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Abstract

Image segmentation is the task of partitioning an image into meaningful regions. It is

a fundamental part of the visual scene understanding problem with many real-world

applications, such as photo-editing, robotics, navigation, autonomous driving and bio-

imaging. It has been extensively studied for several decades and has transformed into a

set of problems which define meaningfulness of regions differently. The set includes

two high-level tasks: semantic segmentation (each region assigned with a semantic

label) and instance segmentation (each region representing object instance). Due to

their practical importance, both tasks attract a lot of research attention. In this work we

explore several aspects of these tasks and propose novel approaches and new paradigms.

While most research efforts are directed at developing models that produce a single

best segmentation, we consider the task of producing multiple diverse solutions given a

single input image. This allows to hedge against the intrinsic ambiguity of segmentation

task. We propose a new global model with multiple solutions for a trained segmentation

model. This new model generalizes previously proposed approaches for the task. We

present several approximate and exact inference techniques that suit a wide spectrum

of possible applications and demonstrate superior performance comparing to previous

methods.

Then, we present a new bottom-up paradigm for the instance segmentation task.

The new scheme is substantially different from the previous approaches that produce

each instance independently. Our approach named InstanceCut reasons globally about

the optimal partitioning of an image into instances based on local clues. We use two

types of local pixel-level clues extracted by efficient fully convolutional networks: (i)

an instance-agnostic semantic segmentation and (ii) instance boundaries. Despite the

conceptual simplicity of our approach, it demonstrates promising performance.

Finally, we put forward a novel Panoptic Segmentation task. It unifies semantic and

instance segmentation tasks. The proposed task requires generating a coherent scene

segmentation that is rich and complete, an important step towards real-world vision

systems. While early work in computer vision addressed related image/scene parsing

tasks, these are not currently popular, possibly due to lack of appropriate metrics or

associated recognition challenges. To address this, we first offer a novel panoptic quality

metric that captures performance for all classes (stuff and things) in an interpretable

and unified manner. Using this metric, we perform a rigorous study of both human and

machine performance for panoptic segmentation on three existing datasets, revealing

interesting insights about the task. The aim of our work is to revive the interest of the

community in a more unified view of image segmentation.
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Zusammenfassung

In der Bildsegmentierung besteht die Aufgabe darin, ein Bild in inhaltlich sinnvolle

Regionen einzuteilen. Damit ist sie für die Bildverarbeitung von hoher Bedeutung und

findet in zahlreichen Bereichen, beispielsweise bei der Fotoaufbereitung, in der Robotik,

in der Navigation, beim autonomen Fahren sowie in der Biologie, Anwendung. Im

Laufe der seit einigen Jahrzehnten stattfindenden Forschung zur Bildsegmentierung

haben sich verschiedene Problemformulierungen herauskristallisiert, die sich darin

unterscheiden, wie Regionen inhaltlich definiert sind. Zwei dieser Aufgaben sind

semantische Segmentierung (jede Region erhält eine semantische Bezeichnung) und

Instanzsegmentierung (jede Region stellt eine Objektinstanz dar). Aufgrund ihrer

praktischen Bedeutung haben beide Problemstellungen in der Forschung bereits viel

Aufmerksamkeit erhalten. In der vorliegenden Arbeit stellen wir einige ihrer Aspekte

vor und schlagen neue Herangehensweisen und Ansätze vor.

Im Gegensatz zum weit verbreiteten Forschungsansatz, Modelle zu entwickeln,

die eine einzige bestmögliche Segmentierung liefern, betrachten wir die Aufgabe, zu

einem gegebenen Eingangsbild mehrere verschiedenartige Lösungen zu generieren.

Dadurch ist es möglich, die immanente Mehrdeutigkeit des Segmentierungsproblems zu

berücksichtigen. Wir führen ein neues globales Modell ein, welches für ein trainiertes

Segmentierungsmodell mehrere Lösungen liefert. Es verallgemeinert bereits bestehende

Ansätze für das genannte Problem. Wir stellen mehrere näherungsweise und exakte

Inferenztechniken vor, die für eine große Spanne möglicher Anwendungen genutzt

werden können, und zeigen, dass sie bisherigen Methoden überlegen sind.

Außerdem stellen wir einen neuen Bottom-Up-Ansatz für die Instanzsegmentierung

vor. Dieser unterscheidet sich wesentlich von bisherigen Herangehensweisen, welche

jede Instanz einzeln erzeugen. Unser InstanceCut genannter Ansatz sucht anhand

lokaler Merkmale global nach einer optimalen Partitionierung des Bildes in Instanzen.

Dafür nutzen wir zwei Typen lokaler pixelbasierter Merkmale, die mit Hilfe von Fully

Convolutional Networks extrahiert werden: (i) eine Instanz-unabhängige semantische

Segmentierung und (ii) Instanzübergänge. Obwohl diese Herangehensweise konzep-

tionell einfach ist, liefert sie vielversprechende Ergebnisse.

Abschließend führen wir das neuartige panoptische Segmentierungsproblem ein.

Es vereint semantische und Instanzsegmentierung. Für das vorgeschlagene Problem

ist es erforderlich, eine schlüssige Szenensegmentierung zu generieren, die vollständig

und reichhaltig ist – ein wichtiger Schritt in Richtung praktisch anwendbarer Bildver-

arbeitungssysteme. Obwohl frühere Arbeiten auf dem Gebiet der Bildverarbeitung

bereits ähnliche Bildanalyseaufgaben betrachtet haben, sind diese momentan kaum

verbreitet, was möglicherweise am Fehlen geeigneter Metriken oder damit verbun-

dener Bilderkennungs-Wettbewerbe liegt. Um dem zu begegnen, schlagen wir zunächst
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ein neuartiges panoptisches Qualitätsmaß vor, welches auf einheitliche und nachvol-

lziehbare Weise die Performance für alle Klassen (Bereiche sowie Objekte) bewertet.

Diese Metrik ermöglicht uns einen fundierten Vergleich menschlicher und maschineller

Kompetenz in der panoptischen Segmentierung auf drei bestehenden Datensätzen,

wodurch interessante Erkenntnisse über dieses Problem offengelegt werden. Ziel dieser

Arbeit ist es, das Interesse der Forschungsgemeinde an einer vereinheitlichten Sicht auf

die Bildsegmentierung wiederzubeleben.
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Chapter 1

Introduction

Humans perceive the visual world via a complex system that starts from our eyes.

Photoreceptor cells on the retina of the human eye convert light that hits the retina

into neural impulses. Among these cells cone cells are responsible for a sharp color

visual signal. Densely packed on the central part of the retina three types of cone cells

convert red, green, and blue components of light into neural impulses. The human

visual perception system then interprets this dense map of neural impulses to be able

to act inside the environment. Although there are still a lot of open research questions

regarding exact mechanisms of human visual perception, it is clear that we are able to

extract rich scene information from the point-wise color map representing visual input.

Figure 1.1: RGB pixel encoding of an image. Computers store the image as a grid of

pixels. In each pixel three values correspond to red, green, and blue components of the

pixel color.

Computer representation of an image somewhat resembles the neural impulses map

created by cone photoreceptor cells. An example is shown in Fig. 1.1. For a computer

an image is a grid of pixels where each pixel has its color. Pixel colors can be encoded

differently. As presented in this example, the RGB scheme decomposes each color into

three components: red, green, and blue; this is a direct approximation of the three types

of cone cells. In the same way as neural impulses from cone cells are the basic input of

the human visual system, this pixel representation is the basic input of computer vision

systems.
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One of the goals of computer vision is to build automatic systems that are able to

imitate human perception by extracting high-level scene information from an image

or video. Grouping the elements of visual input is an example of this high-level

information. Almost 100 years ago, studying the human visual perception system,

Wertheimer [Wer23] explored the ways in which we group some visual elements and

perceive them as a whole. He described several principals of this grouping such as

proximity, similarity, and common behavior. The computer vision counterpart of this

perceptual grouping task is called image segmentation.

According to David Marr [Mar82] the notion of image segmentation is a “division

of the image into regions that are meaningful either for the purpose at hand or for their

correspondence to physical objects or their parts”. This notion captures the idea that

image segmentation is not a single well-defined task. Diverse applications constitute

different definitions of “meaningfulness”:

• Super-pixel image segmentation (Fig. 1.2) aims to split the image into regions

that are visually consistent with respect to local clues such as brightness, color,

and textures. These regions may be treated as intermediate image representation

(super-pixels) used by high-level scene understanding tasks.

Figure 1.2: Super-pixel segmentation output [Ach+12] for the image from

ADE20k [Zho+17].

Figure 1.3: Foreground/background segmentation example with additional user su-

pervision. Image from VOC2009 [Eve+15]. The user provides clues for fore-

ground/background separation using brush strokes.

• Foreground/background segmentation (Fig. 1.3) aims to extract the image’s region

of interest (foreground) based on some additional input. A practical example

14



of this task is photo editing where a user wants to change the background of an

image.

• Semantic Segmentation (Fig. 1.4) aims to group pixels according to a set of se-

mantic labels like "road", "buildings", "cars", etc. This task provides information

about the whole scene that can be used for autonomous driving, robotics, and

medical applications. Semantic segmentation can be equivalently formulated as

a task of assigning semantic labels to all pixels in the image. We will use this

formulation further in the text.

Figure 1.4: Semantic segmentation examples for the image from ADE20k [Zho+17].

Different colors represent different semantic labels. Among others the set of semantic

labels contains “dining table”, “chair”, “wall”, “tile-floor”.

These are just a few examples of well-known image segmentation tasks. Multiple

new challenges like instance-aware semantic segmentation [Lin+14] (segment each

object instance separately) and segmentation of 3D bio-images [Men+14] (3D scans

of human tissues) have become very popular driven by practical needs. In general,

image segmentation can be seen as a first step of a complex computer vision system

converting a grid of pixels into meaningful regions that are then used to solve the

task at hand including navigation[Cor+16], photo editing[RKB04], or biomedical

applications [RFB15].

A large number of methods was developed to solve image segmentation problems.

They have been of interest to the research community for almost half a century. With

the increasing amount of available computational power and training data, multiple

paradigms were explored during this period of time including classical clustering meth-

ods [HS85], variational formulations [BZ87], normalized cuts [SM00], Conditional

Random Fields (CRFs) [WJ08] and more recently approaches based on Convolutional

Neural Networks (CNNs) [LSD15]. Details of the methods differ significantly depend-

ing on the segmentation task at hand.

Today, the two most common paradigms for semantic-based image segmentation

are CRFs and CNNs. CRFs allow to impose additional constraints on the resulting

segmentation based on expert knowledge about the task. These constraints force solu-

tions to comply with some known structure of the desired segmentation. Incorporating

this additional knowledge enables to generalize using less training data. CNNs are

mechanisms to learn powerful feature representations directly from data. Multiple
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benchmarks show the superiority of CNN based approaches for the task where large

sets of training data are available.

In this work we explore solutions that use both the CRF and CNN paradigms

together. Chapters 2 and 3 of this thesis provide formal definitions of these frameworks

applied to the task of image segmentation.

1.1 Image Segmentation Challenges

Image segmentation has been explored for almost half a century. However, it is still

an active area of research. While for some sub-tasks like super-pixel image segmen-

tation modern techniques achieve very high performance [LJK17], for other tasks a

decent performance level requires massive sets of annotated data that are not always

available or are very expensive to obtain. Moreover, with performance saturation for

the standard tasks, more challenging segmentation tasks, like instance-aware semantic

segmentation [Lin+14; Cor+16], have appeared. For these new tasks there is ample

room for future improvements. In this work we focus on several aspects of image

segmentation tasks that in our opinion require new breakthroughs. In what follows we

briefly introduce these challenges and summarize our contribution.

1.1.1 Multiple Diverse Solutions

Most current semantic image segmentation techniques operate according to the follow-

ing paradigm: given an image they produce a function that assigns a score to every

possible segmentation of the image. The final output is either the exact or approximate

optimum of this function. Following pioneering work in this direction [Bat+12], we

argue that there are cases in which finding multiple solutions (that are diverse) for the

same input image is desirable (see Fig. 1.5). We present several such cases below.

(a) (b)

Figure 1.5: Semantic image segmentation examples: (a) single best segmentation

according to a trained model, (b) multiple segmentations for the same input image.
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Data ambiguity. One of the reasons to produce multiple solutions is the intrinsic

ambiguity of segmentation tasks. For instance, boundaries between objects can be fuzzy

or simply unclear (an example is shown in Fig. 1.6 top row). Moreover, sometimes

it is not possible to assign the right semantic label to a segment without additional

context (see Fig. 1.6 bottom row). Creators of several modern semantic segmentation

datasets [Cor+16; Zho+17; CUF18] report the level of inconsistency between different

annotators producing ground truth for the same image. For instance, in [Zho+17] on

average 16% of pixels get different semantic labels when the same image is annotated

two times independently.

building tram ✔  

Figure 1.6: Semantic segmentation ambiguity. (Cityscapes [Cor+16]) Images are

zoomed and cropped. Top row: the segmentation of the person is genuinely ambiguous.

Bottom row: the scene is extremely difficult, tram is the correct class for the segment.

(a) input with user scribbles (b) possible solution (c) another possible solution

Figure 1.7: Interactive segmentation ambiguity. (Pacal VOC [Eve+15].) Based on

provided user supervision, it is not possible to determine which of the two possible

answers is correct .

Interactive foreground/background segmentation used extensively in photo-editing
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tools [RKB04] is another example of a highly ambiguous task. In this scenario, a user

provides supervision for the segmentation in the form of two types of brush strokes that

mark areas belonging to foreground or background respectively. Fig. 1.7 (a) illustrates

an image and user supervision for foreground (green strokes) and background (blue

strokes). For this input the right answer cannot be determined. It is unclear whether the

user wants to segment out a single car of the train or the whole train.

Currently the majority of segmentation frameworks does not take this ambiguity

into account [LSD15; Che+17a; YK16]. These methods treat inconsistencies as noise

in ground truth annotations. In contrast, methods that produce multiple solutions are

able to hedge against the data ambiguity.

Poor models / lack of data. Most segmentation models are trained in a discriminative

fashion so that solutions with the best score/probability correspond to the most accurate

results. However, as noted in [Sze+08; Bat+12] during test time a solution with a worse

score may be more accurate than the one with the best score. This may be explained by

approximation error (model capacity is not sufficient to learn all nuances) or estimation

error (training data is limited and does not allow to fit the true data distribution). As

it was shown in [Bat+12] and later in our works as well [Kir+15a; Kir+15b], other

solutions that have good but not the best scores according to the trained model may be

more accurate (Fig. 1.8 illustrates this situation).

Figure 1.8: Given an image a segmentation model produces a function that assigns a

score to each possible solution. The solution with the best score may actually be less

accurate than another solution with a worse score as shown here.

Existing methods. Previous works propose two main ways to produce multiple di-

verse solutions given a single input: training-stage diversity and inference-stage diver-

sity, see Fig. 1.9. The first option proposes to simultaneously train multiple models

each producing a single solution [GRBK12; Guz+14; Lee+16]. The second option is

18



to infer multiple solutions from a model trained to produce a single solution [Bat+12;

Kir+15a; Che+13]. Both cases have their own pros and cons. While training several

models requires more computational resources, it gives additional flexibility, i.e. the

way solutions differ may be controlled directly. Inferring multiple solutions from a

single model is less flexible, but requires less computational power and less space to

store the model. Moreover, in this case there is no need to have access to the training

procedure that may be unavailable. We discuss advantages and disadvantages of the

existing methods in more detail in Chapter 2.

(a) training-stage diversity

(b) inference-stage diversity

Figure 1.9: Two main approaches to produce multiple diverse solutions for a single

input: (a) training-stage diversity and (b) inference-stage diversity.

Applications. Multiple diverse solutions can be used directly as a final output in

certain applications that assume interaction with users [Bat+12] or as a part of a bigger

pipeline where these solutions are used by the next stages of the pipeline. For instance,

multiple solutions can be applied to speed up cutting-plane optimization [GRKB13]

or estimate uncertainty [RB12]. A more general example is a pipeline where the first

stage produces multiple solutions, and then the next stage selects the best one using

additional knowledge [LCK18; YBS13]. A basic representation of such a system is

depicted in Fig. 1.10.

The development of new holistic methods that are able to produce multiple diverse

solutions serves two important goals: (1) to make computer vision systems more robust

given limited training data and (2) to incorporate knowledge of intrinsic ambiguity of

visual perception tasks directly into vision systems.
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Figure 1.10: General usage of multiple solutions in a bigger pipeline. The first stage

produces multiple solutions given a single input and then the second stage selects a

single solution or combines these solutions into one.

1.1.2 Global Reasoning for Instance Segmentation

Figure 1.11: Instance segmentation example. Pixels that belong to the same instance of

the “car” or “pedestrian” semantic category share a color.

Instance-aware semantic segmentation or simply instance segmentation is a rela-

tively new member of the image segmentation tasks family. The task can be seen as

an evolution of the well-known bounding box detection task that aims to delineate

object instances by bounding boxes. The goal is to identify individual objects in the

scene with pixel-level accuracy (Fig. 1.11). It was recently popularized by several

large-scale datasets [Lin+14; Cor+16] that provide pixel-level masks for each instance

of semantic categories like “car”, “person”, etc. Instance segmentation is defined only

for categories that have the notion of instances, i.e. “things” categories. Unlike semantic

segmentation that will group all pixels that correspond to "person" in one segment,

instance segmentation groups pixels that correspond to different persons separately.

Segmentation of instances can then be used to analyze object behavior and possible

actions.

Most of the current state-of-the-art instance segmentation approaches leverage the

successful bounding-boxes detection methods. They either generate bounding boxes

first and then use a binary segmentation method to delineate instances inside each

bounding box separately [Har+14; He+17], or generate proposal instance masks first
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Figure 1.12: Scheme of the top-down instance segmentation approach. First, bounding

boxes are generated, then for each bounding box independently a segmentation network

performs binary segmentation. The instances predicted from all bounding boxes form

the final prediction.

and then filter them using a classification method [Car+12]. This type of method

is called top-down approach, since it first detects objects globally and then refines

each object independently. The general scheme of a top-down approach is depicted

in Fig. 1.12. Top-down instance segmentation methods inherit the recognition power

from bounding-box detection methods. Thanks to that, these methods are often able

to find very small and distant objects. While quite powerful, top-down approaches are

not always able to utilize global context or object relations to segment hard cases. To

overcome these issues, global reasoning techniques that rearrange and filter obtained

proposals with respect to co-occurrence were recently proposed [Hu+18]. Despite being

limited by the set of obtained proposals, these methods have demonstrated promising

results.

Figure 1.13: Scheme of the bottom-up instance segmentation approach. First, local

clues are extracted on a pixel-level, then single global reasoning produces an instance

segmentation for the whole image.

One possible alternative to the top-down paradigm is a bottom-up scheme. Instead
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of detecting objects independently, it first extracts some local clues on a per-pixel basis

and then these clues are used to infer all instances via one global reasoning procedure

(see Fig. 1.13). Global inference in this paradigm provides the ability to make coherent

prediction and to make a combined decision instead of many individual predictions

without additional context about surrounding decisions. Moreover, the approach based

on this scheme can directly use semantic segmentation methods to produce required

pixel-level clues. Any improvement of quality in semantic segmentation techniques

will help the bottom-up method as well.

Currently the general scheme of the bottom-up approach is mainly popular for

problems other than instance segmentation. For example, great performance was demon-

strated by a bottom-up approach for a key-point human pose estimation task [Cao+17].

The main obstacle in the adoption of this paradigm for instance segmentation is

the lack of general global inference techniques for the task. Existing greedy ap-

proaches [Uhr+16] are not able to utilize the full potential of the scheme. Exploration

of novel bottom-up approaches for instance segmentation and their combination with

top-down approaches is a fundamental step forward towards robust and practically ap-

plicable recognition systems that successfully utilize context and real-world knowledge.

1.1.3 Segmentation for Scene Understanding Applications

Nowadays instance segmentation and semantic segmentation are the two main high-

level segmentation tasks. Multiple modern segmentation datasets [Cor+16; Zho+17;

Neu+17] have both instance and semantic ground truth annotations with two separate

challenges for instance and semantic segmentation respectively. Both tasks extract

viable information from an image that is used in computer vision systems. Providing

semantic labels for each pixel on the image, semantic segmentation helps to infer im-

portant details of the image including scene type and geometric properties. On the other

hand object masks inferred by an instance segmentation method are needed to analyze

the behavior of instances and their relations. Multiple real-world applications need com-

plimentary information about the input scene that these two segmentation tasks provide.

For instance, in an autonomous driving scenario the semantic segmentation output is

needed to identify drivable areas. At the same time, it needs instance-level information

about surrounding cars and pedestrians for avoiding collisions and navigating.

Several earlier works proposed methods that simultaneously produce semantic and

instance segmentation [YFU12; TL13; TNL14; Sun+14] (see illustration of simultane-

ous segmentation in Fig. 1.14). However, despite its significant practical relevance the

joint task has not become popular. In our point of view, the main reason is the absence of

a quality metric that evaluates performance of such a joint method in a uniform way. For

the most part researchers have explored semantic and instance segmentation separately.

Given significant interest from industry and availability of large scale datasets with both

semantic and instance segmentation annotations, the development of a new performance

metric for the challenge will in our opinion attract research attention to the combined

task.

22



(a) input image (b) semantic segmentation

(c) instance segmentation (d) combined output

Figure 1.14: For a given image (a), we show ground truth for: (b) semantic segmentation

(per-pixel class labels), (c) instance segmentation (per-object mask and class label), and

(d) combined instance and semantic segmentation ground truth.

1.2 Contribution

In this work we focus on several aspects of image segmentation described in the previous

sections. In what follows we shortly summarize the main contributions of this thesis.

The detailed technical contributions are presented in Chapters 2 to 4.

• We propose a new problem formulation for the inference of multiple diverse

solutions from a single trained model as well as the algorithms for its solution:

– Our formulation generalizes most of the previously proposed approaches to

the diversity problem. This includes, but is not limited to the determinant

point processes [KT10] and the DivMBest method [Bat+12]. The former is

a special case of our formulation, whereas the latter can be seen as a greedy

algorithm for solving the diversity problem in our formulation.

– We propose several exact and approximate algorithms to solve the diversity

problem in our generalized formulation. These algorithms vary from more

general and slow to more specific and fast ones. The former address a

broader class of problems, whereas the latter require certain properties by
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the underlying model and the diversity measure to be fulfilled. Notably,

we show that our algorithms provide solutions of higher quality, since they

address the diversity problem in our new rigorous formulation.

– An interesting theoretical result, which we obtain here, is the close relation

of our diversity problem formulation and the class of parametric submodular

minimization problems [FI03; Bac13]. The latter are known also as para-

metric max-flow [GGT89; Hoc08] in a special case. We show that under

certain technical conditions, multiple diverse solutions can be obtained as

a result of submodular parametric minimization. This yields an extremely

efficient diversity algorithm and shows a tight relation between these two

seemingly unrelated areas.

• We introduce a novel bottom-up paradigm for instance segmentation. First, local

clues are extracted from an image, then a new global reasoning technique infers

all instances simultaneously. Local pixel-level information is extracted by two

classifiers: a semantic segmentation network and a boundary detection network.

The first provides a score for each pixel and each semantic label and the second

one computes the likelihood of a boundary between any two neighboring pixels.

The global reasoning inference for the instance segmentation is formulated as a

graph partitioning problem, where graph nodes stand for (super-)pixels of an input

image, edges connect neighboring (super-)pixels of the image and the node and

edge weights are determined by the above classifiers. In spite of the simplicity of

the formulation, our approach shows competitive results and performs particularly

well on rare object classes.

• We propose a Panoptic Segmentation problem formulation that combines the

semantic and instance segmentations into a single consistent task. The new task

aims to generate segmentation that is richer than output of each task individually

and is consistent at the same time. As a part of the task, we introduce the novel

Panoptic Quality performance measure. This new quality measure is simple and

intuitive. It treats categories with and without instance notion in a uniform manner.

Moreover, it allows to measure human performance for panoptic segmentation

task directly. We perform a rigorous experimental evaluation of this new measure

and task on several popular segmentation datasets to show its practical relevance.

1.3 List of Published Research Papers

The remaining chapters of the thesis are based on the following research papers.

1. Inferring M-Best Diverse Labelings in a Single One

Alexander Kirillov, Bogdan Savchynskyy, Dmitrij Schlesinger, Dmitry Vetrov,

Carsten Rother

IEEE International Conference on Computer Vision (ICCV) 2015

2. M-Best-Diverse Labelings for Submodular Energies and Beyond

Alexander Kirillov, Dmitrij Schlesinger, Dmitry Vetrov, Carsten Rother, Bogdan

Savchynskyy

Advances in Neural Information Processing Systems (NIPS) 2015
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3. Joint M-Best-Diverse Labelings as a Parametric Submodular Minimization

Alexander Kirillov, Alexander Shekhovtsov, Carsten Rother, Bogdan Savchyn-

skyy

Advances in Neural Information Processing Systems (NIPS) 2016

4. InstanceCut: from Edges to Instances with MultiCut

Alexander Kirillov, Evgeny Levinkov, Bjoern Andres, Bogdan Savchynskyy,

Carsten Rother

IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2017

5. Panoptic Segmentation

Alexander Kirillov, Kaiming He, Ross Girshick, Carsten Rother, Piotr Dollár

arXiv preprint arXiv:1801.00868

We also contributed to the following papers associated with image segmentation. How-

ever, we will not discuss them in the thesis.

6. Conditional Random Fields Meet Deep Neural Networks for Semantic Seg-

mentation: Combining Probabilistic Graphical Models with Deep Learning

for Structured Prediction

Anurag Arnab, Shuai Zheng, Sadeep Jayasumana, Bernardino Romera-Paredes,

Mans Larsson, Alexander Kirillov, Bogdan Savchynskyy, Carsten Rother, Fredrik

Kahl, Philip HS Torr

IEEE Signal Processing Magazine (SPM) 2018

7. Analyzing Modular CNN Architectures for Joint Depth Prediction and Se-

mantic Segmentation

Omid Hosseini Jafari, Oliver Groth, Alexander Kirillov, Michael Ying Yang,

Carsten Rother

IEEE International Conference on Robotics and Automation (ICRA) 2017

8. Joint Training of Generic CNN-CRF Models with Stochastic Optimization

Alexander Kirillov, Dmytro Schlesinger, Shuai Zheng, Bogdan Savchynskyy,

Philip HS Torr, Carsten Rother

Asian Conference on Computer Vision (ACCV) 2016

During the work on this thesis, we have also contributed to the following papers that

are on topics other than image segmentation.

9. A Comparative Study of Local Search Algorithms for Correlation Cluster-

ing

Evgeny Levinkov, Alexander Kirillov, Bjoern Andres

German Conference on Pattern Recognition (GCPR) 2017

10. Global hypothesis generation for 6D object pose estimation

Frank Michel, Alexander Kirillov, Eric Brachmann, Alexander Krull, Stefan

Gumhold, Bogdan Savchynskyy, Carsten Rother

IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2017
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11. Joint Graph Decomposition & Node Labeling: Problem, Algorithms, Appli-

cations

Evgeny Levinkov, Jonas Uhrig, Siyu Tang, Mohamed Omran, Eldar Insafutdinov,

Alexander Kirillov, Carsten Rother, Thomas Brox, Bernt Schiele, Bjoern Andres

IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2017

12. Deep Part-Based Generative Shape Model with Latent Variables

Alexander Kirillov, Mikhail Gavrikov, Ekaterina Lobacheva, Anton Osokin,

Dmitry Vetrov

British Machine Vision Conference (BMVC) 2016

1.4 Outline of The Thesis

The remaining part of this work is structured as follows: Chapter 2 introduces our

approach to producing multiple diverse solutions from a single trained model. Here we

describe new optimization techniques for different types of models. In Chapter 3 we

present a novel bottom-up instance segmentation approach. We demonstrate its compet-

itive performance on a challenging autonomous driving dataset, Cityscapes [Cor+16].

Chapter 4 is devoted to the novel Panoptic Segmentation task. We explore the properties

of the task on three major segmentation datasets. We discuss contributions of this thesis

and outline some limitations and future directions in Chapter 5.
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Chapter 2

Multiple Diverse Solutions Inference

2.1 Introduction

A number of computer vision and machine learning tasks can be seen as a task of

selecting best suited output y from a predefined set Y for an input. Computer vision

examples of such tasks are image classification and image segmentation. In this thesis

we focus on segmentation tasks, however, described techniques can be applied for other

applications as well. A trained model for image segmentation problem usually assigns

a score or probability for each possible segmentation output given an input. One can

always represent the score assignment as a function E(y) : Y → R; then, the best

output according to the model can be found by solving the following optimization

problem:

argmin
y∈Y

E(y) . (2.1)

We assume here that the best output according to the trained model has the smallest

score. Using common notation, we will call the function E(y) energy function and

score corresponding to y – energy of y. The optimization problem (2.1) is also called

Maximum A Posteriori (MAP) inference. If a trained model returns a probability p for

each output, then the energy can be obtained as − log(p). Note, that almost any trained

model can be represented in the form of (2.1). For instance, both Conditional Random

Fields (CRFs) [WJ08] and Convolutional Neural Networks [LSD15] can be written

as (2.1).

Image segmentation research is mostly focused on the ways of training the best

possible model, i.e., obtaining E(y) such that the solutiuon of (2.1) has the best per-

fromace accoridng to a target metric. During the last decade, novel deep learning

approaches have drastically improved results for image segmentation tasks [LSD15;

YK16; Che+17a]. Using large annotated datasets, these techniques demonstrate remark-

able boost of performance. The effort of training a model to get the best possible energy

function focuses on obtaining single best solution for a task.

Several works explore an orthogonal direction of obtaining several good solutions

for a given input instead of a single one. This setup hedges against errors caused by

intrinsic ambiguity of a real-world task or limited availability of the training data. Note,

that classic formulation (2.1) cannot possibly solve an issue like ambiguity, since it
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must return a single result for any given input. There are two main approaches to

obtain multiple solutions for a given input: training several models to return different

results [GRBK12; Guz+14; Lee+16] or infering several solutions from a single model

trained to infer a single solution only [Bat+12; Kir+15a; Che+13]. While former is

more flexible, it’s less computationally efficient than latter. In our work we focus on

efficiency and, thus, on the latter option.

Natural question is how the multiple solutions for a single input may be used in

practice. Firstly, the most obvious application is an interactive scenario where a user

can select the most suitable option [Bat+12]. Secondly, multiple solutions are used to

estimate uncertainty [RB12] or speed-up training [GRKB13]. Lastly, multiple solutions

can be used as a step in the middle of a pipeline, where they will be filtered, re-weighted

or combined using additional information [YBS13; PTB14; LCK18].

Our work generalizes over existing research in the area of producing multiple

diverse solutions for a single input. We provide a road map that will hopefully guide

future researchers showing what optimization options and what guarantees they have

depending on their specific problems. With our work we aim to facilitate the usage

of multiple solutions for the existing applications and inspire ideas for new research

directions. We summarize contributions of this chapter as follows:

• We introduce a novel general problem formulation of obtaining several good

solutions from a single trained model. Given a trained model in the form of

energy function E(y), instead of optimizing for a single solution as in (2.1), we

form a new optimization problem to infer M solutions simultaneously. We show

that our model generalizes previously developed techniques that produce multiple

solutions [Bat+12; KT10].

• We present approximate global optimization technique for the new task that is

applicable to a broad range of problems and demonstrates superior performance

comparing with previous approaches.

• For submodular original energies E(y) we offer new optimization techniques

that produce multiple diverse solutions solving the new optimization problem

exactly and faster that previous approximate approaches [Bat+12].

2.2 Related Work

M-Best solutions. The problem of obtaining M solutions with the best energies ac-

cording to an energy function E(y) has been of interest to our research community for

a long time. Back in 1972, a procedure of computing M -best solutions or M-Best MAP

inference problem was proposed in [Law72]. Later, more efficient techniques were

developed. They worked with special subclasses of energy functions: tree-shaped graph-

ical models [SH02, Ch. 8], junction-trees [Nil98] and general graphical models [YW04;

FG09; Bat12]. M -best solutions inference methods are well-suited for a problem with

a small set of possible solutions Y ; however, for a pixel-labelling problem like semantic

segmentation, where Y has exponential size, M -best solutions are often nearly identical

and, hence, have no practical use.
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Sampling approaches. Energy of a solution can be seen as negative logarithm of

unnormalized probability. Using this representation of a probability distribution over

possible solutions, different sampling schemes are applicable to obtain M solutions

that are highly probable according to the energy function. Early work in this direction

introduced local Gibbs sampling scheme [GG84]. Later, schemes with much better

mixing time were proposed [PZ11; TZ02]. These techniques can approximate uncer-

tainty of the energy function by sampling multiple solutions. Yet, they don’t explicitly

force solutions to be sufficiently different from each other; therefore, they often require

a lot of solutions to be sampled in order to cover different modes of the underlying

distribution. Modern Perturb-and-map sampling method [PY11] is much more efficient.

It requires multiple MAP-inference problems to be solved exactly and, therefore, is

applicable only if the exact inference can be performed very fast.

Diversity solutions. Structured Determinantal Point Processes (SDPP) [KT10] de-

fines probability distribution over sets of solutions so that sets with diverse low-energy

solutions have high probability. In SDPP, efficient sampling is only possible if underly-

ing model has a tree-structure. Several methods of obtaining M best modes [Che+13]

are applicable to the same narrow class of models. In our work we explore methods

applicable to a broader range of models.

The closest to our work is DivMBest approach [Bat+12; PJB14]. The work proposes

to obtain M diverse solutions sequentially by solving sequence of problems like (2.1)

with additional terms that forces new solution to be far away from previously obtained

solutions according to some diversity measures. DivMBest is applicable to general

graphical models and efficient optimization techniques for several diversity measures

were introduced in [Bat+12; PJB14]. Obtaining solutions one by one, the method has

a greedy nature. In our work we show that more integrated approach outperforms the

greedy scheme.

Training of M independent models to produce diverse solutions was proposed

in [GRBK12; Guz+14]. M solutions are obtained by solving (2.1) for each trained

model. Explicit control over training procedures for the models gives more freedom

and ability to satisfy some specific properties. On the other hand, M models slow down

both training and inference stages and also increase memory consumption. In our work,

we assume a single fixed model supporting reasonable MAP-solutions. Our approach

doesn’t require an access to training procedure.

2.3 General Multiple Diverse Solutions Problem

Several different approaches were developed for the problem of obtaining M diverse

solutions from a single energy function E(y). These methods have various pros and

cons, and their efficiency depends on the particular application. Natural question is how

one can select the best-suited approach for a specific task? In our work we propose

generalized view on the problem. We formulate single optimization problem and show

that existing methods are special cases of the problem. Further we discuss existing

optimization schemes, propose new techniques and explore their limitations. We aim to

ease for a final user the problem of selecting the best approach given specific needs of

the application in hand.
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2.3.1 Formulation

We start by identifying several simple desiderata for diverse solutions we want to obtain

from a single model represented by an energy function E(y):

• Each solution has a good (low) energy according to the model;

• We wish the solutions to be diverse.

We define novel optimization problem that contains two terms to fulfill the desiderata.

First term is the sum of energies of M solutions
∑M

m=1 E(ym). By minimizing this

term we aim to get M solutions with the lowest possible energies. Second term is

diversity measure ∆M(y1, . . . ,yM) that takes a large value if solutions y1, . . . ,yM are

diverse, in a certain sense, and a small value otherwise. Both terms together form the

following optimization problem:

argmin
(y1,...,yM )∈YM

M∑

m=1

E(ym)− λ∆M(y1, . . . ,yM) , (2.2)

where scalar λ > 0 determines a trade-off between these two terms. We call (2.2)

General Multiple Diverse Solutions Problem. The optimization problem (2.2) encode

described desiderata in the most straightforward way. The sum of the energy functions

forces solutions to have the lowest possible energies. At the same time the second

term forces the solutions to be diverse in a certain sense that is defined by function

∆M(y1, . . . ,yM). One of the common examples of diversity measure is the sum of

Hamming distances between all solutions. In the next sections we show that the new

optimization problem is, in fact, a generalization over previously proposed methods for

diverse solutions: DivMBest [Bat+12] and DPP [KT10].

2.3.2 Connection to DivMBest [Bat+12]

DivMBest [Bat+12; PJB14] is a well-known method of obtaining M diverse solutions

y1, . . . ,yM from a single model E(y). The approach is very intuitive: the solutions

are obtained sequentially; each solution should have good energy and at the same

time should be far away from previously obtained solutions. More formally, to get M
solutions DivMBest sequentially solves the following optimization problems:

ym = argmin
y∈Y

[

E(y)− λ

m−1∑

i=1

∆m,i(y,yi)

]

(2.3)

for m = 1, 2 . . . ,M , where λ > 0 determines a trade-off between diversity and energy.

Here y1 is the MAP-solution and the function ∆m,i : LV ×LV → R defines the diversity

of two labelings. In [Bat+12; PJB14] efficient solvers for (2.3) are proposed for certain

diversity measures.

Next, we show that (2.3) is a greedy optimization technique for global multiple

diverse solution problem (2.2). The greedy optimization sequentially finds each solution

taking into account fixed previously obtained solutions and ignoring yet unknown
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(a) Sequentially inferred (b) Jointly inferred

Figure 2.1: Energy landscape with two different couples of solutions depicted by

red points. (a) Corresponds to the DivMBest algorithm (2.3), which finds solutions

sequentially. (b) Joint inference of diverse solutions (2.2) may lead to lower total energy.

solutions. Let us consider a diversity measure ∆M(y1, . . . ,yM) that can be represented

as a sum of diversity functions between all pairs of solutions ∆i,j(yi, j), i > j:

∆M(y1, . . . ,yM) =
M∑

m=2

m−1∑

i=1

∆m,i(ym,yi) (2.4)

For such diversity measure (2.2) can be rewritten as

argmin
(y1,...,yM )∈YM

M∑

m=1

E(ym)− λ

M∑

m=2

m−1∑

i=1

∆m,i(ym,yi) . (2.5)

At step m greedy optimization technique optimizes over terms with ym only, i.e. E(ym),
∆m,i(ym,yi), i < m, and ∆k,m(yk,ym), k > m. The latter terms ∆k,m(yk,ym), k >
m are ignored on this step since they contain yet unknown variables yk, k > m.

Remaining terms form optimization problem (2.3). Hence, DivMBest is a greedy

optimization technique for global diversity optimization problem in the from of (2.5).

Although the DivMBest method (2.3) shows impressive results in a number of

computer vision applications [Bat+12; PJB14], we argue that it suffers from its greedy

nature. Each new solution is obtained taking into account previously found solutions

only, and is not influenced by upcoming solutions. As we show in this work, optimiza-

tion for all M solutions jointly (2.2) allows to improve the resulting solutions. A toy

example illustrating our claim is presented in Fig. 2.1. Note that with global diversity

optimization problem we do not enforce that the MAP solution is part of the set of

solutions. This is in contrast to the DivMBest [Bat+12] method. If this is a requirement

then we can run a MAP solver and add its solution to our set.

2.3.3 Connection to DPP [KT10]

Determinantal Point Processes (DPP) [KT10] is another well-known framework to

model diversity. It defines a distribution over sets of solutions (objects in DPP’s original

terminology) so that sets with high quality solutions that are diverse will have high

probability. Standard DPP model is defined over sets of all possible sizes. K-DPP
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restricts possible set to one specific set size K. More formally, K-DPP distribution is

P (y1, . . . ,yK) =
K∏

k=1

q(yk)× detSy1,...,yK , (2.6)

where q(yk) determines quality of solution yk for k = 1, . . . , K and the determi-

nant of specially constructed matrix Sy1,...,yK defines how diverse the set of solutions

y1, . . . ,yK is. Instead of maximizing (2.6), we write down minimization of negative

logarithm of (2.6):

argmin
(y1,...,yK)∈YK

K∑

k=1

− log q(yk)− log detSy1,...,yK . (2.7)

Note, that argmin of (2.7) is equivalent to argmax of (2.6). Defining energy function

E(yk) as negative logarithm of quality function q(yk), (2.7) has exactly the same form

and intuition as general multiple diverse solutions problem (2.2) with the special family

of diversity measures defined via determinant. Efficient inference for DPP is possible

only for tree-like graphical models. In our work we consider broader family of energy

functions. While DPP considers only determinental-based diversity measures, general

multiple diverse solutions optimization problem doesn’t assume specific form of the

diversity measure.

2.4 Formal Problem Definition

Output space for image segmentation tasks has exponential size. There are LH·M

possible segmentations in L classes semantic segmentation task for an image with sides

of H and W pixels. The general multiple diverse solutions optimization problem (2.2)

is NP-hard in the most general case since energy function E(y) and diversity measure

∆M(y1, . . . ,yM) can be table functions. Thus, in this section we formally define

families of energies and diversity measures that allow efficient optimization. We start

from general potential-based energy function definition and then define several useful

families of diversity measures.

2.4.1 Energy minimization

In this subsection we formally define energy minimization problem (2.1) for exponential

sets of possible solutions. We assume that the energy function is built taking the input

into account and consider only output variables y from now on. Let 2A denote the

powerset of a set A. The pair G = (V ,F) is called a factor graph and has V as a

finite set of variable nodes and F ⊆ 2V as a set of factors. Each variable node v ∈ V
is associated with a variable yv taking its values in a finite set of labels Lv. The set

LA =
∏

v∈A Lv denotes a Cartesian product of sets of labels corresponding to the subset

A ⊆ V of variables. Functions θf : Lf → R, associated with factors f ∈ F , are called

potentials and define local costs on values of variables and their combinations. The set

{θf : f ∈ F} of all potentials is described by θ. For any factor f ∈ F the corresponding

set of variables {yv : v ∈ f} will be denoted by yf . The energy minimization problem
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then consists of finding a labeling y∗ = {yv : v ∈ V} ∈ LV which minimizes the total

sum of corresponding potentials:

y∗ = arg min
y∈LV

E(y) = arg min
y∈LV

∑

f∈F

θf (yf ) . (2.8)

Problem (2.8) is also known as MAP-inference. Labeling y∗ satisfying (2.8) will be

later called a solution of the energy-minimization or MAP-inference problem, shortly

MAP-labeling or MAP-solution. Finally, a model is defined by the triple (G, LV ,θ), i.e.

the underlying graph, the sets of labels and the potentials.

2.4.2 Diversity Measure

We formally define families of diversity measures ∆M(y1, . . . ,yM) we work with. To

save space we will further use notation {y}M to define vector of variables y1, . . . ,yM ,

i.e. ∆M({y}M) := ∆M(y1, . . . ,yM).

We call diversity measure node-wise diversity if it can be represented as

∆({y}M) =
∑

v∈V

∆M
v ({yv}

M) , (2.9)

where ∆M
v : (Lv)

M → R is an arbitrary diversity function for node v ∈ V .

The special case of node-diversity measure is the node-pair-wise diversity measure

∆M({y}M) =
∑

v∈V

M∑

i=2

i−1∑

j=1

∆i,j
v (yiv, y

j
v) , (2.10)

which, for each node v ∈ V , is a sum of pairwise factors that connect all pairs of

solutions. The special case of this diversity measure is the Hamming distance, i.e.

∆i,j
v (y, y′) = Jy 6= y′K , (2.11)

where expression JAK equals 1 if A is true and 0 otherwise. Note, that Hamming

distance is a natural measure of diversity for labeling problems.

An orthogonal property of diversity measures that some optimization techniques

require is permutation-invariance. We call diversity function permutation-invariant if

its value doesn’t depend on the order of its operands. Note, that this property is quite

natural for function that measure diversity. Order of solutions in a set should not change

amount of diversity in the set. We expect most of the reasonable diversity measures to

be permutation-invariant. Observe, that Hamming distance is permutation-invariant too.

33



2.4.3 General Diversity Optimization Problem

We formally define the new general diversity optimization problem (2.2) using factor

graph framework as well. We name the new optimization objective as EM({y}M):

EM({y}) =
M∑

i=1

E(yi)− λ∆M({y}M) , (2.12)

minimized over y1, . . . ,yM ∈ YM . The objective (2.12) can be easily represented in

the form (2.8) and hence constitutes an energy minimization problem. To achieve this,

let us first create M copies (Gi,Li
V ,θ

i) = (G,LV ,θ) of the initial model (G,LV ,θ).
We define the factor-graph GM

1 = (VM
1 ,FM

1 ) for the new task as follows. The set

of nodes in the new graph is the union of the node sets from the considered copies

VM
1 =

⋃M
i=1 V

i. Factors are FM
1 = VM

1 ∪
⋃M

i=1 F
i, i.e. again the union of the initial

ones extended by a special factor corresponding to the diversity penalty. Each node

v ∈ V i is associated with the label set Li
v = Lv. The corresponding potentials θM

1

are defined as {−λ∆M ,θ1, . . . ,θM}. The model (GM
1 ,LVM

1

,θM
1 ) corresponds to the

energy (2.12). An optimal M -tuple of these labelings, corresponding to a minimum

of (2.12), is a trade-off between low energy of individual labelings yi and their total

diversity.

2.5 Optimization Techniques

In this section we describe previously proposed greedy optimization technique Di-

vMBest [Bat+12] and present several new optimization techniques for the general

multiple diverse solution optimization problem (2.12) that impose different constraints

on the original energy E(y) and diversity measure ∆M({y}M) to be applicable. Fig. 2.2

gives a very general overview of the proposed techniques. We describe each in much

more details further in this section. Clique Encoding technique is applicable to the

same set of problems as the greedy approach. While it is slower, it outperforms greedy

approach in terms of accuracy. Ordering based approach requires diversity measure to

be permutation-invariant. This method minimizes (2.12) exactly (if original energy is

submodular) and run-time is close to the greedy technique. Parametric-based approach

is applicable only to binary submodular energies with additional concavity constraint

imposed on the used diversity measure. This technique is an exact minimizer too and it

is able to produce solutions faster than the greedy technique.

This overview does not include several high-order diversity measures proposed

in [PJB14]. Each of these measure requires a very time-consuming inference tech-

nique to use the greedy optimization of (2.12). Moreover, the experimental evaluation

in [Kir+15b] suggests that global minimization of (2.12) with node-wise distance di-

versity measure (2.9) outperforms the greedy optimization with proposed high-order

diversity measures.
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Figure 2.2: Optimization techniques overview for (2.12). Y-axis represents different

types of original energy E(y) where each next type is a subset of the previous one.

Solvable energy is the energy that can be efficiently optimized by an approximate or

exact solver. X-axis represents different families of diversity measures. Each next one

is a subset of the previous. We will describe the families in more details further in the

text.

2.5.1 Greedy Approach: DivMBest [Bat+12]

In what follows we briefly demonstrate how the greedy optimization can be very

efficient for (2.12) in case of node-pair-wise diversity measure (2.14). Greedy method

subsequently solves for m = 1, 2 . . . ,M optimization problems 2.3. We rewrite it here

again:

ym = argmin
y∈Y

[

E(y)− λ

m−1∑

i=1

∆m,i(y,yi)

]

(2.13)

If ∆m,i(y,yi) is represented by a sum of node-wise diversity measures ∆v : Lv ×Lv →
R,

∆(y,y′) =
∑

v∈V

∆v(yv, y
′
v) , (2.14)

then the diversity potentials are split to a sum of unary potentials, i.e. those associated

with additional factors {v}, v ∈ V . This implies that in case efficient graph-cut

based inference methods (including α-expansion [BVZ01], α-β-swap [BVZ01] or their

generalizations [Aro+15; Fix+11]) are applicable to the initial problem (2.8) then they

remain applicable to the augmented problem (2.13), which assures efficiency of the
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method.

2.5.2 Clique Encoding

In this section we propose new solver for general multiple diverse solutions optimization

(2.12) with a node-wise diversity measure (2.9). We show that if the original optimiza-

tion problem (2.1) was (approximately) solvable with α-expansion or α-β-swap[BJ01]

our model, delivering M best diverse solutions, maintains this property.

Objective (2.12) with a node-wise diversity measure (2.9) reads as follows:

EM({y}) =
M∑

i=1

E(yi)− λ
∑

v∈V

∆M
v ({yv}

M) (2.15)

We now present an alternative representation of the model (2.15). This representation

has fewer number of nodes but at the same time a larger label space. We will see that

this representation is easier to optimize. Expanding energy function E(y) as a sum of

potentials (2.8), the energy (2.15) can be rewritten as

EM({y}) =
M∑

i=1






∑

f∈F
|f |=1

θf (y
i
f ) +

∑

f∈F
|f |>1

θf (y
i
f )




− λ

∑

v∈V

∆M
v ({yv}

M) . (2.16)

Assume w.l.o.g. that {v} ∈ F for all v ∈ V . Then we denote unary potentials θf for

|f | = 1 as θv and regrouping terms, the above equation can be written as

∑

v∈V

[
M∑

i=1

θv(y
i
v)− λ∆M

v ({yv}
M)

]

+
∑

f∈F
|f |>1

M∑

i=1

θf (y
i
f ) .

Let us introduce the new variables zv = (y1v , . . . , y
M
v ), v ∈ V and the respective label

sets L̂v = (Lv)
M . Informally, each label of a new variable zv in a node v corresponds

to an M -tuple of labels from the original task. In other words, we simply enumerate all

possible label combinations in each node v, that are possible by M solutions. The new

potentials θ̂v : L̂v → R, v ∈ V and θ̂f : (Lf )
M → R, f ∈ F : |f | > 1 are defined as

θ̂v(zv) =
M∑

i=1

θv(y
i
v)− λ∆M

v ({yv}
M) , (2.17)

θ̂f (zf ) =
M∑

i=1

θf (y
i
f ) . (2.18)

In this notation the energy is given as

EM({y}) =
∑

v∈V

θ̂v(zv) +
∑

f∈F
|f |>1

θ̂f (zf ) . (2.19)
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Pairwise model. For second order models (i.e. the cardinality of factors is two at

most) equation (2.19) is written as

EM({y}) =
∑

v∈V

θ̂v(zv) +
∑

uv∈F

θ̂uv(zu, zv) . (2.20)

The following Theorem 1 basically states that in case the original MAP-inference

problem is (approximately) solvable with α-β-swap [BVZ01] (α-expansion [BVZ01])

then minimization of EM({y}) in (2.20) can be performed with α-β swap (α-expansion)

as well.

Definition 1. For any set L the function f : L × L → R is called a semi-metric if

for all x, x′ ∈ L there holds: (i) f(x, x′) ≥ 0; (ii) f(x, x′) = 0 iff x = x′; (iii)

f(x, x′) = f(x′, x).

Definition 2. Function f : L × L → R is called a metric if it is a semi-metric and

additionally there holds:

f(x, x′) + f(x′, x′′) ≥ f(x, x′′), ∀x, x′, x′′ ∈ L.

Theorem 1. Let Lv = Lu, uv ∈ F and functions θuv be semi-metrics (metrics). Then

functions θ̂uv(zu, zv) defined as in (2.18) are semi-metrics (metrics) as well.

Proof. Let yiv ∈ L, v ∈ V and i = 1, . . . ,M be arbitrary |V||M | labels. Let zv be

defined as zv = (y1v , . . . , y
M
v ) like in Section 2.6.2. We show that if conditions of

Definitions 1 and 2 hold for θuv, uv ∈ E , then they hold for θ̂uv as well: (i) Summing

up θuv(y
i
u, y

i
v) ≥ 0 over i = 1, . . . ,M gives that

θ̂uv(zu, zv) =
M∑

i=1

θuv(y
i
u, y

i
v) ≥ 0

(ii) From θuv(y
i
u, y

i
v) = 0 iff yiu = yiv and θuv(y

i
u, y

i
v) ≥ 0 otherwise, follows that

θ̂uv(zu, zv) =
M∑

i=1

θuv(y
i
u, y

i
v) = 0

iff zu = zv. (iii) Summing up θuv(y
i
u, y

i
v) = θuv(y

i
v, y

i
u) over i = 1, . . . ,M gives that

θ̂uv(zu, zv) =
M∑

i=1

θuv(y
i
u, y

i
v) =

M∑

i=1

θuv(y
i
v, y

i
u) = θ̂uv(zv, zu) .

(iv) Inequality θuv(y
i
u, s

i) + θuv(s
i, yiv) ≥ θuv(y

i
u, y

i
v) holds for any si ∈ L and i =

1, . . . ,M according to Definition 2. Summing it up over i gives that

M∑

i=1

(
θuv(y

i
u, s

i) + θuv(s
i, yiv)

)
≥

M∑

i=1

θuv(y
i
u, y

i
v)

︸ ︷︷ ︸

θ̂uv(zu,zv)

(2.21)

37



The left-hand side of (2.21) can be rewritten as

M∑

i=1

θuv(y
i
u, s

i) +
M∑

i=1

θuv(s
i, yiv) = θ̂uv(zu, s) + θ̂uv(s, zv) , (2.22)

where s denotes (s1, . . . , sM).
Plugging (2.22) back to (2.21) finalizes the proof.

For instance, in the special case of Potts model θuv(y, y
′) = Jy 6= y′K the pair-

wise factors defined by (2.18) constitute the Hamming distance between vectors zv

representing the new labels:

θ̂uv(zu, zv) :=
M∑

i=1

θuv(y
i
u, y

i
v) =

M∑

i=1

Jyiu 6= yivK . (2.23)

Both Potts potentials and Hamming distance are metrics, which defines a special case

of Theorem 1.

K-truncated Clique Encoding. The disadvantage of the clique encoding represen-

tation (2.19) is an exponential growth of cardinality of the label set L̂v = (Lv)
M ,

which implies inefficiency for inference with large Lv and especially a large M . For

these cases we propose an efficient approximative algorithm combining clique encod-

ing (2.19) and greedy minimization for the energy (2.12). Though it can be used with

the node-diversity measures (2.9) we describe it for the special case of the node-par-wise

diversities (2.14), as it is used in our experiments. The pseudo-code for the K-Truncated

Clique Encoding algorithm can be written as follows

Algorithm 1 K-truncated Clique Encoding

Require: (G, LV ,θ) – original model,

λ ∈ R – diversity parameter,

M ∈ N – total number of diverse labelings,

K < M – num. of processed labelings in each step.

1: for i = 0, . . . , ⌊M
K
⌋ do

2: s = iK + 1; t = min{M, (i+ 1)K}

3: {ys, . . . ,yt} = arg min
{xs,...,xt}

[

EK(xs, . . . ,xt)

−λ
∑

v∈V

t∑

l=s

s−1∑

m=1

∆v(x
l
v, y

m
v )

]

4: end for

5: return {y1, . . . ,yM}

In each iteration the algorithm performs optimization with respect to at most K
labelings {ys, . . . ,yt}, t − s + 1 = K, (less than K in the last iteration, if M is

not dividable by K) given already computed labelings {y1, . . . ,ys−1}. Diversity of

{ys, . . . ,yt} with respect to {y1, . . . ,ys−1} is provided by taking into account the sum

of corresponding diversity terms λ
∑

v∈V

t∑

l=s

s−1∑

m=1

∆v(x
l
v, y

m
v ) playing the role of addition
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to unary potentials. Minimization (possibly approximate) in the algorithm is done with

the clique encoding approach (2.19).

Overall, algorithm performs a greedy optimization similar to DivMBest (2.3) with

the difference that in each iteration K labelings are inferred jointly instead of a single

one. The method coincides with DivMBest (2.3) for K = 1 and with clique encoding

for K = M . As it is shown in [Kir+15a], the K-Trunctaed Clique Encoding algorithm

significantly outperforms DivMBest (2.3) already for K = 2. Larger values of K lead

to further improvements.

2.5.3 Ordering Based Approach

In this section we present ordering based approach:

• We show that exact solution for minimization of objective (2.15) with a binary

submodular original energy E(y) can be found by solving a submodular opti-

mization, and hence can be very efficient for any node-wise diversity measure.

• We demonstrate that for certain diversity measures, such as e.g. Hamming dis-

tance, exact minimizer of EM({y}M) (2.15) with a multilabel submodular energy

E(y) can be found by solving a submodular MAP-inference problem, which also

implies applicability of efficient graph cut-based solvers.

• We give the insight that if the E(y) is submodular then the exact solution of

EM({y}M) (2.15) minimization can be always fully ordered with respect to the

natural partial order, induced in the space of all solutions.

• We show experimentally that if E(y) is submodular, the new method is quanti-

tatively at least as good as clique encoding approach proposed in the previous

section and is considerably better than DivMBest [Bat+12]. The main advantage

is a major speed up over clique encoding, up to the order of two magnitudes. New

method has the same order of magnitude run-time as [Bat+12].

• Ordering based approach can be applied to a non-submodular energy E(y) too.

Its results are slightly inferior to clique encoding, but the advantage with respect

to gain in speed up still remains.

Submodularity. We start from formally defining submodular energies. In what

follows we will assume that the sets Lv, v ∈ V , of labels are completely ordered. This

implies that for any s, t ∈ Lv their maximum and minimum, denoted as s ∨ t and s ∧ t
respectively, are well-defined. Similarly let y1 ∨ y2 and y1 ∧ y2 denote the node-wise

maximum and minimum of any two labelings y1,y2 ∈ LA, A ⊆ V . Potential θf is

called submodular, if for any two labelings y1,y2 ∈ Lf it holds1:

θf (y1) + θf (y2) ≥ θf (y1 ∨ y2) + θf (y1 ∧ y2) . (2.24)

Potential θ will be called supermodular, if (−θ) is submodular.

1Pairwise binary potentials satisfying θf (0, 1) + θf (1, 0) ≥ θf (0, 0) + θf (1, 1) build an important

special case of this definition.
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Energy E is called submodular if for any two labelings y1,y2 ∈ LV it holds:

E(y1) + E(y2) ≥ E(y1 ∨ y2) + E(y1 ∧ y2) . (2.25)

Submodularity of energy trivially follows from the submodularity of all its non-unary

potentials θf , f ∈ F , |f | > 1. In the pairwise case the inverse also holds: submodular-

ity of energy implies also submodularity of all its (pairwise) potentials (e.g. [Wer07,

Thm. 12]). There are efficient methods for solving energy minimization problems

with submodular potentials, based on its transformation into min-cut/max-flow prob-

lem [KZ04; SF06; Ish03] in case all potentials are either unary or pairwise or to a

submodular max-flow problem in the higher-order case [Kol12; Fix+11; Aro+15].

Ordered M solutions. In what follows we will write z ≤ z for any two vectors z1

and z meaning that the inequality holds coordinate-wise.

For an arbitrary set A we will call a function f : (A)n → R of n variables per-

mutation invariant if for any (x1, x2, . . . , xn) ∈ (A)n and any permutation π it holds

f(x1, x2, . . . , xn) = f(xπ(1), xπ(2), . . . , xπ(n)). In what follows we will consider mainly

permutation invariant diversity measures.

Let us consider two arbitrary labelings y1,y2 ∈ LV and their node-wise minimum

y1 ∧ y2 and maximum y1 ∨ y2. Since (y1v ∧ y2v , y
1
v ∨ y2v) is either equal to (y1v , y

2
v) or

to (y2v , y
1
v), for any permutation invariant node diversity measure it holds ∆2

v(y
1
v , y

2
v) =

∆2
v(y

1
v ∧ y2v , y

1
v ∨ y2v). This in its turn implies ∆2(y1 ∧ y2,y1 ∨ y2) = ∆2(y1,y2) for

any node-wise diversity measure of the form (2.9). If E is submodular, then from (2.25)

it additionally follows that

E2(y1 ∧ y2,y1 ∨ y2) ≤ E2(y1,y2) , (2.26)

where E2 is defined as in (2.12). Note, that (y1 ∧ y2) ≤ (y1 ∨ y2). Generalizing these

considerations to M labelings one obtains

Theorem 2. Let E be submodular and ∆M be a node-wise diversity measure with each

component ∆M
v being permutation invariant. Then there exists an ordered M -tuple

(y1, . . . ,yM), yi ≤ yj for 1 ≤ i < j ≤ M , such that for any (z1, . . . , zM) ∈ (LV)
M it

holds

EM({y}) ≤ EM({z}) , (2.27)

where EM is defined as in (2.12).

Proof. Let us consider the operation order({y}, i, j), which takes a set of labelings

{y} ∈ (LV)
M , two indices i < j ∈ 1, . . . ,M and replaces labelings yi and yj by

their node-wise minimum yi ∧ yj and maximum yi ∨ yj respectively. As a result, this

operation returns the new set of labelings:

(y1, . . . ,yi−1,yi ∧ yj,yi+1, . . . ,yj−1,yi ∨ yj,yj+1, . . . ,yM). (2.28)

In what follows we will show that

EM (order({y}, i, j)) ≤ EM({y}) . (2.29)
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Let {y′} = order({y}, i, j). Then {y′}v is equal either to (y1v , . . . , y
i
v, . . . , y

j
v, . . . , y

M
v )

or to (y1v , . . . , y
j
v, . . . , y

i
v, . . . , y

M
v ). Since each ∆M

v is permutation invariant, ∆M ({ŷ′}) =
∆M({ŷ}). Summing it up with the following inequality, which follows from the sub-

modularity of E,

M∑

k=1

E(y′k) =
M∑

k=1

k 6=i,k 6=j

E(yk) + E(yi ∧ yj) + E(yi ∨ yj) ≤
M∑

k=1

E(yk). (2.30)

one obtains (2.29).

Assume the set of labelings {ŷ} = (ŷ1, . . . , ŷM) is a solution to (2.12):

{ŷ} = argmin
{y}

EM({y}). (2.31)

Let us iteratively apply the operation {ŷ} := order({ŷ}, i, j) such, that indexes i
and j follow the bubble-sort algorithm [Cor09]. Each operation performs sorting for

a single pair i < j of indexes and due to (2.29) the energy EM{ŷ} does not increase

after the operation. As a result of the algorithm we obtain the ordered labeling set {ŷ}
satisfying

EM({ŷ}) ≤ min
{y}

EM({y}) , (2.32)

which finalizes our proof.

Theorem 2 in particular claims that in the binary case Lv = {0, 1}, v ∈ V , the

optimal M labelings define nested subsets of nodes, corresponding to the label 1.

Submodular formulation of general multiple diverse solutions problem. Due to

Theorem 2, for submodular energies and node-wise diversity measures it is sufficient to

consider only ordered M -tuples of labelings.

This order can be enforced by modifying the diversity measure accordingly:

∆̂M
v ({yv}

M) :=

{

∆M
v ({yv}

M), y1 ≤ y2 ≤ · · · ≤ yM

−∞, otherwise
, (2.33)

and using it instead of the initial measure ∆M
v . Note that ∆̂M

v is not permutation

invariant. In practice one can use sufficiently big numbers in place of ∞ in (2.33). This

implies

Lemma 1. Let E be submodular and ∆M be a node-wise diversity measure with

each component ∆M
v being permutation invariant. Then any solution of the ordering

enforcing M -best-diverse problem

ÊM({y}) =
M∑

i=1

E(yi)− λ
∑

v∈V

∆̂M
v ({yv}

M) (2.34)
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is a solution of the corresponding M -best-diverse problem (2.12)

EM({y}) =
M∑

i=1

E(yi)− λ
∑

v∈V

∆M
v ({yv}

M) , (2.35)

where ∆̂M
v and ∆M

v are related by (2.33).

Proof. Since E is submodular and each ∆M
v is permutation invariant we can ap-

ply Theorem 2 for EM . This implies that EM has an ordered minimizer {y∗} and

ÊM({y∗}) = EM({y∗}).
Since the diversity controlling parameter λ > 0, the value of −λ∆̂M

v (y1, . . . , yM)
is equal to +∞ for an unordered set (y1, . . . ,yM). Therefore, ÊM({y}) can be repre-

sented as follows:

ÊM({y}) =

{

EM({y}), y1 ≤ y2 ≤ · · · ≤ yM

∞, otherwise
. (2.36)

This implies argmin{y} Ê
M({y}) ⊆ argmin{y} E

M({y}), which finalizes the proof.

We will say that a vector (y1, . . . , yM) ∈ (Lv)
M is ordered, if it holds y1 ≤ y2 ≤

· · · ≤ yM .

Given submodularity of E the submodularity (an hence – solvability) of EM

in (2.35) would trivially follow from the supermodularity of ∆M . However there

hardly exist supermodular diversity measures. The ordering provided by Theorem 2 and

the corresponding form of the ordering-enforcing diversity measure ∆̂M significantly

weaken this condition, which is precisely stated by the following lemma. In the lemma

we substitute ∞ of (2.33) with a sufficiently big values such as C∞ ≥ max{y} E
M({y})

for the sake of numerical implementation. Moreover, this values will differ from each

other to keep ∆̂M
v supermodular.

Lemma 2. Let for any two ordered vectors y = (y1, . . . , yM) ∈ (Lv)
M and z =

(z1, . . . , zM) ∈ (Lv)
M it holds

∆v(y ∨ z) +∆M
v (y ∧ z) ≥ ∆M

v (y) +∆v(z), (2.37)

where y ∨ z and y ∧ z are element-wise maximum and minimum respectively. Then

∆̂M
v , defined as

∆M
v ({yv}

M)− C∞ ·

[
M−1∑

i=1

M∑

j=i+1

3max(0,yi−yj) − 1

]

(2.38)

is supermodular.

Proof. Let us consider f(y) = −
∑M

i=1

∑M
j=i+1

(

3max(0,yi−yj) − 1
)

. This potential is a

sum of pairwise potentials fij(y
i, yj) = −

(

3max(0,yi−yj) − 1
)

. They are supermodular,
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which can be checked directly by definition. Moreover, by construction

f(y ∨ z) + f(y ∧ z) = f(y) + f(z) (2.39)

if either (i) both y and z are ordered vectors or (ii) y and z are comparable, i.e.

(y ∨ z,y ∧ z) is either equal to (y, z) or to (y, z). Let us verify supermodularity of

(2.38) by definition, i.e. for any y ∈ (Lv)
M and z ∈ (Lv)

M , the following inequality

has to be satisfied:

∆̂M
v (y ∨ z) + ∆̂M

v (y ∧ z) ≥ ∆̂M
v (y) + ∆̂M

v (z). (2.40)

For any ordered y ∈ (Lv)
M it holds f(y) = 0. Therefore, taking into account (2.37),

the inequality (2.40) holds for any ordered y and z. For any comparable y and z the

inequality (2.40) is trivial. For any other y and z the following strict inequality holds

f(y ∨ z) + f(y ∧ z) > f(y) + f(z). This implies that for a sufficiently big C∞, the

inequality (2.40) holds for arbitrary ∆v(y
1, . . . , yM).

Note, eq. (2.33) and (2.38) are the same up to the infinity values in (2.33). Though

condition (2.37) resembles the supermodularity condition, it has to be fulfilled for

ordered vectors only. The following corollaries of Lemma 2 give two most important

examples of the diversity measures fulfilling (2.37).

Corollary 1. Let |Lv| = 2 for all v ∈ V . Then the statement of Lemma 2 holds for

arbitrary ∆v : (Lv)
M → R.

Corollary 2. Let ∆M
v ({yv}

M) =
∑M−1

i=1

∑M
j=i+1 ∆

i,j(yi, yj). Then the condition of

Lemma 2 is equivalent to

∆i,j(yi, yj)+∆i,j(yi+1, yj+1) ≥ ∆i,j(yi+1, yj)+∆i,j(yi, yj+1) for yi < yj (2.41)

and 1 ≤ i < j ≤ M .

In particular, condition (2.41) is satisfied for the Hamming distance ∆i,j(y, y′) =
Jy 6= y′K.

The following theorem trivially summarizes Lemmas 1 and 2:

Theorem 3. Let energy E and diversity measure ∆M satisfy conditions of Lemmas 1

and 2. Then the ordering enforcing problem (2.34) delivers solution to the M -best-

diverse problem (2.35) and is submodular. Moreover, submodularity of all non-unary

potentials of the energy E implies submodularity of all non-unary potentials of the

ordering enforcing energy ÊM .

Proof. Since energy E and diversity measure ∆M satisfy conditions of Lemma 1, the or-

dering enforcing problem (2.34) delivers solution to the M -best-diverse problem (2.35).

Moreover, since each component ∆M
v of ∆M satisfies conditions of Lemma 2, the

function ∆̂M is supermodular and −∆̂M is submodular. Since energy E is submod-

ular either, the ordering enforcing energy ÊM is submodular as sum of submodular

functions.

The theorem shows that under conditions of Lemmas 1 and 2 an exact solution of

(2.15) can be found by solving a submodular problem (2.34). Hence, exact solution can

be found in polynomial time.
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2.5.4 Parametric based Approach

Submodularity of original energy E(y) allows us to find exact solutions of (2.15)

by solving submodular minimization (2.34). While delivering exact solution, the

optimization technique can be still slower than DivMBest [Bat+12]. In this section, we

show that it is possible to find exact solution faster than DivMBest [Bat+12] finds an

approximate solution if original energy E(y) is binary and submodular.

As we show in the previous section, for binary submodular energies E(y) exact

solution of general multiple diverse minimization problem forms nested set y1, . . . ,yM ;

the same property holds for solutions of well-known Parametric Submodular Mini-

mization [GGT89; Hoc08; FI03]. Exploring this similarity, we present a closed-form

formula for the parameters values, which corresponds to the exact solution. The values

can be computed in advance, prior to any optimization, which allows to obtain each

solution independently.

Our theoretical results suggest a number of efficient algorithms for the problem. We

describe two simplest of them, sequential and parallel. Both are considerably faster

than the popular technique [Bat+12] and are as easy to implement.

Permutation-invariant node-wise diversity measure. In this section we will use

only node-wise diversity measures (2.9). Moreover, we will stick to permutation-

invariant diversity measures. In other words, such measures that ∆M
v ({yv}

M) =
∆M

v (π({yv})) for any permutation π of variables {yv}.

Let the expression JAK be equal to 1 if A is true and 0 otherwise. Let also m0
v =

∑M
m=1Jy

m
v = 0K count the number of 0’s in {yv}. In the binary case Lv = {0, 1}, any

permutation invariant measure can be represented as

∆M
v ({yv}) = ∆̄M

v (m0
v) . (2.42)

To keep notation simple, we will use ∆M
v for both representations: ∆M

v ({y}v) and

∆̄M
v (m0

v).

Example 1 (Hamming distance diversity). Consider the common node diversity mea-

sure, the sum of Hamming distances between each pair of labels:

∆M
v ({yv}

M) =
M∑

i=1

M∑

j=i+1

Jyiv 6= yjvK. (2.43)

This measure is permutation invariant. Therefore, it can be written as a function of the

number m0
v:

∆M
v (m0

v) = m0
v · (M −m0

v). (2.44)

Parametric submodular minimization. Let γ ∈ R
|V|, i = {1, . . . , k} be a vector

of parameters with the coordinates indexed by the node index v ∈ V . We define the

parametric energy minimization as the problem of evaluating the function

min
y∈LV

Eγ(y) := min
y∈L

[

E(y) +
∑

v∈V

γvyv

]

(2.45)
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for all values of the parameter γ ∈ Γ ⊆ R
|V|. The most important cases of the

parametric energy minimization are

• the monotonic parametric max-flow problem [GGT89; Hoc08], which corre-

sponds to the case when E is a binary submodular pairwise energy and Γ = {ν ∈
R

|V| : νv = γv(λ)} and functions γv : Λ → R are non-increasing for Λ ⊆ R.

• a subclass of the parametric submodular minimization [FI03; Bac13], where E
is submodular and Γ = {γ1,γ2, . . . ,γk ∈ R

|V| : γ1 ≥ γ2 ≥ . . . ≥ γk}, where

operation ≥ is applied coordinate-wise.

It is known [Top78] that in these two cases, (i) the highest minimizers y1, . . . ,yk ∈
LV of Eγ

i

, i = {1, . . . , k} are nested and (2) the parametric problem (2.45) is solvable

efficiently by respective algorithms [GGT89; Hoc08; FI03]. In the following, we will

show that for a submodular energy E the Joint-DivMBest problem (2.12) reduces to

the parametric submodular minimization with the values γ1 ≥ γ2 ≥ . . . ≥ γM ∈ R
|V|

given in closed form.
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Figure 2.3: Hamming distance (left) and linear (right) diversity measures for M = 5.

Value m is defined as
∑M

m=1Jy
m
v = 0K. Both diversity measures are concave.

Parametric approach for (2.15) Our results hold for the following subclass of the

permutation invariant node-wise diversity measures:

Definition 3. A node-wise diversity measure ∆M
v (m) is called concave if for any

1 ≤ i ≤ j ≤ M it holds

∆M
v (i)−∆M

v (i− 1) ≥ ∆M
v (j)−∆M

v (j − 1). (2.46)

There are a number of practically relevant concave diversity measures:

Example 2. Hamming distance diversity (2.44) is concave, see Fig. 2.3 for illustration.

Example 3. Diversity measures of the form

∆M
v (m0

v) = −
(
|m0

v − (M −m0
v)|

)p
= −

(
|2m0

v −M |
)p

(2.47)

are concave for any p ≥ 1. Here M − m0
v is the number of variables labeled as 1.

Hence, |m0
v − (M −m0

v)| is an absolute value of the difference between the numbers of

45



variables labeled as 0 and 1. It expresses the natural fact that a distribution of 0’s and

1’s is more diverse, when their amounts are similar.

For p = 1 we call the measure (2.47) linear; for p = 2 the measure (2.47) coincides

with the Hamming distance diversity (2.44). An illustration of these two cases is given

in Fig. 2.3.

Our main theoretical result is given by the following theorem:

Theorem 4. Let E be binary submodular and ∆M be a node-wise diversity measure

with each component ∆M
v , v ∈ V , being permutation invariant and concave. Then a

nested M -tuple (ym)Mm=1 minimizing the Joint-DivMBest objective (2.12) can be found

as the solutions of the following M problems:

ym = argmin
yV

[

E(y) +
∑

v∈V

γm
v yv

]

, (2.48)

where γm
v = λ

(
∆M

v (m)−∆M
v (m− 1)

)
. In the case of multiple solutions in (2.48) the

highest minimizer must be selected.

Proof. We provide the proof of Theorem 4 restricted to pairwise energies. It is based

on representing the general multiple diverse solutions problem (2.12) in the form of

minimizing a convex multilabel energy. This problem is known as Convex MRF or as

total variation (TV) regularized optimization with convex data terms. Thresholding

theorems [Hoc01; DS04; CE05; Cha05; Hoc13] then allow to break the problem into

independent minimization and connect it to parametric mincut. This approach reveals

an important link between our problem and the mentioned methods. It is also the shorter

one. However, it is limited by the existing thresholding theorems and does not fully

cover e.g. the higher order case (as discussed below). We refer to [Kir+16] for the

general proof.

For pairwise energies it holds f = {u, v}, u, v ∈ V . Therefore, we will denote θf
as θu,v. The energy of the master problem (2.8) then reads

E(y) =
∑

v∈V

θv(yv) +
∑

uv∈F

θu,v(yu, yv) . (2.49)

It is known [BVZ01] and straightforward to check that in the binary case it holds

E(y) = const +
∑

v∈V

avyv +
∑

uv∈F

Θu,v|yu − yv| , (2.50)

where av = θv(1) − θ(0) and Θu,v = θu,v(0, 1) + θu,v(1, 0) − θu,v(0, 0) − θu,v(1, 1).
For submodular E, the values Θu,v are non-negative. In what follows, we will use the

representation (2.50) and omit the constant in it, since it does not influence any further

considerations.

A nested M -tuple {y} is unambiguously specified by |V| numbers m0
v ∈ {0, . . . ,M},

v ∈ V , where m0
v defines a number of labelings, which are assigned the label 0 in the
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node v. The link between the two representations is given by

m0
v =

∑

m

Jymv = 0K, (2.51)

ymv = m ≤ m0
v. (2.52)

In other words, labelings ym are superlevel sets of m0 : V → {0, . . . ,M}.

Let us write the general multiple diverse solutions objective (2.15) as a function of

m0. The label m ∈ {0, . . . ,M} denotes that exactly m out of M labelings in {y} are

assigned the label 0 in the node v. The unary cost assigned to a label m in the node v
is equal to av(M −m), since exactly (M −m) labelings out of M are assigned the

label 1 in the node v. The pairwise cost for a pair of labels {m,n} in the neighboring

nodes {u, v} ∈ F is equal to Θu,v|m− n|, since exactly |m− n| labelings switch their

label 0 to the label 1 between nodes u and v. Therefore

M∑

i=1

E(yi) =
∑

v∈V

av(M −m0
v) +

∑

uv∈F

Θu,v|m
0
u −m0

v| , (2.53)

where m0
v is defined as in (2.51).

Adding a node-wise diversity measure
∑

v∈V λ∆
M
v ({y}v) =

∑

v∈V λ∆
M
v (m0

v) and

regrouping terms, one obtains that the Joint-DivMBest objective (2.12) is equivalent to

∑

v∈V

(
av(M −m0

v)− λ∆M
v (m0

v)
)
+

∑

uv∈F

Θu,v|m
0
u −m0

v| (2.54)

and must be minimized with respect to the labeling m0 ∈ {0, . . . ,M}V .

Since the diversity measure λ∆M
v (m0

v) is concave w.r.t. m0
v, the unary factors

av(M −m0
v) − λ∆M

v (m0
v) are convex. The pairwise factors Θu,v|m

0
u −m0

v| are also

convex w.r.t. m0
u −m0

v due to non-negativity of Θu,v.

For concave diversity the problem can be solved efficiently in time O(T (n,m) +
n logM) [Hoc01], where n = |V|, m = |E| and T (n,m) is the complexity of a mini-

mum s-t cut procedure that can be implemented efficiently as parametric. Even for m0

ranging in the continuous domain the complexity of the method [Hoc01] is polynomial,

essentially matching the complexity of a single mincut. In particular, [Hoc01, Theorem

3.1] shows that a solution of such convex multilabel energy minimization problem

decouples into M problems of the form (2.48). Our Theorem 4 then follows.

First note that the sequence (γm)Mm=1 is monotonous due to concavity of ∆M
v . Each

of the M optimization problems (2.48) has the same size as the master problem (2.8)

and differs from it by unary potentials only.

Theorem 4 implies that γm in (2.48) satisfy the monotonicity condition: γ1 ≥
γ2 ≥ . . . ≥ γM . Therefore, equations (2.48) constitute the parametric submodular

minimization problem as defined above, which reduces to the monotonic parametric

max-flow problem for pairwise E. Let ⌊·⌋ denote the largest integer not exceeding an

argument of the operation.

Corollary 3. Let ∆M
v in Theorem 4 be the Hamming distance diversity (2.44). Then it

holds:
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1. γm
v = λ(M − 2m+ 1).

2. The values γm
v , m = 1, . . . ,M are symmetrically distributed around 0: −γm

v =
γM+1−m
v ≥ 0, for m ≤ ⌊(M + 1)/2⌋ and γm

v = 0, if m = (M + 1)/2 .

3. Moreover, this distribution is uniform, that is γm+1
v − γm

v = 2λ, m = 1, . . . ,M .

4. When M is odd, the MAP-solution (corresponding to γ(M+1)/2 = 0) is always

among the M -best-diverse labelings minimizing (2.12).

Corollary 4. Implications 2 and 4 of Corollary 3 hold for any symmetrical concave

∆M
v , i.e. those where ∆M

v (m) = ∆M
v (M + 1−m) for m ≤ ⌊(M + 1)/2⌋.

Corollary 5. For linear diversity measure the value γm
v in (2.48) is equal to λ ·

sgn
(
M
2
−m

)
, where sgn(x) is a sign function, i.e. sgn(x) = Jx > 0K − Jx < 0K.

Since all γm
v for m < M

2
are the same, this diversity measure can give only up to 3

different diverse labelings. Therefore, this diversity measure is not useful for M > 3,

and can be seen as a limit of useful concave diversity measures.

Efficient algorithmic solutions

Theorem 4 suggests several new computational methods for minimizing the general

multiple diverse solutions objective (2.15). All of them are more efficient than both

ordering based and clique encoding approaches. Indeed, as we show experimentally,

they outperform even the sequential DivMBest method (2.3).

The simplest algorithm applies a MAP-inference solver to each of the M prob-

lems (2.48) sequentially and independently. This algorithm has the same computational

cost as DivMBest (2.3) since it also sequentially solves M problems of the same size.

However, already its slightly improved version, described below, performs faster than

DivMBest (2.3).

Sequential algorithm. Theorem 4 states that solutions of (2.48) are nested. There-

fore, from ym−1
v = 1 it follows that ymv = 1 for labelings ym−1 and ym obtained

according to (2.48). This allows to reduce the size and computing time for each sub-

sequent problem in the sequence.2 Reusing the flow from the previous step gives an

additional speedup. In fact, when applying a push relabel or pseudoflow algorithm

in this fashion the total work complexity is asymptotically the same as of a single

minimum cut [GGT89; Hoc08] of the master problem. In practice, this strategy is

efficient with other min-cut solvers (without theoretical guarantees) as well. In our

experiments we evaluated it with the dynamic augmenting path method [BK04; KT07].

Parallel algorithm. The M problems (2.48) are completely independent, and their

highest minimizers recover the optimal M -tuple (ym)m according to Theorem 4. They

can be solved fully in parallel or, using p < M processors, in parallel groups of M/p
problems per processor, incrementally within each group. The overhead is only in

copying data costs and sharing the memory bandwidth.

2By applying “symmetric reasoning” for the label 0, further speed-ups can be achieved. However, we

stick to the first variant in our experiments.
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Alternative approaches One may suggest that for large M it would be more efficient

to solve the full parametric maxflow problem [Hoc08; GGT89] and then “read out” solu-

tions corresponding to the desired values γm. However, the known algorithms [Hoc08;

GGT89] would perform exactly the incremental computation described in the sequential

approach above plus an extra work of identifying all breakpoints. This is only sensible

when M is larger than the number of breakpoints or the diversity measure is not known

in advance (e.g. is itself parametric). Similarly, parametric submodular function mini-

mization can be solved in the same worst case complexity [FI03] as non-parametric,

but the algorithm is again incremental and would just perform less work when the

parameters of interest are known in advance.

2.6 Experimental Evaluation

We base our experiments on three datasets: (a) interactive foreground/background

segmentation for images with provided scribbles annotations [4], (b) multiclass semantic

segmentation on Pascal VOC 2012 [Eve+15], and (c) a new foreground/background

segmentation dataset derived from Pascal 2012 [Eve+15].

Baselines. Our main competitor is the fastest known approach for inferring M diverse

solutions, greedy optimization of (2.12), the DivMBest method [Bat+12]. We made

its efficient re-implementation using dynamic graph-cut [KT07].

Diversity Measure. In our work we present methods that deal with node-wise di-

versity measures (2.9) only. We use the Hamming distance diversity measure (2.11)

in all of experimental evaluation. Note that in [PJB14] more sophisticated diversity

measures were used e.g. the Hamming Ball. However, the DivMBest method (2.3)

with this measure requires to run a very time-consuming HOP-MAP [TGZ10] inference

technique. Moreover, the experimental evaluation in [Kir+15b] suggests that global min-

imization of (2.12) with Hamming distance diversity (2.11) outperforms DivMBest

with a Hamming Ball distance diversity.

Our methods. In our thesis we present three types of global optimization techniques

for (2.12) that apply to different types of original energy and diversity measures:

• Clique Encoding (denoted as CE) and K-truncated Clique Encoding (denoted as

CEK) methods that are applicable to any solvable pair-wise original energy and a

node-wise diversity measure (2.9).

• Ordering based method that solves the problem (2.34) with the Hamming diversity

measure (2.11) by transforming it into min-cut/max-flow problem [KZ04; SF06;

Ish03] and running the solver [BK04] is denoted as Ordering-Global. The

method is applicable to any submodular original energy and node-wise diversity

measures that satisfy constraints of Lemma 2.

• Parametric based methods described in Section 2.5.4, i.e. sequential and par-

allel. We refer to them as Parametric-sequential and Parametric-

parallel respectively. We utilize the dynamic graph-cut [KT07] technique for
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Parametric-sequential, which makes it comparable to our implementa-

tion of DivMBest. The max-flow solver of [BK04] is used for Parametric-

parallel together with OpenMP directives. For the experiments we use

a computer with 6 physical cores (12 virtual cores), and run Parametric-

parallel with M threads. Parametric methods are applicable to any binary

submodular original energy and diversity measures that satisfy constraints of the

Theorem 4.

In our experimental evaluation we compare these methods to the greedy approach and

also compare them with each other.

Parameters λ from (2.12) were tuned via cross-validation for each algorithm and

each experiment separately.

2.6.1 Datasets

Interactive segmentation. Instead of returning a single segmentation corresponding

to a MAP-solution, diversity methods return a small number of possible low-energy

results. Following [Bat+12] we model only the first iteration of such an interactive pro-

cedure, i.e. we consider user scribbles to be given and compare the sets of segmentations

returned by the compared diversity methods.

Authors of [Bat+12] kindly provided us with their 50 graphical model instances,

corresponding to the MAP-inference problem (2.8). They are based on a subset of

the PASCAL VOC 2010 [Eve+15] segmentation challenge with manually added scrib-

bles. Pairwise potentials constitute contrast sensitive Potts terms [BJ01] which implies

that the MAP-inference is submodular and therefore is solvable by min-cut/max-flow

algorithms [KZ04].

Semantic segmentation. The category level segmentation from PASCAL VOC 2012

challenge [Eve+15] contains 1449 validation images with known ground truth which we

used for evaluation of diversity methods. Corresponding pairwise models with contrast

sensitive Potts terms of the form θuv(y, y
′) = wuvJy 6= y′K, uv ∈ F , were used in

[PJB14] and kindly provided to us by the authors. Contrary to interactive segmentation,

the label sets contain 21 elements and hence the respective MAP-inference problem (2.8)

is not submodular anymore. However it still can be approximatively solved by α-

expansion or α-β-swap.

Foreground/background segmentation. The Pascal VOC 2012 [Eve+15] segmen-

tation dataset has 21 labels. We selected all those 451 images from the validation set

for which the ground truth labeling has only two labels (background and one of the

20 object classes) and which were not used for training. As unary potentials we use

the output probabilities of the publicly available fully convolutional neural network

FCN-8s [LSD15] which is trained for the Pascal VOC 2012 challenge. This CNN

gives unary terms for all 21 classes. For each image we pick only two classes: the back-

ground and the class-label that is presented in the ground truth. As pairwise potentials

we use the contrastive-sensitive Potts terms [BJ01] with a 4-connected grid structure.

Resulting energy is submodular. We use this new dataset to evaluate performance of

Parametric-based method.
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M=2 M=6 M=10

quality time quality time quality time

DivMBest [Bat+12] 93.16 2.6 95.02 11.6 95.16 15.4

CE 95.13 6.8 96.01 74.3 96.19 1247

Ordering-Global 95.13 5.5 96.01 17.2 96.19 80.3

Parametric-sequential (1 core) 95.13 2.2 96.01 5.5 96.19 8.4

Parametric-parallel (6 cores) 95.13 1.9 96.01 4.3 96.19 6.2

Table 2.1: Interactive segmentation. The quality measure is a per-pixel accuracy of

the best segmentation, out of M , averaged over all test images. The runtime is in

milliseconds (ms). The quality for M = 1 is 91.57. Parametric-parallel is

the fastest method followed by Parametric-sequential. Both achieve higher

quality than DivMBest, and return the same solution as Ordering-Global and

CE.

2.6.2 Clique Encoding

Clique encoding (CE) method is applicable to pairwise energies. In our experiments

we used α-expansion [BVZ01], which turns into the max-flow algorithm in case of

two labels. Table 2.1 shows its comparison with DivMBest-based techniques for the

interactive segmentation dataset. As quality measure we used per pixel accuracy of

the best solution for each sample averaged over all test images. Parameter λ has been

chosen for each method separately via cross-validation. In all these experiments, our CE

method shows significantly better accuracy than its competitors. Fig. 2.4 shows several

examples of clique encoding output and its comparison with DivMBest. Running time

of our CE method is, as expected, higher than those for DivMBest, however it still can

be considered as practically useful.

Pascal VOC multiclass semantic segmentation dataset has 21 labels. Because

of a significant number of labels we were unable to use CE approach for M > 5
and resorted to CE3. Results of the quantitative evaluation are presented in Table 2.2,

where each method was used with parameter λ optimally tuned via cross-validation on

validation set in PASCAL VOC 2012. Following [Bat+12], as quality measure we used

Intersection-over-Union (IoU) of the best solution for each sample averaged over all

test images. Exemplary comparison of CE and DivMBest is shown in Fig. 2.5. It turns

out that even the suboptimal optimization method CE3 outperforms all competitors,

except CE, which show even better segmentation accuracy. The methods CE3 is a hybrid

of DivMBest and CE delivering a reasonable trade-off between running time and

accuracy of inference for the model EM (2.12).

2.6.3 Ordering Based

Interactive segmentation datasets has binary submodular energies, therefore, Theo-

rem 3 is applicable and exact solution of general diversity problem (2.38) can be found

by solving single submodular minimization (2.37). In our experiments we transform

this minimization into min-cut/max-flow problem [KZ04; SF06; Ish03] and running the

solver [BK04]. This approach is denoted as Ordering-Global.

Quantitative comparison and run-time of the considered methods are provided
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Figure 2.4: Comparison for samples from interactive segmentation dataset. Number

above each solution is a corresponding per pixel accuracy.

in Table 2.1, where each method was used with the parameter λ (see (2.3), (2.12)),

optimally tuned via cross-validation. Following [Bat+12], as a quality measure we used

the per pixel accuracy of the best solution for each sample averaged over all test images.

Methods CE and Ordering-Global gave the same quality, which confirms the

observation made in [Kir+15a], that CE returns an exact MAP solution for each sample

in this dataset. The run-time provided is also averaged over all samples. The max-flow

algorithm was used for DivMBest and Ordering-Global and α-expansion for

CE.

It can be seen that the Ordering-Global qualitatively outperforms DivMBest

and is equal to CE. However, it is considerably faster than the latter (the difference

grows exponentially with M ) and the runtime is of the same order of magnitude as the

one of DivMBest.

In our experiments with Pascal VOC 2012 multiclass semantic segmentation

dataset, we use energies with contrast sensitive Potts terms which are non-submodular

in a multilabel case. Since the MAP-inference problem (2.8) is not submodular in this

experiment, Theorem 3 is not applicable. We used two ways to overcome it. First,

we modified the diversity potentials according to (2.38), as if Theorem 3 were to be

correct. This basically means we were explicitly looking for ordered M best diverse
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MAP inference M=5 M=15 M=16

quality time quality time quality time

DivMBest α-exp[BJ01] 51.21 0.01 52.90 0.03 53.07 0.03

CE α-exp[BJ01] 54.22 733 - - - -

CE3 α-exp[BJ01] 54.14 2.28 57.76 5.87 58.36 7.24

Ordering-Global-forced α-β-swap[BJ01] 53.81 0.01 56.08 0.08 56.31 0.08

Ordering-Global-learned max-flow[BK04] 53.85 0.38 56.14 35.47 56.33 38.67

Ordering-Global-learned α-exp[BJ01] 53.84 0.01 56.08 0.08 56.31 0.08

Table 2.2: PASCAL VOC 2012 multiclass semantic segmentation. Intersection over

union quality measure/running time. The best segmentation out of M is considered.

Compare to the average quality 43.51 of a single labeling. Time is in seconds (s). Nota-

tion ’-’ correspond to absence of result due to computational reasons or inapplicability

of the method. (∗)- methods were not run by us and the results were taken from [PJB14]

directly. The MAP-inference column references the slowest inference technique out of

those used by the method.

labelings. The resulting inference problem was addressed with α-β-swap (since neither

max-flow nor the α-expansion algorithms are applicable). We refer to this method as to

Ordering-Global-forced. The second way to overcome the non-submodularity

problem is based on learning. Using structured SVM technique we trained pairwise

potentials with additional constraints enforcing their submodularity, as it is done in

e.g. [FS08]. We kept the contrast terms wuv and learned only a single submodular

function θ̂(y, y′), which we used in place of Jy 6= y′K. After the learning all our

potentials had the form θuv(y, y
′) = wuvθ̂(y, y

′), uv ∈ F . We refer to this method as to

Ordering-Global-learned. For the model we use max-flow[BK04] as an exact

inference method and α-expansion[BJ01] as a fast approximate inference method.

Quantitative comparison and run-time of the considered methods is provided in

Table 2.2, where each method was used with the parameter λ (see (2.3), (2.12)) opti-

mally tuned via cross-validation on the validation set in PASCAL VOC 2012. Follow-

ing [Bat+12], we used the Intersection over union quality measure, averaged over all

images. Among combined methods with higher order diversity measures we selected

only those providing the best results. Quantitative results delivered by Ordering-

Global-foced and Ordering-Global-learned are very similar (though the

latter is negligibly better), significantly outperform those of DivMBest and are only

slightly inferior to those of CE3. However the run-time for Ordering-Global-

forced and α-expansion version of Ordering-Global-learned are compara-

ble to those of DivMBest and outperform all other competitors due to the use of the

fast inference algorithms and linearly growing label space, contrary to the label space

of CE3, which grows as (Lv)
3.

2.6.4 Parametric Based

Parametric based method is applicable to binary submodular original energies and

permutation-invariant concave diversity measures. Energies from interactive segmen-

tation dataset and Hamming distance satisfy these constraints. Quantitative comparison
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Figure 2.5: Comparison for samples from Pascal VOC 2012 dataset. Number above

each solution is a corresponding intersection over union quality measure.

and runtime of the different algorithms are presented in Table 2.1. As in [Bat+12],

our quality measure is an Intersection-over-Union (IoU) of the best solution for each

test image, averaged over all test images. As expected, Ordering-Global and

Parametric-* return the same, exact solution of (2.12). The measured runtime is

also averaged over all test images. Parametric-parallel is the fastest method

followed by Parametric-sequential. Note that on a computer with fewer cores,

Parametric-sequential may even outperform Parametric-parallel be-

cause of the parallelization overheads.

New foreground/background dataset has binary submodular energies too. As

quality measure we use the standard Pascal VOC measure for semantic segmentation –

average intersection-over-union (IoU) [Eve+15]. The unary potentials alone, i.e. output

of FCN-8s, give 82.12 IoU. The single best labeling, returned by the MAP-inference

problem, improves it to 83.23 IoU.
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Figure 2.6: Foreground/background segmentation. (a) Intersection-over-union

(IoU) score for the best segmentation, out of M . Parametric represents a curve,

which is the same for Parametric-sequential, Parametric-parallel and

Ordering-Global, since they exactly solve the same Ordering-Global problem.

(b) DivMBest uses dynamic graph-cut [KT07]. Parametric-sequential uses

dynamic graph-cut and a reduced size graph for each consecutive labeling problem.

Parametric-parallel solves M problems in parallel using OpenMP.

The comparisons with respect to runtime and accuracy of results are presented

in Fig. 2.6a and 2.6b respectively. The increase in runtime with respect to M for

Parametric-parallel is due to parallelization overhead costs, which grow with

M . Parametric-parallel is a clear winner in this experiment, both in terms

of quality and runtime. Parametric-sequential is slower than Parametric-

parallel but faster than DivMBest. The difference in runtime between these three

algorithms grows with M .

2.7 Conclusion

In this chapter we explore global diversity optimization problem that produces multiple

diverse solutions for a single trained model. We show that other techniques generating

diverse solutions can be seen as special cases for the new problem formulation. We

present several optimization approximate and exact optimization techniques for the new

optimization objective that have different requirements to original model. Our work

presents a practical guide for figuring out the right optimization strategy for a given

problem with its constraints. We hope that this guide will help to handle ambiguity in

real-world applications and will facilitate further research in this direction.
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Chapter 3

Bottom-Up Approach for Instance

Segmentation

3.1 Introduction

This chapter addresses the task of segmenting each individual instance of a semantic

class in an image. The task is known as instance-aware semantic segmentation, in short

instance segmentation, and is a more refined task than semantic segmentation, where

each pixel is only labeled with its semantic class. An example of semantic segmentation

and instance segmentation is shown in Fig. 3.1a-3.1b. While semantic segmentation has

been a very popular problem to work on in the last half decade, the interest in instance

segmentation has significantly increased recently. This is not surprising since semantic

segmentation has already reached a high level of accuracy, in contrast to the harder task

of instance segmentation. Also, from an application perspective there are many systems,

such as autonomous driving or robotics, where a more detailed understanding of the

surrounding is important for acting correctly in the world.

In recent years, Convolutional Neural Networks (CNN) have tremendously increased

the performance of many computer vision tasks. This is also true for the task of instance

segmentation, see the benchmarks [Cor+16; Lin+14]. However, for this task it is, in our

view, not clear whether the best modelling-paradigm has already been found. Hence,

the motivation of this work is to explore a new, and very different, modelling-paradigm.

To be more precise, we believe that the problem of instance segmentation has four core

challenges, which any method has to address. Firstly, the label of an instance, e.g. “car

number 5”, does not have a meaning, in contrast to semantic segmentation, e.g. class

“cars”. Secondly, the number of instances in an image can vary greatly, e.g. between

0 and 120 for an image in the CityScapes dataset [Cor+16]. Thirdly, in contrast to

object detection with bounding boxes, each instance (a bounding box) cannot simply be

described by four numbers (corners of bounding box), but has to be described by a set

of pixels. Finally, in contrast to semantic segmentation, a more refined labeling of the

training data is needed, i.e. each instance has to be segmented separately. Especially for

rare classes, e.g. motorcycles, the amount of training data, which is available nowadays,

may not be sufficient. Despite these challenges, the state of the art techniques for

instance segmentation are CNN-based. As an example, [DHS16; Zag+16] address

these challenges with a complex multi-loss cascade CNN architectures, which are,

57



(a) (b)

(c) (d)

Figure 3.1: An image from the CityScapes dataset [Cor+16]: (a) Ground truth semantic

segmentation, where all cars have the same label. (b) The ground truth instance

segmentation, where each instance, i.e. object, is highlighted by a distinct color. In this

chapter we use a “limiting” definition of instance segmentation, in the sense that each

instance must be a connected component. Despite this limitation, we will demonstrate

high-quality results. (c) Shows the result of our InstanceCut method. As can be seen,

the front car is split into two instances, in contrast to (b). (d) Our connected-component

instances are defined via two output modalities: (i) the semantic segmentation, (ii) all

instance boundaries (shown in bold-black).

however, difficult to train. In contrast, our modelling-paradigm is very different to

standard CNN-based architectures: assume that each pixel is assigned to one semantic

class, and additionally we insert some edges (in-between pixels) which form loops –

then we have solved the problem of instance segmentation! Each connected region,

enclosed by a loop of instance-aware edges is an individual instance where the class

labels of the interior pixels define its class. These are exactly the ingredients of our

approach: (i) a standard CNN that outputs an instance-agnostic semantic segmentation,

and (ii) a new CNN that outputs all boundaries of instances. In order to make sure

that instance-boundaries encircle a connected component, and that the interior of a

component has the same class label, we combine these two outputs into a novel multi-cut

formulation. We call our approach InstanceCut.

Our InstanceCut approach has some advantages and disadvantages, which we

discuss next. With respect to this, we would like to stress that these pros and cons

are, however, quite different to existing approaches. This means that in the future

we envision that our approach may play an important role, as a subcomponent in an

“ultimate” instance segmentation system. Let us first consider the limitations, and then

the advantages. The minor limitation of our approach is that, obviously, we cannot find

instances that are formed by disconnected regions in the image (see Fig. 3.1b-3.1c).

However, despite this limitation, our method demonstrates promising results in terms of

accuracy. In the future, we foresee various ways to overcome this limitation, e.g. by

reasoning globally about shape.

We see the following major advantages of our approach. Firstly, all the four
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challenges for instance segmentation methods, listed above, are addressed in an elegant

way: (i) the multi-cut formulation does not need a unique label for an instance; (ii)

the number of instances arises naturally from the solution of the multi-cut; (iii) our

formulation is on the pixel (superpixel) level; (iv) since we do not train a CNN for

segmenting instances globally, our approach deals very well with instances of rare

classes, as they do not need special treatment. Finally, our InstanceCut approach has

another major advantage, from a practical perspective. We can employ any semantic

segmentation method, as long as it provides pixel-wise log-probabilities for each class.

Therefore, advances in this field may directly translate to an improvement of our

method. Also, semantic segmentation, here a Fully-Convolutional-Neural-Network

(FCN) [YK16], is part of our new edge-detection approach. Again, advances in semantic

segmentation may improve the performance of this component, as well.

Our Contributions in short form are:

• We propose a novel paradigm for instance-aware semantic segmentation, which

has different pros and cons than existing approaches. In our approach, we only

train classifiers for semantic segmentation and instance-edge detection, and not

directly any classifier for dealing with global properties of an instance, such as

shape.

• We propose a novel MultiCut formulation that reasons globally about the optimal

partitioning of an image into instances.

• We propose a new FCN-based architecture for instance-aware edge detection.

• We validate experimentally that our approach achieves strong result, and performs

particularly well for rare object classes.

3.2 Related Work

Proposal-based methods. This group of methods uses detection or a proposal gener-

ation mechanism as a subroutine in the instance-aware segmentation pipeline.

Several recent methods decompose the instance-aware segmentation problem into

a detection stage and a foreground/background segmentation stage [DHS16; Har+15].

These methods propose an end-to-end training that incorporates all parts of the model.

In addition, non-maximal suppression (NMS) may be employed as a post-processing

step. A very similar approach generates proposals using e.g. MCG [Arb+14] and then,

in the second stage, a different network classifies these proposals [Cor+16; Har+14;

DHS15; CLY15].

Several methods produce proposals for instance segmentations and combine them,

based on learned scores [Lia+16; PCD15; Pin+16] or generate parts of instances and

then combine them [Dai+16; Liu+16].

Although the proposal-based methods show state-of-the-art performance on impor-

tant challenges, Pascal VOC2012 [Eve+15] and MSCOCO [Lin+14], they are limited by

the quality of the used detector or proposal generator. Our method is, in turn, dependent

on the quality of the used semantic segmentation. However, for the latter a considerable

amount of research exists with high quality results.
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Proposal-free methods. Recently, a number of alternative techniques to proposal-

based approaches have been suggested in the literature. These methods explore different

decompositions of instance-aware semantic segmentation followed by a post-processing

step that assembles results.

In [Uhr+16] the authors propose a template matching scheme for instance-aware

segmentation based on three modalities: predicted semantic segmentation, depth estima-

tion, and per-pixel direction estimation with respect to the center of the corresponding

instance. The approach requires depth data for training and does not perform well on

highly occluded objects.

Another work, which focuses on instance segmentation of cars [Zha+15; ZFU16]

employs a conditional random field that reasons about instances using multiple over-

lapping outputs of an FCN. The latter predicts a fixed number of instances and their

order within the receptive field of the FCN, i.e. for each pixel, the FCN predicts an

ID of the corresponding instance or background label. However, in these methods the

maximal number of instances per image must be fixed in advance. A very large number

may have a negative influence on the system performances. Therefore, this method

may not be well-suited for the CityScapes dataset, where the number of instances varies

considerably among images.

In [WSH16] the authors predict the bounding box of an instance for each pixel, based

on instance-agnostic semantic segmentation. A post-processing step filters out the re-

sulting instances. Recurrent approaches produce instances one-by-one. In [RZ16]

an attention-based recurrent neural network is presented. In [RPT16] an LSTM-

based [HS97] approach is proposed. The work [Lia+17] presents a proposal-free

network that produces an instance-agnostic semantic segmentation, number of instances

for the image, and a per-pixel bounding box of the corresponding instance. The resulting

instance segmentation is obtained by clustering. The method is highly sensitive to the

right prediction of the number of instances. We also present a proposal-free method.

However, ours is very different in paradigm. To infer instances, it combines semantic

segmentation and object boundary detection via global reasoning.

3.3 InstanceCut

3.3.1 Overview of the proposed framework

We begin with presenting a general pipeline of our new InstanceCut framework (see

Fig. 3.2) and then describe each component in detail. The first two blocks of the pipeline

are processed independently: semantic segmentation and instance-aware edge detection

operate directly on the input image. The third, image partitioning block, reasons about

instance segmentation on the basis of the output provided by the two blocks above.

More formally, the semantic segmentation block (Section 3.3.2) outputs a log-

probability of a semantic class ai,l for each class label l ∈ L = {0, 1 . . . , L} and each

pixel i of the input image. We call ai,l, per-pixel semantic class scores. Labels 1, . . . , L
correspond to different semantic classes and 0 stands for background.

Independently, the instance-aware edge detection (Section 3.3.3) outputs log-probabilities

bi of an object boundary for each pixel i. In other words, bi indicates how likely it is

that pixel i touches an object boundary. We term bi as a per-pixel instance-aware edge
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Figure 3.2: Our InstanceCut pipeline - Overview. Given an input image, two indepen-

dent branches produce the per-pixel semantic class scores and per-pixel instance-aware

edge scores. The edge scores are used to extract superpixels. The final image parti-

tioning block merges the superpixels into connected components with a class label

assigned to each component. The resulting components correspond to object instances

and background.

score. Note that these scores are class-agnostic.

Finally, the image partitioning block outputs the resulting instance segmentation,

obtained using the semantic class scores and the instance-aware edge scores. We refer to

Section 3.3.4 for a description of the corresponding optimization problem. To speed-up

optimization, we reduce the problem size by resorting to a superpixel image. For the

superpixel extraction we utilize the well-known watershed technique [VS91], which

is run directly on the edge scores. This approach efficiently ensures that the extracted
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superpixel boundaries are aligned with boundaries of the instance-aware edge scores.

3.3.2 Semantic Segmentation

Recently proposed semantic segmentation frameworks are mainly based on the fully

convolution network (FCN) architecture. Since the work [LSD15], many new FCN

architectures were proposed for this task [YK16; GF16]. Some of the methods utilize

a conditional random field (CRF) model on top of an FCN [Che+17a; LSR+16],

or incorporate CRF-based mechanisms directly into a network architecture [Liu+15;

Zhe+15; SU15]. Current state-of-the-art methods report around 78% mean Intersection-

over-Union (IoU) for the CityScapes dataset [Cor+16] and about 82% for the PASCAL

VOC2012 challenge [Eve+15]. Due to the recent progress in this field, one may say

that with a sufficiently large dataset, with associated dense ground truth annotation, an

FCN is able to predict semantic class for each pixel with high accuracy.

In our experiments, we employ two publicly available pre-trained FCNs: Dila-

tion10 [YK16] and LRR-4x [GF16]. These networks have been trained by the respective

authors and we can also use them as provided, without any fine-tuning. Note, that we

also use the CNN-CRF frameworks [Zhe+15; Che+17a] with dense CRF [Kol11], since

dense CRF’s output can also be treated as the log-probability scores ai,l.
Since our image partitioning framework works on the superpixel level we transform

the pixel-wise semantic class scores ai,l to the superpixel-wise ones au,l (here u indexes

the superpixels) by averaging the corresponding pixels’ scores.

3.3.3 Instance-Aware Edge Detection

Let us first review existing work, before we describe our approach. Edge detection (also

know as boundary detection) is a very well studied problem in computer vision. The

classical results were obtained already back in the 80’s [Can86]. More recent methods

are based on spectral clustering [SM00; Arb+11; Arb+14; Iso+14]. These methods

perform global inference on the whole image. An alternative approach suggests to treat

the problem as a per-pixel classification task [LZD13; DZ15]. Recent advances in deep

learning have made this class of methods especially efficient, since they automatically

obtain rich feature representation for classification [GL14; Kiv+14; She+15; BST15a;

BST15b; XT15; BST16].

The recent per-pixel classification method [BST16] constructs features, which are

based on an FCN trained for semantic segmentation on Pascal VOC 2012 [Eve+15].

The method produces state-of-the-art edge detection performance on the BSD500

dataset [Arb+11]. The features for each pixel are designed as a concatenation of

intermediate FCN features, corresponding to that particular pixel. The logistic regression

trained on these features, followed by non-maximal suppression, outputs a per-pixel

edge probability map. The paper suggests that the intermediate features of an FCN

trained for semantic segmentation form a strong signal for solving the edge detection

problem. Similarly constructed features also have been used successfully for other

dense labelling problems [Har+15].

For datasets like BSDS500 [Arb+11] most works consider general edge detection

problem, where annotated edges are class- and instance-agnostic contours. In our

work the instance-aware edge detection outputs a probability for each pixel, whether it
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Figure 3.3: Instance-aware edge detection block. The semantic segmentation FCN

is the front-end part of the network [YK16] trained for semantic segmentation on the

same dataset. Its intermediate feature maps are downsampled, according to the size

of the smallest feature map, by a max-pooling operation with an appropriate stride.

The concatenation of the downsampled maps is used as a feature representation for

a per-pixel 2-layer perceptron. The output of the perceptron is refined by a context

network of Dilation10 [YK16] architecture.

touches a boundary. This problem is more challenging than canonical edge detection,

since it requires to reason about contours and semantics jointly, distinguishing the

true objects’ boundaries and other not relevant edges, e.g. inside the object or in the

background. Below (see Fig. 3.3), we describe a new network architecture for this task

that utilizes the idea of the intermediate FCN features concatenation.

As a base for our network we use an FCN that is trained for semantic segmentation

on the dataset that we want to use for object boundary prediction. In our experiments

we use a pre-trained Dilation10 [YK16] model, however, our approach is not limited to

this architecture and can utilize any other FCN-like architectures. We form a per-pixel

feature representation by concatenating the intermediate feature maps of the semantic

segmentation network. This is based on the following intuition: during inference, the

semantic segmentation network is able to identify positions of transitions between

semantic classes in the image. Therefore, its intermediate features are likely to contain

a signal that helps to find the borders between classes. We believe that the same features

can be useful to determine boundaries between objects.

Commonly used approaches [BST16; Har+15] suggest upscaling feature maps that

have a size which is smaller than the original image to get per-pixel representation.

However, in our experiments such an approach produces thick and over-smooth edge

scores. This behavior can be explained by the fact that the most informative feature

maps have an 8 times smaller scale than the original image. Hence, instead of upscaling,

we downscale all feature maps to the size of the smallest map. Since the network was

trained with rectified linear unit (ReLU) activations, the active neurons tends to output

large values, therefore, we use max-pooling with a proper stride for the downscaling,

see Fig. 3.3.

The procedure outputs the downscaled feature maps (of a semantic segmentation

FCN, see Fig. 3.3) that are concatenated to get the downscaled per-pixel feature map.

We utilize a 2-layer perceptron that takes this feature map as input and outputs log-

probabilities for edges (smooth instance-aware edge map, see Fig. 3.3). The perceptron
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method is the same for all spatial positions, therefore, it can be represented as two layers

of 1× 1 convolutions with the ReLU activation in between.

In our experiments we have noticed that the FCN gives smooth edge scores. There-

fore, we apply a context network [YK16] that refines the scores making them sharper.

The new architecture is an FCN, i.e. it can be applied to images of arbitrary size, it

is differentiable and has a single loss at the end. Hence, straightforward end-to-end

training can be applied for the new architecture. We upscale the resulting output map to

match an input image size.

Since the image partition framework, that comes next, operates on super-pixels, we

need to transform the per-pixel edge scores bi to edge scores bu,v for each pair {u, v}
of neighboring superpixels. We do this by averaging all scores of of those pixels that

touch the border between u and v.

In the following, we describe an efficient implementation of the 2-layer perceptron

and also discuss our training data for the boundary detection problem.

Efficient implementation. In our experiments, the input for the 2-layer perceptron

contains about 13k features per pixel. Therefore, the first layer of the perceptron

consumes a lot of memory. It is, however, possible to avoid this by using a more

efficient implementation. Indeed, the first layer of the perceptron is equivalent to

the summation of outputs of multiple 1 × 1 convolutions, which are applied to each

feature map independently. For example, conv_1 is applied to the feature maps

from the conv_1_x intermediate layer, conv_2 is applied to the feature maps from

conv_2_x and its output is summed up with the output of conv_1, etc. This approach

allows reducing the memory consumption, since the convolutions can be applied during

evaluation of the front-end network.

Training data. Although it is common for ground truth data that object boundaries

lie in-between pixels, we will use in the following the notion that a boundary lies on

a pixel. Namely, we will assume that a pixel i is labeled as a boundary if there is a

neighboring pixel j, which is assigned to a different object (or background). Given the

size of modern images, this boundary extrapolation does not affect performance. As a

ground truth for boundary detection we use the boundaries of object instances presented

in CityScapes [Cor+16].

As mentioned in several previous works [XT15; BST15b], highly unbalanced ground

truth (GT) data heavily harms the learning progress. For example, in BSDS500 [Arb+11]

less than 10% of pixels on average are labeled as edges. Our ground truth data is even

more unbalanced: since we consider the object boundaries only, less than 1% of pixels

are labeled as being an edge. We employ two techniques to overcome this problem of

training with unbalanced data: a balanced loss function [XT15; HL15] and pruning of

the ground truth data.

The balanced loss function [XT15; HL15] adds a coefficient to the standard log-

likelihood loss that decreases the influence of errors with respect to classes that have a

lot of training data. That is, for each pixel i the balanced loss is defined as

loss(pedge, y
GT ) =JyGT = 1K log(pedge) (3.1)

+ αJyGT = 0K log(1− pedge) ,
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Figure 3.4: Ground truth examples for our instance-aware edge detector. Red indicates

pixels that are labeled as edges, blue indicates background, i.e. no edge and white pixels

are ignore.

where pedge = 1/(1− e−bi) is the probability of the pixel i to be labeled as an edge, yGT

is the ground truth label for i (the label 1 corresponds to an edge), and α = N1/N0 is

the balancing coefficient. Here, N1 and N0 are numbers of pixels labeled, respectively,

as 1 and 0 in the ground truth.

Another way to decrease the effect of unbalanced GT data is to subsample the GT

pixels, see e.g. [BST16]. Since we are interested in instance-aware edge detection and

combine its output with our semantic segmentation framework, a wrong edge detection,

which is far from the target objects (for example, in the sky) does not harm the overall

performance of the InstanceCut framework. Hence, we consider a pixel to be labeled as

background for the instance-aware edge detection if and only if it lies inside the target

objects, or in an area close to it, see Fig. 3.4 for a few examples of the ground truth data

for the CityScapes dataset [Cor+16]. In our experiments, only 6.8% of the pixels are

labeled as object boundaries in the pruned ground truth data.

3.3.4 Image Partition

Let V be the set of superpixels extracted from the output of the instance-aware edge

detection block and E ⊆
(
V
2

)
be the set of neighboring superpixels, i.e., those having a

common border.

With the methods described in Sections 3.3.2 and 3.3.3 we obtain:

• Log-probabilities αu,l of all semantic labels l ∈ L (including background) for

each superpixel u ∈ V .

• Log-probabilities bu,v for all pairs of neighbouring superpixels {u, v} ∈ E, for

having a cutting edge.

• Prior log-probabilities of having a boundary between any two (also equal) se-

mantic classes βl,l′ , for any two labels l, l′ ∈ L. In particular, the weight βl,l

defines, how probable it is that two neighboring super-pixel have the same label

l and belong to different instances. We set β0,0 to −∞, assuming there are no

boundaries between superpixels labeled both as background.

We want to assign a single label to each superpixel and have close-contour bound-

aries, such that if two neighboring superpixels belong to different classes, there is

always a boundary between them.
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Our problem formulation consists of two components: (i) a conditional random

field model [Kap+15] and (ii) a graph partition problem, known as MultiCut [CR93]

or correlation clustering [BBC04]. In a certain sense, these two problems are coupled

together in our formulation. Therefore, we first briefly describe each of them separately

and afterwards consider their joint formulation.

Conditional Random Field (CRF). Let us, for now, assume that all βl,l = −∞,

l ∈ L, i.e., there can be no boundary between superpixels assigned the same label. In

this case our problem is reduced to the following famous format: Let G = (V,E) be an

undirected graph. A finite set of labels L is associated with each node. With each label l
in each node v a vector αv,l is associated, which denotes the score of the label assigned

to the node. Each pair of labels l, l′ in neighbouring nodes {u, v} is assigned a score

cu,v,l,l′ :=

{

bu,v + βl,l′ , l 6= l′

0, l = l′

The vector l ∈ L|V | with coordinates lu, u ∈ V being labels assigned to each node is

called a labeling. The maximum a posteriori inference problem for the CRF is defined

above reads

max
l∈L|V |

∑

u∈V

αu,lu +
∑

uv∈E

cu,v,lu,lv . (3.2)

A solution to this problem is a usual (non-instance-aware) semantic segmentation, if

we associate the graph nodes with superpixels and the graph edges will define their

neighborhood.

For the MultiCut formulation below, we will require a different representation of

the problem (3.2), in a form of an integer quadratic problem. Consider binary variables

xu,l ∈ {0, 1} for each node u ∈ V and label l ∈ L. The equality xu,l = 1 means that

label l is assigned to the node u. The problem (3.2) now can be rewritten as follows:

max
x

∑

u∈V

∑

l∈L

αu,lxu,l +
∑

uv∈E

∑

l∈L

∑

l′∈L

cu,v,l,l′xu,lxv,l′

s.t.

{

xu,l ∈ {0, 1}, u ∈ V, l ∈ L
∑

l∈L xu,l = 1, u ∈ V .
(3.3)

The last constraint in (3.3) is added to guarantee that each node is assigned exactly one

label. Although the problem (3.3) is NP-hard in general, it can be efficiently (and often

exactly) solved for many practical instances appearing in computer vision, see [Kap+15]

for an overview.

MultiCut Problem. Let us now assume a different situation, where all nodes have

already got an assigned semantic label and all that we want is to partition each con-

nected component (labeled with a single class) into connected regions corresponding

to instances. Let us assume, for instance, that all superpixels of the component have a

label l. This task has an elegant formulation as a MultiCut problem [CR93]:

Let G = (V,E) be an undirected graph, with the scores θu,v := bu,v + βl,l assigned

to the graph edges. Let also ∪̇ stand for a disjoint union of sets. The MultiCut problem
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(also known as correlation clustering) is to find a partitioning (Π1, . . . , Πk), Πi ⊆ V ,

V = ∪̇
k
i=1Πi of the graph vertices, such that the total score of edges connecting different

components is maximized. The number k of components is not fixed but is determined

by the algorithm itself. Although the problem is NP-hard in general, there are efficient

approximate solvers for it, see e.g. [Bei+14; KL70; Keu+15].

In the following, we will require a different representation of the MultiCut problem,

in form of an integer linear problem. To this end, we introduce a binary variable

ye = yu,v ∈ {0, 1} for each edge e = {u, v} ∈ E. This variable takes the value 1, if

u and v belong to different components, i.e. u ∈ Πi, v ∈ Πj for some i 6= j. Edges

{u, v} with yu,v = 1 are called cut edges. The vector y ∈ {0, 1}|E| with coordinates

ye, e ∈ E is called a MultiCut. Let C be the set of all cycles of the graph G. It is a

known result from combinatorial optimization [CR93] that the MultiCut problem can

be written in the following form:

max
y∈{0,1}|E|

∑

{u,v}∈E

θu,vyu,v , s.t. ∀C ∀e′ ∈ C :
∑

e∈C\{e′}

ye ≥ ye′ . (3.4)

Here, the objective directly maximizes the total score of the edges and the inequality

constraints basically force each cycle to have none or at least two cut edges. These cycle

constraints ensure that the set of cut edges actually defines a partitioning. Obviously,

the cut edges correspond to boundaries in our application.

Our InstanceCut Problem. Let us combine both subproblems: We want to jointly

infer both the semantic labels and the partitioning of each semantic segment, with each

partition component defining an object instance. To this end, consider our InstanceCut

problem (3.5)-(3.8) below:

max
x∈{0,1}|V ||L|

y∈{0,1}|E|

∑

u∈V

∑

l∈L

αu,lxu,l (3.5)

+ w
∑

uv∈E

∑

l∈L

∑

l′∈L

(bu,v + βl,l′)xu,lxv,l′yu,v

∑

l∈L

xu,l = 1, u ∈ V (3.6)

∀e′ ∈ C :
∑

e∈C\{e′}

ye ≥ ye′ (3.7)

xu,l − xv,l ≤ yuv
xv,l − xu,l ≤ yuv

}

, {u, v} ∈ E, l ∈ L . (3.8)

Objective (3.5) and inequalities (3.6)-(3.7) are obtained directly from merging prob-

lems (3.3) and (3.4). We also introduced the parameter w that balances the modalities.

Additional constraints (3.8) are required to guarantee that as soon as two neighboring

nodes u and v are assigned different labels, the corresponding edge yu,v is cut and

defines a part of an instance boundary. Two nodes u and u are assigned different labels

if at most one of the variables xu,l, xv,l takes value 1. In this case, the largest left-hand

side of one of the inequalities (3.8) is equal to 1 and therefore yu,v must be cut. The

problem related to (3.5)-(3.8) was considered in [Ham14] for foreground/background
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Figure 3.5: The histograms shows distribution of number of instances per image for

different datasets. For illustrative reasons we cut long tails of CityScapes and MS

COCO. We use CityScapes dataset since it contains significantly more instances per

image.

segmentation.

Although the problem (3.5)-(3.8) is NP-hard and it contains a lot of hard constraints,

there exists an efficient approximate solver for it [Lev+17], which we used in our

experiments. For solving the problem over 3000 nodes (superpixels) and 9 labels

(segment classes) it required less than a second on average.

3.4 Experiments

Dataset. There are three main datasets with full annotation for the instance-aware

semantic segmentation problem: PASCAL VOC2012 [Eve+15], MS COCO [Lin+14]

and CityScapes [Cor+16]. We select the last one for our experimental evaluation for

several reasons: (i) CityScapes has very fine annotation with precise boundaries for the

annotated objects, whereas MS COCO has only coarse annotations, for some objects,

that do not coincide with the true boundaries. Since our method uses an edge detector, it

is important to to have precise object boundaries for training. (ii) The median number of

instances per image in CityScapes is 16, whereas PASCAL VOC has 2 and MS COCO

has 4. For this work a larger number is more interesting. The distribution of the number

of instances per image for different datasets is shown in Fig. 3.5. (iii) Unlike other

datasets, CityScapes’ annotation is dense, i.e. all foreground objects are labeled.

The CityScape dataset has 5000 street-scene images recorded by car-mounted

cameras: 2975 images for training, 500 for validation and 1525 for testing. There are 8
classes of objects that have an instance-level annotation in the dataset: person, rider, car,

truck, bus, train, motorcycle, bicycle. All images have the size of 1024× 2048 pixels.

Training details. For the semantic segmentation block in our framework we test

two different networks, which have publicly available trained models for CityScapes:

Dilation10 [YK16] and LRR-4x [GF16]. The latter is trained using the additional

coarsely annotated data, available in CityScapes. Importantly, CityScapes has 19
different semantic segmentation classes (and only 8 out of them are considered for

instance segmentation) and both networks were trained to segment all these classes.

We do not retrain the networks and directly use the log-probabilities for the 8 semantic

classes, which we require. For the background label we take the maximum over the
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(a) Ground truth (b) Edges map (c) InstanceCut prediction

Figure 3.6: Qualitative results of InstanceCut framework. Left column contains input

images with the highlighted ground truth instances. Middle column depicts per-pixel

instance-aware edge log-probabilities and the last column shows the results of our

approach. Note that in the last example the bus and a car in the middle are separated by

a lamp-post, therefore, our method returns two instances for the objects.

log-probabilities of the remaining semantic classes.

As an initial semantic segmentation network for the instance-aware edge detection

block we use Dilation10 [YK16] pre-trained on the CityScapes. We exactly follow the

training procedure described in the original paper [YK16]. That is, we pre-train first

the front-end module with the 2-layer perceptron on top. Then we pre-train the context

module of the network separately and, finally, train the whole system end-to end. All

the stages are trained with the same parameters as in [YK16]. In our experiments the

2-layer perceptron has 16 hidden neurons. On the validation set the trained detector

achieves 97.2% AUC ROC.

Parameters w (see (3.5)) and βl,l′ , for all l, l′ ∈ L, in our InstanceCut formulation

(3.5) are selected via 2-fold cross-validation. Instead of considering different βl,l′ for all

pairs of labels, we group them into two classes: ’big’ and ’small’. All βl,l′ , where either

l or l′ corresponds to a (physically) big object, i.e., train, bus, or truck, are set to βbig.

All other βl,l′ are set to βsmall. Therefore, our parameter space is only 3 dimensional

and is determined by the parameters w, βsmall and βbig.

Instance-level results - quantitative and qualitative. We evaluated our method us-

ing 4 metrics that are suggested by the CityScapes benchmark: AP, AP50%, AP100m

and AP50m. We refer to the webpage of the benchmark for a detailed description.

The InstanceCut framework with Dilation10 [YK16] as the semantic segmentation

block gives AP = 14.8 and AP50% = 30.7 on the validation part of the dataset. When

we replace Dilation10 by LRR-4x [GF16] for this block the performance improves to

AP = 15.8 and AP50% = 32.4, on the validation set.

Quantitative results for the test set are provided in Table 3.1. We compare our
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MCG+R-CNN [Cor+16] AP 4.6 1.3 0.6 10.5 6.1 9.7 5.9 1.7 0.5

Uhrig et al. [Uhr+16] AP 8.9 12.5 11.7 22.5 3.3 5.9 3.2 6.9 5.1

InstanceCut AP 13.0 10.0 8.0 23.7 14.0 19.5 15.2 9.3 4.7

MCG+R-CNN [Cor+16] AP50% 12.9 5.6 3.9 26.0 13.8 26.3 15.8 8.6 3.1

Uhrig et al. [Uhr+16] AP50% 21.1 31.8 33.8 37.8 7.6 12.0 8.5 20.5 17.2

InstanceCut AP50% 27.9 28.0 26.8 44.8 22.2 30.4 30.1 25.1 15.7

MCG+R-CNN [Cor+16] AP100m 7.7 2.6 1.1 17.5 10.6 17.4 9.2 2.6 0.9

Uhrig et al. [Uhr+16] AP100m 15.3 24.4 20.3 36.4 5.5 10.6 5.2 10.5 9.2

InstanceCut AP100m 22.1 19.7 14.0 38.9 24.8 34.4 23.1 13.7 8.0

MCG+R-CNN [Cor+16] AP50m 10.3 2.7 1.1 21.2 14.0 25.2 14.2 2.7 1.0

Uhrig et al. [Uhr+16] AP50m 16.7 25.0 21.0 40.7 6.7 13.5 6.4 11.2 9.3

InstanceCut AP50m 26.1 20.1 14.6 42.5 32.3 44.7 31.7 14.3 8.2

Table 3.1: CityScapes results. Instance-aware semantic segmentation results on the test

set of CityScapes, given for each semantic class.

approach to previously published methods that have results for this dataset. Among

them our method shows the best performance, despite its simplicity. A few new

methods [He+17; Liu+17b; Liu+18] that outperfrom InstanceCut were proposed after

its publication [Kir+17]. Note, however, that this methods use a much stronger back-

bone CNN architecture.

Fig. 3.7 contains the subset of difficult scenes where InstanceCut is able to predict

most instances correctly. Fig. 3.8 contains failure cases of InstanceCut. The main

sources of failure are: small objects that are far away from the camera, groups of people

that are very close to camera and have heavy mutual occlusions, and occluded instances

that have several disconnected visible parts.

3.5 Discussion

We have proposed an alternative paradigm for instance-aware semantic segmentation.

The paradigm represents the instance segmentation problem by a combination of two

modalities: instance-agnostic semantic segmentation and instance-aware boundaries.

We have presented a new framework that utilizes this paradigm. The modalities are

produced by FCN networks. The standard FCN model is used for semantic segmentation,

whereas a new architecture is proposed for object boundaries. The modalities are

combined are combined by a novel MultiCut framework, which reasons globally about

instances. The proposed framework achieves very promising results.
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(a) Ground Truth (b) Edges Map (c) InstanceCut Prediction

Figure 3.7: Curated difficult scene, where InstanceCut performs well. The left column

contains input images with ground truth instances highlighted. The middle column

depicts per-pixel instance-aware edge log-probabilities and the last column shows the

results of our approach.
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(a) Ground Truth (b) Edges Map (c) InstanceCut Prediction

Figure 3.8: Failure cases. The left column contains input images with ground truth

instances highlighted. The middle column depicts per-pixel instance-aware edge log-

probabilities and the last column shows the results of our approach.
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Chapter 4

Panoptic Segmentation

4.1 Introduction

In the early days of computer vision, things – countable objects such as people, animals,

tools – received the dominant share of attention. Questioning the wisdom of this

trend, Adelson [Ade01] elevated the importance of studying systems that recognize

stuff – amorphous regions of similar texture or material such as grass, sky, road. This

dichotomy between stuff and things persists to this day, reflected in both the division of

visual recognition tasks and in the specialized algorithms developed for stuff and thing

tasks.

Studying stuff is most commonly formulated as a task known as semantic segmenta-

tion, see Figure 4.1b. As stuff is amorphous and uncountable, this task is defined as

simply assigning a class label to each pixel in an image (note that semantic segmentation

treats thing classes as stuff). In contrast, studying things is typically formulated as the

task of object detection or instance segmentation, where the goal is to detect each object

and delineate it with a bounding box or segmentation mask, respectively, see Figure

4.1c. While seemingly related, the datasets, details, and metrics for these two visual

recognition tasks vary substantially.

The schism between semantic and instance segmentation has led to a parallel rift

in the methods for these tasks. Stuff classifiers are usually built on fully convolutional

nets [LSD15] with dilations [YK16; Che+17a] while object detectors often use object

proposals [Hos+15] and are region-based [Ren+15; He+17]. Overall algorithmic

progress on these tasks has been incredible in the past decade, yet, something important

may be overlooked by focussing on these tasks in isolation.

A natural question emerges: Can there be a reconciliation between stuff and things?

And what is the most effective design of a unified vision system that generates rich and

coherent scene segmentations? These questions are particularly important given their

relevance in real-world applications, such as autonomous driving or augmented reality.

Interestingly, while semantic and instance segmentation dominate current work, in

the pre-deep learning era there was interest in the joint task described using various

names such as scene parsing [TNL14], image parsing [Tu+05], or holistic scene

understanding [YFU12]. Despite its practical relevance, this general direction is not

currently popular, perhaps due to lack of appropriate metrics or recognition challenges.

In our work we aim to revive this direction. We propose a task that: (1) encompasses
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(a) image (b) semantic segmentation

(c) instance segmentation (d) panoptic segmentation

Figure 4.1: For a given (a) image, we show ground truth for: (b) semantic segmentation

(per-pixel class labels), (c) instance segmentation (per-object mask and class label), and

(d) the proposed panoptic segmentation task (per-pixel class+instance labels). The PS

task: (1) encompasses both stuff and thing classes, (2) uses a simple but general format,

and (3) introduces a uniform evaluation metric for all classes. Panoptic segmentation

generalizes both semantic and instance segmentation and we expect the unified task

will present novel challenges and enable innovative new methods.

both stuff and thing classes, (2) uses a simple but general output format, and (3)

introduces a uniform evaluation metric. To clearly disambiguate with previous work,

we refer to the resulting task as panoptic segmentation (PS). The definition of ‘panoptic’

is “including everything visible in one view”, in our context panoptic refers to a unified,

global view of segmentation.

The task format we adopt for panoptic segmentation is simple: each pixel of an

image must be assigned a semantic label and an instance id. Pixels with the same label

and id belong to the same object; for stuff labels the instance id is ignored. See Figure

4.1d for a visualization. This format has been adopted previously, especially by methods

that produce non-overlapping instance segmentations [Kir+17; Liu+17b; AT17]. We

adopt it for our joint task that includes stuff and things.

A fundamental aspect of panoptic segmentation is the task metric used for eval-

uation. While numerous existing metrics are popular for either semantic or instance

segmentation, these metrics are best suited either for stuff or things, respectively, but

not both. We believe that the use of disjoint metrics is one of the primary reasons the

community generally studies stuff and thing segmentation in isolation. To address this,

we introduce the panoptic quality (PQ) metric in §4.4. PQ is simple and informative

and most importantly can be used to measure the performance for both stuff and things
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in a uniform manner. Our hope is that the proposed joint metric will aid in the broader

adoption of the joint task.

The panoptic segmentation task encompasses both semantic and instance segmen-

tation but introduces new algorithmic challenges. Unlike semantic segmentation, it

requires differentiating individual object instances; this poses a challenge for fully convo-

lutional nets. Unlike instance segmentation, object segments must be non-overlapping;

this presents a challenge for region-based methods that operate on each object indepen-

dently. Generating coherent image segmentations that resolve inconsistencies between

stuff and things is an important step toward real-world uses.

As both the ground truth and algorithm format for PS must take on the same form,

we can perform a detailed study of human performance on panoptic segmentation. This

allows us to understand the PQ metric in more detail, including detailed breakdowns of

recognition vs. segmentation and stuff vs. things performance. Moreover, measuring

human PQ helps ground our understanding of machine performance. This is important

as it will allow us to monitor performance saturations on various datasets for PS.

Finally we perform an initial study of machine performance for PS. To do so,

we define a simple and likely suboptimal heuristic that combines the output of two

independent systems for semantic and instance segmentation via a series of post-

processing steps that merges their outputs (in essence, a sophisticated form of non-

maximum suppression). Our heuristic establishes a baseline for PS and gives us insights

into the main algorithmic challenges it presents.

We study both human and machine performance on three popular segmentation

datasets that have both stuff and things annotations. This includes the Cityscapes

[Cor+16], ADE20k [Zho+17], and Mapillary Vistas [Neu+17] datasets. For each

of these datasets, we obtained results of state-of-the-art methods directly from the

challenge organizers. In the future we will extend our analysis to COCO [Lin+14] on

which stuff is being annotated [CUF18]. Together our results on these datasets form a

solid foundation for the study of both human and machine performance on panoptic

segmentation.

We are currently working with challenge organizers from the COCO [Lin+14], Vis-

tas [Neu+17], and ADE20k [Zho+17] datasets to feature a panoptic segmentation track.

We believe including a PS track alongside existing instance and semantic segmentation

tracks on these popular recognition datasets will help lead to a broader adoption of the

proposed joint task.

4.2 Related Work

Novel datasets and tasks have played a key role throughout the history of computer

vision. They help catalyze progress and enable breakthroughs in our field, and just

as importantly, they help us measure and recognize the progress our community is

making. For example, ImageNet [Rus+15] helped drive the recent popularization of

deep learning techniques for visual recognition [KSH12] and exemplifies the potential

transformational power that datasets and tasks can have. Our goals for introducing the

panoptic segmentation task are similar: to challenge our community, to drive research

in novel directions, and to enable both expected and unexpected innovation. We review

related tasks next.
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Object detection tasks. Early work on face detection using ad-hoc datasets (e.g.,

[VML94; VJ01]) helped popularize bounding-box object detection. Later, pedestrian

detection datasets [Dol+12] helped drive progress in the field. The PASCAL VOC

dataset [Eve+15] upgraded the task to a more diverse set of general object classes on

more challenging images. More recently, the COCO dataset [Lin+14] pushed detection

towards the task of instance segmentation. By framing this task and providing a high-

quality dataset, COCO helped define a new and exciting research direction and led to

many recent breakthroughs in instance segmentation [PCD15; Li+17; He+17]. Our

general goals for panoptic segmentation are similar.

Semantic segmentation tasks. Semantic segmentation datasets have a rich history

[Sho+06; LYT11; Eve+15] and helped drive key innovations (e.g., fully convolutional

nets [LSD15] were developed using [LYT11; Eve+15]). These datasets contain both

stuff and thing classes, but don’t distinguish individual object instances. Recently the

field has seen numerous new segmentation datasets including Cityscapes [Cor+16],

ADE20k [Zho+17], and Mapillary Vistas [Neu+17]. These datasets actually support

both semantic and instance segmentation, and each has opted to have a separate track

for the two tasks. Importantly, they contain all of the information necessary for PS.

In other words, the panoptic segmentation task can be bootstrapped on these datasets

without any new data collection.

Multitask learning. With the success of deep learning for many visual recognition

tasks, there has been substantial interest in multitask learning approaches that have

broad competence and can solve multiple diverse vision problems in a single framework

[Kok17; Mal+16; Mis+16]. E.g., UberNet [Kok17] solves multiple low to high-level

visual tasks, including object detection and semantic segmentation, using a single

network. While there is significant interest in this area, we emphasize that panoptic

segmentation is not a multitask problem but rather a single, unified view of image

segmentation. Specifically, the multitask setting allows for independent and potentially

inconsistent outputs for stuff and things, while PS requires a single coherent scene

segmentation.

Joint segmentation tasks. In the pre-deep learning era, there was substantial inter-

est in generating coherent scene interpretations. The seminal work on image parsing

[Tu+05] proposed a general bayesian framework to jointly model segmentation, detec-

tion, and recognition. Later, approaches based on graphical models studied consistent

stuff and thing segmentation [YFU12; TL13; TNL14; Sun+14]. While these methods

shared a common motivation, there was no agreed upon task definition, and different

output formats and varying evaluation metrics were used, including separate metrics for

evaluating results on stuff and thing classes. In recent years this direction has become

less popular, perhaps for these reasons.

In our work we aim to revive this general direction, but in contrast to earlier work,

we focus on the task itself. Specifically, as discussed, PS: (1) addresses both stuff

and thing classes, (2) uses a simple format, and (3) introduces a uniform metric for

both stuff and things. Previous work on joint segmentation uses varying formats and

disjoint metrics for evaluating stuff and things. Methods that generate non-overlapping
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instance segmentations [Kir+17; BU17; Liu+17b; AT17] use the same format as PS,

but these methods typically only address thing classes. By addressing both stuff and

things, using a simple format, and introducing a uniform metric, we hope to encourage

broader adoption of the joint task.

Amodal segmentation task. In [Zhu+17] objects are annotated amodally: the full

extent of each region is marked, not just the visible. Our work focuses on segmentation

of all visible regions, but an extension of panoptic segmentation to the amodal setting is

an interesting direction for future work.

4.3 Panoptic Segmentation Format

Task format. The format for panoptic segmentation is simple to define. Given a

predetermined set of L semantic classes encoded by L := {1, . . . , L}, the task requires

a panoptic segmentation algorithm to map each pixel i of an image to a pair (li, zi) ∈
L × N, where li represents the semantic class of pixel i and zi represents its instance id.

Instances, not pixels, are the atomic units of output produced by the algorithm that will

be used in a matching process for evaluation (described later). Ground truth annotations

for an image are encoded in an identical manner.

Stuff and thing labels. The semantic label set consists of subsets LSt and LTh, such

that L = LSt ∪ LTh and LSt ∩ LTh = ∅. These subsets correspond to stuff and thing

labels, respectively. When a pixel is labeled with li ∈ LSt, its corresponding instance

id zi is irrelevant. That is, for stuff classes all pixels belong to the same instance (e.g.,

the same sky). Otherwise, all pixels with the same (li, zi) assignment, where li ∈ LTh,

belong to the same instance (e.g., the same car), and conversely, all pixels belonging to

a single instance must have the same (li, zi). The selection of which classes are stuff vs.

things is a design choice left to the creator of the dataset, just as in previous datasets.

Relationship to semantic segmentation. The PS task format is a strict generalization

of the format for semantic segmentation. Indeed, both tasks require each pixel in an

image to be assigned a semantic label. If the ground truth does not specify instances, or

all classes are stuff, then the task formats are identical (although the task metrics differ).

In addition, inclusion of thing classes, which may have multiple instances per image,

differentiates the tasks.

Relationship to instance segmentation. The instance segmentation task requires a

method to segment each object instance in an image. However, it allows overlapping

segments, whereas the panoptic segmentation task permits only one semantic label and

one instance id to be assigned to each pixel. Hence, for PS, no overlaps are possible by

construction. In the next section we show that this difference plays an important role in

performance evaluation.

Confidence scores. Like semantic segmentation, but unlike instance segmentation,

we do not require confidence scores associated with each segment for PS. This makes

77



the panoptic task symmetric with respect to humans and machines: both must generate

the same type of image annotation. It also makes evaluating human performance for PS

simple. This is in contrast to instance segmentation, which is not easily amenable to

such a study as human annotators do not provide explicit confidence scores (though a

single precision/recall point may be measured). We note that confidence scores give

downstream systems more information, which can be useful, so it may still be desirable

to have a PS algorithm generate confidence scores in certain settings.

4.4 Panoptic Segmentation Metric

In this section we introduce a new metric for panoptic segmentation. We begin by

noting that existing metrics are specialized for either semantic or instance segmentation

and cannot be used to evaluate the joint task involving both stuff and thing classes.

Previous work on joint segmentation sidestepped this issue by evaluating stuff and

thing performance using independent metrics (e.g. [YFU12; TL13; TNL14; Sun+14]).

However, this introduces challenges in algorithm development, makes comparisons

more difficult, and hinders communication. We hope that introducing a unified metric

for stuff and things will encourage the study of the unified task.

Before going into further details, we start by identifying the following desiderata

for a suitable metric for PS:

Completeness. The metric should treat stuff and thing classes in a uniform way,

capturing all aspects of the task.

Interpretability. We seek a metric with identifiable meaning that facilitates com-

munication and understanding.

Simplicity. In addition, the metric should be simple to define and implement. This

improves transparency and allows for easy reimplementation. Related to this, the metric

should be efficient to compute to enable rapid evaluation.

Guided by these principles, we propose a new panoptic quality (PQ) metric. PQ

measures the quality of a predicted panoptic segmentation relative to the ground truth.

It involves two steps: (1) segment matching and (2) PQ computation given the matches.

We describe each step next then return to a comparison to existing metrics.

4.4.1 Segment Matching

We specify that a predicted segment and a ground truth segment can match only if their

intersection over union (IoU) is strictly greater than 0.5. This requirement, together

with the non-overlapping property of a panoptic segmentation, gives a unique matching:

there can be at most one predicted segment matched with each ground truth segment.

Theorem 5. Given a predicted and ground truth panoptic segmentation of an image,

each ground truth segment can have at most one corresponding predicted segment with

IoU strictly greater than 0.5 and vice verse.

Proof. Let g be a ground truth segment and p1 and p2 be two predicted segments. By
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definition, p1 ∩ p2 = ∅ (they do not overlap). Since |pi ∪ g| ≥ |g|, we get the following:

IoU(pi, g) =
|pi ∩ g|

|pi ∪ g|
≤

|pi ∩ g|

|g|
for i ∈ {1, 2} .

Summing over i, and since |p1 ∩ g|+ |p2 ∩ g| ≤ |g| due to the fact that p1 ∩ p2 = ∅, we

get:

IoU(p1, g) + IoU(p2, g) ≤
|p1 ∩ g|+ |p2 ∩ g|

|g|
≤ 1 .

Therefore, if IoU(p1, g) > 0.5, then IoU(p2, g) has to be smaller than 0.5. Reversing

the role of p and g can be used to prove that only one ground truth segment can have

IoU with a predicted segment strictly greater than 0.5.

The requirement that matches must have IoU greater than 0.5, which in turn yields

the unique matching theorem, achieves two of our desired properties. First, it is

simple and efficient as correspondences are unique and trivial to obtain. Second, it is

interpretable and easy to understand (and does not require solving a complex matching

problem as is commonly the case for these types of metrics [Har+14; Yan+12]).

Note that due to the uniqueness property, for IoU > 0.5, any reasonable matching

strategy (including greedy and optimal) will yield an identical matching. For smaller

IoU other matching techniques would be required; however, in the experiments we

will show that lower thresholds are unnecessary as matches with IoU ≤ 0.5 are rare in

practice.

4.4.2 Panoptic Quality (PQ) Computation

Ground Truth Prediction

person

person dog

grass

sky
person

grass

sky

person

person

person

Person — TP: {         ,       }; FN: {   }; FP: {  }

grass

Figure 4.2: Toy illustration of ground truth and predicted panoptic segmentations of an

image. Pairs of segments of the same color have IoU larger than 0.5 and are therefore

matched. We show how the segments for the person class are partitioned into true

positives TP , false negatives FN , and false positives FP .

We calculate PQ for each class independently and average over classes. This makes

PQ insensitive to class imbalance. For each class, the unique matching splits the

predicted and ground truth segments into three sets: true positives (TP ), false positives

(FP ), and false negatives (FN ), representing matched pairs of segments, unmatched
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predicted segments, and unmatched ground truth segments, respectively. An example is

illustrated in Figure 4.2. Given these three sets, PQ is defined as:

PQ =

∑

(p,g)∈TP
IoU(p, g)

|TP |+ 1
2
|FP |+ 1

2
|FN |

. (4.1)

PQ is intuitive after inspection: 1
|TP |

∑

(p,g)∈TP
IoU(p, g) is simply the average IoU

of matched segments, while 1
2
|FP | + 1

2
|FN | is added to the denominator to penalize

segments without matches. Note that all segments receive equal importance regardless

of their area. Furthermore, if we multiply and divide PQ by the size of the TP set,

then PQ can be seen as the multiplication of a segmentation quality (SQ) term and a

recognition quality (RQ) term:

PQ =

∑

(p,g)∈TP
IoU(p, g)

|TP |
︸ ︷︷ ︸

segmentation quality (SQ)

×
|TP |

|TP |+ 1
2 |FP |+ 1

2 |FN |
︸ ︷︷ ︸

recognition quality (RQ)

. (4.2)

Written this way, RQ is the familiar F1 score [VR79] widely used for quality estimation

in detection settings [MFM04]. SQ is simply the average IoU of matched segments.

We find the decomposition of PQ = SQ × RQ to provide insight for analysis. We

note, however, that the two values are not independent since SQ is measured only over

matched segments.

Our definition of PQ achieves our desiderata. It measures performance of all classes

in a uniform way using a simple and interpretable formula. We conclude by discussing

how we handle void regions and groups of instances [Lin+14].

Void labels. There are two sources of void labels in the ground truth: (a) out of

class pixels and (b) ambiguous or unknown pixels. As often we cannot differentiate

these two cases, we don’t evaluate predictions for void pixels. Specifically: (1) during

matching, all pixels in a predicted segment that are labeled as void in the ground truth

are removed from the prediction and do not affect IoU computation, and (2) after

matching, unmatched predicted segments that contain a fraction of void pixels over the

matching threshold are removed and do not count as false positives. Finally, outputs

may also contain void pixels; these do not affect evaluation.

Group labels. A common annotation practice [Cor+16; Lin+14] is to use a group

label instead of instance ids for adjacent instances of the same semantic class if accurate

delineation of each instance is difficult. For computing PQ: (1) during matching, group

regions are not used, and (2) after matching, unmatched predicted segments that contain

a fraction of pixels from a group of the same class over the matching threshold are

removed and do not count as false positives.

4.4.3 Comparison to Existing Metrics

We conclude by comparing PQ to existing metrics for semantic and instance segmenta-

tion.

Semantic segmentation metrics. Common metrics for semantic segmentation in-

clude pixel accuracy, mean accuracy, and IoU [LSD15]. These metrics are computed
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based only on pixel outputs/labels and completely ignore object-level labels. For exam-

ple, IoU is the ratio between correctly predicted pixels and total number of pixels in

either the prediction or ground truth for each class. As these metrics ignore instance

labels, they are not well suited for evaluating thing classes. Finally, please note that

IoU for semantic segmentation is distinct from our segmentation quality (SQ), which is

computed as the average IoU over matched segments.

Instance segmentation metrics. The standard metric for instance segmentation is

Average Precision (AP) [Lin+14; Har+14]. AP requires each object segment to have a

confidence score to estimate a precision/recall curve. Note that while confidence scores

are quite natural for object detection, they are not used for semantic segmentation.

Hence, AP cannot be used for measuring the output of semantic segmentation, or

likewise of PS (see also the discussion of confidences in §4.3).

Panoptic quality. PQ treats all classes (stuff and things) in a uniform way. We note

that while decomposing PQ into SQ and RQ is helpful with interpreting results, PQ

is not a combination of semantic and instance segmentation metrics. Rather, SQ and

RQ are computed for every class (stuff and things), and measure segmentation and

recognition quality, respectively. PQ thus unifies evaluation over all classes. We support

this claim with rigorous experimental evaluation of PQ in §4.7, including comparisons

to IoU and AP for semantic and instance segmentation, respectively.

4.5 Panoptic Segmentation Datasets

To our knowledge only three public datasets have both dense semantic and instance

segmentation annotations: Cityscapes [Cor+16], ADE20k [Zho+17], and Mapillary

Vistas [Neu+17]. We use all three datasets for panoptic segmentation. In addition, in

the future we will extend our analysis to COCO [Lin+14] on which stuff is currently

being annotated [CUF18]1.

Cityscapes [Cor+16] has 5000 images (2975 train, 500 val, and 1525 test) of ego-

centric driving scenarios in urban settings. It has dense pixel annotations (97% coverage)

of 19 classes among which 8 have instance-level segmentations.

ADE20k [Zho+17] has over 25k images (20k train, 2k val, 3k test) that are densely

annotated with an open-dictionary label set. For the 2017 Places Challenge2, 100

thing and 50 stuff classes that cover 89% of all pixels are selected. We use this closed

vocabulary in our study.

Mapillary Vistas [Neu+17] has 25k street-view images (18k train, 2k val, 5k test)

in a wide range of resolutions. The ‘research edition’ of the dataset is densely annotated

(98% pixel coverage) with 28 stuff and 37 thing classes.

1In addition to stuff annotations being incomplete, COCO instance segmentations contain overlaps.

We plan on collecting depth ordering for all pairs of overlapping instances in COCO to resolve these

overlaps.
2
http://placeschallenge.csail.mit.edu
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Figure 4.3: Segmentation flaws. Images are zoomed and cropped. Top row (Vistas

image): both annotators identify the object as a car, however, one splits the car into two

cars. Bottom row (Cityscapes image): the segmentation is genuinely ambiguous.

4.6 Human Performance Study

One advantage of panoptic segmentation is that it enables measuring human perfor-

mance. Aside from this being interesting as an end in itself, human performance studies

allow us to understand the task in detail, including details of our proposed metric and

breakdowns of human performance along various axes. This gives us insight into intrin-

sic challenges posed by the task without biasing our analysis by algorithmic choices.

Furthermore, human studies help ground machine performance (discussed in §4.7) and

allow us to calibrate our understanding of the task.

Human annotations. To enable human performance analysis, dataset creators gra-

ciously supplied us with 30 doubly annotated images for Cityscapes, 64 for ADE20k,

and 46 for Vistas. For Cityscapes and Vistas, the images are annotated independently

by different annotators. ADE20k is annotated by a single well-trained annotator who

labeled the same set of images with a gap of six months. To measure panoptic quality

(PQ) for human annotators, we treat one annotation for each image as ground truth and

the other as the prediction. Note that the PQ is symmetric w.r.t. the ground truth and

prediction, so order is unimportant.

Human performance. First, Table 4.1 shows human performance on each dataset,

along with the decomposition of PQ into segmentation quality (SQ) and recognition

quality (RQ). As expected, humans are not perfect at this task, which is consistent with

studies of annotation quality from [Cor+16; Zho+17; Neu+17]. Visualizations of human

segmentation and classification errors are shown in Figures 4.3 and 4.4, respectively.
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floor rug ✔  

building tram ✔  

Figure 4.4: Classification flaws. Images are zoomed and cropped. Top row (ADE20k

image): simple misclassification. Bottom row (Cityscapes image): the scene is ex-

tremely difficult, tram is the correct class for the segment. Many errors are difficult to

resolve.

PQ PQSt PQTh SQ SQSt SQTh RQ RQSt RQTh

Cityscapes 69.7 71.3 67.4 84.2 84.4 83.9 82.1 83.4 80.2

ADE20k 67.1 70.3 65.9 85.8 85.5 85.9 78.0 82.4 76.4

Vistas 57.5 62.6 53.4 79.5 81.6 77.9 71.4 76.0 67.7

Table 4.1: Human performance for stuff vs. things. Panoptic, segmentation, and

recognition quality (PQ, SQ, RQ) averaged over classes (PQ=SQ×RQ per class) are

reported as percentages. Perhaps surprisingly, we find that human performance on each

dataset is relatively similar for both stuff and things.

We note that Table 4.1 establishes a measure of annotator agreement on each dataset,

not an upper bound on human performance. We further emphasize that numbers are not

comparable across datasets and should not be used to assess dataset quality. The number

of classes, percent of annotated pixels, and scene complexity vary across datasets, each

of which significantly impacts annotation difficulty.

Stuff vs. things. PS requires segmentation of both stuff and things. In Table 4.1 we

also show PQSt and PQTh which is the PQ averaged over stuff classes and thing classes,

respectively. For Cityscapes and ADE20k human performance for stuff and things

are close, on Vistas the gap is a bit larger. Overall, this implies stuff and things have

similar difficulty, although thing classes are somewhat harder. In Figure 4.5 we show

PQ for every class in each dataset, sorted by PQ. Observe that stuff and things classes

distribute fairly evenly. This implies that the proposed metric strikes a good balance
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PQS PQM PQL SQS SQM SQL RQS RQM RQL

Cityscapes 35.5 63.5 86.2 67.6 80.2 89.7 52.2 78.7 95.9

ADE20k 53.7 68.5 79.5 78.0 84.3 88.4 69.0 81.2 89.6

Vistas 37.1 47.9 69.9 70.2 76.6 83.0 53.7 62.7 83.4

Table 4.2: Human performance vs. scale, for small (S), medium (M) and large (L)

objects. Scale plays a large role in determining human accuracy for panoptic segmenta-

tion. On large objects both SQ and RQ are above 80 on all datasets, while for small

objects RQ drops precipitously. SQ for small objects is quite reasonable.

and, indeed, is successful at unifying the stuff and things segmentation tasks without

either dominating the error.

Small vs. large objects. To analyze how PQ varies with object size we partition the

datasets into small (S), medium (M), and large (L) objects by considering the smallest

25%, middle 50%, and largest 25% of objects in each dataset, respectively. In Table 4.2,

we see that for large objects human performance for all datasets is quite good. For

small objects, RQ drops significantly implying human annotators often have a hard time

finding small objects. However, if a small object is found, it is segmented relatively

well.

IoU threshold. By enforcing an overlap greater than 0.5 IoU, we are given a unique

matching by Theorem 5. However, is the 0.5 threshold reasonable? An alternate

strategy is to use no threshold and perform the matching by solving a maximum

weighted bipartite matching problem [Wes01]. The optimization will return a matching

that maximizes the sum of IoUs of the matched segments. We perform the matching

using this optimization and plot the cumulative density functions of the match overlaps

in Figure 4.6. Less than 16% of the matches have IoU overlap less than 0.5, indicating

that relaxing the threshold should have minor effect.

To verify this intuition, in Figure 4.7 we show PQ computed for different IoU

thresholds. Notably, the difference in PQ for IoU of 0.25 and 0.5 is relatively small,

especially compared to the gap between IoU of 0.5 and 0.75, where the change in PQ is

larger. Furthermore, many matches at lower IoU are false matches. Therefore, given

that the matching for IoU of 0.5 is not only unique, but also simple and intuitive, we

believe that the default choice of 0.5 is reasonable.

SQ vs. RQ balance. Our RQ definition is equivalent to the F1 score. However, other

choices are possible. Inspired by the generalized Fβ score [VR79], we can introduce a

parameter α that enables tuning the penalty for recognition errors:

RQα =
|TP |

|TP |+ α|FP |+ α|FN |
. (4.3)

By default α is 0.5. Lowering α reduces the penalty of unmatched segments and thus

increases RQ (SQ is not affected). Since PQ=SQ×RQ, this changes the relative effect

of PS vs. RQ on the final PQ metric. In Figure 4.8 we show SQ and RQ for various
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Figure 4.5: Per-Class Human performance, sorted by PQ. Thing classes are shown

in red, stuff classes in orange (for ADE20k every other class is shown, classes without

matches in the dual-annotated tests sets are omitted). Things and stuff are distributed

fairly evenly, implying PQ balances their performance.

α. The default α strikes a good balance between SQ and RQ. In principle, altering α
can be used to balance the influence of segmentation and recognition errors on the final

metric. In a similar spirit, one could also add a parameter β to balance influence of FPs

vs. FNs.

4.7 Machine Performance Baselines

We now present simple machine baselines for panoptic segmentation. We are interested

in three questions: (1) How do heuristic combinations of top-performing instance and

semantic segmentation systems perform on panoptic segmentation? (2) How does PQ
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Figure 4.6: Cumulative density functions of overlaps for matched segments in three

datasets when matches are computed by solving a maximum weighted bipartite matching

problem [Wes01]. After matching, less than 16% of matched objects have IoU below

0.5.
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Figure 4.7: Human performance for different IoU thresholds. The difference in PQ

using a matching threshold of 0.25 vs. 0.5 is relatively small. For IoU of 0.25 matching

is obtained by solving a maximum weighted bipartite matching problem. For a threshold

greater than 0.5 the matching is unique and much easier to obtain.
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Figure 4.8: SQ vs. RQ for different α, see (4.3). Lowering α reduces the penalty of

unmatched segments and thus increases the reported RQ (SQ is not affected). We use α
of 0.5 throughout but by tuning α one can balance the influence of SQ and RQ in the

final metric.
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Cityscapes AP APNO PQTh SQTh RQTh

Mask R-CNN+COCO [He+17] 36.4 33.1 54.1 79.4 67.9

Mask R-CNN [He+17] 31.5 28.0 49.6 78.7 63.0

ADE20k AP APNO PQTh SQTh RQTh

Megvii [Luo+17] 30.1 24.8 41.1 81.6 49.6

G-RMI [FKM17] 24.6 20.6 35.3 79.3 43.2

Table 4.3: Machine results on instance segmentation (stuff classes ignored). Non-

overlapping predictions are obtained using the proposed heuristic. APNO is AP of the

non-overlapping predictions. As expected, removing overlaps harms AP as detectors

benefit from predicting multiple overlapping hypotheses. Methods with better AP also

have better APNO and likewise improved PQ.

compare to existing metrics like AP and IoU? (3) How do the machine results compare

to the human results that we presented previously?

Algorithms and data. We want to understand panoptic segmentation in terms of

existing well-established methods. Therefore, we create a basic PS system by applying

reasonable heuristics (described shortly) to the output of existing top instance and

semantic segmentation systems.

We obtained algorithm output for three datasets. For Cityscapes, we use the val

set output generated by the current leading algorithms (PSPNet [Zha+17] and Mask

R-CNN [He+17] for semantic and instance segmentation, respectively). For ADE20k,

we received output for the winners of both the semantic [Fu+17; FYM17] and instance

[Luo+17; FKM17] segmentation tracks on a 1k subset of test images from the 2017

Places Challenge. For Vistas, which is used for the LSUN’17 Segmentation Challenge,

the organizers provide us with 1k test images and results from the winning entries for

the instance and semantic segmentation tracks [Liu+17a; ZZS17].

Using this data, we start by analyzing PQ for the instance and semantic segmentation

tasks separately, and then examine the full panoptic segmentation task. Note that our

‘baselines’ are very powerful and that simpler baselines may be more reasonable for fair

comparison in papers on PS.

Instance segmentation. Instance segmentation algorithms produce overlapping seg-

ments. To measure PQ, we must first resolve these overlaps. To do so we develop a

simple non-maximum suppression (NMS)-like procedure. We first sort the predicted

segments by their confidence scores and remove instances with low scores. Then, we

iterate over sorted instances, starting from the most confident. For each instance we

first remove pixels which have been assigned to previous segments, then, if a sufficient

fraction of the segment remains, we accept the non-overlapping portion, otherwise we

discard the entire segment. All thresholds are selected by grid search to optimize PQ.

Results on Cityscapes and ADE20k are shown in Table 4.3 (Vistas is omitted as it only

had one entry to the 2017 instance challenge). Most importantly, AP and PQ track

closely, and we expect improvements in a detector’s AP will also improve its PQ.
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Cityscapes IoU PQSt SQSt RQSt

PSPNet multi-scale [Zha+17] 80.6 66.6 82.2 79.3

PSPNet single-scale [Zha+17] 79.6 65.2 81.6 78.0

ADE20k IoU PQSt SQSt RQSt

CASIA_IVA_JD [Fu+17] 32.3 27.4 61.9 33.7

G-RMI [FYM17] 30.6 19.3 58.7 24.3

Table 4.4: Machine results on semantic segmentation (thing classes ignored). Meth-

ods with better mean IoU also show better PQ results. Note that G-RMI has quite low

PQ. We found this is because it hallucinates many small patches of classes not present

in an image. While this only slightly affects IoU which counts pixel errors it severely

degrades PQ which counts instance errors.

Semantic segmentation. Semantic segmentations have no overlapping segments by

design, and therefore we can directly compute PQ. In Table 4.4 we compare mean IoU,

a standard metric for this task, to PQ. For Cityscapes, the PQ gap between methods

corresponds to the IoU gap. For ADE20k, the gap is much larger. This is because

whereas IoU counts correctly predicted pixel, PQ operates at the level of instances. See

the Table 4.4 caption for details.
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Figure 4.9: Panoptic segmentation results on Cityscapes (left two) and ADE20k

(right three). Predictions are based on the merged outputs of state-of-the-art instance

and semantic segmentation algorithms (see Tables 4.3 and 4.4). Colors for matched

segments (IoU>0.5) match (crosshatch pattern indicates unmatched regions and black

indicates unlabeled regions). Best viewed in color and with zoom.

Panoptic segmentation. To produce algorithm outputs for PS, we start from the

non-overlapping instance segments from the NMS-like procedure described previously.

Then, we combine those segments with semantic segmentation results by resolving any

overlap between thing and stuff classes in favor of the thing class (i.e., a pixel with a

thing and stuff label is assigned the thing label and its instance id). This heuristic is

imperfect but sufficient as a baseline.

Table 4.5 compares PQSt and PQTh computed on the combined (‘panoptic’) results
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Cityscapes PQ PQSt PQTh

machine-separate n/a 66.6 54.1

machine-panoptic 61.2 66.4 54.1

ADE20k PQ PQSt PQTh

machine-separate n/a 27.4 41.1

machine-panoptic 35.6 24.5 41.1

Vistas PQ PQSt PQTh

machine-separate n/a 43.7 35.7

machine-panoptic 38.3 41.8 35.7

Table 4.5: Panoptic vs. independent predictions. The ‘machine-separate’ rows show

PQ of semantic and instance segmentation methods computed independently (see

also Tables 4.3 and 4.4). For ‘machine-panoptic’, we merge the non-overlapping

thing and stuff predictions obtained from state-of-the-art methods into a true panoptic

segmentation of the image. Due to the merging heuristic used, PQTh stays the same

while PQSt is slightly degraded.

to the performance achieved from the separate predictions discussed above. For these

results we use the winning entries from each respective competition for both the instance

and semantic tasks. Since overlaps are resolved in favor of things, PQTh is constant

while PQSt is slightly lower for the panoptic predictions. Visualizations of panoptic

outputs are shown in Figure 4.9.

Human vs. machine panoptic segmentation. To compare human vs. machine PQ,

we use the machine panoptic predictions described above. For human results, we use

the dual-annotated images described in §4.6 and use bootstrapping to obtain confidence

intervals since these image sets are small. These comparisons are imperfect as they

use different test images and are averaged over different classes (some classes without

matches in the dual-annotated tests sets are omitted), but they can still give some useful

signal.

We present the comparison in Table 4.6. For SQ, machines trail humans only slightly.

On the other hand, machine RQ is dramatically lower than human RQ, especially on

ADE20k and Vistas. This implies that recognition, i.e., classification, is the main

challenge for current methods. Overall, there is a significant gap between human

and machine performance. We hope that this gap will inspire future research for the

proposed panoptic segmentation task.

4.8 Future of Panoptic Segmentation

Our goal is to drive research in novel directions by inviting the community to explore the

new panoptic segmentation task. We believe that the proposed task can lead to expected

and unexpected innovations. We conclude by discussing some of these possibilities and

our future plans.

Motivated by simplicity, the PS ‘algorithm’ in this work is based on the heuristic
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Cityscapes PQ SQ RQ PQSt PQTh

human 69.6
+2.5
−2.7 84.1

+0.8
−0.8 82.0

+2.7
−2.9 71.2

+2.3
−2.5 67.4

+4.6
−4.9

machine 61.2 81.0 74.4 66.4 54.1

ADE20k PQ SQ RQ PQSt PQTh

human 67.6
+2.0
−2.0 85.7

+0.6
−0.6 78.6

+2.1
−2.1 71.0

+3.7
−3.2 66.4

+2.3
−2.4

machine 35.6 74.4 43.2 24.5 41.1

Vistas PQ SQ RQ PQSt PQTh

human 57.7
+1.9
−2.0 79.7

+0.8
−0.7 71.6

+2.2
−2.3 62.7

+2.8
−2.8 53.6

+2.7
−2.8

machine 38.3 73.6 47.7 41.8 35.7

Table 4.6: Human vs. machine performance. On each of the considered datasets hu-

man performance is much higher than machine performance (approximate comparison,

see text for details). This is especially true for RQ, while SQ is closer. The gap is

largest on ADE20k and smallest on Cityscapes. Note that as only a small set of human

annotations is available, we use bootstrapping and show the the 5th and 95th percentiles

error ranges for human results.

combination of outputs from top-performing instance and semantic segmentation sys-

tems. This approach is a basic first step, but we expect more interesting algorithms

to be introduced. Specifically, we hope to see PS drive innovation in at least two

areas: (1) Deeply integrated end-to-end models that simultaneously address the dual

stuff-and-thing nature of PS. A number of instance segmentation approaches including

[Liu+17b; AT17; BU17; Kir+17] are designed to produce non-overlapping instance

predictions and could serve as the foundation of such a system. (2) Since a PS cannot

have overlapping segments, some form of higher-level ‘reasoning’ may be beneficial,

for example, based on extending learnable NMS [DRF11; HBS17; Hu+18] to PS. We

hope that the panoptic segmentation task will invigorate research in these areas leading

to exciting new breakthroughs in vision.

Finally, we are working with competition organizers to extend popular segmentation

datasets to include a panoptic segmentation track. Currently the COCO [Lin+14], Vistas

[Neu+17], and ADE20k [Zho+17] challenges are considering featuring a panoptic

segmentation track in 2018. We hope this will lead to a broad adoption of the proposed

joint task.

90



Chapter 5

Discussion

In this thesis we explored three different aspects of image segmentation:

• We proposed a novel formulation for the problem of producing multiple diverse

solutions for a single input image;

• We presented a new bottom-up approach that infers instance segmentation using

global reasoning;

• We introduced the panoptic segmentation task accompanied by a panoptic quality

metric as new, rich, and coherent segmentation task.

We hope that these contributions will facilitate future research of robust and effective

scene understanding systems.

Scene understanding perspective. In our work we address three crucial aspects of

image segmentation: diversity, global reasoning and general segmentation formulation.

These are essential ingredients for future segmentation systems that can be used in

real-world scene understanding applications. The explicit incorporation of the notion

of diversity makes it tolerant to the ambiguity of natural tasks. Moreover, it helps to

overcome possible shortage of training data. Global reasoning is another aspect that

makes the final system more robust. Joint inference of all segments provides the ability

to use high-level knowledge. Even with the lack of direct clues, a correct local decision

can be made based on the scene structure.

The panoptic formulation combines previously distinct semantic and instance seg-

mentation tasks. Both are essential for various real-world vision applications. The

method that brings them together produces coherent output and resolves possible incon-

sistencies. Future processing, therefore, can rely on consistent information as opposed to

two potentially conflicting input sources. This makes the use of segmentation techniques

easier for high-level applications.

5.1 Limitations and Future Work

While we made some progress in several aspects of image segmentation, there are still

some limitations and open research questions left to be addressed. In this section we

discuss these limitations in detail.
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5.1.1 Multiple Diverse Solutions

In this work we presented a novel problem formulation that is capable of producing

multiple diverse solutions using a single trained model that originally outputs only

a single solution. This formulation generalizes previous methods. We proposed sev-

eral approximate and exact inference techniques that are efficient for certain models

(pair-wise or submodular) and diversity measures (node-wise measures). Together

with previously known techniques they form a set of tools that can satisfy different

quality/efficiency trade-offs. In this section we discuss some limitations of our approach

and outline future research directions for diversity methods.

Learning the diversity measure. In our work we assume diversity measures ∆ to be

pre-defined. Single parameter λ that sets the trade-off between quality of each solution

and their diversity was tuned via grid search. While our framework with standard

Hamming distance diversity measure demonstrates strong performance, tuning the

diversity measure together with the original model for an application at hand is a very

promising direction for future research. The main obstacles for a breakthrough in this

area are symmetry of the problem (any permutation of diverse solutions is valid) and

high probability of collapsing to just one solution. Despite these difficulties, some work

has already been done in this direction [LCK18; Lee+16]. The introduction of new

datasets that have multiple ground truth annotations for each image will most likely

ease these issues and facilitate this research area.

High order diversity measures. In Chapter 2 we consider only node-wise diversity

measures. Node-wise diversity measures may be sufficient if the original model is a

CRF with pair-wise or high-order potentials. These potentials ensure that while being

diverse different solutions are consistent. However, if the original model is a simple

CNN that produces independent predictions for each pixel, node-wise diversity is not

helpful. For this case, our formulation splits into small per-pixel problems that may

produce inconsistent results. In [PJB14] approximate inference techniques for several

high-order diversity measures were proposed. The development of efficient methods

for a broad range of high-order diversity measures like the difference in the number of

connected components in segmentation or the difference of shapes is a very promising

future research direction. The ability to produce sensible diverse solutions from a single

CNN will make segmentation systems more robust and potentially will help to interpret

the behavior of trained CNNs.

Efficient general solver. In our work we develop the K-Clique Encoding optimization

technique. With a Quadratic Pseudo-Bolean Optimization (QPBO) solver [Rot+07]

on each step, the technique is applicable to arbitrary pair-wise original CRFs with a

node-wise diversity measure. The LP-based approach for diversity inference is likely

to be more efficient and applicable to a broader range of models including high-order

CRFs. The development of such solver will facilitate the adoption of methods that

produce multiple diverse solutions in adjacent science fields like bio-imaging where

high-order CRFs are very common.
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5.1.2 Bottom-Up Instance Segmentation Framework

In Chapter 3 we presented a novel bottom-up approach for instance segmentation –

InstanceCut. This method is a very straightforward implementation of the bottom-up

paradigm. It infers segmentation for all instances globally based on local clues from two

Fully Convolutional Networks. While promising results were shown on a challenging

dataset, InstanceCut has some downsides that could be addressed in the future. In fact,

since the method was published, novel bottom-up approaches partially addressing these

issues have already appeared. In what follows we discuss these issues in detail.

(a) InstanceCut Prediction (b) Ground Truth

Figure 5.1: Left car is occluded by the person in front. InstanceCut identifies two split

parts of the car as independent car instances.

Grouping of connected components. By design InstanceCut inference is not able

to recognize instances split by occlusion for several connected components. Instead

it recognizes each instance as a separate instance, see Fig. 5.1 for illustration. Note,

however, that each connected component segmentation is fine-grained. Hence, instances

that split into several connected components can be recovered via some post-processing

scheme. In fact, recent instance segmentation work [Liu+17b] that follows the bottom-

up paradigm has shown that such grouping is quite effective. Making the grouping step

a part of the whole training procedure is an interesting direction for future work.

End-to-end training. In InstanceCut two FCNs were trained independently to pro-

duce per-pixel scores of semantic labels and per-pixel probabilities of instance edges

respectively. A unified end-to-end training technique that trains both FCNs together to-

wards the final goal of great instance segmentation performance is a promising direction

for future research. In fact, currently neither top-down based methods nor bottom-up

methods are fully end-to-end trainable. State-of-the-art top-down approaches like Mask

R-CNN [He+17] and the Path Aggregation Network [Liu+18] use Non-Maximal Sup-

pression (NMS) to filter out duplicates. Recent bottom-up approaches for instance

segmentation [Liu+17b; BU17; DBNVG17] use a pipeline of neural networks with

heuristics on top to produce the final output. As a first step, recent work proposes a fully

end-to-end trainable system [Sal+17] based on recurrent neural networks. Some work

has been done to make NMS trainable [Hu+18] and to train it together with the whole

system. We expect more progress in this direction by the computer vision community

in the next few years.

Hybrid approach. InstanceCut and more recent bottom-up instance segmentation

frameworks have shown great performance being able to segment out heavily occluded
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objects based on local information like object boundaries. These methods are able to

segment such objects even when state-of-the-art recognition approaches (the backbone

of top-down approaches) fail to recognize them. At the same time, due to the usage of

strong recognition sub-networks, top-down based methods are able to segment out very

small and distant objects with very little visual information. These advantages of the

two paradigms are, in fact, complementary. This observation is backed by evaluation

metrics. Mask R-CNN [He+17] (strong top-down approach) shows 26.2 overall average

precision (AP) and 40.1 AP-50m (AP for objects that are not further than 50 meters

from the camera). At the same time the state-of-the-art bottom-up approach Sequential

Grouping Network [Liu+17b] demonstrates lower overall AP 25.0, showing significantly

better performance for close objects – 44.5 AP-50m. These numbers imply that the

bottom-up approach works better in cases of rich visual information and the recognition

system in top-down approaches helps them to work better for other objects. Given

this observation, development of a hybrid method that combines both bottom-up and

top-down paradigms is a very promising direction for future work. Recently, [Che+17b]

proposed a hybrid system for fine-grained instance segmentation.

5.1.3 Segmentation for Scene Understanding Applications

In this thesis we introduced Panoptic Segmentation task. This task combines semantic

and instance segmentation together into a single consistent segmentation task. The

proposed Panoptic Quality metric measures performance for all categories (both things

and stuff) in a unified manner. Panoptic Segmentation provides rich and coherent scene

information. Taking into account its practical importance, we aim to revive the interest

of our community in a more unified view of image segmentation. In this section we

discuss some potential ways to further improve and generalize the task.

Ambiguity. The panoptic segmentation format assumes a single prediction for each

pixel of an image. While the simplicity of this approach is appealing, it does not take

into account all properties of real-world scenes. One of these properties is natural scene

ambiguity. Our study of human annotations has shown that expert annotators segment

out object masks fairly consistently. At the same time, the exact semantic class of the

object is often not clear without any additional context (previous frames or some meta

data); different annotators assign different labels for the same object. The panoptic

segmentation format can be extended to deal with this natural property of segmentation.

Instead of having a single semantic label for each segment, the distribution over possible

labels can be predicted. This distribution gives more information to downstream systems

where exact labels are determined using additional context, specific constraints, and

properties of the task at hand. This behavior is similar to modern instance segmentation

methods that provide confidence scores for each mask [He+17; Liu+18].

Amodal panoptic segmentation. In our work on panoptic segmentation we use

datasets that mark only visible parts of objects, i.e. there are no occlusions in the

annotations. We enforce no occlusions in the output format respectively. Promising

future research is to extend the panoptic task to amodal segmentation setups. Amodal

datasets like [Zhu+17] annotate objects to their full extent, not only visible parts.
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Holistic Scene Understanding. In this thesis we focus on the segmentation part

of the scene understanding problem. While the panoptic segmentation task already

provides richer information about the scene than any one of the tasks it unifies, we

hope that the panoptic task will evolve further by incorporating modalities beyond

segmentation annotations, e.g. adding depth information, key-point, optical flow, etc.

The resulting general scene understanding task with a new unified quality metric will

help to combine stand-alone tasks in a more conscious way than multi-task approach.

We hope that this evolution will lead to synergy effects between different modalities

and will make holistic scene understanding possible.
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