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Zusammenfassung

Apoptotische Zellen induzieren einen tolerogenen Phänotyp in dentritischen Zellen (DC)

und tragen damit zur Entwicklung und Erhaltung von peripherer Toleranz bei. Unsere

Gruppe erforscht den Einfluss von apoptotischen Zellen auf DC und entdeckte, dass die

evolutionär konservierte Annexin-Kerndomäne (Anx) auf der Oberfläche von apoptot-

ischen Zellen präsent ist und als immunsuppressiver Mediator der Aktivierung von Toll-

like Rezeptor (TLR) signalling entgegenwirkt.

Diese Studie analysierte, ob die tolerogenen Eigenschaften von Anx darüber hinaus Antigen-

spezifische Immunreaktionen gegen das Modellantigen Ovalbumin (Ova) regulieren kann.

Sowohl die Vorbehandlung von bone marrow-derived dendritic cells (BMDC) mit löslichem

Anx als auch die Behandlung von BMDCmit Beads, an die Anx und Ova gebunden wurde,

führte zu einer reduzierten Ova-spezifischen T-Zell-Antwort. Die Ova-spezifischen OT-II

T-Zellen zeigten vermindertes Wachstum und verminderte Zytokinsekretion und somit

einen Anergie-ähnlichen Phänotyp nach der Ko-Kultivierung mit behandelten BMDC.

Die anti-inflammatorische Aktivität von Anx wird über die DC vermittelt. Allerdings

sind die dafür verantwortlichen Mechanismen noch unklar. Im Gegensatz zu apoptot-

ischen Zellen, induzierte Anx keinen tolerogenen Phänotyp in BMDC. Es konnte sogar

gezeigt werden, dass die zuvor in der Literatur beschriebene Zytokinsuppression keinen

Einfluss auf die Inhibition von T-Zellen hat. In dieser Studie konnte jedoch eine erhöhte

Produktion von reaktive Sauerstoffspezies (ROS) als ein neuer Anx-induzierte Effektor

in BMDC identifiziert werden. Diese ROS könnten sowohl die DC selbst als auch die

DC-T-Zell-Interaktion beeinflussen.

Obwohl die Mechanismen hinter der Anx-vermittelten Suppression nicht aufgeklärt wer-

den konnten, demonstriert diese Studie, dass Anx genutzt werden kann, um ein Partikel-

basiertes System mit Antigen-spezifischen, immunsuppressiven Eigenschaften zu entwick-

eln. Anx-Partikel dieser Art könnten als neue Therapieoption in Autoimmunerkrankun-

gen genutzt werden und könnten somit eine Alternative zu der aktuellen Behandlung mit

allgemeinen Immunsuppresiva darstellen.
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Abstract

Apoptotic cells mediate the development of tolerogenic dendritic cells (DC) and thus facil-

itate the induction and maintenance of peripheral tolerance. Our group investigated the

influence of apoptotic cells on DC and identified the cell surface exposure of the evolution-

ary conserved annexin core domain (Anx) as a specific signal which antagonises Toll-like

receptor (TLR) signalling.

This study examined whether the tolerogenic capacity of Anx can be exploited to down-

regulate antigen-specific immune responses to the model antigen ovalbumin (Ova). The

treatment of bone marrow-derived dendritic cells (BMDC) with soluble Anx prior to Ova

administration or the treatment with beads harbouring Anx as well as Ova attenuated the

response of Ova-specific OT-II T cells. The co-culture of treated DC and T cells resulted

in an anergy-like phenotype characterised by reduced proliferation and cytokine secretion.

The anti-inflammatory effects of Anx are mediated through DC by yet unknown mech-

anisms. Anx did not lead to the tolerogenic DC phenotype described to be induced

by apoptotic cells and also the previously reported suppression of anti-inflammatory cy-

tokines by Anx was dispensable for the effect on T cells. However, this study revealed

enhanced production od reactive oxygen species (ROS) in BMDC in response to Anx

which might affect the DC/T cell interactions.

Although the underlying mechanisms remain to be elucidated, this study demonstrates

that Anx can be used as a tool to generate a particle-based antigen delivery system that

promotes antigen-specific immunosuppression. Such Anx-particles may be a new thera-

peutic approach for the treatment of autoimmune disease.
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1 Introduction

1 Introduction

1.1 The immune system

1.1.1 Innate immunity

The immune system is vital to protect the organism from invading pathogens, toxins and

other dangers. The innate immune response is evolutionary well conserved and can be

found, at least partially, in all living organisms. It represents a first line of defence and can

be sufficient to eliminate an infection. Innate immunity relies on the recognition of com-

mon pathogen structures called pathogen-associated molecular patterns (PAMP) which

in turn are sensed by a defined set of pattern recognition receptors (PRR). Granulocytes,

NK cells, macrophages (Mφ) and dendritic cells (DC) are cells of the innate immune sys-

tem and have three major tasks: phagocytose pathogens and infected cells, lyse them and

activate the adaptive immune system. 1

Mφ, as their name implies (greek: big eaters), are the main phagocytes of the immune

system. In addition to engulfing pathogens and infected cells they are also responsible for

clearance of apoptotic cells and their debris. They are also capable of shaping immune re-

sponses by the secretion of inflammatory mediators including cytokines. 2 However, their

direct interaction with cells of the adaptive immune system is rather limited 3.

The main inducers of adaptive immune responses are DC 2. They continuously sample

their environment via phagocytosis, receptor-mediated endocytosis and macropinocytosis

to present antigens to the adaptive immune system. DC are the most efficient antigen

presenting cells (APC) since they are capable of presenting even picomolar concentra-

tions of antigen 3,4. Antigens must be presented in a specific form, hence the antigens are

processed and loaded onto major histocompatibility complexes (MHC). Depending on the

mechanism of uptake and compartment localisation, the antigen is presented on MHC class

I or II and thus presented to CD8+ or CD4+ Tcells, respectively. Exogenous antigens but

also cytosolic proteins that are processed in endolysosomes can be loaded onto MHC II.

Endogenous proteins are rather processed by the proteasome in the cytosol and then

transported into the endoplasmatic reticulum (ER) where they are loaded onto MHC I

molecules. Under certain conditions, exogenous proteins can escape into the cytosol where

they are subject to proteasomal degradation and hence get loaded onto MHC I. Present-

ation of exogenous antigens within MHC I is also called cross-presentation. 5,6

1



1 Introduction

1.1.2 Adaptive immunity

The adaptive immune system comprises B and T lymphocytes and, in contrast to the

innate immune system, elicits antigen specific immune responses. A lymphocyte can only

respond to a single antigen defined by the specificity of the T cell and B cell receptor

(TCR and BCR, respectively) which are generated via somatic recombination. 7,8

Tcells can only be activated upon interaction with APC and the resulting T cell response

is shaped by three signals. The first signal is the binding of the TCR to antigen-loaded

MHC on the DC which assures antigen specificity. CD8+Tcells can only recognise MHC I

while CD4+Tcells recognise MHC II. The second signal is co-stimulation, referring to an

interaction of CD28 on the T cell with B7 molecules on the APC. The third signal are cy-

tokines which are necessary for differentiation of naive T cells into effector T cells. 7,9 Signal

2 and 3 are decisive for the type of T cell response, which can be immunogenic or tolero-

genic. Immunogenic responses on the one side can be triggered by engagement of CD28

with CD80 or CD86 in conjugation with pro-inflammatory cytokines like interleukin-6

(IL-6) or IL-12 and is also supported by CD40/CD40L interaction. The latter acts as a

positive feedback loop for the DC 9,10. On the other side, a tolerogenic outcome is favoured

by interactions of inhibitory co-receptors and supported by anti-inflammatory cytokines

like IL-10 or transforming growth factor β (TGF-β). 9,11

Co-inhibition is essential to regulate and limit T cell responses (fig. 1). The most critical

co-receptor on the T cell surface in this respect seems to be cytotoxic T-lymphocyte-

associated protein 4 (CTLA-4) since the loss of only this receptor leads to severe and

fatal autoimmune disease 12,13. Furthermore, the blockade of CTLA-4 is associated with

severe autoimmune-like toxicities 14,15. CTLA-4 is expressed upon T cell activation and,

as a homologue of CD28, it also binds CD80 and CD86, but with an opposing, inhibitory

outcome. 16 CTLA-4 has a higher binding affinity to CD80/CD86 than CD28 and can

limit the interaction of CD80/CD86 with CD28. 17 Besides being a competitor for CD28,

CTLA-4 interferes with TCR signalling and hence acts as an intrinsic T cell regulator. 16

The second most important co-inhibitor seems to be programmed cell death protein 1

(PD-1). Albeit, deficiency or blockade of PD-1 provokes autoimmunity, the etiology and

symptoms are milder than those observed in the context of CTLA-4. 15,18,19 Similar to

CTLA-4, PD-1 is expressed upon T cell activation and binds to PD-L1 and PD-L2 on

the APC surface. PD-L1 is constitutively expressed whereas PD-L2 expression depends

on the maturation status of the APC. 20 Upon ligation with one of its ligands, PD-1

antagonises T cell activation by initiating dephosphorylation of TCR and CD28 signalling

molecules. 21

PD-1 seems to be co-expressed and to have synergistic functions with other co-receptors,

2





1 Introduction

subtypes of T helper (TH) cells. TH1 responses are characterised by IL-2 and IFN-γ se-

cretion which can counteract e.g. intracellular pathogens and tumours. TH2 cells secrete

IL-4, IL-5 and IL-13 to support B cell responses against exogenous pathogens or allergens.

And TH17 cells, which mainly produce IL-17, are implicated in maintaining mucosal bar-

riers. 7 Tolerogenic T cell differentiation will be addressed in 1.2.2.3.

1.2 Immunotolerance

Somatic recombination generates a diverse TCR repertoire which is essential to ensure

a response against a huge variety of pathogenic antigens. However, this random gene

rearrangement also leads to TCRs recognising structures of the own tissue called self-

antigens. Self-reactive T cells can cause autoimmune disease and hence must be eliminated

or tightly controlled.

1.2.1 Central tolerance

Central tolerance is a two step process that controls T cell reactivity during T cell develop-

ment in the thymus. First, thymocytes, which are precursors of T cells, are positively selec-

ted for a functional TCR, which can recognise MHC molecules. Upon TCR rearrangement

and upregulation of CD4 and CD8 co-receptors, the thymocytes are tested for binding to

peptide-MHC complex (pMHC) in the thymic cortex. Thymocytes without a functional

TCR die while thymocytes with baseline binding to pMHC migrate to the thymic medulla

where they encounter medullary thymic epithelial cells (mTEC) and thymic DC present-

ing self-antigens. Recognitions of self-antigens by the TCR leads to negative selection

and hence elimination of thymocytes with strong self-reactivity. Thymocytes with a TCR

that binds weakly to self-antigens can survive negative selection and are programmed to

become regulatory T cells (Treg) by the upregulation of the transcription factor Foxp3. 36

1.2.2 Peripheral tolerance

Although many self-reactive T cell clones undergo apoptosis during central tolerance, this

system is imperfect and self-reactive T cells escape into the periphery where they must

be controlled by peripheral tolerance mechanisms.

1.2.2.1 Tolerogenic dendritic cells

DC are in the centre of immunity and thus control pro- and anti-inflammatory T cell re-

sponses. Deletion of DC in mice results in severe autoimmunity emphasising the role of

DC in maintaining tolerance 37. However, DC can also contribute to autoimmunity. Dys-

regulated or aberrant DC activation can break tolerance and drive autoimmunity which

is illustrated in various mouse models where transfer of such DC promote autoimmune

4



1 Introduction

disease in healthy recipients 38–40. Moreover, human patients show high numbers of DC

in autoimmune lesions 41.

DC with the capacity to maintain tolerance are commonly referred to as tolerogenic DC

(tolDC) but whether location, subtype or maturation state characterise tolDC is still a

matter of debate. The subtype of CD8α+DC, for example, is often mentioned in this

context despite the fact that this subset is the only subset inducing tolerance 42,43.

The location or environment can have great influence on the function of DC. Organs

like the spleen, where CD8α+DC are mainly located, or the liver are described to fa-

vour tolerance e.g. by the presence of anti-inflammatory factors such as retinoic acid or

vitamin D3. 44,45

Another major hypothesis puts the maturation state rather than a specific subset or loca-

tion of DC into the focus. These concepts do not necessarily exclude each other and some

propose that the immature state is the common factor after all. An anti-inflammatory

environment can promote an immature DC state. Moreover, it was also described that

DC in peripheral organs like the spleen are generally immature. 46

Activation or maturation of DC lead to a number of phenotypical changes including up-

regulation of MHC moleculres, co-stimulatory molecules, migratory factors like CCR7 and

the secretion of cytokines and chemokines. These alterations are important to mount a

protective inflammatory T cell response 47. Immature DC retain low expression of co-

stimulatory molecules resulting in insufficient T cell activation which in turn can lead

to tolerance. This classical view is however challenged by observations that DC with

increased expression of co-stimulatory molecules and CCR7 can be anti-inflammatory

leading to the term semi-mature DC 45,48–50. This indicates that insufficient T cell activa-

tion represents only one mechanism used by DC to induce tolerance.

DC modulate T cell responses via soluble mediators and via direct cell contact. The

most prominent anti-inflammatory cytokines secreted by DC are IL-10 51,52 and TGF-

β 53. But there are additional cytokines supporting tolerance, e.g. IFN-α is described to

synergise with IL-10 to downregulate T cell cytokines like IL-2 or IL-4 54 and IL-27 was

found to antagonise IL-2 transcription and to promote IL-10 secretion from different T cell

subsets 55. Furthermore, DC use soluble mediators influencing the metabolism of T cells.

Such metabolites include retinoic acid, a vitamin A derivate, 56 or indoleamine-pyrrole 2,3-

dioxygenase (IDO), which is a rate-limiting enzyme in the metabolism of tryptophane 57.

DC also regulate T cell activity in a contact-dependent manner. The B7 molecules PD-L1

and PD-L2 serve as co-inhibititory ligands 45. PD-L1, which was found to be upregu-

lated on tolDC 46, seems to play a more important role in this context. Blockade of

PD-1/PD-L1 interactions leading to a re-activation of the anti-tumour response revolu-

tionised cancer immunotherapy 58 and highlights the strong regulatory capacity of PD-L1.

5



1 Introduction

PD-1/PD-L1 or PD-L2 interaction are just one example of promoting tolerance via co-

inhibitory receptors on T cells. The co-stimulatory ligands CD80 and CD86 on DC can

also transfer inhibitory signals when interacting with CTLA-4. Furthermore, the family

of immunoglobulin-like transcript (ILT) receptors expressed on DC is implicated to pro-

mote T cell tolerance. As most of the other described co-inhibitory molecules, ILTs have

a dual function on both DC and T cells. In the case of ILT3, the tolerogenic phenotype

of the DC is stabilised by NF-κB inhibition while T cell proliferation can be suppressed

independently. 59,60 Although the molecular mechanism on T cells is not yet understood,

the suppressive function of ILT3 was clearly illustrated, e.g. by using soluble ILT3-Fc (in

the absence of DC) 61 or by the detection of increased serum concentrations of ILT3 in

patients with cancer or chronic infections 62,63.

1.2.2.2 Apoptotic cell-mediated tolerance

Around one million cells of the human body die every second due to physiological tis-

sue turnover and are rapidly cleared by phagocytes, e.g. Mφ and DC. 64 Apoptotic cells

are intrinsically immunosuppressive and hence their engulfment promotes a tolerogenic

phenotype and supports the presentation of self-antigens in a tolerogenic context. 65–67

The importance of apoptotic cells for peripheral tolerance was highlighted by the fact

that all mouse models harbouring defects in the clearance or processing of apoptotic cells

developed autoimmune disease 68–70.

Effects of apoptotic cells on Mφ were already described in 1997 by Voll et al. in co-

culture experiments. Pre-incubation of monocytes with apoptotic cells followed by LPS

stimulation resulted in reduced secretion of pro-inflammatory cytokines like IL-12 and

TNF-α when compared to monocytes only stimulated with LPS. Additionally, secretion

of the anti-inflammatory cytokine IL-10 was increased in pre-treated monocytes. Us-

ing cells from different species rendered apoptotic by different stimuli further suggested

a conserved anti-inflammatory function of apoptotic cells. 71 The capacity of apoptotic

cells to suppress inflammatory cytokine secretion from monocytes as well as from Mφ

was demonstrated in several other studies and some gave also further insight into the

underlying mechanisms 72–76. It was shown that apoptotic cell mediated suppression is

an immediate-early event which is independent of de novo protein synthesis 73 poten-

tially including enhanced transcription of suppressor of cytokine signaling (SOCS)1 and

SOCS3 76.

Similarly, inflammatory cytokine secretion from DC and upregulation of costimulatory

molecules and MHC II on the DC is impaired following pre-treatment with apoptotic

cells. 77–81 However, the secretion of IL-10 in response to apoptotic cells is controversial

for DC. 77,81,82 Regardless of IL-10, apoptotic cell treated DC show a rather tolerogenic

phenotype and a diminished ability to stimulate T cells.77–79
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1.2.2.3 T cell tolerance

Tolerogenic DC, as described above, are key regulators of peripheral tolerance, but the ul-

timate outcome of peripheral tolerance must be silencing of the adaptive immune system

against self. Autoreactive T cells in the periphery are controlled by three mechanisms:

deletion, anergy and Treg.

T cells undergo CD95- and Bim-mediated apoptosis following repeated TCR engagement

with pMHC. This process is important to limit T cell responses against pathogens but

also results in the elimination of autoreactive T cells since they encounter their antigen

frequently due to the expression within the own tissue. 83

Anergy is a state of T cell unresponsiveness that was first described by Rammensee and

colleagues in 1989 84. Anergic cells are long-lived and show no or only diminished prolifer-

ation and cytokine secretion. Importantly, not only the typically assessed TH1 cytokines

IL-2 and IFN-γ are reduced but there is no production of anti-inflammatory cytokines

such as IL-10 or TGF-β, either. 85–87 This phenotype is generally insusceptible to restim-

ulation but can be reversed by large amounts of exogenous IL-2 in vitro. The phenotype

seems to be more stable in vivo and resists IL-2 exposure but persistent presence of the

antigen is required to sustain unresponsiveness. 88,89

Anergic T cells are believed to develop upon suboptimal activation which mainly refers

to TCR stimulation in the absence of co-stimulation. 91,92 Additionally, immunomodulat-

ors like IL-10 were described to be involved in anergy induction in some cases. 93 Lack

of co-stimulation can be directly associated with inhibited IL-2 production. Full T cell

activation combines nuclear translocation of nuclear factor of activated T-cells (NFAT)

following TCR signalling induced calcium flux and nuclear translocation of activator pro-

tein 1 (AP-1) resulting from CD28 dependent protein kinase C (PKC)-θ (fig. 2). Trans-

location of both NFAT and AP-1 leads to IL-2 transcription, whereas signalling through

the TCR alone triggers only NFAT translocation and thereby transcription of a different,

rather inhibitory gene set. 90 The molecular mechanisms behind T cell anergy are not com-

pletely understood, yet it is generally accepted that the transcription factor early growth

response protein 2 (Egr2) and post-transcriptional modifications via ubiquitinylation are

essential. 87,94 Egr2 is an immediate target of NFAT and is found to be upregulated in

anergic T cells in vitro and in vivo. 95,96 Egr2 in concert with NFAT triggers an alternative

gene programme including Cblb, gene related to anergy in lymphocytes (GRAIL), cyclin

dependent kinase inhibitors and enhanced SOCS1 and SOCS3 activity. 29,97,98 Thus, Egr2

is an initiator of anergy.

Cblb is a E3 ubiquitin ligase that counteracts association of CD28 and PI3K by ubiquit-

inylation of the latter (fig. 2). As such, Cblb serves as a negative regulator that needs to
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cells. 109 Tr1 and TH3 cells are assumed to result from repetitive stimulation by tolDC in

the presence of IL-10 and TGF-β, respectively. 110,111

Despite the antigen-specific activation via the TCR, all Treg subsets suppress in antigen-

unspecific manner once they are activated. 107,108 CD25+FoxP3+ Treg exert their function

mainly via cell-cell contact but the details remain elusive. Aside from effects mediated

through Treg/effector T cell contact, CD25+FoxP3+ Treg modulate T cell responses in-

directly by interacting with DC. Treg might limit the contact of effector T cells to DC

due to increased expression of adhesion molecules and hence stronger binding to DC 112.

Another example for this indirect functions is the downregulation of costimulatory mo-

lecules (e.g. CD80) on DC via CTLA-4 on the Treg 113. The suppressive function of

induced Treg on the other side, relies mainly on contact-independent cytokine secretion.

Despite some studies linking Lag-3 expression to Tr1 cells, Tr1 cells are mainly defined

by the production of large amounts of IL-10 while TH3 primarily produce TGF-β. 110,111,114

Although T cell tolerance includes quite different mechanisms, namely deletion, anergy

and Treg, the criteria leading to their induction are very similar and even overlapping.

Antigen presentation in absence of inflammation or co-stimulation is described for both

Treg and anergic T cells 91,92,115,116. Moreover, tolDC are fundamental for all types of

tolerance and it seems that the distinct outcome of tolDC/T cell interaction is difficult

to predict. Hawiger and colleagues described that tolDC induced initial proliferation

followed mainly by deletion but also unresponsiveness of the remaining T cells after chal-

lenge 117. Furthermore, two similar models of tolerance using adoptively transferred T cells

resulted in different modes of tolerance. Kurts et al. observed T cell deletion of Ovalbu-

min (Ova)-specific T cells transferred into transgenic mice expressing Ova in pancreatic

cells 118, whereas Adler et al. observed anergy in influenza hemagglutinin (HA)-specific

T cells transferred into mice expressing HA on parenchymal cells 119. These studies clearly

indicate that there are further unknown factors that regulate the induction of different

modes of T cell tolerance and emphasise the complexity of peripheral tolerance.

1.3 Autoimmunity and tolerogenic therapy

About 1 in 15 individuals in developed countries is affected by autoimmune disease. In

these individuals misdirected immune responses attack healthy tissue leading to chronic

and sometimes even fatal pathologies. Autoimmune disease can be systemic like rheuma-

thoid arthritis and systemic lupus erythematosus or organ-specific as in the case of type 1

diabetes (T1D), or multiple sclerosis (MS). But in either case there is no cure and patients

need life-long treatment to control the disease. 120

Current therapies are based on general immunosuppression using corticosteroids or bio-

logics. The latter target different parts of the immune system like the inflammatory cy-
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tokines IL-6 (Tocilizumab) and TNF-α (Etanercept) or the complete B- and T-lymphocyte

compartment (Rituximab and Teplizumab, respectively). 120–122 These treatments are

rather unspecific and hence associated with numerous side effects. New therapeutic op-

tions that only inhibit the misguided immune response while sparing protective immunity

are urgently needed. Different approaches to achieve antigen-specific modulation of the

immune system are currently under investigation and described in the following sections.

1.3.1 Peptide therapy

Antigen presentation in the absence of inflammatory signals is generally thought to result

in tolerance. Thus, it seems straightforward to use soluble antigen for therapy.

Although administration of full protein was tested, current development is more focused

on using MHC trimmed epitopes. These include natural antigen peptides but also altered

peptide ligands, which are the predicted epitopes harbouring modifications of single amino

acids leading to an altered affinity to MHC or TCR. High doses of protein or peptide were

capable of inducing tolerance in different mouse models. 123–125 However, the outcome of

this type of therapy showed quite some variance and was even reported to induce ana-

phylactic responses. 123,126 Furthermore, attempts to translate peptide therapy into the

clinic failed due to a lack of efficiency or adverse affects. Peptides or full-length insulin

could so far not be proven to be an effective therapy in diabetes. 127,128 Altered peptide

ligands designed for MS were already quite advanced but could not pass phase 3 clinical

trials after all and even worsened the condition of some patients. 129–131

A different approach to deliver antigen is to trigger antigen expression in healthy organs

via DNA vaccination. While the risk of anaphylaxia can be reduced, reliable immunosup-

pression is also an critical issue of this approach. 123,132,133

1.3.2 Cell-based therapy

DC and Treg are important regulators of tolerance induction and maintenance. Using

or targeting these cells is therefore a promising concept for the treatment of autoim-

mune disease. Transfer of ex vivo expanded Treg populations had beneficial effects in

several mouse models of autoimmunity. 134–136 Clinical translation is however hampered

by phenotypic instability of ex vivo generated or expanded Treg observed after reinfu-

sion. 137,138 Nonetheless, Marek-Trzonkowska and colleagues recently reported encouraging

results from a phase I clinical trial suggesting a protective effect of Treg transfer in T1D

patients. 139 The positive outcome of this trial may have benefited from the fact that the

treated patients had just been diagnosed and hence it can be assumed that the trans-

ferred Treg faced a less inflammatory environment as compared to established disease.

This may have also been a reason for the reduced efficacy of a second Treg infusion after

the protective effects of the first infusion had faded 139.
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Shifting the focus from Treg transfer to DC therapy might circumvent the mentioned in-

stability problems since DC could induce and also maintain Treg populations directly in

vivo. tolDC can be exploited for treatment by generating tolDC populations loaded with

the desired antigen ex vivo. Antigen-pulsed DC can be rendered tolerogenic with a variety

of methods but immunosuppressive molecules (e.g. IL-10 or vitamin D3) or drugs (e.g.

rapamycin or dexamethasone) are most commonly used and ameliorated autoimmunity

in different mouse models. 41 The promising results from these animal studies encouraged

a number of clinical studies. The first proof of safety of tolDC in humans was reported

in 2011. In this trial, autologous monocyte-derived DC were tolerised with antisense oli-

gonucleotides against CD40, CD80 and CD86 and showed no adverse effects in diabetes

patients. 140 This study is now continued with a phase II study (NCT02354911). Further-

more, several phase I trials are ongoing in Crohn’s disease 141, rheumatoid arthritis 142,143

and MS using peptide-pulsed DC modulated with dexamethasone or vitamin D3 144.

Another approach to exploit tolDC-mediated immunosuppression is the use of apoptotic

cells which can serve as antigen delivery system and immunomodulator at the same time.

This idea was realised in the lab of Stephen Miller by coupling antigens to splenocytes

via 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (ECDI). The use of ECDI results in

apoptosis of the splenocytes and supports their localisation to the spleen where they are in-

gested by marginal zone Mφ. The antigen-loaded apoptotic splenocytes (Ag-SP) induced

prolonged tolerance that seems to rely on both anergy and Treg. 145,146 Ag-SP treatment

was able to control aberrant immune responses in mouse models of islet grafts, allergy,

MS and T1D. 145–148 Analogous to the generation of Ag-SP , autologous peripheral blood

mononuclear cells (PBMC) were coupled with seven different myelin peptides and tested

in a clinical phase I trial in MS patients. The study demonstrated a favourable safety pro-

file and even gave preliminary evidence for efficacy measured by reduced antigen-specific

T cell responses. 149

Erythrocytes are an interesting alternative vehicle. Billions of erythrocytes die every day

by eryptosis, which is comparable to apoptosis, as a consequence of natural turnover 150.

Thus, antigens attached to this cell population can be expected to be engulfed tolero-

genically in the context of eryptotic debris. Pishesha et al. coupled antigenic peptides

to erythrocytes ex vivo using sortase A. Transfusion of the engineered erythrocytes could

reduce disease burden in diabetic mice and experimental autoimmune encephalomyel-

itis (EAE), a mouse model of MS. 151 Erythrocyte physiology was further exploited even

without the need of cell transfer. The lab of Jeffrey Hubbell modified antigens to bind to

glycophorin A, which allows their binding to erythrocytes in situ. This targeting approach

triggered antigen-specific tolerance in an Ova and T1D model. 152,153
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1.3.3 Nanoparticle-based therapy

Cell therapies are individualised and show promising results, but their translation to the

clinic and to large patient cohorts is challenging. Mimicking apoptotic cells with synthetic

particles is a cell-free alternative that is easier to handle in a clinical setting. Nanoparticles

(NP) can be generated from different materials and their properties can be adapted to a

variety of applications and needs. This allows to incorporate multiple signals to deliver

complex messages to the immune system. NP are efficiently taken up which is attributed

to the fact that APC evolved to readily phagocytose and process particulate structures of

nano- and micrometer size like bacteria and viruses. Furthermore, association of antigens

with NP may circumvent the risk of anaphylaxia described for soluble peptide therapy by

limiting the concentration of free proteins or peptides in the circulation. 123,154

NP properties such as size and surface charge strongly influence their effect on the immune

system. Particle size is especially important for biodistribution. Particles smaller than

200 nm can move rather easily through blood and lymph and can reach spleen and lymph

nodes directly only hours after i.v. injection. In contrast, particles with a size larger than

200 nm up to some micrometers accumulate in the spleen but require internalisation and

active transport by APC to reach the lymph nodes. 123,154,155 Moreover, it was suggested

that smaller particles tend to be taken up by DC whereas larger particles are preferen-

tially engulfed by Mφ. 156 The surface properties of NP further impact biodistribution

and circulation half-life. An often undesired effect of hydrophobic particles is their recog-

nition by the reticulo-endothelial system (RES) which rapidly eliminates such particles

from blood circulation. Shielding the particle surface with the hydrophilic and non-ionic

polyethylene glycol (PEG) is commonly used to counteract interactions with the RES.

“PEGylation” can significantly increase the half-life in the circulation. 157 Apart from traf-

ficking, the surface charge influences also uptake and the type of response launched by the

APC. Cationic NP seem to be internalised to a higher extent due to interactions with the

negatively charged cell membrane 158,159 and are more associated with pro-inflammatory

responses 154,160. Anionic particles are less immunogenic and different groups managed to

induce tolerance using NP with a ζ-potential in the range of -40 to -70mV. 154,160–164

Different basic materials are used to generate tolerognic NP, namely metals, lipids and

polymers.

Yeste et al. designed gold particles loaded with antigen and the aryl hydrocarbon re-

ceptor (AhR) ligand ITE. By promoting Treg development these particles were able to

suppress EAE and diabetes 165,166. Another example for metal NP are iron oxide NP that

present disease-relevant pMHC complexes. pMHC I-NP were able to induce CD8+Tcell

tolerance and to control diabetes 167 while pMHC II-NP were demonstrated to provoke

Tr1 responses that were beneficial in different mouse models 168. Notwithstanding that
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pMHC-NP are a sophisticated approach, clinical translation will be difficult since detailed

knowledge of relevant antigen epitopes and broadly usable MHC alleles is necessary. And

moreover, metal NP cannot be fully degraded and accumulation might cause toxicities.

Liposomes are a well-known delivery system that can be trimmed by its phospholipid

composition. The composition impacts basic properties like loading and uptake but can

also be used for functionalisation. 154 PS is characteristically expressed on the surface of

apoptotic cells and thus might support tolerance. 64,65 This feature was utilised to generate

peptide-loaded PS liposomes that protected mice from developing diabetes. 169

Polystyrene particles (also known as latex beads) are often used in early experimental

studies since they are comparably easy to handle. As such, Getts et al. illustrated that

negatively-charged, peptide-coupled polystyrene particles can prevent EAE and reduce

disease burden. Interestingly, only 500 nm particles but not larger particles (1.75µm and

4.5µm) induced convincing immunosuppression. 170

A more feasible polymer which is also suitable for clinical use is poly(lactic-co-glycolic

acid) (PLGA). PLGA is biodegradable in the sense that it can be hydrolised to the nat-

ural metabolites lactic acid and glycolic acid and has a good safety profile. The formula-

tion of PLGA-NP can be adjusted for different types of drugs and different drug release

kinetics. 171–174 Thus, PLGA is approved by the FDA and EMA as drug delivery system

in a couple of clinical applications. 175 Concerning the treatment of autoimmune disease,

PLGA-NP with different properties, coating and loading are explored in preclinical stud-

ies. NP can contain immunomodulators in addition to the antigen to ensure a tolerogenic

outcome. A rather stable approach is the encapsulation of antigen in combination with

the mTOR inhibitor rapamycin. EAE was inhibited by NP combining rapamycin with

either peptide or protein administered via different routes. Even when co-administered

with Tol- like receptor (TLR) 7/8 agonists, these NP kept their immunosuppressive ca-

pacity. 176–178 Nevertheless, rapamycin is a drug with several adverse effects. These side

effects might be reduced to some extent by encapsulation and hence restriction to cer-

tain cell populations, but in general the tolerogenic delivery of antigen without the need

for additional drugs seems more appealing. More physiological immunomodulators could

be one alternative to rapamycin. Roberts et al. ameliorated EAE by attaching PS to

the surface of peptide-loaded NP in adaptation to apoptotic cells 179 and others incorpor-

ated recombinant IL-10 into the NP to achieve similar results 180. Besides, it might even

be possible to use antigen alone. Intravenous administration of negatively-charged NP

loaded with antigen alone was sufficient to transfer antigen-specific tolerance in models

of MS, T1D and graft rejection. 160–164,170,181,182 The potential mechanisms employed by

these NP include specific targeting to marginal zone Mφ but also conveying a tolerogenic

phenotype to both Mφ and DC resulting in anergy as well as Treg induction. However,

the comprehensive mechanism for the observed immunosuppression is not yet clarified.

Especially in the light of studies that showed no suppressive capacity 176 or even immun-
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ogenic responses 183–186 to NP with antigen alone, it is important to define the distinct

NP properties preceding the divergent outcomes. Although the underlying mechanism is

not fully elucidated, this type of antigen-associated carboxylated NP is now tested in a

phase I clinical trial for celiac disease (NCT03486990). In this context, the NP are termed

tolerogenic immune-modifying particles (TIMP) and are loaded with the antigen gliadin

1.4 Annexins

The superfamily of annexins consists of thirteen members with one pseudogene (an-

nexinA12) amongst them that does not result in a translated protein. The C-terminal

part of annexins consists of four similar repeats and includes Ca2+ binding sites. Regard-

less of only 45-55% amino acid identity, the core domain is evolutionary conserved with

respect to its secondary and tertiary structure. In contrast, the N-terminal domain is

unique to each family member. 187

Annexin A1 (AnxA1) was initially described as a mediator in glucocorticoid responses

assisting the resolution of inflammation. 188–190 Beyond this intracellular effect, it is now

known that AnxA1 can also act as an extracellular mediator. Under steady state condi-

tions AnxA1 resides in the cytosol. However, upon apoptosis it is translocated to the cell

surface with kinetics similar to those of PS 80,191 suggesting a broader immunosuppressive

role.

Many regulatory functions were attributed to the N-terminus of AnxA1 which is cleaved

by extracellular proteases following externalisation which gives rise to a number of dif-

ferently sized peptides. 192–195 These peptides can serve as chemoattractants for phagocytes

and also enhance their phagocytic function. 196,197 Furthermore, the AnxA1 N-terminus

was identified as ligand for the formyl peptide receptor (FPR)1 and FPR2 and as such to

inhibit monocyte and neutrophil function and migration. 198,199

Although most research on the anti-inflammatory function of AnxA1 focused onf FPR sig-

nalling, AnxA1 can also exert inhibitory functions via a second, FPR-independent mech-

anism. Full-length AnxA1 in the presence of FPR inhibitors or the AnxA1 core domain (Anx)

alone transfer a tolerogenic phenotype to APC. 80,82,200

AnxA1 was recognised as immune regulator, but AnxA1−/− mice show no signs of spon-

taneous autoimmunity. Redundancy between the members of the annexin family may

be the reason for the inconspicuous phenotype. AnnexinA5 and annexinA13 are trans-

located to the surface of early apoptotic cells and modulate DC maturation similar to

AnxA1. 82,201,202 Above all, the suppressive capacity of AnxA1 on DC could be attributed

to the conserved core domain. 80,82 Thus, general function of annexins as mediators of the

apoptotic cell intrinsic immunosuppression can be assumed.

Besides the broad acceptance of AnxA1 being inhibitory at the level of APC, the effects on
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T cells are controversial. AnxA1 deficient T cells were described to be both hypo- 203 and

hyperproliferative 204. Moreover, the induction of inflammatory conditions in AnxA1−/−

mice also yielded contradictory results. 204–206 Delineating the effects of AnxA1 in vivo is

complicated since yet unknown T cell-intrinsic AnxA1 effects can neither be ruled out nor

separated from direct or indirect (APC-mediated) extracellular effects on T cells.

In humans, there are no known correlations of genetic defects in annexins that are caus-

ative for disease. This may be due to redundant function of annexins and the unlikeliness

of spontaneous mutations in all or several annexins.

Nonetheless, increased levels of AnxA1 cleavage products were found in patients with

fragile X syndrome, Weber-Christian disease, familial Mediterranean fever, cystic fibrosis

and other lung diseases 192,207–209 whereas diminished serum levels of AnxA1 were reported

for patients with uveitis and MS 206,210. Furthermore, α-AnxA1 autoantibodies were detec-

ted in patients with rheumatoid arthritis, inflammatory bowel disease and systemic lupus

erythematosus but so far no correlation with disease severity could be established. 211–214

α-AnxA1 autoantibodies may actually be a simple by-product generated in course of the

disease. Neutrophil extracellular traps (NET) are normally a mechanism of innate immune

defence. However, they are also associated with the production of α-DNA autoantibod-

ies and aberrant protein modification. AnxA1 has been found to be abundant in NETs

where it is also citrullinated. Citrullinated proteins are common targets of autoantibodies

in several autoimmune disease, so AnxA1 does not seem to have a disease-related role in

this context. 215
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1.5 Aim of the study

Apoptotic cells have intrinsic anti-inflammatory properties and maintain peripheral tol-

erance. Engulfment of apoptotic cells results in an immunologically silent presentation

of their cargo by inducing an inhibitory phenotype in the phagocyte. Since apoptotic

cells of an healthy individual mainly comprise self-antigens, this process is essential to

avoid autoimmune reactions. However, the underlying mechanisms by which apoptotic

cell-mediate immunosuppression are still largely unknown.

Our group previously found that several members of the annexin protein family are trans-

located to the surface of early apoptotic cells and hypothesised that the evolutionary

conserved annexin core domain (Anx) is a mediator of apoptotic cell-mediated tolerance.

Recombinant Anx antagonises Toll-like receptor signalling and impairs DC activation.

Hence, Anx is a potential tool to induce immunosuppression in an antigen-specific man-

ner. Current therapies for autoimmune disease universally dampen the immune system

and are thus accompanied by severe side effects. Restricting the suppressive treatment to

the relevant self-antigens and inhibiting self-reactive immune responses by an endogenous

mediator such as Anx could improve tolerability in patients suffering from autoimmune

disease.

The aim of this study is to develop a vehicle that combines an antigen of interest and

Anx to allow the delivery of the antigen in a tolerogenic context. We hypothesise that the

combination of Anx with an antigen in a particulate structure induces antigen-specific

immunosuppression. In order to test this hypothesis, Anx and the model-antigen Ova

were coupled to polystyrene beads and PLGA nanoparticles. This study investigated the

ability of the Anx-coated particles to affect DC phenotype and to modulate Ova-specific

T cell responses. Furthermore, the function of Anx-coated particles was compared to sol-

uble Anx and its known tolerogenic properties.

In summary, this study aims to develop a particle-based delivery system using Anx to

promote antigen-specific tolerance and to investigate the underlying mechanisms of Anx-

induced tolerance.
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2 Materials

2.1 Chemicals and Reagents

2.1.1 Chemicals

Chemicals were purchased from Serva, Sigma-Aldrich or Roth.

2.1.2 Reagents

Reagent Company

7AAD Sigma-Aldrich

AKP BD Becton Dickinson GmbH

Alexa Fluor 546 Phalloidin Life Technologies

BCIP/NTP Sigma-Aldrich

CFSE Sigma-Aldrich

CpG ODN 1668 Biomol

DCFDA Life Technologies

dNTPs (10 mM) Life Technologies

DPBS Life Technologies

Western Lightning Plus-ECL PerkinElmer

FluoSpheres Sulfate Microspheres, 1µm Life Technologies

GeneAmp 10x PCR Buffer and MgCl2 Life Technologies

Hoechst 34580 Life Technologies

MulV reverse transcriptase (50U/µl) Life Technologies

PageRuler Plus Prestained Protein Ladder Thermo Scientific

PMA Sigma-Aldrich

Poly(I:C) InvivoGen

Power SYBR Green PCR Master Mix) Applied Biosystems

RNAse Inhibitor (20U/µl) Life Technologies

Trolox Th. Geyer
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2.1.3 Commercial Kits

Kit Company

EasySep Mouse CD4+ T Cell Isolation Kit STEMCELL Technologies

FoxP3 Fixation/ Permeabilization Kit eBioscience

mouse IL-6 OptEIA ELISA Set BD Becton Dickinson GmbH

mouse IL-2 OptEIA ELISA Set BD Becton Dickinson GmbH

mouse IFN-γ OptEIA ELISA Set BD Becton Dickinson GmbH

Murine IL-12 Standard ABTS ELISA Kit PeproTech

RNAqueous-Micro Total RNA Isolation Kit Thermo Scientific (Ambion)

2.2 Buffers and solutions

Buffer/Solution Composition

ACK buffer pH 7.2
150 mM Ammoniumchloride (NH4Cl)

10 mM Kaliumhydrogencarbonate

(KHCO3)

1 mM EDTA

ddH2O

Blocking buffer (Western blot)
5 % (w/v) skim milk powder

TBS-T

Citrate buffer 0.1 M pH 5.0
30 mM citric acid monohydrate

70 mM natrium citrate dihydrate

ddH2O

Coating buffer pH 9.6 (BD

ELISA)

100 mM Natriumhydrogencarbonate

(NaHCO3)

34 mM Natriumcarbonate (Na2CO3)

ddH2O

ELISA wash buffer
0.05 % (v/v) Tween 20

TBS

FC buffer
10 % (v/v) rat serum

10 % (v/v) FCS

PBS

OPD
50 ml Citrate buffer

1 OPD tablet
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Phosphate Buffered Saline

PBS pH 7.4

137 mM Natriumchloride (NaCl)

8.1 mM Dinatriumhydrogenphosphate

(Na2HPO4)

2.7 mM Kaliumchloride (KCl)

1.5 mM Kaliumdihydrogenphosphate

(KH2PO4)

ddH2O

PBS-T
0.05 % (v/v) Tween 20

PBS

Reducing Sample buffer 5x

for Western Blot

50 % (v/v) glycerol

25 % (v/v) β -Mercaptoethanol

10 % (w/v) SDS

50 mM Tris pH 6.8

0.25 mg/ml bromphenol blue

ddH2O

Resolving Gel (SDS-PAGE)
24 mM Tris-HCl pH 6.8

5 % (w/v) acrylamide

0.1 % (w/v) SDS

0.1 % (w/v) APS

0.1 % (v/v) TEMED

dH2O

SDS Running Buffer
25 mM Tris

0.19 M Glycine

1 % (w/v) SDS

dH2O

Semi Dry Transfer Buffer pH 9.2
48 mM Tris

39 mM Glycine

0.04 % (w/v) SDS

10 % (v/v) Methanol

ddH2O

Stacking Gel (SDS-PAGE)
37.5 mM Tris-HCl pH 8.8

10 % (w/v) acrylamide

0.1 % (w/v) SDS

0.03 % (w/v) APS

0.1 % (v/v) TEMED

dH2O
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Stemcell buffer
1mM EDTA

2 % (v/v) FCS

PBS

Tris-buffered Saline TBS pH 7.5
50 mM Tris-HCl pH 7.5

150 mM NaCl

dH2O

TBS-T
0.05 % (v/v) Tween 20

TBS

Trypan blue 0.4 %
0.4 % (w/v) Trypan blue

0.1 % (v/v) Natriumazide

PBS

2.3 Culture Media and Supplements

Medium/Supplement Company/Composition

DC medium RPMI 1640, 10% FCS, 20 ng/ml rmGMCSF

ELISpot medium RPMI 1640, 1% PenStrep, 2% mouse serum

Fetal Calf Serum (FCS) Sigma-Aldrich

Mouse Serum Linaris

Penicillin Streptomycin 10’000U/ml Life Technologies

Polymyxin B Abcam

Rat Serum Milteny Biotec

rmGMCSF Immunotools

RPMI 1640 Medium Sigma-Aldrich

1% medium RPMI 1640, 1% (v/v) FCS

10% medium RPMI 1640, 10% (v/v) FCS

2.4 Biologic material

2.4.1 Cell lines

Name Description

JE6.1 human T cell line (ATCC TIB-152)

2.4.2 Mouse strains

Name Description

C57BL/6C57 C57 Black 6 (wild type)

OT-II B6.Cg-Tg(TcraTcrb)425Cbn/J
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2.5 Antibodies

If not stated otherwise all antibodies are directed against mouse proteins.

2.5.1 ELISpot Antibodies

Antibody Use Dilution Company

α-IL-2 capture 1:200 BD Becton Dickinson

α-IL-2-Biotin detection 1:250 BD Becton Dickinson

2.5.2 Labelled Antibodies

Antigen target Fluorophore Clone Dilution Provider

Anx1 APC mAx550 1:500 Heiko Weyd, DKFZ

CD4 APC-Cy7 GK1.5 1:200 Biolegend

CD4 PE H129.19 1:200 BD Pharmingen

CD11c APC N418 1:150 Biolegend

CD40 PE 3/23 1:150 Biolegend

CD40 PE-Cy7 3/23 1:150 Biolegend

CD44 PE-Cy7 IM7 1:150 Biolegend

CD69 APC H1.2F 1:150 Biolegend

CD73 APC TY/11.8 1:150 Biolegend

CD80 FITC 16-10A1 1:150 eBioscience

CD85k (ILT3) PE H1.1 1:150 Biolegend

CD86 FITC GL1 1:150 eBioscience

CD90.1 (Thy1.1) PE OX-7 1:200 BD Pharmingen

CD90.1 (Thy1.1) PerCP-Cy5.5 OX-7 1:200 Biolegend

CD157 (CTLA-4) PE-Cy7 UC10-

4B9

1:150 Biolegend

CD223 (Lag3) APC C9B7w 1:150 Biolegend

CD273 (PD-L2) FITC 122 1:150 eBioscience

CD274 (PD-L1) PE-Cy7 10F.9G2 1:150 Biolegend

CD275 (ICOSL) PE HK5.3 1:150 Biolegend

CD279 (PD-1) PE-Cy7 RMP1-30 1:150 Biolegend

CD366 (Tim-3) PE B8.2C12 1:150 Biolegend

FoxP3 APC FJK-16s 1:50 eBioscience

FR4 PE 12A5 1:150 Biolegend

I-A/I-E(MHC-II) PerCP-Cy5.5 M5/114.

15.2

1:150 eBioscience
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2.5.3 Western Blot Antibodies

Antibody Dilution Provider

mouse α-Anx1 (mAx550) 1:1000 Heiko Weyd, DKFZ

mouse α-Flag M2 1:10,000 Sigma-Aldrich

mouse α-Ova 1:1000 Santa Cruz

goat α-mouse-IgG-HRP 1:10,000 Santa Cruz

goat α-mouse-IgG2b-HRP 1:10,000 Southern Biotech

2.5.4 Stimulation Antibodies

Antigen target Clone Dilution Company

CD3e 1 45-2C11 1:400 BD Biosciences

CD28 E18 1:400 BioLegend

CD40 FGK4.5 BioXcell

2.6 Proteins, Peptides and Oligonucleotides

2.6.1 Proteins

Protein Provider

murine annexin core domain (Flag-tagged) Fatmire Bujupi, DKFZ

DQ-Ovalbumin Life Technologies

EndoGrade Ovalbumin Hyglos

2.6.2 Peptides

Peptide name Protein sequence Company

ISQ ISQAVHAAHAEINEAGR InvivoGen

SIINF SIINFEKL eBioscience

SIY SIYRYYGL Peptide Specialty Laboratories
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2.6.3 qPCR Primer

Gene

target

Forward Primer 5’→ 3’ Reverse Primer 5’→ 3’

Cblb ATGTCCCTCCTCGGCTTT GAGACAATTTGCTAATGGACCAG

Egr2 GCCAAGGCCGTAGACAAAATC CCACTCCGTTCATCTGGTCA

GRAIL AATTTCACGGTGCCCACGGTTTGG ATTGCAACAATGTCCCCAGACCC

HMBS GAGTCTAGATGGCTCAGATAGCATGC CCTACAGACCAGTTAGCGCACATC

HPRT GAGGAGTCCTGTTGATGTTGCCAG GGCTGGCCTATAGGCTCATAGTGC

IDO GCCTCCTATTCTGTCTTATGCAG CGAGGAAGAAGCCCTTGTC

IL-2 AAAAGCTTTCAATTGGAAGATGCT TTGAGGGCTTGTTGAGATGA

IL-27p28 CTGTTGCTGCTACCCTTGCTT CACTCCTGGCAATCGAGATTC

Maf AGCAGAAGAGGCGGACCCTGAAAA GCCGTTGCTCACCAGCTTCTCGTATT

SOCS1 CTGCGGCTTCTATTGGGGAC AAAAGGCAGTCGAAGGTCTCG

SOCS3 ATGGTCACCCACAGCAAGTTT TCCAGTAGAATCCGCTCTCCT

2.7 Consumables

Consumable Company

BD Trucount tubes BD Becton Dickinson GmbH

Cell culture plates and dishes TPP

Costar R© ELISA Plate 96 well Corning

clear flat bottom half area,

high binding polystyrene

Costar R© 50 ml reagent reservoir Corning

EASYstrainer 40 µm sterile Greiner Bio-one

FACS tubes BD Becton Dickinson GmbH

IP clear plates 0.45 µl MSIPS4510 Merck Millipore

hydrophob high protein binding

immobilion-P membrane sterile

LoBind microcentrifuge tubes Eppendorf

Nitrocellulose membrane GE Healthcare

Amersham Protran 0.45 NC

Lab-Tek Chamber Slide, 8 wells, Permanox Sigma-Aldrich

PCR tubes, flat lid, 100 µl Starlab

Reaction tubes 1.5 ml/2 ml Eppendorf
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2.8 Instruments

Instrument Company

CTL ImmunoSpot Reader Cellular Technology Limited

FacsCanto II flow Cytometer BD Becton Dickinson

GloMax-Multi Detection System Promega

Chemi-Smart 5100 Peqlab

Microplate Reader Model 680 BioRad

Microplate Washer 405 TS BioTek Instruments

Microscope brightfield Carl Zeiss Microscopyy

Molecular Imager GelDoc XR+ BioRad

NanoDrop ND-1000 spectrophotometer Peqlab

pH meter ProfiLine pH 3210 WTW

PowerPac HC Biorad

Thermal Cycler C1000 BioRad

Thermomixer Comfort Eppendorf

Trans-Blot R© SD Semi-Dry Transfer Cell BioRad

UV-Stratalinker Stratagene
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2.9 Software

Software Company

ChemiCapt 5000 Imaging Software Vilber Lourmat

FacsDiva BD Becton Dickinson

Flow Jo FlowJo LLC

GraphPad Prism version 6 GraphPad Software

ImageJ (Fiji) Wayne Rasband, NIH

ImmunoSpot SC Suit Cellular Technology Limited

LATEX Leslie Lamport, LaTex Project Team

Microplate Manager version 5.2.1 BioRad

Microsoft Office Microsoft

Zen 2012 version 8.1 Carl Zeiss Microscop
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3 Methods

3.1 Organ and cell Isolation

3.1.1 Bone marrow-derived dendritic cells - BMDC

Leg bones (tibia and fibia) of wt mice were dissected and bone marrow was flushed into

PBS. The bone marrow cells in the suspension were then separated from other tissue

by filtering through a 40µm strainer. The cells were pelleted for 5min at 1500 rpm and

4 ◦C and then resuspended in 3ml ACK-buffer to lyse remaining erythrocytes. After 40 s

the reaction was stopped by adding 40ml 10%medium. Following a washing step with

10%medium, the cells were counted and adjusted to 0.5 x 106/ml in DC medium and

seeded into a 24-well plate (1ml/well). Bone marrow cells are differentiated into DC in

DC medium over 7 d. DC medium was fully replaced with fresh medium after 2 days and

partly replaced (500 of 1000µl) after 4 days of differentiation.

3.1.2 Splenocytes and CD4+ Tcells

Spleens from OT-II mice were harvested and mashed through a 40µm strainer. The cells

were pelleted for 15min at 1500 rpm and 4 ◦C and then resuspended in ACK-buffer to

lyse remaining erythrocytes. After 1.5min the reaction was stopped by filling up with

10%medium. After centrifugation (15min, 1500 rpm, 4 ◦C) splenocytes can be resus-

pended in 10% medium for preactivation or in Stemcell buffer for further CD4+Tcell

isolation.

CD4+Tcell were isolated using the EasySep mouse CD4+Tcell isolation kit according to

manufacturer’s protocol. In brief, 1 x 108/ml splenocytes were incubated for 10min with

50µl rat serum and 50µl negative selection cocktail per ml cell suspension. Then, 75µl

isolation beads per ml cell suspension were added. After 2.5min the solution was filled

up to a total volume of 10ml with Stemcell buffer. The tube was placed into a EasySep

magnet to separate T cells from other cells in the suspension. The cleared T cell solution

was transferred to a new tube.

Subsequently, T cells were labelled with CFSE. First, cell suspension was adjusted to

2 x 107/ml in PBS and mixed with an equal volume of CFSE solution (1:15000 in PBS).

Following 20min incubation in the dark, the staining reaction was stopped by adding

one volume of FCS. After 2min at RT, the tube was filled up with ice cold 10%medium

and incubated for another 5min on ice. Finally, the cells were washed 2 times with

1%medium.

26



3 Methods

3.2 Cell Biology

3.2.1 Apoptosis induction

Apoptotic cells were generated by seeding 1 x 106/ml JE6.1 in a 6-well plate with a total

volume of 2.5ml/well and irradiation with 75µJ UV-C. Irradiated cells were incubated

at 37 ◦C for at least 2.5 h before they were used in further assays.

3.2.2 BMDC suppression assay

BMDC which were differentiated for 7 days were seeded in a 96-well plate (flat-bottom) at

0.75 x 105 cells/well in 175µl 1%medium supplemented with polymyxin B (PmxB) (final

conc. 50µg/ml). PmxB was added to avoid unspecific TLR4 stimulation by LPS and

to rule out endotoxin tolerance. After 1 h resting at 37 ◦C, 50µl treatment (e.g. Anx

or beads) were added. In the case of apoptotic cell treatment, 3 x 105 apoptotic JE6.1

(aJ) were added 5 h after BMDC seeding. BMDC are incubated with treatments for 8 h

(4 h for aJ) and then stimulated with 25µl CpG (final conc. 20 nM). The response of

BMDC to the different treatments was analysed by flow cytometry (FC), gene expression

(qRT-PCR) and cytokine secretion (ELISA) on day 1 or day 2 after stimulation.

3.2.3 T cell suppression assay

For the analysis of T cell responses, BMDC were differentiated and treated as described in

3.1.1 and 3.2.2. On day 2 after BMDC stimulation, 0.5 x 106 CFSE labelled CD4+ Tcells

were added per well. The preparation and staining of CD4+ Tcells from OT-II mice

is described in 3.1.2. Following 2 days of co-culture, 60µl/well supernatant were taken

for IL-2 analysis and substituted with fresh 1%medium. After a total of 5 days of co-

culture, the media including the T cells was transferred into a round-well 96-well plate

and centrifuged at 10min at 1500 rpm. The supernatants were used to measure IFN-γ

secretion while the cell pellet was further processed for FC analysis.

3.2.4 T cell preactivation

Spleens from OT-II mice were prepared as described in 3.1.2. Splenocytes were then

seeded in a cell culture flask at a concentration of 1 x 107/ml in 10%medium and stim-

ulated with α-CD3 [1µg/ml] and α-CD28 [0.5µg/ml]. After over night incubation with

the stimulatory antibodies, cells were washed and transferred to a new flask with fresh

10%medium. Splenocytes were then rested for another 3 days, with addition of further

fresh media if necessary, before CD4+ Tcells were isolated as described in 3.1.2. The ac-

tivation status of the T cells was monitored by measuring the expression of CD69, CD44

and CD62L via FC before and after stimulation as well as after T cell isolation.
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3.2.5 ROS assay

BMDC, differentiated for 6-7 days were seeded in a 48-well plate (flat-bottom) with

1 x 105 cells/well in 1%medium supplemented with polymyxin B (final concentration:

50µg/ml). After 1 h incubation at 37 ◦C, the treatment (e.g. Anx or Beads) or the

positive control PMA [10 ng/ml] was added. Following 1.5 h of incubation with the treat-

ment, the ROS-sensitive dye DCFDA was added in a final concentration of 5µM. After

a total of 2 h of treatment including 30min DCFDA incubation, the cells were harvested

by rinsing the wells and transferring the cell suspension into tubes or a round-bottom

96-well plate, to facilitate pelleting by centrifugation. From the harvesting step onwards,

cells need to be kept on 4 ◦C to avoid further (unspecific) ROS production. Optionally

the cells can be incubated with the ROS scavenger Trolox [final conc 25µM] for 10min

before harvesting, to further exclude unspecific ROS production. The harvested cells

were pelleted (5min, 1500 rpm (plates) or 5000 rpm (tubes)), washed once with PBS and

finally resuspended in FC buffer (optionally including Trolox). ROS production was then

measured by assessing the fluorescent signal of processed DCFDA by FC.

3.2.6 DQ-Ovalbumin Assay

Antigen processing was analysed using a commercially available Ova that is labelled with

a processing sensitive dye (DQ-Ova). BMDC were seeded and treated as described in

3.2.2. The treatment included soluble DQ-Ova and Beads coupled with DQ-Ova instead

of unlabelled Ova. For each experiment, two similar plates were prepared in order to

incubate one plate at 4 ◦C as background control while the other one was incubated at

37 ◦C to allow uptake and processing. After 4 h incubation, cells were harvested and

analysed via FC.

3.3 Molecular Biology

3.3.1 Immunoassays

3.3.1.1 Enzyme Linked Immunosorbent Assay - ELISA

Generally, ELISA was performed according to manufacturer’s protocol. This brief de-

scription is referring to the BD OptEIA kits.

Half-area plates were coated with 50µl capture antibody solution per well and incub-

ated over night at 4 ◦C. Plates were washed 3 times with TBS-T and then blocked with

100µl PBS/10%FCS for 1 h at RT. After blocking, plates were washed 3 times and 50µl

assay supernatant (if necessary diluted in PBS/10%FCS) were loaded in duplicates for

2 h at RT. Following 5 times washing, 50µl of detection antibody solution including strep-

tavidin were added to the wells and incubated for 1 h. Plates were then washed 7 times

and incubated with developing solution (OPD + H2O2 (1:1000)) in the dark. The colour
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reaction was stopped with 25µl 3NH2SO4 when desired intensity of the highest standard

sample was reached. Cytokine secretion represented by colour intensities was measured

at 490 nm absorbance with a microplate reader (BioRad).

3.3.1.2 Enzyme Linked Immunospot Assay - EliSpot

Membranes of the ELISpot-plates were activated by short incubation with 50µl 70%EtOH.

Plates were washed with 200µl PBS and then incubated with 100µl coating antibody in

PBS at 4 ◦C over night. After washing with PBS, the plates were blocked with ELISpot-

medium at 37 ◦C for at least 1 h. After blocking, splenocytes in ELISpot-medium were

seeded into the plate with 1.5 x 106/well. The cells were then stimulated with peptides

[2µM] or stimulation antibodies [50µg/ml] over night. On the following day, the super-

natants were taken and stored for additional ELISA. The plate was washed 5 times with

PBS-T and once with PBS before 100µl detection antibody in PBS was added and incub-

ated for 2 h at RT. The plate was washed again 4 times with PBS and 100µl Streptavidin-

AKP solution (1:500 in PBS) was added for 30min. Following 4 washes with PBS the

plate was developed for 3min in the dark using 100µl BCPT/NBT solution. The de-

veloping reaction was stopped by rinsing the plate with dH2O. The plate was dried and

analysed using ImmunoSpot CTL machine and software.

3.3.1.3 Flow cytometry - FC

For the analysis of surface molecules, cells were first blocked for 10min in FC buffer and

then incubated with the desired mixture of labelled antibodies for 20min on ice. After

washing with PBS/10%FCS, the cells could be analysed by flow cytometry or further

processed for additional intracellular staining.

Intracellular staining of FoxP3 was performed using the eBioscience fixation and permeab-

ilisation kit according to manufacturer’s protocol. Briefly, surface stained cells were fixed

for 20min with Fix/Perm buffer followed by one washing step with PBS and two washing

steps with permeabilisation buffer. Cells were then incubated for 15min in permeabilisa-

tion buffer containing 2% rat serum and subsequently α-FoxP3-PE was added for 25min.

Afterwards, the cells were washed with permeabilisation buffer and then resuspended in

FC buffer. During and after staining, cells were kept at 4 ◦C.

3.3.1.4 Microscopy

BMDC which were differentiated for 6 days were seeded in a 8-well chamber slides

at 9 x 104 cells/well in 200µl 1%medium supplemented with polymyxin B (final conc.

50µg/ml). After 1 h resting at 37 ◦C, 50µl beads [7.5 x 106/ml] were added. BMDC were

incubated over night with the beads before they were fixed and stained for microscopy.

For the staining, cells were rinsed with PBS and then fixed for 15min at RT with 4% para-
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formaldehyde. Following washing with 1ml PBS, cells were then permeabilised by 10min

incubation in 0.1%TritonX-100 and afterwards washed with PBS. Cells were blocked

in 2%BSA in PBS over night at 4 ◦C . After washing with PBS, cells were stained with

Hoechst and Phalloidin (1:400 in 2%BSA/PBS). The stained cells were washed with PBS

and embedded with Mowiol.

3.3.1.5 Western Blot

Western blot was used to analyse the binding of Ova and Anx to the surface of latex

beads. In order to elute proteins from the bead surface, beads were boiled at 95 ◦C

in reducing sample buffer for 15min. The protein elution was subjected to SDS-PAGE

(10% gels run at 120V). Separated proteins were blotted onto a nitrocellulose membrane

in a BioRad Trans-blot semi-dry cell for 30min at 15V. Membranes were then shortly

washed with TBS-T and blocked with 5%milk powder in TBS-T for at least 30min. For

protein detection, membranes were incubated with primary antibodies (diluted in TBS-

T/1%BSA/N3) over night at 4
◦C followed by 3 times 5min washing with TBS-T and 1 h

incubation with the secondary antibody at RT. After another 3 times 5min washing with

TBS-T the membrane was developed using ECL detection reagent and recorded with the

Chemi-Smart 5100 System.

3.3.2 mRNA quantification

3.3.2.1 RNA preparation

RNA was extracted using the ambion RNAqueous micro kit following manufacturer’s

protocol. In short, cell pellets were lysed by vortexing in 100µl lysis buffer. After adding

50µl EtOH, the lysates were transferred to the provided columns and centrifuged for 15 s

at 13000 rpm, 4 ◦C. The column membranes were washed once with 180µl wash solution I

and twice with 180µl wash solution II. The membranes were then dried by centrifugation

for 1min at 13000 rpm, 4 ◦C. Deviating from the recommendation of the manufacturer,

RNA was eluted in a total volume of 15µl in two rounds from membranes using preheated

elution buffer (75 ◦C). RNA concentration was determined by spectrophotometry.

3.3.2.2 Quantitative Real-Time PCR - qRT-PCR

For gene expression analysis, 500 - 800µg RNA was reverse transcribed into cDNA by

mixing 11.7µl RNA solution with 14.3µl mastermix as shown in tab. 1 and performing a

PCR with the programme shown in tab. 2.
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Table 1: RT-PCR Mastermix 1x master
mix for RT-PCR

Component Volume

MgCl2 [25mM] 5.2µl

10 x PCR Buffer 2.6µl

dNTPs [10mM] 2.6µl

OligodT [100 pmol/µl] 1.3µl

RNAse Inhibitor [20U/µl] 1.3µl

MulV transcrpitase [50U/µl] 1.3µl

Table 2: RT-PCR programme

PCR programme for RT-PCR

Temperature Time

25 ◦C 10min

42 ◦C 45min

95 ◦C 5min

8 ◦C ∞

For the qPCR (programme see tab. 3), the cDNA (2µl) was added to a mix of 7.5µl

SYRB green master mix, 1.5µl primer mix [5µM stocks] and 4µl H2O. Gene expression

was evaluated using ∆∆Ct method.

Table 3: qPCR programme PCR programme for qPCR

Temperature Time

50 ◦C 2min

60 ◦C 10min

95 ◦C 15 s
40 x

60 ◦C 1min

3.4 in vivo experiments

For the analysis of Ova-specific responses in vivo, OT-II T cells (2 x 106/mouse) were

prepared and labelled as described in 3.1.2 and then i.v. injected into wt mice. On

the following day (d0) mice were treated with beads or controls by i.v. injection. Six

days after treatment, mice were sacrificed and spleens and in some cases lymph nodes

were isolated analogous to 3.1.2. Both splenocytes and lymphocytes were analysed by FC

while only splenocytes were plated and restimulated for cytokines analysis (see 3.3.1).

3.5 Particles

3.5.1 Bead preparation

Here, only the final and optimised protocol is described. More details and differential

conditions are illustrated in the supplementary results

Beads harbouring Anx and Ova were generated using sulfate fluospheres as basis. These

latex beads have a diameter of 1µm and proteins can be attached by passive adsorption.

Bead coating was performed at a bead concentration of 0.4% solids (2000 x 106 beads/266µl).

First, Ova [2 ng/106 beads] was diluted in DBPS in protein lowbind tubes and a sample
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was taken to monitor the input before coating. Beads were then added and the tubes

were rotated over night at 4 ◦C. Coated beads were then pelleted (5min, 13000 rpm, 4 ◦C)

and supernatant was kept to monitor how much of the input was bound to the beads.

The beads were then washed two more times before they were equally split into at least

two tubes. In one tube the beads were resolved in DPBS/1%mouse serum and rotated

over night at 4 ◦C for blocking and then used as control Ova-beads (OB). Meanwhile,

the second batch of Ova-coated beads was additionally coated with Anx by rotation over

night at 4 ◦C and washed three times. Again, samples from before and after coating were

kept to monitor coating efficiency. Finally, Ova-Anx-beads (OAB) were blocked over night

in DPBS/1%mouse serum. All coated beads were stored in DPBS/1%mouse serum at

4 ◦C.

The ratio between Ova and Anx was calculated with the number of molecules that should

attach to the beads assuming 100% efficiency. This means that OAB20 should harbour

20-fold more Anx molecules than Ova molecules. For OAB20 this would translate to

2 ngOva/106 beads and 29,7 ngAnx/106 beads.

3.5.2 Bead analysis

Beads were analysed after production to control successful coating but also regularly and

prior the every experiments to ensure stable binding and to monitor bead concentrations.

The bead production was initially controlled by western blot analysis as described in

3.3.1.5. However, this type of analysis was rather indirect and could be improved by

using FITC-labelled Ova which allowed analysis by fluorescence measurements. For FC

analysis the beads were diluted 1:100 and stained with α-Anx-APC. FC analysis provided

fluorescence intensity measures for Ova and Anx per bead and hence visualised protein

binding in general. Furthermore, it allowed to control stability of coating of the same bead

charge over time and also to compare coating between different bead charges. However,

quantification was not possible with this method. In order to quantify the amount of

Ova on the beads and also to analyse the input and output samples that were obtained

during the production, fluorescence was measured with a plate reader (GloMax, blue

filter (excitation 490 nm)). Using a standard curve of Ova-FITC, the amount of Ova-

FITC in the samples from the bead production and in a defined volume of bead solution

could be calculated. Combining this measurement with a bead count (as described in

the next paragraph), allows quantification of Ova-FITC per bead and accordingly coating

efficiency.

Bead quality and concentration was controlled prior to every experiment to ensure similar

bead numbers and consequently similar amounts of antigen for cell treatment. The bead

concentration was determined by counting the beads with TruCount tubes. These tubes

contain a pellet with a defined number of labelled beads. Solving this pellet in a defined

volume allows to calculate which sample volume was measured with FC and hence allows
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the correlation of the number of events measured by FC with a volume. In addition to the

counting prior to the assay, samples from the bead solutions prepared for cell treatment

were analysed post assay using the GloMax plate reader as described above to control

once more whether cells received similar amounts of Ova.

3.5.3 Nanoparticles

Nanoparticles (NP) were produced by Nanovex Biotechnologies S.L.. The nanoparticles

were made of poly(D,L-lactide-co-glycolide) (PLGA) with a L/G ratio of 50:50 and sur-

face modification with PEI. Ova was encapsulated in the NP while Anx was covalently

bound to PEI on the NP surface. ONP were characterised with a diameter of 222.4 nm,

a ζ-potential of 45.2mV and 0.5µgOva/mgNP. OANP were characterised with a dia-

meter of 247.7 nm, a ζ-potential of 19.9mV, 0.5µgOva/mgNP and 6.7µgAnx/mgNP

corresponding to a molecule ratio of 1:18 (Ova:Anx).
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4 Results

4.1 Effects of soluble Anx on BMDC cytokine secretion

Annexins and in particular the annexin A1 core domain (Anx) was recently described

to have tolerogenic functions. 80,82 To further analyse the tolerogenic capacity of Anx on

BMDC, an in vitro suppression assay including apoptotic JE6.1 cells (aJ) as positive con-

trol was established (fig. 3A). As expected, cytokine suppression by aJ was observed in

all performed experiments. Representative examples of IL-12 (fig. 3B) and IL-6 (fig. 3C)

production show that aJ are able to keep the cytokine production at the baseline level of

untreated cells or even repress it to undetectable levels. For unstimulated BMDC, Anx

showed a suppressive activity comparable to aJ. Upon BMDC stimulation of the BMDC,

Anx was however not as potent as aJ. Nonetheless, Anx reduced IL-6 secretion signific-

(A)

(B) (C) (D)

Figure 3: Suppression BMDC cytokine production following incubation with apoptotic

cells or Anx. (A) BMDC were pre-treated with apoptotic JE6.1 cells (aJ) or Anx for 4 h and 8 h,
respectively, before they were stimulated with CpG. (B+C) BMDC were pre-treated as illustrated
in A and either left unstimulated or stimulated with CpG as indicated. Cytokine secretion was
analysed via ELISA using supernatants (SN) that were collected after 2 days. (D) Nine individual
experiments were summarised by normalising the IL-6 secretion to the IL-6 concentration in the
supernatants of cells only stimulated with CpG, without pre-treatment (reference condition). The
different Anx concentrations were analysed in separate experiments, however equally normalised
to their respective reference condition. Significance was calculated using paired t-test (* p<0.05,
** p<0.01, *** p<0.001).
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antly to approximately 60 % of the response seen in BMDC stimulated with CpG in the

absence of any pre-treatment (fig. 3D).

(A)

(B) (C) (D) (E)

Figure 4: Reduction of Ova-specific T cell stimulation following pre-incubation with

soluble Anx. (A) BMDC were pre-incubated for 7 h with Anx [1000 nM] before Ova [10µg/ml]
and, 1 h later, CpG were added. 2 days after treatment of the BMDC, CFSE-labelled OT-II T cells
were added and co-cultured for a total of 5 days before the T cells were harvested for FC analysis.
Supernatants for cytokine analysis were collected before T cells were added and on day 2 and day 5
of co-culture. (B) BMDC were treated as illustrated in A and supernatants collected before T cells
were added were used to measure IL-6 production from BMDC. (C) Following 2 days of co-culture
IL-2 production was analysed via ELISA. (D) Following 5 days of co-culture, IFN-γ production was
measured via ELISA. (E) T cells were harvested after 5 days of co-culture and proliferation of the
cells was determined by dilution of CFSE measured in FC. (B-E) show summaries of 5 independent
experiments each normalised to their respective control (response to Ova alone). Significance was
calculated using paired t-test (* p<0.05, ** p<0.01, *** p<0.001).
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4.2 Effects of soluble Anx and Anx-beads on antigen-specific

T cell responses

DC reside in the centre of the immune system and shape T cell responses. 9 Hence, the

Anx-mediated inhibition of inflammatory cytokine secretion from DC was hypothesised

to influence T cell responses as well. This hypothesis was investigated by expanding

the BMDC suppression assay with Ova as antigen and Ova-specific CD4+Tcells (OT-II

T cells).

4.2.1 Effects of soluble Anx on Ova-specific T cell responses

The OT-II system was used to evaluate whether BMDC pre-incubation with soluble Anx

as seen in figure 3 can influence T cell responses. Induction of OT-II T cell responses

requires presentation of the relevant antigen Ova by BMDC. For this reason, the BMDC

suppression assay was adjusted by adding recombinant Ova to the Anx-pretreated BMDC

1h prior to CpG stimulation (fig. 4A). Additionally, the assay was expanded by co-

culturing the pre-treated BMDC with CFSE-labelled OT-II T cells which were analysed

for cytokine production and proliferation.

The suppression of IL-6 illustrated in figure 3D was maintained in the presence of Ova

(fig. 4B). BMDC incubated with Ova and stimulated with CpG provoked a TH1-like

response in OT-II T cells represented by secretion of IL-2 and IFN-γ. Pre-incubation

with soluble Anx resulted in a strong reduction of the Ova-specific cytokine response

(fig. 4C, 4D) as well as in decreased proliferation (fig. 4E). These results indicate that the

tolerogenic function of Anx on BMDC is transferred to CD4+ Tcells.

4.2.2 Effects of Anx-beads on Ova-specific T cell responses

The regulatory functions of Anx might be valuable for the development of antigen-specific

therapies for autoimmune disease. Anx and Ova as antigen were coupled to polystyrene

beads in order to investigate the modulatory capacity of Anx in an antigen-specific con-

text. Details about the bead production and characterisation can be found in 3.5.1 and the

supplementary results. Briefly, beads are coated either with Ova alone as reference beads

(OB) or coated with Ova and Anx (OAB). All beads are coated with equal amounts of

Ova. If not indicated otherwise, Anx is coated in 20-fold excess. To analyse how the T cell

response is influenced by the beads, the suppression assay was performed similar to the

assays with soluble Anx and is schematically shown in figure 5A. A titration experiment

(n=3) with the beads was performed to determine an appropriate bead concentration

(fig. 5B-5D). 14 x 106 beads/ml triggered T cell responses that were detectable but not yet

in a plateau and thus this concentration was used for further experiments. Figure 5B-5D

shows that T cell responses could be inhibited by Anx-bead treatment of BMDC. This
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(A)

(B) (C) (D)

(E) (F) (G)

(H) (I) (J)

Figure 5: Attenuation of Ova-specific T cell stimulation by Ova-Anx-beads. (A) BMDC
were incubated with beads coated with Ova (OB) or OVA and Anx (OAB) before they were stimu-
lated with CpG. CFSE-labelled OT-II T cells were added and co-cultured for 5 days before the T cells
were harvested to analyse proliferation by FC. Supernatants for cytokines analysis were collected
before T cells were added (for IL-6) and on day 2 (for IL-2) and day 5 (for IFN-γ) of co-culture.
(B-D) summarise T cell responses to ascending bead concentrations of 3 independent experiments.
(E-J) illustrate the response to increasing amounts of Anx on the bead surface. (E-F) exemplifies
the raw data of one experiment including treatment with soluble Ova as positive control and the
responses in absence and presence of CpG stimulation. (H-J) show the summary of 7 independent
experiments, each individually normalised to the response to the control beads (OB). Significance
was calculated using paired t-test (* p<0.05, ** p<0.01, *** p<0.001).
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inhibitory effect is further depicted with a representative experiment using OAB with dif-

ferent Anx concentrations (fig. 5E-5G). Beads were coated with a 5-fold (OAB5), 10-fold

(OAB10) or 20-fold (OAB20) excess of Anx molecules in relation to Ova molecules. Fig-

ure 5E-5G illustrate that T cell responses were decreased in Anx-concentration-dependent

manner following co-culture with unstimulated and CpG-stimulated BMDC. This sup-

pressive effect compared to the response to beads with Ova alone was observed repro-

ducibly with a mean reduction of IL-2 secretion to 44.6% (fig. 5H), mean reduction of

IFN-γ secretion to 36.7% (fig. 5I) and mean reduction of proliferation to 57.9% (fig. 5J)

referring to the highest Anx concentration.

4.2.3 Specificity of the Anx-bead effects

(A)

(B)

Figure 6: Viability of BMDC and T cells is not im-

paired by beads. Cell viability was analysed using 7-AAD
staining to determine the percentage of living cells in the
whole cell population. (A) BMDC were pre-incubated with
Ova [10µg/ml] or beads [14 x 106/ml] prior to CpG stimula-
tion. 2 days after treatment, BMDC were harvested and
stained for CD11c and with 7-AAD to measure dead cells in
the CD11c+ compartment. (B) OT-II T cells were harves-
ted after 5 days of co-culture with pre-treated BMDC and
stained for CD4 and with 7-AAD to measure cell death in
the CD4+ compartment.

Several control experiments were

performed to validate that the

suppressive capacity of the Anx-

beads shown in figure 5 is me-

diated specifically by the pres-

ence of Anx on the bead sur-

face. First, it was examined

whether the beads show any tox-

icity and whether the beads show

any coating-related toxicity. Two

separate experiments showed that

the beads did not negatively influ-

ence BMDC viability irrespective

of the coating and the amount of

Anx on the bead surface (fig. 6A).

T cell viability could be affected

by the beads in two different ways:

either directly by potentially re-

maining beads in the culture that

have not been taken up by BMDC

or indirectly by effects mediated

through the bead-treated BMDC.

However, no bead-induced cell

death of T cells was detected

in two independent experiments

(fig. 6B). Viability was analysed

in experiments performed in parallel with suppression assays, suggesting that inhibited

T cell responses are not associated with increased cell death.
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(A) (B)

(C) (D)

(E) (F) (G)

Figure 7: Bead uptake, Ova processing and Ova presentation are not significantly

altered by Anx. (A+B) BMDC were incubated over night with beads [7.5 x 106/ml] and then
fixed and stained for microscopy. Representative images of the bead uptake by BMDC are shown
in A (yellow: beads; blue: hoechst, red: phalloidin) and the number of beads per cell quantified
over 17 images per condition is shown in B. (C) BMDC were pre-treated treated with fluorescent
beads [14 x 106/ml] and stimulated with CpG. 2 days later, BMDC were harvested, stained for
CD11c and their bead content was analysed by FC. Dots represent independent experiments. (D)
BMDC were incubated with soluble DQ-Ova [10µg/ml] or beads coated with DQ-Ova ± Anx for
3 h at 37◦C and 4◦C in parallel. Cells were then harvested and Ova degradation was evaluated
in FC. The background as determined by the signal measured at 4◦C was subtracted in each of
the 4 independent experiments. (E-G) BMDC were pre-treated as described for C and co-cultured
with CFSE-labelled OT-II T cells. For the indicated conditions, ISQ [0,005µM] was added at least
30min prior to the T cells. (E) After 2 days of co-culture, IL-2 production was analysed by ELISA.
(F) After 5 days of co-culture, IFN-γ production was measured by ELISA. (G) and proliferation of
harvested T cells was determined by FC (G). To allow direct comparison, results were normalised
to OB or OB + ISQ, respectively.

39



4 Results

Next, the uptake of the beads by BMDC was analysed by microscopy (fig. 7A, 7B) and

FC (fig. 7C). A yellow fluorescent variant of the polystyrene beads was used to visualise

phagocytosed beads. Due to the strong fluorescent signa of the yellow bead variant,

BMDC were treated over night with a reduced bead concentration before they were fixed

and stained for microscopy. Nuclei and beads were counted separately to calculate the

average number of beads per cell for each image. The summary of the images of one

experiment demonstrate similar bead content in cells incubated with either OB or OAB

(fig. 7B). Uptake was additionally analysed 2 days following bead treatment using the

assay setup described in figure 5A by measuring what proportion of CD11c+ cells were

positive for the fluorescent signal of the beads (fig. 7C). The number of beads taken up

per cell could not be estimated because the fluorescent signal of the beads was too high.

Nevertheless, the FC analysis supports the microscopy data in figure 7B demonstrating

that Anx-coating did not significantly alter uptake of the beads. These results exclude

that the reduced T cell responses described above caused by reduced availability of Ova

in the BMDC.

Anx might influence Ova processing and presentation, which could lead to less antigen

presentation and hence less T cell activity. An Ova protein variant which is coupled to

a processing sensitive dye (DQ-Ova) was utilised to evaluate processing in absence and

presence of Anx. DQ is quenched as long as the protein is intact but upon degradation

to smaller peptides the dye emits a fluorescent signal. Processing of DQ-Ova was neither

affected by the presence of 10-fold nor 20-fold excess of Anx on the bead surface (fig. 7D).

Presentation of Ova in the context of MHC II is difficult to measure directly due to the

lack of an antibody recognising the Ova-MHC II complex. ISQ was added to BMDC

prior to co-culture with OT-II T cells to indirectly assess whether T cell responses are

reduced due to differential antigen presentation or due to active modulation of the T cell

by the DC. The Ova peptide ISQ can be loaded into MHC II directly from the outside of

the cell and is independent of uptake and processing 216. The external loading with ISQ

can override any potential difference in antigen presentation on BMDC following bead

incubation. As illustrated in figure 7E-7G, T cell responses were similarly decreased by

OAB as compared to OB in absence and presence of ISQ. It should be noted that the

addition of ISQ did increase the T cell response which may account for differences in the

suppression. The stimulatory effects of ISQ are not represented in the graphs since the

response was normalised to the respective controls. Figure 7 demonstrates that T cells

are actively modulated by BMDC-intrinsic mechanisms induced by Anx-coated beads and

not by differences in antigen presentation.
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4.3 Effects of soluble Anx and Anx-beads on BMDC phenotype

Anx attenuates T cell responses in soluble and particulate form. This is however an indir-

ect effect on T cells mediated through the bead-treated BMDC. How the beads modulate

the BMDC phenotype is addressed in the following sections.

4.3.1 T cell suppression in the context of BMDC cytokine suppression

(A) (B)

(C) (D)

(E) (F)

Figure 8: Diminished T cell responses are inde-

pendent of BMDC cytokine suppression. (A-D)
BMDC were pre-incubated for 7 h with Anx [1000 nM] be-
fore Ova [10µg/ml] and 1 h later CpG were added. CFSE-
labelled OT-II T cells were added and co-cultured for 5 days
before the T cells were harvested to evaluate proliferation by
FC (D). Supernatants for cytokines analysis were collected
before T cells were added (A) and on day 2 (B) and day 5 of
co-culture (D). (A-D) show results from a single experiment
with triplicates for every condition. (E+F) BMDC were pre-
incubated with beads an then stimulated with CpG. 2 days
later supernatants were collected for ELISA. The data was
normalised to the control-beads (OB) and corresponds to
the data shown in figure 5H-5J.

Based on the initial finding that

soluble Anx can repress the se-

cretion of inflammatory cytokines

(fig. 3), it can be hypothesised

that the altered cytokine pro-

file modulates the T cell response.

However, in one experiment sol-

uble Anx failed to suppress IL-6

production in BMDC while the in-

hibitory effect on T cell level was

maintained (fig. 8A-8D). Further-

more, suppression of IL-6 or IL-12

secretion was never observed for

bead-bound Anx (fig. 8E, 8F) des-

pite the fact that T cell responses

were diminished in all correspond-

ing experiments (fig. 5). This in-

dicates, that in contrast to soluble

Anx, bead-bound Anx is not cap-

able of suppressing inflammatory

BMDC cytokines. Moreover, this

data shows that T cell inhibition

is independent of BMDC cytokine

suppression.

While decreased inflammatory cy-

tokine levels were negligible for

the modulation of T cell re-

sponses, anti-inflammatory cy-

tokines and mediators might be

involved. IL-10 and TGF-β se-

cretion by BMDC was not detect-

able 2 days following Anx or bead
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(A) (B)

(C) (D)

Figure 9: Expression of IL27, IDO, SOCS1 and SOCS3 was not modulated by Anx.

BMDC were incubated with soluble Anx or beads [14 x 106/ml] for 4 h before cells were harvested.
RNA was extracted from the cell lysates and analysed by qRT-PCR. Gene regulation was assessed
with the ∆∆CT method and using HMBS as reference gene. The lower Anx concentration (500 nM)
was analysed in separate experiments but equally normalised to their respective reference condition.
Experiments were performed in parallel to T cell suppression assays. Dots indicate independent
experiments and significance was calculated using paired t-test of log2 transformed data (* p<0.05,
** p<0.01, *** p<0.001).

treatment (data not shown). Additional anti-inflammatory cytokines and mediators were

analysed on mRNA level. While T cell suppression was observed in parallel, neither the

IL-27 subunit IL27p28 nor IDO was upregulated by Anx or Anx-beads (fig. 9A, 9B).

SOCS1 and SOCS3 are known negative regulators in DC. 76 Besides regulating the re-

sponse to exogenous cytokines they are also downstream targets of modulatory receptors

and thus a potential target of Anx. However, gene expression of SOCS1 and SOCS3 was

not altered by Anx in soluble or particulate form (fig. 9C, 9D).

The impact of soluble mediators was further examined by washing the BMDC prior to

co-culture with OT-II T cells. Exchanging the BMDC medium before the T cells are

added removes all soluble mediators secreted by BMDC in response to the beads. Figure

10 shows T cell responses to washed BMDC in a representative experiment. The lack

of soluble factors like pro-inflammatory cytokines produced by the BMDC in response to

CpG leads to a reduced T cell activity independent of any pre-treatment. Nevertheless, the

suppression of T cell cytokine secretion and proliferation by OAB is sustained indicating
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that Anx-mediated T cell suppression does not rely on the cytokine profile of BMDC.

(A)

(B)

(C)

Figure 10: Soluble mediators have a minor role for

T cell suppression by beads. BMDC were incubated
with beads before they were stimulated with CpG. 2 days
after the treatment, CFSE-labelled OT-II T cells were either
added directly (left panel) or BMDC were washed before
the OT-II T cells were added (right panel). (A) IL-2 pro-
duction was measured after 2 days of co-culture. (B) IFN-γ
production was measured after 5 days of co-culture. (C)
Proliferation was measured after 5 days of co-culture.

4.3.2 Effects on BMDC sur-

face marker expression

Anx-mediated T cell suppression

might be induced in cell-cell

contact-dependent manner, hence,

the surface expression of co-

stimulatory and co-inhibitory mo-

lecules on BMDC was ana-

lysed. Apoptotic cells attenu-

ated the activation-induced up-

regulation of MHC II and the

co-stimulatory molecules CD40

and CD86 (fig. 11A-11D). Neither

500 nM nor 1000 nM soluble Anx

was able to reproduce this ef-

fect (fig. 11E-11G). Interestingly,

apoptotic cells also impaired the

upregulation of the co-inhibitory

molecule PD-L1 (fig. 11D). A

slight decrease in PD-L1 expres-

sion was also seen in BMDC

pre-incubated with 1000 nM Anx

but the effect was not signific-

ant (fig. 11G). The surface ex-

pression of additional stimulatory

and inhibitory molecules, includ-

ing CD80, ICOSL, PD-L2 and

ILT3, was ex-amined on BMDC.

None of analysed markers were affected by soluble Anx (fig. 11H-11K).

The surface marker panel used in figure 11 was also analysed following pre-incubation

with beads (fig. 12). The bead material itself influences the expression of BMDC surface

markers. Both OB- and OAB-treated BMDC showed a more stimulatory phenotype than

non-bead-treated BMDC with increased MHC II, CD40, CD86 and CD80 levels (fig. 12A-

12C, 12G) and decreased PD-L1 and ILT3 levels (fig. 12D, 12F). Although a slight increase

in CD40, PD-L2 and ICOSL expression was detected in OAB-treated BMDC (fig. 12B,

12E, 12H), none of the analysed markers were altered significantly in OAB-treated com-
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(A) (B) (C) (D)

(E) (F) (G)

(H) (I) (J) (K)

Figure 11: Alterations in BMDC surface marker expression by apoptotic cells and

soluble Anx. BMDC were pre-incubated with Anx or apoptotic JE6.1 cells (aJ) and stimulated
with CpG. On the following day (E-K) or after 2 days (A-D), BMDC were harvested and stained
for FC analysis. Surface marker expression is shown for pre-gated CD11c+ BMDC with each dot
representing an independent experiment.

pared to OB-treated BMDC.

4.3.3 Effects on ROS production

Reactive oxygen species (ROS) were long considered to be harmful. However, in the

last decade ROS like H2O2 were recognised as important modulators of diverse signalling

pathways. Furthermore, ROS are implicated in T cell hyporesponsiveness. 217,218 Whether

Anx can cause ROS production was investigated using DCFDA, a molecule that becomes

fluorescent upon oxidation. Soluble Anx induced ROS production in BMDC peaking

2 h after treatment (fig. 13A). In In contrast to an oxidative burst as seen after PMA

treatment, Anx provoked a low ROS signal (mean 25.8% specifc MFI increase) which is
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(A) (B) (C) (D)

(E) (F) (G) (H)

Figure 12: Alterations in BMDC surface marker expression by beads. BMDC were pre-
incubated with beads before and stimulated with CpG. On the following day, BMDC were harvested
and stained for FC analysis. T cell suppression was analysed in parallel. Surface marker expression
is shown for pre-gated CD11c+ BMDC with each dot representing an independent experiment.

(A) (B) (C)

Figure 13: ROS production is increased by soluble Anx and Anx-beads. BMDC were
treated with the listed substances for 2 h (or as indicated) and incubated with DCFDA in the last
30min of the treatment. ROS production is shown relative to untreated cells or a reference condi-
tion. (A) Kinetic of the Anx-induced ROS production measured in triplicates. (B) Summary of 4
independent experiments including pre-treatment with the ROS scavenger Trolox 10min prior to the
addition of Anx. (C) BMDC were treated with beads [14 x 10 6/ml] and ROS production normalised
to control-beads (OB). Dots indicate independent experiments. Significance was calculated using
paired t-test (* p<0.05, ** p<0.01, *** p<0.001).

suitable to modulate signalling without killing the cell 219. The Anx-induced ROS was

specifically blocked by the ROS scavanger Trolox (fig. 13B). Beads did also induce ROS

production and despite the increased background ROS in OB-treated cells, the signal was

further elevated with OAB (fig. 13C). This data shows that both soluble and bead-bound

Anx induce ROS generation which might have modulatory effects on BMDC and T cells.
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4.4 Effects of soluble Anx and Anx-beads on T cell phenotype

Soluble Anx and Anx-beads modulate Ova-specific T cell responses as demonstrated in the

previous figures. The following section addresses the T cell phenotype and the potential

mode of tolerance induced by Anx-treated BMDC.

4.4.1 Effects on T cell cytokine production

The T cell cytokine profile provides information about the T cell subtype. The presenta-

tion of Ova by BMDC (unstimulated as well as CpG-stimulated) results in differentiation

of OT-II T cells into TH1 cells, characterised by IFN-γ secretion. Alternative differen-

tiation or conversion into TH2 cell was not observed, since IL-4 was neither detectable

in untreated nor bead-treated conditions (data not shown). Reduced production of IL-

2, IFN-γ (fig. 5) and TNF-α (fig. 14A), a pro-inflammatory cytokine involved in the

pathogenesis of asthma and allergy, indicates that Anx-beads attenuate pro-inflammatory

cytokine responses from Tcells. Whether T cells additionally gained anti-inflammatory

functions was investigated by measuring secretion of IL-10 and TGF-β, which are associ-

(A) (B) (C)

(D) (E)

Figure 14: Global T cell cytokine suppression by Anx-beads. (A-C) BMDC were pre-
incubated with Ova or beads prior to stimulated with CpG. CFSE-labelled OT-II T cells were
co-cultured with treated BMDC for 5 days and cytokine production was measured by ELISA.
(A) TNF-α production was evaluated in triplicates.(B+C) Cytokine production was normalised to
the non-pre-treated but CpG-stimulated condition and summarised with each dot representing an
independent experiment. (D+E) BMDC were pre-incubated with Ova or beads prior to stimulated
with CpG. Activated OT-II T cells were co-cultured with treated BMC and cytokine production
was measured after 2 days (D) or 5 days (E) by ELISA. D + E show results from one experiment,
performed with triplicates for each condition.
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ated with regulatory T cell subtypes (fig. 14B, 14C). IL-10 and TGF-β levels were low in

OT-II T cells following co-culture with BMDC and pre-treatment with Anx-beads further

diminished the secretion of these cytokines (fig. 14B, 14C). These results suggest a global

suppression of cytokine production including both pro- and anti-inflammatory cytokines.

Furthermore, cytokine secretion was also found to be inhibited in preliminary experiments

with pre-activated T cells (fig. 14). Co-culturing bead-treated BMDC with OT-II T cells

that were pre-activated with αCD3/αCD28 resulted in reduced IL-2 and IFN-γ levels as

exemplified in figure 14D and 14E.

4.4.2 Effects on T cell surface marker expression

Although anti-inflammatory cytokines like IL-10 or TGF-β are common mediators of tol-

erance, regulatory T cell subsets utilise several effector mechanisms in addition to these

cytokines. For instance, FoxP3+ Treg are described to rely on contact-dependent mech-

anisms rather than cytokine secretion. 107,108 Hence, tolerogenic properties including the

expression of FoxP3 and co-inhibitory molecules were investigated. Activation of OT-II

T cells by BMDC treated with soluble Ova or beads decreased the proportion of FoxP3+

cells and Anx-beads were neither able to initiate FoxP3 expression nor to prevent the

(A) (B)

(C) (D) (E)

Figure 15: Anti-inflammatory marker are scarcely influenced by Anx-beads. BMDC
were pre-incubated with Ova or beads prior to stimulated with CpG. CFSE-labelled OT-II T cells
were co-cultured with treated BMDC. (A) Following 7 days of co-culture, T cells were harvested and
analysed for FoxP3 expression by FC. The bars show mean and SD of 2 independent experiments.
(B-E) Following 5 days of c-culture, T cells were harvested, stained for the indicated surface molecules
and analysed by FC. MFIs of each experiment were normalised to the MFI of the respective reference
condition (OB). Significance was calculated using paired t-test (* p<0.05, ** p<0.01, *** p<0.001).
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activation-related reduction in FoxP3 expression (fig. 15A).

A variety of co-inhibitory receptors affect tolerance induction and maintenance. PD-1

and CTLA-4 are crucial for peripheral tolerance while Tim-3 and Lag-3 are often de-

scribed to cooperate with other molecules to support tolerance. Thus, these receptors

might also contribute to Anx-bead mediated effects on T cells. However, the surface

expression of PD-1, CTLA-4 and Lag-3 was not modulated in OT-II T cells following

co-culture with Anx-bead-treated BMDC (fig. 15B-15D). Tim-3 was significantly modu-

lated by Anx-beads (fig. 15E). The average increase in the MFI of Tim-3 in the CD4+

T cell compartment was 13.3%. It should however be noted that only a small subset of

maximally 20% of OT-II T cells were Tim-3 positive.

4.4.3 Evaluation of anergy-related characteristics

Tcell tolerance is often described in three categories: T cell deletion, T cell anergy and

Treg cells. Anergy is a state of unresponsiveness, mainly described by attenuated prolifer-

(A) (B)

(C) (D) (E)

Figure 16: An anergic phenotype is only partly observed in Anx-bead treated T cells.

BMDC were pre-incubated with Ova or beads prior to stimulated with CpG. CFSE-labelled OT-
II T cells were co-cultured with treated BMDC. (A) Following 5 days of co-culture, T cells were
harvested, stained for the indicated surface molecules and analysed by FC. Each experiment was
normalised to the respective reference (OB). (B-E) If not stated otherwise, T cells were harvested
after 4 h of co-culture to analyse gene expression via qRT-PCR using HPRT as reference gene. (B)
IL-2 expression was analysed after 4h (left) and 24h (right) and is shown relative to the expression
in the OB condition. (C-E) Expression of the indicated genes is illustrated relative to the expression
of T cells co-cultured with non-pre-treated but CpG-stimulated BMDC. Dots indicate independent
experiments and significance was calculated using paired t-test of log2 transformed data (* p<0.05,
** p<0.01, *** p<0.001).
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ation and cytokine production. 87 These properties were observed in OT-II T cells following

co-culture with Anx-treated BMDC (fig. 4, fig. 5). In order to test the hypothesis that

Anx-beads induce T cell anergy, additional markers associated with an anergic phenotype

were analysed (fig. 16).

Some publications describe a anergic T cell population in vivo which is double-positive for

CD73 and FR4 surface marker expression. 105,220 Anx-bead treatment did not result in a

significant increase of the CD73+, FR4+ subpopulation in OT-II T cells in vitro (fig. 16A).

A hallmark of anergy is impaired IL-2 transcription. 87,221 In addition to reduced IL2 se-

cretion demonstrated in figure 5, co-culture of T cells with Anx-bead treated BMDC led

to significantly decreased IL-2 mRNA expression after 24 h (fig. 16B). The same trend

was observed after 4 h. IL-2 transcription requires both TCR and CD28 signalling. The

lack of co-stimulation via CD28 results in an alternative transcription programme includ-

ing Egr2 expression which in turn enhances the expression Cblb and GRAIL. All three

mentioned factors are implicated in T cell anergy 87,221,222 and were thus analysed in OT-II

T cells 4 h after co-culture with bead-treated BMDC (fig. 16C-16E). The increase in ex-

pression of Egr2, Cblb and GRAIL following Anx-bead treatment is not significant and

quantitatively not comparable with gene expression profiles of anergic T cells found in lit-

erature 98,99,101,102,223,224. Similarly, soluble Anx mediated a decrease in IL-2 transcription

while the other anergy-associated genes tested were unaffected (fig. S6).
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4.5 In vivo effects of Anx-beads

Anx-beads were able to suppress T cell responses in vitro and it was investigated whether

this effect can be reproduced in vivo.

Mice were first treated with the control-beads (OB) to estimate an appropriate bead

concentration for further in vivo experiments (fig. 17A). 6 days after treatment, the

(A)

(B) (C)

(D) (E)

Figure 17: T cell proliferation in vivo is induced by control-beads in a concentration

dependent manner. 1.5 x 106 CFSE-labelled OT-II T cells were transferred into wt mice one day
prior to i.v. injection of PBS (mock), the indicated amounts of beads or 500µgOva/50µgαCD40. 6
days after treatment mice were sacrificed to analyse T cell responses in the spleen. Mean and SD of
2 mice are shown for the bead treatments. (A-D) Splenocytes were isolated, stained and analysed by
FC. (E) Splenocytes were restimulated with the relevant Ova-peptide ISQ or stimulatory antibodies
for 4 days before supernatants (SN) were analysed by ELISA. Graphs show baseline-subtracted
cytokine secretion
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transferred OT-II T cell comprised 0.59 - 0.88% of the CD4+ Tcells in the spleens of

bead-treated mice, showing that OB caused an active response to Ova compared to the

mock treatment (PBS) with only 0.16% OT-II T cells (fig. 17B). 25 x 106 beads per mouse

were sufficient to induce proliferation in 64.1% of the transferred T cells in vivo whereas

100 x 106 beads per mouse induced proliferation in almost all (89.8%) transferred T cells

(fig. 17C). In line with the proliferation, the expression of the activation marker CD44

(A) (B)

(C) (D)

Figure 18: Co-stimulation with αCD40 was not sufficient to induce antigen-specific

cytokine responses in vivo. 2 x 106 CFSE-labelled OT-II T cells were transferred into wt mice
one day prior to i.v. injection of with the PBS (mock) or 50 x 106 OB with the indicated amounts of
αCD40. 5 days after treatment mice were sacrificed to analyse T cell responses in the spleen. Mean
and SD of 2 mice are shown for all treatments except the mock treatment. (A-B) Splenocytes were
isolated, stained and analysed by FC. (D) Splenocytes were restimulated with mock-peptide (SIY),
Ova-peptides (ISQ, SIINF) or stimulatiory antibodies (α-CD3/α-CD28) for 2 days (IL-2) or 4 days
(IFN-γ) before supernatants were analysed by ELISA. Graphs show baseline-subtracted cytokine
secretion

was enhanced with increasing bead concentrations (fig. 17D). This T cell activation was

however not reflected in IFN-γ secretion upon ex vivo restimulation. The antigen-specific

response to the Ova peptide ISQ in T cells from bead-treated mice was comparable to the

baseline IFN-γ secretion from Tcells from mock-treated mice. Only the positive control

treatment with Ova/αCD40 resulted in increased Ova-specific IFN-γ secretion (fig. 17E).

These results indicate that the control-beads alone may not be sufficient to provoke a

complete T cell responses in vivo including both proliferation and cytokine production.

In order to complement the T cell activation in vivo, αCD40 was co-administered with

51



4 Results

the beads. However, αCD40 had no additive effect on the T cell response induced by

OB (fig. 18). Contrary to the expectations, the response was decreased in the presence

of αCD40 and IFN-γ secretion following ex vivo restimulation remained below the levels

of the mock treated mouse). Antigen-specific secretion of IL-2 above the mock level was

detected from mice treated with OB alone (fig. 18C).

Despite the insufficient cytokine responses seen in figure 17 and 18, Anx-beads were used

in vivo to compare the effects of OB and OAB (fig. 19). Similar proliferation and cy-

tokine secretion were observed in response to OB and OAB (fig. 19C-19E). The absolute

number of OT-II T cells per spleen was reduced from an average of 3.2 x 104 cells after

OB treatment to an average of 1.9 x 104 cells after OAB treatment (fig. 19B).

The effect of OB and OAB on T cells in vivo was further investigated in the presence of co-

stimulation by polyI:C (fig. 19F-19J). The absolute number and the percentage of OT-II

T cells in the spleen 6 days after treatment was decreased in mice treated with OAB com-

pared to mice treated with OB (fig. 19F, 19G) while proliferation was similar (fig. 19H).

Deviating from the previous experiment, IL-2 production was higher in the OAB-treated

mice compared to the OB-treated mice. However, the high variance within the groups

hinders data interpretation (fig. 19I). The co-administration of polyI:C raised the IFN-γ

secretion from CD4+ T cells of OB-treated mice above the level of mock mice (fig. 19J).

The average of IFN-γ secretion in response to ISQ was 154 pg/ml in OB-treated mice and

43.7 pg/ml in OAB-treated mice. Although no clear Anx-mediated effects were observed,

this experiment showed that bead treatment in the presence of polyI:C can provoke po-

tent T cell responses. The secretion of IL-2 and IFN-γ in response to the MHC I-peptide

SIINFEKL demonstrates that Ova-specific CD8+ Tcells from the endogenous T cell pop-

ulation of the mice were expanded (fig. 19I, 19J).
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(A) (B) (C)

(D) (E)

(F) (G) (H)

(I) (J)

Figure 19: Anx-beads induce similar responses as control-beads in vivo. 1.5 x 106 CFSE-
labelled OT-II T cells were transferred into wt mice one day prior to i.v. injection of with PBS
(mock), 50 x 106 beads, 250µgOva/50µgαCD40 (A-E) or 100µgOva/50µgαCD40 (F-J). If indic-
ated, treatment was supplemented with 25µg polyI:C. 6 days after treatment mice were sacrificed
to analyse T cell responses in the spleen. Mean and SD of 3 mice are shown for the bead treat-
ments. (A-C; F-H) Splenocytes were isolated, stained and analysed by FC. TruCount tubes were
used to calculate the number of transferred cells. (D-E; I-J) Splenocytes were restimulated with
Ova-peptides (ISQ, SIINF) or stimulatiory antibodies (α-CD3/α-CD28) over night for IL-2 analysis
or for 4 days for IFN-γ analysis. Graphs show baseline-subtracted cytokine secretion
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4.6 Effects of Anx-nanoparticle on BMDC and T cells

Polystyrene beads are a tool often used in preliminary studies for a proof of concept

since they are commercially available and protein coating to such beads is easier com-

pared to protein coating to particles of other material. Nevertheless, polystyrene beads

are not applicable for therapeutic use in patients. Thus, the suppressive antigen delivery

mediated by Anx needs to be translated to particles of appropriate material. PLGA is

a FDA-approved polymer widely used as nanoparticulate carrier. In collaboration with

(A) (B) (C) (D)

(E) (F) (G) (H)

(I) (J) (K) (L)

.

Figure 20: Nanoparticle show only minor effects on BMDC phenotype. BMDC were
pre-incubated with NP [1µg/ml] and stimulated with CpG. (A) Supernatants were collected 1-2
days after treatment to analyse IL-6 secretion by ELISA. (B-H) 1 day after treatment, BMDC were
harvested and stained for FC analysis. Surface marker expression is shown for pre-gated CD11c+

BMDC. (A-H) show results normalised to the non-pre-treated but CpG-stimulated condition for
each experiment. (I-L) RNA lysates collected 4 h after treatment were analysed by qRT-PCR.
Gene regulation was assessed using HMBS as reference gene and the ∆∆CT method. Results
were normalised to the non-pre-treated but CpG-stimulated condition. Dots indicate independent
experiments and significance was calculated using paired t-test of log2 transformed data (* p<0.05,
** p<0.01, *** p<0.001)
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Nanovex Biotechnologies, PLGA-NP were generated which encapsulate Ova (ONP) and

in addition have Anx covalently attached to their surface (OANP).

First, the effects of the NP on BMDC were investigated in suppression assays analogous

to those used with soluble Anx or beads (fig. 3A). In high concentrations, NP them-

selves suppressed IL-6 production independent of the NP loading (data not shown). This

phenomena was also observed with polystyrene beads (fig. S5A-S5B). The working con-

centrations used for beads and NP were adjusted to cause minimal unspecific BMDC

cytokine suppression. IL-6 secretion was comparable after pre-treatment with ONP or

OANP (fig. 20A). Furthermore, Anx-NP had no anti-inflammatory effect on BMDC

at the level of surface molecule expression (fig. 20B-20H). Irrespective of Anx presence,

CD40 and PD-L2 expression was slightly decreased (fig. 20C, 20G) whereas PD-L1 and

ILT3 expression was slightly increased (fig. 20F, 20H) suggesting different basic properties

of polystyrene and PLGA particles. At the level of gene transcription, NP did not signi-

ficatnly modulate IDO, IL-27 and SOCS3. SOCS1 was significantly regulated by OANP

but the relevance of this effect is questionable.

Second, the effects of NP on T cell responses were analysed. Titrations, illustrated by a

representative experiment in figure 21A-21D, demonstrated a NP concentration-dependent

T cell activation. The suppressive activity of Anx-beads on IL-2, IFN-γ and proliferation,

was not reproduced with Anx-NP (fig. 21B-21G). Furthermore, no increase in the mRNA

expression of anergy-related genes with OANP was detected (fig. 21H-21J). Interestingly,

the control-NP themselves upregulated the expression of Egr2, Cblb and GRAIL to about

1.5-fold but the presence of Anx seemed to counteract this effect.

In summary, the generated Anx-NP have no inhibitory function and a refinement of the

NP properties may be necessary to promote the desired Anx-mediated suppression.
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(A) (B)

(C) (D)

(E) (F) (G)

(H) (I) (J)

Figure 21: Attenuation of Ova-specific T cell stimulation was not reproduced by Anx-

NP. BMDC were pre-incubated with Ova or beads prior to stimulated with CpG. CFSE-labelled
OT-II T cells were co-cultured with treated BMDC. (A) IL-6 production was measured before T
cells were added.(B+E) IL-2 production was measured after 2 days of co-culture. (C+F) IFN-γ
production was measured after 5 days of co-culture. (D+G) Proliferation was evaluated by CFSE
dilution measured after 5 days of co-culture. (A-D) show a representative titration experiment
performed with triplicates for each condition. (E-F) show a summary of experiments performed
with 1µg NP/ml normalised to the control-NP (ONP). (H-J) T cells were harvested after 4 h of co-
culture with BMDC treated with 1µg NP/ml. Gene expression was analysed via qRT-PCR using
HPRT as reference gene. Expression of the indicated genes is illustrated relative to the expression
of T cells co-cultured with non-pre-treated but CpG-stimulated BMDC.Dots indicate independent
experiments.

56



5 Discussion

5 Discussion

Apoptotic cells are essential for the maintenance of peripheral tolerance and to prevent

autoimmunity. 67,225,226 The uptake of apoptotic cells induces a tolerogenic phenotype in

phagocytes and thus antigens associated with apoptotic cells (mainly self-antigens) are

presented in a tolerogenic context. 65 Due to this regulatory function, apoptotic cells were

recognised as a vehicle to promote antigen-specific immunosuppression. The reinfusion of

endogenous cells that were fixed with antigen and rendered apoptotic ex vivo was shown

to ameliorate autoimmune disease in mice and is also investigated in patients. 145,146,149,227

The adoptive transfer of cells in a clinical setting is however challenging and a syn-

thetic antigen delivery system that mimicks the properties of apoptotic cells would be

favourable. Although the mechanisms underlying apoptotic cell-mediated tolerance are

incompletely understood, several suppressive mediators of apoptotic cells were charac-

terised 79,225,226 and could be utilised to engineer apoptotic cell-like vehicles. Our group

identified the annexin protein family as such a mediator and demonstrated that the evol-

utionary conserved core domain of annexin contributes to the anti-inflammatory effects of

apoptotic cells. 80,82 This study examined Anx as a tool to induce antigen-specific immuno-

suppression. Particles harbouring Anx and the model-antigen Ova were generated using

either polystyrene or PLGA as basic material. The modulatory effects on Ova-specific

T cell responses of these Anx-particles as well as of soluble Anx were investigated on DC

and CD4+ Tcell level.

5.1 Anx affecting DC phenotype and DC response to TLR chal-

lenge

AnxA1 was previously described to modulate APC responses to TLR challenge. 80,82,200,228

In line with these reports, figure 3 demonstrated that pre-incubation with soluble Anx

inhibits IL-6 and IL-12 secretion from BMDC.

The suppression of inflammatory cytokines is an indirect readout of the inhibitory activ-

ity of Anx including pre-incubation and CpG stimulation. The steady-state cytokine

secretion of BMDC is low and TLR stimulation raises the activity of BMDC to facilitate

cytokine detection. In spite of apoptotic cells being potent immunosuppressors in steady-

state and inflammatory conditions 72,73, it was shown that the inhibition of TLR responses

was most pronounced when DC were co-cultured with apoptotic cells 3 h prior to TLR

stimulation 229. Furthermore our group observed that cytokine repression by AnxA1 re-

quired pre-incubation. 230 Accordingly, in all experiments presented in this study, BMDC

were incubated with Anx or aJ prior to CpG stimulation.

Soluble Anx interferes with TLR induced cytokine secretion but the effector mechanism

leading to the suppression of pro-inflammatory cytokines are elusive. SOCS proteins are
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well-known regulators of cytokine signalling and target the downstream-signalling of dif-

ferent TLRs 231,232. The inhibition or lack of SOCS1 or SOCS3 was shown to result in

enhanced cytokine responses 231,233. Alterations in SOCS activity is thus a candidate ef-

fector mechanism of Anx. However, neither soluble nor particulate Anx modulated the

expression of SOCS1 or SOCS3 in BMDC analysed 4 h after treatment (fig. 9C, 9D).

Similar results were obtained from BMDC incubated with Anx for 8 h and 24 h (data not

shown). Nevertheless, it can not be excluded that a regulation of these genes occurred

at time points not covered in this analysis. Interestingly, SOCS3 is reported to be up-

regulated by apoptotic cells and by an N-terminal peptide of AnxA1 (Ac2-26) leading

to phosphorylation of STAT3 228. Full-length AnxA1 also induced SOCS3 expression in

human monocytes-derived DC, but this upregulation was shown to be dispensable for

cytokine suppression. 230 The discrepancy between the present study and the indicated

literature on SOCS3 regulation can be explained by the use of different cell types from

different species and by the use of different annexin proteins/peptides. Pupjalis et al.

described the effect on SOCS3 specifically for the N-terminus of AnxA1 228 and the work

of Jahndel et al. used the full-length AnxA1 including this N-terminus 230 whereas the

present study utilised the core domain of AnxA1 excluding effects of the N-terminus.

Nevertheless, STAT3 phosphorylation in response to Anx should be examined to confirm

that the core domain does not influence SOCS3 activity.

NF-κB is a master regulator of gene transcription and is amongst others associated with

cell activation and pro-inflammatory responses e.g. to TLR stimulation. Many regula-

tory pathways result in inhibition of NF-κB. AnxA1 was shown to reduce phsphorylation

of the NF-κB subunit p65 and to decrease binding of NF-κB to DNA 80,230. This effect

was not validated for the core domain, yet, and the signalling events upstream of NF-κB

regulation need to be further analysed. Apoptotic cells mediate NF-κB inhibition by a

variety of pathways including SOCS, and PPARγ signalling 73,228,234,235. While SOCS1

and SOCS3 could not be associated with Anx in the present study, PPARγ is an inter-

esting candidate target for Anx and should be investigated. Another candidate target

for Anx is Nr4a1 which is a nuclear receptor described to inhibit NF-κB activity and

IL-12 induction. Nr4a1 interacts with TRAF6 and binds to p65 preventing NF-κB-DNA

binding 236.

A second comprehensive pathway involved in signal transduction of many receptors is

the Ca2+-calcineurin-NFAT axis. PRRs like TLR4 or the C-type lectin dectin-1 activate

calcineurin which modulates pro- and anti-inflammatory cytokine responses. 237 Interest-

ingly, calcineurin inhibition, e.g. by tacrolimus, was associated with reduced 238–240 as

well as with increased cytokine responses 241,242. In addition to the impact on cytokine

secretion, Ca2+ signalling plays a role in DC development and maturation. GM-CSF is

a NFAT target and calcineurin impairment was associated with an anti-inflammatory or

immature DC phenotype. 243–245 Hence, calcineurin and NFAT activity should be analysed
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to further elucidate the mode of action of Anx.

Tolerance induction involves the combination of several signals that determine the type of

immune response. Reduced levels of pro-inflammatory cytokines can be one of these sig-

nals but are not sufficient to induce immunosuppression.Thus, it was investigated whether

Anx specifically antagonises TLR signalling or whether it has a broader effect on the

BMDC phenotype.

Figure 3B and 3C exemplify that Anx attenuated IL-6 and IL-12 secretion in the absence

of TLR-stimulation with CpG which demonstrates that Anx activity is not restricted to

TLR signalling. We hypothesised that Anx causes a tolerogenic phenotype in BMDC.

Tolerogenic DC are not strictly defined and the characteristics of DC that exert immuno-

suppressive functions vary between different studies. Nonetheless, tolerogenic DC are

commonly described to express anti-inflammatory mediators and to show an immature

phenotype. 43,66

Anx did not enhance IL-10 and TGF-β secretion or alter IDO expression (data not shown,

fig. 9B) which are the most prominently described soluble anti-inflammatory mediators.

Moreover, the inhibitory surface molecules PD-L1, PD-L2 and ILT3 were not upregulated

by Anx, either (fig. 11D, 11G-11I, fig. 12D-12F). PD-L1 was upregulated by AnxA1 in hu-

man PBMC 80,230 whereas Linke et al. showed no regulation of PD-L1 by AnxA1, AnxA5

or AnxA13 in mouse BMDC 82. The latter is in line with the results in figure 11D,11G and

12D. Interestingly, apoptotic cells did not upregulate PD-L1 but prevented stimulation-

induced upregulation of PD-L1 in this system (fig. 11D). An immature phenotype is

characterised by low expression of co-stimulatory molecules. In accordance with the lit-

erature 77–79,246,247, figure 11A-11D showed that MHC II, CD40, CD80 and CD86 levels

remained low following TLR stimulation when BMDC were pre-treated with apoptotic

cells. However, Anx pre-treatment did not significantly modulate the expression of these

markers in the same experimental setting (fig. 11A-11F, 11K, fig. 12A-12C, 12H). Con-

trary to these results, Linke et al. reported downregulation of CD80 and CD86 by AnxA1,

AnxA5 and AnxA13 82. This discrepancy may be due to the use of different mouse strains

and annexin protein preparations.

In the present study, Anx failed to preserve an immature phenotype in BMDC following

TLR challenge. Nonetheless, Anx might still induce tolerogenic DC with an semi-mature

phenotype. A number of studies reported immunosuppressive activity by DC which ex-

press enhanced levels of co-stimulatory molecules 45,48,50,248,249. For instance, Menges et

al. reported that DC treated with the pro-inflammatory cytokine TNF-α have a mature

phenotype but generate only low amounts of cytokines. In spite of the maturation, these

DC cause T cell tolerance and ameliorate EAE. 249 Moreover, it was appreciated that a

certain degree of DC maturation is beneficial to induce T cell tolerance. Immature DC

efficiently endocytose antigens whereas antigen processing and presentation is more ef-
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ficient in mature DC. Thus, increased MHC II levels can support the interaction of DC

and T cells in an anti-inflammatory context. Further examples are CCR7 which allows

migration of the DC to reach the relevant T cells and CD40 which promotes DC survival

in a positive feedback loop. 45,118,250

This study is the first to show that Anx provokes ROS production in BMDC (fig. 13). In

contrast to the PMA-induced oxidative burst, the ROS signal in response to Anx is low

suggesting a role of ROS as signalling mediator 219.

ROS, especially H2O2, can modulate a variety of signalling pathways and cellular pro-

cesses like pagosomal acidification which is a requisite for the cross-presentation of anti-

gens 251. H2O2 is relatively stable and thus it can act over short distances between cells

and can even cross cell membranes to act in paracrine and autocrine manner. Further-

more, it is an ubiquitous signalling messenger by selectively oxidising proteins. 217,218,252

Cysteins are the main targets of H2O2 but only specific cysteins in coordination with

other adjacent amino acid can react with H2O2 in a process called sulfenylation. Similar

to phosphorylation, sulfenylation leads to post-translational modifications which influence

protein conformation and activity. 252–254 As such, ROS affects transcription factors like

NF-κB and AP-1. 255 The regulation of NF-κB by Anx might be mediated by ROS similar

to the reduced NF-κB activity in neutrophils treated with H2O2 observed by Zmijewski

et al. 256.

The impact of ROS for anti-inflammatory immune responses was emphasised in context

with NADPH oxidase 2 (NOX2) which is the major cellular source of H2O2 and signalling

ROS in immune cells. 257 Impaired function of NOX2 was associated with exacerbated

autoimmune disease in rodent models of arthritis and MS. 258–261 In addition, NOX2-

dependent ROS generated by myeloid-derived suppressor cells (MDSC) acts as feedback

to maintain the MDSC in an undifferentiated state and also supports the immunosup-

pressive properties of MDSC. 262,263 Preliminary experiments showed that both soluble and

particulate Anx generate ROS via NOX2 (personal communication Kevin Bode, DKFZ

Heidelberg) and we hypothesise that the tolerogenic effects of Anx are at least partly

mediated by ROS.

5.2 Comparison of soluble and particulate Anx

This study examined the effects of Anx in soluble and particulate form. The type of

Anx presentation had minor influence on ROS production (fig. 13) and surface molecule

expression (fig. 11, fig. 12) while suppression of IL-6 and IL-12 was only observed with

soluble Anx (fig. 3) and not with Anx-particles (fig. 8E, 8F, fig. 20A).

Particulate structures are generally thought to be pro-inflammatory and inflammasome

activation was described e.g. for bacteria and synthetic particle preparations 264–266. IL-1β
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which is produced in response to inflammasome activation was not detectable in super-

natants of BMDC treated with OB or OAB (data not shown). The polystyrene bead

preparations did however increase the expression of co-stimulatory surface markers and

decreased the expression of co-inhibitory molecules independent of Anx (fig. 12). It can

be speculated that these pro-inflammatory effects of the bead material override the anti-

inflammatory effects of Anx on BMDC cytokine production. However, the control-beads

were not observed to enhance IL-6 or IL-12 secretion in the presence and absence of CpG

stimulation (fig. S5C-S5D) and initial bead titration experiments showed a reduction in

pro-inflammatory cytokine responses with increasing bead-concentration independent of

Anx (fig. S5A-S5B). Moreover, both soluble Anx and Anx-beads were able to suppress

Ova-specific T cell responses (fig. 4, fig. 5) demonstrating an anti-inflammatory function

of bead-bound Anx. Thus, it is unlikely that intrinsic inflammatory bead properties ac-

count for the lack of cytokine suppression by Anx-beads.

An alternative explanation for the divergent effect of soluble Anx and Anx-beads on

BMDC cytokine regulation may be an altered interaction with potential receptors and

hence different downstream signalling. The geometry of a ligand can modulate signal

intensity and can even lead to different signalling outcomes. For instance, phagocytic

receptors work cooperatively to achieve phagocytosis and to efficiently induce signalling.

NFAT activation was found to be a shared endpoint in the signalling of diverse phagocytic

receptors. 267 Furthermore, single receptors can signal distinctively depending on ligand

properties like affinity and duration of ligand-receptors interaction. The immunoreceptor

tyrosine-based activation motif (ITAM) domain, e.g. present in C-type lectin receptors, is

sensitive to the nature of the ligand. High avidity ligands which are often patriculate lead

to complete phosphorylation of the domain and recruitment of Syk resulting in an inflam-

matory response. On the contrary, low avidity ligands can lead to hypophosphorylation

of the ITAM domain and recruitment of phosphatases via SH2 resulting in inhibitory

signalling. 268–272 Beyond the differences of soluble and particulate ligands, the distinct

form of particulation can influence the response. PS was complexed in different particles

to promote anti-inflammatory responses. Interestingly, the comparison of equally loaded

liposomes, cylindrical PLGA-particles and rod-shaped PLGA-particles revealed superior

function of PS in rod-shaped particles. 179

The receptor or receptors of the annexin core domain have not been identified, yet. Non-

etheless, it can be speculated that Anx induces different signalling axes for BMDC cy-

tokine suppresssion and T cell suppression. Particulate presentation of Anx might enhance

affinity or interaction duration at its receptor or alternatively incorporate additional re-

ceptors which counteract the effects on BMDC cytokines while the effects mediating T cell

suppression are maintained.
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5.3 Anx affecting DC-T cell interaction

Inhibition of the T cell responses was a shared result mediated by BMDC treated with

soluble and particulate Anx (fig. 4, fig. 5) but the underlying mechanism still need to be

elucidated.

IL-10, TGF-β and IDO, which are common regulatory mediators, were not detectable

following Anx-treatment of BMDC (data not shown, fig. 9B). Moreover, washing BMDC

prior to T cell co-culture suggests a minor role of soluble mediators for the suppressive

outcome of BMDC/Tcell interaction (fig. 10). Although the production of soluble medi-

ators after the media exchange cannot be excluded, this data implies that Anx exerts its

function mainly in contact-dependent manner, which is in line with reports showing that

the tolerogenic effects of apoptotic cells require cell-cell-contact 71,273.

BMDC/Tcell interactions include TCR stimulation by pMHC and co-stimulatory and

co-inhibitory signals. Figure 7 showed that antigen presentation was not affected by Anx.

The comparable phagocytosis (fig. 7A-7C) and Ova processing (fig. 7D) of control and

Anx-beads in addition to the experiments with soluble Anx, in which Ova was separately

delivered 7 h after Anx (fig. 4), indicate that T cell responses were not attenuated due

to reduced antigen availability. Whether Ova was equally presented within the MHC

could not be analysed directly. Anx did not cause changes in the overall expression of

MHC II (fig. 11E, fig. 12A). Furthermore, extracellular loading of MHC II with Ova pep-

tide after bead treatment demonstrated indirectly that Anx-mediated T cell suppression

did not rely on altered antigen presentation but is rather caused by intrinsic alterations

in BMDC (fig. 7E-7G).

As discussed in 5.1, the co-modulatory molecules CD40, CD80, CD86, PD-L1, PD-L2

and ILT3 were not targeted by Anx. ICOSL, which has a dual role as co-stimulatory

and co-inhibitory molecule 34,35, was not significantly affected by Anx, either. However, a

slight upregulation was observed in figure 12B. This trend probably plays no major role

in the initiation of Anx-mediated T cell tolerance but it might contribute to secondary

BMDC/Tcell interactions e.g. following a shift in the receptors involved in co-stimulation

of T cells. In this context, it would be interesting to analyse the expression of ICOS and

CD28 on the T cells.

Another modulator of the BMDC/Tcell interaction might be H2O2. When DC and T cell

form an immunological synapse, the cells are in close contact so that DC-derived H2O2

could diffuse into the T cell 257. Cemerski et al. demonstrated that neutrophil-derived

ROS or treatment with H2O2 inhibited DNA synthesis in T cells resulting in reduced

proliferation, NFAT activation and IL-2 production. ROS is however also described to

positively influence T cell activation 274,275 but it should be noted that these reports include

effects of T cell-intrinsic ROS. The level and location or source of ROS can impact the type
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of modulation. Whether the Anx-dependent ROS production illustrated in figure 13 acts

in an autocrine or paracrine way or both needs to be further investigated e.g. by using

ROS scavengers or NOX2 inhibitors. Moreover, the ROS levels during BMDC/Tcell co-

culture must be analysed since the present study only demonstrated ROS generation by

BMDC shortly after Anx encounter.

In summary, Anx most likely exerts its regulatory function in a contact-dependent manner

but the molecules and mechanisms involved could not be identified in this study.

5.4 Anx attenuates Ova-specific T cell responses

Anx-treated BMDC dampen T cell proliferation and cytokine production (fig. 4, fig. 5,

fig. 14) indicating a shift in the T cell phenotype that might lead to T cell tolerance.

The deletion of autoreactive T cells is one type of T cell tolerance resulting from repeated

antigen stimulation. 83 Since the T cell viability in the presented experiments remained at

around 80% and was not specifically altered by Anx-beads (fig. 6B), it is unlikely that

Anx promotes CD4+ Tcell deletion in vitro.

The two other types of T cell tolerance, Treg and anergy, are both associated with in-

creased expression of co-inhibitory receptors. 109,221 However, no Anx-mediated changes

were observed in the surface expression of CTLA-4, PD1 and Lag-3 (fig. 15B-15D).

CTLA-4 is internalised and recycled upon ligation leading to a rapid turnover and to

an intracellular location of a high proportion of the protein 16,221. Thus, the involvement

of CTLA-4 in Anx-mediated effector mechanism cannot be definitely excluded until intra-

cellular and/or mRNA levels of CTLA-4 are investigated. Moreover, the ratio of CTLA-4

and CD28 expression should be analysed. CTLA-4 binds the same ligands (CD80, CD86)

as CD28 but with a higher affinity 16,17. A downregulation of CD28 in combination with

high levels of CD80/CD86 could enhance CTLA-4 activity irrespective of unaltered ex-

pression of CTLA-4 itself. A potential role of CTLA-4 could be further investigated using

CTLA-4 blocking antibodies.

Tim-3 was described as negative regulator of TH1 responses 22. Figure 15E shows a signi-

ficant but small increase in Tim-3 expression caused by Anx. Tim-3 was only expressed

in a subpopulation of the cells (data not shown) and thus it seems unlikely that Tim-3

has a major role in the Anx-mediated T cell regulation. Nonetheless, the effect of Tim-3

blockade should be examined. Furthermore, Tim-3 should be assessed in the context of

PD-1 since it is reported to act cooperatively with PD-1 22 and the effects on either of the

co-receptors may be more pronounced in a double positive population. If Anx promotes

the generation of a Tim-3+, PD1+ Tcell population it would be interesting to separately

investigate this population in more detail. Tim-3 could point to a regulatory T cell sub-

set as it was observed to be upregulated in some FoxP3+ Treg 22. However, figure 15A

illustrates that Anx-bead treated BMDC did not induce FoxP3 expression in T cells.
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Anx did generally not seem to mediate the conversion into Treg cells in vitro. The different

Treg subsets are characterised by FoxP3 expression, IL-10 secretion or TGF-β secretion.

None of these properties were observed in T cells following co-culture with Anx-bead

treated BMDC (fig. 14B-14C, fig. 15A).

While Treg cells are often characterised by functional mediators, anergy is mainly de-

scribed by the lack of effector function 87,221. The reduced proliferation and cytokine

production, especially of IL-2, mediated by Anx (fig. 4, fig. 5, fig. 14) represents this basic

definition leading to the hypothesis that Anx induces anergy. Anergic T cells develop upon

suboptimal T cell stimulation like TCR signalling in the absence of co-stimulation 91,221,276.

The lack of CD28 signalling can result in an alternative gene programme including tran-

scription of Cblb, GRAIL and Egr2 87,94,98,101,102. Egr2 is an early response gene that

further promotes transcription of the mentioned E3 ubiquitin ligases and its mRNA ex-

pression was shown to be increased up to 100-fold in the first 3 h after TCR stimulation 95.

This anergy-related gene signature was not observed after 4 h (fig. 16C-16E) or 24 h (data

not shown) of T cell co-culture with Anx-treated BMDC. A modulation at the protein

level or of the activity of Cblb and GRAIL was not analysed and cannot be excluded.

A primary outcome of the signalling via NFAT in the absence of AP-1 is diminished

IL-2 transcription which is also a hallmark of anergy 87. In spite of the presence of co-

stimulation (fig. 11, fig. 12) and the unaltered transcription levels of anergy-related genes

(fig. 16C-16E), IL-2 transcription in T cells was markedly reduced by Anx-beads and sol-

uble Anx (fig. 16B, fig. S6A). Activation and DNA-binding of both NFAT and AP-1 is

required for IL-2 transcription and it should be further examined whether AP-1 translo-

cation is impaired in Anx-dependent manner. In addition to NFAT and AP-1, a variety

of other molecules and transcription factors are involved in the regulation of IL-2 trans-

cription. For instance, RhoA, Ikaros and SATB1 counteract histone acetylation at the

IL-2 promoter restricting its accessibility and thus inhibit IL-2 transcription. 277–279 mi-

croRNAs like miR146a can also interfere with IL-2 transcription. miR146a impairs AP-1

production 280 and is further described to downregulate Stat1 and to limit TRAF6 and

IRAK signalling 281,282. These examples illustrate that the identification of IL-2 transcrip-

tion as an Anx-mediated effect unveils a plethora of potential targets.

In summary, Anx mediates neither T cell deletion nor Treg induction in vitro while it

does mediate an anergy-like phenotype. However, not all properties associated with an-

ergic T cells were observed in the treated T cells. A microarray analysis could help to

further analyse the T cell phenotype and to identify molecules and pathways involved in

the attenuation of the T cell response.
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5.5 Anx-beads in vivo

The immunospressive capacity of Anx-beads illustrated in vitro needs to be confirmed in

vivo to asses their potential value for future therapies.

In contrast to the in vitro data, Anx-beads did neither reduce proliferation nor cytokine

production of OT-II T cells in vivo (fig. 19). The cytokine response was however difficult

to evaluate. The treatment with control-beads did not result in sufficient IFN-γ secre-

tion, even when administered in the presence of co-stimulatory agents (fig. 17E, fig. 18D,

fig. 19E, 19J) and thus it was not feasible to detect a potential inhibition of IFN-γ. In

spite of IL-2 levels above the baseline (set as the level in mock treated mice) (fig. 18C,

fig. 19D, 19I), no clear conclusion could be drawn comparing the levels of IL-2 induced

by control- or Anx-beads. Only two experiments with 3 mice per group each were per-

formed with Anx-beads. Besides high variation especially in the experiment with polyI:C

(fig. 19I), the two experiments showed contradicting trends. Figure 19D shows slightly

decreased to similar levels of IL-2 in Anx-bead-treated mice compared to control-bead-

treated mice, whereas figure 19I shows rather increased IL-2 production from mice treated

with Anx-beads in the presence of polyI:C.

Proliferation alone is not a sufficient readout to determine the type of T cell response

induced by the beads as initial proliferation is observed for inflammatory and tolerogenic

T cell responses 88,283–285. The absolute number of OT-II T cells detected in the spleen

6 days after treatment was lower in Anx-bead-treated mice compared to control-bead-

treated mice (fig. 19B, 19G,). This might indicate T cell deletion but larger groups of

mice are necessary to show whether this effect is significant. In addition, evaluation of

later time points is necessary to validate T cell deletion. The latter is especially inter-

esting since anergy can develop in parallel to deletion. While most of the T cells die

after proliferation, the small population that survives was found to be anergic 88,283. The

experimental setup was modified to investigate late T cell phenotypes. Splenocytes were

harvested 9 days after treatment or 3 days after a challenge with OVA/CpG given 10 days

after the primary treatment (data not shown). However, only inadequate numbers of

transferred OT-II T cells were detected in these experiments, even in mice treated with

Ova/αCD40. These technical issues need to be solved to examine the longterm Tcell

response. Furthermore, the effects of beads on an established immune response should be

investigated. Figure 14D-14E indicates that Anx-beads could diminish cytokine secretion

from preactivated OT-II T cells, hence in vivo experiments in mice primed with Ova prior

to bead treatment should be performed.

Anx-mediated T cell suppression was not observed in the presented in vivo experiments

which may be due to the above discussed limitation in the experimental setup. Another

possible reason for the diverging results in vitro and in vivo is the fact that the beads

encounter different cell subsets. The function of the beads described in vitro was initiated
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via BMDC, which are an artificial and heterogeneous cell population that has no exact

counterpart in vivo 286–288. Following i.v. injection, the beads are presumably taken up by

splenic CD8α+ DC and/or marginal zone macrophages 120,154. Whether the beads affect

these cell subsets similarly to BMDC is yet to be investigated.

A final conclusion about the tolerogenic potential of Anx-beads in vivo can not be drawn

and further experiments including the use of adoptively transferred OT-II T cells and the

stimulation of endogenous T cell populations are needed. And eventually, the beads must

be analysed in pathologically relevant mouse models.

5.6 Anx-coated PLGA nanoparticles

PLGA was chosen as FDA-approved basis for the generation of an Anx-containing antigen

delivery system to facilitate translation into a clinical setting. Anx-NP were encapsulated

with Ova while Anx was covalently attached to the NP-surface. Although the ratio of

Anx:Ova was similar on beads and NP, Anx-NP had no suppressive activity in vitro

(fig. 20, fig. 21).

This lack of function may be caused by differential protein loading. Since NP-treated

BMDC provoke OT-II T cell responses (fig. 21B-21G), it can be inferred that Ova en-

capsulation did not adversely affect protein integrity or availability of Ova. The coating

of Anx was analysed and confirmed by Nanovex Biotechnologies. However, the conform-

ation of Anx at the particle-surface is unknown. The covalent attachment might affect

protein folding and could thus mask or disrupt the signalling-relevant domains of Anx.

Whether the covalent binding of Anx interferes with its function is however difficult to

test. On the one side, the molecular interaction partner and hence the corresponding

binding site of Anx was not yet identified. Additionally, the spatial organisation of Anx

on the particle-surface may effect efficient receptor-interaction 179. On the other side, the

anti-inflammatory capacity of Anx was mainly analysed with indirect assays which can

be affected by many variables. The only direct readout identified so far is ROS produc-

tion, hence ability of Anx-NP to induce ROS may reveal the functional status of the

NP-coupled Anx.

Despite appropriate protein coating, the function of NP is highly influenced by gen-

eral properties like size and charge which could antagonise immunosuppressive effects of

Anx. Inflammatory as well as anti-inflammatory effects are reported for PLGA-NP en-

capsulated with antigen 154,160. The NP used in the present study showed no intrinsic

pro-inflammatory activity, since IL-6 secretion and the expression of maturation markers

were not increased in BMDC by the control-NP treatment (fig. 20A-20D). Intrinsic anti-

inflammatory properties were not observed, either (fig. 20F-20L) and thus the NP seem

to be an inert verhicle.

Anx-NP failed to dampen T cell responses (fig. 21) but many variables could be adjusted
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to improve the function of Anx-NP. Although even experts in the field admitted that it

can be challenging to transfer a concept from one particle type to another and to reach

optimal properties with PLGA-NP 154, PLGA-NP are a promising carrier system that is

now clinically tested 182. A number of studies reported a tolerogenic effect of PLGA-NP

with negative ζ-potential 161–164 and thus a first attempt to improve Anx-NP could be the

generation of negatively-charged Anx-NP.

5.7 Conclusion

This study describes a particle-based delivery system with the capacity to promote antigen-

specific tolerance.

In vitro, polystyrene beads coated with Anx and the model antigen Ova induced an

anergy-like phenotype represented by reduced proliferation, IFN-γ and IL-2 secretion.

The most pronounced effects were observed on IL-2 production and could be attributed

to attenuated IL-2 transcription. Impaired IL-2 transcription is a hallmark of anergy

resulting from TCR stimulation in the absence of co-stimulation which in turn leads to

an altered gene transcription programme. The anergy-associated genes analysed in this

study were not regulated by Anx-beads and additional studies are needed to identify the

mechanisms leading to reduced IL-2 transcription and to further characterise the induced

T cell phenotype.

The outlined T cell suppression is a DC-mediated effect. The treatment of BMDC with

Anx-beads did not result in a tolerogenic phenotype typically described by the secretion

of anti-inflammatory cytokines and reduced expression of co-stimulatory markers and the

distinct mechanisms used by the treated DC to regulate the T cell response remain elusive.

However, this study revealed that the suppression of T cell responses is a Anx-mediated

function which is independent of the inhibition of pro-inflammatory cytokines that was

previously described and confirmed in the present study for soluble Anx. Furthermore,

this study is the first to show that Anx induces ROS production in BMDC. Whether

and how this ROS signal influences DC and the DC/T cell interaction needs to be further

investigated.

The immunosuppressive function of the Anx-beads could not be validated in vivo, yet, and

additional experiments are needed to delineate the effects of these beads under physiolo-

gical conditions as well as in pathologically relevant models.

In addition to the polystyrene-beads, an alternative vehicle that is more suitable for

clinical use was generated with the FDA-approved polymer PLGA. However, the Anx-

NP examined in this study showed no immunosuppressive function. The properties of

the PLGA-NP need to be improved to reproduce the effects observed with polystyrene-

beads since the translation to a clinically relevant material is indispensable to develop

an Anx-dependent tolerogenic antigen delivery system as a new therapeutic approach for
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autoimmune disease.
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Appendix

I Supplementary results

Bead optimisation

The bead preparation had to be optimised and controlled before the functional experi-

ments described in the results section could be performed. The final bead preparation

protocol is visualised in figure S1. Beads are first coated with Ova to ensure equal Ova-

Figure S1: Bead preparation protocol. Beads were added to a Ova-solution in DPBS and
rotated overnight (o/N), allowing passive adsorbtion of Ova to the bead surface. Following overnight
incubation, beads were washed to remove unbound protein. Ova-coated beads were split and one
part was coated additionally with Anx by o/N rotation. Beads were again washed and then blocked
with DPBS containing 1% mouse serum.

loading on different types of beads and in the end blocked with mouse serum (ms). It is

noteworthy that the beads were initially produced without blocking and results generated

with both blocked and unblocked beads are incorporated in the presented results. For

example, figure 5 shows data from the initial unblocked bead preparations.

The first attempts to produce beads harbouring Ova and Anx utilised αFlag-antibodies to

control Anx orientation on the beads. However, the presence of the antibody on the bead

surface markedly reduced the IL-6 secretion of BMDC which did however not impede the

subsequent T cell proliferation (fig. S2A, S2B). Beyond the altered IL-6 suppression, the

presence of αFlag abrogated the Anx-mediated inhibition of T cell responses as observed

when comparing beads with direct Anx-coupling (OB, OAB) and beads with αFlag as

vehicle for Anx-coupling (OFB, OFAB) (fig. S2C-S2F). As a consequence of these res-

ults showing unspecific modulation on BMDC by α-Flag, Anx was directly coated to the

beads. Furthermore, the functional coating of Anx was efficient without the antibody as

vehicle.

The blocking step was established after functional experiments were successfully per-

formed. However, alteration became necessary following an inexplicable loss of OAB

activity. In this context, different buffers (PBS, DPBS, DPBS-Ca2+) were tested in com-
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(A) (B) (C)

(D) (E) (F)

Figure S2: αFlag is no suitable vehicle for Anx-coating to beads. BMDC were pre-
incubated with beads and stimulated with CpG. CFSE-labelled OT-II T cells were co-cultured with
the treated BMDC. Proliferation was evaluated after 5 days of co-culture (B+F). Supernatants for
cytokine analysis were collected before T cells were added (A+C) and on day 2 (D) and day 5 of
co-culture (E).

bination with different blocking agents (FCS, BSA, ms) (fig. S3). Western blot analysis

demonstrated stable and high affinity attachment of Anx to the beads in all tested con-

ditions (data not shown) whereas the western blot analysis of Ova attachment were in-

conclusive. Ova was coupled to the beads as illustrated in figure S3A by comparing the

protein in solution before the beads were added (SN input) and the protein that remained

in solution after coating (SN unbound). Although the analysis of the supernatant implies

that up to 7 ng Ova were bound to 106 beads, examination of the beads by western blot

did not represent increasing concentrations of Ova. Desorption of Ova from the beads

could explain this phenomenon. To test this hypothesis, the protein content in the bead

solution after pelleting the beads was analysed. No Ova was detectable in supernatants

taken from beads stored for several weeks (data not shown). Furthermore, neither soni-

fication nor incubation in media at 37 ◦C resulted in detectable amounts of Ova in bead

supernatants (fig. S3B, S3C) disproving the hypothesis of Ova desorbtion.

Interestingly, the beads recovered from the medium seemed to have a higher Ova content

than beads from the bead stock which was stored at 4 ◦C in the meantime. Beads blocked

with FCS were an exception, since comparable amounts of Ova were detected before and

after medium incubation(fig. S3C). This indicates that blocking with medium or FCS

may modulates Ova attachment and that western blot results were not representative for
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(A)

(B)

(C)

(D)

Figure S3: Attachment of Ova to beads is very stable (A-C) Bead supernatants (SN) or
beads were incubated in SDS buffer at 95 ◦C for 15min, loaded to SDS-PAGE to detect Ova via
western blot. (A) illustrates the coupling of different amounts of Ova to beads. SN input are samples
of the protein solution before the beads were added. SN unbound shows protein that remained in
solution after incubation with the beads. (B) SN from beads generated in different buffers were
analysed before and after brief sonificatio. (C) Beads generated in different buffers were incubated
in medium at 37 ◦C. Beads and medium were then separated by centrifugation and protein content
was compared with bead stocks stored at 4 ◦C. (D) Ova-FITC content on the bead surface was
measured by FC before and after beads were incubated in SDS buffer at 95 ◦C for 15min.

Ova coating of unblocked beads. A FITC-labelled variant of Ova was then utilised to

examine the Ova content on the beads directly via FC. First, it was investigated whether

the sample preparation for western blot analysis was efficient. Hence, beads were analysed

by FC before (fig. S3D, upper panel) and after (fig. S3D, lower panel) they were cooked

in SDS-buffer at 95 ◦C for 15min. The harsh treatment was not sufficient to elute Ova

completely from the beads. Moreover, considerably more residual Ova was detected on

beads that were not blocked with serum or supplemented with Anx. Thus, it can be hy-

pothesised that in Ova binds tightly to the beads and in this context may even change its

conformation or unfold when there is no other protein that restricts the binding space on

the bead surface. This type of binding to the beads might also influence the availability

of the antigen in the cells. Blocking with mouse serum was introduced into the standard

bead production to avoid such effects.

89



(A) (B)

Figure S4: Different bead charges are comparably

coated. Bead coating was analysed by FC. Proteins were de-
tected directly (Ova-FITC) or by staining with a fluorescent
antibody (αAnx-APC). Different bar colours indicate different
bead charges.

Coating was regu-

larly controlled by

FC exploiting the

direct label of Ova

and staining Anx

with an APC-labelled

antibody. Com-

parison of different

bead charges as ex-

emplified in figure

S4 demonstrated that

the refined bead pro-

duction protocol res-

ults in reproducible bead coating in different bead charges.

Bead effects on BMDC cytokines

The functional analysis of the beads was preceded by titration experiments to assess the

optimal bead concentration. The results from the titrations on T cell level are shown in fig-

(A) (B)

(C) (D)

Figure S5: BMDC cytokine production following incubation with Anx-beads. (A+B)
BMDC were pre-incubated with indicated concentrations of Ova-beads (OB) and stimulated with
CpG. Cytokine secretion was analysed 2 days after stimulation. (C+D) BMDC were pre-incubated
with soluble Ova [10µg/ml] or beads [14 106/ml] and optionally stimulated with CpG as indicated.
Cytokine secretion was analysed 2 days after stimulation.
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ure 5B-5D while figure S5A-S5B exemplifies the effects of the control-beads on BMDC cy-

tokine production. IL-6 and IL-12 secretion is decreased in bead-concentration-dependent

manner.

Figure S5C-S5D illustrates BMDC cytokine secretion from an T cell suppression as-

say. This raw data further demonstrates that neither control nor Anx-beads have pro-

inflammatory effects on BMDC at the cytokine level.

Effects of soluble Anx on anergy-related genes

Soluble Anx mediated attenuation of T cell proliferation, IL-2 and IFN-γ secretion, indic-

ating an anergic phenotype. Similar to the results obtained with the Anx-beads, T cell

interaction with BMDC treated with soluble Anx impaired IL-2 transcription (fig. S6A)

whereas other anergy-related genes were not affected (fig. S6B-S6D).

(A) (B) (C) (D)

Figure S6: IL-2 is the only anergy-related genes are affected by soluble Anx BMDC were
pre-incubated for 7 h with Anx [1000 nM] before Ova [10µg/ml] and, 1 h later, CpG were added.
CFSE-labelled OT-II T cells were co-cultured with treated BMDC for 4 h before they were harvested
and analysed via qRT-PCR using HPRT as reference gene. (A) IL-2 expression is shown relative to
the expression in the Ova-treated condition. (B-D) Expression of the indicated genes is illustrated
relative to the expression of T cells co-cultured with non-pre-treated but CpG-stimulated BMDC.
Dots indicate independent experiments.
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II List of Abbreviations

aJ Apoptotic JE6.1

Anx Annexin/annexin core domain

AP-1 Activator protein 1

APC Antigen presenting cell

APC (conjugate) Allophycocyanin

BMDC Bone marrow derived dendritic cells

BSA Bovine Serum Albumin

C57BL/6 C57 Black 6 mouse

CD Cluster of differentiation

conc Concentration

CTL Cytotoxic T lymphocytes

CTLA-4 Cytotoxic T-lymphocyte-associated Protein 4

DC Dendritic cell

DCFDA 2’,7’-dichlorofluorescein-diacetate

dNTP Desoxynucleosidtriphosphate

EAE Experimental Autoimmune Encephalomyelitis

ECDI 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide

ECL Enhanced chemiluminescence

Egr2 Early growth response protein 2

ELISA Enzyme Linked Immunosorbent Assay

ELISpot Enzyme Linked Immunospot Assay

EMA European Medicines Agency

ER Endoplasmatic reticulum

FACS Fluorescent Associated Cell Sorting

FC Flow Cytometry

FCS Fetal Calf Serum

FDA Food and drug administration

FITC Fluorescein-isothiocyanate

FoxP3 Forkhead box P3

FPR Formyl Peptide Receptor

GRAIL Gene related to anergy in lymphocytes

HA Influenza Hemagglutinin

HRP Horse Radish Peroxidase

ICOS Inducible T cell co-stimulator

ICOSL ICOS-ligand

IDO Indoleamine-pyrrole 2,3-dioxygenase

IFN Interferon
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IgG Immunoglobulin G

IL Interleukin

ILT Immunoglobulin-like transcript

ITAM Immunoreceptor tyrosine-based activation motif

ISQ Ovalbumin-derived MHC II peptide

i.v. Intravenous

Lag-3 Lymphocyte activation gene 3

LPS Lipopolysaccharide

OAB Ova-Anx-beads

OANP Ova-Anx-nanoparticle

OB Ova-beads

ONP Ova-nanoparticle

OPD o-phenylenediaminedihydrochloride

Ova Ovalbumin

PBMC Peripheral blood mononuclear cells

PEG Polyethylene Glycol

PI3K Phosphatidylinositide 3-kinases

PKC Protein kinase C

PLC Phospholipase C,

PLGA Poly(lactic-co-glycolic acid)

Mφ Macrophage

MHC Major histocompability complex

MS Multiple Sclerosis

ms Mouse serum

mTEC Medullary thymic epithelial cells

NFAT Nuclear factor of activated T-cells

NF-κB Nuclear factor kappa-light-chain-enhancer of activated B cells

NOX2 NADPH oxidase 2

NP Nanoparticle

PAGE Polyacrylamide Gel Electrophoresis

PAMP Pathogen-associated molecular pattern

PBS Phosphate Buffered Saline

PBS-T Phosphate Buffered Saline - Tween 20

PCR Polymerase Chain Reaction

PD-1 Programmed cell death protein 1

PD-L1/2 Programmed cell death 1 ligand 1/2

PE Phycoerythrin

PEI Polyethylenimin

PenStrep Penicillin Streptomycin
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PKC Protein kinase C

PLGA Poly(D,L-lactide-co-glycolide)

PMA Phorbol myristate acetate

PmxB PolymyxinB

PS Phosphatidyl serine

PRR Pattern recognition receptor

RES Reticulo-endothelial System

pMHC peptide-MHC complex

ROS Reactive Oxygen Species

PRR Pattern recognition receptor

RPMI Roswell Park Memorial Institute

RT Room Temperature

SIINF Ovalbumin-derived MHC I peptide

SIY Control Peptide

SN Supernatant

SOCS Suppressor Of Cytokine Signalling

T1D Type 1 Diabetes

TCR T cell receptor

TBS Tris Buffered Saline

TBS-T Tris Buffered Saline - Tween 20
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