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ABSTRACT

This thesis addresses questions about early lexical acquisition. Four
case studies provide concrete examples of how Bayesian computational
modeling can be used to study assumptions about inductive biases,
properties of the input data and possible limitations of the learning
algorithm.

The first study describes an incremental particle filter algorithm for
non-parametric word segmentation models and compares its behavior to
Markov chain Monte Carlo methods that operate in an offline fashion.
Depending on the setting, particle filters may be outperformed by or
outperform offline batch algorithms. It is argued that the results ought
to be viewed as raising questions about the segmentation model rather
than providing evidence for any specific algorithm.

The second study explores how modeling assumptions interact with
the amount of input processed by a model. The experiments indicate
that non-parametric word segmentation models exhibit an overlearning
effect where more input results in worse segmentation performance. It
is shown that adding the ability to learn entire sequences of words in
addition to individual words addresses this problem on a large corpus if
linguistically plausible assumptions about possible words are made.

The third study explores the role of stress cues in word segmentation
through Bayesian modeling. In line with developmental evidence, the
results indicate that stress cues aid segmentation and interact with
phonotactic cues; and that substantive constraints such as a Unique
Stress Constraint can be inferred from the linguistic input and need not
be built into the model.

The fourth study shows how variable phonological processes such
as segmental deletion can be modeled jointly with word segmentation
by a two-level architecture that uses a generative beta-binomial model
to map underlying to surface forms. Experimental evaluation for the
phenomenon of word-final /t/-deletion shows the importance of context
in determining whether or not a variable rule applies; and that natu-
ralistic data contains subtle complexities that may not be captured by
summary statistics of the input, illustrating the need to not only pay
close attention to the assumptions built into the model but also to those
that went into preparing the input.
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ZUSAMMENFASSUNG

Diese Dissertation behandelt Fragen zur Wortsegmentierung, einem As-
pekt des frithkindlichen Spracherwerbs. Anhand von vier Studien wird
demonstriert, wie Bayesianische Computermodellierung verwendet wer-
den kann, um Fragen zum induktiven Bias von Sprachlernmodellen, iiber
die Figenschaften der sprachlichen Daten und iiber die Beschrinkungen
des verwendeten Lernalgorithmus zu beantworten.

Die erste Studie beschreibt einen inkrementellen ‘particle filter’ Al-
gorithmus fiir ein nicht-parametrisches Wortsegmentierungsmodell und
vergleicht sein Verhalten mit Markov chain Monte Carlo Methoden, die
nicht inkrementell sind. Abhéngig von den genauen experimentellen
Umstédnden erzielen ‘particle filter’ eine bessere oder schlechtere Seg-
mentierung als die Markov chain Monte Carlo Algorithmen. Es wird
argumentiert, dass diese Beobachtung nicht als Beleg fiir oder gegen
einen bestimmten Algorithmus gewertet werden sollte, sondern dass
aus ihr Fragen iiber die zugrunde liegenden Modelle abgeleitet werden
knnen.

Die zweite Studie untersucht die Interaktion von Modellierungsan-
nahmen und der Menge an sprachlichen Daten, die das Modell ver-
arbeitet. Die Experimente zeigen, dass nicht-parametrische Wortseg-
mentierungsmodelle ‘iiberlernen’: mehr Daten filhren zu schlechterer
Segmentierungsqualitit. Es wird gezeigt, dass ein Modell, das Wort-
sequenzen zusitzlich zu einzelnen Wirtern lernt und das linguistisch
motivierte Annahmen iiber die Form von méglichen Wortern macht,
dieses Problem auf einer grofen Menge von Daten lést.

Die dritte Studie untersucht die Rolle des Wortakzents |engl. “stress”|
fiir Wortsegmentierung., In Ubereinstimmung mit Belegen aus Spracher-
werbsstudien zeigen die Experimente, dass der Wortakzent bei der
Segmentierung hilft und dass seine Niitzlichkeit mit phonotaktischen
Indikatoren fiir Wortgrenzen interagiert. Es wird auch gezeigt, dass die
Ein- Akzent-Beschrinkung [engl. “Unique Stress Constraint”| von den
sprachlichen Daten gelernt werden kann und nicht von einem Modell
angenommen werden muss.

Die vierte Studie zeigt, wie variable phonologische Prozesse wie die
Tilgung von wort-finalen Plosiven gemeinsam mit Wortsegmentierung
modelliert werden kinnen. Experimente zum Phinomenen der wort-
finalen /t/-Tilgung zeigen, dass der phonologische Kontext eine wichtige
Rolle dafiir spielt, um festzustellen, ob eine optionale phonologische
Regel Anwendung fand. Es wird auch gezeigt, dass sprachliche Daten
subtile Eigenschaften aufweisen, die womdglich nicht hinreichend von
Statistiken der Daten abgebildet werden. Dies legt nahe, dass man bei
der Evaluation von Modellen nicht nur auf die Modell Annahmen achten
muss, sondern auch auf die Annahmen, die in die Datenvorbereitung
einflossen.
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INTRODUCTION

Except for pathological cases, human infants acquire their native lan-
guage(s) with remarkable ease and speed, growing from pre-verbal infants
to competent speakers of whatever language is spoken in their surround-
ing environment over the course of just a few years. There is a heated
debate about the relative importance in language acquisition of prior
biases or innate knowledge on the one hand and linguistic input or
experience on the other. Thus, it is common to contrast ‘rational’ and
‘empiricist’ views of language acquisition. The former emphasize the role
played by innate knowledge which, using a term of Chomsky (1965),
is commonly called Universal Grammar; the latter emphasize the role
played by linguistic input and experience more generally (for a recent
example of the controversy, see Christiansen and Chater, 200g; Pinker
and Jackendoff, zoog).

I share, however, Clark (2009)’s assessment that the implied dichotomy
between ‘empiricist’ and ‘nativist’ approaches is a false one — the scien-
tific question is “what [infants] are born with that is required for this
task” (p. 2), and little is gained by giving labels to competing hypotheses.
In this thesis, I use computational modeling to address some of these
questions as they apply to word segmentation, the problem of “breaking
up of the essentially continuous stream of speech into morphemes and
words” (Brown, 1973, p. 265).

This chapter introduces the idea of computational modeling and
argues that it contributes to our understanding of language acquisition
by making it possible to evaluate different proposals about how infants
acquire their language. In particular, | motivate the Bayesian approach
taken in this thesis and argue that it offers a principled way of answering
the question what conclusions can be drawn from particular inputs on
the basis of particular assumptions. The chapter concludes with a brief
overview of the individual chapters.

1.1 COMPUTATIONAL MODELING OF LANGUAGE ACQUISITION

In the context of language acquisition, a computational model is a par-
ticular instance of a more general theory (Harley, 2008, p. 4). Because
theories of language acquisition provide high-level explanations of par-
ticular phenomena, they tend to rely on the implicit understanding of
the reader. In particular, ‘verbal-conceptual’ theories such as Tomasello
(zo03)'s usage-based theory or a parameter setting theory of language
acquisition such as Yang (2o06)’s are presented in mostly informal
language. This suffices to convey the core idea of an explanation but
leaves a great many details unspecified. Consequently, determining the
actual implications of these proposals has to rely on both intuitions and
informal reasoning, making it hard to arrive at an objective evaluation.
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A computational model, in contrast, has to be formally specified and
allows for mathematical analysis and, usually, the actual implementation
as a computer program.’ This makes it possible to derive the implications
of different proposals in a principled way and, in many cases, to perform
large scale evaluations of proposals on actual data.

1.1.1  Computational models as testing proposals

Thus, the main difference between computational models of and linguistic
or psycholinguistic theories about language acquisition is explicitness (AL
ishahi, zo10; Sun, 2008). As an example, consider the idea of parameter
setting as introduced in Chomsky (1921) which, arguably, is the most
popular ‘rationalist’ theory of language acquisition.”

Briefly, it suggests that there is a set of universally shared ‘parameters’
which account for syntactic differences between languages. And that,
consequently, language acquisition amounts to learning which parame-
ter setting corresponds to the language spoken in one's environment —
“experience is necessary to fix the parameters of core grammar” (p. 8);
the parameters themselves, however, need not be acquired. This is a
compelling proposal that, to this date, fuels research into language
acquisition (for a recent book-length review, see Guasti, zoo04). Yet, as
Chomsky himself points out, left at this level of detail “[t|here are [...]
many unspecified details. |...] How many parameters are there? How
much exposure to a language and what kind of evidence do children
need to set each parameter|?]".

Often, filling in these details in a fully satisfactory way may not be
possible and one may refuse to be more specific on the grounds that
not all parameters have been discovered yet, as well as admitting that
the precise way of setting parameters has yet to be determined. Clearly,
intuitive models can be very useful in stimulating research and, in a sense,
are required to ever arrive at more fleshed out proposals. Yet, one needs
to be cautious because “without detailed theories, most of the details of
an intuitive (or verbal-conceptual) theory are left out of consideration,
and the intuitive theory may thus be somehow vacuous or internally
inconsistent, or otherwise invalid. These problems of an intuitive theory
may not be discovered until a detailed model is developed” (Sun, 2008,
p. 6).

A perfect example of this problem is Gibson and Wexler (1qg94)’s
discussion of the trigger learning algorithm which constituted the first
fully specified computational model of Chomsky's parameter setting
idea. A trigger is a particular kind of sentence (or, more generally,
syntactic construction) which allows a learner to uniquely determine
the value a particular parameter has to take to fit the language in its
environment. The idea that triggers provide a solution to the parameter

I do not draw a distinction between mathematical and computational models (see
Sun, zoo8). Arguably, Bayesian models would qualify as mathematical models under
this terminology.

An accessible introduction is Yang (zoof). Interestingly, Chomsky himself seems to
no longer promote this idea in his current Minimalist Program (Chomsky, 1g95).
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setting problem is intuitive and was, indeed, widely accepted; Gibson
and Wexler show, however, that a straightforward way of implementing
this idea does not work. Surprisingly, their algorithm is unable to identify
the correct parameter setting in some circumstances and can end up
with a wrong grammar.

Obviously, their conclusion that triggering does not work depends on
the specific assumptions which they made about how triggers are used
in acquisition. A proponent of triggering can always dispute that their
computational model faithfully represents the intended interpretation of
triggering, and indeed, it is still considered as a strategy for language
acquisition (for a recent proposal, see Sakas and Fodor, zo012).

Hence, “|e]ven the most successful computational model can hardly
prove that humans exploit a certain strategy or technique when learning
a language” (Alishahi, zo10, p. 6). At most, they can “show what type
of linguistic knowledge is learnable from what input data” and “give us
insights about which representations and processes are more plausible
in light of the experimental findings on child language acquisition”. This
‘limitation’, however, is not special to computational modeling. Any
scientific result can be rejected on the grounds of rejecting one of the
assumptions on which it depends (Quine, 1951; Popper, 1g9509).

In this respect, then, computational modeling is not fundamentally
different from psycholinguistic or, indeed, any kind of empirical ex-
perimentation. Conclusions drawn from psycholinguistic experiments
also depend on the acceptance of a host of assumptions that connect
what is actually measured (reading times, well-formedness judgments,
...) to what is (supposed to be) the underlying psychological process
(lexical retrieval, syntactic parsing, ...). Considering this, the fact that a
computational model has to make explicit its assumptions ought to be
counted as a benefit rather than a limitation.

1.1.2 Bayesian computational models

I have argued that computational modeling is a way of testing specific
proposals about language acquisition. I will now spell out in more
detail the particular approach taken in this thesis, namely Bayesian
computational modeling.

A Bayesian computational model embodies a particular set of assump-
tions about the inductive biases of a learner (the prior), the nature
of the input available to the learner (the data) and the relationship
between any of the possible hypotheses a learner can consider and the
input (the likelihood). Given such a model, one can answer the question
what the assumptions built into the model imply given any particular
set of observations by performing Bayesian inference.

This idea is formally explained in chapter =. Here, I discuss the role of
Bayesian inference in the study of language acquisition. Following Dunbar
(zo13), I view this role as providing a principled means of drawing out
the logical implications of particular proposals. 1 will develop this view
by illustrating the ‘rationality’ of Bayesian inference, its connection to
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logical reasoning, and how it can be applied to ‘poverty of the stimulus’
TeAsSoning,

1.1.2.1  Bayesian Inference and Rationality

At the heart of the Bayesian approach is the idea that “Probability is
degree of belief” (Hajek, zo12, p. 25). Thus, for a Bayesian the sentence
“The probability that this coin will land heads is 99%" means that
the speaker is 99% certain that this coin will land heads on the next
toss. In contrast, for a frequentist this statement would mean that the
fraction of heads in a long sequence of coin tosses will be 99%. This
difference between a subjective Bayesian and an ‘objective’ Frequentist
view of probability is a topic of heated debate which I sidestep here — the
interested reader is referred to Gillies (zooo) for an excellent philosophical
discussion of these different views on the nature of probability.®

Treating probability as degree of belief also provides a way of formal
izing talk about belief: to represent that somebody is 99% certain that
some proposition H is true, one writes P(H) = 0.99. At first blush, this
seems to be little more than a convenient shorthand. However, the idea
that degrees of belief are represented as probabilities puts substantive
constraints on what qualifies as a set of coherent or rational beliefs; and
what conclusions one ought to draw from particular observations given
particular assumptions.

DUTCH BOOK ARGUMENTS AND RATIONALITY A family of
arguments going back to Ramsey (1g31) proves that, unless one’s total
set of beliefs satisfies the axioms of probability, one is susceptible to a
‘Dutch book’ — a (possibly complicated) bet in which one is guaranteed
to lose money.

The arguments are involved and I do not want to discuss them in
detail — Hacking (200, chapter 14) provides a very readable exposition.
To provide a rough idea, though, consider why being 60% certain that
it will rain tomorrow and 60% certain that it will not rain tomorrow is
problematic. Holding both beliefs is inconsistent or érrational in that it
violates the requirement that the total probability of any event must not
exceed 1. Writing 4 v 4 for “it will rain tomorrow or it will not rain
tomorrow”, holding both beliefs is tantamount to being 120% certain
of Av —A which does not only go against the common view that one
cannot be more than 100% certain of anything but can be shown to
lead to financial losses.

The argument for this starts from the assumption that being 60%
certain about something is equivalent to being willing to bet at rate 0.6
on the truth of this. Hence, being 60% certain that it will rain tomorrow
is equivalent to being willing to accepting a bet in which one wins 40

It is worth noting, however, that Chomsky (1968)'s influential criticism against the
use of probabilities in the study of language — “the notion ‘probability of a sentence’
is an entirely useless one, under any known interpretation of this term” — presupposes
a frequentist interpretation. A Bayesian interpretation, in contrast, fits nicely with
Chomsky’s view that linguistics is about the beliefs speakers have rather than some
‘objective’ linguistic reality.
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dollars if it rains tomorrow and loses 60 dollars if it doesn't.? Analogously,
being 60% certain that it will not rain tomorrow is equivalent to being
willing to accept a bet in which one wins 40 dollars if it does not rain
tomorrow and loses 60 dollars if it does.

Then, a problem arises as follows: being 60% certain that it will rain
tomorrow and 60% certain that it will not rain tomorrow means that
one will accept bets such that — irrespective of the weather on the next
day — one is guaranteed to lose 20 dollars: if it does rain, one wins 40
dollars in the first bet but loses 60 in the second; if it does not, one wins
40 dollars in the second bet but loses 60 in the first. A combination of
bets which incurs a sure loss is called a “Dutch book”, giving the name
to the general form of argument.

As alluded to above, what is wrong with being 60% certain about
something and its negation is that these certainties sum to 120%, rather
than 100%, violating one of the axioms of probability. Through discussing
many more cases much more formally, Ramsey (1931} showed that unless
one’s beliefs — the totality of probabilities (reflecting one’s degree of
certainty) one assigns to statements — satisfy the arioms of probability,
one is subject to a Dutch book and, in this sense, guaranteed to lose
money, a result known as the Ramsey-De Finetti Theorem.

As accepting bets that ensure one loses money no matter what is
hardly rational, only beliefs that satisfy the axioms of probability can be
considered ‘rational’ or, to use the more technical term, coherent (Gillies,
2000, p. 5gff). Note my use of scare quotes around ‘rational’ — I will not
further discuss in what sense our ordinary usage of ‘rational’ coincides
with the technically precise but obviously rather limited idea of ‘not
susceptible to a Dutch book’ but it is important to keep in mind that,
in this context, ‘rational’ has a precisely specified meaning.®

1.1.2.2 Bayesian updating

The Ramsey-De Finetti theorem also puts a constraint on how beliefs
ought to be updated. In particular, the only way to guarantee that a
coherent set of beliefs remains coherent after having been ‘updated’ on
the basis of some observation is to use Bayesian updating. Informally,
one has to update ones prior belief about H which one held before
making observation E into the pesterior belief about H given E using
Bayes’ Theorem:5

P(H | E) < P(H)P(E | H)

The expression P(E | H) is called the likelihood of H. It quantifies
how expected the observation one actually made is under the assumption

This connection between betting and degree of belief is at the heart of Bayesian
decision theory. There are good grounds for contesting its adequacy which I will not
discuss here — see Gillies (zooo, p. 55ff) for discussion.

For a book-length criticism of identifying this technical meaning with our general
understanding of ‘rational’, see Searle (zoo01).

I omit the denominator, see chapter =.1.2 on page 1y for a proper mathematical
discussion of Bayes' Theorem.
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that H is true. In models of language acquisition, it reflects how a learner
relates the input E to the possible hypotheses it can consider. P(H) is
called the prior and reflects which hypotheses are favored by the learner
‘a priori’. Bayes' theorem is often stated informally as

posterior o prior = likelihood

Dutch book arguments exist that prove that Bayesian updating is the
only ‘rational’ way of learning from experience.”

1.1.2.3 DBayesian Inference and evidential relations

Another closely related view interprets the posterior probability P(H |
E') as “the degree of support or confirmation that a piece of evidence F
confers upon a given hypothesis H" (Hajek, zo1z, p. 18). Particularly
popular in the philosophy of science (see Earman, 1gg2), like Dunbar
(zo13) I think that this ‘Logic Bayesian’ idea can explain very well what
kind of contributions Bayesian models make to the study of language
acquisition.

Under the ‘Logic Bayesian' approach, Bayesian modeling allows us
to draw out the ‘logical conclusions’ of specific assumptions about
learners and the input by performing posterior inference, i.e. determining
P(H | E) which, to repeat, quantifies how strongly the observations
support any particular hypothesis. Again, Bayes’ Theorem plays a
central role as it is the means by which one can calculate P(H | E) for
specific cases.

A formal justification for treating posterior probabilities in this way
has been given by Cox (1946) who argues that Bayesian updating is
the natural extension of deductive (logical) reasoning to situations in
which uncertainty is involved. At a very high level, A implies B can
be formalized as P(B | A) = 1.0 — assuming the truth of A, one is
100% certain of the truth of B; cases where A bears on the truth of B
without fully determining it can be handled by assigning probabilities
of less than 1.0, and the probability calculus takes on the role played
by rules of inference in logic. For more details, 1 refer the reader to the
discussion of Cox’s argument by Jaynes (2003, chapter 2) and Dunbar
(zo13, chapter 1).

In line with this, I view Bayesian modeling as a tool to address the
question what — as a matter of principle — can be learned from particular
observations given particular assumptions. Viewed like this, it can be
related rather directly to ‘poverty of stimulus arguments’ as [ will argue
in the next section. To conclude this discussion, however, it is worth
pointing out that the difference between motivating Bayesian modeling
through Dutch book arguments that show the ‘optimality’ of Bayesian

7 Strictly speaking, what is required for ‘rational’ learning is not use of Bayes” Theorem
but that one's updated belief be derived by conditionalization. The importance of
Bayes' Theorem stems from the fact that for many cases, it is used to perform this
conditionalization, although there are alternative ways to caleulate the required
conditional probability P(H | E). See Talbott (zo13) and Joyee (2008) for extensive
discussion.
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inference and the Logic Bayesian emphasis on the degree of support that
evidence confers on particular hypotheses is subtle and, as is usually
the case for conceptual issues like these, does not affect the practical
steps involved in Bayesian modeling. Indeed, the two views are not
mutually exclusive but can be viewed as supplementing each other. For
example, in addition to Cox's argument Logic Bayesians might point
to the Ramsey-De Finetti theorem to provide further support to their
choice of using Bayesian inference to draw out the logical conclusions of
a set of hypotheses.

BAYESIAN MODELS AND LEARNABILITY ‘Poverty of the Stimu-
lus arguments’, popularized by Noam Chomsky (Chomsky, 1930), are
arguments that, in their general form, derive the necessity of postu-
lating some piece of (linguistic) knowledge as innate on the basis of
the observation that a learner would be unable to acquire it from the
evidence it has access to. A famous example concerns the sensitivity of
linguistic rules to hierarchical rather than linear notions: how can infants
determine whether the rules of their language should make reference to
hierarchical notions such as ‘sibling in a tree’ rather than linear notions
such as ‘second word in a sequence’?

An explicit formulation of this argument is given by Perfors et al
(zo11), an article that exemplifies to a high degree the approach 1 argue
for. Without going into the specific details, the authors rephrase the
informal argument outlined by Chomsky as a Bayesian computational
model. This allows them to use Bayesian inference to directly quantify
how strongly a small corpus of transcribed child directed speech supports
different hypotheses. Surprisingly, they find that — despite Chomsky's
informal argument to the contrary — the ‘stimulus is rich enough’. The
input supports the hypothesis that there are hierarchical structures
much more strongly than that there are linear structures. Crucially,
Perfors et al. arrive at their result not by intuitive reasoning but by
drawing out the conclusions of a specific proposal in a principled way,
namely Bayesian inference.

Of course, by spelling out the argument in detail their work is easily
criticized as simply not having made the right assumptions. Indeed, Dun-
bar (zo13) discusses at length the many ways in which these assumptions
are lacking. In a sense, this is the general ‘problem’ of computational mod-
els to which I alluded above — the requirement of being explicit may force
one to make questionable assumptions which makes it easy to contest
the importance of any findings based on the model. Yet it is important
to realize that in the absence of explicit assumptions, there is no real
argument to begin with. In the slightly modified words of Partha Niyogi,
“for [computational] models the assumptions are more questionable but
the conclusions are more reliable — for [intuitive] models, the assumptions
are more believable but the conclusions more suspect” (Nivogi, zo06,
P- 39)-

If Perfors et al.’s way of filling in the details is not the one intended
by Chomsky and colleagues, the proper reply is not to dismiss Bayesian
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modeling, Rather, the argument should be made sufficiently precise so
that it can be properly evaluated.

An alternative way of criticizing this work is to argue that, even if
Bayesian inference may be able to draw the right conclusions from the
input, humans are incapable of performing this kind of reasoning. While
this may well be the case, in the absence of concrete evidence that
humans are, in principle, incapable of this kind of reasoning, it is not a
particularly convincing move. Moreover, in so far as Poverty of Stimulus
arguments are supposed to speak on the logical question of language
acquisition, i.e. what is learnable as a matter of principle, the question
whether or not humans are capable of performing Bayesian inference is
irrelevant.

To summarize, | take Bayesian modeling to offer a principled frame-
work to address learnability issues, answering questions of the form “what
kinds of conclusions can be drawn from what kinds of input”.

This highlights an important point of difference between Bayesian com-
putational models and other computational models. Bayesian models are
not intended as claims about the actual mechanisms employed by human
infants. In the terminology introduced by Marr (1g82), Bayesian models
are at the computational rather than the algorithmic level of description:
no assumption about humans actually being Bayesian reasoner’s are
required for these kinds of analyses, as they concern the logical question
of what provides evidence for what, given specific assumptions, rather
than the psychological question of how infants actually acquire their
language. Another way of putting this is that Bayesian computational
models are tools to study how specific assumptions learners can make
interact with specific kinds of inputs available to them; not scientific
hypotheses about what human learners actually do.

Yet, it is wrong to conclude from this that Bayesian modeling is
completely disconnected from and irrelevant to concrete questions about
human learning. Both successes and failures of specific models can be
taken as evidence for and against the assumptions built into these
models. If something cannot be learned from the input given particular
assumptions but we have evidence to believe that it is learned, something
about the assumptions or the specification of the input is wrong as a
matter of logic. On the other hand, if something can be learned from the
input given particular assumption, this demonstrates that, as a matter
logie, the assumptions suffice to acquire this kind of knowledge. This
is precisely the logic of Poverty of Stimulus arguments, and one could
even argue that — assuming Bayesian inference is the proper extension of
logical inference to reasoning under uncertainty (as suggested by Cox's
argument) — Bayesian modeling is the framework which should be used
to properly evaluate these arguments. Personally, | advocate the weaker
position that Bayesian modeling is one framework which can be used to
properly evaluate these kinds of arguments; although currently, I am
not aware of an alternative framework that could fill this role.
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I now turn to a discussion of the particular problem discussed in this
thesis, word segmentation. First, | define the problem and then illus-
trate how computational modeling can contribute to understanding how
infants solve it. To this end, I briefly review prior work and then give
a brief summary of the research presented in this thesis, providing a
high-level overview of its contributions.

1.2.1  The word segmentation problem

Word segmentation is the problem of “breaking up |[...] the essentially
continuous stream of speech into morphemes and words” (Brown, 1973,
p. 26i5). This is among one of the earliest problems human language
learners have to address as most aspects of their language such as the
morphology, syntax, or semantics presuppose word- or morpheme-like
units.

Language acquisition research has made several findings that are
highly suggestive of what kind of strategies infants may use to solve the
segmentation problem. For example, Saffran et al. (1996) demonstrated
that at the very young age of 8 months infants are sensitive to the tran-
sition probabilities between syllables and use these statistics to segment
words in artificial language experiments, suggesting that distributional
learning plays an important role.

Relatedly, Jusczyk et al. (19g3) showed that stressed syllables are
treated by English learning infants as cues for the beginnings of words
and Mattys et al. (19gg) provided evidence that infants are sensitive to
the correlation of particular consonant sequences with word beginnings
and ends, suggesting that stress and phonotactic cues are exploited by
infants to perform segmentation.

As argued above, the contribution of computational modeling consists
in providing a testing ground for proposals made by psycholinguists by
first making a proposal explicit enough to be implemented and then
evaluated, providing evidence for or against particular proposals.

1.2.2 The computational word segmentation problem

Whereas human infants have to segment actual speech, following previ-
ous work (Brent and Cartwright, 1996; Brent, 199q; Goldwater, 2o07;
Goldwater et al., zoog) | make the simplifying assumption that what
is being segmented is a discrete sequence of phonemes. For example,
the utterance “you want to look at the book™ will be represented as the
phoneme sequence

ValaWaashatatan a8alafanabavak

where each triangle indicates a possible boundary position. The goal
of word segmentation is to decide which of the possible word boundaries
are real word boundaries. The ‘correct’ solution is
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ValaWaaanatataugs.iud.0,bu,k

where each black triangle indicates a word boundary. This way of
formulating the segmentation problem abstracts away from particular
issues such as the acquisition of the phonemic inventory which, to some
degree, happens jointly with early segmentation (Clark, zoog, pp. 50—
62). And it additionally assumes, idealizing a fair bit, that the infant's
perception of the input is infallible and the pronunciation of a word
does not depend on the context.

While some work has tried to address some of these simplifying as-
sumptions, the results suggest that at the current stage, making these
idealizations is the only way forward. For example, Jansen et al. (zo13)
found that current unsupervised speech technologies yield very noisy
‘categorical percepts’ of spoken speech in which ne werd is ever tran-
scribed twice in the same way. Thus, there literally are no distributional
cues about words in these transcripts, and applying segmentation models
to this output yields essentially chance performance.

On the other hand, recent work tries to address the issue of pronuncia-
tion variation, see Elsner et al. (zo12), Elsner et al. (zo13) and chapter 6
of this thesis. While this kind of work is important in showing how, in
theory, variation can be handled by segmentation models, there is a host
of unresolved empirical questions about how infants actually do treat
different kinds of variation, raising the question how the results of these
models ought to be interpreted.

In summary, then, I believe that at the moment the idealized formula-
tion of the segmentation problem as adopted in virtually all work (Brent
and Cartwright, 19g6; Brent, 1ggg; Venkataraman, zo01; Yang, zoo4;
Goldwater, zoo7) provides the most productive setting in which compu-
tational models of word segmentation can be studied.

1.3 FRIOR WORK AND MODELING RESULTS

I summarized some core findings about word segmentation as performed
by human infants above. Computational modeling has made a host of
contributions that relate to different of these proposals. For an excellent
review of prior work, I point the reader to Daland (zoog, chapter 1).
Here, I briefly summarize some results which I take to illustrate nicely
the kinds of contributions that can be expected from computational
modeling,

1.3.1  Models using local statistics

Saffran et al. (1g96) provided experimental support for the idea that
yvoung infants are sensitive to local statistics such as the transition
probability between syllables and seem to segment units from speech
according to these statistics. Briefly, the idea is that for syllables which
form a word, the conditional probability of the second syllable given the
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first tends to be much higher than for syllables which do not form part
of a word.”

This suggests that simple statistics defined over adjacent segments
in the input may form the basis for word segmentation. In addition
to (or instead of) the probability of the following syllable given the
previous one, one could also imagine statistics such as pointwise mutual
information between adjacent syllables to work well (Swingley, zoo5).

Computational models make it possible to evaluate a wide range of
different proposals of this kind on actual child directed speech. To give
one example, Yang (zoo4) implemented a learner that uses transitional
probability in the way proposed by Saffran et al. (1996) and evaluated
it on a huge corpus of child-directed speech, comprising 226, 178 syl-
labified words. This evaluation showed that, when applied to actual
child-directed speech rather than the artificial languages used in Saf-
fran et al. (19g6)’s experiments, the segmentation results of the simple
transitional probability learner are surprisingly low — only 42% of the
words it posited were actual words, and it only identified 23% of the
actual words of its input. Of course, this finding does not invalidate the
experimental result of Saffran et al. (1996) that infants are sensitive
to transitional probabilities. But it suggests, as Yang (2o04) argues,
that for successful word segmentation of real language more than mere
sensitivity to transitional probability is needed.

A different class of local statistics models was motivated by the
finding of, among others, Mattys et al. (19gg) that infants are sensitive
to phonotactic properties of their language. One way to implement a
model that exploits phonotactic regularities is by identifying pairs of
phonemes — diphones — which occur never or with very low probability
inside of any word. To illustrate, Daland and Pierrehumbert (zo11)
contrast the diphone /p d/ with the diphone /b a/: the latter occurs
very frequently inside words whereas the former does not.

Extending this idea, word segmentation can be viewed as the task
of identifying those diphones which almost never occur inside of words
and posit boundaries between them — this is, at a high-level, the idea of
Daland and Pierrehumbert (2011)’s Diphone-Based Segmentation model
Using a computer implementation of their model, they demonstrate that
a phonotactic segmentation strategy is effective for English. Moreover,
their model shows that the relevant phonotactic knowledge of which
diphones tend to occur at word junctures and which don’t can be
acquired jointly with segmenting the input — in particular, knowledge
of utterance boundaries is sufficient to determine some phonotactic
expectations which allow first boundaries to be identified, resulting in
an incremental refinement of the phonotactic knowledge.

Interestingly, Daland and Zuraw (zo13) found that the same model

does not perform well on Korean data, raising the important question
what kinds of phonotactics a language needs to exhibit to be useful for

A very early formulation of the idea that transition probabilities can be used to
discover linguistic units is Harris (1g955). Harris, however, viewed his proposal as
merely a procedure that could be used by linguists to analyze data rather than a
suggestion about how infants may discover these units.

11
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segmentation; or, turning the question on its head, which other ways of
implementing a model that exploits phonotactic regularities there are,
and whether these strategies would work for both English and Korean
(and, of course, any other language).

With this brief review of local statistics learners, | move towards
lerical models, the kind used in this thesis.

1.3.2 Lerical models

Unlike the models just discussed, lexical models do not simply try to
identify word boundaries — they also attempt to build a lericon, that is,
a list of words of the language.

In these kinds of models, utterances are segmented by trying to
match words already in the lexicon against the unsegmented input, thus
providing a segmentation in terms of known and novel words — the
novel words simply are those parts of the utterance which could not be
matched. To illustrate, imagine you already know that “dog” is a word.
Then you can ‘segment’ the utterance “thedogbarks” by spotting “dog”
which yields “the dog barks”. In the process, you have learned two novel
words, “the” and “barks”, which will be added to the lexicon and can be
used to segment novel utterances.

This seems to raise a chicken-and-egg problem as, initially, one can-
not assume knowledge of any words. Yet, the ‘recession segmentation’
algorithm proposed by Yang (zoo4) and further refined by Lignos (zo1z)
demonstrates that a simple strategy can solve this problem in practice:
when incrementally processing the input, initially treat every utterance
as a word. At some point, there will be a short utterance which will occur
again as part of a longer utterance; for example, a single word utterance
such as “doggie!” or a short phrase such as “stop it!". At this point, the
larger utterance can be broken into smaller units which, themselves, can
be used to analyze more novel utterances and identify more short units.

By implementing this idea in an algorithm and applying it to huge
corpora of child-directed speech, Yang (zo04) and Lignos (zo12) were
able to demonstrate that this simple strategy performs segmentation
surprisingly well.

An alternative line of work treats lexicon identification and segmenta-
tion as a joint inference problem in a probabilistic setting. This approach
originated in Brent (1ggg) and, in the Bayesian formulation of Goldwater
(zoo7), is the approach taken in this thesis. The specifics of these kinds
of models will be discussed in chapter =. Here, I point out some of the
interesting findings made by prior work using this approach.

A core finding of Goldwater (zoo7) which will be discussed in more
depth again in chapter 4 is that unless dependencies that exist between
the actual words in an utterance are taken into account, lexical segmen-
tation models will tend to undersegment the input. To illustrate, in an
utterance such as “the doggie barks” the words are not independent —
intuitively, the probability of “doggie” following “the” is much higher than
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that of “the” following “doggie”, as is evident from noting that “doggie
the barks” is not an English sentence.

What Goldwater (2007) demonstrated is that if a model embodies the
assumption that words are independent, then it will prefer segmentations
in which sequences of words which exhibit strong dependencies will be
analyzed as single words. In the example, the model is likely to segment
“thedoggie barks” rather than “the doggie barks". Moreover, Goldwater
(zoo7) showed that a model that explicitly tries to not only learn a
lexicon and infer segmentations but also tries to learn the probabilities
with which each word follows each other word (Bigram probabilities)
is less prone to undersegmentation. This illustrates how modeling re-
sults can establish a relationship between an error pattern attested in
infant segmentations such as undersegmentation (Brown, 1g73; Peters,
10933) and independence assumptions about words, a particular kind
of assumptions a learner can make. This does not commit us to the
idea that infants actually perform Bayesian inference — rather, we use
the Bayesian model to determine what “follows’ in a logical sense from
particular assumptions given data.

Another interesting result is that of Fourtassi et al. (2013) which
directly addresses the question why the performance of a segmentation
model might differ between languages. They find that Japanese exhibits
a high degree of ‘segmentation ambiguity”: many of the ‘gold’ words in
the Japanese input can occur as parts of other words. Consequently,
even considering only segmentations in which actual Japanese words
occur, there are thousands of possible segmentations for utterances of
medium length, a striking contrast to English. Consistent with this
observation, they show that a successful Japanese segmentation model
requires the ability to handle subtle word-to-word dependencies to
distinguish ‘correct’ from ‘incorrect’ segmentations. In addition, they
suggest that additional cues such as prosodic breaks may play a more
important role in languages such as Japanese than for languages like
English, again raising a concrete question that can empirically be tested
through psycholinguistic experimentation.

What is common to all findings reported is that they raise questions
for and bear on findings of psycholinguistic experiments. Yang (zo04)
demonstrated that, by themselves, transitional probabilities do not per-
form well on real language, highlighting the importance of additional
cues; Daland and Pierrehumbert (zo11) and Daland and Zuraw (zo13)
raise the question which strategies of exploiting phonotactic regulari-
ties may be viable cross-linguistically; Goldwater (zoo7) illustrates the
importance of taking into account word-to-word dependencies in segmen-
tation, raising the question what kind of assumptions (if any) infants are
making; and Fourtassi et al. (2013) suggest that segmentation ambiguity
of a language is a good indicator for how well a lexical segmentation
strategy performs on it, raising the question what additional cues are
used by infants to solve the ambiguity problem.

With this discussion, | conclude my introductory brief review of prior
work and conclude the chapter by providing an outline of the remaining
chapters, giving a high-level overview of the contributions of the thesis.

13
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1.4 OUTLINE OF THE THESIS AND CONTRIBUTIONS

The thesis comprises by and large the papers on word segmentation
which [ published as a first author during my candidature.” The papers
have been edited to form a single narrative that addresses a set of related
questions about word segmentation and Bayesian computational models
of word segmentation; thus, cross-references to different chapters have
been added and at several points, additional discussion and explana-
tion has been included. To enable independent reading of the content
chapters, | have kept the high-level introductory exposition contained
in each paper; rather than providing more detailed explanation of this
material in each individual chapter, I include a detailed discussion of
the mathematical and formal background in chapter =.

Chapter = is not based on a previously published paper, and it provides
an extensive and in depth review of the Unigram model and Bigram
model of Goldwater et al. (zoog), as well as an introduction to the
adaptor grammar framework (Johnson et al., zoo7b) used in this thesis
that emphasizes their connection to models defined without using any
kind of formal grammar. While largely reviewing and presenting prior
work, this chapter makes several novel contributions.

Thus, the presentation of the models emphasizes the difference between
the collapsed representation used for inference on the one hand and
the model which is defined in terms of (draws from) Dirichlet Process
on other hand, providing a clearer understanding of non-parametric
word segmentation models. Also, I provide a more detailed discussion of
the popular Gibbs sampling algorithm of Goldwater et al. (zoog) than
currently exists in the literature and extend the models by adding a
possible word constraint and hyper parameter inference. These extensions
allow me to demonstrate that, pace Goldwater et al. (zoo0q), the choice
of the ‘lexical model’ which encodes prior expectations about words has
a huge impact on segmentation performance if hyper parameters are
inferred rather than manually set.

Chapter 5 proposes two incremental particle filter inference algorithms
for the Unigram and the Bigram model of Goldwater et al. (zoog). 1
demonstrate that and explain why incremental inference for word seg-
mentation models is challenging and that, in general, performance of
incremental and batch algorithms differs. Thus, the possible word con-
straint discussed in chapter = proves to be more important in incremental
than batch inference; and particle filters that are allowed to ‘revise’ ear-
lier analyses do not only perform better than particle filters that do not;
in some circumstances they identify more accurate segmentations than
the batch algorithms.

A critical discussion of my findings cautions against a currently popular
“less is more” (Newport, 19go) reading of these kinds of results (e.g. Pearl
et al., zo10; Phillips and Pearl, z015). I propose a different interpretation
in line with the Bayesian approach outlined in the introduction and

I do not include discussion of my work on semantic parsing (Borschinger et al., zo11)
and joint work on word segmentation to which I contributed as second or third
author (Fourtassi et al., zo1g; Jansen et al., zo1g; Synnaeve et al., zo14).
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show how they raise questions about models rather than provide answers
about mechanisms, leading to the questions addressed in chapter 4.

Chapter 4 examines the relationship between input size and perfor-
mance for a variety of models on a large amount of longitudinal data.
It performs a large scale evaluation of models that make different as-
sumptions about the relations between words in an utterance and the
internal structure of words. The experiments identify a previously un-
noticed ‘overlearning’ property of Bayesian word segmentation models:
counter-intuitively, having access to more input results in a degradation
of segmentation quality due to an increasing preference for undersegmen-
tation. I discuss which aspects of the input and the model are responsible
for this phenomenon which, to some extent, also explains chapter 3's
finding that certain incremental algorithms perform better segmentation
than batch algorithms. [ show that Johnson (zo08b)’s idea of collocations
virtually solves the overlearning problem for a large corpus of roughly
25, 000 utterances and that, in line with the findings of chapters = and
3, stronger constraints on possible words are important for models that
capture word-to-word dependencies to perform well.

Chapter 5 explores how stress cues which have been argued to play
an important role in infant segmentation of English can be added
to Bayesian word segmentation models. In line with developmental
evidence, the results indicate that stress cues aid segmentation. Going
beyond previous modeling work in this direction, it demonstrates that
phonotactic and stress cues as well as overall amount of input interact.
The results also show that a substantive constraint on possible words
previously argued to explain the usefulness of stress cues (Yang, 2004) can
be acquired jointly with performing segmentation rather than having to
be built in; and that the models | present correctly identify the dominant
stress pattern from the data.

Chapter 6 suggests a way of adding phonological rules to Bayesian
word segmentation models. In particular, it studies the phenomenon
of /t/-deletion and presents a two-level model that infers underlying
and surface forms of segmented words. Experimental evaluation shows
the importance of context in determining whether or not a variable
rule applies, in line with linguistic work on the phenomenon; and that
naturalistic data contains subtle complexities that may not be captured
by summary statistics of the input. This illustrates the need to not only
pay close attention to the assumptions built into the model but also to
those that went into preparing the input on which models are evaluated.

Chapter 7 concludes and suggests several directions in which the
research presented in the thesis can be extended.
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BACKGROUND

This background chapter provides a detailed review of the mathematics
for the kind of models explored in this thesis. To this end, I briefly review
core ideas from probability theory and define the notation used in this
thesis. [ will then introduce generative probabilistic models, leading up
to a detailed recapitulation of the Unigram model and Bigram model
for word segmentation (Goldwater, zoo7; Goldwater et al., zoog).

The presentation of these models also discusses the relationship be-
tween the collapsed representation under which inference is performed
and the generative model in terms of the Dirichlet Process. In addi-
tion to explaining the standard Gibbs sampling algorithm originally
introduced by Goldwater (zoo7) in detail, | show how hyper parameter
inference can be performed jointly with segmentation. This leads to a
novel finding about the role of the base distribution which encodes prior
assumptions about possible words: contrary to previous experimental
results by Goldwater et al. (zo0g), the base distribution does influence
the segmentation performance of the Bigram model when the hyper
parameters are inferred rather than manually set.

Finally, I present the adaptor grammar framework (Johnson et al.,
zo07b) which is used in chapters 4 and 5. Adaptor grammars allow
for the easy specification of a huge class of Bayesian non-parametric
probabilistic models through (probabilistic) context-free grammars.

2.1 BASIC REVIEW OF FROBABILITY THEORY

A random variable X is a variable that takes on values on some set
&, called the range of the random variable.” I write P(X = x) for
the probability with which X takes on value r € &, and P(X) for
the distribution function of X. If the context makes clear the random
variable, I simply write P(z) instead of P(X = z). If the range of a
random variable X is finite or countably infinite, it is called a discrete
random variable. In this case, the distribution function P{X) has to
satisfy

0<PX=1x)<1

Y PX=z)=1

red

If the range of a random variable © is uncountably infinite, we call it

a continuous random variable and require of P(8) that

0 <P(© = 6)
f P(© =6)df =1

1 This brief review closely follows that of Murphy (zo12, chapter =.2).
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where the integral is over the range of ©.

I use capital letters X, Y, ... for discrete random variables, capital
greek letters ©, @, ... for continuous random variables, and small letters
x,y.8,@,... for the concrete values a random variable can take.

I write X ~ F to indicate that a random wariable X is distributed
according to some distribution F. For example,

X ~ Bern(0.3)

is equivalent to

P(X =z;)=03
P(X =z9) =07

where x1, x2 are the two different values X can take. The ‘~’ abbre-
viates “is distributed according to”, and the entire expression X ~ F
can be read as “X is distributed according to F". An overview of sev-
eral standard distributions which will be used throughout this thesis
is given in table 2.1 which also provides some more examples for the
“distributed-according-to” notation.

2.1.1  Marginal, joint and conditional distributions

A distribution over a single random variable is called its marginal
distribution. A distribution over multiple random wvariables is called
their joint distribution. For discrete random variables X, Y, their joint
distribution has to satisfy

and for continuous random variables 8, @
0<P(O=08®=79)
][P[E}:E?,ﬂ):c;&]dﬂdq&:]

This extends in the obvious way to distributions over more than two
random variables. Joint distributions over both discrete and continuous
random variables can also be defined. To illustrate, a distribution over
discrete X,Y and continuous © has to satisfy

0<P(X=2Y =y4,0=0)

] Y PX=2Y=y0=0d0=1
reF gyl



2.1 BASIC REVIEW OF PROBABILITY THEORY

Given any joint distribution P(X,Y), the marginal distribution of
any of the random wvariables can be derived through marginalization:®

PY =y) = Eze.f P(X ==z,Y =y) if X is discrete
[P(X =2Y =y)de if X is continuous

The conditional distribution of X given Y is defined as
P(X =zY =y)
PY =y)
One can decompose any joint distribution P(X;,...,X,) into a prod-

uct of a marginal and several conditional distributions using the chain
rule:

PX=z|Y=y)=

P(Xy,..., Xy) = P(Xq) [ P(X: | X1:4)
i=2

where I write X ;. to abbreviate a sequence of random variables
X;, X 41,-.., X and use boldface to indicate sequences.

2.1.2 Bayes' Theorem

Using the ideas introduced so far, the following equality can be derived:?

P(H = h,D = d)
P(D = d)

_ PH=hP[D=d|H=h)

" YwexPH=W)P(D=d|H=H)

P(H=h|D=d)=

This is known as Fayes’ Theorem and is central to this thesis because
it relates Data and Hypotheses. Its importance stems from the fact
that it allows us to express P(H | D), called the posterior probability
distribution over H given D, in terms of P(H), the marginal or prior
distribution of H, and P(D | H), the conditional probability of the data
given the hypothesis also called the likelihood of H.*

The denominator P(D = d) is the marginal probability of d, also
called the evidence. We can calculate it using marginalization although,
in most cases, performing the required sums or, for continuous random
variables, integrals is infeasible. Luckily, P(D = d) is independent of h
as it marginalizes over all possible values for H and we can ignore it if
we are only interested in the posterior distribution up to proportionality.
Thus, one often sees Bayes’ Theorem abbreviated as

Posterior oc Prior x Likelihood

2 For joint distributions over more than two random variables, marginalization also
allows one to derive the joint distribution of any subset of the variables.

5 For simplicity, I only consider the case of discrete random variables.

4 It is common to refer to P{D | H) as the likelihood of the data. However, we
follow MacKay's recommendation to “[n|ever say ‘the likelihood of the data’ Always
say ‘the likelihood of the [hypothesis|". The likelihood function is not a probability
distribution” (MacKay, zoo3, p. 29).
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2.2 GENERATIVE PROBABILISTIC MODELS

2.1.3 Dependencies between random variables

Two random variables X and Y are said to be independent if and only
if

P(X,Y) = P(X)P(Y)

A joint distribution over independent random variables can be defined
through their marginal distributions. This simplifies the definition as,
rather than specifying | & | x |#'| probabilities for all possible assignments
of values to X and Y, we only have to define | 27| + |#'| probabilities.

A weaker version of independence is that of conditional independence.
X and Y are said to be conditionally independent given £ if and only if

P(X,Y | Z)=P(X | Z)P(Y | Z)

Apgain, such an assumption allows us to specify a conditional joint
distribution over two variables using fewer parameters. Thus, conditional
independence and independence assumptions allow us to define joint
distributions in terms of “small pieces” (Murphy, zo12, p. 32), i.e. several
distributions over (possibly singleton) subsets of all variables. This idea
forms the basis of generative probabilistic models.

2.2 GENERATIVE PROBABILISTIC MODELS

A generative probabilistic model (Koller and Friedman, zoog) defines a
joint distribution over a set of random variables by specifying a generative
process through which an assignment of values to all random variables
can be generated. Intuitively, a generative process is an algorithm that
gives rise to some data by randomly determining the value of the random
variables in a way that reflects a specific set of conditional independence
assumptions.

Concretely, let us imagine that we want to generate a sequence of
words coming from some finite alphabet #°. We view this as determining
the value of a sequence random variable W = Wy, ..., W, and assume
the following generative process. First, sample parameters © to get a
specific categorical distribution over #. Then, sample the length of the
sequence N that is being generated. Finally, generate the value for the
sequence random variable by generating the value for each of its ele-
ments W; by making an independent draw from Cat(8). Using notation
just introduced, this generative process can be concisely specified by
equations 2.1 to 2.3 in figure =.1.

A vwisual representation of the steps in a generative process is given
by a directed graphical model (Koller and Friedman, zooq). The directed
graphical model corresponding to equations 2.1 to 2.3 is also given in
figure =.1. It has a node corresponding to each of the random variables,
and an arrow going from a node labeled X to a node labelled Y if and
only if, according to the generative process, we sample the value of ¥
conditional on a specific value of X. Thus, there are arrows going from
O to W; and, in so far as the number of W; depends on the value of N,

1
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e o 8 ~ Dir(ax) (z.1)

N ~ Geom(0.5) (2.2)
6 W;|N,©@~Cat(®@) forl<i<N
(2-3)

Figure 2.1: A probabilistic model for a sequence of words over some finite
vocabulary. N is the number of words in the sequence, © a con-
crete distribution over words, and each W, on of the words in the

SOULeToe.

from N to Wi. I am using plate notation (Koller and Friedman, zo0g,
p. 216ff) to compactly represent all the Wi,..., Wy that make up the
sequence random variable W. A plate is bax with subscript n in the
lower right corner which indicates that there are n copies of the nodes
inside the box.5

The directed graphical model represents the steps in the generative
process in the sense that we can determine values for all nodes by
beginning ‘at the top’, sampling values for the nodes that have no
parents, and move our way down to the nodes that have no children, at
each step sampling values for all the nodes whose parents’ values have
already been determined.® Thus, we can read off the graphical model
that we first generate N and © before generating each W; conditional
on B,

Coming back to the goal of defining a joint distribution, the generative
process provides a way of breaking up the joint probability distribution
over all the variables N, © and W = Wy, ..., Wy using the distributions
that define the generative process. Here,”

[er|
P(©=0,W =w)=P(©=0)P(N = [w|) [[P(w: |8) (24)
i=1
]_'|: !c_ll1 m]' ﬂ“ -1 || d
0.5 B,
1% T(es) 1_11 l_]1

I call an assignment of values to all random variables of a model a
model state. The state space of a model is the set of all possible states.

From the joint distribution over all random variables defined by a
model, one can derive “the posterior probability of some variables given
evidence on others” (Koller and Friedman, zoog, p. 5). This is called
performing posterior inference and, essentially, corresponds to learning
about plausible values for some variables from the evidence.

For example, we can treat W as observed and compute P(© | W)
which is the posterior distribution of © given W. To explicitly indicate

5 In figure =.1, the number of copies is itself a random variable V.
6 This is also known as ancestral sampling.
7 As N has to be identical to the length of W, I do not explicitly mention it on the

left-hand side.
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which variables one wants to infer posterior distributions for and which
variables one considers as observed, the nodes corresponding to the
observed variables are shaded in a graphical model as is done for W;
and N in figure =.1. I call the shaded random variables observed and the
unshaded latent variables. Generally speaking, then, Bayesian inference
is the task of inferring the posterior distribution over latent variables
given values for the observed ones.

2.2.1  Inference under a model

I now illustrate the concrete inference task of determining P{© | W =
Wi ), the posterior distribution over © given a specific sequence of
observed words wi.,. Unlike the joint distribution, we cannot directly
read off this posterior distribution from the model definition but we can
derive it using Bayes' Theorem:

PO =0 |W =wi.,) x Pwin | 6)P(6)

= (][ P(w: | 8))P(8)
i=1

o< ( IT 65" IT 6™
w/ e # w' ¥

x ( Eigw",wj+amr—l}
w]’;[V

o Dir(e + c(w))

where | write C(z, w) for the number of times with which the specific
value x occurs in a sequence of values w. c(w) is short for an entire
vector of counts that for every w’ € #° gives the number of times with
which w' occurs in w.

The first line is an application of Bayes’ Theorem and every following
line uses the independence assumptions of the model, the definition of
the resulting distributions (see table 2.1) and algebraic manipulation
to simplify the expression. The end result is, up to proportionality, a
Dirichlet distribution with parameters e + c(w). This is because this is
a conjugate model which “informally [means| that the prior |...] has the
same form as the likelihood” (Murphy, zo1z, p. 287).

Here, the Dirichlet distribution over © (the prior) and the categorical
likelihood P(W = w | ©) have the same form; hence, the posterior
distribution P(© | W = w) will also have the same form and, just like
the prior, is a Dirichlet distribution:

© | w ~ Dir(a + c(w))

In words, conditional on w, 8 is distributed according to a Dirichlet
distribution with parameters e + C(w), i.e. the sum of the prior param-
eters and the count vector for the observed data. One also says that the
count vector is a sufficient statistic for the data: if one knows the count
vector corresponding to a sequence of observations, that completely
sums up all the information contained in these observations.

23
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For a rigorous but accessible discussion of conjugacy, see Murphy
(zo1z, chapter g).

2.2.1.1 Point estimates and posterior predictive distribution

The posterior distribution sums up everything that, under the particular
assumptions built into the model, can be learned about © from any given
sequence of words w. Yet, it is often useful to summarize a posterior
distribution by a single representative value. Two point estimates which
are commonly used for this are the MAP estimate and the mean.

The MAP estimate, short for marimum a posteriori estimate, is
the single most probable value according to the posterior distribution.
Staying with our current example, it is defined as

6= a.rgm;txp[ﬂ' | w)

While the MAP estimate has an intuitive interpretation as the most
probable value for a random variable according to its posterior distribu-
tion, it also has shortcomings. For one thing, some distributions do not
have a mode in which case the MAP is undefined. Secondly, the MAP
may be uncharacteristic of the full posterior distribution if most of the
probability mass is spread over a very large range of plausible values (see
Murphy, zo12, p. 150). For most cases, these problems are addressed
by considering the erpected value of a random variable according to its
posterior distribution, the posterior mean:®

ﬂ:LEP(ijdﬂ

This is, essentially, a weighted sum in which each particular value is
considered according to its posterior probability. The big advantage of
the posterior mean is that it averages over the posterior and, in cases
where the posterior is very flat, provides a more representative estimate
of what a ‘typical’ value looks like.

Even though identifying the MAP and mean of a posterior distribu-
tion generally involves solving non-trivial maximization or integration
problems, in cases where the posterior distribution has a known ana-
Iytical form such as the Dirichlet we can often calculate these values
analytically, see table =.1. In particular, for a Dirichlet distribution with
parameters o, the single most probable value #, for the probahility of
outcome z and its expected value 8, are

- Oy — 1
b=

Ezi(ﬂr' - 1:'
g, = 2

Ez‘ Cipf

A is shorthand for the set of all probability vectors (vectors whose values are non-
negative and sum to one) that the variable we integrate over, here 8, can take
oL
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The expected value arises naturally in the posterior predictive distribu-
tion which is used to predict the probability of the (n 4 1) observation
on the basis of the n previously made observations:

PWoss =w | wiy) = [ P(w|6)P(O] w;,)d0 =0,

_ C(w, win) + ty
EM(C(H.?I, wl:ﬂ-:l + ﬂ'\w‘}

Using the posterior predictive distribution corresponds to first de-
termining the posterior distribution of the parameter that governs the
sequence, here, P(© | wi.y,); and then using the expected value of this
posterior distribution as the basis of your next prediction.

(2.5)

2.2.2 Integrating out a random variable

The posterior predictive distribution also arises when a random variable
is integrated out or collapsed from a model (Liu, 1994).This is done if
some variables are not of direct interest and are only required for the
definition of the model.” For example, we may be interested in the model
only in so far as it generates word sequences — that is, rather than in
the full joint distribution P(©, W), we may primarily be interested in
the marginal distribution P(W). Recall that one can derive this from
equation z.4 by marginalization:

P(W =w,,) = L P(©=6,W = w,,)dd (2.6)

In this case, however, rather than trying to compute this integral
directly, we can decompose the marginal directly using the chain rule
and repeatedly apply the posterior predictive distribution =2.5. Thanks
to conjugacy and the properties of the Dirichlet dlstrlhutlun, this can
be analytically computed as

P(wy.n) = Pwy) [ P(wi | wi4)
i=2
L3 zew 0z) 1—[ Ic(r, win) + ax)
PEEIEV C{E?wl:n} + Qz} F{Cr :I

(2.7)

where I' is the Gamma function, the real valued extension of the
factorial function n! = ([, )

['(n) = f " e *dx
0

In statistics, these kinds of variables are known as ‘muisance’ variables: “In many
problems there is no interest in making inferences about many of the unknown
parameters, although they are required in order to construct a realistic model.
Parameters of this kind are often called nuisance pammeters” (Gelman et al.| 2014,

p- G3).
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For the full derivation of equation 2.7, see Murphy (zo1z, p. 160).

Note that one can no longer factor P(wi.,) into [];_, P(w;). By
integrating out © we introduced dependencies among all the W; vari-
ables, and these variables were only conditionally independent given
©. However, despite these inter-word dependencies, equation 2.7 shows
that the order in which the words occur in the sequence does not affect
the probability of the sequence — the words are erchangeable: every
possible permutation has the same probability. 1 return to this point in
section =2.7.3.

2.2.3 Collapsed and uncollapsed model

Equation 2.7 shows how one can express equation =.6 without explicitly
mentioning & at all. Hence, one can consider 2.6 as corresponding to a
model whose state space only consists of all possible sequences of words,
i.e. a model which does not include a random variable © to begin with.
In this sense, integrating out © from the model in figure 2.1 gives rise
to a ‘collapsed model’ whose state-space is strictly smaller than that of
the ‘uncollapsed model’.

Every state of the collapsed model corresponds to a set of states under
the uncollapsed model. Here, a particular sequence of words w which is
a single state for the collapsed model corresponds to the set of states
{{w,8)} where # ranges over all possible values of &.

While this is a rather conceptual point, it will be useful in under-
standing the relation between the non-parametric word segmentation
models that I now introduce and the Chinese Restaurant representation
under which the inference algorithms for these models operate, and 1
come back to it in section 2.3.3.

2.3 WORD SEGMENTATION MODELS

Word segmentation is the task of identifying a latent sequence of words
w=wy,..., Wy, w; €L+ that can account for an observed sequence of
segments 8 = §q,..., 8q, §; € L.

For example, letting s = (t, h, e,d, 0, g) we want to identify sequences
of words such as wy = the, ws = dog which, when concatenated, yield
the observed sequence. This can be cast as a probabilistic inference task
by defining a probabilistic model that generates sequences of words and
calculating the posterior distribution over these sequences given the
observed sequence of unsegmented segments.

If we assumed the words come from some finite vocabulary, the model
we just defined could be applied to this task: it defines a probability
distribution over all possible sequences of words over some finite vocabu-
lary, and consequently it assigns a probability to every possible sequence
of words that yields the observed sequence when concatenated. The
problem we are interested in, however, does not assume that we know the
lexicon beforehand, mimicking the kind of problem human infants have
to tackle when they acquire their first language: solving the problem of
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identifying the words which make up the lexicon of a language jointly
with identifying the “correct” segmentations of the unsegmented input.

One possibility is to assume a very large but still finite vocabulary
# , for example all elements of £* up to a certain length. Then, we can
try to infer a joint posterior over word sequences and the probability
distribution over these words, hoping that most of these ‘words™ will
be assigned probabilities close to 0 by all 8s that have high posterior
probability. '

A more elegant (and ultimately more efficient) approach is to account
for the infinity of the space of possible words and use a non-parametric
model, that is, a model that is defined by an infinite number of pa-
rameters. Goldwater (zooy7) proposed models based on the Dirichlet
Process (Ferguson, 1973), a generalization of the Dirichlet distribution
that can act as a prior on distributions with countably infinite support
in the following sense: every draw from a Dirichlet Process (DP) is a
distribution over a (possibly infinite) discrete set.

2.3.1 The Dirichlet Process

A DP is defined by a base distribution H which defines the possible
support for draws from the DP and a concentration parameter o that
controls how many distinct outcomes will be assigned non-negligible
probability by a draw from a DP. 1 write

G ~ DP(a, H)
X;|G~G

to indicate that & is drawn from a DP and that several X; variables
are distributed according to G. If H is a distribution with support ¢,
(7 is a distribution whose support is a (possibly infinite) discrete set
G C

A constructive way of characterizing & is through the stick-breaking
construction (Sethuraman, 1gg94). First, generate an infinite sequence of
probabilities 8. ~ GEM(a). The GEM distribution' is defined over
infinite probability vectors and favors vectors in which all but the first
few k components of @ are so close to 0 as to be negligible. The definition
of the GEM distribution makes use of the idea of a unit stick from which
smaller and smaller pieces are broken off, giving the construction its
name (Buntine and Hutter, zo10).

Essentially, this is the approach taken by Goldwater (zoo7, chapter 4) where the
distribution over possible morphological stems and suffixes is modeled as categorical
distributions over the 22,396 unique prefix and 21, 544 unique suffix strings that
oocur in the data set she considers. This is also the strategy underlying variational
inference for non-parametric models as in Cohen (zo11).

Equality holds in cases where #° is finite or countably infinite. If #° is finite, the
maoidel can equivalently be defined in terms of a Dirichlet distribution.

GEM is short for Griffiths, Engen and McCloskey (Pitman, zoob, p. G3)

27
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Then, draw an infinite number of atoms ;. from H, yielding the
possibly infinite but discrete set & which is the support of . Then, the
distribution P(X) for any X ~ G is

oo
P(X =z)=) 61t =z (2.8)
i=1

where 1[z = y] is 1 iff + = y and 0 otherwise. This is similar to
a categorical distribution except that we have to consider an infinite
number of possible outcomes and account for the possibility that multiple
atoms correspond to the same outcome. In this sense, the DP(a, H)
can be thought of as a generalization of the Dirichlet prior for infinite
distributions.

This constructive definition shows that & is characterized in terms of
an infinite number of parameters &1.00, Y., raising the question how
we can practically represent any individual G.*% One idea is to truncate
the infinite vectors # and 1 as is done, for example, in variational
approaches such as Cohen (zo11, chapter 6); this is very similar to
the idea of using a categorical distribution with a very large but finite
support which I briefly discussed above. I follow Goldwater (zoo7) and
Johnson et al. (zoo7b) and use an alternative solution that integrates
out G and uses the Chinese Restaurant representation.

2.3.2 The Chinese Restaurant Process

Consider the model defined by

G ~ DP(a, H) (2.9)
Xi|G~G (z.10)

that defines the joint distribution
P(C. X 1) = P(O) [ [(P(X: | ©)) (2.11)

This is similar to equation 2.4. However, in this case we cannot directly
work with this joint distribution because ¢ is an infinite object. Thus,
we integrate out (& from equation =.11, just as we integrated out 8 in
equation 2.6 to induce a distribution over only the X;:

P(Xy,...,Xn) = L P(@) [ P(X: | G)dC
i=1

As before, this can be simplified through successive application of
the posterior predictive distribution of X; given X 1;_1 which takes the
following form:
c(zr, ;1) + aH(x)

a+i—1

PX;=z|®1i1) = (z.12)

Also, note that the stick breaking construction is not a constructive characterization
of the DP itself but only for draws from a DP.
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The generative process induced by sequentially generating values
according to equation z.12 is called the Chinese Hestaurant Process
(CRP) and is commonly defined using the following metaphor:™* consider
the X; as customers waiting in line for a Chinese Restaurant with an
infinite number of tables. The assignment of each customer X; to a table
is recorded by a random variable Z;, and associated with each table j is
a dish or label L;.

The values for the sequences of random variables X, Z, I are gener-
ated as follows:

® for each customer X;
1. if

a) i =1, then Z; = 1, that is, the first customer sits at the
first empty table;

b) else, sample a value for Z; from

Tq-f—
n 1:i—-1

L N
P(Z; =k | z14-1) = { o1 if k< K(z)
s fk=K(z)+1

(z.13)

where K (z1; 1) = max(zq;_), Le. the number of tables
occupied by the first i — 1 customers; and nf = [{j | z; =
k}|,i.e. the number of customers already sitting at the kh
table according to the assignments in z. Thus, X; sits at
an already occupied table with probability proportional
to the number of customers sitting at this table, and at
the next empty table with probability proportional to o

2. if X; sits at empty table j, sample a value for L; from H;

3. set the value of Xj; to the value of L z,, that is, the dish served
at the table at which X; was seated. Hence all customers
sitting at a table have the same value.

This sequential sampling scheme induces a rich-get-richer dynamic for
table occupations: tables which already have many customers sitting at
them will more strongly attract new customers than tables with fewer
customers. o controls the overall number of tables that will be occupied,
with large values favoring many and small values favoring few occupied
tables.

An illustration is given in figure 2.2. In addition to the generated values
x, it shows the table indicators z and the table labels I (drawn directly
into the respective table). The probability of each seating choice is given
below each generated value, and the probability of the entire seating
arrangement is the product of the individual seating probabilities.

Note that the CRP does not define a distribution directly on sequences
of values @; rather, it defines a joint distribution over the table indicator

We are using the labeled Chinese Restawrant Process exclusively here. The original
CRP directly takes the number of a table as its label, generating distributions over
the natural numbers rather than arbitrary discrete sets.
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v Xy
x :\ﬂog cat ﬂog ‘aog
z= 1 2 1 3
H(cat H
P(x,z) =H(dog) ~ “7Z" T e

Figure 2.2: Nlustration of a Chinese Restaurant Process (CRP). There is
an infinite number of tables but only a finite number of them is

occupied at any point in time. Every table ‘serves’ a possible value
sampled from H, and all customers (black dots, corresponding to

random wvariables) sitting at a table take on the same value. The
first customer who sits at a table ‘orders’ by sampling from the base
distribution H, every consecutive customer does not need to order
again & is the sequence of generated values, and z captures the
‘spating-arrangement’, that is, it records for every random variable
at which table it was seated. Note that the CRP defines a joint
distribution over values and seating arrangements, not just over
sequences and values.

variables Z and the table label variables L, and each assignment z,1
uniquely determines a sequence of values x.*®

The mapping from z,l is generally many-to-one: to illustrate, in
addition to the specific seating arrangement in figure 2.2 the customers
corresponding to X; and X3 could have sat at their own tables or
the customer corresponding to X4 could have joined the other two
customers. All of these different seating arrangements correspond to the
same observation sequence . To my knowledge, there is no closed form
expression for the probability of an observed sequence of values x that

15 For models in which the base distribution of the Dirichlet Process is fixed, the Z and L

can be ignored and everything can be described only in terms of the X (see Goldwater,
2z007)). As this does only hold for one particular kind of model, T limit discussion
to the more general if slightly more complicated case. In particular, note that even
a Unigram model in which inference for the parameters of the base distribution is
performed needs to be described in terms of Z and L, see section 2.5.4.1.
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sums over all possible seating arrangements, but the joint distribution
of any seating arrangement can be analytically calculated as'®

P(Z=zL—1)= -\ BN H( !
(Z == —}—mg(“ W) —1))  (214)

This shows that the =, [ and, consequently, the @& are exchangeable — no
matter how we permute the sequence of generated values, the probability
assigned to the entire sequence is unaffected.

2.3.3 Relationship between the CRP, the DP, and De Finetti’s theorem

The CRP arises because rather than actually representing the distri-
bution &G ~ DP, we work with a collapsed model in which X; ~ G are
not independent (because of the dependency introduced by integrating
out &) but merely exchangeable. This introduces additional random
variables Z; and L; which represent a seating arrangement in place of
the collapsed . Thus, it is important to keep in mind that one can
study this model without using the CRP at all, for example by using a
truncated stick-breaking representation (Gelman et al., zo14, p. 552f).

To conclude this discussion, it is worth briefly mentioning De Finetti's
theorem (de Finetti, 1ggo) which provides an additional view on the
relationship between the CRP and the DP. The mathematical details of
this theorem go well beyond the scope of this thesis but, at a very high
level, De Finetti's theorem “establishes that any collection of exchange-
able random variables has a representation as a mixture distribution —
in general an infinite mixture” (Blei et al., 2003, p. 9g94).

Here, the sequence of exchangeable random variables are the X;
variables, and the (in fact infinite) mixture distribution is G as defined
in equation z.3.

More formally, de Finetti’s theorem states that for every exchange-
able sequence of random variables X;,..., X, there exists a (possibly
infinite) mixture distribution G such that, conditional on G, the X; are
independent and identically distributed (see Bernardo, 1996):

P(X1,...,X,) = fﬁp{xg | G)P(G)dG

i=1

The left-hand side corresponds to the joint distribution over X4, ..., X,
according to the CRP; the right hand side explicitly mentions the draw
from the DP which, however, is integrated out.

MNote that de Finetti's theorem also applies to the discussion of col-
lapsing in the simple model in figure =.1. In this case, equation =.7 is
the result of integrating over the distribution © which is distributed ac-
cording to a Dirichlet distribution. While in equation 2.7, the words are

Teh (zooba) does, however, derive a closed form expression for the marginal probability
of a restaurant with ¢ customers and £ tables, summing over all possible ways of
distributing customers across tables.
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O (®
O ~ Dir(a)

()
¥ ~ Beta(a, b)
e e G ~ DP(ap, Fex)
& ~ Beta(ap, ap)
")

9 W;|G~G
F; | ® ~ Bern(®)

n

5 7 C | W, F = Concat(W, F)

Figure 2.4: Description of the Unigram model for word segmentation. All
latent random variables except for Wy and F; will be integrated
out, resulting in a Chinese Restaurant Process representation of
the model. F; indicates whether or not W) is utterance-final C is
the actually observed sequence of unsegmented utterances which
is obtained by concatenating all words without spaces and, at the
end of utterances, indicating the presence of a boundary. © and T
parameterize the base-distribution Pay, see figure 2 4 o, o, a, b, ag
are hyper-parameters that parameterize the priors defined on the
model parameters; note that there are no nodes corresponding to
them because they are treated as ‘constants’ explicitly specified by
us, though see section 2.4 8

not independent (but merely exchangeable), conditional on the “mixture”
distribution Cat(8), they are independent as in equation =.4.

2.3.4 The Unigram model

The Unigram model (Goldwater, zoo7) assumes that a sequence of
W; variables is generated from a probability distribution over £+ (a
probabilistic lexicon &) that is drawn from a Dirichlet Process. The
model is defined in figure 2.3, and the base distribution Hgy is defined
in figure =.4 and discussed below.

Associated with each word W; is a variable F; which is drawn from
a Bernoulli distribution over {s,c} and which indicates whether W;
terminates an utterance (Stop) or is non-final (Continue). This is equiv-
alent to assuming a geometric distribution over utterance lengths with
parameter ¢ as in figure 2.1.%7

Integrating out G induces a CRP. This introduces additional random
variables Z; which indicate at which table the i word sits and L;
which indicate the type of all words that sit at the j** table. As was
pointed out by Teh (zoo6a), for inference purposes one does not need

Using a sequence of Bernouli-distributed indicator variables rather than explicitly
drawing the length of each utterance from a geometric distribution makes the
derivation of the required sampling equations easier.
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K" max(z) number of occupied tables in h
i|lzz=k} flg=w .
ni k i 2 H k w-customers sitting at table k
’ 0 if I, #w

n‘_’fk Hi|zi=k} =3, n;k customers sitting at table k
Kk

”i,- 3 -n‘::,j total number of w-customers
]
'IKh

nh nf‘i total number of customers
i=

n‘;;& c(s, f) number of utterance boundaries

Table 2. 2: Counts used to represent seating arrangements, and their relation
to table indicators z and table labels I. Note that we can completely
characterize a seating arrangement in terms of K® the number
of tables, and n" ,  the number of word customers sitting at each

w fer

table, as all other counts we require can be defined in terms of these
two counts. Also note that, for simplicity, we consider the counts of
word-boundaries to be part of h even though, strictly speaking, in
the Unigram model these counts do not correspond to customers.

to keep track of the actual table to which any individual customer was
assigned because “given the dish a customer eats, the actual identity of
the table at which the customer sits has no effect on the likelihood of
the data” (p. 17f). This is easy to see from equation z.14 which only
depends on the number of customers sitting at each table.

Hence, 1 follow Teh (zo006a) and define the probabilities required for
the inference algorithm in terms of the counts given in table 2.2 instead
of explicit values for the Z; and L; variables. I write h as shorthand for
all sufficient statistics for the conditional distribution in the Unigram
model under its CRP representation.

I now provide the conditional distributions that define the generative
process in terms of these counts.

h
=k ifk< K"
PWi=z2Z;=k|h)= oep+Hi— HE=

20l ifk=K" 41

(2.15)

As explained by table z.z, nik is the number of customers of type
x sitting at table k, and K" is the total number of currently occupied
tables. Marginalizing over Z; in this equation, we can directly derive the
predictive probability for the i** word which is just equation =.12 using
the slightly different notation:

ni + aoPex(z)
agp+i—1

P(W; =z | h)= (2.16)
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s: 0 6 ~ Dir(ax)
- e N ¥ ~ Beta(a, b)
start 0 = 1 = 2 | Py = Cat(0)
e:l—yp\_/ _/ =e
Fiiop = Bern(T)

Figure 2 4: Unigram phoneme distribution as Probabilistic Finite State Au-
tomaton. State 0 generates a phoneme s according to a categorical
distribution Cat{#). State 1 decides whether to generate the end
of the word with probability ¢ or whether to generate another
segment with probability 1 — ¢

Finally, the predictive probability for the utterance boundary indicator
is

P(F. — h_'il'::;g—l-ﬂn
(Fi=s| }—m (2-17)
P(F.=c|h)=1— P(F,=s|h) (2.18)

By sequentially sampling values for W; and F; using these equations
we can generate a sequence of utterances. Finally the observed sequence
of segments €., (which also includes observed utterance boundaries)
is generated by concatenating all words without spaces. This is achieved
by a deterministic function of the W; and F; random variables which 1
abbreviate with CoNCAT.

2.3.4.1 A base distribution over words

To complete the definition of the model, we need to specify the base
distribution Hex over X4. I use a slight extension of Goldwater (2007)’s
Unigram phoneme distribution that makes it possible to perform in-
ference for phoneme probabilities, rather than assuming a uniform
distribution over phonemes.

Figure =.4 shows a Probabilistic Finite State Automaton for this
distribution which is defined in terms of a distribution over segments
Fey (corresponding to state 0 in figure 2.4) and a distribution Fiiop
over {s,C} that determines the length of words (corresponding to state
1).*® The base distribution used in Coldwater (2007) and Goldwater
et al. (zoog) is a special case of this base distribution where, rather than
inferring Py and Fitop uniform distributions are used.

We collapse the random wariables ¥ and ©, conditioning on the
previously generated segments and words instead. Writing s for all

As is common, we describe Probabilistic Finite State Automata as Mealey Machines.
If the probability of transitioning from state t to ¢’ while emitting symbols s is p,
the arc going from t to t' will be labeled with s : p.
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previously generated segments and n,, for the previously generated total
number of words, the predictive versions of F,.g and Py are:

C(s,8) + s

Foeg(s| 8) = 2.1
Ql: I } I'El +Eg’eE Oy { 9]
Ty + @
Patopl:ﬂ | E,ﬂw} = |3|-|-—ﬂ+b {22’0]
8 —nyp+b
Pyop(C | 8,ny) = —I|.|5|r| Tath (2.21)

Both & and n,, can be derived directly from h — they only depend on
I, the table labels which are generated by the base distribution. This
is an instance of a hierarchical model in which the base distribution
probabilities are estimated not directly from the generated word tokens
W; but through ‘interpolating’ type and token frequencies Goldwater
et al. (zoo06).

2.3.4.2 A linguistically informed base distribution

While Goldwater et al. (zo0g) argue that the choice of the base distribu-
tion only has a minor impact on segmentation performance, a general
recommendation for Dirichlet Process models is to “construc|t] an in-
formative |base distribution| placing high probability on introducing
cluster near the support of the data” (Gelman et al., 2014, p. 552). Even
though word segmentation differs from typical applications of Dirichlet
Process models in that the relevant data — the words that make up a
segmentation — is latent, previous work in both psycholinguistics (Norris
et al., 1997) and computational modeling (Blanchard et al., 2o10) has
argued for a simple yet substantive possible word constraint to aid
word segmentation. Indeed I will show that Goldwater et al. (zoog)'s
observation needs to be qualified with respect to the Bigram model
below.

The simple constraint requires a possible word to contain at least a
single syllabic element (commonly a vowel, although in some languages,
consonants may function as syllabic elements), thus excluding many
possible segmentations that contain ‘impossible’ words from the models
state space. Adding this constraint in a principled way is surprisingly
subtle. For example, the strategy of Blanchard et al. (zo10) to simply
assign probability 0 to sequences that lack a syllabic element will re-
sult in an improper probability distribution. Performing the required
re-normalization is trivial if the phoneme and stopping probabilities are
considered to be fixed but one no longer can integrate over these param-
eters nor analytically determine their posterior distributions, making
inference for them more complicated.

As a mathematically well-defined model that is convenient to work
with, I use the distribution defined in figure =.5 which has the same
number of parameters as the base distribution in figure =.4."9 Basically,
the automaton defining the distribution cannot transition into the end

Stronger constraints, for example requiring a syllabic parse, have been used in adaptor
grammar based models (Johnson, zoo8b; Johnson and Goldwater, zoog). For the
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start —

Figure 2.5: Base distribution with a possible word constraint. The parametriza-
tion is identical to that of the distribution in figure = 4, the sole
difference being that transitioning from state 0 to 1 requires gen-
eration of a syllabic segment (abbreviated as &) instead of a non-
syllabic segment (abbreviated as ¢). Once a syllabic segment has
been generated, the generative process is identical to that of fig-
ure 2 4.

state before at least a single syllabic element has been generated. There
are other ways of implementing this kind of constraint butthis particular
formulation introduces no additional parameters to the simpler base
distribution and still allows for analytic collapsing of the parameters of
Pg and FPyop.

2.3.5 Inference for the Unigram model

The goal of posterior inference is to identify the marginal posterior
over segmentations, that is, sequences of words that yield the observed
sequence of segments when CONCAT is applied to them.

Plw | C =c) x Ple | w)P(w) (z.22)

I briefly discuss why a Dirichlet Process model encourages linguistically
meaningful segmentations before discussing in more detail how inference
for the marginal posterior can be performed.

SEGMENTATION INTUITION  The Dirichlet Process prior encourages
distributions in which a few outcomes account for most of the probability
mass. In terms of the stick-breaking construction, for most draws from
a DP all but the first few elements of .., will be so small that they
are effectively 0. Thinking about this in terms of sequences of words
generated by the Chinese Restaurant Process, sequences which comprise
small number of types that are used frequently are preferred although, as
is common for probabilistic generative processes, sequences with overall
fewer tokens are preferred to those with more tokens.

Unigram and Bigram model, however, [ will rely on this simpler constraint which
lends itself to an easy implementation that does not require the use of a parser at

any point.
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Taken together, this leads to a trade-off between the number of tokens
in an analysis and the number of types in an analysis. A segmentation
in which every utterance is treated as a single long ‘word’ uses too many
types and a solution that treats every phoneme as a word too many
tokens to attain a high probability by a Bayesian segmentation model.
Segmentations that properly balance types and tokens, on the other
hand, tend to be both linguistically meaningful and preferred by these
maodels.

MONTE CARLO INFERENCE Calculating the posterior by exhaus-
tive enumeration is infeasible for all but toy examples as the number
of possible segmentations grows exponentially with the length of the
input.®” To combat this problem, Monte Carlo algorithms (Metropolis
and Ulam, 194g) are commonly used to perform (approximate) inference
instead. The key insight of Monte Carlo inference is that one can appros-
imate any distribution P by a a set of samples from this distribution
{8} 4.5; ~ P and treat the relative frequency with which each value
occurred in this sample as its approximate probability according to the
distribution:

P(z) = 1[s; = 2] (2.23)

2| =

T
i=1

This intuitively makes sense, and there is indeed a mathematical
guarantee by way of the central-limit theorem that the accuracy of
these relative frequency approximations increases with the number of
samples (Murphy, zo1z, p. 54f). To generate these samples, we will use
Markov Chain Monte Carlo (or MCMC) methods.*

For an explanation the relevant Markov Chain theory on which MCMC
builds, see the excellent discussion of Markov Chains in Murphy (zo1z,
pp. 596-600); for accessible discussions of MCMC methods see Murphy
(zo12, chapter 24), MacKay (zo03, chapter 29) and Gelman et al (zo14,
chapter 11). Here, I restrict myself to reviewing the specific Gibbs
samplers of Goldwater (zo07).

2.3.6 Gibbs sampling

Gibbs sampling (Geman and Geman, 1984) is an algorithm that gener-
ates samples from some distribution by making small random changes
to a randomly chosen initial sample. Here, our goal is to generate sam-
ples from the posterior over segmentations and seating arrangements
given unsegmented utterances. We explain this idea in more detail by
considering the concrete case of segmenting the single utterance abab
using the Unigram model.

And there is the added complexity of summing over possible seating arrangements.
See figure 5.1 for an illustration of exhanstive enumeration.

In chapter 4, I discuss an alternative inference algorithm based on a Sequential Monte
Carlo Method called Particle Filter.
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2.3.6.1 State space of the collapsed model

Each state of the collapsed Unigram model is a specific seating arrange-
ment b which corresponds to a segmentation w. Conditional on the
observed sequence e = abab, the state space consists of all seating
arrangements such that concatenating the words in their associated w
yields abab.?? It is important to realize that even though there are only
8 possible segmentations abab, abab,abab,abab, ab ab, a bab, aba
b, a bab, the state space is larger because some of these segmentations
correspond to multiple seating arrangements. For example, ab ab can
arise from a seating arrangement with either a single table that has two
customers or two tables with one customer each.

Rather than thinking about states directly in terms of a seating
arrangement, we will think of them in terms of a fixed-length binary
vector that indicates for every possible position whether or not a word
boundary occurs at this position. Concretely, for our example we have
three boundary variables By, Bo, By that indicate whether or not there
is a boundary between the first occurrence of ab, between ba and be-
tween the second occurrence of ab, respectively. Figure 2.6 illustrates the
relationship between this binary vector representation over which we per-
form sampling, the latent segmentation w and the seating arrangement
introduced by the CRP as a result of collapsing out . Considering states
as sequences of boundary indicators B has the advantage of providing a
fired number of random variables whereas different segmentations may
contain different numbers of words.

As discussed above, there is usually a one-to-many relationship be-
tween sequences of words and seating arrangements h; figure 2.6 il
lustrates two possible underlying CRP states defined in terms of the
counts of table z.2. Seating arrangements are handled implicitly in the
sampler through the ADDCusTOMER and REMOVECUSTOMER functions
discussed below, following the idea of Teh et al. (zoo6).

RELATION BETWEEN COLLAPSED AND UNCOLLAPSED MODEL
Before I discuss the Gibbs sampler in detail, let us briefly consider
how the collapsed representation under which we sample relates to the
original model. Recall that even though the state space considered by
the sampler does not include a distribution over words such as (& as part
of its states, the word segmentation model is defined in terms of a draw
from a Dirichlet Process (; and that de Finetti's theorem establishes
the equivalence between the CRP and the DP model.

We can recover the joint posterior distribution over W and & from
the marginal posterior distribution over segmentations from which the
Gibbs sampler produces samples, and doing this provides a deeper under-
standing of the relationship between the collapsed and the uncollapsed
model.

More precisely, all states whose associated w are incompatible with the observed
data have a probability of 0.
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Kt =2 Kh=1
”21:,1 = “{:h,z =1 ﬂ’:b,l =2
h _ R _
CRP state h Ngp,. = Mgp,. = 2

Latent segmentation W;=ab W,=ab
Sampled variables B= 10 1 0

Observed variables C =a b a b

Figure 2 6: Relationship between the fixed number of boundary indicator
random variables (Sampled variables), the observed variables Oy,
the variables W; which define the segmentation, and the underlying
Chinese Restaurant Process state h in terms of the counts defined
in table 2 2.

NMNote that given a particular sequence of observed words w.,, which
were sampled i.i.d. from G ~ DP(a, B,), the posterior distribution for
(7 is (Gelman et al., 2014, p. 547)

G|wyy...,wy ~DP(a+n, =

) (2.24)

where 4, is the Dirac measure which assigns all mass to z, Le. §;(y) =1
if and only if y = z. In other words, if we know the segmentations we
can analytically derive the posterior distribution over . This is, in
essence, identical to how we could analytically calculate the posterior of
B for the model in figure 2.1 by simply adding the hyper parameters of
the prior and the count vector of the observations.

With this, we can derive the joint posterior distribution over segmenta-
tions and & from P(W | C), the marginal posterior over segmentations:

P(G,W | C) = P(G|W,C)P(W | C) = P(G| W)P(W | C)

where P(W | C) is the posterior distribution over segmentations
that we approximate by sampling under the collapsed representation,
and P(G | W) will be another Dirichlet Process. Taking this one step
further, we can derive the marginal posterior distribution over & through
marginalization and get

P(C|C)=)_P(C|w)P(w|C)
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where we sum over all possible segmentations of C. This shows that
the posterior distribution over & will be a mizture of Dirichlet Processes,
with one mixture component per latent segmentation. The weight of
each mixture component is the marginal posterior probability of the
corresponding latent segmentation conditional on just the observed
data which, up to proportionality, can be calculated analytically using
equation z.14. Thus, we can write the posterior distribution in the
following explicit form:

E!:l éw,- + o
G|C~>"DP (cr + |w), 1.1+ o] (2.25)

Of course, this result cannot be used for inference as the set of
possible segmentations over which the sum would need to be evaluated
is infeasibly large and grows exponentially with the size of the corpus.
Incidentally, this also shows that in the posterior distributions grow
more ‘complex’ as a function of the size of the corpus as the number of
mixture components just is the number of possible segmentations. This
highlights the non-parametric character of the model.

The point of this brief discussion is to highlight that, even though
all inference algorithms considered in this thesis (and the literature on
Bayesian word segmentation in general) operate in collapsed representa-
tions which integrate out the actual distributions in terms of which the
model is defined, it is always possible to recover a posterior distribution
over these distributions from the marginal posterior distribution over
latent structures.

2.3.6.2 Gibbs sampling for the Unigram model

A single iteration of Gibbs sampling resamples the value for every
boundary variable once, thus generating a new sample (a predicted
segmentation w plus an underlying seating arrangement h). To ensure
that these samples will be distributed according to the posterior over
segmentations, we have to resample B; according to the conditional
distribution given the current values for all variables but B;.

Consider how changing a single boundary variable affects the overall
segmentation. Figure 2.7 illustrates the two different segmentations that
can arise from the state in figure 2.6 when we resample Bi. The value
of this boundary variable only affects the span of the input that reaches
from the first boundary to the left of By to the first boundary to its
right, here ab. If a boundary is posited, this stretch will be analyzed as
a sequence of words wy = a, wy = b, if no boundary is posited it will be
analyzed as a single long word wj s = ab. Crucially, the value of B; does
not affect the identity of any other words in the previous segmentation.
The last word in the segmentation will be ab, irrespective of what value
will be sampled for B;.

Because the overall sequence of random variables is exchangeable,
we can ‘move’ all the words on which the two hypotheses agree (ie.,
everything except for the small affected part of the input) to the front of
the sequence, treating the stretch that is affected by the variable under
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Bl_-?l}ﬁ‘r Wl=ﬂb,W2=&b|Bl=1=>#W1=&,W2=b.‘,W3=ﬂb

B= 7?7 1 0

C=a b a b

Figure 2.7: IMustration of the local changes involved in resampling the value
for a single boundary variable.

consideration as if it were the last part of the observed sequence of seg-
ments that was generated. Then, we can use the predictive probabilities
defined in equations =2.16 and =.17. This is done by the algorithm in
figure =.5.

The first step is to determine the affected span and its current analysis.
If B; = 1, we need to remove both a wy and a ws customer from h,
otherwise we remove a single wj 2 customer. In the example in figure =.7,
wy = a,ws = b and wy 5 = ah.

For these removal operations we use the add/remove-customer func-
tions of Teh (2006b) which are defined in figure =.q. ADDCUSTOMER( |, W)
randomly samples the table k at which a novel w customer sits in seat-
ing arrangement h according to equation 2.13. REMOVECUSTOMER(w)
removes a customer from a randomly sampled table k that is labeled
w with probability proportional to -n:; - In chapter 3, these functions
are also used and the probabilities of Eifting Or Temoving a customer are
required. For the Gibbs sampler described here, the return values of the
functions can be ignored.

We then calculate the probability of the two possible values B; can
take. B; = 1 corresponds to positing a boundary and its probability,
Py, is proportional to P(wy | h)P(w2 | h,wy), i.e. generating the two
words wi and wo from seating arrangement k. B; = 0 corresponds to
generating only a single word wj 2 and its probability, p_p, is proportional
to P{wy 5 | h). These probabilities can be calculated using formula 2.16
but there is a minor complication for B; = 1.

The complication is that P(ws | h, w) is the probability of generating
we from h after wy has been generated. In Goldwater (zoo7)'s and
Goldwater et al. (zoog)’s presentation of the sampling algorithm

nh  +1[w; = wo] + aPeyx(ws)

P(ws | wi,h) = nt +1+a

This holds because having generated w; increases the number of total
customers in k by 1, captured by the additional +1 in the denominator.
And if wy = ws, nﬁa will also have increased, hence the conditional +1 in
the numerator. This holds, however, only if the base distribution is fixed
as in Goldwater (zoo7) and Goldwater et al. (2o00g9). If Bex is estimated
from the words that have been generated — as in the base distribution
in figure 2.4 — having generated wy can also affect the probability of us
through P, and this update formula does not work.
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procedure sAMPLEBOUNDARY (i, k)
determine affected span wy 2 and wq, ws
if B; =1 then

REMOVECUSTOMER (w1, h)
REMOVECUSTOMER (w2, h)

else
REMOVECUSTOMER(w; 2, h)

end if

pp = P(wi [ h)P(c | h)

ADDCUSTOMER(wq, h) > temporary update
P(s|h) if we is utterance final

Py = ppP(w2 | h) =14
P(c|h) else

REMOVECUSTOMER (w1, k) & Undo temporary update

P(s|h) if wo is utterance final

P(c|h) else
if NExXTDOUBLE % (pp + p) < py then > put boundary
B;=1
ADDCUSTOMER (w1, h)
ADDCUSTOMER (w2, h)
else > don't put boundary
B;=10
ADDCUSTOMER(uy 5, h)
end if

pp = P(wia | h)

end procedure

Figure 2.8: Algorithm to resample word-boundary B; given a current seating
arrangement h. Whether or not any word is utterance final is
known as utterance-boundaries are considered to be observed.

Instead, we calculate P(ws | b, wq) by performing a ‘temporary update’
of h. We call ApDCusTOMER(wy, h), then calculate P(ws | h), and after
the calculation call REMOVECUSTOMER(w1, k) to undo the change to
.23

Another detail is that we need to account for the probability of
generating another word ( P(c | h)) or generating an utterance boundary
(P(s | h)), respectively, using equations =.17 and =2.18.

After having calculated both probabilities, we sample the value of
B; according to them and update h accordingly: if B; = 1, we add un
and ws using ADDCUSTOMER. Otherwise, we only add wy 5. Note that

25 A subtle detail is the fact that we treat the table label indicators as latent rather
than explicitly tracking them, following the idea described in Teh (zoofb). Thus,
we cannot guarantee that the intermediate update step will be exactly undone by
calling REMOVECUSTOMER as the identity of the table from which a customer will be
removed is determined randomly. Similarly, our update operation will only consider
one of the potentially many possible ways in which wy might have been added to k.
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function AppCusTOMER(w, h)

sample k o nﬁ"k 1<k<K*
P (w) k=K"41
if k= K" 41 then > open new table
res = ":’I‘_‘_l_:
Kh=KF 41 > increment table count
nﬁ,‘k =1 t» set customer count for table k to 1
else . & sit at old table
res = ;’%
nﬁ,‘k = ni,k +1 b increment customer count for table k
end if
return res t> return probability of seating choice
end function
function REMOVECUSTOMER(w, h)
sample k ox nﬁﬁ
“ﬁ:,k = ”i,k -1
if nﬁﬁ =0 then = Table became empty
Kh=K"_1 i+ decrement table count
return %ﬂ‘ﬂ &> return probability of re-opening table
else . '
return :::_ &> return probability of re-seating customer
end if ’
end function

Figure 2.q: Functions to add customers to and remove them from a given
seating arrangement k. h is a collection of variables which contains

all the variables which are super-scripted with h.

ADDCUSTOMER and REMOVECUSTOMER automatically take care of the
book-keeping required to track the CRP seating arrangement.

To ensure that a Gibbs sampler has converged on the target posterior,
it is common to ignore the initial iterations (called burn-in period).
Also, one usually only records every z** sample of a run to address the
correlation of successive samples. Assessing whether or not a simulation
was run long enough to have generated samples from the target posterior
is a non-trivial problem. For an extended discussion see Gelman et al.
(zo014, chapter 11.4). I follow previous work such as Goldwater (zoo7)
and Johnson and Goldwater (zoo0g) and rely on visual inspection of trace

plots of several independent runs to check whether the Gibbs sampling
has converged.

SIMULATED ANNEALING A short-coming of Gibbs sampling is that
successive samples can be highly correlated as variables are updated one
at a time, conditional on the values of all other variables. This can also
lead to the sampler getting trapped in local modes. Goldwater (zoo7)
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proposed to use simulated annealing to combat this, and I follow her in
this, 24

Briefly, simulated annealing introduces a temperature T which allows
the sampler to explore the state space more freely. Updates are performed
by sampling from P(B; | h=*)T rather than P(B; | h=%).%5

For high temperatures T, raising the probabilities to ;11— leads to almost
uniform distributions and allows the sampler to explore assignments
which, according to the true conditional distributions, may be very
unlikely to ever be considered; but which may be required to ultimately
reach an overall good segmentation. Thus, by starting the sampler
in a high temperature and slowly decreasing T to 1, one facilitates
convergence to the target posterior by alleviating the problem of local
modes. Once the temperature has reached 1, the sampler will produce
samples from the target posterior distribution.

The cooling schedule used in annealing is important, and I found Gold-
water (zoo7)'s schedule to yield good results. It splits the total number
of N annealing iterations into 10 equal sized bins and, assuming start-
temperature Tyiare and stop-temperature Tyop, defines the temperature
at iteration i as

Tiiop ifi >N
TEMPERATURE(i) = 10 Tatart—Txto
moi 7t Taep else

2.3.7 The Bigram model

Goldwater (zoo7) argued that the independence assumption inherent in
the Unigram model is unsatisfactory as in real language, adjacent words
are not independent of each other. Indeed the Unigram model tends
to undersegment, an issue also discussed in chapter 5 and chapter 4.
Goldwater’s proposal to address this was to model Bigram dependencies,
as depicted in the graphical model in figure =.10. I review the reference
description of the Bigram model in Goldwater et al. (zoog) which differs
slightly from that in Goldwater (zoo7).

Conceptually, the major difference to the Unigram model is the use of
an infinite number of ‘lexicon’ distributions H,,, one for every possible
word in £+, Each H,, determines the distribution of words following a
token of w. The different H,, are drawn from a single shared Dirichlet
Process whose base distribution is a global lexicon Gy which correspond
to the single lexicon & of the Unigram model. Thus, the entire model is
a hierarchical Dirichlet Process model (Teh et al., zoo0f)

It is interesting to note that for adaptor grammars (see below), Johnson and Goldwater
{zoog) found no improvement by annealing over and above using hyper parameter
sampling. I suspect this finding to depend on properties of the model and, to some
part, on the fact that unlike this Gibbs sampler, the adaptor grammar sampler
samples entire utterances. In contrast, for both the Bigram and Unigram model,
I find hyper parameter sampling with annealing to result in better inference than
hyper parameter inference without annealing.

I use h™* as shorthand to indicate that the seating arrangement according to which
B; is resampled excludes customers associated with By, as discussed above.
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Gop ~ DP (oo, Fex')
Hy, | Go ~ DP(ay, Gi)
Wip=%§
Wig | Wij—1, H ~ HWi,j—i

C'; = Concat(W;)

Figure 2.10: Description of the Bigram model for word segmentation All
latent variables except for Wi will be integrated out, resulting
in a Chinese Restaurant Franchise representation of the model
(see figure 2.12). €} is the observed sequence of segments for
utterance ¢ which is the result of concatenating all words W =
Wia,.... Wem. The first ‘word’ for each utterance is observed as
it is a special boundary symbol § that is not part of ©¥. Also, in
addition to the global lexicon Gy there is an infinite number of
distributions Hy,, one for each w € £+

A

1|
K&"j Pg fz=§
Pex () =
start — €:1—pg (1 — pg)Hex(z) else

Figure 2.11: Base distribution for the Bigram model. In terms of a probabilistic
finite state automaton, we change the antomata in figure 2 4 or
2.5, by changing the start state to the new state (' from which we
transition either into the initial state of the old automaton with
probability 1 — pg or generate a boundary word ¥ with probability
ps to transition into the new final state 1°.

Utterance boundaries are treated as special ‘words’ of type §, $ € &
so that they can serve as context for other words. This requires a slightly
changed base distribution P, which allows for the generation of these
boundary words with probability pg (Goldwater et al., zoog). This is
achieved by changing the base distributions for the Unigram model by
adding two additional states as in figure =.11. The first state either
generates an utterance boundary and terminates, or it transitions into
the automata of figure = 4 or figure z.5.
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The generative process for a single utterance is as follows. The first
word of each utterance Wi g = $. The first ‘real word’ for each utterance
is drawn from Hg, the lexicon for utterance-initial words. An utterance
terminates as soon as another instance of § is generated.

Integrating out the random variables H,, and G induces a Chinese
Restaurant Franchise representation (Teh et al, 2006). Rather than a
single seating arrangement as in the Unigram model, for the Bigram
model there is a restaurant for every word type w that has been posited
in a segmentation, corresponding to H,, plus a ‘global’ restaurant
corresponding to & in which each customer corresponds to a table in
a word-specific restaurant. This ‘Chinese Restaurant Franchise' idea
and the dependencies between word-specific and the global restaurant is
illustrated in figure =.12 which is the Bigram model’s analog to figure =.6.

For notational simplicity, | now take h to be a collection of individual
h,, (the seating arrangement corresponding to H,,) and hg to be the
seating arrangement for Gg. Thus, in figure .12 nsi" = 1, as there is
one § customer in seating arrangement hgy,; and nﬁ_ = 2, as there are
two ab customers in seating arrangement hy. ’

With this, the predictive probability of a word w following a word w’,
conditional on the current seating arrangement h is

ne® 4y Pw | ho)

PW;=w|W;_1 =uwp,h) = e (2.26)
ap+mn
i 4 ag P (w)
P(W; = w | hy) = 2~ 20 (2.27)
o 4 T

Due to the coupling between the global and the word-specific restau-
rants, ni"ﬁ is equal to the mumber of tables labeled z across all hy,
restaurants. This can be easily enforced by defining the additional ADD-
CusToMER and REMOVECUSTOMER methods in figure z.13 which will
be used to add customers to the word-specific restaurants. wy is the
word preceding the word w which is added or removed.

In essence, these functions are identical to those in figure =.q but
enforce the coupling across the individual seating arrangements h,, for
each individual word and the global seating arrangement hg as depicted
in figure z.12. If a new table is opened, the original ADDCUSTOMER
method from figure =.g is called to add a w customer to hg, the seating
arrangement corresponding to Gp. Similarly, in REMOVECUSTOMER a
customer is removed from hg if a table becomes empty in the process
of removing a customer. Again, these functions take care of all the
book-keeping that is required, facilitating implementation considerably.

With this, the Gibbs sampler for the Bigram model can be derived
directly from the sampler for the Unigram model, requiring only minor
modification to account for the dependencies between adjacent words
and the different handling of utterance boundaries.

Denote by w; the word preceding the span of text affected by changing
boundary variable B; and by w, the word following this span, and as
before by w2 the entire sequence (corresponding to B; = 0) and by
wy, we the two-word sequence that results if B; = 1. For the example
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CRPF franchise h

Latent segmentation W; =% h’rl = ab Wg = ab lr‘t*’:; =%
Sampled variables B= 10 1 0

Observed variables O =a b a b

Figure 2.12: Nlustration of the relation between random wariables for the
Bigram model. Rather than a single CRP seating arrangement, the
Bigram model yields an underlying CRP franchise, a collection of
word-specific seating arrangements (hgp and hg) and a global one
(ko). Note that every W; variable corresponds to a customer in a
word-specific restaurant, and that every table in such a restaurant
corresponds to a customer in the global restaurant. Only one of
the many possible CRP franchise seating arrangements for the
given values of the other random variables is shown.

in figure 2.7 wy = $,wy = a,ws = b,w; 5 = ab, and w, = ab. With
this, a single boundary can be resampled using the algorithm defined in
figure =2.14.

Apgain, the first step is to remove the affected customers from the
seating arrangement. Note that for the Bigram model, the word following
the affected region w, needs to be removed as well as the identity
of its predecessor is unknown and we do not know to which seating
arrangement why contributes a customer.

The required probabilities can be calculated using equations =.26
and z.27. As for the Unigram model, calculating the exact conditional
probabilities requires intermediate changes to the seating arrangement,
indeed more updates than before because of the Bigram dependencies.

This can induce noticeable overhead and I found, for any but the tiniest corpora that
consist of one or two short utterances, no noticeable difference between samplers
that implemented the intermediate update and those that didn't. Thus, if speed is
a bottleneck ignoring the calls to ADDCUSTOMER and REMOVECUSTOMER during
calculating the probabilities of the hypothesis is a possible optimization.
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function ApDDCUSTOMER(wy, w, h)

g if1 <k< Khw
sample k o Mk -~
a1 P(w | hg) if k= Khw 41
if k= K" 4+ 1 then > open new table
__ o ADDCusToMER{w ha)
res = Fong
Th. . +q
Khwg = Khwy — 1
n:,'}f =1
else > added to old table
_ k
res = n_h—.,f"“+a1
n::}:' = ni‘j‘: +1
end if

return res
end function

function REMOVECUSTOMER(wp, w, h)

sample k o n::"f
N
My = n‘w,k —1
if n::'f =0 then > Table became empty
Khwo = Khwy — 1
a1 REMOV ECUSTOMER{w, hig)
n"‘lmb 41

return

else

ﬂhw']‘
R
return —p,w—'—n 0y m
. 1
end if

end function

Figure 2.13: ADDCUSTOMER and REMOVECUSTOMER functions for the Chinese
Restaurant Franchise of the Bigram model.

2.3.8 Hyper parameter inference

A topic that has received relatively little attention in recent applications
of the Unigram and Bigram model is the role played by the hyper param-
eters. Goldwater (2oo7) and Goldwater et al. (zoog) investigated how
the precise values of the concentration parameters affect segmentation
performance through evaluating a range of manually chosen hyper pa-
rameter values. While the Unigram model was found to be rather robust
across a wide range of hyper parameter values, the Bigram model turned
out to depend considerably on the precise value of the a; parameter.
Goldwater et al. (zoog) manually picked the set of hyper parameter
values that yields the best performance. While this idea of ‘parameter
tuning’ is common in Computational Linguistics and, for practical
applications, can be viewed as part of applying a statistical model to a
particular data set, from a scientific (as opposed to an engineering) point
of view this raises the question whether the hyper parameters have to be
‘built into’ the model or whether they can be inferred in an unsupervised
fashion as well. In particular, manually determining an optimal set of
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procedure sAMPLEBOUNDARY (i, k)
determine affected span wy, wq 2, wi, we, and w,
if B; =1 then
REMOVECUSTOMER(w, w1, i)
REMOVECUSTOMER(w;, wa, h)
REMOVECUSTOMER (w3, w,, h)
else
REMOVECUSTOMER (wy, wy 2, i)
REMOVECUSTOMER(w; 2, wy, h)
end if
Py = P(wy | wy, h)
ADDCUSTOMER (wy, wy, h) I temporary update
Py = pp x P(wa | w1, h)
ADDCUSTOMER (w1, wa, h) I temporary update
Py = pb x P(w, | wa, h)
REMOVECUSTOMER(wy, wq, k) & Undo temporary updates
REMOVECUSTOMER (w1, wa, h)

p-b = P(wia | wy, h)

ADDCUSTOMER(wy, wy 2, k) I temporary update

P =Py x Plw, | wya, h)

REMOVECUSTOMER(wy, wy 2, h) t+ Undo temporary update

if NEXTDOUBLE x (py + p—s) < pp then > put boundary
B;=1

ADDCUSTOMER(wy, wy, i)
ADDCUSTOMER(wy, wa, h)
ADDCUSTOMER(w2, wy, i)
else t don't put boundary
B;i=0
ADDCUSTOMER(wy, wy 2, i)
ADDCUSTOMER(w 2, wy, ht)
end if

end procedure

Figure 214 Algorithm to resample word-boundary B; in the Bigram model
given a current CRP Franchise h.

hyper parameter values for different inputs is not practical for evaluating
a model on a wide variety of corpora and, more importantly, unattractive
for an unsupervised model of language acquisition. Following Johnson
and Goldwater (2o09)’s discussion of hyper parameter sampling for their
adaptor grammar framework, | implement hyper parameter inference
for the Unigram and Bigram model.
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I treat the hyper parameters as random variables and, following Teh
et al. (zo06) and Johnson and Goldwater (zoog), put ‘vague’ Gamma
priors on them, adding

g ~ Gamma(0.001, 0.001)
cr; ~ Gamma(0.001, 0.001)

to the definition of the word segmentation models. These Gamma
distributions are parametrized in terms of a shape o and an inverse scale
(also called rate) 3, the most common parametrization within Bayesian
statistics (Gelman et al., zo14, p. 576, also see table 2.1). In this context,
‘vague' means that the prior distribution has very high variance — in
particular, choosing o = § = 0.001 results in a variance of & = 1000.
This shows that this prior corresponds to a very weakly held belief and
will be easily overwhelmed by even a single observation, making it a
useful uninformative prior. For additional discussion of Gamma priors,
see MacKay (2zoo3) and Gelman et al. (zo14).

The likelihood for the concentration parameter o is equation 2.14
taken as a function of @ where one can omit the part depending on L
as the probability of the table labels does not depend on a:

Kho
P(ho | ao) o P{“;;} al(n) (2.28)
(n.7) k1
Khw!
Pll-or ) 3 E‘;;}} [T (ere’y) (220)

For a;, the likelihood sums over all word-specific seating arrangements
hw as all corresponding G, are drawn from the same DP{ay, Gg).*7 This
allows calculation of the posterior distribution

P(ax | h) o< P(h | a)P(a) (z.30)

which can be used in several ways to choose hyper parameters. In
general, equation z.30 will be easy to optimize which suggests working
with the MAP estimate, an idea that is known as MAFP-IT as we only
use the MAP estimate for the hyper parameter, performing full posterior
inference for the remaining random variables (Murphy, 2012, p. 172f).**
Alternatively, one can resample values for the hyper parameters from
the respective posteriors at each iteration, as suggested by Johnson and
Goldwater (zoog). For this, a wide variety of samplers can be used, and
I follow their suggestion of using a Slice sampler (Neal, zoo3).

It is worth pointing out, however, that the posterior distribution of the
concentration parameter tends to be sufficiently peaked so that sampling
and directly using the MAP estimate obtained by optimization made no

27 One can also imagine using a separate hyper parameter a for each Gy although in
preliminary experiments, I found this to work worse, presumably due to the scarcity
of observations for most of the word types.

28 If we assume uniform priors on the hyper parameters (meaning that we directly
maximize the likelihood, rather than the posterior), this would be the ML-IT or
Empirical Bayes estimate of the hyper parameters.
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discernible difference in any of the experiments I performed. As MAP-II
only involves solving a one-dimensional optimization procedure rather
than performing several iterations of an MCMC method such as Slice

sampling, it may be preferred in practice.
2.4 AFPLYING THE MODELS TO DATA

I briefly illustrate how the models just described can be applied to
concrete corpora. In addition to providing a concrete illustration of
the idea of Monte Carlo approximations, I also point out a hitherto
unreported issue of the Bigram model when its hyper parameters are
inferred, rather than manually set.

As data, I use the *Alice’ subsection of the commonly used Brent-
Bernstein-Ratner corpus (Brent, 1g9gg; Bernstein-Ratner, 1987). For
both the Unigram and the Bigram model, I consider the special cases
in which the hyper parameters of the Dirichlet Processes are set to the
best-performing values reported in Goldwater et al. (zoog) (Fix Hyper
parameters) and a model in which the hyper parameters are treated
as random variables and their values are also inferred (inferred Hyper
parameters). For the base distribution, I consider both the distribution
of figure z.4 (No constraint) and figure =.5 (syllabic constraint). Com-
bining all possibilities, this yields four variants of the Unigram and the
Bigram model, respectively. [ refer to the Unigram model with fixed
parameters and a constrained base distribution as UNI-FH-SC and to
the Bigram model with inferred hyper parameters and an unconstrained
base distribution as BI-IH-NC.

To generate samples from the posterior over segmentations, I run
four chains of the Gibbs sampler for each of the models. Running
multiple chains makes possible cross-chain comparisons that can highlight
convergence problems (see the discussion in Gelman et al., 2014, chapter
11.4). Each chain is run for 20000 iterations, and simulated annealing
from temperature 10 to 1 is used for the first 10000 iterations to facilitate
convergence. During the last 10000 iterations, every 10* samples is
collected, generating a total of 1000 samples per chain, or 4000 per
maodel.

2.4.1 Using posterior samples

Each of the individual samples is a segmentation of the entire observed
data. Thus, the posterior approximation is built on the basis of 4000
individual segmentations, and, using equation =.273, we can calculate
the posterior probability of a particular segmentation by calculating
the relative frequency of this segmentation among the set of samples
we collected. The number of possible segmentations of any given text
is exponential in the length of the text (as between any two adjacent
phonemes, there either could or could not be a boundary), and for all but
tiny corpora there is little hope generating the exact same segmentation
— matching on all of the #(2") possible boundaries — more than a few

hl
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P(seg) segmentation token f-score
0.45 juwant tu si dabuk 0.40
0.41 ju wanttu si dobuk 0.40
0.09 | ju wanttu si da buk 0.73
0.04 | juwant tu si da buk 0.73

< 0.01 | ju want tu si dabuk 0.73

< 0,005 | juwant tusi dabuk 0.00

Table 2 g: Approximate marginal posterior over segmentations for the utter-
ance “you want to see the book” according to the UNI-FH-NC model,
calculated from 4000 samples. We also indicate the token fscore of
each individual segmentation, showing that high posterior probabil
ity and high token fscore need not coincide. The posterior reflects
that the model actually prefers analyzing the initial part of the
utterance as ju wanttu (with 50% probability in total), even though
the single most probable segmentation segments this part as juwant
tu.

times. To address this, one can use the samples to approximate the
marginal posterior over segmentations for each individual utterance.

To illustrate this idea, table 2.3 gives the approximation to the
marginal posterior for the first utterance of the data, “you want to
see the book™ or, in phonemic notation, “ju want tu si da buk”, accord-
ing to the UNI-FH-NC model. There are two segmentations that together
account for roughly 86% of the posterior belief but there is no single
segmentation that has more than or at least 50% posterior probability.
We also see that the model is uncertain about how the initial part
of the utterance ought to be segmented: either as “youwant to” or as
“vou wantto” which are, incidentally, both not quite right but, from
a linguistic perspective, make sense as undersegmentations. However,
all segmentations agree that the word “see” ought to be segmented
out, showing that a model can have different certainty with respect
to different parts within an utterance. To my knowledge, this kind of
qualitative examination of marginal utterance posteriors is not common
in current work, arguably because it is often impractical to generate
several thousands of samples for large corpora and, in addition, it is
infeasible to qualitatively evaluate tenths of thousands of utterances in
close detail. Yet, I think it is worth pointing out that the framework
of Bayesian modeling offers the possibility of performing this kind of
qualitative evaluation, and [ will suggest some more ways of examining
posterior distributions to quantify uncertainty in section 7.2.2.5 in the
final chapter of this thesis as suggestions for future work.

An idea introduced to word segmentation by Johnson and Goldwater
(zoog) is using the marginal posterior distributions to create a ‘max-
imum marginal segmentation’ that will be evaluated. The idea is to
combine the information present in the full posterior into a single seg-
mentation of the entire corpus that can be evaluated as follows: for each
individual utterance, determine the marginal MAP segmentation, i.e.
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that segmentation of the individual utterance which, across all sam-
pled segmentations for the entire corpus, occurs the most frequently.
This may (and, very likely, will) result in a segmentation for the entire
corpus that was never generated but, in a clear sense, synthesizes the
information present in the full posterior by ‘averaging’ across different
segmentations.

2.4.2 FEvaluation metrics

The quality of a segmentation according to a given gold standard is
commonly quantified through precision, recall and the harmonic mean of
the two (fscore) for tokens, boundaries and word types (Brent, 199q). To
illustrate, consider the most probable segmentation in table 2. 5, “youwant
to see thebook” This segmentation posits 3 boundaries which all co-
incide with boundaries of the gold segmentation “you want to see the
book”™. Hence, boundary precision is bp = %‘% = % = 100%. On
the other hand, recall is only br = #—E“T‘iﬁﬂ—d = % = 60%, and boundary
f-score is %‘_{% = 75%. On a word token level, the segmentation fares
considerably worse. It posited 4 words, only 2 of which are correct
(“to” and “see”), and it only identified 2 of the 6 words in the gold
segmentation, yielding tp = 509, tr = % and tf = 40%. In this example,
the lexicon scores co-incide as each token occurs exactly once.

The major benefit of these metrics is that they provide an easy and
convenient way to evaluate the quality of a segmentation although,
obviously, a lot of the information contained in the posterior is not
reflected in these numbers, even if they are calculated on the maximum
marginal segmentation. They are, however, the best way currently known
to compare a large number of models, and we give the scores for the
maximum marginal segmentations of the corpus for the different models
in tables 2.4 and 2.5. We also report the mean score calculated over all
individual samples (that is, the posterior expectation of each evaluation
score), corroborating Goldwater et al. (zoog)'s observation that using the
maximum marginal segmentation leads to more accurate segmentation.
Also, we find — in line with their exploration of the role of the base
distribution — that the Unigram model’s performance is quite robust to
whether or not a constrained base distribution is used. The scores for
all settings are virtually identical (with maximum marginal expectation
scores tending to be slightly better than the expected scores of the
individual samples), even though the manually chosen hyper paramter
ag = 20.0 is considerably different from the inferred value of ag = 150.29

For the Bigram model, there is a more interesting picture. BI-IH-NC
performs considerably worse than BI-FH-NC and even worse than UNI-FH-
NC. In fact, this model is over segmenting, breaking common short words
such as “you” into phoneme-bigrams as in the MAP segmentation for
the first utterance j u want tu s i 3 buk. This contrasts markedly from

Not surprisingly, this value yields an expected number of tables for the Chinese
Restaurant Process of =# 480 which is close to the true number of types in the data
(442).
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model method || bp | br | bf tp | tr | tf lp | Ir If
ONLFIENC mims 42 | .74 | B2 73 | -63 | .67 || .67 | 66 | .66
exp G| o3 | B 71 | .61 | 66 || .6 | 63 | .64

UNLFRsc | mms [ -94 | .69 | .79 || .72 | .59 | 65 || .65 | .68 | .66
exp 94 | 69 | Bo || .72 | .50 | 65 || .64 | 67 | 66

TNLIRNGC mims g2 | qo | Bo || o | .58 | 64 || .65 | .67 | .66
exp g1 | .o | 79 || Bg | .58 | 63 || .61 | 63 | iz

ONLIE SO mims g5 | By | Bo || g2 | 58| 64 || .65 | .71 | BB
exp 94 | 68| 79 || .71 | .57 | 64 | 62| 68 | 65

Table 2 4: Scores for the different Unigram models on the Alice corpus, with

overall best fscores in bold face. ‘mms’ is the score caleulated
on the maximum marginal segmentation and ‘exp’ the expected
score caleulated by averaging the scores over the individual samples.
By and large, the scores for all the models are virtually identical,
indicating the typical under-segmentation behavior of the Unigram
model. This is despite the fact that the inferred ap is considerably
largor than the manually chosen value of 20, indicating that the
Unigram model is robust to both choice of base distribution and
hyper parameter.

model method || bp | br | bf tp | tr tf Ip | Ir If
pLFmNe | WS || 92| 83| 87 || .78 | .73 | 76 || 69 | 67 | 68
exp BB Bz | B || 74| 72| 72 6o | 6o [ .6Go

BLFH-SC IS 04 | B | By B | .73 | 77 qo| gz | LT
exp 93| 79| B5 [ 78| .70 | 74 || 65 | .70 | .67

pLmnc | mms |68 .03 | .79 || .53 | .66 | .58 || .47 | 45 | 46
exp 66 | o3| 77 || 49 | 63 | 56 || 47| 30 | 42

pLmsc | mms |l -9t | -89 | .go || 83 | .81 | .82 || .qo | .72 | .T1

exp || .89 | 87| 88 | 80| .70 | 70 || .68 | 68| .68

Table 2.5: Scores for the different Bigram models on the Alice corpus, with

overall best fscores in bold face. ‘mms’ is the score caleulated
on the maximum marginal segmentation and ‘exp’ the expected
score caleulated by averaging the scores over the individual samples.
Unlike for the Unigram model, we see more noticeable impacts
of hyper parameters and base distribution — in particular, note
the dramatic performance drop (and reversal to over segmentation
behavior) when hyper parameters are inforred with an unconstrained
base distribution. Also, the expected scores differ more noticeably
from the mms scores than for the Unigram model, indicating that
overall, the posterior over segmentations is less concentrated.
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the performance of BI-FH-NC which outperforms the Unigram models by
a fair margin, in line with the generally held view that a Bigram model
is preferable to a Unigram model (Goldwater et al., zoog). While it was
known that the Bigram model depends heavily on the values of the
concentration parameters (Goldwater, zoo07; Goldwater et al., zoog), the
fact that hyper parameter inference leads to worse performance indicates
that the parameter values supported by the data lead to bad performance.
Indeed, the inferred posterior means og = 300 and @ = 7 are rather
different from the manually chosen values ap = 3000, a; = 100; also,
with the inferred parameters the model seems to drastically over- rather
than undersegment.”

Interestingly, however, adding the possible word constraint to the
Bigram model boosts the performance of BI-1H-3C beyond that of the
Bigram model with manually specified parameters and leads to the best
performing model overall. This suggests, then, that the Bigram model is
indeed preferable to the Unigram model but either needs to use manually
specified hyper parameters or needs to employ a more substantive base
distribution. From a modeling point of view, I prefer the latter choice
as it does not require manual ‘parameter tuning’.

This concludes the introductory review of the Unigram and Bigram

model as originally introduced by Goldwater (zoo7) and Goldwater et al.

(zoog). Chapter 3 presents an alternative inference algorithm for these
models and they form, in a sense, the basis of the explorations performed
in this thesis. I close this chapter with a brief review of the related but
slightly different adaptor grammar framework that I will use for the
experiments in chapters 4 and F.

2.5 ADAPTOR GRAMMARS

Adaptor grammars (Johnson et al., zoo7b) make it possible to define
certain non-parametric Bayesian models through specifying a context
free grammar. It is worth pointing out that the models explored in this
thesis could all be expressed in terms of finite states methods such as
infinite Hidden Markov Models (Beal et al., zooz). That is, the adaptor
grammars we write are — in terms of generative capacity — regular
languages. However, formulating these models as context free grammars
is both helpful for reasoning about them and, more importantly, allows
us to use Johnson et al. (zoo7h)’s general purpose inference algorithm
for a wide variety of different models.

I define adaptor grammars formally, following closely the original
description of Johnson et al. (zoo7b). After this, we will show how an
adaptor grammar model can be expressed without the use of context
free grammar rules.

A similar finding has been made by Frank (zo14) for Goldwater et al. (zo11)'s
Bayesian model of morphological segmentation.
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2.5.1 Formal definition of adaptor grammars

An adaptor grammar (AG) is an extension of a probabilistic context-free
grammar (PCFG). A PCFG is an extension of a context-free grammar
(CFG) which defines a probability distribution over the trees generated
by a CFG.

A CFG is a g4-tuple (A", % 4, 5), where .4 is a finite set of non-
terminal symbols, # is a finite set of terminal symbols that is disjoint
from .4, 4 is a finite set of context-free rules of the form X — a,a €
(A U#)* and S € A is a start symbol.?* T use %, to refer to all
rules in 4 that have the non-terminal symbol A on their left-hand side.

The set of trees &5 that are generated by a CFG can be defined
recursively, using 2% to stand for the set of all trees rooted in x. For
every terminal symbol a, 5} is the set containing only a single tree with
a single node labeled a. For every non-terminal X,

Fx = U TrEEY (Tays- -2 Ty,)
X—=A,.  AncHF

Here, TREEy (Fy,,. .., ¥, ) refers to the set of all trees rooted in X
that have n immediate children such that the it* child tree is an element
of Za,. The definition of 3} for all terminal symbols a provides the
base case for this recursive definition.

A CFG can be used to derive strings in #* as follows. Starting
with the start symbol 5, perform a sequence of rewrite steps until no
non-terminal symbols are left. In each rewrite step, a single non-terminal
X is replaced by the right-hand side of any rule in ¢y . For example, if
therule S — NP VP isin #s, we can rewrite S as NP VP. We then
choose rules to rewrite NP and VP until only terminal symbols are
left. A derivation can also be expressed as a labeled tree which is rooted
in S. Every node in the tree corresponds to one of the non-terminals in
the derivation and its children are the elements of the right-hand side of
the rule that was used to rewrite it in the derivation.

A PCFG adds to a CFG a finite vector @ of rule probabilities. I index
this vector by rules such that f/x _,., refers to the probability of the rule
X — 7. A PCFG requires that #yx _,, = 0 and that for all non-terminal
symbols X, 3" o 6 =1

A PCFG defines a distribution (7 x over trees for every set & which
can be defined as follows.#*

(A4 UW)T refers to the set of all strings that consist of an arbitrary combination of
elements of 4" and ¥, excluding the empty string. Following common practice, [ do
not allow & rules in a CFG.

This definition, taken from Johnson et al. (zoo7h), is different from the more standard
way of defining the distribution defined by a PCFG simply as the product of the
probabilities of the rules used in a derivation (see, e.g. Johnson et al | zoo7a), but it
makes it possible to see adaptor grammars as direct extensions for PCFGs.
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For terminal symbols w £ ¥, G, puts all its mass on the unit tree
consisting only of a single node labeled w. For non-terminal symbols
X et

Gx = > #x By, B, TREEDIST A (Cpy, ..., CB,)
X—=B 1,...,BnEﬂx

with
TREEDIST A (G1, .. ., Cr) ({A t. ..zﬂ)) SIER
i=1

I use bracket-notation ( 4 ty...t,) for a tree rooted in A with children
t; to t, which, themselves, are (possibly unit) trees. In other words,
TrEEDIST “is a distribution over trees where the root is labeled A and
each subtree t; is generated independently from ;" (Johnson et al.,
zoo7b). Intuitively, the probability of a tree according to a PCFG is
simply the product of the rule probabilities used in a derivation of the
tree.

When performing inference for rule probabilities, they are commonly
modeled as drawn from Dirichlet distributions. This is because, as shown
above, the Dirichlet prior is conjugate to the categorical likelihood and
PCFGs also define such a likelihood. Hence, we can analytically integrate
over the rule probabilities which leads to efficient inference algorithms
as discussed in Johnson et al. (zoo7a).

An AG is derived from a PCFG by selecting a subset &7 C A4
of adapted non-terminals X * and defining a new distribution over
trees Hy for each symbol X as follows. If X € #, Hy = Gy is the
distribution which puts all its mass on the tree with the single node
labeled X. If X € 4", X & &, i.e. if X is a non-adapted non-terminal,

Gx= Y,  6x.ms,. 8. TREEDIST(Hp,,...,Hp,)
Hx =Gy

Thus, for terminal symbols and all non-adapted non-terminals Hy =
7y and is defined as for the PCFG. For adapted non-terminals X € &,
Gx is defined as for non-adapted non-terminals but

Hyx =DP(a,Gx)

Intuitively, the distribution over trees rooted in an adapted non-
terminal is a draw from a Dirichlet Process whose base distribution
is a prior distribution which defines a (possibly infinite) set of trees
using the PCFG recursion. Recall that a draw from a DP can be seen
as an infinite categorical distribution — here, a distribution that has a
parameter 8 for every T € 9. Unlike a PCFG, then, an AG cannot
be characterized in terms of a finite vector # because the number of

Following convention, I distinguish adapted non-terminals from non-adapted non-
terminals by underlining the former.
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trees rooted in an adapted non-terminal may be infinite. This makes an
AG a non-parametric model with an infinite number of parameters.

For practical implementations, the infinite distributions for the adapted
non-terminals are integrated out which, for hierarchical models in which
adapted non-terminals are dominated by other adapted non-terminals,
gives rise to a Chinese Restaurant Franchise representation. MCMC
inference for AGs using this representation is described in Johnson et al.
(zoo7b) and not reviewed here although the algorithm is somewhat simi-
lar to the blocked sampling algorithm discussed in chapter 5. Again it is
worth pointing out that even though intuitive explanations of adaptor
grammars make use of the Chinese Restaurant Process and the idea
of there being a cache for previously generated trees, the actual model
is independent of this idea. In fact, Cohen et al. (zo10) describes a
variational inference algorithm for adaptor grammars that does not
make use of the Chinese Restaurant Process.

2.5.2 AG as model definitions

I will briefly show how a model described as an AG can be related to
the kind of model definition used above, using as example Johnson et al.
(zoo7b)'s AG formulation of the Unigram model as defined in figure =.3.

Seg —» (z.31)
Segs — Seg (z.32)
Segs — Seg Segs (z.33)
Word — Segs (2-34)
Words — Word (z.35)
Words —+ Word Words (z.36)

This grammar can be related to the model defined in figure 2.4 as
follows. Rules =2.31-2.33 define the same distribution over words that P,
in figure 2.4, i.e. the Unigram phoneme base distribution. In particular,
8 sc , the vector of rule probabilities for the rules in .., corresponds
to ©; and fsee —+ Seg Segs corresponds to W, the stopping probability.
This illustrates how, in principle, a distribution modeled by context free
rules in an adaptor grammar can be re-expressed purely with finite-state
means as in figure 2. 4.

Rule 2.54 defines the distribution for trees rooted in the adapted
non-terminal Word , and H word corresponds directly to & in figure 2. 3.
Finally, the simple unigram Markov Process defined by rules =.55 and
2.36 captures the generative process of generating W; ~ G and termi-
nating an utterance when F; ~ Bern(®) indicates to stop.

The real power of adaptor grammars lies in their ability to define
rich hierarchies, as made use of in chapter 4 and chapter 5 by simply
‘nesting’ adapted non-terminals. For example, by grouping words into
‘collocations’ (phrases made up of multiple words) and adapting the
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non-terminals dominating these phrases, one can define a collocation
model (Johnson and Goldwater, zoog) simply by adding the following
to the AG for the Unigram model:

Collocs — Colloc (2.37)
Collocs — Colloc Collocs (2.38)
Colloc — Words (2.309)

According to rule 2.39, Hcolie ~ DP{a, H words ). As Words domi-
nates the adapted non-terminal Word for which H wora ~ DP{ o, H segs ),
this yields a hierarchical Dirichlet Process model.

When integrating out the relevant distributions, this results in a Chi-
nese Restaurant Franchise in which table labels can be structured objects
themselves and customers in the higher-level restaurant correspond to
the relevant parts of a structured object. This is illustrated in figure =.15,.

2.5.2.1 Hierarchies in adadptor grammars

Interestingly, the ‘probabilistic hierarchy’ of the Chinese Restaurant
Franchise is the mirror-image of the phrase-structure hierarchy defined
by the CFG. Thus, whereas the Word non-terminal is dominated by
the Colloc non-terminal in a tree, the Word restaurant is higher up
than the Colloc restaurant in the franchise. This has the effect that the
distributions of non-terminals that sit ‘“very low’ in the trees generated by
an AG will be estimated from a ‘dampened’ frequency distribution (see
also Goldwater et al., zo11).

Concretely, imagine that another instance of the tree ( C ( W the)( W dog))

is generated from the seating arrangement in figure =.15. The entire tree
can be generated directly by seating another customer at the first table,
and this will leave all counts in h,, unaffected. Thinking about this in
terms of inference rather than generation, this means that even though
the structure ( W the) is observed in the input, this may not influence
the estimate of ( W the) but only the estimate of the larger structure in
which it was contained. This tendency of estimating statistics of linguis-
tic structures from the types in which they occur rather than from their
token frequency has also been observed for human learners (Thiessen
and Saffran, zoo7) and arises naturally in the context of hierarchical
Bayesian modeling,

Omne can easily add more levels to this hierarchical model by extending
the grammar further, and I discuss examples of this in chapters 4 and
.34

It is worth stressing, however, that many models which are defined
using adaptor grammars can be re-expressed in a purely finite state
framework, as exemplified by the discussion above — the collocation
model does not rely on the generative power of context-free grammars.
Yet, adaptor grammars make it easy to define a variety of models without

There can also be multiple ‘independent’ hierarchies — if one defines a set of connected
non-terminals to be a set that contains all and only those non-terminals that, in any
tree generated by the grammar, stand in a dominance relationship, there will be a
distinct Chinese Restaurant Franchise for any such set of connected non-terminals.
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CRP franchise h
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hw dog
® o @

Model variables
(Parse)

Observed variables thedogbarks

Figure 2.15: IMustration of the Chinese Restaurant Franchise induced by the
collocation model, and a seating arrangement for a particular
analysis of the input thedogbarks. It iz not simply tables that
correspond to customers in the higher-level restaurant but actually
sub-parts of the structured objects that comprise table labels
This makes it possible to define deep hierarchies in which multiple
levels of structure are learned in a non-parametric way jointly.

having to derive a specific inference algorithm as in, for example, Zhao
et al. (zo15).

Finally, it is worth pointing out a subtle but important difference to
the Bigram model. An adaptor grammar model will always consist of a
finite number of distributions, one per non-terminal, even though any
individual distribution may be non-parametric. However, to encode a
Bigram language model as a PCFG, one needs a dedicated non-terminal
symbaol for every word in the vocabulary. Paired with the assumption of
an infinite vocabulary, as in the Bigram model, this requires an infinite
number of non-terminal symbols.

The idea of generalizing PCFGs to infinite numbers of non-terminal
symbols has indeed been explored, see Liang et al. (zoo7), although to
my knowledge, no one has combined adaptor grammar's ability to assign
non-parametric distributions to non-terminals and the ability to have

At least in theory — in practice, one can always enumerate the very large but finite
number of substrings in any finite amount of input over which we perform inference.
Yet, performing inference using such unwieldy grammars with very large numbers of
non-terminals is likely to be inefficient and violates the intuition that there could
always be a word that has not been observed in the finite input which such a model
would have to treat differently from all other words.
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an infinite number of non-terminals into a single general framework.
Thus, as of now, the Bigram model cannot be expressed as an adaptor
Erammar.

To conclude, adaptor grammars provide an easy-to-use framework that
allows one to study a large class of models without having to implement
a model-specific inference algorithm. In a sense, adaptor grammars can
be seen as the natural language processing analogues of ‘general purpose’
Bayesian inference tools such as Stan (Stan Development Team, zo14) or
BUGS (Lunn et al., zo12). These tools are not suited to handle inference
under models that involve highly structured discrete latent structures
whereas adaptor grammars make it possible to express a large class of
these kinds of models in a generic way.
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PARTICLE FILTERS FOR WORD
SEGMENTATION

This chapter presents a particle filter algorithm for the word segmenta-
tion models of Goldwater et al. (zoog). Particle filters (Murphy, zo12)
are mathematically well- motivated incremental algorithms that produce
a finite approximation to the true posterior of a model, the quality of
which increases with larger numbers of particles and converging on the
true posterior as the number of particles goes to infinity. This guarantee
of asymptotic correctness makes them similar to Markov Chain Monte
Carlo methods that are usually used to study Bayesian models and sets
them qualitatively apart from most previously proposed online learners
for word segmentation that are based on heuristics.

The two main findings of this chapter are that for incremental inference
to perform well in practice, a linguistically informed base distribution is
needed even though in a batch setting, the impact of the base distribution
is negligible. And that allowing the particle filter to re-examine previous
observations dramatically improves performance, allowing it to identify
higher quality segmentations than the batch learner even though these
segmentations have lower posterior probability than the ones identified
by the batch algorithm.

I argue that these findings should not be interpreted as evidence for
a particular algorithm as a mechanism used by human learners; but
that they raise questions about the underlying segmentation models. In
particular, how the segmentations inferred by a model can change over
time as a function of input size and in what circumstances constraints
on possible words are useful for word segmentation, questions which are
taken up in detail in chapter 4.

The chapter is structured as follows. First, I discuss the idea of
incremental inference, also briefly discussing previous work on online
learners for word segmentation. I then derive a strictly incremental
particle filter algorithm for the Unigram and Bigram model of word
segmentation introduced in chapter =. After discussing its performance,
I describe an extension to the algorithm that considerably boosts its
performance using the idea of rejuvenation at the expense of strict
incrementality. The chapter closes with a discussion that relates the
experimental findings to questions about language acquisition.

3.1 MOTIVATION FOR ONLINE ALGORITHMS

Inference in probabilistic models can usually not be performed ana-
Iytically and relies on approximate algorithms. A popular choice of
algorithms for appraximate posterior inference are Markov Chain Monte
Carlo algorithms, a general class of algorithms that produce samples
from the posterior distribution of interest by making many passes over
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the entire corpus. Thus, they are batch algorithms that treat the entire
input as a single large observation and iterate over it many times.

Both from a practical and a theoretical stand-point, alternative algo-
rithms that perform inference in an incremental fashion are desirable.
For one thing, making many iterations over large amounts of data can
be computationally prohibitive and for very large datasets, it may not
even be possible to hold the entire input in memory all at once. From a
theoretical perspective, incremental algorithms can be seen as addressing
the popular (if somewhat misguided) criticism leveled against Bayesian
modeling that Markov Chain Monte Carlo inference algorithms are not
cognitively plausible due to their batch nature. This can be seen as the
main motivation for studying incremental algorithms within cognitive
modeling, and [ will return to a discussion of this in light of experimental
results at the end of this chapter.

3.1.1  Constraints on Online Algorithms

A standard definition of online learning is that it involves (a) seeing
each example only once’ and (b) making learning decisions on the basis
of one example at a time immediately after having seen it, using a
finite amount of computation (Bishop, zo06, p. 73). The particle filter
presented in this chapter is an example of an algorithm that satisfies
these two requirements and consequently constitutes an online learning
algorithm according to this definition.

There are more lenient views of online learning which relax these
assumptions to some extent. For example, the Online EM algorithms in
Liang et al. (zo10) perform local updates as required by (b) but iterate
over the whole data multiple times, violating (a). Pearl et al. (zo10)'s
DMCMC algorithm, discussed in the next section, is able to revisit
earlier examples in the light of new observations, violating thus both
(a) and (b) but still performs sequential inference as I will discuss later
on. In fact, it can be viewed as a special case of the particle filter with
rejuvenation, and we will see that it is only under a thus relaxed notion
of online learning that inference for the word segmentation models turns
out to work reasonably well.

3-2 FPREVIOUS WORK

Online learning algorithms for Bayesian models are discussed within both
Statistics and Computational Linguistics but have, to my knowledge,
not yet been widely applied to the specific problem of word segmenta-
tion. I briefly review previous work on incremental algorithms for word
segmentation.

This applies to example tokens. There may well be multiple tokens of the same
example type.



4.2 PREVIOUS WORK

3.2.1  Dynamic Programming Marimization

Brent (199g) and Venkataraman (zoo1) propose a heuristic online learn-
ing algorithm that is a local MAP learner in the sense of Sanborn
et al. (zoo6): it tries to determine the posterior over segmentations for
a sequence of unsegmented utterances wy., by determining the local
maximum a posteriori segmentation of each utterance in the sequence,
given only the observations it has seen so far.

Algorithmically, it determines the maximum a posteriori segmentation
aq for the first unsegmented utterance u; according to only the prior
constraints of the segmentation model. Then, it updates the segmentation
model with the words posited in this segmentation and proceeds to the
next utterance. In the terminology of chapter 2, we can concisely define
the algorithm as follows:

ho =10

;i | hi_1 = argmax P(o | ui, hi—1)

h; = UPDATE(hi_1, i)

Here, h;_; refers to the seating arrangement (see figure =.2) which
describes the model state after having processed the first i — 1 utterances
uy.;_1. | write hg = @ to indicate that, initially, the seating arrangement
contains no customers and the predictive distributions according to
which the probability of a segmentation can be calculated only reflect
the priors built into the model.

Starting from such an empty seating arrangement, the segmentation
for utterance u; is determined by determining the maximum a posteriori
segmentation for u; given h;_; and using this segmentation to update
the seating arrangement. [ define the UPDATE which also forms part of
my algorithm in figure 3.5.

For details about how the maximum a posteriori segmentation can
be determined, see Brent (199g) and Venkataraman (zoo1). Basically, a
variant of the Viterbi algorithm that employs Dynamic Programming
treating the spans of the utterance as overlapping sub-problems can be
applied in a rather straightforward fashion, hence the name Dynamic
Programming Maximization or DPM for short. However, we will see
later that, in fact, being able to use an efficient Dynamic Program
comes at the expense of maximizing not P(o | u;, hi—1) as defined
by the segmentation model but a slightly different yet closely related
distribution Qo | w;, hi—1). Thus, this specific local MAP learning
algorithm can be viewed as embodying two heuristics — relying on local
maximization and making use of approximate maximization.

Goldwater (zoo7) found that this algorithm does perform rather
differently to her non-heuristic Gibbs sampler for the same models and
showed that this heuristic algorithm led Brent (199g) and Venkataraman
(zoo1) to over-estimate the segmentation performance of the Unigram
model, and led Venkataraman (zo01) to under-estimate the benefit that
can be gained from modeling Bigram dependencies.
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Similar differences between local MAP learners and batch algorithms
have been found for other models by Sanborn et al. (zoo6). I return to
this point and provide an explanation of this divergence in the discussion
of the experimental results and will also relate my findings to the idea
of ‘rational process models’ introduced in Sanborn et al. (2006) in the
discussion at the end of this chapter.

3.2.2  Dynamic Programming Sampling

A slight variant of Local MAP learning is to randomly sample a segmen-
tation for each utterance from the local posterior over segmentations,
rather than deterministically choosing the local MAP. Pearl et al. (zo10)
call this algorithm Dynamic Programming Sampling and it embodies,
at a high level, the idea of a particle filter.

The goal of a particle filter is to approximate a sequence of pos-
terior distributions over time. At every time-step, it maintains a set
of weighted particles — each particle corresponds to one of the many
possible hypotheses over which the posterior is defined, and each weight
corresponds to the posterior probability. I discuss particle filters and
the idea of sequential inference in much more detail in sections 3.4 and
3.5, but it is worth pointing out that Dynamic Programming Sampling
can be viewed as a 1-particle particle filter.

As Dynamic Programming Sampling randomly samples a segmenta-
tion rather than always choosing the most probable segmentation, its
performance can differ wildly across runs. Not surprisingly, Pearl et al
(zo10) as well as Sanborn et al. (2o06) found it to, on average, perform
worse than local maximization and exhibit very high variance.

3.2.3 Decayed Markov Chain Monte Carlo

Pear] et al. (zo10) present a Decayed Markov Chain Monte Carlo algo-
rithm (Marthi et al., 2o0z2) that can be viewed as a sequential version of
the Gibbs Samplers presented in the previous chapter. For each observed
utterance, the algorithm is allowed to reconsider any possible boundary
position it has encountered so far in light of its current knowledge, but
the probability of reconsidering any specific boundary position decreases
with its distance from the current utterance. In effect, boundaries in
recent utterances are more likely to be reconsidered than boundaries in
earlier ones. This property is interpreted by Pearl et al. (2010) as a kind
of memory decay.

They examined both how the amount of computation spent on past
observations and the choice of decay function (which puts a soft con-
straint on how far back a learner effectively looks) affects inference. Not
surprisingly, they found that using more computation leads to better
performance and that the Bigram model seems to require a ‘larger mem-
ory’ (in the sense of considering observations further in its past) than
the Unigram model.
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Their algorithm can be seen as an instance of a particle filter with
a single particle that uses rejuvenation as discussed below, and we
will see that my findings are similar to theirs.® Note that this kind of
algorithm is not strictly online as, in the words of Pearl et al. (zo10), it
has “knowledge of ‘future’ utterances when it samples boundaries further
back in the corpus than the current utterance”. I return to this point in
the discussion.

3.2.4 Batch inference for word segmentation

It is worth briefly mentioning the state-of-the-art inference algorithms
in Bayesian word segmentation which are not incremental but batch
algorithms. One can distinguish two closely related classes of algorithms.

On the one hand, the original Gibbs samplers of Goldwater (zoo7)
which were reviewed in chapter = sample individual boundary positions
to produce samples of entire segmentations. On the other hand, there are
blocked samplers that resample the segmentations for entire utterances
rather than just individual word boundaries, using a Metropolis-inside-
Gibbs step to perform the utterance-wise updates (Johnson et al., 2oo7b;
Mochihashi et al., zoog). The blocked sampling algorithm plays an
important role for the particle filter and is discussed in more detail
below.

Utterance based samplers have also been applied to more complex
models in the adaptor grammar framework, introduced in Johnson et al.
(zoo7b). To date, adaptor grammar models have reported the best scores
with roughly 85% word token f-score on a variety of corpora that are
similar to the ones considered here. It is worth emphasizing, however,
that this score is attained by a considerably more complex model that
learns both syllable structure and hierarchical inter-word dependencies
rather than the Unigram and Bigram model I consider here.? Thus,
superior performance of adaptor grammar models is not a direct result
of the specific inference algorithm used but of the choice of a better
segmentation model.

3-3 THE GOLDWATER MODEL FOR WORD SEGMENTATION

The models I study are the Unigram and Bigram models described in
Goldwater et al. (zoog). As a brief reminder for the reader, I give a
high-level description of the Unigram model and refer to the review
in section 2.3.4 or the original descriptions in Goldwater (zoot) and
Goldwater et al. (zoog) for more details.

The model defines a generative process for sequences of words w.,,.
Each sequence can be interpreted as a particular segmentation of an

A subtle difference between their implementation and the particle filter with reju-
venation is that they sample individual boundaries using the Gibbs sampling steps
discussed in chapter = whereas my particle filters resample entire utterrances using
blocked sampling described below.

In theory, the particle filter framework presented in this chapter could also be applied
directly to adaptor grammar models although I leave this for future work.
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unsegmented utterance u that consists of all the segments that make
up the words in wq., concatenated in the right order and with no white
spaces. For example, if w = (the, dog) then u = (t,h.e,d,0,g).

The first word in this sequence is generated by a distribution over
possible words, the so-called base distribution B, that, in principle, can
generate words of an unbounded length (see figures =.5 and =.4). Each
following word is either generated by ‘reusing’ one of the previously
generated words, or by making a new draw from the base distribution.
This generative process, also known as the (labeled) Chinese Restaurant
Process (CRP) and discussed in more detail in section 2.3.2, can be
described through

P(W1 = w) = Hex(w)
Cw, wi;) + oFex(w)
i+a

P(Wip =w|wyy) =

Here, c(w, wy:;) is the number of times that word w occurs in the
sequence of previously generated words wq.; and o is the concentration
parameter of the CRF. It controls the probability of generating previously
unseen words by making a new draw from PF,.,, with larger values
encouraging introduction of novel words and smaller values resulting in
fewer types that repeat more often.

An intuitive understanding of the CRP makes use of a restaurant
metaphor: each generated word corresponds to the dish eaten by a cus-
tomer in a restaurant with an infinite number of tables. Each table serves
exactly one dish which all customers sitting at it share, and customers
enter the restaurant sequentially and either sit at an already occupied
table with probability proportional to the number of people already
sitting there or sit at a currently unoccupied table with probability
proportional to o In this case, they ‘order’ a dish for the table by
sampling from the base distribution Pi,.

Finally, note that the word sequences generated by this process are
exchangeable, i.e. every permutation of words is assigned the same
probability. Therefore, according to de Finetti's theorem (de Finetti,
10990) there exists some distribution & conditional on which all words in
the sequence are distributed independently and identically. Indeed, the
word segmentation models are formally defined not in terms of the CRP
but in terms of non-parametric distributions over words which are drawn
from Dirichlet Process priors. While the CRP allows us to efficiently
perform inference under models which involve infinite distributions which
we cannot explicitly represent, for conceptual clarity it is important to
keep in mind that the CRP only arises as an effect of collapsing a model
which explicitly mentions these distributions. See section =z.5.6.1 for a
discussion of the relation between the Chinese Restaurant representation
under which inference is performed and the segmentation model which
is defined in terms of the Dirichlet Process. I will come back to this
point when discussing the hypothesis space of the segmentation model
in section 3.4.2.1.
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3-4 INCREMENTAL INFERENCE

While this description has focused on the generative aspect of the model,
probabilistic models like this are usually not used to generate random
sequences of words but to perform inference over the latent variables
of the model, in this case, the actual words that make up the sequence
of segments. Thus, we are interested in the posterior distribution over
segmentations Si., for a sequence of unsegmented utterances wj.,
P(Si.n | 21:n). Before presenting the particle filter inference algorithm,
I elaborate on the idea of incremental inference using a concrete word
segmentation example and also clarify the nature of the hypothesis
space, a point that was put in slightly misleading ways in Borschinger
et al. (zo11) and Borschinger and Johnson (zo1z).

In incremental inference, we want to sequentially calculate P(S1. |
uy.;) for all £. §;; is a sequence of random variables, and each 5; ranges
over the possible segmentations of the first ¢ utterances of the corpus
u1:¢. | refer to the posterior distribution P(S1; | w1.¢) as the posterior
distribution at time ¢, indicating that it corresponds to the posterior
distribution after having observed the first ¢ utterances of the input.

A batch algorithm can infer P(S; | wy;) for any i by performing
multiple iterations over w;.;, treating all observations as ‘kmown’ from
the beginning. Thus, in Gibbs sampling each of the many iterations the
sampler performs conditions on all observations except for the small
span of unsegmented text that is affected by the boundary which is
resampled (see section 2.5.6.2).

An incremental inference algorithm, in contrast, calculates a sequence
of posteriors, basing inference of the posterior at time ¢ exclusively on
the posterior inferred for time ¢ — 1 and the observation made at time
t. There is no need to, so to speak, re-examine previous observations.
Incidentally, this idea falls out naturally in a Bayesian framework.

3.4.1 Incremental Bayesian Inference

As discussed in section 1.1.2.3, Bayesians view posterior inference as
setting a normative standard for how beliefs ought to be updated on
the basis of evidence. In particular, updating a prior belief P(H) on
the basis of some evidence E to a posterior belief P(H | E) is called
Bayesian updating as it relies on Bayes' Theorem:

P(E | H)P(H)
P(E)

P(H |E)= o P(E | H)P(H)

Assuming that, conditional on the hypothesis, the observations are
identically and independently distributed, one can show that there is no
difference between applying Bayesian updating using several observations
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at once or using the same observations one at a time, as can easily be
seen by the following algebraic manipulation:

P(H | Ey, E3) oc P(Ey, By | H)P(H)
o P(E, | H)P(E; | Ey,H)P(H)
o P(H | Ey)P(E: | H)

The second line applies the chain rule to P(Eq, E2 | H). In the third
line, P(Ey | H) and P(H) are combined into P(H | E1), the posterior
distribution over H given only the first observation; and, exploiting
the assumption that Fy and Fs are conditionally independent given H,
P(E; | Ey, H) simplifies to P(E; | H).

Thus, we can write P(H | E1, E2) as the product of the likelihood of H
in light of Fs and the posterior distribution of H given Eq — “yesterday's
posterior is today’s prior”.*"* As Bishop (z006) argues, a “sequential
approach to learning arises naturally when we adopt a Bayesian view-
point” (p. 73) and particle filters can be viewed as exploiting the ability
to apply Bayes' Theorem recursively to a sequence of observations.

Crucially, this ability assumes that observations are conditionally
independent given the hypothesis. This assumption, however, is unprob-
lematic even though unconditional independence of observations would,
of course, render Bayesian updating impossible, as pointed out by De
Finetti:

If I admit the possibility of modifying my probability judg
ment [=beliefs| in response to observations of frequencies;
it means that — by definition — my judgement of the prob-
ability of one trial is not independent of the outcomes of
the others|.| (De Finetti (1g9go), quoted according to (Gillies,
2000, . 75))

As long as the observations are judged to be erchangeable — meaning
their ordering does not affect their joint probability — De Finetti's
theorem guarantees that there is some random variable H (which ranges
over distributions over the observations) such that all observations are
conditionally independent given H. Thus, the conditional independence
assumption made in the derivation above holds whenever the joint
distribution of the observations is exchangeable which is the case for
virtually all models ever considered.

With this, I turn to incremental inference under the word segmentation
models. Recall from section =.7.2 that the CRP induces an exchangeable
distribution over sequences of words. Therefore, we know that there
is some underlying distribution according to which the words in the

I haven’t been able to determine who ought to be credited with this slogan.
See footnote 4 on page 14 for why P(E; | H) should not be read as “the likelihood
of Ez given H™.
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sequence are conditionally independent, and in chapter 2 we saw that
this distribution is a draw from a Dirichlet Process:®

G ~ DP(a, Piey)
W;|G~G

As discussed in section =.3.6.1, we can analytically derive the posterior
over (7 if we know the sequence of segmented words. Also, because the
words that make up these utterances are conditionally independent
given (7, so are the individual sequences of words corresponding to each
individual utterance. Hence, we can also perform sequential inference
through recursive application of Bayes' Theorem:

ELEIl é'll-i_.i + aFe,

o 4 |uq |

G | uy ~ DP (cx+|u1|, ) =DP(a!, PL,)

G | uy,ug ~ P(C | uy)P(uz | G)

(2 bu,) + o' B
al + |uq|

08 (o + o

G| uyn ~DP a1 {E!:;l éi.l-n.,i:l +"ln_1pf:;1
B 1 n:“—1+ Iu'ﬂl

As we do not observe segmented utterances, we have to sum over all
possible latent segmentations which turns the posterior distributions
into mirtures of Dirichlet Processes with one component per latent
segmentation. This sum is usually infeasible to perform as the number of
possible segmentations grows exponentially with the size of the corpus,
and working directly with infinite objects such as Dirichlet Processes
also poses practical problems.

For these reasons, the inference algorithm directly approximates the
marginal posterior over segmentations with (G integrated out and op-
erates in the Chinese Restaurant representation. Thus, each state con-
sidered by the algorithm is a seating arrangement which provides the
sufficient statistics to calculate the posterior expectation of & condi-
tional on a particular segmentation of the corpus. As conditioning on a
‘seating arrangement’ is equivalent to conditioning on a particular G — its
posterior expectation — the words and, consequently, the utterances are
also conditionally independent given a particular seating arrangement
h.

This makes successive application of Bayes' Theorem applicable and
forms the basis for the particle filter. After this somewhat formal discus-
sion, | give a concrete illustration of sequential inference for the marginal
posterior over segmentations.

For ease of presentation, I limit discussion to the Unigram model which only involves
a single & whereas the Bigram model includes an infinite number of Huys, see
figure =.10.

Tl
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AB CD DE FG
0.0075

Figure g3.1: Posteriors at time ¢t = 1,¢ = 2, = 3 for the sequence of utterances
ABCD,DEFC and CDDE. Each circle represents a specific hypothesis,
ie a segmentation of all utterances up to time f. The arrows
indicate relations between hypotheses over time with the solid
arrow indicating pointing towards the most probable hypothesis
according to the next posterior. Not all hypotheses are shown,
nor are all possible extensions of a hy pothesis indicated through

AITOWS.

3.4.2 An erample for incremental inference

Figure 3.1 illustrates the sequence of marginal posteriors over segmen-
tations for a toy example comprising the three ‘utterances’ abed, defg
and cdde in this order. Here, one can exhaustively enumerate all pos-
sible 8,64, and 512 segmentations for the first, the first two and all
three utterances, respectively, and analytically calculate their posterior
probabilities.”.

Each column corresponds to a different posterior over segmentations,
with the first column corresponding to the posterior at ¢t = 1 and
the third column to the posterior at ¢ = 3. | represent segmentations
as circles, with the radius of a circle roughly corresponding to the
posterior probability of this segmentation. Except for ¢t = 1, one cannot
depict all possible segmentations in which case 1 only illustrate some

7 The probabilities are calculated using a Unigram model with concentration parameter
o = 1.0 and a Unigram phoneme base distribution with fixed uniform phoneme
probabilities and a stopping probability of 0.5 (see figure = 4)
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segmentations and summarize the remaining ones as a single big circle
which provides the overall number of non-depicted segmentations and
their total posterior probability mass.

3.4.2.1 State-space and hypothesis space

Figure 3.1 suggests, somewhat misleadingly, that the hypothesis space
changes over time. This impression arises because we are working with
a collapsed model whose state space comprises the possible analyses
of the input rather than the infinite number of distributions over the
space of all possible words; particle filters working with a collapsed
representation are also called Rao-Blackwellised particle filters (Murphy
and Russell, zoo01).

Recall from the previous discussion that each segmentation ‘hypothesis’
defines the sufficient statistics required to recover a posterior over the
infinite distribution . In this sense, even though the number of possible
latent segmentations that need to be considered grows over time simply
because the size of the corpus grows, the hypothesis space according
to the segmentation model does not change — it always comprises all
distributions over the space of all possible words.

What does change, however, is the state space. At time ¢, it comprises
all possible segmentations of the input of the unsegmented utterances
wj¢. This is different from more common applications of sequential
inference where, irrespective of the number of measurements on which
one conditions, the state space is identical. For example, in object
tracking the state space at every time step comprises the co-ordinates
and the velocity of the object. In contrast, for us the state space at
time step ¢ comprises all possible segmentations of the first ¢ utterances
and is different from and bigger than the state space at time t’ < ¢ and
smaller than the state space at time t” > t.

Also, one can group the segmentations at different time-steps into
disjoint ‘trajectories’: consider a specific latent segmentation h, at time
t that consists of the ¢ segmentations &1, of the first ¢ unsegmented
utterances ui.¢. For example, the most probable such latent segmentation
at t = 2 in figure 3.1 comprises the segmentations 51 = abed and
sy = defg. This is only ‘compatible’ with exactly one of the latent
segmentations at time ¢ = 1 , namely abed, indicated by the arrow going
from the latter to the former.

Thus, while a latent segmentation may be extended in multiple ways
(as is illustrated for abed in figure 5.1), no two latent segmentations at
time ¢ can be extended to yield the same latent segmentation at time t+1.
Because of this, it can happen that every possible extension of a high-
probability segmentation at time t results in a very low segmentation
at time ¢t + 1; and that the only high probability segmentations at time
t+ 1 are extensions of low probability segmentations at time ¢.

Concretely, consider segmentation abed at time t = 1. This is by far
the most probable segmentation given only a single utterance which is
plausible as there is, so far, no discernible pattern for repetition of smaller
elements. There are multiple ways in which this particular segmentation
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can be ‘extended’ upon observing the next utterance defg, one for every
possible way of segmenting it. Two possible extensions are depicted, and
we see that one of the extensions is the most probable segmentation
at t = 2 whereas another possible extension attains considerably lower
posterior probability.® However, upon observing the third utterance cdde
the most probable extension of what was the most probable segmentation
at t = 1 only attains 1.7% posterior probability, illustrating a case where
the single most probable segmentation at time t' can only be extended
to low probability hypotheses at time &' + 1.

The reverse holds for (ab cd, de fg) which, at time t = 2, only has
a posterior probability of 0.75%, i.e. less than 1%. Yet, it is the only
segmentation that can be extended to (ab cd,de fg, cd de) which, with
almost T0% of the posterior probability mass, is by far the single most
probable segmentation at time t = 3.

As a final point, note that even though the order of observations
plays no role when one conditions on all of them because the model
is exchangeable, the ordering of the observations does lead to different
sequences of posterior distributions over segmentations. To illustrate,
compare figure 3.2 to figure 5.1. Even though at ¢ = 3, the probabilities
are exactly identical, the distributions at ¢t = 2 differ rather dramatically.

I now turn to discussing a particle filter algorithm which performs
incremental inference for the marginal posterior over segmentations as
just described for Bayesian word segmentation models.

3-5 PARTICLE FILTERING FOR WORD SEGMENTATION

The algorithm is an instance of a particle filter, more precisely, of the
Sequential Importance Sampling Resampling (SISR) algorithm (Mur-
phy, 2012, p. 8z24f). I briefly give the general idea of particle filters
before spelling out in detail the algorithm that can be used for word
segmentation models.

The general idea of particle filters is rather simple. One sequentially
approximates a target posterior distribution P by N weighted point
samples or particles. As pointed out in the previous discussion, here we
attempt to approximate the marginal posterior over segmentations of a
corpus — thus, each particle corresponds to a segmentation hypothesis.
In terms of the original segmentation model, each latent segmentation
actually provides the sufficient statistics for an entire distribution over
infinite distributions over possible words (see also section 2.3.6.1).

Consequently, each particle corresponds to a set of hypotheses (this
idea is similar to that of Steinhardt and Liang, 2014) in the sense
discussed for the circles in figure 3.1. It is assigned a weight that reflects
how well this set of hypotheses or, equivalently, the corresponding
latent segmentation, is supported by the observations processed so
far. At every time-step, the set of particles only represents a sample
from the full hypothesis space and the weights represent the marginal

& Of course, there are § more extensions not shown.
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To

Figure 3.2: Posteriors at time ¢ = 1,¢ = 2, = 3 for a different permutation of
the utterances abed defy and cdde. Note that at # = 3, the posterior
probabilitics over segmentations of the entire corpus are identical
to those in figure 5.1, yet at £ = 2 the posterior distribution owver
segmentations changes dramatically because the observations on
which the posterior at ¢+ = 2 conditions is different.

posterior probability of each latent segmentation.” Using these weights,
we can calculate a Monte Carlo approximation to the marginal posterior
probability of every segmentation at each time.

Algorithmically, a particle filter starts from N initial particles which
reflect only the prior knowledge encoded in the model. Each individual
particle is updated sequentially by randomly sampling among possible
future ‘extensions’ of its corresponding latent segmentation in the sense
illustrated in figure 5.1. After each update, the weight of the particle
is adjusted to indicate how well the sampled extension fits the next
observation, increasing the weight of particles that assign high probability
to it and decreasing the weight of those that assign low probability. To
specify this in more detail the notion of a state space model is useful.

In this sense, the particle filter approximates the exact posterior distribution which,
as discussed in section 5.4.1, is a mixture of DPs with one component per latent
segmentation as a mixture that only has n components, one for each particle.
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3.5.1 State space models

A state space model defines how a latent state £ evolves over time
and generates observed measurements [ at every time-step. Sequential
inference aims to identify the posterior distribution over latent states
at each time-step given only the observations up to this time-step, i.e.
P(Z: | Y 14).

We can recast word segmentation as such a problem by considering
segmentations S1.; to be the latent states of which we only ever observe
the associated unsegmented utterances U.;. Incremental inference for
the posterior over segmentations amounts to inferring the latent sequence
of segmentations from the observed unsegmented utterances.

A state space model is defined in terms of two conditional distributions.
A state-transition probability distribution P(h;y1 | ht) governs the
transition between the latent state at time ¢t and the latent state ¢ 4+ 1;
in the segmentation model, the latent states at time t are seating
arrangements that correspond to the specific segmentation choices 814
made for all observed utterances uy:. And a distribution FP(u: | he)
that generates the observation at time t given the latent state at time
t, in this case an unsegmented utterance. The relationship between
segmentations and seating arrangements is illustrated in more detail in
figure 2.6 — for ease of presentation, I will usually depict latent states
only as segmentations rather than corresponding seating arrangements,
as in figure 3.1.

I define the transition function for latent states in a two step process as
follows. Assume we already have generated t latent segmented utterances
and a corresponding seating arrangement h;, i.e. a particular latent state
at time t. At t = 0, this will just be an empty seating arrangement hg
as no observations have been made.

To generate a latent state for time t = 1, we first sample a random
sequence of words by running the generative process that underlies
the word segmentation model. This amounts to sampling from the
posterior predictive distribution P(W | hg) until an utterance boundary
is generated (see chapter z, equations 2.16 and 2.17)."" I write this as

wi | ho ~ P(- | ho)

wj is the latent segmentation for the first observation. Given the
words that make up wy, we can update hg accordingly which [ write as

hy | wy = UPDATE(hg, w1)

For this, we use the function UPDATE which sequentially adds cus-
tomers to an existing seating arrangement. Thus, we have generated one
particular latent state at t = 1 by first randomly generating a sequence
of words and then using this sequence of words to update the seating

Note that I am merely defining the state space model under which inference will be
performed rather than the actual inference algorithm. Hence, the ‘segmentations’ are
sampled unconditionally on any observation as they define what the observations
are. See the discussion of generative models and inference in section 2.2
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arrangement hy. We now repeat the process with the second observation,
first generating a random sequence of words from P(- | hy) and updating
h1 to ho using this sequence of words. For the general case, an update
step can be written as

wiyt | by~ P( he) (3-1)
h't+l | Wi = UPDATE{hg, wt+1] (32]

Specifying the probability distribution that generates observations
from the latent state is trivial as the observation at time t + 1 is just
the concatenation of the words w;; that were generated in sampling
the current latent state by q:

el | Wi = CDNCAT(W¢+1:I

3.5.2 Naive FParticle Filter

Particle filters perform inference in a state-space model by forward-
simulating a finite number of n particles. At every time f, we assume to
have access to a set of particles hgl:“} with weights wgl:"’} that provide
a Monte Carlo approximation to the posterior distribution of interest at

time t:*

P(H, =z |uy) = z wf:'l[:r = h'Ei]]

i=1

For time t = 0, a set of initial particles is usually generated by
sampling from the prior distribution and assigning equal weight to every
particle. As we perform inference under a collapsed representation, each
initial particle corresponds to an empty seating arrangement.

Given a set of weighted particles at time f, we generate a novel set
of particles at time ¢ + 1 through two steps. First, we update each
individual particle through performing a ‘forward-simulation’ step. That
is, we sample

R ~ P(Zest = by | Zesa = b))

as defined by the state space model. Secondly, we update the weights
to take into account the novel observation u;y 1, essentially multiplying
the previous weight wtﬁ} and the joint probability of the novel latent
state and the observation P(u;, 4, hgﬂl | hgi)j.

I won't go into the details of this general algorithm, known as the
Bootstrap filter (Gordon et al., 1g93), because it exhibits a severe
shortcoming for applications such as ours: in particular, Pugyq | f.':¢+1}
is non-zero if and only if the words which were randomly sampled in the
update step can be concatenated such that they make up u;, ;. This is
a consequence of choosing a deterministic mapping using the ConcaT
function to generate observations from latent states.

I use super-scripts to refer to individual particles. Thus, k) refers to the i*" particle
at time ; hEl:"} refers to the set of n particles at time £.
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P{SIM | ulﬂl

Wiight using obsernvation

PIS,. U

Figure g.q: Ilustration of the Bootstrap particle filter and its problem of gener-
ating extensions that are ‘incompatible’ with the next observation,
resulting in particles with weight 0 (indicated as dashed lines that
do not result in a novel particle). Refer to text for discussion.

If sampling the new latent state is not constrained by the next ob-
servation, most proposed particles will assign 0 probability to the next
observation (as their corresponding segmentation is incompatible with
the observed sequence of segments) and, consequently, end up with a
new weight of 0. This is illustrated in figure 3.5 where each dashed line
indicates a particle that is incompatible with the next observation. In
a high-dimensional space such as ours, one can expect virtually every
proposed extension to be assigned a weight of 0, making application of
this kind of inference practically impossible.

Luckily, this is not the only way to perform particle filtering. Murphy
(zo1z) argues that it is “much better to actually look at the data u,
when generating a proposal.” (p. 827) It can be shown that the optimal

distribution according to which one should evolve particles is Pl:.f:.gf_jl |

~

hgp }?ut.l_l:l (ibid.), rather than using simple forward-simulation from
P(- | h")) which ignores ., .

Following this suggestion, we will sample the segmentation used
to update a particle a particle from the conditional distribution over
segmentations given the current observation P(- | h,u) rather than
P(- | k). This ensures that all updated particles will be assigned non-
zero weights but raises the practical problem of how one can sample
from P(- | h,u), i.e. the posterior distribution over segmentations for a
given unsegmented utterance u and a seating arrangement .
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3.5.3 Data-driven simulation using Sequential Importance Sampling

Sequential Importance sampling (Murphy, 2012, p. 824ff) sidesteps this
problem by allowing to update particles using any proposal distribution
() provided its support includes that of the conditional distribution P(- |
h,u) from which we really want to sample. All that is required is that
we be able to calculate the probability of every sampled segmentation
according to P(- | h,u) which, as we will see, can be done rather easily
in this case, even if sampling from P directly is infeasible.

Thus, one can choose any distribution () from which it is easy to
sample to propose the updates and simply correct for the fact that
we extended the particles according to a different distribution in the
particle re-weighting step, ensuring that the particle filter still provides
an approximation to the intended posterior. The use of a proposal
distribution is similar to Metropolis-Hastings sampling as used in, e.g.,
Johnson et al. (zoo7b). The main difference is that, rather than rejecting
generated samples with some probability, one corrects for the difference
between proposal and true target distribution through a weighting
scheme.

I briefly review the proposal distribution the algorithm makes use of
which was originally introduced in Mochihashi et al. (zo0q) and is similar
to the backward-sampling idea presented in Johnson et al. (zoo7h).

3.5.3.1 Blocked sampling from a proposal distribution

To propose extensions of a particle, we need a distribution that is
defined over segmentations of a given utterance u. Ideally, we want this
distribution to be as close as possible to the true posterior distribution
P(- | h,u) defined by the word segmentation model in terms of the
posterior predictive distribution induced by the seating arrangement h.
For the Unigram model, this is**

P(win | h,u) = P(ws | h) (H(P{wi | win( —pa})
i=2
% p1[CoNCAT(wy,,,) = uf

The reason this distribution is hard to sample from is that to calculate
this probability exactly, the seating arrangement h needs to sequentially
updated after every individual word in the sequence, indicated by writing
h|Jwi_1. This adds two dimensions of complexity, the first being that
the process of updating a seating arrangement itself is random rather
than deterministic and no known closed formula to marginalize over all
possible seating arrangements is known. Secondly, the sequential updates
make it impossible to marginalize over partial segmentations of u as the
exact identity of the words used in a partial segmentation affects the
probability of words that can be used to segment the remainder of u,

For simplicity, I assume a fixed stopping probability p., rather than integrating this
parameter out. Extension along those lines is trivial and automatically dealt with by
the re-weighting step.
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rendering Dynamic Programming that relies on this kind of overlapping-
subproblem structure inapplicable.

There is, however, a straightforward way of sampling from a slightly
different distribution that simply ignores these two issues:

Q(wim | hyu) = (H P(uy; | h)(1 —;pa:l) ﬁl[{jmﬂclﬂ{whn} = u
i=1 &

The sole difference to P(- | h,u) is that the probability of every
word is calculated using h rather than updating h during calculation.
This makes it possible to perform efficient sampling using a forward-
backward sampling scheme that has been first presented by Mochihashi
et al. (zoog). As they only give the details for the Bigram model, 1
present this algorithm for the Unigram model.

function SAMPLE(chart, u)

n=|ul t+ determine length of unsegmented utterance
sl+mn & start with full utterance
i+ 1 & index of generated words

while sl > 0 do
sample k o< P(ug_jy1.0 | h)chart[sl — k] length of last word

Wi 4 Wl _jy1:sl t word spans from sl — k+ 1 to sl
i+—i+1
sl +—sl—k > subtract sampled word from utterance
end while
return w = w;, wi_q,...,w [> reverse sequence

end function

Figure 3.4: Backward sampling for the Unigram model At every iteration,
a word among all suffixes of 4.4 (an unsegmented utterance of

length sl) is sampled, starting with sl = n, ie. the entire utterance.
Once a word has been sampled, the length of this word is subtracted
from sl and, until sl = 0, the process is repeated. The segmentation
is the reversed sequence of words that have been sampled, and
sequences will be sampled acecording to Q(w | h, u). The required
chart can be built using equation 3. 3.

Assume an unsegmented utterance w consisting of n phonemes and a
seating arrangement h that defines the posterior predictive distribution
P({w | h) for every possible word. We build a chart of dimensions 1 x n
in which each cell chart[i] contains the marginal probability according
to () of an utterance that consists of the first ¢ segments of w, w,.; — this
is also called the forward-probability of wi.;. This idea is illustrated in
table 3.1 where the n'* column contains the sum of the probabilities
of all possible segmentations of wj.,, the length n prefix of utterance
w. We can fill the chart efficiently, going from left to right by taking
chart[0] = 1.0 and using

k-1
chart[k] = (Z chart[k —i —1](1 — p.) Pt | h:l) + P(eyx | h)

i=1

(3-3)
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For the short utterance dog, table 5.1 illustrates the full chart and
how the probability of the individual cells is calculated.

Given such a chart, one can sample a segmentation by making a
backwards-pass as follows. Let sl be the length of the entire utterance.
Then, sample the last word of the segmentation by sampling among
all possible suffixes of w;.,; — the probability that the last word of
a segmentation is %y_jpy 1 15 P(Wg_py1.n | h)chart[sl — k], i.e. the
probability of generating the final word of length k times the marginal
probability of the remaining prefix of the utterance. Having sampled a
last word, set sl = sl — k and repeat until sl = 0, i.e. until there is no
unsegmented prefix left. This algorithm is defined in figure 5.4.

iR3 1:d z:do g:dog
P(do | h)+ P
vo| PAIR) | Pl m(1-palt] | Jlgl W ~PI0

Table g.1: Ilustration of the chart for the utterance u =dog. For readability, 1
augment the index with the span of the utterance which is covered
by the column — column i spans the initial : segments of u. chart[0] =
1.0 is required for the backward sampling pass in figure 3 4.

3.ﬁ SEQUENTIAL IMPORTANCE SAMPLING RESAMPLING

With this, everything needed for a sequential importance resampling
particle filter (Doucet et al., zoo0; Murphy, 2o012) for word segmentation
is in place. | introduce the algorithm and discuss its performance on a
toy example before evaluating its performance on actual child directed
speech.

The algorithm is defined in figure 3.5 and proceeds as follows. At
time t = (0, initialize n identical empty seating arrangements or par-
ticles hi'g_.l:m. At each time step £ + 1, we update each particle hip} by
first sampling a segmentation & = wy., from Q(- | hgp }.., Uiy1), ie. the
proposal distribution over segmentations given the previous seating ar-
rangement and the current observation. This is done using the algorithm
in figure 3.4.

A subtle but important detail is that the proposal distribution is
only defined over actual sequences of words whereas the hypotheses the
particle filter considers are seating arrangements. Rather than modifying
the proposal distribution to generate an assignment of words to tables
in hipj directly when sampling a segmentation from P(- | u, hip}}, we
generate such an assignment ‘on-the-fly’ upon updating the particle
with the proposed segmentation, keeping track of the probability of each
individual seating choice made during the update.®?

For quite technical reasons, modifying the proposal distribution is rather challenging.
In particular if the segmentation contains multiple copies of a novel word-type,
one needs to ensure that assignments in which these tokens share a table are also

1
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1: function PF(n, wi.m)
a initialize n empty seating arrangements (=particles) h

set all initial weights wlgl:“:' to ?1:.

(1m)
]

3
4 fort=1—=mdo
5 forp=1—=ndo
6: sample o; ~ Q(- | h%¥);, u;) b using figure 3.4
T hgp)aptma = UPDﬁTEEhEI:UE}
8 B = Pere/Q(0r | By, ue)
o end for
10 forp=1—=ndo
(p) _ " : :

11: wy | = S t~ normalize weights
12 end for o
13 ES5 =1/(Cp-1 ("))
14 if ESS < threshold then - Resampling
15 resample all particles according to wil:ﬂ}
16: set all weights to %
17 end if
18: end for
15: end function

function vPDATE(h, o) t~ for Unigram model

Pirue — 1.0
fori=1—|v|—1do
Pirue = Pirue ¥ P(C | k) x ADDCUSTOMER(0;, h)
end for
Pirue = Pirue % P(5 | h) = ADDCUSTDMER{-:'.I"O_', h)
return py.,.
end function

function vPDATE(h, o) t~ for Bigram model
Prrue = 1.0
w, =§ > preceding word

fori=1— |o| do
Ptrue = Ptrue X ADDCUSTOMER(wp, 0y, h)
Wy = 0y
end for
Pirue = Ptrue X ADDCUSTOMER (wy, §)
return pg.,.
end function

Figure 3.5: Sequential importance sampling resampling particle filter. The

algorithm is identical for the Unigram and the Bigram model
except for the different UPDATE function that needs to be used. The
sole difference in these functions concerns accounting for Bigram
dependencies and a slightly different treatment of word-boundaries.
The ADDCUSTOMER functions are defined in figures 2. and 2 14,
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This is achieved using the function UPDATE as defined in figure 3.5
which makes use of the ADDCUSTOMER functions defined in figure =.0.
Note that depending on whether the Unigram or Bigram model is used,
a different implementation of UPDATE is used as the way of calculating
the probability for a segmentation differs between the two models, as
do the ADDCUSTOMER functions used. Except for this, the algorithm
is generic and applies to both the Unigram and the Bigram model and
can, if the sample and update functions are appropriately changed, be
applied to any other model as well.

After having generated the extended particles using UPDATE, the

previous weight w;:f}l of each particle p is updated according to

&P = w® P(u | RP)P(R | BP,) _ o Prrue

Qo | K, ue) Qe | hP, )

This is the general weight update formula for a sequential importance
sampling particle filter (Murphy, 2012, p. 824) as applied to the specific
example of word segmentation. This involves the ratio between the
probability of the proposed extension according to the target distribution
P(-| h,u) and according to the proposal distribution Q(- | h, u) — these
so called importance weights give the algorithm its name.

To calculate P[hgp ) | h.g’p_:'l}, i.e. the transition probability of transition-

ing from latent state ht[’i }1 into latent state hgp :', we use the definition of
this distribution in terms of sampling a random sequence of words and
adding these words to a seating arrangement (see equations 3.1 and 3.2).
Thus, this probability is simply the probability of generating the words
that comprise the latent segmentation at time ¢ from ht[’i }1 which I write
88 Pyrue to emphasize that this probability has to be calculated according
to the model and not the proposal distribution (). This probability is
automatically calculated by UPDATE and makes up the entire numerator.
The reason we can drop the P(u; | hgp }} factor is that the way in which
hipj is generated ensures that it is 1.0: only sequences of words that can
be concatenated to yield u; are assigned non-zero probability by the

proposal distribution, and for every such sequence P(u; | hip}} = 1.0.

generated with non-zero probability, adding considerable complexity. In contrast,
my method of generating the seating assignment on the fly side-steps this problem
completely.
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The denominator — the marginal probability of the new observation
according to the proposal distribution — can be calculated for any
T = W{.n, USIng

ol ha) = 2o:u|h)
Aeh) Q(u | h) (3-4)
_Qa|h)
© Qul|h) (3-5)
P (1) h, Igl _ p T h,
Q{ﬂ' | h:l — ( 1 | HH::E(] pﬂ} { | }}ps

P(oy |$,h) (T% P(oi | 011, h)) P(S | o101, )

(3-6)
Q(u | h) = chart[n]

By construction, chart[n| contains the marginal probability of the
utterance, that is, Q(u | h). For equation 3.6, one needs to distinguish the
Unigram (upper) and Bigram (lower) case.™ We can simplify (}(o,u | k)
to Qo | k) because Q(u | o,h) = 1 for every segmentation that is
compatible with u and 0 for every other.

Finally, we renormalize the particle weights to ensure they characterize
a probability distribution, yielding the new set of weights wEl:"}.

For now, I ignore the final resampling step in lines 11 to 14 and will
return to it after looking at a worked example of the algorithm described
so far which is known simply as sequential importance sampling.

3.6.1 A worked erample

Figure 3.6 depicts in detail the evolution of a set of 8 particles using
the sequential importance sampling algorithm on the toy corpus used in
figure 3.1.

Each circle corresponds to a particle, identified by the specific seg-
mentation it corresponds to and its weight.’> There can be several
particles that are identical, as is the case for the three particles at time
t = 1 that all correspond to the segmentation ab cd. According to this
specific set of particles, the approximate posterior probability of ab cd
will be 3 = 0.17 = 0.51 which is quite different from the true posterior
probability of 0.13 (see figure 3.1).

This illustrates a general issue of simulations based on random sam-
pling — we may simply be “unlucky” and the most frequent outcome
in a set of samples may not coincide with the most probable outcome
according to the distribution we try to approximate. Indeed, this par-
ticular set of particles does not contain a particle that corresponds to
the true MAP hypothesis at t = 1, assigning 0 probability rather than
0.53 to the segmentation abed. Of course, this danger gets smaller as we

For the Unigram model, we need to multiply in the probability of generating the
utterance boundary, hence Q{u | h) = an|p,.

While for ease of visualization, I represent particles through the associated sequence of
segmentations, recall that each particle corresponds to a specific seating arrangement
rather than a sequence of segmentation choices.



3.6 SEQUENTIAL IMPORTANCE SAMPLING RESAMPLING

85

Figure 3.6: Graphical depiction of a simulated run of the sequential importance
sampling particle filter.

increase the number of samples and tables 3.2 and 5.3 show how larger
numbers of particles lead to better approximations, getting arbitrarily
close to the true posterior in the limit.

Despite its shortcomings, the 8 particle example is useful for under-
standing the idea of the algorithm. In particular, it allows us to track
how individual particles are extended according to the algorithm in
figure 3.5 — the trajectory of each particle is indicated by blue arrows in
figure 3.6.

In this particular run, two of the ab cd particles get extended by
choosing def g as the segmentation of the second observation whereas
the third one gets extended with defg, resulting in different weights
for these particles at time ¢t = 2. This shows why it is important to
have multiple identical particles as otherwise, only one possible future
extensions of every hypothesis could be explored.

We also see that the particle abc d at time ¢ = 1 gets extended using
d efg, ending up with the highest weight at ¢ = 2. This is due to the
fact that it is able to ‘reuse’ the word d, indicated by boldface in the
figure, and thus can assign higher probability to the second observation
than any of the competing particles who do not ‘spot’ an already known
word in their analysis of the observation. Interestingly, the other two
hypotheses that posited a word d at ¢ = 1 are updated in a way that
does not reuse the word, resulting in lower posterior weights at time
t = 2. Again, this reflects the random nature of the update — rather
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| P({ab cd, de fg, cd de) | uy.3) | % Particles

True o0.6g85
1,000,000 a.697g 1.55
100,000 o.Ggby 1.57
10,000 0.7023 1.55

Table g.2: Posterior probability of the MAP segmentation at ¢ = 3 for very
large numbers of Particles. Also given is the fraction of particles
that correspond to this MAP segmentation which is roughly 1.5%
despite these particles accounting for roughly 70% of the posterior
probability mass.

than deterministically picking the highest probability extensions, we
randomly sample segmentations.

Unsurprisingly, the posterior approximation at ¢ = 2 is no better
than it was at ¢ = 1, assigning the highest weight to a particle that
corresponds to abe d / d efg, a hypothesis that under the true posterior
only has a probability of 0.11. It also still assigns 0 probability to the
true MAP hypothesis abed [/ defg as it could not have generated it,
lacking a particle that corresponds to abed at ¢ = 1. This illustrates a
general issue with incremental inference algorithms — if a hypothesis is
not generated at some point, the algorithm will never be able to consider
it even if later evidence speaks strongly in favor of it. Thus, a strictly
incremental particle filter can get side-tracked through “unlucky’ choices
and never recover from this, a well-known problem for particle filters (see
e.g. Murphy, zo12, Fig. 23.6) to which I will return in the discussion.

There are two more points | want to illustrate with this concrete
example. The first is that a particle’s weight may increase considerably
from one time step to the other, as is evident from comparing the particles
at t = 2 and t = 3: a particle corresponding to the segmentation ab c d
/ de fg with weight 0.07 gets extended to a particle that has a weight
of 0.54 at t = 3 because its initial segmentation choices — although
scarcely supported at ¢ = 2 — provide a high-probability analysis of the
third observation which reuses the ‘words’ ¢, d and de as illustrated by
bold-facing, Conversely, a highly weighted particle can end up among
the lowest weighted particles, an example of which can also be seen in
moving from t = 2 to t = 3. This up- and down-weighting of particles
is how the algorithm can handle the changes in posterior probabilities
illustrated in figure 3. 1.

Finally, table 5.3 compares the most probable 4 segmentations ac-
cording to the simulation employing 8 particles that I just discussed, a
simulation employing 100 particles and the analytically determined pos-
terior distribution. Alongside each hypothesis, I list how many particles
correspond to this segmentation.

We see that, unlike the simulation using 8 particles, the one with 100
results in a reasonable (though still far from perfect) approximation
to the posterior that correctly identifies the MAP hypothesis at each
time. Looking only at the probability of the most probable hypothesis at
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t = 3, table 3.2 shows that using ever more particles results in a perfect
approximation, illustrating the asymptotic correctness of the particle
filter — using 1,000,000 particles correctly identifies the probability
of the MAP segmentation up to almost 3 decimal places. Yet, it is
striking just how many particles are required to accurately estimate
the probability of the MAP hypothesis even in this toy example which
only considers 3 observations and where the total number of possible
segmentations for the entire corpus is merely 512.

Omne issue that is apparent from tables 5.3 and 5.2 is that at ¢t = 3,
most of the particles correspond to low probability segmentations. Of the
100 particles, only a single one corresponds to the MAP segmentation
while 93 particles are used to account for only 17% of the approximation.
This is because at ¢t = 2, the ‘ancestor’ of this particle (corresponding
to the segmentation ab cd / de fg) has very low posterior probability
and many of the high-probability segmentations at t = 2 can only be
extended into low probability segmentations at ¢t = 3 (see figure 3.1).
Indeed, table 5.2 shows that the fraction of particles that account for the
MAP segmentation at £ = 3 is consistently below 2% for large numbers
of particles.

3.6.2  Resampling

This tendency of a small number of particles to attract most mass and,
as a result, the weights of all other particles getting closer and closer
to 0 is known as the “degeneracy problem, and occurs because we are
sampling in a high-dimensional space (in fact, the space is growing over
time)” (Murphy, 2012, p. 825), as was illustrated by figure 3.1.

There are two related reasons why only a few of the particles taking
up almost all of the weight is undesirable. First, extending particles
with very low weights can be seen as a waste of computation as they
contribute very little to the approximation to the posterior; second,
having only few particles that represent high probability hypotheses
limits the ability to consider alternative extensions of these hypotheses
— we'd rather spend the computation wasted on the low probability
particles on exploring more possible extensions of the high probability
particles.

A straightforward way of addressing this is to resample the n particles
according to their current weights. This results in high probability
particles having multiple ‘descendants’ which can be independently
extended to explore future possibilites, and in low weight particles being
‘weeded out’, preventing the algorithm to spend any more resources
in exploring how they could be extended. After resampling, the set
of particles constitutes an i.i.d. sample from the original approximate
posterior distribution and we assign equal weight to every resampled
particle. The general idea is illustrated in figure 3.7.

RESAMPLING USING RESIDUAL SAMPLING There are multiple
ways in which one can resample particles. For an experimental evalua-



3.6 SEQUENTIAL IMPORTANCE SAMPLING RESAMPLING

tion of different strategies, see Douc and Cappé (zooz). I follow their
suggestion to use residual resampling:

First, for every particle hgpj with weight wt':’p ) we calculate M(P) =
[ = wgp }J. This is the minimal number of descendants that particle h(®)
will have and it is simply the (integer part of the) number of times one
expects to see particle ') if one samples n times from the distribution
defined by the current weights. Due to the rounding down, 3 7 | M (P)
may be less than n. This is where residual sampling comes in.

Let r=n— E::l M®), We generate the remaining r particles by
drawing r times from the distribution defined by the current weights
which is equivalent to drawing a vector {Hl?. ey M™) ~ Mult(r, wEl:"’}},
i.e. making a draw from the multinomial distribution over r outcomes
defined by the current particle weights (see table 2.1 for a definition of
the Multinomial distribution).

Finally, we let particle h®) have M®) + M(?) descendants after resam-
pling, resulting in n particles which are likely to include many copies
of high probability particles and may completely lack low probability
particles.

An additional question concerns when to perform the resampling steps.
The approximate effective sample size, defined as

S S
S (w2

provides an easy to calculate metric according to which one can
decide when to resample. If all particles have the same weight ESS =n
which indicates that all of the particles contribute to the posterior
approximation. If the weights are heavily skewed, however, £S5 will be
considerably smaller than n and its magnitude provides a rough estimate
of how many of the particles are actually used for the approximation and
how many particles have become “useless”. Whenever ESS falls below a
certain threshold (for example ), a resampling step is performed and,

as all resampled particles have identical weight, after this ESS =n.

I experimented with the thresholds n (corresponding to resampling
after every observation) and 5, finding little difference between the
two thresholds. All experiments that follow have been performed with
resampling after every observation.

While this addresses the degeneracy problem, it introduces an orthog-
onal issue known as sample impoverishment (Murphy, zo12, p. 826).
This is the issue that low probability hypotheses may be completely lost
during a resampling step even though they may be the only hypotheses
that could have been extended to high probability hypotheses later on.
Basically, the replication of locally high probability particles leads to an
irrecoverable loss of diversity and this may result in the particle filter
getting side-tracked.

For example, consider again the low-probability hypothesis in figure 3.1
at t = 2 which ends up as the highest probability hypothesis at t = 3.
Having a local probability less than 1%, particles corresponding to
this hypothesis are very likely to be weeded out, eliminating the MAP

ESS =
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Figure g.7: Mlustration of sequential importance sampling resampling

hypothesis completely from the posterior approximations that can be
generated at ¢ = 3 by extending the current set of particles.

The problem is illustrated by table 3.4 which provides posterior ap-
proximations from a 100 particle particle filter which resamples after
every observation. While we see that at ¢ = 2, the approximation is
reasonable and the number of particles corresponds to the posterior
probability of the corresponding hypothesis, at t = 3 the posterior
approximation is completely off — in fact, the true MAP hypothesis is
assigned probability 0 as the locally low probability hypothesis corre-
sponding to ab cd / de fg was ‘weeded out’ at time t = 2, making it
impossible to draw the correct conclusion from the observation at t = 3.
Apgain, using more particles will address this problem although, as before,
the number of particles that is required to perform accurate inference
may be impractically high for all but small examples.

3.7 EXPERIMENTAL EVALUATION

After having looked in some detail at the algorithm and its performance
on a toy example, I now turn to evaluating the sequential sampling
resampling particle filter to actual child directed speech.

There are two questions of interest with respect to the performance of
the algorithm. First, we would like to know how faithful the algorithm
is to the original model, i.e. whether the approximation to the posterior
distribution it infers is close to the true posterior distribution. As it is
hard to perform qualitative evaluation of the kind illustrated in table 3.9
in a setting which comprises hundreds of particles and hundreds of
utterances, | evaluate the quality of the posterior approximation by
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100 True

t seg | P | il seg P
abed 0.59 | 59 abed 0.53
1 ab ed 0.12 | 12 abc d 0.13
a bed 0.11 | 11 a bed 0.13
abed [/ defg 0.40 | 40 abed [/ defg 0.36
2 abcd / defg 0.11 | 11 abcd /defg 0.11
abed [/ de fg oog | g abe d / defg o.06
abed / defg fedde | o029 |29 | abed / defg / ed de | 0.0
3|abcd /defg/cdde | o023 |23 | abed/defg/cdde| oos
abed /defg fedde |o022 |22 || abed /defg/cdde| oop

Table 3.4: Top-3 segmentations according to true posterior and to a particle
filter with 100 particles and resampling after every observation.

the erpected negative log-probability of the segmentations found by an
algorithm.

The idea behind this is that an accurate posterior approximation
ought to concentrate most of its mass on high probability segmentations
and thus, result in a better expected negative log-probability. Crucially,
we can easily calculate this for every particle, and for each particle filter,
we can calculate the expectation by taking a weighted sum according
to the current particle weights. This is also the metric which Pearl
et al. (zo10) used to compare inference performance of their incremental
DMCMC learner and the batch sampler.

Similarly, as we cannot determine the true posterior I use the batch
sampler of chapter 2 for comparison, considering the expected negative
log-probability of the sample segmentations it generates as reference
point for the particle filter — ideally, the particle filters should attain
an expected negative log-probahbility that is close to or even better
than that of the batch sampler.’® To get an idea of how important
annealing (see section 2.3.6.2) is for the batch Gibbs sampler, I compare
a ‘vanilla’ Gibbs sampler BATCH that does not use annealing and a
Gibbs sampler using annealing, BATCH-ANNEAL. | initialize each batch
sampler randomly by putting a boundary at every possible position
with probability 0.5 although preliminary experiments suggested that
different initialization schemes (putting no boundaries at all, putting
boundaries with at random with higher or lower probability) had no
noticeable effects on performance.

Second, we would like to know how well each algorithm performs in
terms of the segmentation. As is common, I calculate precision, recall
and the harmonic mean of the two, f-measure, for tokens, boundaries
and types in the lexicon (see section z.4.2). For the batch samplers,
I calculate the maximum marginal segmentation for each individual

This is essentially the idea Goldwater (zoo7) used to asses how well a sampler
converged to the true posterior.

g1
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utterance in the corpus from all the samples collected during a run.
For the particle filters, I build the maximum marginal segmentation for
each utterance by considering the segmentation posited by each particle
according to its weight.

Table 3.3 illustrated that particle filters perform better with larger
numbers of particles, converging to an exact inference algorithm in the
(theoretical) limit where the number of particles goes towards infinity.
While there are obwvious practical constraints on the number of particles
with which one can experiment, | compare a particle filter with a
single particle (also called ‘Dynamic Programming Sampling’ by Pearl
et al. (zo10)}, 100 and 10, 000 particles, always running 10 independent
simulations for each algorithm. We refer to these algorithms as pPF-1,
PF-100 and PF-10,000.

For the Gibbs samplers, [ run 10 independent simulations for 20, 000
iterations, considering the first 10, 000 iterations as burn-in. For BATCH-
ANNEAL, the temperature was raised from 10 to 1 during the first 10, 000
iterations to facilitate convergence on the target distribution, using the
same schedule as in chapter 2. Over the last 10, 000 iterations, every 10"
sample was collected, for a total of 1000 samples from each simulation.

As a ‘baseline’ I consider the DPM algorithm which is a heuristic local
MAP algorithm (see above).

As test data, [ use the Alice section of the Brent-Bernstein-Ratner
corpus already used in chapter =. While previous work evaluated on the
entire Brent-Bernstein-Ratner corpus, as mentioned before this corpus
is a concatenation of 9 distinct corpora. Also, “[a] well-known problem
with the particle filter is that its performance degrades quickly when
the dimension of the state dimension increase” (Gustafsson et al., zooz)
which, considering that the state-space grows exponentially in the length
of the corpus, suggests that differences between incremental and batch
inference are going to become more severe over time. In fact, Borschinger
and Johnson (zo11), Bérschinger and Johnson (z012) and, for different
online learners, Pearl et al. (zo10) and Phillips and Pearl (zo15) evaluate
on larger corpora and report large differences between all incremental
and batch learners.

In contrast, here I look at natural corpus comprising roughly 1000
utterances directed at a single child rather than concatenating corpora
which have been collected across multiple infants (such as the Brent-
Bernstein-Ratner corpus) and provide a more detailed analysis. This
allows me also to show, for the first time to my knowledge, that in-
cremental inference can, indeed, be ‘more efficient’ than naive batch
inference that does not rely on additional techniques such as simulated
annealing,

Unless otherwise noted, a difference described as significant is sta-
tistically significant at p < 0.01 according to a two sample Wilcoxon
test (see Baayen, zoo8).
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3.7.1 Parameter settings

Both the Unigram and the Bigram model have several parameters which
I set to those reported in Goldwater et al. (zoog) as yielding the best
performance: ag = 20 for the Unigram model and ag = 3000, ay = 100
for the Bigram model. For a detailed explanation of the two models and
the parameters, see figure 2.5 on page 32 and figure 2.10 on page 45.
Additionally, I compare a ‘restricted’ base distribution like the one
defined in figure 2.5 with the unrestricted Unigram phoneme distribution
of figure 2.4 to see whether this has an impact on incremental inference.
Whereas the Unigram phoneme distribution assigns non-zero probability
to every possible sequence of phonemes, including obvious non-words
such as very long sequences of exclusively consonants, the restricted
base distribution assumes a possible word constraint (Norris et al., 19g97)
that assigns 0 probability to words that lack at least a single vowel.

Thus, I consider two settings for each model, referring to those as
UNI-NC (unigram with no possible word constraint), UNI-SC (unigram
with possible word constraint), and BI-NC and Bi-sC for the Bigram
maodel.

3.7.2  Unigram Model

3.7.2.1 Inference without possible word constraint

Table 5.5 gives median segmentation scores for the different algorithms,
averaged over 10 independent simulations. To get an idea of the variance,
figure 5.q plots mean token fscore, boundary precision, boundary recall,
lexicon precision and lexicon recall for the particle filters and 2 batch
Gibbs samplers as box-plots. These plots exclude the pPM algorithm
which does not have any variance across runs.

For the UNI-NC setting, we find that the number of particles has a
dramatic effect on all metrics, with more particles leading to consistently
better performance and, as is evident from figure 3.0, lower variance.

The batch samplers exhibit very little variance on all metrics, in-
dicating that they reliably converge to a mode of the posterior. Yet,
there is a noticeable difference between BATCH and BATCH-ANNEAL,
indicating that the two batch samplers are attracted to different modes,
with BATCH-ANNEAL getting slightly better token f-score.

In terms of segmentation performance, PF-1 has a median token f-score
of only 29% with scores ranging from 5% to 42% whereas PF-100 reaches
a median token f-score of 46% with scores ranging from 33 to 60%,
significantly better than PF-1 but significantly worse than either of the
batch samplers which reach 66% (BATCH-ANNEAL) and 62% (BATCH),
respectively. It is worth pointing out that BATCH-ANNEAL performs
significantly better than BATCH.

PF-10,000's token f-score is close to that of BATCH with 60% — indeed,
for BaATCH the difference is not statistically significant (p = 0.17), illus-
trating how using more particles brings performance of the incremental
algorithm closer to that of the batch samplers.
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algorithm | tf | bp | br | Ip | Ir |—logPrDbx1D3

PF-1 20 | .49 | .55 | 19 | .22 32.35
PF-100 46 | 6g | .58 | 32 | .38 20.18
PF-10,000 Lo | Bz | .66 | .41 | .46 27.26
DPM | 51 | .86 | .48 | .20 | .38 | 20.09
BATCH Bz | .gz | .64 | Go | .63 24.01
BATCH-ANNEAL | .66 | .9z | .74 | .67 | .64 24.30

Table 5.5: Segmentation performance for the Unigram model without possible
word constraint. Refer to figure 3¢9 for boxplots summarizing

VArlance acTosSs TUns.

The simple bPM algorithm outperforms PF-1 and, perhaps slightly
surprising, PF-1o0. Its performance is, however, significantly worse than
that of PF-10,000 and the batch samplers.

Looking beyond token fscore, we see that the segmentations inferred
by the particle filters and the batch samplers differ qualitatively. Whereas
both batch samplers get well above 90% boundary precision with virtu-
ally no variance across runs and no significant difference between them,
PF-1 reaches only 49%, PF-100 only 69% and PF-10,000 ‘only’ 83%.
Of all the incremental learners, the DPM baseline attains the highest
boundary precision with 86%, significantly higher than PF-10,000 and
significantly lower than either of the batch samplers.

PF-1 exhibits higher boundary recall than precision although neither
score is particularly good and remains behind those of the other al-
gorithms. Yet, all other algorithms have higher precision than recall,
indicating the kind of undersegmentation behavior Goldwater (zoo7)
identified for the Unigram model. This is particularly striking for the
DPM learner whose recall is below 50%, accounting for its mediocre
token f-score despite the high boundary precision. While we see that
using more particles increases boundary precision and recall, PF-10,000's
precision remains roughly 10% lower than that of either batch samplers.

Boundary recall explains the difference between BATCH and BATCH-
ANNEAL. The former only gets 64% recall to its 90% precision, indicating
severe undersegmentation. In contrast, BATCH-ANNEAL gets 74% bound-
ary recall, still considerably less than its precision but significantly higher
than that of BATCH, accounting for the significant difference in their
token fscore.

Finally, the lexicon scores indicate that even though PF-10,000 per-
forms closely to the batch samplers in terms of token f-score, it both
posits more non-word types in its segmentation (lower precision) and
identifies fewer of the gold word types (lower recall) than the batch
samplers.

With this, I turn to comparing inference rather than segmentation
performance according to the expected negative log-probabilities. To
get an idea of the variance, figure 3.2 plots the expected negative log-
probability for the segmentations of all 1093 utterances for the different
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Negative log-probability of segmentations
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Figure 3.8: Negative log-probabilities for the 1093 segmented utterances ac
cording to the particle filters and batch Gibbs samplers with and
without annealing; lower means better (see text). We see a clear
improvement in going from PF-1 to PF-10,000, and then moving
towards batch sampling without annealing. Best inforence perfor-
mance is achioved by Gibbs sampling with annealing. Also note
that adding the possible word constraint does not affect the ranking
but dramatically reduces variance for the 1 particle particle filter.

algorithms which is also given in table 3.5; here, lower means higher
probability and, consequently, better inference. Again, we see that the
batch samplers exhibit virtually no variance whereas the particle filters’
variance decreases with number of particles.

Mot surprisingly, we see that using more particles improves the ex-
pected negative log-probability; there is, however, still a significant gap
between PF-10,000 and the two Gibbs samplers, indicating that offline
inference is considerably more efficient. We also see a small but signif-
icant difference between BATCH and BATCH-ANNEAL, suggesting that
even for batch inference, details of the inference algorithm can impact
the quality of the posterior approximation.

We also find that even though PF-10,000 is the best performing
incremental algorithm, DPM comes in second and outperforms PF-100 in
terms of expected negative log-probability, indicating that a rather large
number of particles is required to outperform the simple DPM base-line.

3.7.2.2 Inference with the possible word constraint

The scores for the UNI-SC setting are given in table 5.6 and figure 5.9
and show that adding the possible word constraint changes the picture.

First, there are much smaller differences in segmentation accuracy as
measured by token f-score between DPM, PF-1 and PF-100, all of which
now achieve between 55% and 58%. In contrast, the constraint has no
noticeable effect on the performance of the batch samplers whose token
f-scores stay roughly the same to UNI-NC. Yet, unlike for UNI-NC PF-
10,000 now comes out as the best-performing segmentation algorithm,
with 70% token f-score, significantly outperforming both batch samplers.

Despite being close in terms of token f-score, the actual segmentations
identified by batch and incremental algorithms still differ drastically
with respect to the lexicons they imply.
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algorithm | tf | bp | br | Ip | Ir |—logPrDbx1D3
PF-1 55 | 82| .54 | .33 | 44 20.21
PF-100 58 | .86 | .56 | .30 | .49 28.08
FPF-10,000 .70 | g2 | .6g | .50 | .57 26.66
DPM | .56 | .00 | 51 | .34 | .45 | 28.86
BATCH b3 | .03 | .63 | .50 | .67 25.18
BATCH-ANNEAL | .66 [ .94 | .70 | .66 | .68 24.38

Table 5.6: Segmentation performance for the Unigram model with possible
word constraint. Refer to figure 3¢9 for boxplots summarizing

VArlance acTosSs TUns.

Turning to boundary scores, we first note that compared to UNI-NC, all
algorithms get significantly higher precisions. PF-1 and PF-100 now get
scores well over 80% (over the low 49 and 69%, respectively). PF-10,000
even reaches 92% boundary precision although the two batch samplers
get slightly better still with 93% (BAaTCH) and 94% (BATCH-ANNEAL).
DPM's boundary precision also increases to 90%, outperforming Pr-1
and PF-100 but being outperformed by PF-10,000.

The increase in boundary precision is not surprising as the possible
word constraint rules out many segmentations that posit boundaries
at ‘impossible’ positions (yielding words that lack a syllabic segment).
Yet, it is striking that whereas batch learners and DPM were able to
identify boundaries with high precision even without such a constraint,
the particle filters — in particular those that make use of relatively few
particles — benefit tremendously from it.

On the other hand, boundary recall is almost entirely unaffected.
BATCH's is still better than PF-1 and PF-100, and PF-10,000 is virtually
identical to (and not significantly different from) BATCH-ANNEAL; DPM
also remains at roughly 50%.

The lexicon scores show that all the particle filters get a noticeable
boost in lexicon precision and recall but still are significantly much
worse than those of BATCH and BATCH-ANNEAL. This is particularly
interesting for PF-10,000 as it attains the overall best token fscore but
has significantly lower lexicon precision and recall than either of the
batch samplers.

Turning to inference performance as measured by negative log-probability,
we see both from the table and in figure 3.8 that adding the possible
word constraint decreases variance for PF-1 and PF-100 and, overall,
makes the gap between the particle filters smaller, although the differ-
ences remain significant. It does, however, neither close the gap between
PF-10,000 and BATCH nor between BATCH and BATCH-ANNEAL, with
the latter still performing significantly better. In fact, it looks as if with
the added constraint the difference between BATCH-ANNEAL and BATCH
is slightly more pronounced.

We also see that with the possible word constraint, PF-100 is not only
able to outperform DPM on segmentation metrics but also significantly in
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algorithm | tf | bp | br | Ip | Ir |—logPrDbx1D3

PF-1 19 | .38 | .73 | 19 | 23 33.30
PF-100 32 | .49 | .75 | 28 | .33 30.86
PF-10,000 44 | 58 | 77| 35 | -39 20.42
DPM 53 -85 | 55 | 36 | .48 20.83
BATCH b6 | B8 | L7 | 58 | W62 27. 47
BATCH-ANNEAL | .74 | .89 | .83 | .65 | .63 26.55

Table 5.7: Segmentation scores for the Bigram model without possible word
constraint.

terms of expected log-probability, indicating that for more constrained
models a particle filter with relatively few particles has a chance of
outperforming the strong DPM baseline.

Owerall, then, we find that the base distribution leaves batch infer-
ence rather unaffected but makes a hig difference for the incremental
algorithms. [ return to this point in the discussion.

3.7.3 DBigram model

3.7.3.1 Inference without possible word constraint

Table 3.7 reports the median scores across the 10 simulations for the
algorithms in the BFNC setting. Figure 5.11 provides the corresponding
baox-plots to give an idea of the variance. The most striking difference to
the UNI-NC setting is the large (and significant) gap between all of the
particle filters and the batch samplers, as well as the rather large (and
significant) difference between BATCH and BATCHANNEAL. In addition,
even PF-10,000 is significantly outperformed by DPM, suggesting that
for this model, even as many as 10, 000 particles do not result in very
accurate incremental inference.’7

With respect to token f-score, BATCH-ANNEAL performs best with a
median of 74%. In contrast, BATCH only gets a median of 66%. Thus,
annealing makes an even bigger difference for the Bigram than for the
Unigram model.

The particle filters now all perform considerably worse, PF-1 with
roughly 20%, PF-100 with roughly 32% and PF-10,000 with only 44%
token f-score. Thus, while we still see clear and significant improvements
in increasing the numbers of particles, even PF-10,000 is outperformed
by almost 10% by the DPM algorithm which gets 53%. This is despite the
fact that the batch learners actually perform better than under UNENC,
indicating that the model itself implies higher quality segmentations
and that the incremental learners perform inference rather badly.

17 Comparing the respective negative log-probabilities, though, we see that Pr-10,000
identifies higher probability-segmentations than DPM, also suggesting the possibility
that the posterior distribution is multi-modal and that the particle filter gets attracted
by a mode that corresponds to lower accuracy segmentations than DPM.
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Negative log-probability of segmentations
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Figure g3.10: Negative log-probabilities for the segmentations of the 1093 ut-
terances found by the particle filters and batch Gibbs samplers
with and without annealing. Lower means better. We see a clear
improvement in going from PF-1 to PF-1,000, and then mov-
ing towards batch sampling without annealing. Best inference
performance is achioved by Gibbs sampling with annealing.

The boundary scores indicate that the issue is one of over-segmentation
for the particle filters, as boundary recall is consistently higher for all
of the particle filters than precision. In contrast, the batch samplers
still attain high boundary precision and lower recall, indicating under-
segmentation that is, however, not as severe as for the Unigram model.

This suggests that the Bigram model generally favors segmentations
with more boundaries than the Unigram model, leading to segmenta-
tions with higher recalls. Whereas the batch samplers are able to take
advantage of this as their precision is high, the incremental learners seem
to end up with severely over-segmented solutions which, for PF-10,000,
remain below 60% boundary precision but well above 70% recall.

Turning to inference performance in figure 3.10, we see a similar
picture to figure 5.2 in that increasing the number of particles improves
log-probability. Yet, there is still a signifcant gap to the Gibbs samplers,
as well as a larger difference between BATCH and BATCH-ANNEAL than
was evident for the Unigram model, consistent with the larger gap
between the two samplers in terms of token f-score.

To sum up, then, incremental inference performs much worse for the
Bigram model than for the Unigram model, both in terms of identifying
accurate word segmentations and high probability solutions.

3.7.3.2 Inference with possible word constraint

Adding the possible word constraint has a similar effect as it had for
the Unigram model although it is, overall, less pronounced, as can be
seen in table 3.8

PF-1's token f-score is now 53%, significantly worse than PF-100
(62%), and PF-10,000 performs on par with BATCH with 66%, with no
statistically significant difference. The best algorithm is, still, by far
BATCH-ANNEAL with 75%. As for the Unigram model, bDPM is largely
unaffected by the possible word-constraint and now falls, in terms of
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Figure 3.11: Segmentation performance for the Bigram model without possible word constraint (Bi-NC, top) and with possible word constraint (Br-sc,
bottom) on the full Alice corpus for different inference algorithms. The batch Gibbe sampler is run with and without annealing (blue and pink
bar, respectively) and the particle filter is run with a single, 100 and 1,000 particles All scores are sveraged across 10 simulations for the
particle filters and 10 samples for the batch samplers, with standard errors indicated. See text for discussion.
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algorithm | ¢ | bp | br | Ip | Ir | -logProbx10?
PF-1 53 | W67 | 66 | .34 | .54 20.58
PF-100 bz | 76| 2 | .44 | .GBo 28.33
PF-10,000 66 | B0 | 74 | .49 | .63 27.78
DPM 58 | .go | .55 | .30 | .54 20.63
BATCH 66 | B8 | 68 [ .57 | .69 27.58
BATCH-ANNEAL | .75 | .04 | .Bo | .6g | .72 26.24

Table 3. 8: Segmentation performance for the Bigram model with possible
word constraint.

token f-score, between PF-1 and PF-1o0, significantly better than the
former and significantly worse than the latter.

Another difference to the Unigram model is the fact that of the batch
samplers, only BATCH-ANNEAL gets a noticeable boost in boundary
precision, and the boundary precision improvements for the particle
filters are much less pronounced than was the case for uNI-sC. Yet, they
suffice to have all algorithms but PF-1 clearly undersegment, that is,
posit segmentations with higher boundary precision than recall in line
with the behavior of the batch samplers.

As for inference performance, the picture is similar to that for the
Unigram model although the difference between BATCH and BATCH-
ANNEAL is much bigger for B-3cC and, by the same token, that PF-10,000
seems to come closer to BATCH, though the difference remains significant.
This indicates that annealing is of crucial importance for the batch
sampler to perform accurate inference and segmentation, in this case.

3.7.4 Discussion

The over-arching question raised by the results is why we observe the
differences between incremental and batch learners we do and why those
differences are larger for the Bigram than for the Unigram model.

Generally speaking, it is not surprising that, despite their asymptotic
guarantees, the particle filters do not perform identically to their batch
alternatives. The strict incremental character of the algorithm which
only allows extensions of segmentations that correspond to one of the
finitely many particles at the previous time-step to be considered at all
suggests one obvious reason for the difference: the posterior probability
of initial segmentations may change rather dramatically over time, just
as we saw that in fizure 5.1 the posterior probability of segmenting
the first utterance as abed drops upon observing the third utterance
whereas that of segmenting it as ab cd increases dramatically.

To extend on this reasoning, figure 5.1z plots the change of token
f-scores over time as approximated by running the Gibbs sampler over
initial prefixes of the corpus of different sizes, both for UNI-NC and
BI-NC, the settings where the particle filters performed worst. The scores
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UNI-NC BI-NC

n | P(seg) | Seg P(seg) | Seg

10 0.42 yuwanttu sidabuk 0.06 yuwan ttu sidobuk

20 0.29 | yuwant tu sidebuk 0.05 yuwan ttu sidobuk

50 0.08 | yuwant tu si dabuk 0.58 | yuwan ttu si dobuk

100 || o0.96 | yuwant tusi do buk || o0.30 | yuwant tu si do buk

200 || o.75 | yuwant tusi do buk || 0.35 | yuwan ttu si do buk

500 || o0.99 | yuwant tu si dabuk 0.87 | yu want tu si do buk

Table 5.q: Top segmentations according to the marginal posterior over segmen-
tations of the first utterance of the corpus for different amounts of
input, according to the run of BATCH-ANNEAL that attained the
highest log-probability.

for the particle filters are taken from the simulations presented in the
previous section.

We see that for BI-NC, there is a sudden increase in token f-score for
BATCH-ANNEAL between 200 and 500 utterances, jumping from a mere
55% to roughly 74%. This indicates that very rapidly, the most probable
segmentation of many utterances — including utterances observed very
early on— changes dramatically to segmentations that result in high token
f-scores. And that, conversely, early on the most probable segmentations
are segmentations with relatively low token f-scores.

This is reminiscent of the situation depicted in figure 5.1 where the
segmentation of the first two hypotheses changes radically upon observ-
ing the third utterance. Here, however, this change is happening over a
much longer period and, crucially, after several hundred observations
have already been processed. Thus, a strictly incremental learner is
unlikely to be able to change its early decisions at so late a point as
the required hypotheses will already have been lost due to resampling
or simply attained a weight of virtually 0. Again, this is similar to the
issue we already observed for the toy example in table 5.4 although
on a considerably larger scale, suggesting that no practically feasible
number of particles will overcome it in this case. Thus, in cases like this
any incremental learner that can only rely on a finite set of samples at
any point in time and never ‘revise’ earlier analyses will deviate in its
conclusions from a batch learner.

Notably, for UNI-NC, there is no jump of comparable magnitude,
suggesting a more gradual change of the posterior distribution. Of
course, the same principled issue arises — observations made at a very
late stage may change the posterior probability of early observations
in dramatic ways, making a very low probability hypothesis highly
probable and vice versa. Thus, while we also observe deviation between
incremental and batch learners in this case it is less pronounced and
we see that, at least with 10, 000 particles, the particle filter is able to
track the segmentation performance of the unannealed batch sampler in
terms of token Fscore.
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Curiously, we also see that the gap between annealed and unannealed
batch samplers widens for the Bigram model as a function of input
size, indicating that even batch learners can struggle when performing
inference over larger amounts of data.

The issue of changes in posterior probabilities of segmentations can
be illustrated directly by looking at the most probable segmentation
for the first utterance according to the marginal posterior over time.
This is shown in table 3.9, using the samples generated by the run of
BATCH-ANNEAL that attained the highest log-probability. Note how the
Bigram model has very high uncertainty for the first 20 utterances,
with the most probable hypothesis getting only a little over 5% of the
probability mass. In contrast, the Unigram model already puts 42%
on the segmentation “youwantto seethebook” for n = 10. Crucially, the
Unigram model puts high probability on a ‘linguistically meaningful’
segmentation early on, and while there are minor changes over time, the
overall picture remains surprisingly constant from the beginning.

Not so for the Bigram model which early on favors a somewhat odd
segmentation “youwan tto seethebook”, being reasonably certain about
it at around n = 50 but, at n = 100, changing its mind briefly to the
more accurate “youwant to see the book”, only to revert back at n = 200
and, finally, at n = 500 — the point at which we ohserved the steep
increase — committing to the fully correct segmentation “you want to
see the book™

Additional support for my explanation comes from considering actual
inference rather than segmentation performance. Figure 3.13 compares
the expected negative log-probability of the segmentations identified by
the different algorithms for the first 10, 20, 50 and 100 utterances for the
BFNC model. As DPM exhibits no variance, I indicated its log-probability
using a horizontal dashed line.

For 10 and 2o utterances, PF-100 and PF-1o,000 perform on par
or even slightly better than BATCH and BATCH-ANNEAL, though as
figure 5.13 makes clear, in these cases all confidence intervals overlap
and there are no significant differences. Of course, expected negative
log-probability is only a coarse proxy for inference performance as a
posterior with high uncertainty will attain higher negative expected
log-probability than a posterior that concentrates more mass on a single
high probability hypothesis — a case where more accurate inference would
be indicated by higher rather than lower scores. While it is conceivable
that the particle filter is ‘more efficient’ for small corpora as the particles
are extended independently whereas the Markov Chain Monte Carlo
samplers can suffer from high auto-correlation and poor mixing, we
should not over-interpret the fact that PF-i100 and PF-10,000 attain
‘better’ expected negative log-probabilities for 10 and 2o utterances,
last but not least because — as is evident from the box-plots — these
differences are not statistically significant. The relevant point is that
as the number of observations increases, the gap between the particle
filters and the batch learners grows larger, with the particle filters
falling behind more and more, with a clear (though, for the difference to
PF-10,000 not quite significant) separation becoming visible at £ = 100.

10%
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Again, this suggests that the particle filters suffer from the fact that
the posterior distributions change quite radically over time in the sense
that segmentations that have high posterior probability given only a few
initial observations may get very low posterior probability conditional
after having observed several more utterances, and vice versa. Thus,
even though at ¢+ = 20 they may have succeeded in providing a good
approximation to the posterior up to t = 20, their approximation may
lack particles that correspond to hypotheses that, at a much later time
point, will get high posterior probability.

Incidentally, this also offers an explanation for the fact that the ppm
algorithm outperforms all particle filters for BI-NC with respect to token
f-score. It is precisely because of its reliance on a simple local MAP
heuristic which makes it ignore the initially ‘misleading’ conclusions
actually implied by the data — note how its expected log-probability
is well below that of PF-100 and PF-10,000 initially, reflecting that its
initial choices are not really supported by the data.’® Despite this, it
overtakes PF-100 at around 50 utterances and comes close to PF-10,000
at around 100 utterances, indicating that its initial choices are ‘justified’
to a certain degree in hindsight by future observations.

This explanation is somewhat different to the explanation Pearl et al.
(zo10) adduce to account for the difference between incremental and
batch learners. They suggested that this difference is due to the fact
that the former may simply be unable “to recover from mistakes made
early on”. Yet, I think it is misleading to simply talk about ‘mistakes’
here, as the goal of incremental inference is to approximate the posterior
at every time-step. And we have just seen that, at least for the first
10 or 20 utterances, inference performance of the particle filters is not
dramatically worse (if worse at all) than that of the batch learners.
The issue is, in a sense, not that the particle filter fails early on in
providing good approximations but that the true posterior may, early
om, assign a very low probability to segmentations that, given many more
observations, will get high probability. This can be called a ‘mistake’ in
hindsight but, from the view of incremental inference, this terminology
is misleading.

This both accounts for the general difference between the particle
filters and the batch learners, and, in pointing out the sudden change for
BENC, for the fact that the particle filters perform worse for the Bigram
model than for the Unigram model.

Interestingly, it is not just the incremental learners that seem to strug-
gle. For both UNI-NC and BI-NC we find that a batch sampler without
annealing is unable to take advantage of the additional utterances to
the same extent as BATCH-ANNEAL. This shows, not very surprisingly,
that the inference problem becomes harder as a function of the input
size and that, somewhat surprisingly, this leads to noticeable differences
even between batch learners that process the entire corpus in an offline
fashion. Hence, even for batch learners accurate inference is far from

Actually, this reflects the fact that DPM relies on an approximate MAP segmentation
algorithm which, initially, prefers to not posit any boundaries.

105



106

PARTICLE FILTERS FOR WORD SEGMENTATION

trivial for these models, and while this effect is much more pronounced
for the Bigram model it is also noticeable for the Unigram model. Over-
all, then, the fact that incremental learners perform worse than their
batch counterparts is not too surprising, considering that even the latter
have to rely on techniques such as annealing to improve convergence.

Finally, it is worth stressing again that upon adding the substantive
possible word constraint, the segmentation performance gap between
incremental and batch learners gets much smaller. This is because
ruling out segmentations that include ‘words’ without at least one
syllabic segment reduces posterior uncertainty early on and, crucially,
prevents particle filters from committing to hypotheses that posit single
consonants or short sequences of consonants as words. While a batch
learner may draw very similar conclusions from a large set of utterances
with and without the possible word constraint, incremental learners
depend heavily on the initial choices they make on the basis of only
very few observations. By cutting down the number of possible choices
there and ruling out hypotheses that will have devastating effects on
future segmentations — such as treating highly frequent segments such
as & (the “th” in “the”, “that”, etc) — the possible word constraint can be
essential to their performance.

3.3 FARTICLE FILTER WITH REJUVENATION

The previous discussion suggests that strict incrementality is at the
heart of the problem. In fact, there are two related issues that need
to be dealt with. First, there is the general issue of loss of sample
diversity already alluded to above — very quickly, almost all particles will
agree exactly on the analyses of all previous observations. While this
can be addressed to some extent through the use of large numbers of
particles, for all but very small numbers of observations this is practically
impossible, as “all the particles will collapse to a single point within a
few iterations” (Murphy, 2012). This is not only a problem in so far as
it makes the approximations at later time points degenerate; it also,
to come to the second issue, makes it impossible to revise analyses
of earlier observations. In cases where later observations are strongly
informative about earlier segmentations by making much more probable
segmentations that were very low probability when considering only
the initial observations, this makes it impossible for the particle filter
to ever get close to the true posterior distribution over segmentations
and, in so far as those early segmentations impact the analysis of
novel segmentations, processing more data will emphasize rather than
overcome the differences.
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Megative log-probability for BI-NC

w*:*lm*m*m*w

i % |
- *.1.# . *+—"'

1] 100

Figure 3.13: Expected negative log-probability of the segmentations identi-
fied by the different algorithms for the first 10, 20, 50 and 100
utterances of the data. DPM is represented by a dashed red line.
Note that even though PF-100 and PF-10,000 yield rather good
expected negative log-probabilities early on, they start falling
behind rather early. In contrast, even though DPM initially is
considerably worse than PF-100 and PF-10,000, it overtakes them
as more observations are considered. See text for discussion.

To address these two, | use a strategy known as rejuvenation’®. When-
ever the particles are resampled and there are likely to be many identical
copies, we have each particle reanalyze some of the observations it has
made so far conditional on its analyses of all other observations (Canini
et al., 2oo9; Murphy, 2012). This ‘rejuvenation’ (an ‘aged’ particle is
made young again) can be viewed as performing Gibbs sampling over
some of the previously observed utterances and leads to a larger variety
of particles.

The idea is illustrated in figure 3.14 for the toy corpus on which I
discussed incremental inference previously. It depicts the segmentation
choices a single particle may make over time, referred to as its history,
together with the posterior probability of these choices according to
the model. Note how the posterior probability of the segmentation

There is some variation in the use of ‘rejuvenation’. For example, Murphy (zo1z)
refers to the resampling step as ‘rejuvenation’. I follow Canini et al. (2oo0q) in using
‘rejuvenation’ to refer to the act of resampling previous analyses. In any case, this
is the preferred meaning of ‘rejuvenation’ within Computational Linguistics and
Natural Language Processing judging from recent publications such as May et al
(z014).
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Figure 3.14: Schematic illustration of rejuvenation of a single particle. At
t = 3, the hypothesis corresponding to the particle has low pos-
terior probability because its initial guess — despite being highly
probable at # = 1 — is not very likely given the other two observa-
tions. Hejuvenation allows a particle to revise earlier decisions by
treating past observations as novel data which can be re-evaluated
in the light of the other observations that have been processed in
the meantime.

(when computed according to the underlying model) has dropped to
a mere 4% at t = 3 even though it has, by making a ‘lucky’ decision
at t = 2, correctly segmented the last two observations. In a strictly
incremental setting, there is no possibility for this particle to ever revise
the analysis of the first observation even though, given its analyses of
the other two observations, the original analysis made at t = 1 is very
improbable. Rejuvenation allows the particle to re-examine the first
observation in the light of the other observations, treating it as if it were
a new observations which will be segmented anew, ignoring its original
analysis but taking into account the knowledge gained from the other
observations.

Before I go on to describe rejuvenation in more detail, note that
adding it to the algorithm requires that previous observations (and their
analyses according to each particle) be stored. Thus, a particle filter
with rejuvenation is no longer online in the sense that it can discard
every observation after it has processed it. However, it still performs
incremental inference, that is, it provides a posterior approximation
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after every observation has been observed, rather than only considering
the full set of observations and delaying inference until then.

3.8.1  Hejuvenation step using Metropolis- Hastings blocked sampling

Let us associate with every particle h.E’p:' at time t a history of segmen-

tations a‘ﬁ which records the segmentations this particle posited for

observations wi;. A single rejuvenation step for a particle hi’p:' with
history crgp:' is defined algorithmically in figure 3.15.

It randomly chooses an utterance u; among the utterances observed
up to time ¢. By optionally restricting the ability to re-examine previous
observation to the most recent win (mnemonic for ‘window’} utterances,
I add a memory constraint along the lines of Pearl et al. (z010) to my
algorithm. While I sample uniformly among all utterances in a given
window rather than sampling with probability proportional to how far
in the past any utterance is, making this change to the algorithm is
trivial. Preliminary experiments found no interesting difference arising
from the use of ‘decayed’ rather than uniform sampling using a fixed-size
window and I restrict attention to this. I return to the relationship of
my algorithm to Pearl et al. (zo10)’s Decayed Markov Chain Monte
Carlo learner in the discussion.

After having determined an utterance to be re-analyzed, we pretend
that this utterance hasn't been observed before but only became available
after having processed the remaining ¢ — 1 observations, resampling an
analysis for u; and updating the particle accordingly. This is possible
because the word segmentation model is exchangeable, and thus we
can reuse the algorithm to sample a segmentation for an utterance
given a particle h that we needed for the particle filter to begin with.
However, because this algorithm samples from a distribution that is
slightly different from that defined by the model, we need to correct for
this difference.

For the particle filter, this correction step is part of calculating the
particle weight. Here, we hold the weights constant and, instead, perform
a Metropolis-Hastings accept/reject step. Rather than always using the
proposed new segmentation o', we calculate an acceptance probability
p, and only change the segmentation with probability p,, keeping the
original segmentation with probability 1 — ps. [ will now walk through
the algorithm given in figure 3.15 and the involved helper functions.

To rejuvenate a particle h; with associated history 1. we begin
by randomly sampling an utterance u; among the previously observed
utterances ;. to be re-examined, optionally considering only the last
win utterances (see above). Then, we ‘move u; to the end’ of the
observation sequence by first updating h; as if it had never processed
u; so far. This is valid because the utterances are erchangeable and
corresponds to removing all customers associated with words in the
current segmentation o; for u;, yielding an updated particle ht_j . The
superscript indicates that this particle’s seating arrangement is identical
to that of h: except for lacking all customers associated with ;.
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function REJUVENATE(hy, @y, 014, win = —1)

if win = —1 then

uniformly sample 7,1 < j <t b unrestricted memory
else

uniformly sample j, max(1,t —win) < j <t > restricted
end if
ht_j s Pold = REMOVE(hy, o) &> remove old analysis
sample o’ ~ Q(- | ht_j yUj) t> sample novel analysis

Gotd = Q(o; | by 7, u5)
Gnew = Q(0 | he”,us)
h¢, Prew = UPDATE(h; 7, o)

calculate p, = % + MH acceptance probability
if NEXTDOUBLE < p, then > accept novel analysis
o;=da
else > reject novel analysis
REMOVE(he, o) t+ undo update
UPDATE(h:, ;) - add original segmentation back
end if
end function
function rREMOVE(h, wi.,,) t+ for Unigram model
Prrue = 1.0

fori=1—=n—-1do
Pirue = Pirue ¥ REMOVECUSTOMER(w;, h) = P(c | h)
end for
Pirue = Pirue % REMOVECUSTOMER(w,,, k) = P(s | h)
return (h, porue)
end function
function REMOVE(h, wiy) t- for Bigram model
Pirue = 1.0
w, =§
fori=1—ndo
Pirue = Pirue ¥ REMOVECUSTOMER(wp, w, i)
Wy = WYy
end for
Pirue = Pirue X REMOVECUSTOMER(w), §)
return (h, porue)
end function

Figure g.15: Algorithm to perform rejuvenation and required helper functions
to update particles.
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The update is performed using the REMOVE helper function which
removes the words (or, for the Bigram model, bigrams) in o; from
hi. As we will require pyg = P(o; | h.t_j] in calculating the acceptance
probability, we calculate it while actually removing o; from the particle’s
history. ="

Once the particle has ‘forgotten’ everything about o;, we first propose
a new analysis ¢’ for u; using the algorithm in figure 3.4. Then, we
calculate gpew and gug, i.e. the probabilities of ¢; and ¢’ according to
the proposal distribution Q(- | hd, u;).>

To calculate p,,.,, = P(c' | h, Y ) we actually update the particle with
the new segmentation, using the UPDATE function we already made use
of in the particle filter.

Finally, we calculate p, = % and, with probability p,, accept
the new proposal by replacing o; with o'. Otherwise, we reject the new
proposal and set the particle to its original state by first removing o'
and then updating it again using o;.**

Thus a rejuvenation step is, essentially, identical to a single sampling
step in the blocked Metropolis-within-Gibbs samplers of Mochihashi
et al. (zoog) and, for the slightly more complex Adaptor Grammar
framework, Johnson et al. (zoo7b).*3

3.8.2  Adding rejuvenation to the particle filter

We can add rejuvenation to the particle filter described in figure 3.5 by
adding the code in figure 3.16 after line 16, i.e. after the particles were
resampled.

Obviously, the number of rejuvenation steps r impacts runtime of the
algorithm. In particular, if we set r very large and resample after every
observation the particle filter essentially turns into a batch sampler
over the entire corpus upon observing each observation. Also, while
leaving runtime unaffected the choice of window size win is likely to
affect performance in limiting the algorithms ability to revise earlier
observations.

Considering the case where r — oo also shows that adding rejuve-
nation to the particle filter leaves unaffected its asymptotic guarantee

A detail that is easy to overlook is that this probability needs to include the
probabilities governing utterance boundaries. Even though these are observed, in the
Bigram model they affect the probability of the final word of a segmentation; and in
the Unigram model, they affect the number of words in a segmentation.

Note that we only need to know these probabilities up to a normalization constant.
Thus, in this case we can ignore conditioning on u; and directly use equation 5.6
rather than 5.4.

Again, the fact that we treat table assignments implicitly through the A DDCUSTOMER
and REMOVECUSTOMER functions means that we may recover a seating arrangement
that differs slightly from the original seating arrangement. [ found this to make no
difference to ensuring recovery of the original seating arrangement. See the related
discussion about intermediate updates in the algorithm in figure = 5.

It is worth pointing out, though, that Mochihashi et al. (zoog) omit the accept/reject
step in the description of their algorithm. While it is true that, for most problems,
the acceptance probabilities are essentially 1.0 and omitting this step makes no
difference, for small amounts of data this can make a huge difference.
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forg=1—=rdo b perform r rejuvenation steps
forp=1—ndo t= for each particle
REJWATE{&EP}? LS a-ﬁ?, win)
end for
end for

Figure 3.16: Code for adding rejuvenation to the particle filter described in
figure 5 5. Add these lines after line 16, win is the size of the
window in which the incremental learner can perform rejuvenation
steps — setting it to —1 results in a particle filter that can re-
segment every previously observed utterance, setting it to w
restricts it to only the most recent w observations.

to converge on the true posterior in the limit as in this case, we just
recover a batch sampler (indicating ‘unlimited’ memory). By setting
r =0, we get the strictly incremental particle filter, showing that the
particle filter with rejuvenation includes both strict online learning and
batch learning as boundary cases.

By setting the number of particles to 1 and sampling previous utter-
ances according to a decay function, my algorithm recovers the DMCMC
learner of Pearl et al. (zo10), showing that it is a special case of a particle
filter with rejuvenation that only uses a single particle.

3.0 EXPERIMENTAL EVALUATION

As before, we are interested in understanding how the particle filters
compare to the batch samplers and how their performance varies as
a function of the number of particles and, as another parameter, the
number of rejuvenation steps. I limit myself to considering particle
filters that use 1 and 100 particles. For r, | consider the values 1, 10, 100
and 1,000. To refer to the different algorithms, | extend the previously
used PF-N notation which indicated the number of particles by adding
the number of rejuvenation steps. Thus, PF-1-1,000 is a particle filter
with a single particle, performing 1, 000 rejuvenation steps after each
resampling step.

Finally, I investigate the impact of window size for PF-1-1,000 and Pp-
100-1,000, considering 500 and 100. PF-1-1,000-100 refers to a particle
filter with a single particle, 1000 rejuvenation steps and a window size
of 100.

3.0.1  Unigram model

As can be seen from table 3.10, adding rejuvenation drastically improves
performance of the particle filters, consistently letting them outperform
the batch learners in terms of token fscore. The picture differs somewhat
between UNI-NC and UNI-SC, and as before, | discuss these settings

separately.
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3.9.1.1  Without possible word constraint

Not surprisingly, the overall best performance is achieved by PF-100-1,000,
the particle filter that uses the most particles and rejuvenation steps.
With 77%, its token fscore is roughly 10% and signficantly higher

than that of the best performing batch sampler, and looking at its

boundary precision and recall scores, we find that rather than over- or

undersegmenting, it seems to strike a good balance between the two.

We also see that by only adding 10 rejuvenation steps to PF-1o0
we can boost its token f-score significantly by more than 20% to 68%,
slightly higher (though not significantly so) than that of BATCH-ANNEAL,
illustrating that rejuvenation is indeed a very effective strategy to
improve word segmentation. For PF-1, considerably more rejuvenation
steps are required to yield good performance, with even 100 steps
remaining well below 60% token f-score. Yet, with 1000 rejuvenation
steps, even PF-1 attains significantly higher token f-score than the batch
learners. Unlike PF-100 and its rejuvenated variants, though, it is very
prone to over-segmenting, attaining the overall highest boundary recall
of 92% and remaining at a quite low boundary precision of 79%.

Looking at the impact of the window size, we find no significant
differences in limiting the window to the most recent 500 utterances. Only
being allowed to consider the most recent 100 utterances, however, results
in a noticeable and, for PF-100-1,000 but not PF-1-1,000, statistically
significant drop of roughly 5 — 6% in token f-score which remains,
nevertheless, on par with or above that of the best performing batch
learner. While this shows some sensitivity to the window size, it is
consistent with the previous observation in figure 5.1z that for the
Unigram model, there is a rather gradual improvement in token f-score
over time rather than the huge jump we observe for the Bigram model
between 200 and 500 utterances.

Finally, though, it needs to be noted that despite the good segmenta-
tion scores, in terms of log-probability none of the particle filters can
close the gap to either BATCH or BATCH-ANNEAL. This indicates that
the particle filters are still performing worse inference than their batch
counterparts. | return to this point in the discussion.

3.9.1.2 With possible word constraint

For unI-sc, PF-1-100 and PF-1-1,000 attain the best (and not signifi-
cantly different) token f-scores, not PF-100-1,000; in fact, the two rejuve-
nated one particle algorithms are significantly better than PF-100-1,000.
This is somewhat surprising as the latter makes use of more particles
but, looking at log-probabilities, we see that, again, better token fscore
is not correlated with higher log-probability. Indeed, PF-100 and its
variants consistently get significantly better, i.e., lower log-probabilities
than pr-1.

A possible explanation for the exceptionally high token f-score for
PF-1 — 86% which is a full 20% more than that of BATCH-ANNEAL — is
again provided by boundary precision and recall. Whereas for UNI-NC,
PF-1 had to suffer from comparatively low boundary precision, adding

11%
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the possible word constraint results in boundary precisions that are
consistently above 90Y%, starting from as little as 10 rejuvenation steps.
Coupled with pr-1’s preference for high boundary recall, this improved
precision results in a considerable boost in token f-score.

[ronically, the reason that PF-100 does not benefit as strongly is that it
is able to explore the hypothesis space more effectively, correctly zoning
in on solutions that have a slightly lower boundary recall and mimicking,
to some extent, the undersegmentation behavior observed for the batch
samplers. Yet, the boundary recall for PF-100 is still significantly higher
than that of the batch samplers, explaining why it is able to attain a
token f-score of 81% despite its log-probability being still worse than
that of either of the batch samplers.

Turning to the impact of window size, again we see that limiting the
window to the most recent 500 utterances has no significant impact. Yet,
limiting it to the last 100 utterances yields noticeable (and statistically
significant) drops in token fscore of 4 — 5% which are accompanied by
a drop in boundary recall rather than precision.

Thus, PF-100-1,000-100 only attains 77% boundary recall as opposed
to the 85% of PF-100-1,000 with a virtually unchanged precision. While
the segmentation metrics for PF-100-1,000-100 are, in a sense, closer
to those of BATCH and BATCH-ANNEAL, its inference performance is
worse rather than better than that of PF-100-1,000. While this is not
surprising in as much as one would expect a limited window to yield
worse inference, it also shows that the relationship between segmentation
scores and log-probabilities is not straightforward for UNI-sC.

As a last point, for UNI-5C we find that limiting the window to the most
recent 100 observations yields worse results even with 1, 000 rejuvenation
steps than using only 100 rejuvenation steps but using the entire history.
This is something we could not observe for UNI-NC where, irrespective
of window size, all learners making use of 1,000 rejuvenation steps
outperformed the corresponding learner that only used 100 rejuvenation
steps, irrespective of whether the full history was used or not.

3.9.2 Bigram model

I now turn to the Bigram model, again examining BI-NC and BI-SC
separately.

3.9.2.1  Without possible word constraint

For Bi-NC, even adding 1000 rejuvenation steps to PF-1 doesn’t bring it
up to the performance of either of the batch samplers although it consid-
erably improves performance. Its token f-score is only slightly and not
significantly lower than that of BATCH, and its expected log-probability
improves to 27.53 x 10° compared to 27.47 x 10° for BATCH, again, with
no significant difference. Overall, it is striking how effective adding a
few rejuvenation steps is in improving performance even for a particle
filter with only a single particle. For example, PF-1-100 outperforms
PF-10,000 on all metrics by a significant margin even though, in a certain
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sense, it uses much less memory and performs less computation: whereas
PF-10,000 has to extend 10, 000 individual particles for each utterance,
thus performing 10,000 x N utterance samples for a corpus of size
N, PF-1-100 only extends a single particle but performs 100 additional
sampling steps for each of the N utterances, totaling in 101 = N samples.

Of course, this way of quantifying computational effort makes strong
assumptions about the underlying architecture. For example, if there
were no limit to the number of parallel computation steps that can be
performed, using a very large number of particles with no rejuvenation
would still, essentially, amount to only one computational step per
utterance (as, by assumption, all updates can be performed in parallel).
In contrast, rejuvenation requires sequential processing as it can only
ever resample an utterance conditional on the segmentations on all other
utterances. Rather than speculating on the proper way of quantifying
computational effort in ways that are relevant to understanding language
acquisition, | refrain from pushing this point (see also the discussion
of cognitive plausibility below). For practical purposes, however, these
kinds of considerations may be very relevant, and my findings seem
to suggest that trading off rejuvenation against number of particles
ought to be preferred (though see May et al., 2014, for discussion of
rejuvenation and particle filters as applied to LDA).

Yet, all PF-1 variants suffer from rather low boundary precision with
comparatively high recall, suggesting that despite their similarity in token
f-score to BATCH the segmentations it identifies are still systematically
different to the undersegmented segmentations identified by the batch
learners. While we see that more rejuvenation steps lead to higher
boundary precision, rather than increasing the number of rejuvenation
steps even further I turn to see how a larger number of particles benefits
from rejuvenation steps.

As expected, using 100 particles always leads to better results than
using a single particle with the same number of rejuvenation steps.
Somewhat surprisingly, though, we now see PF-1o00-100 significantly
outperforming BATCH with respect to inference performance despite
the fact that its segmentation metrics are slightly worse and, as before,
the segmentation inferred by the incremental learner indicates slight
oversegmentation rather than undersegmentation.

Turning to PF-100-1,000 we find an even better log-probahility and
with 76% the best token f-score for the BI-NC model, 2% higher (though
not significantly so) than that of BATCH-ANNEAL. While its log-probability
is slightly worse with 26.74 x 10® vs 26.55 x 10° (the difference being
significant), it is still significantly better than that of BATCH.

Also, even though PF-100-1,000 has a higher boundary recall than
precision, there is only a small if significant 3% difference between its
boundary precision of 86% and BATCH-ANNEAL’s 89%. Thus, we find
that using 100 particles coupled with 1000 rejuvenation steps allows an
incremental algorithm to outperform BATCH, the vanilla batch sampler,
and, with respect to token f-score, even BATCH-ANNEAL.

Finally, looking at the impact of window size, we see that smaller
windows yield worse performance on all metrics. For PF-1-1,000, we
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find that restricting the learner to the most recent 500 observations has
only a very minor impact, resulting in non-significant drops of roughly
2 — 3% on all segmentation metrics and a slightly yet significantly worse
log-probability. Limiting it to the most recent 100 utterances results in
a much larger drop, bringing token f-score down significantly from 65%
to 51%. In fact, we find that PF-1-1,000-100 performs worse (though
not significantly so) than PF-1-100, showing clearly that it is not only
the number of rejuvenation steps performed but also the ‘memory’ of
the learner in the form of the window that impact performance and that
this is much more pronounced for the Bigram than for the Unigram
maodel.

The trend is similar for PF-100-1,000. Here, limiting the window to
500 observations results in a significant drop in token f-score from 76%
to 70%, and again PF-100-1,000-100 performs worse than PF-100-100,
the drop in token fscore being significant this time.

The impact of window size is expected given the previous discussion
of figure 3.12. There was a major jump between 200 and 500 utterances,
indicating that the ability to re-examine observations that are more than
100 utterances in the past is important. Further support for this comes
from figure 5.17 which compares the token fscore for different input
sizes for PF-100-1,000, PF-100-1,000-100 and PF-100-1,000-500, and we
see that, as expected, there is no noticeable difference between the three
for n = 100. Yet, PF-100-1,000-100 begins falling behind at n = 200 and,
finally, PF-100-1,000-500 falls behind after n = 500 despite performing
the same number of rejuvenation steps as PF-100-1,000.

3.9.2.2 The effect of the possible word constraint

Adding the possible word constraint changes the picture in an interesting
way. As before, we witness an overall improvement in scores for the
incremental learners. In fact, for Bi-sC even adding as little as 10 reju-
venation steps to either PF-1 or PF-100 boosts segmentation accuracy
to 73Y%, significantly outperforming BATCH and coming close to (though
remaining significantly worse than) BATCH-ANNEAL’s 75%. Somewhat
surprisingly, perhaps, BATCH is not only outperformed in terms of token
f-score but also in terms of log-probability (significantly so in the case of
PF-100-10), indicating that for the thus constrained model incremental
inference with rejuvenation is more efficient than batch sampling without
annealing,

Increasing the number of rejuvenation steps keeps improving token £
score for both PF-1 and PF-100, and they are significantly outperforming
BATCH-ANNEAL starting from r = 100. Yet, as for BI-NC the gap between
BATCH-ANNEAL's log-prob and that of the incremental learners is not
closed completely for BI-sc, showing that, with respect to inference
performance, BATCH-ANNEAL remains the best choice.

Another rather striking point is that the overall best token f-score
is achieved not by PF-100-1,000 but by PF-1-1,000, with 83% against
81Y%, although this difference is not significant. Yet, PF-100-1,000 attains
better lexicon scores that are not significantly different from those of
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Figure g.17: Comparing the impact of window size for PF-100-1,000 for BI-NC.

BATCH-ANNEAL and, indeed, neither is its boundary precision; yet, its
boundary recall is significantly higher, accounting for the better token £
score. In contrast, despite slightly higher token fscore PF-1-1,000 shows
signs of mild oversegmentation with a boundary precision of slightly
less than 90% versus a rather high recall of 92%, thus indicating that
it deviates more strongly from BATCH-ANNEAL and thus the posterior
implied by the model than PF-100-1,000.

This fits the pattern we already observed for UNI-sC where we also
found PF-1 rather than PF-100 to yield the highest token f-scores despite
worse inference according to the negative log-probability. I believe that
the same explanation applies in these two cases: incremental learning
generally favors segmentations with higher boundary recall than batch
inference, even if the global solution preferred by the model has lower
recall. Whereas PF-100 is slowly approaching the globally preferred
solution, PF-1 seems to use be unable to ‘overcome’ its preference for
high-recall solutions even using rejuvenation. Thus, whereas PF-100-
1,000 shows evidence for mild undersegmentation PF-1-1,000 presumably
attained its slightly higher token f-score precisely because it does not
exhibit this behavior.

Finally, for the impact of window size we see a similar picture as for
BI-NC: while limiting the window size to 500 now has a very little impact,
limiting it to 100 results in a noticeable and highly significant drop in
performance although, in this case, even the so-constrained learners
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attain a token f-score that is significantly higher than that of BaTCH if
significantly lower than that of BATCH-ANNEAL.

In conclusion, even when incremental learners are provided with the
ability to perform rejuvenation, a constraint like the possible word
constraint boosts segmentation performance considerably.

3.10 DISCUSSION

The discussion of the algorithms so far has focused on a technical analysis
of the performance of the different algorithms. Here, [ will address more
directly the question of what my findings have to say about language
acquisition.

While concerns about the inference mechanism are of only secondary
interest from the general Bayesian modeling perspective outlined in
the first chapter, incremental algorithms are interesting in at least
two ways. First, they make it possible to connect Bayesian models
rather directly to psycho-linguistic experiments, and the particle filter
algorithm discussed here has in fact been used in two studies of human
word segmentation (Meylan et al., 2012; Kurumada et al., 2013).

Moreover, in so far as it is an asymptotically correct inference algo-
rithm, study of a ‘constrained’ incremental algorithm can shed some
light on how processing limitations impact the conclusions that can
be drawn from specific input. As a concrete example, we saw that a
requirement for incremental processing seems to dampen the preference
for undersegmentation exhibited by the word segmentation models. This
is the idea of the rational process approach of Sanborn et al. (zo10),
also taken up for word segmentation in Pearl et al. (zo10) and, more
recently, Phillips and Pearl (zo15).

Generally speaking, the idea is that differences between the conclusions
drawn by human learners and those implied by a Bayesian model may
be due to the former performing inference in a constrained setting.
Although not mentioned in the rational process literature, this idea
bears some resemblance to that of type-II rationality as defined by Good
(1971), that is, “maximization of expected utility taking into account
deliberation costs”. I discuss this idea in some more detail giving some
concrete examples before pointing out possible problems with these
kinds of interpretations.

3.10.1 The role of processing constraints

One can interpret my findings in this framework by identifying the
dimensions along which the incremental algorithm can be characterized
as being more constrained than the ‘ideal’ batch learners.

3.10.1.1  Order effects

For example, figures 3.1 and 5.2 illustrated how in such a setting,
‘order effects’ may arise because the distributions induced by different
subsets of the entire data may be dramatically different even though the

114



NOT = M pae g = @ jo saZls
MOPULMA I0] $31008 aATH OSR [ "000°T-00T-4d PUWE 000°T-T-4d 10 "OS-18 pUe ON-18 WO HoeUasnfar Inoqive pue g s12g apnred 1o sazoag 1Tl apqe],

PARTICLE FILTERS FOR WORD SEGMENTATION

120

Fz gz gl | 6g- | og | ¥6B- | GL 99ge €9 | 99 | By | 6g" | FL TVHNNY-HOLVE

g9le 6g- | L9 | g0 | 9w | oo L¥-le e | 990 | 1l | we | oo HOLVH

£1le Gg- | €9 | 64 | Ly | €L Geye gb | €F | eg- | €L | 107 || ooT=m

ooz 6o | 7o | g0 | 26 | 6L 11le oS | g8 | g | 18 | ol || ooS=m

Gz gl | 6 | o5 | E6 | 19 Flge o | Eg | 99 | 9x | 9d° 0001

0Sge gy | So° | Sg | 6g | 6L oz-le oS | 85 | Fu | LA | So 0ot 00T -dd

NY0T aq- | 65 ew | ow | L S1ge PP | €F | ew | Lo | S5 o1

gtge og | FF- | 2l | ol | g Sgof 88 | e | G4 | 6F | BB 0

oSlz €y | 14 | TR | Td gtbz G | 9B | €g° | =g | 19 || coT=M

bgge Lg- | Eg 6 | g9 | g cgle G- | LF- | 6y | 1L | €y || ooS=m

w49z Log- | S9° | 6 | 6 | B £4-Le gfF- | 19 | &6+ | €L | Sy D007t

P60z 09" | €9 | 16 | Fgr | vl LSge gt | oF | g6 | 29 | ES 001 P

9tlz €9 | L6 | Lgo | og [ EL oF0f gz | 6z | gu | 6% | & 01

PURIT Fo- | ¥6- | o9 | Lo | €4 nEEe gz | 61 | €L | gE | o0& 4]

gllz _ £y _ 6F- _ FL- _ 05" _ 99° zh 6z _ 68 | g8 _ LL _ g% _ - 0 000'0T-4d
QO1xqagdor- | ap [ di | aq [dq | p [ gorxqosgfor-| o [ di [ 1q [dq | p o unog[e

Ds-1d ON-19




2.10 DISCUSSION

Particles | % Correct orDER1 | % Correct ORDER2

1 o 4
10 6 i
100 47 100

1000 100 100

Table 3.12: Comparison of how often a particle filter with different number of
particles correctly identified the MAP segmentation of the two 3
utterance corpora in figure 5 1 (ORDER1) and figure 5.2 (ORDER2).

posterior given the full data is identical. Indeed, due to the requirement of
making local decisions, particle filters can be used to derive order effects
from models that are, strictly speaking, order insensitive due to the
exchangeability assumption built into most Bayesian models (Sanborn
et al., 2006).

To illustrate this for word segmentation, consider again the example
in figure 3.1. I run 100 independent simulations of particle filters with 1,
10 and 100, and 1000 particles on this toy corpus and count the number
of times in which the correct global MAP segmentation was identified.
The orDER1 column of table 5.12 indicates that for this corpus, 1000
particles are required to reliably identify the MAP segmentation. Even
using 100 particles only correctly identifies the MAP segmentation of
the corpus in roughly 50% of the simulations.

We have already seen that increasing the number of particles leads
to better performance (see tables 3.5 and 3.2). Here I show how simply
changing the order to that in figure 5.2 also improves performance.
Recall that due to the exchangeability of the word segmentation models,
the MAP segmentation for both corpora segments all three utterances
identically. Thus, from the perspective of the model there is no difference
between these orderings, and yet the ORDER2 column of table 3.12 shows
that performance is much better on this alternative ordering for particle
filters that use only a few particles.

3.10.1.2 Importance of substantive constraints

Another interesting observation may be derived from the huge perfor-
mance difference we observe for the particle filters for the models with
and without the possible word constraint. Recall from both chapter =
and the experiments in this chapter that for batch learners, there was
virtually no difference in performance between the model with and with-
out possible word constraint — according to the segmentation model, the
same segmentations are assigned high posterior probability irrespective
of whether or not a possible word constraint is assumed.

Yet, for all incremental learners [ considered we found that the con-
straint makes a huge difference. This suggests that even though, as
shown by performance of the batch learners, the input by itself con-
tains sufficient information to identify reasonable segmentations, the
incremental learners I considered are unable to leverage this information
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unless a substantive constraint on the shape of possible words (here,
that each word has to contain at least one syllabic segment) is built into
the model.

3.10.1.3 Less is more?

Turning to the learners with rejuvenation, we note on the one hand a
relaxation of processing constraints in adding ‘memory’ and the ability
to revise earlier decisions to the incremental learner. On the other hand
we get two additional parameters which control just how constrained
the algorithm is: number of rejuvenation steps and size of the window
within which the algorithm can resample previous observations.

This results in a learner that is a generalization of the Decayed Markov
Chain Monte Carlo learner of Pearl et al. (zo10) and, more recently,
Phillips and Pearl (zo15). Not surprisingly, then, my results are largely
in line with theirs.** Like them, I find that the ‘constrained’ incremental
learners (with rejuvenation) can outperform their batch counterparts
in terms of segmentation performance, and that this trend is more
pronounced for the Unigram than for the Bigram model. Indeed, this
observation isn't new, at least for the Unigram model: Goldwater (zo007)
already pointed out that the bPM algorithm proposed by Brent (19gg)
results in higher token f-scores but lower log-probabilities according to
the Unigram model than her batch Gibbs sampler.

An attractive interpretation proposed by Pearl et al. (zo1o) and
Phillips and Pearl (zo15) of this kind of finding — an algorithm that
is more ‘constrained’ than another algorithm performs better — makes
use of the “Less is More” hypothesis (Newport, 19go): the idea that
certain kinds of ‘cognitive limitations’ can aid rather than hurt infants
in acquiring their first language. Concretely, the idea is that by not having
sufficient memory to represent examples in a way that makes it possible
to detect ‘global’ patterns that might also be a source of confusion,
infants avoid many mistakes and identify more useful regularities than
adult language learners.

This can, indeed, be seen as providing a possible explanation of the
surprisingly good performance of the rejuvenated particle filters for
the Unigram model — we've already pointed out that the incremental
learners have much less of a tendency to undersegment than their batch
counterparts, and that this seems to fall out of the requirement of
incremental processing, introducing a (soft) greedy strategy in which
words acquired early on are consistently segmented out of the input,
avoiding undersegmentation. In contrast, the batch learners take a
‘global view' of the data and pick up frequently co-occurring words
much more directly, ironically leading to undersegmentation that results
in lower token f-scores. Similarly if somewhat less pronounced, for the

A subtle difference is that they also consider pre-syllabified input but only consider
an ‘unrestricted’ base distribution. In a sense, however, one can view my use of a
constrained base distribution as a slightly weaker version of their pre-syllabifying the
corpus — while they ensure through pre-processing that posited words will always be
made out of valid syllables, I merely enforce that every posited word contain at least
a single syllabic element.
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Bigram model we find the best performing particle filters to attain higher
boundary recall than the batch learners.

Taken together, then, my findings seem to also speak in favor of a “Less
is More” effect in word segmentation. Yet, | am reluctant to draw strong
conclusions along those lines as the best performing algorithms are not
the most constrained 1 considered — in contrast, they are those that
come rather close to the batch learners with which they were contrasted,
requiring substantial amounts of rejuvenation steps and, as is clear from
the experiments on window size, a rather large memory. Thus, in a sense
I observe a clear “more is more” effect for the learners, probably missed
by Pearl et al. (zo10) and Phillips and Pearl (zo015) because the Decayed
Markov Chain Monte Carlo learner is only one of the many possible
particle filters one can consider.

3.10.2 Problems for ‘Rational Process’ interpretations

While it is tempting to take the incremental algorithms of this chapter
as proposals about actual inference mechanisms and, as just done, derive
predictions from a ‘Rational Process’ perspective, I believe there to be
several problems with this view.

For one thing, it is hard to properly judge the ‘cognitive plausibility’
of an algorithm. In our case, some of the obvious questions are how many
particles counts as cognitively plausible — 1, 2, 1000 or even 1, 000, 0007

‘Intuitively’, 1 particle sounds more plausible than 1, 000, 000 but other
than appealing to intuition, [ don’t see a principled way of deciding this
question. One possible way is to compare performance as a function
of particles to actual human performance, as in (Meylan et al., zo1z).
Yet, in a sense this pre-judges the question by assuming that modifying
the number of particles is the right way of modeling constraints; but
perhaps it is another determinant such as window size or the number of
rejuvenation steps. In light of these issues and in the absence of detailed
studies along those lines, I believe the most reasonable stance to be to
simply not relate number of particles and cognitive processing in overly
Strong ways.

Similarly with respect to rejuvenation steps: ‘intuitively’ an algorithm
that performs 1000 additional samples per observation looses a lot of
the appeal it got for performing incremental inference but how many
— if any — rejuvenation steps are still cognitively plausible? For their
Decayed Markov Chain Monte Carlo learner, Phillips and Pearl (zo15)
allow 20, 000 additional samples per observation, arguing that it still
requires “approximately 74% less processing than the [Batch sampler],
a significant processing reduction” because the batch sampler performs
20, 000 iterations over the entire corpus. It is, however, neither clear that
the batch sampler really requires as many iterations as it is usually run
for®® nor that this is a meaningful dimension along which to compare the

For example, I found no difference between running the batch sampler for 2000 or
20, D00 iterations for all the word segmentation models. The reason 1 used 20, 000
iterations for my experiments is that I was interested in both generating a reasonably
large number of posterior samples and, to some extent, the fact that this is the
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algorithms — the major ‘cognitive plausibility’ issue of batch algorithms
is their processing data in large batches rather than the number of
iterations they perform over it.

Relatedly, then, the kind of resampling steps performed by the DM-
CMC learner and the particle filters with rejuvenation are nothing but
partial batch samples. If this kind of processing is deemed undesirable
because of cognitive implausibility for the batch samplers, why isn't
this considered to raise the same issue for incremental learners? Phillips
and Pearl (zo15) are correct to point out that limiting the learners
memory adds an additional constraint to batch processing but this just
raises the next question how this constraint ought to be implemented
properly. They chose a decay function, I use a fixed window size — both
choices raise an additional question, namely which parameter for the
decay function to choose and which window size to use. I found that
a window size of 500 and 100 lead to rather different results, and that
larger memory is better — but how large exactly is plausible?

3.10.3 Suboptimal model and suboptimal algorithm

Pearl et al. (zo10), Phillips and Pearl (zo012) and Phillips and Pearl (zo15)
all suggest interpretations along the lines that “cognitively plausible
learners outperform the ideal” (Phillips and Pearl, zo1z).

To me, however, there is something odd about taking the observation
that worse inference can lead to better segmentation as evidence for a
particular segmentation model. This kind of reasoning seems to presup-
pose (some variant of) the idea that humans may apply a ‘suboptimal’
algorithm to a particular model and, precisely because of the suboptimal
algorithm, exhibit good performance. Of course, one cannot fully rule out
this possibility; talk about how particular models relate to human per-
formance are notoriously difficult, and we always face the problem that
human behavior only imperfectly reflects the underlying mechanisms
that give rise to it. Indeed, Kripke (1932) claims that it is impossible to
empirically distinguish between “someone assumes a particular model
but makes a mistake in applying it" and “someone assumes a different
model and correctly applies it” and raises this as a general challenge to
cognitive science (for a critical discussion, see Chomsky (1936)).

Even in the absence of this philosophical problem, however, [ prefer
trying to understand in what sense the model is inadequate over ‘fixing’
its problems by identifying sub-optimal algorithms that happen to
perform better.

3.10.4 [Interpreting results from incremental algorithms

Given that I am reluctant to interpret the experimental results of
the algorithms ‘mechanistically’, what do they tell us about human

number of iterations Goldwater (zoo7) and Goldwater et al. (zooq) reported for the
Gibbs samplers I used, rather than having determined this to be the minimal mumber
required for the algorithm to converge.
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language acquisition? As discussed in chapter 1, I believe the strength of
computational modeling to be its ability to evaluate specific proposals
and their consequences in a principled fashion and this is how 1 believe
my findings ought to be viewed as well. Thus, rather than taking my
algorithms as specific proposals about actual mechanism I take them as
tools to study what kind of issues may arise in incremental inference in
principle, providing useful information about the properties of models
which can then be explored in the Bayesian framework.

To provide two examples which will be taken up — again within a
modeling framework that does not focus on inference algorithms — [
consider briefly the impact of the possible word constraint and the fact
that sub-optimal inference leads to better segmentation.

3.10.4.1 Sensitivity to input size

With respect to the possible word constraint, 1 noticed that without
it incremental learners performed considerably worse on the Bigram
model than on the Unigram model. My analysis suggested that the
major issue was that the Bigram model does, indeed, early on assign
high probability to segmentations which are not linguistically plausible;
and that because of this, an incremental learner may correctly commit
to segmentations with low segmentation accuracy early on and simply
be unable to recover from this later.

I also found that this trend was less pronounced for the Unigram
model, suggesting — not implausibly — that a more compler model may
simply require more input to induce segmentations which correspond
to our erpectations. As this issue was somewhat alleviated by adding
the possible word constraint, this raises the question whether a more
complex model may actually require a substantive constraint to perform
well not only on large amounts of data but also on little amounts. In
the next chapter, I will examine this question in close detail.

3.10.4.2 Modeling assumptions

Relatedly, 1 believe the finding that sub-optimal inference results in
better segmentation to be informative not about the mechanism humans
might use but about what kind of model might be more adequate. Thus,
rather than trying to ‘fit’ a bad model to human performance by positing
a ‘bad’ inference algorithm (an idea which I criticized above), one can
use properties of the inference algorithm as informing construction of
more adequate models.

For example, the observation that using more particles with rejuvena-
tion lowers segmentation score while increasing inference performance
provides additional evidence that undersegmentation is an effect of the
ability to identify ‘global’ patterns. A model that avoids this, then, needs
to have some means of either ‘explaining these patterns away’ or some-
how limiting the amount of input over which patterns can be detected. 1
will explore the former idea — allowing models to explain away patterns
— in the next chapter but believe that my findings suggest an interesting

125



126

PARTICLE FILTERS FOR WORD SEGMENTATION

question for future work. In particular, is there a way of defining a model
that enforces the kind of ‘locality constraint’ that arises in incremental
processing and allows the particle filter with rejuvenation to identify
high accuracy segmentations under the Unigram model?

BEYOND EXCHANGEABILITY Recalling that part of the reason why
incremental and batch learners perform so differently is that the former
are simply unable to properly handle the kind of ‘long range’ relations
that, according to the underlying model, hold between observations
that are arbitrarily far apart in the input. This is a consequence of
erchangeability, i.e. the assumption that the order of observations should
not affect the conclusions drawn from them.

My observation that it is precisely because the incremental algorithm
is unable to connect observations that are very far apart in the input that
it performs better suggests that assuming a non-exchangeable model may
be an alternative way of addressing the problem of undersegmentation.
For example, recent work in Machine Learning on non-exchangeable
models using the distance dependent Chinese Hestaurant Process (Blei
and Frazier, 2011) may point towards the construction of models that im-
ply the kind of ‘useful’ locality constraint directly, rather than deducing
it from processing limitations.

While I leave exploration of this idea for future work, it is worth
pointing out that for non-exchangeable models particle filters may prove
to be the only feasible inference algorithms as common Markov Chain
Monte Carlo algorithms require exchangeability to be computationally
tractable. In contrast, the correctness of a strictly incremental particle
filter is independent of any assumption of exchangeability and can
directly be applied to such a model.

To conclude, then, I believe the results in this chapter to contribute
in multiple ways to the study of word segmentation in a Bayesian
framework. One can take the algorithms as proposals about mechanism,
following work such as Pearl et al. (2o10) and Phillips and Pearl (zo15);
my preferred interpretation, though, is in terms of suggesting novel
research questions about medels; in particular how input size and model
assumptions interact and whether assumptions such as exchangeability
are adequate for our purposes. The next chapter directly addresses the
first of these two questions and studies how a large class of different
models performs on different amounts of input.



STUDYING THE EFFECT OF INPUT SIZE FOR
BAYESIAN WORD SEGMENTATION

Studies of computational models of language acquisition depend to a
large part on the input available for experiments. In this chapter, I study
the effect that input size has on the performance of word segmentation
models embodying different kinds of linguistic assumptions. This directly
addresses two questions raised by the findings of the previous chapter:

1. Do complex models such as the Bigram model rely more heavily
on additional constraints to yield good performance on little data
than ‘simple’ models such as the Unigram model?

2. How can undersegmentation behavior of models be addressed by
changing the assumptions built into the model?

Because currently awvailable corpora for word segmentation are not
suited for addressing this question, | perform my study on a novel corpus
based on the Providence Corpus (Demuth et al., zoo6).

I find that, indeed, input size can have dramatic effects on segmenta-
tion performance and that, somewhat surprisingly, models performing
well on smaller amounts of data can show a marked decrease in perfor-
mance when exposed to larger amounts of data. I also find that moving
towards more complex models requires the addition of strong constraints
on possible words to yield good performance on even large amounts of
data, suggesting that the answer to our first question is yes. As for the
second question, I show that combining constraints on possible word
forms with modeling word-dependencies using collocations successfully
addresses the undersegmentation problem.

In addition, I present the data set on which I perform the experiments
comprising longitudinal data for six children. This corpus makes it
possible to ask more specific questions about computational models of
word segmentation, in particular about intra-language variability and
about how the performance of different models can change over time.’

4.1 INTRODUCTION

Segmenting a stream of sounds into discrete words is one of the first tasks
that children acquiring their native language have to tackle. Computa-
tional models of word segmentation enable us to study this problem in a
controlled and detailed manner, allowing for example for an examination
of the usefulness of different kinds of cues or different learning strategies,
as discussed in more detail in chapter 1.

The corpus and the code to run the experiments is available at https://github. com/
bboerschinger/coling2812.
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Just as important as the actual models, however, is the adequacy of
the input used to evaluate them — if we are interested in answering
questions about human language acquisition, the data we evaluate our
models on needs to be comparable to what children are likely to have
access to. To this end, several datasets of phonemically transcribed
child directed speech (CDS) have been constructed in several languages,
ranging from English to Italian, Polish, Sesotho, and Chinese (Brent
and Cartwright, 19g6; Gervain and Guevara Erra, zo12; Boruta and
Jastrzebska, zo12; Johnson, 2008a; Johnson and Demuth, zo10). In
addition to cross-linguistic variation, adequate computational models
also need to handle language-internal variation along several dimensions,
a topic that has so far received little interest.

In this chapter, I look at one of the most basic points of variation: the
actual size of the input to the learner. It is common to evaluate models
on a single large dataset. In fact, size seems to be so important that often
several corpora are concatenated to yield a larger input set. Yet, to my
knowledge little work has looked at understanding how input size affects
segmentation performance. The longer children are exposed to language,
the more data they are exposed to and the better at their language they
become, something one would expect from adequate models of language
acquisition as well.

I run my experiments on a novel dataset that contains longitudinal
data for six children from the Providence Corpus (Demuth et al., zoof).
It has two advantages over the current defacto standard for word segmen-
tation studies for English, the Bernstein-Ratner-Brent corpus (Brent,
1994, in the following, BRB Corpus).

First of all, it cleanly separates CDS that is directed at different
children with one separate corpus per infant; in contrast, the BRB
Corpus contains data from g different children with no clear indication
of the different portions.? In addition, recording for some of the children
in the BRB corpus began as late as month 21 and for others as early as
month 13, raising a potential issue with respect to the comparability of
the individual corpora.

In contrast, the Providence Corpus provides data for all of the children
starting from month 16 at the latest and starting from month 11 at
the earliest and thus constitutes a much more homogeneous data set.
Finally, the BERB corpus with its roughly 10,000 utterances is too small
to systematically address questions about input size.

My transcription of the Providence Corpus contains more than go,oo0
CDS utterances in total and spans a period of several months for all
of the children. This makes it possible to both compare inter-child
variability in word segmentation across comparable situations and to
study developmental changes in individual children over a period of
several months. As such, the resource will allow researchers to ask a
wider range of questions than is currently the norm.

2 Thus, in chapters = and 5 [ restricted attention to a sub-part of this corpus that
corresponds to a single child.



4.2 THE PROVIDENCE CORPUS

For the experiments on the effects of input size I focus on one of the
six sub-corpora of the dataset, yet I describe and make available the
full data so as to enable other researchers to take advantage of this new
resource as well. Other studies that make use of my data are Borschinger
and Johnson (zo14) (forming the basis for chapter 4 of this thesis) and
Synnaeve et al. (2o014).

The outline of the chapter is as follows. First, | provide background
about the original Providence Corpus, my way of phonemically transcrib-
ing it and the properties of the new data-set [ created. In section 4.3, 1
introduce the models of word segmentation which I examine with respect
to the effect of input size in section 4.4. Section 4.5 discusses my findings
and the final section concludes.

4.2 THE PROVIDENCE CORFPUS

The Providence Corpus (Demuth et al., zoo6) was collected during zoo2-
2005 from participants in southern New England. It contains longitudinal
audio,/video recordings of 6 monolingual English-speaking mothers and
their children from approximately 1-3 years during spontaneous inter-
actions at home. The children included 3 boys (Alex, Ethan, William)
and 3 girls (Lily, Naima, Violet). Each was recorded for approximately
1 hour every 2 weeks beginning at the onset of first words., Two of the
girls have denser corpora, with weekly recordings from 1;3-2;10 (Naima)
and 2;0-3:0 (Lily), and Naima’s recordings tended to be 1.5 hours long,
There is therefore more data for this mother and child. Lily’s mother
also talked quickly; there is therefore a lot of data from Lily’s mother as
well. Recording began around one year or once the parent reported that
the child was producing approximately four words.

Digital audio/video recordings took place in each child’s home. In
most cases a research assistant came to set up the recording equipment
and then left, encouraging naturalistic spontaneous speech interactions
between parent and child. The children and parent (usually the mother)
wore a wireless Azden WLT /PRO VHF lavalier microphone pinned
to the collar. The child’s radio transmitter was stored in a child-sized
backpack. The radio receiver was attached to the top of a small Panasonic
PV-DV6o1D-K Mini digital video recorder placed on a tripod nearby.
Although parent and child could move freely about, the video information
was useful in determining the context of what was being discussed,
including possible target words. The availability of video would allow
future work along the lines of Frank et al. (zo0g) and Jones et al. (zo10)
although so far, no direct use of the video recordings has been made.

The digital audio/video recordings were downloaded onto a computer,
and both adult and child speech were orthographically transcribed
using CHAT conventions (cf. MacWhinney (zoo0)). The child data —
but unfortunately not the caregivers’ — were then also transcribed in
phonemic transcription. All mother and child transcriptions, as well
as audio/video files, can be found on the CHILDES database http:
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//childes .psy.cmu.edu/. I used the XML version of the data for the
transcription process.

The transcripts include both the child’s and the adults’ utterances. As
potential input to computational models of word segmentation, however,
we are exclusively interested in the CDS parts of the transcripts which
we focus on in the following. Note that all corpus statistics mentioned
in the rest of the paper exclude child utterances.

4.2.1  Producing a phonemically transcribed version

To find CDS utterances, for all six children I extract the orthographic
transcriptions for all utterances made by caregivers from the XML tran-
scripts of the Providence corpus, starting from 11 months up to and
including 2z months.? This makes the data qualitatively comparable to
the BRB Corpus that includes CDS from between 13 and 21 months of
the children’s age. In total, | extract 101,451 utterances with g,3g5 dis-
tinct (orthographic) types but some utterances are not transcribed (see
section 4.2.1.1). I also ignore all child utterances as I am interested in
generating child- directed input for the models.

To turn the orthographic representations into a phonemic format
that is suitable for studying language acquisition, | perform a four
step process of filtering, dictionary look-up, heuristic construction of
pronunciations for unknown types and manual transcription of unknown
types not covered by the heuristic as well as correction of mistakes made
during earlier steps.

4.2.1.1  Filtering words

I manually remove types that are obvious non-words, in particular inter-
jections such as hmmmhmmm or mmmmhmmm, obvious onomatopoeic
wordplay such as nananana and unintelligible words which are tran-
scribed in the Providence Corpus as zzzr and yyy. This is consistent with
the procedure followed by Brent (19gg) and, more recently, Boruta and
Jastrzebska (zo1z), making the corpus comparable in this respect to
theirs. | do not, however, remove these items in cases where the resulting
utterance would have been rendered fully unintelligible or where a word
that should have been excluded according to the above criteria was used
as an actual word in a large number of cases.*

In total, I identify 785 such non-words and I remove all occurrences
of these types from the transcript, leaving the remaining words in the

Available at http: //fchildes.psy. cmu.edu/data- xml/Eng - USA/Providence.zip

4 The former applies mostly to cases where an item is mentioned rather than used, eg.
"Does the baby say “Wah wah' T the latter, for example, applies to “bonk’ which, in
addition to its onomatopoeic use, also occurs as a verb in the corpus, inchuding its
preterite and participle. The data includes the full list of filtered items as well as the
scripts that perform the automatic steps of transcription from the original xml-data
s0 that researchers can easily make their own decisions about which items to exclude.
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utterance:” utterances including any of the non-words are still transcribed
as long as there is at least one word left after removing all non-words.

A total of 7,362 utterances are thus completely ignored, with 6,123 ut-
terances consisting of exactly one of these filtered elements, in particular
rrr (unintelligible, 2,215), oh (525) and hmmm (521).

4.2.1.2  Dictionary lookup

After filtering, I perform a simple dictionary-lockup transcription using
a phonemic dictionary. I use the VoxForge dictionary which uses a stan-
dard phone set for American English, corresponding to the DARPABET
coding.”® I also provide a script that maps this representational scheme
into one-character-per-phoneme representations that are required by
some of the currently common word segmentation tools.” If there are
multiple pronunciations available for a type, | always pick the first one.
While this constitutes an idealization, I believe that an explicit ideal-
ization is to be preferred over an overly simplistic method of artificially
introducing variability such as randomly choosing a promunciation.

In total, the VoxForgeDictionary covers 7,035 of the 8,610 remaining
types in the data, leaving 1,575 of the types untranscribed. I transcribe
these words manually, using a simple pre-processing heuristic to aid the
process.

4.2.1.3 Heuristically constructing pronunciations for unknoun words

Many of the unknown words are either forms of types that already are in
the lexicon, e.g. possessives (Elmo’s) or plurals ( Legos), or compounds
of two types that are both in the lexicon individually (frenchtoast,
teddybear). 1 handle the former case by simple rules operating on the
orthographic forms directly.

If 1 encounter an orthographic form w for which the VoxForgeDic-
tionary does not provide a pronunciation and which ends in either s, es
or s, I try to automatically construct a pronunciation as follows.

First, determine whether the stem s of the orthographic word that
remains if we strip the ending e € {es, ‘s, s} has a pronunciation in the
dictionary. If not, we cannot automatically construct a pronunciation.
Otherwise, let b be the pronunciation of s.

We then construct a pronunciation p for w based on the following
rules, depending on the identity of the ending e:

sc=essp="hb+ /Gz/

se=s0re="s

— if b ends in a voiced segment, p=5b+ /z/

5 While this may seem like a lot of items to exclude, most of these are hapaxes like
bumpoopadsompadadooboom or doodlewhdoo.

6 The dictionary is available at http://www.repository.voxforgel .org/down loads/
SpeechCorpus/Trunk/Lexicon/VoxForge.tgz. The lexicon with which the experi-
ments were performed was retrieved on July 1gth, 2012

7 E.g. dpseg (Goldwater et al. zoog).
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Name #Utt | #Tok | #Type | @ Utt. Len. | @ Tok Len | @ Type Len.
Alex 8330 | =9.423 | 1877 11.00 312 4.58
Violet || 9024 | 39.135 | 2.343 1343 310 468
William (| 10,697 | 45.68g | =061 13.01 3.05 4-50
Ethan || 18,020 | 75.564 | =2.000 13.11 3.13 4.6

Lily 20,641 | g4.606 | 3,046 14-T7 .22 4-g6
Naima || 27.377 | 141.090 | 4.579 16.51 318 505

Table 4.1: Statistics about the different sub-corpora of the Providence corpus,
including total number of utterances, tokens, types, as well as
average utterance, token and type length (in phonemes). 1 use & as
shorthand for ‘average’ While roughly comparable, 1 focus on the
Naima corpus which is the largest corpus and provides the most
data for my experiments.

—elsep="b+/s/

To identify potential compounds, 1 try to decompose a word w into
a prefix p and a maximal suffix s such that the dictionary provides
pronuncations for both p and s.

Taken together, the heuristic applies to g24 cases which I then manu-
ally correct for mistakes.”

4.2.1.4 Manual transeription

The remaining 651 word types are labeled manually, using where available
the form-annotation in the XML files as guide-line.”

4.2.2 Statistics

The final corpus comprises a total of g4,089 phonemically transcribed
utterances and consists of six distinct sub-corpora, each corresponding
to the CDS directed at one of the six children. Each sub-corpus is, in
turn, subdivided into individual files corresponding to the age of the
child at which recording took place, ranging from 11 up to 2z months.
Both within these individual files and within the overall corpus, the
order of the CDS utterances corresponds to the order in which these
utterances were actually made, making them suitable for studies that
look at changes over time.

Table 4.1 gives summary statistics over the full amount of data for
each individual child. Looking at total number of utterances, we can
broadly identify two groups: for Alex, Violet and William there are
considerably fewer CDS utterances than for Ethan, Lily and Naima.
This is presumably mostly due to recording beginning at different ages
and different numbers of sessions having been recorded for different
children, as discussed above.

& An alternative way of constructing pronunciations is to use letter-to-sound rules, a
strategy that may be more appropriate for large corpora with many unknown words.

g While not always provided for caregiver utterances, some of them include phonetic
markup for individual words, in particular if the words were names.
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Yet, there also seem to be noticeable differences in terms of utterance-,
token- and type-length. Although I will not do so in this paper, perform-
ing comparative evaluation of models across the children may lead to the
discovery of interesting predictors of model performance and perhaps
even actual language ability on behalf of the children.

For the rest of the chapter, I will focus on the Naima part of the
corpus and take a closer look at how the segmentation performance of
different segmentation models changes as a function of the size of the
input.

4.3 BAYESIAN WORD SEGMENTATION

The word segmentation models I study in this paper are Goldwater’s
Unigram model (Goldwater, zoo7; Goldwater et al., 2zoog) and Johnson
(zoo2b)’s collocation-syllable adaptor grammar models. A detailed review
of the mathematics for these kinds of models is provided in chapter =.
Here, I only give an intuitive idea of Bayesian word segmentation models
although I will discuss, in some detail, the different collocation-syllable
models below. [ also want to remind the reader that I use adaptor
grammars as a modeling framework because this allows one to easily
specify a huge variety of models. As discussed in chapter z, [ do not want
to suggest that context-free rules are required for word segmentation;
indeed, the string languages generated by the adaptor grammars [ use
are regular and the structured objects generated by them could also be
generated by a simple probablistic branching process such as a Hidden
Markov Model. Despite this, using the context-free grammar format
makes both implementing, presenting and reasoning about the models
much easier.

4.3.1 Intuition for Bayesian Word Segmentation

All the models are Bayesian probabilistic models that define a generative
process for the target of learning, in this case segmented utterances or
sequences of words. This generative process is defined with the help of
the Dirichlet Process (DP):"" at an intuitive level, the DP is useful for
word segmentation because it biases models to identify compact ways to
represent the observed unsegmented utterances, trading off the number
of both tokens and types used in an analysis of the data.

This trade-off is a consequence of the way that probabilities are
assigned to tokens under a DP model: the probability of hypothesizing
a word token'' depends on the number of times that its type has
previously been hypothesized, and the probability of a full segmentation
of the data is the product of the probabilities for all the tokens used
in the segmentation. This tends to make solutions in which a small

Adaptor grammars actually use the Pitman-Yor Process, a strict generalization of
the DF. I gloss over this detail

Or a token of another entity, e.g. a syllable or a multi-word expression, if the model
incorporates these notions.
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number of words is used relatively frequently yet not over-excessively
(as would be the case if every individual segment were a type) the most
probable which, in most cases, also leads to linguistically reasonable
results. What differentiates the different models from one-another are
the specific assumptions about the nature of possible word types and the
relationships between word tokens. I will elaborate on these points, thus
introducing all models used in the experiments.

4.3.2 Assumptions about possible words

The base distribution which specifies a model’s prior expectations about
the form of words is a crucial part of any Bayesian segmentation model.
Here | compare how different assumptions about the base distribution
interact with the assumptions the model makes about word-to-word
dependencies.

A naive assumption about possible words is that they can be any arbi-
trary sequence of segments. Under such a Unigram phoneme distribution
(see also figure =.4) both dog and gfr would be equally good candidates
for possible words a priori. While obviously not true of human languages
(bnik isn't a possible English word), this was the base distribution built
into the original Unigram and Bigram models (Goldwater et al., zoog)
that initiated research on Bayesian word segmentation. While it has
been shown to work reasonably well in specific settings, we already saw
in chapter 2 and, considering incremental inference, in chapter 3, that
without additional constraints this kind of base distribution can lead
to surprisingly bad performance. Staying close to the original models, 1
showed how adding a possible word constraint along the lines of Norris
et al. (1gg7) can partially address these issues.

Extending the idea of such a possible word constraint in a linguistically
motivated way and utilizing adaptor grammar’s ability to easily specify
rich hierarchical models, 1 now consider the even more constrained
assumption that words have to be sequences of syllables. Indeed, there is
strong evidence that even very young infants track probabilities defined
over syllables (Saffran et al., 1996), and recent work such as Phillips and
Pearl (zo15) argues that the syllable has advantages over the phoneme
as a primitive unit in word segmentation.

4.3.2.1  Phonemic or syllabic input

While this may be viewed as arguing for using syllabified rather than
phonemic input, Schrimpf and Jarosz (2o014) argue that proper syllabifi-
cation presupposes successful word segmentation. Their example is that
a phoneme sequence such as /1 v k =t/ (“lookat”) can only be correctly
syllabified as /l v k - st/ if /1 v k/ has already been identified as a word;
otherwise, syllabification principles such as onset mazimization (see, e.g.
Hayes, 2000, p. 252ff) will syllabify it as /1 v - k =t/.

I share Schrimpf and Jarosz (zo14)’s view that syllabification and
word segmentation need to be performed jointly rather than separately
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and use phonemic input and models that can perform joint segmentation
and syllabification.

4.3.2.2 Unconstrained base distribution

Chapter = described an extension of the unconstrained base distribution
of Goldwater (zoo7) and Goldwater et al. (2o0g) as a probabilistic
finite state automaton. Here, | re-express the same distribution as a
Probahilistic Context-Free Grammar. This can be done concisely using
the three rules in figure 4.1.

Rule 4.1 defines that words are arbitrary sequences of segments as
generated by rules 4.2-4.4. Rule 4.4 is actually a rule schema which
abbreviates an entire set of re-write rules, one for every phoneme x € ¥
where ¥ is the phoneme inventory of the data.

Word is underlined, indicating that it is an adapted non-terminal (see
chapter z). Recall that this means that the model will learn an inventory
of and a distribution over complete subtrees dominated by Word non-
terminals which, essentially, corresponds to the lexicon inferred by the
segmentation model.

As not every suffix of a word is itself another word, we want to keep
separate the non-terminal that implements the recursion, Segs, from
the adapted non-terminal that enables the model to learn words, Word ,
explaining why we need the unary rule 4.1."*

The distribution over sequences of phonemes defined by these rules is
equivalent to that defined by the automaton in figure =.4. In particular,
the probabilities associated with the rules corresponding to 4.4 directly
correspond to ©, the probabilities governing transitions from state 0 to
state 1; and the probability of rule 4.2 corresponds to ¥, the stopping
probability with which the automaton transitions into its final state.

4.3.2.3 Syllable base distribution

We can put constraints on possible words by requiring words to be
sequences of syllables rather than arbitrary sequences of segments. The
rules in figure 4.2 define a base distribution that enforces this constraint
which is, essentially, that of Johnson (2008b). I use brackets to indicate
optionality of a category on the right hand side, allowing me to compactly
present multiple alternatives. For example, rule 4.5 abbreviates the 2
rules

SylllF — Omnsl Rhyme
SylllF — Rhyme

Also note that I explicitly limit the length of possible words to 4
gyllables, following Johnson (zo08b) and Johnson and Goldwater (zoog).

There also is the issue that it is not clear what recursion involving adapted non-
terminal means and ought to be avoided for technical reasons, see Johnson et al
(zoo7h).
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Word
|
Segs
T
Seg Segs
iL s/\s Word — Segs (4.1)
I Tg /E?;\ Segs —+ Seg (4-2)
el Seg Segs S;BS —+ Seg Segs (4-3)
— .
| PN eg (4-4)
8 Seg Segs
|
2|+ Seg

Figure 4.1: Adaptor grammar rules to define an unconstrained base distri-
bution over all possible sequences of segments. An example tree

generated by these rules is depicted on the left.

I do this for reasons of efficiency as avoiding a recursive rule at this level
greatly speeds up the parsing that is required by the adaptor grammar
inference program. In preliminary experiments | found no noticeable
differences between using a fully recursive alternative in which words
could consist of any number of syllables except for noticeably increased
runtime. This is not very surprising, considering that most words in
English child directed speech tend to be mono-syllabic.

To explain the base distribution these rules define in more detail, 1
now discuss the assumptions about syllable structure they encode which
correspond to standard assumptions made in phonology (e.g. Hayes,
2004, chapter 13). To begin with, it requires each syllable to contain
a vowel, as syllables need to have a vocalic core also called nucleus.'®
This requires us to pre-specify the set of phonemes which are vowels ¥
and the set of phonemes which are consonants %.

Preliminary experiments showed that it is also possible to infer which
phonemes are which although, as vocalic and consonantal segments differ
considerably in their acoustic properties (Ladefoged, zo12), I believe
that assuming this difference is unproblematic.™

15 Because diphtongs are treated as single segments, there is no need to allow a sequence
of vowels in nucleus position. In fact, this is also true for the data on which Johnson
(zo08b) evaluated, rendering his mention of such a rule superfluous.

14 A potential complication is that in languages such as Tamil Berber, consonants may
play the role of syllabic nuclei in particular contexts but not others. To some extent,
English exhibits a similar phenomenon in words such as /b a t ]/ (“bottle™) which
may be analyzed as containing a syllabic /1/. Here, I ignore these issues and make
the simplifying assumption that the role each segment can play is specified ahead of
time {although it is possible for phonemes to count as both consonantal and syllabic,
allowing the model to choose the analysis of each token depending on the context).
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Optionally, the obligatory vowel which each syllable needs to contain
can be preceded by an optional sequence of consonants called onset and
followed by an optional sequence of consonants called coda. Nucleus and
coda are grouped into a constituent called rhyme.

Thus, all rules defining syllables conform to the general schema

Syll — ( Ons ) Rhyme
Bhyme — V Coda

The specific rules, taken from Johnson and Goldwater (zoog), make
additional assumptions in order to allow the model to notice aspects of
syllable structure that are particular to an individual language and can
help in word segmentation.

For example, in order to allow it to learn which sequences of consonants
are likely to occur in onsets and codas, | treat both onsets and codas as
adapted non-terminals. This makes it possible for the model to capture
aspects that are specific to individual languages — for example, that
onsets such as /sp/ are dispreferred in Spanish but are fine in English —
from the data, relying only on (arguably universal) general knowledge
about syllable structure.

Moreover, | allow the model to learn certain aspects of the phonotactics
of the language by identifying which specific onsets are limited to or
strongly indicative of the beginning of words; and which codas are
limited to or strongly indicative of the end of words. For example, a
complex onset such as /st r/ asin /st re y 8/ (“strength”) occurs most
frequently word-initially, and the coda /g 8/ occurs almost exclusively
word-finally.

To enable the model to exploit these kinds of phonotactic cues, two
kinds of onsets and codas are distinguished, Onsl for word-initial onsets,
Ons for word-internal onsets, CodaF for word final codas, and Coda for
word-internal codas. Crucially, these different non-terminals are adapted
as, otherwise, the model would not be able to learn the preferred role of
entire sequences of consonants,*?

As a result of the two way distinction of onsets and codas, we have to
distinguish 4 syllable non-terminals. SylllF corresponds to the single
syllable in a mono-syllabic word in which the (optional) onset has to
be Onsl and the (optional) coda has to be CodaF because the same
syvllable is both initial and final. Sylll is a word-initial syllable in a
multi-syllabic word, thus its onset (if any) has to be a Onsl but its coda
(if any) a word-internal coda Coda. Similarly, SyllF corresponds to the

word-final syllable in a multi-syllabic word which uses Ons and CodaF .

Finally, Syll corresponds to a word-internal syllable and (optionally)
uses both Ons and Coda.™"

An investigation imto how much these particular cues help is provided in chapter 5.
Note that unlike onsets and codas, syllables themselves are not adapted. In
Birschinger et al. (zo12), | discuss a variant of the model in which entire syl
lables are adapted. Subsequent experiments indicate that this does not make a
difference to the overall findings but that adapting syllables leads to even more severe

undersegmentation behavior.
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Word Word — SyllIF
| Word — SyllI ( Syl )( Syll ) SylIF
SyllIF SylIF — (Onsl) RhymeF  (4.5)
T T~ Sylll —s (Ons ) Rhyme
Onsl RhymeF SyllF — (Ons ) RhymeF
| X Onsl —+ Cons
Cm oV Ous + Cons
C Cons £ Cons CodaF — Cons
| Coda — Cons
s C Cons C Cons Cons — C(Cons)
| i RhymeF — V (CodaF )
t C 3 C RhymeF — V (Coda)
| | Ce,ce¥
r (7]

Vosv,ve¥

Figure 4.2: Adaptor grammar rules to define a base distribution that constrains
words to be sequences of syllables. In addition, this grammar
enables the model to use phonotactic cues to word-boundaries by
learning word-initial onsets ( Onsl ) and word-final codas [ CodaF ).
An example tree is given to the left.

4.3.3 Assumptions about relations between word tokens

So far, 1 have only discussed the base distribution. Another aspect
with respect to which one can distinguish different models are the
distributional assumptions they encode about the words in an utterance.

The simplest such assumption is, arguably, that all words are indepen-
dent, resulting in a 0*"-order Markov or Unigram model in which the
probability of a sequence of words is just the product of the marginal
probability of each word. As a result, the probability of “the dog barks” is
indistinguishable from “barks dog the”, showing that these assumptions
clearly do not suffice to capture semantic or syntactic relations between
words. Although popular in early work on segmentation (Brent, 19q9;
Venkataraman, zoo1; Goldwater, zoo7), this Unigram assumption has
been shown to also be problematic for word segmentation. In particular,
Goldwater (zooy7) and Goldwater et al. (zoog) demonstrated that the
Unigram assumption encourages undersegmentation, an issue I also
noticed in the discussion in the previous chapter.

The Unigram model can be expressed as an adaptor grammar using the
following rules which generate sequences of adapted Word non-terminals
using a simple 0*"-order Markov process (Johnson et al., 2007b):
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Collocations

Words /\
/,/\ Collocation Collocations

| Word Word Words
Word |
Word

Figure 4.3: Illustration of the kinds of structures that the Unigram and the
Collocation model generate for an utterance.

Words — Word
Words — Word Words

The kind of structure generated by these rules is illustrated in figure 4.3,
By using either the rules in figure 4.1 or those in figure 4.2 to expand
the Word non-terminal, one recovers the UNIGRAM model described in
chapter = with the unconstrained base distribution of figure =.4, or a
UNIGRAM-SYLLABLE model which makes use of the more constrained
base distribution described above.

One way in which Goldwater (zo07) proposed to address this is by
moving from a Unigram to a Bigram model. In such a model, the
probability of a sequence such as “the dog barks” is the product of the
probabilities of the bigrams, i.e. all pairs of adjacent words. How this can
be done is reviewed in detail in chapter 2, and although under certain
circumstances this results in noticeable improvements over the Unigram
assumption, increasing the order of the language model even further
showed no noticeable gains. In particular, Mochihashi et al. (200g)
considered a Trigram model in which the probability of a sequence is
the product of the probabilities of every triple of adjacent words in an
utterance and reported, essentially, the same performance as the Bigram
maodel.

Interestingly, the Bigram model cannot be expressed as an adaptor
grammar, at least in the current instantiation of adaptor grammars
that assume a finite set of non-terminal symbols. This is because un-
like the 0*"-order Markov process of the Unigram model, the 1°-order
Markov Process of the Bigram model would need to be described using
a particular adapted non-terminal for every possible word (also see the
discussion at the end of chapter 2). Thus, there is no straightforward
way in which the syllable base distribution of figure 4.2 can be combined
with a Bigram model — while it is, theoretically, possible to re-code this
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base distribution, the rich hierarchy it includes and the latent sub-word
structure make this challenging,.

An alternative way of relaxing the independence assumption between
words has been proposed by Johnson (2o008b), employing a hierarchical
instead of a sequential notion of context. His collocation model assumes
that sentences are sequences of multi-word sequences or collocations.
Consequently, the model not only learns words but an additional kind
of entity, entire chunks of words. Importantly and in contrast to the
Unigram and Bigram models, these chunks are stored in addition to and
not at the expense of the words that make them up — a collocation
model can infer that /32 d o g i/ (thedoggie) is a high-frequent sequence
that is made up of the distinct words /8 a/ (the) and /d o g i/ (doggie).

The coLLOCATION model can be ‘derived’ from the Unigram model
by adding the rules

Collocations — Collocation ( Collocations )
Collocation — Words

and letting Collocations be the start-symbol of the adaptor grammar.
Thus, just like the Unigram model one can combine the collocation
model with the different assumptions about words discussed above. The
kind of structures generated by the collocation model is illustrated in
figure 4.3 — note that the expansion of each Collocation uses the kind
of structure the Unigram model uses to analyze an entire sentence.

Adaptor grammars make it easy to further extend the collocation
model by adding additional levels above the Collocations non-terminal.
Just as one derives the collocation model from the Unigram model by
adapting the non-terminal that spans the whole sentence in the Unigram
model, one can derive a collocationz model from the collocation model by
adding the following rules and using as start symbol the Collocation2s
non-terminal:

Collocation2s — Collocation?2 ( Collocation2s )
Collocation2 — Collocations

Johnson and Goldwater (zoog) found that using yet another level, i.e.a
collocationg-model, yields best performance. Following this observation,
in this chapter | examine models using up to 3 levels of collocations, and
I consider for each model whether or not it assumes an unconstrained
(figure 4.1) or a syllable-constrained (figure 4.2) base distribution. For
concreteness, the grammar for a collocationg-model is given in figure 4.4
down to the adapted Word non-terminal which can either be expanded
using the rules in figure 4.1 or those in figure 4.2.

I refer to the Unigram model with unconstrained base distribution
simply as UNIGRAM, and analogously, to the collocation models with
unconstrained base distribution as coLLoC, coLLOC2, and coLLocg. To
distinguish these models from those with the syllable base distribution,
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Collocation3s — Collocationd ( Collocation3s )
Collocationd —+ Collocation2s
Collocation2s — Collocation2 ( Collocation2s )
Collocation2 — Collocations
Collocations — Collocation ( Collocations )
Collocation — Words
Words — Word ( Words )

Figure 4 4: Adaptor grammar rules for a collocationg-model. To expand the
adapted Word non-terminal, either the rules in figure 4 1 or those
in figure 4 2 can be used. The former yields the COLLOCE model,
the latter the COLLOCS-SYLL model.

I refer to the latter as UNIGRAM-SYLL, COLLOC-SYLL, COLLOC2-SYLL,
and COLLOC3-SYLL, for a total of 8 models.*7

4.4 EXPERIMENTS

As human language learners tend to get better at their native language
with longer exposure, one would expect adequate computational models
to exhibit something similar, initially improving as more data is observed
and, at some point (probably beyond the size of samples one usually
can look at in practice), asymptotically approaching some upper bound.

Also, I want to address one of the questions raised in the previous
chapters by the bad performance of the Bigram model on small amounts
of data, namely whether more complex models require stronger inductive
biases (as encoded in the syllable base distribution) to perform well on
smaller amounts of data.

4.4.1 Corpus

The longitudinal data available in the Providence Corpus suggests a
natural setup for studying these questions by constructing inputs that
consist of all CDS utterances directed at an individual child up to a
certain point of time. For my experiments, I use the Naima section of
the Providence Corpus and collect CDS utterances from when Naima
was 11 months old through to when she was 21 months old to construct
11 differently sized inputs, each input consisting of all CDS utterances
in the corpus up to and including a given month.

I refer to the different input sets by the last month from which it
includes data. For example, data set 11 includes all utterances in the

Barschinger et al. (zo12) includes a discussion of the original Bigram model. As one
cannot combine it with the syllable base distribution and increasing the order of the
Markov language model has not shown to yield improvements (Mochihashi et al.,
zo0g), | exclude it from discussion here.
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Month || Utterances | Tokens | Types | Aveg. Utt. Len
11 973 3756 | 580 12.40
12 2,683 10,932 | 1,080 12.83
13 3,553 14,640 | 1,275 12.96
14 4,794 20,466 | 1,612 13-47
15 7533 33,283 | 2,073 13-97
16 11,338 | 52,573 | 2,566 14.67
17 13,435 63,603 | 2,864 15.03
18 15,990 | 78,023 | 3,250 15-49
19 18,084 | 94,797 | 3,666 1588
20 21,887 111,322 | 3,078 16.15
21 24,327 124,341 | 4,214 16.24

Table 4.2: The properties of the different input sets. Note that each later month
properly includes all utterances from the earlier months, e g the
2683 utterances of the input at month 12 include the g7g utterances
of the input at month 11, and so forth.

Naima corpus which were collected up to her 11** month; data set 12 will
add to this corpus the utterances collected ruing Naima’s 12t* month,
and so forth. Thus, another way of viewing the different datasets is as
larger and larger prefixes of the entire Naima corpus. Table 4.2 presents
high-level summary statistics for the different input sets.

For ease of discussion, I use “language exposure” and “input size”
exchangeably, a simplifying yet justified choice as is evident from table 4.2
that shows how the number of utterances grows over time.

4.4.2 FEvaluation

4.4.2.1  FBvaluation data

Word segmentation is an instance of unsupervised learning and as such,
it is common to simply evaluate on the input that model performed
inference over. However, this does not allow us to systematically compare
performance of models across largely different inputs. To illustrate,
performance on a very large corpus may — when summarized by a single
score calculated with respect to this corpus — be worse than that on
a smaller corpus (again, summarized by a single score calculated with
respect to this smaller corpus) simply because the two corpora vary
considerably.

To address this, | also evaluate on a held-out test set which is constant
across all experimental conditions, irrespective of the input. The scores
on this held-out data can be compared directly across conditions, making
a comparison of how overall segmentation quality changes over time
meaningful.
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I construct the test set by sampling zoo CDS utterances from the
2znd month of each of the six children’s sub-corpus in the Providence
Corpus, for a total of 1,200 held-out utterances.™

The segmentation on the held-out data is calculated after inference has
been performed on the input, thus implicitly defining a (probabilistic)
lexicon according to which one samples a segmentation for each utterance
in the test set. Note that during this process, no novel words are added
to the model’s lexicon; in this sense, we evaluate the knowledge the
learner has acquired after having had access to the input.

4.4.2.2 Fuvaluation metrics

As evaluation metrics, | use the standard token and boundary scores
going back to Brent and Cartwright (19g6) and reviewed in section 2.4.2.
The single most representative score for overall segmentation perfor-
mance is token fscore, the harmonic mean between token precision
(number of correct tokens identified by the model over the number of
total tokens predicted by the model) and token recall (number of correct
tokens identified by the model over the true number of tokens in the
mput).

4.4.2.3 Erperimental setup

My experimental procedure follows closely the one outlined in Johnson
and Goldwater (200g). | used the August 2012 version of Mark Johnson's
adaptor grammar implementation™ to run two Markov Chain Monte
Carlo chains for each of the models for 1,000 iterations, collecting sample
analyses for the held-out test set with a lag of 5 after a burn-in of 8oo
iterations.

I then determine the maximum marginal posterior segmentation (John-
son and Goldwater, 2oo0g) for each individual utterance on the basis
of the 80 samples that were collected for each conditions. To assess
significant differences, I calculated g5% confidence intervals around the
mean scores calculated across all samples for a condition and consider a
difference significant if the respective intervals do not not overlap.® Not
surprisingly, the confidence intervals where very tight across all condi-
tions, and unless otherwise noted, all reported differences are statistically
significant.

An overall summary of the experimental results is given in figure 4.5
which plots token f-score on both the input and the held-out test set for
different amounts of input size, with the size of the input getting larger
from left to right. I indicate the base distribution used by each model
by the line-type, using solid lines for the syllable base distribution and

Including CDS utterances directed at other children also introduces some amount
of variation so that one can ensure that benefits of more complex models are not
simply due to over-fitting the peculiarities of the Naima corpus.

Available at http: //web. science.mg. edu.au/~mjohnson/code/py-cfg-2012-08-16.
tgz.

This is equivalent to performing a significance test with p = 0.05, see, e.g., (Hacking,
2000 .
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dashed lines for the unconstrained Unigram phoneme base distribution.
The different (in)dependence assumptions about words are indicated by
color.

4.5 DISCUSSION

Overall, one can see two broad patterns of behavior across the different
models which are largely consistent for evaluating on the input and
on the held-out data. One group of models exhibits a degradation in
performance for larger amounts of inputs, in particular the UNIGRAM,
UNIGRAM-SYLL, COLLOC-SYLL; and to a lesser degree the CoOLLOC2-
sYLL and the coLLOC3-SYLL. The other group comprises the collocation
models with no syllable structure, i.e. COLLOC, COLLOC2, and COLLOCS,
all of which show signs of improvement over time.

4.5.1  Differences between evaluation on input and held-out data

Owerall, the trends as well as segmentation performance are by and
large identical on both the input and the held-out data; because, as
I have argued before, it is not clear how a token f-score for a corpus
of 900 utterances ought to be compared to one for a corpus of 25, 000
utterances, | focus the discussion on the held-out data where all the
scores are calculated across the same utterances, irrespective of the input
size.

Yet, it is interesting to note that a model that has seen as little
as roughly 1,000 to 2,500 utterances (which corresponds to months
11 and 12) performs almost as well on its input as on held-out data —
thus, there is no evidence for ‘over-fitting’ in the classical sense that
good performance on the ‘training data’ entails considerably worse
performance on held-out data.

4.5.2 Performance of different models

The coLLoC3-sYLL model clearly emerges as the most accurate with a
token f-score of 84% at peak performance at around 18 months (15,990
utterances) that drops to around 82% at month 21 (24,327 utterances).
Second best is the COLLOC2-83YLL model which peaks at around 82% at
month 13 and also drops by 2% to about 80% at month 21. The third
place is taken by COLLOC-SYLL which peaks already at month 11 with
81% token f-score. However, it exhibits a much more dramatic drop than
the higher-order collocation models, steadily dropping in token f-score
by almost 10% to 72% at month 21.

Determining a clear fourth place is harder. Thus, even though up
until roughly 14 months the UNIGRAM-SYLL model is outperformed
only by the higher-order collocation syllable models, at this point it
is overtaken by coLLocC, the simplest collocation model that does not
use syllable structure; and at 16 months, by coLLocz. This is because
UNIGRAM-SYLL exhibits the most dramatic drop in performance, from
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around 72% at month 11 (973 utterances) to slightly less than 60% for
month 21; in contrast, even though COLLOC starts out with only 60% at
month 11, its performance increases over time and seems to asymptote
to slightly above 70% starting from month 16.

The largest performance improvement is seen for coLLocg which
jumps from only 18% for month 11 to about 53% for month 21. Even
after this huge increase, however, it remains the worst model.

To sum up, there are two types of behaviour. UNIGRAM, COLLOC-SYLL,
COLLOC2-SYLL and COLLOC3-SYLL exhibit what I call overlearning:
they reach their peak performance for relatively small amounts of input
and gradually get worse as the size of the input grows larger. This is
much more pronounced for UNIGRAM-SYLL and COLLOC-SYLL than for
COLLOC2-SYLL and COLLOC3-SYLL, with the latter remaining above
20% accuracy even for the largest amount of input. Despite overlearning,
COLLOC3-SYLL and COLLOC2-SYLL perform word segmentation the most
accurate for all sizes of input. On the other hand, the collocation models
lacking the assumption of syllable structure do not exhibit overlearning,
at least not on the amount of data I tested them.

To my knowledge, 1 am the first to identify these two different trends
which I will now attempt to explain.

4.5.3 Overlearning

I begin with a detailed explanation of “overlearning”, starting from an
original observation going back to Goldwater (2o007) who noticed that
the Unigram model tends to identify undersegmented solutions where
the predicted (incorrect) words often consist of several of the (correct)
words. Her explanation for this is that “groups of words that frequently
co-occur violate the unigram assumption in the model since they exhibit
strong word-to-word dependencies”, and that “[t]he only way the model
can capture these dependencies is by assuming that these collocations
are in fact words themselves.” (Goldwater, zoo7, p.72)

Why is it, however, that these “misleading” co-occurrences occur in
the data in the first place and, apparently, become more problematic
the larger the input is7

4.5.3.1 Ezplaining overlearning

I suspect that many of the “collocations” a model such as UNIGRAM
is susceptible to arise from principled regularities governing language
which are not accounted for by the model. I discuss this idea first for
the UNIGRAM model and then argue that it extends to the collocation-
syllable models as well.

As a concrete example, note that English syntax requires (most)
prepositional phrases to begin with a preposition-determiner sequence.
As both prepositions and determiners are a small closed class, there is
only a small number of sequences such as “in the” or “of a”. Crucially,
the occurrence of a sequence such as in the is largely independent of
what is actually being talked about (as it excludes the head-noun of the
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—in the — are you —on the —this is —with the —the baby

month

Figure 4.6: Frequency of several high frequency function word bigrams over
time as well as that of the highest-frequency content word bigram
the baby. See table 4 4 for further discussion of these patterns.

prepositional phrase) and the number of its occurrences can therefore
be expected to just keep growing with the amount of input.

This is supported by figure 4.6 which plots the change in frequency of
several function word bigrams and a ‘content’ bigram such as the baby
which is, indeed, the highest frequency bigram including a noun. Whereas
occurrences of the content bigram are restricted to contexts in which a
baby plays any role, the function word bigram are necessitated not by
conversation topic but English syntax. Consequently, their frequency in
the input grows much more dramatically over time.

Recalling that the UNIGRAM model was shown to undersegment high-
frequency items, this observation directly leads to the prediction that it
will perform worse when trained on larger amounts of data: the evidence
for spurious ‘words’ such in the grows steadily with the input size.

The experimental results strongly suggest that this reasoning is correct.
The drop in performance for the UNIGRAM model is clear from figure 4.5:
it reaches peak performance of around 66% when its input consists of a
mere 973 utterances, and its segmentation accuracy steadily drops as
it processes larger inputs down to around 5g% for an input of 24,327
utterances. When syllable structure is taken into account, the drop is
even more pronounced as it starts from 73% and also drops to around
59%.

More direct support for explaining the drop by the negative impact
of the increasing frequency of patterns like the one in figure 4.6 comes
from figure 4.7 that plots how well the model is able to identify word
types of different frequencies in the test set as a function of input size.

MNote how for higher-frequency types, the Unigram model’s perfor-
mance decreases more dramatically than for low frequency types for
larger amounts of input. To investigate whether this difference in perfor-
mance could actually be due to high-frequency items getting “absorbed”
into larger units as I suggest following Goldwater (zoo7), in table 4.3
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= = unigram = unigram-syll — colloc-syll = colloc2-gy1l = colloc3-syll

token f-score for frequency-hinned word types

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
11 13 15 17 19 2111 1% 15 17 19 2111 13 15 17 19 31
language exposure

Figure 4.7: Token fscores for word types of different frequencies in the test set
as a function of the size of the input. Note that the Unigram and
the collocSyll model already show clear decreases in accuracy over
time for types of frequency larger than 10 whereas the collocgSyll
model shows a relatively robust performance up to the highest-
frequency bin of types with frequency larger than 200. The drop
in performance shows that even the collocgSyll model suffers from
“overlearning” although this behavior is much less pronounced than
for the other models and only occurs dramatically for the highest-

frequency types in the data.

I perform a qualitative evaluation of a number of actual examples of
patterns involving high-frequency items that are themselves of different
frequencies. As is clear, cases that are analyzed correctly at month
11 are almost consistently misanalysed as a single word at month 21,
showing that the “loss” of high-frequency items is a major reason for the
overlearning,

Surprisingly, perhaps, the same kind of explanation seems to apply to
the collocation-syllable models.

While originally proposed by Johnson (zoo8b) to specifically address
the problem of undersegmentation, figure 4.7 indicates that collocation
models do not solve the problem of high-frequency words completely,
although it seems to get less problematic with the number of collocational
levels the model has at its disposal. Looking at the kind of units learned
by the collocation-models explains why that is: among the high-frequency
collocations learned by both the coLLOC-SYLL and the cOLLOCz-SYLL
model from the largest input is, for example, the two ‘word’ sequence
doyou remember.



144

45 DISCUSSION

iy ut sw ons wagged v Boredeoe-st s gng fAgog syp se gons gndut s31 a1 saunng (g TR JaMa) Inooo je) sutagged
107 RIS o1 Funpem ‘ases Fumwaroul qiw e qiunom @ sursmed Lusnba-tamo] sappaey [Eapo TIAS-EDOTIO0 S apout WYHOING a1 ayiun
nq LA joagtad Lreeu saswd o) (e SpuE [BpOUI TTAS-ED0TION o) pUe WVHHINA a1} qioq ‘1T qiuom 3y -Burjsmdastapun Ajduns mweyg) s1011a
19730 UL OS[E TED S[@POW 33 S8 4,001 03 dn ppe J0u Pt [00%, PUB 1000 J¥} 2j0N UOMGEIONOD PIOM-0M} B FUINIIISU0D SB Pos ARIEsTI a1am
10 A[3081100 PApUe] alam TRM) 188 1850 a1]1 ul mred B Jo saouaimado jo afeiuactad o) aald sumnod o3y pue 1004, af ], Aeansadsar ‘1z qioom
pu® TT qIUON 38 [BPOU TIAS-ED0TIO0 &) pus WVHMDING a1) Aq papueq aie Auanbar] juatagip jo suiagyed-urmerdig sog je joo] aanjeiqenb v (BF apqe],

040 | 94001 || 94001 | 940 0g 940 04GL 040 | 9001 0 ¥ Aqeq a3
040 00t || 0458 040 g9t 040 0 00T o | 04001 z ¥ a3 YIm
9%0 o001 || %440 040 gbit 20 04,001 o | 900t g 6 81 BT[]
0418 0401 0408 040 AFE 040 0408 040 | B400T 1T 18 a1y} uo
osel osLF 941l 940 ges 940 04007 940 | 94001 Fr 61 nof aie
0y 6 040 0y 6 040 19 040 0y 6 oS | og08 Ft gt atyy ut
2% [ 1009 || o % | 1009 ooy [1009 |00y |00y .
TIAS-£D0TIOD W VHOINN yndaty TIAS-ED0TIOD W VHOINN yndar 18094 | weyyed
(seomerenn Lz€'¥z) 12 qauow (seoumieaan £L6) 11 yauow




150 STUDYING THE EFFECT OF INPUT SIZE FOR BAYESIAN WORD SECMENTATION

While this is a better solution than the UNIGRAM model’s doyoure-
member, it still involves the undersegmented collocation de you which,
incidentally, is another example for a high-frequency function word
bigram. The coLLOC3-sYLL model analyses this specific case correctly
as a three-word collocation do you remember, but it fails to acquire the
collocation do you on its own and prefers to use the “word” doyou in
most other cases.

This shows that collocations do not solve the undersegmentation
problem but only push it back a level, in line with figure 4.7: while
the coLLOCE-SYLL model behaves relatively stable for word-types with
frequencies smaller than zoo, it also shows a marked drop for the high-
frequency word types from around g5% at month 11 to just below 80%
for month 21. Some concrete examples of patterns which the coLLocy
sYLL model is and isn’t able to handle correctly are given in table 4.3,
alongside the performance of the Unigram model for these cases. This
clearly illustrates how, even though coLLoC3-sYLL handles some of the
patterns which UNIGRAM misanalyzes correctly, its ability to handle
word-dependencies breaks for high-frequency patterns.

4.5.3.2 A general problem for Bayesian models?

With this, the fact that even for collocation-models the undersegmenta-
tion problem gets worse for larger inputs shouldn’t be too surprising,
As pointed out above, many of the patterns leading to undersegmenta-
tion errors are due to syntactic regularities that, for example, require
prepositions to be followed (in almost all cases) by articles. Figure 4.6
indicates that these kinds of patterns grow continuously with the size
of the input, suggesting that models that “merely” model co-occurrence
statistics are bound to fail at some point.

This may almost seem like a general problem for Bayesian probabilistic
models of the kind discussed here that, in a sense, simply try to identify
high-frequency patterns in the input. Yet this is not so.

For one thing, the lack of detailed linguistic structure is not inherent
to the Bayesian framework that is fully unrestricted as to what kind
of structures a model is defined over. This much is clear from the ease
with which syllable structure can be incorporated into the models.

Secondly, even without additional linguistic structure the relative
robustness of the coLLOC3SYLL model shows that while not fully
solving the problem of misleading co-occurrences, a sufficiently rich
collocational structure goes a long way in alleviating the problem for
input sizes that go well beyond 20,000 utterances. It suffices to handle
most cases involving content words such as nouns, correctly learning for
example that despite its (relatively) high frequency, the baby consists
of two individual words. Figure 4.6 shows that for patterns like this,
frequency grows much slower over time (although still too fast for a
model lacking any ability to model larger-than-word-units such as the
UNIGRAM model), not too surprising considering that the occurrence
of content words — unlike function words — is mainly dependent on
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what is actually being talked about and that conversation topics tend
to change over time.

Finally, we also see that — at least on a corpus of up to roughly 25, 000
utterances — using two or three levels of collocation is sufficient to prevent
overlearning for all but the highest frequency items. That is, in figure 4.7
one only observes clear instances of overlearning for coLLoOC3-sYLL
and CcoLLOC2-5YLL for words of frequency 200 and larger. Thus, these
kinds of models may actually be sufficient to prevent overlearning in
‘realistic’ scenarios of large but finite amounts of input despite the fact
that, theoretically, they too will start undersegmenting when exposed
too enough input.

UNDERSEGMENTATION AS DESIDERATUM? A final point which
I briefly want to raise is that from a certain perspective, undersegmen-
tation may be viewed as a ‘feature’ rather than a shortcoming of a
segmentation model. Thus, Lignos (2o012) argues that “a good model of
infant word segmentation” should be able to replicate “at early stages
of learning, undersegmentation of function word collocations” (p. 240).
In particular, he points out that in his seminal work on language ac-
quisition, Brown (1973) points out that infants tend to analyze pure
function word sequences such as that a or verb-article collocations such
as get a, have a, etc. as monomorphemic (see p. 3g1f).

This raises a general issue with the kind of evaluation common in com-
putational modeling of word segmentation — treating the orthographic
transcript as gold standard is questionable from a developmental point
of view where infants do, indeed, undersegment. Generally speaking, I
believe this criticism to be valid. Adressing it properly, however, requires
establishing an alternative gold standard which, given that evidence
about the kinds of undersegmentations infants do perform is currently
at best anecdotal, is simply not possible.

While I am looking forward to the development of such a standard
by language acquisition researchers, at the current stage I am skeptical
towards viewing particular patterns of undersegmentation as ‘beneficial’.
In the absence of a well-established standard against which to compare,
this may result in situations where the relative merit of different mod-
els depends on the subjective judgment of the researcher as to which
undersegmentations are ‘good’ and which are ‘bad’. For this reason [
exclusively evaluate against the orthographic transcript although I am
aware of the limitation of this approach. Currently, however, it is the
only objective means of performing a quantitative evaluation of different
maodels.

Coming back to the question whether the overlearning exhibited by
the models may not be viewed as an argument in favor of them, 1 also
want to point out that — counter to Brown (1973)'s observation and
Lignos (2z012)’s demand, the collocation syllable models exhibit severe
undersegmentation not in the early but late stages of learning, i.e. only
once they have been exhibited to huge amounts of input. I believe this to
cast general doubt on the idea that overlearning — at least as exhibited
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by the models under discussion here — is desirable from a cognitive point
of view.

4.5.4 Performance of unconstrained models

What remains to be given is an explanation why the collocation models
without syllable structure lead to an overall worse performance but seem
to exhibit a positive relation between amount of input and segmentation
accuracy. The key to this, I believe, lies again in considering the kinds
of regularities the model is sensitive to; this also provides an answer to
the question raised by the previous chapter, i.e. whether richer models
require stronger constraints to perform well on Lttle data.

4.5.4.1 Constraints on possible words

With no restriction on what an actual word may look like, high-frequency
patterns of any kind — including individual phonemes and short n-
gram sequences of phonemes — can be employed by a probabilistic
segmentation model to explain the input they get. In particular, for
little input with overall few word tokens and, consequently, relatively
few repetitions for each of the actual word types, the evidence for
high-frequency non-words (e.g., simply treating an individual phoneme
as a word) is extremely high, possibly leading to over- rather than
undersegmentation.

For example, inspecting the segmentations generated by coLLocC3 at
month 11 we find that most frequent “word” it has learned is ¢t which
is used in “collocations” like t o, ge ¢ or, illustrating the problem very
nicely, j us . The reason these segmentations make sense for the model
is that, of course, every individual phoneme occurs frequently in the
input and, as such, is a plausible word; in particular as the fact that
certain sequences occur more frequently than would be expected if all
‘words’ were independent, such as the preposition to, can be explained
by positing the ‘collocation’ ¢ o.

While ‘statistically reasonable’, segmentations involving ‘words’ such
as t should be ruled out on the grounds that ¢ simply is not a possible
word in any language. And indeed, as can be seen from the performance
of the collocation syllable model, adding a constraint that rules out
these kinds of analyses forces the model to identify units that match
closely with actual words.

Of course, this immediately raises the question why the UNIGRAM
model does not require a possible word constraint. To understand this,
recall that under the UNIGRAM model, all tokens in a segmentation are
fully independent (see above and chapter =). Thus, it can only consider
the marginal probabilities of the words in a sequence to predict its overall
probability whereas a collocation (or a Bigram) model can take into
account contextual dependencies.

With this, consider again a segmentation such as t o as posited by
the coLLocg model. The reason the Unigram model does not posit
this analysis is that the phoneme sequence /t u/ (corresponding to the
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word to*') occurs much more frequently than would be expected if it
really were the sequence of two independent ‘words' ¢+ and w To wit,
the relative frequency of the bigram /t u/ among all possible phoneme
bigrams at month 11 is 0.6%. In contrast, the marginal frequencies of
the phoneme /t/ is 0.07% and that of /u/ is 0.04%, hence according to
a UNIGRAM model the expected frequency of /t u/ ought to be 0.3%,
half of what is actually observed. Consequently, the Unigram model will
posit the single word to because the alternative analysis is at odds with
the empirically observed frequencies.

In contrast, a collocation model can account for the mismatch by
assigning a probability directly to the collocation ¢ ¢ which need not
be identical to the product of the marginal probabilities of ¢t and o.
In addition, by assigning independent probabilities to ¢t and o which
capture the occurrence of these phonemes in other contexts, the overall
data can be fit much better, making the oversegmented ¢ o the preferred
solution.

Ironically then, the oversegmentation behavior is worst for models
with a lot of additional structure such as the coLLoC3 model that,
when combined with a syllable structure constraint, leads to the best
performance. Without such a constraint, however, it uses the structure
it has at its disposal to identify “statistically plausible” but linguistically
meaningless segmentation.

Increasing the amount of input leads to the same overall change in
segmentations — larger and larger units will be posited by the model the
more and more input it processes. Yet, in this case this actually leads
to more accurate rather than worse segmentation because the model’s
tendency to oversegment is so large initially that it takes a huge amount
of data to overcome it.

In line with this, at month 21 the top-5 word list is ing, you, z, the and
to. This shows, that, as expected, more input does lead to larger units
being segmented; but also that even for well over zo,000 utterances, the
coLLoC3 model prefers to posit short ‘words’ as it has another three
levels of collocations that it can use to assemble them into larger units.

The coLLocz and COLLOC model are less extreme in their oversegmen-
tation behavior as they have fewer “levels” at their disposal, discouraging
the excessive use of one-phoneme ‘words’ more severely. Thus, the over-
segmentation behavior is less pronounced early on and, consequently,
less input is required to achieve reasonable segmentation performance
of around 70% token fscore. For these models, however, one also sees
evidence for beginnings of undersegmentation: for the CoLLOC model
when evaluated on the input (rather than the held out) data, we see a
dip around 15 months, from around 75 to 70%. This is consistent with
the observation that, on the held-out data, it seems to ceil at around 70%
token £score as well, starting from month 15. Also, its highest-frequency
words at month 21 include “overlearned” units like areyou and doyou,
demonstrating that the coLLOC model is beginning to overlearn just
like the syllable-structure models.

21 This bigram may, of course, also occur as part of another word, as in altogether.
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Figure 4.8: Token f-scores for word types of different frequencies in the test
st as a function of the size of the input. Note that the coLLoC
model exhibits overlearning for words of frequency larger than 20,
and COLLOC exhibits clear overlearning of words of frequency 200,
indicating that even these models will overlearn as they see more

and more input.

This is also suggested when we look at figure 4.2 which, just as
figure 4.7 for the models that overlearn, plots token fscore for words of
different frequencies for the collocation models without syllable structure.
In figure 4.7, we observe an overlearning pattern already for words of
frequency 10 and 20. Here, for coLLOC3 we see no such behavior at all
although, starting at 50 for COLLOC, one also sees the suspicious drop;
and for COLLOC2, one clearly sees overlearning on words of frequency
200, demonstrating that if we were to increase the input amount further,
these models would also begin to undersegment more and more severely
and, ultimately, exhibit an overall drop in segmentation performance.

In conclusion, I think this shows that the intuitively attractive behavior
of such unconstrained models to get better over time is an artifact of their
strong preference for short units that, for small amounts of data, masks
the overlearning inherent in the model at the expense of segmentation
aCCuracy.

To summarize this discussion then, the fact that models lacking sylla-
ble structure do not exhibit overlearning in my experiments should not
be taken as evidence that they are more adequate than their overlearning
relatives. Rather, and consistent with the discussion in chapter 7, it
demonstrates that richer models which include notions such as colloca-
tions require stronger constraints on what counts as a possible word to



4.6 CONCLUSION AND PERSPECTIVES

perform good segmentation on small amounts of data at all, highlighting
the importance of constraints on the form of possible words.

4.5.5 Parameter settings

I want to briefly mention the possibility that overlearning may be
addressed by manually choosing appropriate values for the models’ hyper
parameters for differently sized inputs. Goldwater (zoo7) observed and
the discussion in chapter = confirmed that the segmentations proposed
by her Bigram model depend on the choice of hyper-parameters, and
Johnson (zoo08b) observed a similar sensitivity to hyper parameters in
adaptor grammar models.

Thus, it may be possible to identify different hyper parameter settings
for different amounts of input that, to some extent, prevent or alleviate
overlearning. I cannot rule out this possibility and it may, indeed, be a
reasonable way of addressing these kinds of problems as they arise in
practical applications of Bayesian models which exhibit similar kinds of
behavior. From a computational modeling point of view, however, I find
this to be an undesirable strategy.

First, the number of hyper parameters in an adaptor grammar is twice
the number of adapted non-terminal symbols, making the identification
of well-performing hyper parameters very challenging. Indeed, Johnson
and Goldwater (zoog) found that their automatically inferred hyper
parameters led to better performance than any of the values Johnson
(zoo2b) had manually considered. As it is reasonable to expect that more
realistic models of human language will be more complex and therefore
will have even more hyper parameters than the models investigated here,
manually choosing hyper parameter values seems infeasible.

More importantly, [ believe manual setting of hyper parameters or, as
it is known in Machine Learning, parameter tuning to be a questionable
move for computational models of language acquisition. It is certainly
conceivable that (things loosely corresponding to) hyper parameters are
indeed fixed by human biology to values that result in good segmenta-
tions. Yet, cross-linguistic evaluation of segmentation models has not
suggested that a single set of hyper parameters performs well across dif-
ferent languages — the settings that work for English have so far worked
considerably worse for other languages. Also, as argued in chapter =,
models which do not require hyper-parameters to be fixed to specific
values should be preferred on general simplicity grounds over models
that do require such prespecification.

4.6 CONCLUSION AND PERSPECTIVES

I have presented a novel corpus of English CDS derived from the Provi-
dence Corpus for studying models of word segmentation. This corpus
makes it possible to address a wider range of questions than is currently
common, for example with respect to the study of how the segmentations
predicted by a model may change over time.
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The primary contribution of this chapter is the identification of a so far
unreported “overlearning” effect for state-of-the-art word segmentation
models on large amounts of data and an explanation of this behavior.
In particular, I argue that unless linguistic regularities are modeled
explicitly, they will give rise to ‘misleading patterns’ which lead Bayesian
word segmentation models to undersegment more as they see more input
and, consequently, perform worse rather than better segmentation. Yet
I found that by adding a sufficiently rich ‘collocational’ structure, this
problem can be pushed back considerably to yield stable performance
up to roughly 25, 000 utterances.

I have also demonstrated that adding the power to capture more
distributional dependencies to a segmentation model also adds the
need for a stronger constraint on possible word forms. In particular,
even though the coLLOC3-SYLL model emerges as the overall best and
most robust segmentation model, the coLLOC3 model exhibits severe
oversegmentation behavior and requires very large amounts of inputs
to identify words rather than sub-word units such as very frequent
phoneme o-grams. This provides a positive answer to the question raised
in chapter 5 whether richer segmentation models also require more
substantive constraints to perform well on small amounts of data.

I conclude this chapter by pointing out possible ways of extending
this work, also noting two recent examples which can be seen as taking
a first step in either of these directions.

4.6.1  Future work

I hypothesized that the tendency to undersegment needs to ultimately
be addressed by modeling additional levels of linguistic structure that
properly explain the high frequency of certain patterns in ways that do
not require treating them as single units. A first step in this direction
was taken in Synnaeve et al. (2014) where we™ added a kind of semantic
annotation capturing the idea of activity conterts (Roy et al., zo12). We
found that, as expected, trying to account for the topicality of words —
their tendency to occur more frequently in particular contexts as others
— addresses overlearning and results in significant improvements.

Additional possible ways of adding semantics is to incorporate learning
of simple word-object correspondences, as in Jones et al. (zo10) and
Johnson et al. (zo10) to the model. As the Providence corpus makes
available video recordings for all the transcripts, it should theoretically
be possible to annotate each utterance with a set of salient objects.
Following the strategy outlined in Johnson et al. (zo10), it would then
be straightforward to add the ability to associate particular words or
collocations with salient objects in context, providing a further way
in which some notion of semantics could be incorporated into word
segmentation.

Relatedly, incorporating syntactic dependencies is likely to help with
overlearing of, in particular, function word sequences. A general challenge

22 [ am third author of this paper.
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is choice of an appropriate set of syntactic notions that is not tailored
directly to the language under investigation and, of course, additional
information that could be used to determine syntactic dependencies,
e.g. high-level meaning representations for utterances or parts of them.
Focusing on English, Johnson et al. (zo14) shows how incorporating
the abstract knowledge that mono-syllabic function words can occur
at the edges of collocational units improves segmentation and it would
be interesting to see whether their models, evaluated on the Brent-
Bernstein-Ratner corpus, also address overlearning on the Naima corpus
or other corpora of comparable size.
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EXPLORING THE ROLE OF STRESS IN
BAYESIAN WORD SEGMENTATION

Stress has long been established as a major cue in word segmentation
for English infants. In this chapter I show that enabling a current
state-of-the-art Bayesian word segmentation model, the Johnson and
Goldwater (2o009)’s COLLOC3-SYLL model that was also examined in the
previous chapter, to take advantage of stress cues noticeably improves
its performance.

I find that the improvements range from 10 to 4%, depending on
both the use of phonotactic cues and, to a lesser extent, the amount of
evidence available to the learner. I also find that in particular early on,
stress cues are much more useful for the model than phonotactic cues
by themselves, consistent with the finding that children do seem to use
stress cues before they use phonotactic cues.

Finally, I study how the model’s knowledge about stress patterns
evolves over time. | not only find that the model correctly acquires the
most frequent patterns relatively quickly but also that the Unique Stress
Constraint that is at the heart of a previously proposed model does not
need to be built in but can be acquired jointly with word segmentation.

5.1 INTRODUCTION

Among the first tasks a child language learner has to solve is picking out
words from the fAuent speech that constitutes its linguistic input.® For
English, stress has long been claimed to be a useful cue in infant word
segmentation (Jusczyk et al., 1993, 19g9gb), following the demonstration
of its effectiveness in adult speech processing (Cutler et al., 1936).

Several studies have investigated the role of stress in word segmen-
tation using computational models, using both neural network and
“non-statistical” approaches (Christiansen et al., 1998; Yang, 2004; Lig-
nos and Yang, zo1o; Lignos, zo11, 2012) which will be reviewed in
section 5.2. Bayesian models of word segmentation (Brent, 1ggg; Gold-
water, zoo7), however, have until recently completely ignored stress. The
sole exception in this respect is Doyle and Levy (zo13) who added stress
cues to the Bigram model (Goldwater et al., 2009, also see chapter z),
finding small but statistically significant improvements when applying
the model to pre-syllabified data.

In this chapter, I extend on this work and show how to integrate stress
cues into the flexible adaptor grammar framework (Johnson et al., zoozh,
see chapter 2 for a brief review). This allows me to both start from a
stronger baseline model and to systematically investigate how the role

The datasets and software to replicate the experiments are available from https:
//github.com/bboerschinger/tacl
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of stress cues interacts with other aspects of the model. In particular, 1
find that phonotactic cues to word-boundaries interact with stress cues,
indicating synergistic effects for small inputs and partial redundancy for
larger inputs.

Owerall, 1 find that stress cues add roughly 6% token f-score to a
model that does not account for phonotactics and 4% to a model that
already incorporates phonotactics. Relatedly and in line with the finding
that stress cues are used by infants before phonotactic cues (Jusczyk

et al., 1ggga), I observe that phonotactic cues require more input than
stress cues to be used efficiently.

A closer look at the knowledge acquired by the models shows that
the Unique Stress Constraint of Yang (zoo4) can be acquired jointly
with segmenting the input instead of having to be pre-specified; and
that the models correctly identify the predominant stress pattern of
the input but underestimate the frequency of iambic words, which have
been found to be missegmented by infant learners.

The outline of the chapter is as follows. In section 5.2 I review prior
work. Section 5.3 introduces the adaptor grammar segmentation models
and section 5.4 explains the experimental evaluation and its results.
Section 5.5 discusses my findings, and section 5.6 concludes and provides
some suggestions for future research.

52 BACKGROUND AND RELATED WORK
5.2.1 Lerical stress in word segmentation

Lexical stress is the “accentuation of syllables within words” (Cutler,
z005). Following Cutler and Carter (1987)’s observation that stressed
syllables tend to occur at the beginnings of words in English, Jusczvk
et al. (1gg3) investigated whether infants acquiring English take advan-
tage of this fact. Their study demonstrated that this is indeed the case
for g month olds, although they found no indication of using stressed
syllables as cues for word boundaries in 6 month olds. Their findings
have been replicated and extended in subsequent work (Jusczyk et al.,
199gb; Thiessen and Saffran, 2o03; Curtin et al., 2005; Thiessen and
Saffran, zoo7), identifying a by now well-established set of findings about
the role stress plays in early word segmentation:

1. English infants treat stressed syllables as cues for the beginnings of
words from roughly 7 months of age, suggesting that the role played
by stress needs to be acquired, and that this requires antecedent
segmentation by non-stress-based means (Thiessen and Saffran,
2007).

2. English infants exhibit a preference for low-pass filtered stress-
initial words from this age, suggesting that it is indeed stress and
not simply other phonetic or phonotactic properties (which are
missing in low-pass filtered speech) that are treated as a cue for
word-beginnings (Jusczyk et al., 1993).
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3. Phontactic cues seem to be used later than stress cues by infants,
evidence for their being used occurring only at around g months
and later (Mattys et al., 199g; Mattys and Jusczyk, 2000; Jusczyk
et al., 1g9gga).

4. Once stress cues start being used from around 7 months, they
seem to outweigh other (e.g. distributional or phonotactic) cues to
word boundaries up until roughly 10 to 11 months, illustrated by
frequent mis-segmentations of words that do not conform to the
dominant stress-initial pattern such as /g i't ar/ (guitar, Thiessen
and Saffran, zoo03)

The experiments in this chapter address these points from a computa-
tional modeling perspective and shows that joint Bayesian models that
incorporate distributional, phonotactic and stress cues exhibit similar
behavior as will be discussed below.

[t is worth noting at this point that the English stress system is in fact
quite complex. The linguistic knowledge required to correctly predict
the stress of a word involves more than merely knowing that most words
tend to be stressed on their first syllable — common linguistic analyses
of stress systems make use of ideas such as syllable weight and foot
structure, all of which will be ignored in this chapter (for an accessible
introduction, see Hayes, 2009, chapter 14). The reason for this is that
there is little evidence that the subtle aspects of the English stress
system that require a deeper analysis play an important role at the stage
of word segmentation.

5.2.2  Prior modeling work on stress in word segmentation

The earliest computational model for word segmentation incorporating
stress cues | am aware of is the recurrent network model of Christiansen
et al. (1998) and Christiansen and Curtin (1g9gg). Segmentation using
neural networks has fallen somewhat out of favor recently, and its
performance is, indeed, considerably lower than that of the other lerical
segmentation models which incorporate the idea of an explicit lexicon
in which word forms are stored; in this case, the best segmentation
accuracy reported by Christiansen et al. (1998) and Christiansen and
Curtin (1999) is a mere 44% whereas the base-line models I consider
in this chapter already attain an accuracy of well over 80%. For this
reason, | do not discuss these models in more detail.

A highly influential segmentation model that explicitly incorporated
stress cues is presented by Yang (2oo4). It is a simple incremental
algorithm that embodies an allegedly universal substantive constraint on
the stress-patterns of possible words called the Unigue Stress Constraint
(USC) which was defined by Yang and Gambell (zoo05) as follows:

UNIQUE STRESS CONSTRAINT A word can bear at most one pri-
mary stress.| (p. 1g)

A constraint like this is made plausible by the idea that one of the
roles played by stress is its culminative function, i.e. the idea that it
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identifies the single most salient syllable of a word(Hayes, zooq; Cutler,
2005). In a sense, the USC can be viewed almost as a tautology — primary
stress is defined as the most prominent stress in a word, and of course
there is at most a single most prominent stress in any word. Yang
(zo04) argued, rather influentially, that statistical word segmentation are
outperformed by a simple algorithm that relies on a ‘Universal Grammar’
principle such as the USC rather than distributional regularities of the
input; and indeed, he reported very good segmentation results of 85.6%
segmentation accuracy on a corpus of pre-syllabified child directed speech,
outperforming a transitional-probability learner of the kind proposed by
early work such as as Saffran et al. (1996) by a huge margin.

However, the high scores Yang (zoo4) and Yang and Gambell (zo05)
reported depend on the questionable assumption that, in fact, every word
token contain a stressed syllable, including function words. While this
assumption has more recently also been made explicitly by Doyle and
Levy (zo13) (discussed below), Lignos (zo11) further explored Yang's
original algorithm, taking into account that function words should not
be assumed to possess lexical stress cues. While his scores are in line
with those reported by Yang, the importance of stress for this learner
was more modest, providing a gain of around 2.5%.

Working in the Bayesian framework I use as well, Dovle and Levy
(zo13) extend the Bigram model of Goldwater et al. (zoog) by adding
stress-templates to the base distribution which defines the prior expec-
tations a model has about possible words (see chapters 2, 3, and 4 for a
discussion about how assumptions built into the base distribution affect
word segmentation). A stress-template indicates how many syllables the
word has, and which of these syllables (if any) are stressed. Thus, unlike
the Yang,/Lignos models, the model of Doyle and Levy (zo013) can, at
least in theory, form explicit expectations about the stress pattern of
its language by learning a distribution over stress-templates from the
input.

Interestingly, Doyle and Levy (zo13) do not directly examine the
probabilities their model infers for the different stress-templates but
they do report, on the basis of calculating the fraction of stress-initial
words in the proposed segmentation, that their model does slightly prefer
stress-initial words over the baseline model which does not make any
use of stress cues. The ability to explicitly represent expectations about
stress patterns is something that differentiates probabilistic models from
other approaches, making it possible to not only ask whether stress
aids segmentation but also address how the role played by stress can be
acquired. | extend on this in my experiments by directly examining how
expectations about stress patterns develop over time.

Like Yang and Lignos, Doyle and Levy (2013) report that stress cues
aid segmentation, although their reported gain of 1% in token f-score
is even smaller than that reported by Lignos (zo11). Also, a slightly
surprising result of their work (which may even be viewed as supporting
Yang and Gambell (zoo5)’s criticism of ‘statistical’ learners) is that a
simple baseline which proposes to put a boundary at every possible
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position reaches a segmentation accuracy of 82% but Doyle and Levy's
stress model only 63%.

The approach presented in this chapter is, in terms of also using a
Bayesian model for word segmentation, similar to theirs but differs in
several respects. First, | use adaptor grammars (Johnson et al., zoo7h),
a grammar-based formalism for specifying non-parametric hierarchical
models. Previous work explored the usefulness of, for example, syllable-
structure (Johnson, zoo08b; Johnson and Goldwater, 2o0g; Bérschinger
et al., zo12, also previous chapter of this thesis) or morphology (Johnson,
2008b,a) in word segmentation. The closest work to this is Johnson and
Demuth (zo10) who investigate the usefulness of tones for Mandarin
phonemic segmentation. Their way of adding tones to a model of word
segmentation is very similar to my way of incorporating stress which I
will explain in the next section.

5.3 MODELS

I give an intuitive description of the mathematical background of adaptor
grammars in 5.3.1, referring the reader to Johnson et al. (zoo7b) for
technical details and to chapter = for a brief review. The models | examine
are derived from the collocational model of Johnson and Goldwater
(zoog) by varying three parameters, resulting in 6 models: two baselines
that do not take advantage of stress cues and either do or do not use
phonotactics, as described in section 5.3.2; and four stress models that
differ with respect to the use of phonotactics, and as to whether they
embody the Unique Stress Constraint introduced by Yang (zoo4). 1
describe these models in section 5.3.3.

5.3.1 Adaptor grammars

An adaptor grammar (AG) is a probabilistic context-free grammar
(PCFG) with a special set of adapted non-terminals which are treated
differently from the non-terminals of a standard PCFG. 1 use under-
lining to distinguish adapted non-terminals (X ) from non-adapted
non-terminals (Y ).

The distribution for each adapted non-terminal X is drawn from
a Pitman-Yor Process which takes as its base-distribution the tree-
distribution over trees rooted in X as defined by the PCFG. As an
effect, each adapted non-terminal can be seen as having associated with
it a cache of previously-generated subtrees that can be reused without
having to be regenerated using the individual PCFG rules.”

This allows AGs to learn reusable sub-trees such as words, sequences of
words, or smaller units such as Onsets and Codas. Thus, while ordinary
PCFGs have a finite number of parameters (one probability for each
rule), adaptor grammars in addition have a parameter for every possible
complete tree rooted in any of its adapted non-terminals, leading to a
potentially infinite number of such parameters. The Pitman-Yor Process

2 This idea relies on the Chinese Restaurant representation, see chapter = for details.
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induces a rich-get-richer dynamics, biasing the model towards identifying
a small set of units that can be reused as often as possible. In the case of
word segmentation, the model will try to identify as compact a lexicon
as possible to segment the unsegmented input.

5.3.2 Baseline models

I take as starting point the state-of-the-art AG model for word segmen-
tation, Johnson and Goldwater (zoog)’s collocg-syll model, reproduced
in figure 5.1.% The model assumes that words are grouped into larger
collocational units that themselves can be grouped into even larger collo-
cational units. This accounts for the fact that in natural language, there
are strong word-to-word dependencies that need to be accounted for if
severe undersegmentations of the form “is in the” are to be avoided (Gold-
water, 2o07; Johnson and Goldwater, 2oog; Borschinger et al., 2012, see
also the previous chapter for extended discussion).

It also relies on an arguably universal form of syllable structure to
constrain the space of possible words. Finally, this model can learn
word-initial onsets and word-final codas. In a language like English, this
ability provides additional cues to word-boundaries as certain onsets
are much more likely to occur word-initially than medially (e.g. “bl" in
“black”), and analogously for certain codas (e.g. “dth” in “width" or “ngth”
in “strength”).

I define an additional baseline model by replacing rules (5.2) and (5.9)
by (5.20), and deleting rules (5.10) to (5.15). This removes the model's
ability to use phonotactic cues to word-boundaries.

Word — Syll(Syll) (Syll) (Syll) (5-20)

I refer to the model in figure 5.1 as the colloc3-phon model, and the
model that results from substituting and removing rules as described
as the collocg-nophon model One can also limit the model’s ability to
capture word-to-word dependencies by removing either rules (5.1) to
(5.2), yielding a collocz-model, to (5.4) to yield a colloc-model or all
rules up to (5.6) to yield a unigram-model (Johnson and Goldwater,
2009, previous chapter).

These models, in particular the colloc-model, are more similar to the
Bigram model used in Doyle and Levy (zo13) and, as expected, we find
their performance to gradually deteriorate due to overlearning, unlike
the collocg-model (as discussed at length in chapter 4). For this reason,
I focus on the collocg-models.

5.3.3 OStress-based models

In order for stress cues to be helpful, the model must have some way
of associating the position of stress with word-boundaries. Intuitively,

I follow Johnson and Goldwater (zoog) in limiting the length of possible words to
four syllables to speed up runtime. In pilot experiments, this choice did not have a
noticeable effect on segmentation performance.
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Collocations3 —+ Collocation3 * (5.1)
Collocationd — Collocations2 (5.2)
Collocations2 — Collocation2 * (5-3)
Collocation2 — Collocationsl (5-4)
Collocationsl — Collocation * (5-5)
Collocation — Words (5.6)
Words — Word * (5.7)

Word — SyllIF (58)

Word — SyllI(Syll) (Syll) SyllF (5-9)

SyllIF — ( Omnsetl ) RhymeF (5.10)

Sylll — ( Onset] ) Rhyme (5.11)

SyllF — ( Omnset ) RhymeF (5.12)

CodaF — Consonant * (5.13)
RhymeF — Vowel ( CodaF ) (5-14)
Onset] —+ Consonant * (5.15)

Syll — ( Onset ) Rhyme (5.16)

Rhyme — Vowel (Coda) (5.17)
Onset —+ Consonant * (5.18)

Coda —+ Consonant * (5-19)

Figure 5.1: Adaptor grammar for the baseline model. 1 use regular-expression
notation to abbreviate multiple rules. Brackets indicate optionality,
and X% stands for one or more repetitions of X. X indicates
an adapted non-terminal Rules that introduece terminals for the
pre-terminals Vowel, Consonant are omitted. Refer to the main
toxt for an explanation of the grammar.

the reason stress helps infants in segmenting English is that a stressed
syllable is a reliable indicator of the beginning of a word (Jusczyk et al,,
1993). Thus, if one already knew of this correlation one way to take
advantage of stress cues would be to always hypothesize (or hypothesize
with very high probability) a word boundary before every observed
stressed syllable; indeed, this metrical segmentation strategy (Cutler,
1591) has been found to be employed by adult speakers of English.

In the context of language acquisition, however, knowledge about the
proper role of stress cannot be assumed from the outset as, crucially,
languages differ with respect to how stressed syllables relate to word
boundaries. Nevertheless, one can expect that if there is a (reasonably)
reliable relationship between the position of stressed syllables and be-
ginnings (or endings) of words, a learner might exploit this relationship
by somehow picking up on it.

An alternative idea about how stress might be exploited in word seg-
mentation is the one argued for by Yang (2004) and Lignos (2o012). There,



166 EXPLORING THE ROLE OF STRESS IN BAYESIAN WORD SEGMENTATION

Word — {SSyll | USyll }{14 (5.21)
55yll — ( Onset ) RhymeS (5-22)
USyll — (Onset ) RhymeU (5-23)
RhymeS — Vowel » ( Coda) (5-24)
RhymeU — Vowel ( Coda ) (5-25)
Onset —+ Consonant * (5.26)
Coda — Consonant * (5-27)

Figure 5.2: Description of the collocg-nophon-stress model T use X 1™} for
“at least m and at most n repetitions of X" and { X | Y } for “either
X or Y" Stress is associated with a vowel by suffixing it with
the special terminal symbol #, leading to a distinetion between
stressed ( SSyll) and unstressed { USyll) syllables. A word can
consist of any possible sequence of up to four syllables, as indicated
by the regular-expression notation. By additionally adding initial
and final variants of 5Syll and USyll as in figure 5 1, phonotactics
can be combined with stress cues.

the USC provides a hard constraint that ezcludes possible segmentations
that violate the USC and, thus, cuts down the space that needs to be
considered by a learner, arguably facilitating the segmentation problem.

In the Bayesian framework used here, both ideas can be captured
directly (and independently) by modifying the base distribution or lexical
generator that is responsible for generating Word s. 1 first describe how
stress-preferences can be incorporated before I show how the USC can,
optionally, also be added to the models.

Here, changing the lexical generator corresponds to modifying the
rules expanding Word . A straightforward way to modify it accordingly is
to enumerate all possible sequences of stressed and unstressed syllables.*
While there is a huge number of alternative rules that could be used
and that encode subtly different biases, I found this approach to work
well already.

In the data, stress cues are represented using a special terminal “#"
that follows a stressed vowel, as illustrated in figure 5.2. In the grammar,
“%" is constrained to only surface following a Vowel , rendering a syllable
in which it occurs stressed ( SSyll ). Syllables that do not contain a “*"
are considered unstressed ( USyll).

By performing inference for the probabilities with which Word ex-
pands into any of the possibly sequences of stressed and unstressed
syllables, i.e. the rules abbreviated by schema (5.21) in figure 5.2,
the models can, for example, learn that a bi-syllabic word that is
stress-initial (a trochee) is more probable than one that puts stress
on the second syllable (an iamb). This would be represented by having
P{Word — S5yll USyll) > P(Word — USyll S5y11).

4 This is, in essence, also the strategy chosen by Doyle and Levy (zo013).
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ETammar ” phon | stress | USC
collocg-nophon
collocz-phon .
collocg-nophon-stress .
collocg-phon-stress . .
collocg-nophon-stress-usc . .
collocg-phon-stress-usc . . .

Table 5.1: The different models used in the experiments. “phon™ indicates
whether phonotactics are used, “stress” whether stress cues are used
and “usc” whether the Unique Stress Constraint is assumed.

orthographic | the do-gie
no-stress | dh ah d ao g iy
stress | dhah dao * giy

Table 5.2: Nustration of the input-representation I choose. 1 indicate primary
stress according to the dictionary with bold-face in the orthography.
The phonemic transeription uses ARPABET and is produced using
an extended version of CMUDict. Primary stress is indicated by
inserting the special symbol “*” after the vowel of a stressed syllable.

Thus, by assigning probabilities to not only words but also to stress-
patterns, our model can (partly) capture the regularities observed in its
input and, crucially, use these preferences to identify words.

One can combine this lexical generator with the collocg-nophon base-
line, resulting in the collocg-nophon-stress model. One can also add
phonotactics to the lexical generator in figure 5.2 by adding initial and
final variants of SSyll and USyll, analogous to rules (5.8) to (5.15) in
figure 5.1. This yields the colloc3-phon-stress model.

Finally, one can add the Unique Stress Constraint (USC) (Yang, zoo4)
by excluding all variants of rule (5.21) that generate two or more stressed
syllables. For example, the lexical generator for the collocg-nophon-stress
model will include the rule Word — SSvll SSy1l; this pattern violates
the USC as it generates a word with two stressed syllables, and thus
this rule will be missing from a lexical generator that embodies the USC.
I refer to the models that include the USC as collocg-nophon-stress-
usc and collocgphon-stress-usc models. A compact overview of the six
different models is given in table 5. 1.

5-4 EXFERIMENTS

I evaluate the models on several corpora of child directed speech. I first
describe the corpora used, then the experimental methodology employed
and finally the experimental results. As the trend is comparable across
all corpora, I only discuss in detail results obtained on the Alex corpus.
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For completeness, however, table 5.4 reports the “standard” evaluation
of performing inference over all of the three corpora.

5.4.1 Corpora and corpus creation

Following Christiansen et al. (1g9g8) and Doyle and Levy (zo13), I use
the Korman corpus (Korman, 1984) as one of the corpora. It comprises
child-directed speech for very yvoung infants, aged between 6 and 16
weeks and, like all other corpora used in this chapter, is available through
the CHILDES database (MacWhinney, zooo0). I derive a phonemicized
version of the corpus using an extended version of CMUDict (Carnegie
Mellon University, 2o008)%, as | was unable to obtain the stress-annotated
version of this corpus used in previous experiments. The phonemicized
version is produced by replacing each orthographic word in the transcript
with the first pronunciation given by the dictionary. CMUDict also
annotates lexical stress, and I use this information to add stress cues to
the corpus. I only code primary lexical stresses in the input, ignoring
secondary stresses in line with experimental work that indicates that
human listeners are capable of reliably distinguishing primary and
secondary stress (Mattys, 2oo0). Due to the very low frequency of words
with 3 or more syllables in these corpora, this choice has very little effect
on the number of stress cues available in the input. My version of the
Korman corpus contains, in total, 11,413 utterances. Unlike Christiansen
et al. (1gg8), Yang (zoo4), and Doyle and Levy (zo13), I follow Lignos
and Yang (zo1o) in making the more realistic assumption that the g4
mono-syllabic function words listed by Selkirk (1984) never surface with
lexical stress. As function words account for roughly 50% of the tokens
but only roughly 5% of the types in the corpora, this means that the
type and token distribution of stress patterns differs dramatically in all
the corpora | examine, as can be seen from table 5.4.

I also added stress information to the Brent-Bernstein-Ratner cor-
pus (Bernstein-Ratner, 1987; Brent, 1gg9q), following the procedure just
outlined. This corpus is a de facto standard for evaluating models of
Bayesian word segmentation (Brent, 1g99q; Goldwater, zoo7; Goldwater
et al., 2009; Johnson and Goldwater, 2009), comprising in total 9,790
utterances.

As a third corpus, I use the Alex portion of the Providence corpus (De-
muth et al., 2006; Bérschinger et al., zo12). A major benefit of the Provi-
dence corpus (also see previous chapter) is that the video-recordings from
which the transcripts were produced are available through CHILDES
alongside the transcripts. This will allow future work to rely on even
more realistic stress cues that can be derived directly from the acoustic
signal. 1 believe choosing a corpus that makes richer information avail-
able will be important for future work on stress (and other acoustic)
cues.

Another major benefit of the Alex corpus is that it provides longi-
tudinal data for a single infant, rather than being a concatenation of

5 http://svn. code.sf.net/p/omusphinx/code/trunk/cmudict/cmudict.8.7a
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transcripts collected from multiple children, such as the Korman and
the Brent-Bernstein-Ratner corpus. In total, the Alex corpus comprises
17,048 utterances.

To make the results roughly comparable in terms of overall input
size, | only use the first 10,000 utterances for both the Korman and
the Alex corpus as the Brent-Bernstein-Ratner corpus only comprises
9, 790 utterances. Note that despite the differences in age of the infants
and overall make-up of the corpora, the distribution of stress patterns
across the corpora is roughly the same, as shown by table 5.5 for the
first 10,000 utterances of each of the corpora. This suggests that the
distribution of stress patterns both at a token and type level is a robust
property of English child-directed speech.

5.4.2 Syllabified versus phonemic input

A major point of divergence from previous work such as Yang (zoo4),
Lignos (zo12) and Doyle and Levy (zo13) is my use of phonemic rather
than pre-syllabified input. I already discussed this choice in chapter 4
but briefly repeat what I consider a convincing argument against the
use of pre-syllabified input.

Onset-maximization is an efficient means of syllabifying words but,
as can be seen easily, runs into problems when syllabifying an unseg-
mented corpus into syllables. In particular, a sequence such as /1 v k
2t/ (“lookat”) will, relying simply on onset-maximization, be syllabified
as /1 u - k =t/ because /k/ is a valid onset in English.” While it is true
that, in fluent speech, this kind of re-syllabification where the coda of
one word (here, the /k/ of “look™) may be analyzed as the onset of the
following word, running a segmentation model on input in which this
sequence would be represented by two atomic syllables /lu/ and /k st/
will prevent the model from segmenting this stretch correctly.

Preparing the syllabification of the corpus on the basis of a transcript
that includes the word boundaries, however, corresponds to the dubious
assumption that an infant may, indeed, have applied onset-maximization
as if it knew the words. Consequently, I decide to use phonemic input
but apply a model which can infer a latent syllabification jointly with
syllabifying the corpus.

5.4.3 [Ezperimental questions

The aim of the experiments is to understand the contribution of stress
cues to the Bayesian word segmentation models described in section 5.13.
To get an idea of how input size interacts with this, I look at prefixes of
the corpora with increasing sizes (100, 200, 500, 1,000, 2,000, 5,000, and
10,000 utterances), essentially the methodology I also used in chapter 4.
Yet, the increments used here are much smaller and allow us to get at
possible differences between models that, on corpora of 1, 000 or more
utterances, may perform indistinguishably.

6 The example is Schrimpf and Jarosz (zo14)'s.
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brent korman alex
Pattern
Token | Type || Token | Type || Token | Type
w+ .48 .07 47 .08 .44 .05
SW* .49 .86 .40 .86 .52 By
WaEW= .03 .07 .03 .of .04 .07
Other .00 .00 .00 .00 .00 .00

Table 5.4: Relative frequencies for stress patterns for the corpora used in the
experiments. X* stands for 0 or more, X+ for one or more repetitions
of X, and S for a stressed and W for an unstressed syllable. Note the
stark asymmetry between type and token frequencies for unstressed
words. Up to two-decimal places, patterns other than the ones given
have relative frequency o.0o (frequencies might not sum to 1 as an
artifact of rounding to 2 decimal places). Note that these relative
frequencies are caleulated from the gold standard.

The standard evaluation of segmentation models, going back to Brent
(1999), involves having them segment their input in an unsupervised
manner and evaluating performance on how well they segmented that
input. I measure segmentation performance using the standard metric
of token fscore (Brent, 1g9gg) which is the harmonic mean of token
precision and recall. Token f-score provides an overall impression of how
accurate individual word tokens were identified. To illustrate, if the
gold segmentation is “the dog”, the segmentation “th e dog” has a token
precision of % (one out of three predicted words is correct); a token
recall of % (one of the two gold words was correctly identified); and a
token fscore of o.4.

Following the idea of chapter 4, to make segmentation scores of models
which processed different amounts of inputs comparable, 1 additionally
evaluate the models on a test set for each corpus. In addition, use
of a separate test set has previously been suggested as a means of
testing how well the knowledge a learner acquired generalizes to novel
utterances (Pearl et al, zo1o), allowing us to more directly ask in what
sense learning about stress helps segmentation of novel utterances.

I create the test sets by taking the final 1000 utterances for each
corpus. These 1000 utterances will be segmented by the model after it
has performed inference on its input, without making any further changes
to the lexicon that the model has induced. In other words, the model
will have to segment each of the test utterances using only the lexicon
(and any additional knowledge about co-occurrences, phonotactics, and
stress) it has acquired from the training portion of the corpus during
inference.

Finally, | want to understand what kind of stress pattern preferences
the models acquire. Recall that these models explicitly represent their
knowledge about stress in the form of the probabilities it assigns to
the different expansions of the adapted non-terminal Word in (5.21). 1
modified the adaptor grammar inference software to also produce samples
of the rule probabilities in addition to sample segmentation and, for
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every sample segmentation, collect the associated rule probabilities. In
this way, one can directly examine what preferences the model acquired
and also how they develop as it processes more input.

5.4.4 Inference

For inference, 1 closely follow the methodology used in the previous
chapter and Johnson and Goldwater (zoog). Using my modified version
of the adaptor grammar sampler that produces samples for the rule
probahbilities, I run 4 independent Markov Chains for 1, 000 iterations.
The first 800 iterations are used as burn-in and [ collect 20 samples
with a lag of 10 iterations between each sample from each chain, for a
total of 80 sample segmentation per model for the input and 80 sample
segmentations for the test set.

For evaluation, I determine the maximum marginal a posteriori seg-
mentation — for each individual utterance, I determine the segmentation
which, across all samples, occurred the most frequently. This produces a
single segmented input and test corpus for each model which I evaluate.

Also, rather than manually determining the hyper parameters for
the models | put independent vague Gamma(0.01,0.01) priors on the
concentration parameters for each adapted non-terminal and independent
uniform Beta(l, 1) priors on the discount parameter for each adapted
non-terminal; the adaptor grammar sampler then also performs inference
for the hyper parameters.”

5.4.5 [Ezperimental conditions

Each of the six models is evaluated on inputs of increasing size, starting
at 100 and ending at 10,000 utterances. This allows us to investigate
both how performance and “knowledge” of the learner varies as a function
of input size, similar to my experiments in chapter 4 which showed that
input size can have dramatic effects on model performance.

For completeness and comparison to prior work, however, I also report
the “standard” evaluation, i.e. performance of the models in table 5.4,
i.e. the token fscore attained when inference was performed over the
entire input. This I do for all of the three corpora on which 1 performed
the experiments. As the experimental results are very similar across all
corpora, I will focus the more detailed discussion on the Alex corpus.

For this, figure 5.3 depicts how token f-score on the test set (depicted
on the y-axis) changes as a function of the input size (depicted on the
X-axis).

Note that I am using a different parametrization of the Gamma distribution than
Johnson and Goldwater (zoog), see table 2.1 on page zo. Thus, the Gamma(0.01, 0.01)
prior I use is equivalent to the Gamma(0.01, 100) prior Johnson and Goldwater (zoog)

suggest.
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alex korman brent
P | s | usc . . ;
train | test || tramm | test || tramn | test
B1 | B .85 | .B3 B2 | .B2
. B | B4 B6 | LBy 36 | .86
. B | L8y B | .86 B6 | By
.| . B8 | .B8 B8 | .8y BT | By
.| » By | .BB By | BB 26 By
e s = B8 | .88 B8 | .8y .87 | .88

Table 5.4: Token f-scores on both train and test portions for all three corpora
when inference is performed over the full corpus. Note that the
benefit of stress is clearer when evaluating on the test set, and that
overall, performance of the different models is comparable across all
three corpora. Models are coded according to the key in table 5.1,

5.5 DISCUSSION

We find a clear improvement for the stress-models over both the collocg-
nophon and the collocg-phon models. As can be seen in table 5.4, the
overall trend is the same for all three corpora, both when evaluating on
the input and the separate test set.” Adding both stress or phonotactics
by itself improves over the respective base-lines, although combining the
two when performing inference over the full corpora yields no noticeably
gains. Also note how the relative gain for stress is roughly 1% higher
when evaluating on the test set; this might have to do with Jusczvk
(1097)'s observation that the advantage of stress “might be more evident
for relatively unexpected or unfamiliarized strings”.

Moving beyond evaluating on a single huge test set, however, we see
from figure 5.5 further interesting differences between the collocg-nophon
and the collocg-phon models that only become evident when considering
different input sizes.

5.5.1 Stress cues without phonotactics

For ease of visualization, figure 5.4 plots the same information as fig-
ure 5.3 but uses a separate plot for the models without and with phono-
tactics.

For the collocg-nophon models, we observe a relatively stable im-
provement by adding stress cues of 6-7%, irrespective of input size and
whether or not the Unique Stress Constraint (USC) is assumed. The
sole exception to this occurs when the learner only gets to see 100
utterances: in this case, the colloc-nophon-stress model only shows a 3%

8 1 performed Wilcox rank sum tests on the individual scores of the 4 independent
chains for each model on the full training data sets and found that the stress-models
were always significantly more accurate (p < 0.05) than the baseline models except
when evaluating on the training data for the Korman and Brent corpora.
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Figure 5.3: Segmentation performance of the different models, across different
input sizes and as evaluated on the test set for the Alex corpus. The
no-stress baselines are given in red, the stress models without the
Unique Stress Constraint (USC) in green and the ones including
the USC in black. Solid lines indicate models that use, dashed
lines models that do not use phonotactics. Refor to the text for
discussion.

improvement, whereas the collocg-nophon-stress-usc model obtains a
boost of roughly 8%.

Noticeable consistent differences between the collocg-nophon-stress
and collocg-nophon-stress-usc model, however, all but disappear starting
from around goo utterances. This is somewhat surprising, considering
that it is the USC that was argued by Yang (zo04) to be key for taking
advantage of stress.”

I take this behavior to indicate that even with as little evidence as
200 to 500 utterances, a Bayesian ideal learner can leverage stress cues
in such a way that adding the USC does not add anything. In fact, from
the discussion in section 5.5.3 it will become clear that the model does,
in a sense, infer the USC constraint from the input.

On data in which function words are marked for stress (as in Yang (2004) and Doyle
and Levy (zo13)), the USC yields extremely high scores across all models, simply
because roughly every second word is a function word. Given that this assumption is
extremely unnatural, I do not take this as an argument for the USC.
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Figure 5.4: Token fscore on the test set as a function of the input size, with
models using phonotactics on the right and those without on the
left. This presents the same information as figure 5 3 but makes it
easier to visualize the gain simply due to stress.

5.5.2 Stress cues and phonotactics

Owerall, the models including phonotactic cues perform better than those
that do not rely on phonotactics. However, the overall gain contributed
by stress to the collocg-phon baseline is smaller, although this seems to
also depend on the size of the input.

Thus, while phonotactics by itself appears to be a powerful cue, yield
ing a noticeable 4-5% improvement over the collocg-nophon baseline, the
learner seems to require at least around 500 utterances before the collocg-
phon model becomes clearly more accurate than the collocg-nophon
model. There is virtually no improvement from adding phonotactics for
100 and 200 utterances, suggesting that a certain amount of input is
required for phonotactic cues to become useful.

In contrast, even for only 100 utterances, stress cues by themselves
provide a 3% improvement to the collocg-nophon model, as is very
clear from figure 5.4. This shows that these kinds of cues can be taken
advantage of earlier, at least by a Bayesian ideal learner.

While the number of utterances processed by a Bayesian ideal learner
is not directly related to developmental stages, this observation is con-
sistent with the psycholinguists’ claim that phonotactics are used by
infants for word segmentation after they have begun to use stress for
segmentation (Jusczyk et al., 1ggga).

The 4% difference between the colloc3-phon-stress / collocg-phon-
stress-usc models to the collocg-phon baseline is smaller than the 7%
difference between the collocg-nophon and collocg-nophon-stress models.
This shows that there is a redundancy between phonotactic and stress
cues in large amounts of data, as their joint contribution to the collocg-
nophon baseline of roughly 7% is less than the sum of their individual
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contributions at 10,000 utterances, of 4% (for phonotactics) and 6% (for
stress).

This redundancy does, however, seem to depend to a large extent on
the amount of input. In particular, at 100 utterances the addition of
stress cues leads to an & — 10% improvement, depending on whether
or not the USC is assumed, whereas for the collocg-nophon model we
only observed a 3 — 8% improvement. This is particularly striking when
we consider that by themselves, the phonotactic cues only contribute
a 1% improvement to the collocg-nophon baseline when trained on the
100 utterance corpus, indicating a synergistic interaction (rather than
redundancy) between phonotactics and stress for small inputs.

This effect disappears starting from around 1,000 utterances; for inputs
of size 1,000 and larger, the net-gain of stress drops from roughly 10% to
3-4% improvement over and above what is contributed by phonotactics.
That is, while we did not notice any relationship between input size and
impact of stress cues for the collocg-nophon model, we do see such an
interaction for the combination of phonotactics and stress cues which,
taken together, lead to a larger relative gain in performance on smaller
inputs than on large ones.

5.5.3 Acquisition of stress patterns

In addition to acquiring a lexicon, the Bayesian learner acquires knowl-
edge about the possible stress patterns of English words. The fact that
this knowledge is explicitly represented through the PCFG rules and
their probahilities that define the lexical generator allows us to study the
generalisations about stress the model actually acquires. While Doyle
and Levy (zo13) suggest carrying out such an analysis, they restrict
themselves to estimating the fraction of stress patterns in the segmented
output. As shown in table 5.3, however, the type and token distributions
of stress patterns can differ substantially. 1 therefore investigate the
stress preferences acquired by the learner by examining the probabili-
ties assigned to the different expansions of rule (5.21), aggregating the
probabilities of the individual rules into patterns. For example, the rules
Word — SSyll( USyll }{”13} correspond to the pattern “Stress on the
first syllable”, whereas the rules Word — USyll {!4} correspond to the
pattern “Unstressed word”. By computing the respective probabilities,
one gets the overall probability assigned by a learner to the pattern.

Figure 5.5 provides this information for several different rule patterns.
Additionally, these plots include the empirical type (red dotted) and
token proportions (red double-dashed) for the input corpus. Note how
for the two major patterns, all models successfully track the type, rather
than the token frequency, correctly developing a preference for stress-
initial over unstressed words, despite the comparable token frequency
of these two patterns. This is compatible with a recent proposal by
Thiessen and Saffran (zoo7), who argue that infants infer the stress
pattern over their lexicon.
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Figure 5.5: Evolution of the knowledge the learner acquires on the Alex
corpus. The red dotted line indicates the empirical type distribution
of a specific pattern, and the double-dashed line the empirical
token distribution. Top-Left: Unstressed words, Top-Right: Stress-
initial pattern, Bottom-Left: Stress second pattern, Bottom-Right:
Patterns that violate the USC.

For Bayesian models such as the ones examined in this chapter or
Goldwater et al. (zoog)'s, there is no need to prespecify that the
distribution ought to be learned over types rather than tokens, as the
models automatically interpolate between type and token statistics
according to the properties of their input (Goldwater et al., zoo6). In
the adaptor grammar model, the fact that the left-hand side of the rules
responsible for the stress-pattern (rule 5.21) ensures that the probability
of a stress pattern will be estimated not directly from the number of
tokens with which each pattern occurs. Instead, it will be estimated from
the number of tables with this stress pattern in the Chinese Restaurant
franchise representation where it is common to have very few tables
with identical label. This is discussed in more detail in section =2.5.2.1.

In addition, a Bayesian framework provides a simple answer to the
question of how a learner might identify the role of stress in its language
without already having acquired at least some words. By combining
different kinds of cues, e.g. distributional, phonotactic and prosodic, in
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a principled manner, a Bayesian learner can jointly segment its input
and learn the appropriate role of each cue, without having to pre-specify
specific preferences that might differ across languages.

The iambic rule pattern that puts stress on the second syllable is
much more infrequent on a token level. All models track this low token
frequency, underestimating the type frequency of this pattern by a
fair amount. This suggests that learning this pattern correctly requires
considerably more input than for the other patterns. Indeed, the iambic
pattern is known to pose problems for infants when they start using
stress as an effective cue. It is only from roughly 10 months of age that
infants successfully segment iambic words (Jusczyk et al., 19ggb). Not
surprisingly, the USC doesn’t aid in learning about this pattern because
it is completely silent on where stress might fall (and does not noticeably
improve segmentation performance to begin with).

Finally, one can also investigate whether the models that lack the USC
nevertheless learn that words contain at most one lexically stressed sylla-
ble. The bottom-right graph in figure 5.5 plots the probability assigned
by the models to patterns that violate the USC. This includes, for ex-
ample, the rules Word — Syl1S SyllS and Word — SyllS Sy11U SyllS.
Note how the probabilities assigned to these rules approaches zero, indi-
cating that the learner becomes more certain that there are no words
that contain more than one syllable with lexical stress. As | argued
above, this suggests that a Bayesian learner can acquire the USC from
a modest amount of data — it will properly infer that the unnatural
patterns are simply not supported by the input

To summarize, by examining the internal state of the Bayesian learners
one can characterize how their knowledge about the stress preferences
of their languages develops, rather than merely measuring how well
they perform word segmentation. I find that the iambic pattern that
has been observed to pose problems for infant learners also is harder
for the Bayesian learner to acquire, arguably due to its extremely low
token-frequency.

5.'5 CONCLUSION AND FUTURE WORK

I have presented adaptor grammar models of word segmentation that
are able to take advantage of stress cues and are able to learn from
phonemic input. I find that phonotactics and stress interact in interesting
ways, and that stress cues makes a stable contribution to existing word
segmentation models, improving their performance by 4-6% token f-score.

I also find that the USC introduced by Yang (zoo4) need not be
prebuilt into a model but can be acquired by a Bayesian learner from
the data. Similarly, I directly investigate the stress preferences acquired
by the models and find that for stress-initial and unstressed words, they
track type rather than token frequencies. The rare stress-second pattern
seems to require more input to be properly acquired, which is compatible
with infant development data.
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There are several directions in which future work can extend on my
findings. An important goal to be addressed in the future is to evaluate
segmentation models on typologically different languages and to study
the relative usefulness of different cues cross-lingually. For example,
languages such as French lack lexical stress; it would be interesting
to know whether in such a case, phonotactic (or other) cues are more
Important.

Relatedly, there always is a risk that artificially created data masks
the complexity exhibited by real speech. For example, the pronunciation
variation that words are subject to in real speech is likely to affect how
individual occurrences of a word are stressed as well. An example for
this problem is given in the next chapter, and future work should use
data directly derived from the acoustic signal to account for contextual
effects, rather than using dictionary look-up or other heuristics. In using
the Alex corpus, for which good quality audio is available, 1 have taken
a first step in this direction, and indeed preliminary results building on
this chapter are reported on in Pate and Johnson (zo014).



A JOINT MODEL OF WORD SEGMENTATION
AND PHONOLOGICAL VARIATION

Word-final /t/-deletion refers to a common phenomenon in spoken En-
glish where words such as /west/ “west” are pronounced as [wes| “wes” in
certain contexts. Phonological variation like this is common in naturally
occurring speech. Current computational models of unsupervised word
segmentation usually assume idealized input that is devoid of these
kinds of variation. | extend a non-parametric model of word segmen-
tation by adding phonological rules that map from underlying forms
to surface forms to produce a mathematically well-defined joint model
as a first step towards handling variation and segmentation in a single
model. I analyze how my model handles /t/-deletion on a large corpus
of transcribed speech, and show that the joint model can perform word
segmentation and recover underlying /t/s. I find that Bigram depen-
dencies are important for performing well on real data and for learning
appropriate deletion probabilities for different contexts.

6.1 INTRODUCTION

Computational models of word segmentation try to solve one of the
first problems language learners have to face: breaking an unsegmented
stream of sound segments into individual words. Currently, most such
models assume that the input consists of sequences of phonemes with
no pronunciation variation across different occurrences of the same
word type. In this chapter 1 describe an extension of the Bayesian
models of Goldwater et al. (zoog) that incorporates phonological rules
to “explain away” surface variation. As a concrete example, I focus on
word-final /t/-deletion in English, although our approach is not limited
to this case. I choose /t/-deletion because it is a very common and
well-studied phenomenon (see chapter 5 of Coetzee (2004) for a review)
and segmental deletion is an interesting test-case for our architecture.
Dilley et al. (zo14) found that /t/-deletion (among other things) is
indeed common in child-directed speech (CDS) and, importantly, that
its distribution is similar to that in adult-directed speech (ADS). This
justifies using ADS to evaluate my model, as discussed below.

My experiments are consistent with long-standing and recent findings
in linguistics, in particular that /t/-deletion heavily depends on the
immediate context and that models ignoring context work poorly on
real data. [ also examine how well the models identify the probability
of /t/-deletion in different contexts. I find that models that capture bi-
gram dependencies between underlying forms provide considerably more

accurate estimates of those probabilities than corresponding unigram or
“bag of words" models of underlying forms.
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In section 6.2 I discuss related work on handling variation in compu-
tational models and on /t/-deletion. Section 6.3 describes my compu-
tational model and section 6.4 discusses its performance for recovering
deleted /t/s. I look at both a situation where word boundaries are
pre-specified and only inference for underlying forms has to be per-
formed; and the problem of jointly finding the word boundaries and
recovering deleted underlying /t/s. Section 6.5 discusses my findings,
and section 6.6 concludes with directions for further research.

.z BACKGROUND AND RELATED WORK
6.2.1  /t/-deletion

/t/-deletion has received a lot of attention within linguistics, and I point
the interested reader to Coetzee (2004, chapter 5) for a thorough review.
Briefly, the phenomenon is as follows: word-final instances of /t/ may
undergo deletion in natural speech, such that /west/ “west” is actually
pronounced as [wes| “wes”.” While the frequency of this phenomenon
varies across social and dialectal groups, within groups it has been found
to be robust, and the probability of deletion depends on its phonological
context: a /t/ is more likely to be dropped when followed by a consonant
than a vowel or a pause, and it is more likely to be dropped when
following a consonant than a vowel as well.

6.2.2  Prior work

Dilley et al. (zo14) study word-final variation in stop consonants in
CDS, the kind of input one ideally would like to evaluate the models
on. They find that “infants largely experience statistical distributions of
non-canonical consonantal pronunciation variants [including deletion]
that mirror those experienced by adults.” This both directly establishes
the need for computational models to handle this dimension of variation,
and justifies my choice of using ADS for evaluation, as mentioned above.

The work of Elsner et al. (zo12) is most closely related to my goal
of building a model that handles variation. They propose a pipe-line
architecture involving two separate generative models, one for word-
segmentation and one for phonological variation. They model the map-
ping to surface forms using a probabilistic finite-state transducer which
is able to represent a large class of phonological rules such as context-
dependent deletion or insertion of particular segments.

Their approach first applies the Bigram model of Goldwater et al
(zoog) to a corpus which exhibits pronunciation variation. From this
initial segmentation, the parameters of the transducer and a clustering
of the types in the initial segmentation into clusters of ‘underlying forms'
is determined using Viterbi EM (Spitkovsky et al, zo10). Using this
clustering, a second version of the corpus is generated by replacing every

1 Following the convention in phonology, I give underlying forms within “/. .. /™ and
surface forms within “[. . _]".
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token with the underlying form of its corresponding cluster, reducing
the variation. Then, they apply the word segmentation model again
to the modified corpus. On an artificially created version of the Brent-
Bernstein-Ratner corpus (Brent, 1g9g), they demonstrate that their
pipeline approach leads to more accurate segmentation.

Elsner et al. (zo013) extends this work by performing segmentation
and clustering jointly, using essentially the same architecture. This
results in a segmentation model that can handle virtually arbitrary
pronunciation variation. However, as they point out, joint inference under
this model is infeasible and they resort to several heuristics to perform
approximate inference. In this chapter, I illustrate an alternative research
strategy, starting with a single well-studied example of phonological
variation. This permits me to develop a joint generative model for both
word segmentation and variation which can form the basis for specific
explorations — here, how a deletion phenomenon impacts segmentation.

An earlier approach that is close to the technical idea underlying
my approach is Naradowsky and Goldwater (zoog). Their work was
motivated by the observation that Goldwater (2oo07)'s model for English
stem-suffix morphology cannot correctly analyze forms such as baking
where the stem bake loses its final e. This is because Goldwater's model
can only concatenate stems and suffixes without changing them. Narad-
owsky and Goldwater (zoog)’s model, in contrast, allows the output of
the concatenation to undergo limited amounts of changes at the juncture
by assuming that a spelling rule applies to the concatenation of stem
and suffix. Here, the rule is “delete a stem-final e if the suffix begins
with an i".

This is achieved by adding to the model a huge (but finite) number
of possible rewrite rules. Crucially, each of these rules is ‘reversible’ in
the sense that given an observed unsegmented word such as baking and
an analysis of this into ‘surface’ stem and suffix such as bak-ing, each
possible spelling rule determines exactly one underlying form. Thus,

the spelling rule “delete a stem-final e if the suffix begins with an "

determines as the underlying stem bake whereas the rule “add a k to
the stem if the suffix begins with an i” determines as underlying stem
ba. The probabilities of these rules are learned jointly with the stem-
suffix analyses and, indeed, this model performs better than the original
morphology model as it handles cases such as baking correctly. As will
become clear below, my own model exploits the same idea — adding a rule
that can account for differences between the actual observations and the
posited observation. However, as | consider segmenting entire utterances
into words rather than the considerably simpler task of segmenting
words into exactly one stem and one (possibly empty) suffix, only a
single such rule will be considered in this chapter.

Coetzee and Kawahara (2o013) provide a computational study of
(among other things) /t/-deletion within the framework of Harmonic
Grammar. They do not aim for a joint model that also handles word
segmentation, however, and rather than training their model on an
actual corpus, they evaluate on constructed lists of examples, mimicking
frequencies of real data. Overall, my findings agree with theirs, in partic-
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ular that capturing the probability of deletion in different contexts does
not automatically result in good performance for recovering individual
deleted /t/s. I will come back to this point in the discussion at the end
of the chapter.

ﬁ.3 THE COMPUTATIONAL MODEL

My models build on the Unigram and the Bigram model introduced in
Goldwater et al. (zoog) and reviewed in more detail in chapter = (in
particular figures 2.5 and =.10). Figure 6.1 shows the graphical model
for the joint Bigram model (the Unigram case is trivially recovered by
generating the U ;s directly from G rather than from Hy, ;_, ). Figure 6.2
gives the mathematical description of the graphical model and table 6.1
provides a key to the variables of my model.

The model generates a latent sequence of underlying word-tokens
U7, ...,Un. Each word token is itself a non-empty sequence of segments
or phonemes, and each U; corresponds to an underlying word form, prior
to the application of any phonological rule. This generative process is
repeated for each utterance i, leading to multiple utterances of the form
Uia,...,Usn, where n; is the number of words in the ith utterance, and
U;; is the j** word in the i*® utterance. Each utterance is padded by
an observed utterance boundary symbol § to the left and to the right,
hence Uy g = Uj n,41 = $.” Each U ;41 is generated conditional on its
predecessor U; ; from Hy, ;, as shown in the first row of the lower plate
in figure 6.1. Each H,, is a distribution over the possible words that can
follow a token of w and & is a global distribution over possible words,
used as back-off for all H,,. Just as in Goldwater et al. (zo0g), H is
drawn from a Dirichlet Process (DP) with base distribution Be, and
concentration parameter g, and the word type specific distributions H,,
are drawn from a DP(G, a1), resulting in a hierarchical DP model (Teh
et al., zoo6).

The base distribution Py functions as a lexical generator, defining a
prior distribution over possible words. In principle, Fiy can incorporate
arbitrary prior knowledge about possible words, for example syllable
structure (cf. Johnson (2008b) and chapters 4 and 5). Following the
experimental findings of chapters = and chapter 3, I use a simpler possible
word constraint that only rules out sequences that lack a vowel (see
figure 2.5 for details).

6.3.1 Modeling variation

Instead of generating the observed sequence of segments W directly by
concatenating the underlying forms as in Goldwater et al. (zo0g), | map
each U;; to a corresponding surface-form S;; by a probabilistic rule
component Pg.

2 Each utterance terminates as soon as a § is generated, thus determining the number
of words n; in the i** utterance. See Goldwater et al. (2o00qg) for discussion.
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Variable Explanation

base distribution over possible words

back-off distribution over words

distribution over words following w

underlying form at position j in utterance i, a word
surface realization of U; ;, a word

/t/-deletion probability in context ¢

observed segments for i** utterance

FRLIENP

Table 6.1: Key for the variables in figure 6.1 and figure 6 2.

This rule component is a conditional distribution Pp(S | U) over
surface forms S given a particular underlying form U. The range of S
is determined by the phonological processes that are available to the
model. Here, the phonological phonological processes only include a rule
for deleting word-final /t/s but in principle, P can be used to encode
a wide variety of phonological rules.

Thus, in the /t/-deletion model for a given underlying form u the
possible surface realizations depend on whether or not u ends in a
/t/. If this is the case, S ranges over both u and DELF(u) where
DELF(u) = uy,jyj—1; In other words, DELF(u) is the result of deleting
the final segment of u.

If u does not end in a /t/, S only ranges over u. This reflects that the
model only assumes a single process of variation and that underlying
forms that cannot exhibit this variation are deterministically mapped
to their underlying form.

I consider three kinds of contexts on which a rule’s probability of
applying depends:

1. a uniform context that applies to every word-final position
2. a right context that also considers the following segment

3. a left-right context that additionally takes the preceeding segment
into account

For each possible context ¢ £ % there is a random variable K. which
stands for the probability of the rule applying in this context. I refer to
concrete values of this probability with g..

Writing contexts in the notation familiar from generative phonol-
ogy (Chomsky and Halle, 1968), the model can be seen as implementing
the following probabilistic rules under the different assumptions:?

uniform  /t/ —= 0 /| _—Jeom
right b = 0 ) e B
left-right /t/ — 0 |/ a_ e B

For right there are three and for left-right six different rules, one for every instantiation
of the context-template.
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?_...

Figure fi.1: Graphical model for the joint model of word segmentation and phonological
variation. The generative process mimics the intuitively plausible idea of gen-
erating underlying forms from some kind of syntactic model (here, a Bigram
language model) and then mapping the underlying form to an observed surface-
form through the application of a phonological rule component, here represented
by the collection of rule probabilities R,.. Mathematical description in fgure 6.2,

g ~ Gamma(0.001, 0.001)
g ~ Gamma(0.001, 0.001)
G | ap ~ DP(ag, Pey)
Hy |G, a1 ~ DP(a;,G)
R. ~ Beta(l1,1)
Up=%
Sip=4%
Uij+1 | Ui, Hu, ; ~ Hu,

LX)

Sii | UigsUsjyr, B~ Pr(- | Uy, Uy j41)

ﬁ_.__._ﬁ., _ ..n.u.___.m.,_Hu P ,m_..m.,_._.: = QDZQP.H._HM_..N.,_Q P ,m_..m.,_.:.L

Figure i.2: Definition of Bigram model with phono-
logical variation. The mapping distribu-
tion Pg is explained in the text below.
CoNCAT stands for concatenation with-
out word boundaries and n; refers to the
number of words in utterance i.
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3 ranges over V(owel), C(onsonant) and § (utterance-boundary), and
a over V and C. I define a function CoNT that maps a pair of adjacent
underlying forms U; ;, U; j11 to the context of the final segment of U ;.

For example, ConT(/west/,/ov/) returns “C __]oa V" in the left-
right setting, or simply “___|___," in the uniform setting. CONT returns
a special NOT context if U; ; doesn’t end in a /t/. I stipulate that
proT = 0.0. Then one can define Pg as follows:

PR{DELFINALEH} | u, 'il"}} = Pconriu.r) {ﬁ'l]
Pr(u | u,7) =1 — pcoxr(u,r) (6.2)

Depending on the context setting used, the model includes one (uni-
form), three (right) or six (left-right) /t/-deletion probabilities p.. 1
place a uniform Beta(1,1) prior on each of those so as to learn their
values in the LEARN-p experiments below.

Finally, the observed unsegmented utterances W; are generated by
concatenating all 5; ; using the function CoNcAT which simply concate-
nates all surface forms without boundaries. The entire input is made up
of several unsegmented utterances — as usual, [ assume that utterance
boundaries are observed and need not be inferred.

6.3.2 Modeling intuition

I briefly comment on the central intuition of this model, i.e. why it can
infer underlying from surface forms. Bayesian word segmentation models
try to compactly represent the observed data in terms of a small set of
units (word types) and a short analysis (a small number of word tokens).
Phonological rules such as /t/-deletion can potentially “explain away”
an observed surface type such as [wes| in terms of the underlying type
/west/ which is independently needed for surface tokens of [west]. Thus,
the /t/— @ rule makes possible a smaller lexicon for a given number of
surface tokens.

For this to work, of course, there needs to be sufficient evidence for
the underlying type in the observed data, and the “probability cost”
incurred by each application of a phonological rule must not outweight
the savings made through the smaller lexicon.

Obviously, human learners have access to additional cues, such as
the meaning of words, knowledge of phonological similarity between
segments and so forth. One of the advantages of an explicitly defined
generative model such as ours is that it is straightforward to gradually
extend it by adding more cues, as | point out in the discussion.

6.3.3 Inference

Just as for the Goldwater et al. (zoog) segmentation models, exact
inference is infeasible for the joint model. 1 extend the collapsed Gibbs
breakpoint-sampler of Goldwater et al. (zoog), reviewed in detail in
chapter 2, to perform inference for the extended models. For details
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P(by =0 h™7) o Plugy | wy g, h™) % Prlwya g | wyg g, wyy)
X P(wry | wiau, A7) U (wyu, wiau))

Plby =t | h™7) oc Plwye | wiw, h ™) % Pr(wy s | wig,way)
% Plway | wie, A7) U (wpu, wie)) x Pr(was | wau, weu)
X Plwry | wau, A7) U (wru, wy o) U {wy e, wau))

P(b; =1 h™7) ox P(wye | wiu,h™) x Prlwy s | wys,wau)
X Plway | wi e, A7) U (wiu, wy5)) X Pr(was | wou,wru)
% Plwry | wau, A7) U (wyu, wy o) U (wy e, way))

Figure 6.4: Sampling equations for the Gibbs sampler, see figure 6 4 for il-
lustration. b; = 0 corresponds to no boundary at this position,
by =t to a boundary with a preceeding underlying /t/ and b; =1
to a boundary with no additional underlying /t/. 1 use h=7 for
the statistics determined by all but the j*® position, including
the specific seating arrangement (see chapter 2 for details). T use
h=Y U {r, 1} for the result of updating the previous statistics with an
additional count of the bigram {r,1). P{w | [, k) refors to the bigram
probability of {I,w) given h. See equations 2 26 and 2 27 for the
details of caleulating these bigram probabilities. For more details
about the sampler, see the discussion in chapter 2. The distribution
that calculates the underlying-to-surface mapping probabilities Pg
is defined in the text.

such as how to calculate the Bigram probabilities in figure 6.4, see either
chapter = or the original paper. Here | focus on the required changes
to the sampler so as to perform inference under the richer model. 1
consider the case of a single surface string W, so I drop the i-index in
the following discussion.

Knowing W, the problem is to recover the underlying forms Uy, .... Uy
and the surface forms Si,..., 5, for unknown n. A major insight in
Goldwater’s work is that rather than sampling over the latent word
variables that define the segmentation directly (the number of which we
don’t even know), one can instead perform Gibbs sampling over a set of
boundary variables By, ..., By that jointly determine the values for
the variables of interest, where |W| is the length of the surface string
W. For the original segmentation model, this is discussed in more detail
in chapter z, see in particular figure =.-.

For the /t/-deletion model, each B; € {0, 1,1}, where B; = 0 indicates
absence of a word boundary, B; = 1 indicates presence of a boundary
and B; = t indicates presence of a boundary with a preceding underlying
/t/. The relation between the B; and the 5y,...,5, and Uy,... U, is
illustrated in figure 6.4. The required sampling equations are given in
figure 6.3.
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underlving [ I | h 1t |1 t[$]
suface | Ll h 1] i t[§
boundaries | 1] ol {1l [ ]

observed | T | h ] 1] 1] t] §]

Figure 6.4: The relation between the observed sequence of segments (bottom),
the boundary variables by, ... by _y the Gibbs sampler operates
over (in squares), the latent sequence of surface forms and the latent
sequence of underlying forms. When sampling a new value for by = ¢,
the different word-variables in figure 6.3 are: wis y—w12 = hiit,
wy =hit and wq y=hi, woy=ws s=it, wyy=1I, wry=4=F Note that
one needs a boundary variable at the end of the utterance as
there might be an underlying /t/ at this position as well. The
final boundary variable is set to 1, not ¢, because the /t/ in if is
observed.

6.4 EXPERIMENTS

6.4.1 The data

I am interested in how well the model handles /t/-deletion in real data.
[deally, we'd evaluate it on CDS but as of now, I know of no available
large enough corpus of accurately hand-transcribed CDS.

Instead, I used the Buckeye Corpus (Pitt et al., zo07) for my experi-
ments, a large ADS corpus of interviews with English speakers that have
been transcribed with relatively fine phonetic detail, with /t/-deletion
among the things manually annotated. Pointing to the recent work by
Dilley et al. (z014), | want to emphasize that the statistical distribution
of /t/-deletion has been found to be similar for ADS and CDS, at least
for read speech.

I automatically derived a corpus of 285,792 word tokens across 48,795
utterances from the Buckeye Corpus by collecting utterances across all
interviews and heuristically splitting utterances at speaker-turn changes
and indicated silences.

The Buckeye corpus lists for each word token a manually transcribed
pronunciation in context as well as its canonical pronunciation as given
in a pronouncing dictionary. As input to my model, I use the canonical
pronunciation unless the pronunciation in context indicates that the
final /t/ has been deleted in which case [ also delete the final /t/ of the
canonical pronunciation. Figure 6.5 shows an example from the Buckeye
Corpus, indicating how the original data, a fully idealized version and
the derived input that takes into account /t/-deletions looks like.

Overall, /t/-deletion is a quite frequent phenomenon with roughly
20% of all underlying /t/s being dropped. The probabilities become
more peaked when looking at finer context; see table 6.3 for the empirical
distribution of /t/-dropping for the six different contexts of the left-right
setting.
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orthographic [ don’t intend to

transcript Jairovnintenda/
idealized Jardosntintendtu/
t-drop Jardosnintendtu/

Figure 6.5: An example fragment from the Buckeye-corpus in orthographic
form, the fine transcript available in the Buckeye corpus, a fully
idealized promunciation with canonical dictionary pronunciations
and the version of the data with dropped /t/s.

6.4.2 Recovering deleted /t/s, given word boundaries

In this set of experiments | am interested in how well the model recovers
/t/s when it is provided with the gold word boundaries. This allows
us to investigate the strength of the statistical signal for the deletion
rule without confounding it with the word segmentation performance,
and to see how the different contextual settings uniform, right and
left-right handle the data. Concretely, for the example in figure 6.5 this
means that one tells the model that there are boundaries between /a1 /,
/doun/, /mtend/ and /tu/ but one does not tell it whether or not these
words end in an underlying /t/. Even in this seemingly trivial example,
there are 5 possible positions for the model to posit an underlying /t/,
that is, 2% = 32 possibilities for the model to consider. I evaluate the
model in terms of fscore, the harmonic mean of recall (the fraction
of underlying /t/s the model correctly recovered) and precision (the
fraction of underlying /t/s the model predicted that were correct).

In these experiments, | ran a total of 2,500 iterations with a burnin of
z,000. | collect samples with a lag of 10 for the last foo iterations and
perform marimum marginal decoding over these samples (Johnson and
Goldwater, zoog), as well as running two chains so as to get an idea of
the variance.

I am also interested in how well the model can infer the rule prob-
abilities from the data, that is, whether it can learn values for the
different p,. parameters. | compare two settings, one where inference for
these parameters is performed assuming a uniform Beta prior on each
pe (LEARN-p) and one where the model is provided with the empirical
probabilities for each p. as estimated off the gold-data (GoLD-p), e.g.,
for the uniform condition o.2g. The results are shown in table 6.2.

Best performance for both the Unigram and the Bigram model in the
GOLD-p condition is achieved under the left-right setting, in line with
the standard analyses of /t/-deletion as primarily being determined by
the preceding and the following context. For the LEARN-p condition,
the Bigram model still performs best in the left-right setting but the

4 As mamally setting the hyper parameters for the DPs in the model proved to be
complicated and may be objected to on principled grounds, I perform inference for
them under a vague Gamma(0.01,0.01) prior, as suggested by Teh et al. (zoof) and
Johnson and Goldwater (zoog), using my own implementation of a slice sampler (Neal,

2003)
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uniform | right | left-right

LEARN-p | 56.52 | 30.28 23.50
GOLD-p G2.08 | Go.80 G6.15

Unigram

LEARN-p | Go.85 f2.98 i}

Bigram

GOLD-p Gg.06 | Gg.g8 7345

Table 6.2: facore of recovered /t/s with known word boundaries on real data
for the three different context settings, averaged over two runs
(all standard errors below 2%). Note how the Unigram model al-
ways suffers in the LEARN-p condition whereas the Bigram model’s
performance is actually best for LEARN-p in the left-right setting.

lcclcov]|cs|ve|vv]|vs

empirical | 0.62 | 0.42 | 0.36 | 0.23 | 0.15 | .07

Unigram | o.41 | 0.33 | 0.17 | 0.07 | 0.05 | 0.00

Bigram | o.70 | 0.58 | 0.43 | 0.17 | 0.13 | 0.06

Table 6.4: Inferred rule-probabilities for different contexts in the left-right
setting from one of the runs. “C_C" stands for the context where the
deleted /t/ is preceded and followed by a consonant, *V_3" stands
for the context where it is preceded by a vowel and followed by
the utterance boundary. Note how the Unigram model severely
under-estimates and the Bigram model slightly over-estimates the
probabilities.

Unigram model’s performance drops in all settings and is now worst in
the left-right and best in the uniform setting,

In fact, comparing the inferred probabilities to the “ground truth”
indicates that the Bigram model estimates the true probabilities more
accurately than the Unigram model, as illustrated in table 6.5 for
the left-right setting. The Bigram model somewhat overestimates the
probability for all post-consonantal contexts but the Unigram model
severely underestimates the probability of /t /~deletion across all contexts.

6.4.3 Artificial data erperiments

To test my Gibbs sampling inference procedure, I ran it on artificial
data generated according to the model itself. If the inference procedure
fails to recover the underlying /t/s accurately in this setting, one should
not expect it to work well on actual data.

To generate the artificial data, I transformed the sequence of canonical
pronunciations in the Buckeye corpus (which I take to be underlying
forms here) by randomly deleting final /t/s using empirical probabilities
as shown in table 6.3 to generate a sequence of artificial surface forms
that serve as input to the models. 1 did this for all three context settings,
always estimating the deletion probability for each context from the
gold-standard. The results of these experiments are given in table 6.4.

18g
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uniform right left-right
Unigram “PARNP | 9435 | 2355 (+) | 63.06
GOLD-p 04.45 04.20 01.83
Bigram LEARN-p | 0272 g1.64 B8.48
GOLD-p g2.88 92.33 8g.32

Table 6.4: £score of /t/-recovery with known word boundaries on artificial data,
cach condition tested on data that corresponds to the assumption,

averaged over two runs (standard errors less than 2% except (+) =
3.68%)).

Unigram | Bigram
LEARN-p 33.58 55.64
GOLD-p 55.02 57.62

Table 6.5: /t/-recovery fscores when performing joint word segmention in the
left-right setting, averaged over two runs (standard errors less than
2%). See table 6.6 for the corresponding segmentation fscores.

Interestingly, performance on these artificial data is considerably better
than on the real data. In particular the Bigram model is able to get
consistently high fscores for both the LEARN-p and the GOLD-p setting.
For the Unigram model, we again observe the severe drop in the LEARN-g
setting for the right and left-right settings although it does remarkably
well in the uniform setting, and performs well across all settings in the
GOLD-p condition. I take this to show that the inference algorithm is in
fact working as expected.

6.4.4 Segmentation erperiments

Finally, I am also interested to learn how well one can do word seg-
mentation and underlying /t/-recovery jointly. Again, I look at both
the LEARN-p and GoLD-p conditions but focus on the left-right setting
as this worked best in the experiments above. For these experiments,
I perform simulated annealing throughout the initial 2,000 iterations,
gradually cooling the temperature from 5 to 1, following the observation
by Goldwater et al. (zoog) that without annealing, the Bigram model
gets stuck in sub-optimal parts of the solution space early on. During
the annealing stage, I prevent the model from performing inference for
underlying /t/s so that the annealing stage can be seen as an elab-
orate initialization scheme, and then have it perform joint inference
for the remaining 5oo iterations, evaluating on the last sample and
averaging over two runs. As neither the Unigram nor the Bigram model
performs “perfect” word segmentation, one expects to see a degrada-
tion in /t/-recovery performance and this is what one finds indeed. To
give an impression of the impact of /t/-deletion, I also report numbers
for running only the segmentation model on the Buckeye data with
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Unigram Bigram
LEARN-p | 54.53 | 72.55 (2.3%)

GOLD-p 54.51 7318
NO-p 54.61 T0.12
NO-VAR 54.12 73.99

Table 6.6: Word segmentation fscores for the /t/-recovery f-scores in table 6 5
averaged over two runs (standard errors less than 2% unless given).
NO-p are scores for running just the word segmentation model with
no /t/-deletion rule on the data that includes /t/-deletion, NO-VAR
for running just the word segmentation model on the data with no
/t/-deletions.

no deleted /t/s and on the data with deleted /t/s. The /t/-recovery
scores are given in table 6.5 and segmentation scores in table 6.6. Again
the Unigram model’s /t/-recovery score degrades dramatically in the
LEARN-p condition. Looking at the segmentation performance this isn't
too surprising: the Unigram model’s poorer token f-score, the standard
measure of segmentation performance on a word token level, suggests
that it misses many more boundaries than the Bigram model to begin
with and, consequently, can’t recover any potential underlying /t/s at
these boundaries. Also note that in the GOLD-p condition, the joint
Bigram model performs almost as well on data with /t/-deletions as the
word segmentation model on data that includes no variation at all.

The generally worse performance of handling variation as measured
by /t/-recovery f-score when performing joint segmentation is consistent
with the finding of Elsner et al. (2o012) who report considerable perfor-
mance drops for their phonological learner when working with induced
boundaries (note, however, that their model does not perform joint
inference, rather the induced boundaries are given to their phonological
learner as ground-truth).

6.5 DISCUSSION

There are two interesting findings from my experiments. First of all,
we find a much larger difference between the Unigram and the Bigram
model in the LEARN-p condition than in the GOLD-p condition. I suggest
that this is due to the Unigram model’s lack of dependencies between
underlying forms, depriving it of an important source of evidence. Bigram
dependencies provide additional evidence for underlying /t/s that are
deleted on the surface, and because the Bigram model identifies these
underlying /t/ more accurately, it can also estimate the /t/-deletion
probability more accurately.

For example, /t/ dropping in “don’t you" yields surface forms “don
you". Because the word bigram probability P(you | don't) is high, the
bigram model prefers to analyse surface “don” as underlying “don’t”. The
Unigram model does not have access to word bigram information so the
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underlying forms it posits are less accurate (see table 6.6), and hence
the estimate of the /t/-deletion probability is also less accurate.

When the probabilities of deletion are pre-specified the Unigram
model performs better but still considerably worse than the Bigram
model when the word boundaries are known, suggesting the importance
of non-phonological contextual effects that the Bigram model but not
the Unigram model can capture. This suggests that for example word
predictability in context might be an important factor contributing to
/t/-deletion.

The other striking finding is the considerable drop in performance be-
tween running on naturalistic and artificially created data. This suggests
that the natural distribution of /t/-deletion is much more complex than
can be captured by statistics over the phonological contexts I exam-
ined. Following Guy (19qg1), a finer-grained distinction for the preceding
segments might address this problem.

Yet another suggestion comes from the recent work in Coetzee and
Kawahara (2013) who claim that “[a] model that accounts perfectly for
the overall rate of application of some variable process therefore does not
necessarily account very well for the actual application of the process
to individual words.” They argue that in particular the extremely high
deletion rates typical of high frequency items aren’t accurately captured
when the deletion probability is estimated across all types. A look at
the error patterns of the model on a sample from the Bigram model in
the LEARN-p setting on the naturalistic data suggests that this is in fact
a problem. For example, the word “just” has an extremely high rate of
deletion with % = 0.71%. While many tokens of “jus” are “explained
away" through predicting underlying /t/s, the (literally) extra-ordinary
frequency of “jus™tokens lets the model still posit it as an underlying
form, although with a much dampened frequency (of the 1746 surface
tokens, 1081 are analyzed as being realizations of an underlying “just”).

That /t/-recovery performance drops when performing joint word
segmentation isn't surprising because even the Bigram model doesn’t
deliver a very high-quality segmentation to begin with, leading to both
sparsity (through missed word-boundaries) and potential noise (through
misplaced word-boundaries). Using a more realistic generative process
for the underlying forms, for example an adaptor grammar (Johnson
et al., zoo7b), could address this shortcoming in future work without
changing the overall architecture of the model although novel inference
algorithms might be required.

6.6 CONCLUSION AND OUTLOOK

I presented a joint model for word segmentation and the learning of
phonological rule probabilities from a corpus of transcribed speech. 1 find
that a Bigram model reaches 77% /t/-recovery f-score when run with
knowledge of true word-boundaries and when it can make use of both
the preceeding and the following phonological context, and that unlike
the Unigram model it is able to learn the probability of /t/-deletion
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in different contexts. When performing joint word segmentation on
the Buckeye corpus, the Bigram model reaches around 55% f-score for
recovering deleted /t/s with a word segmentation f-score of around 72%
which is 2% better than running a Bigram model that does not model
/t/-deletion.®

I also identified additional factors that might help handling /t/-

deletion and similar phenomena, suggesting ways in which future work
can extend the kind of model presented here. In particular, my findings
highlight the importance of phonological contexts, word predictability
and item- and frequency-specific probabilities in handling phonological
variation.

Another obvious extension is towards models that handle more than
just a single phenomenon and, ultimately, to models that also induce
the phonological rules from the input.

Also, the two-level architecture 1 presented is not limited to the
mapping being defined in terms of rules rather than constraints in the
spirit of Optimality Theory (Prince and Smolensky, zoo4); I sketch how
the model can be modified along those lines in the final chapter of the
thesis as a suggestion for future work.

To conclude, 1 presented a model that provides a clean framework
to test the usefulness of different factors for word segmentation and
handling phonological variation in a controlled manner.

5 Due to relatively high sample variance, however, this difference is not statistically
significant, p = 0.3.
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7.1 CONTRIBUTIONS

In this thesis, | have presented several studies on computational models
of word segmentation. Here, I will briefly summarize the findings and
contributions of the individual chapters.

BAYESIAN MODELING FRAMEWORK In chapter 1, I argue for
a particular view of Bayesian modeling that emphasizes the idea of
understanding what can be learned from particular kinds of inputs
making particular assumptions, connecting this to poverty of stimulus
arguments. In chapter =, | introduce the mathematical background for
non-parametric models of word segmentation that forms the basis for
the experiments in the thesis, reviewing in close detail the Unigram and
Bigram model of Goldwater et al (zoog). I also extend these models by
adding hyper parameter inference and a base distribution that embodies
a possible word constraint.

INCREMENTAL INFERENCE In chapter 3, | present a novel incre-
mental particle filter algorithm for Goldwater et al. (zoo0g)’s Unigram and
Bigram model. I compare the algorithm to a batch Markov Chain Monte
Carlo algorithm and identify several interesting differences between
incremental and batch inference. I find that the need for a linguistically
informed base distribution over possible words is much more pronounced
in the incremental than in the batch setting; and that allowing the
particle filter to perform ‘rejuvenation’ considerably improves its per-
formance, allowing it to outperform the batch algorithm in terms of
segmentation performance in particular settings.

I argue that the experimental findings ought to be interpreted not as
providing evidence for particular mechanisms employed by human learn-
ers but as suggesting novel questions to ask about word segmentation
models. In particular, the findings suggest that the kind of segmentations
implied by a model can change as a function of the input size, a topic
investigated in more detail in chapter 4.

SENSITIVITY TO INPUT S1ZE Chapter 4 studies how input size
and different modeling assumptions interact in word segmentation. [
demonstrate that non-parametric word segmentation models exhibit a
counter-intuitive overlearning property in which having access to more
data worsens rather than improves segmentation performance and argue
that this is due to linguistic dependencies that are not properly handled
by the model. This can be partly addressed by modeling additional
aspects of language jointly with word segmentation — in particular, I show
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that using Johnson (zoo8b)’s idea of collocations prevents overlearning
on a large corpus of child-directed speech.

I also find that for a collocation model to perform well, constraints
on possible words are necessary. In particular, a collocation model that
considers words to be arbitrary sequences of phonemes is prone to
oversegment the input; as a result, it only attains 20% token fscore
when performing inference over 1,000 utterances and peaks at 55%
token fscore when performing inference over roughly 25, 000 utterances.
In contrast, if words are required to consist of syllables, the same model
consistently attains more than 80% token f-score, demonstrating both
the effectiveness and necessity of constraining the form of possible words.

STRESS AND PHONOTACTIC CUES IN SEGMENTATION In C]’.'lﬂ.p—
ter 5, | extend a previously proposed model of word segmentation (John-
son and Goldwater, 2o0q) in a way that allows it to take advantage of
stress cues. In line with psycholinguistic evidence, I find that stress cues
improve segmentation. In particular, I demonstrate that a segmenta-
tion model can correctly identify the preference for word-initial stress
exhibited by the English language; and that, contrary to Yang (zoo04),
no substantive constraint such as a Unique Stress Constraint needs to
be built into a segmentation model but can be inferred from the input.
I also find that the ability to observe phonotactic cues to word bound-
aries interacts with the ability to use stress cues. The experimental
results indicate that phonotactic and stress cues are partly redundant
for the segmentation models [ study, highlighting the importance to be
explicit about all assumptions built into a model so as to not under- or
overestimate the relative importance of any individual cue.

MODELING PRONUNCIATION VARIATION Chapterﬁpresentsa
way of adding pronunciation variation to the Unigram and Bigram
model and discusses the specific phenomenon of word-final /t/-deletion.
Experimental evaluation on a large corpus of naturalistic speech shows
that the ability to model phonological context is essential to accurately
model phonological variation; and that the ability to capture word
dependencies is important to infer the rate at which a variable rule such
as /t/-deletion applies.

The second important result is that the actual complexity of a phe-
nomenon such as /t/-deletion can be vastly underestimated when eval-
uating models on ‘artificial’ data. Thus, whereas the model [ present
performs close to perfect on a corpus in which word-final /t/s were
randomly deleted according to probabilities observed in naturalistic
data, its performance drops when applied to a corpus in which the
overall rate of deletions is identical but their occurrence is not ‘random’
but was manually annotated. This highlights the importance of using
naturalistic data in evaluating models.
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The findings of this thesis suggest roughly two related directions for
future work: moving towards more realistic models and moving towards
more realistic and thorough evaluation. I will illustrate some possible
future extensions.

7.2.1  Towards more realistic models

7.2.1.1  Joint modeling

The overlearning effect identified in chapter 4 indicates that even for
a ‘simple’ language acquisition problem such as word segmentation, it
is important to adequately capture the linguistic dependencies that
exist between words. This points towards integrated models of language
acquisition in which, for example, word segmentation is performed jointly
with semantic and syntactic acquisition.

Recent examples of this kind of work by Synnaeve et al. (zo014) and
Johnson et al. (zo14) explore semantic and syntactic extensions to the
segmentation models examined in chapter 4.

ADDING SEMANTICS In Synnaeve et al., we demonstrate that in the
same experimental scenario, a model that associates words with latent
‘activities’ such as eating or playing is less prone to undersegmentation
and can successfully cluster words into semantically coherent groups.
An obvious extension of this work is to incorporate the word-referent
learning of Jones et al. (zo1o) which can be easily expressed as an
adaptor grammar as well (Johnson et al., 2o10). This would require,
however, considerable manual annotation effort as salient objects for
each utterance need to be identified from the video recordings of the
transcripts.

ADDING SYNTAX Johnson et al. (2014) demonstrates how substan-
tive knowledge about the syntactic distinction of function and content
words aids segmentation. In many languages, function words like “the’
and “a” tend to occur at the edges of content words and to be monosyl-
labic. These tendencies can be easily encoded in an adaptor grammar,
and Johnson et al. show that a model that incorporates knowledge of
these tendencies yields 92% token £score on the Brent-Bernstein-Ratner
corpus, outperforming previous state-of-the-art models by 4%.

In addition, their model correctly identifies content words such as
“book”, “want” or “doggy” as different from function words such as “a”,
“to” or “in”. An obvious and, given the findings of chapter 4, promising
extension of their work is to study its sensitivity to input size. This will
help understand whether basic knowledge of syntax can already address
overlearning to some extent.

INTEGRATING SYNTAX AND SEMANTICS In addition to jointly
modeling segmentation and semantics on the one hand and segmentation

1497



158

CONCLUSION

and syntax on the other hand, one can imagine jointly modeling all three.
At the current stage, an integration of the models of Synnaeve et al. and
Johnson et al. seems feasible and worthwhile, in particular with respect
to the question whether modeling both (some aspects of) semantics
and syntax is a more effective means of addressing overlearning than
modeling just one of the two.

Of course, the concrete suggestions discussed here only scratch the
surface of what acquisition of semantics and syntax really amount to.
While I am looking forward to models that not only infer situational
contexts and word referents but the actual meaning conveyed by an
utterance jointly with word learning, I am doubtful that interesting
models of this kind of complexity can be built at the moment. There is
the theoretical problem that we lack detailed theories of how the kinds
of meaning representations used by young infants actually look and, just
as importantly from a modeling point of view, do not know how the
input required to build these kinds of representations could be encoded.
And there is the practical problem that, even if we had such theories,
annotating even small amounts of data in such a fashion seems like a
daunting task.

This is not to say that future work should limit itself to exploring
‘mock’ semantics and syntax; rather, | advocate a stepwise approach
in which one gradually relaxes the simplifying assumptions inherent
in current models in ways that promise to be feasible given current
knowledge and technologies.

7.2.1.2 Beyond exchangeability

Another direction in which models can be made more realistic is by
challenging some of the mathematical assumptions inherent in current
proposals. In particular, recall that exchangeable models are completely
insensitive to the order of observations. This is not true of human
learning (see Langley, 1995, for a review). In addition, this is part of the
reason for ‘overlearning’ because order-insensitivity makes it possible to
notice ‘patterns’ over observations that are arbitrarily far apart in the
input.

The findings of the particle filter experiments show that one can
derive order effects from exchangeable models using ‘broken’ inference.
While this ‘rational process’ (Sanborn et al., 2006) approach to connect
Bayesian models more directly to experimental results on human perfor-
mance is popular, in chapter 5 | argue that we should instead consider
models which do not rely on a psychologically implausible assumption
such as exchangeability.

Indeed, non-exchangeable models are a topic that has gained interest
in statistical modeling. A recent review of a variety of prior distributions
that can be used in the definition of such models is given by Foti
and Williamson (2o12). One particular proposal that lends itself to a
straightforward application to current models is the distance-dependent
Chinese Restaurant Process (ddCRP) of Blei and Frazier (zo11). As a
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concrete suggestion for future work, I sketch how it can be applied to
the Unigram model of word segmentation.

UNIGRAM DDCRP MODEL The ddCRP is a generalization of the
Chinese Restaurant Process which, as discussed in chapter =z, is at the
heart of current models of word segmentation.®

At a high-level, the original Unigram model can be defined by sequen-
tially sampling words using the predictive probability of a CRF (see
equation 2.12)

P(Wi = w | wii1) o« C(w, wi:-1) + aFex(w)

In this model, all previously generated words contribute to the predic-
tive probability of the i** words. In contrast, a ddCRP Unigram model
is defined in terms of the following predictive distribution

PWy=w|wy; 1) o Zwle = w| K(d;, d;) | + P (w)
i=1

Here, d; and d; are timestamps of the respective words — for example,
one can imagine each word to be timestamped with the utterance in
which it occurs, with an actual time or simply with its position in the
overall sequence of words. K (z, y) is a kernel function which controls how
strongly the j'* observation w; influences the predictive probability of Wj.
If K is constant, this just results in the original exchangeable Unigram
model. However, if K is not constant this yields a non-exchangeable
distribution over sequences of words where, for example, words that are

“too far in the past” do not influence current segmentation choices. A

simple choice for a kernel function is a fixed window size kernel of the
form

1 ifti'}di—ﬂ
K (d;, d;) = 7=

0 else

This has the effect that only the most recent n words can directly
influence how an utterance will be segmented. Intuitively, one can think
of such a model as ‘forgetting’ observations that are too far in the
past. Crucially, however, in so far as the segmentation choices for the
utterances with the ‘window’ are affected by observations outside of
the current window, these utterances still have an indirect effect on the
segmentation; in particular, the segmentation choices of a ddCRP model
with window size n on the final utterances in a large corpus do not have
to be identical to those of an exchangeable CRP model which is only
run on the final n utterances.

Strictly speaking, current models are defined in terms of the Dirichlet Process, and
the Chinese Restaurant Process arises during inference — see section =.4.06.1 on page 48
for discussion.
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INFERENCE IN NON-EXCHANGEABLE MODELS A practical prob-
lem raised by non-exchangeable segmentation models is that many
inference algorithms rely on exchangeability for their efficiency. This is
particularly true of Gibbs sampling. For example, consider performing
Gibbs sampling on a large corpus with thousands of utterances. In
order to resample a boundary, the probabilities of making a small ‘local
change’ need to be calculated which, in an exchangeable model, usually
involves only the calculation of a small number of probabilities as one
can think of the change as occurring at the end of the sequence of obser-
vations, leaving the probability of everything ‘before it’ unaffected (see
figure =.8).

In a non-exchangeable, however, the actual order of observations plays
an important role. Therefore, the probabilities of everything following the
boundary that is being resampled need to be recalculated — thus, if the
second utterance in a 20, 000 utterance corpus is resampled, the change
in probability across all of the remaining 19, 998 utterances needs to be
considered. It may still be possible to derive efficient batch algorithms in
this case, but at least obvious ideas such as using a Metropolis-Hastings
sampler do not solve the problem introduced by non-exchangeability as
calculating the acceptance probability raises the exact same problem.

However, an incremental particle filter like the one in chapter 3 does
not rely on exchangeability. Thus, the kind of sequential inference algo-
rithm presented in this thesis is likely to prove useful for the study of
non-exchangeable models for which batch algorithms may be impracti-
cal. It is worth pointing out, however, that in such a case, the use of
rejuvenation also needs to be avoided or carefully restricted in so far as
the correctness of rejuvenation also relies on exchangeability.

7.2.1.3 Handling phonological variation

A third aspect of more realistic modeling assumptions concerns the
handling of variation in the input. I only sketch some concrete proposals
of how the work in chapter 6 may be extended.

LOCALLY NORMALIZED MAXIMUM ENTROPY MODELS One
promising strategy is to use a locally normalized Maximum Entropy
model (Berger et al., 19g6) for the distribution Pg that maps underlying
to surface forms.® From a practical point of view, this will allow for a
less restricted use of contextual features in determining whether or not
a phonological rule applies in any given context.

For example, while conditioning on whether or not the preceding
segment is a consonant is already informative of whether or not /t/-
deletion applied, knowing the place of articulation of that segment is
likely to be even more informative: nasals such as “n” (in “want”) tend to
encourage /t/~deletion more than stops such as “p” (in “wept”). Handling
a large number of possibly interacting features in a generative model like

This idea of using locally normalized discriminative models as parts of larger genera-
tive model was popularzed by Berg-Kirkpatrick et al. (zo1o).
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the one in chapter 6 is, however, impractical. For an excellent discussion
of this point, see (Smith, zo11, p 83ff).

A conditional model, in contrast, makes it possible to use arbitrary
features of the observations, sidestepping the kind of problems that
arise in a generative model completely. Concretely, for /t/-deletion one
can use a logistic regression model (Murphy, zo1z, chapter 8) for the
distribution Pp, yielding a simple form:

exp(f(u, rjw)
1+ exp(f(u,r)w)

F(u, ) is the feature vector which summarizes all relevant information
for /t/-deletion provided by the context which is defined by the underly-
ing form u and the following underlying form ». w is the weight-vector
that indicates, for each feature, whether it makes /t/-deletion more
probable (positive weight) or less probable (negative weight) to apply.
The weight vector has to be modeled as a random variable and takes the
role of the multiple p-probabilities in the original model. A natural prior
distribution on it is a multi-dimensional Gaussian which corresponds to
performing s regularization (Murphy, zo1z, p. 226).

Note that using this alternative distribution allows us to recover the
original model by choosing six indicator features of the form “1 if the
previous segment is a consonant and the following segment is a vowel,
else 0", “1 if the previous segment is a vowel and the following segment
is a vowel, else 07, .. .. More importantly, using this kind of distribution
makes it very easy to incorporate many features that might be useful.
For example, one can include a feature that indicates whether or not
the preceding segment is a nasal, whether it is voiced, or whether the
manner of articulation of the following segment is also a stop. All that
needs to be changed is the function that maps underlying form and
context to the feature vector.

Using such a distribution is also interesting from a theoretical per-
spective: Goldwater and Johnson (zoo3) show that the features in a
Maximum Entropy model can be related rather directly to the kinds
of constraints posited in Optimality Theory (Prince and Smolensky,
2004).% This will make it possible to connect more directly with con-
crete proposals about phonological processes as constraints proposed by
phonologists can be used to design useful features; and modeling results
could be used to test whether or not particular constraints facilitate
acquisition of particular phenomena.

Pg(TDROP |u,1) =

INFERENCE FOR WEIGHTS Modifying the inference to accommo-
date this richer kind of distribution is straightforward. In particular,
conditional on any particular value of w, the /t/-deletion probabilities
for every underlying form are independent and the sampling equations
in figure 6.3 can be used.

Strictly speaking, the connection is to Harmonic Grammar rather than Optimality
Theory. For discussion, see Goldwater and Johnson (zoog) and for a review of both
Optimality Theory and Harmonic Grammar, see Smolensky and Legendre (zoog).
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Similarly, it is straightforward to re-estimate w given a current seg-
mentation with indicated /t/-deletion decisions: note that this defines
a set of labeled examples as every underlying form that ends in a /t/
is a relevant example and the currently inferred positions at which
/t/-deletion occurred provide the labels. There are several possibilities
of performing inference for the posterior distribution of w given a set of
labeled examples (see Murphy, 2012, chapter 8.4). Arguably the easi-
est approach is to use Metropolis-Hastings sampling with a Gaussian
proposal distribution that is centered around the MAP value for w.

This requires identifying the MAP weight vector for a logistic regres-
sion which is, however, a standard problem in machine learning (see
Murphy, zo1z, chapter 8 for extensive review). In addition, I suspect that
directly using the MAP or sampling values using a Metropolis-Hastings
scheme will make little difference, just as sampling or optimizing the
concentration parameters seems to make no difference in practice.

HANDLING MORE PHENOMENA  Another important goal for future
work is to design models that handle more variation phenomena. Here as
well, using a logistic regression for Pr seems like a promising approach
as it is easy to extend to a multi-class logistic regression (also known
simply as a Maximum Entropy classifier). Formally, one adds a random
variable OJ; for every underlying form U; which ranges over all possible
phonological processes that can apply to U;, including a special NoOp
rule which indicates that no rule applied. The corresponding surface
form 5; is then generated by ‘applying’ O; to U;. This mapping needs to
be deterministic but otherwise, can be rather unconstrained. However,
it needs to be kept in mind that during inference, the reverse mapping
of S; to all possible pairs (U;, O;) that yield 5; needs to be considered.

In this case, the sampling algorithm described in chapter 6 needs to
be modified so as to not only make a ternary decision (no boundary,
boundary with /t/-deletion, boundary without /t/-deletion) but to make
a decision over all possible pairs of underlying forms and operations that
are compatible with the observed surface form. For a very specific process
such as /t/-deletion, the underlying form is uniquely determined. For
more general processes such as deletion of any final segment, however,
many possible underlying forms may need to be considered. To illustrate,
a surface form such as [k #| can be the result of applying DELETEFINAL
to any of /k s t/ (“cat”), /k= b/ (“cab”), /k = p/ (“cap”), .... In theory,
this is straightforward but may raise practical problems if the set of
underlying forms becomes very large.

LEARNING PHONOLOGICAL RULES This raises the issue which
rules ought to be considered and, ultimately, whether the rules themselves
could be learned rather than pre-specified.

Here, the alternative finite-state transducer architecture of Elsner
et al. (2o013) looks very attractive as a finite-state transducer can be
viewed as a compact representation of a very large number of different
phonological rules that rewrite underlying segments depending on their
context. As Elsner et al. point out themselves, however, to be tractable
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the structure of their transducer needs to severely constrained. For
example, they report that it is infeasible to condition re-write operations
on the phonological context, allowing essentially only for context-free
rewrite rules of the form /z/ — [y]. In addition, they exclude the ability
to delete underlying segments (rules of the form /x/ — €). The reason
for this latter restriction is that unrestricted deletion yields an infinite
number of possible underlying forms — a single observed segment could
have arisen from an arbitrary number of underlying segments of which
all but one were deleted.® A consequence of this restriction is that their
model currently induces /w an/ (“wan”) as the underlying form for /w
ant/ (“want”) as it can only capture rules that insert segments rather
than delete segments.

Arguably, this is merely a practical problem. A finite-state transducer
architecture can in principle handle both context-sensitive rewriting
and deletion. And there are likely to be ways to make inference in
these models feasible without sacrificing the ability to recover plausible
underlying forms. Yet, | find the practical problems that arise when one
tries to model phonological variation in a highly unrestricted fashion
telling; and I think they suggest that strong constraints are needed for
a feasible treatment of phenomena such as variation.

LEARNING OPTIMALITY THEORETIC CONSTRAINTS Another
interesting recent proposal worth discussing as a possible extension is
Doyle et al. (z014)’'s non-parametric model that can induce Optimality
Theory-like constraints in an unsupervised fashion. This is particularly
interesting because, as mentioned above, the features in a Maximum
Entropy model can be viewed as corresponding to Optimality Theory
constraints. However, in its current form Doyle et al.’s model requires
knowledge of the underlying forms.

Theoretically, it is easy to extend their model to an unsupervised
case by using an iterative strategy such as Expectation Maximization
or Gibbs sampling in which underlying forms are proposed conditioning
on a current set of constraints, and constraints are induced conditioning
on the currently estimated underlying forms.”

In practice, however, this again raises the question how the range of
underlying forms can be suitably constrained — the nature of the induced
constraints depends heavily on the form of the underlying forms, but
what counts as a plausible underlying form depends heavily on what
the possible constraints are. Thus, even if it may be possible to induce
the relevant constraints given knowledge of the underlying forms rather
than assuming knowledge of the relevant constraints to be innate, some
strategy of restricting the underlying forms in a plausible way during

Not all possible underlying forms need to be necessarily enumerated. In fact, even in its
current instantiation the inference algorithm of Elsner et al. uses an asymptotically
correct Metropolis-Hastings scheme in which only a random sample of possible
underlying forms is considered at each step. The practical challenge of designing a
usable proposal distribution from which candidate forms can be sampled in a way
which leads to efficient inference, however, is far from trivial.

This side of the problem — determining underlying forms given constraints — has
been addressed in Eisenstat (zoog).
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learning is required in a language acquisition scenario where only surface
forms are observed.”

—.2.2  More realistic evaluations

7.2.2.1  Cross-linguistic evaluation

An important question is whether model performance on English trans-
lates to other languages. As it is plausible to assume that infants’ ability
to segment their speech stream is universal, failure to generalize to other
languages constitutes a severe shortcoming of any proposed model.

This question has been discussed widely in the literature (Fleck, zoo8;
Fourtassi et al., 2013; Daland and Zuraw, zo13), and the general finding
is that there is a huge gap between performance on English and other
languages. The stress model investigated in this thesis raises two concrete
questions in this respect.

First, does the particular way in which the current model takes
advantage of stress generalize to languages which exhibit more complex
stress-patterns? In particular, English's tendency of short words makes it
unnecessary to consider relative stress-patterns such as ‘ante penultimate’
(stressed on the third syllable counting from the end of the word) on child-
directed speech as this pattern only makes a real difference over ‘stressed
on the first syllable’ for words that are at least 4 syllables long. For
languages with longer words, however, a more complex model of stress
may be required to yield noticeable segmentation gains. Unfortunately,
at the current stage there is lack of experimental evidence with respect
to the role stress plays in infant segmentation across languages with
different stress patterns (Hohle et al., zoog), raising the question of
how results from computational models on other languages ought to be
interpreted.

A second question concerns whether making use of stress cues provides
a way of improving the performance of current models on languages
other than English. For example, in Fourtassi et al. (2013) we argue that
the reason Japanese is hard is its high segmentation ambiguity — there
is an extremely large number of possible segmentations of any given
utterance even if one only considers actual Japanese words. To solve
this problem, a model needs to rely on additional cues which reduce
this ambiguity which is inherent in the data if it is only considered as a
sequence of phonemes. Stress or, in the case of Japanese, pitch accent
seems like a natural candidate for this and it would be interesting to
understand both if and how a segmentation model could use these cues
to aid segmentation.

Of course, any cross-linguistic explorations either presupposes the
existence or needs to involve the creation of a relevant data set. While
CHILDES (MacWhinney, 2o000) makes available transcripts of child-
directed speech across a wide variety of languages, creating data sets

Note that in word segmentation, the problem is even harder in that even the surface
forms — i.e. the actual words — are latent.
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that can be used to evaluate models and the usefulness of cues such as
stress is a challenge in and of itself.

7.2.2.2  More detailed evaluations

Whereas it is generally accepted that there is a need for wider cross-
linguistic evaluation, a topic that has not received a lot (if any) attention
so far is the methodological question how segmentation models ought
to be evaluated. At the moment, models are mainly compared by their
segmentation accuracy which is usually defined as the token fscore.

This raises the question to what gold standard proposed segmentations
of a given corpus should be compared. The orthographic segmentation
is currently considered as the only correct answer. This makes it easy to
evaluate models on large corpora as creating the gold standard is trivial.
It is, however, questionable that the actual segmentations of young
infants coincide perfectly with those prescribed somewhat arbitrarily by
a Writing system.

This may be more obvious for languages which lack a clear notion of
orthographic word. For example, Chew (1964) provides ample evidence
that native speakers of Japanese are often unable to put meaningful
word boundaries in their romanized transcriptions of Japanese sentences.
In addition to indicating that even competent speakers may not have
clear intuitions as to where exactly word boundaries fall in every con-
text, this also suggests a possible explanation for the surprisingly high
segmentation ambiguity Fourtassi et al. (2013) found: the orthographic
segmentation of their corpus may simply not employ a consistent notion
of word versus morpheme, leading to an overestimation of true words
in this corpus because sequences of grammatical morphemes may have
been transcribed as individual words in some contexts and sequences of
multiple ‘words’ in others.

In conclusion, the question into what word-like units humans actually
do segment their input is an empirical one, even for languages such as
English. Thus, consider the question of whether treating the sequence
/Badog/ (“thedog”) as a single word rather than two really ought to be
considered a mistake. On the one hand, we have every reason to believe
that speakers of English know that “the” is a word and that “dog” is
another word. Yet, there is evidence that young infants do treat cases like
this as instances of single words (Brown, 1973), and we are ultimately
not interested in models for the sake of recovering the orthographic
standard but to understand how infants do what they do. In so far
as this might deviate from the orthographic standard, it is not clear
whether a model that attains a higher token f-score with respect to it is
really preferable over a model that attains a lower f-score.

Relatedly, if models posit additional units such as collocations an
important question is whether these units are also posited by human
learners — concretely, are the multi-word sequences posited by a collo-
cation model similar to the kinds of collocations infants are known to
acquire?
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Consequently, we should be thinking about psychologically motivated
evaluations that go beyond looking at a simple summary statistic such
as segmentation accuracy with respect to some gold segmentation. This
is not to say that our current way of evaluating models is completely
meaningless — they are the best objective standard we currently have —
but I think there is a clear need to work more closely with experimental
psycholinguists in evaluating and comparing different models.

To this end, the kind of qualitative analysis where particular patterns
are directly examined illustrated in table 4.7 suggests one way that could
be used to provide more detailed analyses of models in the future. The
findings of such analyses can then be compared to what we know about
human performance on particular patterns.

Similarly, taking a closer look at the performance of particular types of
words as in figure 4.7 or directly evaluating linguistic knowledge inferred
by a model as in the stress pattern evaluation in figure 5.5 are strategies
that should allow for a more direct connection to psycholinguistic findings
than merely comparing segmentation accuracies on large quantities of
data.

7.2.2.3 Posterior analysis

To conclude, I want to illustrate a strength of the Bayesian approach
that has so far not been used to its full extent and, in particular with
respect to detailed evaluations, might prove very fruitful: its ability
to directly quantify uncertainty. Thus, it is common in current work
(including this thesis) to collapse posterior distributions down to a single
number or, in the case of word segmentation, segmentation. At no point,
posterior probabilities of particular choices are considered directly. For
example, even though maximum marginal segmentations take, in a clear
sense, into account the information present in the posterior distribution,
at the end they produce single segmentation for each utterance.

The Bayesian framework allows one to also ask directly how certain
one should be about segmenting an utterance in a particular way. For
example, it may well be the case that given the input the model is next
to 100% certain that one utterance ought to be segmented like this
but, with respect to some other utterance, only 9% certain of the single
most probable segmentation. This is valuable information in that low
certainty can be viewed as the model’s way of explicitly saying that it
does not really know what to do with an observation — there really is
not sufficient information to segment it.

There is evidence that human learners are sensitive to certainty in this
sense as they tend to actively ignore observations which are so complex
that, given their current knowledge, they cannot identify any particular
analysis with reasonable certainty. This “Goldilocks-effect” (Kidd et al.,
2012) can be derived directly from Bayesian models, and I will briefly
sketch two ways in which this can be done in future work in the context
of word segmentation.



7-2 DIRECTIONS FOR FUTURE WORK

POSTERIOR ENTROPY TO SELECT UTTERANCES Table z.3 illus-
trated the idea of enumerating an entire marginal posterior distribution
for a particular segmentation. Manual inspection of these distributions
can prove interesting in and of itself The information conveyed by such
a distribution can, however, also be used to decide whether or not a
segmentation prediction should be made at all. In particular, if the pos-
terior distribution reflects that there are many competing segmentations
of comparable probability it may make sense to abstain from committing
to any individual segmentation.

Marginal posterior entropy is an easy-to-calculate metric that reflects
just this. For an utterance u, one can define its posterior entropy as
Hu)=-3% ﬁ‘{sj log ﬁ‘{s} where the sum is over all sample segmenta-

8

tions for this utterance and ﬁ'[s} is the Monte Carlo approximation to
the posterior probability of this particular segmentation. To illustrate,
the entropy of the posterior in table 2.9 is approximately 1.12. This
can be interpreted as there being two segmentations that account for
most of the probability mass and with respect to which the learner is
somewhat undecided.

To see how this idea can be used in evaluating models, recall the
bad performance of the Bigram model on the Alice corpus when hyper
parameters are inferred (see table 2.5). Table 7.1 shows that if evaluation
is limited to those utterances about which the model is very certain, both
the token fscore (on a smaller sample) and the precision of the inferred
lexicon are considerably higher, suggesting that the bad performance
is due to there being a lot of uncertainty about most of the utterances.
This is, actually, in line with the discussion in chapter 4 — more complex
models, such as the Bigram model, require either strong constraints or
large amounts of data to reliably segment their input.

In addition to offering a finer grained way of evaluating models, this
strategy might also be ultimately incorporated directly into learning
algorithms. For example, one can imagine a learner that processes its
input sequentially in mini batches. After each mini batch, it can use
posterior entropy to determine the utterances which are actually used to
update its beliefs about words; and ignore segmentations about which
it is very uncertain, mimicking to some extent the selective behavior
exhibited by humans (Kidd et al., 2o12). This is reminiscent of the
“starting small” idea of Elman (19g3) although it enables the learner
to select the input it uses and the input it ignores directly rather than
requiring the modeler to determine an ordering of examples that is
beneficial for learning, Of course, this kind of strategy also carries a risk
of ignoring any input that runs counter to the current hypothesis and,
consequently, may vield solutions that differ from those identified by
a learner that considers all observations. On the other hand, it might
be the case that its performance approaches that of an optimal learner
over just the selected (rather than all) utterances.

BAYESIAN WORD SPOTTING The posterior distribution also allows
one to identify parts within individual utterances about which the model
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CONCLUSION
select | # utterances | token fscore | pred. types | % correct
all 1,093 58 420 AT
Hu) <20 818 .65 250 .56
H(u) < 1.0 505 75 155 50
H(u) <0.1 216 84 58 74

Table 7.1: Evaluating the Bigram model with hyper parameter sampling and
with unconstrained base distribution on the Alice corpus, taking into
account posterior entropy. Note how token fscore on the utterances
about which the model is certain is considerably higher than on the

entire corpus.

is certain to different degrees. This makes it possible to perform weord
spotting, i.e. identifying only those parts in an utterance about which
the model is certain.

One can view each sample segmentation as a binary vector that
indicates presence (1) or absence (0) of a word-boundary. By averaging
over all binary vectors derived from our samples, we get a marginal
estimate of how strongly the learner believes there to be a boundary at
any given position. As an example, the average boundary vector for the
posterior in table 2.3 is

v = y(ouo.51Woapnototouo.ousoir.0dp00.13bougy k

with the marginal boundary probabilities written as subscripts in
between adjacent phonemes. While this vector does not define any
particular segmentation, one can use it to identify parts of the utterance
which the model is certain enough to segment and parts which it is not
certain about.”

To this end, one can define the notion of a *~y-certain word’: a ~-certain
word is a word for which the model is certain to degree ~ that it is present
in an utterance. Crucially, all segmentations with non-zero posterior
probability, that is, not only the single most probable segmentation, are
taken into account for this.

Referring to the elements of v using subscripts such that vy = 0 and
vy = 0.51, a «-certain’ word is any sequence of phonemes between two
boundary indices I and r, [ < r, such that v > < and v, > -, and for
aljl<j<r,vy<l—n.

Table 7.z illustrates this idea. For different values of -, it gives the
~~certain words in the example utterance and represents the ignored
parts using xxx. We see that in this case, the learner is really only certain
about the presence of the word /si/ (“see”). In particular, it is rather
uncertain how the initial sequence “you wantto” ought to be segmented,
and only at certainty 0.5 it identifies the two words “you” and “wanttu”.

This technique could be used to see whether, for example, particu-
lar words such as “mammy” or “daddy” are learned with much higher

An alternative strategy (which I suspect to yield very similar results) is to directly
caleulate the probability that any span 4, j forms a word in a segmentation which is
also straightforward to approximate given sample segmentations.
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certainty segmentation
1.0 00
0.9 200 sl oo
0.8 ok sl Babuk
0.5 yu wanttu si dabuk

Table 7.2: Partial segmentations of “youwanttoseethebook™ at different cer-
tainty levels. Note that at certainty (.5, the entire utterance is
always analyzed, but that for higher certainty levels entire parts of
the utterance may remain unanalyzed.

certainty than other words by different models. More generally, the
idea of word spotting might make it possible to connect segmentation
models with experimental results in which infants’ knowledge of words
at different stages is evaluated.

7-3 CONCLUSION

There are many interesting questions that remain to be addressed in
understanding how human infants perform word segmentation and
ultimately acquire language. | hope that this thesis serves its purpose
by providing some answers to certain specific questions, raising novel
questions that ought to be addressed in future work, and, in this final
chapter, providing concrete suggestions as to how one may go about
answering some of these questions.
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