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Ableitung semiklassisher Transportgleihungen f�ur

elektroshwahe Baryogenese

Zusammenfassung

In dieser Arbeit untersuhen wir einen wesentlihen Baustein f�ur die Beshreibung der

Baryogenese beim elektroshwahen Phasen�ubergang: wir f�uhren eine strenge Herleitung

semiklassisher Transportgleihungen f�ur CP-verletzende Fl�usse in einem System aus

skalaren und fermionishen Teilhen in Anwesenheit eines langsam ver�anderlihen Hinter-

grundfeldes durh. Diese Situation liegt bei einem elektroshwahen Phasen�ubergang er-

ster Ordnung vor, wo der Vakuumerwartungswert des Higgs-Feldes, der sih innerhalb der

Phasengrenze �andert, die Rolle des Hintergrundfeldes �ubernimmt. Ausgehend von den exak-

ten Bewegungsgleihungen f�ur die Wigner Funktionen im Shwinger-Keldysh-Formalismus

f�uhren wir eine Entwiklung in Ableitungen des Hintergrundfeldes durh, wobei der Kolli-

sionsterm mitbehandelt wird. Diese Entwiklung entspriht einer Entwiklung in Potenzen

der Plank-Konstanten ~. Wir ber�uksihtigen alle Terme erster Ordnung in ~ und erhal-

ten somit semiklassishe Gleihungen, mit denen CP-Verletzung beshrieben werden kann.

Sowohl im skalaren als auh im fermionishen Fall haben die Gleihungen eine spektrale

L�osung, die es erlaubt die Plasma-Anregungen als Quasiteilhen zu behandeln. W�ahrend

die Transportgleihung f�ur die skalaren Teilhen eine gew�ohnlihe klassishe Boltzmann-

Gleihung ist, enth�alt die fermionishe Gleihung Quantenkorrekturen, die als Quellen f�ur

Baryogenese dienen.

Controlled derivation of semilassial transport equations for

eletroweak baryogenesis

Abstrat

In this work we study a basi ingredient for the desription of baryogenesis at the ele-

troweak phase transition: we provide a ontrolled derivation of semilassial transport

equations for CP-violating ows for a system of salar and fermioni �elds in the presene

of a slowly varying bakground �eld. This is the situation in a �rst order eletroweak phase

transition, where the bakground is given by the vauum expetation value of the Higgs

�eld that varies inside the phase transition front. Starting from the exat equations of

motion for the Wigner funtions in the Shwinger-Keldysh formalism we perform a system-

ati expansion in orders of gradients of the bakground �eld, inluding the ollision term.

This expansion is equivalent to an expansion in powers of the Plank onstant ~, and by

keeping all terms up to �rst order in ~ we obtain semilassial transport equations that are

adequate for the desription of CP-violation. We �nd that for both salar and fermioni

�elds the equations have a spetral solution whih allow for an on-shell desription of the

plasma exitations. The transport equation for the salar partiles turns out to be a usual

lassial Boltzmann equation. In the fermioni equations we �nd quantum orretions that

give rise to soures for baryogenesis.
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Introdution

Physiists know that for any partile there exists a orresponding antipartile that

only di�ers in having opposite harges. If partiles and antipartiles ome into on-

tat, they annihilate with emission of energeti -rays. In daily life, however, we

fortunately don't experiene the existene of these antipartiles at all, so that many,

if not most, people believe antimatter to be an invention of siene �tion authors.

The only antipartiles observed on earth are either produed with great e�ort in a-

elerators like at CERN, or are antiprotons in the osmi rays. These are mainly

produts of the reation pp! 3p+ �p, taking plae when osmi protons hit the atmo-

sphere with high energies. But not only the earth is dominated by matter. In fat we

an exlude the existene of onsiderable amounts of antimatter within the entire vis-

ible universe: detailed studies of the -ray distribution haven't given any indiation

for the radiation that we would expet to be produed by the annihilation proesses

at the boundaries between large matter and anti-matter dominated areas [1℄. Another

signature that ould in priniple be used to detet the presene of large anti-matter

domains would be a distortion of the spetrum of the osmi mirowave bakground.

At present however, it is not yet possible to derive any strong bounds from this e�et.

We onlude that either matter and antimatter are separated on sales at least as big

as the visible universe, or the whole universe is dominated by matter. Sine it is very

unlikely that the universe is inhomogeneous at suh large sales and no explanation

for this is in sight, it is ommonly believed that the �rst possibility is not realized.

So, despite the symmetry between the properties of partiles and their antipartiles,

the universe displays an asymmetry in their numbers. This asymmetry is usually

quanti�ed by the di�erene of the densities of baryons and antibaryons divided by

the entropy density of the universe,

� =

n

B

� �n

B

s

� 2� 7� 10

�11

: (1)

Sine both baryon and entropy density sale with a

�3

, where a is the osmologial

sale fator, this ratio stays onstant during the expansion of the universe. The

quantity � is tightly linked to the prodution of light elements like deuterium and

3

He at the nuleosynthesis epoh, and its numerial value an be determined by the

present abundanes of these partiles [2℄. The �rst estimates of the baryon asymmetry

were obtained by simply ounting the number of visible objets in the universe, but

as we now know these objets make up less than 10% of the total baryoni matter.
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The basi question now is: what is the origin of the asymmetry between partiles

and antipartiles in the universe? To explain this as being an initial ondition for the

evolution of the universe is quite unnatural. Furthermore, in the aepted standard

model of osmology an inationary era in the very early universe plays a entral role

[3℄. This exponential expansion would dilute away any initial asymmetry between

partiles and antipartiles.

In 1967 A. Sakharov [4℄ disovered that in priniple it is possible to dynamially pro-

due a baryon asymmetry in partile reations, provided three neessary onditions,

alled the Sakharov riteria, are satis�ed:

� Presene of baryon number violating proesses.

This ondition is obvious, beause when starting from a baryon symmetri

universe, B = 0, the only way to obtain B 6= 0 is to have baryon number

violating proesses.

� Presene of C (harge onjugation) and CP (harge onjugation and parity)

violating proesses.

If C was onserved, the probability for a reation i ! f to take plae would

be the same as for the proess with partiles exhanged by antipartiles. Sine

the baryon number of

�

f is just the negative baryon number of f , no net baryon

number ould be obtained. If CP was onserved, then T (time reversal) would

have to be onserved, too, as stated by the CPT theorem. With T-invariane,

however, the probability for the proess i! f to take plae is the same as the

one for the reversed proess f ! i, whih again makes it impossible to reate

any net baryon number.

� Departure from thermal equilibrium.

We know that in thermal equilibrium the number densities are given by the

Fermi-Dira or the Bose-Einstein distributions. They only depend on the mass,

whih is the same for partiles and antipartiles.

It took some years until Sakharov's idea was implemented in onrete baryogenesis

senarios. Most of the models that have been suggested sine then an very roughly

be divided into two ategories.

On the one hand there are models where the out-of-equilibrium riterion is satis�ed

by the expansion of the universe and the presene of heavy deaying partiles. The

expansion of the universe an drive these partiles out of equilibrium if the harater-

isti times for their reations are larger than the harateristi time of the expansion.

If these partiles then deay through a B-violating proess, a net baryon number

an be produed [5℄. This type of baryogenesis senario is typially worked out in

the framework of Grand Uni�ed Theories (GUT), where there are several ways of

implementing B-, C- and CP-violating proesses. Most of the publiations onerned
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with baryogenesis work with this out-of-equilibrium deay senario. The drawbak

of these models is that they involve physis at energy sales of about 10

16

GeV, and

therefore diret experimental tests are impossible.

On the other hand an out-of-equilibrium situation an be reahed during a strong

�rst order phase transition in the early universe, when a global or a gauge symme-

try is broken. In this work we will be onerned with a situation of this type, the

eletroweak phase transition that might have taken plae at a temperature of about

100 GeV. If this phase transition is of �rst order, then we have the neessary depar-

ture from thermal equilibrium. C- and CP-violation are present in the CKM-matrix

for the quarks, and �nally, even in the eletroweak standard model there are baryon

number violating proesses due to the hiral anomaly, whih was pointed out by 't

Hooft in 1976 [6℄. Today, when the universe has almost zero temperature, these pro-

esses are ompletely negligible. They proeed by tunneling between di�erent vaua

of the gauge part of the theory whih are separated by large energy barriers and

therefore are suppressed by a fator of e

�4�=�

w

� 10

�160

. At high temperatures, how-

ever, it is possible to have thermal transitions over the top of the barrier, so alled

sphaleron transitions, whih beome most e�etive at temperatures above 100 GeV,

that is at the eletroweak sale. On the other hand these sphaleron transitions must

be ine�etive after the ompletion of the phase transition, beause otherwise any

produed baryon asymmetry would be destroyed immediately. This is the ase if the

ratio of the Higgs vauum expetation value in the broken phase to the temperature,

whih is a measure for the strength of the phase transition, is larger than one [7, 8℄.

For studies of the possibility of eletroweak baryogenesis see for instane [9, 10℄.

The great bene�t of eletroweak baryogenesis is that it is based on physis at the

eletroweak sale, whih is in reah of experiments, in ontrast to GUT senarios,

whih are almost ompletely speulative. Unfortunately, after all investigations that

have been performed it is now lear that it doesn't work within the standard model

of partile physis: there is no �rst order phase transition at all if the Higgs mass is

greater than about 74 GeV [11{15℄, whih is learly below the urrent experimental

lower bound for the Higgs mass. So in any ase an extension of the standard model is

required for the explanation of the baryon asymmetry. The solution whih suggests

itself is to onsider supersymmetri extensions, like the Minimal Supersymmetri

Standard Model (MSSM) or the MSSM with an additional singlet �eld, alled Next-

To-Minimal Supersymmetri Standard Model (NMSSM), whih are quite popular

also in other situations where the standard model is insuÆient. Even with this

modi�ations we stay with physis that is, at least partially, aessible to experiments

in the near future. Indeed it has been found that eletroweak baryogenesis is possible

within the MSSM, although only within a rather restrited region of the parameter

spae [17{25℄. In the NMSSM not only the possibility of eletroweak baryogenesis

is given in wide regions of the parameter spae, but it an also have stronger CP
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violation, inreasing the amount of the atually produed baryon asymmetry [26{28℄.

This work is not intended to be a further intense study of the produed baryon

asymmetry in various regions of the parameter spaes of extensions of the standard

model. It is rather intended to ure a basi shortoming ommon to most of the

eletroweak baryogenesis alulations performed so far. A alulation of the baryon

asymmetry produed in a �rst order phase transition requires an understanding of the

behavior of the partiles in the plasma at the passage of the phase transition front. In

essene, one has to derive equations whih desribe the generation and the transport

of CP-violating ows for partiles with a varying mass. The works mentioned above

use a heuristi way of �nding the required transport equations: it is tried to somehow

isolate the essential quantum features of the transport in the form of \soures", and

then these soures are inserted into lassial Boltzmann equations [29{35℄. With suh

methods eletroweak baryogenesis has been studied already in the MSSM [33, 36{42℄

and in the NMSSM [43, 44℄. However these works have found ontraditory results.

The aim of this work is to provide a rigorous derivation of these transport equations

relevant for baryogenesis, based on �rst priniples. In order to ahieve this aim we use

an expansion in derivatives of the Higgs ondensate, whih is responsible for the mass

generation, or equivalently, an expansion in powers of the Plank onstant ~. We will

trunate this expansion at the �rst nontrivial order of ~, whih leads to semilassial

transport equations apable of desribing CP-violating e�ets [45, 46℄.

The derivation of transport equations from the underlying theory is not only impor-

tant for a onsistent treatment of baryogenesis. Besides for appliations in the �eld

of heavy ion ollisions, for instane, suh a disussion is also of general theoretial

interest. It is well known, for example, that the usual Boltzmann equation an be ob-

tained as the lassial limit of the Shwinger-Dyson equation. The kineti equations

for fermions in presene of a lassial gauge �eld have been onsidered in gradient

approximation in [47{49℄. Kineti equations with a pseudo-salar mass term have

been onsidered in [50, 51℄,but only in the lassial limit. Up to now, however, no

derivation of suh equations for salars or fermions has been performed in the pres-

ene of a varying bakground �eld, up to �rst nontrivial order in ~ and inluding a

treatment of the ollision term.

The outline of the work is as follows: in hapter one we �rst give a more detailed

desription of how baryogenesis in the eletroweak phase transition works. It follows

an introdution into the so alled Shwinger-Keldysh formalism, whih is suitable for

the treatment of quantum �eld theoretial problems in out-of equilibrium situations.

Here the basi quantities of our work, the non-equilibrium two-point funtions, are

de�ned. By making use of the 2PI formalism we derive the equations of motion for

these funtions in a model of fermioni and salar �elds, oupled to eah other by

Yukawa interations. We write these equations in the Wigner representation, whih
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is onvenient for our situation with a slowly varying bakground �eld. Finally we

use the gradient expansion to redue the salar equation of motion to a semilassial

transport equation. An important result here is that the equation admits a spetral

solution to �rst order in ~.

This is also true for the fermioni equation of motion, whih is studied in detail in

the seond hapter. The spinor struture of this equation makes the treatment muh

more involved than in the salar ase. A ruial point is the observation that the

spin of the fermions in the diretion perpendiular to the wall is onserved. The use

of this symmetry leads to the essential simpli�ations that allow the derivation of

semilassial transport equations. We study the mixing of several fermioni partiles

via a mass matrix and give expliit examples for the MSSM and the NMSSM.

Chapter three ontains an extensive treatment of the ollision terms of both equations.

Based on the results of the previous hapters we show how partile interations an

be onsistently integrated into our work. The main fous here lies in the identi�ation

of ollisional soures for baryogenesis. In the last part of the hapter we study the

inuene of mixing on the ollision term.

In hapter four we use the fermioni transport equation to derive an equation for the

CP-violating part of the distribution funtion. We disuss the soures that appear

in the ow term of this equation in some detail and derive a set of uid equations.

Finally we summarize our results.
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1. Equations of motion for the Green funtions

1.1 Eletroweak Baryogenesis

The weak and eletromagneti interations are desribed by a gauge theory whih

today is spontaneously broken by the vauum expetation value of the Higgs �eld.

The symmetry is restored, however, at temperatures of above � 100 GeV in the early

universe [52{54℄. In the following we assume that the breaking of the symmetry hap-

pens in a �rst order phase transition. In a naive piture the vauum expetation

value of the Higgs �eld is governed by a temperature dependent e�etive potential

whih an be alulated in resummed perturbation theory. The potential ontains

a thermal mass and a negative ubi term that is essential for having a �rst order

phase transition. In those ases where the perturbative alulation yields a strong

transition, this piture seems to be supported by lattie alulations [13, 55℄. At high

temperatures the potential has a unique global minimum at vanishing Higgs expe-

tation value hHi = 0, whih orresponds to the symmetri phase of the universe (see

�gure 1.1). With dereasing temperature a new loal minimum at a non vanishing

value of hHi develops. When the temperature reahes the ritial temperature T



,

both minima are degenerate. Here both the symmetri (hHi = 0) and the broken

(hHi 6= 0) phase are energetially equal but separated by a barrier. If the temper-

ature drops further down to the nuleation temperature T

n

, the volume energy of

spontaneously nuleating bubbles of the broken phase, whih is gained by the tran-

sition to the energetially favored new global minimum, is bigger than the surfae

tension. The bubbles will grow until the whole spae is onverted into the new phase.

When the wall of suh a bubble passes a point in spae, the Higgs vauum expe-

tation value at that point undergoes a rapid hange. At that time the universe was

not almost empty, as it is today, but �lled with a hot plasma of partiles. These

partiles are oupled to the Higgs vauum expetation value - this is the way they

obtain their masses - and so the hanging hHi leads to a departure from equilibrium.

Figuratively spoken, the partiles in the plasma are thrown out of equilibrium by

the passing wall. In the presene of CP-violating interations this leads to a loal

separation of lefthanded partiles from their antipartiles. Our task is the derivation

of appropriate transport equations whih are apable of desribing these CP-violating

ows. Sine the mass of the partiles is given by a oupling to the Higgs expetation

value, m = yhHi, the interation with the wall is desribed by giving the partiles

9



10 1.1 Eletroweak Baryogenesis

a spae-time-dependent mass. The asymmetry between the lefthanded partiles and

their antipartiles is subsequently translated into a net baryon asymmetry in front

of the wall, where the sphaleron transition is fast. Finally this baryon asymmetry is

transported into the bubble, where the sphaleron transition is frozen out and thus

the asymmetry remains until the present day.

The motion of the bubble wall is inuened by two e�ets. On the one hand there

is pressure inside the bubble whih ats as an aelerating fore on the wall. The

origin of this pressure is just the volume energy gained by the transition from the

symmetri to the broken phase. On the other hand there is a deelerating fore,

beause the plasma exerts frition on the moving wall. After a short time there will

be an equilibrium between the two fores and eventually the wall moves with onstant

veloity through the plasma. Numerial analyses have shown that in the MSSM the

wall veloity v

w

is of the order of 0:1 of the speed of light [56℄. The wall veloity is an

important parameter for baryogenesis. We expet that for extremely slow walls the

produed baryon asymmetry is small, sine we have only a very slight departure from

equilibrium. On the other hand, for big wall veloities the baryon number will be

small beause the time available for the sphaleron proess is too short. This behavior

has indeed been observed in alulations of the baryon asymmetry (see for instane

[40, 41℄).

Sine after a short period of expansion the size of a bubble is large ompared to the

thikness of its walls, we an neglet the urvature of the wall in the derivation of

the transport equations. So it is e�etively only dependent on one spatial oordinate,

P

S

f

r

a

g

r

e

p

l

a



e

m

e

n

t

s

0

0

T>T



T=T



T<T



hHi!

V

Figure 1.1: E�etive potential for the Higgs vauum expetation value during the

phase transition.
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whih we hoose to be the z-diretion. The shape of the wall, whih of ourse inu-

enes the way the plasma reats on the passage of the wall and therefore inuenes

the produed baryon asymmetry, an in the MSSM be very well desribed by a kink

ansatz. If we denote both the absolute value of hHi and (the Higgs ondensate may

be omplex) its phase generially by �, we an write

�(z � v

w

t) =

�

broken

2

�

1 + tanh

�

z � v

w

t

L

w

��

; (1.1)

where �

broken

denotes the value inside the bubble and L

w

is the width of the wall.

The width lies in the range of about 6=T � 14=T in the MSSM [58, 59℄ and has about

the same size in the NMSSM [60℄. In the NMSSM the atual shape deviates slightly

from (1.1), but for baryogenesis alulations this seems not to be important.

1.2 Shwinger-Keldysh Formalism

\Ordinary" vauum quantum �eld theory is designed to desribe partile sattering

experiments, where the system is prepared to be in a de�nite in-state at t! �1 and

we ask for the probability of �nding the system in a de�nite out-state at t ! +1

(in-out-formalism). In statistial physis, however, we are interested in the temporal

evolution of a system. Starting with de�nite initial onditions, we ask for the ex-

petation values of physial quantities at �nite times. A theoretial framework for

suh problems was �rst suggested by Shwinger in 1961 [61℄ and then developed fur-

ther by Keldysh [62℄ and others. An extension of �eld theory apable of dealing with

non-equilibrium problems is obtained by de�ning the time arguments of all quantities

on a path C that leads from �1 to +1 and then bak to �1. All integrals and

derivatives have then to be performed along that path, and the usual time ordering

beomes time ordering T

C

along C. This formalism is often also alled Closed Time

Path (CTP) formalism [63℄. The de�nitions of the salar and the fermioni Green

funtions are

�(u; v) = �i




T

C

�(u)�

y

(v)

�

; (1.2)

G

��

(u; v) = �i




T

C

 

�

(u)

�

 

�

(v)

�

: (1.3)

The ontour C an now be split into a \+" branh from �1 to +1 and a \�"

branh from +1 to �1. Denoting the branh on whih a time argument lies by an

index a = �, we an rewrite the formalism using ordinary time arguments. We then

have

Z

C

d

4

u !

X

a

a

Z

1

�1

d

4

u

Æ

C

(u� v) ! aÆ

ab

Æ(u� v)

G(u; v) ! G

ab

(u; v) : (1.4)
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The additional fators a in the integral and in the Æ-funtion have their origin in the

fat that the \�" branh runs bakwards with respet to usual time. The Green

funtions have four di�erent parts,

G

++

��

(u; v) = G

t

��

(u; v) = �i




T 

�

(u)

�

 

�

(v)

�

G

+�

��

(u; v) = G

<

��

(u; v) = i




�

 

�

(v) 

�

(u)

�

G

�+

��

(u; v) = G

>

��

(u; v) = �i




 

�

(u)

�

 

�

(v)

�

G

��

��

(u; v) = G

�

t

��

(u; v) = �i




T 

�

(u)

�

 

�

(v)

�

; (1.5)

where T denotes anti-time ordering and the additional minus sign in the seond line is

due to the antiommutation property of fermioni �elds. Right from these de�nitions

one an see that G

<

and G

>

have the hermitiity property

�

i

0

G(x; y)

�

y

= i

0

G(y; x) : (1.6)

For the salar Green funtions analogous expressions hold, where of ourse all four

right hand sides start with a minus sign. The salar hermitiity property reads

(i�(x; y))

�

= i�(y; x) : (1.7)

The four parts of (1.5) are not independent of eah other, beause with the de�nition

of the time and anti-time ordering we an express G

t

and G

�

t

in terms of G

<

and G

>

:

G

t

(u; v) = �(u

0

� v

0

)G

>

(u; v) + �(v

0

� u

0

)G

<

(u; v) ;

G

�

t

(u; v) = �(u

0

� v

0

)G

<

(u; v) + �(v

0

� u

0

)G

>

(u; v) : (1.8)

For a system in thermal equilibrium at a temperature T , expliit expressions for the

Green funtions an be obtained. In equilibrium they depend only on the relative

oordinate u� v, so a Fourier transformation an be applied:

G

eq

(k) =

Z

d

4

(u� v)e

ik�(u�v)

G

eq

(u� v) : (1.9)

The expetation values in the de�nition of the Green funtions redue to thermal

expetation values, and they an be evaluated to [64℄

G

t

eq

(k) =

k

Æ

+m

k

2

�m

2

+ isgn(k

0

)�

+ 2�i(k

Æ

+m)Æ(k

2

�m

2

)sgn(k

0

)n

eq

(k

0

) (1.10)

G

�

t

eq

(k) =

� k

Æ

�m

k

2

�m

2

+ isgn(k

0

)�

� 2�i(k

Æ

+m)Æ(k

2

�m

2

)sgn(k

0

)(1� n

eq

(k

0

))(1.11)

G

<

eq

(k) = 2�i(k

Æ

+m)Æ(k

2

�m

2

)sgn(k

0

)n

eq

(k

0

) (1.12)

G

>

eq

(k) = �2�i(k

Æ

+m)Æ(k

2

�m

2

)sgn(k

0

)(1� n

eq

(k

0

)) ; (1.13)
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where the equilibrium phase spae distribution is the well-known Fermi-Dira funtion

n

eq

(k

0

) =

1

e

�k

0

+ 1

; � = 1=T : (1.14)

These expressions are given for the ase of a real mass. They an be trivially extended

to the ase of a omplex mass by replaing k

Æ

+m by k

Æ

+m

R

+ i

5

m

I

, where m

R

and

m

I

are the real and imaginary part of the mass, respetively. The salar equilibrium

Green funtions are

�

t

eq

(k) =

1

k

2

�m

2

+ isgn(k

0

)�

� 2�iÆ(k

2

�m

2

)sgn(k

0

)n

�

eq

(k

0

) (1.15)

�

�

t

eq

(k) = �

1

k

2

�m

2

+ isgn(k

0

)�

� 2�iÆ(k

2

�m

2

)sgn(k

0

)(1 + n

�

eq

(k

0

)) (1.16)

�

<

eq

(k) = �2�iÆ(k

2

�m

2

)sgn(k

0

)n

�

eq

(k

0

) (1.17)

�

>

eq

(k) = �2�iÆ(k

2

�m

2

)sgn(k

0

)(1 + n

�

eq

(k

0

)) : (1.18)

Here the Bose-Einstein distribution funtion is used:

n

�

eq

(k

0

) =

1

e

�k

0

� 1

: (1.19)

The equilibrium Green funtions satisfy the famous Kubo-Martin-Shwinger (KMS)

relations:

G

>

eq

(k) = �e

�k

0

G

<

eq

(k) ; �

>

eq

(k) = e

�k

0

�

<

eq

(k) : (1.20)

1.3 Lagrange density and equation of motion

We study a system of a fermioni and a salar partile, both having spae-time

dependent masses and being oupled to eah other by a Yukawa interation. The

Lagrangian for the system is

L = i

�

 �

Æ

 �

�

 

L

m 

R

�

�

 

R

m

�

 

L

+ (�

�

�)

y

(�

�

�)�m

2

�

�

y

�+ L

int

: (1.21)

The masses of the partiles arise from an interation with a salar �eld ondensate.

This is the ase, for example, in a �rst order eletroweak phase transition, where

the partiles are oupled to the Higgs �eld ondensate, whih varies at the boundary

between the symmetri and the broken phase. In a way these varying masses an then

be said to desribe the interation with the bubble wall. But we are not restrited to

this spei� senario. Any system whih has varying masses and whih furthermore

satis�es the restritions we will make in the ourse of our treatment an be studied.

We hoose the fermion mass to be omplex,

m(u) = m

R

(u) + im

I

(u) = jm(u)je

i�(u)

; (1.22)
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whih is a potential soure of CP-violation. Here m

R

and m

I

denote the real and

imaginary part of m, respetively. With the de�nition of the left- and right-handed

�elds

 

L

= P

L

 ;  

R

= P

R

 ; (1.23)

where the hiral projetion operators

P

L

=

1

2

(1� 

5

) ; P

R

=

1

2

(1 + 

5

) (1.24)

with 

5

= i

0



1



2



3

are used, we an rewrite the fermioni mass term in a form

where the pseudosalar part is made expliit:

�

 

L

m 

R

+

�

 

R

m

�

 

L

=

�

 (P

R

m + P

L

m

�

) 

=

�

 

�

m

R

+ i

5

m

I

�

 : (1.25)

The interation part of the Lagrangian ontains the Yukawa oupling term, whih

an also be rewritten with the help of the projetion operators:

L

int

= �y�

�

 

L

 

R

� y

�

�

�

�

 

R

 

L

= �

�

 (P

R

y�+ P

L

y

�

�

�

) : (1.26)

In the next setions we will derive the equations of motion for the Green funtions

in the CTP-formalism, �rst for the salar and then for the fermioni �eld.

1.3.1 Salar �eld

We now derive the equation of motion for the salar Green funtion in the CTP-

formalism. If one neglets ollisions, there is a very easy and straightforward way to

obtain the desired equation. We just use the Lagrangian (1.21) to write down the

�eld equation, whih is of ourse the Klein-Gordon equation:

�

�

2

u

+m

2

�

(u)

�

�(u) = 0 : (1.27)

After multiplying this from the left with �i�

y

(v) we take the expetation value and

use the de�nition of the Green funtion �

<

:

�

�

2

u

+m

2

�

(u)

�

�

<

(u; v) = 0 : (1.28)

In a similar way one �nds that the same equation holds for �

>

.

In order to obtain the equations for the Green funtions inluding interations we

follow the approah of Calzetta and Hu [65℄, whih uses the two-partile irreduible

(2PI) representation of the CTP e�etive ation. In this approah one works with
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an extended e�etive ation �. This 2PI-e�etive ation depends not only on the ex-

petation value of the �eld h�(u)i but also on the two-point-funtion




T

C

�(u)�

y

(v)

�

,

whih is nothing else than the Green funtion �(u; v). The equation of motion for

one of these quantities is then obtained by requiring the derivative of the e�etive

ation with respet to this quantity to vanish. Sine we are not interested in an

expetation value of the �eld itself we only deal with the Green funtions and set the

�eld expetation value to zero. Cornwall, Jakiw and Tomboulis [66℄ showed that the

2PI-e�etive ation for a omplex salar �eld an be written as

�[�℄ = iTr�

(0)

�1

�+ iTr ln�

�1

+ �

2

[�℄ : (1.29)

The inverse free propagator �

(0)

�1

for the salar theory is de�ned by rewriting the

lassial e�etive ation in the form

I[�℄ =

Z

C

d

4

uL(u) =

1

2

Z

C

d

4

u d

4

v �(u)�

(0)

�1

(u; v)�(v) + I

int

[�℄ ; (1.30)

where we only use the salar part of the Lagrangian. It is easily seen to be

�

(0)

�1

(u; v) = �

�

�

2

u

+m

2

�

(u)

�

Æ

4

C

(u� v) : (1.31)

The quantity �

2

is the sum of all two-partile irreduible vauum graphs with verties

de�ned by I

int

and propagators set equal to �. We take the funtional derivative of

the e�etive ation with respet to � and obtain

Æ�[�℄

Æ�(v; u)

= +i�

(0)

�1

(u; v)� i�

�1

(u; v) +

Æ�

2

[�℄

Æ�(v; u)

: (1.32)

The equation of motion is obtained by requiring this to be zero, and with the de�nition

of the self energy

�(u; v) = i

Æ�

2

[�℄

Æ�(v; u)

(1.33)

we reognize (1.32) as the Shwinger-Dyson equation. Finally we multiply the equa-

tion from the right with the Green funtion � and �nd the equation of motion:

�

�

2

u

+m

2

�

(u)

�

�(u; v) = �Æ

4

C

(u� v)�

Z

C

d

4

w�(u; w)�(w; v) : (1.34)

Up to now we have written everything in ontour notation. In index notation the self

energy is

�

ab

(u; v) = i

Æ�

2

[�℄

ab Æ�

ba

(v; u)

; (1.35)

where the additional indies on the right hand side have their origin in the fat that

on the \�" branh we have derivatives \in the negative diretion". With this the

equation of motion is

�

�

2

u

+m

2

�

(u)

�

�

ab

(u; v) = �aÆ

ab

Æ

4

(u� v)�

X



Z

d

4

w �

a

(u; w)�

b

(w; v) : (1.36)
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The urrent density for the salar �eld, whih ontains all information about the

semilassial partile densities, an be expressed in terms of the Wigner funtion �

<

:




j

0

(u)

�

= �(�

u

0

� �

v

0

)�

<

(u; v)

�

�

�

u=v

; (1.37)




j

i

(u)

�

= +(�

u

i

� �

v

i

)�

<

(u; v)

�

�

�

u=v

: (1.38)

We therefore fous on the equation for �

<

, obtained by hoosing ab = +�:

�

�

2

u

+m

2

�

(u)

�

�

<

(u; v) = �

Z

d

4

w

�

�

t

(u; w)�

<

(w; v)� �

<

(u; w)�

�

t

(w; v)

�

:(1.39)

We de�ne the \hermitean" part of the Green funtion and of the self energy

�

R

= �

t

�

1

2

(�

>

+�

<

) = ��

�

t

+

1

2

(�

>

+�

<

) (1.40)

�

R

= �

t

�

1

2

(�

>

+�

<

) = ��

�

t

+

1

2

(�

>

+�

<

) ; (1.41)

and the ollision term

C

�

(u; v) =

1

2

Z

d

4

w

�

�

>

(u; w)�

<

(w; v)� �

<

(u; w)�

>

(w; v)

�

: (1.42)

With these de�nitions we an rewrite the equation of motion:

�

�

2

u

+m

2

�

(u)

�

�

<

(u; v) +

Z

d

4

w�

R

(u; w)�

<

(w; v)

+

Z

d

4

w�

<

(u; w)�

R

(w; v) = �C

�

(u; v) : (1.43)

The term �

R

�

<

on the left hand side is the self energy ontribution to the mass,

and �

<

�

R

essentially leads to a modi�ation of the partile spetrum. In this work

we neglet these two terms. We omment on this in the beginning of hapter 3. The

ollision term C

�

(u; v) on the right hand side ontains the gain and loss terms that

usually lead to relaxation.

1.3.2 Fermioni �elds

The derivation of the equation of motion for the fermioni Green funtion proeeds

along the same lines as in the salar ase. Again there is a very easy way to obtain

this equation when one neglets interations, exept of the interation with the wall,

starting from the Dira equation for the spinor  . Here we diretly go to the derivation

in the 2PI approah. The fermioni 2PI generating funtional is

�[G℄ = �iTrG

(0)

�1

G� iTr lnG

�1

+ �

2

[G℄ ; (1.44)
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where �

2

is the same as in the salar ase, sine the interation part of the Lagrangian

is ommon to both �elds. The inverse free propagator is given by

G

(0)

�1

(v; u) = �

�

i �

Æ

u

+m

R

+ i

5

m

I

�

Æ

4

C

(u� v) : (1.45)

In order to obtain the equation of motion we this time have to take the funtional

derivative of (1.44) with respet to the fermioni Green funtion. The result reads

�iG

(0)

�1

ab

(u; v) + iG

�1

ab

(u; v) + ab�

ab

(u; v) = 0 ; (1.46)

where the de�nition of the fermioni self energy is

�

ab

(u; v) = �i

Æ�

2

[G℄

ab ÆG

ba

(v; u)

: (1.47)

We multiply this equation with G, integrate over v, sum over a, multiply with b and

use the expliit expression for the inverse free propagator to �nd

�

i �

Æ

u

�m

R

� i

5

m

I

�

G

ab

(u; v) = aÆ

ab

Æ

4

(u� v) +

X



Z

d

4

w �

a

(u; w)G

b

(w; v) :

(1.48)

We are interested only in the equation for the omponent G

<

= G

+�

, whih is

�

i �

Æ

u

�m

R

� i

5

m

I

�

G

<

(u; v) =

Z

d

4

w

�

�

t

(u; w)G

<

(w; v)� �

<

(u; w)G

�

t

(w; v)

�

:

(1.49)

The de�nitions of the hermitian part of the propagator and of the self energy as well

as the de�nition of the ollision term are analogous to the orresponding quantities

in the salar ase. With these we then an write the fermioni equation in the form

�

i �

Æ

u

�m

R

� i

5

m

I

�

G

<

(u; v)�

Z

d

4

w�

R

(u; w)G

<

(w; v)

�

Z

d

4

w�

<

(u; w)G

R

(w; v) = C

 

(u; v) : (1.50)

Like in the salar ase we neglet the self energy orretion to the mass as well as the

part that inuenes the spetrum and only keep the ollision term.

1.4 Wigner transformation and gradient expansion

In equilibrium the Green funtions �(u; v) and G(u; v), whih ontain omplete in-

formation about the system, depend only on the relative oordinate r = u� v. This

dependene orresponds to the internal quantum utuations that typially take plae

on mirosopial sales. In a non-equilibrium situation, however, there is also a de-

pendene on the average oordinate X = (u + v)=2. This dependene desribes the
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systems behavior on large, marosopial sales. For example, in a study of ther-

malization of a system one follows the evolution of the system with growing time

X

0

. Or, if the system experienes an external perturbation that has a marosopial

spatial variation, then this will show up in a orresponding dependene of the Green

funtions on the average oordinate. This is what we are doing, sine the bubble

wall is a large sale perturbation of the system. The idea is to separate the small

sale utuations from the behavior on marosopial sales by performing a Fourier

transformation with respet to the relative oordinate r. This is alled a Wigner

transformation. The Green funtion in the Wigner representation, whih is alled

Wigner funtion, is

�(X; k) =

Z

d

4

r e

ik�r

�(X + r=2; X � r=2) ; (1.51)

and analogous for the fermioni G. Throughout this work we use the same symbol

for a funtion and its Wigner transform. Whih one is meant will be lear or indi-

ated by the arguments. The hermitiity properties (1.6) and (1.7) in the Wigner

representation beome

�

i

0

G

<;>

(X; k)

�

y

= i

0

G

<;>

(X; k) ; (1.52)

�

i�

<;>

(X; k)

�

�

= i�

<;>

(X; k) : (1.53)

In order to transform the equation of motion, we write the �rst term of (1.43) as a

onvolution:

�

�

2

u

+m

2

�

(u)

�

�

<

(u; v) =

Z

d

4

w

h�

�

2

u

+m

2

�

(u)

�

Æ(u� w)

i

�

<

(w; v) : (1.54)

The Wigner transform of a general onvolution is

Z

d

4

(u� v) e

�ik�(u�v)

Z

d

4

wA(u; w)B(w; v) = e

�i�

fA(X; k)gfB(X; k)g ; (1.55)

where the average variable is X = (u+ v)=2 and the diamond operator is de�ned by

� f:g f:g =

1

2

�

�

(1)

� �

(2)

k

� �

(1)

k

� �

(2)

�

f:gf:g : (1.56)

The supersripts (1) and (2) refer to the �rst and seond argument, respetively. Here

and in the following � alway means the derivative with respet to X. The Fourier

transform of the di�erential operator inside the square brakets in (1.54) is

Z

d

4

r e

ik�r

�

�

2

u

+m

2

�

(u)

�

Æ(u� v) = �k

2

+m

2

�

(X) ; (1.57)
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where again r = u� v and X = (u + v)=2. This relation an be shown by replaing

the Æ-funtion by its Fourier representation. The equation of motion for the Wigner

funtion then beomes

e

�i�

�

�k

2

+m

2

�

(X)

	

f�

<

(X; k)g = �C

�

(X; k) : (1.58)

The ollision term in on�guration spae (1.42) has the form of a onvolution, so in

the Wigner representation it is simply given by

C

�

(X; k) =

1

2

e

�i�

�

f�

>

(X; k)g f�

<

(X; k)g � f�

<

(X; k)g f�

>

(X; k)g

�

: (1.59)

This term will be studied in hapter 3 in detail. In an expansion of the exponentiated

diamond operator on the left hand side of (1.58) there are terms that ontain only

�

(1)

�

(2)

k

or ��

(1)

k

�

(2)

, whih an be reombined into exp(�i�

(1)

�

(2)

k

) and exp(i�

(1)

k

�

(2)

),

respetively. In addition there are mixed terms, but they always ontain a part

�

�

�

�

k

(�k

2

+m

2

�

), whih is obviously zero. So it is quite straightforward to see that

(1.58) an be simpli�ed to

�

1
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�

2

� k

2

� ik � � +m
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�

(X)e
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�

��

k

�
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(X; k) = �C

�

(X; k) : (1.60)

Here one an see expliitly how the spae-time dependene of the mass a�ets the

equation. Derivatives of the mass are ombined with momentum derivatives of the

Wigner funtion, whih in a lassial piture just means that a varying mass like a

varying potential ats as a fore on the partiles and hanges their momenta. The

omputation of the Wigner transform of the fermioni equation of motion (1.50) runs

along the same lines. We �rst arrive at

e

�i�

�

k

Æ

�m

R

(X)� i

5

m

I

(X)

	�

G

<

(X; k)

	

= C

 

(X; k) ; (1.61)

and with the same arguments as above this an be simpli�ed to give

�

k
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2
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Æ
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m
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(X) + i
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m

I

(X)

�

e

�
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 �

� ��

k

�

G

<

(X; k) = C

 

(X; k) : (1.62)

The expression for the ollision term is analogous to the salar one, we only have to

use the fermioni self energy and Wigner funtion instead of the salar ones.

The basi assumption in this work is that the variation of the bakground �eld, whih

is responsible for the spae-time-dependene of the mass, has a harateristi length

sale that is big in omparison to the de Broglie wavelength of the partiles in the

plasma. Sine the varying bakground �eld is responsible for the spae-time depen-

dene of all quantities in the Wigner representation, we an perform an expansion

in derivatives with respet to the average oordinate X. The assumption of a slowly
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varying bakground �eld seems to be justi�ed in our ase: in the MSSM, for instane,

the width of the bubble wall L

w

, whih is the sale of the variation of the bakground,

is roughly 10=T , where T is the temperature of the plasma. The typial momentum of

a partile in the plasma is of the order T , so that the de Broglie wavelength l

dB

� 1=T

is indeed small when ompared to L

w

.

Sine the expansion in powers of derivatives is equivalent to an expansion in powers

of the Plank onstant ~, this proedure will lead to semilassial equations. We

expet that the leading order terms in the gradient expansion orrespond to lassial

behavior, while taking into aount higher order derivatives gives rise to quantum

orretions.

1.5 Salar �elds

We �rst take a loser look on the salar equation. The hermitiity property (1.53) of

the Wigner funtion just states that i�

<

(X; k) is a real quantity. So we an split the

omplex equation (1.60) into two real ones by taking the real part,

�

�k � � �m

2

�

(X) sin(

1

2

 

�

��

k

)

�

i�

<

(X; k) = �<C

�

(X; k) ; (1.63)

and the imaginary part,

�

�

1

4

�

2

+ k

2

�m

2

�

(X) os(

1

2

 

�

��

k

)

�

i�

<

(X; k) = �=C

�

(X; k) : (1.64)

Now we apply the gradient expansion. In equation (1.63) only odd powers of deriva-

tives our, so in order to get an equation that is orret up to seond order in

gradients it is suÆient to keep only the �rst order derivatives. Similarly, the imag-

inary part (1.64) ontains only even powers of derivatives, and therefore throwing

them all away still leaves us with an equation whih is orret up to �rst order in

gradients. This way we obtain

�

�k � � �

1

2

(�m

2

�

(X)) � �

k

�

i�

<

(X; k) = �<C

�

(X; k) (1.65)

and

�

k

2

�m

2

�

(X)

�

i�

<

(X; k) = �=C

�

(X; k) : (1.66)

In this form the meaning of the two equations beomes apparent. The �rst one

is a kineti equation, while the seond one is an algebrai equation (for a moment

we forget about the right hand side) whih restrits the spae of possible solutions

of the kineti equation to funtions whih are on-shell. This equation is alled the

onstraint equation. When using the onstraint equation this way, it beomes lear
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that it was onsistent to keep only the �rst order derivatives there: any seond order

ontribution to the onstraint would lead, when used in the kineti equation, to a

term that is of third order in gradients, sine all the terms in the kineti equation

already ontain a derivative. But now we see immediately that neither the onstraint

equation nor the ow term of the kineti equation for one salar partile ontain any

CP-violating quantum orretions that ould at as soures for the prodution of a

baryon asymmetry. For a salar partile we just �nd the usual Boltzmann equation

with a lassial fore term.

If we inlude the term on the right hand side of the onstraint equation, whih is

a funtional of the salar Wigner funtion, the equation is not algebrai any more.

But we will see later that the ollision term is at least of �rst order in gradients.

So, when we use the onstraint equation (1.66) to justify an on-shell ansatz for i�

in (1.65), whih ontains only �rst order terms, then we an neglet the ollision

term, beause it would lead to orretions that are seond order in gradients and

additionally suppressed by the oupling onstant.

The interpretation of the seond equation as a spetral onstraint on the solutions of

the kineti equation works also beyond �rst order in gradients. But then things are

muh more ompliated, beause the onstraint equation is not an algebrai equation

that fores the partiles on-shell any more, but a further di�erential equation that

has to be solved simultaneously with the kineti equation.

In models like the MSSM we are in a situation where there are several salar �elds

oupled to eah other by a mass matrix, whih in our situation is spae-time depen-

dent. An example is the stop setor ~q = (

~

t

L

;

~

t

R

)

T

of the MSSM, where the mass

matrix is

M

2

~q

=

�

m

2

Q

y(A

�

H

2

+ �H

1

)

y(AH

2

+ �

�

H

1

) m

2

U

�

; (1.67)

where m

2

Q

and m

2

U

denote the sum of the soft susy-breaking masses. The derivation

of the equation of motion proeeds as shown in setion 1.3, with the modi�ation that

the �elds now have an index indiating the type of the partile. We �nd an equation

whih is obtained from (1.60) by replaing the real mass m

2

�

by a hermitean mass

matrix M

2

�

, and the Wigner funtion i� beomes a hermitean matrix, too.

The basi idea for the treatment of mixing is to diagonalize the mass. If the mass

was onstant, then after the diagonalization we would, on the left hand side, just

obtain N separate equations, orresponding to the independent propagation of the

N mass eigenstates. In the bubble wall, however, the mass matrix and therefore the

de�nitions of the eigenstates vary, so we expet their propagation to be not any longer

independent of eah other, whih is desribed by a non-diagonal Wigner funtion, and

the propagation will also be diretly inuened by the hanging mass matrix. Sine
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these e�ets are, due to their origin, at least of �rst order in gradients, we an treat

them as small orretions.

The hermitean matrixM

2

�

is diagonalized by a unitary, spae-time dependent rotation

matrix U :

M

2

�

= U

y

M

2

�;d

U : (1.68)

We de�ne the rotatedWigner funtion i�

d

= Ui�U

y

, whih in general is not diagonal,

as explained above. By rotating the equation of motion we �nd
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d

(X; k) = �C

�;d

(X; k) ; (1.69)

where we used the \ovariant" derivative D

�

= �

�

� i[iU�

�

U

y

; �℄, arising from deriva-

tives ating on the rotation matrix U , and de�ned C

�;d

= UC

�

U

y

. The onstraint

and the kineti equation are this time obtained by taking the antihermitean and the

hermitean part of (1.69), respetively. Like in the one �eld ase we keep terms up to

�rst order in gradients in order to get the onstraint equation

k
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�;d

; i�
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i
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[k �D; i�
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℄ = �=C

�;d

; (1.70)

while in the kineti equation we go up to seond order:
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d

�

= �<C

�;d
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(1.71)

where we an rewrite the antiommutators like fA;Bg = 2AB�[A;B℄. In the end we

are only interested in the quasilassial partile densities, whih are desribed by the

diagonal elements of i�

<

d

. We will now argue that in the equations for these diagonal

elements all ommutator terms an be negleted. This is obvious for the terms of the

form [M

2

�;d

; i�

<

d

℄: they don't ontribute to the equations for the diagonal elements,

beause the ommutator of a diagonal matrix with any other matrix has no diagonal

elements at all.

The disussion of the other terms is a bit more deliate. It is onvenient to restore

expliit powers of ~ here, whih is done by the following reipe: assign a fator of ~

to eah spae-time-derivative, and then multiply the whole equation with that power

of ~ that makes the lassial terms order ~

0

. Aording to this the kineti equation,

to whih we will restrit our disussion here, has to be multiplied with ~

�1

in order

to make the lassial ow term expliitly of order ~

0

. Sine we are interested in the

leading order quantum e�ets, we neglet all terms of order ~

2

in this equation.

The other ommutators in the kineti equation are of the form ~

�1

[i~U�U

y

; i�

<

d

℄

or similar, so formally they are of the order ~

0

. The diagonal part of this ommu-

tator ontains only o�-diagonal elements of i�

<

d

, however, and these are impliitly
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suppressed by ~ when ompared to the diagonal elements. The reason is that the

o�-diagonal omponents of i�

<

d

vanish in equilibrium and are only soured by the

diagonal elements via a term of order ~. To make things even more ompliated, we

are looking for CP-violating e�ets. In the end we will take the equation for partiles

and subtrat the equation for antipartiles in order to obtain an equation for CP-

violating densities. Therefore a term in our equation whih ontains no CP-violation

is irrelevant even if it is of order ~. So what is the order of the CP-violating part

of the o�-diagonal elements of i�

<

d

? CP-violation is a quantum e�et, and therefore

the CP-violating ontribution to the diagonal elements of i�

<

d

has to be of order

~. The ommutator term that mixes diagonal and o�-diagonal elements itself is not

CP-violating, so the CP-violating part of the diagonal elements of order ~ will soure

a CP-violating part of the o�-diagonal elements of order ~

2

. This means that the

CP-violating part of the diagonal elements of the ommutator ~

�1

[i~U�U

y

; i�

<

d

℄ is

impliitly of order ~

2

and therefore an be negleted. For the ommutator terms in

the onstraint equation the same arguments hold.

We an onlude that in the kineti and onstraint equations for salar partiles,

both in the non-mixing and in the mixing ase, no CP violation is present at order ~,

and therefore no soure term for baryogenesis of order ~. We obtain purely lassial

dispersion relations and transport equations. In order to ath the lowest order soure

term we would in priniple have to go one order higher. Fortunately we will see later

that there are soure terms of order ~ in the fermioni equations, so potential seond

order soure terms in the salar equations are subdominant and an be negleted.

The fat that we �nd lassial equations whih are orret to order ~ means that

a WKB approah to the problem should lead to orret results. There it is simply

assumed that the plasma an be treated as a olletion of quasipartiles whih an

be desribed by wavefuntions. The Klein-Gordon equation for the wavefuntions

leads to a dispersion relation whih is inserted into a lassial Boltzmann equation.

In older WKB treatments a CP-violating fore was found, however. The reason for

this is that in those works the anonial momentum was used for the desription of

the partiles. In [40℄ the kineti momentum was used instead, leading to the orret

results. For a brief omparison between the use of anonial and kineti momentum

in WKB see [46℄.

There are also other approahes to the problem that use �eld theoretial methods.

There the oupling to the Higgs ondensate is desribed as a part of the self energy

and an expansion in Higgs mass insertions is performed in order to alulate the salar

urrent density or its divergene, respetively [34, 35, 37℄. In these works CP-violating

ontributions to these quantities at order ~ are found, in ontrast to our result.
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2. Fermioni equation

We saw in the end of the last hapter that the equation of motion for the salar

Wigner funtion has no quantum orretions of order ~. In the non-mixing ase the

alulation was almost trivial. Due to the additional spin degree of freedom, formally

displayed by the fat that we now have to deal with a matrix equation, the treatment

of the fermioni equation of motion is onsiderably more ompliated, so we devote

an own hapter to this part.

The equation is ovariant under Lorentz transformations, whih enables us to write

it right from the start in a system whih is at rest with respet to the bubble wall. In

this so alled \wall frame" the mass doesn't depend on time, and making use of the

symmetry of the wall disussed in setion 1.1, we an adjust the oordinate system in

suh a way that the mass only depends on the z-omponent of the average oordinate

X. The equation of motion in the wall frame is

�

k

Æ

+

i

2

�

Æ

�

�

m

R

(z) + i

5

m

I

(z)

�

e

i

2
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�

z

��

k

z

�

G

<

(X; k) = C

 

(X; k) : (2.1)

In the following all funtions and variables are written in the wall frame, if not

indiated otherwise.

A straightforward way to treat this problem is to make a deomposition of the matrix

G

<

with real omponent funtions and then to extrat salar equations for these

omponents from the matrix equation (2.1). This is what we do in the �rst part of this

hapter. Unfortunately the resulting equations are too ompliated to be addressed

diretly. By an appropriate boost, however, we an transform into a system where

a symmetry of the problem beomes obvious. We make an ansatz for the Wigner

funtion whih is adjusted to this symmetry, and this way we are able to derive

semilassial Boltzmann equations. In this part we omit the ollision term on the right

hand side for simpliity. In the seond part we make use of the disovered symmetry

right from the start and are lead to a quite elegant treatment of the equation. We

relax some of the restritions we plaed in the �rst part and inlude the ollisions.

2.1 Bad basis

First we have to hoose a basis for the Cli�ord algebra. The matries of the basis

should be hermitean in order to obtain real omponent funtions for the Wigner

25
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funtion. We write them as external produts of Pauli matries:
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i


 �
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: (2.2)

The � desribe the spin degree of freedom while the � are onneted to the partile-

antipartile degree of freedom. Sine we know that i

0

G

<

is hermitean, we deompose

the Wigner funtion like

i

0

G

<

(X; k) = �

1

4

�

a


 �

b

g

ab

(X; k) (2.3)

and obtain 16 real omponent funtions g

ab

. In the above expression a summation

over a and b from 0 to 3 is understood and �

0

= �

0

= 1. The basis (2.2) has already

been used in former approahes to quantum transport theory [48, 49℄. It has the

advantage that the omponents g

ab

an be diretly related to the fermioni urrents.

These have the form
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and an be expressed in terms of the Wigner funtion G

<

:
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: (2.6)

When we insert the deomposition (2.3), we �nd for example for the vetor urrent

the expressions
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d
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k
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4
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00

(x; k) ; (2.7)
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d
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k
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4

g

i3

(x; k) : (2.8)

It is not hard to see that g

01

is a salar density, �ig

02

a pseudo-salar density, and

(�g

03

;�g

i0

) build a pseudo-vetor density. The remaining funtions g

i1

and g

i2

are

the omponents of a tensor density (see also appendix A).

We insert the deomposition (2.3) into the equation of motion (2.1) and extrat salar

equations for the g

ab

by multiplying with the matries of the basis and performing
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the trae. Taking real and imaginary parts �nally leads to 2 sets of 16 real, oupled

di�erential equations for the 16 real funtions g

ab

. They are shown in appendix B.

There we already trunated the gradient expansion after the seond order and omitted

the ollision term for simpliity. Sine the mass in the wall frame doesn't depend on

the time nor on x or y, it annot ause any t-, x- or y-dependene of G

<

. If we assume

that the plasma was in thermal equilibrium before the wall passed by, then G

<

an

only depend on z. In essene, by this assumption we forbid any non-stationary and

non-symmetrial initial onditions for the Wigner funtion. In this ase we an drop

all spae-time derivatives in the equations in appendix B, exept of those with respet

to z.

In the lassial limit these equations lead to a usual Boltzmann equation for g

00

, the

zero-omponent of the vetor-density. But we have to go beyond the lassial limit,

sine only then the CP-violating e�ets essential for baryogenesis an be desribed.

Though we put some e�ort to it, we didn't manage to redue the system to only one

kineti equation in this ase.

A way out an be found by going one step bak to the matrix equation (2.1) for G

<

before inserting any deomposition:
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(2.9)

Having a loser look at this equation and the expliit representation of the Cli�ord

algebra (2.2), we observe that all matries appearing in the di�erential operator,

exept of 

1

and 

2

, are blok-diagonal, that is diagonal in the spin part of the diret

produt. If the di�erential operator was ompletely blok-diagonal, the 4� 4 matrix

equation would break into unoupled 2 � 2 matrix equations, whih would simplify

the problem signi�antly. Sine 

1

and 

2

in (2.9) are multiplied by k

x

and k

y

,

respetively, we an get rid of them and ahieve blok-diagonality by performing a

suitable boost in the x-y-plane.

2.1.1 The boost

We onstrut a k-dependent boost �(k) in suh a way, that when ating on the 4-

vetor k it sets the x- and y-omponents to zero without touhing the z-omponent:
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: (2.10)
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We use the notation k

�

= (k

0

;
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~
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x
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y

; k

z

). A general boost transformation

with relative veloity ~v an be written as
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so that in our ase we have to set
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; (2.13)

where

~

k

k

is the projetion of

~

k parallel to the bubble wall. Sine we have to deal with

fermions, we need the representation of this boost in spinor spae. It is given by

L(k) =

k
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~

k

0
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0

~ �

~

k
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k

0

(k

0
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~

k

0

)

; (2.14)

the inverse L

�1

is obtained by reversing the sign of

~

k

k

. Equation (2.10) doesn't

speify the matrix L uniquely, sine we ould append an arbitrary rotation around

the z-axis. But this would ompliate things unneessarily, and if we additionally

demand to have a pure boost, then (2.14) is the only solution. Like every pure boost

operator it is hermitean.

We already stated that we are dealing with a ovariant equation, so we an imme-

diately write it down in the boosted frame. Sine there the x- and y-omponents of

the momentum vanish by onstrution, the unpleasant matries 

1

and 

2

are gone:
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Boosting this equation is not ompletely trivial, beause in general it is not possible

to perform a k-dependent boost of a di�erential equation in the variable k. But in

our ase there is no problem, sine the only momentum derivative is with respet to

k

z

, while the boost matrix depends only on k

0

and

~

k

k

.

After the boost our equation has beome e�etively 1+1 dimensional, beause only

0- and z-omponents have survived. We will therefore in the following refer to the

boosted system as the \1+1 frame" and denote all quantities in this frame by a

tilde. The original system is alled the \3+1 frame". Looking at this equation it

seems like allowing a time dependene would not destroy blok-diagonality, sine
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time derivatives multiply 

0

. Note however that a time dependene in the 3+1 frame

is transformed into a dependene on

~

t, ~x and ~y by the boost, leading again to terms

with 

1

and 

2

. Only very speial dependenes on t, x and y in the 3 + 1 frame lead

to a pure time dependene in the 1+1 frame, so we prefer to restrit ourselves here

to having no suh dependenes at all. We will ome bak to this point in the seond

part of the hapter.

2.1.2 1+1 dimensional treatment

In the 1 + 1 frame the di�erential operator in the equation of motion for the Wigner

funtion is blok-diagonal, or, to be more preise, diagonal in the spin-part of the

basis. It ommutes with

~

S

z

= 

0



3



5

= �

3


 1 ; (2.16)

whih is the operator that measures spin in z-diretion. Physially this means that

the interation with the wall onserves spin in z-diretion.

Again we assume that the plasma was in thermal equilibrium before the phase tran-

sition took plae, so the fermioni partiles were desribed by the equilibrium Green

funtions (1.10)-(1.13). These are diagonal in spin in the 1+1 frame. Sine the in-

teration with the bubble wall indues no spin-mixing, we make an ansatz for the

Wigner funtion whih is also diagonal in spin:

~

G

<

=

X

s

~

G

<s

; (2.17)

i

0

~

G

<s

= �

1

4

(1 + s�

3

)
 �

a

~g

<s

a

: (2.18)

Beause of the hermitiity property (i

0

G

<

)

y

= i

0

G

<

of the Wigner funtion, the

omponents ~g

<s

a

are real funtions. The spin diagonal parts of

~

G

<

orrespond to the

quasilassial phase spae densities of partiles with spin up or down, respetively,

while the o�-diagonal parts desribe quantum e�ets like mixing of or transitions

between states with di�erent spin. We labeled the funtions with the spin quantum

number s aording to

~

G

<s

=

~

P

s

~

G

<

~

P

s

; (2.19)

where the spin projetion operator is de�ned by

~

P

s

=

1

2

(1 + s

~

S

z

) : (2.20)

Of ourse interations with other partiles of the plasma, whih are desribed by

the ollision term, will in general ause spin-mixing and so lead to a Wigner funtion

whih ontains also o�-diagonal parts. For the rest of this setion we just assume that
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these e�ets are negligible and the spin diagonal ansatz for G

<

is suÆiently good.

In the seond part of the hapter we inlude o�-diagonal parts in our treatment.

With this ansatz equation (2.15) has beome ompletely blok-diagonal, so that our

original 4 � 4 matrix equation an trivially be separated into two unoupled 2 � 2

matrix equations for the two di�erent spin states. These equations are obtained by

e�eting the replaements
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! �
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5

! ��

3

(2.21)

in (2.15) after inserting the ansatz, and we �nd

�

1

~

k

0

� is�

2

(k

z

+

i

2

�

z

)� (m

R

� i�

3

m

I

)e

i

2

 �

�

z

��

k

z

�

�

1

�

a

~g

<s

a

= 0 : (2.22)

We extrat salar equations for the real funtions ~g

<s

a

by multiplying with 1 and �

i

,

respetively, and taking the trae.The real and imaginary parts of these equations

provide twie as many equations as independent funtions are present. Hene one

half of the equations must orrespond to onstraints on the solutions of the other half,

whih are kineti equations. The onstraint equations will be essential in order to

derive a semilassial transport equation from the kineti equations as we will see in

the following. The importane of the onstraints was �rst pointed out in the ontext

of kinetis of fermions in [51, 67℄.

Now reall that the mass is a slowly varying funtion of the average oordinate, and

as a onsequene the same is true for the omponents of the Wigner funtion. We

trunate the gradient expansion at seond order, whih is the lowest order at whih

CP-violating e�ets an be disussed onsistently. In our equation this leads to

m e

i

2

 �

�

z

��

k

z

= m+

i

2

m

0

�

k

z

�

1

8

m

00

�

2

k

: (2.23)

We will from now on denote the derivative with respet to z with a prime. Even

with spin-onservation and this trunation we have a problem onsisting of eight

oupled seond order partial di�erential equations, whih we want to redue to a

single equation governing the dynamis of the fermioni two-point funtion. In order

to simplify the notation, we will from now on drop the arguments of the funtions.

Furthermore we will drop the index <, sine we have to deal only with G

<

here.

Constraint equations

We �rst examine the onstraint equations, whih are the real parts of the traes of

(2.22). It will beome evident that it is suÆient to treat them only up to �rst order
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in derivatives, so we �nd:

�

~

k

0

~g

s

0

+ sk

3

~g

s

3

+m

R

~g

s

1

+m

I

~g
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2

= 0 (2.24)

�
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= 0 (2.25)
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s

1

= 0 : (2.27)

We now use the onstraint equations (2.25)-(2.27) iteratively in order to express the

funtions ~g

s

i

in terms of ~g

s

0

:

~

k

0

~g

s

1

=

�
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R

�

s
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(2.28)
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=
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0
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2

�

0

�

k

z

�

~g

s

0

: (2.30)

Note that the derivatives inside the parentheses also at on ~g

s

0

. Then we insert these

expressions for ~g

s

i

into (2.24). It is remarkable that all terms ontaining derivatives

ating on ~g

s

0

anel and we are left with a purely algebrai equation:

�

~

k

2

0

� k

2

z

� jmj

2

+

sjmj

2

�

0

~

k

0

�

~g

s

0

= 0 : (2.31)

This is a very important result, sine it shows that we an, to this order in gradients,

work on-shell and have a piture of quasi-partiles with an energy that is shifted

by the interation with the CP-violating bubble wall. Equation (2.31) gives the

physial dispersion relation for partiles and antipartiles of a given spin s. Due to

the derivative orretions the spin degeneray is lifted at �rst order in gradients, so

that the varying bakground �eld leads to di�erent aelerations for partiles with

di�erent spin, as we will see below. Hoiwever note that this on-shell ondition is only

present up to �rst order in gradients. Although even at higher orders we still an

desribe the system by a single independent funtion (to be preise, two independent

funtions, beause of the two possible spin diretions), already at seond order the

onstraint equation for this funtion will ontain derivatives that don't allow an on-

shell treatment.

Kineti equations

The so far unused equations are kineti equations. We will restrit our disussion

here to the one obtained by taking the imaginary party of the trae of (2.22), the
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meaning of the other equations will be disussed in the seond part of the hapter.

This equation,

s�

z

~g

s

3

�m

0

R

�

k

z

~g

s

1

�m

0

I

�

k

z

~g

s

2

= 0 ; (2.32)

is orret up to seond order in gradients. We again use the onstraint equations to

express ~g

s

i

in terms of ~g

s

0

, where it is suÆient to have the relations orret up to �rst

order in gradients sine all the terms in (2.32) are already of �rst order. We obtain

the following kineti equation for ~g

s

0

:

k

z

�

z

~g

s

0

�

�

1

2

jmj

2

0

�

s

2

~

k

0

(jmj

2

�

0

)

0

�

�

k

z

~g

s

0

= 0 : (2.33)

In addition to this equation, the funtion ~g

s

0

has to satisfy the onstraint equation

(2.31) that fores it to be on-shell. Here we see expliitely that the fore ating on

a partile is spin-dependent and hene CP-violating. It is this very fore that leads

to the CP-violating density utuations whih �nally are transformed into a baryon

asymmetry by the sphaleron transition.

Now we have managed, in the 1+1 frame, to simplify the problem signi�antly. In-

stead of dealing with a omplex 4�4 matrix equation we were able to redue the

system to two real funtions ~g

s

0

, for whih we have simple on-shell onditions and

kineti equations. Our next task is to make a onnetion with the initial, 3+1 di-

mensional problem.

2.1.3 Bak to 3+1

The essential feature of the 1+1 treatment is the fat that the spin in z-diretion

is onserved, allowing us to deouple the equations. We an onstrut a onserved

quantity in the 3+1 frame by just boosting the spin operator

~

S

z

from the 1+1 frame

bak to the 3+1 frame:

S

z

(k) = L

�1

(k)

~

S

z

L(k)

=

k

0

~

k

0
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� i
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1

~

k

0



0



2

+ i

k

2

~

k

0



0



1

: (2.34)

If

~

S

z

ommutes with the di�erential operator of the equation in the 1+1 frame, then

the boosted version S

z

obviously ommutes with the di�erential operator in the 3+1

frame and therefore it is a onserved quantity. For simpliity we will ontinue to refer

to this quantity, whih now depends on the momentum, just as spin. The boosted

Wigner funtion

G

s

(k) = L

�1

(k)

~

G

s

(k)L(k) (2.35)

is of ourse not an expliitely blok-diagonal matrix anymore, but is still diagonal in

spin,

P

s

(k)G

s

(k)P

s

(k) = G

s

(k) ; (2.36)
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where the projetion operator is P

s

(k) = 1=2(1 + sS

z

(k)). We make a general de-

omposition of the spin diagonal parts G

s

of the Wigner funtion in the basis (2.2):

i

0

G

s

= �

1

4

�

a


 �

b

g

s

ab

: (2.37)

All we have to do now is to �nd the transformation relations between the omponent

funtions g

s

ab

in the 3+1 frame and ~g

s

a

in the 1+1 frame. Then we an just boost the

kineti and onstraint equations (2.33) and (2.31) bak to the 3+1 system. Further-

more we will be able to express all the funtions g

s

ab

in terms of just two independent

funtions - one for eah spin diretion - by boosting the orresponding relations from

the 1+1 frame.

The straightforward way to �nd the relations between the omponent funtions in

the two frames is just to use the transformation rule (2.35) and insert the deom-

positions of the Wigner funtions in the 1+1 and 3+1 frame as well as the expliit

form of he boost operator (2.14). A more elegant method is to onsider the fermioni

urrents (2.6) expressed in terms of the omponent funtions. Sine the behavior of

the urrents under Lorentz transformations is known we an quite easily dedue the

transformation properties of the omponent funtions. To this end we make a general

deomposition like (2.37) in the 1+1 frame,

i

0

~

G

s

= �

1

4

�
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b

~g

s

ab

; (2.38)

and by omparison with (2.18) we immediately see that

~g

s

0a

= s~g

s

3a

= ~g

s

a

; ~g

s

1;2a

= 0: (2.39)

We already have identi�ed the ombination (g

s

00

; g

s

i3

) as the four-vetor urrent density

(2.7),(2.8), and sine the integral measure d

4

k is invariant we an simply read o� the

transformation relation
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; (2.40)

where ~v is the boost veloity (2.13) and  = k

0

=

~

k

0

is the boost fator. This way we

proeed for all the funtions and obtain

g

s

ab

=

0

B

B

�

~g

s

0

~g

s

1

~g

s

2

~g

s

3

v

x

~g

s

3

v

y

s~g

s

2

�v

y

s~g

s

1

v

x

~g

s

0

v

y

~g

s

3

�v

x

s~g

s

2

v

x

s~g

s

1

v

y

~g

s

0

s~g

s

0

s~g

s

1

s~g

s

2

s~g

s

3

1

C

C

A

: (2.41)

Now it is a simple task to obtain the kineti and onstraint equation for g

s

00

from

those of ~g

s

0

(2.33, 2.31). We �nally �nd
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and

�
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� jmj
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sjmj

2

�
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2k
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�

g

s

00

= 0 : (2.43)

This is almost what one naively would have guessed if asked to extend the 1+1

results to the 3+1 frame. The one remarkable point is the boost enhanement of the

CP-violating terms by the fator .

The algebrai onstraint equation that we have found here again implies that the

plasma an be treated as a olletion of quasipartiles and therefore a WKB approah

should be possible. Indeed, when the kineti momentum is used to desribe the

partiles, the orret results are found [40℄. The WKB treatments, however, missed

the boost fator  multiplying the soure term. There is a further, basi di�erene

to our results: the authors of the works using the WKB method assumed that the

heliity of the partiles is a onserved quantity, and onsequently the energy shift as

well as the fore term found by them are heliity dependent. We have shown that

in fat the spin is onserved, leading to spin dependent energy and fore. This has

important onsequenes as we will see in hapter 4.

2.2 Good basis

In this setion we give a more formal approah to the problem and now inlude

ollisions. The equation to examine is

D(X; k)G(X; k) = C

 

(X; k) ; (2.44)

where we introdued an abbreviation for the di�erential operator

D(X; k) = k

Æ
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I
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�

z

��

k

z

: (2.45)

C

 

denotes the ollision term, whih will be studied later in detail. In this setion we

still omit the index < for the sake of notational simpliity.

The main point of the previous setion is that we found a symmetry of the system

under study: the di�erential operator ommutes with the spin operator S

z

, so the

spin is onserved by the interation with the bubble wall. In this setion we exploit

this symmetry right from the start in order to treat our problem in a more elegant

way, inluding the ollision term and avoiding the assumption that the Green funtion

is diagonal in spin.

In the last setion we assumed that the system is stationary and symmetri in the

x-y-plane, so that the Green funtion only depends on the z-oordinate. This was

suggested by the fat that the mass only had a z-dependene, too. Here we don't

want to make any a priori assumptions on the dependenes of G, but instead just
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hek under whih onditions the symmetry of the problem is maintained. So we take

the full di�erential operator (2.45), inluding t-, x- and y-derivatives, and ompute

the ommutator with the spin operator:

[D; S

z

(k)℄ =

i

2

�
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(2.46)
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:

Sine we know from the previous setion that the ommutator vanishes in the sta-

tionary, x-y-symmetri ase we only have to keep that part of D whih ontains the

time and the x- and y-derivatives. This ommutator will be zero if we impose the

ondition

~

�

k

= �

~

k

k

k

0

�

t

; (2.47)

where this is understood as ating on G. It may be that there is a less restritive form

of the dependene of G on t, x and y if one takes into aount the matrix struture

of (2.46) and of the Wigner funtion, but here we will be ontent with this. It just

means that G an have a dependene on time and the parallel oordinates of the form

G(t; ~x

k

; z; k) = G(t� ~v � ~x

k

; z; k) (2.48)

So we an treat time dependent problems, whih an be used to study how the system

relaxes from some initial onditions to the stationary state, admittedly only for quite

speial forms of the initial ondition. Another possibility would be not to demand

stationarity and x-y-symmetry, but instead

�
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G = 0 : (2.49)

In this ase, however, we have two ompletely independent equations. The time-

evolution doesn't a�et the z-dependene of our problem and therefore is not inter-

esting for us.

We make use of the symmetry of the problem by hoosing a new basis for the Cli�ord

algebra whih has a simple behavior under the multipliation with the spin projetion

operator P

s

(k). The basis (2.2) we used in the last setion ertainly doesn't satisfy

this requirement. It is not diÆult to onstrut 8 matries whih ommute with the

projetor, they are

P

s

(k)B where s = �1 ; B 2 f1;�i
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5

g : (2.50)

But whih is the best hoie for the rest of the basis? Let us go bak to the 1+1

frame, where the spin operator is simply

~

S

z

= 
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3



5
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3


 1 : (2.51)
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When one now remembers quantum mehanis, there are two operators whih are

\orthogonal" to the spin operator �

z

, namely the spin-ip operators �

�
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1

2
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�i�

y

).

In our ase they orrespond to the matries
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whih in the 3+1 frame take the form
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By showing the orresponding relations in the 1+1 frame and then boosting to the

3+1 frame it is not hard to �nd that P

s

(k) and Q

s

(k) satisfy the relations
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whih is exatly the behavior we expet from a projetor and an operator that ips

spin from �s to s. So Q

s

has indeed a nie behavior under multipliation with P

s

,

and that's why we hoose the rest of our basis to be

Q

s

(k)B where s = �1 ; B 2 f1;�i
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5
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3
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g : (2.55)

It remains to show that the 16 matries P

s

B and Q

s

B really set up a basis by proving

that they are not linearly dependent. Sine B is invariant under the boost it suÆes

to show the linear independene of

~

P

s

B ;

~

Q

s

B : (2.56)

When one writes down these matries expliitly, the matries of the old basis (2.2)

appear, from whih we know that they are independent.

Let us add a mathematial remark. The way we set up our basis makes the Cli�ord

algebra a graded algebra. We have two disjuntive subsets of the Cli�ord algebra,

the \ommuting" subset spanned by P

s

B and the \non-ommuting" one spanned

by Q

s

B. Using the multipliation rules (2.54) and the fat that the matries B

either ommute or antiommute with Q

s

, it is easy to hek that the produt of
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two elements of the ommuting subset as well as the produt of two elements of the

non-ommuting subset are elements of the ommuting subset, while the produt of

an element of the ommuting with an element of the non-ommuting subset falls into

the non-ommuting subset.

Now we use our new basis to onstrut a deomposition of the Green funtion that

is ustom-made to exploit the symmetry of the system:

G(k) =

X

s

�

G

s;s

+G

s;�s

�

(2.57)

G

s;s

= iP

s

(k)

�

s

3



5

g

s

0

� s

3

g

s

3

+ 1g

s

1

� i

5

g

s

2

�

(2.58)

G

s;�s

= iQ

s

(k)

�

s

3



5

g

s

4

� s

3

g

s

7

+ 1g

s

5

� i

5

g

s

6

�

: (2.59)

The �rst, spin diagonal part desribes partiles propagating with a de�nite spin.

Restrited to the 1+1 frame it just redues to the one we used in the �rst part of

this hapter (2.18), exept of a di�erent normalization. The seond, non-diagonal

part desribes the transition from one spin state to the other. This is the part we

negleted in the �rst setion. The deomposition is onstruted in order to satisfy

P

s

(k)G(k)P

s

0

(k) = G

s;s

0

(k) : (2.60)

The hermitiity ondition (1.52) for the Green funtion and the relations

P

y

s

(k)

0

= 

0

P

s

(k) (2.61)

Q

y

s

(k)

0

= 

0

Q

�s

(k) (2.62)

allow us to dedue that the funtions g

s

a

are real for a = 0; 1; 2; 3, while the omponent

funtions of the non-diagonal part obey

g

s

a

�

= g

�s

a

; a = 4; 5; 6; 7 : (2.63)

In order to obtain real, s-independent funtions, we an de�ne

g

s

a

= g

a

+ ish

a

; a = 4; 5; 6; 7 : (2.64)

Altogether we have 16 independent, real omponent funtions, as it has to be.

The next task is to extrat salar equations for the omponent funtions from the

matrix equation of motion (2.44). This is done by multiplying this equation from the

left with the matries of the basis (2.50), (2.55) and then taking the trae. Here we

get paid for the e�ort of onstruting the new basis, beause the equations deouple

on the left hand side. When taking the traes with the matries P

s

B, only the

spin-diagonal parts survive,

TrP

s

(k)BD(x; k)G(x; k) = TrBD(x; k)G

s;s

(x; k) ; (2.65)
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while the traes with Q

s

B lead to equations for the spin o�-diagonal parts:

TrQ

s

(k)BD(x; k)G(x; k)

= TrP

s

(k)Q

s

(k)P

�s

(k)BD(x; k)G(x; k)

= TrQ

s

(k)BD(x; k)G

�s;s

(x; k) : (2.66)

This allows us to study the inuene of the wall on the di�erent parts of G separately,

whih is a signi�ant simpli�ation, as we have seen in the previous setion. Instead

of a set of 16 oupled equations (see appendix B) we get two sets of 4 equations for

the spin diagonal parts and one set of 8 equations for the o�-diagonal parts. The

latter don't deouple further beause in G

s;�s

both the g

a

and the h

a

our. The

impossibility to deouple the two o�-diagonal parts also makes sense physially, sine

the proess of ipping the spin from + to � should not be independent from the

reversed proess.

Of ourse the di�erent sets of equations are oupled by the ollision term, beause

partile reations mix spin, in general. But the propagating states are de�ned by the

quadrati part of the Lagrangian, and the basis we use reets the symmetry of this

term.

2.2.1 Spin-diagonal equations

The equations with the spin diagonal part on the left hand side are alled spin diagonal

equations. Taking the trae of the equation of motion (2.44) for the Wigner funtion

after multiplying with P

s

B leads to

2i

^

k

0

g

s

0

� 2im̂

R

g

s

1

� 2im̂

I

g

s

2

� 2is

^

k

3

g

s

3

= TrP

s

(k)1C

 

(2.67)
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I

g

s

3
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^
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3
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= TrP
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(2.68)
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(2.69)
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1

� 2is

^

k

3

g

s

0

= TrP
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(k)

�

�

5

�

C

 

; (2.70)

where we used the shorthand notations

^

k

0

=

~

k

0

+

i

2

k

0

�

t

+ k

x

�

x

+ k

y

�

y

~

k

0

;

^

k

z

= k

z

�

i

2

�

z

; (2.71)

and m̂ = m e

i

2

 �

�

z

��

k

z

. One always has to keep in mind that the dependene of the

Wigner funtion on time and the parallel oordinates is restrited by (2.47). Sine

the funtions g

s

a

are real, we simply an take the real and imaginary part. The real
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parts are the kineti equations
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(2.72)
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(2.75)

and the imaginary parts are the onstraint equations:
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�

~

k

0

g

s

1

�

1

2

s�

z

g

s

2

+ (m

R

�

1

8

m

00

R

�

2

k

z

)g

s

0

�

1

2

m

0

I

�

k

z

g

s

3

= C

s

1

(2.77)

�

~

k

0

g

s

2

+

1

2

s�

z

g

s

1

+ (m

I

�

1

8

m

00

I

�

2

k

z

)g

s

0

+

1

2

m

0

R

�

k

z

g

s

3

= C

s

2

(2.78)

�

~

k

0

g

s

3

+ sk

z

g

s

0

+

1

2

m

0

I

�

k

z

g

s

1

�

1

2

m

0

R

�

k

z

g

s

2

= C
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: (2.79)

We introdued the following abbreviations for the traes of the ollision term:

K

s

0

= �

1

2

<Tr1P

s

C

 

(2.80)

K

s

1

= �

1

2

<Tr 

3



5

P

s

C

 

(2.81)

K

s

2

= �

1

2

<Tr (�i

3

)P

s

C

 

(2.82)

K

s

3

= �

1

2

<Tr (�

5

)P

s

C

 

: (2.83)

The C

s

a

are de�ned analogously, just with the real part replaed by imaginary part.

All these ollisional ontributions are at least of �rst order in gradients, sine at

zeroth order the ollision term vanishes as a onsequene of the KMS relation, as we

will see later.

From here on we proeed like in the 1+1 ase, just that the equations are a bit more

ompliated and we have a ollision term. Iterative use of the onstraint equations

(2.77)-(2.79) allows us to express g

s

i=1;2;3

in terms of g

s

0

. For the onsisteny of the

system it is important to keep the seond order terms and the ollisional ontributions
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here. We �nd
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:

Note that all the derivatives inside the parentheses also at on g

s

0

. The left hand side

of the equation of motion for G

>

is the same as the one for G

<

, so, exept of di�erent

ollisional parts, these equations hold for the omponent funtions of G

>

, too. We

insert these expressions into the so far unused onstraint equation (2.76) and obtain

to �rst order in gradients
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�

: (2.87)

Exept of the ollisional ontribution this is of ourse the same dispersion relation as

found earlier (2.43). If we insert the relations (2.84)-(2.86) for g

s

i

into equation (2.72)

and onsistently keep all terms up to seond order in gradients, we obtain a kineti

equation for g

s

0

alone:
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z
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0

�

= K
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: (2.88)

In ontrast to the onstraint equation (2.87) we don't get ollisional ontributions

from the g

s

i

here, sine the orresponding terms in (2.72) are already of �rst order in

gradients.

Up to now we have used all onstraint equations, but only one of the kineti equa-

tions. If our treatment is onsistent, then the remaining kineti equations have to

be equivalent to (2.88). This is indeed the ase, even if at �rst sight after inserting

(2.84)-(2.86) into (2.73)-(2.75) the equations look quite di�erent. The expliit proof

of the equivalene is given in appendix C.
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The funtion g

s

0

plays a speial role. We annot hoose another funtion as basi fun-

tion, beause this would lead to singularities in the relations between the funtions

and in the kineti equation.

2.2.2 Spin o�-diagonal equations

In this subsetion we examine the equations for those parts of the Wigner funtion

whih are o�-diagonal in spin. We multiply the matrix equation (2.44) by the matries

Q

s

B, perform the trae and take real and imaginary parts. Sine the omponent

funtions g

s

a

, a = 4; 5; 6; 7 of the o�-diagonal part are not real, the resulting equations

ontain ombinations of the form g

a

� ish

a

. We get rid of these ombinations by

�nally summing or subtrating the equations for s = �1, respetively. This yields

4 kineti and 4 onstraint equations for the funtions g

a

, and the same for h

a

. As

already mentioned above, it is not possible to deouple the equations for the g

a

from

those for the h

a

. The full set of equations is listed in appendix D. When we talk

about o�-diagonal funtions or equations in this setion, then o�-diagonal refers to

spin and not to the mixing of di�erent speies of fermions as in the next setion.

The strategy for the treatment of these equations is the same as for the diagonal ones:

we try to redue the number of independent funtions by the use of the onstraint

equations and then derive kineti and onstraint equations for the remaining fun-

tions. The whole omputation has to be performed onsistently up to �rst order in ~.

As we already have stated, the o�-diagonal elements of the Wigner funtion desribe

the transition between di�erent spin states and therfore are quantum e�ets. Conse-

quently these o�-diagonal elements are suppressed by one order of ~ when ompared

to the diagonal ones. Furthermore, by onstrution spin-mixing ours only in the

ollision term, so the o�-diagonal part is expeted to be additionally suppressed by

one order of the oupling onstant with respet to the diagonal part. We an see this

also expliitely in the equations: in thermal equilibrium the o�-diagonal elements are

zero, as an be seen for example by taking the o�-diagonal projetions of the equilib-

rium Wigner funtion (1.12): P

s

G

<

eq

P

�s

= 0. The o�-diagonal funtions are soured

exlusively by the diagonal ones via the ollision term, whih is at least of �rst order

in gradients, as we will see in the next hapter. In order to obtain a treatment whih

is onsistent up to order ~ we an therefore work with equations that ontain one

order of gradients less than the orresponding ones for the diagonal funtions.

The detailed omputation is also given in the appendix D. Here we only want to state

the results. It turns out that also in the o�-diagonal part everything an be redued

to two basi funtions. In ontrast to the diagonal part, however, where g

s

0

plays a

speial role, we have the hoie to either use g

5

; h

5

or g

6

; h

6

. We deided to hoose

g

5

; h

5

. The funtions g

4

; h

4

and g

6

; h

6

are of the same order, while the funtions g

7

; h

7
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are suppressed by one order of gradients. We �nd the following kineti equation,
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; (2.89)

whih is orret up to �rst order in gradients. The orresponding equation for h

5

is

obtained by exhanging g and h and reversing the sign of m

R

. In addition to the

usual lassial ow term we here have a term that ouples the equations for g

5

and

h

5

to eah other. The onstraint equation is, exept of the ollisional ontribution,

just the usual lassial on-shell ondition:
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I

~

k

0

C
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) : (2.90)

The onstraint equation for h

5

is obtained by exhanging g and h and replaing k

z

by �k

z

.

2.3 Mixing fermions

Before we turn our attention to the ollision terms, we extend our analysis to the

ase of N fermioni speies whih are oupled by a mass matrix. This kind of system

is present in the quark mixing in the standard model or in SUSY models, where the

oupling to the Higgs �eld gives rise to suh a mass matrix. We restrit our disussion

to the spin diagonal part of the Wigner funtion.

The avor degree of freedom is denoted by an additional index i to the spinor  

�;i

(x),

and the Green funtion beomes a matrix in the produt spae of spinor and avor

spae:

G

<

��;ij

(x; y) = i




�

 

�;j

(y) 

�;i

(x)

�

; (2.91)

for whih the hermitiity property (1.52)

�

i

0

G

<

(x; y)

�

y

= i

0

G

<

(y; x) (2.92)

still holds, where the hermitean onjugate now has to be taken in both spinor and

avor spae. The Lagrangian for suh a system is formally the same as in the non-

mixing ase

L = i

�

 �

Æ

 �

�

 

L

M 

R

�

�

 

R

M

y

 

L

+ L

int

; (2.93)
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but here the massM is a omplex N�N matrix, whose nondiagonal elements ouple

�elds of di�erent avor, and whih in general is non hermitean. Its omponents are

z-dependent, due to the varying Higgs vauum expetation value. The interation

part of the Lagrangian is

L

int

= ��

l

�

 

L

y

l

 

R

+ h.. ; (2.94)

where y

l

is a matrix in avor spae and the index l denotes the di�erent salar

partiles. We an rewrite the mass term
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 (2.95)
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1
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I
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 ; (2.96)

where we introdued the hermitean and anti-hermitean part of the mass matrix,

respetively,
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(M +M

y

) ; M

I

=

1

2i

(M �M

y

) : (2.97)

Here 
 denotes the external produt of a matrix in spinor spae with one in avor

spae. Similarly we an rewrite the interation part
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The derivation of the equation of motion for the Green funtion works as in the one

�eld ase, exept of additional indies denoting the avor. We �nd
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: (2.99)

Like in the treatment of the salar equation we diagonalize the mass. As we already

have mentioned, M in general is not hermitean, so the diagonalization this time has

to be done by a biunitary transformation:

M

d

= UMV

y

: (2.100)

The unitary matries U and V diagonalize the hermitean matries MM

y

and M

y

M ,

respetively. The diagonalization of the avor part of the omplete mass matrix is

done by

P

R


M + P

L


M

y

=M = X

y

M

d

Y ; (2.101)

where the unitary rotation matries in the full spae are

X = P

L


 V + P

R


 U ; Y = P

L


 U + P

R


 V : (2.102)

The rotated Green funtion, whih is not diagonal, is de�ned by

G

d

= YGX

y

: (2.103)
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Note that the omponent funtions g

s

a;d

of the rotated Green funtion G

s

d

, whih are

de�ned analogously to (2.58), are not just the avor rotated omponents of G. This

is a onsequene of the fat that beause of the axial ontribution to the mass the

omplete mass term M

R

+ i

5

M

I

annot be written as a diret produt of spinor

times avor. The diagonalization of the mass then introdues a mixing of the two

strutures. We expet that the funtions multiplying 

3



5

and 

3

mix with eah

other, as well as those multiplying 1 and 

5

. Indeed, inserting (2.58) into (2.103)

leads to the following relations:
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(2.104)
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� g
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(2.105)
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Now we apply the diagonalization to the equation of motion (2.99). We replae G by

Y

y

G

d

X and multiply the equation from the left with X and from the right with X

y

:
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: (2.108)

We projet this equation into avor spae by taking the spinorial traes as we did

in setion 2.2.1. The result is very similar to (2.67)-(2.70), but ontains some extra

terms, whih are due to the fat that the derivatives of the di�erential operator also

at on the rotation matries:
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Here we used again the shorthand notations (2.71) and de�ned
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The hoie of the rotation matries U and V is not unique. After a z-dependent phase

rede�nition U ! wU and V ! wV , where w is a diagonal matrix with eigenvalues of

absolute value 1, U and V still diagonalizeM . This freedom to rede�ne the rotation

matries was the soure of some problems in �nding the orret physial soure in the

WKB approah. We will �nd, however, that in the end only the diagonal elements

of �

z

are of relevane, whih are invariant under this reparametrization. The mass

terms in the equations are:
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Note that these masses are diagonal only in the leading order.

Like in the salar ase the onstraint and kineti equations are obtained by taking

the hermitean and antihermitean parts of the equations (2.109)-(2.112), respetively.

We are again only interested in the diagonal equations, desribing the behavior of

the quasilassial partile densities. Therefore we an neglet all ommutator terms

appearing in these equations, the detailed argument for this is given in the treatment

of the mixing salar partiles in setion 1.5. The onstraint equations orret up to

�rst order in gradients are given by
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All the mass matries here and in the following are the diagonalized ones, we omit

the index d for simpliity. We know already from the non-mixing ase that the

ollisional ontributions to the onstraint equations are irrelevant for the derivation

of the dispersion relation and kineti equation for g

s

0;d

, so we just set them to zero

here. We use equations (2.118)-(2.120) iteratively in order to express the funtions

g

s

i;d

in terms of g

s

0;d

onsistently up to �rst order in gradients. The result is
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We insert these relations into the �rst onstraint equation and use the de�nition
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From the non-mixing ase we furthermore know that it is suÆient to work only with

the �rst kineti equation, whih is the hermitean part of (2.109). Inserting relations

(2.121)-(2.123) leads �nally to the kineti equation
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The diagonal elements of jM j

2

d

are just the eigenvalues of M

y

M . Let us �nally note

that for the diagonal elements we an rewrite
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whih will be onvenient in the following.

2.3.1 MSSM

Now that we have a general expression for the semilassial soure in the ase of

mixing fermions, we want to study two expliit examples, whih are of relevane for

baryogenesis. First we ompute the soure in the transport equations for the hargino

setor of the MSSM. The hargino mass term reads
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where H

1

and H

2

are the Higgs �eld vauum expetation values and � and m

2

are the

soft supersymmetry breaking parameters, whih introdue CP-violation

1

. Sine for a

reasonable hoie of parameters there is no transitional CP-violation in the MSSM,

that is CP-violation that only ours during the phase transition, we an take the

Higgs expetation values H

1

and H

2

to be real [41, 42℄. The matrix that diagonalizes

MM

y

an be parameterized as [40℄
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; (2.129)

1

We keep the possibility of omplex Higgs vev's, beause we will reuse the formulas in the NMSSM

ase.
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where
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and h

i

= jH

i

j. The mass eigenvalues of the harginos are given by
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Upon inserting (2.128) and (2.129),(2.130) into (2.126) it is straightforward to show

that the soure term for the harginos an be reast as
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This result agrees with the one found in [40℄. In [37℄, however, a di�erent dependene

on the Higgs �elds was obtained.

2.3.2 NMSSM

In the NMSSM there is an additional singlet �eld S in the Higgs setor. One on-

sequene of this extension is the possibility to have spontaneous transitional CP-

violation, so we an no longer assume the Higgs vauum expetation values to be

real. The singlet ouples to higgsinos, and therefore we obtain the mass matrix by

generalizing the higgsino-higgsino omponent of the hargino mass matrix (2.128)

�! ~� = �+ �S ; (2.133)

where � is the oupling for the higgsino-higgsino-singlet interation. The �eld ontent

we will onsider is the same as in the MSSM, so the mass matrix is

M =
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: (2.134)

This matrix is still diagonalized by U . We write the Higgs expetation values as

H
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= h

i

e
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i

; i = 1; 2 ; (2.135)

where only one phase is physial. With the gauge onstraint [68℄
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we an write
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where � = �

1

+ �

2

is the physial CP-violating phase. Now everything is prepared

to write the NMSSM-soure term. It an be divided into three ontributions, whih

have to be added. The �rst one is a generalization of the hargino soure (2.132)
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for the ase involving a new salar �eld S and omplex higgs expetation values. In

addition to this there are two new types of soures. One of them is proportional to

a derivative of the CP-violating phase � in the Higgs setor:
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Finally there is a soure that an be written as a derivative of the singlet ondensate:
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The mass eigenvalues m

�

, that is the diagonal elements of jM j

2

d

, an be obtained

from the orresponding expression (2.131) in the MSSM part with the replaement

�! ~�.



3. Collision term

In the previous part of the work we investigated the interation of the partiles in

the plasma with the bubble wall, that is the diret inuene of a spatially varying

mass on the Wigner funtions. This hapter is devoted to a detailed study of the

interations of the di�erent partile speies with eah other, in our model this is the

Yukawa oupling between the fermions and the salars [69℄.

In hapter 1 we derived the equations of motion for bosoni and fermioni Green

funtions. In the Wigner representation the equation for bosons, for example, is

given by
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2
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; (3.1)

where the last term is the ollision term, whih we denoted by C

�

in the previous

hapters. We already stated that we neglet the term e

�i�

f�

R

g f�

<

g, the self energy

orretion to the mass. We expet that it an be treated in a similar manner as the

ollision term here. The other term, e

�i�

f�

<

g f�

R

g, is more dangerous, beause it

essentially leads to a broadening of the spetrum and therefore to a breakdown of the

quasipartile piture. There are indiations that in the equation for salars this term

has only ontributions to the onstraint equation and therefore an be negleted. We

just assume that this is orret and also true for the fermioni equation and neglet

these terms in our treatment. We furthermore assume that the Yukawa oupling is

small, so that the dominant e�et is the interation with the wall. In this ase it

is justi�ed to trunate the gradient expansion in the ollision term already after the

�rst order, sine we have an additional suppression by the oupling onstant.

When we expand the exponentiated diamond operator (1.56) in the ollision term, we

obtain two ontributions, in the following referred to as zeroth and �rst order ollision

term, respetively (although the \zeroth order" ontribution in fat is of �rst order

in gradients, too, as we will see):
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: (3.2)
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First we point out that any ontribution of the ollision term is of �rst order in gra-

dients, a fat that we already used several times. This is obvious for C

(1)

�

. In the ase

of C

(0)

�

we note that this term vanishes if we insert the leading order Wigner funtions

of our problem. These leading order Wigner funtions are simply the equilibrium

expressions (1.15)-(1.18) with a varying mass. We will denote them in the following

with �

eq

, although they are not really Green funtions in thermal equilibrium. It

is not hard to hek that they are the solution of our equations of motion to zeroth

order in gradients. The fat that C

(0)

�

vanishes is a well known onsequene of the

KMS relation (1.20), whih also holds for the leading order Wigner funtions, and

an be seen as follows: the self energy � onsists of produts of salar and an even

number of fermioni Wigner funtions. At leading order we an use the KMS relation

in order to reverse the diretions of the greater and less symbols in eah of the Wigner

funtions, but we get additional exponential fators. Sine we have momentum on-

servation in the self energy, all these exponential fators an be ombined to a single

one ontaining the momentum of the self energy:
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(k) : (3.3)

That is, at leading order the self energy itself satis�es the KMS relation. We will see

this in detail below. Note that we still work in the wall frame. Sine the plasma is

at rest in the plasma frame, the exponential fator in the KMS relation ontains the

momentum

�

k

0

, see appendix E. But now we an use the KMS relation for �

>

and

�

<

in the �rst term of C

(0)

�

:

C

(0)

�;eq

=

1

2

�

�

>

eq

(k)�

<

eq

(k)� �

<

eq

(k)�

>

eq

(k)

�

(3.4)
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�
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(k)e

��

�

k

0

�

>

eq

(k)� �

<

eq

(k)�

>

eq

(k)

�

= 0 : (3.5)

Indeed the zeroth order ollision term vanishes at leading order in gradients. In

thermal equilibrium the whole ollision term has to vanish, this is part of the de�nition

of thermal equilibrium. Beause of the varying mass, however, the �rst order ollision

term is not zero when the leading order Wigner funtions are inserted, whih makes

lear that they are not really equilibrium funtions. Everything we said here holds

as well in the fermioni ase, of ourse.

The full salar Green funtion deviates from the leading order expression,

�

<;>

(k) = �

<;>

eq

(k) + Æ�

<;>

(k) ; (3.6)

whih is learly a onsequene of the interation with the wall, and therefore the

orretion Æ� is at least of �rst order in gradients. The full fermioni Wigner funtion

di�ers in two ways from the leading order expressions (1.12) and (1.13). First, there
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are derivative orretions in the equations (2.84)-(2.86) whih relate the omponents

g

s

i

with g

s

0

for i = 1; 2; 3. Seond, the funtion g

s

0

itself ontains a orretion to its

leading order value

g

<;>s

0

(X; k) = g

<;>

eq

(X; k) + Æg

<;>s

(X; k) (3.7)

like in the salar ase, and the omponents of the spin o�-diagonal part are �rst order

anyway, as we argued in 2.2.2. Only terms that ontain one of these orretions will

survive in the ollision term, and therefore it is �rst order, as laimed above.

The omputation of the zeroth order ollision term will be done as follows: �rst we

write down an \extended version" of the KMS relation for the full Green funtion,

whih will be the standard KMS relation plus orretions due to the above mentioned

deviations from the leading order expressions:

�

>

(k) = e

�

�

k

0

�

<

(k) + orretions (3.8)

and likewise for the fermioniG. Then we use these relations for the Wigner funtions

in the �rst term of C

(0)

. The unorreted part will anel against the seond term,

and we are left with the �rst order ontributions. In the salar ase the \extended

KMS" is quite simple:

�

>

(k) = �

>

eq

(k) + Æ�

>
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= e
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(k)

�

: (3.9)

The fermioni ase is slightly more ompliated, sine we have two soures for or-

retions. We will only look at the spin diagonal part, as stated above. The funtions

whih appear in the deomposition

G

<s;s

= iP

s

(k)

�

s

3



5

g

<s

0

� s

3

g

<s

3

+ 1g

<s

1

� i

5

g

<s

2

�

(3.10)

an all be related to g

<s

0

by

g

<s

i

= (

s

i

+ d

s

i

)g

<s

0

; i = 1; 2; 3 ; (3.11)

where 

i

are numbers and d

i

are �rst order derivatives, they an be read o� from

equations (2.84)-(2.86). For funtions g

<s

i

that appear in the ollision term we neglet

the ollisional ontributions C

i

to these relations, beause they would lead to terms

whih are seond order in the oupling onstant and therefore an be negleted in

our approximation.
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For the basi funtion g

s

0

we use the deomposition (3.7), where the leading order

part satis�es the KMS relation, so when we relate g

>s

i

to g

<s

i

we have

g
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i

= (
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+ d
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)(�e

��
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+ e

��

�

k

0
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>s

0

�

; (3.12)

where we negleted terms of the form d

i

Æg, beause they are seond order. The

orretions in the seond term arise when the derivatives in the relations between the

g

i

and the g

0

at on the exponential fator from the KMS relation. If we insert this

into (3.10) we obtain

G

<s;s

= �e

��

�

k

0

G

>s;s

(3.13)

+iP
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� s
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3

+ 1

s

1

� i
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s

2

�

�

Æg

s<

0

+ e

��

�

k

0

Æg

s>

0

�

:

The �rst term here is the usual KMS-part. The seond one desribes the �rst order

orretions beause of the nontrivial relation between g

s

i

and g

s

0

, and the last one is

due to �rst order orretions within g

s

0

.

When we use the relations (3.9) and (3.13) in the alulation of the ollision term we

�nd two di�erent e�ets. The terms that ontain Æ� or Æg are the usual gain and

loss terms that lead to relaxation if the system is out of equilibrium. The other terms

are present even if we set the deviations to zero, so they are soure terms whih may

be CP-violating. They are alled spontaneous baryogenesis soures [30℄.

One ould raise the question if it is possible to hoose the funtions Æ� and Æg in suh

a way that the usual KMS relation holds also for �

<;>

in (3.6) and G

<;>

in (3.7). It is

no problem to �nd a suitable Æ� that would make the orretion in (3.9) vanish, for

the funtion Æg this is not possible, however. The reason is that the matrix struture of

the fermioni Wigner funtion ditated by the onstraint equations is not ompatible

with the KMS relation. This beomes immediately lear from equation (3.13): the

matries P

s

, P

s



3

, P

s



5

and P

s



3



5

are linearly independent, so the freedom to hoose

the salar funtions Æg

<

and Æg

>

is not enough to make the orretion terms anel

eah other. If this worked, then one ould, just by rede�nition of the leading order

funtions, move the soures from the ollision term to the ow term. But with the

above argument it is lear that this is not possible.

Now we want to alulate the ollision terms. The self energies appearing in the salar

and fermioni ollision terms are the funtional derivatives of the two loop part �

2

of the 2PI e�etive ation , so we �rst have to ompute this quantity. �

2

is the sum

of all two-partile irreduible vauum graphs with verties de�ned by the interation
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PSfrag replaements
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Figure 3.1: Two-loop ontribution to the 2PI e�etive ation. The solid line represents

the fermioni propagator, the dashed line is the salar Wigner funtion.

part of the lassial e�etive ation
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(z) ; (3.14)
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 (P
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y�+ P
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) 

and propagators set equal to � or G, respetively. We alulate �

2

in a loop expan-

sion and trunate it after the �rst nonvanishing ontribution, whih is the two loop

diagram shown in �gure 3:
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vTr [P
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4

v abTr
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G
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(u; v)P

L

G

ba

(v; u)

�

�

ab

(u; v) :

3.1 Salar ollision term

We begin our investigation with the ollision term for the salar equation of motion.

To this end we need the salar self energy �, whih is obtained by taking the funtional

derivative of �

2

with respet to the salar Wigner funtion �. The result is

�

ab

(u; v) = i

Æ�

2

[G;�℄

ab Æ�

ba

(v; u)

= �iy

2

Tr

�

P

R

G

ba

(v; u)P

L

G

ab

(u; v)

�

: (3.16)

Sine we are working in the Wigner representation, we have to transform this expres-

sion, and we furthermore hoose ab = +� =�+:

�

<;>

(X; k) = �iy

2

Z

d

4

k

0

d

4

k

00

(2�)

8
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)

Tr (P
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>;<

(X; k

0

)P

L

G

<;>

(X; k

00

)) : (3.17)

We have a loser look at the trae in the end of this expression, where fermioni

Wigner funtions are sandwihed between hiral projetors. We only use the spin
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diagonal part of the Wigner funtion and insert the deomposition (3.10). Sine the

spin projetors in (3.10) ommute with the hiral projetors P

L=R

, we an move them

to the front. Furthermore we note that the hiral projetors ommute with 

5

, while

moving P

L

past 

3

turns it into P

R

and vie versa:

P
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℄ : (3.18)

So only the terms with 

3

survive, and in the last line we used P

R



5

= P

R

. The trae

beomes
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Now we use equation (3.12) for the funtions g

0

and g

3

. We only keep terms up to

�rst order in gradients and leave aside the terms ontaining Æg. We will ome bak

to them later.
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Inserted bak into (3.17) we an write this as a KMS relation for the self energy. The

�rst term gives the usual KMS term, and the rest is the �rst order orretion. In this

orretion term we perform the trae of the projetion operators
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insert the expliit expressions for the 

3

(2.86), use
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w
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(3.22)
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and �nally perform the spin summations. The result is
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:

Here we have an expliit example that the self energy itself satis�es the KMS relation

in equilibrium, when the orretion vanishes. Now we an insert this expression for

the self energy in the �rst term of the salar zeroth order ollision term
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and use the (KMS like) relation (3.9) for the salar Green funtion �

<

, leaving aside

the Æ�. As already explained above, the unorreted part of the �rst term anels

against the seond term and we �nally �nd for

C

(0)

�

(k) =

i

2

y

2

Z

d

4

k

0

d

4

k

00

(2�)

8

(2�)

4

Æ

4

(k + k

0

� k

00

)g

>

eq

(k

0

)g

<

eq

(k

00

)�

>

eq

(k)

�v

w

jmj

2

�

0

k

0

0

k

00

0

�

~

k

0

k

�

~

k

00

k

~

k

0

0

~

k

00

0

�

1

~

k

02

0

+

1

~

k

002

0

�

: (3.25)

Now we insert the expliit expressions for the funtions g

<;>

eq

. We extrat them from

the leading order Wigner funtions (1.12) and (1.13) by taking the spin-projetion

and performing the trae with 

0

:
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Sine (3.25) is already proportional to the small wall veloity v

w

, we don't have to are

here about the di�erene of the expressions for the leading order Wigner funtions

between the plasma frame and the wall frame. We �nd
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where !
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The �rst two terms in this expression an be interpreted as absorption and emission

of a salar partile, the latter two orrespond to annihilation or reation of a fermion-

antifermion pair, respetively. Note that this expression is invariant under

~

k ! �

~

k.

When we now multiply with the salar Wigner funtion
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and so these two terms an be ombined into

Æ(!

�

� !

0

0

� !

00

0

) (1� f

�

)f

0

0

f

00

0

�

Æ(k

0

� !

�

) + Æ(k

0

+ !

�

)

�

: (3.32)

For the treatment of the other two terms we �rst look at that part of the integral

where !
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. Then in the �rst term only the ontribution with k

0

= �!

�

survives,

and in the seond one we only have k

0

= !

�

. In both ases there is !

00

�

= !

0

0

�!

00

0

and

we an use the relation

(1 + f

�

)f

0

0

(1� f

00

0

) = f

�

(1� f

0

0

)f

00

0

(3.33)

to ombine the two terms and �nd again a fator Æ(k

0

�!

�

)+ Æ(k

0

+!

�

). In the ase

!

0

0

< !

00

0

an analogous argument an be used. This means that the whole expression

is proportional to Æ(k

0

�!

�

)+ Æ(k

0

+!

�

), and therefore it doesn't depend on the sign

of k

0

. We saw already at the beginning that it is invariant under

~

k ! �

~

k, so we an
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onlude that the zeroth order salar ollision term is the same for the salar partile

and its antipartile. This simply means that this term annot serve as a soure for

baryogenesis.

The alulation of the �rst order ollision term

C
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(k) = �
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(k)g f�
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(k)g � f�
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(k)g f�

>

(k)g
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(3.34)

is omparatively simple. It is already of �rst order beause of the derivative in the

diamond operator, so we an just insert the leading order Green funtions. We know

that then the self energy �

eq

and the Green funtion �

eq

satisfy the usual KMS

relation, and use this for the �rst part of (3.34). Then only those terms survive, in

whih a derivative ats on the KMS-exponential fator:
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: (3.35)

Using the fermioni hermitiity property (1.52) one an show that the salar self

energy (3.17) is imaginary. Furthermore we know that i� is real, and therefore the

�rst order salar ollision term is imaginary. But this means that it ontributes

only to the onstraint equation and hene it an be negleted, as we argued in the

treatment of the salar ow term.

We found already in setion 1.5 that there is no CP-violating soure term in the ow

term of the salar equation. Together with the results of this setion this means that

there is no CP-violating soure term at all in the kineti equation for salar partiles

at order ~. In the ourse of the alulation we omitted the terms Æ� and Æg. As we

will see in the fermioni ase, these terms lead to the usual relaxation terms. But

without a soure there is no point in writing the kineti equations for salars, so we

don't need these terms.

3.2 Fermioni ollision term

Now we turn our attention to the ollision term for the fermioni equation. First we

have to alulate the self energy by taking the funtional derivative of �

2

, this time

with respet to G,

�

ab

(u; v) = �i

Æ�

2

[G℄

ab ÆG

ba
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= iy

2
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ba
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�

; (3.36)
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whih in Wigner spae and for the ombinations ab = +� =� + beomes
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Again we distinguish between two parts of the ollision term, the zeroth order and

the �rst order ollision term:
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: (3.38)

Already in the beginning of this hapter we argued that all ontributions for the

ollision term are at least of �rst order in gradients, where we used the salar ase

as an example. Of ourse the same holds as well for the fermioni ollision term.

The proedure for the alulation is the same as in the salar ase: we use the

extended KMS relations (3.9) and (3.13) for the Green funtions in the �rst part of

the ollision term in order to reverse the diretion of the < and >. For the fermioni

Wigner funtion we use only the spin diagonal part: we have seen in the last hapter

that the spin o�-diagonal funtions are impliitly of �rst order in gradients and of

�rst order in the oupling onstant. They inuene the diagonal equations only via

the ollision term, so this inuene is suppressed by a further oupling onstant and

therefore beyond our approximation.

In the self energy there is a fermioni Wigner funtion between the two hiral pro-

jetors that an be simpli�ed like in the salar ase:
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: (3.39)

The same holds for P

L

exhanged with P

R

. Sine we know that in the salar equation

there is no soure and therefore Æ� = 0 we an replae the salar propagator by its

leading order expression. This one satis�es �

>

eq

(k

00

) = �

<

eq

(�k

00

), whih reets the

same property of the equilibrium distribution funtion as the KMS relation. Then

we have
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and the self energy �nally beomes
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Now we insert this into the zeroth order ollision term and use (3.12) and (3.13) in

order to reverse the diretion of the bigger and less symbols in the �rst term. Again

the standard KMS part anels against the seond term and all that is left are the

orretion terms, where we onsistently neglet derivatives higher than �rst order.

The result an be divided into two piees,

C

(0)

 

= C

(0)

 ;sr

+ C

(0)

 ;rate

; (3.42)

aording to the origin of the orretions. The term C

(0)

 ;sr

ontains the deviation from

equilibrium arising from the nontrivial struture of the fermioni propagator. Sine

it is present even if we have vanishing Æg and Æ� it is a soure term. The other term

leads to relaxation.

The alulation of the �rst order ollision term is idential to the one in the salar

ase. We an just take equation (3.35) and replae the salar quantities by their

fermioni ounterparts:

C

(1)

 

= �

i

2

�

�

�

�

>

eq

	�

G

<

eq

	

�

�

�

<

eq

	�

G

>

eq

	

�

= �

i

4

�

�

k

z

�

�

k

0

�

� �

z

�

�

<

eq

G

>

eq

�

: (3.43)

Sine only leading order Wigner funtions appear, this term is a soure term, too.

3.2.1 Collisional soures

We saw in the last hapter that for the spin diagonal part there were four di�erent

equations, obtained by taking the trae with P

s

B, for the four omponent funtions

g

s

a

. It turned out that it was possible to use the onstraint equations to redue the

number of independent funtions to a single one, so we had four kineti equations

for one funtion. We were able to show, however, that the left hand sides of these

equations, that is the ow terms without ollisions, are equivalent so that there indeed

is only one kineti equation. We omplete this proof by showing that this equivalene

is also given when the soure part of the ollision term is inluded in the seond part of

appendix C. After all, the equivalene of these equations inluding the ollision term

is a nontrivial onsisteny hek of our approah and of our approximation sheme.

The soure part of the ollision term for the one kineti equation left is given by

K

s

0;sr

= �

1

2

<TrP

s

C

 ;sr

: (3.44)

The expliit expression for C

 ;sr

an be found in appendix C. When taking the trae,

the ontribution from the �rst order ollision term vanishes, and in the zeroth order
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expression most of the terms drop out:
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We use the expressions (3.30), (3.27) and (3.28) for the leading order funtions i�

>

eq

,

g

<

eq

and g

>

eq

. We an neglet any v

w

in these expressions sine the soure is already

proportional to v

w

. The de�nitions of the !, ~! and f are analogous to the salar

ase. The Æ-funtions in the leading order expression lead to all possible ombinations
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and k
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that have to be inserted into the energy part of

the momentum onserving Æ-funtion. But only one of these ombinations leads to a

non-vanishing ontribution: it is not hard to onvine oneself that
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and after multiplying with �2 and adding
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where we assumed m

�

> 0. Of ourse in the symmetri phase we have m

�

= 0, but

there the whole ollision term vanishes beause of the prefator jmj

2
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. With the

spatial part of the momentum onserving Æ-funtion we reognize the last term as

the square of !
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and �nally onlude
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This means, however, that after performing the k
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and
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integrals the ontribu-
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After performing the spin summation we �nd
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With !
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and after inserting this into (3.50) we immediately see that the ollisional soure in

the fermioni ase is CP-odd, in ontrast to the salar one:
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Parts of the

~

k

0

-integration an be done analytially. The alulation is shown in

appendix F. There we will �nd that this soure ontains a mass threshold: it is

nonzero only if

m

�

> 2jmj : (3.53)

The reason for this threshold is that in the one loop self energy only absorption and

emission proesses are ontained. Sine the onstraint equation fores us to put the

partiipating partiles on-shell, energy-momentum onservation simply leads to the

above ondition.

In the next hapter we derive uid equations for the CP-violating part of the fermioni

distribution funtion. For this we need the zeroth and �rst k

z

-moment of the olli-

sional soure. In appendix F we show that the ollisional soure is odd under k

z

$ k

0

z

,

so the zeroth moment vanishes. The �rst moment
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is nonzero, however. In �gure 3.2.1 we plot I as a funtion of the fermion mass jmj,

the salar mass is hosen to be proportional to jmj.

3.2.2 Relaxation term

So far we have studied that part of the ollision term that ats as a CP-violating

soure in the kineti equation for g

s

0

. This term is obtained by inserting the leading

order expressions for g

s

0

and i� and is due to the nontrivial struture of the fermioni

propagator in presene of the wall. Now we will have a brief look at the remaining

terms, where the ollision term is nonzero beause of the deviation of g

s

0

from a

thermal distribution. We will use a linear response approah: we only keep terms

whih are linear in the deviations Æ� and Æg. This proedure is in the spirit of
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our gradient expansion, beause the orretion terms are impliitly of �rst order in

gradients, and so we an neglet terms ontaining two or more of them in the ollision

term.

We have seen that there is no soure term in the salar equation itself and argued that

the inuene of Æ� on the fermioni equation is of of seond order in the oupling

onstant, and therefore beyond our approximation. So we simply set Æ� = 0 in the

following. Then there are two terms left:
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Upon taking the trae in the last line all terms exept of those proportional to 

3

drop out. We all the �rst part \loal", beause the deviation Æg is outside of the
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Figure 3.2: First moment of the ollisional soure (3.52) as a funtion of the resaled

mass jmj=T . The salar mass is set to be a multiple of jmj.
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integral. Here we an perform the spin summation:
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The seond term, alled \non-loal" rate, is
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In the loal rate we ould now perform the integrals, but in the nonloal one this is

not possible. In the next hapter we make a uid ansatz for the fermioni distribution

funtion. Then the momentum dependene of Æg is expliitely given and the integrals

an be performed. The results are shown in appendix F.2.

3.3 Mixing in the ollision term

After having studied the ollision term for the Yukawa oupling of a single salar

partile and a single fermion, we now have to inlude the possibility of several salar

and fermioni speies. The interation part of the Lagrangian in the mixing ase was

already given in setion 2.3:
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where y

l

is a matrix in the fermioni avor spae and l denotes the di�erent salar

partiles. The alulation of the e�etive ation �

2

doesn't hange in priniple, one

just has to keep trak of some more indies. We �nd
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where the trae now has to be performed in spinor and fermioni avor spae. In the

Wigner representation the self energies alulated from this expression are given by
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Mixing was handled on the left hand side of the equations of motion for the Wigner

funtions by performing a rotation into the basis where the mass is diagonal. Due

to the varying mass this rotation was spae-time dependent. It is lear that we have

to perform the same rotation also in the ollision term. We divide our investigation

into two parts: �rst we examine the inuene of the salar mixing on both salar and

fermioni ollision term, then we do the same for the fermioni mixing, whih turns

out to be more ompliated.

3.3.1 Salar Mixing

The salar zeroth order ollision term now has the form of a produt of two matries

in the salar avor spae:

C

(0)

�

(k) =

1

2

(�

>

(k)�

<

(k)� �

<

(k)�

>

(k)) : (3.62)

After the rotation in the salar avor spae this form is maintained, but we have

a rotated self energy, whih orresponds to a rede�nition of the ouplings, and the

Wigner funtion is now i�

d

, whih is not diagonal in general. Sine we want to have

an equation for the semilassial partile distribution funtion we are only interested

in the diagonal omponents of the ollision term, where we an neglet o�-diagonal

omponents of i�

d

for the same reasons we gave in the treatment of the ow term.

This means that we an simply treat the matries appearing in the rotated ollision

terms as diagonal, whih is the same as having a set of unoupled equations whih

all have the same form as the salar ollision term in the non-mixing ase. Then we

an use the same arguments as above and �nally state that also in the ase of salar

mixing there is no soure in the salar ollision term. This is true even if fermioni

mixing is present, as we will see below.

In the �rst order ollision term one has to be areful beause of the derivatives ating

on the rotation matries. Nevertheless, after using the KMS relation for the �rst
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part of the ollision term and negleting all ommutators, as we did in the ow term,

one an see that the hermitean part of this expression vanishes. This means that

there is only a ontribution to the onstraint equation, whih an be negleted. In

the alulation one has to make use of the antihermitiity of the salar self energy ,

whih is maintained even in the presene of fermioni and salar mixing.

In the fermioni ollision term salar mixing only appears within the self energy.

There we have an expression like

�
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; (3.63)

whih has the form of a trae and therefore is invariant under unitary transformations.

Sine we an again neglet o�-diagonal omponents of the salar Wigner funtion,

the e�et of salar mixing on the fermioni ollision term is simple: it is a sum of

usual fermioni ollision terms, one for eah salar mass-eigenstate. Sine the mixing

only appears within the self energy, the derivatives in the �rst order ollision term

don't hange this result.

3.3.2 Fermioni Mixing

Sine we now know that salar mixing has no e�et on the form of the ollision

terms, we an work here with only one salar partile. We again begin with the

salar ollision term. Sine the self energy (3.60) is a trae in the fermioni avor

spae, its form stays invariant, we just have to replae the fermioni Wigner funtion

and the oupling matrix by the rotated versions. For notational simpliity we omit

the index d. Like in the treatment of the ow term we an neglet the non-diagonal

elements of G, so if we use index notation in the avor spae we an write:
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:

The trae has to be taken in spinor spae, and we used G

i

� G

ii

. We an go through

the same steps as in the non-mixing ase, always keeping trak of the indies attahed

to the fermioni funtions. Remember that in the mixing ase the relation (2.123)

between g

s

3

and g

s

0

obtains an additional term from the rotation. The expression

analogous to (3.25) is
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The argument that �nally lead us to the onlusion that the salar zeroth order

ollision term is CP-even and therefore annot serve as a soure for baryogenesis

holds also in the mixing ase. In priniple we just have to replae !

0

0

by !

0

0;i

and !

00

0

by !

00

0;j

, and the same for the f , but that doesn't hange anything.

Like in the non-mixing ase the �rst order ollision term is imaginary and therefore

ontributes only to the onstraint equation. The self energy stays imaginary, and the

derivative from the diamond operator ats on the self energy as a whole and doesn't

notie the rotation. So we an onlude that there is no soure in the salar self

energy, neither in the non-mixing nor in the mixing ase.

After the diagonalization, the fermioni zeroth order ollision term reads
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where y and G denote the rotated quantities. We already made use of the fat that

all o�-diagonal elements of G an be negleted and swithed to the index notation.

With the same steps as in the non-mixing ase we arrive at the expression analogous

to (3.45):
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Like in the non-mixing ase the ontributions from the leading order funtions g
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From here on we an proeed as we did in the non-mixing ase and perform some of

the integrals. This is shown in appendix F.

In the �rst order ollision term for the fermioni equation the diagonalization leads

to extra terms with spatial derivatives ating on the rotation matries. But when

we take the appropriate trae in order to obtain the relevant kineti equation for g

s

0

,

they all vanish.
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4. Fluid equations

In the previous hapters we have shown that in the semilassial limit the equations

of motion for the salar and fermioni Wigner funtions an be redued to on-shell

onditions and single kineti equations for the phase spae densities of the orre-

sponding partiles. While in the salar equation no orretion of order ~ an be

found, the fermioni equation ontains two types of CP-violating soures. The �rst

one, appearing in the ow term of the equation, is a fore that diretly results from

the interation with the bakground �eld. The seond type of soure was found in

the ollision term.

In the �rst part of this hapter we rewrite the ow term of the kineti equation for

fermions (2.88) as a Boltzmann equation for the on-shell distribution funtion. Then

we derive an equation for the CP-violating part of the distribution funtion and study

the soures that appear there in more detail. In the seond part we make a uid ansatz

for this CP-violating part. With this ansatz the ow term of the equation obtains

a quite simple form. Furthermore this ansatz allows us to write also the relaxation

part of the right hand side of the kineti equation (2.88) in the form of a ollision

term for a Boltzmann equation.

We already pointed out that the form of the kineti equation found in hapter 2 is

equal to the one obtained by the WKB approah in [40℄. When we write the equation

for the CP-violating quantity, however, we �nd a soure term that was not taken into

aount in these works and that might beome important. We di�er from previous

authors also in another important point: we identify spin states as quasipartile

states while they have used heliity states instead, whih is not entirely orret sine

heliity is not a good quantum number for our problem. This leads to important

onsequenes when writing down the uid equations.

4.1 Boltzmann equation

In hapter 2 we found that the semilassial limit of the equation of motion for the

fermioni Wigner funtion is the following kineti equation for g

s

0

, whih is orret up

to order ~:
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In addition to this kineti equation, g

s

0

has to satisfy the onstraint equation (2.87).

We take aount of this onstraint by making the ansatz
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whih is modeled aording to the leading order solution (3.27). When we insert this

ansatz into the kineti equation, the terms with derivatives ating on the Æ-funtion

anel, as it should be. The Æ-funtion an be rewritten in the form
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so the energies of partiles and antipartiles are shifted by the same, spin-dependent

amount, but in di�erent diretions. The kineti equation for the distribution n

s

beomes
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where we have de�ned the fore term, onsisting of the usual fore in presene of a

potential and the �rst order quantum orretion, by
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We de�ne the on-shell distribution funtions for partiles and antipartiles by

f

s+

= n

s

(!

s+

; k

z

) (4.7)

f

s�

= 1� n

s

(�!

s+

;�k

z

) ; (4.8)

respetively. In equilibrium they redue to the usual thermal distributions. Now

we integrate over positive and negative frequenies separately, and in the latter ase

additionally send

~

k to �

~

k, to obtain the Boltzmann equation
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The on-shell distribution is then deomposed like f

s�

= f

0s�

+ Æf

s�

. The �rst part is

the usual thermal distribution funtion, but with the shifted energy, and taking into

aount the movement of the plasma in the wall frame:
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Now we an insert this ansatz and subtrat the equation for negative frequenies

from that for positive ones in order to get an equation for the CP-violating quantity

Æf
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. Finally we insert the expliit expression for !

s�

, neglet all terms

higher than seond order in gradients and make an expansion in the wall veloity v

w

,

keeping only the linear terms. We obtain
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where f

!

= n

eq

(!

0

). The terms in the seond and third line of this equation are

soure terms: the �rst one reets diretly the quantum orretion to the fore, the

seond one is due to the energy shift appearing in the lassial part of the fore. This

seond ontribution was not taken into aount in the works that used the WKB

method. For a stati wall, desribed by a vanishing wall veloity v

w

, these soures

disappear, as well as the ollisional soure, and the equation is solved by Æf

s�

= 0. In

this ase the partiles are desribed by the distribution funtion f

0s�

: the interation

with the wall leads only to a shift of the partile energies, but doesn't hange the

form of the distribution, whih is still thermal. Only a moving wall hanges the form

of the distribution.

When we integrate equation (4.12) over the spatial momenta, we �nd
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This equation has the form of a ontinuity equation for the momentum-integrated CP-

violating density �

s

. The integrated soures are denoted by S

a

s

and S

b

s

, respetively.

We an write them as
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Figure 4.1: The integrals I

a

and I

b

as a funtion of the resaled mass x

0

= jmj=T . We

saled I

a

with x

3

0

beause this is the way it appears in the soure term, analogously I

b

is saled with x

4

0

. Note that these ontributions enter the total soure with di�erent

signs.

where T is the temperature and I

a=b

are the dimensionless integrals
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with f

x

= 1=(e

x

+ 1) and x

0

= jmj=T . In �gure 4.1 we have plotted these integrals

as a funtion of the mass. We see that S

b

is bigger, but has its maximum at higher

values of jmj than S

a

. So at small masses S

a

is the dominant soure, whereas at

higher masses S

b

beomes dominant. Note that these two soures have a di�erent

sign, so they anel eah other in part. Beause of their di�erent z-dependenes it

is diÆult to see the result of this anellation at this stage, however. To study the

behavior of the soures in the bubble wall we simply model both the absolute value
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and the phase of the mass by
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For the width of the wall we hoose L

w

= 10=T , whih is a typial value for the

MSSM. In �gure 4.1 we plotted the soures S

a

and S

b

as well as their sum as a

funtion of the z-oordinate. For small values of the mass S

a

dominates the soure

and it is justi�ed to neglet S

b

. For inreasing masses S

b

beomes more and more

important. At m

0

� 5T both ontributions have about the same size, and beause

of their opposite signs they anel eah other partially. S

b

an de�nitely not be

negleted in this regime.

4.2 Fluid equations

The Boltzmann equation (4.9) is hard to solve, beause it is an integro-di�erential

equation in the momentum (see the relaxation part of the ollision term in 3.2.2) and

a di�erential equation in the spatial oordinates. In order to make progress, we an

make a uid ansatz for the distribution funtions [32℄:

f

s�

=

1

e

�(!

s�

+v

w

k

z

��

s

�

+u

s

�

k

z

)

: (4.20)

This form mimis the equilibrium distribution, but the hemial potential � and the

veloity perturbations u, whih are only funtions of the spatial oordinates, allow

for loal utuations in the density and veloity distribution. In the given form

the veloity perturbation aounts only for partile movement in the z-diretion,

but beause of the symmetry of the wall this is suÆient. With this ansatz all

momentum dependenes are expliit, so by integrating the Boltzmann equation over

momentum only spatial degrees of freedom are left over. In partiular we an evaluate

the integrals in the expressions for the relaxation part of the ollision term. This is

done in appendix F.2.

The hemial potential and the veloity perturbation are aused by the interation

with the wall and hene are impliitly of �rst order in gradients. We expand the ansatz

for Æf

s

and keep only terms linear in �, u and v

w

upon inserting into equation (4.12).

Then we take the zeroth and �rst moment with respet to k

z

, that is we multiply by

1 and k

z

=!

0

, respetively, and then integrate over the spatial momentum. The zeroth
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Figure 4.2: The behavior of the two ontributions to the soure and their sum as a

funtion of z=L

w

, we plotted the funtions S=(s�

0

T

4

). For small masses S

a

is learly

dominant, while with inreasing mass the two ontributions tend to anel eah other.
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moment equation is:
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Here dots denote the derivative with respet to time, primes are z-derivatives (exept

of s

0

), and we introdued the symbol

D

: : :

E

=

Z

d

3

k

(2�)

3

�f

!

(1� f

!

) : : : : (4.22)

The soure terms S

a

s

and S

b

s

have already been disussed in the previous setion. The

ollisional soure (3.54) is proportional to k

z

and therefore drops out of this equation.

�

0�

ss

0

and �

0u

ss

0

are the rates alulated from the relaxation part of the ollision term,

expliit expressions an be found in appendix F.2. Similarly one �nds the �rst moment

equation:
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This time the soure from the ow term disappears and only the one from the ollision

term is present.

For several partiles the form of these equations doesn't hange, one simply has to

provide an index denoting the type of the partile in addition to the spin index. The

uid equations above are well suited for a numerial treatment. They onsist of of

a system of �rst order di�erential equations, whih is a omparable simple problem.

Note that only the time and the z-derivative have survived. This is a onsequene of

the uid ansatz, whih in the above form e�etively only allows spatial variations in

the z-diretion. Sine in the wall frame the mass depends only on the z-oordinate,

the problem is stationary in essene and we ould drop the time derivative, too.

We argued in the beginning of hapter 2 that keeping the time derivative ould allow

a treatment of non-equilibrium initial onditions. But in order not to destroy the

symmetry of the problem, these initial onditions have to have a quite speial form,

given by equation (2.48), so the physial relevane of suh a possibility is questionable.
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Keeping the time derivative ould however be a onvenient tool to solve the equations.

At �rst sight it seems to be simpler to have only ordinary di�erential equations instead

of partial ones. To solve these ordinary equations is triky in fat, sine boundary

onditions at in�nity have to be satis�ed: at suÆiently large distanes apart from

the wall we expet the system to be in equilibrium. Starting with some initial values

at one side of the wall usually leads not to the orret equilibrium at the other side,

so the initial value has to be �ne-tuned. A simpler proedure is to keep the time

derivative and simulate the time-evolution of the system starting from some initial

funtions �

0

(z) and u

0

(z). Beause of the interplay between the dissipative e�ets in

the ollision term and the soures this proedure leads to stable solutions quite fast.

The rates we obtain by the one-loop alulation of the self energy turn out not to be

very physial. A numerial evaluation of the rates given in appendix F.2 has shown

that they vanish if the mass goes to zero, whih is not what ollision rates in general

are expeted to do. In partiular this would mean that all partile interations are

swithed o� in the symmetri phase. The reason for this behavior is simple: in the

one loop self energy only absorption and emission proesses are ontained. Sine

the onstraint equation fores us to put the partiipating partiles on-shell, these

proesses annot take plae if the masses are zero. In the one-loop alulation we

furthermore miss elasti satterings whih are essential for partile transport. So

in order to obtain realisti rates in the ollision term a two-loop alulation of the

self energy is needed. Then elasti proesses are taken into aount, and there are

diagrams with retarded or advaned Green funtions on the internal lines. These

have an o�-shell ontribution, so that they should show a weaker mass dependene.

We already stated that the soure for the Boltzmann equation (4.9) that has been

found in previous works by making use of the WKB method is formally the same

as the one we have derived here. The authors of these works however assumed that

the quasipartile states of the system are heliity eigenstates. But when s denotes

heliity, the soures in the ow term are odd in k

z

and ontribute to the �rst moment

equation (4.21) rather than to (4.23). So in these works the orret form of the soure

has been obtained, exept of the fat that S

b

has been missed, but �nally it appears

in the wrong equation.

The fat that our soure and the one alulated with heliity eigenstates appear in

di�erent equations makes a omparison rather ompliated, in priniple one has to

solve the equations to see the di�erenes. The same problem appears when we try to

ompare the ollisional soure, whih appears in the �rst moment equation, with the

one from the ow term ontributing to the zeroth moment equation. But we an try

to obtain at least a qualitative piture by onverting the uid equations for �

s

and

u

s

into a single seond order di�erential equation for �

s

, the di�usion equation. This

is a standard approximation for the solution of the uid equations. In order to keep
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the notation simple we introdue the abbreviations
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When we drop the time derivative terms, the zeroth moment equation reads
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and the �rst moment equation is
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Here we introdued F

hel

s

, whih is the soure we would have obtained by the use of

heliity eigenstates, it has the same form as F

s

. Then we take linear ombinations of

these equations so that we obtain an equation that only ontains u

0

s

and one where

only �

0

s

ours. The latter one is solved for u

s

and then derived with respet to z,

where we neglet all terms where the derivative ats on rates or masses. When we

insert these expressions for u

s

and u

0

s

into the other equation we an write it as
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We omitted most of the terms here and kept only those we need for the omparison

of the di�erent soures. D

s

ontains ombinations of rates and the quantities I

ij

and

J

ij

, but in the way the equation is written we an identify D

s

=I

22

as the di�usion

onstant for the partiles under study, whih an be obtained by other means. Now

we an read o� from this that a soure from the �rst moment equation ompared to

one from the zeroth moment equation is multiplied with the di�usion onstant and

obtains an additional derivative. This means that in situations where transport is

very eÆient, the use of the heliity eigenstates leads to soures whih are too big,

while in the opposite ase the true soure is underestimated. In the same way the

ollisional soure beomes important if transport is eÆient.

In order to make a quantitative omparison one really has to solve the equations and

ompare the results. In any ase we now know that in all previous works soures have

been used that are more or less inorret.
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5. Conlusion

In this work we performed a ontrolled, �rst priniple derivation of transport equa-

tions for CP-violating uxes valid up to order ~ for a system of salar and fermioni

partiles in presene of a slowly varying bakground �eld. We onsistently inluded

the ollision term in our treatment and made a model alulation in leading order of

the oupling onstant. Suh a derivation has been the main theoretial hallenge of

reent work on eletroweak baryogenesis, sine there is a ontroversial disussion in

literature onerning the way to obtain the orret transport equations.

Starting point of our work have been the equations of motion for the Wigner fun-

tions in the Shwinger-Keldysh formalism, whih is suited for the treatment of non-

equilibrium situations. In order to redue these exat equations to semilassial

transport equations we used an expansion in powers of gradients of the bakground

�eld, whih is a good approximation if the variation of the bakground �eld is slow,

whih is the ase for the phase transition front in a �rst order eletroweak phase

transition. This expansion is equivalent to an expansion in powers of ~. The equa-

tions split into two types, onstraint and kineti equations. The onstraint equations

should provide spetral onditions whih restrit the possible solutions of the kineti

equations.

A major result of our work is that indeed both for salar and for fermioni partiles

the onstraint equations are algebrai equations whih allow a spetral solution for

the Green funtions. This essentially on�rms the basi assumptions underlying

WKB approahes to eletroweak baryogenesis: the plasma an at this level indeed be

desribed as a olletion of quasi-partiles with a lassial phase spae density. It has

also beome lear, however, that this spetral solution only holds up to �rst order in

~. At higher orders the onstraint equation ontains derivatives and no longer an

be solved by on-shell Wigner funtions.

In the salar equations there are no quantum orretions at all at our level of approx-

imation. They lead to a usual lassial Boltzmann equation. This is in ontrast to

the results of earlier work using the WKB approah, where the partile momentum

was identi�ed with the anonial momentum. When using the kineti momentum

instead, in the WKB approah one �nds no ~-deviations from lassial behavior, ei-

ther. With our work we therefore have shown that the kineti momentum has to be

used in a WKB approah. Our results di�er from earlier works laiming to provide a

79
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ontrolled derivation of kineti equations from the Shwinger-Dyson equation, whih

do �nd quantum orretions in the salar equation.

In the fermioni ase the Wigner funtion is a matrix in spinor spae and onsists

of 16 independent funtions whih are governed by 32 oupled equations. By iden-

tifying a onserved quantity of the system, essentially the spin perpendiular to the

wall, we were able to deouple these equations into three separate bloks. Two of

them desribe the propagation of partiles with de�nite spin, while the third one

desribes spin-mixing. We saw that this spin mixing part has no e�et at our level of

approximation. Using the onstraint equations we were able to show that both of the

spin-diagonal parts are desribed by only one funtion, whih again has to satisfy an

on-shell ondition. This funtion orresponds to the lassial phase-spae-density of

the partiles. Unlike in the salar ase, however, the energy of the fermioni partiles

is not given by the lassial on-shell ondition but has a orretion due to the intera-

tion with the wall. Correspondingly there is a semilassial fore term in the kineti

equation whih is a CP-violating soure. This soure term in the kineti equation

has the same form as the one found in the WKB approah, provided the orret

momentum is used there. Again our result is in ontrast to other approahes to the

problem.

We were also able to provide a onsistent treatment of the ollision term of the

equations of motion for the Wigner funtions within our formalism, now in ontrast

to the WKB based works. There the dispersion relation for the partiles, whih is

modi�ed by the interation with the bakground �eld, is inserted into a lassial

Boltzmann equation and so leads to the semilassial fore. The rates appearing

on the right hand side of the equation have to be alulated by other methods and

then are inserted into the equation. For our model with a Yukawa interation we

alulated the ollision term by an expansion in the oupling onstant and only kept

the leading order term, whih orresponds to a alulation of the self energy to one

loop. In addition to the usual gain and loss terms, whih lead to relaxation, we

found in the fermioni ollision term a further soure that is alled spontaneous

baryogenesis soure. This soure seems to be somewhat smaller than the one from

the semilassial fore. By making use of a uid ansatz we furthermore were able to

ompute the interation rates in the relaxation part of the ollision term within our

formalism. Due to the fat that we restrited ourselves to a one-loop alulation of

the self energy, only absorption and emission proesses are taken into aount, so we

miss elasti sattering proesses whih are essential for transport. Furthermore the

rates show a strong mass dependene, whih is unphysial. A two loop alulation

of the self energy is required in order to obtain realisti results for the rates. In this

work we provide everything that is needed for suh a alulation, where for example

the treatment of the spin o�-diagonal parts in the fermioni equation is neessary.

Suh a omputation exeeds the one-loop alulation presented here by far, both in
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size and in tehnial omplexity, but there are no basi problems.

Although the semilassial fore term we found in the kineti equation for the fermions

is formally the same as the one derived with the use of the WKB method, they

di�er in an important detail. The authors who used this approah assumed that the

propagating states in the plasma are heliity eigenstates, while we have proved that

the onserved quantity is spin rather than heliity. When deriving uid equations, this

has the onsequene that the semilassial soure in these works appears in the �rst

moment equation and not in the ontinuity equation, as it should be. Furthermore

we have seen that in these former treatments a part of the semilassial soure has

been missed that might be important. So although the WKB approah in priniple

is apable of providing the proper soure, up to now no entirely orret alulation of

eletroweak baryogenesis is available. We do not expet that the result will hange by

orders of magnitude, but if one takes into onsideration that eletroweak baryogenesis

in the MSSM only works within a rather restrited region of the parameter spae

anyway, a preise alulation is highly desirable.

With this work we have solved the basi problem of a rigorous derivation of the trans-

port equations relevant for eletroweak baryogenesis. Based on this, new alulations

of the produed baryon asymmetry an be performed. Together with new experimen-

tal results that will be available in the near future this will help to deide whether

eletroweak baryogenesis is realized in nature or not.
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Appendix A. Fermioni urrents

In this appendix we list the expressions for the fermioni urrents in terms of the

omponent funtions of G

<

. The general expression is
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The spin o�-diagonal parts don't ontribute to the salar, pseudo-salar and the z-

omponents of vetor and pseudovetor urrents. The remaining omponents of the

vetor urrent obtain a ontribution from g

s

7

, the ones of the pseudo-vetor from g

s

4

.

In the z-omponent of the \eletri" part of the tensor as well as in the x- and y-

omponents of the \magneti" part of the tensor g

s

5

ontributes, in the other tensor

omponents we �nd g

s

6

.



Appendix B. Full equations without spin-projetion

Insertion of the deomposition (2.3) into the equation of motion leads to the following
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Appendix C. Consisteny of the fermioni kineti

equations

In setion 2.2.1 we obtained four kineti equations, but beause of the onstraint

equations we only have one independent funtion, namely g

s

0

. Here we prove that

these equations are equivalent, whih means that our approah is onsistent. We

break the problem into two parts: �rst we show the equivalene of the ow terms and

then we onsider the ollision term. We don't give the proof for all three equations,

but instead restrit ourselves to (2.75), whih is the kineti equation for g
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3
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The other two equations an be treated similarly.

C.1 Flow term

We insert the expressions (2.84)-(2.86) for g
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, where this time it is not suÆient to
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Now we take the derivative of the onstraint equation (2.87) with respet to z. The

ollisional ontribution to this term an then be negleted. We �nd
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and use this relation to replae the term �jmj
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in the seond line of (C.2). After

some anellations this leads to
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This equation an �nally be reexpressed in the form
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whih we reognize as something times the left hand side of the familiar kineti

equation for g

s

0

. The treatment of the equations (2.73) and (2.74) is somewhat more

ompliated, but runs along the same lines. There we have to use the derivative of

the onstraint equation with respet to k

z

and obtain
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Note that the terms that multiply the g

s

0

-equation are exatly the ones that relate

the funtions g

s

i

with g

s

0

.

C.2 Collision term

We still have to prove the equivalene for the right hand side of (C.5). Here only the

alulation for the soure part of the ollision term is shown, the other terms an be

treated in the same way. The soure part of the zeroth order ollision term before
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taking the trae is
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and the orresponding ontribution from the �rst order ollision term is
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The traes one has to take in order to obtain the relevant terms are given in (2.80)-

(2.83). If we put everything together we �nd
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The last terms in the last two lines are the ontributions from the �rst order ollision

term. There are also ontributions from this term with the derivative ating on the

Wigner funtions, but they anel eah other. In writing this equation we used the

abbreviation kk
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and by using the onstraint equation to leading order, jmj
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A omparison with (3.46) �nally leads to
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This is the same fator as the one that appeared in the ow term, whih means that

the omplete kineti equation for g

s

3

is some term times the equation for g

s

0

. The

same an be shown for the other two equations. With this we have now proven the

onsisteny of the equations: there is indeed only one kineti equation for g

s

0

.



Appendix D. Spin o�-diagonal equations

Taking the traes and real and imaginary parts of the o�-diagonal equation of motion

for the Green funtion leads to the following set of equations. The kineti equations

for the g-funtions are
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the kineti equations for the h-funtions are
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and the onstraint equations for the h
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We introdued abbreviations for the ollisional traes:
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The expressions for the K

ha

are obtained from these by replaing < by s=. By

replaing < by = one �nds the C

ga

and �nally the C

ha

are obtained by replaing < by

�s<.

The onstraint equation allow us again to redue the set of independent funtions.

We an hoose g

5

; h

5

or g

6

; h

6

as basi funtions, respetively. From (D.12) and (D.16)

it is obvious, that g

7

and h

7

are suppressed by one order of gradients in omparison

to the other funtions, and therefore annot serve as basi funtions. Sine we expet

all these o�-diagonal funtions to be themselves suppressed by one order ompared

to the diagonal ones, we will neglet g

7

; h

7

from now on. We annot hoose g
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We �nd a onstraint equation for g
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; h
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whih is
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The onstraint equation for h

5

is obtained by exhanging g and h and replaing k

z

by �k

z

.

The kineti equation for g

5
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The orresponding equation for h

5

is obtained by exhanging g and h and replaing

m

R

by �m

R

.

It is important to observe that these equations have no soure whih is not ollisional,

in the sense that when one starts with thermal equilibrium, where the o�-diagonal

funtions are zero, they will stay zero forever. They are only soured by the diagonal

funtions via the ollision term.
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Appendix E. Fermioni Green funtion in the wall

frame

Most of the alulations in this work are done in the wall frame. In order to obtain

the leading order Wigner funtions in that frame, we just have to perform a boost.

The wall frame and the plasma frame are related by

t = 

w

(

�

t� v

w

�z)

z = 

w

(�z � v

w

�

t)

x = �x

y = �y ; (E.1)

where we denoted the oordinates in the plasma system with a bar and the ones in

the wall frame without (so if v

w

is positive, the wall moves in positive �z-diretion).

The boost of the fermioni Wigner funtion G

<
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Beause k is on the mass-shell (jk

z

j < jk

0

j) and v

w

< 1, we have

sgn(

w

(k

0

+ v

w

k

z

)) = sgn(k

0

) : (E.3)

We know that the wall is omparatively slow, so we an neglet the boost fator 

w

and �nally obtain

G

<
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(k) = 2�i(k
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+m)Æ(k
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) (E.4)

The same hanges have to be made in G

>

eq

and in the salar Wigner funtions.
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Appendix F. Fermioni Collision Integrals

F.1 Collisional Soure

In this appendix we show the details of the alulation of the fermioni ollisional

soure term, whih we omitted in the main text. We show here the alulation in the

mixing ase, the nonmixing ase is simply obtained by setting jmj

2

i

= jmj

2

j

= jmj

2

.

We begin with equation (3.68):
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The

~

k

0

integration is performed in ylindrial oordinates, d

3

k

0

= dk

0

z

k

0

k

dk

0

k

d�, where

� is the angle between
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k
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and
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k

, and k
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and k
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are the absolute values of the parallel

momenta, respetively. We substitute
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and instead of integrating over the absolute value of the parallel momentum we inte-

grate over k
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With the Æ-funtion the x-integration an now be performed trivially. With a not so

trivial alulation one an show that for arbitrary � the relation
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holds, where k
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are the roots of (k
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The funtion �
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ontains a mass-threshold. It an be found by trying to

determine those values of k
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The latter two onditions an only be satis�ed if the quadrati equations
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Now we an write the soure as
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For the uid equations the integral over all momenta is needed. With the observation

that the integrand is odd under k

z

! �k

z

and k
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, we an immediately write
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where the index � denotes the integral over positive and negative frequenies, re-

spetively. The integral with an additional fator k

z

=!

0;i

an be evaluated further by
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making use of the integrals
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We �nally obtain

Z

�

d

4

k

(2�)

4

k

z

!

0;i

K

s

0;i

(F.14)

= �

1

64�

3

�v

w

X

j

jy

ij

j

2

+ jy

ji

j

2

2

Z

kdk

Z

k

0

dk

0

�(k

2

k

02

� �

2

)f

0;i

f

0

0;j

(1 + f

�

)

Z

k

�k

dk

z

k

2

z

!

2

0;i

!

0

0;j

~!

0;i

�

s

�

jmj

2

(�

0

+�

z

)

�

i

�

k

3

+s

�

jmj

2

(�

0

+�

z

)

�

j

�

k

z

=

�

k

2

(jm

j

j

2

+ k

02

)� k

2

z

k

02

� �

2

+ 2ijm

j

j�k

z

�

�

1

2

+

m

2

�

� jm

i

j

2

� jm

j

j

2

2jm

j

j

<

�

k

2

(jm

j

j

2

+ k

02

)� k

2

z

k

02

� �

2

+ 2ijm

j

j�k

z

�

�

1

2

�

�

:

F.2 Collisional Rates

In setion 3.2.2 we found the following expressions for the relaxation part of the

ollision term:
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With the uid ansatz (4.20) the momentum dependene of Æg is ompletely spei�ed.

The evaluation of the integrals runs along the same lines as for the ollisional soure

in the �rst part of this appendix. We just give the results. The ontribution to the

zeroth moment equation is
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where the rates are given by

�

0�

ss

0

=

1

4�

3

�

y

2

4

Z

1

0

k dk k

0

dk

0

�(k

2

k

02

� �

2

)

!

0

!

0

0

+ �

!

0

!

0

0

f

0

f

0

0

(1 + f

00

�

)Æ

ss

0

��

1

16�

4

y

2

4

Z

1

0

dk dk

0

�(k

2

k

02

� �

2

)k

0

f

0

f

0

0

(1 + f

00

�

)

Z

1

�1

dk

z

dk

0

z

�(k

2

� k

2

z

)�(k

0

z

2

� k

0

z

)�(k

0

z

� k

0

z

1

)

p

(k

0

z

2

� k

0

z

)(k

0

z

� k

0

z

1

)

�

�

!

0

!

0

0

+ �

!

0

!

0

0

+

�

~!

0

~!

0

0

!

0

!

0

0

+

!

0

!

0

0

+ � � k

z

k

0

z

!

0

!

0

0

~!

0

~!

0

0

k

z

k

0

z

�

ss

0

�

(F.18)

and

�

0u

ss

0

=

1

4�

3

�

2

y

2

4

Z

1

0

k dk k

0

dk

0

�(k

2

k

02

� �

2

)

!

0

!

0

0

+ �

!

0

!

0

0

f

0

f

0

0

(1 + f

00

�

) (F.19)

�

�

1� f

0

+ f

00

�

�

�

�

1� f

0

0

+ f

00

�

�

�

k

2

�

k

2

3

Æ

ss

0

+

1

16�

4

�

2

y

2

4

Z

1

0

dk dk

0

�(k

2

k

02

� �

2

)k

0

f

0

f

0

0

(1 + f

00

�

)

Z

1

�1

dk

z

dk

0

z

�(k

2

� k

2

z

)�(k

0

z

2

� k

0

z

)�(k

0

z

� k

0

z

1

)

p

(k

0

z

2

� k

0

z

)(k

0

z

� k

0

z

1

)

�

 

!

0

!

0

0

+ �

!

0

!

0

0

�

(1� f

0

+ f

00

�

)k

z

k

0

z

� (1� f

0

0

+ f

00

�

)k

2

z

�

+

�

~!

0

~!

0

0

!

0

!

0

0

+

!

0

!

0

0

+ � � k

z

k

0

z

!

0

!

0

0

~!

0

~!

0

0

k

z

k

0

z

�

�

(1� f

0

+ f

00

�

)k

z

k

0

z

� (1� f

0

0

+ f

00

�

)k

2

z

�

ss

0

!

:



F.2 Collisional Rates 101

In the �rst moment equation the ollision term is
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where besides the soure term there are the rates
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