-
ever, the variance σ2

Y is also affected by the dark noise and the
quantization noise.

come [15]. The diagonal elements of the covariance matrix are
described by the detected intensity:

ΣY,S(c, c, ξ) = µY(c, ξ). (A.17)

for all channels c = 1 . . . Nc. Off diagonal elements are assumed
to be zero.

For high signal intensities the Poisson distribution P
(

µ
)

can be

approximated by the normal distribution N
(

µ, σ2 = µ
)

. Conse-
quently, the rules of Gaussian error propagation apply for high
signal intensities.

dark noise If no photon hits the sensor, the sensor will show some
signal µd value and also contain dark some noise σ2

d . Dark noise
originates from two major sources: readout noise and dark cur-
rent noise.

The raw images only allow positive values. Therefore, the base-
line for zero counts is set to a positive readout value µR in order
not to crop the noise signal at zero values. During the integra-
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tion, dark current additionally triggers electrons due to thermal
effects: µI = Id · tint. These two effecs add up to

µd = µR + µI . (A.18)

Assuming independence between the noise sources, the two sep-
arate sources of noise add up:

σ2
d = σ2

R + σ2
I . (A.19)

readout noise The readout noise corresponds to the noise of a
dark image with zero integration time. It is depends on the sen-
sor model, readout mode and may other factors [15, 200]. The
diagonal elements of the covariance matrix are

ΣR(c, c, ξ) = σ2
0 (A.20)

for all channels c = 1 . . . Nc.

dark current noise Dark current noise is caused by electrons
which are counted in the sensor during the integration time and
which are not triggered due to incident photons. These elec-
trons, which are triggered by thermal effects are also Poisson
distributed: σ2

I = µI . The diagonal elements of the covariance
matrix can be expressed as

ΣR(c, c, ξ) = Idark · tint. (A.21)

quantization noise The signal is amplified in the sensor by a
factor K and subsequently digitalized to a finite quantity. Quan-
tization to digital values g with equidistant spacing ∆g = 1
results in a covariance matrix

ΣQ(c, c, ξ) =
1

12
· 1

K2 , (A.22)

which is independent of the signal intensity itself [204]. The
constant K describes the number of triggered electrons in the
sensor for one digital count value ∆g = 1.

image noise The individual covariance matrices of the discussed
noise sources are added in the same way as the variances in the
EMVA 1288 noise model [200]:

ΣY(c, c, ξ) = ΣY,S(c, c, ξ) + ΣR(c, c, ξ) + ΣR(c, c, ξ) + ΣQ(c, c, ξ).

(A.23)

spatial noise All the described noise contributions are so assumed
to be identical for each pixel of the sensor grid. Though, in re-
ality the sensor measurements show spatial dependencies. Two
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major effects are described by the EMVA 1288 standard: photo
response non-uniformity (PRNU) and dark signal non-uniformity
(DSNU). PRNU characterizes the variation in sensor sensitivity
between dark image and a 50% saturated image over the dif-
ferent pixel locations [200]. Spatial variations of the dark im-
age are described by the DSNU. Both effects are neglected in
this work because for the relevant imaging scenarios, shot noise
dominates [171].

Both DSNU and PRNU are spatial standard deviations which
do not exhibit signal and noise dependency at a certain spa-
tial frequency. Effects with low spatial frequency may originate
from variations in the sensor production or for example from
illumination. In contrast, variations at high frequencies can be
caused by interferences of the readout electronics [200].

a.1.4 Unmixing in subspaces

The recorded complete dataset Y (ξ) contains all the information that
is recorded in a single image, but it is hard to explore the data. This
may result in unspotted artifacts as the multi-dimensional image data
is invisible to the users. In case of wrongful unmixing users will only
see the finally estimated unmixed dye concentrations with artifacts,
but not the nature of the spectral artifacts. Therefore, a method to
reduce the dimensionality of the spectral image information is pre-
sented here. In this process, the image data is transformed orthonor-
mally to a subspace of the detector space. Here it is mathematically
derived how the fluorescence components can be unmixed after being
transformed to the subspace.

First of all, the spectral information of the data Yn(ξ) is split from
the intensity information I(ξ) for each pixel of the recorded data Y (ξ):

I(ξ) =
Nc

∑
c=1

Y(c, ξ) (A.24)

and

Yn(ξ) =
1

I(ξ)
· Y (ξ). (A.25)

The reason to split intensity from spectral information is to reduce
the dimensionality by one and additionally to make it more suitable
to be analyzed by algorithms. The subspace is spanned by the Ns

orthonormal vectors ς in the detector channel space. These can be de-
termined by various methods including principle component analysis
(PCA) or phasor analysis. PCA finds the vectors that maximally sep-
arate the spectral spread in the data, whereas phasor analysis takes
Fourier components as basis vectors [127, 205].
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The normalized fluorescence image data Yn(ξ) is projected to the
subspace by

Zn(ξ) = s · Yn(ξ) (A.26)

with the transformation matrix s formed by the orthonormal sub-
space basis vectors ς(·)

s =
[
ς1, ς2, . . . , ςNs

]
. (A.27)

In order to unmix in the subspace, the spectral signatures of the
fluorescent dyes f(·) in the subspace ν( f(·)) need to be determined to
find the subspace mixing matrix n. One option is to directly deter-
mine the signatures experimentally, visually if the data can for exam-
ple be plotted in a 2D histogram or by image analysis algorithms. The
individual contributions are concatenated to the mixing matrix

n =
[
ν( f1), ν( f2), . . . , ν( fN f )

]
. (A.28)

Alternatively, if the dye mixing matrix m is known, it can be directly
transformed to the subspace

n = s ·m. (A.29)

To unmix the subspace data for the normalized fluorescent dye con-
tributions Xn(ξ), the following equation system needs to be solved:



n( f1, 1) n( f2, 1) . . . n( fN f , 1)
n( f1, 2) n( f2, 1) n( fN f , 2)

...
. . .

n( f1, Ns) n( fN f , Ns)

1 1 . . . 1


·Xn(ξ) =


Zn(1, ξ)

Zn(2, ξ)
...

Zn(Ns, ξ)

1

 (A.30)

or in matrix notation[
n
1

]
· Xn(ξ) =

[
Zn(ξ)

1

]
(A.31)

This corresponds to the equation system in Equation A.6 extended by
the last equation necessary to also take into account the information
that the spectral data is normalized.

After finding the solution for Xn(ξ), the intensity of the normalized
unmixed fluoresence data X (ξ) can be restored as

X (ξ) = I(ξ) · Xn(ξ). (A.32)

If the subspace is Ns dimensional, the data can be unmixed for up to
N f = Ns + 1 fluorescent dyes.

The normalization in this procedure is mathematically not neces-
sary. But it has the advantage that the data has one dimension less
and thus it is easier to visualize the data and intuitively explore it
while no information is lost.
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a.2 spectral signatures of dyes

Table A.1: Detection efficiency of the system for a selection of fluorescent dyes depending on the emission maximum wavelength. Fluorescence
emission maximum wavelength and emission width as standard deviation are listed with the computed efficiencies of the individual sensor
channels (ηR1, ηG1, ηB1, ηR2, ηG2 and ηB2) and combined efficiencies (ηS1 and ηS2) per channel as well as the overall detection efficiency
of the system ηS. A detailed description of the calculation can be found in Section 5.1.2. At the beginning of the table the mean, median,
maximum and minimum over all dyes listed in Section A.3 are presented for each column.

S1 S2

dye λem std(λ) ηR1 ηG1 ηB1 ηS1 ηR2 ηG2 ηB2 ηS2 η

mean 595 nm 34.3 nm 11.9 9.3 5.9 9.1 3.4 6.0 2.8 4.5 13.6
median 582 nm 32.5 nm 12.0 8.3 4.9 8.7 3.2 5.0 2.3 4.5 14.2
min 407 nm 13.4 nm 0.9 1.9 0.8 2.0 0.0 0.0 0.0 0.0 5.1
max 900 nm 119.4 nm 35.1 24.3 22.3 22.9 15.5 24.5 16.3 15.5 23.1

ATTO 390 482 nm 33.2 nm 2.1 7.9 6.4 6.1 1.7 9.3 10.9 7.8 13.9
ATTO 425 484 nm 36.1 nm 2.8 8.8 4.9 6.3 2.1 10.7 11.6 8.8 15.1
ATTO 430LS 547 nm 47.3 nm 9.1 10.2 4.5 8.5 3.6 10.9 3.6 7.2 15.7
ATTO 465 507 nm 47.3 nm 5.8 11.5 5.4 8.5 2.6 10.1 6.6 7.4 15.9
ATTO 488 525 nm 32.2 nm 6.1 16.1 6.8 11.3 2.5 9.1 2.5 5.8 17.0
ATTO 490LS 667 nm 52.2 nm 15.2 7.3 5.0 8.7 4.8 1.6 1.1 2.3 11.0
ATTO 495 527 nm 41.9 nm 7.7 13.3 5.8 10.0 3.0 9.8 2.8 6.4 16.4
ATTO 514 533 nm 29.2 nm 5.9 12.5 4.9 9.0 2.9 10.9 2.8 6.9 15.9

http://www.fluorophores.tugraz.at/substance/843
http://www.fluorophores.tugraz.at/substance/148
http://www.fluorophores.tugraz.at/substance/849
http://www.fluorophores.tugraz.at/substance/149
http://www.fluorophores.tugraz.at/substance/150
http://www.fluorophores.tugraz.at/substance/850
http://www.fluorophores.tugraz.at/substance/151
http://www.fluorophores.tugraz.at/substance/851
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Table A.1: (continuation) Detection efficiency (in %) of existing fluorescent dyes

S1 S2

dye λem std(λ) ηR1 ηG1 ηB1 ηS1 ηR2 ηG2 ηB2 ηS2 η

ATTO 520 545 nm 29.8 nm 6.7 5.9 2.3 5.2 4.2 15.9 4.1 10.0 15.2
ATTO 532 555 nm 34.0 nm 8.4 4.5 2.0 4.8 5.1 17.8 4.6 11.3 16.2
ATTO 550 576 nm 34.7 nm 14.8 6.7 3.1 7.8 4.6 10.0 2.8 6.8 14.6
ATTO 565 592 nm 40.6 nm 21.1 9.2 4.5 11.0 3.6 3.3 1.2 2.9 13.9
ATTO 590 624 nm 41.0 nm 17.6 6.8 4.1 8.8 5.4 1.6 1.2 2.4 11.2
ATTO 594 629 nm 40.0 nm 16.3 6.2 3.9 8.1 5.8 1.6 1.2 2.6 10.7
ATTO 610 634 nm 39.1 nm 12.5 5.1 3.4 6.6 7.1 2.0 1.5 3.2 9.7
ATTO 620 642 nm 38.6 nm 11.0 4.8 3.3 6.0 8.2 2.4 1.8 3.7 9.7
ATTO 633 658 nm 46.0 nm 11.9 6.1 4.4 7.1 6.8 1.9 1.5 3.0 10.1
ATTO 635 658 nm 39.4 nm 11.9 5.9 4.1 6.9 6.6 1.9 1.4 2.9 9.9
ATTO 647N 671 nm 49.1 nm 13.9 7.0 5.2 8.3 3.9 1.2 0.9 1.8 10.0
ATTO 647 670 nm 45.7 nm 14.9 7.8 5.8 9.1 3.3 1.0 0.7 1.5 10.5
ATTO 655 683 nm 45.4 nm 18.9 10.1 7.5 11.7 0.8 0.3 0.2 0.4 12.0
ATTO 665 685 nm 33.5 nm 20.0 9.9 6.9 11.7 0.7 0.2 0.2 0.3 12.0
ATTO 680 700 nm 44.9 nm 18.6 10.9 8.2 12.2 0.1 0.1 0.0 0.1 12.3
ATTO 700 719 nm 43.4 nm 12.9 9.0 7.2 9.5 0.1 0.1 0.0 0.0 9.6
ATTO 725 753 nm 42.5 nm 12.0 10.0 8.7 10.1 0.0 0.0 0.0 0.0 10.1
ATTO 740 763 nm 40.8 nm 14.0 11.5 9.6 11.6 0.0 0.0 0.0 0.0 11.6
ATTO Oxa12 681 nm 49.5 nm 17.0 9.0 6.7 10.4 1.6 0.5 0.4 0.7 11.1

http://www.fluorophores.tugraz.at/substance/152
http://www.fluorophores.tugraz.at/substance/844
http://www.fluorophores.tugraz.at/substance/153
http://www.fluorophores.tugraz.at/substance/154
http://www.fluorophores.tugraz.at/substance/155
http://www.fluorophores.tugraz.at/substance/852
http://www.fluorophores.tugraz.at/substance/156
http://www.fluorophores.tugraz.at/substance/157
http://www.fluorophores.tugraz.at/substance/762
http://www.fluorophores.tugraz.at/substance/158
http://www.fluorophores.tugraz.at/substance/763
http://www.fluorophores.tugraz.at/substance/159
http://www.fluorophores.tugraz.at/substance/160
http://www.fluorophores.tugraz.at/substance/864
http://www.fluorophores.tugraz.at/substance/161
http://www.fluorophores.tugraz.at/substance/162
http://www.fluorophores.tugraz.at/substance/853
http://www.fluorophores.tugraz.at/substance/854
http://www.fluorophores.tugraz.at/substance/863
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Table A.1: (continuation) Detection efficiency (in %) of existing fluorescent dyes

S1 S2

dye λem std(λ) ηR1 ηG1 ηB1 ηS1 ηR2 ηG2 ηB2 ηS2 η

ATTO Rho101 608 nm 38.2 nm 22.9 9.1 4.8 11.5 3.7 1.4 0.9 1.8 13.3
ATTO Rho11 600 nm 37.0 nm 23.4 9.9 4.9 12.0 3.4 1.8 0.9 2.0 14.0
ATTO Rho12 608 nm 38.2 nm 22.9 9.1 4.8 11.5 3.7 1.4 0.9 1.8 13.3
ATTO Rho13 626 nm 40.4 nm 16.7 6.4 4.0 8.4 5.6 1.6 1.2 2.5 10.9
ATTO Rho14 650 nm 38.1 nm 9.9 4.6 3.2 5.6 9.0 2.5 1.9 4.0 9.6
ATTO Rho3B 593 nm 39.3 nm 21.8 9.6 4.6 11.4 3.6 2.8 1.1 2.6 14.0
ATTO Rho6G 561 nm 38.5 nm 10.3 4.9 2.3 5.6 5.2 16.7 4.3 10.8 16.3
ATTO Thio12 607 nm 42.5 nm 22.8 9.2 4.9 11.6 3.7 1.3 0.8 1.8 13.3
Fluorescein 541 nm 30.8 nm 6.7 8.0 3.1 6.4 3.7 13.6 3.5 8.6 15.1
Methylene Blue 692 nm 41.8 nm 18.9 10.4 7.7 11.9 0.6 0.2 0.1 0.3 12.1
NADH 476 nm 47.7 nm 3.1 7.9 8.6 6.9 1.7 8.0 7.0 6.2 13.1
Riboflavin 539 nm 55.4 nm 8.7 10.7 4.9 8.8 3.3 9.8 4.2 6.8 15.6
Protoporphyrin IX 637 nm 29.9 nm 13.0 5.9 4.0 7.2 6.1 1.7 1.3 2.7 9.9

http://www.fluorophores.tugraz.at/substance/860
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a.3 dye list

This list contains the names of all the fluorescent dyes from the library
of TU Graz which are used for numerical calculations in Section 5.1.2:
AAA, APC-Seta-750, APC, ATTO 390, ATTO 425, ATTO 430LS, ATTO
465, ATTO 488, ATTO 490LS, ATTO 495, ATTO 514, ATTO 520, ATTO
532, ATTO 550, ATTO 565, ATTO 590, ATTO 594, ATTO 610, ATTO
620, ATTO 633, ATTO 635, ATTO 647N, ATTO 647, ATTO 655, ATTO
665, ATTO 680, ATTO 700, ATTO 725, ATTO 740, ATTO Oxa12, ATTO
Rho101, ATTO Rho11, ATTO Rho12, ATTO Rho13, ATTO Rho14, ATTO
Rho3B, ATTO Rho6G, ATTO Thio12, Acridine Orange, Acridine Yel-
low, Adams Apple Red 680, Adirondack Green 520, Alexa Fluor 350,
Alexa Fluor 405, Alexa Fluor 430, Alexa Fluor 480, Alexa Fluor 488,
Alexa Fluor 488 hydrazide, Alexa Fluor 500, Alexa Fluor 514, Alexa
Fluor 532, Alexa Fluor 546, Alexa Fluor 555, Alexa Fluor 568, Alexa
Fluor 594, Alexa Fluor 610-R-PE, Alexa Fluor 610, Alexa Fluor 633,
Alexa Fluor 635, Alexa Fluor 647-R-PE, Alexa Fluor 647, Alexa Fluor
660, Alexa Fluor 680-APC, Alexa Fluor 680-R-PE, Alexa Fluor 680,
Alexa Fluor 700, Alexa Fluor 750, Alexa Fluor 790, Allophycocyanin,
AmCyan1, Aminomethylcoumarin, Amplex Gold (product), Amplex
Red Reagent, Amplex UltraRed, AsRed2, Auramine O, Azami Green,
B-phycoerythrin, BCECF, BO-PRO-1, BO-PRO-3, BOBO-1, BOBO-3,
BODIPY-DiMe, BODIPY-Phenyl, BODIPY-TMSCC, BODIPY 630 650-
X, BODIPY 650/665-X, BODIPY FL, BODIPY R6G, BODIPY TMR-X,
BODIPY TR-X pH 7.0, Bex1, Birch Yellow 580, Blue-green algae, C-
Phycocyanin, C3-Indocyanine, C3-Oxacyanine, C3-Thiacyanine, C5-
Indocyanine, C5-Oxacyanine, C5-Thiacyanine, C545T, C7-Indocyanine,
C7-Oxacyanine, CBQCA, CF405M, CF405S, CF488A, CF543, CF555,
CFP, CFSE, CHOxAsH-CCXXCC, CM-H2DCFDA, Calcein, Calcein
red-orange, Calcium Crimson, Calcium Green-1, Calcium Orange, Cal-
cofluor white 2MR, Carboxy SNARF-1 pH 6.0, Carboxy SNARF-1
pH 9.0, Carboxynaphthofluorescein, Cascade Blue, Cascade Yellow,
Catskill Green 540, CellMask Orange, CellTrace BODIPY TR methyl
ester, CellTrace calcein violet, CellTracker Blue, CellTracker Red CMTPX,
CellTracker Violet BMQC, Chlorophyll A, Chlorophyll B, Chromeo
488, Chromeo 494, Chromeo 505, Chromeo 546, Chromeo 642, Citrine
(Campbell Tsien 2003), ClOH C12 aza-BODIPY, ClOH butoxy aza-
BODIPY, Coumarin 1, Coumarin 30, Coumarin 314, Coumarin 334,
Coumarin 343, Coumarin 6, Coumarine 545T, Cresyl Violet Perchlo-
rate, CryptoLight CF1, CryptoLight CF2, CryptoLight CF3, Crypto-
Light CF4, CryptoLight CF5, CryptoLight CF6, Crystal Violet, Cumarin153,
Cy2, Cy3.5, Cy3B, Cy3Cy5 ET, Cy3, Cy5.5, Cy5, Cy7, CyQUANT
GR, CyTrak Orange, Cyanine3 NHS ester, Cyanine5 NHS ester, Cya-
nine5 carboxylic acid, CypHer5 pH 9.15, DAF-FM, DAMC, DAPI,
DCI, DCM, DDAO, DM-NERF pH 4.0, DOCI, DPP pH-Probe 590-11.0,
DPP pH-Probe 590-7.5, DPP pH-Probe 590-9.0, DRAQ5, DY-350XL,
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DY-480, DY-485, DY-490XL MegaStokes, DY-490, DY-500, DY-520, DY-
547, DY-554, DY-555, DY-557, DY-590, DY-615, DY-630, DY-631, DY-
633, DY-635, DY-636, DY-647, DY-649P1, DY-650, DY-651, DY-656, DY-
673, DY-675, DY-676, DY-680, DY-681, DY-700, DY-701, DY-730, DY-
731, DY-750, DY-751, DY-776, DY-782, Dabcyl SE, Dansyl Glycine (Diox-
ane), Dapoxyl (2-aminoethyl)sulfonamide, Deep Purple, DiA, DiClOH
C12 aza-BODIPY, DiClOHbutoxy aza-BODIPY, DiD, DiI, DiIC18(3),
DiO, DiR, Diversa Cyan-FP, Diversa Green-FP, Doxorubicin, Dragon
Green, DsRed-Express, DsRed-Express T1, DsRed, DyLight 488, Dy-
Light 549, DyLight 633, DyLight 649, DyLight 680, Dye-1041, Dye-
28, Dye-304, Dye-33, Dye-45, E2-Crimson, E2-Orange, E2-Red/Green,
EBFP, ECFP, ECF, ECL Plus, EGFP, ELF 97, ER-Tracke Blue-White
DPX, EVOblue-30, EYFP, Emerald, Envy Green, Eosin Y, Eosin, EqFP611,
Erythrosin-5-isothiocyanate, Ethidium bromide, Ethyl Eosin, Ethyl
Nile Blue A, Eu (Soini), Eu(tta)3DEADIT, Eu2O3 nanoparticles, Eva-
Green, FAD, FITC, FM 1-43, FM 4-64, FM4-64 in CTC, FM4-64 in
SDS, FlAsH, FlAsH-CCPGCC, FlAsH-CCXXCC, Flash Red EX, Fluo-3,
Fluo-4, Fluo-5F, FluoSpheres blue, FluoSpheres crimson, FluoSpheres
dark red, FluoSpheres orange, FluoSpheres red, FluoSpheres yellow-
green, Fluorescein, Fluorol 5G, Fort Orange 600, Fura-2 Ca free, Fura
Red Ca free, Fura Red, Gadodiamide, Gd-Dtpa-Bma, H9-40, HCS
CellMask Deep Red, HCS CellMask Red, HCS LipidTOX Deep Red,
HCS LipidTOX Green neutral lipid stain, HCS LipidTOX Green phos-
pholipidosis detection reagent, HCS LipidTOX Red neutral lipid stain,
HCS LipidTOX Red phospholipidosis detection reagent, HPTS (pH
2.0), HPTS (pH 1.0), , HPTS (HCl), HPTS (pH 12.0), Haematococcus
pluvialis – Flotow, HcRed1, Hemo Red 720, Heteractis magnifica GFP,
HiLyte Fluor 488, HiLyte Fluor 555, HiLyte Fluor 647, HiLyte Fluor
680, HiLyte Fluor 750, HiLyte Plus 555, HiLyte Plus 647, HiLyte Plus
750, HmGFP, Hoechst-33258, Hoechst-33258, Hoechst 33258, Hoechst
33342, Hops Yellow 560, IR-775 chloride, IR-806, Indo-1 Ca free, Ir(Cn)2
(acac), Ir(Cs)2 (acac), Ir-OEP-CO-Cl, Isochrysis galbana – Parke, JC-
1, JOJO-1, Jonamac Red Evitag T2, Kaede Green, Kaede Red, LDS
751, LIVE DEAD Fixable Aqua Dead Cell Stain, LIVEDEAD Fixable
Blue Dead Cell Stain, LIVE DEAD Fixable Far Red Dead Cell Stain,
LIVE DEAD Fixable Green Dead Cell Stain, LIVE DEAD Fixable Near-
IR Dead Cell Stain, LIVE DEAD Fixable Red Dead Cell Stain, LIVE
DEAD Fixable Violet Dead Cell Stain, LOLO-1, Lake Placid 490, Lis-
samine Rhodamine (Weiss), Lucifer Yellow CH Dilitium salt, Lucifer
Yellow CH, Lumio Green, Lumio Red, Lumogen F Orange, Lumo-
gen Red F300, LysoSensor Blue DND-192, LysoSensor Green DND-
153, LysoSensor Green DND-153, LysoSensor YellowBlue DND-160,
LysoSensor Yellow/Blue DND-160 pH 3, LysoTracker Blue DND-22,
LysoTracker Green DND-26, LysoTracker Red DND-99, LysoTracker
Yellow HCK-123, Macoun Red Evitag T2, Macrolex Fluorescence Red
G, Macrolex Fluorescence Yellow 10GN, Magnesium Green, Magne-
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sium Octaethylporphyrin, Magnesium Orange, Magnesium Phthalo-
cyanine, Magnesium Tetramesitylporphyrin, Maple Red-Orange 620,
Marina Blue, Merocyanine 540, Methylene Blue, Methyl green, Mito-
Tracker Deep Red 633, MitoTracker Green FM, MitoTracker Orange
CMTMRos, MitoTracker Red CMXRos, Monochlorobimane, Mono-
raphidium, NADH, NBD-X, NIR1, NIR2, NIR3, NIR4, NIR820, N,N-
Bis(2,4,6-trimethylphenyl) -3,4:9,10- perylenebis (dicarboximide), Naph-
thofluorescein, NeuroTrace 500525, Nilblau perchlorate, Nile Blue (EtOH),
Nile Red, Nileblue A, Nile red, OHC12 aza-BODIPY, OH butoxy aza-
BODIPY, Octaethylporphyrin, Orange Fluorescent Protein, Oregon
Green 488 DHPE, Oregon Green 488, Oregon Green 514, Oxazin1, Ox-
azin 750, Oxazine 170, Oxazine 1, P4-3, PA-GFP (post-activation), PA-
GFP (pre-activation), PO-PRO-1, PO-PRO-3, POPO-1, POPO-3, POPOP,
PTIR475/UF, PTIR545/UF, Pacific Orange, Palladium(II) meso - tetraphenyl
- tetrabenzoporphyrin, PdOEPK, PdTFPP, PerCP-Cy5.5, Perylene Green
Tag pH-Probe 720-6.0, Perylene Green pH-Probe 720-5.5, Perylene Or-
ange Tag 550, Perylene Orange pH-Probe 550-2.0, Perylene Red pH-
Probe 600-5.5, Perylene, Perylene bisimide pH-Probe 550-5.0, Pery-
lene bisimide pH-Probe 550-5.5, Perylene bisimide pH-Probe 550-6.5,
Perylenediimid, Perylne Green pH-Probe 740-5.5, Phaeodactylum tri-
cornutum – Bohlin, Phthalocyanine, PicoGreen dsDNA quantitation
reagent, Pinacyanol-Iodide, Piroxicam, Platinum(II) tetraphenyltetra-
benzoporphyrin, Plum Purple, Pontamine fast scarlet 4B, Porphin,
Pro-Q Diamond, Pro-Q Diamond phosphoprotein gel stain, Pro-Q
Emerald, Proflavin, PromoFluor-350, PromoFluor-405, PromoFluor-
415, PromoFluor-488LSS, PromoFluor-488 Premium, PromoFluor-488,
PromoFluor-500LSS, PromoFluor-505, PromoFluor-510LSS, PromoFluor-
514LSS, PromoFluor-520LSS, PromoFluor-532, PromoFluor-546, PromoFluor-
555, PromoFluor-590, PromoFluor-610, PromoFluor-633, PromoFluor-
647, PromoFluor-670, PromoFluor-680, PromoFluor-700, PromoFluor-
750, PromoFluor-770, PromoFluor-780, PromoFluor-840, Protoporphyrin
IX, PtOEPK, PtOEP, PtTFPP, QD525, QD565, QD585, QD605, QD655,
QD705, QD800, QD903, QD PbS 950, QDot 525, QDot 545, QDot
565, QSY 21, QSY 35, QSY 7, QSY 7, QSY 9, Qdot 585, Qdot 605,
Qdot 625, Qdot 655, Qdot 705, Qdot 800, QpyMe2, Quinine sulfate, R-
phycoerythrin, ReAsH-CCPGCC, ReAsH-CCXXCC, Red Beads (Weiss),
Redmond Red, Resorufin, Rhodamin 700 perchlorate, Rhodamine 101,
Rhodamine 123, Rhodamine 6G, Rhodamine 6G, Rhodamine B, Rho-
damine Green, Rhodamine Red-X, Rhodamine pH-Probe 585-7.0, Rho-
damine pH-Probe 585-7.5, Rhodamine phalloidin, Rhodol Green, Ri-
boflavin, Rose Bengal, SBFI Zero Na, SBFI, SNIR1, SNIR2, SNIR3,
SNIR4, SYBR Gold nucleic acid gel stain, SYBR Green I, SYBR Safe
DNA gel stain, SYPRO Ruby, SYTO 11, SYTO 13, SYTO 16, SYTO 17,
SYTO 45, SYTO 59, SYTO 60, SYTO 61, SYTO 62, SYTO 82, SYTO
9, SYTO RNASelect, SYTOX Blue, SYTOX Green, SYTOX Orange,
SYTOX Red, Sapphire, Scenedesmus sp., SeTau-380-NHS, SeTau-647-
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NHS, SensiLight PBXL-1, SensiLight PBXL-3, Seta 633-NHS, Snake-
Eye Red 900, Sodium Green, Solophenyl flavine 7GFE 500, Spectrum
Aqua, Spectrum Blue, Spectrum FRed, Spectrum Gold, Spectrum Green,
Spectrum Orange, Spectrum Red, Squarylium dye III, Stains All, Stil-
ben derivate, Styryl8 perchlorate, Sulfo-Cyanine3 NHS ester, Sulfo-
Cyanine3 carboxylic acid, Sulfo-Cyanine5 carboxylic acid, Sulforho-
damine 101, Sulforhodamine B, Sulforhodamine G, Suncoast Yellow,
SuperGlo BFP, SuperGlo GFP, Surf Green EX, Synechocystis sp. PCC
6803, T-Sapphire, TMRE, TO-PRO-1, TO-PRO-3, TOTO-1, TOTO-3,
TRITC (Weiss), TRITC Dextran (Weiss), Tb (Soini), Terrylen, Terrylendi-
imid, Tetra-t-Butylazaporphine, Tetra-t-Butylnaphthalocyanine, Tetra-
cen, Tetramesitylporphyrin, Tetramethylrhodamine, Texas Red, Thi-
olTracker Violet, Thionin acetate, Topaz, Tris(2,2 -Bipyridyl)Ruthenium(II)
chloride, Tris(4,4-diphenyl-2,2-bipyridine)ruthenium(II) chloride, Tris(4,7-
diphenyl-1,10-phenanthroline)ruthenium(II) TMS, Vex1, Vybrant Dye-
Cycle Green stain, Vybrant DyeCycle Orange stain, Vybrant DyeCy-
cle Violet stain, WEGFP (post-activation), WellRED D2, WellRED D3,
WellRED D4, WtGFP, X-rhod-1, YFP, YO-PRO-1, YO-PRO-3, YOYO-
1, YOYO-3, Yakima Yellow, YoYo-1, YoYo-1 dsDNA, YoYo-1 ssDNA,
Zinc Octaethylporphyrin, Zinc Phthalocyanine, Zinc Tetramesitylpor-
phyrin, Zinc Tetraphenylporphyrin, ZsYellow1, dTomato, dansyl ca-
daverine, di-8-ANEPPS, eGFP, epicocconone, ethidium homodimer-
1, fluoro-emerald, fura-2, indo-1, kusabira orange, lucifer yellow CH,
mBBr, mBanana, mCherry, mHoneyDew, mOrange, mOrange2, mPlum,
mRFP1.2, mRFP1, mRFP, mRaspberry, mStrawberry, mTangerine, mala-
chite green isothiocyanate, monobromobimane, nile blue, nile red,
pHrodo succinimidyl ester, propidium iodide, quinine, resorufin, rhod-
2, rhodamine 110, rhodamine 123, rhodamine, sulforhodamine 101,
tCO, tdTomato, tetramethylrhodamine, (CS)2Ir(µ-Cl)2Ir(CS)2, 1-anilinonaphthalene-
8-sulfonic acid, 1,1 -Diethyl-4,4 -carbocyanine iodide, 1,2-Diphenylacetylene,
1,6-Diphenylhexatriene, 2-Di-1-ASP, 2-dodecylresorufin, 2 ,7 -Dichlorofluorescein,
3,3-Diethylthiadi-carbocyanine iodide, 4-Dimethylamino-4 -Nitrostilbene,
5(6)-Carboxy-fluorescein, 5(6)-Carboxynaphtofluorescein, 5-(N-hexadecanoyl)
aminoeosin, 5-(and-6)-carboxy-2’,7’-dichloro-fluorescein, 5-(and-6)-carboxy-
2,7-dichloro-fluorescein, 5-FAM, 5-ROX, 5-TAMRA, 5-chloromethylfluorescein,
6-HEX, 6-JOE, 6-TET, 6-carboxyrhodamine 6G, 6,8-difluoro-7-hydroxy-
4-methylcoumarin, 7-Benzylamino-4-Nitrobenz-2-Oxa-1,3-Diazole, 7-
aminoactinomycin D, 8-Benzyloxy-5,7-diphenylquinoline (protonated),
9,10-Bis(Phenylethynyl) Anthracene
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