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Zusammenfassung

Die verlässliche statistische Inferenz von epigenetischen regulatorischenNetzwerken,
die das Zellschicksal bei Säugetieren bestimmen, ist eine äußerst anspruchsvolle Auf-
gabe. In dieserArbeit behandelnwir diese Problemstellung imRahmenvonDifferen-
zierungsentscheidungen von T-Helferzellen (Th Zellen), von denen gezeigt werden
konnte, dass sie ein Kontinuum von differenzierten Zuständen in Abhängigkeit ver-
schiedener Zytokinsignale annehmen können. Um die zugrundeliegenden regula-
torischen Netzwerke zu bestimmen, führen wir eine neuartige Methode zur Inferenz
epigenetisch regulatorischer Netzwerktopologien ein, die auf Methoden des statis-
tischen Lernens basiert.

Zunächst bestimmen wir, mithilfe eines Hidden Markov Modells, Chromatin-
zustände die aufHistonmodifikationsmustern in naïven unddifferenzierten Th1, Th2
und gemischten Th1/2 Zuständen basieren. Diese Zustände werden durch externe
Zytokinstimuli und die Gendosis des Master-Transkriptionsfaktors Tbet (Tbx21) be-
stimmt. Danach führen wir ein lineares multivariates Korrelationsmaß ein, welches
der Zuordnung von Enhancern zu ihren Zielgenen dient. Dieses Maß wird anhand
eines Satzes von bekannten Enhancern gelernt. Diese Analyse wird verfeinert durch
die Anwendung partieller Korrelationen, um direkte von indirekten Effekten zu un-
terscheiden. Bei der Anwendung dieser Methode auf unsere Daten bestätigen wir
zum einen bekannte Enhancer und erhalten zum anderen eine genomweite Zuord-
nung zwischen Enhancern undGenen. Dies erweiternwir zudem auf die Korrelation
repressiver regulatorischer Elemente mit Genexpressionen.

Des Weiteren untersuchen wir Enhancer, die differentiell exprimierte Th1 und
Th2 spezifische Transkripte regulieren. Mithilfe von Prädiktoren, die auf Metho-
den des maschinellen Lernens basieren, identifizieren wir Th1 und Th2 spezifische
Enhancer-Klassen und solche repressiver Zustände, die durch ihre Reaktionsmuster
auf Zytokinstimuli und auf die Dosis von Tbet charaktisiert werden. Außerdem ver-
wenden wir Chromatin-Immunpräzipitationsdaten von Transkriptionsfaktoren, um
die transkriptionelle regulatorische Logik, die die Aktivität der Enhancer-Klassen
bestimmt, zu definieren.

Schlussendlich kombinieren wir die Zuordnungen von Enhancern zu ihren Ziel-
genen und sowohl die regulatorische Enhancerlogik als auch die von inhibitorischen
Elementen, um ein bipartites epigenetisches Netzwerk zu erhalten. Die Netzwerk-
architektur basiert dabei sowohl auf Enhancer-Klassen und repressiven
Zustandsklassen als auch auf Genen und Transkriptionsfaktoren, was zu
gewichteten Multi-Digraphen führt. Die Netzwerktopologie offenbart ausgeprägte
unterscheidbare Strukturen, die mit einer Funktionalität für Th1, Th2 und Hybrid-
Zellen identifiziertwerden können. AußerdemanalysierenwirMultiplex-Netzwerke,
was zu zellspezifischen Topologien führt. Aus diesen Analysen erhalten wir charak-
teristische Beiträge von einzelnen Knoten des jeweiligen Netzwerks. Mithilfe von
Random Walks auf Multi-Digraphen gewinnen wir Informationen über metastabile
Prozesse, die den beobachteten Systemen zugrunde liegen.

Zusammenfassendpräsentierenwir eine robuste quantitativeMethode, umChro-
matinzustände und Genaktivität einander zuzuweisen und um epigenetische Netz-
werke durch die Bestimmung von Transkriptionsfaktorregulierung von Enhancern
zu lernen. Diese Vorgehensweise ist auf eine Vielzahl von Systemen anwendbar.



Abstract

The reliable statistical inference of epigenetic regulatory networks that govern mam-
malian cell fates is very challenging. In this thesis we study this question for the
differentiation decisions of T-helper (Th) cells, which have recently been shown to
adopt a continuum of differentiated states in response to cytokine signals. To infer
the underlying regulatory networkswe introduce a novel framework for the inference
of epigenetic regulatory network topologies based on statistical learning.

First, we infer, via a Hidden Markov Model, chromatin states based on histone
modification patterns in naïve Th cells and differentiated Th1, Th2 and mixed Th1/2
states; these states are controlled by external cytokine stimuli and the gene dose of
the Th1 master transcription factor Tbet (Tbx21). We then introduce a linear mul-
tivariate correlation measure for mapping enhancers to their target genes, which is
parametrized on a training set of known enhancers. This analysis is refined further by
the application of partial correlations to distinguish direct from indirect effects. Ap-
plying this approach to our data, we recover known enhancers and obtain a genome-
wide enhancer-gene mapping. We also extend this to the correlation of repressive
regulatory elements with gene expression.

Next, we focus on the enhancers that regulate differentially expressed Th1 and
Th2 specific transcripts. Buildingmachine learning based predictors, we identify Th1
and Th2 specific enhancer and repressive state classes characterized by their response
patterns to cytokine stimuli and Tbet dose. In turn, we use chromatin immunopre-
cipitation data of transcription factors to define the transcriptional regulatory logic
governing the activities of the enhancer classes.

Finally, we combine enhancer-target gene maps and enhancer regulatory logic as
well as inhibitory elements to infer a bipartite epigenetic network. The network ar-
chitecture builds on enhancer and repressive state classes as well as on genes and
transcription factors leading to a weighted multidigraph. The network topology re-
veals distinct community structures related to Th1, Th2 and hybrid functionality. We
furthermore analyse multiplex networks resulting in condition-specific topologies.
From these analyses we obtain unique contributions of distinct network nodes. Uti-
lizing random walks on multidigraphs we extract metastable processes underlying
the observed system.

In conclusionwe present a robust quantitative framework for mapping chromatin
states to gene activity, and, by factoring in transcription factor regulation of enhancers,
inferring epigenetic regulatory networks. This methodology is applicable to a wide
range of systems.
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CHAPTER I

Introduction &Motivation

The rise of analytical and computational methodology provided important insights
into a great variety of complex cell biological processes in the last decades leading
to novel approaches in dealing with experimental biological data. Especially con-
cerning the rise of high throughput sequencing technologies the importance of reli-
able mathematical and computational approaches to deal with highly heterogeneous
data sets on a genome-wide scale cannot be overstated. This leads to the possibility
of globally exploring e.g. gene expression, transcription factor binding or epigenetic
changes to DNA sequences.

Especially in the context of epigenetic regulation of transcription constituting a
highly complex field on its own little is known concerning the respective epigenetic
landscape and the mapping of candidate elements actually regulating the transcrip-
tion of single genes from within this landscape in particular cell types. This is ob-
viously a vital question for the actual determination of cell fate as the genome-wide
epigenetic landscape can change drastically between different cell types and even
under slight perturbations. The knowledge of the underlying regulatory behaviour
hence is necessary for the construction of sufficiently complex regulatory networks
in order to capture the unique underlying topology of a respective cell lineage under
certain environmental conditions and external stimuli. In turn this serves as the ba-
sis of building reliable mathematical models since very reduced models often do not
capture the exact behaviour observed in the underlying experiments. This is not only
important for the prediction of the expression of individual genes but also in terms
of the global stability behaviour of a certain cell type.

An experimental system of particular interest for the investigation of its epigenetic
regulatory network structure is given by T-helper cells of type I or type II (see section
II.1.1), commonly called Th1 or Th2 cells, belonging to the class of main drivers of
the adaptive immune system. In recent years it became an increasingly well estab-
lished viewpoint to extend the classical dichotomy of a binary T-helper cell fate to
a larger variety of distinct lineages, which furthermore exhibit plasticity under cer-
tain environmental conditions. This even led to the discovery of stable long-lived
steady states in between these lineages forming so-called hybrids as in the case of
Th1/2. Furthermore experimental evidence suggests [14, 111, 142, 255, 256] that an
even larger amount of stable steady states might exist in between the binary cell fates
depending on external stimuli and cell culture conditions adding valuable informa-
tion to the plasticity behaviour w.r.t. the classical lineages. It turns out that simple
regulatory motifs, such as toggle switches, are only to a limited extent able to de-

1



CHAPTER I. INTRODUCTION & MOTIVATION

scribe these circumstances appropriately especially w.r.t. a larger number of possible
steady states. A remedy to this issue might lie in the unique topology of the regula-
tory network underlying transcriptional regulation in Th1 and Th2 cells.

It turns out that the reliable quantitative inference of gene regulatory networks
that account for epigenetic processes as well such as enhancer regulation or equiva-
lently inhibitory actions w.r.t. gene expression is a complex problem that also calls
for reliable quantitativemathematical and computational approaches. As wewant to
focus on an unbiased data-driven approach methodology from the field of statistical
learning is an essential element in determining the components of a respective epi-
genetic network. One not only faces the problem of e.g. finding viable candidates for
enhancers or epigenetic regulatory elements in general but also of finding one-to-one
relations between those elements and the genes, which are regulated by them, and
approaching this in a quantitative way. Another important question in this context
actually is if there is a possibility to distinguish these elements w.r.t. their specific
regulatory task, i.e. if a certain element plays an important role in a certain regula-
tory context as for example enhancer activity can be highly cell condition dependent.
Hence the information if certain elements differ in their activity patterns is vital for
a description of the regulatory landscape and can yield important insight on cell-
specificity or lineage determination. Finally the question is to what extent we can
recover Th1 and Th2 lineage-specificity from a resulting network and to what extent
the underlying topology provides information on stable steady states. In addition
to that epigenetic regulation can give insight into new regulatory relations between
genes andmore specifically between transcription factors themselves that are usually
not taken into account by simple regulatorymotifs. Another question is if those inves-
tigations can be extended even further to condition-specific subnetworks that exhibit
themselves unique steady state topologies. In that context the formation of certain
structural entities such as communities of genes or cis-regulatory elements are able to
provide information on lineage specificity as well as on the particular importance of
certain regulatory players that can influence a certain cell-specific process more than
others.

We point out that there are little straightforward or even generally established
approaches to deal with the above stated issues. Although there are methods to e.g.
partition the DNA into so-called chromatin state elements there exist only little data-
based quantitative analysis methods of co-regulation of these elements with gene
expression or more specifically of inferring a one-to-one mapping quantitatively. To
our best knowledge especially a quantitative data-driven measure for regulation via
histonemodification data is still completelymissing. The same holds true for an anal-
ysis of epigenetic regulators in terms of their regulatory logic especially w.r.t. cell-
specificity. Furthermore the analysis of GRNs only rarely includes advanced analy-
sis concepts such as community detection or investigations on metastability, which
are important in discovering topological properties. Especially in the context of Th1
and Th2 there is no actual formulation of an epigenetic enhancer network includ-
ing enhancers as nodes themselves as well as inhibitory elements and hence making
predictions about relevant cis-regulatory entities on a genome-wide scale. All of
these are issues that have to be approached in order to gain a deeper understanding
of unravelling plasticity as well as lineage-specifying properties in the topology of

2



the regulatory structure in Th1 and Th2 cells.

The goal of this work hence shall be to establish a unique and novel computational
and mathematical methodology for inference of epigenetic networks in general and
for Th1 and Th2 cells in particular. Additionally the underlying network topologies in
the model system are investigated leading to valuable implications for stable steady
states of differentiated cells. We also want to follow up on investigations into mul-
tistable steady states of models of enhancer networks in general, which serve as a
starting point for discussion of the breaking of the bistable Th1/Th2 cell dichotomy.
It is important to note that the whole methodology is adaptable to a wide range of
model systems with ease and efficiently gives insight into the architecture of regula-
tory enhancer and repressor control in gene networks.

The following questions will be among those to be adressed in this work:

• How does the epigenetic landscape look like, especially w.r.t to enhancers in
Th1 and Th2 cells as well as in Th1/2 hybrids, on a genome-wide scale?

• Is there a quantitative way to robustly infer a one-to-one mapping between en-
hancers and genes?

• What is the effect of a master transcription factor such as Tbet on the epigenetic
landscape?

• Do enhancers differ in their regulatory logic and what impact does this have?

• What is the structure and the topology of the underlying epigenetic networks?

• Do we find unique topologies that play a major part in terminal cell differenti-
ation including hybrid cells and do we find hints on multistability?

The layout of the thesis will hence be as follows: In chapter II we will introduce fun-
damental concepts and give a literature overview on the current research status in
the fields relevant for this work. Chapter III will introduce the underlying experi-
mental data sets in Th1, Th2 and hybrid Th1/2 cells with additional perturbations
and cover their analysis in some detail as this is a crucial step in explaining how sub-
sequent results are obtained. The following chapter IV focusses on epigenetic pattern
detection in the respective experimental conditions w.r.t. histone modifications. This
will employ the usage of so-called Hidden Markov Models, which results in a candi-
date detection of e.g. enhancer and repressive states. As these results only solve as
a prior we are aiming on a quantitative method in order to refine these predictions
in a sophisticated way. To this end we introduce a multivariate parametrized histone
modification model, which is learned from the underlying data for correlation with
gene expression in chapter V. In addition we also implement a sophisticated correla-
tion algorithm in order to extract unique regulatory segments statistically leading to
graded correlating elements. We test the viability of the method at different genomic
loci and make genome wide predictions for the epigenetic landscape around notable
Th1 and Th2 genes. This includes a discussion on the impact a master transcription
factor like Tbet can have on the epigenetic landscape in Th1 cells. We also discuss the

3



CHAPTER I. INTRODUCTION & MOTIVATION

potential of distinct regulatory entities such as different types of enhancer activation
patterns depending on the cell conditions, which results in uniqueness w.r.t. lineage
specificity in chapter VI. This leads to predictions that can be made on the specificity
of a certain gene transcript based on its respective epigenetic surroundings. To this
end we also introduce a new measure that accounts for cell-specificity of a certain
epigenetic element but is in general applicable to any sort of classification problem.
Finally we give a full account on the inference of actual epigenetic networks in Th1
and Th2 cells and discuss their topological properties in chapter VII. This includes
the determination of resulting regulatory relations between notable transcription fac-
tors revealing new regulatory patterns as well as the inference of epigenetic as well
as genetic clusters within the network. We will extend this even further to condition-
specific multiplex networks and differential networks and finally propose node rel-
evance rankings being unique to the respective topologies. The chapter ends with a
discussion on metastability inference via random walks on directed multi-digraphs
with implications on Th1/Th2 plasticity. Future perspectives will be given in VIII
also discussing the implications on further investigations of multistability.
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CHAPTER II

Fundamentals & Literature Review

II.1 Biological preliminaries
To set up the foundations for the observed experimental system especially focussing
onT-helper cells and their epigenetic landscape, wewill discuss in the following basal
foundations on T-helper cell and enhancer biology as well as the current research
status on gene regulatory and epigenetic networks. For later discussion in the main
part of this thesis we will also introduce additional important concepts, which will
be used throughout the following work.

II.1.1 T-helper cells
In general T-cells, also called T-lymphocytes, are the key players of adaptive cell-media-
ted immunity. The name stems from their maturation origin in the thymus. They
consist of a class of subtypes, which fulfill different immune response functionality.
Among themost notable subtypes are the supersets of effector andmemory T-cellswith
their subsets of cytotoxic (or killer) as well as helper T-cells (see e.g. [5, 229]). Effector
T-cells are responsible for the short-term immune response, while memory T-cells
provide a long-term protection upon subsequent infection. Mature T-helper cells in
particular express the surface glycoprotein CD4 which leads to their denomination
as belonging to the class of CD4+ T-cells. The name “helper” cell stems from the fact
that they assist other lymphocytes such as cytotoxic T cells, B cells or macrophages in
their activation process by secretion of specific cytokines, hence playing an important
role not only in the cellular but indirectly in the humoral immune response as well.
In addition there also exist regulatory T-cells (Treg)1 [173], which suppress effector T-
cells and are part of CD4+ cells as well.

T-helper cells can in turn themselves be divided into functionally different ef-
fector lineages or subtypes, depending on their specific cytokine secretion profiles.
Naïve T-helper cells represent immature undifferentiated basal T-helper cells which
have never seen an antigen from some antigen-presenting cell via their T-cell recep-
tors (TCR) for recognition of a foreign pathogen, according to which they eventu-
ally differentiate to antigen-specific T-helper cells. The classic bistable differentia-
tion paradigm of naïve T-helper cells into those of type 1 and type 2 (Th1 and Th2)

1formerly frequently being termed suppressor cell [181] and often denoted as iTreg for induced.
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[1, 227, 230] has been extended in recent years to even more terminally differentiated
subtypes which are called Th17 [137] or follicular T-helper cells (Tfh)2 [79] and re-
cently introducing Th9 and Th22 cells [262, 284]. These subtypes characterized by
long-lived stable cell populations exhibit distinct phenotypes with characteristic cy-
tokine expression profiles as well as with so-called specific master transcription fac-
tors (TFs) as shown in table II.1 being thought as necessary and sufficient for their
respective cell fate [151, 152, 159, 164, 204, 270, 288, 298, 367].

Th1 Th2 Th17 Treg Tfh
Master TF Tbet Gata3 RORγt Foxp3 Bcl-6
Other TFs STAT4 STAT6 STAT3 STAT5

STAT1
Effector Ifnγ Il4 Il17 Il10 Il21

Cytokines Il5 Il22 TGFβ
Il13 Il21

Il25

Table II.1: Master TFs and signature cytokines for the most notable T-helper and CD4+ subtypes.

It has e.g. been shown in vitro aswell as in vivo that upon Tbet knock-out T-helper
cells show significant defects in Th1 differentiation [300] whereas the same holds true
for Gata3 knock-out concerning Th2 cell differentiation [370]. Extending the classic
Th1/Th2 dichotomy the larger range of phenotypically stable subtypes forms a more
refined picture w.r.t. immune responses and autoimmunity3 [132].

In addition to their central role in cytokine signalling signal transducers and ac-
tivators of transcription (STATs) have been found to play a major part in activation
of TF-coding genes and a large range of lineage-specifying loci [247] especially in the
context of epigenetic regulation [314] extending the exclusive regulatory impact of
master TFs [242].

In general cytokines can be separated into being pro-inflammatory or anti-inflam-
matory. Th1 cells, playing a major part in cellular immune responses, are often asso-
ciated with pro-inflammatory tasks, e.g. in the context of autoimmunity [299], while
Th2 cells being important e.g. in helminth infections are associated with anti-inflam-
matory tasks and are linked to allergic responses [311, 322]. As an optimality princi-
ple a balance between respectively counteracting andmutually exclusive Th1 andTh2
responses is desirable for a functioning immune response. Yet these mutual exclu-
sive viewpoints have been challenged over the years (see e.g. [233, 280, 297]), which
is where for example other T-helper subtypes come into play.

Yet another important aspect in this context is the notion that emerged in recent
years that extends the above concepts even more by additionally showing flexibil-
ity between T-helper subtypes leading to the possibility of reprogramming from one
subtype to another aswell as exhibiting plasticity even resulting inmixed hybrid phe-
notypes [42, 180, 234, 248]. This view departs now from the classic concept mutual

2We note that the categorization of Tfh cells as a distinct subtype is a matter of ongoing debate [68].
3We note for completion that selective cytokine production can be exerted by other cell types as

well such as by innate lymphoid cell lineages [95].
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exclusive terminally differentiated lineages. This is partially due to the fact that al-
though specific signature genes are to a certain extent exclusive to a distinct subtype
there still exists in many cases some residual expression in other subtypes, like e.g.
in the case of Il10 or even STAT4 [66, 349]. This leads e.g. to the possibility of (par-
tial) reprogramming of Tbx21+ and Ifnγ+ Th1 cells toGata3+ cells and vice versa (see
e.g. [39, 142, 255]) maintaining steady states in memory phase. In addition to these
Th1/2 hybrids [160] analogous cell hybrids have also been demonstrated experimen-
tally for Th17/Th1, Th17/Treg as well as Th17/Th2 (see e.g. [131, 260]). Yet arguably
the plasticity w.r.t. the classic antagonistic Th1-Th2 dichotomy is among the most in-
teresting cases when it comes to reprogramming and plasticity phenomena. Recently
also a continuum of hybrid Th1/2 was proposed as well depending on the respective
cytokine environment (see e.g. [14, 111, 255]) leading to important questions of the
underlying regulatory mechanisms in Th1/Th2 systems and leading to the need of
extending ordinary models of bifurcation extensively.

In order to shed more light on these processes a crucial point is to elucidate the
regulatory mechanisms for gene transcription. At this point epigenetic modifications
come into play extending the limited picture of merely investigating protein-coding
genes. Although TF binding in T-helper cells has been investigated in some detail
[334, 369] it has also been shown that not all genes bound by a certain TF are in fact
regulated by it [369] and not all genes that require a certain TF do exhibit binding of
that particular TF [334]. The investigation of epigenetic landscapes of T-helper cells
hence forms an important field of investigation and will be sketched at the end of the
following section.

II.1.2 Enhancers and epigenetic regulation of transcription
In eukaryotes there exists a large number of epigenetic mechanisms which affect
gene regulation without altering the DNA sequence itself [67]. The means to achieve
this is mostly discussed in terms of post-translational modification (PTM) of his-
tone octamers and DNA methylation in combination with transcription factor bind-
ing.While DNAmethylation of CpG is associated with silencing of transcription (see
e.g. [80]) in eukaryotes a key player of gene transcription has been shown to be given
by cis-regulatory elements4 like promoters, enhancers, silencers or insulators, pos-
sessing the ability to e.g. enhance or silence transcription of a certain gene5 [208, 346].
In fact they can be very specific to a certain cell type or environmental condition
[10, 148, 362]. Among themost prominent elements are so-called enhancers, which are
defined as being non-protein coding cis-regulatory DNA sequences that can them-
selves lie upstream, downstream or even in the intronic region of the gene whose
promoter it is supposed to regulate positively [60, 257, 289]. An enhancer element
subsequently facilitates the binding of transcription activating TFs to sequence mo-
tifs located at the enhancer, which in turn influences enhancer activity [333]. In other
words the likelihood for transcription of the respective gene is eventually higher than

4Cis-regulatory elements facilitate intramolecular interactions opposed to intermolecular ones of
trans-regulatory elements such as TFs.

5We note that e.g. transcriptional enhancers and silencers also appear in prokaryotes yet are not
the main drivers of transcription [193].
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without an enhancer regulating the respective gene promoter. Enhancers have been
shown to lie up to 1Mbp away from the gene it eventually regulates [257] and even are
capable of regulating multiple genes at the same time. It is believed that several hun-
dreds of thousands of enhancers (see ENCODE [303] enhancer identification study
in humans (e.g.[144])) might exist in the human genome opposing around 20.000
protein encoding genes [110]. Hence a far larger number of cell-specific transcrip-
tion enhancing regulatory elements regulate a smaller number of genes. Enhancers
exhibit the important feature to bind large varieties of lineage-specifying as well as
general transcription factors, which can bind to enhancer sites via cooperative action
or via so-called pioneering factors that open up the closed heterochromatin of DNA
wrapped tightly around the respective nucleosomes and providing the euchromatin
necessary for cis-regulatory events inducing transcription [60].

Attempts to assign a certain sequence code to enhancers in general have failed,
which calls for other indicative mechanisms of enhancer existence. Since in order
to ensure TF binding one needs nucleosome-depleted chromatin one such marker is
given by so-called DNase hypersensitive sites which are highly sensitive e.g. for the
DNase I enzyme [48, 327]. Yet more importantly modification of histone tails espe-
cially in the case of histone 3 lysine 1 monomethylation (H3K4me1) has been first as-
sociated with cis-regulatory regions on a genome-wide scale [145]. While H3K4me1
is not entirely exclusive to enhancers it is often a prerequisite for later nucleosomal
depletion. In that case the mere appearance of H3K4me1 at an enhancer poising
the element for possible transcriptional activity coins the term of so-called poised en-
hancers6 [43, 78, 144].

The recruited TFs at enhancers yet only are able to influence the transcriptional
process via the help of coactivator proteins. Among the most notable ones are so
called histone acetyltransferases (HATs), which transfer acetyl groups to histone tails
with histone acetylation in general being associated with the formation of euchro-
matin [15] by lowering the overall charge on the respective nucleosome. The most
notable HAT in this regard is p300/CBP [128, 178] which has been used frequently
for enhancer identification7. Among its most important acetylated targets is histone
3 lysine 27 leading to H3K27ac [169][253] being the most notable marker of enhancer
activity. This is especially due to the fact that in certain cases poised enhancers can
bind p300/CBP although not yet actively influencing transcription [267]. This ob-
servation leads to the conclusion that H3K27ac presents a more reliable indicator of
enhancer activity compared to p300. In comparison with H3K4me1 it is acknowl-
edged that the latter is rather supposed to be a prerequisite for enhancer activity by
subsequently acquiring H3K27ac [43], while after potential loss of its activity mark
H3K4me1 frequently pertains at enhancer sites.

Other notable histonemodifications associatedwith important cis-regulatory func-
tionality are e.g. H3K4me3 appearing predominantly at active promoters [72]8,

6Sometimes poised enhancers also comprise H3K27me3 in the literature yet we will rather stick in
these cases to the term bivalent enhancer.

7A notable study in T-helper cells can be found in [314].
8It has been furthermore shown that variation in cell-specific gene expression can be more ade-
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H3K9me3 correlating with gene silencing [29] and H3K27me3 with gene repression
[60]. While histone modifications have been generally shown to form broad peaks on
the DNA [25, 329] especially H3K27me3 stands out in this regard. The reason for this
is thought to be the stabilization of the post-translational modifications during cell
differentiation [32].

Additionally for the case of H3K27me3 simultaneous occurrence in promoter re-
gions with H3K4me3 has been reported frequently resulting in so-called bivalent pro-
moters exhibiting activating as well as repressive potential and has been shown to be
especially important for pluripotency e.g. in embryogenesis [318]. The same has also
been shown for enhancers with the antagonists being H3K4me1 and H3K27me3 (e.g.
[31, 318]).

The actual mechanism of enhancing transcription has been assumed to be per-
formed by the formation of 3D contact DNA loops between the enhancer itself and
the respective promoter facilitated by insulator-associated CTCF and cohesin binding
in combination with a so-called mediator complex [177]. Activator TFs then interact
with this mediator complex leading among other things to RNA polymerase II re-
cruitment and finally to gene transcription. DNA-looping after all has been found to
be even sufficient for the transcription of genes [86].

The realization of such loops can now be achieved via actual protein complex
binding [257] or as well via diffusion of the TF and protein complexes to the pro-
moter. The formation of these chromatin loops has been experimentally shown by
chromatin conformation capture assays (3C) or similar methods (4C, 5C or Hi-C)
(see e.g. [83]). In addition to this conformation capture and especially Hi-C data
has elucidated that enhancer-promoter interactions are mainly restricted to so-called
topologically associating domains (TADs) (see e.g. [89, 174, 240, 263, 275]). TADs, form-
ing larger 3D loops than the above mentioned enhancer-promoter connections and
also often comprising a large number of neighbouring genes, are widely conserved
over different cell types as well as species [175]. Again CTCF and cohesin binding
significantly correlates with TAD formation and it has been shown that the removal
of a TAD boundary enables new enhancer-promoter interactions to form [175, 277].

Also the processing of transcriptional information by enhancers still constitutes a
very debated subject in general considering either so-called enhanceosome or flexible
billboardmodels [17, 293] where in the former case transcription is achieved via coop-
erative TF action at an enhancer site while in the latter case separate functional units
within one enhancer regulate gene expression independently.

Turning to T-helper cells the relevance of H3K4me3 as well as of the repressive
mark H3K27me3 was shown in [334] especially in their bivalent combination in con-
cert with master transcription factor binding of Tbet and Gata3 resulting in a switch
between Th1 and Th2 cell fates respectively depending on the respective cytokine en-
vironment [179]. Among important studies of enhancers in Th1 and Th2 cells is the
Th1-specific Ifnγ locus, being devoid of enhancer looping in naïve T-helper cells, ex-
tensively described in [19, 74]. Another example of enhancer regulation inCD4+ cells,
although not being as well annotated as the Ifnγ case, is the Th2 cytokine locus with
Th2-specific interleukins like Il4, Il5 and Il13 relying mostly on DNase HS I data (see

quately described by enhancer marks than with gene promoters [246].
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[13, 206, 292, 302, 344]). A general account of epigenetic regulation in CD4+ cells can
be found in [237, 344]. In Th1 cells it has been claimed that Tbet only exhibits limited
ability when it comes to shaping the enhancer landscape, which is rather supposed
to be driven by STATs [314]. To what extent this really holds true will be part of our
subsequent investigations. Although given the above evidence a concise mapping of
enhancers in CD4+ cells and especially in Th1 and Th2 cells is still very fragmentary
and necessarily calls for genome-wide accounting.

Anotherwidely discussed concept concerning enhancers and cell-specificity is the
concept of so-called super-enhancers, which have been found to occur around a num-
ber of genes in different cell types (most notably embryonic stem cells) that drive cell
identity [154, 155, 226, 341]. Most commonly super-enhancers are identified via ChIP-
Seq (chromatin immunoprecipitation DNA sequencing) data either for p300/CBP or
H3K27ac requiring them to lie above a certain cutoff elevation in the exponential rise
of the ranked integrated read load (see e.g. [264]). An extensive account of super-
enhancers can be found in databases such as dbSUPER [184] yet algorithmic imple-
mentations for automatic determination in epigenetic omics data are e.g. given in
HOMER9 [147].

Although genome-wide analyses via massive amounts of high-throughput data
became increasingly popular in recent years (e.g. the combination of ChIP- and RNA-
Seq data [12]) and epigenomes have been extensively mapped by the ENCODE and
NIHRoadmaps Epigenomics projects (see e.g. [33, 144]) one still faces the basic prob-
lem in determining epigenetic landscapes specific to certain experimental conditions
and of how exactly to determine unique epigenetic states such as enhancers in gen-
eral and assign them to certain genes. Due to the potential differential regulation of
epigenetic landscapes this is of utmost importance in the elucidation of pluripotency
and reprogramming properties of distinct cell types including specific underlying
regulatory networks (see e.g. [197, 325]). While early approaches included map-
ping of so-called conserved non-coding sequences (CNS) [56] not all CNS sites cor-
respond to enhancers and many enhancers do not exhibit any or only slight conser-
vation across different species [257, 283]. Various approaches have been developed
over the years ranging fromnaïvely facilitating overlaps inDNaseHSI and p300 bind-
ing data in combination with TF and histone modification data [78, 217, 320, 342] to
more ingenuous approaches via statistical assignment of epigenetic states and un-
supervised machine learning state predictions from histone modification peak data
(see e.g. [81, 103, 115, 187, 220, 225, 338]). Although genome-wide epigenetic state
or enhancer predictions are made possible via these methods unique mappings be-
tween these regulators and genes are rarely made in a quantitative way. Most com-
monly only a nearest-neighbour assignment is performed (see e.g. [104, 163, 315])
completely omitting the possibility of an enhancer being located several genes away
from its actual target. While restrictions to TADs and the facilitation of e.g. conforma-
tion capture methods or even concrete experimental validation of a certain enhancer
provides the possibility of either narrowing down the respective mapping possibli-
ties or actually prove them individually a genome-wide quantitative predictive ap-
proach is still a hard task to be solved and is of special interest in constructing reliable

9http://homer.ucsd.edu/homer/
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regulatory networks, which we will discuss in the following.

II.1.3 Gene regulatory networks
As we have indicated gene regulation can take place on a variety of different lev-
els e.g. on the genome, epigenome, transcriptome or proteome level. Depending on
the experimental context and on the questions asked different layers have to be inte-
grated in order to obtain regulatory circuits resulting in a so-called gene regulatory net-
work (GRN) in which genes, among other regulatory players, represent the system’s
nodes, often via gene expression measurements. Especially the rise in importance of
large varieties of omics or high-throughput measurement data over a broad range of
species and cell-types calls for reliable approaches in network inference as well as in
network analysis and modelling (see e.g. [219]).

Although GRN nodes often represent the expression of a certain gene this does
not necessarily have to be the case as nodes are generally rather interpreted as some
arbitrary functional entity and can aswell be represented by different regulatory pro-
cesses other than genes10 whereas network edges represent regulatory interactions.

Obviously the underlying experimental data sets determine a crucial ingredient in
the inference of a GRN of a certain biological system. In general this also determines
if one observes a dynamic (in the case of time-series data) or a static network11. A cru-
cial feature to achieve viableGRN reconstruction is to have perturbation experiments,
e.g. gene knock-out, in order to detect regulatory relations between nodes in a GRN
(see e.g. [98, 141, 219]). Naturally the quality of the data as well as the integration
of different data sets can influence the accuracy of the resulting GRN considerably
(see e.g. [122, 138, 141, 205, 326]). In general the respective system structure with its
regulatory connections as well as the respective parameters or edge weights can be
subsequently learned from the underlying data. The task of proper GRN inference
hence boils down to finding an optimal network topology w.r.t. considered nodes
and edge connectivity, which is able to explain the underlying data best and option-
ally take existing knowledge to some extent into account.

There exists a large range of individually tailored approaches for the inference
of a certain GRN architecture, e.g. correlation networks [295], information theory
or regression-based networks as well as probabilistic models or neural networks (see
e.g. [65, 182, 271, 306, 323, 324, 365]). Furthermoremodels can be either deterministic
or stochastic and lead to directed or un-directed graphs.

Correlation GRNs most frequently depend on coexpression of a set of genes by
determining their respective pairwise correlation coefficients. This naturally can lead
to a large number of false positive relations, which can be remedied to some extent by
approaches such as partial correlation networks [170, 202, 272, 319, 361, 372]. Obvi-
ously another shortcoming of a naïve treatment of correlation networks without fur-
ther data integration only yields undirected graphs. Nevertheless a rather popular
method is presented by the so-called weighted gene co-expression network analysis

10as in general in transcriptional regulation including cis- as well as trans-regulators
11Since wewill be mainly interested in steady-state behaviour within the T-helper cell context in our

subsequent analysis we will disregard dynamic network models.
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(WGCNA) [198] posing an intuitive means to obtain weighted GRNs.
Information theory based networks (see e.g. [55]) utilize measures such as Eu-

clidean distances, mutual information or maximum entropy yet in general also only
providing undirected graphs.

Popular regression-based methods include in their simplest form e.g. Boolean
networks which use the structure of a Boolean gene response12 in a certain exper-
imental condition in order to infer a regulatory logic (see e.g. [46, 176, 195]). The
obvious shortcoming of these approaches is that in general one cannot easily distin-
guish between graded or continuous gene expression responses since the modelling
threshold for a gene to be “on” or “off” depends sensitively on the chosen Boolean
response function. Continuous versions for dependence estimation between nodes
are given by linear as well as by non-linear regression methods (see e.g. [121, 141,
196, 238, 245, 278]).

Considering probabilistic graphical models such as Gaussian (see e.g. [123]) or
Bayesian networks [122, 336]) gene structure and parameter relations are inferred
based on random variable distributions. In the case of Bayesian models problems
can arise with the choice of a proper prior acyclic graph model. Additionally feed-
back loop structures are only allowed in dynamic Bayesian networks in contrast to
static ones [141, 259, 316, 360].

Obviously an important concern in inferring GRNs is which nodes to include for
the system under consideration. To this end important features within a potential
GRN are frequently extracted via co-expression clustering13 [44, 317] or differential
expression analysis methods (see e.g. [326]), which is an essential step in data-based
feature selection. Additional information on GRNs can be gained by selection of pu-
tative or well-known TFs (e.g. via ChIP-Seq data) of the system and include signif-
icantly regulated targets [30] or to alternatively allow for computational TFBS infer-
ence [168, 301]. Additionally frequently GRN properties such as sparseness, requir-
ing that only a small number of genes, i.e. hubs, act as TFs [16, 44, 285] and scale-
freeness [45, 244], increasing the robustness of the underlying topology as is observed
in biological systems [26, 172], are imposed on reverse-engineering networks. Yet al-
though sparseness and evenmore so scale-freeness emerges as a frequent organizing
principle [16, 26, 172, 244, 358] it is not always evident if one can impose these re-
quirements on the system under consideration.

Recurring network motifs are also an integral part of GRNs [224] and often act
as a simplifying assumption to model e.g. stability in binary cell differentiation via
feedback-loop motifs such as bistable toggle switches or even for tristability via the
MISA (mutual-inhibition and self-activation) motif [11, 130]. One of the most promi-
nent examples is given by the Gata1/PU.1 system in erythroid/myeloid differen-
tiation (e.g. [364]) but has been shown for a variety of other systems such as the
Tbet/Gata3 system for Th1/Th2 cell differentiation (see e.g. [160, 221]), which can
be shown to exhibit at least three possible long-lived steady states. It has also been
shown that certain systems are even able to exhibit higher multistability based on
their respective underlying network motif as in the case of multisite phosphorylation

12i.e. a gene is either expressed or not
13For a general account on clustering methods see e.g. [348].
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[307] and microbial signalling systems [192] with additional accounts being given
e.g. in [149, 150, 183]. A general account on important basic motifs in transcriptional
regulation is e.g. given in [6, 112, 119, 291].

Epigenetic regulatory networks also gained more and more attention recently fa-
cilitating the potential to incorporate different levels of regulatory transcriptional
logic leading to unique network topologies and exhibiting a mechanistic way to in-
fer feedback loops in networks. Of special interest in this regard are enhancer based
GRNs (see e.g. [62, 217, 274]), which among other things are facilitated to infer tran-
scription factor networks such as e.g. in CD8+ T cells [357]. Although preliminary
attempts have been made to unravel actual epigenetic histone modification networks
[140, 202, 215, 258, 359], histone modifications and especially epigenetic states are in
general not directly included as regulatory entities within GRNs but rather indirectly
via TF binding, which obviously is a shortcoming when trying to elucidate the role
of distinct binding sites within GRNs.

As indicated above basic GRNs including well-known TFs also have been investi-
gated in the context of T-helper cell networks in order to decipher lineage-specification
(see [261]). Although having been widely acknowledged that master TFs in general
are themain players in T-helper cells such as Tbet andGata3 in the Th1/Th2 system14,
recently this view has been challenged by proposing a major role of STATs within the
respective GRN especially w.r.t. the underlying epigenetic landscape [314]. More-
over epigenetic regulation plays an increasing role of inferring regulatory elements
in T-helper cells in order to obtain topologies enabling a functional explanation of
plasticity properties [288, 309]. Although various efforts have been made in elucidat-
ing epigenetic regulatory elements in T-helper cells (see e.g. [153, 282, 309, 314, 344])
there has actually never been a genome-wide account on regulatory epigenetic or
more specifically enhancer networks in Th1 and Th2 cells let alone an actual inferred
network. Hence in order to unravel the underlying regulatory logic in Th1 and Th2
cells and to shed some light onto the formation of hybrid Th1/2 cell states and po-
tential multistability or even a continuum of hybrid steady states [14, 97, 111] we will
focus especially on inferring and analysing epigenetic regulatory networks in this
particular system.

II.2 Graph and Network Theory

In the following we are going to introduce some basic notions of graph and network
theory in order to set the foundation for chapter VII covering not only semantics but
also advanced concepts such as community detection andmultilayer networks. Gen-
eral introductions to graph theory can be found in [88][41] while for network theory
we refer the reader to [22, 38, 84, 85, 107, 108, 236]. We furthermore note that although
graph and network theory share most of their respective concepts a certain graph can
be realized in a variety of different networks describing a range of distinct systems.

14An account of the MISA motif in Th1/Th2 cells is e.g. given in [221].
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Semantics

A graph is generally defined via a pair of sets G = (V, E) where the set V denotes
the graph vertices, in the network context more frequently called nodes, and E denotes
the edge set, in networks often called links. G′ is called a subgraph of G if G′ ⊆ G .
Graphs can be grouped into different families ranging from complete graphs where
each vertex is connected to every other vertex in a graph via an edge, to cyclic, star
and bipartite graphs15. Bipartite graphs consist of two disjoint and independent ver-
tex sets V and W with an edge only connecting vertices in-between the two sets. An
important property of bipartite graphs is that they cannot exhibit odd-length cycles16.

Another distinction can be drawn between directed (so-called digraphs) and undi-
rected graphs, where in the former case an edge between two vertices has a direction
leading to ordered vertex pairs {vi, vj} 6= {vj, vi}. If one also allows for multiple
edges to exist between a pair of vertices, leading to a so-called multigraph where E
denotes the multiset of edges, the directed version is called a multi-digraph instead
of a simple digraph. A simple graph is furthermore distinguishing itself from other
graphs by not allowing for self-loops to exist17.

In the case where each instance from the set of edges obtains a numerical value
we call the graph a weighted graphwith edge weight wij for a vertex pair {vi, vj}.

Furthermore graphs can be either connected, where there exists a path between
any two vertices in the graph, or disconnected in which case unreachable vertices
exist. In the case of a directed graph further distinctions can be made concerning
weak or strong connectivity, while in the former case one only requires to obtain a
connected graph when replacing all directed edges with undirected ones and in the
latter one requires to find a directed path between every pair of two vertices.

The so-called adjacency matrix presents the most popular way to algebraically rep-
resent the structure of a graph, i.e. denoting if vertices within a graph are adjacent or
not. While for undirected graphs the adjacency matrix is symmetric this is not true
for di-graphs. An adjacency matrix with elements Aij is a square |V| × |V| matrix
where in the case of a weighted graph the adjacency matrix elements read

Aij =

{
wij for i 6= j
0 for i = j

In the case of multigraphs the entries in the adjacency matrix in general denote
the number of multi-edges between any pair of vertices whereas in a weightedmulti-
graph usually the sum over the multiset of each pair is taken (see e.g. [235, 353]).
For completion we note that another concept is given by the so-called Laplacian ma-
trix, which relates the so-called diagonal degree matrix and the adjacency matrix by
L = D−A and is often used in determining the spanning trees and hence the parti-
tioning of a graph.

15An extensive account can be found e.g. in [41]
16Wewill see in section VII.1 that we are indeed dealing with bipartite graphs excluding odd-length

cycles.
17Also bipartite graphs by definition do not exhibit self-loops.
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Topological properties

The topology of a graph is an essential feature in understanding the respective system
described by the graph and exhibits unique characteristics revealing insights about
the underlying graph structure. Of important note in this regard are graph isomor-
phisms, which form edge-preserving bijections between two graphs G and G′, hence
preserving the underlying network structure. This is not only important to keep in
mind when checking if two graphs are structurally equivalent but also when con-
sidering different layout structures such as hierarchical, circular or so-called force-
directed depictions (see e.g. [279]) in order to reveal topological features such as
vertex clusters intuitively.

Among the most important properties of a graph is the degree of each vertex v,
i.e. k(v), which denotes the number of incident edges at a certain vertex. This then
defines a degree distribution over the full set of vertices V. In the case of a directed
graph one further distinguishes between the in-degree k−(v) and the out-degree k+(v)
of a vertex being given by the number of incoming and outgoing edges respectively. If
k+(vi) = 0 then the vertex is said to be a sinkwhile for k−(vi) = 0 the vertex is called a
source. Furthermore the sum of the in-degrees of a directed graph is always equal to
the sum of out-degrees, i.e. ∑i k+(vi) = ∑i k−(vi) . For a weighted graph the degree
of vertex i is generally given by the sum over all incident weights k(vi) = ∑j wij .

For some graphs the underlying degree-distribution P(k) for the number of nodes
belonging to degree k is found to approximately follow a power-law hence obeying

P(k) ∝ k−γ

with γ being the degree exponent. In cases where no such heavy-tail distribution is
applicable a Poissonian distribution is employed.

In the case of power-law distributions the graph contains a low number of nodes
with a degree significantly exceeding that of all other nodes hence exhibiting high
connectivity. These nodes are coined hubs. In random networks hubs do not exist.
They generally serve as a connection for low-degree nodes in the network and ensure
small path lengths, which is why they serve as important features for distributing the
information flow within the network. Hence such networks are equivalently called
small-world or even ultra-small-world networks [22] although they are most com-
monly referred to as scale-free networks. Additionally hubs are crucial for attack ro-
bustness within the network. While elimination of low degree nodes does not have
significant effects on the topology of the network targeted removal of several hubs
leads to the disintegration of the network and its topological features.

Depending on the degree exponent one usually distinguishes between different
network regimes (see [22]):

γ < 2 anomalous regime
2 < γ < 3 scale-free regime

3 < γ random network regime

while in the random network regime, scale-free networks are practically indistin-
guishable from random networks and in the anomalous regime scale-free networks
can only exist when e.g. exhibiting multi-edges.
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Scale-freeness has gained great importance in the context of random networks by
introducing mechanisms of generating the scale-free property. For general random
graphs the most important models for network generation are given by the Erdös-
Rényi (see e.g. [4, 236]) and the Watts-Strogatz model [332] where in the most basic
version a given set of vertices V is iteratively connected by adding more and more
edges between the vertices at random following a certain probability distribution.
Yet these graphs do not exhibit any power laws in their vertex degrees but rather fol-
low Poissonian distributions. In contrast to this the Barabási-Albert model relies on the
concepts of network growth, meaning addition of nodes over time, and preferential
attachment, meaning that highly connected nodes have a higher probability of receiv-
ing new edges, in order to generate power laws (see e.g. [22]). Both of these features
are also frequently observed in real networks [21]. In recent years there emerged
quite some debate on the viability of scale-freeness as a real emergent property in
many real networks stating that not all networks that are claimed to be scale-free
truly are [54, 71, 185].

Nevertheless already weak scale-free graphs exhibit important properties irre-
spective of their denomination since even weak scale-freeness leads to important
characteristics such as the appearance of hubs and a high fault-tolerance w.r.t. node
removal leading to highly resilient networks. Depending on the power-law exponent
hub removal can lead to sets of disconnected graphs. This property is also studied
extensively in the context of so-called percolation. The interesting quantity in this
context is the critical percolation threshold pc being a measure of network failure or
disintegration corresponding to a phase transitionwithin the respective network (see
e.g. [22, 268]). It denotes the occupation probability of network nodes or the fraction
of nodes that have to be kept until the phase transition from functionality to non-
functionality sets in. It has been shown that for a large amount of scale-free networks
the percolation threshold is actually pc = 0 meaning that nearly all nodes would
have to be removed and hence never leading to actual fragmentation into smaller
disjoint sets of nodes [73]. For a detailed account on scale-free networks including
site-percolation see e.g. [22, 210]18.

In order to assess vertex importance in a graph, e.g. in the case of the above men-
tioned hubs, one can consider a range of graph centrality measures. The most widely
known and used are degree centrality19, closeness centrality, betweenness centrality, eigen-
vector centrality and Katz centrality [84, 236].

The degree centrality is just given by the respective degree of a node. The close-
ness centrality assesses the distance of all shortest paths between a specific node and
all other nodes, hence indicating to what extent the node is centrally located. For the
betweenness centrality one observes shortest paths between pairs of nodes in the un-
derlying network and assesses how often a certain nodemediates all of these shortest
paths. The eigenvector centrality is an extension of the degree centrality also taking
the importance of links to high-scoring nodes into account20. The Katz centrality is a

18We note that whereas percolation generally describes cluster growth via adding nodes the robust-
ness of networks is rather described by inverse percolation via node removal where the fraction of
removed nodes is given by f = 1− p leading to the above interpretation of the percolation threshold.

19Again in the case of di-graphs one has to consider in-degree centrality and out-degree centrality sep-
arately.

20In the case of digraphs the eigenvector centrality can be interpreted as an extension to the in-degree
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variation of the eigenvector centrality also giving importance to highly linked nodes,
which might not be linked to high-scoring ones21. As one can see these different cen-
trality measures all have different interpretations and also yield different results for a
respective vertex ranking hence they have to be handelled with care w.r.t. their inter-
pretability. We also note that in large networks especially the leading ranked nodes
w.r.t. a centrality measure exhibit significant relevance while for low ranked nodes
this may not necessarily be the case and theymight in fact be underestimated in some
cases (see e.g. [203, 290]). This emphasizes even more the need for comparative anal-
ysis w.r.t. multiple centrality scores.

While some structural features such as strongly connected components can be
readily highlighted by centralitymeasures one is often interested in unravelling topo-
logical substructures such as relatively higher connected subsets of nodes compared
to their surroundings. This leads to the emergence of subclusters exhibiting strong
regulation between their own respective vertices and weak connections between the
clusters themselves. Several methods have emerged over the years in order to find
clusters within networks (for an extensive account see e.g. [116, 136, 166]) such as hi-
erarchical clustering, spectral clustering22 or even employing dynamic methods such as
random walks in order to assess the information flowwithin parts of the network. Fur-
ther distinctions are usually made in discovering disjoint or overlapping communi-
ties depending on the need for strictness or fuzziness of the respective identification.
Additional complexity emerges in directed compared to undirected networks, which
is due to the asymmetry of the underlying adjacency matrix in the case of digraphs
[116]. In recent years community detection methods also show rising importance in
the context of GRNs (e.g. [61, 343]).

Further insight into real-world networks can be provided by so-calledmultidimen-
sional and more specifically by multilayer networks (see e.g. [37, 82, 186]). The termi-
nology of these networks has been found to be quite ambiguous yet we use the most
widely accepted definitions. In such a case aweighted graph is given by a quadruplet
of sets G = (V, E, D, W)where D indicates the set of network layers and W the set of
weighted edges between the layer dimensions. The corresponding one-dimensional
multilayer adjacency matrices are hence transformed to an adjacency tensor of size
(|V| × |D|)× (|V| × |D|). In general arbitrary edges can exist between the nodes of
differentmultilayers yet a special case is given by so-calledmultiplex networkswhere
nodes from one dimension cannot influence nodes from another dimension. Even
though sometimes multiplex networks are visualized with edges between different
dimensions they are only used to track the existence of each node. This rather leads
to a adjacency tensor of size (|V| × |V|)× D) with matrix elements Ad

ij . A potential
shortcoming of the use of multiplex instead of general weighted multilayer networks
can yet be that differential changes cannot be readily included between different di-
mensions. In order to account for this one can furthermore investigate differential

centrality.
21An extension to this going even further is given by the PageRank centrality, which will be dis-

cussed in detail in section VII.3
22Spectral clustering depends on the eigenvalue spectrum of the underlying network, hence the

name. A popular implementation is e.g. given by the Perron cluster analysis PCCA+ algorithm [87].
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networks between pairwisemultilayer dimensions in order to unravel potential topo-
logical changes [126, 212, 249]. An extensive account of problems and properties of
multilayer networks are given in [37, 186] and in [27, 28, 34, 63, 228] for multiplex
networks.

II.3 Machine Learning

Machine Learning has emerged in the last decades as a set of viable computational
and statistical methods in order to make data-driven predictions from sets of test or
learning samples on sets of test samples. In general one can distinguish between su-
pervised and unsupervised learningmethods depending on if one wants to find already
known or new structures in the underlying data given by so-called instanceswith a set
of feature variables. While the former method needs some sort of annotation, usually
denoted by a quantity called the target or response variable consisting of a set of classes,
the latter rather infers the response variable on its own. While supervised learning
methods infer the relationship between input and output in the case of unsupervised
learning one obtains a concise description of the underlying data, i.e. certain patterns,
with related probability distributions. This is obviously important when no structure
is known a priori. Among themost common problems inmachine learning are classi-
fication, regression, clustering and dimensionality reduction. A general introduction
into a wide variety of machine learning concepts is given in [23, 36, 139, 190, 231].

In the following we are going to elaborate on two of these concepts23 that will be
central to some of the thesis’s methods and results.

II.3.1 Decision Trees and Random Forests
Generally decision trees are still among themost popularmethods in supervised clas-
sification (discrete target variable) and regression (continuous target variable) prob-
lems often being even preferred to comparablemethods like support vectormachines
(SVM), logistic or Lasso regression or neural networks depending on the applica-
tion24 (see e.g. [139]). One of the main advantages of decision trees clearly is their
white-box interpretability when it comes to prediction as well as feature extraction.
Apart from that classification can be established very fast, decision trees are fairly
robust with respect to outliers and the methods are non-parametric, hence minimiz-
ing the a-priori model assumptions, and as well circumventing the extraction of uni-
modal training features (see e.g. [165]).

In general binary rules are applied to obtain a certain target value. This is achieved
via performing binary splits at non-leaf nodes within the tree corresponding to a cer-
tain feature variablewith the resulting branches representing the decision results and
the leaves representing the respective target values. The input data for learning a de-
cision tree is generally of the form of a feature matrix with entriesMij for i instances

23one is supervised the other unsupervised
24According to the no-free-lunch theorem there is no preferred optimization method when averaged

over all class of problems, although there is some debate on that in the machine learning community
[340, 347]. Still this means that certain problems call for specific methods.
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and j features and the dependent target variable vector with entries Yi representing
the associated class or target of each instance i.

A simple decision tree now recursively partitions the full data set into smaller
subsets of instances by a top-down method in order to end up with members of the
same class in the same tree nodes.

The question on which feature variable results in the most informative partition-
ing can be answered via the choice of an appropriate splitting function. From infor-
mation theory there exist several choices the most popular of which are information
gain25, depending on the Shannon entropy26, andGini impurity for classification trees.
The information gain is given by the decrease in entropy after splitting (see e.g. [216])

IG(X|Y) = H(X)− H(X|Y) (II.1)

= −
CX

∑
i=1

p(xi) log p(xi) +
CY

∑
j=1

p(yj)
CY

∑
i=1

p(xi|yi) log pi(xi|yi) (II.2)

where X denotes the parent node (before the split), Y the child nodes (after the split)
and H(X|Y) the conditional entropywith CX being the classes in the parent node and
CY being the classes in the child node.

On the other hand the Gini impurity at a certain node k reads

IGini,k =
Ck

∑
i=1

(p(xi)(1− p(xi)))k (II.3)

and hence tells the mislabelling probability of a randomly chosen and randomly la-
belled instance from the underlying sample.

The splitting functions hence act as an importance measure for all features in dis-
tinguishing best between different classes. A relevant feature in this regard ends up
in the root of the tree. In the case of the Gini impurity a small value is hence associ-
atedwith all instances in the subsets being of the same class after splitting at a certain
node and a large valuewhen all classes occurwith equal probability over all instances
in the subsets. A visualization of this circumstance can be found in Fig.II.1. Splitting
is usually performed until a certain low impurity threshold is met. Otherwise for a
large number of features splitting continues until the impurity is zero.

C1

C2

C3

C4

Figure II.1: Impurity visualization of two possible splittings w.r.t. to different features. Each leaf node consist of a subset of
different class distributions w.r.t. to the underlying classes Ci . The left splitting produces a less mixed leaf with a lower impurity
compared to the right splitting.

25alternatively Kullback-Leibler divergence or mutual information
26For a thermodynamically motivated introduction of entropy see e.g. [191].
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The main competitive computational models in decision tree learning are given
by e.g. CART and C4.5 (see e.g. [139]).

Among the main problems of simple decision trees is their tendency to overfit the
underlying data with over-complex trees, which can be due to a too large set of fea-
tures, i.e. exhibiting small bias but large variance27, which is in many cases solved by
pruning, i.e. removing features with little predictive power. For the above reasons
the obtained classifiers tend to be quite noisy. To this end improvements on ordinary
decision trees have been developed, which aim at reducing this shortcoming exten-
sively, leading to ensemble methods that are realized either via so-called boosting
methods (e.g. gradient or adaptive) [117, 139] or via bagging or bootstrap aggrega-
tion [50].

The most popular example surely is given by Random Forests [7, 51] employing
bagging to generate an ensemble of de-correlated decision trees by randomly select-
ing a subset from the original data with replacement, i.e. bootstrapping the data and
in the end averaging over the ensemble or taking the majority vote as in the case of
classification. For each subset an individual decision tree is learned. The averaging
procedure reduces the noisiness of the individual trees drastically yet at the same
time keeping the small bias of the individual trees [139]. In addition to tree bag-
ging random forests employ the method of feature bagging, i.e. selecting a random
feature subset in each tree, in order to avoid correlation of individual trees. This pre-
vents important features from reoccurring in every single individual tree [156]. By
avoiding overfitting random forest methods are able to deal particularly well with so-
called “small n, large p” problems, i.e. having a small number of samples and a large
number of features (or predictors) without the need for feature pruning. In addition
random forest methods have been shown to outperform not only decision trees but
also methods like SVM or even neural networks in various classification studies (see
e.g. [40, 113, 165]).

Improving even further on the bagging methods applied in random forest one
can additionally randomize the feature split values for each randomly drawn feature
instead of selecting a feature based on an optimal split value. This leads to a further
decrease in variance at the cost of a slight bias increase w.r.t. tree splits themselves.
The result is called Extremely Randomized Trees (ERT) implemented in the ExtraTrees
algorithm [124]. In contrast to other ensemble methods it also makes use of the full
learning sample for tree growth. Especially for noisy data the ERT method has been
shown to be advantageous and outperforms other tree-based ensemble methods as
e.g. in the case of bias-variance trade-off (see e.g. [124]). We will make use of this
method later in chapter VI.

II.3.2 Hidden Markov Models
A Hidden Markov Model (HMM) is an unsupervised learning method and a special
case of a so-called dynamic Bayesian network being a probabilistic graphical model.
It is especially suited for sequential data not being independent and identically dis-

27The bias-variance trade-off aims at the incommensurability of vanishing bias in combination with
vanishing variance (see e.g. [139, 165]).
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tributed (i.i.d.). History independence of sequential information leads to the assump-
tion of a model exhibiting the Markov property, i.e. that a future probability distri-
bution only depends on the currently observed state (see. e.g. [23, 36]). This leads
to a discrete first order Markov chain, which is represented as a directed tree graph.
If one furthermore introduces discrete latent or hidden variables to the Markov chain
one obtains a so-called state-space model, which forms the underlying structure of
the HMM28. A depiction of an exemplary Markov chain for an HMM can be seen in
Fig.II.2.

h1 h2 h3 h4

o1 o2 o3 o4

Figure II.2: Exemplary scheme of a Markov chain with four sequence steps underlying an HMM with observations oi and
hidden variables hi .

The observables oi of the system are then related to the latent variables hi via so-
called emission probabilities29 given by p(oi|hi) whereas the sequence itself is defined
by transition probabilities p(hi|hi−1) defining a joint probability given by

p(h, o) = p(o1|h1)p(h1)
N

∏
i=2

p(oi|hi)p(hi|hi−1) (II.4)

with the distributions for i = 1 defining the initial distributions and a total of N
steps (see e.g. [23]). Hence the full parametrization is given by this joint distribution
through the set of all unique emission and transition probabilities. Further assump-
tions for HMMs apart from the Markov property are stationarity and observation
independence. Stationarity assumes that transition probabilities are the same for ev-
ery timepoint whereas observation independence states an observable at a certain
timepoint is statistically independent from an output at another timepoint.

Learning a candidate set of locally optimal parameters30 for theHMM is generally
achieved by an iterative expectation maximization (EM) procedure via the so-called
Baum-Welch (forward-backward) algorithm. In order to perform the learning step the
model structure has to be already known in advance i.e. the number of hidden states
h and observations o. Hence parameter estimation depends on a given number of
observation sequences. The Baum-Welch algorithm basically aims at maximizing the
log-likelihood of the joint distribution in II.4 w.r.t. the parameter set θ = {Θ, Σ, π}
where Θ denotes the transition probabilitymatrix, π the initial state probabilities and

28The following derivations will follow along the lines of introductions such as [23, 36].
29sometimes also called observation probabilities
30Local optimality has to be assumed since we face a non-convex optimization problem depending

on the initial parameters.
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Σ the emission probability matrix. The log-likelihood for the joint distribution reads

L = ln ∑
o

p(h, o|θ) (II.5)

= ln p(h1, π) +
N

∑
i=1

ln ∑
o

p(oi|hi, Σ) +
N

∑
i=2

ln p(hi|hi−1, Θ) . (II.6)

The optimization basically amounts to taking

∂ ln p(h, o|θ)
∂Θ

= 0→ Θjk =
∑N

i=2〈hi,jhi−1,k〉
∑N

i=2〈hi−1,k〉
(II.7)

∂ ln p(h, o|θ)
∂π

= 0→ πj = 〈h1,j〉 (II.8)

∂ ln p(h, o|θ)
∂Σ

= 0→ Σjk =
∑N

i=1 oi,j〈hi,k〉
∑N

i=1〈hi,k〉
(II.9)

where details can be found e.g. in [23, 36, 125].

h1 h2

o1 o2 o3

Θ11 Θ22

Θ12

Θ21

Σ11 Σ21 Σ31

Σ12

Σ22 Σ32

Figure II.3: Schematic depiction of probabilistic parameters with emission probabilities Σjk and transition probabilities Θjk as
defined before. The indices now denote the number of the respective observable or hidden state respectively.

The resulting parameters from this so-called maximization step now depend on
the expectation values of the hidden states 〈h〉, which are then computed by the ac-
tual forward-backward procedure of which a full derivation is given in [23, 36, 125].
The procedure is then performed with updated hidden state expectation values un-
til convergence of the log-likelihood. In an HMM the full set of parameters is hence
inferred via the learning step given a number of observations and hidden states and
estimating an appropriate initial distribution from the underlying test data. An ex-
emplary schematic depiction of the parameter set is given in Fig.II.3 for two hidden
states and three observables.

Although there exists a wide range of extensions to the standard discrete first-
order HMM such as tree-structured HMMs, Bayesian HMMs and continuous ver-
sions as in the case of Gaussian distributions with so-called Kalman filters we refer
for these cases to the standard literature as e.g. [23, 36].

HMMs have a wide range of applications including but not limited to speech and
hand-writing recognition, object tracking but also in sequential biological data as in
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DNA sequence analysis and epigenetic state detection, which will be of utmost inter-
est for the work conducted in the following (see e.g. [23, 94, 106, 338]). In this case
observables are generally given by e.g. ChIP-Seq data on epigenetic marks such as hi-
stonemodificationswhile the hidden states are combinations of suchmarks, i.e. chro-
matin states, whose sequence on the DNA is facilitated in obtaining the parametriza-
tion of the underlying HMM learning process [104][103].

In recent years chromatin state detection advanced rapidly with the use of ma-
chine learningmethods amongwhichdifferent realizations using variations ofHMMs
are frequently employed [338]. Among the most popular ones for static data sets is
ChromHMM [104][103], which is especially tailored to ChIP-Seq data input concatenat-
ing a variety of input cell conditions. This implementation was also employed in the
ENCODE and Roadmap Epigenomics projects for de novo chromatin state detection
[158, 194]. Other implementations include EpiCSeg, modelling raw read counts as op-
posed to ChromHMM [218], histoneHMM making use of differential peak changes [143],
hierarchical HMMs in diHMM [220], tree HMMs in TreeHMM [35] or HMM-like dynamic
Bayesian models as implemented in Segway [157]. We will especially make use of the
most widely known implementation, i.e. ChromHMM, despite its limitation of merely
modelling binary observables via the presence or absence of certain chromatinmarks
and hence loosing quantitative i.e. differential peak information in the process31. We
will face this shortcoming later on in chapter V with our own implementation of a
parametrized correlation algorithm. The reason for the usage of ChromHMM is also
general comparability to results e.g. obtained by the large genome consortia such as
ENCODE.

31That can be e.g. the ratio between H3K4me1 and H3K4me3, which can be important in distin-
guishing promoter from enhancer states.
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CHAPTER III

Data sets: description and analysis

In this chapter we are going to describe and analyse the underlying experimental
data sets which will be used for the subsequent inference of the properties of the
epigenetic landscape in Th1 and Th2 cells as well as for the inference and analysis of
the resulting network(s) which is connected to unique network topological features.
Furthermore we will show in detail how the cumbersome data analysis is performed
since these steps are quite tricky and are among the largest pitfalls when it comes to
understanding how subsequent results are obtained. Also a detailed analysis of the
raw and pre-processed data sets contributes significantly to the understanding of the
data and later onwill justify why certain analytical measures were taken and how the
introduction of a large body of computational, statistical and modelling frameworks
can be motivated.

III.1 Underlying experimental data sets

The experimental data1 we are going to investigate in silico for the Th1/Th2 system
consists of a mixture of different cytokine culture conditions w.r.t. terminal Th1 and
Th2 differentiation as well as of different levels of Tbet dose, which is of special in-
terest being the canonical Th1 master regulator. Hence we do not only investigate
the genotypic differences between Th1 and Th2 cells themselves but also the effect of
perturbation of one of the main drivers of the system2 . The experimental procedure
itself is depicted in Fig.III.1.

Naïve LCMV-specific (lymphocytic choriomeningitis virus) CD4+ cellswhere taken
from LCMV-TCRtgThy1.1+ donor mice being subject to perturbations in Tbet dose
w.r.t. allele occurrence, i.e. Tbx21+/+, Tbx21+/− and Tbx21−/−, leading to a gra-
dient in expression of Tbx21 influenced gene targets, which will be shown in due
course. Three days before viral infection with LCMV these cells where retransferred
into uninfected wild-type recipient mice. LCMV was used as an immune response
trigger in order to increase the number of virus-specific CD4+ T cells. Ten days post

1Cell cultures have been performed by AhmedHegazy in the group of Prof. Max Löhning at Char-
ité and German Rheumatism Research Center (DRFZ) in Berlin, Germany, whereas ChIP-Seq and
RNA-Seq experiments have been performed by Qin Zhang from the group of Prof. Thomas Höfer
at the German Cancer Research Center (DKFZ) in Heidelberg, Germany.

2We note at this point that Gata3 specificity was not investigated since this posed substantial issues
when it came to extracting a significant amount of cell material under the conditions of interest.
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infection Thy1.1+ donor Th1 cells were isolated in their effector phase and after sort-
ing kept under in vitro neutral and Th2 polarizing culture conditions respectively.
The neutral conditions are characterized by the addition of α-IL4, α-Il12 and α-Ifnγ,
hence not contributing to any differentiation program, where α is short for “anti”,
hence blocking the respective cytokine. The Th2 polarizing culture conditions are
achieved by the addition of IL-4, α-Il12 and α-Ifnγ, being Th2-specific. This yields in
the end a total of eight different cell conditions namely

Th1 neutral Th2 ex vivo
Tbx21+/+Th1 Tbx21+/+Th1 Naïve
Tbx21+/−Th1 Tbx21+/−Th1
Tbx21−/−Th1 Tbx21−/−Th1

Naïve

Table III.1: Experimental treatment conditions for the considered data sets.

The cellswhich are kept under Th2polarization conditions exhibit properties ofmixed
Th1/2 phenotypes with hybrid gene expression as well as hybrid epigenetic land-
scape. This occurrence of plasticity can be shown to be stable and long-lived in mem-
ory phase even after one month after retransferring them into uninfected wild-type
mice. The same also holds true for the unique phenotypic properties w.r.t. perturbed
Tbet dose under neutral as well as under Th2 polarization conditions. Also the lower
the level of Tbet the higher the plasticity potential.

Figure III.1: Mouse model used for underlying Th1 and Th2 cell conditions with different Tbet dose as well as for different
histone modifications. All of this is done under Th1-neutral and Th2 culture conditions as defined in the upper right box
(adapted with kind permission from Hegazy et al., in prep.).

In the following the differentiated Th1 cells under neutral conditions will be ab-
breviated as Th1 cells and the Th1 cells under Th2 culture conditions will be abbrevi-
ated as Th1/2 hybrid cells since they effectively represent Th1→Th2 reprogramming
properties as will become evident in due course. An exception are obviously the
naïve cells in Th2 conditions, which represent the Th2 control as well as the ex vivo
naïve cells, which will keep these labels respectively.

The cell cultures were then sequenced, i.e. RNA-Seq as well as ChIP-Seq is per-
formed for all eight conditions with two biological replicates each3. In the case of
ChIP-Seq antibodies for different histone modifications were used for each of the
above cell conditions. In order to be able to investigate a broad range of epigenetic
profiles five important histonemodificationswere investigated, which representmarks

3A general introduction on ChIP and RNA sequencing methodology can be e.g. found in [118, 252,
328].
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associated with certain epigenetic functionality (see section II.1.2) as shown in table
III.2.

histone modification associated with
H3K4me1 enhancer
H3K4me3 promoter
H3K27ac active region
H3K27me3 repression
H3K9me3 Polycomb silencing

Table III.2: List of histone modifications used in the experiments.

In the following we are going to assess the data quality output from the exper-
iments and establish a pre-processing pipeline before evaluating preliminary prop-
erties of the different cell conditions regarding gene expression and the respective
epigenetic landscape.

III.2 Analysis of experimental data
In the field of bioinformatic analysis of high-throughput sequencing data there ex-
ists a wide range of different computational methods, the naïve usage of which can
influence the outcome of the processed data dramatically. Additionally workflows
for ChIP-Seq and RNA-Seq analyses differ considerably (see e.g. [75, 76, 232]). In the
following we are going to justify the usage of different methods in the subsequent
computational pipeline and discuss the result on basis of the aforementioned data
sets and its implication for further analysis and modelling.

III.2.1 Histone modifications

Data quality control

For the ChIP-Seq data sets we obtain a total of two biological replicates with two tech-
nical replicates each. For each of those the data quality can be checked with respect
to read length, number of reads or purity filtering and most importantly w.r.t. per
base sequence quality based on the so-called Illumina Phred+33 quality score4. Sin-
gle read sequencing was performed with a read length of 51 bp. On average around
90% of all reads are purity filtered. An exemplary depiction of the per base sequence
quality and sequence length distribution of a replicate is shown in Fig.B.1. We find
for all replicates and conditions that the base quality score is lying within the highest
quality region. Hence we do not have to trim the read length, which is usually done
to prevent the occurrence of subsequent alignment errors.

Alignment

Raw ChIP-sequencing data sets like the ones for histone modifications consist of a
text-format (ASCII) based method to store nucleotide sequences for reads including

4see https://www.illumina.com/documents/products/whitepapers/whitepaper_
datacompression.pdf for details
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quality scores. The read sequences have to be aligned to the reference genome first in
order to obtain spatial meaning. There exists a multitude of different sequence align-
ers incorporating a variety of implementation methods for alignment for different
purposes. Additionally there are different reference genome builds available from
which to choose. In our case we settled for the most recent mouse reference genome
build mm105. Furthermore we are interested in an alignment method which is able
to deal particularly well with short read sequences as well as providing a fast and
memory-efficient algorithm for which the Burrows-Wheeler transform is considered to
be a viable candidate (see e.g. [58]). Hence we employed the use of the popular
Bowtie algorithm [199] for the alignment of our ChIP-Seq data sets. For the result-
ing aligned reads we perform additional data quality assessment via correlation of
the respective conditions and histone modifications. To this end the genome is parti-
tioned into 5 kbwindows. Correlations are nowperformed genome-wide between all
samples on top of which we perform hierarchical clustering. The result is depicted in
Fig.B.3 in the appendix. We find that all histone modifications are found in distinct
clusters and the cell conditions are found in neighbouring bins of the hierarchical
clustering as well, which confirms the high quality of the data.

Peak search

Peak calling is an important step in determining statistically significant enrichment
of reads or tags in ChIP-Seq data. Especially the question of calculating the genome-
wide signal-to-noise ratio is of utmost importance in order to subtract a statistically
unsignificant background of ChIP-Seq reads. From general experience peak calling
is a crucial step in data-preprocessing since the choice of a certain peak calling algo-
rithm as well as its respective statistical assumptions and input parameters can have
large impact on the subsequent downstream analysis (see e.g. [294, 305]).

Methods For our purposes we have to consider peak calling algorithms which can
deal equally well with narrow and broad peak structures at the same time. Espe-
cially in the case of H3K27me3 one finds very broad profiles sometimes even ranging
over distances of several genes while for H3K4me1 and H3K27ac the peak profiles
tend to be narrower, in some cases even encompassing only several nucleosomes6.
An exemplary depiction of this is shown in Fig.III.2 in the appendix around the Ifnγ
gene. The important point to consider here is that peaks are not truncated at some
low threshold so in order not to end up with a huge number of small fragmented
peaks one has to take small gaps with low or even no signal into account over which
a peak detection algorithm can integrate. Hence depending on the data that is con-
sidered one has to find an appropriate combination between sliding window size for
detecting read enrichment and gap size. Also we have to note that diffuse extended
signals in the case of histone modifications tend to lack saturation, unlike transcrip-
tion factor binding sites. Hence the determination of a viable background bias model
is of utmost importance.

5build version GRCm38.p4 was used – see http://sep2015.archive.ensembl.org/Mus_
musculus/Info/Annotation

6Although in some cases, as we will see, the peak domains can be broad as well compared e.g. to
TF binding ChIP-Seq data.
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Broad, diffuse peaks which are found especially in the case of repressive histone
modifications marks or as well in the case of extended “super-enhancer” regions are
especially well dealt with in implementations like SICER [363]. The crucial differ-
ence to ordinary sharp, narrow peak searching methods is that the respective sliding
window is not fixed. Rather it is only used for scanning the genome and identifying
clusters of so-called read islands first. Furthermore small gaps between islands are al-
lowed such that broad structures are not fragmented too heavily. We preferred SICER
to other popular peak searching algorithms like MACS since at the time of evaluation
SICER was the most advanced algorithm in being able to deal with narrow and broad
peaks reliably at the same time (see e.g. [350, 363]) and avoiding short-comings like
the default fragmentation of peaks into smaller subpeaks.

The eligibility of reads within a local scanning window w is assessed by a score
s of reads l. The lower limit for determining if a certain window is eligible or not
depends on a Poissonian random read background model. The limit on the lower
bound of read counts l0 is set by a p-value p0 according to

∞

∑
l=l0

P(l, λ) ≤ p0

while the score s of a local window is determined by

s(l) = − ln P(l, λ)

with the Poisson distribution P(l, λ) where λ = w · N/L and N denotes the num-
ber of library reads and L the genome length. Including a certain gap length g over
which integration between different local windows is allowed, one can finally find
a scoring function for candidate peak domain islands by aggregating the individual
scores of neighbouring local windows maximally separated by g. After performing
the random background island evaluation for all samples each sample is then com-
paredwith the respectively equally evaluated control sample to further reduce signal
bias. For this last evaluation one has to specify a certain FDR as a statistical cutoff for
successful peak island calls. All of this eventually leads to the search for significantly
enriched peak domainswith variable length opposed to just using a fixed-lengthwin-
dow. Further details on the computation can be found in [363]7. The peak calling
parameters are listed in appendix D and motivated in the following.

After having performed read alignment we retain so-called strand asymmetry
since read fragments are sequenced for both strands. For this reason strand-specific
peaks experience shifts away from the true peak mean starting from the 5’ end. To
account for this issue one needs to specify the original ChIP-seq average sonication
fragment size d from which the tag shift being half the fragment size is determined.
In our experimental data set we had d = 150 bp, hence the shift being 75 bp . For our
customized pipeline we were iterating the peak calls for variable gap lengths as well
as false discovery rates in terms of the background model. The window size was
chosen to be 200 bp being roughly more than the size of a single nucleosome. We
did not allow for multiple read mappings and hence set the threshold of redundant

7We note that the potentially large width of the islands leads to further stabilization w.r.t. the
background model additionally reducing possible sampling variabilities at the nucleosome level.
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reads to one. Varying gap sizes were important in accounting for broad peaks away
from gene bodies as well as at the same time for smaller peak fragments in promoter
regions. From the gathered results we assumed that FDRs of 0.01 were a viable trade-
off choice in not losing too much peak information over the whole genome.

In addition to fixing the above contraints on statistical peak domain evaluation
we merge technical replicates beforehand in order to increase the data load for more
reliable statistics. After the estimation of the appropriate background model based
on the control library input we obtain a list of significantly estimated islands based
on the aforementioned FDR. For all of these significant islands we respectively obtain
the integrated number of redundancy-removed reads.

For further downstream evaluation of the histone modification peaks (e.g. in sec-
tion IV.1) we are considering gap lengths of g = 600 bp for H3K4me1, H3K4me3,
H3K27ac and H3K27me3 since peak islands are especially broad for these modifi-
cations (see e.g. [294, 350, 356] and Fig.III.2) and g = 200 bp for H3K4me3 since
promoter regions are thought to be more fine-grained. Finally we obtain the back-
ground subtracted reads for each unit read bin of the length of the sliding window
w and normalize them w.r.t. library size according to

r′i =
ri

106 ·∑i ri

where ri denotes the unnormalized reads in some unit bin i. The result is given in
reads per million (RPM). From this point onwards these results are used for further
downstream analyses.

Results As an exemplary result we turn to a notable gene locus in Th1 cells with its
respective histone modification peak profiles representing the statistically significant
noise-reduced epigenetic landscape in Fig.III.2. Ifnγ being one of the most impor-
tant Th1-specific cytokines [49] with one of the best annotated loci in Th1 cells [19]
presents a viable candidate for observing distinct differences in the resulting histone
modification peak structure. We show all histone modifications of one biological
replicate for several experimental conditions measured. All histone modifications
enrichments follow the above mentioned peak calling conditions w.r.t. island deter-
mination (w = 200, g = 600, FDR= 0.01 – except H3K4me3 with g = 200).

We can confirm our expectations that for some conditions like Tbet+/+Th1,
Tbet+/+Th1/2 or Tbet+/−Th1 the H3K4me1 peak structures are rather broad and
pronounced. This does not come as a suprise since in these conditions we can ex-
pect high enhancer occurrence. For these conditions the same also holds true to a
little lesser extent for H3K27ac, which indicates activity since the acetylation is re-
sponsible for opening up the heterochromatin. We also find large overlaps between
these two histone modifications, which indicates the occurrence of active enhancers
in these regions for the respective conditions. On the other hand we also find broad
pronounced domains for H3K27me3 in Th2 cells, which are also already occurring
in naïve and Tbet knock-out conditions. This can be readily expected as well since
H3K27me3 is associated with gene repression, which is the case for Ifnγ to a differ-
ent extent in those conditions being especially prominent in the opposing cell pro-
gram of Th1, namely Th2. We also find occurrences of H3K9me3 to be quite rare.
We will assess this later statistically in a genome-wide manner in more detail. The
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Figure III.2: Epigenetic histone modification peak landscape results around Ifnγ for selected experimental conditions and
replicates with peak calling parameters as specified in appendix D.

indicator for promoter activity, H3K4me3, shows indeed distinct occurrence around
the Ifnγ promoter naturally in Tbet+/+Th1 and Tbet+/+Th1/2 conditions but also in
Tbet heterozygous cells. Hence we find not only a cytokine dependency but also a
Tbet dose specificity w.r.t. this mark. We see that we obtain distinct connected peak
structures exhibiting different levels of modification over different experimental con-
ditions with varying peak widths and heights. This becomes specifically apparent
for Tbet dose variations. We can furthermore confirm that for certain cell conditions
certain histone modification peaks, which are expected not to occur in these condi-
tions indeed vanish and hence former statistically irrelevant residuals in the raw data
are removed. We will come back to a more detailed investigation of the Ifnγ locus in
due course.
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III.2.2 Gene expression

Data quality control

In accordance with the previous case of the histone modification data we again in-
vestigate the quality reports for all technical replicates for the RNA-Seq data. The
paired-end sequenced RNA reads are now longer than in the case of the histonemod-
ifications with a length of 101 bp. Again approximately 90% of all reads were purity
filtered. Based on the Phred+33 score the per base sequence quality is again exempli-
fied in Fig.B.2 while the per base sequence quality amount for each sample found to
be lying in the high quality region (Phred+33≥ 30) is also always around 90%. Hence
trimming of the samples can be neglected.

Alignment

Since we will not focus on de novo alignment of RNA reads and the discovery of
novel transcripts we are interested in efficient and reliable short-read alignments to
a reference transcriptome. Since in the experimental RNA-Seq protocol paired-end
reads were sequenced we will not run into multi-mapping problems (see e.g. [328])
since the alignment of read pairs envokes boundary conditions on how close read
sequences can be to each other as well as on the mapping order.

Additionally in the case of RNA-Seq data the alignment protocols have to incor-
porate splicing events as well, which for years has led to problems in development of
efficient and fastmappings to genomic transcriptomes. Furthermore not only splicing
events have to be accounted for but also sequence mismatches as well as insertions
and deletions. In order to account for different splicing variants during alignment, es-
pecially w.r.t. sensitivity in aligning reads over splice junctions we consider the STAR
algorithm [91], which aligns read pairs directly to a reference correcting for splicing
events. The accuracy of STARhas been reported to exceedmost contending algorithms
[101] The corresponding alignment parameters can be found in appendix D.

Concluding summary statistics of the performed alignment on our data sets re-
veal that the average mapped read length for paired-end reads was around 200 bp in
contrast to an input length of 202 bp while the percentage of uniquely mapped reads
was always around 75% being a reasonable amount for further downstream process-
ing. Furthermorewe note that paired-end reads are eventually evaluated as one read,
avoiding double counting. Multi-mapping occurrences were quite infrequent being
significantly below 10% .

Since the alignment itself onlymaps reads to genomic positionswe are still in need
of extracting read counts as well as attributing these counts to specific genomic anno-
tations, such as for example transcripts. First of all we consider the union of exons for
a certain gene transcript from the genome build version GRCm38.p48 . Ambiguous
reads that map to several transcripts are omitted. For efficient annotated read count-
ing we use the Python-based HTseq-algorithm [9]. The specific command options are
again given in appendix D. Eventually we obtain a total of 52.734 unique ENSEMBL
transcript mappings in form of a raw count matrix, which will be used as an input
for further detailed expression analysis.

8see http://sep2015.archive.ensembl.org/Mus_musculus/Info/Annotation
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Differential expression analysis

Methods Starting from the inferred raw count matrix with elements Kij with i be-
ing the ENSEMBL gene transcript and j being the replicate of a certain cell condition
we begin by estimating the dispersion for each gene transcript. Furthermore we are
interested in the respective fold changes of those transcripts between samples. What
is usually done is just naïvely applying the null hypothesis that the logarithmic fold
change (LFC) of the expression of a certain gene transcript is zero. Neither a p-value
ranking nor mere selection by LFCmight yield the desired set of either up- or down-
regulated genes, since in the former case the LFCmight be too low, while in the latter
case low count estimates have too high intrinsic noise. Furthermore the fold change
for a certain transcript also depends heavily on library size. To resolve these prob-
lems we follow the statistical procedures introduced in the DESeq2 R-package9 being
laid out in detail in [214]. Along these lines the count matrix K is assumed to follow
a negative binomial distribution with a fitted mean µij fulfilling

µij = sjqij

where sj is denoting a scaling factor for sample j and qij being proportional to the
concentration of reads. The size factor sj is itself determined via taking the median
of the ratios of all sample gene counts and their individual geometric mean gi via

sj = medianj

(Kij

gi

)
.

This basically accounts for different sequencing depths for all of the considered sam-
ples. The variability between different replicates is accounted for by determining a
dispersion factor αi for each gene transcript i correcting for noise inWald-tests of LFC
estimates between samples. This relates the variance and mean of the count matrix
in the following fashion

Var(Kij) = E[(Kij − µij)
2] = µij + αi · µ2

ij . (III.1)

We observe two things: first, the dispersion factors αi measure the weight of increas-
ing residual dispersion. Second the variance grows with the mean itself. Further-
more it turns out that the dispersion estimates vary heavily with the sample mean.
Performing a fit through these dispersion estimates the “true” dispersion value is ob-
tained. Via a Bayesian method this fitted dispersion value is approached by shrink-
age of themeasured dispersion values towards the fitted value, which justmeans that
the residuals are minimized by a Bayesian maximum likelihood a posteriori estima-
tor (MAP). In the end too high dispersion estimates are thus lowered while too low
estimates are raised at the same time avoiding type I errors in underestimating dis-
persionwhen having only two sample replicates as in our case. Further heteroscedas-
ticity occurs in the LFC estimation procedure, since the variability of low count gene
LFCs is higher than for high count genes as can be seen straightforwardly. Via aMAP
procedure the LFCs are then shrunken with a bias towards zero, s.t. low count genes
experience lower variability in their LFCs. This leads also to the fact that low count
genes have very low LFCs overall as could be readily expected. As a last step a Wald

9https://bioconductor.org/packages/release/bioc/html/DESeq2.html
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test is performed on the MAP LFC estimates and their standard errors yielding in
combination with multiple testing (see section A) a final statistical evaluation of the
corrected LFCs. In addition gene count outliers are accounted for by Cook’s distance
and removed from the samples.

Results We exemplify the above LFC analysis with the comparison between Th1
and Th2 cells (Tbet+/+Th1 vs. Th2 control) in Fig.III.3. First of all we visualize the
MAP dispersion estimates for all gene transcripts. Additionally we see that for very
high mean values of normalized counts over all samples extreme LFCs become less
significant and are hence excluded by this method from further downstream analy-
ses. We filter the LFC results w.r.t. adjusted p-values being subject to padj < 0.01 and
sort w.r.t. LFC.

Figure III.3: LFC transcript expression plot of differential regulation between Th2 and Th1 wild-type cells. In red statistically
unsignificant LFCs are shown that are excluded from further analyses.

Figure III.4: Dispersion estimate plot for the differential expression between Th2 and Th1 cells with the black dots denoting
the estimate for every single gene transcript, the red line denoting the fitted dispersion and the blue dots representing the MAP
dispersion estimates. Black dots with blue rings denote outliers and are hence excluded from the analysis.

33



CHAPTER III. DATA SETS: DESCRIPTION AND ANALYSIS

As expected we find a wide range of upregulated Th1 genes and down-reglated
Th2 genes. A full list of the respective Top 50 upregulated Th1 genes w.r.t. Th2 and
vice versa can be found in table C.1 and C.2 . This will be of further importance in
our subsequent analysis as we will find differences in cell-specific behaviour partly
on basis of these upregulated genes in the respective cell conditions as determined
by these analyses. To this end we compare the list of upregulated Th1 and Th2 genes
with published Th1- and Th2-specific genes (see [334]) and extract from that a subset
of significant LFCs ending up with 46 Th1 and 50 Th2 gene transcripts in total (see
table C.3 for full list) to be used for further downstream analysis.

Absolute expression analysis

Methods Again we follow one of the main statistical procedures as proposed in
[214] and [8]. The bottom line of getting absolute gene expression values is basically
the question of normalization. More specifically gene expression inferred from se-
quencing data is not homoscedastic but rather heteroscedastic. This means in detail
that variances differ for different gene expression values according to

Var(ξi | xij) = σ2
i , ∀j ∈ 1, 2, . . . , n

with ξi denoting the error of observation i, xij the set of j variables for observation i
and σ2

i the observation-dependent variance. We note that for regression models like
ordinary least squares the variance is assumed to be constant. From Eq.III.1 follows
that the absolute value of the residuals grows with the mean of gene expression and
we obtain the respective relation for the concrete case of a count matrixKij for i genes
and j samples. In order to obtain appropriately normalized gene expression data
being homoscedastic one applies a so-called variance stabilizing transformation (VST)
to the count matrix K . In general a VST is a transformation h(K) of the random
variable K with constant variance. A possible description in terms of the variance
depending on the mean is (see e.g. [8, 93])

h(K) =
∫
K

dµ√
Var(µ)

(III.2)

Detailed information on how the dispersion relationship α(µ) is fitted on the under-
lying data in order to obtain the explicit VST can again be found in [8, 214].

Results Applying this VST relation to all count values of the matrix Kij we obtain
normalized gene expression values, which do not growwith variance anymore. This
behaviour is depicted in Fig.III.5.
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Figure III.5: Standard deviations for absolute gene transcript expression values determined via a VST (left) and via a classical
library size normalization (right). The mean standard-deviation is indicated by the red line.

Figure III.6: Hierarchical clustering of the Euclidean distance VST count matrix for all RNA-Seq samples. Neut labels neutral
conditions and Th2 labels Th2 culture conditions. SMTh2 denotes the Th2 control and r1 and r2 denote the two considered
replicates respectively.

Employing the variance stabilized counts we investigate our RNA-Seq data by
clustering the Euclidean sample distances. By doing so we are able to infer similari-
ties between different samples and replicates and hence obtain another means to test
if the VST was successful. For this we determine the elements of the distance matrix
of the VST count matrix with elements KVST;ij. The result of this procedure is shown
in Fig.III.6 employing hierarchical clustering. As can be readily expected the VST
method is able to discriminate extremely well between the respective sample phe-
notypes not only clustering replicates correctly but also discriminating between Th1-
andTh2-specific cell conditions. Furthermore the Euclidean distances are also high in
between same condition replicates. We also find that the phenotypical differences be-
tween Tbet+/+Th1 and Tbet+/−Th1 are comparatively low. In addition we observe a
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clustering of the underlying samples by considering the highest expressed VST genes
in Fig.B.4, which is again fully consistent with the Euclidean distance method. Fur-
thermore we investigate this important difference w.r.t. normalization of absolute
expression values by doing a principial component analysis (PCA) of the variance
stabilized samples in comparison to the heteroscedastic data. As it is always the case
with a PCA we scan the uncorrelated variable space after performing an orthogonal
transformation, which are called the principal components. Starting with the com-
ponent that accounts for the largest amount of variance in the data (commonly called
PC1 – here 48% variance) and comparing this to the PC with the second highest vari-
ance (PC2 – here 25% variance) as seen in Fig.III.7 we already find at this level that the
VST is able to capture expected clustering behaviour between the different samples.

Figure III.7: Principal component analysis of all sample replicates for absolute values obtained by naïve normalization (top) in
comparison to VST normalized values (bottom) with sample labellings as before.
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This is in stark contrast to the unstabilized counts where the phase space shows
heavymixing of the samples for both PCs. Up to this point the contentual importance
of the principal components is an abstract one. We can infer somemeaning on the in-
terpretation of the PCs by observing the variable space containing the actual samples.
We find that the PC1 variable is able to discriminate particularly well w.r.t. Tbet-dose
and between neutral and Th2 polarizing conditions. This becomes especially evident
when going to lower PC1 valueswhere the ranking is Tbet+/+Th1→ Tbet+/−Th1→
Tbet−/−Th1 followed by the Th1/2 conditions. The second PC is able to distinguish
even better between Th1 and Th2 conditions and even shows functional similarities
between the Th2 control and Tbet−/−Th1/2 as well as between Tbet+/+Th1/2 and
Tbet−/−Th1, which can also be expected. A particular good distinction can now be
made from the combination of these first two PCs, which separate the naïve and the
Th2 control samples from the Th1 cells under neutral and Th2 culture conditions. In
Fig.B.5 we also show the third and fourth PC for the sake of completeness. We learn
that although still contributing 15% and 7% to the total variance PC3 only puts addi-
tional focus on the Tbet knock-out conditions while already the interpretation of PC4
is not straightforward anymore.

From the above analysis we find that the VST leads to significantly low variability
between the two replicates in all conditions and separates the Tbet dose grading as
well as the cytokine condition dependencies accordingly. Yet the same is not true for
the untransformed gene expression values. For these reasonswe adopt the VST count
matrix with entries KVST;ij for further downstream analyses.

III.2.3 Data pre-processing pipeline
In the schematic depiction shown in Fig.III.8we summarize the computational pipeline
for the analysis of the sequencing data.

ChIP-Seq RNA-Seq

Postprocessing

Peak search/
Read counting

Alignment

Background
removal &
normalization

Absolute
(VST)

Differential

scripts

Figure III.8: Pre-processing pipeline for histone modification ChIP-Seq data and RNA-Seq data samples.

After quality assignment the ChIP-Seq data are aligned with Bowtie to the mouse
genome build mm10 and subsequently analyzed with the peak search algorithm
SICER for broad and narrow peaks. Afterwards the obtained peak files with back-
ground-subtracted histone modifications are normalized with respect to library size
via bash-scripts. After checking for read trimming to enhance read quality the RNA-
seq data are aligned to mm10 via the spliced-aligner STAR. The aligned reads are then
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mapped to transcript isoformswhere only unambiguous reads are counted via HTseq.
Finally we perform different normalization procedures for differential gene expres-
sion analysis and for obtaining absolute values for further downstream analyses. For
this we mainly use the DESeq2 implementation for variance stabilization of gene ex-
pression counts aswell as applying aWald-statistic for LFC significance computation.

III.3 Discussion & Summary
We have pre-processed and pre-analyzed the underlying histone modification ChIP-
Seq as well as RNA-Seq data of an experimental setup consisting of long-lived Th1
cells from LCMV infected mice being subject to varying Tbet dose conditions as well
as partially reprogrammed hybrid Th1→Th2 cells exhibiting plasticity, which were
obtained from Th1 cells exposed to Th2 polarizing conditions. In addition we in-
vestigated naïve and Th2 control samples. We saw that besides differences in cy-
tokine dose the underlying experimental system showsdistinct gradings in Tbet dose.
This dual dose dependency leads to different plasticity levels, hence Th2 control and
Tbet−/−Th1/2 conditions as well as Tbet+/+Th1/2 and Tbet−/−Th1 show similar-
ities w.r.t. their genotypes. This was shown e.g. in a subsequent PCA. After data
quality assessment we laid out a pre-processing workflow which on the one hand is
able to deal with broad as well as with narrow histone modification peaks and on the
other hand yields robust absolute gene transcript count data. We also checked for the
consistency of the replicates and the conditions of the gene expression data, yielding
clear distinctions arising on the basis of the histone modification landscape as well
on the basis of the respective genotypes. Also we assessed peak variability around
Ifnγ exhibiting changes in height and width for notable marks depending both on
cytokine signal and on Tbet dose. We saw that in the case of absolute gene transcript
values extreme care had to be takenwith respect to normalizationwhichwas resolved
by utilizing a VST method leading to homoscedastic data. Furthermore we extracted
a range of top-ranked Th1- and Th2-specific genes by differential expression analysis
which was merged with known genes from literature and which will be used later
on in downstream analyses for obtaining an epigenetic network.
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CHAPTER IV

Inference of chromatin states in T-helper cells

IV.1 Pattern recognition of epigenetic states

In the last chapter we saw that around notable genes of interest we can find epige-
netic landscapes of different histone modifications, which not only exhibit peaks of
different shapes w.r.t. to their height but also w.r.t. to their width and hence w.r.t.
integrated read count. Yet we also find that different histone modifications do not
necessarily behave in the same way, i.e. H3K27ac might not strictly follow the profile
changes in H3K4me1 while at the same time repressive histone marks can behave
complementary in one way or another. This leads to the observation that the phase-
space of profile combinations of peaks of different histone modifications at specific
points on the DNA theoretically gets immensely large. We are interested in finding
specific histone modifications patterns such that we can assign an epigenetic state to
a specific histone modification peak combination for an a priori arbitrary number of
histone marks.

One of the obvious remaining questions is how many of these combinations are
of utmost interest based on the underlying data and the theoretical questions we are
posing, namely investigating activation and inhibition of genes. Since in the case
of transcriptional activation where we want to find enhancer structures we already
know that states, which include a significant amount of H3K4me1 w.r.t. to the rest
of the genome should be able to appear in combination with H3K27ac while at the
same time excluding the occurrence of repressive or silencing marks or alternatively
alone. The question of other combinations is at this point a combinatorial one de-
pending on the number of the observed histone marks as well as on the quantitative
significant differences over multiple samples when several peaks appear at one po-
sition. We could for example imagine that we might find instances of histone mark
combinations where one modification appears to a lesser extent than others. On a
genome-wide scale taking into consideration different samples the question is now if
such a pattern (or from now on termed chromatin state) occurs frequently enough to
be considered significant or if a similar pattern occursmore often and the appearance
of the former would hence be classified as the latter.

Basically an arbitrary amount of fine-grained subclasses can be inferred taking
into consideration all possible peak combinatorics. We hence learn that we have the
problem of finding a categorial annotation based on a given model with a certain

39



CHAPTER IV. INFERENCE OF CHROMATIN STATES IN T-HELPER CELLS

number of expected patterns, which also depend on their immediate surroundings.
This means it should be less probable to find a repressive chromatin state next to an
enhancing chromatin state in one cell condition while at the same time the proba-
bility for finding a state only exhibiting H3K4me1 next to one exhibiting H3K4me1
in combination with H3K27ac is more probable since in this case the H3K27ac peak
might just have ended at some point. Furthermore we do not have any a priori expec-
tation about how and when an enhancer state or a repressive chromatin state might
occur at a certain position apart from knowing what histone marks to expect or not
to expect. This is a problem commonly resolved by unsupervised machine learning
methods, which are of special importance in inferring hidden variables or patterns of
unlabelled data sets. Since there are several of suchmethods that are designed to cope
with these kind of problems, we note that when observing sequential dependencies
what comes immediately tomind are so-calledMarkovmodels or more generally dy-
namic Bayesian networks. For this reason we already discussed basic properties of
a special case of dynamic Bayesian networks i.e. Hidden Markov Models (HMM) in
section II.3.2.

IV.1.1 Method

The basic questions regarding anHMMnoware: what are the observables in our data
sets andwhat is the interpretation of the yet to be inferred hidden variables or states?
Observables are in our case clearly the sets of significantly called peak islands for the
entirety of the measured histone modifications. At a certain position on the DNA the
respective observable is the overlap of the existing peak signals, which are observed
as binary entities, i.e. as being present or not. The hidden state variable is the re-
spective underlying pattern, which is generated by this overlap. The probabilities of
assigning a certain state to an observable depends on the sequence of observables,
hence generating a certain output from a hidden state (i.e. the emission probability)
or switching from one state to the other and creating a different output (i.e. the tran-
sition probability). In our case this just means observing the sequential order of the
peak structure combinations at subsequent nucleosomes for different samples.

A popular implementation of an HMM, which can readily cope with peak struc-
tured files, is the JAVA-based ChromHMM algorithm [103], which basically assigns the
meaning of observables as discussed before to the data structure provided from the
data processing steps above. The basic input for the inference of the underlyingHMM
hence is the peak call information for all the histone marks and all the conditions of
interest. Additionally one has to specify the fixed number of hidden states according
to which the model is trained. Obviously a whole range of models may be feasible
for our particular system as well as for the questions wewant to answer with it. Since
we have a total of five histone marks at our disposal we should have a model with at
least five hidden states, s.t. we allow for the possibility of every mark occurring in
its own unique state, although this does not necessarily have to be the case. We also
consider at least every possible pairwise combination of histone marks to be possi-
ble, s.t. we should also consider at least a maximum of 52 = 25 hidden states. In
order to classify the whole genome for every cell condition the different multivariate
models first have to be learned w.r.t. their parametric relations. The parameter esti-
mation procedure for the emission and transition probability distributions is based
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on an expectation-maximization approach via the Baum-Welch algorithm with con-
vergence to some arbitrarymaximum likelihood valuewhich is due to the fact that the
initial log-likelihoods differ. The state likelihood is sequentially updated after every
chromosome starting from an initial set of parameter values. As a training sample all
chromosomes are used for 200 learning iterations until convergence. The respective
input commands are given in appendix D.

The respective hidden states are obtained by first segmenting the genome into
subsequent 200 bp bins, which are roughly the size of a single nucleosome. From the
significantly called peak input the bin information is binarized s.t. a histone mark
peak is labelled as existent or not in the respective bin. We use the formerly spec-
ified peak call parameters in this step (see section III.2.1). This binarization is then
used as an input for the learning procedure. In order to find a model that offers a
sufficiently low number of states to capture all relevant biological features we started
with a randomly initialized 25 state model and compared it with models down to 5
states. The parameter results of all HMMs are shown in Fig.IV.1. A general penal-
ized log-likelihood of all the state parameters was achieved by Bayesian information
criterion (BIC) scores with a BIC penalty of ln(1.09 · 106) ≈ 18.5 . In table C.5 we can
see the BIC results of all the differently seeded HMMs.

We find that the BIC (as well as alternatively the Akaike information criterion
(AIC), which is more weakly penalized and hence discarded in this case) is not able
to penalize the models sufficiently according to their large differences in increasing
log-likelihood. This is due to the fact that for k′ > k, where k and k′ are different
amounts of free parameters, we always obtain ∆BIC = BICk − BICk′ � 2 , while
the same holds true for ∆AIC. Basically this means that the higher the number of
parameters the “better” the model1. Especially for a low number of states it has been
shown before [134, 158] that the BIC or for that matter the AIC alone are not well
discriminating scores. Since also other publications (see e.g. [104, 105, 158, 194])
suggest a state number between 10 and 25 for a low number of histone marks we
have to resort to a different quantitative method to infer a viable number of model
states. In order to do this we prune the highest state model (in our case 25 states)
down to the minimal reasonable number of states (5 states). During this process
we want to find the lowest number of hidden states which still capture a sufficient
biological interpretatory content. This means in particular that “relevant” states are
still preserved when removing transition probabilities. “Relevant” here means that
we are looking for states that do not give us solely a mixed emission probability, i.e. a
fine-grading w.r.t. a mixture of probabilities, like states 12 or 23 in the 25 state model,
but rather a distinct state with high emission probabilities like states 2 or 11 in the
25 state model. In Fig.IV.2 we see the heatmap of the correlations between a state of
the highest state model and the recovery of that state somewhere within a lower state
model.

We are looking for a plateau in the correlations where the removal of another
model state does not change the recovery of the states from the full state model any-
more. Also since we do not want the information from the most complex model to
drop below a certain threshold some cut-off has to be applied. We find that around
a state number of 16 states the information content of the hidden states is quite sta-

1Hence the model with more parameters is always preferred (see section A).
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Figure IV.1: Emission probabilities for models with five up to 25 hidden states for the underlying five histone modification
marks. The shades of blue represent the emission probability values of a histone mark within each state and hence are ∈ [0, 1].

ble, while going to lower state numbers state information starts to decrease again2.

2This can be seen in the marginal changes of the correlation heatmap values from a higher to a
lower state HMM.
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Figure IV.2: Best correlation value between emission parameters of the states in the 25-state model (y-axis) and a fixed number
of model states equal or smaller than 25 down to a 5-state model (x-axis).

It turns out that hence a model with 16 hidden states presents a viable choice for a
trade-off between including all the relevant information and a highmodel likelihood.
Checking in Fig.IV.2 wewould be interested in removingmixed states with low emis-
sion probabilities of a certain mark as often as possible without removing the infor-
mation of another state completely. This would e.g. correspond to state 15 in the 16-
state-model. Yet this state keeps reoccurring in similar forms in lower state-models as
well with comparable emission probability and can hence be not eliminated. Higher
state models on the other hand increase the fine-graining again. We can see exactly
that with the example of state 15 from the 16 state model: in the 17-state model this
state gets split into the more refined states 2, 3 and 13 , which does not help in terms
of interpretability of this state at all. Also the number of low emission probability
mark states increases slightly when going from a 16- to a 17-state HMM. From now
on the 16-state HMMwill hence be considered.

43



CHAPTER IV. INFERENCE OF CHROMATIN STATES IN T-HELPER CELLS

IV.1.2 Results

Model parameters

In Fig.IV.3 we summarize the final emission and transition probabilites of the 16-state
model with assigned annotation of the respective states. They form a complete set of
estimated model parameters.

Figure IV.3: 16-state HMM parameters with emission probabilities (left) and transition probabilities (right). Depending on the
respective histone mark combinations we assign an epigenetic interpretation to each chromatin state.

The interpretation of the emission probability heatmap is quite straightforward:
we find a probability for every trained histone mark of occurring in the respective
hidden state. It is of important note that for each individual state these mark emis-
sion probabilities are independent from each other. More specifically the probability
distribution is a product of independent Bernoulli random variables (see [103]). The
transition probabilities on the other hand are responsible for preventing an estima-
tion bias for individual states, since the occurrence of a certain state also depends on
its own neighbourhood, hence implementing Markovian properties in order to sta-
bilize e.g. diffuse overlapped peak structures against small variations in the histone
signals. In addition to that the transition probabilities also determine the relation be-
tween subsequent states hence define which state is more probable to follow another
state given a certain observable signal combination. Alternatively it might be as well
advantageous within a certain hidden state sequence not to switch to another hidden
state but to remain in the orginal one depending on the underlying peak data.

We also find a corresponding percentage of each state occurring over the whole
genome in each condition, which can be seen in table C.4. We find that state 14 in
the model has the highest occurrence, which basically means that regions exhibiting
none of the investigated marks make upmost of the genome as can be expected. This
is tagged as an empty chromatin state from now on. The other leading states con-
cerning genome percentage are states 1, 10 and 13 which will indeed be of utmost
importance since they are indicators of activation as well as of inhibition. Already
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having a priori knowledge about histone modifications being marks of a certain epi-
genetic functionality (see section II.1.2) we annotate each inferred chromatin state in
that fashion, which can be seen in Fig.IV.3. The non-empty states can be roughly
grouped into four main clusters, s.t. we obtain enhancing (containing a significant
amount of H3K4me1) and repressing/silencing (containing a significant amount of
H3K27me3 or H3K9me3 respectively) states as well as those corresponding to pro-
moter regions (containing H3K4me3). In addition we obtain a group of states which
exhibit enhancing as well as repressing/silencing histone marks at the same time.
These features are termed bivalent states since they represent “undecided” primed
states for two opposing functional programs. They can basically unfold fully enhanc-
ing or repressing functionality under slightly different cell conditions. We also find
that there are several promoter regions that carry enhancing or repressing marks,
mainly depending on (or rather causing) gene expression activity.

Additional interesting information on the interpretation of chromatin states can
be obtained by checking the overlap enrichment of significant functional chromatin
elements such as CpG islands as well as the positional dependency of the individual
states with respect to TSSs and TESs. A cell condition dependent depiction is shown
via fold enrichment heatmaps in Fig.IV.4 for the Tbet+/+Th1 condition.

Figure IV.4: Functional fold enrichment of the 16-state HMM w.r.t. each individual state (left). The references are taken from
the RefSeq annotation. The middle and right figure depict the fold enrichment w.r.t. the relative position of the TSS and TES
respectively.

What is shown is the overlap enrichment in terms of fold change of a certain state
overlapping a feature w.r.t. the whole genome. For the positional enrichment the
fold enrichment is calculated with respect to all RefSeq genes. As already suspected
we find for the TSS high enrichment especially of states 2-7 which are all related to
the promoter mark H3K4me3. These states are also highly relevant w.r.t. occurrence
of CpG islands. Concerning the TES we find a more distributed situation over all
states with state 15 as a mixed state with silencing marks standing out. Yet especially
within RefSeq genes and TES enhancer states like 1 and 10 start to appearmore clearly
indicating the existence of intragenic enhancers.
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Chromatin state annotation examples

Turning the attention first to active promoter regionswe observe two prime examples
for Th1 and Th2 cells namely the promoter regions of themaster regulators Tbx21 and
Gata3, which is shown in Fig.IV.5.

Figure IV.5: Chromatin state landscape of Gata3 and Tbx21 according to the 16-state HMM with state color-coding as defined
in Fig.IV.3.

In agreement with canonical knowledge and with our own RNA-seq results we
find a regulatory landscape around the Gata3 promoter in Th2 cells that significantly
exhibits the promoter-associated histonemodificationH3K4me3. In additionwe find
the activity mark H3K27ac. We find the same for the Tbx21 promoter in Th1 cells.
This results in the appearance of the chromatin states 3 and 4 in our model in the
regions of the promoter and the TSS. Their interpretation hence would be active pro-
moters in the case of state 4 and active promoters with enhancer marks or enhancers
in promoter regions for state 3. In the case of Tbx21 we see that the promoter and
TSS region mainly consists of chromatin states 3, 4 and 10, yet in the case of Tbet
knock-out we find in Th1 and Th2 culture conditions that the state changes to state
14 indicating empty chromatin with respect to our histone modification marks. This
makes complete sense concerning the fact that we consider a Tbet knock-out. Inter-
estingly the naïve and Th2 control conditions show the appearance of states 7 and 8,
which are coined as bivalent enhancer/promoter states. Now the present chromatin
states hence contain a significant amount of H3K27me3 repressing the activity of the
promoter region. Hence we find already on the level of the HMM that chromatin
states might switch between different functional states according to their combined
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histone modification pattern from one condition to another, which is in our case de-
pendent on cytokine signal and Tbet dose. When turning to Gata3 on the other hand
we see that no significant changes of chromatin states can be observed in the pro-
moter region. If we now want to find differential changes between the conditions we
will have to integrate the modification count somehow, which we will address later
on.

Of utmost interest to the subsequent analysis will be the detection of enhancer
states which positively regulate gene expression as we already discussed shortly in
section II.1.2. Around Tbx21 we find an extended chromatin state region ranging
from its intragenic region to the intragenic region of the next-nearest gene upstream,
Tbkbp1. For most of the conditions under consideration, especially for the Th1 cells
under neutral conditions but also for the wild-type and heterozygous Tbet hybrid
Th1/2 cells we mainly observe state 10, which in our model corresponds to an active
enhancer chromatin state. The spatial extension of the state suggests a so-called super-
enhancer, as already indicated in e.g. [154], the existence of which shall be discussed
in due course. We also find that these active enhancers disappear in Tbet−/−Th1/2
cells aswell as in naïve and Th2 control conditions. The chromatin states in these con-
ditions span a wide range from poised enhancers to bivalent and repressed states.
While under Tbet knock-out in hybrid Th1→Th2 conditions a formerly active en-
hancer state (e.g. under Th1 conditions) loses its active mark and we obtain a poised
enhancer, the situation looks completely differentwhen observing the transition from
naïve to differentiated Th1 cells. In naïve cells much of the upstream Tbx21 region
still is either in a repressed chromatin state either with or without an active histone
mark present or in a bivalent active or inactive state with an enhancer mark already
present. In the Th1 cell condition these states additionally gain either H3K4me1
and/or H3K27ac and they lose the repressive H3K27me3 mark. We observe that
heterochromatin silencing as indicated by the H3K9me3 mark does not play a role
at this particular example locus. We will find out later on that when performing a
genome-wide analysis on Th1- and Th2-specific genes H3K9me3 also very rarely oc-
curs. This can be also confirmed w.r.t. its overall state-specific occurrence via states
15 and 16 of approximately 0.6% of the genome over all cell conditions.

As mentioned earlier one of the best annotated and studied gene loci in Th1 cells
is Ifnγ, a cytokine important in the function of the innate and – more importantly for
our data – of the adaptive immune system. As is shown for example in [19] the Ifnγ
locus consists of a multitude of validated regulatory elements taking the function of
enhancers. We focus on so-called conserved non-coding sequences (CNS) that have
been shown to be sufficient for part3 of the enhancer functionality (see e.g. [56]).
The Ifnγ locus is depicted in Fig.IV.6 including the positions of the validated CNS
sites (see [19]). In addition to the HMM classification of chromatin states for the
considered cell conditionswe also show again the peak files for selected conditions of
one of the two biological replicates. As an importantmarker for enhancer activity (see
section II.1.2) we also include published ChIP-Seq data of histone acetyltransferase
p300 [314] for Th1 cells as well as for Th2 cells as a reference.

3We note that not all CNS sites necessarily have non-redundant functionality in all cell types. See
for example [74].
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Figure IV.6: Annotated Ifnγ locus with colour-coded HMM state segmentation as well as depiction of investigated CNS sites
from literature [19]. Also shown are again selected histone modification peak landscape results as well as an annotation of p300
binding peaks [314].
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We find a multitude of distinct delimited regions containing in one or several cell
conditions either an active enhancer state (state 10) or a poised enhancer containing
no significant H3K27ac accumulation. Of high importance are obviously those active
enhancer states that are found in Tbet+/+Th1 conditions since Ifnγ is a hallmark of
these cell types. Furthermore we find in the RNA-Seq data that Ifnγ is most highly
expressed under these conditions as can be readily expected. From the histone mod-
ification peaks we already observe a strong increase of H3K4me1 from naïve to Th1
cells on average over the whole gene locus.

Simultaneously H3K27me3 disappears in Th1 cells, while in general it becomes
more dominant going to Th1/2 and even more so when considering Th2 cells. We
find an analogous behaviour when turning to the inferred HMM states: from Th1 to
Th2 cells we see active enhancer states disappear while repressed states appear. Also
in the intragenic region we find active promoter states, in some cases also exhibiting
enhancer marks, which disappear in naïve cells and even become repressive states in
Th2 cells. Downstream of Ifnγ at CNS+40 we even find a superposition of enhancing
and repressing marks forming a bivalent state in Th1/2 hybrid conditions.

The HMM classification is able to reproduce and validate basic enhancer features
of the aforementionedCNS sites. Forwild-type Tbet Th1 cellswefind active enhancer
states at all CNS locations except CNS+54whereH3K27acwas not significant enough
to qualify as an active enhancer. Its classification is hence a poised enhancer. TheCNS
sites also overlap with p300 binding sites from Th1 cells, while we also observe some
overlap of repressive states in Th2 cells with p300 binding sites in the Th2 condition
like e.g. in the gene body, at CNS-34, CNS+17-19 or at CNS+40.

We also observe strong dependence of the chromatin state classification on Tbet
dose, especially w.r.t. enhancer activity in accordance with Ifnγ expression. This is
prominently seen at the CNS-6 enhancer. Here Tbet heterozygosity leads to a loss of
the H3K4me1 mark leading to the solely active state 11, while under Tbet knock-
out the region is classified as an empty chromatin state. Similar phenomena can
be observed in the gene body where we not only find a decrease in H3K4me1 and
H3K27ac, which is also reflected in the state classification, but as well with respect
to the promoter mark H3K4me3. Furthermore we can confirm analogous behaviour
in hybrid Th1/2 cells where we also find dependence on Tbet dose as can be readily
seen in the gene body or e.g. at CNS+30. More generally we observe less enhancer
activity in Th1 and hybrid Th1/2 cells with diminished Tbet dose. Hence enhancer
states do not only change their activity state w.r.t. cytokine stimuli but also w.r.t.
different Tbet dose conditions turning to poised, bivalent or even repressive states.
This prominently shows that Tbet in fact does affect the epigenetic landscape, at least
at the example locus of Ifnγ. This analysis also undermines the importance of the
H3K27me3 mark for the definition of an enhancer state. From the point of view of
the inferred HMM chromatin states an enhancer is hence not only defined by its ac-
tivity in the cell condition of highest expression of the gene to which it supposedly
belongs, but also to some yet to be determined extent on the quality of the chromatin
state change for different stimulation and dose conditions as well as on the amount
of the repressive histone mark H3K27me3 in an antagonistic condition.

We also investigated p300 binding sites in general around notable Th1 and Th2
genes (which are listed in table C.3) as well as their overlap with active or poised en-
hancer states as found by the HMM. In Fig.IV.7 we see that a notable amount of p300
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binding sites indeed has significant overlap with active or poised enhancer states in
wild-type Th1 and Th2 cells as well as in Th1/2 conditions. We delimited the region
for determining associated enhancers around those genes to so-called topologically as-
sociating domains (TADs) (see section II.1.2) from published data (see [89])4. We found
1092, 1011 and 1217 poised or active enhancer elements in these TADs in Th1, Th2
and Th1/2 cells respectively, where 62%, 60% and 63% of these contained at least one
p300 binding peak in combined ChIP-seq data of differentiated Th1 and Th2 cells,
thus supporting the HMM model. Yet we note that we also find it to be neither nec-
essary for an active enhancer to appear at a p300 binding site nor compulsory for
p300 to be a preliminary for enhancer occurrence as confirmed e.g. in [267]. Fur-
thermore some HMM enhancer sites also bind p300 in Th1 and Th2 cells at the same
time. Some of those instances appear to be enhancers that don’t change their activity
state significantly w.r.t. cytokine stimulus or Tbet dose, while some other instances
exhibit repressive chromatin states in one of the two cell conditions. One prominent
example for the latter is CNS+17-19 downstream of Ifnγ.

Figure IV.7: Venn diagram depiction of overlap of p300 binding sites in Th1 and Th2 cells with HMM enhancer states in Th1,
Th1/2 and Th2 cells respectively.

Performing additional genome-wide analyseswe rarely find instances of promoter
states which do not occur in the immediate vicinity of any annotated RefSeq TSS.
Nevertheless an extreme example with certain interesting implications is provided
upstream of the gene Il1rl1with currently debated functionality in Th1 and Th2 cells
alike [3, 129]5. At its TSS we find a promoter state (HMM state 3) denoting an active
promoter with the inclusion of enhancer marks in Th2 cells. This has been reported
before as being a distal gene promoter (see e.g. [3]). Yet at -36 kb upstream of this
TSS we find another promoter state being active in Th1 wild-type cells hence being
responsible for the opposing cell program. This is depicted in Fig.IV.8. It will be the
focus of future experimental research to elucidate the question if such an instance
inferred by an HMM alone can be a viable candidate for an alternate TSS for a gene
like Il1rl1.

4The data-sets on embryonic stem cell topological domains in mouse can be found at http:
//chromosome.sdsc.edu/mouse/hi-c/download.html

5We also find comparable situations upstream of Il21 having reported functionality in Th17 cells
as well as e.g. at -11.5 kb upstream of Tbx21.
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Figure IV.8: The Il1rl1 locus with the inferred HMM segmentation. The Th2 condition clearly shows a distal promoter state
while 38 kb upstream we find another promoter state in the Th1 wild-type condition probably regulating the opposing cell
program.

In the following we will nevertheless mainly focus on active and poised enhancer
states as described for the above loci as well as on repressive chromatin states, which
as we have seen form in distinct patterns, which was formerly barely recognizable
from just inspecting histone modification peaks alone.

IV.2 Discussion & Summary
We have inferred the chromatin landscape w.r.t. five notable histone marks on a
genome-wide scale in the previously described cell conditions using a Hidden
Markov Model implemented in ChromHMM. By learning hidden state patterns from
a combination of these histone marks based on their genomic sequential peak oc-
currence we tested several models with different state numbers and compared them
based on their ability to reproduce a certain state information in all of the other mod-
els respectively. From this we obtain a minimal model consisting of 16 chromatin
states, which are assigned genome-wide to all experimental conditions. For the fol-
lowing discussion we will adopt the following definitions for the inferred hidden
states:

Definition: Chromatin State

Be a significantly categorized superposition of histone modifications present
at some position on the DNAwe call a model-dependent irreducible pattern of
such a superposition a chromatin state S . The number of chromatin states de-
pends on the underlying fine-graining of the statistical model. From an HMM
point of view a chromatin state is determined by the individual emission pa-
rameters of the underlying observables in combinationwith the number of hid-
den states under consideration.
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We furthermore define an enhancer state by
Definition: Enhancer State

A chromatin state is called an enhancer state E if we find a sufficiently high
emission probability for H3K4me1 as well as a vanishing emission probability
for H3K27me3.

while a repressive state is from now on defined by
Definition: Repressive State

A chromatin state is called a repressive state R if we find a sufficiently high
emission probability for H3K27me3 as well as a vanishing emission probability
for H3K4me1.

In the case where H3K4me1 and H3K27me3 appear significantly at the same time
we coin these chromatin states bivalent.

We also find that the different chromatin states change their respective activity
or functionality between cell conditions by switching in-between states. We observe
two main drivers for changing chromatin state functionality like e.g. enhancer or
promoter activity. This is on the one hand based on cytokine dependency as can be
readily expected, since certain gene loci as e.g. Ifnγ are strongly T-helper cell-specific.
On the other hand a strong effect is excerted by Tbet dose as well. We will follow up
on this discussion later on since this will have enormous effect on chromatin state
specificity for the ultimate epigenetic network underlying Th1 and Th2 cell differen-
tiation.

In conclusion to the ChromHMM implementation and the resulting epigenetic
state landscape we have to note that a shortcoming is the Boolean analysis of the pre-
viously analyzedpeak structure of histonemodifications. As a result state parameters
are solely computed on the basis of the existence of a certain mark and hence only in-
coporate binary information. What is completely missing at this point in the analysis
is any information on differential distinctions between different conditions as well as
between states that are being classified identically yet differ in their respectivemodifi-
cation load. Furthermore histone modifications are thought of as being independent
from each other, which is realized in the HMM by assuming the observables of the
respective hidden states to be independent Bernoulli random variables. Yet for an
actual chromatin state these independent variables act in concert for its respective
very definition as e.g. in the case of active enhancers. In order to shed light on these
issues and to make predictions about similar behaviour w.r.t. gene expression we
address the points in the subsequent chapter about the inference of a parametrized
correlation measure for epigenetic transcriptional regulation.
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CHAPTERV

Epigenetic landscape inference by
implementation of a multivariate correlation

measure model

V.1 A parametrized multivariate correlation measure
We already saw in the last chapter that there exists a wide range of possible varia-
tions of chromatin states in between different cell lines w.r.t. cytokine stimuli as well
as w.r.t. Tbet dose. In other cases putative active enhancer elements seem to act con-
stitutively over several or in some cases all cell conditions under consideration. Up to
this point we only have knowledge about HMM chromatin states acting e.g. as viable
indicating priors for enhancers, i.e. for epigenetic activation of gene expression. We
want to find out at this point if for a certain element being tagged in some cell condi-
tion as an enhancer state we can find a co-regulating behaviour with gene expression
itself, s.t. a prior for a possible causal relation can be inferred. Hence we are going
to focus on enhancer states since they potentially present a well investigated way of
describing gene activation. To this end we want to find a robust way of correlating
enhancers with genes and preferably make a one-to-one mapping of Th1 and Th2
regulating enhancer-gene pairings. This will be done via the before analyzed RNA-
Seq expression and histone modification data sets. Furthermore we will find in due
course that this picture can be extended to repressive states as well.

V.1.1 Optimization of correlation measure
From first principles it is unclear if there are several histone modification that are
co-regulated in the same way w.r.t. cytokine signal or Tbet dose and also in corre-
spondence with the respective gene to which a certain chromatin state supposedly
belongs1. Later on the question of a one-to-one mapping between a chromatin seg-
ment or state and a specific gene will be addressed in more detail. Since we are fo-
cusing on positive correlations and gene regulation from proximal as well as from
distal chromatin elements we have to take enhancer elements in general into consid-
eration, meaning not only far away elements but also also intragenic enhancer states

1Quite often in literature enhancers are just mapped to the next-nearest downstream gene (see e.g.
[315]), yet this has not necessarily to be the case since gene-related enhancers have been shown to
appear downstream of a TSS (see e.g. [257]) or even several genes away as well.

53



CHAPTER V. EPIGENETIC LANDSCAPE INFERENCE BY IMPLEMENTATION OF A
MULTIVARIATE CORRELATION MEASURE MODEL

fulfilling the definition of E , which also includes the addition of the promoter mark
H3K4me3. In Fig.V.2 we show the integrated histonemodification load for one exem-
plary enhancer state upstream of Ifnγ – CNS-34. We find that while the expression of
Ifnγ increases we find an increase in the enhancermarkH3K4me1 as expected as well
as in the active mark H3K27ac. At the same time we find a prominent decrease in the
repressive modification H3K27me3. The promoter mark H3K4me3 is non-existent
at this site – as being the case for most distal sites – which suggests exclusion from
the analysis of distal chromatin states. The same holds true for H3K9me3, which
as we have already discussed rarely occurs genomewide overall, and with an even
lower frequency around Th1 and Th2 genes of interest. We already saw that active
enhancer states, which overlap with CNS sites at the Ifnγ locus as well, involve both
H3K4me1 and H3K27ac. Hence we are in need of a combination of both marks in
order to obtain robust correlations. At the same time we observe that in several cases
while enhancers states can disappear chromatin states containing H3K27me3 appear
in the opposing cell program. One such example was CNS-54. From this we hy-
pothesize that the repressive mark H3K27me3 plays an important role in enhancer
regulation. We will validate this for a set of notable enhancers in the following.

Method

In order to obtain a robustmeasure for correlationwe consider a set of experimentally
validated enhancer sites in Th1 and Th2 cells. At these enhancer sites we parametrize
a combined multivariate measure of H3K4me1, H3K27ac and H3K27me3. We as-
sume that an adequate multivariate measure for correlation should exhibit the abil-
ity to maximize the correlations with the respectively attributed genes. Without loss
of generality we also assume that correlations with enhancers should be maximized
simultaneously in contrast to independent maximizations that would yield different
parametrizations for every enhancer independently2. We propose the following lin-
ear parametrization measureM for histone modifications

M = H3K4me1+ a ·H3K27ac+ b ·H3K27me3 (V.1)

with free parameters a and b. Without loss of generality we set the prefactor of
H3K4me1 to one, which is a gauge freedom of the linear equation. Non-linearities
are not considered at this point since we have no reason to assume that the three con-
sidered histone modifications are in some specific way necessarily coupled to each
other or that there is some evidence of some assisted loading recruitment mechanism
between several histone modifications. This also manifests in the fact that in our 16-
state HMMwe find poised enhancer states, as well as active or repressed states with
significant peaks, without the need for another histone modification to occur simul-
taneously or even at the same site in a different cell condition.

We already noted that H3K27me3 decreases at enhancer sites with increasing
gene expression while H3K27ac behaves in accordance with H3K4me1. This leads

2Independent maximizations are furthermore undesirable if we want to obtain only one
parametrization since only some enhancersmight profit from thismethodwith high correlationswhile
at the same time this lowers the correlation of other enhancers.
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to boundary conditions on the sign of the parameters a and b s.t. we require

a > 0 ∧ b < 0 . (V.2)

For some learning sample of enhancer sites Ei we hence obtain the following opti-
mization problem:

We demand a maximization of the sum of the correlations of the histone modifi-
cations at enhancer sites Ei with the expression of the respective gene Gi:

max(O) w/ O = ∑
i
corrj(Eij,Gij) (V.3)

where O denotes the objective function. Also we set Eij ≡Mij s.t.

O = ∑
i
corr(H3K4me1ij + a ·H3K27acij + b ·H3K27me3ij,Gij) (V.4)

Expressions like H3K4me1ij denote integrated read counts for an enhancer site i in
condition j. Correlations are performed over conditions j. To make computation-
ally meaningful predictions we have to minimize the negative objective function and
hence compute

min(−O) s.t. a > 0 & b < 0 . (V.5)

We also consider Pearson correlations in contrast to Spearman correlations. The rea-
soning for this is as follows: first of all for Pearson correlations the relation between
input and response is assumed to be linearwhile for Spearman the only assumption is
monotonicity. While increasing the number of data points by considering replicates
independently in order to obtain more significant results (for higher sample num-
bers the significance increases for high correlation values) we often encounter slight
non-monotonicity arising from differences between replicates. This means it can be
the case that we obtain slightly higher modification for one replicate accompanied by
lower gene expressionw.r.t. the other replicate and vice versa. For better comparabil-
ity and to avoid outliers we also only consider samples exhibiting differences in Tbet
dose. An example for this behaviour can again be observed for H3K4me1 in Fig.V.2.
Spearman’s rank correlation coefficient ρ hence might decrease due such possible ar-
tifacts while Pearson’s correlation coefficient R yields higher values. We also show
the respective Pearson and Spearman correlations for the following analysis in Fig.B.6
from which we see that Pearson correlation indeed performs better. Furthermore we
do not assume a non-linear relationship between gene expression and histone mod-
ification at this point, which is also reflected in the correlation measure w.r.t. which
we perform our optimization.

The learning sample for the parametrization of the multivariate correlation mea-
sure is depicted in table C.63. Most of the enhancer sites are found at the Ifnγ locus
exhibiting the best annotation in T-helper cells in mice. For optimization we employ
the fminsearch and fmincon routines in MATLAB sincewe face a smooth non-linear op-
timization problem for random search initial conditions in the interval [−1, 1]. The

3For more details on the individual enhancers in the learning sample we refer to the following
studies [19, 171, 179, 344, 351].
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optimization is then performed 1000 times for different initial conditions. For the un-
derlying training sample we obtain the following parameter values, which are stable
w.r.t. initial conditions

a ≈ 1.24 b ≈ −2.82 . (V.6)

This parametrization, which we will justify now, will be adopted for subsequent
analyses from now on. In order to account for stability w.r.t. the training sample
we apply resampling techniques. For a weak resampling we first use the jackknife
method corresponding to a leave-one-out resampling. This yields the followingmean
and standard deviation

a = 1.2562± 0.2034 b = −2.8417± 0.3243 . (V.7)

We obtain the confidence intervals of the respective parameters via the distribution’s
quantiles. The quantile z∗ of a Gaussian distribution is in general calculated (see e.g.
[77]) via

z∗ = 1−Φ−1
(

1− α

2

)
(V.8)

where Φ denotes the cumulative distribution function of a Gaussian and α as usual
denotes the significance level. For the 95% quantile, for a Gaussian being equivalent
to a p-value of 0.05, we obtain the 95% confidence interval by

CI0.95 = ±z∗0.975 ·
σ√
n

(V.9)

with n being the sample size. For a Gaussian distribution we have z∗0.975 = 1.96 (see
e.g. [339]). This yields for the two parameters

aCI0.95 = [1.1478; 1.3646] σaCI0.95
= [0.1503; 0.3148]

bCI0.95 = [−3.0145,−2.6689] σbCI0.95
= [0.23957, 0.5019]

At the same time boostrapping the sample 1000 times yields an empirical distribution
where the first two moments represent the mean and the standard deviation which
reads

a = 1.3168± 0.6601 b = −2.8916± 1.1238 (V.10)

respectively. Applying a bootstrapping procedure [96] the 95% confidence intervals
lie at

aCI0.95 = [1.2746, 1.3590] σaCI0.95
= [0.6316, 0.69128]

bCI0.95 = [−2.9634,−2.8197] σbCI0.95
= [1.0753, 1.1770]

respectively. We see from the resampling statistics of the two free parameters a and
b that the initial estimates from the full training sample lie well within the respective
confidence bounds w.r.t. their errors. Additionally we observe a slight skewness of
the distribution for the parameter a indicating that because of its lower positive mean
and relatively high standard deviation it tends more often to slightly larger values.
This can be seen in Fig.V.1.
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FigureV.1: Parameter distributions for a (left) and b (right) obtained froman n = 1000 bootstrap sampling procedure. Assuming
an approximate Gaussian distribution we label the respective means with the red lines respectively.

The resulting multivariate histone modification measure that is hence assumed
from now on reads4

M = H3K4me1+ 1.24 ·H3K27ac− 2.82 ·H3K27me3 . (V.11)

Discussion

By and large jackknife and bootstrapping results are comparable for the underlying
training set yielding mean values and error bounds for the parameters that represent
consistent results for bounded and unbounded optimization routines being indepen-
dent of perturbations in the initial starting values. The order of magnitude of the
absolute values of the parameters is also the same while H3K27ac is comparable to
H3K4me1 in its impact on correlation. The parametrized coefficient of H3K27me3 in
the correlation measure, if present at an enhancer, seems to have a slightly higher ab-
solute impact yet contributing negatively to the correlation measure. This supports
the evidence that H3K27me3 is a highly important histone mark for the definition
of enhancer activity. In general if the repressive mark starts occurring in one of the
opposing cell conditions of a labelled enhancer we already conjectured earlier that
this is a far stronger statement than observing an enhancer that solely loses its active
mark H3K27ac. We saw in Fig.IV.6 that not only do we find active enhancers that are
“switched off” due to a perturbation in Tbet dose or w.r.t. different cytokine stim-
uli, but we also find active enhancers that switch to a repressive chromatin state and
hence exhibit significant amounts of H3K27me3. These enhancers play a special role
according to the parametrized correlation measure since H3K27me3 influences their
correlation with gene expression to a large extent.

To investigate these findings further we single out a prominent enhancer example
of the underlying training set namely the Ifnγ enhancer CNS-34. We find overlaps

4We note that we neglect error bounds on the parameters in the computational framework later
on in order to reduce computation time for genome-wide computations significantly. Yet this surely
represents an aspect that will be included in future implementations.
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of p300 binding sites at this location with active enhancer states in the HMM in all
Tbet wild-type and heterozygous conditions as well as in the naïve T-helper cells as
can be seen in Fig.IV.6. The knock-out conditions already exhibit loss of the active
mark, classifying the region as a purely poised enhancer. In Th2 cells yet we find a
repressive HMM state that solely exhibits H3K27me3.

Figure V.2: Dependence of Ifnγ gene expression on H3K4me1, H3K27ac, H3K27me3 and the combined parametrized measure
respectively at the Ifnγ enhancer segment at CNS-34 . In all cases we observe non-monotonicity being among the reasons for the
usage of Pearson correlations. The respective correlations values are indicated in combination with their respective p-values.

In Fig.V.2 we show the Pearson correlations for the individual modifications with
expression of Ifnγ as well as with the obtained parametrized correlation measure of
CNS-34. As can be readily expected H3K4me1 and H3K27ac individually correlate
positively with gene expression with high statistical significance. At the same time
we find significant negative correlation with H3K27me3. This can be also seen in the
peak structure in Fig.IV.6 where we find pronounced peak signals in Th2 cells ex-
hibiting the lowest gene expression values for Ifnγ. Turning now to the parametrized
correlation measure we find that the situation becomes even more distinct. Not only
does the correlation itself increase significantly, especially opposed to the traditional
enhancer marks H3K4me1 and H3K27ac, which themselves only show comparably
poor correlation values, but it also becomesmore distinct and statistically significant.

In order to get more insight into the generality of this behaviour we redo the
same analysis for all enhancers of the training sample obtaining the results shown
in Fig.V.3. Here the enhancer elements appear in descending order of their corre-
lation from the parametrized multivariate correlation measure. From the frequency
distribution of the respective correlations we find that for the whole training sample
the parametrized combined histone modifications yield higher correlations peaking
slightly below R = 0.8 . Also the distribution is comparably narrow. The distribu-
tions for H3K27ac and H3K4me1 both peak at roughly R = 0.6 being considerably
lower while the active mark H3K27ac falls off much quicker to lower correlation val-
ues.
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Figure V.3: Pearson correlation values of all enhancer elements from the training sample rank ordered decreasingly by their
respective correlation via the parametrized correlation measure. Additionally we show the respective correlations of all indi-
vidual histone modifications separately. On the right hand side we depict the distribution of these correlation values showing
a distinct narrow peak with a considerably higher maximum than of all individual histone modifications.

For the classic enhancer mark H3K4me1 we find more low-valued correlations at
enhancer instances up to the point where no correlation can be inferred and we even
find slight anti-correlation (mostly being statistically unsignificant). Anti-correlation
is a phenomenon which can even be found on a genome-wide scale and will be dis-
cussed in more detail later on. This is to some extent due to the high variability of
histone modifications over cell conditions in some enhancer areas where a higher
number of data points (be it replicates and/or cell conditions) might instead yield
positive correlation results and turn negative correlations into positive ones, hence
improving on these results. We note additionally that although bootstrapping yields
a significant validation of the full training set’s parameter estimation result additional
experimentally validated enhancers that might turn up in future experiments will in-
crease the ability to tighten the constraints on the parametrized correlation measure
further.

We conclude that from the optimization of the above objective function we have
hence obtained a robust parametrization w.r.t. initial conditions as well as random
subsampling of the underlying training set of Th1 and Th2 enhancers which will be
used in the subsequent analysis. We will see shortly how this can be applied in gen-
eral to a genome-wide analysis and what implications these results have for the cre-
ation of a regulatory network of Th1 and Th2 cells.

V.2 Computational implementation

To this end we will exemplify in the following the power of the methodology of the
parametrized multivariate histone modification correlation measure on basis of the
underlying HMM for different epigenetic feature patterns. This should comprise re-
gions with distinct well separated features as well as regions with broad, extended
features (e.g. superenhancers). Furthermore we are interested in small uniquely de-
fined regions where epigenetic features are thought to contribute directly only to the
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expression of a single gene as well as in crowded regions w.r.t. the number of occur-
ring genes where such a distinction cannot be straightforwardly made. In order to
investigate the analytical implications of the results we will hence focus on some spe-
cific Th1 and Th2 cell loci exhibiting the exemplary cases stated above. The proper
computational analysis on a genome-wide scale yet faces several intricate problems
and hence conceptual refinements that have to be clarified first, which we will lay
out in the following. For this we set up a novel correlation algorithm included in a
specific computational framework implemented in R and bash. Among the reasons
for the implementation in those programming languages was to have a foundation
for an easy-to-use framework, which is not restricted to usage only when having a
strong programming background but is also application oriented with regards to the
general biology community.

V.2.1 Preprocessing
In order to obtain a proper correlation result the data naturally has to be prepared
appropriately first. This is necessary since we are not solely interested in the called
peak islands where background subtraction has already happened but we want to
investigate all possible regions where read calls have been made – also those with
insignificant peaks for which the SICER routine does not provide normalized results.
This is necessary since a peak might occur in one condition but not in another one.
Still we are in need of the reads from the non-peak condition in order to appropri-
ately correlate anything. Apart from the aforementioned normalization w.r.t. library
size we have to subtract the read background from the respective control files. In the
following we also make the assumption that replicates will be treated independently
from each other in order to stabilize the correlation fit as already mentioned during
the optimization procedure. This means that two replicates with slightly different
gene expression as well as histone modification values are preferred to a mean es-
timation, hence obtaining a bigger sample, being beneficial for significant Pearson
correlations. For a genome-wide correlation analysis we will only investigate data
points that exhibit a grading in Tbet dose since Th2 control as well as naïve condi-
tions in many cases exhibit heavy outliers and therefore turn out not to be robustly
comparable for a range of instances not being part of the learning sample. For data
preparation we scan the binned genome with a window of 200 bp for all replicates
and all conditions obtaining a discrete grid on which we can perform possible corre-
lations. This is implemented in a script called histmodsegmentation.R.

V.2.2 Input
The algorithm has to be supplied with a list of ENSEMBL transcript IDs. The respective
transcripts are then checkedw.r.t. their genomic locations fromwhich corresponding
topologically associating domains from published data [89] are determined. These
TADs are used as a prior for determining enhancer-gene associations using the para-
metrized correlation measure. The underlying TAD data in mice has been obtained
via Hi-C experiments in embryonic stem cells with a 40 kb bin resolution5. One of

5See mouse embryonic stem cell topological domains on http://chromosome.sdsc.edu/mouse/
hi-c/download.html
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the main findings from [89] being widely acknowledged is that the boundaries of the
respective TADs are to a large extent cell-type-invariant. Hence we assume TADs on
large scales to hold also true for our experimental data sets. Furthermore it has been
found that enhancer-promoter interactions in general do not cross TAD boundaries,
hence we restrict correlations solely to these domains (see e.g. [240, 263, 275]). Ad-
ditionally we supply the respective parametrized weighting of the different histone
modifications as specified by the optimization of themultivariate correlationmeasure
in Eq.V.11. In general the algorithm can be supplied with any arbitrary parametrized
linear or non-linear combination of any arbitrary number of histone marks. This has
to be specified beforehand. Hence the whole procedure is highly generalizable.

To improve computation time for the segmentedmodification bins and their para-
metrized measure the data sets are separated into smaller subsets and parallelized
and subsequently assignedwith the respective parametrization. This is implemented
in Parametrization.R. We note that the whole correlation routine which will be sub-
sequently performed is based on the aforementioned HMM chromatin state segmen-
tation, s.t. different chromatin states can be observed independently from each other.
One of themain reasons for this is the reduction of computation time of the respective
routines aswe can alreadymake some preselectionw.r.t. the chromatin state patterns
we are interested in, e.g. enhancers. Themain correlation routine, which is explained
in more detail below, hence uses as an additional input the HMM chromatin states
that are investigated in the correlation analysis as well as the cell condition in which
these states are supposed to occur for subsequent analysis. As amost general case we
might be interested in a genome-wide analysis of all states and all gene transcripts
available for some species, which leads to a fine-grained genome-wide correlation
pattern. On the other hand we might for example only be interested in enhancer
states or in states with repressive marks that are exhibited in some particular con-
dition. This then defines the segments that are considered for correlation. Not only
can we consider the unification of chromatin states Si

⋃ Sj for i 6= j over different
conditions but we can also specify only the overlap Si

⋂ Sj for i 6= j as a minimal
consensus set for some chromatin state. For example we might be interested in all
poised or active enhancer states (e.g. states 1, 2, 3, 10) that only occur in Th2 or hy-
brid Tbet+/+Th1/2 cells. In order to see thismore clearlywe again turn to the respec-
tive HMM segmentation around Ifnγ in Fig.IV.6. We find that many enhancer states
overlap over several conditions as can be e.g. observed at the CNS-34 enhancer. Also
some enhancer states switch to a different chromatin state and some instances extend
over a wider range in a particular condition. All of these regions would qualify as
being relevant candidates for positive gene regulation. Later on this will lead to cell
type-specific definitions for the respective chromatin state correlations.

We already note here that the definition of this predefined segmentation also af-
fects the correlation results to some extent. Additional inputs for the correlation algo-
rithm are the resolution under which enhancer states are correlated, which is related
to this issue. This basically means that a chromatin state of interest, which has a cer-
tain width on the DNA, is being partitioned according to this value in order to obtain
a reasonable fine-graining in correlation values. Optionally one can specify a statis-
tical threshold that merges statistically similar neighbouring correlation elements at
the end of the analysis. In addition to this one can also indicate if a computational
transcription factor binding site search should be performed or not. The general ex-
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ecution command of the correlation algorithm with options to be specified reads

1 HistoneCorrelation .sh <gene_transcript > <histone_mod_file_ending > [ options ]
2
3 #with [ options ]:
4
5 -r [1= unification of regions , 2= overlap of regions ]
6 -s #save data for later analysis
7 -p # preload saved data
8 -f #make correlation figures for each significant element
9 -c # input of multiple transcripts via specified file: -c <multiple transcripts file >
10 -d # specify domains for transcripts individually : -d availableIDs .txt
11 -m # merge segments ; optionally specify -m <mean > <sd > with numerical arguments ,

otherwise default is used
12 -t #TFBS analysis ; usage : -t <motif file >
13 -g #do gene expression model if only one transcript is correlated : -g [1= linear model ,

2= linear exponential model , 3= linear logistic model ]
14 --partial # calculate partial correlations for a supplied list of transcripts at a

certain locus via --partial <transcript file >
15 --hmmstates # customize choice used for correlation by vector listing like: --hmmstates

[X Y Z] with X,Y,Z, etc. being HMM state numbers
16 -- significance #set significance cutoff for correlation : --significance <corr > <pvalue >
17 --resolution # specify upper bound resolution numerically
18 --verbose # detailed information on the computation process

We will explain some of the above stated algorithmic implementations in more
detail now.

V.2.3 Correlation algorithm

The full correlation algorithm6 is executed by the bash-script HistoneCorrelation.sh
that incorporates the pre-processing of the ChIP-Seq data as described above. This is
then followed by the actual correlation procedure which is implemented in
Correlation.R . The functions used by the algorithm are themselves implemented
in FuncPipeline.R . We will discuss some important main aspects of the algorithm
which are highly important for understanding the subsequent results.

Segmentation of chromatin state elements

As the HMM result of classified chromatin states is used as a prior for correlating
epigenetic regions of interest with the expression of a certain gene transcript we find
a huge amount of instances of chromatin states spanning several kb. This essentially
means that in such a case one integrates over the full modification count within these
states, hence one only obtains an effective mean value approximation for correlation.
This implies coarse-graining up to a level where significant correlations of some seg-
ments might vanish completely since the mean values over sufficiently large regions
might become approximately equal for certain cell conditions. The minimal size of a
chromatin fragment always is 200 bp as specified by the HMM. Yet for segmentation
of larger HMM states we have to specify an upper bound in chromatin state resolu-
tion.

6consisting of roughly 2000 lines of code
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Figure V.4: Correlations of enhancer state elements at the Ifnγ locus for different upper bound resolutions in different shades of
green corresponding to different correlation coefficients as indicated in the legend. The difference w.r.t. significant correlations
is shown as well.

In Fig.V.4 we exemplify the differences in upper bounds on the length of chro-
matin elements. To this end we depict part of the Ifnγ locus where only enhancer
states occurring in the Tbet+/+Th1 condition were considered for correlation using
the correlation measure from Eq.V.11. Beneath the HMM state lines we show all
correlations for upper bound resolutions of initial chromatin state sizes of 600 bp ,
1000 bp , and 2000 kb in shades of green where bright green denotes high correla-
tion and dark green denotes low correlation. We clearly see that the width of the
different new segments gets larger with increasing upper bound resolution. In addi-
tion we also observe changes in correlation values for different resolutions. For the
upper bound resolution of 600 bpwe still observe a very fine grained correlation sub-
structure with distinct high correlation peaks while higher resolutions yield broader
highly correlating structures.

We can furthermore introduce a significance level on correlations that has to be
met in order to qualify as a significant correlation. Let us assume a correlation R >
0.5 and a corresponding p-value of p < 0.1 . We see that in the case of a resolution
of a maximum of 600 bp significantly more elements vanish while for a higher upper
bound resolution more chromatin state segments pass the significance threshold.

For further downstreamanalysiswewill employ a combination of different upper-
bound resolutions in order to achieve a trade-off between fine-graining and obtaining
a large amount of statistically significant chromatin state elements. Hence for actual
gene locus analyses we will merge the 600 bp and 2000 bp results.

The computation of the respective histone modifications in each new segment
is performed as follows: We find that in some cases the value within a certain his-
tone modification bin mb as specified in the input data might be split or that several
formerly smaller input data bins might lie subsequently within a larger chromatin
state segment s as defined by the upper resolution bound. In this case these values
are summed by their respectively weighted overlapping length. We thus obtain the
respective parametrized histone modification value ms within a newly determined
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chromatin state segment s from its former bin values mbi

ms = ∑
i:|bi

⋂
s|6=0

|bi
⋂

s|
bi

·mbi , (V.12)

where the vertical bars denote the length of the segment.
We additionally note that in Fig.V.4 we already employed an additional feature

of the algorithm namely the merging of sufficiently similar neighbouring elements,
which we will introduce now.

Merging of statistically similar elements

What is in general meant by the determination of “statistically similar elements” is a
quantitative procedure to check whether neighbouring elements should be merged
due to their similarity w.r.t. their histone modification profiles over different condi-
tions c. This naturally leads to a reduction in the number of individual fragments
and additionally reduces the number of very narrow correlation segments with po-
tentially low significance. It is important to note that we only want to achieve a fine-
graining of individual segments that does not unnecessarily break down all elements
to a level where the experimental data is not accurate enough to yield statistically
meaningful results and fluctuations in read numbers might get too large. We hence
merge on basis of similarities. This is done by determining themean and the standard
deviation of the difference of the parametrized histone modification measure over all
conditions between neighbouring elements. In order to perform a meaningful com-
parison of neighbouring fragments we first of all convert the histone modification
value within a segment of length |s| to densities by

ds =
ms · 100
|s| . (V.13)

For every segmented element with running index i we now determine the tuple

{∆ds, σ∆ds}ij (V.14)

being the mean and the standard deviation of the difference of the parametrized hi-
stone modification densities for neighbouring segments si and sj of all conditions c.
The mean e.g. is obtained via

∆dsij =
∑c(dsc,i − dsc,j)

c
. (V.15)

In more detail segment i is the left neighbour of segment j.
We can now define boundaries within which neighbouring fragments have to lie

in order to be merged. This can be specified as an additional input to the correlation
algorithm as well. To this end we choose an exemplary gene locus to learn the mean
and standard deviation distributions. In our case we again chose the Ifnγ locus to
determine the learning sample distribution. From this we determine the inner 0.5-
quantiles of the two distributions representing the median. Thus we assume similar-
ity of a total of half of the neighbouring segments within the training sample. From
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this we obtain for our correlation workflow based on the correlated parametrized
histone modification segments the following boundaries on the similarity of neigh-
bouring elements ij

{∆ds ≈ 0.025, σ∆ds ≈ 0.05}ij (V.16)

Individual segments lying within these boundaries are iteratively merged. As soon
as this merging condition is met the respective elements are being merged according
to

d∗s =
dsi · |si|+ dsi−1 · |si−1|

|si|+ |si−1|
(V.17)

Here again the vertical bars denote lengths of segments si. In effect we weighted
each neighbour with its respective length and normalized the whole density in the
end to its combined final length. This is repeated with the adjacent neighbours of the
subsequently resulting element d∗s until the merging condition is not met anymore.
This code is furthermore shown in appendix D.

If we perform the splitting and merging procedures for different HMM states we
obviously obtain different resulting segments. We show one exemplary result where
we perform correlations for all possible HMM states at the Ifnγ locus as well as for
enhancer states only. The result is shown in Fig.B.7. For several correlating segments
we now find differences in their spatial extension as well as in their respective corre-
lation and p-values. This becomes even clearer when only observing all correlating
segments fulfilling the significance threshold. This is obviously due to the fact that
the merging for the correlation of all HMM states also includes HMM states that are
next to enhancer states depending on the statistical merging condition also leading
to an absorption of these segments. Hence to some extent the recovery of statistically
significant elements is also dependent on the considered HMM states7.

Actual correlation and output

The actual Pearson correlation is subsequently performed via the parametrized his-
tone modification value within each iterated merged8 segment m∗s , which is straight-
forwardly obtained via Eq.V.13 . Each segment is in addition to its Pearson correla-
tion value R and its p-value colour-coded in shades of green for positive correlation
values and shades of red for negative correlations. Bright colours indicate high abso-
lute values while dark colours indicate low values. We obtain output files including
all segments as specified by the chromatin state input and the respective conditions
and its results as well as only those segments that satisfy the cut-off of R > 0.5 and
p < 0.1 . Furthermore we obtain the workspace with all segments and parametrized
histone modification values as well as normalized gene transcript expression values
for the considered regions in the workspace file CorrelationData.RData for further
postprocessing. The commands for the correlations are given in appendix D.

7Since we can also determine if a unification or an intersection of states over certain conditions has
to be performed the resulting segments m∗s also depend on this specification.

8The merging itself is optional, yet always performed in our subsequent analysis.
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V.2.4 Summary
The general workflow of the correlation algorithm is summarized in Fig.V.5.

Parametrization.R
parametrized measure

Input

Output

Input

Output

Functions for splitting,
merging and plotting:

Figure V.5: Algorithmic flowchart of the correlation analysis. After specifying the input options as well as a transcript
file HistoneCorrelation.sh is executed performing all needed normalization and data alignment procedures as well as
performing the parametrization w.r.t. the specified histone modification measure. In the actual correlation procedure,
CorrelationPipeline.sh, the above specified chromatin state element segmentation with subsequent statistical merging and
calculation of significant correlations is performed.

The way we apply the correlation algorithm in general from now on can be hence
summarized as follows:

At the beginning the data has to be preprocessed, i.e. the ChIP-Seq data is nor-
malized and the data frames are prepared such that corresponding read bins are
identified between replicates and over conditions. As input conditions for correla-
tion we only use the Tbet-dose graded conditions for better comparability , hence we
correlate in total six conditions with two replicates each. Then we specify the chro-
matin states that should be used for correlation based on the HMM. Alternatively
we can always use the full set of states, hence performing correlation for all regions.
In table V.1 we illustrate which HMM states are considered for which functional an-
notation within our correlation algorithm. Then we specify under which conditions
these states have to occur and if the intersection or union over several conditions has
to be performed9. In our case we are also interested in which condition a certain state
preferentially occurs depending on a certain cell-specific transcript. This determines
the further analysis of a certain chromatin feature like e.g. an enhancer. These speci-
fication are given in table V.1 as well and will be applied in the following examples.

Furthermore a list of gene transcripts has to be specified beforehand which au-
tomatically fixes the correlation domain for each transcript individually via experi-
mentally validated TADs (see [89]). Correlations can hence only be performedwithin
these domains although arbitrary regions can be manually supplied via a seperate
file10 using a unique grep identifier for the transcript ID.

As we already saw the upper bounds on the resolution of a correlating segment
has to be specified as well. Since we found above that the choice of this upper bound

9In the following we will always apply the union.
10availableIDs.txt
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Th1 transcript Th2 transcript

activating feature 1, 3, 10
Tbet+/+Th1

1, 3, 10
Th2, Tbet+/+Th1/2

inhibiting feature 7, 8, 12, 13
Th2, Tbet+/+Th1/2

7, 8, 12, 13
Tbet+/+Th1

Table V.1: Intrinsic logic for the correlation algorithm to specify a notable activating or inhibiting chromatin feature like an
enhancer or a repressive state for correlation with a Th1 or a Th2 transcript from the HMM results. For activation we include
poised and active enhancers as well as active enhancers in promoter regions while for inhibiting features we consider repressed
as well as bivalent states. Most importantly the conditions in which these states have to occur for correlation are specified with
inhibiting states always occurring in the opposing cell condition of the respective transcript specificity. By default the union of
these conditions is considered.

can influence the similarity concerning the merging of neighbouring elements. This
can result in different segment widths and also in smaller segments experiencing
drops in their significance level. To account for this we consider two different upper
bounds on resolution, namely 600 bp and 2000 bp , and merge the respective signifi-
cantly correlating elements afterwards.

The correlation procedure is then performed by the combination of the segmen-
tation via the specified resolution and the subsequent iterative merging of similar
neighbouring segments. The conditions on the merging procedure can as well be
supplied optionally with a customized mean value and standard deviation. The cor-
relation output yields quantitative statistical results for each final segment m∗s as well
as a colour-coding for subsequent inspection. In the following analyses we only con-
sider chromatin segments that fulfill the above specified significance cut-offs.

For further details on the algorithm including computational dependencies on
previously released packages as well as their versions see appendix D.

V.3 Results

In the following wewant to exemplify the application of the above describedmethod
at some prominent genomic locations. To this endwe apply the correlation algorithm
as described above to TADs containing only one gene as well as to some containing
multiple genes. We will shortly see that in the latter case complications arise w.r.t.
unambiguously mapping epigenetic features to genes. In addition we are interested
in narrow as well as broad chromatin states in order to find out which regions are
preferentially co-regulated with gene expression. Especially two genetic loci are of
utmost interest for Th1 and Th2 cells as they are thought of acting as their respective
master regulators, namely Tbx21, producing the TF generally known as T-bet, and
Gata3. But first of all we focus again on the well-annotated Ifnγ gene locus in order
to validate the computational method.
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V.3.1 Ifnγ

The Ifnγ locus, which has also been utilized for the training of the multivariate cor-
relation measure11, is probably one of the most obvious examples when it comes to
epigenetic annotation in mouse T-helper cells (see e.g. [20]). The result of the corre-
lation procedure is depicted in Fig.V.6.

We again show the HMM results for all experimental conditions but include now
all significant correlations that fulfill R > 0.5 . Since we are mainly interested in
positive regulation of gene transcription we focus on enhancer regions and since Ifnγ
is a notable Th1 gene the respective conditions for enhancer states in Th1 cells as
listed in table V.1 have to be met. Additionally we included independently published
ChIP-Seq data in Th1 and Th2 cells for STAT1 (Th1), STAT4 (Th1), STAT6 (Th2), Tbet
(Th1) and Gata3 (Th1 and Th2) [233, 314, 334, 335]. In the following analyses we will
make intense use of these data sets in order to gain additional information on the
chromatin state properties.

Figure V.6: Significant correlations of enhancer state elements at the Ifnγ locus for combined 600 bp and 2000 bp resolutions.
We also show TF ChIP-Seq binding data from independent publications [233, 314, 334, 335] as well as binding of p300 in Th1
cells and the locations of the aforementioned CNS sites.

We can see right away that there is an obvious colour-grading in many of the
neighbouring significant correlations. This can be notably seen at e.g. CNS-54 or
CNS-34. We hence obtain a peak-like structure in the correlation results themselves,
which leads to the conclusion that there are parts of connected enhancer structures
that are more co-regulated with gene expression than others. Especially in the case
of CNS-54 (see Fig.V.7 for a close-up) we find that the segment overlapping with the

11Testing this locus again is not a circular argument since the correlation of some elements can re-
sult non-trivially in some value below or above the aforementioned significance threshold, which is
partially due to the intricate splitting and merging procedures for each element. Hence trivial re-
occurrence of a certain enhancer is not guaranteed as we will see in due course. Additionally the
segmentation of the correlation algorithm is different from that of the learning sample. The latter
rather observes one single extended segment for each instance.
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active enhancer state in the Tbet+/+Th1 condition is highly regulated with the ex-
pression of Ifnγ (R ≈ 0.87, p = 0.0003) while its flanking segments are only of the
order of R ≈ 0.65 .

Figure V.7: Close-up of an upstream region of Ifnγ showing the validation of the CNS-54 enhancer element as well as the
prediction of new enhancer elements at -47 kb and -42 kb.

We see that we recover all CNS enhancer sites apart from CNS+54 which did not
pass the significance requirements. This already represents a striking accordance
with experimental observations. We also find that there appear to be a lower num-
ber of newly inferred correlating segments in comparison with validated elements.
This is also exemplified in Fig.V.7. Apart from the already known site CNS-54 having
an intersection with a p300 binding site in Th1 cell conditions we find twomore p300
binding sites downstream of that element, which are located at -47 kb upstream of the
TSS. From the HMM we can also infer that there is at least a poised enhancer state
in Tbet+/+Th1 cells that vanishes in all other conditions under consideration. In this
case we already find significant positive correlation (R ≈ 0.70) with Ifnγ expression.
In contrast to studies, which only screen enhancers for H3K27ac opposed to a simul-
taneous occurrence of H3K4me1 as a substitute for p300 binding site occurrence (see
e.g. [154]), we find that even poised enhancers correlate in some cases significantly
with gene expression. This does not contradict our previous claim that an active en-
hancer might be an interesting prior for positive regulation of gene expression. Yet
it tells us that if the activity mark might be missing due not fulfilling statistical tests
w.r.t. peak calling and hence the absence of an active chromatin state these regions
might yet be of interest w.r.t. positive regulation. On the other hand we note that
w.r.t. the ChIP-Seq TF binding data at hand we cannot confirm significant binding of
any of these TFs in that regio which would at least call for more detailed screening
or the need to employ binding information of different TFs not considered here in
order to validate this candidate for an enhancer site. For later analysis such elements
will be only considered if they exhibit ChIP-Seq binding from the respective data sets.

More apparently the element at -42 kb is an example of a prediction of a new-
found active enhancer element. We find high significant correlation overlappingwith
p300 binding sites as well as with STAT1 and STAT4 binding, which is in accordance
with the case of the already known element CNS-54 . As before we note the dose
dependence on Tbet concerning the activity of this enhancer state and the additional

69



CHAPTER V. EPIGENETIC LANDSCAPE INFERENCE BY IMPLEMENTATION OF A
MULTIVARIATE CORRELATION MEASURE MODEL

occurrence of the repressive state in the naïve cell condition, yet again undermining
the importance of the repressive mark H3K27me3 for correlation. Actually this ef-
fect can be observed at many significantly and highly correlating enhancer segments
around Ifnγ. Of special note for this phenomenon are e.g. the CNS elements at -34 kb
but also all CNS elements downstream of the gene as well as the gene body itself
where we also correlated the enhancer/promoter signature of chromatin state 3. All
of these examples exhibit an additional heavy dependence on H3K27me3 as could
be already seen in Fig.V.3 since the CNS sites were included in the enhancer learning
sample. It is exactly these segments including H3K27me3 which are now among the
regions that significantly correlate most often according to our implementation.

We note that because of the intricate computation based on statistical significance
features, spanning from peak calling to the HMM segmentation and to the segmen-
tation and merging procedure employed in the correlation algorithm and finally to
the limits imposed on the correlation significance, if we find gaps in between signifi-
cantly correlating segments that these gaps are significant as well andmark a distinct
seperation from neighbouring elements. In some cases as e.g. in the flanking regions
around CNS-34 the graded peak-like correlation distribution can be seen as a large
connected enhancer element with different contributions to gene regulation. On the
other hand there are distinctions like in-betweenCNS-34 and the neighbouring newly
inferred segment at -42 kb which significantly separate these two segments. Having
stated this we find three new enhancer elements, i.e. at -42 kb , +36 kb and +42 kb ,
that are labelled by an active enhancer state in the Tbet+/+Th1 conditions, exhibit
p300 binding in this condition and in two of three cases also contain ChIP-seq bind-
ings.

Figure V.8: Schematic depiction of significantly correlating connected enhancer segments at the Ifnγ locus including its regu-
latory enhancer activity logic. Additionally TF binding occurrences from ChIP-Seq data are noted for each enhancer instance.
Every square depicts an active enhancer in the HMM scheme. In green we see instances which are significantly correlated and
already known enhancers, in blue we depict significantly correlated but as of yet unknown enhancers and in white we depict
known enhancers which could not be significantly reproduced within our algorithmic approach.

Finally in Fig.V.8 we give a summary of the whole Ifnγ locus analysis only con-
taining significantly correlating elements and summarizing connected correlation el-
ements without gaps into one entity. Depicted are occurrences of active enhancer
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states over all conditions at these locations. Additionally we distinguish between
known enhancer locations, newly inferred enhancer locations and those that could
not significantly be reproduced within our analysis hence not exhibiting a measur-
able coregulation effect between the histone modifications and gene expression. We
see that after the correlation analysis we are left with different entities w.r.t. changes
in enhancer activity. This means that active enhancers are either existent or non-
existent in certain cell conditions. This is again observed w.r.t. Tbet dose as well as
cytokine dependence. On basis of the HMM we note that there are 168 ≈ 4.30 · 109

combinatorial possibilities of state combinations for a 16 state model of which only
4538 are realized at significantly correlating enhancer states around notable Th1 and
Th2 genes. For a binary categorization as depicted in Fig.V.8 this number can be re-
duced already considerably to 28 = 256 possible combinations12. At this point it will
suffice to note that the number of realized state combinations reduces evenmore after
applying the parametrized multivariate correlation model. We will quantify later on
in how far this is true for the set of Th1 and Th2 genes and what implications come
with this finding.

V.3.2 Tbx21
The importance of the lineage-specifying transcription factor T-bet and its correspond-
ing gene Tbx21 has been acknowledged for quite a long time and although doubts on
its functionality as a single master regulator for Th1 differentiation have come up in
recent years (see e.g. [242]) its importance for the Th1 cell differentiation program is
undisputed (see e.g. [167, 179]). Although we will come back to its importance con-
cerning gene regulatory networks in due course we want to elucidate its epigenetic
landscape in more detail first. We already have seen the heavy impact Tbet dose can
have on enhancer activity with the prominent example of Ifnγ not only for general
chromatin state changes across conditions but even more so at correlating enhancer
locations due to the impact of the different histone modifications. It has been re-
ported in several publications [154, 313, 345] that the Tbx21 locus is controlled by a
so-called super-enhancer a short definition of which can be found in section II.1.2.
The occurrence of this super-enhancer as well as collection of other examples is listed
in the extensive super-enhancer database dbSUPER for the mouse genome [184].

As can be seen in Fig.IV.5 we indeed find an extended active enhancer state in
Th1 cells extending from the Tbx21 gene body up to the next-nearest upstream gene
Tbkbp1 – in fact even further than the TSS of the latter only shortly interrupted by a
short active promoter state segment. We observe that the active enhancer state does
not change its activity as prominently as e.g. Ifnγ. In this case a complete knock-out of
Tbx21 changes the activity state only in some instances in Th1 cells, while only under
Th2 culture conditions this is achieved more distinctly. A nearly complete switch-off
of enhancer activity and even the appearance of repressive states can be observed in
the Th2 control and in naïve conditions. Yet without some differential measure on
the respective histone peaks as it is achieved by our correlation algorithm we cannot
disentangle how the epigenetic landscape is regulated w.r.t. gene expression. Espe-
cially the constitutive enhancer activity over many conditions is harder to interpret

12In chapter VI we will extend this to a ternary classification scheme with 38 = 6561 possible com-
binations with 670 actual realizations.
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from first principles keeping in mind the T-bet dose dependency.

Figure V.9: Annotated Tbx21 locus according to our algorithmic correlation procedure. Again we only show significant cor-
relations and also include TFs binding sites. The colour coding is also the same as before. Shown are experimentally relevant
cis-regulatory sites in units of kb upstream of Tbx21. We find that most of these sites are recovered with our method.

After applying the correlation algorithm we are left with only a handful of sig-
nificantly correlating regions, all of which overlap with p300 binding sites as well
as with different transcription factors, yet not incorporating all of the actual bind-
ing occurrences. From the corresponding peak file (not shown) we find that only
in some small regions the respective combination of histone peaks decreases signifi-
cantly with decreasing Tbet dose as well as with cytokine dose s.t. only a handful of
peaks are regulated differentially. Several of these segments have also been reported
in different publications [179, 233] yielding reasonable candidates for cis-regulatory
elements in Th1 cells in human cells as well as in mice. In Fig.V.9 we label the inter-
esting candidate sites, some of which are recovered with our analysis.

Although some correlation values are only slightly above our significance thresh-
old it is still remarkable that the analysis is able to recover these sites from multiple
histone mark traces, which in this particular case are constitutively regulated over a
broad range of different cell conditions, especially w.r.t. Tbet dose itself. Spotting
these instances just by eye-inspection or even with the HMM alone is obviously un-
feasible and a naïve approach in just observing individual histone modifications also
misses most of these features completely while at the same time attributing higher
importance to features that might not be quantitatively supported by the underlying
histone modification data sets.
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We conclude that the putative super-enhancer at Tbx21, although fulfilling the
general definition, consists to a large extent of segments that are constitutively reg-
ulated over varied Tbet dose and cytokine conditions and hence are not regulated
in the same way as Tbx21 expression itself. Yet we find more distinct segments that
breakup the super-enhancerw.r.t. to their regulatory potentialwhich are co-regulated
more significantly with Tbx21 expression. These regions are already among puta-
tive cis-regulatory candidates for the gene. More interestingly the constitutive non-
correlating regions might yet form a basis for maintenance or recruitment of respec-
tive enhancer function although more experimental evidence for this hypothesis is
required. The regulatory enhancer activity pattern over different experimental con-
ditions within the significantly correlating segments is finally depicted in Fig.V.10.
Herewe still recover certain elements exhibiting constitutive enhancer activitywhereas
regulatory changes are unveiled by the correlation algorithm, which otherwise could
not be readily observed on the HMM basis alone.

Figure V.10: Schematic depiction of significantly correlating enhancer elements for the Tbx21 locus with active enhancer states
appearing in a certain condition within the correlating segment.

V.3.3 Additional notable gene loci
For completeness we annotate additional important gene loci in Th1 and Th2 cells
with our computational method. In appendix B we find schematic depictions of sig-
nificantly correlating enhancers around STAT1, STAT4, STAT6 and Gata3 as well as
around a housekeeping gene like GAPDH as a control reference.

For the Gata3 locus we find multiple significantly correlating enhancer sites in-
cluding an extended site at 288− 309kb downstream of the TSS. In addition just like
in the case of Tbx21 we also find an extended enhancer upstream extending into the
next-mearest gene body at -2 kb until -10 kb. Interestingly most of these enhancer
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sites also bind either Gata3 and/or STAT6. Apart from one constitutive enhancer
at +519 kb all enhancers vanish in wild-type Th1 conditions and some of them in
heterozygous Tbet Th1 conditions and/or in Tbet knock-out Th1 conditions as well.
Some of them additionally exhibit STAT1 and Tbet binding indicating a repressor
role of the TFs potentially contributing to Gata3 repression. We will discuss in due
course.

In case of STAT1 and STAT4 we find many distinct fragmented enhancer seg-
ments near the TSS or lying well within the genes itself. We find that most of them
bind STAT1, STAT4 as well as Tbet, while we also observe occasional STAT6 and
Gata3 binding in the Th2 conditions where in most cases the respective enhancers
are switched off, indicating inhibition. The STAT6 gene is more ambivalent since we
find only one intronic significantly correlating enhancer, which is yet active in Th1
cells as well as several downstream enhancers, which are constitutively active while
only their respective histone peak profiles change. At the same time we find that
those enhancers bind Th1 specific TFs as well, also indicating a potential important
role in inhibition as we will validate later when considering the respective networks.

As a last check we also investigate GAPDH as being an example of a T-helper cell
housekeeping gene (see [24, 135]). We only find one enhancer site in the promoter
region being consitutively active and as well not correlating at all, which confirms
our expectation of it having housekeeping functionality even on the level of our epi-
genetic analysis.

V.3.4 Th2 cytokine locus
Another prominent example in T-helper cells is the so-called Th2 cytokine locus,
which has been already studied in quite a number of publications (see e.g. [114, 207,
344]), most of which yet still struggle to distinctly map the epigenetic landscape to
specific genes at that locus. The problem here, which is also the case for most TADs
including Th1 or Th2 cell-specific genes, is that the locus is crowded, i.e. it contains
multiple genes which might or might not be co-regulated. That means that although
one can readily identify a large number of enhancer-associated epigenetic states the
question iswhich enhancermaps towhich gene exactly and, even if such a one-to-one
mapping could be found, are there enhancers that co-regulate several genes at once?

First wewant to state the results that are obtained via the HMMand subsequently
via the correlation algorithm. We will quickly run into several problems as there
will be some ambiguity in the results as can be readily expected for the above stated
reasons. In the next section we will address these issues and propose a resolution for
many of these ambiguities.

In Fig.V.11 we depict the Th2 cytokine locus including relevant Th2 genes like Il4,
Il5, Il13, Sept8 or Rad5013 as well as the correlation of enhancer states as defined in
table V.1 for Th2 cells with different gene transcripts respectively. We observe that
within the cytokine locus as defined by the respective TAD there are some putative
enhancers defined by the HMM states that seem to behave in the same way hence
seeming to be co-regulated with several gene transcripts, while others are not and

13There is actually quite some debate on the functional specificity of Rad50 for the differentiation
into Th1 or Th2 cells (see e.g. [114, 207, 344]).
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some segments seem to significantly correlate with some gene transcripts while some
others do not make the imposed statistical requirements. Furthermore we observe
some enhancers which exhibit negative correlation with some gene transcript yet not
with others. This seems quite strange at first. Wewill elucidate in the following what
possibly went wrong here.

First of all we especially look at the gene transcripts that behave in a similar fash-
ion hence clustering them hierarchically. The result of this is shown in Fig.V.12. The
colour coding shows a normalization w.r.t. the Z-score of the respective significant
correlation values w.r.t. one specific gene transcript. We find that some enhancer
regions are co-regulated positively as well as negatively especially for the gene tran-
scripts of Il4, Il5, Il13, Sept8 and Rad50. Hence we would expect co-regulation of ex-
pressions of those gene transcripts as well, while we would expect e.g. negative cor-
relation with a gene like Irf1. Hence gene expression clustering is shown in Fig.V.13.
On basis of clustering the correlation matrix of VST expression values hierarchically
we confirm close proximity of the abovementioned transcripts. Hence a considerable
amount of co-regulation of the enhancer states can be attributed to the co-regulation
of the gene transcripts themselves.

Moreover we still observe differences in correlating a certain enhancer segment
with multiple transcripts of the same gene. Examples are Il4-001 and Il4-003 where
several enhancer states correlate with one transcript yet not significantly with the
other. The same holds true for several other cases.

FigureV.12: Hierarchical clustering of significant enhancer segment correlationswith gene transcripts at the Th2 cytokine locus.
The colour-coding shows the respective row Z-scores.
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Figure V.13: Clustering of the correlation matrix of VST-normalized expression values of Th2-specific transcripts in the Th2
cytokine cluster.

Alsowe find some enhancer instanceswherewe observe negative correlationwith
one transcript while we find positive correlation with another one. One explanation
for this occasional occurrence of negative correlations indicates that the considered
enhancer is co-regulated with some gene correlating negatively with the expression
of the transcript that correlates in turn negativelywith the respective enhancer14. This
is at least an explanation for those cases where we find clear positive correlation with
another gene transcript. Yetwe should nevertheless be skeptical about the occurrence
of these negative correlations. At the same time it is questionable if some enhancers
are really co-regulatedw.r.t. several transcripts or if this is rather due to some intrinsic
residual information not taken into account. This will be investigated in more detail
now.

V.4 Partial correlations
The question we can ask ourselves is if the co-regulation found in the correlations is
“real” in some sense or if this is in fact an artifact that can be removed by refined sta-

14We note here that because of the definition of our parametrized correlation measure negative
correlation of an enhancer cannot serve as an indicator of inhibition since this would mean that in the
condition of highest gene expressionwe should observe a rise inH3K27me3 and adecline inH3K4me1.
This would yet not yield an active enhancer state in this condition as was already used as a prior for
enhancer detection. Hence this results in a contradiction.
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tistical analyses. Furthermore we want to answer the question if there is some way to
obtain a one-to-onemapping between enhancers and genes in crowded domains. For
this we employ partial correlations with only residuals between some random vari-
ables being correlated with another random variable. This is done in order to remove
any possible correlations between the initial set of random variables. In our case this
would be the set of transcripts that seem to be co-regulated by some set of enhancers.
Formally the partial correlation between two random variables A and B having re-
moved the effect by a class of random “control” variables C . . . N with N being the
total number of variables is given by Eq.A.2. In our case A is the parametrized his-
tone measure, B is the transcript to be correlated with and the vector C . . . N contains
the other co-regulated transcripts for which we correct the correlation itself.

We focus first on the region positively correlating with the transcripts under con-
sideration. We find that after application of partial correlations about half of the
correlating segments can be attributed to one specific transcript while for some the
statistical analysis is inconclusive and many others even fall below the imposed sig-
nificance threshold and hence drop out of the analysis. Nevertheless this provides
us with a good indicator for a larger enhancer segment to be attributed more clearly
to a certain transcript. In Fig.V.14 we show the association of all significantly corre-
lating elements around the interleukin transcripts in the cytokine cluster after apply-
ing partial correlations w.r.t. the set of gene transcripts for which the elements are
co-regulated15. We find that actually most of the significantly correlating enhancer
segments from the co-up-regulated enhancer cluster after partial correlation are as-
sociated with Il4-003, while the rest of the co-regulated segments can only be associ-
ated with either Sept8-004, Il5-001 or Rad50-001. All other transcripts exhibit either a
lower ranking with respect to their partial correlation with the respective enhancer
segments or appear to be not significant. This is shown for an exemplary enhancer
segment in table C.7.

Some correlations yet still remain associated with several transcripts at the same
time andhence cannot be uniquelymapped. In general the case ofmultiplemappings
is applied if correlations are similar within a range of ∆R = 0.2 and if for these cases
we obtain p < 0.1 and a relative factor between p-values of pi/pj > 3 for pi > pj .

Furthermore the significance threshold for partial correlations is of utmost inter-
est in this respect. Let us turn to the co-regulation cluster of negative correlations
for the considered gene transcripts. What we find here is that all negative correla-
tions in fact vanish since all of them fall below the correlation threshold, hence being
statistically unsignificantly correlated, and thus missing the significance threshold.
The resulting p-value and partial correlation value distribution for the negative cor-
relation cluster is depicted in Fig.V.15. We also recover the two positively correlated
instances as depicted in Fig.V.14.

In conclusion we find that after removing correlation between transcripts them-
selves and only considering correlations of enhancer elements with the respective
residuals a large number of naïvely correlated enhancer segments either vanish or
can be finally mapped conclusively to a particular gene. Only in some cases a fi-
nal distinction cannot be readily made yet the number of candidate transcripts can

15That is all gene transcripts for which we show the correlation tracks in Fig.V.14.
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Figure V.15: Phase-space of partial correlations and p-values for all enhancer segments from the negative co-regulated correla-
tion cluster with all the respectively co-regulated gene transcripts. The red line denotes p = 0.05 .

be significantly reduced. We find that the application of partial correlation removes
the significance of negative correlations with certain transcripts in most cases com-
pletely and leads to the conclusion that the occurrence of negative correlationsmainly
seem to be artifacts if no corresponding positively correlating transcript can be found
which in turn anti-correlates with the other transcript. Finally we are able to make
conclusive predictions for enhancer-gene mappings on TADs in general.

V.5 Inference of inhibition
In the case studies for the correlation algorithm above we have mostly considered
enhancer states being primers for positive gene transcript regulation. At significantly
correlating enhancer sites we also investigated the potential of finding binding of
TFs as observed in respective cell-specific ChIP-Seq data sets. We also find that Th1-
specific TFs like Tbet, STAT1 and STAT4 bind preferentially at Th1 enhancers (see
definition in table V.1), while STAT6 and Gata3 do the same at Th2 enhancers as can
be expected. Additionally TFs can take the function of a repressor by decreasing
enhancer activity and hence gene expression (see e.g. [273]).

In order to study inhibition we find ourselves ending up with two different pos-
sibilities: either we focus on repressor activity by TF binding at enhancers where
depending on the binding context a certain enhancer can be repressed by a certain
TF while in another setting it can still be activated by another TF. The alternative
method is to focus on repressive chromatin states. Yet here we might run into a stale-
mate situation since in some cases an enhancer turns to a repressive state. From an
enhancer point of view we find activation of some gene in the respective condition
yet in the opposing cell differentiation program we find a inhibition with increasing
H3K27me3 and decreasing H3K4me1 and H3K27ac, equally decreasing gene expres-
sion. How do we decide in this situation which definition applies to the chromatin
state element?

Luckily there are other cases in which we do not find an enhancer state at the
same position as a repressive state in different conditions . Let us consider for exam-
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ple the CTCF binding location upstream of Ifnγ which is also delimiting the TAD (see
Fig.V.6). Here we find empty chromatin states in all conditions but in Th2 cells where
a repressive state appears. Additionally we find Th2-specific TF binding via STAT6 at
this location in combination with significant correlation of this particular chromatin
segment with Ifnγ expression. Since the correlation measure includes H3K27me3
with a negative weight increasing H3K27me3 at the same time means decreasing the
parametrized measure. If we obtain positive significant correlation we can hence as-
sume co-regulation with gene expression and we find that the correlation measure is
also equally applicable to repressive states. Hence a positively correlating repressive
state is in accordance with the inhibition of gene expression. Because of this we as-
sign to a repressive state the task of acting in an inhibitory way on gene expression in
contrast to an enhancer state actively regulating gene expression as soon as it fulfills
the following conditions16:

1. A repressive state is found in accordance with table V.1

2. We find TF binding in the cell condition of the repressive state

Up to now we furthermore only considered positive binding of TFs at certain chro-
matin states, hence TFs fulfilled the role of an activator, i.e. binding in the same con-
dition of a positively correlating enhancer or a positively correlating repressive state.
In addition to this we also consider TF binding in the condition of the opposing dif-
ferentiation program, hence potentially acting as a repressor. For this label to be valid
e.g. an active enhancer has to be switched off by TF binding. The same obviously can
happen to a repressive state as well which would in turn correspond to an enhanc-
ing feature again. This is due to the inhibition of an inhibiting state, which results
in activation. More prominently in the ambiguous case of finding an enhancer and a
repressive state in the same segment if the only occurring TF binding belongs to the
enhancer-specific cell condition, hence to the opposing condition of the repressive
state then obviously this segment as a whole is characterized rather as an enhancer
E than a repressive stateR. Hence we obtain the following decision table

Th1 TF Th2 TF
E Th1 A TF→ + R TF→ −
E Th2 R TF→ − A TF→ +
R Th1 A TF→ − R TF→ +
R Th2 R TF→ + A TF→ −

where “R TF” denotes repressor binding and “A TF” an activator binding of a TF
within the respective state. We note that the necessary condition for a repressor to
exist is that the enhancing or repressive state has to disappear in the condition of the
respective TF binding17. The plus and minus always denotes effective activation or
inhibition respectively.

16We note that we do not explicitly exclude here the simultaneous occurrence of enhancers and
repressive states and assume that if TF binding in Th1 as well as Th2 conditions that are characteris-
tic of the respective differentiation programs exist that the meaning indeed is ambiguous and hence
depends on the context.

17To exemplify this we take for example the case of an enhancer in Th1 with an Th2 TF binding. If
the enhancer state does not vanish in Th2 we end up with the case of an enhancer in Th2 with a Th2
TF, which is again an activator.
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Applying this to a genome-wide analysis of Th1- and Th2-specific gene transcripts
as shown in table C.3 we find a total of 159 repressor instances as opposed to a to-
tal of 1570 activator instances while we find a total of 5975 significantly correlating
enhancer segments vs. a total of 4545 inhibiting state segments.

The respective combination of these enhancing and repressive states with activa-
tors and repressors will be of special importance concerning a full account of activat-
ing and inhibiting edges within regulatory networks later on.

V.6 Prediction of gene expression

We also implemented a basic linear model18 of gene regulation by additive enhancer
modification via our parametrized histone modification measure which automati-
cally selects positively correlating enhancer segments and estimates the linear model
parameters. For this simple gene regulation model we assumed the following simple
relation:

gi = a · Hij · cj + b , (V.18)

with free parameters a and b. Here gi denotes an element of the gene expression vec-
tor~g with i being the respective cell condition19. Furthermore cj is an element of a cor-
relation weight vector which assigns a weight to every enhancer segment around the
gene under consideration depending on the resulting correlation value, which we in-
ferred earlier. This is an assumption necessary to estimate the enhancer-specific devi-
ations in the free parameter a, hence reducing the parameter space substantially. The
length of index j depends now on the number of independently called significantly
correlating enhancer segments. The matrix with elements Hij is a “conditions × en-
hancer segments” matrix containing the parametrized modification measure values
for each segment.

We again choose Ifnγ as the model locus20 obtaining as a χ2-fit result

a = 0.039± 0.007 b = 10.625± 0.289 χ2
r = 0.735 (V.19)

hence 73.5% of the variance can be explained with the model fit. Obviously the pa-
rameters have to be re-fitted for each gene transcript.

In order to investigate the predictive power of the parametrization we also fitted
only half of the data by predicting gene expression of one replicate with the other
replicate. Subsequently the predicted results are fitted against the experimental ob-
servations, which is depicted in Fig.V.16.

18For a an extensive review of different models of enhancer-gene regulation see e.g. [64].
19Again we only investigate the Tbet dose dependent conditions in Th1 and Th1/2 conditions.
20We assume that a gene expression model should be tested at the most well researched and hence

reliable locus in Th1 and Th2 cells, which is why Ifnγ is again chosen as pars pro toto.
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Figure V.16: Linear fitting result of predicted vs. measured Ifnγ expression where only one replicate was respectively used for
fitting the other. The results are given by the VST normalized gene expression values.

The reduced chi-square statistic in this case yields χ2
r ≈ 0.742 hence we find good

accordance with the actual prediction of the data given the fact that only half of the
actual data was used for fitting.

Furthermore we also investigated a linear-exponential model capturing potential
multiplicative behaviour of neighbouring enhancer elements. This follows themodel
in [64] allowing for sub- and super-additive relations within TADs. Themodel in this
case reads

gi = ea·Hij·cj+b (V.20)

being simply the exponential of the linear model. In this case we obtain for the
Ifnγ locus

a = 0.0057± 0.0009 b = 2.1081± 0.0542 χ2
r = 0.79 (V.21)

with a slightly higher reduced chi-square value. Yet if we again fit the predicted vs.
the measured gene expression results in this case we actually obtain worse accor-
dance with χ2

r ≈ 0.707.
Extending the analysis to a linear-logistic model of the form (see again [64])

gi =
gmax

1 + e−(a·Hij·cj+b)
(V.22)

with gmax denoting themaximum expression value, we only obtain χ2
r ≈ 0.714 for the

prediction vs. measurement comparison. Hence we conclude that already the linear
model is able to sufficiently describe the measured gene expression data whereas a
linear-exponential or linear-logistic model accounting for enhancer-enhancer inter-
actions or asymptotic gene expression behaviour is not able to increase the predictive
power for the example of the well-investigated Ifnγ locus.
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V.7 Discussion & Summary

In this chapter we have primarily investigated the necessities for and consequences
of a robust correlation model for enhancer-gene regulation on TADs. We motivated
the need for a coupling of histone modifications for correlation. To this end we in-
troduced a general version of a linear parametrizable histone modification measure
which we trained on a set of experimentally validated enhancers. We obtained a ro-
bustmeasurewhichwas also confirmed by bootstrapping the training sample and in-
ferred that the contribution of three important histone modifications, i.e. H3K4me1,
H3K27ac and H3K27me3, being a classical repressive mark, are of the same order,
while the latter contributes negatively. Yet furthermore we also find that the appear-
ance of the repressive mark in the cell conditions with lowest gene expression have
a slightly larger impact on correlation than the classic enhancing marks themselves,
which is an astonishing finding on its own. The resulting parametrized histone mod-
ification measure is now defined by Eq.V.11. In fact we find that the inferred mea-
sure increases correlation values as well as their significance notably compared to
individually correlating histone modifications with gene expression. We note that a
subsequent experimental validation of newly inferred enhancer sites can in turn lead
to an improvement on the parametrized measure by extending the learning sample
iteratively.

In order to perform meaningful correlations on TADs using the HMM segmen-
tation as a prior for chromatin state candidates we developed a correlation algo-
rithm based on the histone modification measure which appropriately segments the
genome into uniquely identifiable units taking into consideration chromatin state
overlaps. Furthermore statistically similar segments are merged in comparison to
neighbouring elements. The final algorithmic procedure is capable of dealing with
an arbitrary correlationmeasure for individual aswell asmultiple transcripts on their
respective TADs and allows for customizablemerging procedures, resolutions in cor-
relation as well as chromatin state selection over an arbitrary number of samples.

Testing the algorithm at the well-investigated Ifnγ locus we not only recover a
significantly large amount of experimentally validated enhancers passing our corre-
lation significance threshold but we also find a smaller number of hitherto unknown
enhancer sites which also exhibit enhancer HMM states as well as p300 and Th1-
specific TF binding in condition-specific experimental data sets.

We furthermore investigated additional loci of notable Th1 and Th2 genes and
mapped their epigenetic enhancer landscape. We especially found that in some cases
only parts of the HMM enhancer states significantly correlate with transcript expres-
sion, which can be most prominently observed at the Tbx21 super-enhancer. There
we find that although being switched off or even repressed in naïve and Th2 con-
trol conditions the Tbet dose sensitivity as well as the cytokine dependency w.r.t.
hybrid cell conditions is not reflected in the HMM landscape but rather in the peak
structure at the super-enhancer. With our computational approach we are able to re-
cover distinct fragments which are co-regulated exceedingly stronger with transcript
expression than their immediate environment. This results in breaking up the struc-
ture of the super-enhancer concerning gene regulation and leads to the hypothesis
that parts of the super-enhancer might rather play an important role in maintaining
enhancer activity in the whole region itself concerning recruitment than actually in
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regulation.
Turning to crowded TADs with densely located gene promoters like in the case of

the Th2 cytokine locus we quickly run into problems of uniquely identifying
enhancer-gene mappings via traditional correlation procedures. Additionally we
find in this case large clusters of co-regulated enhancer segments, correlating not
only positively but also negatively. In order to resolve these issues we investigated
partial correlations of co-regulated enhancer segments and found that not only a large
part of the investigated segments can be uniquely mapped to distinct transcripts but
also the negatively correlated instances completely vanish since after applying partial
correlations the correlation values as well as their significances themselves drop un-
der a certain threshold becoming statistically unsignificant. It turns out that a large
amount of potentially negative correlation values can be removed in this way if no
other positively correlating transcript in the vicinity is available on the TAD.

Furthermore we propose the inference of inhibition by investigating locations of
repressive states in opposing cell conditions of the respective transcript specificity
where additionally TF binding can be found. Moreover TF binding in the opposing
cell condition upon removal of either an active enhancer state or an repressive state
acts itself as a repressor. Hence depending on activator or repressor binding at a posi-
tively correlating enhancer or respectively a repressive state we obtain either effective
activation or repression.

We also exploit significantly correlating enhancer segments which are uniquely
mapped to a certain transcript for the prediction of gene expression. Although we
have to parametrize a certain gene regulation function for every gene separately de-
pending on the respective histone modification content within each enhancer seg-
ment we can pre-parametrize the respective function depending on the correlations
of each individual segments. This considerably reduces the number of parameters
for different models. We investigated a simple linear model as well as a linear ex-
ponential and a linear-logistic model around Ifnγ for reasons of continuity and re-
liability from which we found that the linear model performs best considering the
fact that only two parameters were fitted. We also obtain surprisingly good accor-
dance between predicted andmeasured gene expression values. We note at this point
that obviously more data points as well as a more detailed investigation w.r.t. pre-
parametrization could improve the model fits. It would be especially interesting to
obtain priors for models which extend the mere usage of correlation values and are
able to fit arbitrary gene loci only on basis of their surrounding enhancer activity
patterns. If this is possible still remains to be elucidated but could in principle be
achieved for a genome-wide Th1 and Th2 transcript investigation w.r.t. their epige-
netic landscape. We will investigate regulatory epigenetic patterns in more detail in
the following chapter.
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Establishing cell-type-specific enhancer classes

We have already seen that there are certain differences between enhancer instances
w.r.t. their activity state according to different cell conditions being subject to differ-
ent cytokine and Tbet dose dependencies. Hence some enhancer becomes inactive in
a particular cell condition while another enhancer stays active in the same condition.
We saw this particularly clearly for the schematic enhancer activity depictions for e.g.
Ifnγ in Fig.V.8. In short chromatin states change all the time for various experimental
conditions and these changes can be different for every position on theDNA. Further-
more we note that not the full set of combinatorial possibilities of chromatin states
according to theHMM is realized for Th1 and Th2 transcript loci of interest but rather
a considerably smaller subset of 3322 state combinations at significantly correlating
enhancer segments and 1997 at significantly correlating repressive state segments.

There are certain question we can ask at this point. Can we determine patterns
of certain Tbet-dose dependent and cytokine dependent enhancers that reoccur to
some extent around certain co-regulated genes and can we even predict if some gene
is falling into a certain cell-specific co-regulation category by just looking e.g. at the
enhancer activity changing pattern around the gene itself? If we would be able to do
this we could obtain a probability estimate for a certain gene belonging to a certain
differentiation program.

VI.1 Introducing a typology of enhancer states
As already mentioned before the chromatin state combinatorics can be reduced sub-
stantially by e.g. turning to a binary classification. The binarization obviously has to
be performedw.r.t. some “interesting” reference state or subset of states. This can for
example be done by considering if an enhancer state is present in some condition or
restrict this further to enhancer state activity. We have argued earlier that of special
importance for the definition of enhancer states especially w.r.t. correlation of state
segments are not only the classical histonemodifications H3K4me1 andH3K27ac but
also the repressivemarkH3K27me3 occurring in numerous instances in the opposing
cell condition. This also implies the occasional presence of repressive states.
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Because of this we propose a ternary state classification allowing for three differ-
ent state conditions:

• = active enhancer1

• = repressive state2

• =¬ ( ∨ )

Hence we obtain ternary state classes including enhancer activity as well as repres-
sive states. These classes consist of a state classification for each cell condition hence
obtaining a total of 38 = 6561 possible combinations of which only 670 are realized
at significant correlations of enhancer states around the previously analyzed set of
Th1- and Th2-specific genes. This classification is not restricted to giving information
about gene activation but it can be equally applied to gene inhibition as introduced
above.

Formally a general definition of a so-called chromatin state class will be from now
on:

Definition: Chromatin State Class

A general chromatin state class (CSC) is defined as a certain combinatorial real-
ization of chromatin states, as e.g. defined by an HMM, over a set of – in our
case – different experimental conditions. The full set of CSCs is given by all
possible combinations of these chromatin states.

More specific cases of a CSCwill in our case include enhancer state classes (ESCs)
and repressive state classes (RSCs), which form a subset of all CSCs. An ESC has
to fulfill the condition of containing an enhancer state E in a certain condition of
interest while an RSC has to fulfill the condition of containing a repressive state R
in a certain condition of interest (according to table V.1). More clearly stated: a state
class represents a combination of states at a certain position for different experimental
conditions. Obviously these states have been assigned their respective meaning from
the correlation analysis introduced in the previous chapter.

We will investigate the implications of this typology in the following analysis.

VI.2 Inter-class specificity of enhancer types
We want to find out if there is some kind of underlying hierarchy to the above state
class typology w.r.t. its importances in distinguishing between two or even more cell
types. More precisely this will be performed w.r.t. ESCs and RSCs. Given the case
that such a ranking can be found the question is if there is some subset of e.g. ESCs
that has more predictive power than others for making that distinction. For this we
are also in need of a statistically powerful and robust deduction method in order
to reverse-engineer the contributions of a certain state class to a certain cell type –
essentially shifting the focus from a prediction to a fitting problem. This is where
supervised learning comes into play.

1HMM state 10
2HMM state 12 or 13
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VI.2.1 Method

Awell-known and easily interpretable approach for this task is the usage of decision
tree based classifiers. This contrasts with Support-Vector-Machines (SVM) or even
neural networks that are in general less flexible and slower in learning certain classi-
fications (see e.g. [40, 113, 165]). Additionally decision trees can deal with arbitrary
large numbers of classes and are less outlier sensitive than for example ordinary SVM
methods [36]. Yet one of the most striking advantages of decision trees apart from
easywhite-box interpretability is the straightforward identification of the underlying
feature importances for classification.

We have already discussed various variants of decision tree methods with differ-
ing levels of sophistication in section II.3.1. Common to all of them is the structure
of the input data. Although we are generally interested in occurrence patterns of
chromatin state classes we choose as a particular example the lower level hierarchy
class of enhancers. For our purposes we again select as a learning sample the previ-
ously inferred set of Th1- and Th2-specific genes and extract all ESCs, denoted as Ej
in the following, from the subset of significantly correlating segments. In addition
to this we weight every single enhancer instance k with the width of the respective
correlation segment denoted by |s∗k |. Obviously the maximal number of instances k
can differ considerably from transcript to transcript leading to a matrix of segments
kij to be considered for each transcript i and each enhancer state class j. The result-
ing weighting coefficient will be called wjk. Every ESC is now treated as a feature or
predictor variable for a certain set of gene transcripts. As we are dealing with super-
vised classification every gene itself is assigned to a certain cell-specificity superset.
Thewhole class hierarchy fromhistonemodification peak overlaps to chromatin state
classes and gene classes can be summarized as in Fig.VI.1.

Individual peaks

Peaks overlaps

HMM segmentation

Chromatin state instances

Chromatin states

Chromatin state classes (CSCs)

ESCs RSCs

Gene transcript classes

Th1 Th2

Gene transcripts

Chromatin States Gene transcripts

Correlation segments

E R

Figure VI.1: Class hierarchy for chromatin states and gene transcripts.
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For simplification we start as before with only two gene classes, namely the set of
Th1- and Th2-associated gene transcripts. Yet the method is the same for an arbitrary
number of gene classes3. Multiple instances k of a certain enhancer class around a
specific transcript additionally receive a sum over their individual weights. Hence
we obtain the following sets of weighted class features{(

∑
k

wjk

)
Ej

}
G

(VI.1)

around some gene transcript G belonging to gene class C. Finally we obtain weighted
transcript-feature matrix elementsMij, which read

Mij = ∑
k

wijk =


∑k(w1,1)k ∑k(w1,2)k · · · ∑k(w1,j)k
∑k(w2,1)k ∑k(w2,2)k · · · ∑k(w2,j)k

... ... . . . ...
∑k(wi,1)k ∑k(wi,2)k · · · ∑k(wi,j)k

 (VI.2)

where k ≡ kij denotes the individual number of instances of each feature j around
transcript i. Additionally we specify a class vector with elements vi containing the in-
formation about every gene transcript from the training sample being associatedwith
a certain class C. This is the target variable vector, which in classification problems
consists of discrete numerical or categorial variables. We will focus on an advanced
decision treemethod as described in section II.3.1, namely Extremely Randomized Trees
(ERT), which like Random Forest represents an ensemble learning method yet with
the addition that the decision splits are randomized as well.

As we also saw in section II.3.1 the choice of a best split in order to obtain some
measure of homogeneity of the target/response variable depends on the splitting
function. Hence we can either apply the so-called Gini impurity or information gain
as a split estimator4. For later analysis we choose the Gini impurity which is partially
due to the fact that it is more commonly known in decision tree analysis and requires
less computational resources since it is not logarithmic. Yet for completeness we list
the highest ranked results of both metrics in table C.8 in the appendix from which
we see that the top-ranked results are in very good accordance.

VI.2.2 Results
In Fig.VI.2 we find the top-ranked results for the enhancer class features Ej as indi-
cated by their respective Gini impurity5. We can interpret these values basically as an
importance measure in their ability to distinguish between the classes C included in
the response vector~v. Wewill call this ability inter-class specificity. Among the highest
ranking features, i.e. the enhancer state classes Ej, are enhancers that are prominently
expected to be found around Th1 genes – for example those active in Tbet+/+Th1
alone or in combination with Tbet+/−Th1 – as well as those around Th2 genes – for

3This could be in general any differentially expressed set of genes being unique to some specific
cell condition.

4It turns out that the results between both metrics are negligible [269].
5The full list is given in table C.9 in the appendix.
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example those active in Th2 cells alone – but there are also features that could not
be readily expected being ranked that high. Especially the first two highest ranked
features are additionally active in Tbet+/+Th1/2 cells hence exhibit a high ability to
distinguish between the different transcript classes, which is apparently even more
prominent due to their ability of maintaining enhancer activity under reprogram-
ming culture conditions. We note that this is quite an astonishing result in its own
right.

ESC feature importances
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Naïve
Th2

Tbet+/+Th1
Tbet+/+Th1/2
Tbet+/−Th1

Tbet+/−Th1/2
Tbet−/−Th1

Tbet−/−Th1/2

Figure VI.2: Feature ranking w.r.t. Gini impurity of all ESC features. The features are labelled by the above introduced colour-
coding. For clarity we only depict the top 20 ranked features.

To check the robustness of the Gini impurity ranking we employed a jackknife
method on all the transcripts used for the training of the decision tree. We find that
on average the ranking stays mostly the same especially concerning the top-ranked
features. In fact we recover the top 10 feature ranks in all cases and the top 20 features
with an accuracy of 93.44% . Wewill follow upmore rigorously on the dependencies
of the feature rankingwith respect to sample removal from the training setwith cross-
validation in the following.

In Fig.VI.3 we additionally show the Gini impurities for the top 20 repressive state
combinations. As could be expectedwe find highly ranked RSCswhich solely exhibit
repressive states in either Th2 cell conditions or in wild-type Th1 cells. Additionally
we yet find RSCs with repressive states occurring in Tbet knock-out conditions and
in Th1/2 conditions as well. Quite interestingly the most highly ranked RSCs all do
not include an enhancer state in any other cell condition. Hence we see the signifi-
cantly top-ranked class-distingushing RSCs do to large extent not include those state
classes which had potential ambiguity overlaps of at the same time exihibiting active
enhancer states removed but rather those which are characterized as acting solely re-
pressively. Hence this shows that for ESCs repressive states or repressive mark resid-
uals play a significant role, while on the other hand for distinct RSCs active enhancer
states are to some extent redundant.
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RSC feature importances
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Figure VI.3: Feature ranking w.r.t. Gini impurity of all RSC features. The features are again labelled by the above introduced
colour-coding and again we only depict the top 20 ranked features for clarity.

VI.2.3 Classification of transcript specificity
Obviously the above inference of the Gini impurity measure from the underlying
learning sample can be applied in turn to predictions of the class a certain gene tran-
script belongs to, hence in our case labelling a transcript as being associated rather
with Th1 or Th2 differentiated cells. In this case the occurrence of certain ESCs de-
termines statistically to which class the transcript is assigned.

Results

When we perform this classification on our full training set again we obtain a classi-
fication accuracy score of 100% . This is not a trivial result since there might still be
some inconclusive locus w.r.t. its weighted feature occurrences in their entirety not
being highly predictive of the respective gene class. In order to find out a little bit
more about classification accuracy we hence have to resort to resampling methods
again.

To this end we employ leave-one-out cross-validation (LOOCV) to test how the
prediction accuracy changes when one observation is left out of the training sample
repeatedly. LOOCV is applied in contrast to leave-p-out cross-validation (LpOCV)
since if we only leave out ca. 10% of the data of our training sample this becomes
unfeasible w.r.t. computation time since the model has to validated (77

8 ) ≈ 2.1× 1010

times6, hence we stick to LOOCV. From LOOCV we obtain a prediction accuracy of
87% .

There are actually two main possible reasons for misclassification in the LOOCV
case. The first one is rooted in the fact that a certain gene transcript might be es-

6LOOCV with 77 model validations already has a computation time of approximately 22 minutes
on a 4GHz Intel i7 (4790K) with 32GB 1600 MHz DDR3 RAM.
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sential for the correct inference of the respective tree ensemble parametrization. In
fact we find that especially important transcripts like STAT6-001 or STAT1-007 can
themselves not be categorized correctly if they are left out of the learning sample.
This means that their epigenetic landscape imposes a strong statistical characteristic
feature imprint on their own transcript-specificity. These transcripts with their epi-
genetic landscape are hence indispensable for correct annotation w.r.t. gene classes.

Another reason for misclassification due to LOOCV might yet as well be that we
rather now found the true classification of the transcript which was concealed due to
its initial misclassification and a possible uniqueness w.r.t. its epigenetic landscape.
This can impose a bias on the parametrized tree method which in turn classifies a
transcript with a similar epigenetic imprint always the sameway leading to false pos-
itives. In contrast with the STAT-transcripts above for which independent validation
of their cell-specificity exists (see e.g. [270, 371]) we findmisclassified transcripts like
Eomes-003 with a prediction probability of 87.5% of which the role in Th1 and Th2
differentiation is still being debated (see e.g. [99, 100, 213, 352]) . We will come back
to this possible re-classificiation of transcripts in the context of network clusters later
on.

We note here that in principle the classification via ERT based on our training
sample can be applied to any arbitrary gene transcript in question of which the sur-
rounding epigenetic landscape has been analyzedw.r.t. a weighting of enhancer state
classes Ej. Furthermore the process described above can be applied to any arbitrary
cell type for which a transcript learning sample classification is possible as soon as a
significant number of appropriately graded cell conditions are available in order to
observe some change in the epigenetic landscape, i.e. chromatin state class features
can be inferred. Also this is obviously not restricted to enhancer state classes but can
be applied to any arbitrary state pattern at hand as we have also indicated for RSCs
above.

VI.3 Intra-class specificity of enhancer state classes

VI.3.1 Method

Although we find ESCs which are able to distinguish between opposing cell differ-
entiation states, it would be even more important to be able not only to tell their
inter-class specificity but also pin down in what way this ranking can be translated to
some cell-specificity with respect to the different gene classes themselves. Hence we
would like to determine which features rather classify Th1-specific gene transcripts
and are hence Th1-specific themselves and which ones rather belong to Th2, hence
establishing the respective epigenetic landscape of a gene transcript as a prior for its
cell-specificity. This is what we call intra-class specificity from now on. At the same
time we want to keep the intrinsic predictive ranked power of the Gini impurity. To
this end we propose a novel intra-class specificity measure IC which acts as a weight
for the already determined Gini impurity IGini. Hence we want to obtain a modified
intra-class Gini impurity I∗Gini which reads

I∗Gini = IC · IGini . (VI.3)
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The intra-class-specificity measure is now defined as

IC,j = Nj ·
∑

m∈C
i Mij(C)

m∈C
∑

m,n∈C
i,j Mij(C)

n∈C

·
∑

m,n/∈C
i,j Mij(¬ C)

n/∈C

∑
m/∈C
i Mij(¬ C)

m/∈C

(VI.4)

In principle we introduce a class-specific weighting measure with proper inter- and
intra-class normalization (similar class-specificity measure definitions which are ei-
ther less sophisticated or not applicable for our purposes can be found e.g. in [276,
368]). In order to do this right we have to account for all parameters w.r.t. uniqueness
of class of the different features as well as ensure comparability between all dimen-
sions of the transcript-feature matrix with elementsMij.

Herein the index j denotes the feature number with a maximum at n for a certain
class, C denotes the respective class (here either Th1 or Th2) and themaximal number
of instances of a class is delimited by m. This normalization and averaging procedure
takes all the weighted matrix entries from the feature matrixMij belonging to a cer-
tain class C and a certain feature – being a ternary state combination – and averages
them for every feature separately. This is then normalized by the total weight of an
average instance. This additionally has to be normalized by the same measure for all
other classes to make it independent of the total number of instances and classes. We
also multiply this by the number of instances where we find an entry larger than zero
for each feature j which we call Nj. In the case of a binary class categorization this
yields two complimentary feature rankings for each class separately.

In a more readable way the intra-class-specificity measure is determined by

IC,j =

average weight for class C and feature j
all combined weights for class C averaged over all class features

average weight for all other classes and features j
all combined weights for all other classes

additionally weighted by the number of instances where an entry is found for feature
j. We also chose as a normalization of the respective class C the same expression for
all features /∈ C. All of this ensures that the resulting modified impurity measure is
comparable between each feature within a class and in addition between features of
different classes being responsible for introducing a class-specificity distinction. For
two gene transcript classes this is furthermore pretty straightforward yielding two
fully complementary intra-class-specificity feature rankings. The underlying Python
code used for the computation of the following results is shown in appendix D.
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VI.3.2 Results
We can observe the respectively top-ranked results of the modified Gini impurity
weighted features in Fig.VI.4 for Th1-specific as well as Th2-specific genes while a
full account is given in tables C.10 and C.11.

ESC Th1 feature importances ESC Th2 feature importances

I∗ G
in
i

I∗ G
in
i

Naïve
Th2

Tbet+/+Th1
Tbet+/+Th1/2
Tbet+/−Th1

Tbet+/−Th1/2
Tbet−/−Th1

Tbet−/−Th1/2

Figure VI.4: Top 20 ranked ESC features for Th1 (left) as well as Th2 transcripts (right). The ranking was obtained via the
application of the intra-class Gini impurity.

We find that 280 features are considered to be Th1-specific while 390 are consid-
ered to be Th2-specific. For Th1-specificity we find multiple astonishing results. The
highest ranked ESC contains active enhancer states only in Tbet+/+Th1 conditions
as well as in the corresponding Th1/2 conditions. Hence Tbet activity on both alleles
is the best prior for gene-transcript Th1-specificity. This is closely followed by classes
which exhibit enhancer activity in heterozygous Tbet conditions as well. Quite ob-
vious is the high-ranking occurrence of enhancer states only being active in classic
Th1 cell conditions. We also find a high Th1 importance for the ESC with an active
enhancer in wild-type Tbet Th1 cell conditions as well as a repressive state in Th2
conditions. In the case of the ESC at ranking position 13 we see that it contains a
repressive state in Th2 cells yet no active enhancer state in any of the conditions. This
is due to our typology of observing enhancer activity, since we also correlate poised,
hence non-active, enhancer states with gene expression s.t. ESCs without any active
enhancer state occur among ESCs as well. This basically shows that there is a high
occurrence of these significantly correlating state classes around Th1 genes compared
to Th2 genes, possessing significant predictive power as well.

Furthermore we can annotate the respective CSCs w.r.t. their response to either
Tbet or cytokine dose as we might have already seen. It turns out that the lead-
ing Th1-specific features are those that show heavy Tbet dose dependencies. This
strengthens the view of Tbet as being amajor player in Th1 differentiation. Addition-
ally these results imply a quite astonishing finding, namely that without the quan-
tification through the modified Gini impurity the naïve expectation would be that
cytokine dependence would be of higher importance than Tbet dose for regulation
of gene expression w.r.t. a certain differentiation path. This is apparently only par-
tially the case since Tbet is at least of comparable importance within the respective
ranking. A general distinction can be observed especially when it comes to a mix-
ture of both dependencies. Let us for example consider the second-highest ranked
feature for Th1 specificity. We see that the Tbet dose depedency is in turn dependent
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on the cytokine dose. This manifests itself in the stability of the active enhancer state
under neutral culture conditions vanishing only for Tbet knock-out conditions while
vanishing already for heterozygous cells in Th2 polarizing environments.

We note that some ESCs w.r.t. their combinations of chromatin states appear to
be somewhat harder to interpret. Examples are the ones at position 9, where en-
hancer activity is switched off in Tbet+/−Th1 cells but on again in Tbet−/−Th1, or at
position 12, where enhancer activity is switched off in Tbet+/+Th1 cells but we in-
stead find active enhancers in Th2 cells. In the former case we find poised enhancers
in Tbet+/−Th1 conditions that were not classified as being active while in the latter
case this holds true for the Tbet+/+Th1 condition. There are several possible rea-
sons for that. One is that the HMM categorizes several flanking regions of active
enhancer state segments as poised since H3K27ac peaks are more pronounced in the
center of the accumulation of several segments. A penalization depending on some
Markovian propertymight help in this case. Via this one could introduce aweighting
depending on next-nearest neighbours of active enhancer peaks and hence include
the transition probability depedence of poised and active enhancer states into the
classification method introduced here. Hence in the case of position 12 where we
also observe enhancer activity in the Th2 control we can assume for this reason7 that
this ESC represents rather a constitutively active enhancer state, which is in fact heav-
ily dependent on Tbet knock-out. Another viable explanation is that the distinction
into Th1- and Th2-specific transcripts is still too crude and especially reprogramming
from Th1→Th2 has to be taken into account. In this case we hypothesize such an ESC
would drop out of the Th1-sepecificity ranking and rather reoccur in a Th1/2 rank-
ing. We will have a more detailed look into this ESC distinction when we investigate
differential networks in section VII.2.7.

Turning to Th2-specificity we see a similar picture yet cytokine dependency plays
a larger role here. This can be readily expected since Th2 genes might be only to a
lower extent depend on Tbet dose while we could for example expect a similar dose
dependency on a Th2-specific master transcription factor like Gata3 if such data was
available. In our case we observe Tbet depedencies for slightly lower modified Gini
impurities and we also see that rather repression of Th1 cells with high Tbet dose can
play a large role.

The results for the RSCs are shown in Fig.B.13. From a total of 387 features 179 are
classified as being Th1-specific while 208 are Th2-specific. As can be readily expected
we find among Th1 transcript-specific RSCs those that exhibit repressive states in the
Th2 cell conditions while the opposite is true for Th2 transcript-specific RSCs. In the
case of Th1 feature importances we also find that repressive states in Th1/2 condi-
tions especially play an important role in determining the Th1 transcript class. Rather
surprisingly we also find a high ranked importance of an RSC with repressive states
in Th1 as well as in Th2 cells which occur quite frequently around Th2 gene tran-
scripts. This suggests that the Th2 transcripts under consideration sometimes also
exhibit repressive states in their characteristic cell conditions hence repression also
seems to be relevant in those cases. In conclusion also the intra-class-specific results

7For the sake of the argument we accept the above statement that the wild-type Tbet condition
exhibits poised enhancer states. This has to be the case since if they occur around Th1-labelled tran-
scripts the necessary condition for an element to be correlated was that it had to be an enhancer HMM
state (see table V.1).
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for RSCs confirm our former expectations and provide us with a ranked importance
measure for class distinction of RSCs.

As a follow-up we asked how many of the top-ranked features have to be taken
into account in order to yield a certain percentage in prediction power as indicated by
the Gini impurity8 and how this quantity is influenced by the amount of considered
chromatin state classes. In table VI.1 we find a summary of specific percentages of
the total Gini impurity with corresponding number of considered best ranked Th1
and Th2 states. For this we used the ranking of the unmodified impurity first and
mapped these results on the class-specificities.

Gini impurity % # Th1 ESCs # Th2 ESCs # Th1 RSCs # Th2 RSCs
99.5% 230 285 150 165
95% 140 160 95 100
90% 100 120 75 75
85% 80 95 60 60
75% 55 62 42 42

Table VI.1: Total amount of top ranked Th1 and Th2 ESCs and RSCs respectively in order to reproduce a certain percentage of
total Gini impurity.

In the case of the Top 20 features for ESCs we obtain percentages of 47% and 43%
and for RSCs both times 56% for Th1 and Th2 respectively.

We see that in order to approximate an optimal prediction accuracy we can never-
theless exclude certain features that don’t contribute significantly to transcript class
prediction. This is interesting since there seem to be certain state combinations and
hence significantly correlating enhancer elements that are practically irrelevant when
it comes to their significance in mutually exclusive differentiation programs. For a
significance cut-off of 99.5% this enables us to exclude the 154 lowest rankedESCs and
72 RSCs from further analysis. At the same time if we include the respective amount
of highly-ranked features a larger amount of particularly hard-to-classify genes will
be labelled correctly.

The nature of the above analysis suggests that the enhancer landscape of Th1
and Th2 genes consists of a variety of enhancer state combinations obeying a reg-
ulatory logic that is specific for the respective differentiation program. Not only can
we infer this ESC (or more generally CSC) specificity, but we can also predict the
cell-specificity of a certain gene with high confidence via a transcript-specific class
probability based solely on its enhancer landscape. This is as well dependent on the
amount of considered highly ranked ESCs. The validity of our method can in turn be
confirmed in terms of the differential expression of respective genes from our RNA-
Seq data sets.

8The Gini impurity is normalized to unity.
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VI.4 Co-occurrence of enhancer state classes

Ultimately we are as well interested in a co-occurrence quantification of several of
the top-ranked transcript-class-specific enhancer types. We exemplify this via a fre-
quentist approach for the training set of Th1- and Th2-specific genes. In order to do
this we have to compute the pairwise conditional probability for distinct instances of
all significantly correlating enhancer state classes. Pretty straightforwardly we just
determine the conditional probability

p(Ei|Ej) =
p(Ei

⋂
Ej)

p(Ei)

∀ i 6= j

where we consider pairwise occurrences within each TAD. This results in 75.344 con-
ditional probabilities. In order to remove frequently occurring residuals we only fo-
cus on the Top 20 Th1- and Th2-specific ESCs respectively, which leaves us with 1186
combinations. From this we obtain a conditional probability ranking shown in table
C.12. Among the highest ranking conditional co-occurrence patterns are especially
Th1-specific ESCs with Ei exhibiting an active enhancer only in Tbet+/+Th1 cells.
Among them are most notably ESCs also exhibiting active enhancers in heterozy-
gous Tbet Th1 conditions or including repressive states in Th2 cells. The ranking
also confirms the mutually exclusive specificity of ESCs preferably occurring with
other highly ranked cell-specific ESCs. This also imposes boundaries on recruiting
mechanisms of individual enhancers since a large variety of combinations appears
quite frequently at gene loci playing a key role in cell differentiation.

VI.5 Discussion & Summary

We have investigated the regulatory activity changes of chromatin state patterns over
different experimental conditions for significanly correlating enhancer and repres-
sive state segments around notable Th1 and Th2 transcripts. To this end we intro-
duced a ternary state classification considering enhancer state activity as well as the
appearance of repressive states with a switch-like logic. Considering these changes
in chromatin state activity w.r.t. environmental changes this naturally results in a
class hierarchy wherein simple enhancer states are abstracted based on their regula-
tory logic as being realized instances of so-called enhancer-state classes. This unique
and to our knowledge yet unregarded viewpoint of enhancers belonging to certain
subclasses depending on the investigated experimental stimuli presents a novel ap-
proach to the investigation of epigenetic landscapes. Enhancer or repressive state
instances or more generally chromatin state instances hence belong to a certain func-
tional group fulfilling certain regulatory tasks depending on the respective cell con-
text. Hence from now on we focus on the set of all chromatin state classes in order to
investigate functional particularities.

Furthermorewefind that the regulatory state class logic around transcripts, which
are special to a certain cell type, are indicators for the specificity of a certain gene tran-
script. This is plainly due to the fact that a certain regulatory logic is hypothesized
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of being unique for a certain cell type. In order to show this and to elucidate if cer-
tain types of CSCs indeed provide a large regulatory potential w.r.t. classification of
cell-specificity we investigated the epigenetic CSC landscapes of a training sample
of Th1- and Th2-specific transcripts. This resulted in an inter-class-specific ranking
where we found that certain ESCs as well as RSCs are more suitable for distinguish-
ing between Th1- and Th2- transcripts. Moreover in order to investigate intra-class-
specificity, i.e. associating a transcript with either Th1 or Th2 statistically, we intro-
duced a novel intra-class-specificity measure in Eq.VI.4, which results in a hierarchy
ranking of ESCs and RSCs for Th1 and Th2 transcripts. In the case of two classes
the results are mutually exclusive while the method is in general applicable for an
arbitrary number of cell classes. Among obvious CSC candidates for Th1 or Th2 cells
we also found highly ranked CSCs which could not be readily inferred as providing
a large classification potential by naïvely approaching the subject. More specifically
this leads to a categorization of CSCswithin the ranking to bemore cytokine or rather
more Tbet dose dependent. Especially in the case of Th1 transcripts we find the high-
est ranking ESC to be heavily Tbet dose dependent emphasizing the role of Tbet in
Th1 regulation even further.

This general approach leads to the implication that in principle one can probabilis-
tically determine the classification of a certain gene with the regulation of a certain
experimental condition based on the fitted model from an underlying learning sam-
ple just by looking at the positively correlating CSCs at their locus. This was also
investigated by a LOOCV method to show the robustness of the approach. We ob-
tain a prediction accuracy of 87% revealing that on the one hand certain regulatory
landscapes within the training set are rather unique like in the case of some STAT
transcripts while other like Eomes lack unambiguous CSCs. Obviously these issues
can be resolved by considering a larger training set but we furthermore conjecture
that possible mis-classification apart from additional prior biases concerning false
positives in the training sample could be also remedied by extending the set of tran-
script classes. Quite naturally classification could be refined further if we find genes
specific to another cell condition, i.e. wild-type Th1/2, on which a newmodel can be
learned. This will be the subject of future endeavours in classifying more precisely
the condition-specificity of gene transcripts.

Apart from that we determined the amount of top ranked CSCs to be considered
in order to obtain a certain level of total Gini impurity and hence purity of a branch
within the ERTmethod. From this we find that a certain amount of low-ranked CSCs
is indeed negligible for correct transcript classification.

In addition we also investigated the conditional probabilities of finding certain
pairs of CSCs co-occurring at Th1 or Th2 loci. From these results we obtain further
information for predicting just by investigation of a low number of e.g. ESCs around
a gene promoter which regulatory elements are expected to act in concert at the locus
and hence providing an additional prior for gene transcript specificity.
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CHAPTERVII

Epigenetic network inference and analysis

We have already discussed the basic terminology as well as some preliminary im-
portant quantities that are commonly used in graph and network theory in section
II.2. By analyzing the underlying epigenetic network topology in Th1 and Th2 cell
types we aim at elucidating the role not only of certain gene transcripts w.r.t. their
direct dynamic interaction but also via higher order motifs and topologies that only
act indirectly via epigenetic states. This leads to the possibility of finding as of yet
unknown relations between TFs and gene transcripts in general w.r.t. activation and
inhibition. Additionally from the deduction of cell-specificity of enhancer state com-
binations as well as the prediction of a classification of a certain gene transcript as
discussed in detail in the last chapter, this leads to the question if these results can
be confirmed by investigation of the underlying network topology. We will address
this as well as further questions concerning cell-specificity in the context of mono-
layer and multilayer networks in the following. To this end we will also investigate
cell-specific topologies via differential networks and infer the respective community
structures. In order to investigate steady state subnetworks we finally discuss the im-
plications of randomwalks w.r.t. different network topologies and also an epigenetic
regulatory extension of the classical mutual-inhibition/autoactivation tristable motif
in this context.

For computation and visualization purposes we employ a mixture of the Python
package NetworkX as well as Cytoscape and cytoscape.js .

VII.1 Typology of underlying network and adjacency
matrix

VII.1.1 Definition of network components
We have argued earlier that we want to extend the concept of ordinary gene regula-
tory networks by including regulation via epigenetic states and hence potentially ex-
tending the topological structure of the underlying T-helper cell network. We already
inferred activation of gene transcripts by individual enhancer instances by means of
identifying significantly co-regulated enhancer state instances according to our corre-
lation model in chapter V. The respectively obtained Pearson correlations potentially
act as normalizedweights w.r.t. activation of a certain gene transcripts, hence exhibit-
ing inter-transcript comparability. On the other hand we also defined inhibition via
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significantly correlating repressive states in addition to repressor binding at a certain
chromatin state instance. These findings serve now as a starting point of a definition
of the components of the desired epigenetic network.

Nodes

Previously we extended the concept of significantly correlating enhancers to a typol-
ogy of chromatin state classes exhibiting functional differences w.r.t. their response
to Tbet dose as well as cytokine dose. Furthermore we saw that these CSCs facilitate
differences in predictive relevance w.r.t. Th1 and Th2 cell-specificity. Not only does
this classification introduce a means of valuable insight regarding transcript regula-
tion and predictive power for cell-specificity but it also considerably simplifies the
state space concerning epigenetic interactions. Hence we propose the usage of ESCs
and RSCs as regulatory nodes in the network in addition to the set of Th1 and Th2
genes. Furthermore for simplicity we restrict ourselves to genes instead of gene tran-
scripts by integrating the information from all transcripts of a specific gene into a
single entity respectively1. This also resolves the problem of dealing with general TF
binding data in the network as well.

The reduction of network complexity to a level of epigenetic state classes taking
the function as distinct nodeswithin a network is to our knowledge an unprecedented
way of looking at epigenetic gene regulation and can be employed without loss of
generality and applied to other experimental systems as well. The reason for this
conceptional shift is that we consider regulatory entities that already exhibit differ-
ences in their regulatory structure w.r.t. the considered cell conditions from the ex-
periment. This shifts the focus from the very special distinct viewpoint of uniquely
realized enhancer instances to a more ensemble-focussed approach. The advantage
of this view is that it is done on a statistically larger scale where it does not neces-
sarily matter if an enhancer has been called at a certain position but rather how the
whole set of enhancers behaving in a similarway under certain experimental cell con-
ditions regulate the genomic landscape as a whole. This is of particular importance
when asking for example how enhancers being present in a certain cell condition are
affected by a change in cytokine conditions or e.g. by a change in Tbet dose and how
the network is turn is affected by this phenotypic change on an epigenetic level and
hence also by the respective regulation via TFs.

For these reasons we propose the following node definition:

Definition: Network node

We define the set of network nodesNi to consist of Th1- and Th2- specific genes
as well as of significantly correlating ESCs and RSCs corresponding to the re-
spective transcripts as obtained in chapter V.We note that the epigenetic nodes
represent general chromatin state classes opposed to individually realized CSC
instances.

1This results in 64 distinct gene nodes.
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Edges

If we only consider the aforementioned weighting of activating and inhibitory edges
where a CSC regulates a certain gene we only obtain a unidirectional graph. We
note that direct edges between CSC nodes are forbidden since we do not consider
regulation between ESCs and/or RSCs. The same also holds true for direct regula-
tion between genes. Furthermore these edges are weighted by the respective Pearson
correlation coefficient between a certain CSC instance and the respective gene. Yet
we observe that every transcript can be regulated by several correlated enhancer seg-
ments from the same CSC at the same time andwe also defined a node to be a general
CSC in contrast to a specific CSC instance. We thus obtain a potential activation of a
certain gene bymultiple edges coming from one and the same enhancer or repressive
state class node. Such graphs are in general called multigraphs. In the particular case
of directed edges such a graph is furthermore called multidigraph or quiver. Since
we have to deal with a weighted multidigraph we have to find a way how to treat
the combination of edge weights between every two nodes. A straightforward way
to deal with this is by adding all available weights between a pairwise set of nodes
{Ni, Nj} for i 6= j . Alternatively one could introduce a weighting w.r.t. contribution
either by width of the respective state class segment or rather by the mean of the
parametrized histone measure over the conditions under consideration2. Yet for the
sake of considering the respective particular instances of state classes as comparable
entities we employ the simplest definition of multigraph weighting, since it is nev-
ertheless questionable e.g. if it is more or less important for a certain segment to be
more or less extended than another one. In this case the priority could either be at
the narrow distinct realization of a state as it is generally assumed when considering
p300 peaks or one rather accepts that if a sufficiently high correlation value of a broad
segment from a similarity merging of neighbouring elements can indeed be achieved
that this is an even stronger argument for the segment to contributemore importantly
to the regulation of the gene. Since we do not have any evidence at hand to support
either of the two presented viewpoints we hence assume equal contribution from ev-
ery realization of a particular chromatin state class instance. As a consequence of this
we define the weightingWij of a directed multi-edge between a set of nodes {Ni, Nj},
where i denotes a chromatin state and j denotes a gene transcript as

Wij = ∑
k

wijk = ∑
k

R(Eik,Gj) (VII.1)

where wijk denotes the k individual edge weights going from i→ j. At this point the
underlying network in general includes activating and inhibiting edges yet we can-
not obtain any interesting network motifs such as loops being due to the fact that the
graph is unidirectional and direct CSC-CSC and gene-gene interactions are prohib-
ited, since some mediation is always assumed. This leads to a bipartite graph with a
set of CSC nodes and a set of gene nodes betweenwhich interactions are assumed. To
this end we also want to infer a normalized statistical importance score of TF binding
at chromatin state class instances.

2We are not aware of any other more sophisticated methods.
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Inference of TF binding at CSCs

In order to assign a bindingweight of a TF to a certainCSCwe assess binding frequen-
cies3 of the considered set of TFs (introduced in section V.3.1) around the set of the
Th1 and Th2 genes of interest. We also considered TF binding up to 400 bp away from
a CSC. These binding frequencies then form a training set for inferring classification
importance scores as before in chapter VI making once more use of the ERT algo-
rithm. To this end we again employ the modified Gini impurity from Eq.VI.4. In this
case the number of classes at hand is considerably larger, i.e. given by the maximum
number of chromatin state classes. The resulting Gini impurities are exemplified for
ESC-specificity in table C.13 in the appendix.

This way of obtaining a viable weighting of binding occurrence at general CSCs
is fully legitimate since the modified Gini impurity as defined previously presents
a normalized relative measure of the contribution of a certain TF binding within a
certain CSC. It also already accounts for an ensemble averaged weighting w.r.t. oc-
currence frequency. For every CSC a directed edge is hence obtained leading again
to multi-edges being directed from TFs to CSCs. The weighting in this case reads

Wji = ∑
k

wjik = ∑
k
I∗Gini,jik . (VII.2)

We note here that the individual modified Gini impurity I∗Gini,ji for a certain CSC
with index i is also normalized to one hence the individual edge weightsWij andWji
are comparable. On this basis including the above edge definition fromCSCs to genes
we end up with a weighted multidigraph with the following general edge definition

Definition: Network edge

An effective network edge is defined to be directed and to present a possible
contraction of multiple directed edges itself if multiple connection between a
pair of nodes is present. Additionally every edge obtains an edge weight W .
Each separate edge is unidirectional whereas for each edge weightWij as de-
fined in Eq.VII.1 we always allow for the existence of a corresponding multi-
edge with edge weightWji as defined in Eq.VII.2 having an opposed orienta-
tion, hence introducing bi-directionality. This forms the basis of a weighted
multidigraph.

Adjacency matrix

From the above node and edge definitions we have seen that we have to consider an
adjacency matrix for a weighted multidigraph. Its adjacency matrix with entries Aij
can be contructed in general from the edge weightsWij andWji. Starting from indi-
vidual chromatin segments, which formed the output of our correlation algorithm,
the general form of the corresponding adjacency matrix reads

Aij = ∑
k,l
TikCklGl j . (VII.3)

3In general read counts or scores at specific binding sites also present a viable option yet since the
data sets stem from different sources the data pre-processing is rather heterogeneous and hence these
values are not straightforwardly comparable without additional information.
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We call the matrix with elements Gl j gene-transcript matrixwith l denoting all consid-
ered individual chromatin state instance segments and j denoting all gene transcripts
as well as all occurring CSCs. The entries Ckl form the so-called chromatin-state-class
matrix with l as before and k spanning all CSCs and finally the elements Tik form
the transcription-factor-binding matrix with k as before and i denoting CSCs as well as
all TFs4. From this we obtain an easy-to-implement mapping of chromatin segment
correlations with gene transcripts, which are contracted based on their frequencies
to CSCs, which are then in turn mapped to TF binding occurrences. Essentially the
resulting adjacency matrix can be presented in the following form:

A =

(Genes CSCs
TFs 0 A1

CSCs A2 0

)
=

(Genes CSCs
TFs 0 Wji

CSCs Wij 0

)
(VII.4)

wherewenote that obviously according to the previous definitionsWij 6=WT
ji . Hence

we obtain a non-symmetric hollow adjacency matrix. This has to be the case since
edges are only possible from genes to CSCs and back. The result of this straight-
forward assumption is that the shortest connection between two genes has to be at
least via one CSC. Finally we note that CSCs do not merely consist of ESCs and TF
activation but also of RSCs as well as TF repression. Hence the adjacency matrix
consists of activating and inhibiting edges. This can be distinguished within the ad-
jacency matrix via either assigning negative signs to all inhibiting edge weights or
rather extend the adjacency matrix to include a so-called regulation dimension k in
which case the adjacency matrix becomesAijk. In this case k just consists of the set of
values {activation, inhibition}. In most cases we will make use of the latter in order
to guarantee a non-negativematrix which has to be interpreted element-wisemaking
edge weights comparable between activation and inhibition as well.

4As specified from the available ChIP-Seq data sets
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VII.2 Network analysis

VII.2.1 Full CSC-gene network
From the above definition of the adjacency matrix we obtain the network depicted in
Fig.VII.1 containing all significantly called CSCs as well as all previously considered
Th1 and Th2 transcripts.

Figure VII.1: Full force-directed CSC-gene network resulting from Eq.VII.4. In cyan we depict the Th1-specific nodes as de-
termined from the ERT learning sample, while in red we find the Th2-specific ones. Large nodes depict gene transcripts while
small nodes denote CSCs. In case of CSC nodes we only coloured the top 20 cell-specific CSCs respectively – the rest is shown in
black. Cyan edge colouring depicts activation while red edge labelling depicts inhibition. The edge weighting is proportional
to the respective edge width, which becomes more pronounced in the core of the network. For simplicity we only denote the
TFs specifically where the names are in each case overlapping with the respectively associated node.

The network depiction itself is chosen to be a force-directed graph drawing. At-
tractive and repulsive forces act on network nodes via a physical simulation in order
to avoid edge crossings as well as overlaps of groups of nodes with high interconnec-
tivity. The resulting network state is found at mechanical equilibrium where node
positions cannot change w.r.t. spring-like edge attraction and Coulomb-like vertex
repulsion. We hence obtain an intuitive visualization of the topology of the network
already forming specific clusters only due to vertex connectivity via respective edge
weights. Thus the data itself encoded in the adjacency matrix with entries Aijk con-
trols the visualized output.

We visualize Th1- and Th2-cell-specificity according to the ERT method in cyan
and red respectively, while large dots label genes and small dots CSCs. The labelling
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in the case of CSCs is only donew.r.t. the top-ranked CSCs. Activation and inhibition
is encoded in cyan and red edges respectivelywith the edge strength being visualized
with differing widths.

We find a distinct separation of Th1 and Th2 gene transcripts validating the a
priori classification from literature and RNA-Seq data as well as the transcript classi-
fication from section VI.2.3. The same holds true for the top-ranked CSCs that were
classified as Th1- or Th2-specific respectively. Apart from a large part of CSCs that
are tightly connected within the core of the network we additionally observe a larger
number of detached smaller CSC clusters in the periphery, which are not tightly
bound and hence do not contribute to many gene transcripts and in some cases are
even not significantly regulated by some TF. This already leads to the hypothesis that
we obtain a network, which consists of an inner part being approximately fully con-
nected and an outer rim, which is merely partially connected. Furthermore we find
that the respective Th1 and Th2 TFs can be found in close proximity respectively with
especially STAT1 and STAT4 lying right next to each other. Additionally we note that
STAT4 and STAT6 occur at the boundaries of their respective cell-specific sections
indicating an important role in mediation between the two major parts.

We observe that although we employed a very reduced concept w.r.t. the defini-
tion of nodes by only considering CSCswe obtain a network that is highly connected.
This can be quantified by a variety of network metrics as will be investigated in the
following. A full summary of some basic network properties can be found in table
C.14.

VII.2.2 Network properties and metrics

Degree distribution and hubs

We already introduced in section II.2 the degree k of a node Ni which for a directed
graphs results in two distributions, namely the in-degree distribution Pin(k) and the
out-degree distribution Pout(k) of the whole set of graph vertices. Additionally since
we consider weighted digraphs we also have to consider the weighted in-degree as
well as out-degree of each node, being represented by the sum of weights of all in-
coming and outgoing edges respectively. In Fig.VII.2 we show the in- and out-degree
distribution on a log-log scale with corresponding fitted power-law functions of the
form k−γ.

For the fitting procedure we excluded instances for k = 0 obtaining the following
fitting parameters for the exponents:

γin ≈ 0.98 γout ≈ 1.45 . (VII.5)

We observe striking differences for the two different distributions. On the one
hand this stems from the fact that some CSCs only serve as input functions for certain
geneswhile no significant ChIP-Seq binding can be found in those cases. On the other
hand the out-degree distribution exhibits several nodeswith k = 0which is due to the
fact that not all genes serve as TFs and hence are not attributed as binding somewhere
themselves. Turning to the in-degree the amount of nodes being subject to k = 0 is
even larger. The reason for this is that there are several CSCs not experiencing any
binding events from the TFs under consideration at all. Thus we exclude these nodes
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Figure VII.2: In- and out-degree distributions.

from the analysis step. The above power-law fits suggest that the underlying network
topology is represented by a weak scale-free graph.

Although most investigated scale-free networks are found to exhibit higher scal-
ing exponents compared to ours5 (see [22, 54, 71, 286, 308]) we still have reason to
believe that we nevertheless find a similar tendency beingweakly scale-free or heavy-
tailed. Nevertheless we observe multiple features of real scale-free networks which
contradicts the notion of a random network structure6. Among the reasons for our
deviations are that we observe a bias from intermediate towards low degrees because
of the low number of reliable TF data at hand, rendering the connectivity information
at least incomplete. Nevertheless since the TFs under consideration are believed to
be among the most relevant binding factors we find that they exhibit in combination
with some frequently occurring ESCs the highest out-degreeswithin the network rep-
resenting so-called hubs, which are notable features of scale-free graphs. The large
values within the in-degree distribution on the other hand are dominated by genes
themselves since they on average exhibit a larger amount of different CSCs contribut-
ing to their regulation than a certain TF w.r.t. binding to a CSC.

Nevertheless the main reason for the scaling exponent γ to lie in our case in a
low regime – also called anomalous regime – is that we feature a multidigraph where
we absorbed all multi-edges into one edge resulting from the sum of all multi-edge
weights. This significantly lowers the degree of certain nodes. This also resolves
problems of effective scaling exponents with γ < 2. One such problem is that if
edges and nodes are added subsequently to such a network the hub-connecting edges
would at some point exceed the number of network nodes. Without accounting for
multi-edges a hub could at some point not connect to any more nodes. Yet since we
already account for multi-edges we are also able to find a scale-free network within
the anomalous regime.

In order to obtain a node-specific view we can simply visualize the indegree and
outdegree centralities independently of each other which is shown in Fig.VII.3 and in
Fig.B.14. From this we see straightforwardly that in the case of the highest ranked

5In fact most scale-free networks exhibit a scaling exponent of 2 < γ < 3 being usually coined ultra
small-world networks [22].

6There is clearly some debate on this issue as can for example be seen in [54, 71, 185] and the
question breaks down to semantics regarding the fact if a network is characterized as being weakly or
strongly scale-free.
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in-degree centralities we find, quite unsurprisingly, the genes themselves followed
by several CSCs from the central network. In the case of the out-degree again most
CSCs from the core reoccur yet now also some peripheral CSC clusters come in, in
one case serving as an input for Th1-specific genes (lower left part of figure) in an-
other one forming an input for Th2-specific genes exclusively (middle right part of
figure). Additionally the highest out-degrees are given by the TFs as well as by some
mediating CSCs as well as some cell-specific CSCs. The actual candidates are shown
in table C.15 respectively.

Figure VII.3: In-degree centrality for the full weighted multi-digraph. The colour-scheme depends on the maximum and
minimum in-degree centrality values. As previously we depict only TF node labels for simplicity.

As we have already mentioned in section II.2 hubs are a consequence of power-
laws in the degree distribution of the underlying network. We can see clearly in the
in- and out-degree distributions that only a handful of nodes exhibit connectivity
that significantly exceed the average degree. Unsuprisingly the network out-hubs
are represented mainly by the TF nodes which exhibit high out-connectivity because
of their ability to bind at a large number of CSCs. They are followed by some Th1- and
Th2-specific CSCswhich frequently occur and are also among themost relevant CSCs
according to our inter- and intra-cell-specificity Gini impurity ranking in section VI.3.
Examples are ESCs with active enhancers in wild-type Th1 conditions and in Th2
conditions respectively. In the case of the in-degree we find that hubs are again given
by TFs but now as well by other notable Th1- and Th2-specific genes and as well by
some CSCs. Since we established the notion of a weighted in- and out-degree we find
that some CSCs are frequently regulated by a large number of TFs on the one hand,
while there are some genes that are regulated by a very large number of CSCs. Since
we observe multidigraphs this can mean regulation by a high number of only some
CSCs or by a respectively low number of many different CSCs. For the in-degree
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gene hubs we can conclude that there are several genes which are themselves highly
regulated by a significant amount of CSC instances.

Quite naturally the full network quickly exhibits decreasing connectivitywhen re-
moving several of the in- and out-degree hubs, especially concerning the TFs, which
is also due to the principle of preferential attachment7. We also find preferential at-
tachment within our network quite naturally w.r.t. frequently occurring Th1- or Th2-
specific CSCs as well as w.r.t. the considered TFs. Hence although exhibiting high
connectivity hubs in general pose a vulnarability risk to the network w.r.t. targeted
attack, which we will investigate in due course. On the other hand we also obtain
resilience w.r.t. perturbations in certain CSCs including complete removal. This is
a key feature which we will recover in particular concerning genes involved in sub-
networks when considering multiplex networks, which are condition-specific, later
on. This is to be expected since most genes are recovered in hybrid Th1/2 conditions
as well as in conditions with different Tbet dose dependency. Yet when removing
certain Th1- or Th2-specific hubs from the network the network flow, which will be
investigated later on in the context of random walkers, can change and hence also
the importance weighting of a certain node. We also can assume that this will be in
someway proportional to gene expression itself assuming e.g. a linear model of gene
regulation by enhancers as in section V.6.

Yet since degree-distributions and hence also the degree-centralities do not ex-
hibit a unique one-to-one relation w.r.t. network topology [92] there are certain other
features related to network structure as well as to information flow that have to be
taken into account, which we will investigate in the following.

Alternative centrality measures

There are several other popular centrality measures apart from the trivial degree cen-
trality that are usually investigated in network theory which can give important in-
sight into the importance ranking of a certain network node (see e.g. [236]). We al-
ready introduced some in section II.2. In Figs.VII.4–VII.7 we depict the so-called be-
tweenness, closeness, eigenvector and Katz centralities of the nodes in our weighted
multi-digraph for which the top 100 results are also listed in table C.16. The highest
top ranked nodes for the betweenness as well as for the closeness centralities over-
lap to some extent and notably include all TFs being hubs in the network as well as
some high ranked CSCs among which we also find Th1- and Th2-specific ESCs with
high importance. The most obvious difference yet is that the betweenness centrality
imposes a very strict boundary on some nodes exhibiting high relevance while the
closeness centrality includes a high amount of nodes most of which are located in the
core of the network andmainly including CSCs. In contrast to this betweenness com-
pletely excludes the network periphery. This is not surprising since in the case of the
betweenness centrality only shortest paths are taken into account passing through
the respective nodeNi, which are furthermore weighted by the sum of the respective
edge strengths extending the purely topological centrality aspect. In this regard the
betweenness centrality acts as a measure of mediating information between sets of

7We note that the same scale-free properties can be achieved by different mechanisms (e.g. fitness
models (see e.g. [59]) not being restricted to preferential attachment also being a result from different
distinct network topologies.
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nodes within the network. We find that especially the TFs and some CSCs fulfill this
task.

Closeness centrality on the other hand only can have a meaningful definition for
nodes satisfying kout > 0, excluding non-TF-coding genes, since it represents the rele-
vance of a node w.r.t. to spreading information representing the starting point of that
spread at the same time. We find that quite obviously the network core represents
highly important nodes which also transmit information between the left and right
network part, which can be associatedwith Th1- andTh2- specific tasks. Furthermore
we find small CSC clusters at the beginning of the periphery in both cell-specific parts
of the network which also contribute to an effective information spread themselves.

Figure VII.4: Betweenness centrality for the full weighted multi-digraph.
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Figure VII.5: Closeness centrality for the full weighted multi-digraph.

Figure VII.6: Eigenvector centrality for the full weighted multi-digraph.

110



VII.2. NETWORK ANALYSIS

Figure VII.7: Katz centrality for the full weighted multi-digraph.

The eigenvector centrality on the other hand is an extension of the aforementioned
in-degree centrality. Not only does it account for the contribution from other nodes
to a particular node it furthermore takes the importance of neighbouring connected
nodes into account. We especially observe that in contrast to the in-degree centrality
we find a lower importance assigned to nodes in the periphery while nodes in the in-
ner part of the network and especially CSCs receive a far higher centrality score. This
is due to the fact that in addition to the in-degree importance of genes themselves,
receiving large contributions from different CSCs, the CSCs are considered to have
high importance since they are linked to these highly interlinked nodes. In this case
among high-ranked nodes like the TFs we also find important nodes like Ifnγ on the
Th1 side but also several genes from the Th2 cytokine cluster as well as highly ranked
Th1- and Th2- specific ESCs and RSCs.

While the Katz centrality is related to the eigenvector centrality it extends the
above concept also to nodes with no incoming edges themselves or in turn to those
which receive input from nodes with no incoming edges. Hence Katz centrality also
gives a non-zero centrality score to nodeswhich are not strongly connected including
such highly linked nodes that are neglected in the eigenvector centrality analysis. For
the Katz centrality the weighting barely changes as it is practically the same as in the
eigenvector case. Only a very low number of nodes is minimally affected and non-
zero centralities vanish completely. For us this is nevertheless a proof of principle
with regard to the importance weighting of nodes within our network and confirms
the above results.

We find that the most notable changes in assigning relevance to a network node
appear between closeness, betweenness and variants of degree centrality, to which at
this point we also count eigenvector and Katz centrality. In conclusion from between-
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ness centrality we learn the nature of nodes with a highly mediating potential, while
closeness centrality on the other hand yields nodes with a high potential for infor-
mation spread themselves. Hence we find that there are many nodes apart from the
standard network hubs experiencing high connectivity that act as potential targets
in destabilizing information flow within the network. On the other hand this shows
that the network is highly interconnected being a key feature of scale-free networks.
Especially CSCs play a notable role for this property. The eigenvector and Katz cen-
tralities as an extension to the in-degree centrality now showcase the characteristics
of each node w.r.t. receiving a certain information amount themselves, which is fur-
thermore weighted by the importance scores of other highly ranked interconnected
nodes that connect with those. In this case we find a reduced core network of nodes
which consist of all genes within the network with varying contributions but also of
certain CSCs that play a special role in regulation of these genes. In this case we do
not only recover highly ranked Th1- and Th2-specific CSCs but also some intermedi-
ate ones being highly responsible for co-regulation of both cell-types, which in some
cases are consitutively in an active enhancer or in a repressive state respectively and
contribute to ESCs as well as RSCs. In other cases we also recover ESCs which are
only switched on in the Th1→Th2 conditions. We will investigate these hybrid CSCs
as well as highly interconnected genes associated with them in more detail in due
course.

Motifs and loops

In the full network autoactivation loops are found to be very frequent. Hence we
investigate their occurrences for some notable TFs, namely for T-bet and Gata3. In
the case of Gata3 we find 34 possible autoactivation loops where we demand that
only one mediating node, i.e. a CSC, occurs. If we do not consider statistical TF
binding occurrences but actual ones as in Fig.IV.5 we still obtain seven distinct loops.

For Tbet we find 15 general statistical CSC autoactivation loops. For actual bind-
ing occurrences we still recover three loops as can be seen schematically in Fig.V.10.

Obviously we find that these loops become even more frequent when we also
consider higher orders which are mediated by at least one more TF and CSC. For the
time being we do not go further into this direction yet we note that this might be
a worthwhile investigation when considering stability properties of Tbet and Gata3
expression in more detail.

In the case of mutual inhibition between both genes we obtain one CSC instance
for Gata3 inhibition of Tbet with also one actual binding occurrence. In the reverse
casewhere Tbet inhibits Gata3we obtain three CSC instanceswhilewe also find three
actual binding occurrences.

Quite obviously the differences between actual binding occurrences arising in the
ChIP-Seq data sets and the statistical binding for autoactivation loops comes from the
fact that the latter is a genome-wide measure in assessing statistical binding frequen-
cies in general in all CSCs. Hence within the network we find certain loops between
CSCs and TFs which might not always occur as a distinct binding in the actual data.
Yet at the same time this rather accounts for the general mediation strength of a cer-
tain connection between two network components.
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In addition to the above autoactivation and mutual inhibition assessment for the
master transcription factors in Th1 and Th2 cells we also investigate the most com-
mon motifs occurring in the full network. Considering e.g. 4-node subgraphs we
find 62.824 feed-forward loops (FFL) and 1673 autoactivation loops rendering these
events in the full network quite frequent. Autoactivation loops on a 2-edge basis can
obviously only occur for TFs as described above of which we find a total of 93 in-
stances.

In order to investigate the statistically most frequently occurring network motifs
we employ the FANMOD tool [337]which builds on the RAND-ESU subgraph enumeration
algorithm, and is able to cope with edge colouring – being important for inhibiting
edges – being in addition extremely fast in annotating the underlying minimal mo-
tifs. We performed the algorithm for subgraphs of four nodes. We obtain a Z-score
based ranking comparing occurrence frequencies in the actual networkw.r.t. random
occurrences. From this we extract a top 10 ranking of subgraph motifs, which can be
seen in Fig.B.15. As we can see for 4-node subgraphs the most frequently occurring
motifs are coherent inhibition FFLs as well as different forms of coherent double inhi-
bition FFLs also incorporating bidirectional edges. Quite notably most of the highest
ranked subgraphs include inhibition. For 3- or 5-node subgraphs we obviously do
not find any complete graph motif since we defined our network to mediate between
any genes only via a CSC8. So any occurring loops have to generated via modulo two
nodes. We did not check for 6 node-subgraphs since for sampling of 1000 subgraphs
alone this would result in a total subgraph enumeration of 2.5 · 1010 instances.

Attack tolerance

We have previously mentioned that on the one hand the removal w.r.t. hubs or also
w.r.t. nodes with too low out-degree can either have a large effect in the former case
or no effect in the latter on the construction of the network itself. More specifically
this is of particular interest when one wants to investigate the resilience of a cer-
tain network via so-called percolation, i.e. the random removal of a certain amount
of nodes within the network in combination with its incoming and outgoing edges.
The question which is usually posed is to find the so-called percolation threshold up
to which nodes have to be removed in order to induce a phase transition and the net-
work breaks up into smaller detached network components (see e.g. [22]). Yet this
becomes quite problematic for directed graphs following a power-law degree λ < 2
since for γ < 3 we find a critical threshold of a fraction of removed nodes fc → 1
hence always showing some residual resilience and never breaking up completely
unless nearly all nodes are removed (see [22, 268]). Hence we only focus on the ef-
fects the removal of major hubs, i.e. targeted attacks, have on the network topologies
themselves.

We do this exemplary for the two master transcription factors T-bet and Gata3 as
well as for STAT1. The results can be seen in Figs.B.16 and B.17. Upon removal of
Tbet and Gata3 at the same time we clearly see that the Th1 and Th2 parts of the net-
work are still preserved and we only observe a slight shift in the affiliation of some
genes and a more precise localisation of some CSCs between both cell-specificities
such as an ESCwith an active enhancer in Th2 as well as in Th1 wild-type conditions.

82-node graphs are fully accounted for via the above TF-CSC loop investigation.
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Nevertheless we also observe a larger separation of STAT1 and STAT4 compared to
before. Additionally we also observe the detachment of a class of CSCs being ob-
viously unique to the two TFs. The same also holds true for the removal of STAT1
where we ony observe the detachment of one node while still the Th1 and Th2 parts
remain intact and do not considerably mix. From this we already see that even upon
the removal of one or two major TF hubs in the network the overall network topol-
ogy including the preservation of the Th1-Th2 dichotomy stays intact. Pushing node
removal even further by removing approximately two thirds of all genes from the
network we find the disintegration of a large amount of CSCs (indeed more than
900) while the Th1 and Th2 separation begins to break slowly. This also suggests that
the underlying network indeed exhibits strong Th1- and Th2- specificity even after
the removal of central hubs resulting indeed in strong resilience. On the other hand
the removal of nodes results in the decrease of certain network motifs such as loops
and, quite obviously, as soon as all TFs are gone, so is the potential for autoactivation
loops. The view naturally changes if TFs are thought of as being necessary for ESC
or RSC existence. In that case all CSCs would be removed that need the TFs for their
respective activity and the network disintegrates faster.

VII.2.3 Core CSC-TF network

In addition to the full network consisting of 1.339 nodes we additionally consider a
simpler core network in order to show only interactions of the main network compo-
nents. To this end we include the top-10 ESCs and RSCs for Th1- and Th2-specific
transcripts as well as all considered TFs. The result is shown in Fig.VII.8. We again
obtain an utterly distinct separation of Th1- and Th2-characteristic gene transcripts
as well as the predicted CSCs. We find that the classification obtained by the ERT
method from section VI.3 can be naturally recovered already on this simple level in-
dependently validating the respective class-specificity.

We find severalmediating components that bridge the gap between Th1- and Th2-
specific clusters. In fact a prominent role in this case is played by ESCs exhibiting
active enhancers in Th1/2 conditions as well as by RSCs exhibiting repressive states
in Th1, Th2 as well as in Th1/2 conditions. We also find that nearly all connections in
promoting exchange between these co-regulatory Th1 and Th2 modules are inhibit-
ing as can be readily expected from mutual inhibition of Tbet and Gata3.

The twomixing Th2-specific CSCs (red circles) at the top of the Th1 cluster exhibit
no active enhancer states in any condition and respectively a repressive state in Th1
conditions (left CSC) and one in the Th1/2 hybrid condition. The appearance of Th2-
CSC on the left in the Th1 subnetwork can additionally be justified of it being an RSC
with repressive states being activated by the binding of Th1-specific TFs.

Furthermore we observe that activating regulation in this core network exhibits
the highest edge strengths in comparison to inhibiting edges marked in red.

One of the most important questions that now arise when observing the core net-
work is obviously that of how the TFs are now effectively connected to each other and
how that compares to prior knowledge on Th1 and Th2 cell networks. This will be
analyzed in the following.

114



VII.2. NETWORK ANALYSIS

Figure VII.8: Core CSC-TF network with the respective ternary state labelling for every CSC with the same ordering as before.
We denote Th1-specific CSCs with a cyan circle and Th2-specific ones with a red circle. Furthermore RSCs can be identified by
exhibiting a red directed edge to some TF.

VII.2.4 Validation of known and prediction of novel TF connec-
tions

We remove now all CSC nodes from the TF network in such a way that they are ef-
fectively dressed. Hence we only observe the resulting TF interaction network. This
is done by contracting the respective multi-edges. We note that there can be several
connections from one TF to another that hence have to be accounted for, which are
mediated via multiple different CSCs. Every CSC mediation is treated linearly inde-
pendent from the others leading to a sum over all CSC mediations between a pair of
TFs. We note that there are four different combinations possible concerning effective
activation and inhibition of two consecutive edges. This can be seen in the following
table:

activation inhibition
activation activation inhibition
inhibition inhibition activation

We accordingly obtain the following adjacency matrix for the resulting TF network

ATF
ij,Ceff = ∑

kCeff

WikWkj . (VII.6)

where i denotes the first TF that interacts with a second TF j. The label k denotes
the respective CSC andW denotes the multi-edge weight. Since we can have effec-
tive inhibition being mediated from one TF to another via a particular CSC while
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another one might mediate effective activation we define two separate matrices for
the two different states Ceff = {activation, inhibition}. Otherwise we would run into
the problem thatwewould have to just add “simultaneous” activation and inhibition,
yet these functions are mediated in our framework by completely different processes
and hence are independent of each other. This leads to the definition of two adjacency
matrices depending on the effective activation state of themediatingCSCs. The result
of this is shown in Fig.VII.9.

Figure VII.9: TF activation (left) and inhibition network (right) after removing the CSC layer. The edge strength is proportional
to the respective edge weight from the effective adjacency matrix ATF

ij,Ceff . Black edges represent known TF connections while
cyan and red ones denote new predictions concerning activation and inhibition respectively.

For depiction purposes we scale the edge weights w.r.t. the largest absolute value
for each figure separately. In addition we marked known validated connections in
black and newly inferred connections in green. The already known connections are
taken from [162, 256, 312, 369]. Considering only activating connections we can es-
pecially validate well-known connections such as Tbet being autoactivated by Tbet
as well as receiving significant contributions via STAT1 and STAT4. Furthermore we
can confirm autoactivation of Gata3 aswell as activation by STAT6. In addition to that
all TFs autoactivate themselves. Yet we also find activating connections of different
order between many TFs also interchangably mixing between Th1- and Th2-specific
TFs. Yet some connections have a statistically significantly low contribution such as
STAT6 activating any Th1-specific TF or Gata3 activating STAT1 or STAT4. On the
other handwe also find significant high active regulation of STAT6, Gata3 andTbet by
TFs from the respectively opposing cell program. This was a feature not observed in
the core network shown above. This is due to the fact that this regulation is mediated
by cell-type unspecific ESCs, which are also ranked very low in the class-specificity
ranking method. These rather generic constitutive ESCs w.r.t. the investigated cell
conditions do not exhibit any active enhancer state in any condition or at least only
in naïve cells yet they still significantly correlate with gene expression. We reasoned
earlier that such ESCs frequently occur next to CSCswith active enhancer states quite
often including poised enhancer states as can be seen from the transition probability
of the HMM (see section IV.1).

In order to remove possible artifacts we also consider the respective TF activa-
tion network without those ESCs. The result is shown in Fig.VII.10. We find that
considerably clearer distinctions can be made between the different TF interactions
also removingmost of the statistically determined contribution of activation between
Tbet and Gata3 respectively. We also find contributions of STAT1 to STAT4 as well as
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autoactivation of STAT4, which makes sense since they are all Th1-specific. Still we
retain larger contributions of STAT1 and STAT4 to STAT6 respectively, which cannot
be readily removed. This might indicate that there is some cross-activation between
different cell-types on the level of STATs.

Figure VII.10: TF activation network with ESC layer removed. In addition also low-ranked ESCs were removed in this case.

Turning to the inhibition network we also confirm the well-known mutual inhi-
bitions between T-bet and Gata3. In addition to this we also find several inhibiting
relations between Th1- and Th2-specific TFs respectively, such as e.g. between STAT1
and Gata3 having by far the largest contribution or STAT6 and Tbet. Interestingly
enough we also predict in addition to that inhibition of Tbet by STAT1 as well as pos-
sible auto-inhibition of STAT1. Interestingly enough the RSCs being the cause of this
interaction exhibit repressive states in Th1 cells where STAT1 binding respectively oc-
curs. Hence these inhibiting interactions are non-redundant w.r.t. the general node
definition of the respective CSC being responsible for it. This means that w.r.t. a sta-
tistical point of view of this RSC there is a significant non-zero binding relevance of
STAT1 at an inhibiting chromatin state element class regulating the respective CSC.

Although this interpretation of CSCs poses a novel view on epigenetic networks
including numerous advantages w.r.t. their analysis there are still some disputable
aspects of this approach. An example would be that since we employed an ensem-
ble approach to TF interconnectivity we might have some redundancy especially
in weakly interacting connections. Some of these interactions have been shown to
be somewhat counterintuitive. The reason for their occurrence was that the edge
weightsW themselves can be interpreted as relative probability weights due to the
ensemble-based inference via the class-specificity method. Furthermore we hypoth-
esized that a certain TF binding in a condition where we find an active enhancer acts
positively on the activation of the ESC. This still would have to be confirmed via ChIP-
Seq binding data of these TFs for all of our experimental conditions. Furthermore we
would have to rule out first that for the co-binding of several TFs at a specific ESC
we do find an activation which is due to the either linear independent or cooperative
action of all these TFs and none of the TFs act as a weak repressor in turn regulating
the activation of the ESC.

Yet since a great number of the above interactions involve CSCs with respective
TF bindings which are clearly non-redundant we propose that there is actually an ex-
ceedingly large number of TF interactions to be found in the network, many of which
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were unknown up to this point especially considering activation. Also quite a range
of the inferred connections are poorly investigated and only reported e.g. in [256, 312]
supporting several of our predictions. In addition w.r.t. the ensemble-focussed def-
inition of our network we consider all of the interactions shown in Fig.VII.10 and in
the inhibition TF network in Fig.VII.9 considering similar CSCs to behave the same
and in consequence to this also to regulate the respective genes analogously.

VII.2.5 Network communities

Methods

One of the most revealing aspects of networks in general is the detection of commu-
nity structure. A community9 is defined by a sufficiently dense clustering of neigh-
bouring nodes, hence exhibiting high intra-connectivity. In addition to this dense
internal community structure a distinction between communities is made by rela-
tively sparse communal inter-connectivity. We already saw in the construction of the
full CSC-gene as well as in the core network that there is already a visual distinc-
tion possible between Th1- and Th2-related genes and CSCs. We will quantify this
observation in the following via community detection. Since there are in general sev-
eral distinct possibilities for the definition of communities as well as their inferred
number10 we compare several detection methods. Communities are in general deter-
mined via an unsupervised number of clusters, hencemethods similar to k-means are
not considered11. We focus in particular on hierarchical edge removal (HER)12, random
walk information flow (RWIF)13 and spectral clustering (SC), which are briefly described
in section II.2. We consider all of these for the special case of undirectedness, which is
due to the algorithmic implementation, yet still exhibiting the relevant connectivity
features we are interested in. The results are depicted in Fig.VII.11 as a selection and
in tables C.17-C.24 for all methods.

Results

We see that there is some consensus to be found in distinguishing between Th1- and
Th2-specific genes as could be already expected. This can be seen e.g. for the first two
modules for HER and SC (with k = 5). We observe that our previous classification
is retrieved nearly without exceptions14. In the case of HER we find six distinct sub-
communities where we find stronger association with a subset of Th2 genes between
each other than with the rest. This is especially true for Gata3 as well as for members

9We will use the terms community, module and cluster interchangeably.
10This happens e.g. along the lines of general clustering algorithms with a certain number k of

cluster seeds.
11The only exception to this rule will be the spectral clusteringmethod since the automatic initialisa-

tion of cluster centers, which follows a spectral eigenvalue decomposition, yields an unfeasably large
number of clusters. Hence in this case we set k = 5 as well as k = 10 .

12Based on the Girvan-Newman algorithm [127] and implemented in the GLay algorithm [296].
13Depending on the Markov-Cluster algorithm (MCL.) [102]
14The only exceptions in the SC case are Dpysl3 occurring in the Th2 cluster and Itga1 in the Th1

cluster. We also find the formerly classified Th2 ESCs which in one case exhibits no active enhancer in
any condition and in the other case only an active enhancer in naïve conditions to appear in the Th1
cluster.
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Figure VII.11: Resulting community structures according to different community algorithms. We show the results of the HER,
RWIF (Granularity 1.8) and SC (k = 5) methods. More detailed association of distinct nodes with each cluster can be found in
tables C.17-C.24.

of the Th2 cytokine cluster. On the other handwe find that since a weaker association
of those genes alsow.r.t. the Th1 cluster exists and STAT6 negatively regulates several
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of those components, STAT6 gets stuck to the periphery of the Th1 cluster hence act-
ing as a strong mediator. We also find another detached Th1 cluster including Runx3
and Eomes as well indicating a distinct role of those genes compared with classical
Th1 genes like STAT1 or Tbx21. We also found seperate indications concerning Eomes
via the intra-class specificity classification (see VI.3).

For SC we also find distinct clusters containing either Th2 or Th1 genes. In one
case this features Il10, in another one e.g. Il2, Ccr2 and Ccl5. When increasing the
number of cluster centers to k = 10 (see Fig.B.18) we retrieve much of this structure
yet somemore fragmentation can be observed aswell e.g. via a further detachment of
several Th2-specific nodes into new clusters. From this we see that there are several
subcommunities which are evenmore strongly connected and occurwhen increasing
the cluster resolution. We can for example observe which particular subcluster w.r.t.
genes is responsible for providing certain CSCs with a certain specificity like in the
case ofmodule 5 in Fig.VII.11. On the other handwe also start to see that somemixing
is occurring between several network components being otherwise loosely connected
with other subcommunities. Hence even classical Th2 genes like STAT6 can again
appear on the periphery of the main Th1 cluster indicating as well several mediating
possibilities w.r.t. Th1-specific genes. Interestingly enough when performing the
same procedure while only including ESCs and activating edges STAT6 again ends
up in the classical Th2 cluster. This means that in the former case the inhibition of
Th1 outweighs the activation of Th2, which for example is not true for other hallmark
genes such as Gata3.

In contrast to this we find for the RWIF method a larger number of modules com-
pared to the other methods, which can be influenced by the so-called granularity or
inflation parameter r, which essentially determines the connectivity between strong
and weak edges within the network after some point in the ongoing Markov chain
flow. The larger this factor the more the differences between communities get pro-
nounced andhencemoremodules can form. Thereforewe compare results for r = 1.8
with results for r = 2.0 (see Fig.B.19). First of all we find that for low values the main
network structure is still retained indicating again tight connectivity between all com-
ponents15, which was already indicated when we investigated attack tolerance of the
network. From the perspective of a random walk flow this basically means that a
random walker will get anywhere in the whole network quite quickly. In addition to
that we find several detached elements like the Th2 cytokine cluster forming again
a tightly connected subcommunity as well as several detached Th1 and Th2 genes,
which are more strongly regulated by their respective CSCs. For larger granularities
the network subcommunities become even more fine-grained providing mainly in-
teresting results for direct community interaction. Here we also recover e.g. strong
interaction between STAT1 and STAT4 which gets lost for lower granularities. More
interestingly we also obtain in the fine-grained case a flowmediation cluster between
Th1 and Th2 also including a high amoung of CSCswith high Th1/2 activity. Wewill
come back to Th1/2 networks in the next chapter.

In conclusion we observe that the different clustering methods not only serve dif-
ferent purposes by yielding a range of particular results, but they also confirm a large
variety of previous observations. In case of the HER and SC method we clearly re-

15This makes it in fact harder to find distinct large-scale clusters, which is also due to the low scaling
exponent of the in- and out-degrees.
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cover the Th1- and Th2-specificity of several components. Nevertheless we find –
depending on the number of clusters – that certain subcommunities are more tightly
related than others. This is for example true for the Th2 cytokine cluster. On the other
hand we find that certain key players like STAT6 play quite a large role in mediating
inibition to Th1. Additionally we obtain several clusters which are detached from the
larger Th1 and Th2 clusters and which contain genes with mediating functionality.
Examples for this are e.g. Eomes and Runx3 [90, 99, 100, 189, 213, 352]. We see that
the intra-cluster connectivity in the case of HER for these genes is statistically higher
compared to their coupling to other classic Th1- or Th2-specific nodes. Yet since there
obviously still exists coupling to the pure Th1- and Th2-clusters respectively a viable
possibility for the functional role of the clusters would be indeed to mediate between
pure Th1- and Th2-cell phenotypes. They might as well play a central role in hybrid
cell conditions. In the case of RWIFwe find a tight intraconnectivity of the whole net-
work for low granularities resulting from low inflation. Increasing these differences
we nevertheless recover some hybrid Th1/2 clusters at the cost of a large number
of detached small gene clusters indicating possible candidates for direct strong reg-
ulation. We find that community detection for a weighted multi-digraph with an
adjacency matrix as defined in Eq.VII.4 is an ambiguous and hard-to-solve problem
and hence the definition of effective meta-nodes is not straightforward. That is also
why the above results are so diverse. In addition this already hints at the shortcom-
ings of modelling the Th1/Th2 network as an effectively dressed simple MISAmotif.
Because of the above resultswewould rather propose a coupling of a variety ofmotifs
which seems essential to provide a complete possible Th1/Th2 multistability infor-
mation (see e.g. [52, 250, 251]).

Yet sincewewant to learnmore about condition-specificity, which cannot be solely
unravelled by community detection, we turn now to so-called multilayer networks.

VII.2.6 Multiplex networks
The above discussion focuses on a network view which collapses all existing infor-
mation from multiple experimental conditions via an ensemble-centric approach to
one single graph, hence being called unidimensional network. Yet in this case the
condition-specific perturbations w.r.t. Tbet dose or cytokine condition get lost or are
at least dressed in terms of correlation values as well as the specific gene instances
used within the network itself. A way out of this shortcoming is presented in the
form of so-called multilayer networks16. Hence we want to map the information as it
is used in the full network above to condition-specific subnetworks that provide only
the condition relevant information. This leads to condition-dependent adjacencyma-
trices with elements Ad

ij where d denotes the cell condition or dimension of the re-
spective network layer. We want to discuss the nature of these adjacency matrices in
the following.

Considering all layers as a whole in order to include inter-layer connections there
are two generalways the system can be observed. Either one considersweightedmul-
tilayer networks, which include weighted connections between the network nodes of

16We note that the terminology provides many ambiguities in the way the underlying terms are
used within the network theory community itself. We refer here especially to the distinctions made
in e.g. [186].
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different layer dimension, or one considers so-called multiplex networks, which only
track if a certain node can be mapped from one layer to another. When applying
the former several complications arise and even when considering the latter careful
scrutiny has to be applied. For instance for weightedmultilayer definitions wewould
be in need of defining edges between identical transcript nodes as well as edges be-
tween identical CSC nodes and even a mixture between them. There is no straight-
forward solution to this. A probable remedy could yet involve the inter-dimensional
edges to denote the respective activity changes, which would mean the normalized
gene expression value for gene transcripts and the parametrized measure for every
CSC. Yet in order not to complicate things even further we are considering so-called
multiplex networks, which just track the existence of a certain node over various di-
mensions for the time being.

The question at this point is how a condition-specific network would look like in
our case andwhat the requirement has to be for a node or an edge to be removed from
the condition-specific network. Because of our ternary CSC definition we remove an
enhancer state class from the network if the enhancer gets turned off in a certain
condition and we do the same with an inhibiting state class if the repressive state
vanishes in the respective condition. In addition we remove the Tbet-node in both
Tbet−/− conditions.

For visualization purposes we keep the general arrangement of the nodes over
all conditions. We hence obtain the condition-specific multilayers forming a mul-
tiplex network with eight distinct layers as depicted in Fig.VII.12. We indeed can
now confirm several hypotheses. First of all we strikingly discover that in case of the
Tbet+/+Th1 conditions we find CSCs mainly appearing on the Th1 side of the net-
workwhile in the Th2 control case we find the same for the CSCs on the Th2 side. For
naïve cells we observe CSCs which are equally distributed over the whole network
although in comparison to the full network we also find a significant level of sparsity
w.r.t. CSCnodes. This does not come as a surprise sincewe also expect different CSCs
to come into play for different conditions and in fact we see that this also implies a
far larger number. We also observe a grading in the appearance of Th1-specific CSCs
upon gradual removal of Tbet while at the same time the number of CSCs on the Th2
side increases. The same can be observed as well for the Th1/2 conditions w.r.t. Tbet
grading while compared to the pure Th1 conditions the number of CSCs around the
Th2 part is significantly higher.

Being accompanied by the (dis)appearance of certain CSCs in different conditions
is also the change in edge connectivity in certain regions of the underlying network.
In distinction between naïve and Th1/2 wild-type conditions where we observed a
CSC distribution over the whole network range for the former we see that the con-
nectivity mainly focuses on the lower Th2 network part for the latter with genes like
STAT6, Gata3 and the Th2 cytokine cluster. This also differs from the Th2 control con-
dition. Also for the Tbet dose graded conditions we find a connectivity shift from the
Th1 part to the Th2 part with connectivities ending up on medium levels in both ar-
eas in the Tbet knock-out conditions respectively. This is in contrast to the wild-type
Tbet Th1 and Th2 control conditions respectively.
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Naïve Th2

Tbet+/+Th1 Tbet+/+Th1/2

Tbet+/−Th1 Tbet+/−Th1/2

Tbet−/−Th1 Tbet−/−Th1/2

Figure VII.12: Depiction of all considered multiplex network dimensions with fixed node positions w.r.t. the full network.
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We also observe certain structural similarities between Tbet−/−Th1/2 and Th2
network dimensions of which we already assumed the epigenetic imprint to be sim-
ilar. This is now confirmed especially w.r.t. to CSCs on the Th2 side of the network.
Yet we find that the connectivities in the latter case are higher in the upper Th2 cluster
part. At this point we still have to investigate the topological and functional unique-
ness of the hybrid cell conditions. We will start with such an undertaking by drop-
ping the static treatment of nodes w.r.t. the full reference network.

This is due to the fact that in contrast to e.g. geographical networks where nodes
are naturally bound by their location this is in general not the case for an epigenetic
network where only pseudo-distances exist in contrast to physical distances. Hence
we want to find out visually which subnetworks are deleted and which in turn occur.
In general in a force-directed network the respective nodes in each layer might re-
arrange according to their connectivity in a dynamical way. For that reason we also
want to investigate some newly formed sub-communities due to the newly found
sparsity of the respective network layers. We exemplify this in Fig.VII.13 with the
HER method for the Tbet+/+Th1/2 and the Th2 control networks. For the Th2 con-
dition we observe tightly regulated modules the first two of which mainly consist ex-
clusively of Th2 regulated or Th1 regulated genes respectively. Since the Th2-specific
part of the subnetwork is especially strongly regulated we also obtain several mod-
ules consisting only of Th2-specific nodes as can be expected. The reason for this is
that the stronger regulation of this part of the subnetwork also leads to more distinc-
tion in its fine-graining structure indicating that STAT6, Gata3 and Il10 all have their
own tightly regulated substructure compared tomost neighbouring genes within the
full network context. For the hybrid Th1/2 condition on the other hand we most no-
tably find a large co-regulation cluster of Th1- and Th2-specific genes as well as CSCs.
We not only find important Th1 genes like Tbet, STAT1 or STAT4 but also important
Th2 genes like Gata3 or STAT6. As well we observe new strong interconnected sub-
clusters where e.g. Gata3 and STAT6 bind exceedingly strongly to Runx3. In addition
to that a separate module emerges in which Eomes is attached to a whole cluster of
Th2-specific genes. This new clustering is especially due to the network reordering,
which can be easily observed if we do not keep the nodes fixed relative to a reference
network but again apply a force-directed algorithm e.g. to the Th1/2 subnetwork.
This is shown in Fig.B.20. We observe that in comparison to Fig.VII.12 certain nodes
are now more closely connected than before resulting in the above clustering.

In conclusion the analysis of multiplex networks results in the discovery of ex-
pected as well as new substructure and topologies. First of all since certain CSCs are
not only Th1- or Th2-specific but strongly condition-specific in general we recover
this fact also in the network substructure w.r.t. different layer dimensions. When
shifting from Th1 to Th2 conditions we hence not only observe a gradual shift from
CSCs appearing in the Th1 part of the network to those appearing in the Th2 part but
we also find a gradual change in edge connectivity. This can be observed as well for
a graded Tbet dose dependency for neutral as well as for Th2 polarizing conditions.
This leads to the suggestion that the removal of Tbet to a certain level results inmixed
cell conditions where we observe the most notable similarities between the network
topologies of the Tbet−/−Th1/2 and the Th2 control condition. Finally we find that
each multilayer exhibits a unique topology and also unique network properties lead-
ing to a completely new network structure for each instance and as well resulting in
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new subcommunities within each network layer. Hence the structural and functional
connectivity between certain genes changes all the time whereas other gene clusters
remain mostly unperturbed from these inter-layer differences.

Figure VII.13: Resulting community structures according to the HER method for two exemplary multiplex layers, i.e.
Tbet+/+Th1/2 and Th2 control.
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In order to investigate the inter-layer changes even more closely we will now turn
to the differential analysis of the layers of the multiplex network.

VII.2.7 Differential network analysis

Another way of looking at multiplex networks providing also features in a far eas-
ier approach compared to weighted multilayer networks is to investigate differen-
tial regulation between pairwise network dimensions. If we do not allow for the
existence of interdimensional edges in multilayer networks between different node
instances but only for node bijectivity we get analogous results by considering up-
and downregulation of edge weights. We consider this in particular for Th2 con-
trol vs. Tbet+/+Th1 as well as for Tbet−/−Th1 vs. Tbet+/+Th1, Tbet+/+Th1/2 vs.
Tbet+/+Th1 (Diff1) and Tbet+/+Th1/2 vs. Th2 control (Diff2). In addition we al-
ways depict the betweenness centralities of all networks at all nodes. The results are
shown in Figs.VII.14–VII.17. Up- and down-regulation are shown in dark-green and
red respectively and the nodes are fixed in relation to the full network as before.

Figure VII.14: Differential network of Th2 control w.r.t. Tbet+/+Th1. The shades of grey of the nodes represent different
betweenness centralities while green edges denote upregulation and red edges denote downregulation.
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Figure VII.15: Differential network of Tbet−/−Th1 vs. Tbet+/+Th1. The shades of grey of the nodes represent different be-
tweenness centralities while green edges denote upregulation and red edges denote downregulation.

FigureVII.16: Differential network of Tbet+/+Th1/2 vs. Tbet+/+Th1 (Diff1). The shades of grey of the nodes represent different
betweenness centralities while green edges denote upregulation and red edges denote downregulation.
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Figure VII.17: Differential network of Tbet+/+Th1/2 vs. Th2 control (Diff2). The shades of grey of the nodes represent different
betweenness centralities while green edges denote upregulation and red edges denote downregulation.

For the direct Th2 vs. Th1 comparison in Fig.VII.14 we can confirm certain ex-
pected processes such as up-regulation of general connections associated with Th2-
specific features and down-regulation of Th1-specific features. We also find a high
betweenness centrality of a large amount of Th1- and Th2-specific genes. The highest
betweenness centralities are listed for the up- and down-regulation processes inde-
pendently in table C.25. This again confirms our previous hypotheses and is a valu-
able consistency check.

For the case of Tbet knock-out in Th1 cells we most notably find that genes as
well as CSCs in the Th1 part of the network are heavily down-regulated w.r.t. wild-
type Tbet cells. On the other hand Th2-specific genes and CSC experience slight up-
regulation. We also find strong down-regulation of enhancers which are in particular
sensitive to Tbet, which is another important consistency check. Of utmost interest is
also the finding that the TFs within the network experience the highest betweenness
centrality which in turnmeans that they are the ones sufferingmost from Tbet knock-
out. This holds quite trivially true for Tbet itself since it is removed from the knock-
out network, yet the levels of all other TFs are of comparable order.

More interestingly we try to elucidate the differences between hybrid Th1/2 cells
and classic Th1 and Th2 cells respectively. As before we find the highest betweenness
centralities for the respective TFs, yet we also find inDiff1 as well as inDiff2 that there
is strong activating regulation by CSCs specific to the Th1/2 condition, which are ac-
tivating Th1-specific genes in theDiff2 case and Th2-specific genes in theDiff1 case. In
comparingDiff1 andDiff2 themselveswe also find that certain CSCs are rather unique
to regulation when going from Th1 to Th1/2 or from Th2 to Th1/2. For example we
see in the Th2-specific network part that in the case of Diff1 other regulating CSCs
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come into play than in theDiff2 case where mainly the down-regulation of the whole
upper part is relevant. On the other hand in the Diff1 case mainly up-regulation of
the most distant part in comparison to the Th1-specific network part (especially w.r.t.
Tbet, STAT1 and STAT4) is of relevance. The same line of argument also holds true
for the Th1-specific network part.

Topological changes can be generally inferred by either investigating byhowmuch
a certain edge changes between conditions such that some motifs contribute more
strongly ormoreweakly for thatmatter or one just investigates the topological changes
that are introduced via edge deletion or addition. If we do that for the Diff1 network
we find the differential edge addition and deletion networks in Fig.B.21with the node
shades now depicting the in-degree centrality. We find that there is barely any dif-
ference concerning edge connectivity to be found compared to the earlier analysis
from Fig.VII.16 hence we conclude that in fact an exceedingly large number of edges
is respectively added and deleted in between the different network layers, and do not
merely exhibit some minor changes in their respective weights.

The fundamental question to be asked at this point is which nodes are most im-
portant in distinguishing Th1/2 hybrid cells from classic Th1 or Th2 cells and if can
we infer predictions on stability in between these three conditions. In order to do this
we have to investigate which nodes characterize the new conditions best. Obviously
this includes the respective condition-specific CSCs occurring as new nodes in one
network dimension relative to another one, yet this is trivial. The degree to which
they can achieve this is certainly determined by their respective connectivity to other
genes. Hencewe can just investigate the degree centralities of all nodeswhich are dif-
ferentially regulated in the Diff1 and Diff2 networks and rank them. The respective
rankings yet differ completely for the in- and out-degrees respectively since for the
in-degrees we mostly find relevant genes (i.e. nodes that are being regulated) while
for the out-degrees we find mostly CSCs (i.e. nodes that actively regulate). Such a
ranking is already indicated in Fig.B.21 and additionally listed in table C.26. Up to
this point we have already evaluated to some extent the importance of certain CSCs
to the full network yet we now want to obtain a robust ranking method for node im-
portance. We have also seen that certain shortcomings of the in-degree centrality are
resolved by the eigenvector aswell as the Katz centralities, yet we still end upwith the
problem of certain nodes receiving a high centrality ranking just by the fact of linking
to other nodes with high centrality. Although this takes into account that a certain
node has to have linkers with high centrality it might not be desirable that if that
linker has a high out-degree that all linked nodes obtain high centrality themselves.
In the following we will discuss an alternative approach to infer node relevance w.r.t.
to cell-condition-specificity.
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VII.3 Random walks on weighted multiplex multidi-
graphs

An intricate and revealing way to investigate node importance and especially a shift
in node importance in multiplex networks is by considering random walks on these
networks via so-calledMarkov chains (see e.g. [241]). This is also closely related to the
determination of cluster centers in spectral clustering [87, 321] and to the investigation
of metastable network states considering the so-called spectral gap [47, 321]. Further
information on the topic of randomwalks on networks can be e.g. found in [211, 222,
354, 366].

From the respective adjacency matrices Ad
ij for the different dimensions of the

multiplex network we want to determine in a next step the corresponding transition
matrices with elements Pd

ij . We call them raw multiplex transition matrices for the time
being. We will see in due course why this is important. Since we are considering
a weighted directed multidigraph we consider the following corresponding general
relation for the elements of a one-step raw transition matrix

Pij = k−1
out,i · |Wij| . (VII.7)

transitioning fromnode i to node j via a probability being determined by the abso-
lute weight between those nodes and being normalized by the weighted out-degree
of node i. More precisely this defines a time-discrete time-forward random walk. A
random walk of N steps starting at i and ending at j is now obtained by N multipli-
cations of the transition matrix with itself, hence computing PN

ij . Extending this to
N → ∞ we are interested in obtaining the steady state distribution of the probabilities
that the randomwalker is found at a certain node. This can be solved as an eigenvalue
problem of the respective transition matrix . Due to the fact that the underlying tran-
sition matrices are non-symmetric we get a set of real as well as complex eigenvalues.
We note furthermore that due to the differences in in- and out-degree of each nodewe
get in general different eigenvalue spectra for the time-forward and its corresponding
backward-time transition matrix. This is a notable feature of directed networks and
Markov chains in general (see e.g. [70, 120, 241]).17 The so-called Perron-Frobenius
theorem for ergodic Markov chains (see e.g. [201, 223] as well as section A) furthermore
states that a stochastic irreducible transition matrix with elements Pij has a unique
eigenvalue λ1 = 1 providing an upper bound for the set of all eigenvalues. This max-
imum eigenvalue is often called the Perron root. This implies a transformation via the
transition matrix under which the corresponding eigenvector πj does not change:

πT
j Pij = πT

j . (VII.8)

The left eigenvector πT is hence generally called the stationary distribution of P ,
since it is an invariant probability measure of the Markov chain. The stationary dis-
tribution is a unique characteristic of a Markov chain and in our case of a specific

17We note that one of the usual approaches to resolve this is to just transform the directed to an
undirected graph, yet this is in general not permissible and yields different results since the random
walker becomes time-reversible. We investigate only the time-forward component since we want to
obtain the relevance of each node by considering flow distribution.
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network not only assigning a steady-state distribution to the probability of finding a
randomwalker at node j but also assigning this steady-state distribution to every step
in the Markov process, hence being a robust analytical estimator for the frequency a
randomwalker is found at a certain node. This means we consider the Markov chain
to be time-homogeneous. We can interpret this frequency as an importance rank
measure for every node in the network. In the case were such a stationary distribu-
tion exists we are able to rank all network nodes time-independently w.r.t. to their
respective stochastic importance within the network [47].

Yet if we determine plainly the raw transition matrix P for the full network as
well as for the different dimensions of the multiplex network we run into problems
quickly. First of all the naïve construction of the raw transitionmatrix does not yield a
stochastic transitionmatrix. This is due to the fact that there are nodes in the network
with kout = 0 leading to rows where all entries are zero. This obviously opposes the
definition of a stochastic matrix (see e.g. [200]).

In addition to that the raw transition matrix is reducible, which means it can be
brought into a triangular form. This is due to the fact that there exist sinks in the
underlying network hence a random walker can get trapped in a certain state/node,
which means that also the respective Markov chain is reducible. This is clearly an
unwanted feature and has to be accounted for. This reducibility is on the one hand a
result from nodes having the property kout = 0 but on the other hand as well from
those with kin = 0 . Stated differently: a Markov chain is irreducible if any node can
be reached from every other node in the network, for which the following statement
is necessary:

∀i : (kin,i 6= 0 ∧ kout,i 6= 0)

Both of the above statements independently lead to the non-applicability of the
Perron-Frobenius theoremmentioned before and subsequently prohibit the existence
of a stationary distribution. Hence we need a resolution for these issues.

Stochasticity ofP can be quite easily ensured if we replace each rowwith all zeros
in the raw transition matrix with

1T

N
(VII.9)

where 1T is a row vector of all ones and N is the order of the raw transition matrix
hence providing a proper normalization. We call the resulting stochastic transition
matrix P̃ .

At this point it might still be the case that certain nodes as well as small subnet-
works are only connected via a unidirectional edge s.t. sinks still exist. This is obvi-
ously true in our case since we still consider nodes with kin = 0 . This contradicts the
requirements that have to be met for irreducibility. Hence some regularization of P̃ij
has to be employed to ensure irreducibility. There exists a very prominent solution
to this specific problem which forms the basis of the popular PageRank algorithm
(see e.g. [53, 200])18. The basic solution is to randomly switch to another node by

18PageRank among other methodsmeasures the relative importance of webpages within the Google
search routine [53].
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introducing stochastic perturbations into the system. In our case this accounts for
the incompleteness of our TF binding data, since we only included TF data of five
of the considered 64 genes. This makes it possible to say that there is always a low
but nevertheless existing probability that a pair of nodes is connected via a directed
edge. This also introduces possible residual binding events between CSCs directly.
The same obviously holds true for genes19. This perturbation matrix is now added to
the stochastic matrix with elements P̃ij . The irreducible stochastic matrix ˜̃P is now
obtained via the convex convolution

˜̃P ij = αP̃ij + (1− α)εij . (VII.10)

in accordance with [200]. Here α is a scalar prefactor determining the mixing
probability of the stochastic transition matrix with the perturbation matrix ε with
α ∈ [0, 1] . In the simplest case the perturbation matrix is just a matrix of all ones
normalized by the order N of P̃ : ε = 1·1T

N . A more advanced method replaces 1T

N by
a customizable probability vector vT where weights can be respectively assigned to
each transition separately20. In the following we do not want to introduce any bias
on stochastic switching probabilities and assume the former definition. Additionally
we set α = 0.85 which is the consensus literature value (see e.g. [201]) among a large
tested parameter range.

The resulting stochastic irreducible matrix with elements ˜̃P ij hence fulfills the
requirements set by the Perron-Frobenius theorem by construction as we now indeed
consider ergodic Markov chains. Hence we have to obtain a maximal eigenvalue of
one and because of that a stationary distribution πj exists, which is the corresponding
eigenvector to λ1 = 1. We determine this eigenvector for the full network as well
as exemplary for the wild-type Th1 and Th1/2 multiplex network dimensions after
determining their respective stochastic irreducible matrices separately and list the
highest rank-ordered result in table C.27. The stationary distribution is also depicted
with node colour-labelling in Fig.VII.18 for the full network. We find that in general
gene nodes are ranked highest which is due to the fact that they receive in most cases
the largest amount of incoming edge weights compared to CSCs. That means that
more nodes are pointing in general to a certain gene than to a certain CSC hence
ranking them higher. For the full network we find a mixture of highly ranked Th1
and Th2 genes whereas for the Th1 network layer Th1 genes are dominant as can
be expected and for the Th1/2 condition we again find a mixture of Th1 and Th2
genes. At this point this is not much of a revelation. Yet for the CSCs the results
naturally begin to differ. The full network is now very much dominated by CSCs
which are dominant in Th1 as well as in Th2 cells, but also by unspecific CSCs such
as ESCs which are constitutively inactive or only exhibit active enhancers in naïve
conditions. For the Th1 network we find e.g. high relevance of ESCs which show
active enhancer states in Tbet+/+Th1 conditions and those which in addition exihibit

19We can think of this as direct binding of a TF to a gene promoter. In the case of genes not acting as
TFs this would implicate indirect binding via mediating TFs, which are dressed in such a connection.

20In contrast to introducing a stochastic switching matrix perturbation between all nodes in the
network there are also weaker irreducibility assumptions that can be introduced yet they always lead
to biases on preferential stochastic switching, which we do not consider (see [200]).
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active enhancers in Tbet+/−Th1 conditions. In the case of Th1/2 hybrid conditions
we now obtain a condition-specific ranking as well for the CSCs. In this case we
find the leading CSCs to be ESCs, which are constitutively active over all conditions,
closely followed by ESCs, which are active only in Th1/2wild-type conditions, as can
be expected.

Figure VII.18: Stationary distribution of nodes in the full CSC-gene network with fixed node positions compared to earlier
depictions. The stationary distribution probability is encoded in the colour-labelling of the nodes.

Since the gene ranking of themultilayer dimensions shows that in some cases only
slight changes w.r.t. ranking position of a certain gene can be observed we apply the
above method to the differentiated networks as well, which we obtained in the last
section in order to obtain more distinguished results. In this case we additionally
disciminate between up- and down-regulation of the respective networks. The result
is exemplified for the Diff1 and Diff2 networks and can be found in table C.28. We
naturally find a large difference between up- and down-regulation of node impor-
tance as well as certain notable differences even between down-regulation of Diff1
and up-regulation of Diff2 as well as for up-regulation of Diff1 and down-regulation
of Diff221. While for the up-regulation of Diff1 we naturally obtain a high-ranking of
mostly Th2 genes forDiff2weactually obtain amixture of Th1 andTh2 genes the latter
of which is due to heavy inhibition of the respective Th2 genes. Considering down-
regulation we find for Diff2mainly Th2 genes, yet among the top-ranked ones we do
not find either Gata3 or STAT6 but rather candidates like Lrrc32, which is thought to
play a key role in regulatory T-helper cells [266] or Cyp11a1, which has been asso-
ciated with phenotypic maintenance in Th2 cells before [243]. Accordingly we find

21We compare these two pairings respectively since in one case we approach the Th1/2 hybrid net-
work from the Th1 side and in the other case from the Th2 side.
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for the Diff1 network w.r.t. downregulation that the main focus is on Ifnγ as well as
on genes like Smpdl3b, which are associated with inhibition of TLR signalling [146],
or Ccl5 followed by several others most of which also play key roles in the wild-type
Th1 subnetwork. When cross-comparing up- anddown-regulation betweenDiff1 and
Diff2we also obtain slightly different rankings for the Th1 and Th2 genes respectively
suggesting that a different set of cell-specific genes are up-regulated when observing
a Th1→Th2 transition than are down-regulated when going from Th2 to Th1. In the
former case this mainly involves Gata3, Il4, Il5, Il10 and Il13while in the latter a com-
pletely different set of Th2 genes is down-regulated. To some extent the same holds
true for Th1 specific genes.

For the regulation of CSCs we compare both up-regulation results where we find
that also different Th1/2-unique CSCs are switched on depending on which differ-
ential transition is observed. ForDiff1 this mainly includes ESCs which exhibit active
enhancers in the Th2 condition, while for Diff2 we do not only find ESCs with ac-
tive enhancers in the Th1 wild-type condition but rather more which contain active
enhancers in the Th1/2 conditions but not in any Th1 condition.

We observe that with such a rank-ordering we not only introduce the possibility
to obtain a condition-specific importance assignment for CSCs as we have shown be-
fore with the ERTmethod in section VI.3 but we now also include genes and can even
compare in between these entities. Furthermore we are not anymore restricted to a
particular fully differentiated condition like a Th1 or a Th2 cell but are able to use
any condition for which we can construct a unique network. This naturally can be
applied to any arbitrary treatment condition. Although the node influence in some
cases is hard to compare for different conditions with slightly increasing or decreas-
ing importance with respect to another node we find that if we consider up- and
down-regulation for differential networks of different network dimensions we can
elucidate more clearly what impact a certain node obtains from one condition com-
pared to another. Compared to amere in-degree or eigenvector centrality analysis we
obtain a more robust ranking of node importances also taking into account that in-
puts from other nodes are diluted over all outgoing edges of all of these other nodes.
This means that e.g. a certain gene is less weighted in its importance if a certain CSC,
pointing to many genes, points to this particular gene. Although several of these
highly ranked candidates provide hints of specificity w.r.t. a certain treatment condi-
tion the only tendency for driving hybrid Th1/2 cell conditions can be obtained via
analysis of differential regulation of the respective network dimensions. In order to
obtain some insight into the inference of possible multistable network states we have
to consider possible dynamics of the underlying long-lived steady-state conditions
we considered up to this point merely via the stationary distribution of the Markov
process. We will extend this now as well to lower order steady state processes.

Features of the eigenvalue spectra of stochastic transition matrices

In the above discussion we only observed the largest eigenvalue of the underlying
stochastic irreducible transition matrices. Obviously we get a full spectrum of eigen-
values λi for i = 1, . . . , N with N being the respective order of each network’s ad-
jacency matrix. Of special interest e.g. for methods like spectral clustering are the
leading eigenvalues of which their corresponding eigenvectors cluster the nodes of
the network representing a certainmicrostate into larger macrostates or modules (see
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e.g. [87]). This was already implicitly applied in section VII.2.5 for a fixed number
of macrostates or clusters, defined by that amount of leading eigenvalues. One can
identify a lifetime-scale with every eigenvalue according to

tL,k = −
t

ln|λk|
∝ − 1

ln|λk|
(VII.11)

where t denotes the lag time of the Markov process (see [47]). The approach to a
stationary process for λ1 = 1 hence corresponds to an infinite lifetime while other
modules are rather finite and hence called metastable. Depending on the size of the
eigenvalue we obtain a spectrum of lifetimes defining submodules which are charac-
terized by the corresponding eigenvectors. From the point of view of the stationary
distribution the other eigenvalues can be interpreted as perturbationswhich, depend-
ing on their respective lifetime, die out at some point in time. A particular interesting
aspect hence is to try to separate the eigenvalue spectrum into eigenvalues resulting
in fast and slow processes. A separation of such time scales is marked by a so-called
spectral gap. One can now investigate the eigenvalue spectrum and infer the C largest
eigenvalues including λ1 for which we find λC � λC+n for n ≥ 1 . The set of these
largest eigenvalues is called Perron cluster the amount of which determines the num-
ber of the (relatively long-lived) metastable states of the system (see e.g. [47]).

0 200 400 600 800 1000 1200 1400
Eigenvalue rank

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

R
e(

i)

Eigenvalue spectrum

0 200 400 600 800 1000 1200 1400
Eigenvalue rank

300

250

200

150

100

50

0

lo
g(

R
e(

i))

Log eigenvalue spectrum

2 4 6 8 10
Eigenvalue rank

8

7

6

5

4

3

2

1

0

lo
g(

R
e(

i))

Log eigenvalue spectrum

Figure VII.19: Eigenvalue spectrum of the full CSC-gene network (top). For detailed investigation of the spectral gap we also
depict the logarithmic real absolute eigenvalues (bottom left) as well as a close-up on the leading values (bottom right).

The eigenvalue spectrum of the full network is depicted in Fig.VII.19. A first sepa-
ration of timescales can be observed directly after λ1 where the drop in the spectrum
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is about a factor of five. Yet if we observe the absolute real parts of the spectrum
on a logarithmic scale we find that there is a considerable drop after the sixth eigen-
value corresponding to more than five orders of magnitude. Hence although the
time-scales of the metastable states do not even approach a stationary distribution
we obtain a small class of eigenvectors, which exhibits lifetimes on a considerably
larger scale than all other eigenvectors. This is obviously due to the high connec-
tivity within the network itself s.t. most metastable states can diffuse quickly. The
second and third eigenvectors are depicted in Fig.VII.20 to exemplify the underlying
structure.

0 200 400 600 800 1000 1200 1400
Node index

0.3

0.2

0.1

0.0

0.1

0.2

E
ig

en
ve

ct
or

 e
nt

ry

Eigenvector 2

0 200 400 600 800 1000 1200 1400
Node index

0.3

0.2

0.1

0.0

0.1

0.2

0.3

E
ig

en
ve

ct
or

 e
nt

ry

Eigenvector 3

Figure VII.20: Visualization of all eigenvector components of the second and third eigenvector of the full network. Even at this
level one can clearly see the emergence of similar behaviour of certain network nodes depending on the respective eigenvector.

Not only do we observe changes in absolute values but also w.r.t. their sign with
a certain eigenvector and for different eigenvector entries of the same network node.
These sign changes between different nodes indicate an exchange of flow for a ran-
domwalker between these nodes (see [47, 69]) and hence we see that different eigen-
vectors associated with different timescales are responsible for the exchange of clus-
ters of nodes, the number of which is defined by the number of dominant eigenvalues
C22

In fact this can be derived from an analogue from transfer operator theory. It turns
out that the stochastic irreducible transition matrix is a discrete approximation of a
continuous transfer operator. At the same time the eigenvectors correspond to the re-
spective eigenfunctions in the continuous case. Eigenvectors and eigenfunctions can
be mapped onto each other by Fourier expansions, hence the entries in the eigenvec-
tors correspond to the respective Fourier coefficients expressed in the orthonormal
basis of in our case nodes within the network, i.e. genes and CSCs. From this point
of view we see that we have opposing contributions to the discrete analogue of the
eigenfunction namely the eigenvector as an approximation depending on the respec-
tive modes (for further details on this viewpoint see e.g. [161, 188, 265]).

Accordingly different processes, encoded in different eigenvectors, are contribut-
ing on different time-scales.

22In fact certain types of spectral cluster analyses like the Perron cluster cluster analysis (PCCA)
employ the nature of the sign changes in the eigenvectors for clustering nodes. Respectively splits
of clusters are performed for each leading eigenvector subsequently by dividing nodes according to
them having positive or negative eigenvector components (see e.g. [47]).
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Figure VII.21: Heatmap of the leading eigenvector components (from λ2 to λ6, denoted as eig2 to eig6) of the full network of
notable Th1 and Th2 genes.

In Fig.VII.21 we depict the eigenvector entries for a set of selected genes. For the
second eigenvector λ2 we observe significant deviations from the stationary distribu-
tion where especially a significant shift in node importance is observed for Gata3, Il4,
Il5 and Ifng among others. More specifically we find an emergent separation between
genes like Tbet and Ifng, being up-regulatedw.r.t. node importance andGata3, Il4 and
Il5 being down-regulated23. This occurrence of different signs within the higher or-
der eigenvectors hence leads to a node importance flow or shift between these genes.
We find that this signature hence approximates the Th1- and Th2-specificity. Going to
even lowermetastable processes with corresponding eigenvalueswe also find similar
Th1- and Th2-specific behaviour for λ5. Concerning λ2 we also observe some mixing
between Th1 and Th2 genes like in the case of STAT4 and STAT6. Additionally we
find processes with mixed gene importance for λ3 and λ4 which for the genes un-
der consideration look the same. Hence at this point we can recover hints at hybrid
Th1/2 processes.

We already see at this level that metastable processes appear on finite timescales
which either show separation of Th1 and Th2 genes or already correspond to a mix-
ing of different Th1- and Th2- nodes within the network, the extent of which can
be readily determined via a spectral eigenvalue decomposition. We are now able to
make additional predictions via the assessment of perturbations in the importance
of genes that might also reflect subsequently in their gene expression profiles. Via
this approach we infer a respective contribution of CSCs to these metastable network
states.

If we apply this evaluation tomultiplex network dimensions we also find hints for
the existence of long-lived metastability. This is exemplified for the wild-type Th1/2
hybrid condition in Fig.VII.22.

We observe a large drop in the eigenvalue spectrum after λ7. In Fig.VII.23 we
again show the eigenvector entries for the genes analyzed before. For λ2 we find
metastable up-regulation ofGata3 and Th2-specific interleukins at the cost of the Th1-
specific genes as well as STAT6, hence mostly recovering the Th2 part of the network.

23We note at this point that the choice of the sign of the eigenvector is arbitrary and hence the de-
nominations of up- and downregulation in this context are interchangable.
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Figure VII.22: Eigenvalue spectrum of the Tbet+/+Th1/2 multiplex dimension (top). For detailed investigation of the spectral
gap we also depict the logarithmic real absolute eigenvalues (bottom left) as well as a close-up on the leading values (bottom
right).

We find λ3 and λ4 as well as λ6 and λ7 to fulfill the same metastable processes for all
genes. In the former case we find up-regulation of a subset of Th1 genes in combina-
tion with Gata3 at the cost of decreasing importance in STAT4 and STAT6 the same
happens at the slight cost of several Th2 interleukins. We also find a metastable state
for λ5 in which Il10 is heavily differentially regulated w.r.t. to everything else with
the other genes being either unperturbed or experiencing an importance gain in the
case of the remaining interleukins.
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Figure VII.23: Heatmap of the leading eigenvector components (from λ2 to λ7) of the Tbet+/+Th1/2 multiplex dimension of
notable Th1 and Th2 genes.
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The implications of this analysis are quite interesting since we find perturbations
w.r.t. node regulation that emerge inmetastable processes in hybrid Th1/2 cells indi-
cating additional cell conditions as deviations from the stationary distribution of this
particular long-lived steady state. Hence perturbing this network with cytokine and
TF doses as indicated in the respective eigenvectors might exhibit potential power to
obtain network states away from the before determinedmixed phenotype. This could
also be achieved by extracting the highest ranked CSCs for each metastable state and
target such CSCs specifically around geneswhich exhibit significant deviations in the
respective eigenvector as well.

Further analysis of the differential network conditionmakes the above statements
even more pronounced. Let us for example takeDiff1. We again distinguish between
up- and down-regulation, corresponding to a flow between components of opposing
sign, for both ofwhich the logarithmic eigenvalue-spectrawith the respective spectral
gaps are depicted in Fig.VII.24.
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Figure VII.24: Leading logarithmic real eigenvalue parts of the upregulated section of the Diff1 network (left) as well as of the
downregulated section (right).

Wefind spectral gaps in both cases after λ6 leading to the gene-specific eigenvector
components shown in Fig.VII.25. In the case of the up-regulated part ofDiff1we find
that e.g. for λ2 a metastable state emerges in between Th1 and Th1/2 that exhibits an
exchange between several Th2 genes and different Th1 genes in addition to STAT624.
Nevertheless a mixture of Th1- and Th2-specific genes coexists w.r.t. node impor-
tance. Especially the interleukin differences are even more distinct for the λ3 and
λ4 eigenvalues, whereas no other distinctions for the genes under consideration can
be observed. Furthermore for these eigenvalues especially the STATs and the master
TFs do not contribute at all to the metastable process. We also observe pairwise cor-
respondence of lower eigenvectors in the observed genes where especially λ5 and λ6
take the complementary part to λ2 and the λ3-λ4-pairing for several genes. Hence we
not only end up with metastable states approaching the Th1 condition more but also
others which approach the Th2 condition more.

Although the we find a very small spectral gap for the down-regulation network
after λ2 we also included for the sake of comparison lower order eigenvectors for
the down-regulation processes of Diff1 yet our main focus will be on λ2. In this case
we find a separation in importance between e.g. STAT1, STAT4 and Ifnγ. The latter
also clearly promotes the transition from Th1 to Th1/2 w.r.t. down-regulation via a

24We check that in this case regulation w.r.t. STAT6 corresponds to inhibition.
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Figure VII.25: Heatmaps of the leading eigenvector components (from λ2 to λ7) of the Diff1 network of notable Th1 and Th2
genes for upregulated connections (left) as well as for downregulated connections (right).

metastable state. This is pretty intuitive considering the high importance of Ifnγ for
the Th1 cell-type being regulated by very Th1-specific CSCs most of which vanish
when going to the Th1/2 condition. If we would still include even more short-lived
metastable states we find that other processes come into play excluding the partic-
ipation of STAT1 and STAT4 and rather focussing again mainly on Ifnγ as well as
on other Th1-related genes, among which we also find Tbx21. Interestingly enough
we observe that Ifnγ is among the main drivers of metastability in down-regulation
processes going from a Th1 to Th1/2 steady state, which is especially interesting in
considering its respective regulatory enhancer landscape w.r.t. e.g. specific enhancer
knock-outs. The predictions will pose among other things will this be an important
point to be considered when investigating reprogramming effects.

We see from the above analysis of random walks on the respective networks that
we are able to extract metastable states via a spectral eigenvalue decomposition of
the underlying epigenetic network structure. We have seen that we can obtain addi-
tional information from the corresponding eigenvectors, which is otherwise implic-
itly used in spectral clustering methods25 and builds on similar structural principles
as the PageRank algorithm. This information manifests itself in attributing changes
within the flow of node importances between specific genes as well as CSCs leading
to metastable processes. This can be applied to the full network as well as to unique
multiplex dimensions as well as to differential processes approximating dynamical
flow behaviour on the network grid. We note that we can infer unique contribu-
tions of network nodeswhich correspond to higher order processes that reach beyond
an ordinary stationary node importance distribution and to metastable states corre-
sponding to processes being tightly regulated on a finite time-scale. The knowledge
of these processes provides further insight into functional relations being possibly
responsible for a large range of steady states providing information on new pheno-
types.

We will now finally investigate to what extent we can obtain new insight into
the regulation of the classical Tbet/Gata3 MISA motif if we reduce the degrees of
freedomof the network drastically and only includeCSCs relevant for their respective
regulation.

25yet in this case for random walks
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Metastability of the epigenetic Tbet/Gata3 network motif

For performing the eigenvalue spectral analysis of the Tbet/Gata3 MISA motif we
find several possibilities. Either we can use the reduced network w.r.t. the original
full network and only include Tbet, Gata3 and all connected CSCs or we reduce this
even further and only include those CSC instances that are significantly correlated at
the respective loci. Then we still have the possibility only to include those that in fact
bind Gata3 and Tbet directly, all which have a non-zero statistical weight of binding
either of the two TFs or include all significantly correlating CSC instances no matter
if they bind any of the two TFs. In the following we exemplify the analysis for the
full set of CSCs which have non-vanishing statistical binding occurrence of Tbet and
Gata3. The result for the dominant eigenvalues is shown in Fig.VII.26 fromwhich we
deduce that only λ2 can lead to a relatively long-lived metastable state.
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Figure VII.26: Close-up of the leading logarithmic eigenvalues of the reduced epigenetic Tbet-Gata3 network.

The largest positive and negative components of λ2 are shown in table C.29. De-
termining the leading eigenvector λ1, which corresponds to the PageRank vector, we
find a high ranking of both Tbx21 and Gata3with slightly higher importance of Gata3
since it is binding more CSCs. This is then followed by a mixture of Th1- and Th2-
specific CSCs as well as by several completely unspecific instances which bind both
TFs. Turning our attention to λ2 weyet already observe a clear shift away from the sta-
tionary distribution with a majority of Th2-specific ESCs in combination with Gata3
experiencing an upshift in node importance at the cost of Th1-specific ESCs including
Tbx2126.

Another alternative method for the analysis of metastability of the MISA motif is
the direct integration of combinatorial CSC possibilities for Tbet and Gata3, repre-
senting an underlying network for combined gene regulation. For this we only con-
sider CSC instances which directly bind Tbet and/or Gata3 at each locus. For Tbet
this results in three different binding sites while for Gata3 we obtain seven different
CSC instances. We do this according to Fig.V.10 and B.8 27. Combining all binding
possibilities for both genes at the same timewe obtain a total of 210 = 1024microstates

26Again because of the arbitrariness of the sign these views are interchangable.
27Since several of the respective ESCs provide inhibitory potential by (at least statistically) binding

repressors in the respectively opposing cell condition we assume for simplicity an active enhancer
being switched off directly or indirectly by Gata3 or to be effectively repressed in its activity for the
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and hence a total of 1024 eigenvalues of the according irreducible transition matrix.
A microstate is written as

TabcGde f ghij (VII.12)

while all indices {abcde f ghij} ∈ {0, 1} and T denotes Tbet and G denotes Gata3 .
The transition probabilities between each pair of microstates are determined by the
simultaneous probability that every CSC instance separately is switched on or off or
stays in its respective state, which means we only consider only binary decisions as
opposed to ternary for simplicity. These frequency statistics are evaluated on basis
of each CSC instance over all experimental conditions individually. More specifically
we can take enhancer a, which is the first Tbet binding Tbet enhancer upstream of
Tbx21 in Fig.V.10, and we find that for this ESC there are the following enhancer
activity28 transition probabilities over all observed cellular conditions:

P0→0 =
2
8
· 2

8
=

1
16

P0→1 =
2
8
· 6

8
=

3
16

= P1→0

P1→1 =
6
8
· 6

8
=

9
16

where we always find P0→1 = P1→0 for symmetry reasons. For a transition like
T000G0000000 → T000G0000001 we have to consider the combined probability over all
ten individual ESC transition probability instances respective indices that are taking
place within this particular transition. This is done for every combinatorially possi-
ble transition where only one ESC instance changes activity at a time which results
in 10240 edges, the complexity of which again showcases why we do not consider
ternary transitions.

From this we obtain again a raw transition matrix which is being transformed to
a stochastic irreducible transition matrix. This results in the dominant eigenvalues
shown in Fig.VII.27 with corresponding positive and negative eigenvector compo-
nents with highest valuemicrostates shown in table C.30. The stationary distribution
reveals that the most highly ranked nodes always include an active enhancer around
Tbx21 whereas the amount of Gata3 enhancer is quite variable yielding the statisti-
cally highest ranked state/node T111G0011001 with all three Tbx21 enhancers active yet
only the third, fourth and seventh Gata3 enhancer being active the rest of which are
assumed inactive or – for simplicity – repressed. This corresponds to high expression
levels of Tbx21 and intermediate levels of Gata329.

time being. Hence inactivity of an ESC in some condition (i.e. the absence of an active enhancer state)
corresponds to repression in this picture.

28An enhancer is active or not.
29Rough quantitative estimates on this can e.g. be provided by respective gene expression fits for

conditions where the mere existence of an active enhancer yields associated histone modification val-
ues in our data and for missing combinations a respective fit value would be taken along the lines of
Eq.V.18. Yet at this point we will not further go into this direction which will be a matter of future
investigations.
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Figure VII.27: Close-up of the leading logarithmic eigenvalues of the epigenetic Tbet-Gata3 MISA motif.

At the same timewe infer only one relatively long-livedmetastable state with sev-
eral consecutive states being comparably short-lived. The largest deviations for each
component of the eigenvector denote the exchange happening between the respective
microstates. The amount of ESCs that are switched on are considered as priors for
the expression of a certain gene. For simplicity CSCs are assumed to be contributing
to transcription in a distance-independent way.

Averaged over the top 5 positive and negative results30 in λ2 we find an informa-
tion flow between microstates including a relatively higher amount of active Gata3
enhancers and those with a relatively lower amount of active Tbx21 enhancers. This
trend changes a little bit for λ3 where we find an exchange between high Tbx21 en-
hancer amount microstates with slightly lower amount ones yet with corresponding
lower Gata3 enhancer amount microstates with higher ones. In contrast to consid-
ering only the most up- or down-regulated enhancer configuration31 we consider
the set of leading up- and down-regulated configurations from which we can extract
an overall relative amount of gene activity assuming that enhancers contribute lin-
early to gene expression32 depending on the amount of active enhancers. For λ2 the
exchange happens between microstates with relative gene expression values w.r.t.
to the possible maximum of {Tbx21 = 100%, Gata3 ≈ 57%} and {Tbx21 ≈ 93%,
Gata3 ≈ 37%} averaged over the top 5 high- and low-ranked microstates33. For λ3
on the other hand the flow appears between averaged values of {Tbx21≈ 93%, Gata3
≈ 46%} and {Tbx21 ≈ 80%, Gata3 ≈ 54%}. This preliminary analysis can be per-
formed for all subsequent eigenvectors to corresponding processes we yet find to be
suppressed.

The tendency towards more fine-grained distinctions in Gata3 can be expected
since we did not assume the number of binding sites to be equally distributed for
both genes in the MISA motif. This suppresses the detailed occurrence of an equally
distributed Th1/2 hybrid state, which occurs only as a significantly upregulated state

30This can in addition be weighted by the respective importance gain/loss from the corresponding
eigenvector entry.

31This would resemble the line of argument made in [69].
32Again we note that this could be quantified even more stringently by investigation of predicted

gene espression values along the lines of Eq.V.18 which we yet will not delve deeper into at this point.
33Since the number of all possible activity states of Tbx21 for five microstates is 15 and for Gata3 35

one can naïvely count the total amount of active enhancer states in all five microstates and obtain this
rough estimate.
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in heavily suppressed processes34. In extension to the analysis performed with the
example of statistically inferred ESCs around Tbet and Gata3 we would still have to
include an equal number of potential binding sites for both genes also considering
indirect loops or instead reducing the Gata3 binding locus for an equal binding site
number distribution. In our case the bias towardsmoreGata3 binding sites equally re-
sults in the leading metastable states experiencing a higher variance in Gata3 expres-
sion resulting in several metastable enhancer gene configurations depending more
strongly on Gata3. We nevertheless conclude that already on basis of the simple
enhancer-gene configuration network we are able to infer metastability w.r.t. gene
expression in combination with a simple linear gene expression model.

34For this condition to be fulfilled all binding sites have to exhibit active enhancer states, i.e. the
microstate T111G1111111.
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VII.4 Discussion & Summary: Topology and function
We have investigated the nature of a specific class of combined epigenetic gene reg-
ulation networks on different levels. To this end we introduced a specific definition
w.r.t. graph vertices, which consisted of relevant Th1 and Th2 genes as well as ear-
lier defined CSCs in order to disentangle a class-specific functionality of certain epi-
genetic state combinations w.r.t. different treatment conditions as well as the func-
tionality of certain genes involved in the definition of long-lived steady state pheno-
types. This served as an extension to the earlier class-specificity analysis established
by means of an ERT method. With the reduced graph concept of not treating every
enhancer or repressive state as a uniquely realized instance but rather as belonging
to a certain functionality class we defined regulatory connections between nodes that
manifest themselves in a weighted multi-digraph.

Although having established a very reduced network concept w.r.t. the number
of nodes and connections we still observe high interconnectivity which manifests it-
self in a low network diameter of d = 4, exhibiting small-world properties with only
someCSCs appearing in the periphery hence regulating only a small number of genes
specifically. These features also result in a weak scale-free behaviour w.r.t. in- and
out-degrees although some of this is due that the network does not provide full in-
formation on TF binding. Hence only genes which are defined as TFs from the use of
the available ChIP-Seq data sets possess out-going edges. We also found that espe-
cially the multigraph definition leads to a dampening of the scale-free behaviour and
at the same time corrects for problems occurring from low scaling exponents. Still
we find a notable number of network hubs consisting of TFs and several CSCs in the
case of the out-degree distribution and mainly of TFs and other notable Th1 and Th2
genes for the in-degree distribution. As a result of lower scaling degrees the network
shows high levels of resilience upon hub removal.

From the analysis of different centrality measures we were able to extract some
preliminary information on node importance with varying interpretability. For our
purposes we found especially the betweenness and eigenvector or Katz centrality
measures to be of high importance. We also found that genes themselves play a gen-
erally larger role thanCSCswith only someCSCs exhibiting high regulatory potential
within thewhole network itself and being able to change the phenotypic structure as a
whole significantly. Nevertheless we also find an importance ranking in gene nodes
themselves with TFs quite naturally occurring among the highest ranked genes in
combination with which the removal of certain CSCs are obviously able to change at
least the gene expression values of certain gene groups. Yet at this level we note that
even slight variations w.r.t. node removal will, in combination with the definition
of a stochastic matrix, in most cases lead to a different stationary network distribu-
tion and hence to a new characteristic steady state. Already with a jackknife node
removal this leads to a maximum number of stationary network states that corre-
spond to the amount of nodes within the full network, hence in principle leading to
a quasi-continuum in terms of network stability.

Additionally we find a large number of direct autoactivation loops35 of important
TFs like Tbet and Gata3. Statistically among the most frequent motifs in the full net-
work we mostly find coherent FFLs that both include inhibition and activation. We

35mediated by a CSC
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argue that for more than 5-node subgraphs the size of the network renders subnet-
work computations unfeasible.

By eliminating the CSCs as gene mediators from the network and only focusing
on TFs themselves we are furthermore able to infer direct statistically feasible acti-
vating and inhibiting connections between TFs themselves. We can not only confirm
well established connections but w.r.t. to our network structure are also able to infer a
range of new connections many of which are only suspected or completely unknown
to our knowledge. Yet we also found that in some cases we cannot infer a one-to-one
mapping condition of a TF binding directly at another TF locus since the mediation
via CSCs infers the binding probability of a TF at a certain CSC genome-wide for
Th1 and Th2 genes and hence also the reduced TF network only provides statistical
information in contrast to actual binding. This naturally has to be taken into consid-
eration.

Via community detection methods we were subsequently interested in functional
clusters within the network itself. Even by crude inspection we were able to ob-
serve a distinction between Th1- and Th2-specific network parts, which is already
evident on the basis of a reduced core network. Yet we also find regions of over-
lapping functionality providing a regulatory basis of mediation in between the clas-
sically differentiated functional parts of the network. To quantify these functional
groups more strictly we inferred subcommunities unique to the underlying network
topology which reproduce Th1- and Th2-specificity on different levels, yet also hint
on hybridisation to which not only Th1/2-specific CSCs contribute differently but
also certain previously classified Th1 and Th2 genes with still debated functional-
ity. We note that this is for some subcommunities heavily dependent on the applied
algorithm and parameters and has to be interpretedwith care. Yet we also find never-
theless a consensus clustering particularly distinguishing between classical Th1- and
Th2-specific nodes. Hence certain network nodes form tightly connected subclusters
which are not only relevant for classic T-helper cell types but also for intermediate
states. The attribution if a certain cluster belongs more or less to Th1 or Th2 can
now either be made via the aforementioned classification or also on basis of their
respective location in the network as well as in combination with their respective be-
tweenness centralities.

We turned our focus on condition-specific networks by inferring a multiplex net-
work by including only dimension-characteristic CSCs within each multilayer. This
leads to a network topology unique to every condition. We find a condition-specific
reordering of nodes due to their changing intraconnectivity, which leads to new sub-
clusters unique to their respective topology and in some cases also to a heavier mix-
ing of Th1- and Th2-specific nodes. If we keep the node position fixed we also find
that only certain CSC subclusters within each network dimension are actively con-
tributing as is obviously intended by construction. Yet more surprisingly this also
corresponds to unique regions within the network which also confirms the struc-
tural and topological uniqueness and importance of CSCs including their definitions
themselves.

Pushing this approach a little further we also investigated differential changes be-
tween the differentmultiplex dimensions in order to find the degree of up- anddown-
regulation between different dimension pairs. Especially the investigation w.r.t. the
hybrid Th1/2 condition showed the increasing importance of certain network nodes
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and regulations in order to enhance or suppress either certain Th1- or Th2-specific
features and also being able to investigate an importance ranking of these nodes based
on centrality measures. By adding or removing certain network nodes during up-
and down-regulation we note that we again end up in conditions in between clas-
sical hybrids and the fully differentiated Th1 and Th2 cells. We also introduced the
measures how to perform this in theory.

In order to obtain a more robust ranking measure w.r.t. node importance in the
full network but also in the different condition-specific network dimensions as well
as in differential networks, we finally investigated the implications of random walks
performed on these networks. To this end we defined stochastic transition matrices
and determined the respective stationary distributions. We hence obtain a topology-
characteristic node ranking which is now not only able to distinguish between genes
or CSCs separately but between all nodes in combination. We finally can not only
confirm most results from the ERT class-specificity ranking within the condition-
specific multiplex dimensions but also are able to pinpoint important players in up-
and down-regulating processes in between different conditions. Integrating higher-
order effects by investigating the whole eigenvalue spectrum of each network topol-
ogy we are even able to determine medium- and long-lived metastable states occur-
ring during the relaxation of a certain network to its stationary distribution. This
unravels relatively tightly connected small-scale exchange processes between certain
groups of genes which were grouped already earlier similarly by spectral clustering
methods. Via this approach we can even quantify for differential networks which
metastable states can be reached when performing a transition between two different
steady states adding a dynamical aspect to the steady-state networks.

In conclusion we find distinct general and condition-specific network topologies
with distinct functionalities which we can not only pinpoint via classical commu-
nity clustering methods but to which we even can assign a robust node importance
ranking in order to determine which genes or CSC contribute to a certain process
in a relative manner. From this we can even elucidate the potential role of network
nodes in metastable processes, which influence the respective function of a certain
phenotype.
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Future directions & improvements

As a final endeavour we want to give a short outlook on future directions of the work
and potential starting points for extending the methods developed herein.

Concerning underlying data sets we investigated RNA-Seq as well as ChIP-Seq
data in this work which is highly specific in the regard that it is dependent on Th1
and Th2 cells as well as on Tbet dose. As the methods such as the parametrization of
the histone modification measure as well as the correlation algorithm and the infer-
ence of importance of CSCs with regulatory logic based on the underlying samples
is highly generalizable it will be of general interest to test these methods on indepen-
dent data sets also from different cell types. Not only will this provide important
insights e.g. in the case of different master TF dose specificity such as Gata3 in Th2
cells or respectively others in different T-helper cell lineages but also with respect to
STATs or other important network players. Such investigations will yield additional
valuable information on T-helper cell plasticity such as e.g. in the case of Th1/Th17.
Another question in this regard can be if epigenetic networks obtained in those sys-
tems provide comparable network topology in order to achieve similar effects or if
their behaviour differs entirely.

Concerning the applicablity of the HMM it would be certainly revealing to extend
the binary statistical peak detection to continuous peak combinations with different
heights, potentially further narrowing down the detection of possible enhancer states
in certain regions. Yet since our correlation procedure already accounts for narrower
regions of enhancers or in general chromatin states significantly contributing to gene
expression it would surely provide an interesting mode of validating the correlation
method since changes in peak structure assigning a certain hidden state to a specific
position should be reflected in the significant correlations as well.

Additionally actual validations of certain enhancer regions around notable genes
like Tbx21,Gata3 or at the Th2 cytokine cluster would be an important step in strongly
confirming our learning-based statistical inference methods and their results exper-
imentally. A viable first step in this direction could be the usage of conformation
capture methods for the same cell conditions that we investigated such as 3C, 5C
or Hi-C depending on the scope one wants to achieve. In general although specific
enhancer-promoter binding events would be already very informative a genome-
wide approach naturally would provide more flexibility for the full range of Th1 and
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Th2 gene loci.

Turning to the correlation measure model additional experimental validations of
enhancers can be easily integrated in the parametrization of the correlation measure
leading to an increasingly robust model based on an growing enhancer learning sam-
ple on which the optimization procedure is trained. Hence such iterative procedures
provide a feedback workflow via updated learning. Furthermore a parametrized
model including error bounds of the parameters for the estimation of subsequent sig-
nificant correlations still calls for an efficient implementation for genome-wide tran-
script analysis. The correlation algorithm itself provides a computational framework
which can be easily extended as well e.g. by incorporating further data base informa-
tion from ENCODE or the Roadmap Epigenomics projects such as e.g. DNase HSI
data into the workflow. In order to provide the research community with a stand-
alone version of the algorithmic procedure or in form of a computational package it
might be advantageous to generalize the algorithm to other input data different from
HMM states but also to provide the ability to process input from different chromatin
state inference algorithms automatically. Yet manual labelling is possible in principle
at the moment while modifications in order to achieve this have to be made before
running the code.

For the inference of the underlying methods we relied on a limited set of TFs in
Th1 and Th2 cells leading to a bias in TF-CSC binding towards the investigated dom-
inant TFs in Th1 and Th2 cells. Obviously accounting for a larger range of such TFs
will yield a more complete picture of the underlying network topology. Furthermore
the ERT results on TF binding at CSCs at the moment rely on the presence or absence
of a TF at a certain CSC. This can be quantified even more robustly by considering
the normalized read counts fromChIP-Seq binding at different CSCs. In doing so one
can obtain a data-driven statistical measure on TF binding at CSCs which also takes
the read load from the underlying data into account. In addition the intra-class speci-
ficity method for CSCs could profit even more by integrating more classes into the
procedure. This could be for example achieved by extracting leading nodes from the
stationary distribution of the Diff1 and the Diff2 network that are comparably low-
ranked within the Th1 and Th2 networks respectively and classify them as Th1/2
genes. It will be a matter of further investigation if a classification for steady states in
between two extremes such as Th1 or Th2 can effectively lead to better results.

With regard to community detection within the underlying netwoks the methods
still have to be extended for directed networks including the application of consensus
clustering to obtain more robust results. Since as of yet implementations for this
kind of problem are still rare this will naturally pose an important point for further
investigations.

Concerning the randomwalkmethods on theweightedmultidigraphs under con-
sideration the results could be improved even further by not only considering posi-
tive edge weights in order to obtain stochastic irreducible matrices but also by distin-
guishing explicitly w.r.t. inhibitory edges by e.g. decreasing transition probabilities
of associated flows in the Markov chain. In contrast to this as of yet we treat activat-
ing and inhibitory edges as being equal by only considering the flow over possible

149



CHAPTER VIII. FUTURE DIRECTIONS & IMPROVEMENTS

connections within the respective network. This is a reasonable thing to do as we
only want to rank node importance1. Yet w.r.t. the underlying network dynamics
this would be of great importance.

As we have already indicated at the end of section VII.3 we can also investigate
subnetworks of certain genes and observe the activity of all CSCs that exhibit edges
with those genes respectively. This can be obviously extended beyond the aforemen-
tioned reduced MISA motif and also include e.g. STATs but more importantly also
RSCs2. Since we have only investigated random walk metastability as well as the
stationary distribution of the according stochastic matrix associated with transition
probabilities that were determined via a frequentist approach one can furthermore
ask for individual gene regulation functions (GRFs) that are produced via the respec-
tively significant CSCs. In order to do this one will have to parametrize all respective
possible transitions between activity and inactivity combinations of all regulatory
CSCs. This follows the line of thought established in [2, 109] for non-equilibrium
systems. In this case all viable activity states for gene expression are assessed, i.e. all
experimental condition where the gene is expressedwith corresponding activity pat-
terns of all regulating CSCs. This basically forms a graph partitioning into subgraphs
that contribute to gene expression itself via the determination of all sets of spanning
trees or arborescences [2, 355] that can achieve the respective activity microstate over
a series of state transitions. The resulting partition function corresponds to the GRF
for the respective gene. In [2] the spanning tree model was derived for a full account
of all possible of such microstates regarding TF binding of two TFs. In our case ob-
vious problems arise concerning graph complexity since we usually have more than
two CSCs around each gene. Also it depends on the model complexity e.g. if one ad-
ditional considers looping or more sophisticated models of transcriptional activation
such as telegraph or refractory state models [209, 254]. These models can be drasti-
cally reduced by including only the observed CSC activity states, which reduces the
number of nodes of the transcriptional activation network. Yet this will in turn lead
to problems with the linear Laplacian framework as proposed in [2] resulting in non-
linear transitions since several activity states can change in one step. In general for
all transitions to be considered one needs a robust way to estimate the transition pa-
rameters between CSC activity microstates around the respective gene. An approach
to this has been already proposed via the MISAmotif. Nevertheless we note that this
parameter estimation is not always straightforward and also can be different for each
enhancer site. Alternatively one can sample the space of all not straightforwardly
inferable transitions. One can now e.g. ask for all possible steady states that are
achievable via certain parameter combinations. Furthermore one can even try and
solve an optimization problem, i.e. under which parameter combinations for the full
partition function, i.e. the GRF, a fixed maximum number of steady states can occur.
Since this corresponds to a root finding problem one can utilize that an upper bound
for the maximum number of possible positive real roots is given by Sturm’s theorem in
combination with Descarte’s rule of signs [304]. In spite of the problems arising with
the parametrization of a full system of CSCs in principle one can determine GRFs

1In our case we always have to check explicitly for each metastable process which connections
appear in the actual activation and inhibition network between the respective nodes.

2In our case we only included inhibition by absence of activity for simplicity.
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for different genes such as Tbx21 and Gata3 and via the epigenetic landscape and the
CSCs around these genes infer their respective steady states and hence also the sta-
bility properties not only of small motifs like in the case of the MISA motif but also
for increasingly larger subnetworks such as the core network mentioned in VII.2.3.

We also suspect that by calculating effective GRFs for certain subsystems and pro-
viding a coupling between these systems the combination of both might give addi-
tional insight into the existence of multiple long-lived steady (or at least metastable)
states (see e.g. [52, 250, 251]). Work into this direction has been already going on
for some time in the context of coupled community-structures oscillator networks
producing so-called chimera states (see e.g. [281, 287, 310, 373]) being important in
neuronal brain networks. Under certain conditions one hence obtains a potential
landscape with multiple local minima [239] similar to the final states in the famous
Waddington landscape analogy from epigenetics. The question at this point is if sim-
ilar behaviour can be equivalently achieved in the epigenetic networks under consid-
eration in this thesis or if coupled GRFs can produce this behaviour under realistic
circumstances. Obviously this will provide an extensive body of future research.

We have seen that although we have already achieved a great deal on robustly
inferring the epigenetic landscape including their underlying epigenetic networks in
Th1 and Th2 cells there are many ways to investigate the methodology even further
especially including experimental validations and different experimental systems as
well as improving certain computational details. We also see that especially the in-
vestigations w.r.t. stability properties of subnetworks and small motifs have found a
new quantitative starting point from which to build on w.r.t. results obtained in this
work.
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CHAPTER IX

Summary

IX.1 General
We are now able to answer the problems and questions that arose in the beginning
in the introduction and summarize the discoveries that unfolded during the process
chronologically.

We started this work in chapter III by introducing and analysing the underlying
histone modification ChIP-Seq and RNA-Seq data sets of different T-helper cell con-
ditions w.r.t. cytokine as well as Tbet dose resulting in differentiated Th1, Th1/2, Th2
as well as naïve cell types. To this end we established the bioinformatical pipeline for
further post-processing of the data sets.

Utilizing these results in chapter IV we mapped the epigenetic landscape in all
experimental conditions by first determining so-called chromatin states via a HMM
implemented in ChromHMM. The resulting model included a total of 16 hidden states,
corresponding either to promoter, enhancer, bivalent or repressive/silenced states.
We found at different genetic loci that not only are these chromatin states in many
cases highly condition specific but also their activity state changes quite frequently
depending not only on cytokine but as well on Tbet dose. This especially favours the
actual importance of Tbet, coming back to one of the initial questions, on the epige-
netic landscape in Th1 and Th1/2 cells contrary to reports such as in [314]. In the
end we obtained an annotation not only of chromatin states in general but also of
enhancer states, showing significant overlap with p3001 and repressive states as well
in different Th1 and Th2 conditions. We also found that active enhancer states can
become not only poised in certain conditions, e.g. under Tbet knock-out, but acquire
a bivalent state or even become fully repressed.

In order to map chromatin states and specifically enhancers to respective gene
candidates we introduced in chapter V a quantitative correlation measure based not
only on the classic histone modification enhancer marks H3K4me1 and H3K27ac but
also on the repressivemarkH3K27me3,which is frequently occurring in the opposing
cell condition of the respectively occurring active enhancer state. Based on a learn-
ing sample of well known experimentally validated enhancers and by optimizing an
appropriate objective function we found a stable parametrization which provides the

1yet not being limited to this HAT
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ability to stabilize andmaximize the correlation of enhancer and equally of repressive
states with gene expression. We were able to show that this novel measure outper-
forms the usage of every individual histone modification in a robust way. This leads
to the conclusion that not only H3K4me1 andH3K27ac are important markers for en-
hancers but the appearance of the repressive mark H3K27me3 in respectively oppos-
ing cell conditions is an equally important indicator of the gene regulatory correlate2.
Additionally we implemented a correlation algorithm from scratch which is able to
deal with chromatin state input data as a prior for selecting respective correlation re-
gions and utilizes an arbitrary (in our case the learned) histonemodificationmeasure
for correlation calculation. The algorithm also contains a sophisticated splitting and
merging procedure for unravelling substructures in correlations reflecting the under-
lying peak structure and treating neighbouring elements due to a statistical similarity
criterion. We tested the procedure on a variety of genomic loci on TADs including
thewell-annotated Ifnγ locus andwere able to reproduce nearly all previously known
enhancer sites as well as a smaller number of new ones. The results were also inte-
grated with p300 binding data as well as with published ChIP-Seq of the master TFs
and notable STATs. We also showed that in the case of a superenhancer like the one
at Tbx21 only small segments were actually co-regulated with gene expression. In
the case of crowded loci like the Th2 cytokine locus we were able to elucidate a one-
to-one mapping for a large number of significantly correlating enhancer segments
via the facilitation of partial correlations. This led to an annotation of the locus with
a concrete distinct mapping of several already known enhancer segments of which
the distinct functionality was either simply unclear or a coregulation of all genes at
the locus was proposed. We were also able to infer a logic for inhibitory action of
significantly correlating chromatin states and predicted the expression of genes with
different models of enhancer regulation based on the parametrized histone modifi-
cation measure. This results in unravelling the unique epigenetic landscape in Th1
and Th2 conditions.

Since we found that chromatin states in general and enhancer states in particular
follow different regulatory patterns w.r.t. their activity state we introduced a ternary
state classification in chapter VI leading to so-called chromatin state classes (CSCs)3
which appear in a variety of combinations around certain genes they were initially
mapped to. We investigated a large set of Th1 and Th2 specific transcripts and found
via the ERT procedure an importance ranking of CSCs in distinguishing between
Th1- and Th2-specific transcripts. We also introduced a measure which is able to dis-
entangle the respective relevance contribution of each of these CSCs either to the Th1
or Th2 condition. This resulted in an intra-class specificity ranking, including the in-
troduction of a novel class-specificity measure, of respectively Th1- and Th2-specific
enhancers and repressive states depending on their regulatory logic. These CSCs can
be furthermore grouped into beingmostly cytokine or Tbet dose responsive. Further-
more we also found a co-occurrence probability of pairwise combinations of these
cell-specific CSCs leading to a robust predictor in furthermore specifying the cell-

2We find that the algorithm to some extent resolves a known shortcoming of ChromHMM, i.e. only
considering presence/absence of modification in a certain region, by introducing the peak structure
through the back door via correlations.

3Depending on the context we exemplary defined enhancer or repressive state classes.
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specificity of a certain transcript by just mapping its respective epigenetic landscape
and observing its regulatory logic.

Following up on the intra-class specificity approach we were furthermore able to
assign an importance weight of a TF binding at a certain specific CSC hence leading
to an epigenetic network containing bidirectional edges, based on the ERT method.
The epigenetic network introduced in chapter VII of Th1 and Th2 cells was uniquely
defined with gene and CSC nodes reducing the complexity of the network signifi-
cantly and also putting additional focus on the unique regulatory logic of ESC and
RSC elements. By defining an appropriate adjacency matrix we obtain an epigenetic
network defined by a weighted multi-digraph. We found that although the concept
of network architecture is a very reduced one we obtain a topology exhibiting high
connectivity. We observe that the network consists of a small number of high in- and
out-degree nodes i.e. hubs and is highly resilient to node removal exhibiting weak
scale-free properties. Reducing the network to an effective version only including TF
as nodes we obtain new modes of TF regulation not only in the case of activation
but also concerning inhibition. We are also able to infer auto-activation and mutual
inhibition loops based on the adjacency of the respective TF nodes considering the
underlying epigenetic bipartite CSC logic.

Furthermore we inferred community structures in the network, depending on the
respective method leading to different substructures but overall distinguishing be-
tween Th1- and Th2-cell specificity not only for genes themselves but also for CSCs,
hence confirming results from the intra-class-specificity analysis. We also found sub-
clusters which rather fulfill the task of mediating between the Th1 and the Th2 part.
We extended these investigations by considering so-called multiplex networks by
only including condition-specific CSCs. We found that different parts in these net-
works are responsible for different condition-specific regulatory tasks leading to com-
pletely unique topologies. Considering differential networks between the respective
multiplex dimensions we were even able to unravel dynamic properties in consider-
ing up- and down-regulation from one steady state to another indicating that certain
regulatory functions and especially nodes contributemore to a certain transition than
others.

In order to take this even one step further we were asking which nodes are more
or less relevant not only in the full network and the multiplex dimensions but also in
differential regulation. To this end we introduced a stochastic irreducible transition
matrix for each network individually as well as for the full network and determined
their stationary distributions. This corresponds to the long-term behaviour of a ran-
dom walker on a network being described via a Markov chain. From this we were
able to rank the importance contribution of each node for each network respectively
and hencemake predictions on the relevance of each particular node on each process.
Furthermore these investigations also led to the inference of metastable processes in-
dicating a separation in relevance of particular nodes leading to a specific information
flow in the frame of a randomwalker. This was possible not only for the full network
recovering pure Th1- and Th2-specific processes but also in condition-specific net-
works uncovering processes e.g. unique to Th1/2 hybrids. By including hybrids one
can even find metastable processes occurring during the process of up- and down-
regulation leading to possible predictions of cell states in between the classic Th1 and
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Th2 dichotomy aswell as the Th1/2 hybrid state. We argued that these findings could
stimulate the search for new long-lived steady states not only based on the respec-
tive node importance and their unique topology but also by future investigations of
CSC-regulatory microstates as in the case of the MISA motif or by determining gene
regulatory functions as outlined in chapter VIII.

IX.2 Originality of work
The question of how this work relates in contrast to other research in the field and
which contributions have been made by the methods and the analysis established
herein can finally be answered.

Not only is this to our best knowledge the first time the epigenome in Th1 and
Th2 cells in mice has been mapped genomewide w.r.t. the respective specific en-
hancer landscape by a chromatin state segmentation assigning and extending this by
also considering repression but we determined a unique quantitative method via the
parametrized histone modification measure for inferring significant co-regulation of
enhancers with genes. In doing so we find that not only the classical histone marks
have to be considered for enhancer activity but also the appearance of the repressive
mark H3K27me3 when occurring in adverse cell conditions. Hence the growing ab-
sence of H3K27me3 is a comparably good estimator of enhancer activity at the same
time as H3K4me1 and H3K27ac yet we note that all three modification marks have
to be considered at the same time according to our inferred parametrization. We
extended this approach even further to partial correlations and provided a compu-
tational framework which implements a sophisticated statistical approach to narrow
down the prior indicators of transcriptional regulation from the HMM and assign
them a quantitative correlate, which has been shown to show extraordinarily good
performance inwell-known regions. We note that this presents a non-trivial problem.
In addition to this we are even able to make genome-wide predictions in silico based
on the respective learning sample. This method now does not rely on nearest neigh-
bour association of enhancers and promoters but is without any additional assump-
tion on interaction able to specify co-regulated enhancer states with gene expression
with the interacting regions being merely restricted to TADs. We not only found that
as it is already known cytokine dose has significant impact on the alteration of the
epigenetic landscape in Th1 and Th2 cells but this work furthermore strengthens the
importance of Tbet dose in Th1 and Th1/2 hybrid cells also with special focus on the
enhancer and repressive state landscape. This extends the prevailing view that the
influence on Tbet on epigenetic regulation in these cell types is rather low.

We additionally propose a dose-dependent ternary regulatory logic dependent on
the underlying experimental conditions again including enhancer activity, the loss of
the activity mark as well as the acquisition of a repressive mark, which results in
an enhancer landscape, and more generally in a chromatin state landscape, with en-
hancer states exhibiting different functionality considering their activity. To our best
knowledge this has never been proposed before and definitively not w.r.t. Tbet dose
as well as in hybrid Th1/2 cells. By this approach we are able to not only infer reg-
ulatory enhancer classes (or CSCs) that are indicative of a certain cell-specificity but
also to predict cell-specificity of transcripts other than those that the ERT model was
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trained on. In order to assess this intra-class specificity as we coined it we developed
a novel measure to achieve this cell-specificity. Also to our knowledge such a def-
inition of an intra-class specificity measure does not exist at this point. This whole
approach results in a set of reliable predictions and is highly generalizable also to a
larger number of classes and obviously also to other differentially regulated experi-
mental systems.

This can be also seen from the network perspective where we were able to val-
idate the respective predictions by community clustering recovering CSCs, which
were classified before in the respective cell type. We also chose a novel approach to
GRN architecture for which we found no correspondence in the literature. This con-
sisted of inferring a bipartite graph where gene regulation is always mediated via
enhancers or by repressive states not only including activation but also inhibition.
More specifically the concept of the adjacency matrix is also unique in the regard
that we did not choose actual enhancer instances as regulatory entities but rather
their regulatory classes. Hence the underlying structure is not only based on specific
regulation by special enhancer instances, which might or might not be actually val-
idated afterwards, but rather on their respective logic decreasing the necessity of a
specific enhancer instance to be completely accurately predicted. The bottom line of
this is that regulation is not only inherent in the edges but also in the nodes them-
selves. We provide the first full account on epigenetic enhancer networks in Th1 and
Th2 cells including these entities themselves as well as the first account of condition
specific multiplex networks in those cells not only for the classical lineages but also
for hybrid cells. We were furthermore able to pin down topological properties of
the respective networks and not only investigate a node importance ranking via the
stationary distribution of a random walker but additionally also inferred metastable
properties relations that have been rarely investigated in this field.

We conclude that we present a series of novel quantitative data-based methods
employing statistical learning procedures and developed not only a computational
framework but also an unprecedented viewpoint on epigenetic regulatory logic re-
sulting in unique network topologies. Among the special strengths of the above
stated novelties are that they are all highly generalizable to every arbitrary question
of differential regulation although they have been developed for the example of the
Th1/Th2 system. We continued our investigations by employing analyses of these
networks which are rarely used in this field and also provide a general way in order
to obtain crucial information on important players in differential network regulation
serving as a strong starting point for further investigations into multistable plasticity
properties of Th1 and Th2 cells.
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APPENDIXA

Additional mathematical background

In the following we will introduce some preliminary statistical quantities which are
used in some of the chapters as well as a glossary of selected mathematical notations
throughout this work.

A.1 Definitions and explanations

A.1.1 Statistics

Model selection criteria

In multi-regression problems issues often arise about a bias-variance trade-off re-
sulting either in underfitting or respectively in overfitting. This trade-off is usually a
matter of balancing fit and complexity (see e.g. [330, 331]). Measures for this issue
are provided by model selection criteria the most popular of which are the so-called
Bayesian information criterion (BIC) as well as the Akaike information criterion (AIC). A
general version of the BIC reads

BIC = −2 ln(L) + k · ln(N)

where ln(L) ≡ L is the log-likelihood value of the model, k denotes the number
of employed free parameters and N is the number of samples.

The AIC instead reads

AIC = −2 ln(L) + 2k

omitting the consideration of the sample size in penalizing the number of param-
eters as amodel selection criterion. Hence in general the BIC penalizesmore complex
models more strongly1. If one now compares different models with each other the
one having the lowest AIC or BIC is chosen. The question up to which point dif-
ferences in the information criteria of two models yet are relevant for choosing the
model with a lower score has to be given by a rule-of-thumb relevance cut-off. Hence
if the difference between the best model and another candidate model is e.g. ∆BIC

1This is already valid for a sample size of N = 8 which one can easily check.
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∈ [0, 2) there is significant reason to rather support the candidate model [57]. The
same holds true for the AIC. We furthermore note that both measures have to be
taken as a relative criterion yielding for a low score merely a model which is better
than all other models in comparison. The model can still be bad in general.

Adjusted p-value

The so-called adjusted p-value padj is a corrected version of the regular p-value, which
gives a rejection level of the underlying null hypothesis. If a certain amount of null
hypothesis tests for a large sample are carried out one faces the so-calledmultiple test-
ing problem as the number of false-positives increases with the number of hypothesis
tests being carried out at the same time. This happens e.g. in the case of differential
gene expression as carried out in chapter III where hypothesis tests for the differen-
tial expression of all known ENSEMBL transcripts have to be carried out at the same
time. There are two popular methods that provide a solution to this problem, i.e. the
Bonferroni method and the Benjamini-Hochberg method (see standard textbooks such
as [330]). In the former method if N is the number of multiple tests we obtain the
adjusted p-value by

padj = N · p ,

which is a rather conservative estimation. Amore relaxed one is given by the Benjamini-
Hochberg method, which yields for sample i

padj,i = min
r∈i,...,N

(
min

(
N
r
· pr, 1

))
.

where r is the rank of the p-value in the whole sample when sorted in ascending
order, the inner minimum ensures p-values to be smaller than one and the outer
one ensuring the same ordering as for the unadjusted p-values. This is actually the
method employed for the results in tables C.1 and C.2.

A.1.2 Partial correlation
Considering the pairwise correlation of a number of variables greater than two the
mutual dependence of the variables on each other has to be disentangled first in order
to remove spurious correlations of all other variables on any each pair. The solution
to such an issue is given by so-called partial correlations. One can for example con-
sider three variables A, B and C where a potential correlation between A and B is
only mediated via the variable C. In this case the true partial (first-order) correlation
coefficient between A and B given C is given by

ρAB|C =
ρAB − ρACρBC√

(1− ρ2
AC)(1− ρ2

BC)
. (A.1)

where ρij denote the ordinary zero-order correlation coefficients as e.g. in the
case of Pearson or Spearman rank correlation. In the case of N variables we have to
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determine the partial correlation of order (N − 2), which is defined recursively by
lower order partial correlation coefficients:

ρAB|C···N =
ρAB|D···N − ρAC|D···NρBC|D···N√
(1− ρ2

AC|D···N)(1− ρ2
BC|D···N)

. (A.2)

For relations to multiple regression including a definition via residuals see e.g.
[18].

A.1.3 Perron-Frobenius-Theorem for ergodic Markov chains
Since ergodic Markov chains are also called irreducible the following version of the
Perron-Frobenius theorem for irreducible stochastic matrices also holds for ergodic
Markov chains in general:

Theorem (Perron-Frobenius) Be P an irreducible, aperiodic stochastic matrix, then it has a
largest unique single eigenvalue λ1 = 1 with corresponding left eigenvector π1. Furthermore
π1 can be chosen to have only positive entries.

Further information on the formulation including a proof can be e.g. found in
[133, 223].
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A.2 Mathematical Notation

Notation Meaning
R Pearson correlation coefficient
Aij Elements of adjacency matrix
Ad

ij Elements of adjacency matrix of multiplex dimension d
Wij Elements of multi-edge weight matrix
Pij Elements of raw transition matrix
P̃ij Elements of stochastic transition matrix
˜̃Pij Elements of stochastic irreducible transition matrix
πj Elements of stationary distribution vector

kin, k− In-degree
kout, k+ Out-degree

γ Scaling exponent
Ej Enhancer state class (feature) instance
I∗Gini Intra-class Gini impurity
IC Intra-class measure
IGini Gini impurity
L Log-likelihood

vi, Ni Vertex, node
θ = {Θ, Σ, π} HMM parameters = {transition probabilities, emission probabilities,

initial state probabilities}
|s| length of segment
〈·〉 mean of element ·
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APPENDIXB

Supplementary Figures

Figure B.1: Per base sequence quality (left) and sequence length distribution over all sequences (right) for one ChIP-Seq sample
of H3K4me1 under Tbet+/+Th1 conditions.

Figure B.2: Per base sequence quality for one RNA-Seq sample for Tbet+/+Th1 conditions.
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Figure B.3: Heatmap of pairwise correlations between different ChIP-Seq samples. In order to obtain the correlation itself the
genome was discretisized into unity bins. As e.g. in Fig.III.6 the labels neut denote Th1 culture conditions and Th2 denotes Th1
cells under Th2 culture conditions. The only exception are SMTh2 cells which denote the Th2 control. The numbering w.r.t. 1
or 2 again denotes the respective replicate.
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Figure B.4: Hierarchical clustering of a subsample of VST normalized genes for all RNA-Seq samples.
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Figure B.5: PCA analysis components PC3 and PC4 for the VST case.

Figure B.6: Pearson and Spearman correlations for the parametrized histone measure in comparison to the individual histone
modification Pearson correlations.

Figure B.7: Results from the correlation algorithm for a resolution of 600 bp for all HMM states as well as for enhancer states
only. We observe slight deviations in the merging of statistically similar elements.
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Figure B.8: Schematic depiction of significantly correlating activating elements at theGata3 locus unveiling the enhancer activity
regulation.

Figure B.9: Schematic depiction of significantly correlating activating elements at the STAT1 locus unveiling the enhancer
activity regulation.
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Figure B.10: Schematic depiction of significantly correlating activating elements at the STAT4 locus unveiling the enhancer
activity regulation.

Figure B.11: Schematic depiction of significantly correlating activating elements at the STAT6 locus unveiling the enhancer
activity regulation.
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Figure B.12: Schematic depiction of significantly correlating activating elements at the GAPDH locus unveiling the enhancer
activity regulation. In white we denote active enhancer elements which do not exhibit any significant corrrelation according to
our correlation method as can be expected for a housekeeping gene.
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Figure B.13: Top 20 ranked RSC features for Th1 (left) as well as Th2 transcripts (right). The ranking was obtained via the
application of the intra-class Gini impurity.
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Figure B.14: Out-degree centrality for the full weighted multi-digraph. The colour-scheme depends on the maximum and
minimum in-degree centrality values. As previously we depict only TF node labels for simplicity.
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Figure B.15: Top-ranked directed 4-node subgraphs w.r.t. Z-score. Green edges indicate activation and red edges indicate
inhibition. We also list the respective occurrence frequencies of each subgraph and compare them to the mean frequency for a
set of 100 random graphs including the respective standard deviation. From this we obtain the associated Z-scores.
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Figure B.16: Rearranged full network after the deletion of the two Th1 and Th2 master TFs Tbet and Gata3.

Figure B.17: Rearranged full network after the deletion of STAT1 corresponding to a STAT1 knockout of the system.
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Figure B.18: SC community detection results for k = 10 .

Figure B.19: RWIF community detection results for a granularity parameter of 2.0 .
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STAT6

Gata3

STAT1

STAT4Tbet

Figure B.20: Force-directed Tbet+/+Th1/2 network.

Figure B.21: Differential network of Tbet+/+Th1/2 vs. Tbet+/+Th1 (Diff1) considering edge addition and deletion. The node
shadings represent different in-degree centralities while green edges denote upregulation and red edges denote downregula-
tion.
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Supplementary Tables

Transcript-ID Transcript name LFC LFC SE LFC/(LFC SE) p-value padj
ENSMUST00000061673.7 Itga1-201 -9.88113721033285 0.371024095045687 -26.6320633680573 2.88799555914734e-156 8.87262962191918e-154
ENSMUST00000050385.5 Klri2-001 -9.86952790291867 0.445269047157455 -22.1653132323582 7.42516333616262e-109 1.36315132759259e-106
ENSMUST00000032270.8 Klrc1-002 -9.1483838625689 0.285819083718541 -32.0076033536576 8.54692134107669e-225 4.59519120959173e-222
ENSMUST00000145984.3 Klrc2-004 -8.23727753929038 0.523424994208697 -15.7372644226578 8.39972419051269e-56 6.07930038288356e-54
ENSMUST00000030709.8 Smpdl3b-001 -7.82608422945899 0.506544850580456 -15.4499334471389 7.55213917517703e-54 5.21513317170252e-52
ENSMUST00000032207.8 Klrg1-001 -7.63050612295365 0.516133769049 -14.7839699328591 1.85879260913785e-49 1.14681409581808e-47
ENSMUST00000035938.2 Ccl5-001 -7.5890917907932 0.254136762542819 -29.8622352581301 6.08986954839057e-196 2.69637929945505e-193
ENSMUST00000032374.7 Kcnj8-201 -7.47206774937639 0.489813196173165 -15.2549335292608 1.5265039279163e-52 1.00789430398474e-50
ENSMUST00000025778.7 Gldc-201 -7.44930505897877 0.544848327776074 -13.6722546059467 1.48714938843434e-42 7.80053898727894e-41
ENSMUST00000056614.6 Cxcr3-001 -7.32756660832851 0.181339538772451 -40.4079918694582 0 0
ENSMUST00000018485.3 Il12rb2-001 -7.08432416363057 0.245937473625911 -28.8053872359701 1.83632201577739e-182 6.9109979063782e-180
ENSMUST00000100542.5 Ly6c2-001 -6.8490948131921 0.564429145534591 -12.1345519935989 6.92881754854607e-34 2.9548560729692e-32
ENSMUST00000065289.4 Clec12a-001 -6.69510904466732 0.539544117804052 -12.4088259397887 2.34059724674825e-35 1.03027341966515e-33
ENSMUST00000071920.6 Klrc2-201 -6.58391896929435 0.610707676799648 -10.7808026972851 4.24168013562854e-27 1.41583709006102e-25
ENSMUST00000121805.3 Dpysl3-001 -6.53764780072107 0.518572618607103 -12.6070053954667 1.93195228824626e-36 8.65583623430332e-35
ENSMUST00000028378.3 Galnt3-001 -6.48862144395227 0.302138464671565 -21.4756550477796 2.62986282549841e-102 4.44830954775877e-100
ENSMUST00000053708.6 Klre1-201 -6.36583156133598 0.582306870261048 -10.9320907693948 8.09612165811331e-28 2.7699776236645e-26
ENSMUST00000051014.1 Exph5-001 -6.26476948278762 0.466997943123212 -13.4149830315949 4.94046172585871e-41 2.45457791488703e-39
ENSMUST00000167691.4 Klrb1c-003 -6.13770330835277 0.628979948521249 -9.7581859688575 1.70171766405791e-22 4.73524172176114e-21
ENSMUST00000033545.5 Rab39b-001 -6.13689640818982 0.375989202117812 -16.3220017320255 6.88407590301832e-60 5.54186516813037e-58
ENSMUST00000050020.6 Amica1-001 -6.11534147297737 0.564208965516968 -10.8387881914887 2.25437338791147e-27 7.60926838152898e-26
ENSMUST00000031003.7 Ppp2r2c-001 -6.05206004458122 0.632619528688636 -9.56666648771751 1.1040817828119e-21 2.97331791743297e-20
ENSMUST00000019069.3 Heatr9-001 -6.01819435945206 0.565733277070517 -10.6378652332695 1.98627964655086e-26 6.41662098694777e-25
ENSMUST00000025294.7 Ttc39c-001 -5.85501070514663 0.387066236870416 -15.1266376331005 1.08078160596474e-51 7.04332740094944e-50
ENSMUST00000032252.5 Klrk1-001 -5.80524874210694 0.642480603843651 -9.03567937674218 1.62986829174325e-19 4.04218076835302e-18
ENSMUST00000020668.1 Havcr2-001 -5.71783309056336 0.512996245764929 -11.1459550391787 7.49359969247585e-29 2.7117463887147e-27
ENSMUST00000011400.7 Adam19-001 -5.66893064364744 0.138119286673414 -41.0437295194823 0 0
ENSMUST00000009340.9 Mnda-001 -5.66771987827901 0.348488209484236 -16.2637349672956 1.78516046000028e-59 1.39242515880022e-57
ENSMUST00000001484.2 Tbx21-001 -5.64112913430323 0.66249671773026 -8.51495408706319 1.66656320185445e-17 3.64128337310841e-16
ENSMUST00000024936.5 Prss30-001 -5.57702193822686 0.438008881268682 -12.7326686209493 3.8930194547051e-37 1.7813226404599e-35
ENSMUST00000035419.5 Prf1-201 -5.57560264920329 0.343708202670179 -16.2219074374364 3.53057720977696e-59 2.73965511938053e-57
ENSMUST00000064460.5 St6galnac3-201 -5.46385479851887 0.589441708717446 -9.26954220869026 1.869465640523e-20 4.78621356333898e-19
ENSMUST00000139848.3 Rasd2-001 -5.43932040804226 0.659270930684648 -8.25050848578074 1.57721976950316e-16 3.25699127710571e-15
ENSMUST00000070166.5 Gramd3-201 -5.43287423422247 0.111838135450305 -48.5780115373664 0 0
ENSMUST00000027146.4 Ikzf2-001 -5.41485575138897 0.205455446732907 -26.3553769807248 4.45342357506571e-153 1.26494034903848e-150
ENSMUST00000108044.3 Il18r1-202 -5.40328621354871 0.116727378873289 -46.2897930691489 0 0
ENSMUST00000105884.1 Zfp683-001 -5.39725973901454 0.625805793360999 -8.62449628346777 6.43753709561559e-18 1.43147242891281e-16
ENSMUST00000117441.3 Il12rb2-002 -5.39301422683712 0.473590131569076 -11.3875139436906 4.82561789977306e-30 1.81612129657959e-28
ENSMUST00000058748.1 Fam124b-001 -5.34959170314317 0.386341721583675 -13.8467874533829 1.33029902739441e-43 7.25591360811428e-42
ENSMUST00000015620.6 Prrt1-001 -5.3451112893857 0.664469000358217 -8.04418458423815 8.68215727905401e-16 1.71975257472209e-14
ENSMUST00000040227.1 Cldnd2-201 -5.23706875147392 0.669757452186229 -7.81935122092188 5.30962749946346e-15 9.97891789974068e-14
ENSMUST00000072729.5 Ms4a4c-001 -5.21430103797449 0.199405789936567 -26.1491957662473 1.00649842506135e-150 2.75487768924973e-148
ENSMUST00000034944.4 Dapk2-001 -5.17609952292115 0.434684560591168 -11.9077142189768 1.0789452468989e-32 4.41370699641741e-31
ENSMUST00000100526.2 Gm10874-201 -5.17123939343241 0.672903731548327 -7.68496168320181 1.5304279153677e-14 2.77913894305733e-13
ENSMUST00000111214.2 Ifi204-001 -5.1636886199818 0.224805878859196 -22.9695444184358 9.3991895976484e-117 1.88660533603999e-114
ENSMUST00000038144.8 Esm1-001 -5.12995515919527 0.278836631379001 -18.397708844153 1.37037745346253e-75 1.44263371919055e-73
ENSMUST00000114468.4 Osbpl3-003 -5.12326467569933 0.294506515591369 -17.3960995919286 8.83155303571716e-68 8.15645395090099e-66
ENSMUST00000046614.9 Gipc2-001 -5.09736882097307 0.639839645138736 -7.96663485875091 1.63053533508507e-15 3.1836678254696e-14
ENSMUST00000085077.3 Arnt2-201 -5.08386977836995 0.427860017978872 -11.8820865814599 1.4666006092735e-32 5.95099880646989e-31
ENSMUST00000148568.1 Hopxos-001 -5.08117644297651 0.457131328278888 -11.1153537914526 1.05631104265623e-28 3.78612058003498e-27

Table C.1: Top 50 up-regulated transcripts for the differential Th1/Th2 comparison.
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APPENDIX C. SUPPLEMENTARY TABLES

Transcript-ID Transcript name LFC LFC SE LFC/(LFC SE) p-value padj
ENSMUST00000173287.3 Adamtsl3-001 10.7694050466739 0.35352585423062 30.4628499381224 8.09601382244724e-204 3.80866850259753e-201
ENSMUST00000192047.1 Sell-001 9.4035280071118 0.471002334514364 19.9649286596583 1.11186437533856e-88 1.49446484878096e-86
ENSMUST00000068581.7 Gja1-201 8.98624882163545 0.534721045744783 16.8054893166193 2.22469178251036e-63 1.93586763548618e-61
ENSMUST00000034874.9 Cyp11a1-001 8.79541378922041 0.407818075805384 21.5670033061941 3.66692861896108e-103 6.41883063137676e-101
ENSMUST00000170941.1 Treml2-201 8.58898610662184 0.261959201513449 32.7874953695066 8.87633747386486e-236 4.94905127153932e-233
ENSMUST00000015540.2 Cd83-201 8.52343091219566 0.465091704273083 18.3263447485424 5.10050442021541e-75 5.22333289400835e-73
ENSMUST00000165205.1 Lrrc32-201 8.44845135611195 0.560638833834971 15.0693295687734 2.57714927423783e-51 1.6369791212817e-49
ENSMUST00000003509.9 St8sia6-001 8.43668652250956 0.32353926557469 26.076236859609 6.7829933269984e-150 1.79142423762516e-147
ENSMUST00000032386.6 Bhlhe41-001 8.43160087046705 0.516744352422674 16.316774108777 7.49953100868216e-60 6.00520956407985e-58
ENSMUST00000148750.3 Slc4a4-001 8.18021056604396 0.555724002494123 14.7199158743021 4.80257398484353e-49 2.9035320790295e-47
ENSMUST00000017637.8 Igfbp4-001 8.03284459230112 0.526879900343273 15.2460638317529 1.74861512914928e-52 1.14950446088268e-50
ENSMUST00000076840.7 Efna5-001 7.99638552677892 0.455094586200638 17.5708210320339 4.12164083757555e-69 3.90233843829323e-67
ENSMUST00000125209.3 Mctp1-001 7.86892445683219 0.502736471376478 15.6521853990169 3.21003995215982e-55 2.30114006856257e-53
ENSMUST00000172167.3 Inpp4b-008 7.68482923806959 0.397535654836175 19.3311697820829 2.93683265151189e-83 3.59439664519187e-81
ENSMUST00000009143.7 Bmp7-001 7.68068379341673 0.375018008614069 20.4808398983338 3.19108527065944e-93 4.57510453947688e-91
ENSMUST00000019999.5 D10Bwg1379e-201 7.556939821532 0.388642896654844 19.4444305725813 3.24861253460892e-84 4.07538442466689e-82
ENSMUST00000181289.1 Gm17322-001 7.51536209227018 0.511404533570999 14.6955327904359 6.8854779865893e-49 4.12964086096077e-47
ENSMUST00000161395.1 Gm15947-001 7.34454148444242 0.545518883205493 13.463404678653 2.56804961851213e-41 1.28436607830836e-39
ENSMUST00000063062.8 Chil3-001 7.3124199085865 0.470681570481086 15.5358109753743 1.98544583592114e-54 1.38374544509059e-52
ENSMUST00000023687.7 Ifngr2-001 7.28393878308143 0.325276091179976 22.393096143827 4.59532482774603e-111 8.64725249461109e-109
ENSMUST00000161306.1 Tmprss11e-001 7.24207898806631 0.584246929516247 12.3955790303643 2.76143821304192e-35 1.21197349443536e-33
ENSMUST00000109691.2 Rapgef5-201 7.13912514123052 0.473977687017337 15.062154478528 2.87270489864312e-51 1.81704619933502e-49
ENSMUST00000034554.7 Pou2af1-201 7.09561617682322 0.522926919278916 13.5690397935674 6.11174268427461e-42 3.10831670165777e-40
ENSMUST00000092566.6 Slc16a10-201 7.05191263107527 0.590792787874057 11.9363553107195 7.65025704577001e-33 3.15525944019238e-31
ENSMUST00000028233.3 Hc-001 7.03674899842117 0.591381834669333 11.8988250668127 1.20025077094753e-32 4.89663282001197e-31
ENSMUST00000030683.3 Hgf-201 7.02219636915112 0.591673892427131 11.8683559626825 1.72830601057513e-32 6.99406416215e-31
ENSMUST00000150568.3 Il4-003 7.02168218042834 0.5916548290316 11.8678692979168 1.73838753558199e-32 7.01600159802983e-31
ENSMUST00000040489.7 Trpm6-201 6.81526603516788 0.348478169836682 19.5572251724174 3.58038711950085e-85 4.56772438109879e-83
ENSMUST00000069035.4 A630091E08Rik-201 6.74630854541237 0.601840827683696 11.209456446112 3.66436716734378e-29 1.34217477706066e-27
ENSMUST00000111704.3 Rassf8-001 6.66953948516259 0.604297202613922 11.0368531515836 2.53765446918389e-28 8.90486022822711e-27
ENSMUST00000023616.4 Slc15a2-001 6.56582183671873 0.608350034192183 10.7928354856384 3.72127677361079e-27 1.24766370935271e-25
ENSMUST00000103134.3 Ccr7-001 6.53905115302865 0.480491260851883 13.60909486977 3.53595818209031e-42 1.81673428236135e-40
ENSMUST00000001812.4 Smo-001 6.43815104323358 0.310708138068247 20.7208960900131 2.2446885189857e-95 3.31289617302066e-93
ENSMUST00000067230.5 Sox4-001 6.41995325057402 0.577152422099415 11.1234970256578 9.64171259818103e-29 3.46411316116986e-27
ENSMUST00000037941.9 Cd81-001 6.41921662220042 0.283810310868739 22.6179824212563 2.88368556582623e-113 5.49506360860103e-111
ENSMUST00000062613.6 Tdrp-001 6.36722568951879 0.270740135642595 23.5178492261827 2.67892147661925e-122 5.60117832069808e-120
ENSMUST00000003061.9 Bcam-001 6.29681015796802 0.549019529290517 11.4691915715734 1.88411188450479e-30 7.18061273654055e-29
ENSMUST00000033730.2 Grpr-001 6.17409855599955 0.624698598999464 9.88332383950944 4.9174200889073e-23 1.39148199282727e-21
ENSMUST00000183482.1 Htr1b-002 6.16909335062262 0.624365258198057 9.88058395245577 5.05375389230921e-23 1.42470432761841e-21
ENSMUST00000100960.6 Gbp11-001 6.15268871438197 0.297892600279535 20.6540501798583 8.97691282825557e-95 1.31202374482096e-92
ENSMUST00000169159.2 Ms4a1-001 6.11366538456125 0.557504538898086 10.9661266554798 5.56036519005238e-28 1.91546310231232e-26
ENSMUST00000029559.6 Il6ra-201 6.07018689755997 0.208667509492221 29.0902350458459 4.77105596153457e-186 1.89009148539319e-183
ENSMUST00000034026.8 Hpgd-201 6.03629207428551 0.631024648551419 9.56585782844209 1.11274801927862e-21 2.99130512182507e-20
ENSMUST00000099112.2 Itga7-201 5.942059974926 0.444774503128715 13.3597135922299 1.03963385468557e-40 5.11459086550213e-39
ENSMUST00000058714.8 Cd24a-201 5.9318027456468 0.457166299533453 12.9751531372726 1.69257724106248e-38 7.86421536634403e-37
ENSMUST00000110109.3 Plcb4-002 5.8786340147021 0.53915707084122 10.9033792425832 1.11054658639208e-27 3.79096787109894e-26
ENSMUST00000028045.3 Mrc1-001 5.77848936144666 0.640363753414873 9.02376084004078 1.81740494647978e-19 4.47777644260337e-18
ENSMUST00000073957.6 Sema3e-001 5.73362134812645 0.544594588309898 10.5282378326972 6.4021727590657e-26 2.02901702557842e-24
ENSMUST00000069408.5 Folr4-001 5.72085793546611 0.644436496763027 8.87730282844268 6.85011182140162e-19 1.62140854338648e-17
ENSMUST00000023629.8 Pros1-001 5.69611413032183 0.109279233844666 52.124396648118 0 0

Table C.2: Top 50 up-regulated transcripts for the differential Th2/Th1 comparison.
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Th1 transcript Th2 transcript
Ifng-201 A430108G06Rik-002
Tbx21-001 Gm12214-001
Runx3-001 Gm17334-201
Runx3-002 Gm22275-201
Cxcr3-001 Il4-001
Il2-001 Il4-003

Il12rb2-001 Il5-001
Il12rb2-002 Il13-001
Eomes-001 Irf1-002
Eomes-003 Irf1-008
Ccl5-001 Kif3a-001
Klri2-001 Kif3a-005
Itga1-201 Rad50-001
Klrc1-001 Sept8-002
Klrc1-002 Sept8-004
Klrc1-201 Gata3-001
Klrc1-202 Il10-001
Klrc2-201 Ccr4-201
Klrc2-001 Ccr1-201
Klrc2-002 Areg-201
Klrc2-004 Pparg-202
Stat1-001 Pparg-201
Stat1-004 Il9r-004
Stat1-006 Il9r-003
Stat1-007 Il9r-001
Stat1-008 Asb2-002
Stat1-009 Asb2-001
Stat4-001 Lrrc32-201
Stat4-002 Adamtsl3-001
Il18r1-202 Adamtsl3-005
Il18rap-001 Gja1-201
Ccr2-001 Treml2-201
Ccr5-001 Sell-001
Fasl-001 Sell-002
Fasl-002 Sell-003

Smpdl3b-001 Stat6-001
Klrg1-001 Il1rl1-001
Kcnj8-201 Il1rl1-002
Gldc-201 Il1rl1-003
Ly6c2-001 Ifngr2-001
Clec12a-001 Chil3-001
Dpysl3-001 Inpp4b-008
Galnt3-001 Mctp1-001
Klre1-201 Efna5-001
Exph5-001 Igfbp4-001
Klrb1c-003 Slc4a4-001

Bhlhe41-001
St8sia6-001
Cd83-201

Cyp11a1-001

Table C.3: List of relevant 46 Th1 and 50 Th2 transcripts as determined in [334] and from our RNA-Seq data sets.
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APPENDIX C. SUPPLEMENTARY TABLES

HMM state Naïve Th2 Tbet+/−Th1 Tbet+/−Th1/2 Tbet−/−Th1 Tbet−/−Th1/2 Tbet+/+Th1 Tbet+/+Th1/2

1 1.53646 2.37870 2.22236 1.62183 1.90720 1.68000 2.32633 1.63504
2 0.02016 0.08171 0.01143 0.02341 0.01418 0.04355 0.01990 0.02447
3 0.41723 0.29655 0.17644 0.12325 0.24216 0.23621 0.21328 0.29822
4 0.19722 0.36155 0.37282 0.36797 0.42040 0.42252 0.36011 0.35185
5 0.01239 0.08296 0.01780 0.06941 0.01309 0.07045 0.02127 0.02814
6 0.01700 0.06748 0.02310 0.03640 0.03574 0.05195 0.03149 0.03574
7 0.17757 0.09676 0.07846 0.03358 0.07442 0.06643 0.06099 0.06248
8 0.15488 0.21591 0.19913 0.09997 0.14805 0.10007 0.27153 0.14853
9 0.15384 0.03300 0.05054 0.01233 0.03610 0.01592 0.03932 0.05706
10 3.00115 1.17962 1.88272 1.21598 2.09157 1.29406 1.58059 1.85226
11 2.42636 0.28199 0.55016 0.41549 0.50666 0.41698 0.29073 0.65364
12 0.39200 0.05975 0.12564 0.04315 0.07738 0.04784 0.07420 0.16404
13 6.39794 6.60396 3.56356 3.32295 4.92826 3.60929 7.03653 4.62131
14 83.67664 87.58462 89.18898 92.08515 88.54472 91.40598 86.61357 89.73587
15 0.09743 0.17026 0.04971 0.03357 0.03728 0.07087 0.02196 0.02079
16 1.32173 0.50519 1.48714 0.49558 0.92278 0.46790 1.03818 0.31056

Table C.4: Percentage of genome occupancy of each HMM state in every experimental condition.

k BIC
5 3.252 · 107

6 2.754 · 107

7 2.448 · 107

8 2.288 · 107

9 2.142 · 107

10 2.108 · 107

11 2.042 · 107

12 2.012 · 107

13 1.992 · 107

14 1.948 · 107

15 1.912 · 107

16 1.894 · 107

17 1.881 · 107

18 1.875 · 107

19 1.864 · 107

20 1.852 · 107

21 1.844 · 107

22 1.841 · 107

23 1.839 · 107

24 1.837 · 107

25 1.836 · 107

Table C.5: Corresponding BIC scores for different models with parameter number k. We discarded the AIC since the BIC
penalizes the number of parameters even stronger yet the respective values of ∆BIC are still exceedingly large.

Transcript Enhancer
Ifnγ-201 CNS-54
Ifnγ-201 CNS-6
Ifnγ-201 Intron
Ifnγ-201 CNS+18-20
Ifnγ-201 CNS+29
Ifnγ-201 CNS+40
Ifnγ-201 CNS+46
Ifnγ-201 CNS+54
Tbx21-001 -11.9 kb
Tbx21-001 -13.8 kb
Il4-003 HS1
Il4-003 CNS2
Il10-001 -9 kb
Il10-001 +6.45 kb

Table C.6: List of independently validated Th1 and Th2 enhancers used for parametrical learning of the histone modification
correlation measure.

176



Transcript Partial correlation p-value
Il4-001 -0.50885 0.13309
Il4-003 0.96622 5.4697 · 10−6

Il5-001 0.68426 0.029074
Il13-001 -0.56023 0.092109

Rad50-001 0.30169 0.39692
Sept8-002 0.047332 0.89669
Sept8-004 0.26257 0.46362

Table C.7: Partial correlation values and corresponding p-values of the enhancer segment chr11:53623600-53628000 with co-
regulated gene-transcripts.

Gini ESC ranking Gini value IG ESC ranking IG value
"0-0-1-1-0-0-0-0" 3.802861764549086976e-02 "0-0-1-1-0-0-0-0" 3.566208694309333516e-02
"0-0-1-1-1-0-0-0" 2.793203035456571712e-02 "0-1-0-0-0-0-0-0" 2.744356014809607239e-02
"0-0-1-0-1-0-0-0" 2.507822630430756733e-02 "0-0-1-1-1-0-0-0" 2.681337743478382635e-02
"0-0-1-0-0-0-0-0" 2.351054320844190096e-02 "0-0-1-0-1-0-0-0" 2.303623118933336572e-02
"0-0-1-1-0-1-0-0" 2.244676573823319726e-02 "0-0-1-0-0-0-0-0" 2.139103184843979197e-02
"0-1-0-0-0-0-0-0" 2.237943723536544097e-02 "0-0-1-1-1-0-1-0" 2.018495645575485095e-02
"0-0-1-1-1-0-1-0" 2.130107183159843376e-02 "0-0-1-1-0-1-0-0" 1.985132533399914731e-02
"0-0-1-1-1-1-0-0" 1.910379787802115453e-02 "0-0-1-1-1-1-0-0" 1.776003852997779311e-02
"0-2-1-0-0-0-0-0" 1.513752024583004015e-02 "0-2-1-0-0-0-0-0" 1.491147214453106100e-02
"0-0-1-0-0-0-1-0" 1.326601481680461138e-02 "0-0-0-0-0-0-0-1" 1.472737856771999185e-02
"0-0-1-1-1-1-1-0" 1.310524163210281465e-02 "0-0-2-0-2-0-0-0" 1.392336688587722353e-02
"0-0-1-0-1-1-1-0" 1.257446606686534255e-02 "0-1-0-0-0-0-0-1" 1.269001530276536900e-02
"0-0-2-0-2-0-0-0" 1.167350358833286854e-02 "0-0-1-0-0-0-1-0" 1.243364691542413539e-02
"0-0-0-0-0-0-0-1" 1.166953784298974638e-02 "0-0-1-1-1-1-1-0" 1.185559839828293806e-02
"1-1-0-1-1-1-0-0" 1.163510533584564619e-02 "0-0-1-0-1-1-1-0" 1.124031811266250347e-02
"0-2-0-0-0-0-0-0" 1.162945592692493472e-02 "0-1-0-1-1-1-1-1" 1.096307680407765210e-02
"0-2-1-0-1-0-0-0" 1.037571590517448981e-02 "0-2-0-0-0-0-0-0" 1.069473244330305071e-02
"0-0-1-0-1-1-0-1" 1.035265793859341601e-02 "1-1-0-1-1-1-0-0" 1.028752507535200290e-02
"0-1-0-0-0-0-0-1" 1.012320421940228823e-02 "0-2-1-0-1-0-0-0" 9.802646567220329663e-03
"2-0-1-1-0-0-0-0" 1.005482635414427055e-02 "0-0-2-0-0-0-0-0" 9.396647845897089513e-03
"1-0-1-0-1-1-1-1" 9.985329147152352189e-03 "0-0-1-0-1-0-1-0" 9.281930127025800337e-03
"0-0-1-0-1-0-1-0" 9.839018095844235048e-03 "0-0-1-0-1-1-0-1" 8.990944204389098374e-03
"1-0-1-1-1-1-1-0" 9.690233177113420637e-03 "1-0-1-1-1-1-1-0" 8.872460765170455191e-03
"0-1-0-1-1-1-1-1" 8.544037886329047468e-03 "2-0-1-1-0-0-0-0" 8.660247110103184640e-03
"0-0-1-1-0-1-1-0" 8.320978172828669486e-03 "0-1-0-1-0-1-0-1" 8.648889635130115050e-03

Table C.8: Inter-class Gini impurity and information gain ranking for the Top 25 ESCs. ESCs are denotedwith a ternary number
code where 1 means active enhancer state (before: green state), 2 means repressive state (before: red state) and 0 means none
of both. The order from left to-right of the conditions is the same as in the earlier Gini impurity rankings from top to bottom.
Hence we have: Naïve, Th2, Tbet+/+Th1, Tbet+/+Th1/2, Tbet+/−Th1, Tbet+/−Th1/2, Tbet−/−Th1, Tbet−/−Th1/2.
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APPENDIX C. SUPPLEMENTARY TABLES

ESC Gini impurity
"0-0-1-1-0-0-0-0" 3.802861764549086976e-02
"0-0-1-1-1-0-0-0" 2.793203035456571712e-02
"0-0-1-0-1-0-0-0" 2.507822630430756733e-02
"0-0-1-0-0-0-0-0" 2.351054320844190096e-02
"0-0-1-1-0-1-0-0" 2.244676573823319726e-02
"0-1-0-0-0-0-0-0" 2.237943723536544097e-02
"0-0-1-1-1-0-1-0" 2.130107183159843376e-02
"0-0-1-1-1-1-0-0" 1.910379787802115453e-02
"0-2-1-0-0-0-0-0" 1.513752024583004015e-02
"0-0-1-0-0-0-1-0" 1.326601481680461138e-02
"0-0-1-1-1-1-1-0" 1.310524163210281465e-02
"0-0-1-0-1-1-1-0" 1.257446606686534255e-02
"0-0-2-0-2-0-0-0" 1.167350358833286854e-02
"0-0-0-0-0-0-0-1" 1.166953784298974638e-02
"1-1-0-1-1-1-0-0" 1.163510533584564619e-02
"0-2-0-0-0-0-0-0" 1.162945592692493472e-02
"0-2-1-0-1-0-0-0" 1.037571590517448981e-02
"0-0-1-0-1-1-0-1" 1.035265793859341601e-02
"0-1-0-0-0-0-0-1" 1.012320421940228823e-02
"2-0-1-1-0-0-0-0" 1.005482635414427055e-02
"1-0-1-0-1-1-1-1" 9.985329147152352189e-03
"0-0-1-0-1-0-1-0" 9.839018095844235048e-03
"1-0-1-1-1-1-1-0" 9.690233177113420637e-03
"0-1-0-1-1-1-1-1" 8.544037886329047468e-03
"0-0-1-1-0-1-1-0" 8.320978172828669486e-03
"1-0-1-1-1-1-1-1" 8.175893979845054102e-03
"2-0-1-1-1-0-0-0" 7.972899195225369162e-03
"0-0-0-2-0-0-0-0" 7.869750158875352120e-03
"0-0-2-0-0-0-0-0" 7.667362706324573098e-03
"1-1-1-1-1-1-1-1" 7.415873501928987865e-03
"1-0-1-1-1-0-0-0" 7.152220647236272322e-03
"0-1-1-1-1-1-1-0" 7.107545329162461012e-03
"1-0-0-0-1-0-0-1" 6.903346000839438203e-03
"0-1-0-1-0-1-0-1" 6.885053935952274370e-03
"1-1-0-0-1-0-0-0" 6.567006907369595491e-03
"0-0-0-0-1-1-0-0" 6.443002625796823840e-03
"0-0-0-0-0-0-0-0" 6.316536983042748965e-03
"0-2-1-1-1-0-0-0" 6.135427340668114966e-03
"1-0-1-0-1-1-0-0" 6.113789152760756851e-03
"0-0-1-1-0-0-1-0" 5.961357171737862240e-03
"1-0-0-0-1-1-0-0" 5.931662770308820075e-03
"1-1-1-0-1-0-1-0" 5.910211780915261559e-03
"0-2-0-0-1-0-0-0" 5.898262929439492853e-03
"0-0-1-0-1-1-1-1" 5.885487857535035179e-03
"1-1-0-1-0-1-0-0" 5.730765271233393028e-03
"0-1-0-1-0-0-0-1" 5.626815741809439685e-03
"1-1-1-1-1-0-1-0" 5.590715706963020684e-03
"0-0-1-1-1-1-0-1" 5.380900380446183330e-03
"0-0-0-0-0-1-1-1" 5.348123452301503308e-03
"0-0-0-0-1-0-0-0" 5.263616228911117967e-03
"0-0-0-1-0-0-1-0" 5.251078321563670825e-03
"1-0-0-0-1-1-1-0" 5.064947230304499629e-03
"0-1-2-0-0-0-0-0" 4.982754541579766973e-03
"0-2-1-1-0-0-0-0" 4.947647765166825196e-03
"0-1-0-1-0-0-1-1" 4.891479607255552059e-03
"1-0-1-0-1-1-1-0" 4.813213859566753926e-03
"0-0-0-0-0-0-1-0" 4.803037239197656925e-03
"0-0-0-0-1-1-1-1" 4.793226725633079922e-03
"1-0-1-0-1-0-0-0" 4.679817325987039624e-03
"0-1-0-1-0-0-0-0" 4.612284818232827328e-03
"1-0-0-0-1-0-1-0" 4.535734259191358947e-03
"0-0-1-0-1-0-2-0" 4.533622999400435845e-03
"0-0-1-1-1-1-1-1" 4.505724298638865387e-03
"1-0-1-1-1-0-1-0" 4.450668102995452083e-03
"0-0-1-0-0-0-2-0" 4.422841330575289637e-03
"2-0-1-1-1-1-1-0" 4.297232770209263343e-03
"0-1-0-0-0-0-1-1" 4.252737981577586930e-03
"0-0-0-2-0-0-0-2" 3.976719121433802337e-03
"1-1-0-0-1-0-0-1" 3.943641515971364059e-03
"0-0-1-0-1-1-0-0" 3.938789740323417853e-03
"2-2-1-0-1-0-1-0" 3.903377075765371816e-03
"1-0-1-1-1-1-0-0" 3.887336088040332319e-03
"0-1-2-0-2-0-0-0" 3.829035801621729664e-03
"0-1-0-1-0-0-1-0" 3.814173193957432709e-03
"0-0-0-1-0-0-0-0" 3.733385297964809165e-03
"0-0-0-0-0-0-0-2" 3.706697759585449777e-03
"0-0-0-1-0-0-0-1" 3.577502152938325398e-03
"1-1-1-1-0-0-0-1" 3.534546127709830947e-03
"1-0-0-1-1-0-1-1" 3.448106985676647335e-03
"0-1-0-0-1-1-1-1" 3.440562444558588600e-03
"2-0-0-0-1-0-0-0" 3.338099605735622873e-03
"2-2-0-0-0-2-0-0" 3.318714701184941659e-03
"1-1-0-0-0-1-0-0" 3.303090904167034058e-03

"0-0-0-0-0-2-0-0" 3.255416127928973096e-03
"1-1-1-0-1-0-0-0" 3.229597616419088366e-03
"0-1-1-1-1-0-1-0" 3.208521402435159185e-03
"0-0-2-0-0-0-2-0" 3.193462629850407283e-03
"0-2-0-0-0-2-0-0" 3.171124836861863219e-03
"0-0-1-1-1-1-2-0" 3.145664460309346901e-03
"0-0-1-1-0-0-2-0" 3.128661290455589297e-03
"0-1-0-0-0-1-1-1" 3.107186699978411234e-03
"1-0-1-0-0-0-0-0" 3.027871920305359819e-03
"1-1-1-1-0-1-0-0" 3.026667746154354261e-03
"1-0-0-0-0-0-0-0" 3.006722020252121028e-03
"0-2-1-1-0-1-1-0" 2.999886095745582255e-03
"0-2-0-1-1-0-0-0" 2.929438924188270971e-03
"0-0-0-0-0-0-1-1" 2.912918211145241933e-03
"0-0-0-1-1-1-1-1" 2.876898565459942454e-03
"0-1-1-1-1-1-1-1" 2.780402420287593750e-03
"2-0-1-1-1-1-1-1" 2.721710809729180423e-03
"1-0-1-1-0-0-0-0" 2.696793052312602013e-03
"0-1-0-0-2-0-0-0" 2.612211435118915424e-03
"1-1-1-1-1-1-0-1" 2.610391861932187182e-03
"0-1-0-0-0-1-0-1" 2.573653758756408796e-03
"0-1-1-1-1-0-1-1" 2.557255110648452238e-03
"0-0-0-1-0-1-0-0" 2.535205211148662801e-03
"2-2-0-0-0-0-0-0" 2.476466078105282308e-03
"0-0-0-1-0-1-0-1" 2.437442336624923416e-03
"1-0-0-0-0-0-1-0" 2.431547755658995495e-03
"0-0-0-1-0-0-2-0" 2.375709057936025922e-03
"2-2-0-0-0-0-2-2" 2.355778103350880150e-03
"1-0-0-0-1-0-0-0" 2.327256700030807396e-03
"1-1-0-1-0-1-1-1" 2.307102411900818686e-03
"1-0-0-0-0-1-1-0" 2.256989851077387862e-03
"1-0-0-1-1-0-0-0" 2.224073046180088421e-03
"2-0-1-0-0-0-0-0" 2.210704649673765274e-03
"0-0-0-0-2-0-2-0" 2.180415000282979587e-03
"0-0-2-0-2-0-1-0" 2.179431104186891656e-03
"0-0-2-2-2-0-0-0" 2.148172062173052572e-03
"1-1-0-0-0-0-0-0" 2.110653168652559027e-03
"1-1-0-1-1-1-1-1" 2.108568273023932790e-03
"0-1-0-0-0-0-1-0" 2.078602225794011667e-03
"1-1-1-1-1-0-0-0" 2.062182738864153965e-03
"1-0-1-1-0-1-0-0" 2.041644910991007034e-03
"0-1-0-0-1-0-1-1" 2.037178869687213904e-03
"0-0-2-1-2-1-1-1" 1.921715621548795777e-03
"1-1-0-0-0-0-1-0" 1.865913087050020697e-03
"0-1-1-1-0-0-0-1" 1.863912793679301004e-03
"0-2-1-2-0-2-0-0" 1.826790932509838239e-03
"1-0-0-1-0-0-2-0" 1.819109593297561431e-03
"1-0-0-1-0-0-1-0" 1.801328694614692631e-03
"2-0-1-0-1-0-0-0" 1.785664439541832143e-03
"0-0-0-0-1-1-1-0" 1.752003999614429883e-03
"0-0-0-1-0-0-0-2" 1.740440216484795801e-03
"2-1-1-1-0-0-0-0" 1.730340066259539655e-03
"0-1-2-0-0-1-0-1" 1.727118203806616474e-03
"1-0-0-1-1-0-1-0" 1.719682445946222162e-03
"0-2-0-0-2-0-0-0" 1.713854806008292125e-03
"0-1-0-0-0-1-0-0" 1.702757129545797539e-03
"2-2-1-0-0-0-0-0" 1.688464256814478301e-03
"2-0-0-0-0-0-0-0" 1.683427230825546321e-03
"1-0-1-1-0-1-1-0" 1.666621867188302361e-03
"0-0-0-0-1-0-1-0" 1.656760437207322606e-03
"2-2-1-0-1-0-0-0" 1.645927234160789220e-03
"0-0-0-1-1-0-0-0" 1.633594032155686899e-03
"1-0-0-2-0-0-1-0" 1.605943732771373178e-03
"2-0-1-1-1-0-1-1" 1.605420102097889368e-03
"0-1-0-1-1-0-0-1" 1.581444574092137536e-03
"0-0-0-1-1-1-0-0" 1.580928153517508275e-03
"0-0-1-1-0-1-1-1" 1.572806895466880928e-03
"1-2-1-0-0-2-0-0" 1.563523568984651318e-03
"0-0-0-0-0-1-0-0" 1.535746409418876565e-03
"1-2-1-2-0-0-0-0" 1.535414167084742229e-03
"1-1-1-1-1-1-1-0" 1.534637219525917130e-03
"1-2-1-2-0-2-0-0" 1.519478602296308635e-03
"0-2-0-2-0-2-0-0" 1.514288228564632200e-03
"0-1-0-1-1-0-1-1" 1.505445541446416785e-03
"2-0-0-0-0-1-0-0" 1.477078999137116083e-03
"1-1-0-0-1-2-1-0" 1.474173819981073122e-03
"0-1-0-1-0-1-1-1" 1.429317772058547129e-03
"1-2-1-0-0-0-0-0" 1.410440352924401510e-03
"0-0-0-2-0-1-0-0" 1.400399018302436044e-03
"0-0-1-1-0-0-1-1" 1.343630294553439970e-03
"1-1-1-1-1-1-0-0" 1.332307881952155427e-03
"1-1-0-0-0-0-0-1" 1.332287885719712992e-03
"1-0-1-1-0-1-1-1" 1.280434025914260971e-03
"0-1-0-0-0-1-1-0" 1.241975234740232440e-03
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"0-1-1-1-0-1-1-1" 1.238813148157800548e-03
"1-0-0-1-0-0-0-0" 1.198663099475052096e-03
"0-1-1-1-1-1-0-0" 1.175829164995518313e-03
"0-1-0-0-1-0-0-1" 1.174684418646486676e-03
"0-1-2-0-0-0-0-1" 1.171236706801835354e-03
"1-0-1-0-0-0-1-0" 1.154795126179178127e-03
"0-2-0-0-2-0-2-0" 1.145567369043649919e-03
"2-1-2-1-0-1-0-1" 1.124789820505849849e-03
"1-1-0-1-0-1-0-1" 1.124518586948588606e-03
"0-0-0-0-0-1-0-1" 1.098878648878804602e-03
"0-2-0-1-0-0-0-0" 1.088316343437201617e-03
"1-0-0-1-1-1-0-0" 1.060517175095384125e-03
"2-2-1-1-1-0-0-0" 1.054130855038260374e-03
"1-1-1-0-1-0-1-1" 1.052129762440301170e-03
"2-0-1-1-1-0-1-0" 1.050458814033474299e-03
"1-0-1-1-0-0-1-0" 1.050453103322121495e-03
"1-0-0-1-1-1-1-1" 1.040690934773767654e-03
"1-1-0-1-1-0-1-1" 1.039804149033626444e-03
"1-2-0-0-1-0-0-0" 1.032405257246198646e-03
"0-0-2-0-2-0-2-0" 1.031354131428687112e-03
"1-1-0-1-0-0-0-0" 1.002144902194226830e-03
"0-2-0-2-2-0-2-0" 9.975358189901863473e-04
"1-2-0-0-2-0-2-0" 9.963438996749508694e-04
"1-0-1-1-1-1-0-1" 9.938994324966471307e-04
"0-1-1-1-1-1-0-1" 9.898821418482827740e-04
"2-1-0-0-0-0-0-0" 9.816850559315702923e-04
"1-0-0-0-0-1-0-0" 9.745466251831127070e-04
"0-1-1-0-0-0-0-0" 9.736797681035254176e-04
"0-0-0-0-0-0-2-0" 9.518139511882349772e-04
"1-0-2-0-0-0-0-0" 9.423557743360281040e-04
"1-0-1-0-0-1-1-1" 9.009785045062505566e-04
"0-0-2-1-0-0-0-0" 8.983562689163552238e-04
"0-0-0-1-0-0-1-1" 8.862739414220073293e-04
"2-1-2-1-0-0-0-1" 8.786911136706738058e-04
"0-1-0-1-0-1-0-0" 8.765645272259956411e-04
"0-0-2-0-2-1-1-1" 8.697513273654336853e-04
"0-1-1-1-0-1-0-1" 8.676785144295577450e-04
"2-0-1-0-1-0-1-0" 8.603640898388814151e-04
"0-1-2-1-0-0-0-1" 8.562554142421866616e-04
"1-0-0-0-0-2-0-0" 8.555645742327527749e-04
"0-1-2-1-0-1-0-0" 8.484492236050886899e-04
"1-0-0-0-0-1-1-1" 8.462576993768257654e-04
"0-1-1-1-0-1-0-0" 8.460097416956374131e-04
"0-0-2-0-2-0-1-1" 8.403067570929579613e-04
"0-0-2-0-0-0-1-0" 8.377974593507037842e-04
"1-0-2-0-2-0-0-0" 8.350616363566310246e-04
"2-0-0-0-0-0-1-0" 8.293749495121350603e-04
"1-0-1-0-1-0-1-0" 8.290784017686373677e-04
"1-1-1-1-0-0-0-0" 8.170087820754428536e-04
"0-0-2-1-0-1-0-0" 8.128825787960872445e-04
"0-2-0-0-0-0-2-2" 8.107099932497982249e-04
"1-0-0-1-1-1-1-0" 8.031863332957864818e-04
"2-0-0-0-1-0-0-2" 7.956595572708034976e-04
"0-1-2-0-2-1-0-0" 7.927005112305681020e-04
"0-0-1-0-1-0-0-1" 7.727796986857827545e-04
"1-1-1-0-1-1-0-0" 7.646435996563743240e-04
"0-1-0-0-1-1-1-0" 7.645931894254468343e-04
"0-1-2-0-0-0-1-1" 7.626952841262842151e-04
"0-0-2-1-0-1-0-1" 7.435281831319815035e-04
"1-2-1-1-1-1-1-1" 7.423213259200802001e-04
"0-0-0-2-0-2-0-0" 7.360374419400354980e-04
"1-0-1-0-1-0-1-1" 7.295993502918246727e-04
"2-2-0-0-0-2-2-0" 7.295115149446949193e-04
"1-1-1-1-1-0-1-1" 7.255940972092138558e-04
"0-0-1-0-0-1-0-0" 7.205999368723647793e-04
"2-2-1-0-0-0-2-0" 7.130274146262993067e-04
"0-2-1-0-1-1-2-0" 7.082533764755194299e-04
"0-0-0-0-2-0-0-0" 7.056316932035956203e-04
"1-2-0-0-0-0-0-0" 6.793400494503035094e-04
"1-0-1-1-1-0-1-1" 6.734131865782161863e-04
"2-2-0-2-0-0-0-2" 6.732287729403011725e-04
"2-2-0-1-0-0-0-0" 6.719972979075171469e-04
"1-0-1-0-1-1-0-1" 6.669675186722715541e-04
"0-0-0-1-1-1-1-0" 6.586043266425181805e-04
"1-0-0-1-0-0-1-1" 6.532260063186922294e-04
"2-0-0-2-0-0-0-2" 6.382432914871250538e-04
"2-2-1-0-0-2-2-0" 6.357425037614070594e-04
"1-1-0-1-1-1-0-1" 6.286127493656162900e-04
"1-1-1-0-1-1-1-1" 6.278791340226273299e-04
"0-0-0-2-2-0-0-0" 6.250628336885808572e-04
"2-0-1-0-0-0-2-0" 6.198745822797746031e-04
"0-0-2-1-2-1-1-0" 6.162531809110030666e-04
"0-0-2-2-0-0-2-0" 6.135303785644268112e-04
"0-1-1-1-0-0-1-0" 6.113518068843842813e-04

"2-2-1-2-1-0-0-2" 6.098292735485797214e-04
"2-0-0-0-1-0-1-0" 6.056692146193652258e-04
"0-0-0-2-0-0-2-0" 5.886800531072417571e-04
"0-0-2-0-0-1-1-0" 5.866800890463031142e-04
"0-0-1-0-0-0-0-2" 5.715032170260514336e-04
"1-0-0-0-1-1-1-1" 5.679831644803019775e-04
"0-1-2-1-0-1-0-1" 5.605976191717010251e-04
"1-0-1-0-1-2-0-0" 5.333726980139855351e-04
"1-0-1-1-1-0-0-1" 5.286100512830027966e-04
"1-0-0-0-0-0-1-1" 5.218944237136508230e-04
"0-0-2-2-2-2-2-0" 5.145984721901509205e-04
"1-0-0-0-0-0-0-1" 5.130009828013096284e-04
"0-0-2-2-2-2-0-0" 5.120780559419803356e-04
"0-0-0-0-1-1-0-1" 5.088730996007346337e-04
"1-1-0-2-0-0-0-0" 5.029836373433783014e-04
"0-1-0-1-1-0-1-0" 4.924263375350729352e-04
"0-0-2-0-0-1-0-0" 4.918487321059653939e-04
"0-1-1-0-1-0-0-1" 4.874202798312369232e-04
"0-1-1-1-0-0-0-0" 4.805556401231196812e-04
"1-0-2-2-2-2-2-0" 4.787832852770260552e-04
"1-1-0-2-2-0-0-0" 4.727526786600742131e-04
"0-0-0-1-1-0-1-0" 4.673811938411460455e-04
"2-2-1-1-0-0-0-2" 4.646909681024174836e-04
"0-2-1-0-0-0-1-0" 4.645309499389131745e-04
"2-1-0-1-0-1-1-1" 4.627057012049213798e-04
"1-1-0-0-2-0-2-0" 4.576206194057584001e-04
"0-0-1-0-0-1-1-0" 4.568618383677017333e-04
"0-0-0-0-1-0-0-1" 4.500930484643724775e-04
"0-2-0-2-0-2-0-2" 4.483416671430280999e-04
"1-0-0-0-0-0-0-2" 4.371365619700917963e-04
"0-2-0-0-0-0-0-2" 4.329122336303392821e-04
"1-0-1-0-0-1-1-0" 4.325080101901058799e-04
"0-1-0-0-1-0-0-0" 4.298933571858166080e-04
"0-2-0-1-0-0-0-2" 4.249152827446902843e-04
"1-1-0-0-2-0-0-0" 4.232477608632473744e-04
"2-1-0-1-0-1-0-1" 4.181171178863156944e-04
"1-1-1-0-0-0-0-0" 4.160396963832493434e-04
"0-0-1-1-0-0-0-1" 4.159046349770162063e-04
"1-1-1-1-1-0-0-1" 4.155746803142742508e-04
"0-0-0-0-0-1-1-0" 4.151035850001529200e-04
"1-1-0-1-1-0-0-0" 4.147645369960962190e-04
"0-0-1-1-1-0-0-1" 4.129314915608391871e-04
"2-0-1-1-1-1-0-1" 4.085625524798387428e-04
"1-1-0-1-0-0-1-1" 4.060720814573056878e-04
"2-0-1-0-0-2-2-0" 4.058252099589620661e-04
"0-0-2-2-2-0-2-0" 4.022746458254268737e-04
"1-1-0-0-0-1-1-1" 3.961180622751633157e-04
"2-2-1-1-1-0-1-0" 3.942727088418248454e-04
"1-0-1-0-0-1-0-1" 3.941888124038696144e-04
"0-0-0-0-0-2-2-0" 3.933762540900088219e-04
"2-0-1-0-0-1-0-0" 3.896255546034654176e-04
"2-0-1-1-1-1-2-0" 3.874837135831673174e-04
"1-0-1-1-0-0-1-1" 3.867757962176224967e-04
"1-1-1-1-0-1-1-1" 3.861282137861579526e-04
"0-1-2-2-2-0-0-0" 3.808363545498816521e-04
"0-0-1-0-0-2-2-0" 3.762192507190657994e-04
"1-1-0-0-0-1-0-1" 3.761766585435694327e-04
"0-0-1-0-1-0-0-2" 3.755649888621947086e-04
"0-2-0-2-0-2-2-2" 3.698162403103677671e-04
"0-1-2-2-0-0-0-0" 3.647541131570058580e-04
"2-0-0-1-1-1-2-0" 3.647415653580643696e-04
"2-1-1-1-1-1-0-1" 3.620108070922493275e-04
"2-0-1-1-0-1-0-0" 3.592955436067518248e-04
"1-1-1-0-1-1-1-0" 3.580198037971481467e-04
"0-2-0-0-0-2-0-2" 3.560764214683422523e-04
"2-0-1-0-0-1-2-2" 3.528102357200577901e-04
"0-0-2-2-0-2-0-0" 3.515918114245249583e-04
"0-0-2-1-0-0-0-1" 3.451473661803044156e-04
"2-0-0-1-1-0-0-0" 3.367989022923293090e-04
"1-1-0-0-1-0-1-1" 3.360856444762706547e-04
"2-0-1-0-1-1-2-2" 3.347242098493244974e-04
"0-0-1-0-1-1-0-2" 3.344935870258891044e-04
"2-1-0-2-0-0-0-0" 3.341864664766503725e-04
"1-1-2-2-0-0-2-0" 3.279300788823727333e-04
"2-0-1-1-0-0-2-2" 3.277301023912869990e-04
"1-1-2-0-0-1-0-1" 3.241286389562740371e-04
"2-0-1-1-1-1-0-0" 3.174096294136009334e-04
"0-0-0-0-1-1-1-2" 3.173370568294103192e-04
"0-0-0-1-0-1-1-1" 3.155038090684859453e-04
"0-1-2-0-2-0-0-1" 3.132122537280270284e-04
"0-0-0-1-0-1-1-0" 3.062599362314028656e-04
"1-0-0-2-2-2-0-0" 2.971946287412095150e-04
"2-2-1-1-1-1-1-0" 2.965688325925133631e-04
"1-0-1-0-1-1-0-2" 2.950485534567023004e-04
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"1-2-1-1-1-1-1-0" 2.923880109964559497e-04
"1-1-1-1-0-1-0-1" 2.899449133593628471e-04
"1-2-1-1-1-0-0-0" 2.889617035749171992e-04
"1-1-2-0-0-0-0-1" 2.818387725775144083e-04
"2-1-0-2-0-0-1-1" 2.797223655455626672e-04
"2-0-2-1-0-0-0-2" 2.791386286137151275e-04
"2-2-0-0-1-0-0-0" 2.698193488124791444e-04
"1-0-0-0-1-0-1-1" 2.682090840540364562e-04
"2-1-2-0-2-0-0-1" 2.652876974050219256e-04
"2-0-0-0-1-1-1-0" 2.632614553696687159e-04
"0-0-2-0-2-1-0-0" 2.622804816479547990e-04
"1-0-1-0-1-1-1-2" 2.615680360301458267e-04
"0-0-1-0-0-0-1-1" 2.583150547759415503e-04
"1-0-0-2-2-0-0-0" 2.577659372536134476e-04
"2-1-2-0-0-0-0-0" 2.527658452398541923e-04
"1-1-2-2-2-0-0-0" 2.518645295742151275e-04
"0-0-2-2-0-0-0-0" 2.514805281424835749e-04
"0-0-2-1-2-0-0-0" 2.355685577548477245e-04
"1-1-1-1-0-1-1-0" 2.309594866761659562e-04
"2-1-2-0-2-0-0-0" 2.285913263023863092e-04
"0-2-0-0-0-0-1-0" 2.276744440236288212e-04
"0-2-1-1-1-1-0-0" 2.264814132076733749e-04
"2-0-2-1-0-0-0-0" 2.243881130269444191e-04
"0-0-1-0-0-1-0-1" 2.210655381740926368e-04
"0-0-1-1-1-0-1-1" 2.204847882086239514e-04
"0-1-0-0-2-0-1-0" 2.204344324455154700e-04
"1-1-2-2-2-0-0-2" 2.149487653012603140e-04
"0-1-1-0-1-1-0-1" 2.147845616534816262e-04
"2-1-0-0-0-0-0-1" 2.133769973549537089e-04
"1-0-2-0-2-0-2-0" 2.124688255162513579e-04
"1-1-1-0-1-1-0-1" 2.124213305514641755e-04
"2-2-2-1-2-0-0-2" 2.120880331155758803e-04
"2-1-1-1-1-1-1-1" 2.115188057287490232e-04
"2-2-0-1-1-0-1-0" 2.077512784702724728e-04
"0-1-2-0-2-0-2-1" 2.041481574314464576e-04
"2-2-0-0-0-0-2-0" 2.010322615170620974e-04
"0-1-1-1-1-0-0-0" 1.989006551154897252e-04
"2-0-1-1-0-1-1-0" 1.963428406379258179e-04
"2-2-1-1-0-0-0-0" 1.946599494858719461e-04
"0-0-1-0-1-0-1-1" 1.941488626469296092e-04
"0-0-0-0-1-0-1-1" 1.917975779816406910e-04
"2-2-0-1-1-0-0-0" 1.893221529645688146e-04
"1-0-0-1-0-1-0-0" 1.881931676587739817e-04
"2-0-0-1-0-0-0-0" 1.848190972943753493e-04
"0-1-1-0-1-1-1-0" 1.839028556681824428e-04
"0-1-0-0-1-0-1-0" 1.835743005711974762e-04
"2-2-1-0-0-0-0-2" 1.810943445493525612e-04
"1-0-0-2-0-0-0-0" 1.785693029706623156e-04
"0-0-2-1-0-0-1-0" 1.753777716222086451e-04
"1-0-0-1-0-0-0-1" 1.735643849555763884e-04
"1-0-0-2-2-2-2-0" 1.641587190810523485e-04
"2-0-1-0-0-0-0-2" 1.641317579518421633e-04
"2-0-2-0-0-0-0-0" 1.638054373209146917e-04
"0-0-2-0-2-0-2-2" 1.589609586223750389e-04
"0-1-0-1-1-1-1-0" 1.588614065468758581e-04
"0-1-2-0-2-1-0-1" 1.576685842082757995e-04
"0-0-1-0-0-0-0-1" 1.569386906401566575e-04
"1-0-0-2-0-2-0-0" 1.557885286808258901e-04
"1-0-0-0-0-1-0-1" 1.556138501453966283e-04
"2-1-2-0-2-0-2-0" 1.539844166740612973e-04
"0-0-2-1-0-1-1-0" 1.504766316492242724e-04
"2-1-2-0-2-1-0-1" 1.428491121037825157e-04
"0-1-0-2-0-1-0-0" 1.423988510657214648e-04
"1-0-0-0-2-0-2-0" 1.404036486107080478e-04
"2-2-1-0-1-1-1-0" 1.390002372178961415e-04
"0-1-0-0-2-0-2-0" 1.350927795380420953e-04
"1-1-0-0-2-0-1-0" 1.349175349850627835e-04
"0-1-2-0-2-0-2-0" 1.349087137084117774e-04
"0-0-1-0-2-0-0-0" 1.330728020752360106e-04
"0-0-1-1-0-0-1-2" 1.290470580454682796e-04
"1-0-0-0-0-0-2-2" 1.289399004857325634e-04
"0-1-2-0-2-0-1-0" 1.286980936673062586e-04
"1-1-0-1-0-0-0-1" 1.275730265332529641e-04
"0-2-0-2-0-0-2-2" 1.245718623575348789e-04
"0-0-1-2-0-0-0-0" 1.232971345372777167e-04
"0-1-2-0-0-0-2-0" 1.227314961026832135e-04
"1-0-1-0-1-2-0-1" 1.185500881987491887e-04
"2-2-1-1-1-1-0-0" 1.148360939638184660e-04
"0-0-0-0-2-0-0-2" 1.141646031244035692e-04
"1-0-0-0-0-0-2-0" 1.135976633855073241e-04
"1-0-2-2-0-2-0-0" 1.132310280537858846e-04
"1-0-2-2-2-0-2-2" 1.129920146190785087e-04
"0-0-0-2-0-0-0-1" 1.120309894968079460e-04
"0-0-2-0-2-2-2-0" 1.112958638415902709e-04

"0-1-1-0-1-0-1-1" 1.112219233099856757e-04
"0-1-2-1-0-1-1-1" 1.111739342124111121e-04
"2-0-2-0-2-0-1-0" 1.105913008120799288e-04
"0-0-2-0-0-0-2-2" 1.105755061473580255e-04
"0-2-0-0-1-1-0-0" 1.098588437606900782e-04
"1-1-0-1-1-0-1-0" 1.092990152272424389e-04
"1-1-0-0-1-0-1-0" 1.091066423215419651e-04
"0-0-1-0-1-2-0-0" 1.084008638838882314e-04
"2-1-0-1-0-1-0-0" 1.060382308876450119e-04
"2-0-2-2-0-0-2-0" 1.055070162271064282e-04
"1-1-0-2-2-2-2-0" 1.054251887887687445e-04
"2-0-1-0-0-0-1-0" 1.026091397317242988e-04
"1-1-1-0-0-2-1-1" 1.022373312485556072e-04
"2-2-1-2-1-0-0-0" 1.021253551116844586e-04
"0-2-1-0-1-0-1-0" 1.019707878046558083e-04
"0-2-1-0-1-1-0-0" 9.951754705823618403e-05
"1-2-1-0-1-0-1-0" 9.750857716917669851e-05
"1-0-0-0-2-0-0-0" 9.740251808281662422e-05
"1-1-1-0-0-0-1-1" 9.617954638360599092e-05
"1-1-0-0-0-0-2-0" 9.506571206096810309e-05
"1-2-1-0-1-1-1-0" 9.473224520711614105e-05
"2-2-1-0-0-2-0-2" 9.430285896941086455e-05
"1-1-1-0-0-0-1-0" 9.414636883994090591e-05
"0-1-1-0-1-1-1-1" 9.201469462661022276e-05
"1-2-0-0-1-0-0-1" 9.027862395485786585e-05
"1-1-0-2-2-2-0-0" 9.006136086497142654e-05
"1-1-0-0-0-0-0-2" 8.853513139730956924e-05
"0-0-0-1-2-0-0-1" 8.838774958443216916e-05
"1-2-1-1-0-0-0-0" 8.762774094694592204e-05
"2-0-2-2-2-0-2-0" 8.737953940471526195e-05
"1-0-2-0-0-0-1-0" 8.737690333771448411e-05
"1-0-2-0-0-2-0-2" 8.696764539761677468e-05
"2-2-1-1-1-0-2-2" 8.690512589421269343e-05
"0-1-2-0-0-0-2-1" 8.484738847927961105e-05
"0-2-1-0-1-2-0-0" 8.471875149039330812e-05
"1-0-1-1-1-0-2-0" 8.409944534505637377e-05
"0-2-1-0-0-0-2-2" 8.328552079995243907e-05
"2-2-1-1-1-0-0-2" 8.236954703648423652e-05
"0-0-1-1-1-2-2-0" 8.214925198144793037e-05
"0-1-2-0-0-0-0-2" 8.190916168947381276e-05
"0-2-1-0-1-2-0-2" 8.179868202279428420e-05
"1-0-1-1-1-2-2-0" 8.165311169431293669e-05
"0-2-1-1-1-0-2-0" 8.125910430286086570e-05
"1-1-0-1-0-0-1-0" 8.095487865090211549e-05
"1-0-2-2-2-0-2-0" 8.093268280480370896e-05
"2-2-1-2-0-2-0-2" 8.032710032942149314e-05
"2-2-0-2-0-0-0-0" 7.970087297670881048e-05
"1-1-2-2-0-0-0-0" 7.933081997305350096e-05
"0-0-2-0-2-2-0-0" 7.854330270902117603e-05
"2-2-1-0-1-2-1-0" 7.829665540418167494e-05
"0-1-1-0-0-1-1-1" 7.815208884891926310e-05
"2-2-0-2-0-2-0-0" 7.768450995279944005e-05
"2-2-1-0-1-0-1-2" 7.701997195398496351e-05
"0-2-1-1-1-1-1-0" 7.683692573535867124e-05
"0-2-0-0-1-0-1-0" 7.658423866628763087e-05
"0-1-1-0-0-0-1-1" 7.551886276015367468e-05
"0-0-0-2-2-2-0-0" 7.503447510424817975e-05
"0-1-0-0-2-2-0-0" 7.425238312394681324e-05
"1-1-2-2-2-0-2-2" 7.404368290357767654e-05
"0-2-1-1-1-0-1-0" 7.363779492306930449e-05
"0-1-0-1-2-1-0-1" 7.356355676132535725e-05
"1-2-0-2-2-0-0-0" 7.313772018968100488e-05
"2-0-0-2-0-0-2-0" 7.291748056403892756e-05
"0-2-1-0-1-0-0-2" 7.237759125240347032e-05
"1-0-0-0-1-0-2-0" 7.235242683006603008e-05
"0-1-2-2-0-0-2-1" 7.180619546306866020e-05
"0-2-0-0-1-2-0-2" 7.132282382180084930e-05
"0-2-1-1-0-0-2-2" 7.018737305752769718e-05
"0-0-2-2-0-0-1-0" 7.017553848276667546e-05
"2-2-0-1-1-1-0-0" 7.014890324736316855e-05
"0-2-1-0-0-2-0-2" 7.011607525434761180e-05
"2-2-1-0-0-0-1-0" 6.759872098702092555e-05
"1-0-2-2-0-0-0-0" 6.756140955379292385e-05
"1-1-0-0-0-0-1-1" 6.713022884757892405e-05
"2-2-1-1-0-0-2-2" 6.688161164981324856e-05
"2-1-2-0-2-0-2-1" 6.683273137112255894e-05
"0-2-0-0-1-2-1-2" 6.609648279821289272e-05
"0-2-0-0-1-0-0-2" 6.553659764674976099e-05
"0-2-0-0-0-0-1-2" 6.544654801228142436e-05
"2-0-2-2-2-0-0-0" 6.531234927897961394e-05
"1-0-2-0-1-0-1-0" 6.478253420038747497e-05
"0-2-1-0-0-2-0-0" 6.432112677263016368e-05
"0-1-2-0-0-0-1-0" 6.419852684941583032e-05
"1-2-1-1-0-0-0-2" 6.379206998605402258e-05
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"1-1-0-2-0-2-0-0" 6.294310992721710617e-05
"1-1-2-2-2-0-2-0" 6.235329647649696201e-05
"1-1-0-0-2-0-2-2" 6.114874604240231216e-05
"2-0-0-1-0-1-0-1" 6.104029911596123260e-05
"0-1-2-2-0-0-0-1" 5.946588326625740337e-05
"1-1-0-2-2-0-2-2" 5.945944775892515321e-05
"0-1-2-2-0-2-0-0" 5.872115167267263344e-05
"0-2-1-2-1-2-0-0" 5.853699497883076125e-05
"1-1-0-0-0-0-2-2" 5.831915728885013207e-05
"1-1-0-0-0-2-1-0" 5.618344335913046941e-05
"1-2-1-1-1-0-1-1" 5.608682086625653733e-05
"1-1-2-2-0-0-1-1" 5.587642802436226927e-05
"1-1-1-1-0-0-1-0" 5.563284001950707030e-05
"0-1-2-0-0-2-0-0" 5.543293523917976114e-05
"0-2-1-1-0-0-0-2" 5.495057634608807693e-05
"0-2-0-1-1-1-0-0" 5.462864781113100444e-05
"2-2-1-0-1-2-0-0" 5.426491059068312526e-05
"0-2-0-0-0-0-2-0" 5.410842657373018721e-05
"2-0-2-0-0-0-1-0" 5.386162674796424199e-05
"0-2-1-0-0-0-0-2" 5.373856805533378921e-05
"2-1-2-1-0-1-2-1" 5.373825603060334758e-05
"1-1-0-2-0-0-1-1" 5.364313370084309554e-05
"0-2-1-1-1-1-1-1" 5.348875165370289597e-05
"0-0-0-1-1-1-0-1" 5.288298538031525967e-05
"0-2-1-1-1-0-2-2" 5.287957990854752607e-05
"0-2-1-0-0-0-2-0" 5.268332477562110707e-05
"0-0-0-0-0-2-0-2" 5.251147905394761939e-05
"1-1-2-2-2-2-2-0" 5.199763251594785899e-05
"2-0-0-1-1-1-1-1" 5.116933505264430442e-05
"1-2-1-1-1-1-0-0" 5.115486227015382303e-05
"2-0-0-0-0-2-0-0" 5.062747894966663776e-05
"0-2-1-1-1-0-0-1" 5.060736419485445517e-05
"2-2-2-0-2-2-2-0" 5.051739826113965426e-05
"2-0-0-2-0-0-0-0" 5.036346677839791515e-05
"0-0-2-0-0-2-0-0" 4.936451691156410680e-05
"1-0-0-1-0-1-0-1" 4.866572676929956315e-05
"1-1-2-2-0-0-0-1" 4.756400820490459764e-05
"0-0-0-1-0-1-2-1" 4.721636220122908212e-05
"1-0-1-0-1-2-1-0" 4.647269444058063338e-05
"0-0-0-0-2-0-0-1" 4.599465388272564175e-05
"1-1-0-1-0-1-1-0" 4.529512133848855878e-05
"2-0-0-2-0-0-1-0" 4.457802393379634335e-05
"1-0-0-1-0-1-1-0" 4.399456910673449540e-05
"2-1-0-1-2-0-0-1" 4.344066886601349002e-05
"2-1-0-0-0-1-0-0" 4.276764047116802956e-05
"2-1-0-1-1-1-0-1" 4.202359223503719594e-05
"2-0-0-1-0-1-0-0" 4.160528410638864851e-05
"0-1-0-1-1-1-0-1" 4.021577420383718208e-05
"1-0-2-0-2-0-1-0" 4.012325702533402184e-05
"2-0-0-2-0-1-0-1" 3.977896849016686597e-05
"0-1-2-1-0-0-2-0" 3.795615251025500855e-05
"1-0-0-1-0-1-1-1" 3.690586497932450114e-05
"0-1-2-2-2-2-2-0" 3.674669994947733586e-05
"2-1-2-1-0-0-2-1" 3.606603029922169886e-05
"2-1-0-0-0-1-0-1" 3.599314254821144054e-05
"1-0-0-1-1-0-0-1" 3.598305501455477856e-05
"2-0-2-0-2-0-2-2" 3.543650890856465333e-05
"0-0-2-0-1-0-0-0" 3.543383385964586049e-05
"1-1-0-1-1-1-1-0" 3.535946640632003056e-05
"2-0-2-0-2-0-0-0" 3.531088076713995903e-05
"1-0-0-1-1-1-0-1" 3.397287414968562633e-05
"2-0-2-0-0-0-2-0" 3.300678026883050614e-05
"1-1-0-0-1-1-0-0" 3.281172176441869367e-05
"2-0-2-0-2-2-2-0" 3.269511843905248156e-05
"2-1-2-0-0-1-0-0" 3.230023155317006297e-05
"0-1-0-1-1-1-0-0" 3.159523480222413693e-05
"1-0-2-2-2-0-0-1" 3.094929921874222935e-05
"2-0-0-1-0-0-0-1" 2.917058563867898040e-05
"2-1-0-0-2-1-0-1" 2.799222823608714676e-05
"0-1-0-1-0-1-1-0" 2.779274892440575833e-05
"2-0-2-1-0-1-0-1" 2.773301476010828345e-05
"0-1-1-1-0-0-1-1" 2.741622760203238476e-05
"1-1-2-0-0-0-1-1" 2.740405442141078521e-05
"2-0-2-0-0-1-0-0" 2.721241418982674336e-05
"0-0-2-1-1-1-1-0" 2.640834152361471894e-05
"2-1-0-1-0-0-0-1" 2.634403253518109952e-05
"1-1-0-0-1-1-1-0" 2.612044317898729691e-05
"0-0-0-1-2-0-0-0" 2.609107242900466947e-05
"2-1-0-0-2-0-0-1" 2.571613920994301743e-05
"2-0-2-2-2-2-2-0" 2.559440158382865279e-05
"2-1-2-0-2-0-1-1" 2.470367243212088373e-05
"0-0-0-0-2-2-0-0" 2.423656201810324255e-05
"0-1-0-0-2-0-1-1" 2.408696221952562482e-05
"2-1-2-1-0-1-0-0" 2.375725900466275870e-05

"2-1-0-1-1-1-1-1" 2.351779414008386800e-05
"0-1-1-1-0-1-1-0" 2.349977986383005522e-05
"2-1-0-0-2-1-2-1" 2.342028915942585449e-05
"2-0-0-0-0-0-0-2" 2.282025049412910313e-05
"2-0-2-1-0-0-2-0" 2.231249439748070744e-05
"0-0-0-1-0-0-2-1" 2.220816233470131637e-05
"2-0-2-0-0-0-0-1" 2.179424334591297834e-05
"2-1-0-1-1-1-1-0" 2.041984831611825095e-05
"1-0-2-2-2-0-0-0" 2.035097293602215301e-05
"2-0-2-1-0-1-1-1" 1.995272495635394531e-05
"0-1-0-0-1-1-0-0" 1.973996328824174714e-05
"2-1-2-0-2-1-2-1" 1.911456586485541409e-05
"2-1-0-0-2-0-0-0" 1.881114039322979038e-05
"2-1-0-0-2-0-2-1" 1.880954815237732548e-05
"0-0-0-1-2-1-0-0" 1.876709470064077376e-05
"2-1-2-1-2-0-0-1" 1.861321304260054850e-05
"2-0-0-0-0-0-0-1" 1.836545528933941678e-05
"1-0-2-0-0-0-2-0" 1.765034770174715034e-05
"0-1-0-1-2-0-0-1" 1.718721395341780796e-05
"0-1-2-2-2-0-2-0" 1.699497286374649548e-05
"2-0-0-1-0-0-2-0" 1.696073934170004178e-05
"2-1-2-0-0-1-2-1" 1.692750764932039300e-05
"1-1-0-0-2-0-1-1" 1.673264845132362100e-05
"2-1-0-0-0-0-2-0" 1.587048396645381187e-05
"2-1-2-0-2-1-1-1" 1.585676397748900360e-05
"0-0-0-1-1-0-0-1" 1.566629481065551780e-05
"1-0-1-0-1-0-1-2" 1.520301631856531240e-05
"2-0-0-0-2-0-2-0" 1.490531770673959264e-05
"2-0-2-0-2-0-2-0" 1.417061370585438473e-05
"0-0-2-0-1-1-0-0" 1.271552533462085932e-05
"0-1-2-2-0-0-2-0" 9.372720430394723977e-06
"2-1-2-1-2-0-1-1" 8.757456667944396892e-06
"1-1-0-0-0-0-2-1" 8.613785281739383406e-06
"2-1-0-1-2-0-2-0" 7.951705785872844318e-06
"2-1-2-2-2-0-2-1" 7.659711342752065699e-06
"2-0-0-1-2-1-2-1" 7.382246638744156779e-06
"0-1-0-1-0-1-2-1" 6.650112440126120128e-06
"0-1-0-1-2-0-2-1" 6.429319370453981039e-06
"0-1-2-0-0-2-2-1" 6.422558551658294761e-06
"0-1-2-1-2-1-0-0" 6.155474716500039074e-06
"0-1-0-1-2-1-2-1" 5.879947373560735837e-06
"2-1-1-1-0-1-0-1" 5.845194633930210600e-06
"2-0-2-2-0-0-0-0" 5.738065172401693979e-06
"2-1-0-0-0-2-2-1" 5.415352001467553414e-06
"0-1-2-2-0-2-2-1" 5.345518312776561754e-06
"2-1-2-1-0-0-2-0" 5.209299854235530997e-06
"0-1-0-1-2-0-2-0" 5.182413660054110719e-06
"2-1-2-0-0-2-2-1" 5.019193001104952115e-06
"2-1-0-0-2-0-2-0" 5.000831243755575818e-06
"1-1-0-1-2-0-0-1" 4.815302627083318164e-06
"0-1-0-0-2-0-2-1" 4.605099916549000463e-06
"0-1-0-0-0-0-2-0" 4.570372034308779391e-06
"2-1-0-1-2-1-1-1" 4.529545107530535530e-06
"2-1-0-1-2-0-1-1" 4.494917319344843823e-06
"1-1-0-0-1-1-0-1" 4.226151258663228795e-06
"1-1-0-1-2-0-0-0" 3.938645944590388401e-06
"2-0-0-0-2-0-2-2" 3.821259324539321537e-06
"2-0-0-2-2-0-2-0" 3.664180382469819730e-06
"2-1-1-1-0-1-1-1" 3.651074986641756389e-06
"2-1-2-1-0-2-2-1" 3.573016415868671112e-06
"1-1-0-0-1-0-2-1" 3.545128687170371502e-06
"0-0-0-1-2-0-2-1" 3.435775682255556066e-06
"2-1-2-2-2-2-2-1" 3.422458924676431112e-06
"0-0-0-1-2-1-0-1" 3.345160633953969154e-06
"2-1-2-1-2-1-2-1" 3.205557934797090127e-06
"1-1-0-1-1-0-0-1" 3.131721612893762549e-06
"1-0-0-2-2-0-2-0" 3.074001478851614746e-06
"2-1-2-0-2-1-0-0" 3.023301588776610380e-06
"2-0-0-1-2-1-0-1" 2.783642481991367107e-06
"1-0-2-1-0-0-0-0" 2.081860851432425035e-06
"0-1-2-2-2-2-2-1" 1.603981430863353783e-06
"2-1-0-1-0-1-2-0" 1.590095214020901419e-06
"2-1-0-1-2-1-0-1" 1.414370919146359065e-06
"0-1-0-0-0-0-2-1" 1.219882699132390600e-06
"2-1-2-0-0-2-2-0" 1.110745393474050917e-06
"0-1-0-2-0-0-2-0" 1.013600586847484977e-06
"2-1-0-1-0-1-2-1" 8.405117285916036192e-07
"0-1-0-1-2-1-1-1" 5.695144484093072948e-07
"2-1-2-1-2-1-0-1" 4.869616895907733993e-07
"0-1-0-1-0-0-2-1" 3.905363462974645062e-07
"2-1-2-1-2-0-2-0" 2.936083901977393945e-07
"2-0-0-0-2-0-0-0" 1.906339264336069467e-07
"0-1-0-1-0-2-2-1" 5.528955768353710774e-08

Table C.9: Full inter-class Gini impurity ranking for the set
of all ternary ESCs. ESCs are denoted with a ternary num-
ber code where 1 means active enhancer state (before: green
state), 2 means repressive state (before: red state) and 0 means
none of both. The order from left to-right of the conditions
is the same as in the earlier Gini impurity rankings from
top to bottom. Hence we have: Naïve, Th2, Tbet+/+Th1,
Tbet+/+Th1/2, Tbet+/−Th1, Tbet+/−Th1/2, Tbet−/−Th1,
Tbet−/−Th1/2.
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APPENDIX C. SUPPLEMENTARY TABLES

ESC I∗Gini
"0-0-1-1-0-0-0-0" 3.802861764549086282e-02
"0-0-1-1-1-0-0-0" 2.793203035456573793e-02
"0-0-1-0-1-0-0-0" 2.507822630430760549e-02
"0-0-1-0-0-0-0-0" 2.351054320844192178e-02
"0-0-1-1-0-1-0-0" 2.244676573823316257e-02
"0-0-1-1-1-0-1-0" 2.130107183159842682e-02
"0-0-1-1-1-1-0-0" 1.910379787802115800e-02
"0-2-1-0-0-0-0-0" 1.513752024583002453e-02
"0-0-1-0-0-0-1-0" 1.326601481680460791e-02
"0-0-1-1-1-1-1-0" 1.310524163210283199e-02
"0-0-1-0-1-1-1-0" 1.257446606686531999e-02
"1-1-0-1-1-1-0-0" 1.163510533584564098e-02
"0-2-0-0-0-0-0-0" 1.162945592692495901e-02
"0-2-1-0-1-0-0-0" 1.037571590517450890e-02
"0-0-1-0-1-1-0-1" 1.035265793859342469e-02
"2-0-1-1-0-0-0-0" 1.005482635414426881e-02
"1-0-1-0-1-1-1-1" 9.985329147152357393e-03
"0-0-1-0-1-0-1-0" 9.839018095844238518e-03
"1-0-1-1-1-1-1-0" 9.690233177113429311e-03
"0-0-1-1-0-1-1-0" 8.320978172828667752e-03
"1-0-1-1-1-1-1-1" 8.175893979845059306e-03
"2-0-1-1-1-0-0-0" 7.972899195225376101e-03
"1-1-1-1-1-1-1-1" 7.415873501928991335e-03
"1-0-1-1-1-0-0-0" 7.152220647236270587e-03
"0-1-1-1-1-1-1-0" 7.107545329162439328e-03
"1-0-0-0-1-0-0-1" 6.903346000839430396e-03
"1-1-0-0-1-0-0-0" 6.567006907369595491e-03
"0-0-0-0-1-1-0-0" 6.443002625796819503e-03
"0-0-0-0-0-0-0-0" 6.316536983042757639e-03
"0-2-1-1-1-0-0-0" 6.135427340668108027e-03
"1-0-1-0-1-1-0-0" 6.113789152760755116e-03
"0-0-1-1-0-0-1-0" 5.961357171737872648e-03
"1-0-0-0-1-1-0-0" 5.931662770308814003e-03
"1-1-1-0-1-0-1-0" 5.910211780915260692e-03
"0-2-0-0-1-0-0-0" 5.898262929439490251e-03
"0-0-1-0-1-1-1-1" 5.885487857535036046e-03
"1-1-1-1-1-0-1-0" 5.590715706963024154e-03
"0-0-1-1-1-1-0-1" 5.380900380446195473e-03
"0-0-0-0-1-0-0-0" 5.263616228911121436e-03
"1-0-0-0-1-1-1-0" 5.064947230304499629e-03
"0-2-1-1-0-0-0-0" 4.947647765166832134e-03
"1-0-1-0-1-1-1-0" 4.813213859566760865e-03
"1-0-1-0-1-0-0-0" 4.679817325987042226e-03
"0-0-1-0-1-0-2-0" 4.533622999400433243e-03
"0-0-1-1-1-1-1-1" 4.505724298638870591e-03
"1-0-1-1-1-0-1-0" 4.450668102995451215e-03
"0-0-1-0-0-0-2-0" 4.422841330575287902e-03
"2-0-1-1-1-1-1-0" 4.297232770209264210e-03
"0-0-0-2-0-0-0-2" 3.976719121433797133e-03
"0-0-1-0-1-1-0-0" 3.938789740323422189e-03
"2-2-1-0-1-0-1-0" 3.903377075765382658e-03
"1-0-1-1-1-1-0-0" 3.887336088040336222e-03
"0-0-0-1-0-0-0-0" 3.733385297964810900e-03
"0-0-0-0-0-0-0-2" 3.706697759585451512e-03
"1-1-1-1-0-0-0-1" 3.534546127709833115e-03
"2-0-0-0-1-0-0-0" 3.338099605735624607e-03
"2-2-0-0-0-2-0-0" 3.318714701184945562e-03
"1-1-0-0-0-1-0-0" 3.303090904167039262e-03
"0-0-0-0-0-2-0-0" 3.255416127928977433e-03
"1-1-1-0-1-0-0-0" 3.229597616419093136e-03
"0-1-1-1-1-0-1-0" 3.208521402435155715e-03
"0-2-0-0-0-2-0-0" 3.171124836861864953e-03
"0-0-1-1-1-1-2-0" 3.145664460309343432e-03
"0-0-1-1-0-0-2-0" 3.128661290455586261e-03
"1-0-1-0-0-0-0-0" 3.027871920305361553e-03
"1-1-1-1-0-1-0-0" 3.026667746154352526e-03
"0-2-1-1-0-1-1-0" 2.999886095745587459e-03
"0-2-0-1-1-0-0-0" 2.929438924188272706e-03
"2-0-1-1-1-1-1-1" 2.721710809729178688e-03
"1-0-1-1-0-0-0-0" 2.696793052312601146e-03
"1-1-1-1-1-1-0-1" 2.610391861932193254e-03
"0-1-1-1-1-0-1-1" 2.557255110648411472e-03
"2-2-0-0-0-0-0-0" 2.476466078105286645e-03
"2-2-0-0-0-0-2-2" 2.355778103350877981e-03
"1-0-0-0-1-0-0-0" 2.327256700030807830e-03
"1-0-0-1-1-0-0-0" 2.224073046180291818e-03
"2-0-1-0-0-0-0-0" 2.210704649673763539e-03
"1-1-1-1-1-0-0-0" 2.062182738864156133e-03
"1-0-1-1-0-1-0-0" 2.041644910991012671e-03
"0-1-1-1-0-0-0-1" 1.863912793679312497e-03
"0-2-1-2-0-2-0-0" 1.826790932509837154e-03
"1-0-0-1-0-0-2-0" 1.819109593297562515e-03
"2-0-1-0-1-0-0-0" 1.785664439541836913e-03

"0-0-0-0-1-1-1-0" 1.752003999614431401e-03
"0-0-0-1-0-0-0-2" 1.740440216484793632e-03
"2-1-1-1-0-0-0-0" 1.730340066259537487e-03
"1-0-0-1-1-0-1-0" 1.719682445946174240e-03
"0-2-0-0-2-0-0-0" 1.713854806008292559e-03
"2-2-1-0-0-0-0-0" 1.688464256814477217e-03
"0-0-0-0-1-0-1-0" 1.656760437207324124e-03
"2-2-1-0-1-0-0-0" 1.645927234160785967e-03
"0-0-0-1-1-0-0-0" 1.633594032155681695e-03
"1-0-0-2-0-0-1-0" 1.605943732771371443e-03
"2-0-1-1-1-0-1-1" 1.605420102097887417e-03
"0-0-0-1-1-1-0-0" 1.580928153517508058e-03
"0-0-1-1-0-1-1-1" 1.572806895466883096e-03
"1-2-1-0-0-2-0-0" 1.563523568984649583e-03
"1-2-1-2-0-0-0-0" 1.535414167084740494e-03
"1-1-1-1-1-1-1-0" 1.534637219525919732e-03
"1-2-1-2-0-2-0-0" 1.519478602296306683e-03
"0-2-0-2-0-2-0-0" 1.514288228564630466e-03
"2-0-0-0-0-1-0-0" 1.477078999137116950e-03
"1-1-0-0-1-2-1-0" 1.474173819981073122e-03
"1-2-1-0-0-0-0-0" 1.410440352924401510e-03
"1-1-1-1-1-1-0-0" 1.332307881952096446e-03
"1-0-1-1-0-1-1-1" 1.280434025914261188e-03
"0-1-0-0-0-1-1-0" 1.241975234740229405e-03
"1-0-1-0-0-0-1-0" 1.154795126179179862e-03
"0-2-0-0-2-0-2-0" 1.145567369043649919e-03
"0-2-0-1-0-0-0-0" 1.088316343437202701e-03
"1-0-0-1-1-1-0-0" 1.060517175095384125e-03
"2-2-1-1-1-0-0-0" 1.054130855038260374e-03
"1-1-1-0-1-0-1-1" 1.052129762440301170e-03
"2-0-1-1-1-0-1-0" 1.050458814033475166e-03
"1-0-1-1-0-0-1-0" 1.050453103322122796e-03
"1-2-0-0-1-0-0-0" 1.032405257246198646e-03
"0-2-0-2-2-0-2-0" 9.975358189901863473e-04
"1-2-0-0-2-0-2-0" 9.963438996749508694e-04
"1-0-1-1-1-1-0-1" 9.938994324966486486e-04
"2-0-1-0-1-0-1-0" 8.603640898388806562e-04
"0-1-1-1-0-1-0-0" 8.460097416956360037e-04
"2-0-0-0-0-0-1-0" 8.293749495121341929e-04
"1-0-1-0-1-0-1-0" 8.290784017686374761e-04
"0-2-0-0-0-0-2-2" 8.107099932497978997e-04
"2-0-0-0-1-0-0-2" 7.956595572708039313e-04
"0-0-1-0-1-0-0-1" 7.727796986857827545e-04
"1-1-1-0-1-1-0-0" 7.646435996563748661e-04
"1-2-1-1-1-1-1-1" 7.423213259200809591e-04
"0-0-0-2-0-2-0-0" 7.360374419400339801e-04
"1-0-1-0-1-0-1-1" 7.295993502918256485e-04
"2-2-0-0-0-2-2-0" 7.295115149446940520e-04
"1-1-1-1-1-0-1-1" 7.255940972092143979e-04
"0-0-1-0-0-1-0-0" 7.205999368723666225e-04
"2-2-1-0-0-0-2-0" 7.130274146262984393e-04
"0-2-1-0-1-1-2-0" 7.082533764755185625e-04
"1-2-0-0-0-0-0-0" 6.793400494503052441e-04
"1-0-1-1-1-0-1-1" 6.734131865782166200e-04
"2-2-0-2-0-0-0-2" 6.732287729403004135e-04
"2-2-0-1-0-0-0-0" 6.719972979075174721e-04
"2-0-0-2-0-0-0-2" 6.382432914871242948e-04
"2-2-1-0-0-2-2-0" 6.357425037614064089e-04
"1-1-1-0-1-1-1-1" 6.278791340226292815e-04
"2-0-1-0-0-0-2-0" 6.198745822797738442e-04
"0-1-1-1-0-0-1-0" 6.113518068843843897e-04
"2-2-1-2-1-0-0-2" 6.098292735485789625e-04
"2-0-0-0-1-0-1-0" 6.056692146193639248e-04
"0-0-1-0-0-0-0-2" 5.715032170260504578e-04
"1-0-1-0-1-2-0-0" 5.333726980139849930e-04
"1-0-1-1-1-0-0-1" 5.286100512830043145e-04
"1-1-0-2-0-0-0-0" 5.029836373433781930e-04
"0-0-0-1-1-0-1-0" 4.673811938411465876e-04
"2-2-1-1-0-0-0-2" 4.646909681024187846e-04
"0-2-1-0-0-0-1-0" 4.645309499389131745e-04
"0-0-1-0-0-1-1-0" 4.568618383677024381e-04
"0-2-0-2-0-2-0-2" 4.483416671430275578e-04
"1-0-0-0-0-0-0-2" 4.371365619700920131e-04
"0-2-0-0-0-0-0-2" 4.329122336303386316e-04
"0-1-0-0-1-0-0-0" 4.298933571858187764e-04
"0-2-0-1-0-0-0-2" 4.249152827446898506e-04
"1-1-1-0-0-0-0-0" 4.160396963832504818e-04
"0-0-0-0-0-1-1-0" 4.151035850001484747e-04
"2-0-1-1-1-1-0-1" 4.085625524798384175e-04
"2-0-1-0-0-2-2-0" 4.058252099589620119e-04
"2-2-1-1-1-0-1-0" 3.942727088418253333e-04
"0-0-0-0-0-2-2-0" 3.933762540900087134e-04
"2-0-1-0-0-1-0-0" 3.896255546034649297e-04
"2-0-1-1-1-1-2-0" 3.874837135831671548e-04
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"1-0-1-1-0-0-1-1" 3.867757962176232014e-04
"0-0-1-0-0-2-2-0" 3.762192507190657452e-04
"0-0-1-0-1-0-0-2" 3.755649888621946544e-04
"0-2-0-2-0-2-2-2" 3.698162403103673335e-04
"2-0-0-1-1-1-2-0" 3.647415653580643154e-04
"2-1-1-1-1-1-0-1" 3.620108070922488938e-04
"2-0-1-1-0-1-0-0" 3.592955436067517706e-04
"1-1-1-0-1-1-1-0" 3.580198037971480925e-04
"0-2-0-0-0-2-0-2" 3.560764214683418728e-04
"2-0-1-0-0-1-2-2" 3.528102357200574106e-04
"2-0-0-1-1-0-0-0" 3.367989022923289296e-04
"1-1-0-0-1-0-1-1" 3.360856444762697873e-04
"2-0-1-0-1-1-2-2" 3.347242098493241180e-04
"0-0-1-0-1-1-0-2" 3.344935870258887792e-04
"2-0-1-1-0-0-2-2" 3.277301023912866196e-04
"2-0-1-1-1-1-0-0" 3.174096294136008250e-04
"0-0-0-0-1-1-1-2" 3.173370568294098313e-04
"2-2-1-1-1-1-1-0" 2.965688325925132547e-04
"1-0-1-0-1-1-0-2" 2.950485534567018667e-04
"1-2-1-1-1-1-1-0" 2.923880109964558955e-04
"1-1-1-1-0-1-0-1" 2.899449133593628471e-04
"1-2-1-1-1-0-0-0" 2.889617035749177955e-04
"2-2-0-0-1-0-0-0" 2.698193488124769218e-04
"1-0-1-0-1-1-1-2" 2.615680360301454472e-04
"0-0-1-0-0-0-1-1" 2.583150547759412250e-04
"0-2-0-0-0-0-1-0" 2.276744440236292278e-04
"0-2-1-1-1-1-0-0" 2.264814132076735647e-04
"0-0-1-1-1-0-1-1" 2.204847882086243308e-04
"0-1-1-0-1-1-0-1" 2.147845616534813009e-04
"2-1-1-1-1-1-1-1" 2.115188057287495382e-04
"2-2-0-1-1-0-1-0" 2.077512784702724186e-04
"2-2-0-0-0-0-2-0" 2.010322615170620974e-04
"0-1-1-1-1-0-0-0" 1.989006551154897252e-04
"2-0-1-1-0-1-1-0" 1.963428406379257366e-04
"2-2-1-1-0-0-0-0" 1.946599494858719190e-04
"0-0-1-0-1-0-1-1" 1.941488626469296092e-04
"2-2-0-1-1-0-0-0" 1.893221529645685436e-04
"0-1-1-0-1-1-1-0" 1.839028556681824157e-04
"0-1-0-0-1-0-1-0" 1.835743005711978286e-04
"2-2-1-0-0-0-0-2" 1.810943445493525612e-04
"2-0-1-0-0-0-0-2" 1.641317579518421633e-04
"1-0-0-0-0-1-0-1" 1.556138501453964657e-04
"2-2-1-0-1-1-1-0" 1.390002372178960873e-04
"0-0-1-0-2-0-0-0" 1.330728020752358479e-04
"0-0-1-1-0-0-1-2" 1.290470580454681441e-04
"1-0-0-0-0-0-2-2" 1.289399004857334308e-04
"0-2-0-2-0-0-2-2" 1.245718623575349331e-04
"0-0-1-2-0-0-0-0" 1.232971345372777439e-04
"1-0-1-0-1-2-0-1" 1.185500881987490668e-04
"1-0-0-0-0-0-2-0" 1.135976633855071614e-04
"0-1-1-0-1-0-1-1" 1.112219233099856892e-04
"0-2-0-0-1-1-0-0" 1.098588437606899562e-04
"1-1-0-1-1-0-1-0" 1.092990152272424660e-04
"0-0-1-0-1-2-0-0" 1.084008638838882449e-04
"2-0-1-0-0-0-1-0" 1.026091397317243259e-04
"1-1-1-0-0-2-1-1" 1.022373312485556343e-04
"2-2-1-2-1-0-0-0" 1.021253551116843366e-04
"0-2-1-0-1-0-1-0" 1.019707878046558354e-04
"0-2-1-0-1-1-0-0" 9.951754705823621114e-05
"1-2-1-0-1-0-1-0" 9.750857716917659009e-05
"1-1-1-0-0-0-1-1" 9.617954638360600448e-05
"2-2-1-0-0-2-0-2" 9.430285896941076969e-05
"0-1-1-0-1-1-1-1" 9.201469462661023631e-05
"1-2-0-0-1-0-0-1" 9.027862395485775743e-05
"1-2-1-1-0-0-0-0" 8.762774094694582717e-05
"2-2-1-1-1-0-2-2" 8.690512589421267987e-05
"0-2-1-0-1-2-0-0" 8.471875149039337588e-05
"1-0-1-1-1-0-2-0" 8.409944534505640087e-05
"0-2-1-0-0-0-2-2" 8.328552079995250683e-05
"2-2-1-1-1-0-0-2" 8.236954703648430428e-05
"0-0-1-1-1-2-2-0" 8.214925198144794392e-05
"0-2-1-0-1-2-0-2" 8.179868202279418933e-05
"1-0-1-1-1-2-2-0" 8.165311169431295024e-05
"0-2-1-1-1-0-2-0" 8.125910430286090635e-05
"2-2-1-2-0-2-0-2" 8.032710032942139828e-05
"2-2-0-2-0-0-0-0" 7.970087297670871561e-05
"2-2-1-0-1-2-1-0" 7.829665540418158007e-05
"2-2-0-2-0-2-0-0" 7.768450995279935873e-05
"2-2-1-0-1-0-1-2" 7.701997195398494996e-05
"0-2-1-1-1-1-1-0" 7.683692573535865768e-05
"0-2-0-0-1-0-1-0" 7.658423866628761732e-05
"0-2-1-1-1-0-1-0" 7.363779492306925028e-05
"1-2-0-2-2-0-0-0" 7.313772018968092356e-05
"0-2-1-0-1-0-0-2" 7.237759125240338901e-05

"1-0-0-0-1-0-2-0" 7.235242683006604363e-05
"0-2-0-0-1-2-0-2" 7.132282382180076799e-05
"0-2-1-1-0-0-2-2" 7.018737305752768363e-05
"2-2-0-1-1-1-0-0" 7.014890324736310079e-05
"0-2-1-0-0-2-0-2" 7.011607525434759825e-05
"2-2-1-0-0-0-1-0" 6.759872098702084423e-05
"2-2-1-1-0-0-2-2" 6.688161164981323500e-05
"0-2-0-0-1-2-1-2" 6.609648279821281141e-05
"0-2-0-0-1-0-0-2" 6.553659764674969323e-05
"0-2-0-0-0-0-1-2" 6.544654801228135660e-05
"0-2-1-0-0-2-0-0" 6.432112677263015013e-05
"0-2-1-2-1-2-0-0" 5.853699497883074770e-05
"1-2-1-1-1-0-1-1" 5.608682086625652377e-05
"1-1-1-1-0-0-1-0" 5.563284001950715839e-05
"0-2-1-1-0-0-0-2" 5.495057634608807693e-05
"0-2-0-1-1-1-0-0" 5.462864781113101800e-05
"2-2-1-0-1-2-0-0" 5.426491059068307105e-05
"0-2-0-0-0-0-2-0" 5.410842657373014656e-05
"0-2-1-0-0-0-0-2" 5.373856805533378244e-05
"0-2-1-1-1-1-1-1" 5.348875165370288242e-05
"0-2-1-1-1-0-2-2" 5.287957990854751930e-05
"0-2-1-0-0-0-2-0" 5.268332477562110030e-05
"1-2-1-1-1-1-0-0" 5.115486227015381626e-05
"0-2-1-1-1-0-0-1" 5.060736419485444839e-05
"2-0-0-2-0-0-0-0" 5.036346677839808456e-05
"1-0-1-0-1-2-1-0" 4.647269444058057917e-05
"0-1-1-1-0-0-1-1" 2.741622760203236782e-05
"1-1-0-0-1-1-1-0" 2.612044317898727996e-05
"1-0-1-0-1-0-1-2" 1.520301631856531410e-05

Table C.10: Th1 intra-class Gini impurity ranking for the set
of all ternary ESCs. ESCs are denoted with a ternary num-
ber code where 1 means active enhancer state (before: green
state), 2 means repressive state (before: red state) and 0 means
none of both. The order from left to-right of the conditions
is the same as in the earlier Gini impurity rankings from
top to bottom. Hence we have: Naïve, Th2, Tbet+/+Th1,
Tbet+/+Th1/2, Tbet+/−Th1, Tbet+/−Th1/2, Tbet−/−Th1,
Tbet−/−Th1/2.
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APPENDIX C. SUPPLEMENTARY TABLES

ESC I∗Gini
"0-1-0-0-0-0-0-0" 2.237943723536544791e-02
"0-0-2-0-2-0-0-0" 1.167350358833286160e-02
"0-0-0-0-0-0-0-1" 1.166953784298974117e-02
"0-1-0-0-0-0-0-1" 1.012320421940227783e-02
"0-1-0-1-1-1-1-1" 8.544037886329043999e-03
"0-0-0-2-0-0-0-0" 7.869750158875353854e-03
"0-0-2-0-0-0-0-0" 7.667362706324570495e-03
"0-1-0-1-0-1-0-1" 6.885053935952276105e-03
"1-1-0-1-0-1-0-0" 5.730765271233401702e-03
"0-1-0-1-0-0-0-1" 5.626815741809446624e-03
"0-0-0-0-0-1-1-1" 5.348123452301503308e-03
"0-0-0-1-0-0-1-0" 5.251078321563673428e-03
"0-1-2-0-0-0-0-0" 4.982754541579764371e-03
"0-1-0-1-0-0-1-1" 4.891479607255558998e-03
"0-0-0-0-0-0-1-0" 4.803037239197662997e-03
"0-0-0-0-1-1-1-1" 4.793226725633079055e-03
"0-1-0-1-0-0-0-0" 4.612284818232827328e-03
"1-0-0-0-1-0-1-0" 4.535734259191358947e-03
"0-1-0-0-0-0-1-1" 4.252737981577591267e-03
"1-1-0-0-1-0-0-1" 3.943641515971355385e-03
"0-1-2-0-2-0-0-0" 3.829035801621727495e-03
"0-1-0-1-0-0-1-0" 3.814173193957430975e-03
"0-0-0-1-0-0-0-1" 3.577502152938329301e-03
"1-0-0-1-1-0-1-1" 3.448106985676653406e-03
"0-1-0-0-1-1-1-1" 3.440562444558592503e-03
"0-0-2-0-0-0-2-0" 3.193462629850414222e-03
"0-1-0-0-0-1-1-1" 3.107186699978409933e-03
"1-0-0-0-0-0-0-0" 3.006722020252140977e-03
"0-0-0-0-0-0-1-1" 2.912918211145238030e-03
"0-0-0-1-1-1-1-1" 2.876898565459943755e-03
"0-1-1-1-1-1-1-1" 2.780402420287595485e-03
"0-1-0-0-2-0-0-0" 2.612211435118914557e-03
"0-1-0-0-0-1-0-1" 2.573653758756412266e-03
"0-0-0-1-0-1-0-0" 2.535205211148632010e-03
"0-0-0-1-0-1-0-1" 2.437442336624923850e-03
"1-0-0-0-0-0-1-0" 2.431547755658992893e-03
"0-0-0-1-0-0-2-0" 2.375709057935973881e-03
"1-1-0-1-0-1-1-1" 2.307102411900819987e-03
"1-0-0-0-0-1-1-0" 2.256989851077391331e-03
"0-0-0-0-2-0-2-0" 2.180415000282977852e-03
"0-0-2-0-2-0-1-0" 2.179431104186890789e-03
"0-0-2-2-2-0-0-0" 2.148172062173054307e-03
"1-1-0-0-0-0-0-0" 2.110653168652555124e-03
"1-1-0-1-1-1-1-1" 2.108568273023929754e-03
"0-1-0-0-0-0-1-0" 2.078602225794012968e-03
"0-1-0-0-1-0-1-1" 2.037178869687212603e-03
"0-0-2-1-2-1-1-1" 1.921715621548796210e-03
"1-1-0-0-0-0-1-0" 1.865913087050017228e-03
"1-0-0-1-0-0-1-0" 1.801328694614693065e-03
"0-1-2-0-0-1-0-1" 1.727118203806617342e-03
"0-1-0-0-0-1-0-0" 1.702757129545799056e-03
"2-0-0-0-0-0-0-0" 1.683427230825554344e-03
"1-0-1-1-0-1-1-0" 1.666621867188301494e-03
"0-1-0-1-1-0-0-1" 1.581444574092139271e-03
"0-0-0-0-0-1-0-0" 1.535746409418877433e-03
"0-1-0-1-1-0-1-1" 1.505445541446415051e-03
"0-1-0-1-0-1-1-1" 1.429317772058547780e-03
"0-0-0-2-0-1-0-0" 1.400399018302435610e-03
"0-0-1-1-0-0-1-1" 1.343630294553426960e-03
"1-1-0-0-0-0-0-1" 1.332287885719709740e-03
"0-1-1-1-0-1-1-1" 1.238813148157804018e-03
"1-0-0-1-0-0-0-0" 1.198663099475050578e-03
"0-1-1-1-1-1-0-0" 1.175829164995516795e-03
"0-1-0-0-1-0-0-1" 1.174684418646488194e-03
"0-1-2-0-0-0-0-1" 1.171236706801835788e-03
"2-1-2-1-0-1-0-1" 1.124789820505852017e-03
"1-1-0-1-0-1-0-1" 1.124518586948588606e-03
"0-0-0-0-0-1-0-1" 1.098878648878803951e-03
"1-0-0-1-1-1-1-1" 1.040690934773768304e-03
"1-1-0-1-1-0-1-1" 1.039804149033629263e-03
"0-0-2-0-2-0-2-0" 1.031354131428686462e-03
"1-1-0-1-0-0-0-0" 1.002144902194225962e-03
"0-1-1-1-1-1-0-1" 9.898821418482812561e-04
"2-1-0-0-0-0-0-0" 9.816850559315692080e-04
"1-0-0-0-0-1-0-0" 9.745466251831160680e-04
"0-1-1-0-0-0-0-0" 9.736797681035267186e-04
"0-0-0-0-0-0-2-0" 9.518139511882349772e-04
"1-0-2-0-0-0-0-0" 9.423557743360289713e-04
"1-0-1-0-0-1-1-1" 9.009785045062500145e-04
"0-0-2-1-0-0-0-0" 8.983562689163548986e-04
"0-0-0-1-0-0-1-1" 8.862739414220078714e-04
"2-1-2-1-0-0-0-1" 8.786911136706753236e-04
"0-1-0-1-0-1-0-0" 8.765645272259966168e-04

"0-0-2-0-2-1-1-1" 8.697513273654352032e-04
"0-1-1-1-0-1-0-1" 8.676785144295611060e-04
"0-1-2-1-0-0-0-1" 8.562554142421881795e-04
"1-0-0-0-0-2-0-0" 8.555645742327702306e-04
"0-1-2-1-0-1-0-0" 8.484492236050902077e-04
"1-0-0-0-0-1-1-1" 8.462576993768261991e-04
"0-0-2-0-2-0-1-1" 8.403067570929594792e-04
"0-0-2-0-0-0-1-0" 8.377974593507048684e-04
"1-0-2-0-2-0-0-0" 8.350616363566298319e-04
"1-1-1-1-0-0-0-0" 8.170087820754522862e-04
"0-0-2-1-0-1-0-0" 8.128825787960887624e-04
"1-0-0-1-1-1-1-0" 8.031863332957884334e-04
"0-1-2-0-2-1-0-0" 7.927005112305686441e-04
"0-1-0-0-1-1-1-0" 7.645931894254478101e-04
"0-1-2-0-0-0-1-1" 7.626952841262851909e-04
"0-0-2-1-0-1-0-1" 7.435281831319817203e-04
"0-0-0-0-2-0-0-0" 7.056316932035967045e-04
"1-0-1-0-1-1-0-1" 6.669675186722698193e-04
"0-0-0-1-1-1-1-0" 6.586043266425186142e-04
"1-0-0-1-0-0-1-1" 6.532260063186908199e-04
"1-1-0-1-1-1-0-1" 6.286127493656166153e-04
"0-0-0-2-2-0-0-0" 6.250628336885811825e-04
"0-0-2-1-2-1-1-0" 6.162531809110028498e-04
"0-0-2-2-0-0-2-0" 6.135303785644264860e-04
"0-0-0-2-0-0-2-0" 5.886800531072444677e-04
"0-0-2-0-0-1-1-0" 5.866800890463030058e-04
"1-0-0-0-1-1-1-1" 5.679831644803032785e-04
"0-1-2-1-0-1-0-1" 5.605976191717009166e-04
"1-0-0-0-0-0-1-1" 5.218944237136509314e-04
"0-0-2-2-2-2-2-0" 5.145984721901515711e-04
"1-0-0-0-0-0-0-1" 5.130009828013103873e-04
"0-0-2-2-2-2-0-0" 5.120780559419808777e-04
"0-0-0-0-1-1-0-1" 5.088730996007357179e-04
"0-1-0-1-1-0-1-0" 4.924263375350736941e-04
"0-0-2-0-0-1-0-0" 4.918487321059657191e-04
"0-1-1-0-1-0-0-1" 4.874202798312379532e-04
"0-1-1-1-0-0-0-0" 4.805556401231200606e-04
"1-0-2-2-2-2-2-0" 4.787832852770258925e-04
"1-1-0-2-2-0-0-0" 4.727526786600745384e-04
"2-1-0-1-0-1-1-1" 4.627057012049205667e-04
"1-1-0-0-2-0-2-0" 4.576206194057587254e-04
"0-0-0-0-1-0-0-1" 4.500930484643728569e-04
"1-0-1-0-0-1-1-0" 4.325080101901058256e-04
"1-1-0-0-2-0-0-0" 4.232477608632476997e-04
"2-1-0-1-0-1-0-1" 4.181171178863162907e-04
"0-0-1-1-0-0-0-1" 4.159046349770165315e-04
"1-1-1-1-1-0-0-1" 4.155746803142751182e-04
"1-1-0-1-1-0-0-0" 4.147645369960965443e-04
"0-0-1-1-1-0-0-1" 4.129314915608412470e-04
"1-1-0-1-0-0-1-1" 4.060720814573060130e-04
"0-0-2-2-2-0-2-0" 4.022746458254258979e-04
"1-1-0-0-0-1-1-1" 3.961180622751635867e-04
"1-0-1-0-0-1-0-1" 3.941888124038699396e-04
"1-1-1-1-0-1-1-1" 3.861282137861596873e-04
"0-1-2-2-2-0-0-0" 3.808363545498822484e-04
"1-1-0-0-0-1-0-1" 3.761766585435702458e-04
"0-1-2-2-0-0-0-0" 3.647541131570063459e-04
"0-0-2-2-0-2-0-0" 3.515918114245251752e-04
"0-0-2-1-0-0-0-1" 3.451473661803039278e-04
"2-1-0-2-0-0-0-0" 3.341864664766510773e-04
"1-1-2-2-0-0-2-0" 3.279300788823725707e-04
"1-1-2-0-0-1-0-1" 3.241286389562738745e-04
"0-0-0-1-0-1-1-1" 3.155038090684854574e-04
"0-1-2-0-2-0-0-1" 3.132122537280271368e-04
"0-0-0-1-0-1-1-0" 3.062599362314029740e-04
"1-0-0-2-2-2-0-0" 2.971946287412100571e-04
"1-1-2-0-0-0-0-1" 2.818387725775146793e-04
"2-1-0-2-0-0-1-1" 2.797223655455632636e-04
"2-0-2-1-0-0-0-2" 2.791386286137155070e-04
"1-0-0-0-1-0-1-1" 2.682090840540366189e-04
"2-1-2-0-2-0-0-1" 2.652876974050222508e-04
"2-0-0-0-1-1-1-0" 2.632614553696690954e-04
"0-0-2-0-2-1-0-0" 2.622804816479547448e-04
"1-0-0-2-2-0-0-0" 2.577659372536135018e-04
"2-1-2-0-0-0-0-0" 2.527658452398545176e-04
"1-1-2-2-2-0-0-0" 2.518645295742151817e-04
"0-0-2-2-0-0-0-0" 2.514805281424834123e-04
"0-0-2-1-2-0-0-0" 2.355685577548480227e-04
"1-1-1-1-0-1-1-0" 2.309594866761662815e-04
"2-1-2-0-2-0-0-0" 2.285913263023870952e-04
"2-0-2-1-0-0-0-0" 2.243881130269447172e-04
"0-0-1-0-0-1-0-1" 2.210655381740928808e-04
"0-1-0-0-2-0-1-0" 2.204344324455158224e-04
"1-1-2-2-2-0-0-2" 2.149487653012605579e-04
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"2-1-0-0-0-0-0-1" 2.133769973549533565e-04
"1-0-2-0-2-0-2-0" 2.124688255162517645e-04
"1-1-1-0-1-1-0-1" 2.124213305514646634e-04
"2-2-2-1-2-0-0-2" 2.120880331155761784e-04
"0-1-2-0-2-0-2-1" 2.041481574314463491e-04
"0-0-0-0-1-0-1-1" 1.917975779816406910e-04
"1-0-0-1-0-1-0-0" 1.881931676587730059e-04
"2-0-0-1-0-0-0-0" 1.848190972943757559e-04
"1-0-0-2-0-0-0-0" 1.785693029706626950e-04
"0-0-2-1-0-0-1-0" 1.753777716222085096e-04
"1-0-0-1-0-0-0-1" 1.735643849555767949e-04
"1-0-0-2-2-2-2-0" 1.641587190810525653e-04
"2-0-2-0-0-0-0-0" 1.638054373209144206e-04
"0-0-2-0-2-0-2-2" 1.589609586223752829e-04
"0-1-0-1-1-1-1-0" 1.588614065468758852e-04
"0-1-2-0-2-1-0-1" 1.576685842082756097e-04
"0-0-1-0-0-0-0-1" 1.569386906401569557e-04
"1-0-0-2-0-2-0-0" 1.557885286808262967e-04
"2-1-2-0-2-0-2-0" 1.539844166740613515e-04
"0-0-2-1-0-1-1-0" 1.504766316492241911e-04
"2-1-2-0-2-1-0-1" 1.428491121037828409e-04
"0-1-0-2-0-1-0-0" 1.423988510657215733e-04
"1-0-0-0-2-0-2-0" 1.404036486107083459e-04
"0-1-0-0-2-0-2-0" 1.350927795380423393e-04
"1-1-0-0-2-0-1-0" 1.349175349850630817e-04
"0-1-2-0-2-0-2-0" 1.349087137084119129e-04
"0-1-2-0-2-0-1-0" 1.286980936673063941e-04
"1-1-0-1-0-0-0-1" 1.275730265332531809e-04
"0-1-2-0-0-0-2-0" 1.227314961026832135e-04
"2-2-1-1-1-1-0-0" 1.148360939638187235e-04
"0-0-0-0-2-0-0-2" 1.141646031244036098e-04
"1-0-2-2-0-2-0-0" 1.132310280537860336e-04
"1-0-2-2-2-0-2-2" 1.129920146190787662e-04
"0-0-0-2-0-0-0-1" 1.120309894968078782e-04
"0-0-2-0-2-2-2-0" 1.112958638415904606e-04
"0-1-2-1-0-1-1-1" 1.111739342124113289e-04
"2-0-2-0-2-0-1-0" 1.105913008120801728e-04
"0-0-2-0-0-0-2-2" 1.105755061473584591e-04
"1-1-0-0-1-0-1-0" 1.091066423215418025e-04
"2-1-0-1-0-1-0-0" 1.060382308876453643e-04
"2-0-2-2-0-0-2-0" 1.055070162271064553e-04
"1-1-0-2-2-2-2-0" 1.054251887887687716e-04
"1-0-0-0-2-0-0-0" 9.740251808281682750e-05
"1-1-0-0-0-0-2-0" 9.506571206096831993e-05
"1-2-1-0-1-1-1-0" 9.473224520711616815e-05
"1-1-1-0-0-0-1-0" 9.414636883994110920e-05
"1-1-0-2-2-2-0-0" 9.006136086497161628e-05
"1-1-0-0-0-0-0-2" 8.853513139730975897e-05
"0-0-0-1-2-0-0-1" 8.838774958443210139e-05
"2-0-2-2-2-0-2-0" 8.737953940471528905e-05
"1-0-2-0-0-0-1-0" 8.737690333771468739e-05
"1-0-2-0-0-2-0-2" 8.696764539761696442e-05
"0-1-2-0-0-0-2-1" 8.484738847927976012e-05
"0-1-2-0-0-0-0-2" 8.190916168947377210e-05
"1-1-0-1-0-0-1-0" 8.095487865090215615e-05
"1-0-2-2-2-0-2-0" 8.093268280480379027e-05
"1-1-2-2-0-0-0-0" 7.933081997305355517e-05
"0-0-2-0-2-2-0-0" 7.854330270902135222e-05
"0-1-1-0-0-1-1-1" 7.815208884891942573e-05
"0-1-1-0-0-0-1-1" 7.551886276015383731e-05
"0-0-0-2-2-2-0-0" 7.503447510424812554e-05
"0-1-0-0-2-2-0-0" 7.425238312394686745e-05
"1-1-2-2-2-0-2-2" 7.404368290357771719e-05
"0-1-0-1-2-1-0-1" 7.356355676132553343e-05
"2-0-0-2-0-0-2-0" 7.291748056403900887e-05
"0-1-2-2-0-0-2-1" 7.180619546306860599e-05
"0-0-2-2-0-0-1-0" 7.017553848276682454e-05
"1-0-2-2-0-0-0-0" 6.756140955379307293e-05
"1-1-0-0-0-0-1-1" 6.713022884757888339e-05
"2-1-2-0-2-0-2-1" 6.683273137112268091e-05
"2-0-2-2-2-0-0-0" 6.531234927897984434e-05
"1-0-2-0-1-0-1-0" 6.478253420038761049e-05
"0-1-2-0-0-0-1-0" 6.419852684941581677e-05
"1-2-1-1-0-0-0-2" 6.379206998605410389e-05
"1-1-0-2-0-2-0-0" 6.294310992721707907e-05
"1-1-2-2-2-0-2-0" 6.235329647649707043e-05
"1-1-0-0-2-0-2-2" 6.114874604240235281e-05
"2-0-0-1-0-1-0-1" 6.104029911596131391e-05
"0-1-2-2-0-0-0-1" 5.946588326625751856e-05
"1-1-0-2-2-0-2-2" 5.945944775892519386e-05
"0-1-2-2-0-2-0-0" 5.872115167267276219e-05
"1-1-0-0-0-0-2-2" 5.831915728885017950e-05
"1-1-0-0-0-2-1-0" 5.618344335913057783e-05
"1-1-2-2-0-0-1-1" 5.587642802436222183e-05

"0-1-2-0-0-2-0-0" 5.543293523917986956e-05
"2-0-2-0-0-0-1-0" 5.386162674796424876e-05
"2-1-2-1-0-1-2-1" 5.373825603060346278e-05
"1-1-0-2-0-0-1-1" 5.364313370084312942e-05
"0-0-0-1-1-1-0-1" 5.288298538031532066e-05
"0-0-0-0-0-2-0-2" 5.251147905394773458e-05
"1-1-2-2-2-2-2-0" 5.199763251594789287e-05
"2-0-0-1-1-1-1-1" 5.116933505264431120e-05
"2-0-0-0-0-2-0-0" 5.062747894966662421e-05
"2-2-2-0-2-2-2-0" 5.051739826113976268e-05
"0-0-2-0-0-2-0-0" 4.936451691156416101e-05
"1-0-0-1-0-1-0-1" 4.866572676929962414e-05
"1-1-2-2-0-0-0-1" 4.756400820490469251e-05
"0-0-0-1-0-1-2-1" 4.721636220122918376e-05
"0-0-0-0-2-0-0-1" 4.599465388272571629e-05
"1-1-0-1-0-1-1-0" 4.529512133848843681e-05
"2-0-0-2-0-0-1-0" 4.457802393379634335e-05
"1-0-0-1-0-1-1-0" 4.399456910673458349e-05
"2-1-0-1-2-0-0-1" 4.344066886601345614e-05
"2-1-0-0-0-1-0-0" 4.276764047116815153e-05
"2-1-0-1-1-1-0-1" 4.202359223503725693e-05
"2-0-0-1-0-1-0-0" 4.160528410638863496e-05
"0-1-0-1-1-1-0-1" 4.021577420383722952e-05
"1-0-2-0-2-0-1-0" 4.012325702533410993e-05
"2-0-0-2-0-1-0-1" 3.977896849016687275e-05
"0-1-2-1-0-0-2-0" 3.795615251025508986e-05
"1-0-0-1-0-1-1-1" 3.690586497932457567e-05
"0-1-2-2-2-2-2-0" 3.674669994947742395e-05
"2-1-2-1-0-0-2-1" 3.606603029922178017e-05
"2-1-0-0-0-1-0-1" 3.599314254821148120e-05
"1-0-0-1-1-0-0-1" 3.598305501455475823e-05
"2-0-2-0-2-0-2-2" 3.543650890856469399e-05
"0-0-2-0-1-0-0-0" 3.543383385964593503e-05
"1-1-0-1-1-1-1-0" 3.535946640632006444e-05
"2-0-2-0-2-0-0-0" 3.531088076714004035e-05
"1-0-0-1-1-1-0-1" 3.397287414968570087e-05
"2-0-2-0-0-0-2-0" 3.300678026883053324e-05
"1-1-0-0-1-1-0-0" 3.281172176441876144e-05
"2-0-2-0-2-2-2-0" 3.269511843905255609e-05
"2-1-2-0-0-1-0-0" 3.230023155317013074e-05
"0-1-0-1-1-1-0-0" 3.159523480222417081e-05
"1-0-2-2-2-0-0-1" 3.094929921874229711e-05
"2-0-0-1-0-0-0-1" 2.917058563867902106e-05
"2-1-0-0-2-1-0-1" 2.799222823608720775e-05
"0-1-0-1-0-1-1-0" 2.779274892440581932e-05
"2-0-2-1-0-1-0-1" 2.773301476010826990e-05
"1-1-2-0-0-0-1-1" 2.740405442141082926e-05
"2-0-2-0-0-1-0-0" 2.721241418982680435e-05
"0-0-2-1-1-1-1-0" 2.640834152361475621e-05
"2-1-0-1-0-0-0-1" 2.634403253518103854e-05
"0-0-0-1-2-0-0-0" 2.609107242900472707e-05
"2-1-0-0-2-0-0-1" 2.571613920994305131e-05
"2-0-2-2-2-2-2-0" 2.559440158382870700e-05
"2-1-2-0-2-0-1-1" 2.470367243212093794e-05
"0-0-0-0-2-2-0-0" 2.423656201810329676e-05
"0-1-0-0-2-0-1-1" 2.408696221952568242e-05
"2-1-2-1-0-1-0-0" 2.375725900466280953e-05
"2-1-0-1-1-1-1-1" 2.351779414008388155e-05
"0-1-1-1-0-1-1-0" 2.349977986383010604e-05
"2-1-0-0-2-1-2-1" 2.342028915942584094e-05
"2-0-0-0-0-0-0-2" 2.282025049412915395e-05
"2-0-2-1-0-0-2-0" 2.231249439748069727e-05
"0-0-0-1-0-0-2-1" 2.220816233470136381e-05
"2-0-2-0-0-0-0-1" 2.179424334591302577e-05
"2-1-0-1-1-1-1-0" 2.041984831611827128e-05
"1-0-2-2-2-0-0-0" 2.035097293602215640e-05
"2-0-2-1-0-1-1-1" 1.995272495635396902e-05
"0-1-0-0-1-1-0-0" 1.973996328824179119e-05
"2-1-2-0-2-1-2-1" 1.911456586485545475e-05
"2-1-0-0-2-0-0-0" 1.881114039322983103e-05
"2-1-0-0-2-0-2-1" 1.880954815237736614e-05
"0-0-0-1-2-1-0-0" 1.876709470064081442e-05
"2-1-2-1-2-0-0-1" 1.861321304260058916e-05
"2-0-0-0-0-0-0-1" 1.836545528933941000e-05
"1-0-2-0-0-0-2-0" 1.765034770174714017e-05
"0-1-0-1-2-0-0-1" 1.718721395341781474e-05
"0-1-2-2-2-0-2-0" 1.699497286374653275e-05
"2-0-0-1-0-0-2-0" 1.696073934170007566e-05
"2-1-2-0-0-1-2-1" 1.692750764932043027e-05
"1-1-0-0-2-0-1-1" 1.673264845132359729e-05
"2-1-0-0-0-0-2-0" 1.587048396645381187e-05
"2-1-2-0-2-1-1-1" 1.585676397748903748e-05
"0-0-0-1-1-0-0-1" 1.566629481065551780e-05
"2-0-0-0-2-0-2-0" 1.490531770673961805e-05
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"2-0-2-0-2-0-2-0" 1.417061370585439998e-05
"0-0-2-0-1-1-0-0" 1.271552533462088643e-05
"0-1-2-2-0-0-2-0" 9.372720430394734141e-06
"2-1-2-1-2-0-1-1" 8.757456667944400281e-06
"1-1-0-0-0-0-2-1" 8.613785281739398653e-06
"2-1-0-1-2-0-2-0" 7.951705785872857871e-06
"2-1-2-2-2-0-2-1" 7.659711342752069087e-06
"2-0-0-1-2-1-2-1" 7.382246638744159320e-06
"0-1-0-1-0-1-2-1" 6.650112440126127751e-06
"0-1-0-1-2-0-2-1" 6.429319370453982733e-06
"0-1-2-0-0-2-2-1" 6.422558551658301537e-06
"0-1-2-1-2-1-0-0" 6.155474716500050085e-06
"0-1-0-1-2-1-2-1" 5.879947373560748543e-06
"2-1-1-1-0-1-0-1" 5.845194633930223305e-06
"2-0-2-2-0-0-0-0" 5.738065172401704144e-06
"2-1-0-0-0-2-2-1" 5.415352001467559343e-06
"0-1-2-2-0-2-2-1" 5.345518312776568531e-06
"2-1-2-1-0-0-2-0" 5.209299854235542856e-06
"0-1-0-1-2-0-2-0" 5.182413660054116648e-06
"2-1-2-0-0-2-2-1" 5.019193001104957197e-06
"2-1-0-0-2-0-2-0" 5.000831243755585136e-06
"1-1-0-1-2-0-0-1" 4.815302627083329175e-06
"0-1-0-0-2-0-2-1" 4.605099916549005546e-06
"0-1-0-0-0-0-2-0" 4.570372034308787862e-06
"2-1-0-1-2-1-1-1" 4.529545107530544847e-06
"2-1-0-1-2-0-1-1" 4.494917319344853987e-06
"1-1-0-0-1-1-0-1" 4.226151258663233030e-06
"1-1-0-1-2-0-0-0" 3.938645944590396872e-06
"2-0-0-0-2-0-2-2" 3.821259324539325772e-06
"2-0-0-2-2-0-2-0" 3.664180382469823965e-06
"2-1-1-1-0-1-1-1" 3.651074986641757236e-06
"2-1-2-1-0-2-2-1" 3.573016415868675348e-06
"1-1-0-0-1-0-2-1" 3.545128687170375314e-06
"0-0-0-1-2-0-2-1" 3.435775682255564112e-06
"2-1-2-2-2-2-2-1" 3.422458924676438311e-06
"0-0-0-1-2-1-0-1" 3.345160633953970001e-06
"2-1-2-1-2-1-2-1" 3.205557934797096056e-06
"1-1-0-1-1-0-0-1" 3.131721612893766361e-06
"1-0-0-2-2-0-2-0" 3.074001478851619404e-06
"2-1-2-0-2-1-0-0" 3.023301588776613345e-06
"2-0-0-1-2-1-0-1" 2.783642481991373460e-06
"1-0-2-1-0-0-0-0" 2.081860851432429694e-06
"0-1-2-2-2-2-2-1" 1.603981430863355689e-06
"2-1-0-1-0-1-2-0" 1.590095214020904807e-06
"2-1-0-1-2-1-0-1" 1.414370919146361394e-06
"0-1-0-0-0-0-2-1" 1.219882699132392717e-06
"2-1-2-0-0-2-2-0" 1.110745393474052822e-06
"0-1-0-2-0-0-2-0" 1.013600586847486036e-06
"2-1-0-1-0-1-2-1" 8.405117285916054192e-07
"0-1-0-1-2-1-1-1" 5.695144484093086712e-07
"2-1-2-1-2-1-0-1" 4.869616895907744581e-07
"0-1-0-1-0-0-2-1" 3.905363462974649297e-07
"2-1-2-1-2-0-2-0" 2.936083901977400298e-07
"2-0-0-0-2-0-0-0" 1.906339264336073437e-07
"0-1-0-1-0-2-2-1" 5.528955768353716730e-08

Table C.11: Th2 intra-class Gini impurity ranking for the set
of all ternary ESCs. ESCs are denoted with a ternary num-
ber code where 1 means active enhancer state (before: green
state), 2 means repressive state (before: red state) and 0 means
none of both. The order from left to-right of the conditions
is the same as in the earlier Gini impurity rankings from
top to bottom. Hence we have: Naïve, Th2, Tbet+/+Th1,
Tbet+/+Th1/2, Tbet+/−Th1, Tbet+/−Th1/2, Tbet−/−Th1,
Tbet−/−Th1/2.
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ESC A ESC B Conditional probability
0-0-1-0-0-0-0-0 0-2-1-0-1-0-0-0 0.249397
0-0-1-0-0-0-0-0 0-0-1-1-0-1-1-0 0.233207
0-0-1-0-0-0-0-0 0-2-1-0-0-0-0-0 0.230581
0-0-1-0-0-0-0-0 0-0-1-0-1-0-1-0 0.20843
0-0-1-0-0-0-0-0 0-0-1-0-1-0-0-0 0.20657
0-0-1-0-0-0-0-0 0-0-1-1-1-0-1-0 0.197327
0-0-1-0-0-0-0-0 0-2-0-0-0-0-0-0 0.187355
0-1-0-1-0-0-0-1 0-1-0-1-0-1-0-1 0.16431
0-0-1-0-0-0-0-0 0-0-1-1-1-0-0-0 0.163348
0-1-0-0-0-0-0-0 1-1-0-1-0-1-0-0 0.149446
0-0-1-0-0-0-0-0 0-0-1-0-0-0-1-0 0.148143
0-0-1-0-0-0-0-0 1-0-1-1-1-1-1-0 0.145142
0-0-1-0-0-0-0-0 0-0-1-0-1-1-1-0 0.143419
0-0-1-0-1-0-0-0 0-0-1-0-1-0-1-0 0.129595
0-1-0-0-0-0-0-0 0-1-0-0-0-0-0-1 0.129084
0-0-1-0-0-0-0-0 2-0-1-1-0-0-0-0 0.128096
0-1-0-1-0-1-0-1 1-1-0-0-1-0-0-1 0.12052
0-0-0-0-1-1-1-1 0-1-0-1-1-1-1-1 0.119556
0-1-0-0-0-0-0-0 0-1-2-0-2-0-0-0 0.117949
0-1-0-0-0-0-0-0 0-1-0-0-0-0-1-1 0.117554
0-0-1-0-0-0-0-0 0-0-1-1-0-0-0-0 0.115298
0-0-1-0-1-0-0-0 0-0-1-1-0-1-1-0 0.113892
0-1-0-1-1-1-1-1 0-1-2-0-2-0-0-0 0.11345
0-0-1-0-1-0-0-0 0-0-1-1-1-0-1-0 0.113003
0-1-0-0-0-0-0-0 0-1-0-1-0-0-0-0 0.112988
0-0-1-0-1-0-0-0 0-0-1-0-1-1-1-0 0.112084
0-1-0-0-0-0-0-0 0-1-0-1-0-0-1-1 0.110879
0-0-0-0-0-0-0-1 0-1-0-0-0-0-0-0 0.110075
0-0-1-0-1-0-0-0 0-2-1-0-1-0-0-0 0.109915
0-1-0-0-0-0-0-0 0-1-0-1-1-1-1-1 0.109111
0-1-0-0-0-0-0-0 0-1-0-1-0-1-0-1 0.108468
0-0-1-0-0-0-0-0 0-0-1-0-1-1-0-1 0.108468
0-0-2-0-0-0-0-0 0-1-0-0-0-0-0-0 0.106164
0-0-1-1-0-1-1-0 0-0-1-1-1-0-0-0 0.106058
0-0-0-2-0-0-0-0 0-1-0-0-0-0-0-0 0.106058
0-0-0-0-0-1-1-1 0-1-0-1-1-1-1-1 0.104451
0-0-1-0-0-0-0-0 0-0-1-0-1-0-0-0 0.103744
0-0-1-1-1-0-0-0 0-2-1-0-1-0-0-0 0.103166
0-0-0-0-0-1-1-1 0-1-0-0-0-0-0-0 0.101237
0-0-1-0-1-0-0-0 0-2-1-0-0-0-0-0 0.0995999
0-0-0-2-0-0-0-0 0-1-0-1-1-1-1-1 0.0982242
0-0-1-0-0-0-0-0 0-0-1-0-0-0-0-0 0.0982161
0-0-1-0-0-0-0-0 0-0-1-0-0-0-0-0 0.0982161
0-0-1-0-1-0-0-0 0-0-1-0-1-1-0-1 0.0976215
0-1-0-0-0-0-0-0 0-1-0-1-0-0-0-1 0.0968182
0-0-2-0-0-0-0-0 0-1-2-0-2-0-0-0 0.0906313
0-0-1-0-0-0-0-0 1-0-1-0-1-1-1-1 0.0899882
0-0-1-1-1-0-0-0 0-2-1-0-0-0-0-0 0.085956
0-0-0-0-1-1-1-1 0-1-0-0-0-0-0-0 0.0858106
0-0-2-0-0-0-0-0 0-1-0-1-1-1-1-1 0.0856496
0-0-2-0-0-0-0-0 0-1-0-1-1-1-1-1 0.0847087
0-1-0-0-0-0-0-0 0-1-2-0-0-0-0-0 0.0843644
0-0-1-1-1-0-0-0 0-0-1-1-1-0-1-0 0.0840784
0-0-1-0-0-0-0-0 0-0-1-1-0-1-0-0 0.083509
0-0-1-1-1-0-0-0 0-0-1-1-1-1-0-0 0.0824667
0-0-1-0-0-0-1-0 0-0-1-0-1-0-0-0 0.0820842
0-0-1-0-1-0-0-0 0-2-0-0-0-0-0-0 0.0818443
0-2-1-0-0-0-0-0 0-2-1-0-1-0-0-0 0.0813112
0-0-1-0-0-0-0-0 0-0-1-1-1-0-0-0 0.0813112
0-0-1-0-0-0-0-0 0-0-1-1-1-1-1-0 0.080778
0-0-0-2-0-0-0-0 0-0-2-0-0-0-0-0 0.0807488

...
...

...

Table C.12: Top-ranked conditional probabilities of an ESC A given an ESC B. ESCs are denoted with a ternary number code
where 1 means active enhancer state (before: green state), 2 means repressive state (before: red state) and 0 means none of both.
The order from left to-right of the conditions is the same as in the earlier Gini impurity rankings from top to bottom. Hence we
have: Naïve, Th2, Tbet+/+Th1, Tbet+/+Th1/2, Tbet+/−Th1, Tbet+/−Th1/2, Tbet−/−Th1, Tbet−/−Th1/2.
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Statistic Value
Connected components 1

Network diameter 4
Network radius 1
Shortest paths 97 249 (5%)

Characteristic path length 3.05
Average number of neighbours 7.44

Number of nodes 1340

Table C.14: Additional notable network statistics of the full CSC-gene network.

in-degree ranking weighted in-degree out-degree ranking weighted out-degree
e0-0-0-0-0-0-0-0 430.4781 STAT1 1859.163797
r0-0-2-0-0-0-0-0 281.0 Gata3 461.600283

Cyp11a1 232.4478 Tbet 403.532628
Lrrc32 230.1966 STAT4 376.4427676
Ifngr2 224.9328 e0-0-0-0-0-0-0-0 364.3924
Il10 215.244 STAT6 326.581588

Pparg 209.4506 r0-0-2-0-0-0-0-0 211.9819
Runx3 202.2571 e0-0-1-0-0-0-0-0 129.3448
Il4 198.957 r0-2-0-0-0-0-0-0 95.6674
Tbet 189.8796 e1-0-0-0-0-0-0-0 93.1462
Cd83 181.1618 e0-1-0-0-0-0-0-0 79.0954
Gata3 179.969 e0-0-1-0-1-0-0-0 71.6271
Il5 173.3125 e0-0-1-1-1-0-0-0 62.6262

Il18r1 169.2575 r2-2-2-2-2-2-2-2 61.6774
Il13 159.7898 e0-0-2-0-0-0-0-0 50.7003
Klrc2 156.2886 e1-1-1-1-1-1-1-1 50.1544
Ccl5 153.1107 r2-0-2-0-0-0-0-0 49.8278
Sept8 150.8791 e0-1-0-1-1-1-1-1 44.1795

Smpdl3b 149.8061 e0-1-0-1-0-1-0-1 41.2277
Inpp4b 147.7018 r0-0-2-2-0-0-0-0 38.7814
Klri2 144.8959 r0-0-2-0-2-0-0-0 38.0104
Il18rap 142.2748 e1-0-1-1-1-1-1-1 37.7825
Ifng 140.6242 r0-2-2-0-0-0-0-0 37.7482
Klrc1 140.3436 e0-0-1-1-0-0-0-0 36.7985

e1-0-0-0-0-0-0-0 130.09721 e0-0-1-1-1-0-1-0 35.4658
e0-0-1-0-0-0-0-0 123.44356 e1-0-1-1-1-1-1-0 34.1413

Rad50 123.4072 r0-0-2-0-0-0-2-0 32.4089
Klre1 121.0694 e0-0-1-0-1-0-1-0 32.225

r2-2-2-2-2-2-2-2 104.0 e0-0-0-0-1-0-0-0 31.8951
Clec12a 103.7875 e0-2-1-0-0-0-0-0 31.6602
Fasl 102.2885 e0-1-0-0-0-0-0-1 31.6189

Igfbp4 95.7316 r0-0-0-2-0-0-0-0 31.0159
STAT6 94.3875 r0-0-0-0-0-0-0-0 30.8315
Asb2 85.7799 e0-0-0-1-0-0-0-0 30.284
Klrb1c 83.1478 e0-2-1-0-1-0-0-0 28.558
Il9r 82.4624 r2-2-0-0-0-0-0-0 27.8229

e1-1-1-1-1-1-1-1 74.56352 r0-2-1-0-1-0-0-0 27.6822
e0-0-1-1-1-0-0-0 71.8119 r0-0-2-2-2-0-0-0 27.4607
e0-0-1-0-1-0-0-0 71.25732 e0-1-1-1-1-1-1-1 27.4528

St8sia6 67.1279 e1-0-1-1-1-0-0-0 27.2851
Itga1 64.9287 r2-2-2-2-2-0-2-2 27.1723
Il1rl1 63.8236 r0-2-1-0-0-0-0-0 27.1283
Il12rb2 61.8969 e0-0-0-0-0-0-1-0 26.8396
Kcnj8 59.5323 e0-0-1-1-0-0-1-0 26.1544

r0-0-2-2-0-0-0-0 59.0 e0-1-2-0-2-0-0-0 25.4834
e0-1-0-0-0-0-0-0 58.7983 r0-0-2-0-2-0-2-0 24.7955

Sell 57.3402 e0-2-0-0-0-0-0-0 23.9652
Bhlhe41 56.9197 e0-0-0-0-0-0-0-1 23.6233
Ccr4 53.6894 r0-1-2-0-2-0-0-0 23.4256

e1-0-1-1-1-1-1-1 49.13567 e1-0-1-1-1-0-1-0 23.3435

193



APPENDIX C. SUPPLEMENTARY TABLES

STAT1 48.3981 e0-2-1-1-1-0-0-0 22.5645
Klrg1 47.6526 r0-0-2-2-2-0-2-0 22.2425

e0-0-1-1-1-0-1-0 43.57883 r2-2-2-2-0-2-2-2 21.1673
e0-0-1-1-0-0-0-0 42.15275 e0-0-1-1-1-1-0-0 20.7887

Chil3 41.9597 r2-2-2-2-2-2-2-0 20.5895
e0-0-0-0-1-0-0-0 41.44587 e0-1-0-1-0-0-0-1 20.5389
r0-0-2-0-2-0-0-0 41.29173 r2-2-2-2-2-0-2-0 20.3377
e0-0-0-1-0-0-0-0 40.92956 e0-1-0-1-0-1-1-1 20.0761
e1-0-1-1-1-1-1-0 40.11151 e0-1-0-0-0-0-1-1 19.7563
r0-0-0-0-0-0-0-0 39.59418 r0-2-1-1-1-0-0-0 19.5051

Galnt3 38.0271 r0-2-2-2-2-2-2-2 19.4723
e0-0-0-0-0-0-1-0 35.9048 e0-0-1-0-0-0-1-0 19.059

STAT4 35.8411 r0-0-2-2-0-0-2-0 18.6936
e0-0-1-0-1-0-1-0 35.52864 e0-0-1-1-1-1-1-0 18.4777

Gldc 35.2127 e1-0-0-0-0-0-1-0 18.069
Cxcr3 35.1503 e0-1-0-0-0-1-0-1 17.9377

e1-0-1-1-1-0-0-0 34.57696 e0-1-0-0-0-0-1-0 17.5601
Irf1 34.5176 e0-0-2-0-2-0-0-0 17.5301

r0-0-2-0-0-0-2-0 33.8171 e1-1-0-0-0-0-0-0 16.7017
e0-0-2-0-0-0-0-0 33.6866 e0-0-1-1-0-1-0-0 16.1873

Exph5 33.418 e0-0-1-0-1-1-1-0 15.9475
e0-1-0-1-1-1-1-1 33.26613 r2-0-2-2-2-0-2-0 15.7406

Eomes 32.851 e2-1-0-1-0-1-0-1 15.5692
e1-0-1-1-1-0-1-0 32.1095 e1-0-1-1-1-1-0-0 15.556
e0-0-1-1-0-0-1-0 31.9611 e1-0-1-0-0-0-0-0 15.2486
e0-1-0-1-0-1-0-1 30.3267 e0-0-0-0-0-1-0-0 15.2396

Kif3a 29.9579 r0-2-2-0-2-0-2-0 14.7075
e1-0-0-0-0-0-1-0 29.0 e0-0-0-1-0-0-1-0 14.6841
e0-0-1-0-0-0-1-0 29.0 e0-0-1-1-0-1-1-0 14.588
e0-2-0-0-0-0-0-0 28.863025 r2-2-2-0-2-0-2-0 14.5377
e0-2-1-0-0-0-0-0 28.0 r0-0-2-2-2-2-2-2 14.4194
e0-0-1-1-1-1-1-0 27.38748 r0-0-2-0-0-1-1-0 13.7954

...
...

...
...

Table C.15: Leading ranked nodes for weighted in- and out-degree respectively. The prefix e denotes ESCs and r denotes RSCs.
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APPENDIX C. SUPPLEMENTARY TABLES

module 1 module 2 module 3 module 4 module 5 module 6
Ccr1 A430108G06Rik Ccl5 Asb2 Cxcr3 Ccr2
Gata3 Adamtsl3 Ccr5 Cd83 Eomes e0-1-0-0-0-1-1-0

Gm12214 Bhlhe41 Clec12a Sell Galnt3 e0-1-0-0-1-0-1-1
Il13 Ccr4 Exph5 St8sia6 Il2 e2-0-0-0-0-1-0-0
Il4 Chil3 Fasl e0-0-0-0-0-2-0-2 Kcnj8
Il5 Cyp11a1 Gldc e0-0-0-1-0-0-1-1 Runx3

Rad50 Dpysl3 Gm17334 e0-0-0-1-0-1-0-0 e0-0-0-0-0-0-0-2
Sept8 Efna5 Ifng e0-0-2-0-0-0-2-2 e0-0-0-0-0-2-2-0

e0-1-0-0-0-0-1-0 Gja1 Il12rb2 e0-0-2-0-2-0-2-2 e0-0-0-1-0-0-0-2
e0-1-0-0-0-0-1-1 Ifngr2 Il18r1 e0-0-2-0-2-2-0-0 e0-0-0-1-0-0-2-0
e0-1-0-0-0-1-0-0 Igfbp4 Il18rap e0-0-2-1-2-0-0-0 e0-0-0-2-0-0-0-2
e0-1-0-0-0-1-0-1 Il10 Itga1 e0-0-2-2-0-0-1-0 e0-0-0-2-0-0-2-0
e0-1-0-0-1-0-0-1 Il1rl1 Klrb1c e0-0-2-2-2-2-2-0 e0-0-0-2-0-2-0-0
e0-1-0-0-1-1-1-0 Il9r Klrc1 e0-1-0-1-0-1-0-0 e0-0-1-0-0-0-2-0
e0-1-0-0-1-1-1-1 Inpp4b Klrc2 e0-1-1-0-0-0-0-0 e0-0-1-0-0-2-2-0
e0-1-0-1-0-0-0-0 Irf1 Klre1 e0-1-1-0-0-0-1-1 e0-0-1-0-1-0-2-0
e0-1-0-1-0-0-1-0 Kif3a Klrg1 e0-1-1-0-0-1-1-1 e0-0-1-1-0-0-2-0
e0-1-0-1-0-0-1-1 Lrrc32 Klri2 e0-1-1-1-0-0-0-0 e0-0-1-1-0-1-1-1
e0-1-0-1-0-1-1-0 Mctp1 STAT1 e0-1-2-0-0-0-0-2 e0-1-1-1-0-0-0-1
e0-1-0-1-1-0-0-1 Pparg STAT4 e0-1-2-2-0-2-0-0 e0-2-0-0-0-2-0-2
e0-1-0-1-1-0-1-0 Slc4a4 STAT6 e1-0-0-0-0-0-1-1 e0-2-0-0-2-0-0-0
e0-1-0-1-1-0-1-1 Treml2 Smpdl3b e1-0-0-0-0-0-2-0 e0-2-0-0-2-0-2-0
e0-1-0-1-1-1-1-0 e0-1-0-0-0-0-0-0 Tbet e1-0-0-0-0-1-1-0 e0-2-0-1-0-0-0-2
e0-1-0-1-2-0-2-1 e0-1-0-0-0-0-0-1 e0-0-1-0-0-0-0-0 e1-0-0-0-1-0-1-1 e0-2-0-2-0-2-0-0
e0-1-0-2-0-1-0-0 e0-1-0-0-0-0-2-0 e0-0-1-0-0-0-0-2 e1-0-0-0-2-0-0-0 e0-2-0-2-0-2-0-2
e0-1-1-1-0-1-1-0 e0-1-0-0-0-0-2-1 e0-0-1-0-0-0-1-0 e1-0-0-1-0-0-0-1 e0-2-0-2-0-2-2-2
e0-1-1-1-0-1-1-1 e0-1-0-0-0-1-1-1 e0-0-1-0-0-0-1-1 e1-0-0-1-0-1-0-0 e0-2-0-2-2-0-2-0
e0-1-1-1-1-0-1-1 e0-1-0-0-1-0-0-0 e0-0-1-0-0-1-0-0 e1-0-0-1-1-0-1-1 e0-2-1-2-0-2-0-0
e0-1-1-1-1-1-0-0 e0-1-0-0-1-0-1-0 e0-0-1-0-0-1-1-0 e1-0-0-1-1-1-1-1 e1-0-0-0-0-0-0-2
e0-1-2-0-0-0-0-1 e0-1-0-0-1-1-0-0 e0-0-1-0-1-0-0-0 e1-0-1-0-0-1-1-0 e1-0-0-0-0-1-0-0
e0-1-2-0-0-0-1-1 e0-1-0-0-2-0-0-0 e0-0-1-0-1-0-0-1 e1-0-2-0-0-0-1-0 e1-0-0-0-0-2-0-0
e0-1-2-0-0-1-0-1 e0-1-0-0-2-0-1-0 e0-0-1-0-1-0-0-2 e1-0-2-0-0-2-0-2 e1-0-0-1-0-0-0-0
e0-1-2-0-2-1-0-0 e0-1-0-0-2-0-1-1 e0-0-1-0-1-0-1-0 e1-0-2-0-1-0-1-0 e1-0-0-1-0-0-2-0
e0-1-2-1-0-0-0-1 e0-1-0-0-2-0-2-0 e0-0-1-0-1-0-1-1 e1-0-2-2-0-0-0-0 e1-0-0-1-1-0-0-0
e0-1-2-1-0-1-0-0 e0-1-0-0-2-0-2-1 e0-0-1-0-1-1-0-0 e1-0-2-2-0-2-0-0 e1-0-0-2-0-0-1-0
e1-0-0-0-1-0-0-0 e0-1-0-0-2-2-0-0 e0-0-1-0-1-1-0-1 e1-1-0-0-0-0-0-2 e1-1-0-0-0-1-0-0
e1-0-0-1-0-0-1-0 e0-1-0-1-0-0-0-1 e0-0-1-0-1-1-0-2 e1-1-0-0-0-0-2-0 e1-1-0-0-1-0-1-1
e1-0-0-1-0-1-1-1 e0-1-0-1-0-0-2-1 e0-0-1-0-1-1-1-0 e1-1-0-0-0-0-2-2 e1-1-0-0-1-2-1-0
e1-0-2-2-2-0-0-0 e0-1-0-1-0-1-0-1 e0-0-1-0-1-1-1-1 e1-1-0-0-2-0-0-0 e1-1-0-1-0-1-0-0
e1-1-0-0-0-1-0-1 e0-1-0-1-0-1-1-1 e0-0-1-0-1-2-0-0 e1-1-0-0-2-0-2-0 e1-1-0-1-0-1-0-1
e1-1-0-0-1-1-0-0 e0-1-0-1-0-1-2-1 e0-0-1-0-2-0-0-0 e1-1-0-0-2-0-2-2 e1-1-0-1-1-1-0-0
e1-1-0-1-0-1-1-1 e0-1-0-1-0-2-2-1 e0-0-1-1-0-0-0-0 e1-1-0-1-0-0-0-0 e1-1-0-2-0-0-0-0
e1-1-0-1-1-1-1-1 e0-1-0-1-1-1-0-0 e0-0-1-1-0-0-0-1 e1-1-0-1-1-0-1-1 e1-1-1-0-1-0-1-1
e1-1-1-1-1-1-0-0 e0-1-0-1-1-1-0-1 e0-0-1-1-0-0-1-0 e1-1-0-2-0-2-0-0 e1-1-1-1-0-0-0-0
e1-1-2-0-0-0-1-1 e0-1-0-1-1-1-1-1 e0-0-1-1-0-0-1-1 e1-1-0-2-2-0-0-0 e1-1-1-1-0-0-0-1
e2-0-0-1-1-1-1-1 e0-1-0-1-2-0-0-1 e0-0-1-1-0-0-1-2 e1-1-0-2-2-0-2-2 e1-2-0-0-1-0-0-0
e2-0-0-2-0-0-1-0 e0-1-0-1-2-0-2-0 e0-0-1-1-0-1-0-0 e1-1-1-0-1-1-0-0 e1-2-0-0-2-0-2-0
e2-0-0-2-0-1-0-1 e0-1-0-1-2-1-0-1 e0-0-1-1-0-1-1-0 e1-1-1-1-0-1-1-0 e1-2-1-0-0-0-0-0
e2-0-2-0-0-0-1-0 e0-1-0-1-2-1-1-1 e0-0-1-1-1-0-0-0 e1-1-1-1-1-0-0-1 e1-2-1-0-0-2-0-0
e2-1-0-1-0-1-0-1 e0-1-0-1-2-1-2-1 e0-0-1-1-1-0-0-1 e1-1-2-2-0-0-0-0 e1-2-1-2-0-0-0-0
e2-1-0-1-0-1-1-1 e0-1-0-2-0-0-2-0 e0-0-1-1-1-0-1-0 e1-1-2-2-2-0-0-0 e1-2-1-2-0-2-0-0
e2-1-2-0-2-1-0-1 e0-1-1-0-1-0-0-1 e0-0-1-1-1-0-1-1 e1-1-2-2-2-0-0-2
e2-1-2-1-0-0-0-1 e0-1-1-0-1-1-0-1 e0-0-1-1-1-1-0-0 e1-1-2-2-2-0-2-0
e2-1-2-1-0-1-0-1 e0-1-1-1-0-1-0-1 e0-0-1-1-1-1-0-1 e1-1-2-2-2-0-2-2

e0-1-1-1-1-1-0-1 e0-0-1-1-1-1-1-0 e1-1-2-2-2-2-2-0
e0-0-1-1-1-1-1-1
e0-0-1-1-1-1-2-0
e0-0-1-1-1-2-2-0
e0-0-1-2-0-0-0-0
e0-2-1-0-0-0-0-0
e0-2-1-0-0-0-0-2
e0-2-1-0-0-0-1-0
e0-2-1-0-0-0-2-0
e0-2-1-0-0-0-2-2
e0-2-1-0-0-2-0-0
e0-2-1-0-0-2-0-2
e0-2-1-0-1-0-0-0
e0-2-1-0-1-0-0-2
e0-2-1-0-1-0-1-0
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e0-2-1-0-1-1-0-0
e0-2-1-0-1-1-2-0
e0-2-1-0-1-2-0-0
e0-2-1-0-1-2-0-2

...
...

...
...

...
...

Table C.17: GLay community clustering results with six modules or clusters for all genes and selected ESCs.

module 1 module 2 module 3 module 4 module 5
Ccr5 Adamtsl3 A430108G06Rik Ccl5 Asb2

Clec12a Cyp11a1 Ccr1 Ccr2 Bhlhe41
Cxcr3 Il10 Ccr4 Il2 Chil3
Eomes Lrrc32 Cd83 e0-0-0-2-0-2-0-0 Igfbp4
Exph5 e0-0-0-1-0-0-2-0 Dpysl3 e0-1-0-0-1-0-1-1 St8sia6
Fasl e0-0-0-1-2-0-2-1 Efna5 e0-1-1-1-1-1-0-1 e0-0-0-0-2-0-0-2

Galnt3 e0-0-0-1-2-1-0-1 Gata3 e0-2-0-0-0-0-2-0 e0-0-2-0-0-2-0-0
Gldc e0-0-0-2-0-0-2-0 Gja1 e0-2-0-0-0-0-2-2 e0-0-2-1-2-0-0-0
Ifng e0-0-2-0-0-0-2-0 Gm12214 e0-2-0-2-0-2-0-0 e0-1-0-0-2-2-0-0

Il12rb2 e0-0-2-1-0-0-0-0 Gm17334 e0-2-1-0-0-0-0-2 e0-1-1-0-1-0-0-1
Il18r1 e0-0-2-2-0-0-2-0 Ifngr2 e0-2-1-0-0-0-2-0 e0-1-1-0-1-1-0-1
Il18rap e0-0-2-2-2-0-2-0 Il13 e0-2-1-0-0-0-2-2 e0-1-1-1-0-0-0-0
Itga1 e0-1-0-0-0-0-2-0 Il1rl1 e0-2-1-0-0-2-0-0 e0-1-2-0-0-0-1-0
Kcnj8 e0-1-0-0-0-0-2-1 Il4 e0-2-1-0-1-2-0-0 e0-1-2-0-0-2-0-0
Klrb1c e0-1-0-0-1-0-0-0 Il5 e0-2-1-1-0-0-0-2 e0-1-2-2-0-0-0-1
Klrc1 e0-1-0-0-2-0-2-0 Il9r e0-2-1-1-0-0-2-2 e0-1-2-2-0-0-2-1
Klrc2 e0-1-0-0-2-0-2-1 Inpp4b e0-2-1-1-1-0-0-1 e1-0-0-0-0-0-0-2
Klre1 e0-1-0-1-0-0-2-1 Irf1 e0-2-1-1-1-0-2-0 e1-0-0-0-0-0-2-2
Klrg1 e0-1-0-1-0-1-2-1 Kif3a e0-2-1-1-1-0-2-2 e1-0-0-0-2-0-2-0
Klri2 e0-1-0-1-0-2-2-1 Mctp1 e0-2-1-1-1-1-0-0 e1-0-0-1-1-1-1-1
Runx3 e0-1-0-1-2-0-0-1 Pparg e0-2-1-1-1-1-1-0 e1-0-0-2-2-2-0-0
STAT1 e0-1-0-1-2-0-2-0 Rad50 e0-2-1-1-1-1-1-1 e1-0-0-2-2-2-2-0
STAT4 e0-1-0-1-2-1-0-1 STAT6 e0-2-1-2-0-2-0-0 e1-0-1-1-0-1-1-0

Smpdl3b e0-1-0-1-2-1-1-1 Sell e0-2-1-2-1-2-0-0 e1-0-2-2-2-0-2-0
Tbet e0-1-0-1-2-1-2-1 Sept8 e1-0-0-0-0-2-0-0 e1-0-2-2-2-0-2-2

e0-0-1-0-0-0-0-0 e0-1-0-2-0-0-2-0 Slc4a4 e1-0-0-2-0-0-1-0 e1-1-0-0-0-2-1-0
e0-0-1-0-0-0-0-2 e0-1-1-1-0-1-0-1 Treml2 e1-0-1-0-1-1-0-0 e1-1-0-0-1-0-1-1
e0-0-1-0-0-0-1-0 e0-1-2-0-0-0-2-0 e0-1-0-0-0-0-0-0 e1-1-0-0-1-2-1-0 e1-1-0-0-2-0-0-0
e0-0-1-0-0-0-1-1 e0-1-2-0-0-2-2-1 e0-1-0-0-0-0-0-1 e1-2-1-0-0-0-0-0 e1-1-0-0-2-0-2-0
e0-0-1-0-0-0-2-0 e0-1-2-0-2-0-2-0 e0-1-0-0-0-0-1-0 e1-2-1-0-0-2-0-0 e1-1-0-2-0-0-1-1
e0-0-1-0-0-1-0-0 e0-1-2-1-0-0-2-0 e0-1-0-0-0-0-1-1 e1-2-1-1-1-0-1-1 e1-1-0-2-2-0-0-0
e0-0-1-0-0-1-1-0 e0-1-2-1-2-1-0-0 e0-1-0-0-0-1-0-0 e1-2-1-2-0-0-0-0 e1-1-0-2-2-2-0-0
e0-0-1-0-0-2-2-0 e0-1-2-2-0-0-2-0 e0-1-0-0-0-1-0-1 e1-2-1-2-0-2-0-0 e1-1-0-2-2-2-2-0
e0-0-1-0-1-0-0-0 e0-1-2-2-0-2-2-1 e0-1-0-0-0-1-1-0 e2-0-0-0-0-1-0-0 e1-1-1-0-0-0-1-0
e0-0-1-0-1-0-0-1 e0-1-2-2-2-0-2-0 e0-1-0-0-0-1-1-1 e2-0-1-1-1-0-0-0 e1-1-1-0-1-1-0-1
e0-0-1-0-1-0-0-2 e0-1-2-2-2-2-2-0 e0-1-0-0-1-0-0-1 e2-0-1-1-1-0-1-1 e1-1-1-1-0-1-1-0
e0-0-1-0-1-0-1-0 e0-1-2-2-2-2-2-1 e0-1-0-0-1-0-1-0 e2-2-1-1-0-0-0-2 e1-1-2-0-0-0-0-1
e0-0-1-0-1-0-1-1 e2-1-0-0-0-0-0-0 e0-1-0-0-1-1-0-0 e2-2-1-1-0-0-2-2 e1-1-2-0-0-1-0-1
e0-0-1-0-1-0-2-0 e2-1-0-0-0-0-0-1 e0-1-0-0-1-1-1-0 e2-2-1-1-1-0-0-2 e1-1-2-2-0-0-0-1
e0-0-1-0-1-1-0-0 e2-1-0-0-0-0-2-0 e0-1-0-0-1-1-1-1 e2-2-1-1-1-0-2-2 e1-1-2-2-0-0-1-1
e0-0-1-0-1-1-0-1 e2-1-0-0-0-1-0-0 e0-1-0-0-2-0-0-0 r0-0-0-0-0-0-0-2 e1-1-2-2-0-0-2-0
e0-0-1-0-1-1-0-2 e2-1-0-0-0-1-0-1 e0-1-0-0-2-0-1-0 r0-0-1-0-0-0-0-2 e1-2-1-0-1-1-1-0
e0-0-1-0-1-1-1-0 e2-1-0-0-0-2-2-1 e0-1-0-0-2-0-1-1 r0-0-1-1-0-0-0-0 e2-0-0-0-1-0-1-0
e0-0-1-0-1-1-1-1 e2-1-0-0-2-0-0-0 e0-1-0-1-0-0-0-0 r0-2-0-0-2-2-2-0 e2-0-0-0-1-1-1-0
e0-0-1-0-1-2-0-0 e2-1-0-0-2-0-0-1 e0-1-0-1-0-0-0-1 r0-2-0-0-2-2-2-2 e2-0-2-1-0-0-0-0
e0-0-1-0-2-0-0-0 e2-1-0-0-2-0-2-0 e0-1-0-1-0-0-1-0 r0-2-0-1-0-0-2-2 e2-0-2-1-0-0-0-2
e0-0-1-1-0-0-0-0 e2-1-0-0-2-0-2-1 e0-1-0-1-0-0-1-1 r0-2-0-2-0-0-0-0 e2-1-0-2-0-0-0-0
e0-0-1-1-0-0-1-0 e2-1-0-0-2-1-0-1 e0-1-0-1-0-1-0-0 r0-2-0-2-0-2-0-0 e2-1-0-2-0-0-1-1
e0-0-1-1-0-0-1-1 e2-1-0-0-2-1-2-1 e0-1-0-1-0-1-0-1 r0-2-0-2-0-2-0-2 e2-2-1-1-1-1-0-0
e0-0-1-1-0-0-1-2 e2-1-0-1-0-0-0-1 e0-1-0-1-0-1-1-0 r0-2-0-2-0-2-2-2 e2-2-2-1-2-0-0-2
e0-0-1-1-0-0-2-0 e2-1-0-1-0-1-0-0 e0-1-0-1-0-1-1-1 r0-2-1-0-0-0-0-2 r0-0-0-0-0-0-1-1
e0-0-1-1-0-1-0-0 e2-1-0-1-0-1-2-0 e0-1-0-1-1-0-0-1 r0-2-1-0-0-0-2-0 r0-0-0-2-0-0-1-0
e0-0-1-1-0-1-1-0 e2-1-0-1-0-1-2-1 e0-1-0-1-1-0-1-0 r0-2-1-0-0-0-2-2 r0-0-2-1-2-0-0-0
e0-0-1-1-1-0-0-0 e2-1-0-1-1-1-1-1 e0-1-0-1-1-0-1-1 r0-2-1-0-0-2-0-0 r0-0-2-2-0-0-2-1
e0-0-1-1-1-0-0-1 e2-1-0-1-2-0-0-1 e0-1-0-1-1-1-0-0 r0-2-1-0-1-2-0-0 r0-0-2-2-2-2-0-2
e0-0-1-1-1-0-1-0 e2-1-0-1-2-0-1-1 e0-1-0-1-1-1-0-1 r0-2-1-1-0-0-0-2 r0-1-2-0-0-0-1-0
e0-0-1-1-1-0-1-1 e2-1-0-1-2-0-2-0 e0-1-0-1-1-1-1-0 r0-2-1-1-0-0-2-2 r0-1-2-0-0-2-0-0
e0-0-1-1-1-1-0-0 e2-1-0-1-2-1-0-1 e0-1-0-1-1-1-1-1 r0-2-1-1-1-0-0-1 r0-1-2-2-0-0-0-1
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APPENDIX C. SUPPLEMENTARY TABLES

e0-0-1-1-1-1-0-1 e2-1-0-1-2-1-1-1 e0-1-0-1-2-0-2-1 r0-2-1-1-1-0-2-0 r0-1-2-2-0-0-2-1
e0-0-1-1-1-1-1-0 e2-1-1-1-0-1-0-1 e0-1-0-2-0-1-0-0 r0-2-1-1-1-0-2-2 r1-0-0-0-2-0-2-0
e0-0-1-1-1-1-1-1 e2-1-1-1-0-1-1-1 e0-1-1-0-0-0-0-0 r0-2-1-1-1-1-1-0 r1-0-0-2-0-0-0-2
e0-0-1-1-1-1-2-0 e2-1-2-0-0-0-0-0 e0-1-1-0-0-0-1-1 r0-2-1-1-1-1-1-1 r1-0-0-2-0-0-2-2
e0-0-1-1-1-2-2-0 e2-1-2-0-0-1-2-1 e0-1-1-0-0-1-1-1 r0-2-1-2-0-2-0-0 r1-0-0-2-2-0-0-2
e0-0-1-2-0-0-0-0 e2-1-2-0-0-2-2-0 e0-1-1-1-0-1-1-0 r1-0-0-0-0-0-1-0 r1-0-0-2-2-2-2-0
e0-2-1-0-0-0-0-0 e2-1-2-0-0-2-2-1 e0-1-1-1-0-1-1-1 r1-2-1-0-0-0-0-0 r1-0-2-0-0-0-2-2
e0-2-1-0-0-0-1-0 e2-1-2-0-2-0-0-0 e0-1-1-1-1-0-1-1 r1-2-1-1-1-0-1-1 r1-0-2-0-0-2-2-0
e0-2-1-0-0-2-0-2 e2-1-2-0-2-0-0-1 e0-1-1-1-1-1-0-0 r2-2-0-0-0-2-2-0 r1-0-2-0-2-2-2-0
e0-2-1-0-1-0-0-0 e2-1-2-0-2-0-2-0 e0-1-1-1-1-1-1-0 r2-2-1-1-0-0-0-2 r1-0-2-2-2-2-0-2
e0-2-1-0-1-0-0-2 e2-1-2-0-2-0-2-1 e0-1-2-0-0-0-0-0 r2-2-1-1-0-0-2-2 r1-1-0-0-0-0-2-0
e0-2-1-0-1-0-1-0 e2-1-2-0-2-1-0-0 e0-1-2-0-0-0-0-1 r2-2-1-1-1-0-0-2 r1-1-0-0-0-1-0-1
e0-2-1-0-1-1-0-0 e2-1-2-0-2-1-2-1 e0-1-2-0-0-0-0-2 r1-1-0-0-2-0-0-0
e0-2-1-0-1-1-2-0 e2-1-2-1-0-0-2-0 e0-1-2-0-0-0-1-1 r1-1-0-2-2-0-0-0
e0-2-1-0-1-2-0-2 e2-1-2-1-0-0-2-1 e0-1-2-0-0-0-2-1 r1-1-0-2-2-2-0-0
e0-2-1-1-0-0-0-0 e2-1-2-1-0-1-0-0 e0-1-2-0-0-1-0-1 r1-1-0-2-2-2-2-0
e0-2-1-1-0-1-1-0 e2-1-2-1-0-1-2-1 e0-1-2-0-2-0-0-0 r1-1-2-0-0-0-0-1
e0-2-1-1-1-0-0-0 e2-1-2-1-0-2-2-1 e0-1-2-0-2-0-0-1 r1-1-2-0-0-1-0-1
e0-2-1-1-1-0-1-0 e2-1-2-1-2-0-2-0 e0-1-2-0-2-0-1-0 r1-1-2-0-2-0-0-0

e2-1-2-1-2-1-0-1 e0-1-2-0-2-0-2-1 r1-1-2-2-0-0-0-1
e2-1-2-1-2-1-2-1 e0-1-2-0-2-1-0-0 r1-1-2-2-0-0-1-1
e2-1-2-2-2-0-2-1 e0-1-2-0-2-1-0-1 r1-1-2-2-0-0-2-0
e2-1-2-2-2-2-2-1 e0-1-2-1-0-0-0-1 r1-2-2-0-2-2-2-2
e2-2-2-0-2-2-2-0 e0-1-2-1-0-1-0-0 r2-0-0-2-0-2-0-0

e0-1-2-1-0-1-0-1 r2-0-0-2-1-0-1-0
e0-1-2-1-0-1-1-1 r2-0-2-0-0-2-0-2
e0-1-2-2-0-0-0-0 r2-0-2-1-0-0-0-0
e0-1-2-2-0-2-0-0 r2-1-2-2-0-0-0-0
e0-1-2-2-2-0-0-0 r2-2-2-2-0-0-1-0

...
...

...
...

...

Table C.18: Spectral community clustering (k = 5) results with six modules or clusters for all genes and selected CSCs.
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module 11 module 12 module 13 module 14
Clec12a STAT6 Chil3 Eomes
Klrb1c e0-0-1-0-0-1-0-0 e1-1-2-0-0-0-0-1 e0-0-0-1-0-0-0-2
STAT1 e0-0-1-1-0-0-0-1 e1-1-2-0-0-1-0-1 e1-0-0-1-0-0-2-0

e0-0-0-0-1-1-0-0 e1-0-1-0-0-1-0-1 e1-1-2-2-0-0-2-0 e1-1-1-1-0-1-0-0
e0-0-1-0-0-1-1-0 e1-0-1-0-1-1-0-1 r1-1-0-0-0-1-0-1 e2-1-1-1-0-0-0-0
e0-0-1-0-1-1-1-1 e1-1-0-0-0-1-1-1 r1-1-2-0-0-0-0-1
e1-0-0-0-1-1-0-0 e1-1-0-1-1-0-0-0 r1-1-2-0-0-1-0-1
e1-0-0-0-1-1-1-0 r2-0-0-0-1-1-0-0 r1-1-2-2-0-0-2-0
e1-0-1-0-1-0-1-2 r2-0-0-0-1-1-1-0
e1-1-1-0-1-0-1-0 r2-0-0-2-0-0-0-2
e1-1-1-0-1-1-1-1 r2-0-2-0-2-2-0-2
r0-0-0-2-0-0-2-2

...
...

...
...

Contd.: RWIF clustering (Granularity 1.8) results with fourteen modules or clusters for all genes and selected CSCs.
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up-regulated ranking betweenness centr. up down-regulated ranking betweenness centr. down
Gata3 0.0223281806795 Tbet 0.0573501687312
STAT1 0.0100694704161 STAT1 0.0259134423804
STAT6 0.0100201643869 STAT6 0.0205985300014

e0-1-0-0-0-0-0-0 0.00592561446682 STAT4 0.0175417701792
e0-1-0-1-1-0-1-1 0.00474342452205 e0-0-1-1-1-1-1-1 0.0160204898002
e1-1-0-1-0-1-0-0 0.00305692786914 e0-0-1-0-0-0-0-0 0.00806062877019
e1-1-0-0-0-1-0-0 0.00252291202605 e1-0-1-1-1-1-1-1 0.00711247535524
e0-1-0-1-0-0-1-0 0.00136851459094 e0-0-1-1-1-1-1-0 0.00510261240649
e1-1-0-0-0-0-1-0 0.00122216373623 Gata3 0.00499429899854
e0-1-0-1-1-1-1-1 0.00091008945064 e0-0-1-0-1-1-1-0 0.00470479033097
e1-1-0-0-1-0-0-1 0.000723468671049 e1-0-1-1-1-1-1-0 0.00435318955728
e0-1-0-0-0-0-1-0 0.000629631364228 r0-0-1-1-1-1-1-0 0.00433639970797
e0-1-0-1-0-1-0-1 0.000566881304531 e0-0-1-1-0-0-0-0 0.00252092586948
e0-1-0-1-0-0-0-1 0.000489045153238 e1-0-1-1-1-0-0-0 0.00200131240216
e0-1-0-0-0-0-0-1 0.000438923553793 e0-0-1-1-1-0-0-0 0.00152419339242
r0-1-2-0-0-0-0-0 0.000389931429669 e0-0-1-0-1-0-0-0 0.00142084747716
e0-1-0-1-0-0-1-1 0.000384970335038 e0-0-1-1-0-1-0-0 0.00137720623808
e0-1-0-1-0-0-0-0 0.00031004130216 e1-0-1-1-1-0-1-1 0.00125145498171
e1-1-0-0-1-1-1-0 0.000309296571227 e1-0-1-0-1-0-1-0 0.0011752536181
e0-1-0-0-0-0-1-1 0.000309089419098 e1-0-1-1-1-0-1-0 0.00111516135779
r0-1-0-1-0-1-0-0 0.000289034415662 e0-0-1-1-1-1-0-0 0.00100807209339
r0-1-2-2-2-0-2-0 0.000249646518204 e1-0-1-0-0-0-0-0 0.000898559755184
e0-1-0-0-0-1-0-1 0.000236150947166 e0-0-1-1-0-1-1-0 0.000850707433112
e1-1-0-0-1-0-1-0 0.000206252916319 e2-0-1-1-1-0-0-0 0.000839936834645
e0-1-0-0-0-1-0-0 0.000166097530923 e0-0-1-1-1-0-1-0 0.000776602869661
e0-1-0-1-0-1-1-1 0.000126168059784 e2-0-1-1-1-1-1-0 0.000586860047459
e2-1-0-1-0-1-0-1 0.000122717160622 e0-2-1-0-1-0-0-0 0.000492859172066
e2-1-2-1-0-1-0-1 0.000113048957276 e0-0-1-1-1-0-0-1 0.000436425805651
e0-1-2-1-0-1-0-1 9.82836495394e-05 e1-0-1-1-0-0-0-0 0.000418496313817
e1-1-0-0-0-0-0-1 9.09562172376e-05 e1-0-1-1-0-1-1-1 0.000333138503513
e0-1-0-1-1-0-0-1 8.66697517489e-05 e2-0-1-1-1-0-1-1 0.000305252374604
e1-1-0-1-1-1-1-1 8.35282758034e-05 e2-2-1-1-1-1-1-0 0.000223916924816
e1-1-0-0-0-0-1-1 6.49423166049e-05 e1-0-1-1-0-0-1-1 0.000208443382213
e1-1-0-1-0-1-0-1 6.40201358047e-05 e2-0-1-1-0-0-0-0 0.000188107357315
e0-1-2-0-2-1-0-1 6.26243375284e-05 e0-0-1-0-1-0-1-0 0.000186556659641
e1-1-0-0-0-1-0-1 5.51087938416e-05 e0-0-1-1-0-0-1-0 0.000165119070143
e2-1-2-0-2-1-0-1 5.47533355063e-05 e0-0-1-0-1-1-0-0 0.00016499261135
e0-1-0-0-0-1-1-1 4.87094695387e-05 e0-0-1-1-1-1-0-1 0.000161477831446
e0-1-2-0-2-0-2-1 4.70818186962e-05 e1-0-1-1-1-1-0-0 0.000144040170529
e2-1-0-1-1-1-0-1 4.37548463167e-05 r0-2-1-0-1-0-1-0 0.000125834945744
r0-1-0-0-0-0-0-0 3.80350421512e-05 e1-0-1-1-1-0-0-1 0.000124720492524
r0-1-2-0-2-0-0-0 3.76801775264e-05 e2-0-1-0-0-0-0-0 0.00012268625172
r2-1-0-1-0-1-0-1 3.5593653038e-05 e2-2-1-1-1-0-1-0 0.000119596030125
r0-1-2-2-2-0-0-0 3.44175383942e-05 e0-0-1-1-1-1-2-0 0.000109384394248
e2-1-2-0-2-0-2-1 3.42502075493e-05 e2-2-1-1-1-0-0-0 0.000107095664151
r1-1-0-0-0-0-0-0 3.31389183457e-05 e0-0-1-0-0-0-1-0 9.78196681383e-05
e1-1-0-1-1-1-0-1 3.21511798624e-05 e0-2-1-0-0-0-0-0 9.42793180525e-05
e1-1-0-1-0-0-0-1 3.01998953071e-05 e1-2-1-1-1-1-1-1 9.16463141233e-05
e2-1-0-1-0-1-1-1 2.78023111951e-05 e1-0-1-0-1-1-1-1 8.32764727225e-05
e0-1-0-1-2-0-2-1 1.90747792885e-05 e0-2-1-0-1-1-2-0 7.77383607361e-05
r1-1-2-2-0-2-2-2 1.76740897844e-05 e0-2-1-1-1-0-0-0 6.7499729586e-05
r0-1-0-1-0-0-0-0 1.57527878233e-05 e0-2-1-0-0-0-1-0 6.48371924277e-05
e1-1-0-1-1-0-1-1 1.39816881598e-05 e1-0-1-0-1-1-1-0 6.20361487937e-05
r1-1-2-2-2-0-0-0 1.28860083791e-05 e1-2-1-1-1-1-1-0 4.89345148182e-05
r1-1-2-2-2-0-0-2 1.13956337445e-05 r1-0-1-1-1-0-1-0 3.47764228179e-05
r0-1-0-0-0-0-0-1 1.00644122383e-05 e2-2-1-0-1-0-1-0 3.23611634988e-05
e1-1-2-2-2-0-2-0 9.8189387691e-06 e2-2-1-0-1-0-1-2 2.16623688764e-05
e1-1-2-2-0-0-0-0 9.8189387691e-06 e1-2-1-1-1-1-0-0 2.16623688764e-05
e1-1-0-0-0-0-0-2 9.8189387691e-06 e0-2-1-1-1-0-1-0 2.16623688764e-05
e0-1-0-1-1-1-0-1 9.4156609268e-06 e0-2-1-0-1-0-1-0 2.16623688764e-05
e2-1-0-1-1-1-1-0 9.3128079938e-06 e0-2-1-0-1-2-0-2 1.77336616528e-05
r2-1-2-1-0-2-2-1 8.52697314158e-06 e0-2-1-0-1-0-0-2 1.77336616528e-05
r1-1-0-0-0-0-2-2 6.85437456381e-06 e0-2-1-0-0-2-0-2 1.77336616528e-05
e2-1-0-0-2-0-0-0 6.5459591794e-06 e2-2-1-1-0-0-0-0 1.59676117209e-05
r1-1-2-2-0-0-1-1 5.78616034608e-06 r0-2-1-0-0-0-1-0 1.3464247245e-05
r1-1-2-2-2-0-2-0 5.01332354461e-06 r1-2-1-1-1-1-1-0 1.31817805196e-05
r0-1-2-0-0-0-2-0 3.92757550764e-06 r0-2-1-1-1-1-0-0 1.31817805196e-05
r0-1-2-0-0-0-1-0 3.68210203841e-06 r0-2-1-0-1-0-1-2 7.81491273661e-06
r0-1-0-1-2-1-1-1 3.68210203841e-06 e2-0-1-1-1-1-0-1 6.59036208135e-06
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r1-1-0-0-0-0-0-2 3.1722725254e-06 e0-0-1-0-0-0-0-2 6.54349997897e-06
e1-1-0-1-1-0-0-1 2.66514052304e-06 e1-2-1-1-1-0-0-0 5.80807387951e-06
e1-1-0-0-1-0-2-1 2.66514052304e-06 e1-0-1-0-1-2-0-1 3.51677187146e-06
e1-1-0-0-0-0-2-1 2.66514052304e-06 e1-0-1-0-1-1-1-2 3.47871785475e-06
r1-1-0-0-1-0-2-1 1.47284081536e-06 e1-0-1-0-1-1-0-2 3.47871785475e-06
r1-1-0-0-1-0-0-1 1.47284081536e-06 e2-2-1-1-1-0-2-2 3.02672810751e-06
r1-1-0-0-0-0-2-1 1.47284081536e-06 e2-2-1-1-1-0-0-2 3.02672810751e-06

Table C.25: Betweenness centrality ranking with respective values for the Th2 vs. Tbet+/+Th1 differential network with re-
spective up- and down-regulated parts.
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APPENDIX C. SUPPLEMENTARY TABLES

λ1 ranking PageRank λ2 ranking λ2 values
Gata3 0.741782 Tbet 0.586051361808
Tbet 0.626507 e0-0-1-0-1-0-0-0 0.123258669886

e0-0-0-0-0-0-0-0 0.148212 e1-0-0-0-0-0-0-0 0.105058289443
e1-0-0-0-0-0-0-0 0.0747871 r0-0-2-0-0-0-2-0 0.0942825135056
e0-0-1-0-1-0-0-0 0.0659869 e1-1-1-1-1-1-1-1 0.0739448658361
r0-0-2-0-0-0-2-0 0.0510942 e0-0-1-0-0-0-0-0 0.0458365610444
e1-1-1-1-1-1-1-1 0.0438635 e0-0-1-1-1-0-0-0 0.0404420885126
e0-1-0-1-1-1-1-1 0.0417517 e1-0-1-1-1-1-1-1 0.0378698944021
e0-1-0-0-0-0-0-0 0.0401505 e0-0-0-1-0-0-0-0 0.031347890041
e0-0-0-1-0-0-0-0 0.0314694 e1-0-1-1-1-1-1-0 0.023358377738
e0-0-0-0-0-0-0-1 0.0309608 e0-0-1-1-0-0-0-0 0.0223391609167
e0-0-1-0-0-0-0-0 0.0307572 e1-0-1-1-1-0-0-0 0.0222313274697
e0-1-0-1-0-1-0-1 0.0294292 e0-0-1-1-0-1-0-0 0.0205364842889
e0-1-0-0-0-0-0-1 0.0285103 e2-0-1-1-1-1-1-0 0.0174858049872
e0-1-1-1-1-1-1-1 0.0253448 e0-0-1-1-1-1-1-0 0.0158431357395
r0-2-0-0-0-0-0-0 0.0249659 e0-0-1-1-1-0-1-0 0.0152875286378
e0-0-2-0-0-0-0-0 0.0244514 e1-2-1-1-1-1-1-1 0.0148164537369
e0-0-1-1-1-0-0-0 0.023422 e1-1-1-1-1-0-1-0 0.0148164537369
e1-0-1-1-1-1-1-1 0.0221 e0-2-0-0-0-0-0-0 0.0137529227493
r0-0-2-2-2-0-2-0 0.0179525 e0-0-1-0-1-1-1-0 0.0136724421374
e0-0-0-0-0-1-1-1 0.0171762 e0-1-0-1-0-0-1-0 0.0134817781117
e0-0-0-1-1-1-1-1 0.0148788 e0-0-1-1-0-1-1-0 0.0128144402991
e1-0-1-1-1-1-1-0 0.0146416 r1-1-0-0-0-0-0-0 0.0121789118439
e0-0-0-0-0-0-1-0 0.0143682 e1-2-0-0-0-0-0-0 0.0121471024865
e0-0-1-1-0-0-0-0 0.0141178 e1-0-1-0-1-0-1-0 0.0121471024865
e1-0-1-1-1-0-0-0 0.0140623 e0-0-1-1-1-1-0-0 0.0117657744352
e2-1-0-1-0-1-0-1 0.0135003 e0-0-1-0-1-1-0-0 0.0112573187364
e0-0-1-1-0-1-0-0 0.0131912 e1-1-1-1-1-0-1-1 0.00979505629973
e0-0-1-1-1-1-1-1 0.013177 r2-1-0-1-0-1-0-1 0.00950160139285
e1-1-0-1-1-1-1-1 0.0125813 e0-0-1-1-1-1-0-1 0.00947777868171
e0-0-0-0-0-1-0-0 0.0125813 e0-0-0-0-1-0-1-0 0.0078761679315
e0-2-0-0-0-0-0-0 0.0125234 e1-0-1-1-0-1-1-1 0.00769821118148
e2-1-2-1-0-1-0-1 0.0118155 e1-0-1-1-1-0-1-1 0.00747576524395
e0-1-0-1-1-0-0-1 0.0118155 e0-2-1-0-1-0-0-0 0.0074016074496
e0-0-0-1-0-0-1-0 0.0118155 e2-2-1-1-1-1-1-0 0.00680842743137
e2-0-1-1-1-1-1-0 0.0116233 e0-2-1-0-0-0-1-0 0.00680842743137
e0-1-0-1-0-0-1-1 0.0115602 e2-0-1-1-1-0-0-0 0.0062745571813
r0-0-2-2-2-0-0-0 0.0115286 e2-2-1-1-0-0-0-0 0.00502885993114
e1-1-1-1-1-1-0-1 0.0112029 e2-2-1-1-1-0-1-0 0.00413907343647
e0-1-0-1-0-1-1-1 0.0110497 e2-0-1-0-0-0-0-0 0.00413907343647
e0-0-2-1-0-1-0-1 0.0110497 e1-2-1-1-1-1-1-0 0.00413907343647
e0-0-0-1-0-1-0-1 0.0108582 e0-2-1-0-0-2-0-2 0.00413907343647
e0-1-0-1-0-0-0-1 0.0107944 r0-1-0-0-0-0-0-0 0.00384954241503
e0-0-1-1-1-1-1-0 0.010779 e1-0-1-1-1-0-0-1 0.00324928968635
e1-1-1-1-1-1-1-0 0.0106668 e0-0-1-1-1-0-0-1 0.00324928968635
e0-0-1-1-1-0-1-0 0.0104935 e2-0-1-1-1-0-1-1 0.0028043978113
e0-0-0-0-1-0-0-0 0.0104371 e2-0-1-1-0-1-1-0 0.0028043978113
e1-1-0-1-0-1-0-1 0.0102839 e1-2-1-1-1-1-0-0 0.0028043978113
e1-2-1-1-1-1-1-1 0.0102513 e1-1-0-0-1-1-1-0 0.0028043978113
e1-1-1-1-1-0-1-0 0.0102513 e0-2-1-0-1-2-0-2 0.0028043978113
e1-1-1-1-1-0-1-1 0.00973775 e0-0-0-1-0-0-1-1 -0.00334207424189
e0-0-1-0-1-1-1-0 0.00966336 e1-1-0-0-0-0-1-0 -0.00374305989753
e0-1-0-1-0-0-1-0 0.00956537 e1-1-0-1-0-1-0-0 -0.00387672178275
e2-0-0-0-0-0-0-0 0.00951808 e0-1-0-0-0-1-0-1 -0.0044877270472
e0-0-1-1-0-1-1-0 0.00922238 e1-1-0-0-0-0-1-1 -0.00454500251369
r1-1-0-0-0-0-0-0 0.00889574 e2-1-2-0-2-0-2-1 -0.00494598816933
e1-2-0-0-0-0-0-0 0.00887939 e1-1-0-1-0-0-0-1 -0.00494598816933
e1-0-1-0-1-0-1-0 0.00887939 e1-1-0-0-1-0-1-0 -0.00494598816933
e0-0-0-0-1-0-1-1 0.00883578 e0-0-2-1-0-0-0-1 -0.00494598816933
e0-1-0-1-0-0-0-0 0.00875226 e0-0-2-0-0-1-1-0 -0.00494598816933
e0-1-0-0-0-1-0-0 0.00875226 e1-1-0-0-0-1-0-0 -0.00654993079189
e0-0-0-1-0-0-0-1 0.00875226 e1-0-0-1-1-1-0-0 -0.00654993079189
e0-0-0-0-0-0-1-1 0.00875226 e0-0-2-1-0-1-0-0 -0.00654993079189
e0-0-1-1-1-1-0-0 0.0086834 e1-0-0-0-1-0-0-0 -0.0076192258736
e0-0-1-0-1-1-0-0 0.00842207 e2-0-0-1-0-0-0-1 -0.00815387341446
e2-0-0-1-0-0-0-1 0.00798646 e0-1-0-1-0-0-0-0 -0.0097577873419
e1-0-0-0-1-0-0-0 0.00773118 e0-1-0-0-0-1-0-0 -0.0097577873419
r2-1-0-1-0-1-0-1 0.00751969 e0-0-0-1-0-0-0-1 -0.0097577873419
e0-0-1-1-1-1-0-1 0.00750745 e0-0-0-0-0-0-1-1 -0.0097577873419
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e1-1-0-0-0-1-0-0 0.00722064 e2-0-0-0-0-0-0-0 -0.0113617299645
e1-0-0-1-1-1-0-0 0.00722064 e1-1-0-1-0-1-0-1 -0.0129656438919
e0-0-2-1-0-1-0-0 0.00722064 e0-0-0-0-1-0-0-0 -0.0132864553725
e0-0-0-0-1-0-1-0 0.00668428 e1-1-1-1-1-1-1-0 -0.0137676152032
e1-0-1-1-0-1-1-1 0.00659281 e0-1-0-1-0-0-0-1 -0.0140349389736
e1-0-1-1-1-0-1-1 0.00647848 e0-0-0-1-0-1-0-1 -0.0141686008588
e2-1-2-0-2-0-2-1 0.00645482 e0-1-0-1-0-1-1-1 -0.0145695865145
e1-1-0-1-0-0-0-1 0.00645482 e0-0-2-1-0-1-0-1 -0.0145695865145
e1-1-0-0-1-0-1-0 0.00645482 e1-1-1-1-1-1-0-1 -0.0148903693
e0-0-2-1-0-0-0-1 0.00645482 r0-0-2-2-2-0-0-0 -0.0155725671658
e0-0-2-0-0-1-1-0 0.00645482 e0-1-0-1-0-0-1-1 -0.0156388815962
e0-2-1-0-1-0-0-0 0.00644037 e2-1-2-1-0-1-0-1 -0.016173529137
e1-1-0-0-0-0-1-1 0.00626337 e0-1-0-1-1-0-0-1 -0.016173529137
e0-1-0-0-0-1-0-1 0.00623602 e0-0-0-1-0-0-1-0 -0.016173529137
e2-2-1-1-1-1-1-0 0.00613549 e1-1-0-1-1-1-1-1 -0.0177774430645
e0-2-1-0-0-0-1-0 0.00613549 e0-0-0-0-0-1-0-0 -0.0177774430645
e1-1-0-1-0-1-0-0 0.00594429 e0-0-1-1-1-1-1-1 -0.0190249635582
e1-1-0-0-0-0-1-0 0.00588047 e2-1-0-1-0-1-0-1 -0.0197021684725
e2-0-1-1-1-0-0-0 0.0058611 e0-0-0-0-0-0-1-0 -0.0215199471553
e0-0-0-1-0-1-1-1 0.00568902 e0-0-0-1-1-1-1-1 -0.022589242237
e0-0-0-1-0-0-1-1 0.00568902 e0-0-0-0-0-1-1-1 -0.0274010127145
e2-1-1-1-1-1-1-1 0.00530611 r0-0-2-2-2-0-2-0 -0.0290268784114
e1-1-0-0-1-0-0-1 0.00530611 e0-0-2-0-0-0-0-0 -0.0426384102386
e0-1-1-1-0-1-1-1 0.00530611 r0-2-0-0-0-0-0-0 -0.0437159121256
e2-2-1-1-0-0-0-0 0.00522086 e0-1-1-1-1-1-1-1 -0.0445096192413
e1-0-1-1-0-0-0-0 0.0049886 e0-1-0-0-0-0-0-1 -0.0511393405723
r0-2-1-1-1-1-0-0 0.00497502 e0-1-0-1-0-1-0-1 -0.0530639225048
e0-1-2-1-0-1-0-1 0.0049232 e0-0-0-0-0-0-0-1 -0.0562717503596
e0-1-2-0-2-1-0-1 0.0049232 e0-1-0-0-0-0-0-0 -0.0755190044402
e0-1-2-0-2-0-2-1 0.0049232 e0-1-0-1-1-1-1-1 -0.0788726035224
e2-2-1-1-1-0-1-0 0.00476354 e0-0-0-0-0-0-0-0 -0.109444151187
e2-0-1-0-0-0-0-0 0.00476354 Gata3 -0.746936958252

Table C.29: Eigenvectors λ1 and λ2 for the Tbet/Gata3 subnetwork with leading ranked CSCs for λ1 and CSCs with largest
positive and negative λ2 component.

λ1 ranking PageRank λ2 ranking λ2 values λ3 ranking λ3 values
1110011001 0.59243947212 1110111001 0.418879192305 1110011001 0.750503915711
1111011001 0.268173910002 1111111001 0.196030422849 1110111001 0.216237858952
1110011011 0.268173910002 1110111011 0.196030422849 1110011101 0.180611319771
1110011000 0.268173910002 1110111000 0.196030422849 1110001001 0.180611319771
1110010001 0.268173910002 1110110001 0.196030422849 0110011001 0.180611319771
1010011001 0.268173910002 1010111001 0.196030422849 1110010001 0.153861896076
1110111001 0.136999195027 1111111011 0.0886012490474 1010011001 0.153861881124
1111011011 0.116301236571 1111111000 0.0886012490474 1110011000 0.153861874981
1111011000 0.116301236571 1111110001 0.0886012490474 1110011011 0.153861871375
1111010001 0.116301236571 1110111010 0.0886012490474 1111011001 0.153861868383
1110011010 0.116301236571 1110110011 0.0886012490474 1110111101 0.0496183650167
1110010011 0.116301236571 1110110000 0.0886012490474 1110101001 0.0496183650167
1110010000 0.116301236571 1011111001 0.0886012490474 0110111001 0.0496183650167
1011011001 0.116301236571 1010111011 0.0886012490474 1110110001 0.0432530518509
1010011011 0.116301236571 1010111000 0.0886012490474 1010111001 0.0432530476478
1010011000 0.116301236571 1010110001 0.0886012490474 1110111000 0.0432530459208
1010010001 0.116301236571 1110111101 0.0806985474236 1110111011 0.0432530449072
1110011101 0.108193225209 1110101001 0.0806985474236 1111111001 0.0432530440659
1110001001 0.108193225209 0110111001 0.0806985474236 1110001101 0.036800171604
0110011001 0.108193225209 1111111010 0.0390699989398 0110011101 0.036800171604
1111111001 0.0605069371764 1111110011 0.0390699989398 0110001001 0.036800171604
1110111011 0.0605069371764 1111110000 0.0390699989398 1110010101 0.0340582325458
1110111000 0.0605069371764 1110110010 0.0390699989398 1110000001 0.0340582325458
1110110001 0.0605069371764 1011111011 0.0390699989398 0110010001 0.0340582325458
1010111001 0.0605069371764 1011111000 0.0390699989398 1010011101 0.0340582292362
1111011010 0.048980394856 1011110001 0.0390699989398 1010001001 0.0340582292362
1111010011 0.048980394856 1010111010 0.0390699989398 0010011001 0.0340582292362
1111010000 0.048980394856 1010110011 0.0390699989398 1110011100 0.0340582278763
1110010010 0.048980394856 1010110000 0.0390699989398 1110001000 0.0340582278763
1011011011 0.048980394856 1111111101 0.0352379189091 0110011000 0.0340582278763
1011011000 0.048980394856 1111101001 0.0352379189091 1110011111 0.0340582270782
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1011010001 0.048980394856 1110111111 0.0352379189091 1110001011 0.0340582270782
1010011010 0.048980394856 1110111100 0.0352379189091 0110011011 0.0340582270782
1010010011 0.048980394856 1110110101 0.0352379189091 1111011101 0.0340582264157
1010010000 0.048980394856 1110101011 0.0352379189091 1111001001 0.0340582264157
1111011101 0.0450479151303 1110101000 0.0352379189091 0111011001 0.0340582264157
1111001001 0.0450479151303 1110100001 0.0352379189091 1110101101 0.00989432326996
1110011111 0.0450479151303 1010111101 0.0352379189091 0110111101 0.00989432326996
1110011100 0.0450479151303 1010101001 0.0352379189091 0110101001 0.00989432326996
1110010101 0.0450479151303 0111111001 0.0352379189091 1110110101 0.00926057061036
1110001011 0.0450479151303 0110111011 0.0352379189091 1110100001 0.00926057061036
1110001000 0.0450479151303 0110111000 0.0352379189091 0110110001 0.00926057061036
1110000001 0.0450479151303 0110110001 0.0352379189091 1010111101 0.00926056971048
1010011101 0.0450479151303 0010111001 0.0352379189091 0010111001 0.00926056971048
1010001001 0.0450479151303 1111110010 0.0169143957798 1010101001 0.00926056971047
0111011001 0.0450479151303 1011111010 0.0169143957798 1110111100 0.00926056934071
0110011011 0.0450479151303 1011110011 0.0169143957798 0110111000 0.00926056934071
0110011000 0.0450479151303 1011110000 0.0169143957798 1110101000 0.0092605693407
0110010001 0.0450479151303 1010110010 0.0169143957798 1110111111 0.00926056912371
0010011001 0.0450479151303 1111111111 0.0151408138642 1110101011 0.00926056912371
1111111011 0.0258095086286 1111111100 0.0151408138642 0110111011 0.00926056912371
1111111000 0.0258095086286 1111110101 0.0151408138642 1111111101 0.00926056894358
1111110001 0.0258095086286 1111101011 0.0151408138642 0111111001 0.00926056894358
1110111010 0.0258095086286 1111101000 0.0151408138642 1111101001 0.00926056894357
1110110011 0.0258095086286 1111100001 0.0151408138642 0110001101 0.00690444485428
1110110000 0.0258095086286 1110111110 0.0151408138642 1110000101 0.00667498075898
1011111001 0.0258095086286 1110110111 0.0151408138642 0110010101 0.00667498075898
1010111011 0.0258095086286 1110110100 0.0151408138642 0110000001 0.00667498075898
1010111000 0.0258095086286 1110101010 0.0151408138642 0010011101 0.00667498011036
1010110001 0.0258095086286 1110100011 0.0151408138642 1010001101 0.00667498011035
1110111101 0.0238566421145 1110100000 0.0151408138642 0010001001 0.00667498011035
1110101001 0.0238566421145 1011111101 0.0151408138642 1110001100 0.00667497984383
0110111001 0.0238566421145 1011101001 0.0151408138642 0110011100 0.00667497984383
1111010010 0.0201929535747 1010111111 0.0151408138642 0110001000 0.00667497984383
1011011010 0.0201929535747 1010111100 0.0151408138642 1110001111 0.00667497968742
1011010011 0.0201929535747 1010110101 0.0151408138642 0110011111 0.00667497968742
1011010000 0.0201929535747 1010101011 0.0151408138642 0110001011 0.00667497968742
1010010010 0.0201929535747 1010101000 0.0151408138642 1111001101 0.00667497955758
1111011111 0.0184124229933 1010100001 0.0151408138642 0111011101 0.00667497955758
1111011100 0.0184124229933 0111111011 0.0151408138642 0111001001 0.00667497955758
1111010101 0.0184124229933 0111111000 0.0151408138642 0110101101 0.00183369510722
1111001011 0.0184124229933 0111110001 0.0151408138642 1110100101 0.0017845658203
1111001000 0.0184124229933 0110111010 0.0151408138642 0110110101 0.0017845658203
1111000001 0.0184124229933 0110110011 0.0151408138642 0110100001 0.0017845658203
1110011110 0.0184124229933 0110110000 0.0151408138642 1010101101 0.00178456564689
1110010111 0.0184124229933 0011111001 0.0151408138642 0010111101 0.00178456564689
1110010100 0.0184124229933 0010111011 0.0151408138642 0010101001 0.00178456564689
1110001010 0.0184124229933 0010111000 0.0151408138642 1110101100 0.00178456557563
1110000011 0.0184124229933 0010110001 0.0151408138642 0110111100 0.00178456557563
1110000000 0.0184124229933 1110101101 0.013510631096 0110101000 0.00178456557563
1011011101 0.0184124229933 0110111101 0.013510631096 1110101111 0.00178456553382
1011001001 0.0184124229933 0110101001 0.013510631096 0110111111 0.00178456553382
1010011111 0.0184124229933 1011110010 0.00721904913387 0110101011 0.00178456553382
1010011100 0.0184124229933 1111111110 0.00642358208512 1111101101 0.0017845654991
1010010101 0.0184124229933 1111110111 0.00642358208512 0111111101 0.0017845654991
1010001011 0.0184124229933 1111110100 0.00642358208512 0111101001 0.0017845654991
1010001000 0.0184124229933 1111101010 0.00642358208512 0110000101 0.00122452916781
1010000001 0.0184124229933 1111100011 0.00642358208512 0010001101 0.00122452904882
0111011011 0.0184124229933 1111100000 0.00642358208512 0110001100 0.00122452899992
0111011000 0.0184124229933 1110110110 0.00642358208512 0110001111 0.00122452897123
0111010001 0.0184124229933 1110100010 0.00642358208512 0111001101 0.00122452894741
0110011010 0.0184124229933 1011111111 0.00642358208512 0110100101 0.00032405626072
0110010011 0.0184124229933 1011111100 0.00642358208512 0010101101 0.00032405622923
0110010000 0.0184124229933 1011110101 0.00642358208512 0110101100 0.000324056216291
0011011001 0.0184124229933 1011101011 0.00642358208512 0110101111 0.000324056208698
0010011011 0.0184124229933 1011101000 0.00642358208512 0111101101 0.000324056202394
0010011000 0.0184124229933 1011100001 0.00642358208512 1001001001 2.12340664662e-16
0010010001 0.0184124229933 1010111110 0.00642358208512 0101001000 8.40682998014e-17
1110001101 0.0167294097115 1010110111 0.00642358208512 0101001001 7.87854604753e-17
0110011101 0.0167294097115 1010110100 0.00642358208512 0101010011 5.71809832666e-17
0110001001 0.0167294097115 1011011100 -0.00660751072818 1111011111 -0.00920228026839
1111111010 0.0107411701405 1011001011 -0.00660751072818 0111011011 -0.00920228026839
1111110011 0.0107411701405 1011001000 -0.00660751072818 1111001011 -0.0092022802684
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1111110000 0.0107411701405 1011000001 -0.00660751072818 1010110001 -0.0121963115581
1110110010 0.0107411701405 1010011110 -0.00660751072818 1110110000 -0.0121963124149
1011111011 0.0107411701405 1010001010 -0.00660751072818 1110110011 -0.0121963129178
1011111000 0.0107411701405 1010000011 -0.00660751072818 1111110001 -0.0121963133352
1011110001 0.0107411701405 0111011010 -0.00660751072818 1010111000 -0.0121963145003
1010111010 0.0107411701405 0111010011 -0.00660751072818 1010111011 -0.0121963150032
1010110011 0.0107411701405 0111010000 -0.00660751072818 1011111001 -0.0121963154206
1010110000 0.0107411701405 0110010010 -0.00660751072818 1110111010 -0.0121963158601
1111111101 0.00983153857517 0011011011 -0.00660751072818 1111111000 -0.0121963162775
1111101001 0.00983153857517 0011011000 -0.00660751072818 1111111011 -0.0121963167804
1110111111 0.00983153857517 0011010001 -0.00660751072818 1011110010 -0.0121970856193
1110111100 0.00983153857517 0010011010 -0.00660751072818 1010010110 -0.0130268890986
1110110101 0.00983153857517 0010010011 -0.00660751072818 1010000010 -0.0130268890986
1110101011 0.00983153857517 0010010000 -0.00660751072818 0010010010 -0.0130268890986
1110101000 0.00983153857517 1011010010 -0.00740376231762 1011010100 -0.013026889167
1110100001 0.00983153857517 1110001101 -0.0138562285143 1011000000 -0.013026889167
1010111101 0.00983153857517 0110011101 -0.0138562285143 0011010000 -0.013026889167
1010101001 0.00983153857517 0110001001 -0.0138562285143 1011010111 -0.0130268892494
0111111001 0.00983153857517 1111011111 -0.0154768015649 1011000011 -0.0130268892494
0110111011 0.00983153857517 1111011100 -0.0154768015649 0011010011 -0.0130268892494
0110111000 0.00983153857517 1111010101 -0.0154768015649 1111010110 -0.0130268893898
0110110001 0.00983153857517 1111001011 -0.0154768015649 1111000010 -0.0130268893898
0010111001 0.00983153857517 1111001000 -0.0154768015649 0111010010 -0.0130268893898
1011010010 0.00819106381112 1111000001 -0.0154768015649 1011011110 -0.0130268897314
1111011110 0.00741876485419 1110011110 -0.0154768015649 1011001010 -0.0130268897314
1111010111 0.00741876485419 1110010111 -0.0154768015649 0011011010 -0.0130268897314
1111010100 0.00741876485419 1110010100 -0.0154768015649 1010010100 -0.0162141034315
1111001010 0.00741876485419 1110001010 -0.0154768015649 1010000000 -0.0162141034315
1111000011 0.00741876485419 1110000011 -0.0154768015649 0010010000 -0.0162141034315
1111000000 0.00741876485419 1110000000 -0.0154768015649 1010010111 -0.0162141036093
1110010110 0.00741876485419 1011011101 -0.0154768015649 1010000011 -0.0162141036093
1110000010 0.00741876485419 1011001001 -0.0154768015649 0010010011 -0.0162141036093
1011011111 0.00741876485419 1010011111 -0.0154768015649 1011010101 -0.0162141037569
1011011100 0.00741876485419 1010011100 -0.0154768015649 1011000001 -0.0162141037569
1011010101 0.00741876485419 1010010101 -0.0154768015649 0011010001 -0.0162141037569
1011001011 0.00741876485419 1010001011 -0.0154768015649 1110010110 -0.0162141039123
1011001000 0.00741876485419 1010001000 -0.0154768015649 1110000010 -0.0162141039123
1011000001 0.00741876485419 1010000001 -0.0154768015649 0110010010 -0.0162141039123
1010011110 0.00741876485419 0111011011 -0.0154768015649 1111010100 -0.0162141040599
1010010111 0.00741876485419 0111011000 -0.0154768015649 1111000000 -0.0162141040599
1010010100 0.00741876485419 0111010001 -0.0154768015649 0111010000 -0.0162141040599
1010001010 0.00741876485419 0110011010 -0.0154768015649 1111010111 -0.0162141042377
1010000011 0.00741876485419 0110010011 -0.0154768015649 1111000011 -0.0162141042377
1010000000 0.00741876485419 0110010000 -0.0154768015649 0111010011 -0.0162141042377
0111011010 0.00741876485419 0011011001 -0.0154768015649 1010011110 -0.0162141046497
0111010011 0.00741876485419 0010011011 -0.0154768015649 1010001010 -0.0162141046497
0111010000 0.00741876485419 0010011000 -0.0154768015649 0010011010 -0.0162141046497
0110010010 0.00741876485419 0010010001 -0.0154768015649 1011011100 -0.0162141047973
0011011011 0.00741876485419 1111010010 -0.0172256615275 1011001000 -0.0162141047973
0011011000 0.00741876485419 1011011010 -0.0172256615275 0011011000 -0.0162141047973
0011010001 0.00741876485419 1011010011 -0.0172256615275 1011011111 -0.0162141049751
0010011010 0.00741876485419 1011010000 -0.0172256615275 1011001011 -0.0162141049751
0010010011 0.00741876485419 1010010010 -0.0172256615275 0011011011 -0.0162141049751
0010010000 0.00741876485419 1111011101 -0.0357354568504 1111011110 -0.0162141052781
1111001101 0.0067002776986 1111001001 -0.0357354568504 1111001010 -0.0162141052781
1110001111 0.0067002776986 1110011111 -0.0357354568504 0111011010 -0.0162141052781
1110001100 0.0067002776986 1110011100 -0.0357354568504 1010110010 -0.0182908991352
1110000101 0.0067002776986 1110010101 -0.0357354568504 1011110000 -0.0182908992312
1010001101 0.0067002776986 1110001011 -0.0357354568504 1011110011 -0.0182908993469
0111011101 0.0067002776986 1110001000 -0.0357354568504 1111110010 -0.018290899544
0111001001 0.0067002776986 1110000001 -0.0357354568504 1011111010 -0.0182909000238
0110011111 0.0067002776986 1010011101 -0.0357354568504 1010110000 -0.0221957426608
0110011100 0.0067002776986 1010001001 -0.0357354568504 1010110011 -0.0221957429042
0110010101 0.0067002776986 0111011001 -0.0357354568504 1011110001 -0.0221957431063
0110001011 0.0067002776986 0110011011 -0.0357354568504 1110110010 -0.022195743319
0110001000 0.0067002776986 0110011000 -0.0357354568504 1111110000 -0.0221957435211
0110000001 0.0067002776986 0110010001 -0.0357354568504 1111110011 -0.0221957437645
0010011101 0.0067002776986 0010011001 -0.0357354568504 1010111010 -0.0221957443285
0010001001 0.0067002776986 1111010011 -0.0394323709138 1011111000 -0.0221957445305
1111110010 0.0043888612532 1111010000 -0.0394323709138 1011111011 -0.0221957447739
1011111010 0.0043888612532 1110010010 -0.0394323709138 1111111010 -0.0221957451887
1011110011 0.0043888612532 1011011011 -0.0394323709138 1010010001 -0.0441111312141
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1011110000 0.0043888612532 1011011000 -0.0394323709138 1110010000 -0.0441111343133
1010110010 0.0043888612532 1011010001 -0.0394323709138 1110010011 -0.044111136132
1111111111 0.00398701318423 1010011010 -0.0394323709138 1111010001 -0.0441111376418
1111111100 0.00398701318423 1010010011 -0.0394323709138 1010011000 -0.0441111418555
1111110101 0.00398701318423 1010010000 -0.0394323709138 1010011011 -0.0441111436743
1111101011 0.00398701318423 1111011010 -0.0394323709139 1011011001 -0.044111145184
1111101000 0.00398701318423 1110011101 -0.0809979189956 1110011010 -0.0441111467734
1111100001 0.00398701318423 1110001001 -0.0809979189956 1111011000 -0.0441111482832
1110111110 0.00398701318423 0110011001 -0.0809979189956 1111011011 -0.0441111501019
1110110111 0.00398701318423 1111011011 -0.0883617782457 1011010010 -0.0453652843072
1110110100 0.00398701318423 1111011000 -0.0883617782457 1010010010 -0.0675537453698
1110101010 0.00398701318423 1111010001 -0.0883617782457 1011010000 -0.0675537457244
1110100011 0.00398701318423 1110011010 -0.0883617782457 1011010011 -0.0675537461517
1110100000 0.00398701318423 1110010011 -0.0883617782457 1111010010 -0.0675537468797
1011111101 0.00398701318423 1110010000 -0.0883617782457 1011011010 -0.0675537486515
1011101001 0.00398701318423 1011011001 -0.0883617782457 1010010000 -0.0812408242887
1010111111 0.00398701318423 1010011011 -0.0883617782457 1010010011 -0.0812408251797
1010111100 0.00398701318423 1010011000 -0.0883617782457 1011010001 -0.0812408259193
1010110101 0.00398701318423 1010010001 -0.0883617782457 1110010010 -0.0812408266979
1010101011 0.00398701318423 1111011001 -0.192284080152 1111010000 -0.0812408274375
1010101000 0.00398701318423 1110011011 -0.192284080152 1111010011 -0.0812408283284
1010100001 0.00398701318423 1110011000 -0.192284080152 1010011010 -0.0812408303927
0111111011 0.00398701318423 1110010001 -0.192284080152 1011011000 -0.0812408311323
0111111000 0.00398701318423 1010011001 -0.192284080152 1011011011 -0.0812408320232
0111110001 0.00398701318423 1110011001 -0.400881271349 1111011010 -0.0812408335415

Table C.30: Eigenvectors λ1, λ2 and λ3 for the Tbet/Gata3 MISA motif with leading ranked microstates for λ1 and microstates
with largest positive and negative λ2 component. The binary microstate code denotes activity of the aforementioned ESCs.
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APPENDIXD

Code documentation

D.1 Algorithmic commands

1 ## ChIP -Seq
2 # Bowtie
3 bowtie -t -m 1 -S -q -p 8 <Genome Location > <FASTQ File > <SAM File Output >
4
5 # SICER ( modified script )
6 SICER_modified .sh <Input file folder > <Input file name > <Control file name > <Output

folder > t mm10 1 200 150 0.8
7
8 ## RNA -Seq
9 # STAR

10 STAR --genomeDir <Directory > --runThreadN 8 --readFilesIn <Input file rep1 lane1 >,<
Input file rep1 lane2 > <Input file rep2 lane1 >,< Input file rep2 lane2 > --
outFileNamePrefix <Prefix > --outSAMtype BAM SortedByCoordinate

11
12 # HTSeq
13 python -m HTSeq . scripts . count -f bam <BAM Input file > <GTF file > > <Count file output >
14
15 ## HMM
16 java -mx2000M -jar ChromHMM .jar BinarizeBed -peaks <Genome file > <Input file folder > <

Cellmark file > <Output folder >
17
18 java -mx8000M -jar ChromHMM .jar LearnModel -p 8 -r 400 -color 0 ,0 ,255 -printposterior

-printstatebyline <Binarized file folder > <Output folder > 16 mm10

Listing D.1: Algorithmic commands with respective options from the data pre-processing workflow including the HMM.

D.2 Correlation algorithm

1 histone_correlation .sh Ifng -201 p1_1_p2_1 .4094 _p3_2 .7373. bed -r 1 -m --resolution 600

Listing D.2: Simple example for the execution of the correlation algorithm.

1 #### fragmentmerging : Merge adjacent similar fragments by mean and sd of the difference
across conditions

2 fragmentmerging <- function (frac , meanlimarg , sdlimarg ) {
3 #### fragmentmerging : Merge adjacent similar fragments by mean and sd of the difference

across conditions
4 ## Requires modification data as produced by enhancerfractionation and the thresholds

for similarity in mean and sd
5 ## ARGS:
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6 ## - frac = dataframe with two columns for the fragment position and replicates *
conditions columns with the corresponding modification data

7 ## - meanlimarg = vector of two values giving the negative and positive boundary for
similar mean values

8 ## - sdlimarg = numeric value giving the maximum sd for similar fragments
9 ## VALUE :
10 ## - frac = dataframe similar to the input frac , but with fewer lines where fragments

were combined
11 ## - file names meansddiff .png showing the differences between neighbouring fragments
12
13 # Combine neighbouring enhancers with similar density distribution
14 cols <- dim(frac)[2]
15 remove <- c(1)
16 cat(" Merging similar neighbouring fragments .\n")
17 flush . console ()
18 while ( length ( remove ) != 0) {
19
20 # Calculate mean and sd difference between neighbouring regions
21 meandiff <- c()
22 for(i in 2: dim(frac)[1]) meandiff <- c(meandiff , mean (as. numeric (frac[i ,3: cols]-

frac[i -1 ,3: cols ])))
23 sddiff <- c()
24 for(i in 2: dim(frac)[1]) sddiff <- c(sddiff , sd(as. numeric (frac[i ,3: cols]-frac[i

-1 ,3: cols ])))
25
26 # The first time these were calulated generate a plot including the automatically

calcualted quantiles and the set limits
27 if ( remove [1] == 1) {
28 # 1. automatic criterion would be to have and average difference between

conditions that is within the inner 50% quantile across all neighbouring
fragments

29 meanlim <- summary ( meandiff )[c("1st Qu.", "3rd Qu.")]
30 # 2. automatic criterion would be to have a sd difference between conditions that

is within the left 25% quantile across all neighbouring fragments
31 sdlim <- quantile (sddiff , 0.5)
32
33 # Plot distribution of differences
34 png( filename =" meansddiff .png")
35 plot (meandiff , sddiff , type="p", xlab="mean difference ", ylab="sd difference ")
36 # Plot calcualted lines in blue and argument lines in red
37 lines (c( meanlim [1] , meanlim [1] , meanlim [2] , meanlim [2]) , c(0, sdlim , sdlim , 0) ,

col="blue")
38 lines (c( meanlimarg [1] , meanlimarg [1] , meanlimarg [2] , meanlimarg [2]) , c(0,

sdlimarg , sdlimarg , 0) , col="red")
39 # Add title and close the png device
40 title (sub = paste0 ("mean = ", meanlim [1] , " - ", meanlim [2] , ", sd = ", sdlim ),

main = " Distribution of differences ")
41 dev.off ()
42
43 # Set both criteria to input value
44 meanlim <- meanlimarg
45 cat( paste0 (" Matching limit for mean difference is ", meanlim [1] , "-", meanlim [2] ,

".\n"))
46 sdlim <- sdlimarg
47 cat( paste0 (" Matching limit for sd difference is ", sdlim , ".\n"))
48
49 # How many neighbours are within the limit ?
50 meanmatch <- length ( which ( meandiff >= meanlim [1] & meandiff <= meanlim [2] &

sddiff <= sdlim ))
51 # If no pairs are within the limit return frac as it was
52 if ( meanmatch == 0) {
53 cat(" There no fragments similar enough to be fused . Please consider setting

different thresholds for mean and sd .\n")
54 return (frac)
55 }
56 # Create Progress bar
57 pb <- txtProgressBar (min = -meanmatch , max = 0, style =3)
58 }
59
60 # The following is done in all cases including the first
61 # How many neighbours are within the limit ?
62 meanmatch <- length ( which ( meandiff >= meanlim [1] & meandiff <= meanlim [2] & sddiff
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<= sdlim ))
63 # Set Progress bar to value according to possible matches
64 setTxtProgressBar (pb , -meanmatch )
65
66 # Combine matching rows
67 remove <- c()
68 # Go through all lines starting at number two and compare with the neighbouring

fragments to decide whether it has to be fused
69 for(i in 2: dim(frac)[1]) {
70
71 # only left sided comparison for last element
72 if (i == dim(frac)[1]) {
73
74 # Check whether left neighbour is adjacent and similar
75 if (frac $ starts [i] == frac $ stops [i -1]) {
76 # logical statement to test whether its similar :
77 left <- meandiff [i -1] >= meanlim [1] & meandiff [i -1] <= meanlim [2] & sddiff [i

-1] <= sdlim
78 } else left <- FALSE
79
80 # Combine to left neighbour if it matches
81 if (left == TRUE) { # Left neighbour fits and wasn ’t matched to its left

neighbour ( otherwise they wouldn ’t combine )
82 # calculate sizes of fragments to fuse
83 sizel <- frac $ stops [i -1] - frac $ starts [i -1]
84 sizer <- frac $ stops [i]-frac $ starts [i]
85 # convert densities to modcounts in order to calculate the average weighted

by the fragment size
86 frac [(i -1) ,3: cols] <- frac [(i -1) ,3: cols]* sizel
87 frac[i ,3: cols] <- frac[i ,3: cols]* sizer
88 # overwrite left neighbour with average modcount and expand its range
89 frac [(i -1) ,] <- cbind (frac [(i -1) ,1], frac[i ,2] , t( colMeans (frac [(i -1):i, 3:

cols ])))
90 # convert average modcount back to density by dividing through average length

of the fused fragments
91 frac [(i -1) ,3: cols] <- frac [(i -1) ,3: cols]*2/( sizel + sizer )
92 # add current line to the list of elements to be removed
93 remove <- c(remove , i)
94 # change current line ’s stop to make sure that next line can ’t combine with

it
95 frac $ stops [i] <- 0
96 }
97
98 } else if (frac $ starts [i] != frac $ stops [i -1] & frac $ stops [i] != frac $ starts [i+1])

{ # Skip isolated rows
99 next

100 } else { # all rows that are neither the last nor isolated
101
102 # Check whether left neighbour is similar
103 if (frac $ starts [i] == frac $ stops [i -1]) {
104 left <- meandiff [i -1] >= meanlim [1] & meandiff [i -1] <= meanlim [2] & sddiff [i

-1] <= sdlim
105 } else left <- FALSE
106 # Check whether right neighbour is similar
107 if (frac $ stops [i] == frac $ starts [i+1]) {
108 right <- meandiff [i] >= meanlim [1] & meandiff [i] <= meanlim [2] & sddiff [i] <=

sdlim
109 } else right <- FALSE
110
111 # Combine best fitting row
112 if ( right == FALSE & left == FALSE ) { # Both neighbours are different
113 next
114 } else if ( right == FALSE & left == TRUE) { # Only left neighbour fits and wasn

’t matched yet
115 # calculate sizes of fragments to fuse
116 sizel <- frac $ stops [i -1] - frac $ starts [i -1]
117 sizer <- frac $ stops [i]-frac $ starts [i]
118 # convert densities to modcounts in order to calculate the average weighted

by the fragment size
119 frac [(i -1) ,3: cols] <- frac [(i -1) ,3: cols]* sizel
120 frac[i ,3: cols] <- frac[i ,3: cols]* sizer
121 # overwrite left neighbour with average modcount and expand its range
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122 frac [(i -1) ,] <- cbind (frac [(i -1) ,1], frac[i ,2] , t( colMeans (frac [(i -1):i, 3:
cols ])))

123 # convert average modcount back to density by dividing through average length
of the fused fragments

124 frac [(i -1) ,3: cols] <- frac [(i -1) ,3: cols]*2/( sizel + sizer )
125 # add current line to the list of elements to be removed
126 remove <- c(remove , i)
127 # change current line ’s stop to make sure that next line can ’t combine with

it
128 frac $ stops [i] <- 0
129 } else if ( right == TRUE & left == FALSE ) { # Only right neighbour fits but

wasn ’t matched yet
130 # Right neighbour will either match the current line or fit better to its

next line
131 next
132 } else if ( right == TRUE & left == TRUE) { # Both neighours fit
133 # Check whether left or right neighbour is the better match
134 if (abs( meandiff [i -1]) < abs( meandiff [i])) { # left match is better and didn ’

t match before
135 # calculate sizes of fragments to fuse
136 sizel <- frac $ stops [i -1] - frac $ starts [i -1]
137 sizer <- frac $ stops [i]-frac $ starts [i]
138 # convert densities to modcounts in order to calculate the average weighted

by the fragment size
139 frac [(i -1) ,3: cols] <- frac [(i -1) ,3: cols]* sizel
140 frac[i ,3: cols] <- frac[i ,3: cols]* sizer
141 # overwrite left neighbour with average modcount and expand its range
142 frac [(i -1) ,] <- cbind (frac [(i -1) ,1], frac[i ,2] , t( colMeans (frac [(i -1):i, 3:

cols ])))
143 # convert average modcount back to density by dividing through average

length of the fused fragments
144 frac [(i -1) ,3: cols] <- frac [(i -1) ,3: cols]*2/( sizel + sizer )
145 # add current line to the list of elements to be removed
146 remove <- c(remove , i)
147 # change current line ’s stop to make sure that next line can ’t combine with

it
148 frac $ stops [i] <- 0
149 } else {
150 # Right neighbour might still find a better match to its right side so go

next
151 # This might cause a whole chain of next cases , but it will end latest at

the end of the current neigbourhood . In the next repeat of the while
loop the case might change . So this next increases the runtime but is
the only correct option .

152 next
153 }
154 }
155 }
156
157 # Continue with next line of frac
158 }
159
160 # After going through all lines of frac and matching leftsided , similar neighbours

remove extra lines and start over
161 if ( length ( remove ) != 0) frac <- frac[-remove ,]
162 }
163 # Finish Progress bar
164 setTxtProgressBar (pb , 0)
165 close (pb)
166
167 return (frac)
168 }

Listing D.3: R-function for enhancer fragment merging as implemented in the correlation algorithm.
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D.3 Class-specificity computation

1 import numpy as np
2 from numpy import *
3 from sklearn . preprocessing import scale
4 from sklearn . ensemble import ExtraTreesClassifier
5
6 X = ... #read feature matrix input
7 Y = ... #read binary target vector input
8 y=Y. astype (int)
9 M, N = X. shape

10 X2= scale (X)
11
12 # train ERT classifier
13 forest = ExtraTreesClassifier ( n_estimators =10000 , random_state =0)
14 forest .fit(X, y)
15
16 # extract Gini impurities
17 importances = forest . feature_importances_
18
19 # calculate intra - class Gini impurity for Th1 as an example
20 gini_intraclass_th1 = sorted (zip(np.mean(X2[y== ’Th1 ’ :], axis =0)* importances *( X2[y== ’Th2 ’

, :]. sum(axis =1).sum () /( shape (X2[y== ’Th2 ’, :]. sum(axis =1))[0]))/( abs(np.mean(X2[y==
’Th2 ’, :], axis =0))*X2[y== ’Th1 ’, :]. sum(axis =1).sum () /( shape (X2[y== ’Th1 ’, :]. sum(
axis =1))[0])), range (N)))

21
22
23 # do LOOCV predictions
24 predictall =[]
25 for i in range (M):
26 Xtest =np. concatenate (( X2 [0:i ,:] , X2[i+1:M ,:]) , axis =0)
27 Ytest =np. concatenate ((Y[0:i], Y[i+1:M]) , axis =0)
28 forest .fit(Xtest , Ytest )
29 predictall . append ( forest . predict (X2[i:i+1 ,:]))

Listing D.4: Intra-class Gini impurity computation in Python.

D.4 Computational dependencies & packages

General:

Bowtie v1.2.1.1
STAR v2.4.0j
SICER v1.1
HT-Seq v0.6.1
ChromHMM v1.10
HOMER v4.7
Cytoscape v3.4.0
cytoscape.js v3.2.14

Python:

python v2.7.13
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networkx v1.11
scikit-learn v0.19.1
scipy v0.19.0
pandas v0.19.2
seaborn v0.8.1
matplotlib v2.0.2
numpy v1.13.3

R:

R v3.3.2
vsn v3.48.1
DESeq2 v1.20
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Acronyms

AIC Akaike Information Criterion.

BIC Bayesian Information Criterion.

CNS Conserved Non-Coding Sequence.

CSC Chromatin State Class.

ERT Extremely Randomized Trees.

ESC Enhancer State Class.

FDR False Discovery Rate.

FFL Feed-Forward Loop.

GRN Gene Regulatory Network.

HAT Histone Acetyltransferase.

HER Hierarchical Edge Removal.

HMM Hidden Markov Model.

LFC Logarithmic Fold Change.

LOOCV Leave-One-Out Cross-Validation.

MAP Maximum Likelihood A Posteriori Estimate.

MCL Markov Cluster Algorithm.

MISA Mutual-Inhibition and Self-Activation.

PCA Principal Component Analysis.

RSC Repressive State Class.

RWIF RandomWalk Information Flow.

SC Spectral Clustering.
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Acronyms

TAD Topologically Associating Domain.

TES Transcription End Site.

TF Transcription Factor.

TSS Transcription Start Site.

VST Variance Stabilizing Transformation.
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