
DISSERTATION

submitted to the

Combined Faculty of the Natural Sciences and Mathematics

of the

Ruprecht-Karls University
Heidelberg

for the degree of

Doctor of Natural Sciences

put forward by

Diplom-Informatikerin Sarah Marie Neuwirth

Born in
Mannheim, Germany

Heidelberg, 2018

Accelerating Network
Communication and I/O in
Scientific High Performance
Computing Environments

Advisor: Prof. Dr.-Ing. Ulrich Brüning

Date of oral examination:

Abstract

High performance computing has become one of the major drivers behind technology
inventions and science discoveries. Originally driven through the increase of operating
frequencies and technology scaling, a recent slowdown in this evolution has led to
the development of multi-core architectures, which are supported by accelerator
devices such as graphics processing units (GPUs). With the upcoming exascale era,
the overall power consumption and the gap between compute capabilities and I/O
bandwidth have become major challenges. Nowadays, the system performance is
dominated by the time spent in communication and I/O, which highly depends on the
capabilities of the network interface. In order to cope with the extreme concurrency
and heterogeneity of future systems, the software ecosystem of the interconnect needs
to be carefully tuned to excel in reliability, programmability, and usability.

This work identifies and addresses three major gaps in today’s interconnect software
systems. The I/O gap describes the disparity in operating speeds between the
computing capabilities and second storage tiers. The communication gap is introduced
through the communication overhead needed to synchronize distributed large-scale
applications and the mixed workload. The last gap is the so called concurrency gap,
which is introduced through the extreme concurrency and the inflicted learning curve
posed to scientific application developers to exploit the hardware capabilities.
The first contribution is the introduction of the network-attached accelerator

approach, which moves accelerators into a “stand-alone” cluster connected through
the Extoll interconnect. The novel communication architecture enables the direct
accelerators communication without any host interactions and an optimal application-
to-compute-resources mapping. The effectiveness of this approach is evaluated for
two classes of accelerators: Intel Xeon Phi coprocessors and NVIDIA GPUs.
The next contribution comprises the design, implementation, and evaluation of

the support of legacy codes and protocols over the Extoll interconnect technology.
By providing TCP/IP protocol support over Extoll, it is shown that the performance
benefits of the interconnect can be fully leveraged by a broader range of applications,
including the seamless support of legacy codes.

The third contribution is twofold. First, a comprehensive analysis of the Lustre
networking protocol semantics and interfaces is presented. Afterwards, these insights
are utilized to map the LNET protocol semantics onto the Extoll networking tech-
nology. The result is a fully functional Lustre network driver for Extoll. An initial
performance evaluation demonstrates promising bandwidth and message rate results.
The last contribution comprises the design, implementation, and evaluation of

two easy-to-use load balancing frameworks, which transparently distribute the I/O
workload across all available storage system components. The solutions maximize
the parallelization and throughput of file I/O. The frameworks are evaluated on the
Titan supercomputing systems for three I/O interfaces. For example for large-scale
application runs, POSIX I/O and MPI-IO can be improved by up to 50% on a per
job basis, while HDF5 shows performance improvements of up to 32%.

Zusammenfassung

Hochleistungsrechnen hat sich zu einem der bedeutendsten Standbeine im Bereich der
technischen und wissenschaftlichen Errungenschaften entwickelt. Ursprünglich wurde
die Leistungssteigerung solcher Systeme durch die kontinuierliche Steigerung der Takt-
frequenz gewährleistet. Die Verlangsamung dieses Trends hat zu der Entwicklung von
Mehrkernarchitekturen geführt, welche zusätzlich durch sogenannte Beschleuniger wie
etwa Graphikprozessoren unterstützt werden. In Verbindung mit der bevorstehenden
Exascale Ära haben sich vor allem der Gesamtstromverbrauch und die Kluft zwischen
Rechenkapazität und I/O Bandbreite als limitierende Faktoren herauskristallisiert.
Die gegenwärtige Systemleistung wird vor allem durch die Kommunikations- und
I/O-Zeit beschränkt. Dieses Phänomen hängt insbesondere mit den Eigenschaften
der Netzwerkschnittstelle zusammen. Um den extremen Anforderungen in Hinblick
auf Parallelität und Heterogenität zukünftiger Systeme gerecht zu werden, bedarf es
einer sorgfältigen Abstimmung der Software-Komponenten, insbesondere im Hinblick
auf Zuverlässigkeit, Programmierbarkeit und Benutzerfreundlichkeit.

Diese Arbeit identifiziert und widmet sich insbesondere drei Leistungslücken (engl.
gaps), die in den heutigen Softwareumgebungen im Bereich der Verbindungsnetzwerke
beobachtet werden können. Die sogenannte I/O Gap beschreibt die Leistungslücke,
die entsteht durch die unterschiedlichen Taktfrequenzen von Rechenkapazitäten und
der Speicherhierarchie. Die sogenannte Communication Gap beschreibt den Kom-
munikationsoverhead, der bei der Synchronisierung von Großanwendungen entsteht,
aber auch die gemischte Kommunikationslast, die auf das Netzwerk ausgeübt wird.
Die letzte Leistungslücke wird durch die sogenannte Concurrency Gap beschrieben.
Diese Leistungslücke entsteht durch die extreme Parallelität von modernen Hochleis-
tungsrechnern und dem für Programmierer dadurch verbundenen Mehraufwand, die
Hardware-Eigenschaften dieser Systeme auszunutzen.

Im ersten Beitrag wird der Ansatz der Network-Attached Accelerators („Netzwerk-
Beschleuniger“) als neue Kommunikationsarchitektur vorgestellt. Dieses neuartige
Konzept ermöglicht es, Beschleuniger aus der bislang statischen Hardware-Anordnung
zu entkoppeln und diese über das Netzwerk allen Rechenknoten gleichförmig zur

Verfügung zu stellen. Vorteile dieser Architekturform sind unter anderem, dass
Grafikprozessoren direkt über das Netzwerk miteinander kommunizieren können,
aber auch das dynamische Abbilden von Anwendungen auf Rechenressourcen zur
Laufzeit. Die Leistungsfähigkeit dieses Ansatzes wird anhand der Intel Xeon Phi
Co-Prozessoren und NVIDIA Grafikprozessoren analysiert.

Im nächsten Beitrag wird der Fokus auf die Unterstützung von sogenannten Legacy
Anwendungen und Protokollen über Hochgeschwindigkeitsnetzwerke wie Extoll gelegt.
Durch die Erweiterung der Extoll Softwareumgebung zur Unterstützung der TCP/IP
Protokollfamilie können Legacy Anwendungen das Leistungsspektrum der Extoll
Technologie voll ausschöpfen, ohne dafür modifiziert werden zu müssen. Dies öffnet
die Tür für ein breiteres Spektrum an Anwedungen.
Der dritte Beitrag liefert zunächst eine ausführliche Analyse des Lustre Netz-

werkprotokolls, welches LNET genannt wird. Im Anschluss werden diese Erkenntnisse
genutzt, um die Protokoll-Semantik von LNET effizient auf die Extoll Netzwerk-
technologie abzubilden. Es wird ein voll funktionsfähiger Lustre Netzwerktreiber
(Lustre Network Driver) für Extoll implementiert. Eine initiale Leistungsanalyse
zeigt vielsprechende Ergebnisse, gerade im Hinblick auf die erzielte Bandbreite und
Nachrichtenrate.
Der letzte Beitrag besteht in der Konzeption, Implementierung und Evalua-

tion zweier benutzerfreundlicher Anwender-Frameworks, welche die Datenlast einer
Großanwendung transparent über alle verfügbaren Komponenten des Speichersys-
tems verteilen. Diese beiden Lösungen dienen der optimalen Parallelisierung und
Maximierung der Bandbreite in Bezug auf das Lesen und Schreiben von Dateien. Die
beiden Frameworks werden auf dem Hochleistungsrechner Titan mit drei verschiede-
nen I/O Schnittstellen (I/O interfaces) evaluiert. Für Großanwendungen kann die
Leistung von POSIX und MPI-IO beispielsweise um bis zu 50% gesteigert werden,
für HDF5 kann eine Leistungssteigerung von bis zu 32% erzielt werden.

Acknowledgements

First and foremost, I would like to thank my parents, Manfred (†14.01.2011) and
Michaela Neuwirth, for their unconditional love and endless support. They have
always encouraged me, and are still encouraging me, to pursue my dreams and have
lit the fire for my passion in sciences at a very young age. A special thank you goes
to my mother for always motivating me. Without her support, I would not have
been able to accomplish this work. I will always be grateful for being blessed with
such wonderful parents and dedicate this work to them.
I would like to express my sincere gratitude to Prof. Dr. Ulrich Brüning for his

invaluable advice and support during the course of this work. With his knowledge
and experience, he has been a fantastic counterpart in countless discussions and
has provided valuable input to my research. I am also grateful to all the members,
staff and students, of the Computer Architecture Group and the employees of the
EXTOLL GmbH for all the valuable discussions and advice throughout this work.
In addition, I would like to express my gratitude to the Ruprecht-Karls University
and the Faculty for Mathematics and Computer Science for providing me with the
opportunity to pursue a doctoral degree.
Special thanks go to James H. Rogers, Dr. Sarp Oral, Dr. Feiyi Wang, and the

Technology Integration Group of the Oak Ridge National Laboratory for providing
me with the opportunity to spend two summers as a visiting research scholar in their
team. The insights in the operation and evaluation of large-scale systems such as the
Titan supercomputer have provided me with a unique chance to expand my horizon
in the area of scientific high performance computing systems.

Given that it is impossible to thank every single person who has accompanied me
during the journey of my PhD, I would like to express my sincere gratitude to all the
inspiring people I have met throughout the years. Thank you for all the cheering,
support, discussions, and friendships. I am grateful to each one of you.

Contents

1 Introduction 1
1.1 Motivation and Challenges . 4
1.2 Contributions . 5
1.3 Outline . 7

2 Communication and I/O in HPC Systems 9
2.1 Generic Communication Architecture Overview 10
2.2 Network Communication Hardware 12

2.2.1 Interconnection Networks . 12
2.2.2 Network Interface Controllers 14

2.3 Communication in Distributed Memory Systems 15
2.3.1 Communication Schemes . 15
2.3.2 Synchronization . 18
2.3.3 Performance Metrics . 18
2.3.4 Interprocess Communication Interfaces 19

2.4 Introduction to Parallel I/O . 25
2.4.1 Scientific I/O . 26
2.4.2 Parallel File Systems . 27
2.4.3 High-level I/O Libraries and Middleware 28
2.4.4 Access Patterns . 31

3 Extoll System Environment 35
3.1 Technology Overview . 35
3.2 Functional Units . 36

3.2.1 Remote Memory Access Unit 37
3.2.2 Virtualized Engine for Low Overhead Unit 39
3.2.3 Virtual Process ID . 40
3.2.4 Shared Memory Functional Unit 41
3.2.5 Address Translation Unit . 43

Contents

3.2.6 Register File . 45
3.2.7 PCIe Bridge . 45

3.3 Software Environment . 47
3.3.1 Kernel Space . 47
3.3.2 User Space . 48
3.3.3 EMP: Network Discovery and Setup 48

3.4 Related Interconnection Standards 49
3.4.1 Infiniband . 49
3.4.2 PCI Express . 50

3.5 Performance Overview . 52
3.5.1 Test Setup . 52
3.5.2 Performance Results . 53

4 Network-Attached Accelerators 55
4.1 Motivation . 56
4.2 DEEP Project Series . 57
4.3 Introduction to the PCI Express Subsystem 58

4.3.1 PCI Express Address Spaces 59
4.3.2 Linux PCI Express Enumeration 62
4.3.3 PCI Express Expansion Cards 64

4.4 Related Work . 66
4.4.1 Intel Xeon Phi Coprocessor-based Communication Models . . 66
4.4.2 GPU Virtualization and Communication Techniques 67
4.4.3 Hardware-related Research . 69

4.5 NAA Software Design . 69
4.5.1 System Architecture and Problem Statement 70
4.5.2 Objectives and Strategy . 72
4.5.3 Design Space Analysis . 77

4.6 DEEP Booster Architecture . 79
4.6.1 Hardware Components . 79
4.6.2 Prototype Implementation . 80
4.6.3 Prototype Performance Evaluation 84
4.6.4 GreenICE – An Immersive Cooled DEEP Booster 90
4.6.5 Lessons Learned . 90

4.7 Virtualization of Remote PCI Express Devices 91
4.7.1 Concept Overview of VPCI 91
4.7.2 PCI Express Device Emulation 92

Contents

4.7.3 Forwarding PCI Configuration Space Requests 93
4.7.4 Device Enumeration . 94
4.7.5 Forwarding Memory-Mapped I/O Requests 94
4.7.6 Interrupt Delivery . 95
4.7.7 Overall Picture . 96
4.7.8 Experimental Evaluation . 97

4.8 NAA Summary . 99

5 RDMA-Accelerated TCP/IP Communication 101
5.1 Introduction to the Internet Protocol Suite 102

5.1.1 The Network Layer: IP . 103
5.1.2 The Transport Layer . 104
5.1.3 Data Transmission and Reception in Linux 106
5.1.4 Interrupt Coalescing and NIC Polling with NAPI 107
5.1.5 TCP/IP Protocol Overhead and Bottlenecks 109

5.2 Related Work . 111
5.2.1 OpenFabrics Enterprise Distribution 111
5.2.2 Sockets-like Interfaces . 114

5.3 Objectives and Strategy . 115
5.4 Transmission of Ethernet Frames over Extoll 117

5.4.1 Link Frame Transmission and Reception 117
5.4.2 Message Matching and Resource Management 120
5.4.3 Maximum Transmission Unit 122
5.4.4 Address Mapping – Unicast 123
5.4.5 Multicast Routing . 125
5.4.6 EXN: Extoll Network Interface 128

5.5 Direct Sockets over Extoll . 131
5.5.1 Protocol Overview . 131
5.5.2 Setup and Connection Management 132
5.5.3 Data Transfer Mechanisms . 135
5.5.4 AF_EXTL: A Prototype Implementation of EXT-DS 139

5.6 Performance Analysis . 145
5.6.1 TCP/IP Configuration Tuning in Linux Systems 145
5.6.2 Test System . 147
5.6.3 Microbenchmark Evaluation 147
5.6.4 MPI Performance . 151

5.7 TCP/IP Summary . 153

Contents

6 Efficient Lustre Networking Protocol Support 155
6.1 Introduction to the Lustre File System 156

6.1.1 File System Components . 156
6.1.2 Network Communication Protocol 158
6.1.3 Client Services and File I/O 161

6.2 Lustre Networking Semantics and Interfaces 164
6.2.1 Naming Conventions and API Summary 165
6.2.2 Memory-Oriented Communication Semantics 166
6.2.3 Credit System . 170
6.2.4 Available Lustre Network Drivers 171

6.3 Design Challenges and Strategy . 172
6.4 Efficient RDMA with Vectored I/O Operations 173

6.4.1 Memory Management . 173
6.4.2 Infiniband Verbs and Scatter/Gather Elements 174
6.4.3 Scatter/Gather DMA Operation Support for Extoll 176

6.5 Support for LNET Protocol Semantics 177
6.5.1 Data Transmission Protocols 177
6.5.2 Message Matching and Descriptor Queues 180

6.6 EXLND: Extoll Lustre Network Driver 182
6.7 Preliminary Performance Results . 183

6.7.1 System Setup and Methodology 183
6.7.2 LNET Self-Test Results . 184

6.8 EXLND Summary . 186

7 Resource Contention Mitigation at Scale 189
7.1 Spider II – A Leadership-Class File System 190
7.2 The Need for Balanced Resource Usage 191
7.3 Related Work . 193
7.4 Observations and Best Practices for File I/O 195
7.5 End-to-End Performance Tuning . 196

7.5.1 Fine-Grained Routing Methodology 196
7.5.2 Balanced Placement I/O Strategy 199

7.6 Design Objectives and Strategy . 201
7.7 Aequilibro – An I/O Middleware Integration 202

7.7.1 Transport Methods . 203
7.7.2 Software Design and Implementation 204

Contents

7.8 TAPP-IO Framework . 206
7.8.1 Parallel I/O Support . 207
7.8.2 Runtime Environment . 210

7.9 Data Collection and Analysis . 212
7.9.1 Benchmarking Methodology 212
7.9.2 Experimental Setup . 215
7.9.3 Synthetic Benchmark Evaluation 216
7.9.4 HPC Workload Evaluation . 222

7.10 Summary . 223

8 Conclusion 225
8.1 Outlook . 227

List of Abbreviations 229

List of Figures 235

List of Tables 239

Listings 241

References 243

C
h

a
p

t
e

r

1
Introduction

In recent years, the major driver behind technology inventions and science discoveries
has been the computational science domain. Nowadays, High Performance Computing
(HPC), in particular large-scale simulation codes [1], complements the two traditional
pillars of science, theory and experiment, and enables researchers to build and test
models of complex phenomena, including molecular dynamics, quantum mechanics,
weather forecasting, climate research, and astrophysics.

For years, the performance of supercomputing systems has been scaled through
increased clock frequencies, larger, faster memories, and high-bandwidth, low-latency
interconnects. With the end of frequency and Dennard [2, 3] scaling in the early 2000’s,
parallel computing has become the new paradigm to increase the computational
power of HPC deployments. In order to maintain the traditional growth rates,
multi-core architectures have been developed and the overall system performance is
scaled by constantly increasing components and node counts.

The success of this strategy until now is outlined in Figure 1.1 for the number one
systems of the TOP500 [4] over the past two decades. A superficial reading of this
graph provides no conclusive indication that future HPC systems might encounter
any difficulties in increasing their performance at the same pace. This impression is
mainly inflicted by the nature of the High-Performance Linpack (HPL) benchmark
[5], which is utilized for the ranking. To obtain the HPL benchmarking results,
HPC systems are typically operated in the capability mode, which aims at solving a
single huge problem as quickly as possible by applying the system’s entire compute
power to that particular problem. The HPL solves a large dense system of linear
equations and heavily relies on re-using cached data from local registers and caches.

1

1 Introduction

Figure 1.1: TOP1 system performance and power consumption development.

This means that the HPL is embarrassingly parallel and puts very little load on the
network. In reality, however, large-scale simulations are increasingly data-intensive
and put excessive pressure on the interconnection network to perform communication
and I/O. Most HPC environments in the open science domain are operated in the
capacity mode. Such systems aim to solve a plurality of problems simultaneously by
partitioning their compute powers and applying one partition to each job exclusively.

Today’s supercomputing facilities comprise two major building blocks: the compute
cluster and the storage system. A cluster typically consists of up to thousands of
compute nodes, with each node being equipped with four main components. The
central processing unit (CPU) implements the aforementioned multi-core architecture,
and runs the operating system and applications. The most predominant CPUs in
the current TOP500 (June 2018) are Intel’s Xeon processors with a share of 94%.
The second system component is the memory. For example, the current number one
system Summit provides 512 GB of DDR4 per node, which is complemented by 96 GB
of high bandwidth memory (HBM2). Another major component is the interconnect,
which provides the connectivity to the compute cluster and the storage system.
Currently, the predominant interconnect technologies are 10 Gigabit Ethernet (34%)
and Infiniband (34%). However, half of the TOP500’s system performance is delivered
through proprietary and custom interconnects such as Cray’s Aries and Fujitsu’s
Tofu, which makes this work particularly relevant. The last component is represented
by accelerators, whose number has been constantly increasing over the past years.
Here, NVIDIA’s graphics processing units (GPUs) dominate the system share. In
recent years, the increase in CPU cores has led to a deterioration of power dissipation.
This has enforced the popularity of accelerators, which comprise massively parallel
architectures. Accelerators deliver remarkably high performance while providing

2

an unprecedented energy efficiency. However, with their introduction, the extreme
concurrency and heterogeneity in HPC systems has been further intensified. This
poses major challenges to application developers as the code needs to be carefully
parallelized to exploit the benefits of such heterogeneous systems.

The second major building block of supercomputing facilities are storage and I/O
systems, which typically consist of hundreds of storage servers and up to thousands of
disks. Designed for capacity and capability, storage systems are inherently complex
and shared among concurrently running jobs. With the emergence of data-intensive
applications, storage systems are further contended for performance and scalability.
Given that storage capabilities are typically much lower than those of a processor, the
processing of large amounts of data has introduced a phenomenon referred to as the
I/O gap, which is inflicted by the latency gap between processors and storage tiers.
A central component for providing good storage connectivity is the interconnection
network, which requires careful optimization through intermediate software layers to
provide optimal bandwidth performance and mitigate network contention.

In traditional HPC systems, interprocess communication mostly relies on message
passing in order to synchronize and move data, and involves the interconnection net-
work for internode communication. As pointed out by a recent study [6], large-scale
applications spend an average of about 34% of their runtime with point-to-point
or collective operations, which indicates that communication severely impacts the
performance of an application run. While computation is relatively fast, communica-
tion has been proven to be one of the major bottlenecks [7] for parallel computing
systems, especially with regard to power consumption.

The next major challenge will be to provide exascale performance [8], i.e., to perform
a quintillion (1018) floating point operations per second, which will be impacted by
the power consumption, resiliency, memory hierarchies and I/O, and concurrency.
Modern HPC facilities comprise heterogeneous system architectures, which heavily
rely on the interconnection network. With the paradigm shift to parallel computing
and the upcoming exascale challenge, the system performance is dominated by the
time spent in communication and I/O. In order to cope with the extreme concurrency
and heterogeneity of future systems, the software ecosystem needs to be carefully
tuned to excel in reliability, programmability, power consumption, and usability.
With the interconnection network being the backbone for both message exchange
and I/O, this work focuses on the gaps in today’s intermediate software environments
with regard to direct accelerator and internode communication, storage connectivity,
and optimal resource utilization for both compute and storage components.

3

1 Introduction

Application Execution Time

Computation Time Communication Time I/O Time+ +

Figure 1.2: Key factors influencing the total application execution time.

1.1 Motivation and Challenges
The motivation for this work is based on the observation that the total application
execution time is affected by the computation, communication, and I/O time, as
displayed in Figure 1.2. In order to maximize the overall system performance, all
components of the equation need to be carefully addressed. As previously described,
a major contributing factor is the efficient network communication and I/O, which is
heavily impacted by the following three observations:

I/O Gap Large-scale applications often do I/O for reading initial datasets or writing
numerical data from simulations out to the distributed disk arrays, but also
periodically store application-level checkpoints. Compared to other components
of an HPC platform, I/O subsystems are typically slow. Different hardware
components operate at different speeds, thus, resulting in the so called I/O gap.
The anatomy of a disk access comprises of the latency and bandwidth inflicted
by the CPU, the memory, the interconnect, and the actual hard drive access.
For example, the memory access latency is 100 times slower than the CPU.
Since a pioneering technological breakthrough is not expected any time soon,
optimizing the I/O time is just as important as optimizing the computation and
communication time. Thus, it is necessary to carefully optimize and implement
a number of intermediate layers for the coordination of the data accesses. This
includes the efficient mapping of a parallel file system’s network protocol to
the chosen interconnect technology, but also the allocation of storage resources
in a balanced manner to maximize the aggregate file access bandwidth.

Communication Gap In the past, the conventional wisdom has been that compu-
tation is rather expensive while communication is cheap. With the paradigm
shift to parallel computing, the system size is scaled by adding more and more
compute nodes, which results in the problem that large-scale applications need
to be distributed among these resources. This reduces the amount of time
spent in computation in relation to the time spent in communication, and thus,

4

1.2 Contributions

produces the communication gap. The workload of bulk data transfers mixed
with the vast amount of small messages for communication and synchroniza-
tion purposes requires the utilization of highly efficient network technologies.
It is desirable to increase the performance of point-to-point and collective
communication through extensive tuning of the intermediate software layers,
particularly, the software environment of the chosen interconnect by leveraging
its hardware capabilities efficiently.

Concurrency Gap Another gap is introduced through the extreme concurrency of
today’s heterogeneous system architectures. In order to increase the overall
system performance while providing a reasonable energy efficiency, more and
more accelerator devices are added to modern HPC systems. They offer an
unprecedented computational power per watt, while being optimized for mas-
sively parallel computation. However, the efficient utilization of such devices
is significantly limited by the static application-to-compute-resources map-
ping, but also through the steep learning curve posed to scientific application
developers to exploit the hardware capabilities. Another challenge is intro-
duced through the overhead associated with direct communication between
distributed accelerators. Especially with the upcoming exascale era in mind,
new communication architectures need to be explored to serve the needs of
extreme-scale applications. By leveraging the innovative hardware features
of modern interconnects such as Extoll, intermediate software layers can be
designed that enable the dynamic workload distribution at run time in an
N-to-M ratio, e.g., by providing device virtualization over the network while
bypassing the host CPU. Such virtualization techniques also introduce novel
concepts for direct accelerator communication.

1.2 Contributions
This work aims to resolve the described observations by closing the gaps through
the design, implementation, and evaluation of intermediate software layers. The
contributions can be divided in two parts.
The first part evolves around the Extoll interconnect technology, which has been

designed to fit the needs of future large-scale simulation codes. The technology
has mainly been chosen for two reasons. First, as previously presented, customized
interconnects deliver 50% of the performance share in the TOP500, which makes them
an important component for the design and delivery of exascale systems. Second,

5

1 Introduction

Extoll has emerged from a research project conducted at the Heidelberg University.
The second part of the contributions evolves around the Titan supercomputing
system. The research complements this work by providing insights on the effects of
the I/O gap at larger scales. This research has been enabled through two research
stays at the Oak Ridge National Laboratory and a subsequent research collaboration.
The presented work makes the following contributions:

(1) Introduction of the Network-Attached Accelerator approach as a new concept
for direct accelerator communication and efficient resource utilization – The
network-attached accelerator approach introduces a novel communication ar-
chitecture, which allows the disaggregation of PCI Express hosts from the
end-points that they control. The key idea is to combine a cluster of multi-core
processors with a tightly coupled cluster of many-core processors (e.g., GPUs
or coprocessors) employing a highly scalable network. This unique architecture
aims at the optimal application-to-compute-resource mapping, energy efficiency
and extreme scalability, and therefore, targets the concurrency and commu-
nication gaps. This contribution comprises conference publications [9, 10], a
poster paper [11], and a news article [12].

(2) RDMA-Accelerated TCP/IP communication – Modern high performance net-
work technologies provide the hardware support for efficient communication
models such as remote direct memory access (RDMA) and partitioned global
address space (PGAS). However, they also need to support traditional com-
munication semantics, e.g., the Sockets interface, to seamlessly support legacy
applications. The challenge is to design a software layer that is capable of
exploiting the innovative hardware features to a legacy code without the need
for any source code modifications or recompilation. This work introduces two
different communication protocols targeting the acceleration of traditional
TCP/IP communication. They are implemented as transparent, intermediate
software layers, and provide IP addressing and address resolution support while
leveraging the RDMA capabilities of Extoll. This contribution has led to two
workshop presentations [13, 14].

(3) Efficient storage connectivity and I/O – File I/O is an important part of large-
scale applications. In order to maximize the performance, HPC systems are
typically backed by a parallel file and storage system. One popular choice is the
Lustre file system due to its support for data-intensive applications and POSIX-
complaint namespace for large-scale deployments. Using a high-performance
interconnect such as Extoll to speed up to I/O-bound part of simulation codes

6

1.3 Outline

can improve the overall application execution time, but requires an efficient
software layer between Lustre and the network interface. In case of Lustre, these
software layers comprise of the Lustre Networking Protocol (LNET) and Lustre
Network Drivers (LNDs). This work presents the design, implementation,
and evaluation of the Extoll LND, which efficiently maps the LNET protocol
semantics onto the Extoll technology. The contribution has been presented in
a scientific talk [15] and published at a workshop [16].

(4) Transparent resource contention mitigation in large-scale HPC systems – Besides
the need to accelerate and optimize the network communication of a parallel
file system through efficient protocol support, the careful management of data
accesses is another major pillar of improving file I/O. In this work, two easy-to-
use load balancing frameworks are designed, implemented, and evaluated, which
transparently distributes data across all available storage system components.
The solutions balance the I/O workload on an end-to-end and per job basis,
and maximize the parallelization and throughput of file I/O. The frameworks
are evaluated on the Titan supercomputing systems. This contribution has
been published in two conference papers [17, 18] and one poster paper [19].

1.3 Outline
Chapter 2 provides the basic knowledge about communication and I/O in HPC
systems, which is needed for the entire remainder of this work. In Chapter 3, an
overview of the Extoll system environment is presented. Together with chapter 2,
this Chapter provides the foundation for the presented work.

Chapter 4 presents the design and implementation of the network-attached accel-
erator (NAA) approach. NAA decouples accelerator devices from the host systems
and enables optimal application-to-compute-resource mapping. NAA is implemented
and evaluated with Intel Xeon Phi coprocessors and NVIDIA K20c GPUs.

Chapter 5 focuses on the support of the TCP/IP communication over Extoll. By
efficiently mapping the TCP/IP protocol semantics onto the network technology,
two protocols are specified: Ethernet over Extoll (EXT-Eth) and Direct Sockets over
Extoll (EXT-DS). EXT-DS emulates the Ethernet protocol over Extoll, provides IP
addressing means and accelerates traditional TCP/IP communication by providing
asynchronous, two-sided RDMA for larger payload sizes. EXT-DS complements
EXT-Eth by providing kernel bypass data transfers through RDMA operations for
dedicated TCP point-to-point connections.

7

1 Introduction

In Chapter 6, the Lustre network protocol is analyzed followed by the design of
EXLND, which provides peer-to-peer connection semantics for Lustre over Extoll.
The evaluation of a prototype implementation of EXLND is presented.

While the previous chapters focus on the design of communication protocols for
the Extoll interconnect technology, Chapter 7 explores resource contention mitigation
techniques for large-scale HPC deployments. The evaluation platform is the Titan
supercomputing system, in particular, its parallel file system Spider II, which is
based on Lustre. The chapter presents a transparent auto-tuning framework for
file striping, which transparently distributes stripes of data among available storage
system components in a fair manner.
The thesis concludes in chapter 8 by providing a summary of the contributions,

but also explores potential improvements to the various contributions presented
throughout this work.

8

C
h

a
p

t
e

r

2
Communication and I/O in HPC Systems

In general, parallel computing systems can be classified in two fundamental cat-
egories: shared and distributed memory systems. The distinctive feature for this
categorization is how the memory can be accessed by processors, which also influences
the communication model. Figure 2.1 provides an overview of shared memory system
architectures. They provide a single address space, which can be accessed by all
processors, and perform communication through shared variables. Depending on
the arrangement of the memory, uniform memory access (UMA) and non-uniform
memory access (NUMA) systems can be distinguished. In UMA systems, all pro-
cessors have a uniform memory access latency. Due to the symmetrical design, it is
also referred to as the dance-hall architecture. In NUMA systems on the other hand,
memory modules are assigned to dedicated CPUs, which results in a higher access
latency when accessing another processor’s local memory. This characteristic also
known as the NUMA phenomenon.
The second class of parallel computing architectures are distributed memory sys-

tems, as depicted in Figure 2.2. As indicated by the name, the memory modules are
distributed across the system and physically assigned to dedicated CPUs. The com-
munication is performed by exchanging messages. This requires address translation,
which is performed by the network interface controller (NIC) at both endpoints.

Modern supercomputing architectures typically comprise of a combination of both
distributed and shared memory architectures. Such systems consist of multiple
symmetric multi-processor (SMP) nodes, which are connected to an interconnection
network. While memory is shared by all processors of the same node, it is not
shared between processors on different nodes. In the HPC domain, these systems are

9

2 Communication and I/O in HPC Systems

CPU CPU CPU CPU

Caches Caches Caches Caches

Coherent Interconnection Network

Memory Memory Memory Memory I/O NIC

(a) Uniform memory access.

CPU CPU CPU CPU

Caches Caches Caches Caches

Coherent Interconnection Network

Memory Memory Memory Memory I/O NIC

(b) Non-uniform memory access.

Figure 2.1: Shared memory system architectures.

Interconnection Network

Caches

Memory I/O

NIC

Caches

Memory I/O

NIC

Caches

Memory I/O

NIC

Caches

Memory I/O

NIC

CPU CPU CPU CPU

Figure 2.2: Distributed memory architecture.

called massively parallel multi-processor (MPP) systems. Applications running on
such supercomputing environments typically rely on the message passing paradigm
for communication and I/O, which means that processes exchange messages to
synchronize and move data. In general, it can be said that large-scale HPC systems
are multi-layered facilities comprising of several different entities, which makes
communication and I/O a particularly complex task.

This chapter facilitates the basic knowledge for the remainder of this work and is
organized as follows. The first section provides an introduction to a node’s generic
communication architecture. Afterwards, an overview of communication hardware is
presented followed by a discussion about interprocess communication in distributed
memory systems, which is of particular interest for this work. The chapter concludes
with an overview of parallel I/O and storage environments.

2.1 Generic Communication Architecture Overview
A communication architecture defines the basic communication and synchronization
operations within a system, and addresses the organizational structures that realize

10

2.1 Generic Communication Architecture Overview

Software/Hardware boundary

Parallel applications

Programming models

Compilers and
runtime libraries

OS support
and device drivers

Communication hardware

Physical communication medium

Processor NIC

Network/Topology

User/System boundary

Communication abstraction

E.g., copper, fiber

E.g., MPI, PGAS

OS bypass

E.g., mmap of
MMIO E.g., send/recv

Figure 2.3: Communication architecture abstraction following Culler et al. [20].

these operations. As introduced by Culler et al. [20], a generic communication
architecture can be divided in several different layers, which are implemented in both
hardware and software as depicted in Figure 2.3.
Parallel applications and programming models compose the top layer. Typically,

programming models are embedded in a parallel language or programming envi-
ronment, and provide a communication abstraction to applications, e.g., for shared
and distributed memory systems. A programming model specifies how the different
parts of a parallel application exchange information between each other and what
synchronization operations are available to coordinate their communication and
activities. This is realized in terms of user-level communication primitives of the
underlying system.
In between the programming models and the operating system, compilers and

runtime libraries act as the user/system boundary by utilizing the primitives made
available from the underlying operating system and hardware. Libraries depend on
the used programming model and provide a hardware abstraction to the applications.
The rule of thumb is that the more generalization is provided by a library, the
less control for application and system-specific optimizations can be applied by the
user. While less abstraction increases the variety of possible optimizations, it also
burdens the user with system-specific characteristics when tuning an application’s
performance. Therefore, the level of abstraction is a trade-off between performance
and user-friendliness.
The communication hardware and operating system (OS) comprise the bottom

layer. Device drivers and the OS directly interface with the communication hardware,
which typically consists of a network interface controller (NIC) and an interconnection
network. Modern NICs provide hardware support for different communication

11

2 Communication and I/O in HPC Systems

standards. Depending on the corresponding software stack, NICs can reduce the
software overhead, e.g., by providing OS bypass techniques.

2.2 Network Communication Hardware
The following two sections provide an overview of two basic hardware building blocks
for network communication: the interconnection network and the network interface
controller.

2.2.1 Interconnection Networks

Following the definition by Dally and Towles [21], an interconnection network can be
defined as a programmable system that transports data between terminals. In the
context of interconnection networks, programmable means that different connections
are established at different points in time. An interconnection network typically
consists of several components, including buffers, channels, switches, and controls,
that work together to deliver the data. This broad definition is applicable to many
different layers within a computer systems, starting with networks-on-chip, which
deliver data between memory arrays, registers, and arithmetic units, up to local area
networks (LAN), which connect distributed memory systems within a data center or
an enterprise.
Today, most high-performance interconnections are performed by point-to-point

interconnection networks. This trend reflects the non-uniform performance scaling,
which is imposed by the demand for better interconnection performance with the
increasing processor performance and network bandwidth. Transfers should be
completed with a latency as small as possible while a large number of such transfers
should be allowed in parallel. Because the demand for interconnection has grown
more rapidly than the capability of the underlying wires, the interconnection network
has become a crucial bottleneck in most systems. The design of an interconnection
network can be classified in the following categories [22, 23]:

Network Topology The topology describes the spatial arrangement of an intercon-
nection network distinguished in regular and irregular structures. However, irregular
interconnection networks are highly uncommon in high performance computing
systems. Regular interconnection networks arrange processors as well as processes
in regular patterns, which are aligned with common research problems. Depending
on the use case, topologies can be further subdivided in two categories: static and

12

2.2 Network Communication Hardware

dynamic. Static topologies are fixed point-to-point connections between nodes, while
dynamic topologies possess switching elements, which can be tuned for multiple differ-
ent configurations. Static network topologies are mainly used for communication in
large-scale computing systems. Also, static interconnection networks can be depicted
as directed or undirected graphs in which nodes represent processors, compute nodes,
switches or devices, and edges represent communication links. Example topologies
are tree, mesh, cube, and hypercube. The chosen topology affects routing, reliability,
throughput, latency, and scalability.

Routing Routing algorithms define how a packet is sent from the destination to
the source node. They can be classified in two categories: deterministic and adaptive
routing [24]. As implied by the name, deterministic routing algorithms always choose
the same, predefined path between two nodes, independently from the current network
state, for example the network traffic. On the contrary, adaptive routing algorithms
choose a path based on the current state of the network, including historical channel
information and the status of a node.

Switching Methodology and Flow Control Two major switching methodologies
can be distinguished, circuit switching and packet switching. For circuit switching, a
physical path is established between the source and the destination for the entire
duration of the transmission. In case of packet switching, data is put in packets
and routed through the interconnection network establishing a logical connection
path between nodes without the need for a physical connection. In general, circuit
switching is much more suitable for bulk data transmission, and packet switching is
more efficient for short data messages. The switching methodology is tightly coupled
with the chosen flow control. The flow control manages the allocation of resources
along the path of a packet, including buffers and channels. Buffers are basically
registers or memory, which provide a temporary storage to cache packets. Examples
are circuit switching, virtual-cut-through switching (packet based), store-and-forward
switching (packet based), and wormhole switching (flit based).

Operation Mode Two types of communication can be identified: synchronous and
asynchronous. The asynchronous operation mode is mainly needed in multiprocess-
ing environments where connection requests are issued dynamically. Synchronous
communication is only allowed at certain points in time with communication paths
established synchronously. One possible use case is the broadcast.

13

2 Communication and I/O in HPC Systems

2.2.2 Network Interface Controllers

In computing environments, the network interface serves as the software and/or
hardware interface between protocol layers or two pieces of equipment in a computer
network [21]. Examples include network sockets, which provide a software interface to
the network, and network interface controllers (NICs). The NIC connect clients to an
interconnection network and serves as the network interface from a processor’s point
of view. Its key characteristics include low-overhead access and high-throughput
message transfers. The guarantee that multiple processes can independently access
the NIC while ensuring process security typically is provided through hardware
virtualization mechanisms. The access for different processes is multiplexed by the
operating system.
There are two different techniques for a NIC to indicate whether packets are

available for transfer: software-driven and interrupt-driven I/O. In software-driven
I/O, also known as polling, the processor actively samples the status of the peripheral
under software control. When using interrupt-driven I/O, the peripheral alerts the
processor when it is ready to send or receive data.
These two techniques are complemented by two data transmission methods [23]:

programmed I/O (PIO) and direct memory access (DMA). In the context of a NIC,
PIO requires the CPU to actively move data to or from the main memory to the
NIC, while DMA describes an operation in which data is moved from one resource
to another without the involvement of the processor. DMA removes load from the
CPU, but requires more logic on the NIC.

One of the major design criteria is the placement of the NIC. In order the minimize
the latency, it is desirable to place it as close to the processor as possible. In general,
three different processor-network interfaces can be distinguished [21]: the two-register,
the register-mapped, and the descriptor-based interfaces.

The simplest approach is the two-register interface. As indicated by the name, this
concept utilizes two registers: the network input and the network output registers.
Reading from or writing to these registers de- or enqueues the next word of a message.
Longer messages are sent by splitting them in word-sized chunks and then writing
them word by word to the output register. This adds a tremendous overhead to
the communication since the processor is tied to serve as a DMA engine. Another
problem is that misbehaving processors might occupy the network resources infinitely
when they write the first part of a message, but fail to send the end.

The safety issue of the two-register interface can be resolved by utilizing the
register-mapped approach where a message is sent atomically from a subset of the

14

2.3 Communication in Distributed Memory Systems

Send/Receive
scheme

(asynchronous or
synchronous)

Send/Posted-
Receive scheme

Put/Get (RMA)
scheme

Rendezvous Put/
Get scheme

n-copy
(two-, one-, zero)

2 1 0

Two-/one-sided
Communication

2 1

Implementation

Concept

Figure 2.4: Communication models in distributed memory systems [23].

processor’s general purpose registers. However, the limitation of the processor acting
as the DMA engine remains and the data transfers are performed in a PIO-fashion.
The third concept introduces the use of descriptors. Instead of writing messages

to a set of registers, the processor composes a descriptor, which can contain an
immediate value of the message or the start address of a memory block and the
corresponding size of the payload to be transferred. The descriptor is either written
to a set of dedicated descriptor registers or a descriptor queue in main memory, and
the NIC processes the messages from there. This approach minimizes the processor
overhead by offloading the data transfer to the NIC.

2.3 Communication in Distributed Memory Systems
Today’s HPC systems comprise of thousands of nodes, which are connected through
an interconnection network. To serve the need for efficient data movement and
communication in large-scale applications, different communication schemes and
programming models are deployed.
In the following, an introduction to interprocess communication in distributed

memory systems is presented. In addition, different communication schemes and
interfaces are introduced, including the corresponding programming models, but also
performance metrics and synchronization.

2.3.1 Communication Schemes

In distributed memory systems, several different interprocess communication schemes
can be classified by two main criteria, as depicted in Figure 2.4. The first criterion is
the number of copies done by the involved processes, which is indicated by n-copy.
The second characteristic is the number of actively involved processes in the com-
munication. Combinations of these criteria can be implemented in various schemes,

15

2 Communication and I/O in HPC Systems

including the traditional send/receive scheme and PUT/GET. The understanding of
these communication schemes is an important factor for the actual communication
protocol design for a given network technology.

2.3.1.1 Two-sided Communication

The traditional way to implement interprocess communication in parallel applications
targeting distributed memory systems is to exchange messages. This concept is
also known as message passing or send/receive scheme. In message passing systems,
messages are exchanged by using matching pairs of send and receive function calls
on the sender and target processes, respectively. Both sides are actively involved
in the communication, hence the classification as two-sided communication. The
basic communication workflow for this paradigm is shown in Figure 2.5. Since the
introduction of the MPI-1 [25] standard, message passing has become the de-facto
standard in most parallel codes. An important concept of two-sided communication is
the message matching mechanism. Matching ensures that the next message delivered
from the transport layer matches certain criteria.

2.3.1.2 One-sided Communication

The one-sided communication paradigm, also called RDMA, RMA or put/get model,
conceptually only involves one active process in the communication transaction.
In the classical send/receive paradigm, both processes, the source or initiator and
the target or destination process, participate in the transaction, while an RDMA
transaction features an active and a passive partner. The put operation, also called
RDMA write, writes the content of the initiator’s local buffer to a specified buffer
on the target process’s side. The initiator needs to know the address of the remote
buffer beforehand. The get or RDMA read operation is the opposite; the initiator
requests the contents of a remote buffer to be copied into the specified local buffer.
Figure 2.6 illustrates the put and get operations.

2.3.1.3 Remote Load/Store

In contrast to one-sided communication, the remote load/store paradigm enables
a process to issue communication operations by simply performing a load or store
operation to a special address, which in turn triggers a network request. In the
event of a load operation, the response carries the requested memory cell which is
then used by the NIC to complete the operation. A remote store operation works
analogously, though no response is needed as depicted in Figure 2.7. An example of

16

2.3 Communication in Distributed Memory Systems

Process 0 Message Passing System Message Passing System Process 1

Send request

Completion

Receive request

Completion

Figure 2.5: Basic send/receive sequence.

CPU 0 NIC 0 NIC 1 CPU 1

Completion

GET request

CPU is not
blocked

Completion

Copy data
into main
memory
via DMA

Copy data
from main
memory
via DMA

Copy data
into memory

via DMA

Figure 2.6: Remote Direct Memory Access operations.

Completion

CPU 0 NIC 0 NIC 1 CPU 1

Load instruction

CPU is
blocked

Copy data
into main
memory
via DMA

Copy data
into main
memory
via DMA

Figure 2.7: Remote load and store operations.

17

2 Communication and I/O in HPC Systems

an interconnect standard using the remote load/store paradigm for remote memory
access is the Scalable Coherent Interface (SCI) [26].
While the remote load/store method looks tempting to many programmers and

architects, it suffers from fundamental drawbacks for parallel computing, which
are intensified by the characteristics of today’s system architectures. First, a CPU
load/store operation typically supports only small data movement granularity. This
results in relatively small transactions in the register size region (32-128 bits), which
limits the network efficiency. Second, long load latencies stall CPU cores, since there
is only a limited amount of outstanding memory transactions. This paradigm requires
either hardware that supports the forwarding of remote read and write operations or
a framework such as a compiler that translates remote memory requests to one- or
two-sided communication requests.

2.3.2 Synchronization

An important aspect of communication is the synchronization between initiator
and destination side. Synchronization is the enforcement of a defined logical order
between events. This establishes a defined time-relation between distinct places, thus
defining their behavior in time. Depending on the system architecture or chosen
communication model, synchronization can either be implicit or explicit.
When using two-sided communication, the send and receive scheme ensures an

implicit synchronization between remote processes, since both sides are involved
in the communication process. When using one-sided communication or remote
load/store operations, there is no implicit synchronization between the initiator and
destination node. Therefore, explicit synchronization methods such as barriers or
global locks are needed. Even though race conditions are much more likely when
explicit synchronization is needed, the decoupling of synchronization and data transfer
can improve the performance by overlapping communication and computation.

2.3.3 Performance Metrics

Communication or network performance refers to measures of service quality of
as seen by the user/application. There are many different ways to evaluate the
performance. The most important metrics are bandwidth, latency, message rate, and
overhead [27].

Bandwidth The bandwidth refers to the maximum rate at which information can
be transferred, or in other words, the amount of data that can be transmitted in a

18

2.3 Communication in Distributed Memory Systems

given period of time. Aggregate bandwidth refers to the total data bandwidth supplied
by the network, and effective bandwidth or throughput is the fraction of aggregate
bandwidth delivered by the network to an application. Typically, bandwidth is
measured in bytes per second.

Latency The latency or network delay describes the minimum time a packet needs
to be transferred from one node to another. The total latency of a packet can be
expressed by the following equation:

Latency = Sending overhead + Time of flight + Packet size
Bandwidth + Receiving overhead

Message Rate The message rate describes the number of messages that can be
sent by a single process in a specified period of time and indicates how well the
processing of independent processes can be overlapped. It varies for different message
sizes, is limited by the bandwidth and highly depends on the sending and receiving
overhead.

Overhead The communication overhead describes the time a node, i.e., a proces-
sor, needs to send or receive a packet [28], including both software and hardware
components. The sending overhead is the time needed to prepare a packet, while the
receiving overhead describes the time needed to process an incoming packet.

2.3.4 Interprocess Communication Interfaces

Several different application programming interfaces (APIs) for interprocess com-
munication exist, which utilize the previously described communication schemes.
Of particular interest for this work is interprocess communication in distributed
memory systems. The following sections present an overview of the most widely used
communication standards and corresponding example implementations.

2.3.4.1 Message Passing Interface

The Message Passing Interface (MPI) has become the de-facto standard for parallel
communication in distributed memory systems. The most popular implementations
are MPICH [29], MVAPICH [30], and OpenMPI [31]. In the MPI programming
model, a computation comprises of one or more processes that communicate by
calling library routines to send/receive messages to/from other processes. An MPI
application typically follows the Single Program Multiple Data (SPMD) paradigm

19

2 Communication and I/O in HPC Systems

Data

MPI_Send()

Return

Return

Block – waiting
for data

MPI MPINetwork

MPI_Recv()

User Rank 0 User Rank 1

Header

Data

Data

Header
Header

Header

Data

1.a

1.b

2

3

4

match

copy

copy

Figure 2.8: MPI eager protocol.

where each program launches multiple processes. A process can be identified by
its rank, which is a unique identifier that can be used to address other processes
in point-to-point communication. Also, multiple ranks can be grouped together
in MPI communicators, which restrict communication to ranks within the same
communicator. In MPI, a message consists of a header and data, which is basically
the payload. The header contains a tag, a communicator, the length, the source rank,
plus implementation specific private data. The data can be identified by naming and
ordering. The naming defined by the source rank, communicator, and a tag, which is
an arbitrary integer value chosen by the user. If multiple messages are identical in
naming, the order in which the messages arrive determines which message is matched
with the corresponding receive request.

There are three basic point-to-point communication protocols in MPI: short, eager
and rendezvous. In the short protocol, the data is directly sent with its header and
no buffering is needed on the sending side. Both eager and rendezvous protocols
differ in their buffering scheme and the selection of the protocol that is applied is
usually based on the message size. The following introduces the two protocols, but
also explains the concept of message matching and collective operations.

Eager Protocol In the eager protocol, the message is sent assuming that the
destination can store the data. This approach reduces synchronization delays and
simplifies the programming, but may require active involvement of the receiving
CPU to drain the network at the receiver’s end and may introduce additional copies
(intermediate buffer to final destination). Figure 2.8 illustrates the eager protocol.
First, the header is written by the sender (1.a) and the receiver (1.b) to the target

20

2.3 Communication in Distributed Memory Systems

Data

MPI_Send()

Return

Return

Block – waiting
for data

MPI MPINetwork

MPI_Recv()

User Rank 0 User Rank 1

Header

Data

Header
Header

Header

Data

1.a

1.b

2

3

4

match

Figure 2.9: MPI rendezvous protocol.

process’ mailbox, where it is later matched with the receive request (3). Depending
on the payload size, the data is either buffered on the sender side (indicated by the
dashed line) or directly sent with the header and buffered in the target’s mailbox (2)
from where it is copied to its final destination (4).

Rendezvous Protocol While the eager protocol targets smaller payloads, the
rendezvous protocol is used for large messages, since the extra copy from the system
to the user buffer at the receiver side can significantly add latency and negatively
impact performance. When using rendezvous, the message is sent once the target
notifies the sender that sufficient user buffer is available. This approach is robust
and safe, but requires more complex programming. In addition, it may introduce
synchronization delays. Figure 2.9 illustrates the rendezvous protocol. Similar to
eager, the header is sent to the target ((1.a) and (1.b)), where it is matched with
the receive request (2). Provided a matching receive can be found, MPI returns
the target’s user buffer address (3) to the sender, which in turn initiates the copy
operation (4). Alternatively, the target can use an RDMA transfer, i.e., a get
operation, to fetch the data.

Message Matching An important but also complex feature is message matching.
Message matching guarantees that an MPI code is deterministic by matching message
headers and receive requests. The matching algorithm utilizes the source rank,
tag, and communicator including wildcards for tag and source. The first message
complying with the MPI matching rules is chosen and the data is transferred to
the target buffer. Messages that arrive but cannot be matched with already posted

21

2 Communication and I/O in HPC Systems

receive requests are added to the so-called Unexpected Message Queue (UMQ).
Unexpected messages can be avoided by using the rendezvous protocol, which will
add an additional roundtrip, but perform true zero-copy.

Collective Operations Apart from the point-to-point communication support, MPI
also introduces a set of collective operations, which provides a method of communica-
tion which involves participation of all processes in a given communicator. Examples
are synchronization calls like MPI_Barrier, but also MP_Broadcast, MPI_Alltoall,
MPI_Gather or MPI_Scatter. One important side effect is that collective communi-
cation implies a synchronization point among processes. With the latest release of
the MPI standard, MPI-3, non-blocking collective operations were introduced, which
aim to maximize the overlap of communication with computation.

2.3.4.2 Partitioned Global Address Space

The Partitioned Global Address Space (PGAS) [32] model is a shared memory
programming paradigm that introduces the idea to create a global but logically
partitioned address space. Parallel processes share one global address space, which
consists of memory segments in the local memory of participating processes. For
every process, the global address space is divided into a local, private segment and a
global, shared segment. While the global memory can be used for communication,
the local part cannot be accessed from other processes.
The term PGAS is used for both communication libraries and specialized pro-

gramming languages. The most well-known PGAS-based programming languages
are Universal Parallel C (UPC) [33] and Co-Array Fortran [34]. PGAS-languages
are extensions to common programming models and require special compilers. The
compiler is responsible for the data placement. Therefore, access to a local segment
is always translated to load/store instructions, while remote accesses can be per-
formed in several ways. Remote load/store operations are able to use local caches to
speed up some operations, whereas other solutions are two-sided as well as one-sided
communication using an underlying communication framework.
One communication interface often used in conjunction with UPC is the Global

Address Space Network (GASNet) [35], which provides a high-performance, network-
independent interface for PGAS languages. GASNet consists of two layers: the core
and the extended API. The core API leverages the Active Message specification and
provides atomic operations as well as utility functions. Active Messages provide a
low level mechanism in which messages trigger the execution of code on the remote

22

2.3 Communication in Distributed Memory Systems

target. The principle of active messages can be compared to remote procedure calls.
The extended API of GASNet provides high-level abstractions to exchange active
messages and data, or to ensure synchronization, including data transfer operations
based on put/get semantics.
Besides the PGAS-based languages, there exist several communication libraries,

which provide direct one-sided put and get operations to and from shared memory
regions. In addition to GASNet, openSHMEM [36] and Global Address Space
Programming Interface (GASPI) [37] are representatives of such PGAS-APIs.

2.3.4.3 Remote Procedure Call

Remote procedure call (RPC) packages [38] implement a request-response protocol
and follow a simple target [39]: to make the process of executing code on a remote
machine as simple and straightforward as calling a local function. An RPC is initiated
by the client, which sends a request message to a known remote server to execute a
specified procedure with supplied parameters. Once the remote server has processed
the request, it sends a response to the client, and the application continues its process.
Typically, the client is blocked until the server has finished processing and sent its
response, unless an asynchronous request is sent. There are many different RPC
implementations, resulting in a variety of different, incompatible RPC protocols. One
of the main differences between local and remote procedure calls is that unpredictable
network problems can result in a faulty behavior or failure of an RPC. In general,
the client must handle such failures without knowing whether the RPC was actually
invoked.

2.3.4.4 Portals

The Portals Network Programming Interface [40] is a low-level network API for
high-performance networking developed by Sandia National Laboratories and the
University of New Mexico. Portals provides an interface to support both the MPI
standard as well as various PGAS models, such as Unified Parallel C, Co-Array
Fortran, and SHMEM, and combines the characteristics of both one-sided and two-
sided communication. In addition to the traditional put/get semantics, Portals defines
matching put and matching get operations. The destination of a put is not an explicit
address, but a list entry using the Portals addressing scheme that allows the receiver
to determine where an incoming message should be placed. This flexibility allows
Portals to support both traditional one-sided operations and two-sided send/receive
operations with both bypass mechanism for the operating systems as well as the

23

2 Communication and I/O in HPC Systems

N0,0

N0,m

N1,0

N1,m

Nn,0

Nn,m

...
...

...

Compute Nodes I/O Nodes Parallel File System

...

...

...

Figure 2.10: Abstract model of HPC system with external file system.

application. Portals does not require activity on the part of the application to ensure
progress, which as denoted as application bypass.

2.3.4.5 Berkeley Sockets

The Berkeley Sockets API [41] is one of the most widely used networking APIs and
has been adopted by several different operating systems. The socket concept was
developed to provide a generic interface for accessing computer networking resources
and processes. Nowadays, sockets are an important Internet API where they are
used to implement the Layer 4 of the Internet Protocol, the ISO/OSI layer model.
In terms of HPC, sockets are mostly used in data centers. While sockets are not
restricted to a specific protocol, the most widely used ones are TCP/IP, UDP/IP and
the UNIX domain. Protocols using sockets can either be connectionless (datagram
sockets) or connection-oriented (stream sockets).

For connection oriented protocols like TCP, sockets follow the client-server paradigm.
This means a server process opens a socket and listens for incoming connection re-
quests issued by the client. Upon receiving a connection request, the server accepts
and establishes the connection between two ports. The sockets performance is mainly
limited by deficiencies and overhead introduced by lower layers such as the TCP/IP
stack and the interaction with the operating system. For example, data needs to be
passed through a deep protocol stack including several memory copies and the latency
properties of the NIC. An alternative is offered by the stateless, connectionless UDP

24

2.4 Introduction to Parallel I/O

Application

High-level I/O Library

I/O Middleware

I/O Forwarding

Parallel File System

I/O and Storage Hardware

I/O Middleware
organizes accesses from
many processes, especially
those using collective I/O.

MPI-IO

Parallel File System
maintains logical space and
provides efficient access to
data.

Lustre, GPFS, PVFS2, BeeGFS

I/O Forwarding
bridges between application
tasks and storage system and
provides aggregation for
uncoordinated I/O.

IBM CIOD, IOFSL, Cray DVS

High-level I/O Library
maps application abstractions
onto storage abstractions and
provides data portability.

HDF5, (p)netCDF, ADIOS

Figure 2.11: Typical parallel I/O architecture for data-intensive sciences [42].

protocol. UDP sockets are able to perform a write- or read-operation by using send
or receive. Each packet sent or received on a datagram socket is individually ad-
dressed and routed. Order and reliability are not guaranteed with datagram sockets.
Matching processes with sockets is much easier compared to the matching mechanism
in MPI. Data within a socket reaches the target buffer by addressing a port, which
is assigned to a process. There is no active matching needed, because data is always
sent to a specified port. Ports are an abstraction of the logical connection between
two endpoints.

2.4 Introduction to Parallel I/O
In the context of a HPC systems, parallel I/O [43] describes the ability to perform
multiple input/output operations at the same time, for instance simultaneous outputs
to storage devices and display devices. It is a fundamental feature of large-scale HPC
environments. Modern high performance computing facilities deliver computational
and data resources to an ever broadening set of scientific and engineering domains.
Large-scale simulation codes stress the capability of file and storage systems by
producing large amounts of data in a bursty pattern. With the advent of big data, it
is expected that future large-scale applications will generate even more data. Parallel
file systems distribute the workload over multiple I/O paths and components to
satisfy the I/O requirements in terms of performance, capacity, and scalability.
To meet the required performance and capacity levels of modern HPC facilities,

a large-scale parallel I/O environment comprises of multiple layers, as displayed in
Figure 2.10, including block devices, the interconnect between the block devices and
the file system servers, file system servers and the parallel file system itself, and the
interconnect between the file system servers and client nodes. Some configurations
will include I/O routers between the file system servers and the clients. These

25

2 Communication and I/O in HPC Systems

components are then integrated into usable systems through complex software stacks,
as presented in Figure 2.11.

2.4.1 Scientific I/O

Compared to traditional I/O, scientific I/O [44] is performed by large-scale applica-
tions from the scientific domain. Typically, scientists think about their data in terms
of their science problems, e.g., molecules, atoms, grid cells, and particles. Ultimately,
physical disks store bytes of data, which makes such workloads difficult to handle for
the storage system. In scientific applications, I/O is commonly used to handle the
following data types:

Checkpoint / Restart Files Application checkpointing is a technique that adds
fault tolerance into a distributed computing system. In general, checkpoint/restart
files consist of snapshots, which reflect an application’s current state. These snapshots
can be used to restart an application in case of system or node failures. The most
basic way to implement checkpointing is to periodically stop an application, copy all
the required data from the main memory to reliable, persistent storage (e.g., parallel
file system), and then continue with the execution.
Two primary categories of techniques can be distinguished: uncoordinated check-

pointing and coordinated checkpointing. Uncoordinated checkpointing employs the
idea of saving snapshots of each process independently from each other. The prob-
lem imposed by this technique is that simply forcing processes to save checkpoint
information at fixed time intervals does not ensure global consistency. Unlike un-
coordinated checkpointing, coordinated checkpointing synchronizes the processes’
states and dependencies at checkpointing time to ensure that the global state is
saved consistently. This is achieved by applying a two-phase commit protocol (i.e.,
an atomic commit protocol), which results in periodic, bursty I/O phases.

Data Input / Data Output Data input and data output mainly happens at the
beginning and end phases of an application run. Large amounts of data need to be
read, e.g., to fill the main memory with an initial data set, or need to be written,
e.g., to store numerical output from simulations for post-processing analysis.

Out-of-core Algorithms Out-of-core algorithms, also called external memory al-
gorithms, are designed to deal with data sets that are too large to be stored in
the available main memory. Such algorithms basically implement “demand paging”

26

2.4 Introduction to Parallel I/O

under user application control and are optimized to efficiently fetch and access data
that is stored on a slower storage system, e.g., the underlying distributed file system.

2.4.2 Parallel File Systems

Conventional, local file systems assume that the disk or disks are directly connected
to a compute node. In cluster systems consisting of hundreds or thousands of nodes,
this would mean that there is no global name space and every node would have to
organize its own separate data. To cope with this problem at scale, the file system
is outsourced to the network. Distributed file systems utilize a network protocol to
access the distributed storage. Files are shared between users in a hierarchical and
unified view [45]: files are stored on different storage resources, but appear to users
as they are put on a single location. Parallel distributed file system architectures
spread individual files across multiple storage nodes, usually for performance and/or
redundancy reasons, and allow concurrent read and write access to the files. This
mechanism is called file striping. Key features [45, 46] of parallel file systems include
transparency, fault tolerance, and scalability:

Transparancy The complexity of the underlying distributed storage system is hidden
from the user. File access is provided via the same operations and interfaces
as used for local file systems, e.g., mounting/unmounting, read/write at byte
boundaries, listing directories, and the system’s native permission model. Also,
fault tolerance mechanisms hide storage system failures from the user.

Fault Tolerance As distributed file systems are deployed on large-scale systems,
the possibility of failures are the norm rather than the exception. Therefore,
distributed file systems provide fault tolerance mechanisms that keep the system
alive in the case of a transient or partial failure. Considered faults are network
and server failures, but also data integrity and consistency in case of concurrent
file accesses.

Scalability The ability to efficiently scale the system to a large number of nodes
and also to effectively leverage dynamically and continuously added system
components.

Different architectural approaches can be used to achieve a scalable system archi-
tecture [47]. Client-Server architectures have several servers which are responsible to
manage, store, and share metadata and data by providing a global name space to
the clients. Cluster-based Distributed File Systems decouple metadata from the data.

27

2 Communication and I/O in HPC Systems

Interconnection Network Interconnection Network

CPU

CPU
M

e
m

o
ry

In
te

rn
a

l
N

et
w

o
rk

..
.

FS
Node

FS
Node

FS
Node

FS
Node

CPU

CPU

M
e

m
o

ry

In
te

rn
a

l
N

et
w

o
rk

..
.

FS
Node

FS
Node

FS
Node

FS
Node

ION ION ION
Compute Nodes Compute Nodes

(a) Direct parallel file system. (b) External parallel file system with I/O nodes.

Figure 2.12: Schemes of storage systems attached to a HPC system.

The system comprises of one or more metadata servers and several object servers to
store the data. If there is only one metadata server, the system is called centralized.
Symmetric architectures have no distinguished master node, all nodes build the file
system in a peer-to-peer like manner. Asymmetric systems, on the other hand, have
multiple metadata and object data servers, both working on the requests from the
clients. Distributed file systems typically use RPCs over the network to invoke read
or write operations on a remote node independently from the operating system. Most
distributed file systems use the TCP/IP or the UDP protocol to initiate RPCs.
In general, two different parallel file system configurations can be distinguished.

Figure 2.12(a) presents the directly connected parallel file system configuration.
The file system nodes are directly connected to the interconnection network of the
HPC system. The second configuration is displayed in 2.12(b), which represents a
center-wide file system. In this system setup, different supercomputing systems are
sharing the access to the parallel file system. Each system may deploy a different
network technology (e.g., 10GE, Infiniband). Therefore, so called I/O forwarding
nodes (ION) provide connectivity to the external file system.

2.4.3 High-level I/O Libraries and Middleware

The IEEE Portable Operating System Interface (POSIX) [48] defines the primary
application programming interface (API) for UNIX variants and other operating
systems, along with command line interpreters and utility interfaces, The first
standard was released in 1988, when a single computer owned its own file system.
The POSIX API presents a useful, ubiquitous interface for basic I/O, but lacks
useful constructs for parallel I/O. When using POSIX I/O, a cluster application is
basically one program running on N nodes, but it looks likes N programs to the file
system. In addition, POSIX has no support for noncontiguous I/O and no hinting

28

2.4 Introduction to Parallel I/O

or prefetching mechanism. Together with its rules such as atomic writes and read-
after-write consistency, POSIX I/O has a negative impact on parallel applications.
To overcome the limitations of POSIX I/O, high-level I/O libraries and middleware
solutions have been developed to provide data abstraction and to organize accesses
from many processes, especially those using collective I/O. The following sections
introduce MPI-IO and selected libraries.

2.4.3.1 MPI-IO

in distributed memory architectures, parallel I/O systems needs a mechanism to
specify collective operations, user-defined data types to describe noncontiguous data
layouts in both memory and file, communicators to separate application-level message
passing from I/O-related message passing, and non-blocking operations. MPI-IO,
which was released in 1997 as part of MPI-2, is an I/O interface specification for
use in MPI applications and provides a low-level interface for carrying out parallel
I/O. Internally, it uses the same data model as POSIX, i.e., streams of bytes in a
file. MPI-IO’s features include collective I/O, noncontiguous I/O with MPI data
types and file views, non-blocking I/O, and Fortran and additional language bindings.
Collective I/O is a critical optimization strategy for reading from, and writing to,
a parallel file system. The collective read and write calls force all processes in a
communicator to read/write data simultaneously and to wait for each other. The MPI
implementation optimizes the read/write request based on the combined requests of
all processes and can merge the requests of different processes for efficiently servicing
the requests. Given N processes, each process participates in reading or writing a
portion of a common file.

There are several different MPI-IO implementations. One of the widely used ones
is ROMIO [49] from the Argonne National Laboratory. ROMIO leverages MPI-1
communication and supports local file systems, network file systems, and parallel
file systems such as GPFS and Lustre. The implementation includes data sieving
techniques and two-phase optimizations.

2.4.3.2 HDF5 and Parallel HDF5

The Hierarchical Data Format v5 (HDF5) [50] consists of three components: a
data model, an open source software, and an open file format. The HDF5 file
format is defined by the HDF5 file format specification [51] and defines the bit-
level organization of an HDF5 file on storage media. HDF5 is designed to support
high volume and/or complex data, every size and type of system (portability), and

29

2 Communication and I/O in HPC Systems

flexible, efficient storage and I/O. An HDF5 file is basically a container consisting
of data objects, which can either be datasets or groups. Datasets organize and
contain multidimensional arrays of a homogeneous type, while groups are container
structures consisting of datasets or other groups.

Altogether, HDF5 provides a simple way to store scientific data in a database-like
organization. The data model complements the file format by providing an abstract
data model independent of the storage medium or programming environment. It
specifies the logical organization and access of HDF5 data from an application
perspective, and enables scientists to focus on high-level concepts of relationships
between data objects rather than descending into the details of the specific layout.
The HDF5 software provides a portable I/O library, language interfaces, and tools
for managing, manipulating, viewing, and analyzing data in the HDF5 format. The
I/O library is written in C, and includes optional C++, Fortran 90, and high-level
APIs. For flexibility, the API is extensive with over 300 functions. Parallel HDF5 is
a configuration of the HDF5 library, which can be used to share open files across
multiple parallel processes. It uses the MPI standard for interprocess communication.

2.4.3.3 ADIOS

The Adaptable I/O System (ADIOS) [52, 53] is an extendable framework which
allows scientists to plug-in several different I/O methods, data management services,
file formats, and other services such as analytic and visualization tools. It provides a
simple I/O application programming interface (API) and allows the usage of different
computational technologies to achieve good, predictable, performance. ADIOS
provides a mechanism to externally describe an application’s I/O requirements using
an XML-based configuration file. One of its salient features is that I/O methods can
be exchanged between runs by modifying the configuration file without the need to
modify or recompile the application code. ADIOS has demonstrated impressive I/O
performance results on leadership class machines and clusters, and has been deployed
on several supercomputing sites including the Argonne Leadership Computing Facility
(ALCF), the Oak Ridge Leadership Computing Facility (OLCF), the National Energy
Research Scientific Computing Center (NERSC), the Swiss National Supercomputing
Centre (CSCS), Tianhe-1 and 2, and the Pawsey Supercomputing Centre.

ADIOS is implemented as a user library. It can be used like any other I/O library,
except that it has a declarative approach for I/O. The user defines in the application
source code the “what” and “when” while the framework takes care of the “how”.
There are two key ideas. First, users do not need to be aware of the low-level layout

30

2.4 Introduction to Parallel I/O

and organization of data. Second, application developers should not be burdened
with optimizations for each platform they use. It is capable of I/O aggregation on
behalf of the application to increase the I/O performance and scalability.

2.4.3.4 SIONlib

The Scalable I/O library (SIONlib) [54] implements the idea of writing and reading
binary data to or from several thousands of processors into one or a few physical
file(s). In other words, SIONlib maps the task-local I/O paradigm onto shared I/O.
SIONlib is implemented as an additional software layer in between the parallel file
system and a scientific application, and provides an extension to the traditional
POSIX or standard C file I/O API. To enable parallel access to files, SIONlib
provides collective open and close functions, while writing and reading files can be
done asynchronously. Its main application area are internal file formats such as
scratch files and checkpointing files. SIONlib requires only minimal changes to the
application source code, mainly to the open and close function calls. Since each task
writes its own data segment to the same file, SIONlib assigns different regions of
the file to a task. This minimizes the file lock contention and I/O serialization for
collective I/O. In order to do so, SIONlib needs to know the estimated (or known)
data size to place the data accordingly. If a write call exceeds the data size specified
in the open call, SIONlib moves forward to next chunk. SIONlib provides support
for different languages including C, C++, and Fortran, and supports MPI, OpenMP,
and MPI+OpenMP.

2.4.4 Access Patterns

Typically, scientific I/O comprises of large amounts of data written to files in a
structured or even sequential append-only way. Most HPC storage systems employ
a parallel file system such as Lustre or GPFS to hide the complex nature of the
underlying storage infrastructure, e.g., spinning disks and RAID arrays, and provide
a single address space for reading and writing to files. There are three common I/O
patterns [44] used by applications to interact with the parallel file system.

2.4.4.1 Single Writer I/O

In the single writer I/O pattern, also known as sequential I/O, one process aggregates
data from all other processes, and then, performs I/O operations to one or more
files. The ratio of writers to running processes is 1 to N , as depicted in Figure 2.13.

31

2 Communication and I/O in HPC Systems

File

P0 P1 P2 P3 P4 PN...

Figure 2.13: Single writer I/O pattern.

File0

P0 P1 P2 P3 P4 PN

File2File1 File3 File4 FileN...

...

Figure 2.14: File-per-process I/O pattern.

This pattern is very simple to implement and easy to manage, and can provide a
good performance for very small I/O sizes. But, single writer I/O does not scale for
large-scale application runs since it is limited by a single I/O process. It performs
inefficiently for any large number of processes or data sizes leading to a linear increase
in time spent in writing.

2.4.4.2 File-Per-Process I/O

In the file-per-process I/O pattern, each process performs I/O operations on to
individual files as shown in Figure 2.14. If an application runs with N processes, N
or more files are created and accessed (N :M ratio with N ≤ M). Up to a certain
point, this pattern can perform very fast, but is limited by each individual process
which performs I/O. It is the simplest implementation of parallel I/O enabling the
possibility to take advantage of an underlying parallel file system.

On the downside, file-per-process I/O can quickly accumulate many files. Parallel
file systems often perform well with this type of I/O access up to several thousands of
files, but synchronizing metadata for a large collection of files introduces a potential
bottleneck, e.g., even a simple ls can break when being performed on a folder
containing thousands of files. Also, an increasing number of simultaneous disk
accesses creates contention on file system resources.

2.4.4.3 Single Shared File I/O

The single shared file I/O pattern allows many processes to share a common file
handle but write to exclusive regions of a file. Figure 2.15a displays the independent

32

2.4 Introduction to Parallel I/O

File

P0 P1 P2 P3 P4 PN

...

...

(a) Independent.

 File

P0 P4

...

...
P1 P2 P3

...

(b) Collective buffering.

Figure 2.15: Single shared file I/O patterns.

variant of this I/O pattern, where all processes of an application write to the same file.
The data layout within the file is very important to prevent concurrent accesses to
the same region. Contesting processes can introduce a significant overhead, since the
file system uses a lock manager to serialize the access and guarantee file consistency.
The advantage of the single shared file I/O pattern lies in the data management and
portability, e.g., when using a high-level I/O library such as HDF5.

Figure 2.15b displays the collective buffering variant of this pattern. This technique
improves the performance of shared file access by offloading some of the coordination
work from the file system to the application. Subsets of processes are grouped in so
called aggregators performing parallel I/O to shared files. This increases the number
of shared files and improves the file system utilization. Also, it decreases the number
of processes which access a shared file, and therefore, mitigates file system contention.

33

C
h

a
p

t
e

r

3
Extoll System Environment

Interconnection networks are a key component in large-scale HPC deployments and
play a vital role in the overall system performance. They must offer high commu-
nication bandwidth and low latency to cope with the nature of the mixed system
workloads, which include data-intensive and communication-intensive applications.
Essentially, networks are the backbone for both communication and I/O, and con-
nect compute nodes, I/O devices, and storage devices. The design of future HPC
interconnect technologies faces multiple challenges, including scalability, efficiency,
heterogeneity, resiliency, virtualization, cost and power consumption.

Extoll is such a high-performance interconnect technology [55, 56], which started
off as a research project at the Heidelberg University in 2009. Its key objective is to
fit the needs of future HPC applications in terms of latency, bandwidth, message
rate [57], and scalability. Released in 2016, the first Application Specific Integrated
Circuit (ASIC) version of Extoll is the Tourmalet chip. Extoll has been chosen as
the fundamental technology for the research work presented in Chapters 4 through 6
and is described in the following sections.

3.1 Technology Overview
The top-level diagram of the Extoll technology is displayed in Figure 3.1. The design
is divided into three parts: the host interface, the network interface, and the network.
The network part of the NIC provides six links to build a 3D torus network

topology. The Extoll NIC implements a direct network approach by integrating a
switching logic on-chip, which removes the need for external switches. An additional

35

3 Extoll System Environment

Host InterfaceNetwork InterfaceNetwork

Network
Switch

LP

LP

LP

(7th) LP

LP

LP

LP

NP

NP

NP

NP

Control & Status

ATU

SMFU

Egress Ingress

RMA

Req CmpResp

VELO

Req Cmp

PCIe Root
CPU

Caches

Memory

Notification
Queue

RMA
VELO

SMFU

Register File

Virtual Address Space

LP = Link Port NP = Network Port Req = Requester Resp = Responder Cmp = Completer

Interconnection
Network

PCIe BAR

PCIe

descriptor

On-Chip
Network

PCIe x16
Gen3

notification

MMIO

EXTOLL NIC

Figure 3.1: Overview of the Extoll NIC top-level diagram.

7th link can be used to connect network-attached memory [58], accelerators or special
purpose cards to the network, or to provide network connectivity to the outside
world without breaking up the torus topology. The link ports are connected to a
crossbar (network switch) that either routes messages between the link ports, or from
the network to the functional units. The crossbar provides features such as virtual
channels, packet retransmission, multi-cast groups, and table-based routing. Each
crossbar port has its own local routing table. Routing entries specify whether to
forward the incoming packets to the NIC’s network interface units or to reroute the
packet to another crossbar port, which forwards the packet to a node that is closer to
its destination. Along with deterministic routing for each link port, adaptive routing
is supported to avoid network congestion and to improve network utilization.
The Tourmalet chip comes with a PCI Express Gen3 x16 host interface. An

on-chip network with high throughput and low latency connects the functional units
of the network interface with the host interface. Another feature of the Extoll NIC
is that it can be configured to act as a PCIe root port. With this functionality, the
NIC can configure other PCIe endpoint devices connected to its host interface.

The network interface provides the hardware support for different communication
models, including Remote Direct Memory Access (RDMA), Message Passing Interace
(MPI), and Partitioned Global Address Space (PGAS).

3.2 Functional Units
The hardware support for different communication models is realized through a
number of different functional units, which reside on the network interface.

36

3.2 Functional Units

Table 3.1: Overview of possible RMA notification type combinations.
Command Requester Completer Responder

0 0 0 No notifications
PUT 1 0 0 One-sided PUT

1 1 0 Two-sided PUT
0 0 0 No notifications

GET 0 1 0 One-sided GET
0 1 1 Two-sided GET

3.2.1 Remote Memory Access Unit

The Remote Memory Access (RMA) [59] unit is one of the main functional units in
the Extoll network protocol and provides a throughput oriented design for middle to
large message sizes. The unit allows remote direct memory access based on either
virtual (network logical) or physical addresses with PUT and GET operations. For
this purpose, the unit implements a DMA engine for CPU offloading. Using network
logical addresses (NLAs) ensures that the memory region is pinned and cannot be
swapped out of the main memory, and also safeguards interprocess security. The
work requests queue resides on the NIC and is mapped into the processors virtual
address space. When a descriptor is written to the work requests queue, the NIC
begins with the execution of a request as soon as the last word of the descriptor is
received. After completion, a notification is written to the system notification queue,
which resides in the main memory and implements a double-linked list structure. In
Figure 3.1, the red, dashed line highlights the path of an RMA operation, including
the generation of a requester notification.

3.2.1.1 Notification Mechanism

Notifications consist of two 64-bit words and inform whether data has been sent or
received. They can also be used to inform remote processes that a PUT or GET
operation has completed. The processor can query the queue for new notifications.
To consume a notification, the processor has to explicitly remove it in a First In
First Out (FIFO) manner. Depending on the targeted communication model, the
RMA unit is capable of triggering different types of notifications. For example, a
notification can be written upon completion of a work request or when new data
has been received by the NIC. This way, notifications can be generated on both
origin and target side. Table 3.1 displays possible notification combinations for
PUT and GET operations. With the RMA unit’s capability to generate different

37

3 Extoll System Environment

R
E
Q
U
E
S
T
E
R

P
R
O
C
E
S
S

C
O
M
P
L
E
T
E
R

PUT request

(Notification) Copy data
into main
memory
via DMA

Get data
from main
memory
via DMA

(Notification)

(a) PUT notifications: local requester
and remote completer.

R
E
Q

P
R
O
C
E
S
S

C
O
M
P
L
E
T
E
R

GET request

(Notification)

Copy data
from main
memory
via DMA

Copy data
to main
memory
via DMA

(Notification)

R
E
S
P
O
N
D
E
R

(Notification)

(b) GET notifications: local requester,
local completer, and remote re-
sponder.

Figure 3.2: Overview of notification mechanism for Extoll PUT and GET.

types of notifications, different communication models can be mimicked by the RMA.
While one-sided communication only requires notifications on one side, a message
passing scheme can be emulated by generating notifications on both sides. Figure
3.2 provides a sequence diagram for both RMA PUT and RMA GET operations,
including possible notifications.

3.2.1.2 From Software to Network Transactions

The RMA functional unit is split into three units: the requester, the responder and
the completer. Work requests issued by the processor are received by the requester.
The requester translates work requests into network packets, which are sent to the
target node. On the target side, the responder creates responses. For instance, a get
operation triggers the requester to send a data request to the target node’s responder,
which in turn responds by initiating the data transfer. On both origin and target
side, the completer performs the DMA transfer. In a put operation, the completer is
only involved on the target side where it writes the data to the main memory.
Every RMA transaction is initiated by a software, which assembles a software

descriptor describing the desired transactions and writes it to one of the descriptor
queues of the Extoll device. Figure 3.3 presents an example software descriptor layout
for byte sized PUT/GET requests. Byte sized requests only write as many bytes to
memory as defined in the header. This is done by creating a byte mask, however
the byte region must be consecutive, so no stride or other read/write patterns are
supported. For GET requests, the payload will be read from the destination node

38

3.2 Functional Units

3 2 1 0

1

0

2

Q
u
a
d

w
o
rd

4

3

5

1011 89 67 45 23 11920 1718 1516 1314 122122232425 0262728293031

Read Address[63:0]

(64 bit)

Write Address[63:0]

(64 bit)

Destination Node

(16 bit)

Payload Size (byte)

(23 bit)

R
S
V

D.Len
(2 b)

CMD

(4 bit)

NOTI

(3 bit)

E
R
A

N
T
R

M
C

RSV

R
S
V

E
W
A

Destination VPID

(8 bit)

Byte

bit

Figure 3.3: Sized PUT/GET software descriptor format [60].

and the GET response will write the data into the memory of the issuing node. For
PUT requests, the payload is read from the issuing node and then written to the
destination node’s memory. Another command supported by the RMA unit is the
Immediate PUT request, which embeds the payload in the software descriptor and
provides small data transfers (72 bit) without involving the local DMA engine. This
mechanism can be useful, e.g., to access a remote Extoll register file.

An RMA transaction initiated by a software descriptor can move up to 8 MB. For
larger data transmissions, multiple RMA transactions must be triggered by writing
additional software descriptors. Internally, an RMA transaction is split in 512 byte
packets, 16 bytes are reserved for the network descriptor, which leaves 496 bytes for
the payload. The payload size is also referred to as RMA MTU.

3.2.2 Virtualized Engine for Low Overhead Unit

The Virtualized Engine for Low Overhead (VELO) [61] is another of the main
functional units and is optimized to provide efficient transmission for small messages
in a send/receive style using one DMA ring buffer per virtual process identifier
(VPID) on the receiving side. Small messages require a very low latency compared to
larger payloads, where a longer delay is more acceptable since it can be compensated
by exploiting the benefit of high bandwidth. Thus, VELO complements RMA in
offering minimized latency for applications relying on heavy use of smaller messages.
A typical VELO message transfer can be described as follows. First, a software

descriptor, as depicted in Figure 3.4, is written to a network request queue. It
carries several pieces of information such as the target VPID, target node, message
length and message type tag (MTT), which can be used to differentiate software
dependent message types. If the multicast (MC) bit is set, the target node is

39

3 Extoll System Environment

0

Destination Node / Multicast ID

(16 bit)

Q
u
a

d
w

o
rd

User Tag

(8 bit)

Length (Coding 1=1)

(12 bit)

MTT

(2 b)
reservedreserved

I
N
T

Target VPID

(10 bit)
reserved

M
C

3 2 1 0

1011 89 67 45 23 11920 1718 1516 1314 122122232425 0262728293031

Byte

bit

Figure 3.4: VELO message software descriptor format.

interpreted as a multicast group ID and the crossbar can match the multicast ID to
the corresponding entry in the routing table to forward the message accordingly. After
writing the software descriptor, messages are posted automatically and performed as
PIO operations by the CPU. The sender copies the data from the original buffer to
a requester address, which decodes to the VELO requester. On the receiving side,
the DMA ring buffer corresponding to the target VPID is divided into slots of 128
bytes. When a receiving a new message, the VELO completer writes a status word
(8 bytes in size) to the first quadword of the slot. The rest of the slot is filled with
the payload. The maximum VELO packet size is 128 bytes with 8 bytes reserved for
the status word (network descriptor).
The VELO unit combines several different techniques including stateless work

processing, secure and atomic PIO message triggering from user space, integrated
end-to-end flow control, and virtual cut through in all pipeline stages.

3.2.3 Virtual Process ID

In the Extoll system environment, user and kernel level processes initiate RMA and
VELO transmissions by writing a software descriptor either to the work request queue
residing on the Extoll NIC or to a dedicated area in the main memory respectively. In
order to ensure process security, Extoll utilizes a resource virtualization mechanism
called virtual process identifiers (VPID), which provides process separation.
Each VPID identifies a process or a group of processes, which can communicate

with each other. A process can only access memory registered for its VPID. In
addition, an in-memory mailbox is allocated for each registered VPID. The Extoll
hardware writes hardware-specific notifications to these memory areas. The VPID is
assigned by the Extoll device driver and stored in hardware, and must be requested
by a process before any communication can be performed. Extoll is designed for
systems with up to 256 processors. Therefore for both RMA and VELO, 256 VPIDs
are available. For each VPID, one 4 KB page is mapped into the main memory.

40

3.2 Functional Units

global

shared
local

private
local

global

shared
local

private
local

node 0

node 1

node n-1

Origin
address space

Global
address space

Target
address space

0

240

264-1

0

240

264-1

tStartAddr

oAddr

iStartAddr0

iStartAddrn-1

gAddr

tAddr

Figure 3.5: SMFU’s address space layout for the interval configuration [62].

3.2.4 Shared Memory Functional Unit

While the RMA and VELO units provide hardware support for one- and two-
sided communication, the Shared Memory Functional Unit (SMFU) [62] allows to
span a virtual shared address space across physically distributed system nodes and
provides the hardware support for distributed global address spaces. Local load/store
operations to the shared address space are transparently encapsulated in network
packets and forwarded over the Extoll network to the corresponding remote node.
An example use case is the Partitioned Global Address Space (PGAS) model. The
SMFU aggregates exported memory segments from different nodes into a single,
non-coherent, distributed shared memory space. Figure 3.5 illustrates an example
SMFU address space layout. A node’s address space is divided in a local and a global
memory partition. The left side displays the address space layout of the origin node.
The target node’s address space is shown on the right. In this example, all addresses
between 240 and 264 − 1 span the global address space. The memory itself is divided
into intervals; every memory interval corresponds to one remote node.

The SMFU uses physically contiguous and pinned memory regions for the shared
local partitions on the target side to avoid logical to physical address translations.
The CPU triggers remote memory access by a load or store operation, which is
translated into a programmed I/O (PIO) read or write operation on the global
address space. Ultimately, the load/store operation is encapsulated in a network
packet and sent over the network to the target node.

41

3 Extoll System Environment

Originally, HyperTransport (HT) [63] was chosen as the interface between the
SMFU’s communication engine and the host system, but has been replaced with
PCI Express. The main reason for this is that HT is not available anymore, since
AMD changed their processor design. The communication engine passes transactions
(e.g., non-posted reads and posted writes) from the origin to the target node. A
transaction can be divided in several sub-tasks, including target node determination
and address translation. There are three different address spaces in the SMFU
architecture: one global address space and two local address spaces (target and
origin). All three address spaces are traversed by a remote memory access. To avoid
unnecessary latency overhead, a simple yet efficient translation scheme is used.
The simplest way to utilize the SMFU is the interval configuration. For each

interval, the start (iStartAddr) and end (iEndAddr) addresses, and the respective
nodes are stored in the Extoll register file. In addition, the target address (tStartAddr)
is configured, which points to the start of the local shared memory segment and
incoming requests are forwarded to this address. As depicted in Figure 3.1, the
SMFU has two sub-units, the egress and the ingress unit. Load and store requests to
an address (oAddr) residing in the SMFU BAR are forwarded to the egress unit. For
example if this address hits interval n, the global address (gAddr) can be calculated
by subtracting the start address of interval n (iStartAddrn) from the origin start
address (oAddr), as shown in Equation 3.1.

gAddr = oAddr − iStartAddrn (3.1)

After matching gAddr with the node the interval is assigned to, the load/store
operation is transparently encapsulated in a network packet. On the target node, the
ingress unit calculates the target destination address (tAddr) in the following way:

tAddr = (gAddr + tStartAddr) (3.2)

The interval configuration only supports a limited number of intervals, currently 64
intervals. To cope with this limitation, it is possible to use an address mask, which
encodes the target node in the global address (gAddr). The target node identifier
is then determined by (1) applying a bit mask to the global address, and then, (2)
performing a bitwise right shift operation (refer to Equation 3.3). The resulting
value represents the target node identification (tNodeID).

tNodeID = (gAddr & mask) >> shift_count (3.3)

42

3.2 Functional Units

TLB

Control Logic

Internal GAT
base table

GAT base

Functional
Unit

Global Address
Table

GAT Entry

Process

Kernel
Code

Re
qu

es
t t

ra
ns

la
tio

n

Issue command

Register/
unregister
memory

GAT Entry Format
3 2 1 0

VDVPID [11:2]Physical Address [31:12]

Physical Address [51:32]Reserved [58:52]Size [63:59]1

0

Byte

Q
ua

dw
or

d

Extoll NIC Main Memory CPU

1

2

3

4

5

6 7

8

9

10

11

Insert/d
elete

Fetch on miss

In
de

x

Figure 3.6: ATU address translation overview [55].

On the target side, the target address (tAddr) can be computed by (1) applying the
inverted mask to the global address, and then, (2) adding the start address of the
target local shared memory region (tStartAddr):

tAddr = (gAddr & ∼ mask) + tStartAddr (3.4)

3.2.5 Address Translation Unit

The Address Translation Unit (ATU) [55, 64] translates physical addresses residing
in the main memory into Network Logical Addresses (NLAs), which are mapped
into the address space of a functional unit. An NLA can be compared to a virtual
address in the context of the operating system. The ATU basically acts as a memory
management unit for the Extoll NIC.
Before an NLA can be used, it has to be decoded, because the translations are

based on Network Logical Page Addresses (NLPA). An NLPA logically addresses a
memory area called Network Logical Page (NLP), which by default has the size of
a single 4 KB page, but also supports 8 KB, 64 KB, 2 MB, and 1 GB page sizes.
NLAs are mainly used for bulk data transfers through the RMA unit.

43

3 Extoll System Environment

The ATU features two levels of translation. The first level is performed on chip in
the internal global address (GAT) table, which is implemented as an SRAM and can
hold up to 1024 entries. Each entry can point to an in main memory GAT, which
is 2 MB in size and can map up to 218 NLPs. Figure 3.6 displays the layout of an
NLA. In addition, it outlines the address translation process. The following steps
describe how a process registers and uses NLAs [55]:

(1) A process invokes the memory registration function of the kernel code.

(2) The kernel code allocates an empty GAT entry (GATe) and writes it into the
main memory. An entry consists of the physical page address, the VPID, access
restriction bits (denoted as VD), and the actual page size. For example if the
size field contains a value of nine, the NLP size is 29 ∗ 4 KB = 2 MB.

(3) The index of the allocated GATe in the GAT is returned to the process.

(4) The requesting process can now use the GATe index to communicate the
memory location to the Extoll device.

(5) In order to issue a request, the process sets up a software descriptor, which
references the mapped memory by passing the GATe index, also referred to as
software NLA. The VPID is passed indirectly through the functional unit by
means of the physical address space used to issue the command.

(6) The request arrives at a functional unit.

(7) The functional unit forwards the GATe index and the VPID to the ATU.

(8) The ATU performs a translation look-aside buffer (TLB) lookup. In case of an
TLB miss, the base address of the GAT to be used can be calculated by using
the high-order bits of the NLA as index into the GAT base table.

(9) The TLB performs a lookup using the NLA and verifies the VPID and access
permissions. If the TLB lookup returns successfully, the entry can be used.

(10) Otherwise, a single 64-bit read operation from the main memory is sufficient
to return the corresponding NLA to the TLB.

(11) Upon successfully completing all checks, the translation is returned to the
requesting functional unit, which continues with processing the request.

Two types of physical buffers can be pinned over the ATU: physically contiguous
memory windows and pinned page lists. Page lists must consist of filled pages. The
data can start at an offset into the first page (first byte offset) and can end on a
non-page boundary, i.e., the last page may be partially filled. The ATU can be used
to mimic scatter/gather I/O.

44

3.2 Functional Units

PCIe Bridge

HTAX
Bridge

PCIe
IP Core

V
e

n
d

o
r

La
ye

r

TX Translator

Backdoor

PCIe
Link

Register
File

RX Translator

Forward Logic

HTAX / HToC Interface

RFS Interface

Figure 3.7: Overview of the PCIe Bridge unit [65].

3.2.6 Register File

The Extoll Register File [64], also known as Control and Status unit, serves as the
central component and storage for control and status functions such as configuration
settings, module debug information, and performance counters. Complex hardware
designs such as Extoll have many different configuration settings and control options,
which need to be adjusted in order to use the hardware. The register file can be used
to configure the Extoll NIC, but also the retrieve debug and status information.

3.2.7 PCIe Bridge

The PCIe Bridge [65] is located in the on-chip network of Extoll’s network interface.
The functional unit is responsible for translating PCIe packets into HyperTransport
On-Chip (HToC) [66] packets and vice versa. An overview of the unit is shown in
Figure 3.7. The module consists of several submodules. Of interest for this work are
the Register File, the PCIe Backdoor interface, and the Forward Logic.

PCIe Bridge Register File The PCIe Bridge is connected to the register file, which
among other things stores the buffer space for packets that are either received by
the forward logic or sent by the PCIe backdoor. The PCIe Bridge register file is
implemented as a random access memory (RAM). Table 3.2 presents an overview of
the registers that are needed to configure and use the PCIe backdoor.

PCIe Backdoor The PCIe Backdoor is used to inject software controlled packets
into the outgoing PCIe traffic for configuration or debug purposes. The PCIe
Backdoor has an internal 64-bit wide RAM to store application controlled packets.
The RAM is managed by the PCIe Backdoor, but also has a connection to the
register file. The PCIe Backdoor reads packets from the internal RAM and the
register file writes packets to it. The internal RAM has only one port for read and
write access so overlapping requests from both sources have to be prioritized. A finite

45

3 Extoll System Environment

Table 3.2: Overview of PCIe backdoor registers needed for configuration.

Register Name Description
pcie_to_htoc_cfg This register stores the control information

about which packets should be extracted
from the PCIe receive traffic and stored to
the pcie_to_htoc_data register.

htoc_to_pcie_backdoor_control To initiate a PCIe backdoor transaction, an
application needs to write the length of the
packet to this register followed by setting the
send bit to one.

htoc_to_pcie_backdoor_data This register serves as a data buffer for PCIe
packets, which will be injected by the PCIe
backdoor. It can hold a four double word
header and up to 32 double words of payload.

pcie_to_htoc_backdoor_info To inform an application that a PCIe packet
has been forwarded to and stored in the
register file, this register holds a valid bit
that must be polled by the application. It
also stores the number of read accesses to
the pcie_to_htoc_backdoor_data register,
which are necessary to retrieve the whole
packet. The register is implemented as a
first in, first out (FIFO) buffer. Each read
access to the register removes one entry from
the FIFO (destructive read).

pcie_to_htoc_backdoor_data This register allows access to the PCIe to
HTOC backdoor receive interface, which is
implemented as a FIFO buffer. A read re-
turns the first value of the FIFO and removes
the entry from the buffer.

state machine prioritizes read requests from the PCIe Backdoor over write requests
from the register file. After the PCIe Backdoor has injected the packet into the
outgoing traffic, the outstanding write requests from the register file are processed.

Forward Logic The Forward Logic is located in the RX translator. According to
the options specified in the pcie_to_htoc_config register, PCIe packets from the
received PCIe traffic are either stored in the pcie_to_htoc_backdoor_data register,
forwarded to the HTAX Bridge or dropped.

46

3.3 Software Environment

Basedriver

ATU

Driver

User Application

libVELO

Middleware & Library

(i.e., MPI, GasNET)

Extoll Hardware

VELO RMA
Register

File
ATU

User

Space

NIC

Kernel

Space

Application Management

libRMA

RF

Access

RMA

Driver

VELO

Driver

EMP

PCIe

Config-

space

libSMFU

SMFU

Driver

SMFU

Kernel

API

Figure 3.8: Overview of the Extoll software environment.

3.3 Software Environment
The Extoll software environment comprises of several different layers, as depicted
in Figure 3.8. The following sections describe the kernel and user space software
components, but also introduce the Extoll management program.

3.3.1 Kernel Space

The kernel space side of the software stack consists of several kernel modules. extolldrv
is the base driver, which controls the hardware and initializes the device. The other
modules are built on top of it to provide different functionality and access to the
functional units.
velodrv implements the kernel interfaces used by libVELO and the kernel API.

rmadrv implements the kernel interfaces used by libRMA and the kernel API.
extoll_rf provides the sysfs interface to the register file. smfudrv provides access to
the SMFU functionality and resources. The kernel API module, as indicated by the
name, provides a kernel API, which exports functions for RMA and VELO to be
accessed by other kernel code and modules.

47

3 Extoll System Environment

To react to the different interrupt sources, Extoll’s interrupt handler can register
callback functions for the different trigger event groups. This allows not only to
react to internal events causing the interrupt, it can also be used to install callback
functions to handle interrupts received from a device connected to the remote NIC.
Registering and de-registering these callbacks is part of the kernel API too.

3.3.2 User Space

To expose Extoll functionalities to user space applications, Extoll provides three
libraries, libVELO, libRMA and libSMFU, which provide an API to Extoll’s respective
functional units. They allow to establish connections to a process on the remote
node, send and receive messages and finally de-register the connection.

Extoll exposes its register file to the user via the pseudo file system sysfs provided
by the Linux kernel, creating one file for every register in the register file.
The user space software stack also provides a native Extoll OpenMPI imple-

mentation by providing a Matching Transport Layer (MTL) for Extoll, which is
implemented on top of libRMA and libVELO. An OpenMPI MTL typically provides
device-layer support for transfer of MPI point-to-point messages over devices that
support hardware or library message matching.

3.3.3 EMP: Network Discovery and Setup

The Extoll Management Program (EMP) serves to fulfill tasks such as routing setup,
network surveillance, and management of network resources like multicast groups.
Extoll can be used to build commonly used topologies such as mesh and torus or
individual non-standard ones. Either way, each NIC’s routing table must initially be
configured for network operation.
EMP supports two different types of network configuration modes: discovery

based and topology file based. The discovery based mode provides an auto-detection
mechanism of connected Extoll devices and creates the topology automatically. In
addition, the topology file based mode can be used to verify that all devices are
connected in the expected way or to setup customized network topologies. For both
modes, EMP assigns unique node identifiers to every NIC and initializes the routing
table entries according to the desired routing scheme.

48

3.4 Related Interconnection Standards

Send Queue

Recv Queue

Completion
Queue

Doorbell

PCIe Root

CPU

Caches

CPU

System
Memory

PCIe
Switch

InfiniBand
HCANetwork

Registers

PCIe

Memory
Bus

Infini-
Band

PCIe BAR

R
R

W

M

W

W

R

W

W = Write R = Read M = Memory Mapped I/O

System
Memory

Figure 3.9: Overview of Infiniband HCA system integration.

3.4 Related Interconnection Standards
While the Extoll technology forms the basis for this work, the Infiniband interconnect
and PCI Express are two fundamental interconnection standards in today’s HPC
systems. They key concepts are introduced in the following sections.

3.4.1 Infiniband

The Infiniband architecture [67] is an industry standard developed by the InfiniBand
Trade Association (IBTA) and was originally designed to replace the Peripheral
Component Interconnect (PCI) and Ethernet in HPC systems. In recent years, it has
become a popular interconnect technology choice with currently being deployed in 28%
of the systems listed in the TOP500. The vast majority of Infiniband implementations
come as indirect, switch-based networks. The most common network topologies
are both fat tree and dragonfly. Figure 3.9 displays an overview of the Infiniband
system integration and processor interface. Similar to the Extoll NIC, the Infiniband
NIC, also commonly known as the Host Channel Adapter (HCA), implements the
descriptor-based approach to interface the processor. Typically, an HCA is connected
through PCI Express. When the Infiniband HCA is initialized, a queue pair (QP)
is allocated in the main memory with one queue serving send and another queue
serving receive work requests. For instance, when the processor wants to transmit
data to another node, it creates a descriptor for the work request and enqueues it

49

3 Extoll System Environment

Table 3.4: Infiniband versus Ethernet performance comparison.
Interconnect Latency [us] Bandwidth [GB/s]

Ethernet 1G [68] 47 0.112
Ethernet 10G [68] 12 0.875

Infiniband QDR [68] 1.6 3.23
Infiniband EDR [69] 0.6 12.5

into the send queue. To signal the availability of a new work item to the HCA, the
processor needs to write to a doorbell register, which in turn notifies the HCA. The
HCA then reads the descriptor and processes it from the send queue through direct
memory access (DMA). When the transaction is complete, the HCA generates a
notification and writes it into the completion queue, which is frequently queried by
the processor. The receiving data path has an analogous workflow. A descriptor is
enqueued into the receive queue. Then, the processor triggers the transmission by
writing to a doorbell register.

Table 3.4 provides a performance comparison of different Infiniband and Ethernet
generations. As can be seen, Infiniband is superior to 1G and 10G Ethernet in terms
of bandwidth and latency. Even though, both Ethernet generations are still deployed
as their cost is relatively low and typical cluster deployments need thousands of NICs
and hundreds of switches.

Applications designed for Infiniband clusters typically rely on Verbs [70] to describe
RDMA functionality. Verbs is not an actual API, but a low level description for
RDMA programming. It is close to the “bear-metal” and can be used as a building
block for many applications such as sockets, storage and parallel computing. Verbs
can be divided in two groups: control path and data path. The control path manages
the resources and requires context switches, while the data path uses the resources
to send/receive data. libibverbs [71] is an open-source Verbs implementation and has
become the de-facto standard for *nix operating systems.

3.4.2 PCI Express

The Peripheral Component Interconnect Express (PCI Express or PCIe) [72, 73]
standard describes a high performance, general purpose I/O interconnect standard,
which is designed to connect peripheral devices and processors within a node. It was
designed as a replacement for the older Peripheral Component Interconnect (PCI)
bus standard and its extension PCI-X (PCI eXtended). The PCI Express standard
maintains several PCI key attributes including the usage model, the load/store

50

3.4 Related Interconnection Standards

Root Complex

PCIe
Endpoint PCIe Bridge

to PCI/PCI-X
Switch

PCIe
Endpoint

PCIe
Endpoint

Legacy
Endpoint

Legacy
Endpoint

CPU

PCI/PCI-X
Endpoints

Memory

Figure 3.10: PCIe topology.

architecture, and the software interfaces, while the parallel bus implementation is
replaced with a high-speed serial point-to-point interface. Nowadays, PCIe is the
de-facto standard to connect add-in cards, such as graphics cards, to a computer,
which makes it the fundamental technology for the NAA approach. Unlike older
PCI standards which described an actual bus standard with several devices attached
to it, PCIe devices are directly connected by point-to-point links. Depending on
the bandwidth requirements, these links can consist of 1, 2, 4, 8, 12, 16 or 32
lanes, which in turn consist of one differential signal pair for each direction. An
important feature of the PCIe design is the software backward compatibility with
older standards. Operating systems and device drivers written for PCI devices are
capable of operating PCIe devices without noticing any difference, as long as none
of the new PCIe features are required. One aspect of this compatibility is that
the PCIe device hierarchy is logically organized as a tree, just like PCI. Each PCI
or PCIe device in a system is identified by a bus number, a device number and a
function number. An example hierarchy is depicted in Figure 3.10. Typically, a
PCIe hierarchy consists of several different components, including a root complex,
switches, and endpoint devices.

Link A link is the physical connection between two devices. As described before,
links can consist of varying number of lanes to suit different requirements.

Port A device’s interface to the link is called port. It can either be an upstream
port pointing towards the root complex or downstream port.

Switch Switches are the building blocks of the PCIe topology. They have one
upstream port and several downstream ports. Internally, a switch consists of

51

3 Extoll System Environment

one or more virtual PCI-to-PCI bridges, each connected to one of its ports.
This way, despite offering only point-to-point connections to their neighboring
devices, switches can build a tree structure and appear to the operating system
as one or more PCI-to-PCI bridges to assure software-compatibility with PCI.

Root Complex The root complex is the root of the PCIe hierarchy and connects
the hierarchy to the CPU and system memory. It is responsible for creating
PCIe transactions when the CPU wants to access a device. It can contain
several downstream ports. Similarly to a switch, the ports of a root complex
are internally connected by virtual bridges on an internal bus.

Endpoint Devices Endpoint devices are leaves in the PCIe device tree. Examples
are peripheral devices like graphics cards, network devices or storage devices.

Root Port A root port is a port of the root complex.

3.5 Performance Overview
This section provides a summary of the performance comparison between the Extoll
technology and Infiniband FDR cards [13, 14]. The latency and bandwidth results of
the Extoll interconnect will serve as a reference point throughout this work.

3.5.1 Test Setup

The system comprises of two DL380 HP servers each equipped with an Intel Xeon
CPU E5-2620 v3 (12 cores per socket) running at 2.4 GHz and 64 GB of main
memory. Both systems host an HP ConnectIB FDR card and an Extoll Tourmalet
100G card.

The servers run CentOS 7.1 as their operating system. For the Infiniband cards, the
Mellanox OpenFabris Enterprise Distribution version 3.0-1.01 provides the software
environment while Extoll utilizes its own software stack release version 1.3.1.

The network cards are evaluated with the OSU Micro-Benchmarks (OMB) suite [74].
The benchmarks of interest are the point-to-point MPI benchmarks, which provide a
measure for latency, multi-threaded latency, multi-pair latency, multiple bandwidth
and message rate, bandwidth and bidirectional bandwidth. The ConnectIB FDR
cards are evaluated with the MPI implementations MVAPICH 2-2.1 and OpenMPI
1.8.5, while Extoll is tested with its OpenMPI 1.6.1 MTL implementation.

52

3.5 Performance Overview

(a) MPI latency. (b) MPI bandwidth.

Figure 3.11: MPI performance overview.

3.5.2 Performance Results

Figure 3.11a displays the latency results obtained with the OMB osu_latency
benchmark. It is notable that for small messages Extoll’s latency is 0.81us while
ConnectIB with OpenMPI MXM achieves 0.93us. But, Infiniband values are back-
to-back. Realistically, a switch has to be included in the latency calculation which
would result in 1.13us. For large messages, Extoll outperforms Infiniband in terms of
latency. It is 191us faster than the fastest Infiniband MPI implementation.
Figure 3.11b presents the bandwidth results collected with the OMB osu_bw

benchmark. The ConnectIB FDR cards reach about 6.7 GB/s with OpenMPI MXM
and OpenMPI on Verbs (BTL), while MVAPICH only provides about 4.5 GB/s.
Extoll is about 20% faster than ConnectIB FDR and reaches 8.9 GB/s bandwidth
with its OpenMPI MTL implementation.

53

C
h

a
p

t
e

r

4
Network-Attached Accelerators

The trend in supercomputing development shows that every decade the computing
power of HPC systems increases by a factor of ten. With the upcoming Exascale
challenge, the design of such systems poses multiple challenges, including power
demands and consumption, the gap between compute capabilities and I/O bandwidth
(also known as the memory wall), and higher hardware failure rates as the systems
grow in scale. Another challenge is imposed by the extreme concurrency and efficient
utilization of the heterogeneous computing resources. By adding accelerator devices
such as many-core processors (coprocessors) or general purpose graphics processing
units (GPGPUs) to a cluster, the overall energy and cost efficiency can be improved.
They offer an unprecedented computational power per watt (Flop/s per Watt). Yet,
the current generation of accelerator devices requires a host CPU to configure and
operate them, which limits the number of accelerators per host and results in a static
arrangement of hardware resources.

This chapter introduces the Network-Attached Accelerator (NAA) approach, which
moves accelerators into a “stand-alone” cluster connected through the Extoll inter-
connect. The novel communication architecture enables the direct communication
between accelerators through a high-speed network without any host interactions and
an optimal application-to-compute-resources mapping, e.g., through the extension
of the batch system capabilities [75]. The architectural idea is derived from the
Dynamical Exascale Entry Platform (DEEP) project [76]. This chapter summarizes
and extents various contributions to international conferences [9, 11, 10].
The remainder of the chapter is structured as follows. First, some background

information about the DEEP project series and the PCI Express subsystem are

55

4 Network-Attached Accelerators

0

20

40

60

80

100

120

N
u

m
b

er
 o

f
A

cc
el

e
ra

to
rs

TOP500 Release (Year/Month)

PEZY

AMD/ATI GPU

Intel MIC

NVIDIA GPU

Figure 4.1: Accelerator development trend in the TOP500 since 2011.

presented followed by a summary of related work. Afterwards, the design objectives
and strategy of the NAA software environments are presented and implemented for
two different system setups: the DEEP booster and the VPCI project. For both
implementations, an initial performance evaluation is presented.

4.1 Motivation
To satisfy the ever growing computational demands, many technologies and con-
cepts have been developed and explored. The common scheme is to maximize the
exploitable parallelism, which requires more computational power and high-speed
internode communication in a large-scale system. Another important metric for
efficient parallelization is scalability. A scalable system adapts well to increasing
levels of parallelization without introducing significant bottlenecks. Considering this
development cycle, it is questionable whether CPUs will be competitive in the future.
Accelerator devices such as GPGPUs or coprocessors offer an unprecedented compu-
tational power per watt, while being optimized for massively parallel computation.
The use of accelerator devices can significantly increase the system performance while
providing energy efficiency. Therefore, it comes as no surprise that accelerators have
been widely adopted in HPC systems and are subject to ongoing research efforts.
Many systems in the TOP500 [4] comprise of heterogeneous architectures, which

combine multi-core CPU nodes with a small number of accelerator devices directly
plugged into the node. A total of 110 systems in the current TOP500 list (June
2018) are using either coprocessor or GPU technology, including Summit, Tianhe-2A,
Titan, and Piz Daint in the TOP10. Figure 4.1 displays the development trends
in the TOP500 since 2011. However for accelerator devices to operate efficiently,
sufficient utilization is important, which in turn requires fast network communication.

56

4.2 DEEP Project Series

Typically, the network efficiency is measured in terms of latency and bandwidth.
High throughput is required to provide an accelerator with sufficient data to work
on, whereas latency is particularly important for synchronization.

Network communication is one of the main bottlenecks, which can introduce signif-
icant limitations on the efficiency of a computing cluster. When using accelerators,
this is particularly important for peer-to-peer communication between local, but also
remote, accelerator devices. Typically, remote accelerator communication must pass
through the host’s switch, interconnect, or memory and requires direct interaction
with the host CPU. Also, accelerators are not designed to run autonomously and
do not come with their own integrated network interconnect. Therefore, they are
incapable of sourcing or sinking network traffic, which drastically limits the workload
distribution and communication. Taking all of this into account, the scalability of
host-centric accelerators is significantly limited. In addition, Amdahl’s law [77] states
that the scalability of a parallel code is limited by its sequential part. In reality, the
problem size scales with the size of the system. E.g., if a scientific application is run
on a system twice as capable, the system is not used to execute the application in
half the time but to address a problem twice as big.

Future HPC systems have to be able to run applications with a varying degree of
scalability and complicated communication patterns. The NAA approach proposes
such a novel architectural idea, which is designed to provide a dynamic compute
resource mapping at runtime satisfying the needs of large-scale applications.

4.2 DEEP Project Series
The DEEP project series [78] addresses the research of Exascale computing challenges
following a stringent co-design approach. The series comprises of the three EC-funded
projects DEEP, DEEP – Extended Reach (DEEP-ER), and DEEP – Extreme Scale
Technologies (DEEP-EST). DEEP, the first project of the series, introduced a new
heterogeneous computer architecture called the Cluster-Booster concept [79], [80], [81],
as depicted in Figure 4.2. DEEP-ER [82] extended the Cluster-Booster architecture
by implementing a multi-level memory hierarchy introducing non-volatile memory
devices for efficient I/O buffering and checkpointing, and network-attached memory
(NAM) [58]. DEEP-EST, the final edition of the DEEP project series, combines
previous work by introducing the Modular Supercomputing Architecture [83].

Of particular interest for this work is the Cluster-Booster architecture. The basic
idea is to split the architecture into a standard cluster and a booster. A cluster

57

4 Network-Attached Accelerators

XEON

XEON

XEON

XEON

KNC

KNC

KNC

KNC

KNC

KNC

KNC

KNC

KNC

KNC

KNC

KNC

B
o

o
st

e
r

In
te

rf
a

ce

Interconnection
Network

Cluster
Booster

Extoll Network

Figure 4.2: The DEEP Cluster-Booster concept.

consists of Compute Nodes (CNs), which are built from low-cost commodity of the
shelf (COTS) components. The CNs are connected through a highly flexible switched
network to a booster with an independent number of Booster Nodes (BN). A BN
consists of an accelerator device and an Extoll NIC, and requires no direct host
connection. The Booster Interface (BI) nodes are nodes that act as bridges between
the two different interconnection network types. The Cluster-Booster concept is
designed to overcome the limitations of current accelerator-based architectures. There
are several advantages resulting from the innovative approach. BNs can directly
communicate with other BNs and CNs. The distribution of workload is not fixed.
The assignment between BNs and CNs can be decided during the runtime of an
application in an N to M fashion. The CNs contain multi-core, out-of-order CPUs
for executing scalar code while the booster needs less energy when running highly
scalable code. There are different possible use cases for the proposed architecture.
Depending on the code, the booster can run highly scalable applications without any
host system interaction, but can also be assigned to specific CNs.

4.3 Introduction to the PCI Express Subsystem
The following sections provide a brief overview of the PCI Express address spaces,
the Linux enumeration process, and two accelerator device architectures. The
knowledge is needed to understand the requirements and design strategy of the
Network-Attached Accelerator approach.

58

4.3 Introduction to the PCI Express Subsystem

4.3.1 PCI Express Address Spaces

The PCI Express standard describes three address spaces: I/O space, memory-
mapped I/O (MMIO) space and configuration space. All three address spaces are
accessible by the CPU. The I/O and MMIO address spaces are used by the device
drivers and can also be accessed by other devices while the configuration space is
used by the PCI initialization code within the Linux kernel. The I/O space serves the
same purpose as the MMIO space, but is only of interest when using legacy devices.
In addition, PCIe introduces message transactions, which are intended to provide
in-band support for features like legacy interrupts and error handling, making the
need of extra lines unnecessary and reducing the number of required pins compared
to previous PCI bus standards. The I/O space and messages are only required for
legacy devices.

4.3.1.1 Memory-Mapped I/O Space

Memory-mapped I/O uses the same address space to address both memory and I/O
devices. The memory and registers of I/O devices are associated with address values.
When an address is accessed by the CPU, it may refer to a portion of physical RAM,
or it can instead refer to the memory of an I/O device. Thus, the CPU instructions
used to access the memory can also be used for accessing devices. When the CPU
wants to access one of these addresses, the root complex generates a transaction
request and sends it to the device. The content and organization of MMIO space is
device-specific. PCIe only provides the specification of the available MMIO space
types and how a device requests memory from the system. For this purpose, each
PCIe device has a set of Base Address Registers (BAR). These registers are located
in the configuration space.

4.3.1.2 Configuration Space

The configuration space of a PCI Express device consists of a set of registers. These
registers are used by configuration software to retrieve the status information, but
also to configure its operation. To generate configuration transactions, the PCIe
specification describes two mechanisms that allow configuration software running on
the CPU to stimulate the root complex:

• the PCI compatible Configuration Access Mechanism (CAM), and

• the PCI Express Enhanced Configuration Access Mechanism (ECAM).

59

4 Network-Attached Accelerators

Base Address 0

Base Address 4

Expansion ROM Base Address

Base Address 1

Base Address 2

Base Address 3

Base Address 5

CardBus CIS Pointer

Reserved

Subsystem
Vendor ID

Subsystem
Device ID

Device ID Vendor ID

Status
Register

Command
Register

IRQ
Line

IRQ
Pin

Min
GNT

Max
Lat

Capab.
List

Revi-
sion ID
Cache
Line

Latency
Timer

Header
Type

BIST

Class Code

00

0

Reserved

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

123

Double Word
Number

(in decimal)Byte

Required configuration registers

64-Bytes
PCI Configuration

Header Space

192-Bytes
Capability
Structures

256-Byte
Configuration Register
Space (per Function)

Type 0 Header

Base Address 0

Expansion ROM Base Address

Base Address 1

Prefetchable
Memory Limit

Prefetchable Limit
Upper 32 Bits

I/O Base
Upper 16 Bits

I/O Limit
Upper 16 Bits

Device ID Vendor ID

Status
Register

Command
Register

IRQ
Line

IRQ
Pin

Bridge Control

Capab.
List

Revi-
sion ID
Cache
Line

Latency
Timer

Header
Type

BIST

Class Code

00

0

Reserved

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

123

Double Word
Number

(in decimal)Byte

Prefetchable Base
Upper 32 Bits

Prefetchable
Memory Base

Memory Limit Memory Base

I/O
Base

I/O
Limit

Secondary
Status

Secondary
Latency
Timer

Subordi-
nate Bus
Number

Secondary
Bus

Number

Primary
Bus

Number

Type 1 Header

Figure 4.3: PCI Express configuration space header types [73].

Historically, the PCI configuration space was limited to 256 bytes, but has been
extended to 4 KB for PCIe. Therefore, the first 256 bytes are referred to as PCI-
compatible space, the rest builds the PCI Express extended configuration space. The
first 64 bytes of the PCI-compatible space contain the PCI configuration header,
which has a standardized set of registers, whereas the rest contains device-specific
information and the capabilities list.

Header Types PCIe devices can be distinguished in bridge devices and endpoint
devices. To serve their different purposes, they have different configuration space
headers: header type 0 for endpoint devices and header type 1 for bridges. Figure 4.3
provides on overview of the header types.

Base Address Registers BARs contain the start addresses of the device’s MMIO
windows. Every endpoint device contains six 32-bit wide BARs, which can either
be MMIO or I/O regions. Alternatively, two registers can be combined to address

60

4.3 Introduction to the PCI Express Subsystem

Upper 32 Bits of Base Address Lower Part of Base Address 01 0reserved

03 2 16 47313263

Prefetchable
Type

00 – 32 bit decoder, locate anywhere in lower 4GB.
01 – reserved.
10 – 64-bit decoder, locate anywhere in 264 memory

space (implies this register is 64-bits wide and
consumes next dword of config space as well
as this one).

11 – reserved.

Memory space indicator

Figure 4.4: Base address register.

a 64-bit memory region. The least significant bits indicate the type of a BAR, as
shown in Figure 4.4. If a BAR is 64-bit wide, its upper bits form the least significant
32 bits of the 64 bit address, whereas the next BAR contains the most significant 32
bits. If a BAR is prefetchable, a bridge is allowed to prefetch memory for improving
read request performance. For PCIe endpoint devices, only 64-bit memory BARs
can be configured as prefetchable. The address stored in a BAR register is assigned
by the system configuration software. First, the software needs to query the size.
This is done by writing 1s into the register, and then, reading back the result. The
lowest writable bit indicates the size and alignment of the address range.

Expansion ROM Base Address Register The PCIe specification defines a mech-
anism where devices can provide expansion ROM code that can be executed for
device-specific initialization and, possibly, a system boot function before any oper-
ating system or device drivers are loaded. The Expansion ROM BAR stores the
address of such an expansion ROM. Similar to the BAR, device independent software
can determine the size of the address space by writing a value of all 1’s to the address
portion of the register, and then, reading the value back.

MSI Capability Register Set PCIe devices are required to support the Message
Signaled Interrupts (MSI) mechanism. MSI is an in-band method for signaling an
interrupt and is designed to replace traditional out-of-band assertions of dedicated
interrupt lines. They eliminate the need to implement extra pins for signaling
interrupts. To trigger an interrupt, a device simply sends a memory write request to
the root complex, which in turn signals an interrupt to the CPU. On the transaction
layer, an MSI cannot be distinguished from a memory write request, but its content
can be differentiated from other transactions. The differentiation can be made based
on the address the MSI is written to on the root complex. To enable a device’s MSI

61

4 Network-Attached Accelerators

Message Control Register Pointer to Next ID Capability ID = 05h

078151631

Least Significant 32-bits of Message Address Register

Most Significant 32-bits of Message Address Register

0 0

Message Data Register

Dword 0

Dword 1

Dword 2

Dword 3

reserved

24

Figure 4.5: MSI Capability register set for 64-bit address size.

capability, the target address, the payload written to the target address, and the
number of messages needs to be configured . The configuration is stored in the MSI
capability register set, which is located in the PCIe configuration space. Figure 4.5
shows such a register set. There are two formats defined by the PCIe specification,
one for 64-bit and one for 32-bit addresses. The description focuses on the 64-bit
format.

The Message Address Register comprises of two 32-bit values, which specifies the
DWORD-aligned address for the MSI memory write transaction. The Message Data
Register configures the payload of the MSI memory write. The Message Control
Register indicates the function’s capabilities and provides system software control
over MSI. If the MSI enable bit in the message control register is set to 1 by the
system configuration software, the device is permitted to use MSI.

4.3.2 Linux PCI Express Enumeration

At boot time, the topology of the PCIe device hierarchy is unknown to the operating
system. In order to find and configure all connected PCIe devices, the configuration
code, typically the Basic Input/Output System (BIOS) or its successor the Unified
Extensible Firmware Interface (UEFI), performs a depth-first search until all devices
are discovered. This process is called enumeration. The following steps outline the
generic steps performed by the enumeration process for a single root complex:

(1) The only bus known at boot time is the primary PCIe bus 0, which is the internal
bus inside of the root complex. Each newly discovered bus is consecutively
numbered by the configuration code.

(2) If the current bus has any devices attached to it, they are initialized and
numbered incrementally starting with 0.

(3) For any device, it is required that the first function number is set to 0. If it is
a multi-function device, the remaining functions can have any number between
1 and 7, and are not required to be numbered consecutively.

62

4.3 Introduction to the PCI Express Subsystem

Root complex Host
bridge

Root port Root port Root port

Bridge Bridge

EndpointEndpoint

bus 0

bus 1

bus 2

bus 3

bus 4

dev 0 dev 1 dev 2

dev 0

dev 0 dev 0dev 1

dev 1

Endpoint

(a) PCIe hierarchy after the Linux
initialization process.

$ tree /sys/bus/pci/devices

/sys/bus/pci/devices

 |--0000:00:00.0 -> …/…/devices/pci0000:00/0000:00:00.0

 |--0000:00:01.0 -> …/…/devices/pci0000:00/0000:00:01.0

 |--0000:00:02.0 -> …/…/devices/pci0000:00/0000:00:02.0

 |--0000:01:00.0 -> …/…/devices/pci0000:00/0000:01:00.0

 |--0000:02:00.0 -> …/…/devices/pci0000:00/0000:02:00.0

 |--0000:02:01.0 -> …/…/devices/pci0000:00/0000:02:01.0

 |--0000:03:00.0 -> …/…/devices/pci0000:00/0000:03:00.0

(b) Output of the command line tool tree
for the example hierarchy.

Figure 4.6: Linux PCI Express enumeration example.

(4) When a bridge device is discovered, the search continues recursively on the bus
connected to its downstream port and proceeds with step 2.

Figure 4.6a displays an example hierarchy configured by the described enumeration
process, while Figure 4.6b presents the output of the command line tool tree for the
example hierarchy. A detailed enumeration process example can be found in the
book PCI Express System Architecture [73]. As the Linux kernel initializes the PCIe
subsystem, it allocates data structures mirroring the real topology of the system.
Each PCIe device (also including the bridges) is described by a data structure of
type struct pci_dev and each bus is described by a data structure of type struct
pci_bus. The result is a tree structure of buses each of which have a number of child
PCIe devices attached to it. As a bus can only be reached using a bridge (except the
primary PCIe bus, bus 0), each PCI bus structure contains a pointer to the parent
device that it is accessed through. That PCIe device is a child of the PCIe bus’s
parent bus. With kernel version 2.6, the Linux kernel developers have introduced
a unified new device model to cope with increasing requirements and capabilities
of modern hardware, which is commonly referred to as the Linux Device Model [84,
chapter 14]. The Linux kernel utilizes the tree-like data structure describing the PCI
topology and exposes it to the user through the Linux device model, e.g., through
the sysfs virtual file system.

As described by Rusling [85], the Linux PCI (Express) initialization code is broken
into three logical parts: the PCI device driver, the PCI BIOS, and the PCI fixup.

PCI Device Driver The PCI device driver, not to be confused with a real device
driver, is a function of the operating system called at system initialization time.

63

4 Network-Attached Accelerators

The PCI initialization code performs the actual enumeration process and locates
all devices and bridges in the system. It utilizes the PCI BIOS code to determine
whether a slot of the currently scanned bus is occupied. If a PCI slot is occupied,
it allocates the corresponding data structure and links it into a double-linked list,
which describes the topology of the PCI Express system.

PCI BIOS The PCI BIOS provides a software layer for the services described in
the PCI BIOS specification. The functions are a series of standard routines which
are common across all platforms. They allow the CPU controlled access to all of the
PCIe address spaces. Only Linux kernel code and device drivers may use them.

PCI Fixup The system-specific PCI fix-up code tidies up loose ends of the initial-
ization. For Intel-based systems, the system BIOS, which ran at boot time, has
already fully configured the system. This leaves Linux with little to do other than
map that configuration. For non-Intel based systems, further configuration is needed.

4.3.3 PCI Express Expansion Cards

The PCI Express standard can be employed on different interconnect levels in the
system, e.g., as a motherboard-level interconnect, a passive backplane interconnect,
or as an expansion card interface for add-in boards. The primary purpose of
an expansion card is to provide or expand the features of a computing system.
Accelerator devices are typically implemented as expansion cards. In the following,
two popular accelerator device technologies are introduced, which rely on the PCI
Express standard.

4.3.3.1 Intel Many Integrated Cores Architecture

The Intel Many Integrated Cores (MIC) architecture [86] is a coprocessor technology
developed by Intel and commonly known as Intel Xeon Phi. Besides GPUs, it is one
of the most popular accelerator choices in today’s HPC systems. Figure 4.7 presents
a simplified architecture diagram of an Intel Xeon Phi coprocessor of the Knights
Corner generation. The Intel Xeon Phi provides up to 61 multi-threaded cores, each
with its own private L2 cache. The global distributed tag directory TD is used to
facilitate cache coherency. The GDDR5 device memory can be accessed through
four memory controllers. The host interface is PCI Express. All components are
connected through a ring interconnect.

64

4.3 Introduction to the PCI Express Subsystem

Core

L2 Cache

TD

Core

L2 Cache

TD
C

o
re

L2 C
a

ch
e

TD

C
o

re

L2 C
a

ch
e

TD

Core

L2 Cache

TD

Core

L2 Cache

TD

C
o

re

L2
 C

a
ch

e

TD

C
o

re

L2
 C

a
ch

e

TD

GDDR

G
D

D
R

GDDR

G
D

D
R

PCIe Client
Logic

...

...

...

..
.

Figure 4.7: Simplified architectural overview of an Intel Xeon Phi Coprocessor.

The Intel MIC architecture is based on x86 and provides its own embedded
Linux operating system, which allows the compilation of kernel modules. The Intel
Manycore Platform Software Stack (MPSS) is used on a host system to control and
operate connected MICs. It consists of an embedded Linux, a minimally modified
GCC and driver software for the Intel MICs. The Intel MIC architecture can be
used with different programming models for the MPI mode [87].

4.3.3.2 Graphics Processing Units

The NVIDIA GK110 Kepler GPU architecture [88] is a modern graphics processing
unit (GPU) architecture representative. The compute cores of a GPU are grouped
in Streaming Multiprocessor Units (SMXs). Depending on the implementation, a
graphics card relying on the Kepler architecture can comprise of up to 15 SMXs.
One SMX comes with 192 CUDA-cores with each of those cores running at a

maximum frequency of 0.71 GHz. They are complemented by double precision
units – special cores that can handle 64 bit operations –, load/store units (LD/ST),
and 32 special function units. The latter provide fast approximations for complex
mathematical operations, such as sinus, and trade speed for precision – they need to
be used explicitly by the programmer. Each SMX has 64 KB of on-chip memory
with 16 KB of L1 cache. SMXs share the same L2 cache with a size of 1536 KiB. Six

65

4 Network-Attached Accelerators

Figure 4.8: Nvidia’s Kepler GK110 architecture + DRAM.

64 bit memory controllers manage the communication between the L2 cache and the
on-board DRAM of the graphics card. The GigaThread Engine is NVIDIA’s global
scheduling unit that distributes work to the SMXs. A PCI Express 3.0 port enables
communication with other devices.

4.4 Related Work
The improvement and optimization of direct communication between accelerator
devices is one of the main research topics of current research. The following sec-
tions provide a selection of Intel Xeon Phi and GPU-related research efforts in the
communication domain followed by an overview of hardware-related research.

4.4.1 Intel Xeon Phi Coprocessor-based Communication Models

DCFA The direct communication facility for many-core based accelerators (DCFA)
[89] targets the implementation of direct data transfers for many-core architectures
and utilizes the InfiniBand technology. The internal structures of an Infiniband HCA
are mapped to memory areas of the host and the MIC. The MIC reads or writes
data by directly accessing the memory areas of a remote host or remote MIC. MPI
communication primitives executed on the MIC transfer data by issuing commands
to the HCA. The implementation is based on the Mellanox InfiniBand (IB) driver.
DCFA-MPI [90] provides an MPI implementation based on the DCFA framework for
direct peer-to-peer communication between remote Intel MICs.

66

4.4 Related Work

MVAPICH2-MIC MVAPICH2-MIC [91, 92] is a proxy-based communication frame-
work using InfiniBand and the symmetric communication interface (SCIF) [87]. Its
goal is to optimize the collection of communication paths possible in the symmetric
mode. The framework provides three different communication designs. DirectIB
provides direct MPI communication through the Coprocessor Communication Link
(CCL) driver of the MPSS software stack. The passive proxy handles host-staged
communication by setting up staging buffers, but is not directly involved in com-
munication between a MIC and a remote MIC. It utilizes the RDMA capability of
SCIF. The active proxy utilizes a dedicated processor core on the host. The one-hop
variant initiates and progresses communication that is staged through the host. SCIF
transfers are initiated on the host. The two-hop variant tries to utilize the high
bandwidth channels of the MIC. A MIC-to-remote-MIC transfer is staged to the
local host then to the remote host and finally to the remote MIC.

HAM and HAM-Offload HAM [93] is implemented as a C++ template library to
create type-safe heterogeneous active messages (HAM). Active messages can contain
or reference to code that should be run upon receipt. The main question is how to
translate between handler addresses of heterogeneous binaries with minimal cost.
HAM solves the problem by adding a level of indirection that is implemented in
pure C++ without any language extensions. The message handler registry acts
like a map between keys and handler addresses. Each process has the same set of
keys, but the handler addresses differ between the individually compiled binaries
for different instruction set architectures. The HAM-offload API [94] completes the
functionality of HAM with a unified intra- and internode offload API. It provides
similar primitives as other offload programming models. The framework is compiler
independent and provides communication backends for MPI and SCIF.

4.4.2 GPU Virtualization and Communication Techniques

rCUDA rCUDA [95] or remote CUDA is a framework for remote GPU virtualiza-
tion in cluster environments. It is fully compatible with the CUDA runtime and
transparently allocates one or more (local or remote) CUDA-enabled GPUs to a single
application. rCUDA implements a client-server architecture. On the client side, the
rCUDA wrapper library intercepts calls to the CUDA runtime and forwards them to
the server side. The rCUDA server daemon, running on each node, offers acceleration
services, receives the forwarded requests and runs the CUDA kernel. The software
overhead reduces the performance in comparison to pass-through technologies.

67

4 Network-Attached Accelerators

VirtualCL VirtualCL (VCL) [96] is very similar to rCUDA in its basic concepts.
It provides transparent access to accelerator devices on remote nodes and allows
applications to utilize accelerators on different nodes without requiring the application
to explicitly split its computations between these different nodes. The application
itself only runs on a single node and VCL executes OpenCL kernels on other nodes
when necessary. VCL consists of three components: the VCL library, the broker
and a back-end daemon. The VCL library implements OpenCL and transparently
accesses OpenCL devices on the cluster. The broker is a daemon running on each
host system. It is responsible for monitoring the availability of OpenCL devices
and allocates available devices for a client. It also manages communication between
applications and back-ends. The back-end daemon runs on every node that contains
usable accelerator devices. It uses vendor-specific OpenCL libraries to run OpenCL
kernels on its devices, when requested by a client.

NVIDIA Grid Front-End virtualization, as it is implemented by frameworks like
rCUDA or VCL, offers great flexibility and reduces the required hardware while
increasing the utilization of available devices, but comes with two major disadvantages.
First, there is an overhead due to the software involved on client and server side.
Second, these frameworks are completely tied to a specific API, like CUDA or
OpenCL. To avoid these problems, the NVIDIA Grid technology [97] offers back-end
virtualization for virtual machines. The NVIDIA Kepler GPU design implements
a memory management unit (MMU) and dedicated input buffers for each virtual
machine. This way, different virtual machines can simultaneously use a single
GPU without interfering with each other and without the software overhead of API
interception. NVIDIA Grid offers high performance without penalizing multiplexing.
However, special hardware support is required, restricting this technique to a limited
number of devices, which can be configured to support such a functionality.

GPUDirect RDMA GPUDirect RDMA [98] is a feature of the CUDA runtime
environment and was first introduced in Kepler-class GPUs with CUDA 5.0. This
technique provides a direct peer-to-peer data path between two GPUs by mapping
the GPU memory to one of the GPU’s BARs. Other peripheral devices can use this
physical address to communicate directly with the GPU. Remote RDMA communi-
cation is improved by removing unnecessary memory copies between GPU memory
and host memory. But, the ratio between CPUs and GPUs is still fixed.

68

4.5 NAA Software Design

Global GPU Address Space The Global GPU Address Spaces (GGAS) [99] concept
facilitates direct communication between distributed GPUs while bypassing the CPUs
for all communication and computational tasks. GGAS relies on thread-collective
communication, and therefore, maintains the GPUs bulk-synchronous, massively
parallel programming model. Furthermore, GGAS utilizes a zero-copy technique
for data movement between distributed GPU memories. This technique relies on
overlapping shared GPU memory segments with SMFU address space of the Extoll
NIC building a distributed shared, and therefore global, GPU address space. The
major limitation of this approach is the requirement that a GPU device needs to
support GPUDirect RDMA in order to span the global address space.

4.4.3 Hardware-related Research

The discussion about a cluster of accelerators was first introduced with the QPACE
supercomputer [100] prototype. QPACE was a massively parallel quantum chromo-
dynamics prototype enhanced by Cell BE processors. In 2010, QPACE was ranked
#1 on the Green500 list [101]. Other approaches tend to use PCIe (Peripheral
Component Interconnect Express) as the interconnection network between accel-
erators. Non-Transparent Bridges (NTB) [102], [103] connect independent PCIe
hierarchies of different nodes. Communication between accelerators relies on address
translation and table based addressing schemes inside the NTB. This introduces
additional management overhead and does not scale very well. In addition, PCIe
lacks of some interconnection network features. Advanced Switching Interconnect
(ASI) [104] tries to extend the PCIe protocol to support features such as protocol
tunneling, routing, and congestion management. The goal of independent scalabil-
ity of hosts and accelerators is not achieved with these approaches. Recently, the
NVIDIA NVSwitch technology [105] together with the NVIDIA DGX-2 system [106]
have been introduced. NVSwitch is an on-node switch with 18 NVLink ports per
switch. Internally, it is a fully connected crossbar. The NVIDIA DGX-2 utilizes the
NVSwitch technology to connect 16 NVIDIA Tesla V100 GPUs to one host system.

4.5 NAA Software Design
The NAA software design is tightly coupled with the architecture of the underlying
hardware. The following sections describe the general hardware architecture of NAA
and software requirements followed by an introduction to design and implementation
strategy of the NAA software environment.

69

4 Network-Attached Accelerators

AN0
Accelerator

Extoll Network (3D Torus)

...

CNi

Accelerator 0

Accelerator 1

Accelerator N
..

.

System ViewUser View

Extoll NIC

ANN
Accelerator

Extoll NIC

CN1 CNM...CN2

PCIe PCIe

Figure 4.9: NAA architecture diagram: system versus user view.

4.5.1 System Architecture and Problem Statement

The network-attached accelerators approach proposes a new architectural idea for
scaling the number of accelerators and host CPUs independently. The idea is to
decouple accelerator devices from their host systems and place them on so called
accelerator nodes (ANs) anywhere in the network. Figure 4.9 presents the architectural
and user view of an NAA system. An accelerator node consists of a passive PCIe
backplane equipped with an accelerator device and an Extoll NIC, which enables an
accelerator to directly connect to a network. The main purpose of the backplane is
simply to connect the two cards so that the PCIe traffic can be forwarded, since a
PCIe add-in card comes without a PCIe slot. The Extoll card in the cluster node
(CN) is configured as an endpoint device, while the Extoll NIC on the accelerator
node acts as a root port. This modular way of integrating heterogeneous system
components enables applications to freely choose at run time the kind of computing
resources on which they can run in the most efficient way in an N:M ratio.
In order to provide applications with a transparent access to the computing

resources, a virtualizing software layer is needed, which is able to configure and
operate the remote accelerator devices, but also to make them visible in a cluster
node’s PCIe hierarchy. Figure 4.10 presents the schematic view of the PCIe tree
visible to the Linux operating system after a network-attached accelerator has been
mapped over Extoll as a virtual device in the local PCI Express hierarchy. In
order to facilitate a good understanding about the system setup and software design
requirements, several observations about Figure 4.10 have to be understood:

(1) The physical accelerator device is not directly connected to a cluster node. It
is located on a network-attached accelerator node and connected to the host
system via Extoll. This means that the local root complex and other local

70

4.5 NAA Software Design

Cluster Node

Root complex
Host bridge

Root port Root port Root port

Bridge Bridge

(Endpoint)
Extoll NIC

EndpointEndpoint
(Endpoint)

Virtual
Accelerator

Accelerator
Node

Extoll NIC
(Root Port)

(Endpoint)
Accelerator

bus 0

bus 1

bus 2

bus 3

bus 4

bus 5

dev 0 dev 1 dev 2

dev 0

dev 0 dev 0 dev 0dev 1

dev 1

Virtual device
- part of PCIe tree -

Real hardware device
- outside of PCIe tree -

2

1

3
4

5

Network connection

CPU

PCIe

Figure 4.10: PCI Express tree as seen by the Linux operating system with one
network-attached accelerator device.

PCIe devices cannot send any transaction requests to the remote device. In
fact, the physical device is not part of the system’s PCIe hierarchy.

(2) In terms of PCI Express, the Extoll NIC connected to the host system is an
ordinary endpoint device, which only has an upstream port but no downstream
ports. Therefore, the local NIC cannot act as a PCI bridge device, which could
simply forward transactions to the remote accelerator.

(3) While the local NIC cannot be configured to serve as a bridge device, the
remote NIC can be configured to act as a root port with the accelerator device
being connected to its downstream port. But, it has no upstream port, and
therefore, cannot receive any PCIe transactions from a cluster node. Also, only
a root complex can initiate configuration requests, but the remote NIC, despite
being configured to act as a root port, is not part of a root complex.

(4) In order to access the accelerator device, the network-attached accelerator
approach must map both the virtual and physical device in a way such that

71

4 Network-Attached Accelerators

all transactions that involve the remote accelerator – either as a requester or
completer – are forwarded between the two nodes. In Figure 4.10, the dashed
line between both devices illustrates this mapping.

(5) In this example, the logical device is placed behind a root port, just like an
actual device would by physically connected to that port. This means that
even though no physical device is attached to the root port, the logical device
appears to the CPU as if it is locally connected.

4.5.2 Objectives and Strategy

The main objective of the NAA software architecture is to provide a transparent
mapping between the network-attached accelerator and cluster nodes by emulating a
PCIe device. The implementation of the software stack needs to be transparent to
upper software layers, including the accelerator device driver and runtime libraries,
while maintaining the commodity aspect of the accelerators. Recapitulating the
findings from section 4.3 and subsection 4.5.1, the NAA software environment needs
to fulfill the following tasks:

Configuration Request Forwarding PCIe configuration read and write requests
need to be forwarded to and from the remote accelerator. The NAA software
stack needs to be able to recognize and forward such requests accordingly.

Device Enumeration The software environment should be able to emulate the PCIe
device enumeration. After powering an accelerator device, it needs to be
configured and mapped onto system resources to be ready for operation.

Memory-Mapped I/O The cluster nodes should be able to map and forward access
requests the accelerators’ BAR windows, which are typically made visible to
the system as MMIO regions in the main memory. This is needed for the
configuration and communication with the accelerator devices, but also to
provide the compatibility with PCI-specific system calls and functions.

MSI Configuration and Interrupt Delivery During the accelerator device configu-
ration, the software has to modify the MSI packet (destination address and
payload) by writing the corresponding values to the MSI capability register set.
The layer has to be able to register the accelerator’s interrupt handler with
the Extoll interrupt management. The software needs to distinguish between
Extoll-based interrupts and interrupts issued by the accelerator.

72

4.5 NAA Software Design

 Linux Kernel

Applications

Accelerator Device Driver

Hardware

Applications

Accelerator Device Driver

Hardware

Virtual PCI
module

Standard System NAA Node

Extoll
Driver

Runtime / Library

Linux Kernel

Runtime / Library

Accelerator

Accelerator

Extoll NIC

Extoll NIC

Figure 4.11: Abstract software stack view.

Figure 4.11 shows a generic overview of the NAA software environment in compar-
ison to the default Linux software stack. On the left-hand side, the typical layers
of a software stack supporting an accelerator device are displayed. The goal of the
NAA software environment is to remove the locally installed accelerator device and
integrate it into the Extoll network, and if possible, without any modification of the
original application code. In principle, achieving this goal is possible by manipulating
any of the software layers on the left side. But, it is desirable to introduce as little
modifications as possible.

The general idea of the NAA software approach is presented on the right-hand side
of Figure 4.11. The idea is to redirect PCI support library calls to a “virtual” PCI
layer, which is able to distinguish between local PCI requests and communication
targeting the accelerator nodes, but also provides the means to fulfill the previously
described tasks. The following sections explain the concepts needed to implement
these tasks and illustrate how they can be mapped onto the Extoll technology.

4.5.2.1 PCIe Configuration Space Access

In the absence of a CPU and a root complex on the accelerator node, it is the task
of a remote host system to configure the accelerator card’s PCIe host interface over
the network. The Extoll NIC’s interface is designed to send and receive only PCIe
memory request packets as an endpoint. To configure a PCIe hierarchy, the host
interface must be able to send and receive PCIe configuration request packets.
For this purpose, the Extoll NIC features two functional units that enable the

configuration and operation of remote PCIe buses: the RMA unit and the PCIe
Bridge unit. In addition, the remote Extoll NIC needs to be configured to act as a
root port. First, a specialized functional unit is needed to inject PCIe configuration

73

4 Network-Attached Accelerators

packets into the Extoll NIC’s outgoing host interface traffic. The PCIe bridge unit,
introduced in section 3.2.7, resides in the on-chip network of Extoll’s network interface
and can be configured by writing to the corresponding registers in the register file.
The unit is accessible from every device over the network with Remote Register file
Access (RRA) transactions, which are basically immediate PUT and GET operations
to the remote registers. With this technique, a host can configure the remote PCIe
bridge unit to forward incoming PCIe configuration packets to the accelerator device
by writing to the PCIe backdoor register presented in Table 3.2. By writing PCIe
configuration packets into the htoc_to_pcie_backdoor_data register in the remote
register file via RRA transactions, they are inserted into the outgoing PCIe traffic
stream from the root port to the accelerator.

4.5.2.2 Device Enumeration

A simplified enumeration process can be used, since only one device resides on
the root port of a remote accelerator node. The important values that need to be
configured are the bus, device and function number, BARs, and the MSI capability
registers. The bus, device and function number is used to identify the accelerator
inside the PCIe hierarchy, whereas the MSI capability registers define the target
address and the data that is sent when an interrupt is issued from the accelerator.
The BARs define a memory window which is required to enable the internal address
translation for incoming request packets targeting the accelerator. This defines the
way a host can access and communicate with the accelerator.

Therefore, with the remote device’s configuration space being accessible transpar-
ently, all that needs to be done is to rescan the bus, on which it is to be placed.

4.5.2.3 Memory-Mapped I/O Regions

In general, peripheral components are accessed by using load and store operations to
reserved address ranges in the PCIe configuration space and the memory-mapped
I/O regions. The operations are mapped to an add-in card and translated into read
and write requests. The easiest way to give a host access to the accelerator is to
use these loads and stores to an MMIO region assigned to the accelerator. This
has the additional benefit that the upper software and hardware layers can remain
unchanged, but leads to the question of how to map physical addresses of the host
memory to the accelerator’s PCIe address space.
The Extoll NIC’s SMFU can export segments of local memory to remote nodes

to build a distributed shared memory system. Loads and stores from the CPU to

74

4.5 NAA Software Design

Cluster Node

Ex
to

ll
M

M
IO

Interval ID = 0
Target ID = AN0

..
.

SM
FU

In
te

rv
al

0

Interval ID = 2
Target ID = AN1

VELO

Configuration

RMA

..
.

..
.

00000000h

FFFFFFFFh

addressx

In
te

rv
al

1
In

te
rv

al
2

Interval ID = 1
Target ID = AN0

Accelerator Node0

00000000h

FFFFFFFFh

..
.

In
terval0

A
cc.

M
M

IO

Interval ID = 0

addressx

Interval ID = 1

In
te

rval1

A
cc.

M
M

IO

Interval ID = 3
Target ID = AN1

Interval ID = 63
Target ID = ANm

In
te

rv
al

3
In

te
rv

al
6

3

Accelerator Node1

00000000h

FFFFFFFFh

..
.

..
.

In
te

rval2

A
cc.

M
M

IO

Interval ID = 2

Interval ID = 3

In
terval3

A
cc.

M
M

IOSM
FU

SM
FU

iStartAddr0

iStartAddr3

iStartAddr1

iStartAddr2

iStartAddr63

tStartAddr0

tStartAddr1

tStartAddr2

tStartAddr3

Figure 4.12: Memory mapping between a cluster node and two accelerators.

these exported memory regions are encapsulated into network transactions to the
remote node. At the remote node, the packets are translated back into host interface
requests. The PCIe packet ordering is ensured along the path from the CPU to the
target accelerator and vice versa by keeping the order of the packets received at
the SMFU and forwarding them to the host or the network interface with the same
order in a FIFO-like manner. With this memory mapping technique and ensured
packet ordering, the MMIO ranges appear to be locally mapped to the local host’s
main memory, but in reality this address range can be located anywhere in the
network. The NAA software environment configures this memory mapping for every
accelerator node in the system by writing the SMFU configuration to the node’s
register file through remote register file accesses.

Figure 4.12 illustrates the memory mapping between a cluster node address space
and two remote accelerator PCIe address spaces. The MMIO region assigned to the
NIC is divided into several intervals. Each of these intervals is exclusively assigned to
a functional unit. The range assigned to the SMFU is further subdivided into different

75

4 Network-Attached Accelerators

intervals. Each of these intervals corresponds to a region of exported memory (BAR)
with the size and location defined by a start (iStartAddrn) and an end address. In
addition, each interval has an interval ID and a Target ID. The Target ID specifies
the Extoll node ID of the accelerator node the loads and stores are forwarded to,
while the interval ID is used to match the source interval ID of these loads and stores.
In this example, two BAR windows are mapped per accelerator node. addressx hits
SMFU interval 0, which is translated to an address on AN0 in SMFU interval 0.
The SMFU on the accelerator node side adds an offset to incoming network-

encapsulated request packets. The offset defines where the exported region is located
in the accelerator’s memory space. If the calculated address matches the BAR
assigned to the accelerator, a load or store to that address is sent to the accelerator.
Note, the offset to an address in the SMFU interval has the same offset to an address
in the accelerator’s BAR region. This technique allows the host CPU to directly
access any accelerator connected over the Extoll network. Once the Extoll network
is configured, each accelerator node has a unique node ID in the Extoll fabric. This
node ID is used to address other accelerators within the system. As a consequence,
two accelerator nodes belonging to different hosts are able to communicate with each
other independently from the host systems.

4.5.2.4 MSI Configuration and Interrupt Delivery

Most PCIe devices require interrupts to fulfill their function and to communicate
events between the device and the driver. PCIe devices implement the Message
Signaled Interrupt (MSI) mechanism, which sends a posted write packet towards
an Advanced Programmable Interrupt Controller (APIC). A write to this controller
triggers an interrupt and the operating system forwards the interrupt to the corre-
sponding device interrupt handler. In the network-attached accelerator architecture,
there is no APIC register on the accelerator node and no direct connection be-
tween the accelerator’s PCIe bus and the host systems APICs. To provide interrupt
functionality, some special adjustments have to be made.

The interrupt management for accelerator devices is implemented by extending the
Extoll interrupt handling on the host system to handle accelerator interrupts as well.
The address of an MSI packet is stored in a PCIe configuration space register, which
means that it can be modified from the remote host through configuration packets.
The host sends configuration packets to the remote PCIe bus, which modifies the
MSI capability registers on the accelerator card. The accelerator’s MSI address is
manipulated in a way that the address is forwarded to the host, and there, it hits a

76

4.5 NAA Software Design

Host OS

MIC
Driver

Other
Handler

EXTOLL
Interrupt
Handler

Host CPU APIC

Extoll
NIC

SMFU

Other
Interrupt
Sources Extoll NICSMFU

Accelerator

Event

MSI
Write

Extoll Network (3D Torus)

Cluster Node Accelerator Node

Figure 4.13: Interrupt handling within the booster.

special address region. This region is mapped by Extoll to a host system’s MSI packet,
which targets a valid APIC with a registered interrupt handler. Based on the payload
data carried by the MSI packet, the interrupt handler can distinguish between Extoll
and accelerator interrupts. Figure 4.13 displays the flow of an interrupt triggered by
an accelerator node. The interrupt is forwarded over the Extoll network to the NIC
of the target host, which in turn issues an Extoll interrupt.

4.5.3 Design Space Analysis

The NAA software implementation should be as transparent as possible to upper
software layers. By providing a “virtualizing” software layer which is close to the
hardware involved, all user space software and most kernel space code should be
completely unaware of the existence of the intermediate NICs between CPUs and
accelerators. Taking this into account, possible candidates for the shim software layer
implementation are the Linux kernel, the accelerator driver itself, and the Extoll
driver modules, which are explored in the following sections

4.5.3.1 Approach I: Linux Kernel Patch

Since the kernel is in full control of the system, it should be possible to add or modify
code, to make the graphics driver work as expected. Furthermore, there would
be no licensing issues for distribution. However, the kernel development is rather
difficult and tricky, especially for the inexperienced. Furthermore, if there are any
changes necessary in parts of the kernel, that can not be compiled as loadable module,

77

4 Network-Attached Accelerators

development would be even more tedious. Another big disadvantage is, that the
kernel is constantly under heavy development and every change to any interface used,
would require adjusting and retesting the patch set. Even worse than this would
be the necessity to debug again, when the patch stops working due to more subtle
or unrelated changes, that result in different behavior instead of compiler errors.
Finding and debugging such issues would be very difficult and cumbersome. Overall
this approach, while certainly possible, does not seem very attractive, especially in
regard of long term maintenance.

4.5.3.2 Approach II: Accelerator Driver Modification

Another way of to enable the Network-attached accelerator approach from a software
perspective is to modify the accelerator driver. Unlike the Linux kernel, most
accelerator drivers are closed source and available in a binary form, and only provide
source code for the parts that need to be linked against the targeted kernel. On
the other hand, the only aspects that should need to be changed are function calls
related to either the PCI support library or to interrupts, which are mostly done
from the available source code. It seems feasible to re-implement the required PCI
functions and compile the driver against these replacements. In comparison to
using a customized Linux kernel, a driver patch seems like a much easier approach,
however one would still need to maintain a patch set against a third party software,
which might still be actively developed and break these patches with a future release.
Furthermore, the source code is not licensed as GPL, so there might be problems with
publishing these patches. Most importantly however, such an implementation can
only work with the patched driver, but it is desirable to have a generic solution, that
can be transparently used with other devices, drivers, and software environments.

4.5.3.3 Approach III: PCI Express Device Virtualization

The third option is to leave all software unmodified and instead virtualize a PCI
device in kernel space. Once such a virtual device would be inserted in the kernel’s
list of available devices, any software, including accelerator drivers, should see no
difference when trying to access a device. While at first it may seem more complicated
than the other approaches, its main advantage is that no part of the existing software
stack needs to be modified. Interface changes in the kernel can still break the
compatibility, but it should be much easier to fix these changes than patching the
complete kernel.

78

4.6 DEEP Booster Architecture

BN0
Accelerator

Ex
to

ll
N

et
w

or
k

...

...

CNi

Accelerator 0

Accelerator 1

Accelerator N

...

System ViewUser View

Extoll NIC

BNN
Accelerator

Extoll NIC

In
fin

ib
an

d
N

et
w

or
k

CN1

CNM

BI0

BI1

BIK

...

Figure 4.14: System and user view.

4.6 DEEP Booster Architecture
The DEEP Booster is the first system that deploys the network-attached accelerators
approach. The software implementation follows approach II. The MIC device driver
is modified in a way that PCI function calls are redirected to an Extoll-based
kernel module. Figure 4.14 shows the system and user view of the DEEP booster
system. The right part depicts the structure of an example booster cluster. The
system consists of multiple compute nodes CNi, i ∈ {0, . . . ,M}, booster interface
nodes BIj, j ∈ {0, . . . ,K}, and booster nodes BNk, k ∈ {0, . . . ,N}, which represent
the accelerator nodes. The CNs and BNs are connected with high performance
interconnects that are not necessarily the same. The BIs configure the BNs and act
as bridges between the different network protocols. In an ideal system, the same
interconnection type is used system-wide and any CN can be used to configure a
BN. The left part of the figure depicts how the booster communication architecture
transforms the system view into a simplified user view. Each CN has access to all
accelerators in the same way like to a locally connected accelerator device.

4.6.1 Hardware Components

Even though this work focuses on the software design for the network-attached
accelerator approach, the hardware components of the DEEP system are briefly
described to facilitate a better understanding. As mentioned before, the system
architecture consists of three different entities.

A compute node (CN) is a standard cluster node, typically equipped with a super-
scalar, multi-core CPU which provides a high single-thread performance. The CNs
are connected over a high-speed network, in this context Infiniband.

79

4 Network-Attached Accelerators

(a) Booster interface
node.

Links

(b) Booster node.

Figure 4.15: Hardware components.

The booster nodes (BNs), see figure 4.15b, provide energy-efficient multi-threaded
computing capabilities. The Extoll interconnect is used to connect the BNs in a 3D
torus topology.

In the DEEP setup, a third node type is needed for the bring up and management
of the remote accelerator devices, but also to bridge the communication between the
CNs and BNs. The booster interface (BI) node, shown in Figure 4.15a, is equipped
with two different NICs, one for the CN and one for the BN interconnection network
respectively. The BIs enable software-bridged Cluster-Booster communication by
translating between the two network protocols.

4.6.2 Prototype Implementation

The DEEP booster is the first prototype implementation of the NAA communication
model. The booster architecture consists of booster node cards (BNC) that are
connected by the Extoll interconnect, and booster interface cards (BIC). The following
sections briefly described the implementation of the BIC and BNC, followed by an
introduction to the booster low-level software stack. The DEEP Project has chosen
the Many Integrated Core architecture (MIC) as the target accelerator technology.
The innovative features of the Extoll NIC, e.g., the PCIe root port and the SMFU,
allow to operate the MIC connected to the NIC without a host. One of the main
advantages of using the Intel MIC technology is that the existing Extoll kernel
modules can be utilized on the accelerator cards to source and sink network traffic.

4.6.2.1 Hardware Implementation

The counterpart of the BI is the BIC. The Extoll NIC has a memory-mapped region
of 16 · 8GB and a region of 16 · 128KB to manage and address up to 16 accelerator
cards. The SMFU maintains two intervals per accelerator to map the complete

80

4.6 DEEP Booster Architecture

 Linux Kernel

Applications

Intel MPSS Driver Stack

Hardware

Applications

Hardware

PCI Surrogate

Standard System Booster Interface Node

Runtime / Library

Linux Kernel

Runtime / Library

Intel MIC

Intel MIC

Extoll NIC

Extoll NIC

MIC-to-Extoll
Extoll
Driver

Intel MPSS Driver Stack

Figure 4.16: BIC software stack.

MMIO configuration register and the MemBAR GDDR5 memory of the BN’s PCIe
bus into the BICs address space. Four link ports from the NIC are used to connect
the BIC with the 3D Torus of the booster. The BIC is responsible for booting
and controlling the MICs over the Extoll interconnect. The BNC is a high-density
implementation with two independent BNs, which are part of the 3D torus. A BN
consists of a NIC and an accelerator, the Intel MIC. Eight BNCs are connected to
a single backplane that provides connections to neighboring backplanes and their
BNCs. As described in figure 4.12, the SMFU can be used to map regions of BI
memory to BNs. On the BIC, two intervals are exported to the same BN. One
exported region points to the BAR of the MMIO configuration register and the other
region points to the BAR of the MemBAR GDDR5 memory. The MMIO registers
of the Intel MIC are placed below 4GB, and the MemBAR is placed above 256GB
to not interfere with the BIC’s operating system memory map. This configuration
is maintained for all BNCs. The communication between a BNC and CN does not
require any CPU interaction on the BIC.

4.6.2.2 Software Implementation

The NAA Booster software stack implements all of the aforementioned requirements
and consists of a collection of configuration scripts and a kernel module, which
maps PCI support library calls and device structures onto the Extoll software stack
resources. The main advantage of this approach is the transparency to upper software
layers. Once the Intel MIC driver is running on top of the virtual PCI software stack,
all existing applications can be used without any modification.
The configuration scripts are used to setup the SMFU interval mapping and to

configure the PCIe Bridge unit to forward PCIe configuration packets to the remote

81

4 Network-Attached Accelerators

accelerators and vice versa. The scripts perform RRA reads and writes to the remote
Extoll NICs by utilizing the user library libRMA. The kernel module intercepts the
Intel MIC driver when it initializes the PCIe device and is responsible for maintaining
and mapping necessary device structures onto the Extoll SMFU memory-mapped
I/O regions. Figure 4.16 displays the software stack loaded on a BIC. The virtual
PCI software layer comprises of two components:

PCI surrogate layer The PCI surrogate layer replaces the PCI support library. All
PCI function calls are redirected to this layer.

MIC-to-EXTOLL Layer PCI structures needed by the Intel MIC driver are mapped
to the Extoll data structures for device initialization.

To be able to use the BIC software stack, the Intel MPSS is recompiled against
the PCI surrogate layer header file, which is built on top of the Extoll kernel API.

Device Configuration And Resource Mapping When the Intel MIC driver is
loaded on a BIC, the driver initializes the connected MIC devices. Typically at
module startup, the driver is registered with the PCI subsystem. The registration
call is intercepted by redirecting it to the PCI surrogate layer, where a customized
hardware initialization function is called. This is done by replacing the PCI header file
include with #include "pci_surrogate.h". Depending on the number of connected
MICs, an array of MIC descriptor structures is initialized with the start and end
addresses of the MemBAR and MMIO regions. These values are needed for booting
the accelerators, since the PCIe client logic registers, referred to as SBOX registers,
are accessed through the MMIO regions and the Linux image is copied into the
remapped MemBAR region. Instead of allocating and mapping memory regions for
each MIC, the memory regions are overlapped with the SMFU’s MMIO space, which
is subdivided into several intervals.

MSI Configuration and Interrupt Forwarding The second stage of the device
initialization process is the MSI configuration of the MICs. This is done by writing
directly to the corresponding SBOX registers, which reside in the mapped SMFU
memory regions in the address space of the BIC. The vector is composed of a
predefined address, a message, and the vector control. The predefined address
enables the interrupt redirection to the BIC. The last step of the initialization
process is the registration of the MIC interrupt handler with the EXTOLL interrupt
handling subsystem. This is done by keeping a function pointer to the corresponding

82

4.6 DEEP Booster Architecture

interrupt handler within the Extoll interrupt management structure. The Extoll
NIC has several functional units that are able to trigger an interrupt. The possible
interrupts are divided into different trigger event groups. The Extoll driver manages
possible interrupt sources in an array of function pointers, which are identified by
unique tags. To handle interrupts issued by the MIC, the Extoll interrupt mechanism
is extended by an additional event group and a flag indicates if MICs are present
in the running system. When a hardware interrupt occurs on the Extoll card, the
interrupt handler is called. The driver is able to identify the MIC’s interrupt by its
event group and redirects the interrupt by calling the corresponding function pointer.

4.6.2.3 Communication Paths

One of the most important advantages is the accelerator-to-accelerator direct com-
munication between BNs. All accelerators in the communication architecture are
directly connected to the network. As a consequence, the number of accelerators
scales independently from the number of hosts. Another key feature is that an Intel
MIC runs autonomously with its own Linux operating system after device setup. All
Extoll low-level kernel modules, as well as the user space libraries, have been ported
to the embedded operating system, which provides full access to all functional units of
the Extoll NIC. With these hardware components, one-sided communication between
accelerators is supported utilizing RMA PUT and GET operations to transfer large
chunks of data. For small messages, the VELO unit supports MPI send and receive
operations with very low-latency two-sided communication. The SMFU can be used
to distribute parts of an accelerator’s local memory to multiple different accelerators
over the network and supports loads and stores to these memory regions.

The Extoll NIC provides the features necessary to build a scalable interconnection
network. Figure 4.17 shows the possible communication paths within the DEEP
architecture. Path (A) shows the accelerator-to-accelerator direct communication
between two Intel MICs. During the boot and configuration process, path (B)
is used for the OS image download, configuration, and status information. After
the completion of this process, the Intel MICs can directly communicate with any
other MIC in the system over path (A), receive workloads from the cluster or send
results back over path (C). The coprocessor-only model for MPI applications strongly
benefits from the communication path (A). All accelerators within the booster can
be used to run parallel applications independently from any host.

83

4 Network-Attached Accelerators

BICM

CPU

Extoll
NIC

IB HCA

Root Complex

Memory

BIC0

CPU

Extoll
NIC

IB HCA

Root Complex

Memory

BNN

Intel MICExtoll NIC

BN1

Intel MIC
Extoll
NIC

BN0

Intel MIC
Extoll
NIC

Ex
to

ll
N

et
w

or
k

...

..
.

..
.

..
....

...

...

(A)

(B)

(C)

Figure 4.17: Communication paths.

4.6.3 Prototype Performance Evaluation

In this section, the test environment and performance evaluation of internode MIC-to-
MIC communication using micro-benchmarks of the Extoll software stack, the OSU
Micro-Benchmarks, and the LAMMPS molecular dynamics simulator, are described.

4.6.3.1 Hardware Environment

The BIC prototype node is a standard server machine with two Intel Xeon E5-2630
processors running at 2.30 GHz and 128 GB of memory. An Extoll NIC of the
Galibier [107] generation is used, which utilizes a Xilinx Virtex6 FPGA design with
a 128 bit-wide data path, running at 156.25 MHz, and one x4 16 Gbits/s Extoll link.
The Galibier card has a memory mapped region of 16 GB, which can be used to
manage two Intel Xeon Phi coprocessors (MICs) with 8GB GDDR RAM each. The
network link of the Galibier card is used to connect to the seventh link of the BNC to
get access to the 3D torus. The test environment contains one BNC with two Altera
StratixV FPGAs. The FPGAs implement a Galibier-compatible 128 bit-wide data
path running at 100 MHz and seven x4 16 Gbits/s links. Each StratixV Extoll NIC
is connected to one MIC with a x8 PCIe Gen2 PCIe host interface. The StratixV
FPGAs are connected to each other via an Extoll x4 16Gbits/s link.

84

4.6 DEEP Booster Architecture

4.6.3.2 Software Environment

The BIC runs CentOS 6.3 with kernel version 2.6.32-279.19.1.el6.x86_64 as the operat-
ing system, and has Intel MPSS 2.1.6720-16 and Intel Composer_xe_2013_sp1.2.144
installed. The micro-benchmarks of the Extoll software stack are used to evaluate
the latency and bandwidth of MIC-to-MIC communication over Extoll. In addition,
the MPI performance is evaluated between two MICs connected over Extoll (using
OpenMPI 1.6.1) and directly connected to the BIC utilizing SCIF and OFED/SCIF
(using Intel MPI Library 4.1.3.049 and OFED-1.5.4.1). OpenFabrics Enterprise
Distribution(OFED) [108] provides an open-source software solution for RDMA and
kernel bypass applications. The Symmetric Communications InterFace (SCIF) [87]
is used for internode communication within a single system. Four different system
configurations are used:

Booster This setup is the DEEP prototype booster system connecting two BNs
with one BNC.

TCP/SCIF In this setup, two MICs are directly connected to the BIC over PCIe.
The BIC acts as the host and runs the Intel MPSS without any OFED support.
All communication is tunneled over SCIF.

OFED/SCIF The setup is an optimized version of the mic0-mic1 TCP/SCIF setup,
where the Intel MPSS is run on top of the OFED stack. The communication
is virtualized over the OFED/SCIF software stack, which implements RDMA
by virtualizing direct access to a hardware InfiniBand Host Channel Adapter
(HCA) between two MICs.

rEXTOLL Two hosts, equivalent to the BIC, are connected over Extoll. Each host
has one MIC attached over PCIe.

4.6.3.3 Micro-benchmark Evaluation

For the micro-benchmark experiments, two prototype BNs are used, denoted as mic0
and mic1. The micro-benchmarks are launched on mic0. The communication is set
up over the low-level user-space library of the Extoll NIC. Figure 4.18a displays the
results of the latency benchmark for the FPGA-based booster implementation. For
messages smaller than 64B between mic0 and mic1, the latency performance of VELO
outperforms the RMA unit by about 50%. Figure 4.18b presents the bandwidth
results. For small messages, VELO provides a better bandwidth than RMA. The
peak bandwidth provided by RMA is about 1.2 GB/s. These performance results

85

4 Network-Attached Accelerators

(a) Latency. (b) Bandwidth.

Figure 4.18: Micro-benchmarks performance of internode MIC-to-MIC commu-
nication using the Extoll interconnect.

have a direct impact on the direct accelerator-to-accelerator communication results.
All communication traffic between the BNs is tunneled over Extoll.

4.6.3.4 MPI Performance Evaluation

The point-to-point MPI benchmarks of the OSU Micro-Benchmarks 4.3 (OMB) [74]
are used for the evaluation. Each benchmark is run 100 times. The results in the
graphs are calculated as the arithmetical average of the runs. All benchmark results
are verified by the Intel MPI Benchmark 3.2.3 (IMB) [109].

Latency Figure 4.19a displays the half round-trip latency results for small messages
(<2 KB). The results for mic0-mic1 TCP/SCIF are not displayed, because the
half round-trip latency is too large (>300 usec). Even though the prototype only
uses an FPGA implementation of the NIC, the half round-trip latency using the
booster architecture is improved compared to the latency measured when using the
OFED/SCIF software stack. Furthermore, figure 4.19b shows that the half round-trip
latency of large messages is also competitive compared to OFED/SCIF, although the
bandwidth of the underlying hardware (PCIe Gen2 x16) is much higher (>6 GB/s).
With the ASIC implementation of Extoll, the latency will be even smaller. The

mic0-mic1 TCP/SCIF bandwidth is only displayed as a reference since it has a
very poor performance. This is probably because of the need to perform a standard
kernel-level TCP/IP communication on the MIC.

Bandwidth Figure 4.20 displays the performance results of the bandwidth and
bidirectional bandwidth tests. The FPGA implementation is competitive with the
OFED/SCIF solution, the peak bandwidth corresponds with the measured low-level

86

4.6 DEEP Booster Architecture

(a) Small messages. (b) Large messages.

Figure 4.19: Half round-trip latency performance of internode MIC-to-MIC
communication using MPI.

(a) Bandwidth. (b) Bidirectional bandwidth.

Figure 4.20: Bandwidth and bidirectional bandwidth performance of internode
MIC-to-MIC communication using MPI.

performance of the RMA unit. It is noteworthy that the peak MPI bandwidth using
OFED/SCIF over PCIe is unable to utilize the bandwidth of the underlying PCI
Express fabric.

4.6.3.5 Application Level Evaluation

In addition to the micro-benchmark and MPI performance evaluation, the communi-
cation architecture for network-attached accelerators is evaluated using a life science
application. The MPI version of the LAMMPS (Large-scale Atomic/Molecular
Massively Parallel Simulator) molecular dynamics simulator is used. LAMMPS is
a classical molecular dynamics code [110]. It is written in C++ and MPI. The
benchmark considered for the evaluation performs a bead-spring polymer melt of
100-mer chains, with finite extensible nonlinear elastic (FENE) bonds, Lennard-Jones
interactions with a 2(1/6)σ cutoff (5 neighbors per atom), and micro-canonical (NVE)
integration. The problem has 32,000 atoms and runs for 100 time steps.

87

4 Network-Attached Accelerators

Table 4.1: Description of LAMMPS timings output.

Name Description
Loop Total time spent in benchmark.
Comm Time spent in communications.
Bond Time spent computing forces due to covalent bonds.
Pair Time spent computing pairwise interactions.
Neigh Time spent computing new neighbor lists.
Outpt Time to output restart, atom position, velocity and force files.
Other Difference between loop time and all other times listed.

Figure 4.21 shows the impact of the communication architecture on the communi-
cation time for the LAMMPS Bead-spring polymer melt benchmark. The benchmark
is run for 8, 16, 32, and 64 threads whereby the threads are equally distributed to the
two MICs. It can be observed that the communication time for 32 threads/MIC is
improved by 32%, while smaller runs with up to 4threads/MIC provide an improve-
ment of the communication time up to 47%. Furthermore, running the LAMMPS
simulator with a Lennard-Jones (LJ) benchmark (atomic fluid, LJ potential with
2.5σ cutoff (55 neighbors per atom), NVE integration) and the embedded atom
model (EAM) metallic solid benchmark (metallic solid, copper EAM potential with
4.95 Angstrom cutoff (45 neighbors per atom), NVE integration) results in a similar
improvement of communication time.

Figures 4.22a–4.22c display the overall application time for the bead-spring polymer
melt, Lennard-Jones, and copper metallic solid benchmarks run with 32 threads/MIC.
Table 4.1 provides a summary of timings used by figure 4.22. It can be seen that
most of the application time is spent in communication. Therefore, the optimization
of internode MIC-to-MIC communication time plays a crucial part in optimizing the
overall application execution time.

4.6.3.6 Comments

Compared to the FPGA, the ASIC version of Extoll offers vastly improved network
performance with its 128 bit-wide data path running at 750 MHz. As a result, the
network link will provide an approximate bandwidth of 100 Gbits/s. As mentioned
before, MVAPICH2-MIC is a proxy-based implementation of the MVAPICH2 MPI
library. It reports a unidirectional bandwidth of up to 5.2 GB/s for internode MIC-
MIC communication with InfiniBand HCAs. The usage of Tourmalet is expected to
provide the sevenfold peak bandwidth.

88

4.6 DEEP Booster Architecture

(a) 2 MICs: 4 Threads/MIC. (b) 2 MICs: 8 Threads/MIC.

(c) 2 MICs: 16 Threads/MIC. (d) 2 MICs: 32 Threads/MIC.

Figure 4.21: Communication time for the bead-spring polymer melt benchmark.

(a) Bead-spring polymer melt. (b) Lennard-Jones.

(c) Copper metallic solid.

Figure 4.22: Overall application time for 64 threads, 32 Threads/MIC.

89

4 Network-Attached Accelerators

Figure 4.23: Production-ready GreenICE cube.

4.6.4 GreenICE – An Immersive Cooled DEEP Booster

The GreenICE technology [111] implements the NAA approach in a dense form factor
and comprises of 32 accelerator nodes, each equipped with an Extoll Tourmalet
and an Intel MIC of the Knights Corner generation. Instead of a booster interface
node, the system is configured through a Raspberry Pi. The system utilizes an
immersive cooling approach, which provides efficient heat removal from the high
power components. Figure 4.23 presents a picture of the GreenICE cube. The chassis
integrates all system components needed for operation, including the power supply
units, the 3D torus cabling, the monitoring system and the cooling infrastructure.
The GreenICE system was used as an ASIC evaluator system for the DEEP project.

4.6.5 Lessons Learned

The main advantage of the Intel MIC technology is that it is running its own operating
system, and therefore, can leverage the full Extoll software environment. Also once
up and running, Intel MICs can be accessed through SSH. The EXN interface (see
section 5.4.6) is utilized to provide TCP/IP communication between the devices.
Even though, the current implementation of the Booster architecture poses two
major limitations:

• The Intel MIC device is not visible in the PCI system hierarchy, and therefore,
is not recognized by the operating system. This limits the approach to devices

90

4.7 Virtualization of Remote PCI Express Devices

that are capable of running their own operating systems, and therefore, can
run independently from a local host.

• The Intel MPSS code needs to be modified in order to utilize the PCI surrogate
layer, but also when creating sysfs entries for the devices. This is mainly
because the Extoll device is already registered in the Linux device model, which
means that the same PCI device pointer cannot be registered twice.

4.7 Virtualization of Remote PCI Express Devices
While the DEEP Booster software relies on the modification of the accelerator driver,
the Virtual PCI (VPCI) [112] software design targets a more generic approach
without the need to modify driver code or the Linux kernel. VPCI is designed as a
loadable Linux kernel module, which emulates a PCIe device by inserting a virtual
device into the kernel’s list of devices.

4.7.1 Concept Overview of VPCI

The NAA software requirements and design have been explained in section 4.5. The
DEEP booster architecture only supports the Intel MIC technology. In today’s HPC
systems, GPUs are the predominant accelerator technology. Therefore, it is desirable
to extend the NAA approach to GPUs. Recapitulating the findings from section
4.6.5, the VPCI module needs to fulfill the following tasks:

• The general PCI data structures as expected by the Linux kernel should be
maintained. This way, the virtual PCI device can be added to the operat-
ing system’s PCI tree without any modification of the kernel code and the
accelerator device’s software stack remains unchanged.

• The software needs a mechanism to detect and forward PCI configuration
requests to remote accelerator devices, e.g., by implementing a software switch
which distinguishes accesses to local and network-attached devices.

• The enumeration process for the virtual accelerator device should be triggered
by VPCI. After the successful enumeration of the remote device, its resources
can be accessed by user- and kernel-level processes, e.g., through sysfs.

• The solution should be able to transparently forward MMIO requests.

91

4 Network-Attached Accelerators

1 struct vpci_device {
2 int busnr;
3 int devnr;
4
5 /* the actual pci device and bus structures allocated
6 and managed by the kernel . */
7 struct pci_dev *dev;
8 struct pci_bus *bus;
9

10 /* BAR addresses as seen by the host. */
11 struct vpci_bar host_bars [7];
12 /* BAR addresses as seen by the GPU. */
13 struct vpci_bar remote_bars [7];
14 /* Stores the values read from BAR registers after writing
15 all ones to determine the size of the BARs. These should
16 be returned , when the kernel rescans the bus. */
17 u32 bar_init [7];
18
19 /* Actual io spaces defined by the BAR registers . */
20 struct vpci_bar bar_windows [7];
21 };

Listing 4.1: Overview of the VPCI device structure.

• The VPCI module should provide a transparent mechanism to enable and
disable the interrupt forwarding between the accelerator device and a host.

4.7.2 PCI Express Device Emulation

Note that in the context of this work, the concept of device simulation or emulation
should not be confused with the actual emulation of a device’s behavior, as it is
done by programs like QEMU or VirtualBox. Instead, the term simulation refers to
the concept that an accelerator device appears to be locally connected to a host. In
general, there are two possible ways to emulate a PCIe device in the Linux kernel:
(1) directly manipulate the kernel’s device list, or (2) utilize abstraction layers.

The first approach would directly interfere with the kernel’s device model. In
theory, it is possible to insert a device structure into the device list and connect
it with all related kernel objects. But, this concept is very similar to providing a
customized kernel patch, and therefore, cumbersome and error-prone. Even though
the modification of the kernel sources and recompilation could be avoided, the result
would be similarly difficult to debug and maintain.

The most promising way to implement VPCI is to utilize the abstraction layers
provided by the kernel, particularly the PCI layer and its generic API. All relevant
addresses and values that are required for the virtual device are stored in a structure

92

4.7 Virtualization of Remote PCI Express Devices

1 /* Low -level architecture - dependent routines */
2 struct pci_ops {
3 int (* read)(struct pci_bus *bus , unsigned int devfn ,
4 int where , int size , u32 *val);
5 int (* write)(struct pci_bus *bus , unsigned int devfn ,
6 int where , int size , u32 val);
7 };

Listing 4.2: Generic PCI function pointers defined in <include/linux/pci.h>.

reflecting the virtual PCI device, as shown in Listing 4.1. When the VPCI module’s
initialization function is triggered, the steps explained in sections 4.7.3 to 4.7.6 are
performed, which results in the enumeration of the virtual device and the allocation
of all necessary kernel structures.

4.7.3 Forwarding PCI Configuration Space Requests

The Linux kernel offers a set of PCI-specific functions to read from and write to a
device’s configuration space. What is most interesting about these functions is that
they are all implemented on top of two generic kernel routines. They can be accessed
via pointers stored in struct pci_ops as displayed in Listing 4.2, which in turn
are stored in struct pci_bus. All configuration requests are handled internally by
these two functions. The Linux kernel stores its public symbols – global variables and
functions that are not declared as inline or static – in a symbol table. For a symbol to
be used by other modules, it usually needs to be exported with the EXPORT_SYMBOL
or EXPORT_SYMBOL_GPL macros. However, non-exported public symbols are also
stored in the symbol table. Each entry consists of the symbol’s name and address.
From user space, this symbol table can be viewed in /proc/kallsyms. The Linux
kernel provides the function kallsyms_lookup_name(), which can be used in kernel
modules to look up a symbol’s address by its name. This way variables or functions
that are not exported can still be accessed.
The idea of VPCI is to replace the generic PCI function pointers with a pair of

functions provided by the VPCI software. These functions check the targeted bus
and device number, and if these numbers match the information of the virtual device,
the request is forwarded to the remote accelerator utilizing Extoll’s remote register
file access mechanism. Otherwise, the parameters are simply passed to the original
generic functions. This mechanism ensures the full functionality of all connected
PCIe devices. Figure 4.24 displays the control flow; the dashed line illustrates the
path of a normal operation.

93

4 Network-Attached Accelerators

PCI Core
Module

VPCI Module

Accelerator Node

AcceleratorExtoll
NIC

PCIe

vpci_read_cfg()

Virtual
Device? Yes

pci_read_config_dword()

Generic Read Function

Local hardware

No

Linux Kernel

Figure 4.24: Control flow of PCI configuration space accesses.

4.7.4 Device Enumeration

With the configuration space of the accelerator being available, the bus just has to be
rescanned to perform the enumeration process. For this purpose, the kernel provides
a rescan functionality, which can be triggered by the VPCI kernel module. When
the rescan has completed, the device is enumerated and all related kernel objects
have been created. One limitation of the current design is that the VPCI design
requires a free port on a host system to operate properly. Before loading VPCI, such
a free port must be found and its secondary bus number be used for the virtual
device. According to the rules for the actual enumeration process, the device and
function numbers are both 0. Since the requirement of a free port per device poses a
serious constraint on the usability of VPCI, it is possible to emulate a free port via
an additional software abstraction.

4.7.5 Forwarding Memory-Mapped I/O Requests

The concept for forwarding memory requests has previously been described in section
4.5.2.3. All that needs to be done is to configure the SMFU on both the cluster and
accelerator nodes in order to fulfill the requirements and to prevent the kernel from
overwriting the accelerator’s BARs once the setup has been completed. The latter
issue can be prevented by simply handling such requests in VPCI’s configuration
functions. The SMFU is configured via the register file. On the local node, the VPCI
module can directly interface with Extoll driver to configure the SMFU intervals.

94

4.7 Virtualization of Remote PCI Express Devices

The remote SMFU can be configured by issuing RMA put commands to the remote
Extoll NIC’s register file.

It is important that the software on the cluster node only requests BAR addresses
through the generic PCI routines. In general, the SMFU uses 64-bit addresses, but
the configuration space functions can only return 32-bit addresses for one BAR. On
the remote side, there is no host from which the SMFU needs to request any memory.
So, it has the whole 64-bit address range at hand and can assign a 32-bit address to
the BAR. The same is done with the ROM Base Address, which also can only be
assigned a 32-bit address. In summary, VPCI performs the following steps:

(1) Determine how many memory windows the device needs. Also, retrieve infor-
mation about their size and whether they are 64 or 32 bits wide.

(2) Retrieve the physical start address of the host’s SMFU memory window.

(3) Configure the individual memory regions on the host SMFU and store the
addresses in the virtual device’s resources.

(4) Configure the individual memory regions on the remote SMFU and write the
addresses into the real accelerator’s BARs. When doing this, the memory
regions need to be matched with the host’s memory windows. This is done by
writing the addresses in the same SMFU register file entries.

4.7.6 Interrupt Delivery

Before the remote accelerator device can send any interrupts to a cluster node, VPCI
needs to provide a way to register and de-register an interrupt handler in the Extoll
interrupt mechanism. The following steps need to be performed by VPCI to enable
interrupt delivery from the remote device to a node:

• Configure the MSI address in the device’s configuration space;

• Register or de-register an interrupt handler when an accelerator driver allocates
or frees an interrupt line.

4.7.6.1 MSI Configuration

PCIe devices utilize the MSI interrupts mechanism to communicate events to a host
system. To signal an interrupt, the accelerator device sends a memory write packet
to a predefined target address with a predefined payload. In order to enable interrupt
delivery, VPCI needs to ensure that the MSI capability register set is initialized with

95

4 Network-Attached Accelerators

a target address that will trigger an Extoll interrupt. For this purpose, the address
range starting at 0xFD00000000 is reserved.

Once the accelerator device’s MSI Address register has been set to such an Extoll-
specific address, VPCI needs to ensure that the address is not overwritten by the
kernel or the accelerator driver with any other value. Since VPCI is in full control of
all configuration space requests, it simple compares the request’s offset parameter to
the offset of the MSI address register in the configuration space and ignores write
requests to this offset. In general, the exact target address is not defined, but can be
determined by parsing a device’s capabilities list. In case the kernel tries to check the
MSI address to be properly initialized, VPCI returns the value the kernel expects,
which ensures that the virtual PCI device passes any validation checks.

4.7.6.2 Interrupt Registration with Kernel Probes

One of the main obstacles of VPCI is proper registration and de-registration of
interrupt handlers. The problem is that a driver usually does not register its handler
when the module is loaded, but whenever its open function is called for the first
time. E.g., for NVIDIA GPUs, the open function is called when a CUDA kernel is
executed. Similarly, the handler gets de-registered on the last call to the driver’s
close function, not when the driver module itself is removed. Therefore, there is
no deterministic point in time for VPCI to know when to register or de-register an
accelerator driver’s handler to or from the Extoll interrupt mechanism.
Originally designed to provide a dynamic kernel debugging mechanism, kernel

probes (KProbes) [113] can be used to hook into any kernel routine. So called
JProbes can be used to intercept any kernel routine, retrieve the routine’s arguments
and forward the call to a function that matches the target function’s signature.
Therefore, the generic approach to register and de-register an accelerator devices
interrupt handler is to install the probes into the kernel’s corresponding routines,
which are request_irq() and free_irq(). However, request_irq is defined as
an inline function, which directly passes its arguments to request_threaded_irq.
Therefore, VPCI hooks functions into request_threaded_irq and free_irq. VPCI
can distinguish the origin of an interrupt registration routine be comparing the driver
module name with the accelerator device’s driver module.

4.7.7 Overall Picture

The setup and configuration of a remote accelerator device comprises of several
steps, which can be summarized as follows. The first step is to load the VPCI kernel

96

4.7 Virtualization of Remote PCI Express Devices

module, which in turn initializes and enumerates the remote accelerator device. In
order to do so, VPCI needs to locate a free port on the system and configures the
remote root port. Once the backdoor functionality of the remote Extoll NIC is setup,
VPCI determines the types and sizes of the remote BARs, and, the local and remote
SMFUs are configured.
The second step of the initialization is to replace the generic PCI read and write

kernel routines. In addition, the VPCI module installs function hooks for interrupt
registration and de-registration. Upon completion of the setup of the remote device
and local device structures, a rescan of the bus where the virtual device is place
behind is triggered to perform the enumeration of the virtual device. The virtual
device is accessible over sysfs and the accelerator driver can be loaded.

4.7.8 Experimental Evaluation

At the time of this writing, a prototype implementation of VPCI is available, which
is capable of operating one accelerator device. In the following, the test system
configuration, benchmarks and initial results are presented.

4.7.8.1 Test System

The test system setup comprises of two server machines: one for the VPCI tests and
one traditional setup. The VPCI test system is equipped with an Intel Xeon E5-2670
v2 dual socket CPU (10 cores per socket, codename: Ivy Bridge) running at 2.50
GHz, 32 GB of main memory and an Extoll Tourmalet 100G card. The traditional
system is a server equipped with an Intel Xeon E5-2620 v2 dual socket CPU (6 cores
per socket, codename: Ivy Bridge) and 24 GB of main memory.
Both systems run Ubuntu 16.04, kernel version 4.4.0, as operating system. Both

systems utilize an NVIDIA Tesla K20c GPU, which is based on the Kepler GK110GL
architecture. The GPU is operated with the NVIDIA driver version 352.99 for Linux
x86_64 systems and CUDA (Compute Unified Device Architecture) version 7.5.

4.7.8.2 Benchmarks

For the prototype evaluation, two different benchmark suites are utilized: the CUDA
7.5 sample programs and the SHOC benchmark suite. The CUDA 7.5 runtime
comes with several different sample programs to test the basic functionality of a
connected CPU device. Of interest for this work are two tests: bandwidthTest and
simpleMultiCopy. bandwidthTest is capable of measuring the memcopy bandwidth

97

4 Network-Attached Accelerators

Table 4.3: Overview of the benchmark results.

Benchmark VPCI Traditional
CUDA – bandwidthTest
Host to device 4216 MB/s 5897 MB/s
Device to host 5314 MB/s 6553 MB/s
CUDA – simpleMultiCopy
Memcopy host to device 4.09 ms (4.1 GB/s) 2.78 ms (6.03 GB/s)
Memcopy device to host 3.17 ms (5.29 GB/s) 2.51 ms (6.68 GB/s)
Fully serialized execution 4.31 GB/s 5.79 GB/s
Overlapped using 4 streams 5.99 GB/s 11.33 GB/s
SHOC
BusSpeedDownload 4.41 GB/s 6.05 GB/s
BusSpeedReadback 5.53 GB/s 6.71 GB/s

across PCI Express from the host to the device and vice versa. simpleMultiCopy
illustrates the usage of CUDA streams to achieve overlapping of kernel execution
with data copies to and from the device.

The Scalable Heterogeneous Computing (SHOC) benchmark suite [114, 115] is
a collection benchmarking programs written in OpenCL and CUDA to test the
performance and stability of systems using computing devices with non-traditional
architectures for general purpose computing. Of particular interest for this work are
the level 0 benchmarks, which measure the low-level characteristics of GPU devices.
BusSpeedDownload and BusSpeedReadback measure the bandwidth across the PCI
Express bus connecting the GPU and the host.

4.7.8.3 Results

Table 4.3 presents the results for both the VPCI and the traditional systems with
the previously introduced benchmarks. The SHOC benchmark is used to verify the
accuracy of the CUDA samples. The current implementation of VPCI provides full
access to the remote GPU, but comes with some performance limitations. There
are two possible reasons for this behavior. First, the interrupt management of the
accelerator device is integrated in the default Extoll interrupt handler. Depending on
the amount of incoming interrupts, the serialization of the interrupt delivery poses a
potential performance bottleneck. Second, VPCI currently does not configure the
PCI Express maximum payload size. If the maximum payload is too small, the
Extoll device cannot provide its full throughput capability.

98

4.8 NAA Summary

Besides the design of VPCI, another source of performance limitation can be
the PCIe connection itself. Previous work about GPUDirect RDMA peer-to-peer
communication [116, 117] describes that Intel’s Sandy Bridge and Ivy Bridge chip
sets only provide poor support for non-posted peer-to-peer operations. The same
behavior has also been observed for Intel Xeon Phi coprocessors [91].

4.8 NAA Summary
This chapter has introduced the network-attached accelerator approach, which
describes a novel communication architecture for accelerator devices. Accelerators
are placed on so called accelerator nodes and the Extoll interconnect technology
is used to operate the devices remotely. The disaggregation of PCI Express hosts
from their end-points (i.e., the accelerators) enables the optimal application-to-
compute-resources mapping at runtime in an N to M ratio. In addition, NAA
enables the direct communication between accelerator devices without any host CPU
involvement.

This chapter has presented two NAA prototype implementations targeting different
classes of accelerators. The first implementation evolved around the Intel Xeon Phi
coprocessor of the Knightscorner generation. This particular class of accelerator
devices runs their own operating system. With this unique feature, the Intel Xeon
Phi coprocessors were used to build a stand-alone cluster of accelerator devices,
which is called Booster. After configuring and booting the remote devices, they can
be accessed through SSH and utilize native Extoll communication, e.g., through MPI.
In particular, the EXN interface, which is presented in the next chapter, is used in
the DEEP setup to provide IP addressing between the booster nodes. A test setup
comprising of two Intel Xeon Phi coprocessors and two Extoll FPGA cards was used to
provide an initial performance evaluation. The results of the MPI microbenchmarks
and application evaluation with LAMMPS provide promising results, indicating that
the communication time between accelerators can be drastically reduced.
The second implementation focused on the utilization of GPU devices. GPUs

pose some unique challenges to the NAA approach. While the Intel Xeon Phi
coprocessors can be operated just like real compute nodes, GPUs are typically used
to offload massively parallel code. They are not designed to be operated autonomously.
VPCI virtualizes accelerator devices by mapping their address spaces through Extoll.
Devices appear to be locally attached and are visible in the Linux operating system’s
PCI hierarchy. A prototype has been used to demonstrate that it is possible to run

99

4 Network-Attached Accelerators

CUDA code on remote GPU devices. However, the current implementation provides
only limited performance compared to a conventional heterogeneous system setup.
Another question that needs to be addressed by future work is how multiple compute
nodes can access remote GPU devices.

Nonetheless, this chapter has demonstrated that the Extoll interconnect technology
can be used to build unconventional system architectures. With the upcoming
exascale challenge, such innovative architectural approaches are needed to overcome
the limitations of today’s HPC infrastructures.
Besides novel communication architectures, the support of traditional communi-

cation schemes and protocols is another important pillar of modern system area
networks. In the following chapter, the acceleration of traditional TCP/IP communi-
cation through RDMA over Extoll is introduced.

100

C
h

a
p

t
e

r

5
RDMA-Accelerated TCP/IP Communication

Over the last decades, the Internet protocol suite, commonly referred to as TCP/IP,
has become the predominant standard for end-to-end network communication and
I/O. A vast majority of protocols relies on TCP/IP and expects IP addressing to
identify network nodes. Yet, these legacy protocols pose some fundamental challenges
to modern large-scale systems and applications. In general, traditional TCP/IP
implementations require data copies between the application buffers and socket
buffers in kernel space on both the sender and the receiver side, which typically
is performed as programmed I/O by the CPU. In addition, traditional TCP/IP
communication requires segmentation, reassembly, and transport handling. Another
challenge is introduced by the Sockets API, which is the common software network
interface, since it requires two-sided communication.
For large-scale HPC environments, these operations consume substantial CPU

resources and memory bandwidth, and introduce potential performance bottlenecks.
However, most modern network technologies offer RDMA capabilities, which provide
the means to bypass the operating system for data transfers and permit for low-
latency, high-throughput networking. Extoll is such an RDMA-capable networking
technology, which can be used to accelerate the traditional TCP/IP data path through
RDMA. By providing TCP/IP protocol support over Extoll, the performance benefits
of the interconnect can be leveraged by a broader range of applications, including
the seamless support of legacy codes.
This chapter introduces the design and implementation of Ethernet over Extoll

(EXT-Eth) and Direct Sockets over Extoll (EXT-DS), which provide TCP/IP com-
munication means for the Extoll interconnect technology. Both protocols leverage

101

5 RDMA-Accelerated TCP/IP Communication

Application Layer (L7)

Presentation Layer (L6)

Session Layer (L5)

Transport Layer (L4)

Network Layer (L3)

Data Link Layer (L2)

Physical Layer (L1)

OSI Layer TCP/IP Layer

Application Layer

Transport Layer

Network Layer

Link Layer

HTTP, UDS, FTP, SMTP, POP, Telnet, TSL/SSL

SOCKS

TCP, UDP, SCTP

IP (IPv4, IPv6), ICMP

Ethernet, FDDI, Token Bus, Token Ring

Example Protocols

Figure 5.1: Comparison of the OSI and TCP/IP reference models.

the RDMA capabilities of the Extoll NIC. While EXT-Eth provides IP addressing
and address resolution through asynchronous, two-sided RDMA read operations,
EXT-DS targets the acceleration of sockets communication by providing transport
offload with kernel bypass data transfers. This chapter summarizes and extents
two workshop contributions [13, 14]. The remainder of this chapter is structured as
follows. First, an overview of the Internet protocol suite is presented followed by a
summary of related work. The main part of the chapter focuses on the design of the
two protocols. The chapter concludes with an initial performance evaluation.

5.1 Introduction to the Internet Protocol Suite
A networking protocol is a set of rules defining how information is to be transmitted
across a network [118], and typically, organized in several layers. The Internet
Protocol Suite is such a layered networking protocol, as depicted in Figure 5.1, which
provides a set of communication protocols used for end-to-end data communication.
Its main application area is the Internet and internetworks, but it is also deployed on
a wide range of similar computer networks such as system area networks (SANs) in
HPC and data centers. First developed in the mid 1970’s by the Defense Advanced
Research Projects Agency (DARPA), the Transmission Control Protocol (TCP) and
the Internet Protocol (IP) are the fundamental and most widely used protocols
of the suite, which is the reason the Internet protocol suite is commonly referred
to as the TCP/IP reference model. In comparison with its successor, the Open
Systems Interconnection model (OSI model), TCP/IP consists of less layers. Figure
5.1 presents an overview of the two reference models and their layers.

In general, the TCP/IP suite is divided in four abstraction layers. The application
layer provides the user with services to create user data and communicate this data

102

5.1 Introduction to the Internet Protocol Suite

to other applications on the same or another node. The communication can be
characterized by different models such as the client-server model and peer-to-peer
networking. The transport layer provides end-to-end communication services for
applications. The User Datagram Protocol (UDP) and TCP are the main protocols of
this layer. The network layer provides a uniform networking interface. It defines the
addressing and routing structures, while hiding the actual topology of the underlying
network. The main protocol of this layer is the Internet Protocol (IP). The link layer
is the lowest layer and consists of the device driver and the actual hardware interface,
i.e., the network interface controller. The layer is concerned with transferring data
across a physical link. One important characteristic is the maximum transmission
unit (MTU), which defines the upper limit of the size of a frame.

5.1.1 The Network Layer: IP

The network layer is responsible for the packet delivery from the origin to the
destination node and performs a variety of tasks. These tasks include the breaking of
data into fragments small enough for transmission via the link layer and the routing
of data across the Internet, but also the supply of services to the transport layer.
The main protocol in the network layer is the Internet protocol (IP). The first

version of IP was introduced in 1981 [119] and is commonly known as the Internet
Protocol version 4 (IPv4). It provides a 32-bit addressing scheme for identifying
subnets and hosts. In 1998, the IP version 6 (IPv6) standard was released [120],
which introduces 128-bit addresses, thus, providing a much larger range of addresses
to be assigned to hosts.

IP Datagrams IP transmits data in packets called datagrams, which are sent
independently across the network. An IP datagram consists of a header and its
payload. The header can have up to 60 bytes and contains the destination address,
so that the datagram can be routed, but also the source address of the packet. The
size of the payload is specified by the upper limit on the size of a datagram, which
must at least match the minimum reassembly buffer size specified by IP.

Transmission Mode IP is a connectionless, unreliable protocol. It neither provides
the concept of a virtual circuit connecting two hosts nor guarantees that packets are
delivered in order, will not be duplicated, or even arrive at all. In addition, IP has
no error recovery mechanism. Reliability must be provided either by the transport
protocol or by the application itself.

103

5 RDMA-Accelerated TCP/IP Communication

Fragmentation and Reassembly IPv4 datagrams can be up to 65,535 bytes in
size, while the default IPv6 datagram size is 65,575 bytes (with 40 bytes for the
header and 65,535 bytes for the payload) and can be scaled up to 4 GiB with so
called jumbograms. When the IP datagram size exceeds the MTU of the link layer
below, IP fragments the datagrams into suitably sized units for transmission across
the network. The fragments are then reassembled at the destination. A major
disadvantage of this mechanism is that a datagram can only be reassembled if all of
its fragments arrive at the destination; IP does not perform packet retransmission.

5.1.2 The Transport Layer

Residing on top of the network layer, there are two primary transport layer protocols:
the Transmission Control Protocol (TCP) [121] and the User Datagram Protocol
(UDP) [122]. UDP provides an unreliable datagram service, while TCP provides
flow-control, connection establishment and reliable data transmission. To establish
end-to-end communication and to be able to differentiate applications running on a
host, both protocols use a 16-bit port number.

5.1.2.1 User Datagram Protocol

UDP mainly adds two features to IP: port numbers and a data checksum for error
detection and data integrity checks. UDP is connectionless and unreliable. If an
application using UDP as the transport protocol requires reliability, this must be
implemented by the application itself.

When comparing UDP and TCP, one questions that arises is why one should use
UDP at all. For extensive details, the reader is referred to chapter 22 of the book
UNIX Network Programming Volume 1 by Stevens et al. [41]. Some reasons can be
summarized as follows. A UDP server can receive datagrams from multiple clients
without the need to establish a connection for each client. UDP can be faster for
simple request-response communications. Also, UDP sockets permit multicasting or
broadcasting of datagrams to multiple or all nodes connected to the network.

5.1.2.2 Transmission Control Protocol

TCP provides a reliable, connection-oriented, bidirectional, error-checked packet
delivery service for byte-streams (octet-streams) between two TCP endpoints (i.e.,
applications). It offers a suitable transport method to user applications which rely
on reliable session-based data transmission such as client-server databases and e-mail

104

5.1 Introduction to the Internet Protocol Suite

clients. In accordance with the Internet standard, TCP must perform the following
tasks to provide the described connection features.

Connection Establishment TCP needs to establish a connection prior to the
data transmission. A TCP connection is initialized through a so called three-way
handshake, which exchanges options to advertise connection parameters and returns
control information used to establish a virtual communication channel between the
two TCP hosts. When a TCP connection is closed, a similar handshake mechanism
is used to ensure that no data segments are lost on the sending or receiving side.

Fragmentation TCP fragments user data into segments. Each segment contains a
checksum to verify data integrity and is transmitted in a single IP datagram.

Acknowledgments, Retransmissions, and Timeouts TCP ensures reliability by
implementing an acknowledgment mechanism. After receiving a TCP segment with-
out an error, TCP sends a positive acknowledgment to the sender. Otherwise, an
erroneous segment is discarded and no acknowledgment is sent. Lost and erroneous
segments are handled by a timer for each segment on the sender side. If an acknowl-
edgment is not received within the stipulated time, the segment is retransmitted.

Sequencing For each byte transmitted over a TCP connection, a logical sequence
number is assigned. Each TCP segment has a field that contains the sequence
number of the first byte in the segment. This number allows TCP to reassemble
segments at the destination in the correct order before passing the byte stream to
the application layer. In addition, the receiver can use the sequence number to
acknowledge successfully received segments and to eliminate duplicates.

Flow Control Each TCP endpoint maintains a buffer for incoming data. The TCP
flow control mechanism on the receiver side prevents fast senders from overwhelming a
slow receiver by advertising the available space in the incoming data buffer with each
acknowledgment. In addition, TCP employs the sliding window algorithm, which
allows unacknowledged segments in total of up to N bytes to be in transit between
sender and receiver with N being the offered window size. If the incoming data
buffer is completely filled, the sliding window is closed and TCP stops transmitting
segments.

105

5 RDMA-Accelerated TCP/IP Communication

Application

File

Sockets

TCP

IP

Ethernet

NIC Driver

NIC

User

Kernel

Device

write(fd, buf, len)

Validate file descriptor.

Copy/append buf to socket buffer.

Create TCP segment according to TCP state.
Compute checksum.

Add IP header, perform IP routing.
Compute checksum.

Add Ethernet header, perform ARP.

Tell NIC to send the packet.

Fetch the packet from host memory and send it.
Interrupt the host when send is done. IFG Pre. Eth. IP TCP CRC

Eth. IP TCP

IP TCP

TCP

User data

Ho
st

Send socket buffer:

Figure 5.2: Overview of the TCP/IP data transmission path [123].

Congestion Control: Slow-Start and Congestion-Avoidance Algorithms TCP
provides a congestion avoidance method called slow-start algorithm, which is designed
to prevent a fast sender from overwhelming the network. Initially, the sender transmits
segments at a slower rate, but exponentially increases the rate as the segments are
acknowledged by the receiver until the transmission capacity of the network is
saturated. In addition, congestion windows limit the amount of unacknowledged
data that can be transmitted. Similarly to the slow-start algorithm, the window size
increases exponentially until a specified threshold is reached.

5.1.3 Data Transmission and Reception in Linux

Figure 5.2 displays the data transmission path of a packet with the corresponding
tasks performed by each layer. The TCP/IP layers can classified in three areas:
user area, kernel area, and device area. All tasks in the user and kernel area are
performed by the CPU. The device is represented by a network interface controller.

At the beginning of the send path, a user typically establishes a socket connection
and initializes the send process, e.g., by calling write(). The file layer performs a
simple file validation, and then, forwards the data to the sockets layer by calling the
socket send function, which in turn copies the data to the corresponding socket buffer
structure. For this purpose, the kernel socket has two buffers: the send socket buffer
and the receive socket buffer. The send socket buffer is fragmented in TCP segments
and appended with a header including the checksum and sequence number for the
segment. From there, the segment is handed down to the IP layer where the it is
encapsulated in an IP datagram. The IP layer adds an IP header and performs IP
routing, which determines the next hop IP on the way to the destination node. Next,
the Ethernet layer searches for the Media Access Control address (MAC address) of

106

5.1 Introduction to the Internet Protocol Suite

Application

File

Sockets

TCP

IP

Ethernet

NIC Driver

NIC

User

Kernel

Device

read(fd, buf, len)

Validate file descriptor.

Copy data to user space. Remove it from
socket buffer. Tell TCP.

Validate the packet. Find TCB and run TCP
protocol. Append payload to socket buffer.

Validate the packet. Perform IP routing.
De-multiplex based on IP proto.

Validate the packet. De-multiplex based on
EtherType.

Validate the packet. Wrap it in OS
packet structure (socket buffer).
Validate the packet. Transfer it to a pre-allocated
host memory buffer. Interrupt the driver that
there is a new packet.

IFG Pre. Eth. IP TCP CRC

Eth. IP TCP

IP TCP

TCP

User data
Ho

st

skb Eth. IP TCP

Receive socket buffer:

Figure 5.3: Overview of the TCP/IP data reception path [123].

the next IP hop by utilizing the Address Resolution Protocol (ARP). Afterwards, the
layer adds the Ethernet header and then, the transmitting NIC driver is called to
send the packet over the network fabric.

On the receiving side, a similar stack of layers is traversed by an incoming packet.
Figure 5.3 displays the different layers and corresponding tasks performed by each
layer. The NIC transfers the incoming packet to a pre-allocated host memory buffer
and sends an interrupt to the host operating system. The NIC driver then checks
whether it can handle the new packet, wraps it in a socket buffer and sends it to
the upper layer. The Ethernet layer checks whether the packet is valid and then
de-multiplexes the network protocol, in this case the IP layer. The IP layer also
checks whether the packet is valid, and then, determines whether the packet’s final
destination is the host or another system. If it is meant for the local host, the IP
layer de-multiplexes the transport protocol from the IP header. In this example, IP
sends the packet to the TCP layer. Like the other layers, TCP also validates the
packet and then, searches the TCP control block of the corresponding connection. If
new data has been received, the TCP layer appends the data to the corresponding
receive socket buffer. When the application calls the read system call, the data in
the socket buffer is copied to the user memory and removed from the socket buffer.

5.1.4 Interrupt Coalescing and NIC Polling with NAPI

In traditional, purely interrupt-driven systems, each received packet triggers an
interrupt in order to inform the system that a new packet is waiting to be processed.
Under high traffic load, the high priority of interrupts leads to a state known as receive
livelock [124]. When a system enters this state, it will dedicate its CPU resources to
interrupt handling, while the actual packet processing as well as other processes will

107

5 RDMA-Accelerated TCP/IP Communication

Fig. 1. Schematic view of the NAPI functionality

1) The DMA engine copies a packet from the receiving NIC
hardware Rx Queue to an Input Queue in the main
memory.

2) The NIC triggers a hardware IRQ which is served by the
assigned CPU core. The mapping between an IRQ and
a CPU core that is intended to handle the IRQ can be
statically assigned.

3) The IRQ Handler enqueues an entry referring to the In-
put Queue into the poll list (napi_schedule()) and
raises a so called soft IRQ (NET_RX_SOFTIRQ). Each
CPU core provides a dedicated poll list to schedule the
queues that needs to be handled.

4) The soft IRQ Scheduler completes the soft IRQ and invokes
the networking functionality (net_rx_action()).

5) net_rx_action() peeks the first entry of the poll list
and initiates the poll (poll()). Since the implementation
of poll() is driver-specific, we discuss its behavior in
the next section.

6) A poll returns for two reasons:
(a) The corresponding Input Queue is empty.
(b) poll() yields after processing a certain quota

(poll size) of packets to prevent other Input Queues from
starving (Continue with step 8).

7) The respective entry is removed from the poll list
(napi_complete()) and the poll finishes. (Continue
with step 9).

8) The current poll is suspended although the Input Queue is
not empty. The respective entry is re-enqueued into the
poll list in a round-robin manner.

9) If the poll list still contains entries NAPI continues with
step 5. Otherwise, the algorithm ends.

Fig. 2. NAPI in conjunction with NIC driver ixgbe; Shaded boxes represent
functions which are part of the Linux kernel (not ixgbe)

The handling of net_rx_action()is also limited to budget
of OS processed packets as well as a timeout to share the
CPU core with other competing devices or processes. If budget
packets were processed or if the timeout expired then a
NET_RX_SOFTIRQ soft IRQ is raised again and the CPU
core is released.

B. NIC driver

For the description of the interaction between the NAPI
and the NIC driver, we choose the Intel 10 GbE driver ixgbe.
The ixgbe driver implements the Input and Output Queues as
Rx and Tx rings which are continuously allocated memory
blocks made of descriptors. These descriptors point to the
actual packet buffers and are used by the DMA engine to copy
packet data from the NIC to the main memory (Rx) and vice
versa (Tx). In case no ready to use Rx descriptors are available
to the NIC, new packets get dropped in hardware. This way an
overwhelmed system is not bothered by additional incoming
packets that cannot be handled anyway. If an Rx descriptor
is available and a packet is received by the NIC, then it is
stored in the NIC Rx Queue. The NIC’s Board Logic fetches
a Rx descriptor from the Rx ring and transfers the packet
data via DMA into the associated buffer in the main memory.
Afterwards, an IRQ is asserted and handled (cf. Sec. III-A,
steps 1 - 6). A detailed view of the most important steps
performed by the ixgbe driver’s poll() function is provided
in Fig. 2.

A feature of the ixgbe driver is that IRQs can be shared by
Rx and Tx rings to mitigate the number of IRQs. This means an
IRQ can indicate that a packet was received and has to be han-
dled, or that a packet was transmitted and the Tx ring must be
cleaned. For this reason the implementation of poll() is split
up into the two following phases: ixgbe_clean_tx_irq
and ixgbe_clean_rx_irq.

1) In the ixgbe_clean_tx_irq() phase, the driver
cleans Tx descriptors from the Tx ring which are still
associated to packets the NIC has already sent. The
driver can clean up to 256 Tx descriptors consecutively
(independent from the poll size).

Figure 5.4: Schematic overview of the NAPI functionality [126].

starve. The New API (NAPI) [125] is an interface that implements an extension to
the traditional device driver packet processing framework. Its major design objective
is to improve the performance of high-speed networking while reducing the workload
on the CPU. The NAPI design incorporates the following two ideas:

Interrupt Mitigation High-speed networking can create thousands of interrupts per
second. NAPI allows device drivers to disable interrupts during times of high
traffic load with a corresponding decrease in system load. Instead, NAPI offers
a polling functionality on incoming packets.

Packet Throttling When the system is overwhelmed by the amount of incoming
packets and must eventually drop them, it is better if those packets are dropped
before much effort goes into processing them. NAPI-compliant device drivers
can often cause the packets to be dropped by the network card itself before
the kernel sees the packets at all.

108

5.1 Introduction to the Internet Protocol Suite

Figure 5.4 outlines the schematic flow of the NAPI functionality. As described in
Beifuß et al. [126], a NAPI-compliant device driver performs the following steps to
process incoming packets:

(1) The NIC’s DMA engine copies an incoming packet from the RX queue residing
on the NIC to an input queue in the main memory.

(2) The NIC triggers a hardware IRQ, which is served by the assigned CPU core.
The mapping between an IRQ and a CPU core can be statically assigned.

(3) The interrupt request (IRQ) handler then enqueues an entry referring to the
input queue into the poll list and triggers a soft IRQ.

(4) The soft IRQ scheduler completes the soft IRQ and invokes the networking
functionality.

(5) net_rx_action() peeks the first entry of the poll list and initiates the polling
functionality. The implementation of poll() is device driver-specific.

(6) A poll returns for two reasons:

(a) The corresponding input queue is empty.

(b) poll() yields after processing a certain number (specified by a budget)
of packets to prevent other input queues from starving.
→ Continue with step 8

(7) The respective entry is removed from the poll list and poll returns.
→ Continue with step 9

(8) The current poll is suspended although the input queue is not empty. The
respective entry is re-enqueued into the poll list in a round-robin manner.

(9) If the poll list still contains entries, NAPI continues with step 5. Otherwise,
the algorithm terminates.

5.1.5 TCP/IP Protocol Overhead and Bottlenecks

Most modern operating systems implement a networking stack that is based on
the TCP/IP reference model, and therefore, adopt its overhead characteristics and
bottlenecks. At the time TCP/IP was developed, system resources such as memory
were limited, network data rates were low, and network processing at line rates was
not possible due to the limitations in the NIC design. The main objective of the
networking stack was to provide a good balance between ease of use, performance,
and low memory usage.

109

5 RDMA-Accelerated TCP/IP Communication

Table 5.1: TCP/IP protocol overhead for Gigabit Ethernet under Linux 2.6.18.

Processing Time (ns) Percentage (%)
System call and socket 1,779 16.14
TCP 2,356 21.38
IP 1,120 10.16
Protocol Handler invocation 430 3.9
Device Driver 1,987 18.03
Hardware Interrupt 1,770 16.06
NIC + Media 1,580 14.33
Total (round trip) 11,022 100

5.1.5.1 Overhead

For system area networks, the TCP/IP protocol introduces a lot of unnecessary
overhead, which in turn reduces the overall bandwidth. Table 5.1 presents a summary
of the TCP/IP overhead breakdown analysis carried out by Larsen et al. [127].
Analyzing the overhead from the different layers within the TCP/IP model, it is

evident that the stack is not optimized for reliable system area networks. One of
the most time consuming and expensive TCP operations is the checksum generation
for data integrity. Typically, this checksum is computed by the host CPU for every
frame. Modern NICs provide a cyclic redundancy check (CRC) in hardware, which is
an error-detecting code used to detect accidental changes to raw data. An additional
source of overhead is introduced by the Internet Protocol. When TCP passes packets
down to the internet layer, IP splits up the original TCP packets and encapsulates
them in additional headers.

5.1.5.2 Bottlenecks

Besides the protocol overhead introduced by TCP/IP and its layers, bus contention
and system calls introduce potential hardware bottlenecks for high-speed SANs.

As outlined in section 5.1.3, a NIC receives a packet, and then, transfers it from its
on-board memory to a socket buffer structure residing in the main memory of a host.
Although this transfer is carried out by a DMA controller, memory pressure still
exists. In the end, the data is copied to a user space buffer, which is accessible by an
application. Hence, high-speed packet processing stresses the shared bus capabilities
of modern architectures, since it requires a great deal of bandwidth between the
CPU and the memory and I/O subsystems, and results in bus contention.

110

5.2 Related Work

For TCP/IP, there are two important system call properties to be considered.
First, software interrupts or traps are used by a CPU to communicate with the kernel.
Second, an issued system call has to return before an application can continue to
work in user mode. Due to the blocking behavior of system calls such as send() and
recv(), expensive wake-up operations are needed.

5.2 Related Work
Numerous research has been targeting the overall optimization of the TCP/IP stack.
A detailed summary can be found in a survey paper by Hanford et al. [128]. Of
particular interest for this work are implementations of either TCP/IP or Ethernet
over high-performance SANs. While implementations such as IP over Gemini Fabric
[129] are just briefly mentioned, the Infiniband technology offers a vast variety of
research studies targeting the seamless support of legacy applications.
The following sections provide an overview of the OpenFabrics Enterprise Dis-

tribution (OFED) targeting Infiniband and Ethernet networks, and a summary of
sockets-like interface implementations.

5.2.1 OpenFabrics Enterprise Distribution

The OpenFabrics Enterprise Distribution (OFED) [108] is an open-source software
stack offering different network adapter drivers for Infiniband and Ethernet devices,
middle/upper layer kernel core modules and related libraries and utilities for RDMA
and kernel bypass applications. Figure 5.5 provides an overview of the supported
protocols and interconnects.

IP over Infiniband IP over InfiniBand (IPoIB) [130, 131, 132] is a protocol that
specifies how to encapsulate and transmit IPv4/IPv6 and Address Resolution Protocol
(ARP) packets over Infiniband. Therefore, IPoIB enables IP-based legacy applications
to run seamlessly on an Infiniband fabric. IPoIB is implemented using either the
unreliable datagram (UD) mode [130] or the reliable connected (RC) mode [132]. In
Linux, the ib_ipoib kernel driver implements this protocol by creating a network
interface [84, chapter 17] for each Infiniband port on the system. This way, an HCA
acts like an Ethernet NIC. Every such IPoIB network interface has a 20 bytes MAC
address, which may cause problems since the “standard” Ethernet MAC address is
6 bytes (48 bits) in size. Also, the IPoIB protocol does not fully utilize the HCA’s
capabilities such as it does not implement any kernel bypass, reliability, RDMA, and

111

5 RDMA-Accelerated TCP/IP Communication

Application /
Middleware

Sockets API
Verbs

(RDMA API)

TCP/IP

Ethernet
Driver

Ethernet NIC

IP over
Infiniband

Ethernet NIC
with TOE

Infiniband
HCA

Ethernet
Switch

Ethernet
Switch

Infiniband
Switch

SDP

Infiniband
HCA

Infiniband
Switch

Infiniband
HCA

Infiniband
Switch

iWARP-
Ethernet NIC

Ethernet
Switch

RoCE-
Ethernet NIC

Ethernet
Switch

Infiniband
HCA

Infiniband
Switch

RDMA Software Stack

RSocketsLD_PRELOAD

Hardware
offload

1/10 GigE
10/40/100
GigE-TOE

IPoIB SDP RSockets iWARP RoCEv1/v2 IB Native

Kernel
bypass

User space

Kernel space

Hardware

Figure 5.5: Overview of interconnects and protocols in the OpenFabrics stack.

splitting and assembly of messages to packets. The network traffic traverses through
the normal IP stack, which means a system call is required for every message and
the host CPU must handle breaking data up into packets.

In recent years, there have been efforts to cope with the limitations of IPoIB. The
first attempt is the introduction of user space Ethernet verbs [133], which bypasses
the TCP/IP stack for Ethernet frames. A similar approach is proposed by user
space IPoIB packet processing over Verbs [134]. Also, an acceleration to the IPoIB
kernel modul itself is proposed [135], including interrupt moderation and RDMA
capabilities. The latest approach introduces Ethernet over Infiniband [136] as a
replacement for the IPoIB kernel module. It decouples the Ethernet link layer from
the underlying Infiniband network, which is a must for virtualization.

Sockets Direct Protocol The Sockets Direct Protocol (SDP) [137], included as an
annex of the Infiniband specification, was a first attempt to implement a transport-
agnostic protocol to support TCP-like stream sockets over an RDMA-enabled network
fabric. The initial implementation of SDP used a buffer copy method similar to BSD
sockets, therefore referred to as BCopy mode and provided support for zero-copy
data transfers for asynchronous I/O operations. Later, the zero-copy mode, referred
to as ZCopy, was expended to support the synchronous socket calls send() and
recv(). The first attempt to implement a ZCopy mode [138] pinned and registered

112

5.2 Related Work

the application buffers in the SDP implementation and supported two different
modes: Read ZCopy and Write ZCopy. The ZCopy mode utilized Infiniband’s Fast
Memory Region mechanism to transfer data between two HCAs. However, it did
not allow simultaneous send requests, a send() call would block until the data was
received. This blocking behavior was necessary to prevent the modification of the
user memory involved in the data transfer while being processed.

The Asynchronous Zero-Copy SDP (AZ-SDP) [139] allows multiple simultaneous
send requests and introduces the mprotect() call as a safeguard mechanism, which
forces a segmentation fault whenever a user modifies the memory region of an ongoing
transfer. This protection mechanism results in an additional kernel trap for every
data transfer, which forces the user application to block or copy the memory area.
The main objective of SDP is to run with unmodified sockets applications. Therefore,
this costly mechanism is needed since applications can reuse memory as soon as
the sockets library returns control to the application. The SDP protocol has been
deprecated by several different user space libraries providing the same functionality.

RSockets The RSockets [140] library implements a user space protocol for byte
streaming transfers over RDMA, which provides parity with standard TCP-based
sockets. It comes with its own blocking API, which is similar to standard socket
calls such as rsend() and rrecv(), and typically performs buffer copies on both
sides. Existing socket applications can utilize RSockets by using the pre-loadable
conversion library, which exports socket calls and maps them to RSockets. A zero-
copy functionality is available as a set of extra functions on top of RSockets, i.e.,
riomap() and riowrite().

Internet Wide Area RDMA Protocol The Internet Wide Area RDMA Protocol
(iWARP) enables RDMA over TCP/IP infrastructures, including zero-copy and
protocol offload, if the underlying NIC provides RDMA functionality. iWARP is
layered on the congestion-aware protocols TCP and the Stream Control Transmission
Protocol (SCTP) [141] and is defined by a set of RFCs, specifically the RDMA
Protocol (RDMAP) [142], Direct Data Placement (DDP) protocol [143], Marker
PDU Aligned (MPA) Framing [144], and DDP over SCTP [145]. DDP is the main
component in the protocol, which permits the actual zero-copy transmission. iWARP
only supports reliable connected transport services and is not able to perform RDMA
multicasts. Applications implementing the Verbs API can utilize iWARP.

113

5 RDMA-Accelerated TCP/IP Communication

RDMA over Converged Ethernet In contrast to iWARP, RDMA over Converged
Ethernet (RoCE) [146] is an InfiniBand Trade Association standard designed to
provide Infiniband communication on Ethernet networks. RoCE preserves the
InfiniBand Verbs semantics together with its transport and network protocols and
replaces the InfiniBand link and physical layers with those of Ethernet. RoCE packets
are regular Ethernet frames with an EtherType allocated by IEEE which indicates
that the next header is a RoCE value global route header, but they do not carry
an IP header. Therefore, they cannot be routed across the boundaries of Ethernet
L2 subnets. RoCE version 2 (RoCEv2) is a straightforward extension of the RoCE
protocol that involves a simple modification of the RoCE packet format. Instead of
the global route header, RoCEv2 packets carry an IP header which allows traversal
of IP L3 Routers and a UDP header that serves as a stateless encapsulation layer for
the RDMA transport protocol packets over IP.

5.2.2 Sockets-like Interfaces

GMSOCKS GMSOCKS [147] is a direct sockets implementation that maps stan-
dard Windows socket calls onto the Myrinet/GM device driver without the need to
modify the source code, or relink or recompile the application. GM is a message
passing system for Myrinet networks and includes a driver, a Myrinet-interface
control program, a network mapping program, and the GM API, library and header
files. GMSOCKS is implemented as a thin user space software layer in between
the Winsock Direct architecture and the GM user library. The Windows socket
calls are intercepted with the Detours runtime library [148], which provides dynamic
interception of arbitrary Win32 binary functions at runtime on x86 machines.
Depending on the Winsock version, GMSOCKS utilizes the buffered copy or

write zero-copy mode for data transfers. GMSOCKS uses so-called companion
sockets to retrieve information about socket descriptors and match them with the
corresponding GM information. Since GM provides only one receive queue, a worker
thread dispatches incoming messages and inserts them into the corresponding receive
queues of established point-to-point connections. GMSOCKS provides full semantics
and is fully functional against the TCP/IP implementation.

Mellanox’s Messaging Accelerator Mellanox’s Messaging Accelerator (VMA)
[149], formerly known as Voltaire Messaging Accelerator, is an open source project. It
comes as a dynamically linked user-space library and implements the native RDMA
verbs API. The VMA library does not require any code changes or recompiling of

114

5.3 Objectives and Strategy

user applications. Instead, it is dynamically loaded via the Linux OS environment
variable, LD_PRELOAD and intercepts the socket receive and send calls made to the
stream socket or datagram socket address families. The VMA library bypasses the
operating system by implementing the underlying work in user space.

uStream uStream [150] is a user-level stream protocol over InfiniBand and elimi-
nates context switches and data copies between kernel and user space. It utilizes
threads to implement asynchronous send requests and uses internally pre-registered
send and receive buffers. The communication management is split in two commu-
nication channels, a data and a control channel. While this mechanism simplifies
the data path, it requires extra resources to manage the connections. uStream is
complemented by jStream, which provides uStream functionality to Java applications.

UNH Extended Sockets Library The UNH EXS library is an implementation
of the Extended Sockets API (ES-API) for RDMA over Infiniband. The ES-API
specification offers a sockets-like interface that defines extensions to the traditional
socket API in order to provide asynchronous I/O, but also memory registration for
RDMA. UNH EXS offers both stream-oriented and message-oriented sockets. Unlike
SDP and VMA, UNH EXS is not designed to run with unmodified sockets applica-
tions, which simplifies the design considerably. The library introduces an algorithm
that dynamically switches between buffered and zero-copy transfers over RDMA,
depending on current conditions. If a send call exceeds the memory window assigned
to the receive call, the additional chunks are written to a “hidden” intermediate
buffer on the receiver side. To enable true zero-copy, the library implements an
advert mechanism that allows direct transfers depending on the receive buffer size.

5.3 Objectives and Strategy
The TCP/IP network stack is the predominant protocol family for network communi-
cation, including HPC system networks where system area networks are deployed. As
presented in section 5.1, the layered architecture of TCP/IP introduces considerably
high overhead and performance bottlenecks, especially for interconnection networks
that provide reliable connections. Even though, it is desirable to implement TCP/IP
communication means for an interconnect such as Extoll. Transparent and seamless
support of legacy code, the Socket API and IP address resolution enables a broad
range of applications and services to exploit the benefits of Extoll, including its
RDMA and transport offloading capabilities, without any code modifications.

115

5 RDMA-Accelerated TCP/IP Communication

Application

Socket Switch

Protocol Switch

Ethernet over Extoll

Extoll Kernel API

Extoll Device Driver

Direct Sockets over Extoll

User
Kernel

Socket API

IP

TCP

Kernel Bypass
Data Transers

Figure 5.6: Overview of the Extoll software stack with TCP/IP extensions.

For Extoll, a twofold approach is chosen. Ethernet over Extoll (EXT-Eth) provides
a mechanism for emulating Ethernet communication over Extoll by encapsulating
Ethernet frames in Extoll network packets. This way, a fully functional TCP/IP
implementation is provided, which can leverage the Linux kernel’s support for
Ethernet devices while providing IP addressing. The second pillar of the TCP/IP
protocol support for Extoll is presented through the specification of the Direct
Sockets over Extoll (EXT-DS) protocol for stream sockets, which relies on EXT-Eth
for connection establishment and address resolution. The purpose of EXT-DS is
to provide a transparent, RDMA-accelerated alternative to the TCP protocol by
providing kernel bypass data transfers. Figure 5.6 displays an overview of the Extoll
software environment with TCP/IP extensions. Recapitulating the findings from
previous sections, the tasks of the software stack can be summarized as follows:

• The design and implementation should be transparent to legacy applications,
and should provide IP addressing and Ethernet MAC resolution.

• Both EXT-Eth and EXT-DS should leverage the capabilities of the Extoll NIC
as good as possible. The RDMA functionality should be utilized to maximize
the throughput seamlessly. For EXT-Eth, RDMA can be used to maximize the
MTU for the link layer. EXT-DS offers a zero-copy data transmission model.

• The software should be able to transparently switch between EXT-Eth and
EXT-DS. For example, a user-level protocol switch could transparently exchange
the protocols.

• The design of EXT-DS should maintain the socket semantics. Legacy ap-
plications should work out of the box without any code modifications or
re-compilation.

116

5.4 Transmission of Ethernet Frames over Extoll

Ethernet Frame (64 to 9018+ bytes)

4 bytesData (9000+ bytes)MAC Header (14 bytes)

Destination MAC Address Source MAC Address EtherType Payload CRC ChecksumRMA Software
Descriptor
(24 bytes)

VELO Software
Descriptor
(8 bytes)

Ethernet Frame Part I
(up to 120 bytes)

VELO Software
Descriptor
(8 bytes)

Ethernet Frame Part II
(up to 120 bytes)

VELO Software
Descriptor
(8 bytes)

Ethernet Frame Part III
(up to 120 bytes)

Figure 5.7: Ethernet over Extoll software frame format.

5.4 Transmission of Ethernet Frames over Extoll
The following sections describe the design of EXT-Eth, a method for encapsulating
and transmitting Ethernet frames over Extoll. First, the Ethernet frame encapsulation
format and transmission protocols are introduced followed by a message matching
mechanism and the MTU size. Afterwards, the unicast and broadcast addressing
methods are presented. The section concludes with the introduction of the EXN
module, which implements the EXT-Eth protocol in form of a network driver.

5.4.1 Link Frame Transmission and Reception

The EXT-Eth protocol adopts transmission mechanisms, which can be compared to
the MPI message passing protocols. Depending on the payload size of an Ethernet
frame, the design internally switches between the asynchronous eager and rendezvous
protocols. The following sections describe the frame format and the communication
protocols.

5.4.1.1 Frame Format

An Ethernet frame is the payload of an Ethernet packet, and typically, is transported
on an Ethernet link. In general, an Ethernet frame consists of a MAC header, the
payload, and a checksum. The MAC header contains the destination and source
MAC addresses, while the payload carries the data including any headers for other
protocols. The frame ends with a 32-bit cyclic redundancy check (CRC) used to
detect any in-transit corruption of data. Depending on the Ethernet frame type, the
payload varies in its size. Ethernet Type II frames typically carry between 50 and
1500 bytes, while jumbo frames allow up to 9000 bytes. Super jumbo frames are
frames that have a payload size of over 9000 bytes. Figure 5.7 presents the Ethernet
over Extoll frame formats from a software perspective. The Extoll software descriptor
can either be 8 bytes for VELO transmissions or 24 bytes for RMA transactions. On
wire, the Extoll packet is encapsulated in a start of packet (SOP) and end of packet

117

5 RDMA-Accelerated TCP/IP Communication

CPU0 EXTOLL0 EXTOLL1 CPU1

V
E
L
O

R
E
Q
U
E
S
T
E
R

V
E
L
O

C
O
M
P
L
E
T
E
R

Data copy
(Fragment A0) Network Packet

(Fragment A0)

hard_xmit
(300 bytes)

velo_send

A0 to Mailbox
Status Update

To Mailbox / IRQ
alloc_skb
velo_recv

dev_free_skb

recv_skb

velo_send Data copy
(Fragment A1)

velo_send Data copy
(Fragment A2)

Network Packet
(Fragment A1)
Network Packet
(Fragment A2) velo_recv

velo_recv

A1 to Mailbox
Status Update

To Mailbox / IRQ
A2 to Mailbox
Status Update

To Mailbox / IRQ

Figure 5.8: Transmission of large messages via eager protocol.

(EOP) frame. The SOP provides routing information and the target VPID, while
the EOP carries a CRC and error information.

5.4.1.2 Eager Protocol

In general, the MPI eager protocol is an asynchronous, two-copy protocol that allows
a send operation to complete without the acknowledgment from a matching receive
call. The sending side makes the assumption that the receiving process can store
the incoming message and shifts the responsibility of buffering the message to the
receiving side. Typically, this protocol is used for smaller messages (up to KB). The
main advantage of the eager protocol is that it reduces the synchronization delay,
but it can lead to memory exhaustion and wasted CPU memory cycles for copying
data to or from the network into buffer space.
The idea of the eager protocol aligns well with the design of Extoll’s VELO unit.

The VELO functional unit provides fast two-sided (synchronous and asynchronous)
communication for small messages and guarantees in-order delivery of packets. A
VELO packet is 128 bytes in size with the first 8 bytes being used for the Extoll
software descriptor. For a configurable VELO threshold, Ethernet frames are split
in 120 byte-sized fragments and encapsulated in multiple VELO sends. Figure 5.8
presents an example transmission using the eager protocol. On the sender side, the
Ethernet frame, here 300 bytes in size, is split in three data fragments A0-A2, and
then, encapsulated in three VELO sends. First, the data is copied to the VELO
Requester via programmed I/O. Then, the fragments are encapsulated in Extoll
network packets and sent to the receiving node. On the receiving side, the VELO
Completer copies the network packet payloads to the corresponding VELO mailbox

118

5.4 Transmission of Ethernet Frames over Extoll

CPU0 EXTOLL0 EXTOLL1 CPU1

R
E
Q
U
E
S
T
E
R

Responder
Notification

Network Packet

(GET request)

V
E
L
O

V
E
L
O

Data copy
(GET source info)

Network Packet
(GET source info)

Network Packet
(GET response)

Copy data
from main

memory via
DMA

Copy data
into memory

via DMA

R
E
S
P
O
N
D
E
R

hard_xmit

velo_send

Payload to Mailbox

Status Update
To Mailbox / IRQ alloc_skb

rma_getGET Request

dev_free_skb
C
O
M
P
L
E
T
E
R Completer

Notification recv_skb

Figure 5.9: Transmission of large messages via rendezvous protocol.

(one mailbox per VPID), which resides in the main memory of the node. After the
completer writes the status word to the mailbox, an interrupt is triggered to inform
the CPU that new messages have been received.

5.4.1.3 Rendezvous Protocol

The MPI rendezvous protocol is used when assumptions about the receiving process
buffer space cannot be made, or when the limits of the eager protocol are exceeded.
Before any data can be transmitted, an initial handshake needs to be performed
between the sender and the receiver. Typically, the sender process informs the target
process about the desired data transmission by sending a message that advertises
transmission details such as length and source address. The target process receives
this information, and when buffer space is available, it replies to sender that the
message can be sent, which in turn, initiates the data transmission. The rendezvous
protocol provides better scalability, when compared to the eager protocol, and
robustness by preventing memory exhaustion and termination on receive processes.
It also enables true zero-copy communication by eliminating data copies.

Figure 5.9 displays the sequence diagram of the rendezvous protocol over Extoll for
transmitting Ethernet frames. For large messages, the transfer is advertised through
a VELO send, which contains the information needed to initiate an RMA GET
transfer from the receiving node. The VELO message provides the length of the
Ethernet frame and the physical start address of the payload in the main memory of

119

5 RDMA-Accelerated TCP/IP Communication

Local Address[63:0] (Read or Write Address)
(64 bit)

Error
(3 bit)

CMD
(4 bit)

Remote Node ID
(16 bit)

Remote VPID
(9 bit)

NOTI
(3 bit)

Payload Size
(23 bit)

MODE
(6 bit)

3 2 1 0

1

0

2Q
u
ad
w
o
rd

3

1011 89 67 45 23 11920 1718 1516 1314 122122232425 0262728293031

Byte

bit

Figure 5.10: RMA standard notification format.

the sender node, and therefore, describes the GET source buffer. Once the target
node has processed the VELO message and setup a socket buffer as the GET sink
buffer, it initiates the data transmission by issuing an RMA GET request, which
places the Ethernet frame directly into the socket buffer on the target node. Upon
completion of the RMA GET transmission, the RMA notification mechanism is used
to inform sending and receiving side about the completion of the data transmission.

5.4.2 Message Matching and Resource Management

Besides the actual transmission of the Ethernet frames, Extoll needs to maintain a
list of outstanding RMA transmissions. On the link layer for every transmission, the
NIC driver is handed over a socket buffer (struct sk_buff). Upon completion of
a transmission, the socket buffer needs to be returned to the kernel, so that it can
be re-used for the next data transmission. For transmissions using the VELO unit,
socket buffers are returned immediately after the send is performed.

5.4.2.1 RMA Notification Format

In order to match completed GET RMA transactions with outstanding socket buffers
on the sender node, the RMA notification mechanism (see section 3.2.1.1) is used to
implement an efficient message matching mechanism. Recall from the previous section
that RMA transfers are triggered through a rendezvous mechanism, where an RMA
GET is initiated on the destination node. Upon completion, the RMA functional
unit informs the source and target node processes by issuing a notification on both
sites. Figure 5.10 presents the RMA standard notification format. Of particular
interest for the message matching is the local address entry. This field contains the
address that was (or will be) affected by the transaction on the notification receiving
node. It always contains the local address from the request or response, which the

120

5.4 Transmission of Ethernet Frames over Extoll

...0 1 2 n-1 n

496 Bytes
Packet length (in Bytes)

start
first

frame

endstart
last

frame

rest

Figure 5.11: Payload layout after RMA MTU fragmentation.

current unit has received. If the received packet contains a virtual address (network
logical address) that has to be translated before being used, this field contains the
virtual address for security reasons.

Ethernet over Extoll uses byte-sized GET requests for data transmission, where
three different notification types can distinguished. If the notification is written by
the RMA Requester, the local address field contains the write address where the
GET data will ultimately be written to. When it is written by the RMA Responder,
the field contains the read address from where the data was originally read. When
the byte-sized GET response arrives at the RMA Completer and a notification is
written, it contains the write address.

When a single RMA software descriptor has been split into multiple network
descriptors at any point, then only the last network descriptor will write a notification.
This happens when the payload size of an RMA transaction exceeds 496 bytes, which
is known as the RMA MTU. Then, the RMA unit splits the data in multiple RMA
packets with up to 496 bytes of payload. In the case that no error occurs along the
way, the notification will then contain the address that was used in the last partial
network descriptor. For Ethernet over Extoll, two notifications are generated. On
the sender node, an RMA responder notification is written while on the destination
node, an RMA completer notification is generated.

5.4.2.2 Message Matching Mechanism

On both the sender and target node, the received RMA GET request notification
needs to be matched with the corresponding socket buffer, before the socket buffer
can either be freed on the origin node or handed over to the next upper TCP/IP
layer on the target node. Figure 5.11 displays the packet layout after fragmentation
in RMA MTU sized data chunks. Note, depending on the payload size, the last RMA
MTU frame can be smaller than 496 bytes, as indicated by the rest in the figure.
In general, a socket buffer is a contiguous memory region, which describes a

network buffer. When sending the packet data from a socket buffer on the sender

121

5 RDMA-Accelerated TCP/IP Communication

node or receiving the data into a newly allocated socket buffer on the target node, the
physical start address of the packet payload is queried from the kernel and used to
initiate the RMA GET on the target node. To match outgoing and incoming socket
buffers with their respective RMA notifications, for each transmission a metadata
structure is kept with a pointer to the socket buffer, the physical start address of
the packet data, and the start address of the last RMA MTU frame of the payload,
which is calculated as follows. First, the module operation from Equation 5.1 is used
to determine whether the payload length is a multiple of the RMA MTU (rmtu).

rest = length mod rmtu (5.1)

Depending on the result of the module operation, two cases can be distinguished.
If the length is a multiple of 496 bytes (rest = 0), the start address of the last RMA
MTU frame can be calculated as described in Equation 5.2 (I). Otherwise, the start
address is calculated following Equation 5.2 (II).

lastframe =

start+ length− rmtu, (I) if rest = 0;

start+ length− rest, (II) if 1 ≤ rest ≤ rmtu− 1.
(5.2)

When receiving either an RMA responder or completer notification, the local
address from the notification is compared to the queue with outstanding socket buffer
transmissions. There are separate queues for the send and receive RMA path.

5.4.3 Maximum Transmission Unit

The Maximum Transmission Unit (MTU) is the size of the largest protocol data
unit (PDU) that can be processed in a single network layer transaction. It can be
applied to communication protocols and network layers. The maximum frame size
that can be transported on the data link layer, e.g., an Ethernet frame, and the
MTU are not identical, but related to each other. As a rule of thumb, larger MTUs
are associated with reduced overhead, while smaller MTUs can reduce the network
delay. In general, the MTU depends on the underlying network technology, and must
be adjusted, either manually or automatically, to not exceed these capabilities.
In the context of the Internet Protocol, the MTU describes the maximum size of

an IP packet that can be transmitted over a given medium without fragmentation.
The size includes the IP header and the packet payload, but excludes headers and
protocol information from lower layers such as the link layer. Typically, the link and

122

5.4 Transmission of Ethernet Frames over Extoll

1st octet 2nd octet 3rd octet 4th octet 5th octet 6th octet

6 octets 3 octets 3 octets
Organizationally Unique

Identifier (OUI)
Network Interface Controller

(NIC) specific

b7 b6 b5 b4 b3 b2 b1 b0

8 bits

0: unicast
1: multicast

0: globally unique (OUI enforced)
1: locally administered

or

Figure 5.12: MAC address layout universal versus local.

physical layers add overhead to the payload to be transported. Therefore, in order to
calculate the physical maximum frame size of a given device, this protocol overhead
needs to be subtracted to determine the device’s MTU. For example, with Ethernet,
the maximum frame size is 1518 bytes, of which 18 bytes are overhead introduced by
the header and frame check sequence, resulting in an MTU of 1500 bytes.

For the IPv4 and IPv6 path MTUs, a maximum of 65,536 bytes is allowed. Ethernet
jumbo frames support up to 9198 or more bytes. Therefore, the default MTU size for
Ethernet over Extoll is 65,536 bytes. IPv6 also allows so called jumbograms, which
allow an MTU size up to 4 GiB. The current Ethernet over Extoll design supports
one RMA transaction per frame, which results in a maximum MTU size of 8 MB.

5.4.4 Address Mapping – Unicast

Unicast, or point-to-point, addressing uses a one-to-one association between the
sender and the destination: each destination address uniquely identifies a single
receiver endpoint. The MAC address is expected to uniquely identify each node and
allows frames to be marked for specific hosts. Thus, it forms the basis of most of
the link layer (OSI Layer 2) networking upon which upper layer protocols rely to
produce complex, functioning networks.
The following section describes the Extoll Ethernet hardware address format

followed by an introduction to the address resolution in IPv4 and IPv6 subnets.

5.4.4.1 Link-Layer Address/Hardware Address

The Media Access Control address (MAC address) uniquely identifies a NIC for
communication at the data link layer. For most network technologies following the
IEEE 802 standard family [151] for local area and metropolitan area networks, MAC
addresses are used as network addresses in the medium access protocol sublayer.
Together with the logical link control sublayer, they build the data link layer, which
provides flow control and multiplexing. Typically, MAC addresses are assigned by

123

5 RDMA-Accelerated TCP/IP Communication

2E 87 04 07
NodeID>>8

& 0xFF
NodeID
& 0xFF

6 octets

Figure 5.13: Extoll MAC address layout.

the manufacturer and stored in the hardware. They are also referred to as burned-in
addresses, Ethernet hardware addresses, or simply hardware or physical addresses.
Each NIC must have a unique MAC address.

The original IEEE 802 MAC address format utilizes a 48-bit addressing scheme (6
octets) and addresses up to 248 MAC addresses. Figure 5.12 displays the MAC address
layout, which can either be a universally administered address (UAA) or a locally
administered address (LAA). The UAA is uniquely assigned by the manufacturer and
can be identified by the first three octets, which are known as the organizationally
unique identifier (OUI). In case of EXT-Eth, locally administered addresses are used.
UAAs and LAAs can be distinguished by the second-least-significant bit of the first
octet, which is also referred to as the Universal/Local bit (U/L bit). If the U/L bit
is set to 1, the address is locally administered. The least-significant bit of the first
octet indicates whether this is a unicast or multicast address.

Figure 5.13 presents the Extoll hardware address layout. The first to fourth octets
are randomly chosen from the list of unused MAC addresses. The fifth and the
sixth octet are used to encode the Extoll node ID, which is uniquely assigned during
the network setup with EMP (see section 3.3.3). A node ID comprises of 16 bits.
Therefore, it can by split in the octets. After performing an address resolution
either for IPv4 or IPv6, the MAC address associated with an IP address can be
used by Extoll to determine the target node. By using two octets or 16 bits to
decode the node ID, up to 216 (= 65,536) Extoll nodes can be distinguished, which
is the maximum amount of Extoll nodes in one 3D torus. Although intended to be a
permanent and globally unique identification, most modern operating systems allow
to change the MAC address, which is a necessary feature for network virtualization.
For Extoll, the first four octets can be modified at configuration or run time.

5.4.4.2 Address Resolution in IPv4 Subnets

Address resolution in IPv4 subnets is accomplished through the Address Resolution
Protocol (ARP) [152], which uses a simple message format containing one address
resolution request or response. The link and network layer address sizes affect
the ARP message size. Since EXT-Eth encapsulates complete Ethernet frames in
Extoll network packets, the Ethernet address resolution is performed as for any

124

5.4 Transmission of Ethernet Frames over Extoll

10
Octet
offset

0

4

8

12

16

20

24

Hardware type Protocol type

OperationProtocol address lengthHardware address length

Sender hardware address (bytes 0-3)

Sender protocol address (bytes 0-1)

Sender protocol address (bytes 2-3) Target hardware address (bytes 0-1)

Target hardware address (bytes 2-5)

Target protocol address

Sender hardware address (bytes 4-5)

32

Figure 5.14: Internet Protocol (IPv4) over Ethernet ARP packet.

other Ethernet device. Figure 5.14 displays the structure of a typical IPv4 over
Ethernet ARP packet. The hardware type field specifies the network link protocol
type [153]. For EXT-Eth, the type ARPHDR_ETHER is used, which is the standard type
for Ethernet devices. For IPv4, the protocol type contains 0x0800. The hardware
length describes the length of the hardware address. This is of special interest for
non-standard formats, e.g., Infiniband hardware addresses. The sender hardware
address contains the MAC address of the sender. In an ARP reply, the target hardware
address indicates the address of the host that originated the ARP request.

5.4.4.3 Address Resolution in IPv6 Subnets

In IPv6 subnets, address resolution is accomplished through the Neighbor Discovery
Protocol (NPD) [154]. NPD defines five Internet Control Message Protocol for IPv6
(ICMPv6) packet types to perform router solicitation, router advertisement, neighbor
solicitation, neighbor advertisement, and network redirects.
The address resolution process can be described as follows. A node requesting

the link layer address of a target node multicasts a neighbor solicitation message
(ICMPv6 packet type 135) with the target IPv6 address. The target sends back a
neighbor advertisement message (ICMPv6 packet type 136) containing its link layer
address (MAC address). Neighbor solicitation and advertisement messages are also
used for neighbor un-reachability detection, which involves detecting the presence of
a target node on a given link. This mechanism can be directly applied to Ethernet
over Extoll without any special adjustments or the use of extension options.

5.4.5 Multicast Routing

In its most generic form, multicast networking is a type of group communication,
where a data transmission is addressed to a group of network nodes simultaneously
in a one-to-many or many-to-many fashion. IP multicast [155] is the IP-specific

125

5 RDMA-Accelerated TCP/IP Communication

implementation of the multicast networking paradigm. It enables the sending of
IP datagrams to a group of interested receivers by using specially reserved multi-
cast address blocks in IPv4 and IPv6. Broadcasting is a special case of multicast
networking, which distributes a message in a one-to-all manner.

5.4.5.1 Technical Overview

IP multicast is a real-time communication technique for sending IP datagrams in
a one-to-many or many-to-many distribution over an IP infrastructure. In general,
a packet is sent only once and the network nodes (typically network switches and
routers) replicate and forward the packet to reach multiple receivers. In order to
send and receive multicast messages, senders and receivers use IP multicast group
addresses. While senders use the group address as the IP destination address,
receivers use the IP multicast group address to notify the network they are interested
in receiving packets from the respective multicast group. Typically, receivers join a
group by utilizing the Internet Group Management Protocol (IGMP). After joining a
group, a multicast distribution tree is constructed.
As explained in the previous section, unicast packets are delivered to a target

node by setting a specific Ethernet MAC address. Broadcasts are delivered by
using the broadcast MAC address, which is FF:FF:FF:FF:FF:FF. For IPv4, IP
multicast packets are delivered by using the reserved MAC address range between
01:00:5E:00:00:00 and 01:00:5E:7F:FF:FF. Note, the multicast bit is set in the
first octet of the MAC addresses. In case of IPv6 multicast packets, the Ethernet
MAC address is derived by taking the four low-order octets of the IPv6 address and
performing a bitwise OR with the MAC address 33:33:00:00:00:00. For example,
FF02:DEAD:BEEF::1:3 would be mapped to the MAC address 33:33:00:01:00:03.

5.4.5.2 Extoll Multicast Groups and Routing

The VELO functional unit is currently the only unit that can issue multicast messages
from software side. When assembling the software descriptor for a VELO packet,
the multicast bit must be set to 1. The target node ID is then interpreted as the
multicast group ID. The minimal data granularity of the Extoll network protocol is a
cell, which is 64 bits in size. As mentioned before, the first cell of an Extoll network
packet is the SOP cell. Its payload contains information about the packet, including
the multicast bit, routing information (adaptive/deterministic), the traffic class, the
node ID (16 bits), the target functional unit, and the VPID. The node ID is split
into two segments, which results from dividing the Extoll cluster into N segments,

126

5.4 Transmission of Ethernet Frames over Extoll

each M nodes large. Otherwise, the routing tables would need 65,536 entry RAMs,
which is too large to handle. Currently, N is set to be 64 and M is set to be 1024.
The table for the segments is called global routing table, the table for the nodes inside
these segments local routing table.

The Extoll on-chip network switch (crossbar) connects the functional units through
link ports with the network ports of the NIC, and provides hardware support for
efficient multicast networking, especially for broadcasts. The routing in the network
layer relies on table-based routing. Each crossbar inport has its own global, local, and
multicast routing tables, but the entries in these tables are the same over all crossbar
inports. The multicast routing table can distinguish up to 64 Extoll multicast groups
and provides information about where to forward the multicast packet to. In general,
the routing tables are written to the Extoll register file for every crossbar inport
during network configuration time, when the EMP initializes the network.

5.4.5.3 IP Multicasts and Broadcasts over Extoll

IP multicast routing requires a network interface to be configured to listen to all link
layer IP multicast group addresses. For an Ethernet interface, this is achieved by
turning on the promiscuous multicast mode on the interface. When the promiscuous
mode is enabled, the MAC filtering is disabled on the interface and all packets
received are sent to the CPU regardless of the destination address of the packet.
The Extoll NIC is not an Ethernet NIC and utilizes the Extoll network protocol

to transmit packets. Therefore, it does not provide any hardware support for the
promiscuous multicast mode. Extoll can only route packets according to their network
descriptors and corresponding routing table entries. Consequently, all multicast and
broadcast support comprises of the correct configuration of the routing tables on
every Extoll NIC and a software layer, which identifies IP multicast group and
broadcast addresses and encapsulates them in corresponding VELO packets with the
multicast bit set. By default, the EMP configures multicast group ID 63 on every
Extoll NIC to broadcast a packet sent to this ID to every node in the Extoll network.
On the software side, the software identifies a broadcast based on the matching
broadcast Ethernet MAC address and encapsulate the corresponding Ethernet frame
in VELO multicast messages. Besides from the broadcast, EXT-Eth currently does
not support IP multicast. In theory, it is possible to define multiple Extoll multicast
groups, but the software would need to keep track of group members and facilitate
the routing tables accordingly.

127

5 RDMA-Accelerated TCP/IP Communication

Message Slot

Receive

DMA

Ring

(VELO)

Extoll NIC

VELO

RMA

EXN
Interrupt
Handler

Exto
ll N

IC

Soft IRQ
net_rx_action

Hardware

Interrupt

Highe r Layer

Processing

Packet (skb) alloc_skb()Refill

Ring Buffer

de v->poll()

1

2
345

6

7

8

9
...

...

...

Packet
de scriptor

ne tif_rx_ schedule()
Raised soft IRQ

check

Poll queue (per CPU)

C
o

p
y

 p
a

y
lo

a
d

 to
 sk

b

1a

1b

2

3

4

5a

5b

6

5a
5a

In
it

ia
te

 R
M

A
 G

ET

Figure 5.15: Path of an incoming packet in NAPI mode.

5.4.6 EXN: Extoll Network Interface

The network subsystem of the Linux kernel is designed to be completely protocol-
independent, which applies to both networking and hardware protocols. The in-
teraction between a network interface driver and the kernel deals with one packet
at a time and allows protocol issues to be hidden neatly from the driver, but also
hides the physical transmission from the protocol. This section introduces the EXN
module, which has been implemented as part of this work. It provides the network
interface between the Extoll hardware and the TCP/IP stack.

5.4.6.1 Network Driver Overview

The Extoll Network (EXN) interface belongs to the Ethernet class and implements
the EXT-Eth protocol as a loadable kernel module. Emulating Ethernet has the
benefit that the implementation can take full advantage of the kernel’s generalized
support for Ethernet devices. The most important tasks performed by a network
interface are the data transmission and reception. Whenever the kernel needs to
transmit a data packet, it calls the hard_start_transmit() method of the driver,
which puts the data in the outgoing queue. EXN implements the aforementioned
eager and rendezvous protocols for data transmission, and uses a reserved RMA and
VELO VPID for process security. For packet reception, EXN supports both the
interrupt-driven and the NAPI mode.

Figure 5.15 illustrates the path of an incoming packet for EXN running in NAPI
mode. Depending on the transmission protocol, data is received either through the
VELO (1a) or RMA (1b) units. VELO writes the incoming packet to the next free

128

5.4 Transmission of Ethernet Frames over Extoll

1 exn0: flags =67<UP ,BROADCAST ,RUNNING > mtu 65536
2 inet 10.2.0.8 netmask 255.255.255.0 broadcast 10.2.0.255
3 inet6 fe80 ::2 c87 :4ff:fe07 :1 prefixlen 64 scopeid 0x20 <link >
4 ether 2e :87:04:07:00:01 txqueuelen 1000 (Ethernet)
5 RX packets 22 bytes 1572 (1.5 KiB)
6 RX errors 0 dropped 0 overruns 0 frame 0
7 TX packets 22 bytes 1572 (1.5 KiB)
8 TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

Listing 5.1: Example output of ifconfig for Extoll network interface exn0.

message slot in a receive ring buffer associated with the used VPID. RMA, on the other
hand, writes the packet directly to a pre-allocated socket buffer. Upon completion,
the Extoll NIC triggers a hardware interrupt (2). Extoll can distinguish different
sources of interrupts, e.g., different functional units. Therefore, EXN has two different
interrupt handlers, one for VELO and one for RMA interrupts. As the processing
in the interrupt context should be as low as possible, netif_rx_schedule() puts
a reference to the Extoll device into the poll queue (3), which moves the packet
processing in the software interrupt context. Then, net_rx_action() peeks the first
entry of the poll list (4). If there are packets available for reception, the function
disables all interrupts and calls the poll() method of the driver. In case of EXN,
there are two different poll() methods registered, one to process VELO interrupts
(5a) and one for RMA (5b). Depending on the message tag, a VELO message can
either carry the payload of a packet or advertise an RMA GET operation. If it
contains a payload fragment, the data is copied to a free socket buffer entry in the
ring buffer, and after receiving the complete payload, passed to the upper layers (6).
If it advertises an RMA operation, the poll() method writes the RMA software
descriptor and initiates the GET operation. In case of an RMA interrupt (5b), the
packet has already been received in a pre-allocated socket buffer and can be passed
to the upper layers (6) for further processing.
Listing 5.1 displays the command line output of the ifconfig tool for the EXN

interface. It can be seen that EXN utilizes the described MAC address format to
encode the node ID information. IP addresses can either be statically or dynamically
assigned. For static IP addresses, the interface can be configured with a preassigned
IP address through an interface configuration file. Otherwise, the Dynamic Host
Configuration Protocol (DHCP) can be utilized for assigning IP addresses. By default,
the interface supports IP broadcasts; IP multicasting is currently not supported.

129

5 RDMA-Accelerated TCP/IP Communication

2) The ixgbe_clean_rx_irq() phase starts
with the recycling of Rx descriptors, which is
done before they are returned to the hardware
(ixgbe_alloc_rx_buffers()).

3) The packet data is fetched from the Rx ring: A Rx
descriptor is read from the ring and a socket buffer
structure (SKB) is created that points to the respective
buffer (ixgbe_fetch_rx_buffer()).

4) After several sanity checks, the processing of the SKB is
initiated (netif_receive_skb()).

5) The Ethertype determines how the SKB is processed.

With Open vSwitch, the actual packet processing for IP packets
is defined by (ovs_vport_receive()). Open vSwitch
determines the outgoing interface and the output queue. At
this point, the packet transmission based on NAPI and ixgbe
starts.

1’) In the end of the processing, the SKB containing the packet
gets scheduled for transmission (sch_direct_xmit).

2’) A Tx descriptor is prepared in the Tx ring
(ixgbe_xmit_frame_ring()). If more packets
are available on the Rx ring and if the poll size is not
reached, the algorithm continues with step 2.

3’) In case the Tx and Rx rings were cleaned, the respective
IRQ is re-enabled. If the dynamic interrupt throttling rate
(ITR) is enabled, the ITR is recalculated to reprogram the
NIC. Then, the poll returns to the NAPI (cf. section III-A,
step 7).

C. Interrupt Throttling Rate

NAPI-based packet processing can be configured by several
parameters. In case of using the ixgbe driver one of the most
important parameters is the ITR. The ITR defines an upper
bound of IRQs per second for a set of Tx and Rx rings.
The ITR relies on a ITR timer which is set to 1

ITR after an
IRQ was asserted. Until the ITR timer is expired, no further
IRQs can be generated. If packet transmission or reception
happened before the ITR timer expired, the IRQ is fired on
timer expiration. Otherwise the next reception or transmission
event immediately causes an IRQ. The ITR can be configured
as static, dynamic, or disabled.

Disabling the ITR results in short packet latencies but has
a negative impact on the maximum throughput, especially in
high traffic load situations, where the CPU is often occupied
with IRQ handling. Using a static ITR is suitable for manually
setting the upper bound of IRQs per second which is then
independent of the offered load. The increase of the ITR lowers
the latency but increases the CPU utilization and may lower
the maximum throughput. Hence, the appropriate configuration
of the ITR is a trade-off between latency and maximum
throughput.

With a dynamic ITR, the ITR is adopted according to
the current traffic load. When a poll finishes, a new ITR is
recalculated. The three ITR states lowest, low (initial state)
and bulk are defined where each ITR state is associated to a
specific ITR value in thousand interrupts per second (kips) as
depicted in Fig. 3.

The current ITR state s and the throughput determine the
transition to a new ITR state s′. The new ITR r′ is calculated

lowest
100 kips

low
20 kips

bulk
8 kips

≥10 MB/s ≥20 MB/s

<20 MB/s<10 MB/s

Fig. 3. Interrupt throttling rate states of the ixgbe NIC driver

on basis of the current ITR r and the ITR value of the new
ITR state s′ according to Eq. (1).

r′ =
10 · s′ · r
9 · s′ + r

(1)

For instance, if the current offered load is low, and thus the
throughput is low, then the ITR becomes high and vice versa.

IV. LATENCY EVALUATION WITH MEASUREMENTS

For the measurement of the NAPI performance a network
stack is required that utilizes the NAPI. This network stack
must not introduce any unpredictable effects into the measured
data to avoid corruption of our packet reception and transmis-
sion measurements. In the best case it only utilizes a constant
additional share of the CPU and adds a constant additional
latency per packet to the measurements. Therefore, we decided
to use Open vSwitch [25]–[27] as a representative NAPI-based
in-kernel packet forwarding application. Open vSwitch is part
of Linux and is able to operate in layer 2 of the ISO OSI stack
but also in higher layers. Previously we have shown that Open
vSwitch has a predictable average per packet processing cost
in terms of CPU cycles [16].

A. Measurement Setup

Our test setup is based on recommendations by
RFC 2544 [28]. The device under test (DuT) is connected
to a device which runs a load generator and a packet counter
in order to measure the achieved throughput. For profiling of
software the DuT runs the Linux tool perf to gather statistics
like the interrupt rate. Profiling measurements were run for five
minutes per test to get accurate results. Our tests indicate that
running this utility on the DuT introduces an overhead that
reduces the maximum throughput by 1 %.

The DuT uses an Intel X540-T2 dual 10 GbE NIC and
is equipped with a 3.3 GHz Intel Xeon E3-1230 V2 CPU.
We disabled Hyper-Threading, Turbo Boost, and power saving
features that scale the frequency with the CPU load because
we observed measurement artefacts with these features.

The DuT runs the Debian-based live Linux distribution
Grml with a 3.7 kernel, the ixgbe 3.14.5 NIC driver with
interrupts statically assigned to CPU cores. Open vSwitch is
used in version 2.0.0 with manually created OpenFlow rules
to match the traffic.

B. Load Generation

Our load generator is based on the high-performance packet
processing framework DPDK [8]. This packet generator can
reliably generate constant bit rate (CBR) traffic by utilizing
rate control hardware features of a X540-based NIC [20].

Figure 5.16: Interrupt throttling rate state transitions of the ixgbe driver [126].

5.4.6.2 Protocol Thresholds for Efficient Communication

As described in section 5.4.1, EXT-Eth relies on two communication protocols for
data transmission at the link layer. To switch seamlessly and efficiently between the
two protocols, the EXN module implements two different protocol thresholds.

Eager/Rendezvous Protocol Switch The EXN module internally switches be-
tween the eager and rendezvous protocol depending on the size of the payload. For
smaller payloads, the eager protocol provides a low latency path to transmit packets
through the VELO unit. For large messages, the rendezvous protocol is used. The
initial “handshake” is initiated by a VELO message containing the information to
setup the the GET sink on the target node. Based on Extoll micro-benchmark results,
the threshold for the switch between VELO and RMA data transmission should be
between 120 and 480 bytes, which translates to a maximum of four VELO packets for
the eager protocol. This way, the module provides a good trade-off between latency
performance and bandwidth.

NAPI Budget The Linux kernel uses the interrupt-driven mode by default and
only switches to polling mode when the flow of incoming packets exceeds a certain
threshold, known as the weight of the network interface. For NAPI-compliant network
drivers, the budget module parameter or interrupt throttling rate (ITR) places a limit
on the amount of work the driver may do, e.g., interrupts per second. Each received
packet counts as one unit of work. The return value of the poll() function is the
number of packets which were actually processed. If, and only if, the return value is
less than the budget, a NAPI driver re-enables interrupts and turns off polling. For
the EXN module, there are two NAPI budgets, one for processing incoming VELO
packets and one for processing RMA notifications. For both, the default budget
value is 64 packets, but it is implemented as a configurable module parameter.

Dynamic ITR As previously describe, NAPI-based packet processing can be con-
figured by the interrupt throttling rate. For the EXN module, this is a static value
that only can be changed at module startup time. In order to automatically adapt

130

5.5 Direct Sockets over Extoll

the ITR to the current traffic load, Intel’s 10 GbE driver ixgbe proposes a dynamic
ITR [126]. When a poll finishes, the ITR is recalculated. There are three ITR states:
lowest, low (initial state), and bulk. Each ITR state is associated with a specific
ITR value in thousand interrupts per second (kips) as depicted in Figure 5.16. The
current ITR state and the throughput determine the transition to a new ITR state.
For instance, if the current load is low, and thus, the throughput is low, the ITR
becomes high and vice versa. Future versions of EXN will adopt a similar mechanism.

5.5 Direct Sockets over Extoll
Today’s data centers demand that the underlying interconnect technologies provide
the utmost bandwidth with extremely low latency. While high bandwidth is impor-
tant, without low latency bandwidth is not worth much. Moving large amounts of
data through a network can be achieved with TCP/IP, but only RDMA can produce
the low latency that avoids costly transmission delays.
The Direct Sockets over Extoll (EXT-DS) protocol describes an efficient mech-

anism to utilize the RDMA-enabled Extoll NIC for TCP/IP communication and
complements EXT-Eth by providing kernel bypass data transfers for specific TCP
point-to-point connections. RDMA allows data to be transferred without passing
the data through the CPU and main memory path of TCP/IP Ethernet.

5.5.1 Protocol Overview

In its conceptual design, EXT-DS resembles the Sockets Direct Protocol (SDP)
specification [137]. The design of EXT-DS relies on two architectural goals:

• The traditional sockets semantics for SOCK_STREAM as commonly implemented
over TCP/IP should be maintained. Issues that need to be addressed include
the TCP connection teardown, the ability to use TCP ports, IP addressing
(IPv4 and IPv6), the connection establishment, and the support of common
socket options and flags.

• The support of byte-streaming socket communication over a message passing
protocol, including the support of kernel bypass and zero-copy data transfers.

EXT-DS utilizes the RMA and VELO functional units of the Extoll NIC and,
depending on the mode, combines VELO send operations with RMA PUTs and
GETs. The Buffered Copy (BCopy) mode transfers data through intermediate private

131

5 RDMA-Accelerated TCP/IP Communication

buffers and provides a twofold data transmission approach. Similar to EXT-Eth,
BCopy switches between an eager transmission mode relying on VELO sends and a
rendezvous protocol utilizing RMA PUT operations. The deciding factor is the size
of the application buffer to be sent. The Zero-Copy (ZCopy) mode transfers data
directly between pinned RDMA buffers and uses either RMA PUT (write) or RMA
GET (read) operations. EXT-DS has two buffer types:

• Intermediate kernel buffers – private buffers used for all synchronization and
flow control messages, but also for data transmitted through the BCopy mode.

• RDMA buffers – ring buffers used for all RMA transmission. The BCopy mode
uses them as intermediate buffers for larger transmissions. The ZCopy mode
can pin them to physically contiguous memory for zero-copy transmissions.

5.5.2 Setup and Connection Management

Approximately 15% of the functions provided by the Sockets interface are related to
data exchange. One of the most expensive interface calls is the connection setup, but
the setup procedure happens only once. For the connection establishment, EXT-DS
relies on the fundamental TCP/IP behavior by utilizing EXT-Eth, which creates a
traditional connection between two TCP endpoints. The following sections describe
the address resolution and connection management, including TCP port mapping.

5.5.2.1 Address Resolution

EXT-DS relies on IP addressing (either with IPv4 or IPv6 addresses) and utilizes
the EXT-Eth address resolution mechanism to map an IP address to an Extoll node
ID, which is needed to communicate between Extoll nodes. Instead of defining a new
methodology, EXT-DS simply passes the IP address to EXT-Eth, which returns the
MAC address for a given IP. The node ID is encoded in the MAC address. Thus,
the EXT-DS protocol begins after the source destination IP addresses have been
resolved during the connection setup.

5.5.2.2 Connection Establishment and Port Mapping

The connection sequence of a characteristic server-client application is displayed in
Figure 5.17. TCP is a connection-based protocol and only supports point-to-point
connections. Before any data can be exchanged, two socket endpoints need to
establish such a point-to-point connection. The basic function to create a socket

132

5.5 Direct Sockets over Extoll

socket()

bind()

listen()

accept()

socket()

connect()

read()

read()

write()

write()

close() close()

blocks until
client connects

resumes

(Possibly multiple) data
transfers in either direction

Passive Socket
(Server)

Active Socket
(Client)

Figure 5.17: Overview of system calls used in stream sockets connection.

handle which can be used with send and receive functions is the socket() call. After
a handle has been allocated, a connection can be established through the accept()
and connect() calls. When using the EXT-DS protocol, the connect/accept sequence
establishes a so called shadow socket connection over EXT-Eth, which returns a
TCP/IP socket descriptor containing the IP addresses, MAC addresses, and ports
used for the connection, and allocates the intermediate kernel and RDMA buffers.
In addition, EXT-DS performs an initial handshake between the two Extoll nodes to
exchange the RMA receive buffer space addresses. The shadow socket descriptor can
be used to interface with the user application.
EXT-DS maps each TCP port to a virtual device, which provides an RMA and

VELO handle to interface with the functional units. A virtual device basically defines
a management structure that is pinned to a specific Extoll virtual process ID. Extoll
reserves a user-tunable number of RMA and VELO VPIDs for EXT-DS to provide
concurrent sends and receives. The mapping methodology relies on a simple module
operation, which provides a static mapping between a port and a virtual device. For
example, equation 5.3 performs the modulo operation for 16 VPIDs.

virtual device = (portnr & 0x000F) mod 16 (5.3)

133

5 RDMA-Accelerated TCP/IP Communication

Process 0

Socket 0

Socket 1

Socket 2

Process 0

Socket 0

Socket 1

TCP Ports

Port 0

Port 1

Port 216-1

Port N-1

Port N

Virtual Devices

Device 0

Device 1

Device N-1

User Space Kernel Space

Figure 5.18: Relation between socket handles, ports, and virtualized hardware.

The relation between the socket handles in user space, the TCP port numbers, and
the Extoll virtual devices in kernel space is displayed in Figure 5.18. Multiple ports
are mapped to the same virtual device. The virtual device also contains a pointer
to the corresponding shadow socket descriptor, which can be used to de-multiplex
incoming data to the correct TCP port.

5.5.2.3 Connection Teardown

The TCP protocol defines two ways to tear a connection down: (1) a graceful
close, where any posted and outstanding data transmission is completed before the
connection is closed, and (2) the abortive close, where the connection is immediately
terminated. EXT-DS emulates the TCP connection teardown functionality.

Graceful Close Depending on the set socket options, the graceful close, also known
as half-closed connections, can describe two types of behavior:

(1) Graceful shutdown with delaying – delays return until all queued messages
have been successfully sent or the linger timeout has been reached.

(2) Graceful shutdown with immediate return – immediately returns, allowing the
shutdown sequence to complete in the background.

When the shutdown sequence is initiated by calling close(), EXT-DS needs to
check whether the socket option SO_LINGER is set for the socket. If the option is set
and the socket has outstanding data transmissions, then close() shall block for up
to the current linger interval or until all data is transmitted. In addition, a VELO
message with the user tag SHUTDOWN (refer to section 5.5.3.1) is triggered to initiate
the shutdown on both sides of the connection.

134

5.5 Direct Sockets over Extoll

Table 5.3: Overview of VELO user tags.

Type Description
VELO The user tag VELO indicates that the payload of the incoming VELO

message carries a fragment of user data, which needs to be copied
into the application buffer space.

VELO_LAST The user tag VELO_LAST indicates that the payload of the incoming
VELO message carries a fragment of user data, but also notifies the
receiver that the complete buffer has been transmitted and can be
passed to the application.

RMA_INFO This user tag indicates that the next user buffer will be transferred
either through a RMA PUT or RMA GET operation. The tag ensures
message ordering between VELO and RMA transfers.

RMA_AVAIL The RMA_AVAIL tag is used to notify the sender that a user application
has read data from the RMA sink buffer. The VELO message also
provides the amount of data (in bytes) that has been freed.

SHUTDOWN The SHUTDOWN user tag indicates that one side has triggered the TCP
shutdown sequence.

Abortive Close The abortive shutdown sequence returns immediately for the
close() call. If the EXT-DS protocol is violated, e.g., an Extoll error occurs, the
connection is abortively closed and all outstanding transmissions are dropped.

5.5.3 Data Transfer Mechanisms

The EXT-DS protocol introduces three different transfer mechanisms:

• Buffered Copy – transfers application data from private send into private receive
buffers. This mode requires an additional data copy from / to user space.

• Zero-Copy Read – transfers application data directly through RMA GET
operation. This mode requires the application buffers to mapped via Extoll.

• Zero-Copy Write –transfers application data directly through RMA PUT
operation. This mode requires the application buffers to mapped via Extoll.

In case of an error or insufficient memory space, a fall back mechanism over EXT-
Eth is provided. The following sections present an overview of available message
types and describe the different transfer modes.

135

5 RDMA-Accelerated TCP/IP Communication

5.5.3.1 Message Types and Flow Control Orchestration

EXT-DS utilizes the VELO and RMA functional units for data transmission. TCP
is a protocol that provides connection-based, reliable data exchange. Therefore, an
important issue is the synchronization of the VELO and RMA data streams. EXT-DS
describes five different data transfer and flow control message types. All of them
are transmitted using VELO sends and can be distinguished by their VELO-specific
user tags in the software descriptor. Table 5.3 presents an overview of the VELO
message user tags defined by EXT-DS.

In order to establish a flow control between incoming VELO and RMA transmis-
sions, the VELO messages are organized in a FIFO-like structure. Extoll guarantees
the ordering of VELO messages. Thus in combination with the different message
types, they can be used to enforce the ordering of data fragments.

5.5.3.2 Buffered Copy Mode

Per established connection, the BCopy mode uses dedicated, pre-registered private
EXT-DS buffers. Typically, application data is copied from the user space into an
EXT-DS buffer, and then, transferred over the network. There are two different types
of private buffers, intermediate kernel buffers for VELO sends and receives, which are
organized in a FIFO-like structure, and RMA buffers for rendezvous PUT operations.
Depending on the size of the application buffer and a user-tunable threshold, the
BCopy mode switches between a VELO-based eager protocol similar to the protocol
specified by EXT-Eth (refer to section 5.4.1.2) and a rendezvous PUT protocol.
Figure 5.19 displays the two data transmission protocols.

The sender-side RMA buffer can be seen as a mirrored version of the receiver-side
RMA buffer. When the sender buffer is full, the protocol provides a fall back to
transmit data using multiple VELO sends until a message of type RMA_AVAIL is
received. The flow control messages advertise how much RMA buffer has been
freed on the receiver side and re-enable the RMA path. Figure 5.20 presents a
BCopy rendezvous PUT transfer sequence including the RMA buffer on sender and
receiver side with corresponding pointer updates. The physical address of the free
receiver-side RMA space can be calculated by adding the write pointer offset to the
remote start address.

136

5.5 Direct Sockets over Extoll

Send()

VELO send

VELO send

VELO send

Return

Copy to
private
buffer

Return
when copy
is done

Return

Recv()Block -
waiting
for data

App buffer

App buffer

EXT-DS EXT-DSNetwork

Copy to
App

buffer

(a) BCopy through VELO sends.

RMA
buff

Send()

VELO send: RMA advert
RMA PUT

RMA
buff

Return

Copy to
private
buffer

Return
when copy
is done

Return

Recv()Block -
waiting
for data

App buffer

App buffer

EXT-DS EXT-DSNetwork

Copy to
App

buffer

Completer
Notification

(b) BCopy through RMA PUT.

Figure 5.19: BCopy transmission flow.

data

readptr

writeptr

User calls send():
(1) Copy data into

RMA buffer.
(2) Advertise RMA

transfer via VELO.
(3) Start RMA PUT.
(4) Move writeptr.

?

readptr &
writeptr

Initial phase:
(1) readprt = writeptr
(2) No data in RMA

buffer yet.

VELO msg: RMA_INFO
incl. size

RMA PUT of size

?

readptr

writeptr

data

data

readptr

writeptr

readptr

writeptr
data

readptr

writeptr

VELO msg: RMA_AVAIL
incl. recvsize

Completer
Notification

Upon VELO receive:
(1) Get header from

VELO payload
(port, tag, etc.).

(2) Move writeptr.
(3) Update metadata

structures.

Upon notification:
(1) Data available

for application.

User calls read():
(1) Read recvsize

bytes from buffer.
(2) Notify sender

about pointer
update.

Upon VELO receive:
(1) Get header from

VELO payload
(port, tag, etc.).

(2) Move readptr by
recvsize bytes.

EXT-DS: Source Node EXT-DS: Target NodeNetwork

Figure 5.20: RMA transfer sequence and buffer copies for BCopy mode.

137

5 RDMA-Accelerated TCP/IP Communication

Send()

Return
Return upon
notification

Return

mmap()

Block – waiting
for data

App buffer App buffer

EXT-DS EXT-DSNetwork

Completer
Notification

Responder
Notification

Recv()

mmap()

Block – waiting
for send to
complete

Return upon
notification

Register source
Register sink

Application Application

RMA GET

Figure 5.21: ZCopy read transmission flow.

5.5.3.3 Zero-Copy Mode

In general, the ZCopy mode enables a direct data transfer path between application
buffers through RMA operations and avoids unnecessary data copies. However, the
bypassing technique requires that user buffers are pinned and registered. The Sockets
API expects that application buffers are available immediately after returning from
the send operation. Therefore, the ZCopy mode can only be utilized for blocking
synchronous socket calls. Non-blocking synchronous calls, specified through the
MSG_DONTWAIT flag or the O_NONBLOCK socket option, always rely on the BCopy
mode to preserve their socket semantics. There are two possible techniques to
preform zero-copy communication: RMA GET and RMA PUT.

ZCopy Read relies on Extoll’s RMA GET operation to perform the zero-copy data
transfer. The transmission flow is displayed in Figure 5.21. The application buffer
needs to be registered with Extoll on both sides, e.g., through an mmap() call. Then,
the sender side advertises the data source by sending a VELO message. The send call
blocks until the data transmission is completed. Upon receipt of the VELO message,
the sender side performs an RMA GET operation to copy the data into the data
sink. Once the RMA operation completes, notifications are written on both sides,
and the send and receive calls return. Similarly, ZCopy Write utilizes an RMA PUT
for the data transfer. The data sink needs to advertise the availability of its buffer
by sending a VELO messages with the buffer information. The data source then
initiates the data transfer by performing an RMA PUT. Upon completion, RMA
notifications are written on both sides an the send and receive calls return.
As an alternative to mmap(), kernel release 4.14 introduces a new socket option,

which enables zero-copy data transmission for TCP sockets [156]. First, the socket
option SOCK_ZEROCOPY must be set through setsockopt(). Then, the zero-copy

138

5.5 Direct Sockets over Extoll

Send()

Return
Return upon
notification

Return

mmap()

Block – waiting
for data

App buffer App buffer

EXT-DS EXT-DSNetwork

Completer
Notification

Requester
Notification

Recv()

mmap()

Block – waiting
for sink avail

Return upon
notification

Register source
Register sink

Application Application

Figure 5.22: ZCopy write transmission flow.

data transfer can be performed by calling send() with the flag MSG_ZEROCOPY. The
transmission pins the application buffer into the man memory and starts the data
transfer. Note when the send() call returns, the transmission is not complete
yet. Therefore, the application needs to periodically check the error queue for new
notifications to determine whether the transmission has completed successfully.

5.5.4 AF_EXTL: A Prototype Implementation of EXT-DS

This section provides an overview of the design decisions and current status of the
EXT-DS implementation. At first, a discussion about a user versus kernel space
implementation is presented followed by an introduction of portability mechanisms to
seamlessly utilize the protocol with legacy applications. Afterwards, a brief overview
of the implementation status is provided. The section concludes with a description
of the de-multiplexing mechanism for incoming messages.

5.5.4.1 Establishing Full Semantics and Process Management

When designing a direct sockets implementation, it is vital to be fully functional
against the TCP/IP reference model. In general, two different implementation
paradigms can be distinguished: user space and kernel space. While a user space
implementation offers the possibility to implement a true operating system bypass,
it comes with some limitations and overhead to provide full socket semantics.
Traditional TCP/IP implementations rely on system calls to exchange messages.

In general, the operating system is responsible for data transfers, and also, is able
to distinguish data transmission from other API calls. Typically, a socket describes
an interface between the user application and the operating systems. Starting

139

5 RDMA-Accelerated TCP/IP Communication

TCP/IP State Transition Diagram (RFC793)

Gordon McKinney (10 Feb 2004)

A connection progresses through a series of states during its lifetime (listed below). CLOSED is fictional
because it represents the state when there is no TCB, and therefore, no connection. Briefly the meanings
of the states are:

LISTEN represents waiting for a connection request from any remote TCP

and port.

SYN-SENT represents waiting for a matching connection request after having

sent a connection request.

SYN-RECEIVED represents waiting for a confirming connection request acknowl-

edgment after having both received and sent a connection request.

ESTABLISHED represents an open connection, data received can be delivered

to the user. The normal state for the data transfer phase of the

connection.

FIN-WAIT-1 represents waiting for a connection termination request from the

remote TCP, or an acknowledgment of the connection termination

request previously sent.

FIN-WAIT-2 represents waiting for a connection termination request from the

remote TCP.

CLOSE-WAIT represents waiting for a connection termination request from the

local user.

CLOSING represents waiting for a connection termination request acknowl-

edgment from the remote TCP.

LAST-ACK represents waiting for an acknowledgment of the connection

termination request previously sent to the remote TCP (which in-

cludes an acknowledgment of its connection termination request).

TIME-WAIT represents waiting for enough time to pass to be sure the remote

TCP received the acknowledgment of its connection termination

request.

CLOSED represents no connection state at all.

A TCP connection progresses from one state to another in response to events. The events are the user
calls, OPEN, SEND, RECEIVE, CLOSE, ABORT, and STATUS; the incoming segments, particularly those
containing the SYN, ACK, RST and FIN flags; and timeouts.

CLOSED

LISTEN

SYN_RCVD SYN_SENT

ESTABLISHED

FIN_WAIT_1

CLOSE_WAIT

FIN_WAIT_2

CLOSING

TIME_WAIT

LAST_ACK

data transfer state

starting point

2MSL timeout

passive open

active open

simultaneous close

appl: passive open

send: <nothing> appl: active op
en

send: SY
N

appl: send data

send: SYN
recv

: S
YN;

se
nd: S

YN, A
CK

recv
: R

ST

timeout
send: RST

recv: SYN

send: SYN, ACK
simultaneous open

re
cv

: S
YN

, A
CK

se
nd: A

CK

appl: close
send: FIN

recv: ACK
send: <nothing>

recv: FIN

send: ACK

recv: ACK
send: <nothing>

recv: FIN
, A

CK

send: A
CK

recv: A
CK

send: <nothing>

ap
pl:

cl
ose

se
nd: F

IN

recv: FIN

send: ACK

recv: FIN

send: ACK

appl: close
send: FIN

appl: close

or timeout

recv: ACK

send: <nothing>

active close

passive close

normal transitions for client
normal transitions for server

appl: state transitions taken when application issues operation
recv: state transitions taken when segment received
send: what is sent for this transition

TCP state transition diagram.

Reprinted from TCP/IP Illustrated, Volume 2: The Implementation
by Gary R. Wright and W. Richard Stevens,

Copyright © 1995 by Addison-Wesley Publishing Company, Inc.

Figure 5.23: TCP state transition diagram [157].

with its creation through the function call socket(), a socket can have multiple
different states during its lifetime, as depicted in Figure 5.23. The direct sockets
implementation has to keep these states in mind. User-level implementations do not
have access to the states and would require the software to keep a copy in user space.
Another problem that arises with the user space solution is the handling of

unexpected process termination, e.g., through a user initiated ctrl-C or a segmentation
fault in the application. For a kernel-level implementation, the operating system
serves as a central instance of control, while for a user-level implementation additional
functionality would have to be implemented to achieve the same behavior.

140

5.5 Direct Sockets over Extoll

Single point-to-point connections are considered as standard situations. Function
calls such as fork() introduce a new level of complexity. For instance, fork()
creates a child process by duplicating the parent process. The support of fork is
crucial since many services make heavy use of it. For a user-level implementation,
a dispatching instance such as the operating system is outside of the critical path.
When calling fork(), all file descriptors including the socket descriptor of a process
are shared between two or more processes. In user space, this poses a problem for
the data receiving path and would require additional control tokens.
In summary, it is possible to design a user-level implementation, but it requires

additional code to handle exceptions and functions such as fork(). To ensure a
broad applicability, the implementation of EXT-DS relies on the introduction of a
new sockets address family called AF_EXTL and a shared user library, which provides
a transparent switching functionality between standard TCP sockets and EXT-DS.

5.5.4.2 Direct Sockets Portability and Adaptability

The Sockets interface is one of the most widely used APIs for network communication.
Besides the explicit source code modification to use the AF_EXTL address family
instead of AF_INET, it is of importance to provide portability mechanisms, which
allow legacy applications to seamlessly utilize the direct sockets implementation. By
providing a user library that utilizes library interposition, it is possible to intercept
Sockets API calls and automatically switch between the different protocols.
Library interposition [158], also known as function interposition, is a powerful

linking technique that allows programmers to intercept calls to arbitrary library
functions. Linking can be described as the process of collecting and combining
various pieces of code and data into a single binary file that can be loaded into
memory and executed. Interposition can occur at different times:

• Compile time – when the source code is compiled.

• Link time – when the relocatable object files are statically linked to form an
executable object.

• Load/run time – when an executable object file is loaded into memory, dynam-
ically linked, and then executed.

The following discusses possible automatic address family conversion mechanisms
through function interposition at link and at run time and introduces the concepts
of static and dynamic linking.

141

5 RDMA-Accelerated TCP/IP Communication

Low-level NIC Driver

TCP UDP ICMP EXT-DS

Network Layer Protocol (e.g., IP)

Socket Layer

Socket Switch (AF_INET ↔ AF_EXTL)

Application

Figure 5.24: Overview of the socket software stack.

Automatic Conversion at Link Time Static applications are statically linked,
which means that all library routines are copied into the executable object by the
linker. This technique may result in a larger binary file, but is both faster and more
portable. For statically linked applications, the LD_PRELOAD environment variable
[159] has no effect. An alternative is the wrap command line switch of the GNU
linker [160]. When specified for a given symbol with --wrap=symbol, a wrapper
function is called instead of symbol. Any undefined reference to symbol will be
resolved to __wrap_symbol, while any undefined reference to __real_symbol will
be resolved to symbol. For an implementation of EXT-DS, this would mean that for
every supported Socket API call a wrapper function must be passed to the linker.

Automatic Conversion at Run Time A much easier approach is offered through
shared libraries. When an application is dynamically compiled against shared
libraries, a list of undefined symbols is included in the application’s binary, along
with a list of libraries the code is linked with. The -fPIC compile flag generates
position-independent code (PIC), which is suitable for use in shared libraries. There
is no correspondence between the symbols and the libraries; the two lists just tell
the loader which libraries to load and which symbols need to be resolved. At
runtime, each symbol is resolved using the first library that provides it. For dynamic
applications, this means that function interposition can occur at run-time, and also,
that applications do not need to be re-compiled against the interposition library.
The intercepting library can be preloaded via the LD_PRELOAD environment variable,
which contains the path to the pre-loadable library. The environment variable
indicates that the user-specified shared object should be prioritized over all others
libraries when resolving any symbols.

142

5.5 Direct Sockets over Extoll

Algorithm 1 Sockets Switch
1: procedure Socket Switch (Protocol Family, Socket Type, Protocol)
2:
3: if (domain == AF_INET) && (type == SOCK_STREAM) then
4: domain ← AF_EXTL; . Forward to EXT-DS
5: else if (domain == AF_INET) && (type == SOCK_DGRAM) then
6: __real_socket(AF_INET, type, protocol);
7: end if
8:
9: if (__real_socket(domain, type, protocol) == -1) then
10: __real_socket(AF_INET, type, protocol); . Fallback to EXT-Eth
11: end if
12:
13: end procedure

5.5.4.3 Overview and Status of the AF_EXTL Module

Within the scope of this work, EXT-DS is implemented as a kernel module and
registered with the kernel as a new transport layer protocol family called AF_EXTL
(illustrated in Figure 5.24). It can be used to create a communication endpoint for
sockets of type SOCK_STREAM, and is built on top of the Extoll software environment,
especially the kernel API. In addition, a socket switch is provided through a pre-
loadable, user-level shared library. The library seamlessly intercepts the endpoint
creation call socket() and determines whether a standard TCP (AF_INET) or an
EXT-DS (AF_EXTL) socket should be created, as shown in Algorithm 1.
The shadow socket mechanism is implemented by establishing the connection

through the EXN interface, which means that standard TCP protocol function
pointers are used for connection establishment. The dashed line in Figure 5.24
indicates this path. The current implementation of the EXT-DS module only
supports the BCopy mode, which preserves socket semantics for legacy applications,
and utilizes 16 VELO and 16 RMA VPIDs for the virtual device management. Since
the entire implementation is in kernel space, it does not leverage Extoll’s kernel
bypass capabilities, but the transport is offloaded to the NIC while establishing full
semantics. It implements all socket entry points that can be invoked by the kernel,
including bind(), release(), and connect().

The EXT-DS implementation has a very resource conservative approach and only
allocates and maps AF_EXTL objects when an application is requesting a connection.
In case of an error or insufficient resources, the module provides a fallback mechanism
through the EXN module. The de-multiplexing of incoming RMA and VELO packets

143

5 RDMA-Accelerated TCP/IP Communication

Tag: VELO

Size

Data

Tag: RMA_INFO

Size

(no data)

Tag: VELO

Size

Data

Tag: VELO

Size

Data

Tag: RMA_RDY

Size

(no data)

Tag: VELO

Size

Data

Kernel FIFO
(1) (2)

(3) (4)

Kernel FIFO

Tag: RMA_INFO

Size

(no data)

Tag: VELO

Size

Data

Kernel FIFO Kernel FIFO

Figure 5.25: Overview of the Kernel FIFO usage with different message types.

to the ports is handled through a kernel FIFO structure, which is presented in the
next section. At the time of this writing, only the VELO path is fully functional
and used as a proof of concept.

5.5.4.4 De-Multiplexing of Incoming Messages

Each virtual device relates to one RMA VPID and one VELO VPID, and is shared
among multiple port numbers. VELO and RMA notifications arrive at a virtual
device and need to be forwarded to the right port structure. The de-multiplexing
of incoming messages is handled by a kernel thread, which implements a progress
function that snoops on the mailboxes for a given VPID for VELO and RMA. In
order to avoid an interrupt-driven mechanism, the progress function either is called
whenever a socket system call is triggered by the user or when the module internal
timer expires. To establish a flow control for the RMA buffer resources, VELO
messages are utilized and can be distinguished by their user tag, as described in
section 5.5.3.1. The progress function retrieves the port number from the payload of
a VELO message, and then, enqueues it to the corresponding kernel FIFO. Figure
5.25 displays different scenarios:

• When the kernel thread is running, incoming VELO messages are enqueued
in the kernel FIFO. They can either indicate that (1) the VELO message has

144

5.6 Performance Analysis

payload attached, or (2) state that the next chunk of the payload is to be
received through an RMA PUT operation (RMA_INFO).

• When calling the receive function, the user can only read messages up to the
RMA_INFO entry (3). Then, the user gets blocked until new data is available.

• When an RMA PUT completes, a notification is written to the corresponding
mailbox. The progress function retrieves the notification, matches it with the
corresponding message in the kernel FIFO and sets the user tag to RMA_RDY
(4), which indicates the data can be read.

5.6 Performance Analysis
In this section, a performance evaluation of the EXN module and the direct sockets
address family AF_EXTL is presented. The section starts with an introduction to
different TCP/IP tuning techniques for Linux operating systems deploying 40G or
100G network cards. Afterwards, several microbenchmarks are utilized to evaluate
the bandwidth and latency performance followed by a brief discussion about the host
CPU utilization. The section concludes with an evaluation of the MPI performance
over EXN. Note that at the time of this writing, AF_EXTL is still in an early prototype
stage and can only be used for simple latency benchmarks.

5.6.1 TCP/IP Configuration Tuning in Linux Systems

Most Linux operating systems are configured to provide optimal performance with
Gigabit Ethernet NICs. This configuration can drastically limit the performance
of 10G, 40G and 100G network cards. The Linux kernel offers a vast majority of
user-tunable parameters and system configurations. The following system settings
have the biggest impact on the TCP performance: CPU governor, TCP host kernel
parameters, and application and interrupt binding.

5.6.1.1 TCP Host Kernel Parameters

By default, the Linux network stack is not configured for high-speed large file transfers
across SAN links. The main reason for this is to save memory resources and power.
Therefore, the default size of the TCP buffers are way too small. The same applies
to the default size of the send and receive socket buffers. Another important kernel
parameter set configures the TCP receive window scaling and congestion control.

145

5 RDMA-Accelerated TCP/IP Communication

1 # add to /etc/ sysctl .conf
2 # allow testing with 2GB buffers for send/ receive socket buffers
3 net.core. rmem_max = 2147483647
4 net.core. wmem_max = 2147483647
5 # allow auto - scaling up to 2GB buffers for TCP buffers
6 net.ipv4. tcp_rmem = 4096 87380 2147483647
7 net.ipv4. tcp_wmem = 4096 65536 2147483647
8 # receive window scaling
9 net.ipv4. tcp_no_metrics_save = 0

10 net.ipv4. tcp_window_scaling = 1
11 # congestion control
12 net.ipv4. tcp_congestion_control = htcp
13 net.ipv4. tcp_timestamps = 0

Listing 5.2: TCP host kernel parameters configuration via sysctl.

Listing 5.2 displays the recommended sysctl settings for 40G and 100G NICs,
including setting the default buffer sizes to the maximum of 2 GB.

5.6.1.2 CPU Governor

The CPU governor defines the power characteristics of the system CPUs, which
in turn affects the overall CPU performance. CPU frequency scaling allows the
operating system to scale the CPU frequency up and down in order to save power.
The default setting for most modern operating systems is to run the CPU in its power
saving mode, which can heavenly impact the performance of high-speed network
technologies. Depending on the Linux distribution, there are different command line
tools, which allow the user to adjust the default clock speed of the processor on the
fly. For CentOS, the governor can be changed to the performance mode by running
the tool cpupower with the following command line:

$ cpupower frequency-set -g performance

5.6.1.3 Interrupt and Application Binding

Today’s system architectures typically comprise of NUMA nodes. To fully maximize
the single stream performance for both TCP and UDP on such architectures (i.e.,
Intel Sandy and Ivy Bridge), it is essential to observe which CPU socket is being
used. In general, it is advised to bind both applications and interrupts to the CPU
socket that is closest to the PCIe slot the NIC connected to. This can be achieved
by disabling the interrupt balance option in the Linux, e.g., by modifying the boot
options, and then, bind the NIC’s interrupts to a specific CPU socket.

146

5.6 Performance Analysis

5.6.2 Test System

The test setup comprises of two systems named after the codename of their CPU
architecture: Haswell and Skylake. The Haswell system comprises of two nodes
each equipped with an Intel Xeon E5-2640 v3 dual socket CPU (8 cores per socket)
running at 2.6 GHz and 32 GB of main memory. The Haswell system has two
on-board Intel 10-Gigabit X540-AT2 Ethernet controllers. One provides Gigabit
Ethernet (GigE), the other one 10 Gigabit Ethernet (10GigE). The Skylake system
comprises of three nodes. Each node has an Intel Xeon Silver 4110 CPU (one socket
with 8 cores) running at 2.10 GHz and 32 GB of main memory.

For both systems, all system nodes are equipped with an Extoll Tourmalet 100G
NIC and run CentOS Linux version 7.3.1611 with kernel release 3.10.0-514.26.2.el7.
For the Extoll NICs, the software environment version 1.4 is installed on every node.

5.6.3 Microbenchmark Evaluation

The following three microbenchmarks have been used for the performance evaluation:

netperf The netperf benchmark [161] can be used to measure various aspects of
networking performance with a particular focus on bulk data transfers and
and request/response time. The benchmark is available for TCP and UDP
connections, and relies on the Berkeley Sockets interface. Originally designed
by Hewlett Packard, it has become the de-facto standard for the bandwidth
and latency evaluation of interconnect technologies.

TCP-PingPong The TCP-PingPong benchmark provides a simple benchmarking
tool to measure the half round trip latency for TCP and UDP socket connections
with message sizes ranging between 1 and 2048 bytes.

SockPerf The SockPerf tool [162] is an open-source network benchmarking utility
provided by Mellanox Technologies. It is designed for testing the performance
of high-performance systems, with a focus on throughput and latency. Sock-
Perf utilizes most of the Sockets API calls and options. It is used to verify
benchmarking results obtained through netperf.

In addition to the microbenchmarks, vmstat and numactl are utilized. numactl
can be used to control the NUMA policy for processes or shared memory. Examples
are NUMA-aware socket binding and memory placement policies. vmstat can be
utilized to monitor system resources such as main memory and CPU utilization.

147

5 RDMA-Accelerated TCP/IP Communication

(a) Single TCP stream. (b) Two TCP streams.

Figure 5.26: Netperf bandwidth performance for TCP streaming connections.

Each benchmark is run for 10 times. The results in the graphs are calculated as
the arithmetical average of the runs. As mentioned before, all benchmark results are
verified through SockPerf.

5.6.3.1 Bandwidth Results

The data in Figure 5.26 presents the bandwidth results measured with netperf for
TCP streaming connections on the Haswell and Skylake systems. The bandwidth
results include the GigE, 10GigE, and EXN over Extoll performance from the Haswell
system and compare it to the performance of the EXN module on the Skylake system.
The Haswell systems comes with a dual socket CPU, which means that NUMA
phenomena can occur. For these bandwidth tests, netperf has been bound to the
socket that is closest to the Extoll NIC. For the Haswell system, this is NUMA node
0. For EXN, the interrupt-driven (EXN IRQ) and the polling mode (EXN NAPI)
are compared. On the Skylake system, EXN is run in the NAPI mode.

Figure 5.26a displays the results for a single TCP stream connection between two
nodes. As expected, the performance of EXN IRQ and EXN NAPI is similar. The
maximum performance of about 7.9 GB/s is achieved for packet sizes in between 8
KB to 64 KB, which correlates with the EXN MTU size of 64 KB. A single stream
cannot fully utilize the theoretical peak performance of Extoll. This limitation is
imposed by the general concept of TCP/IP, which includes memory copies, packet
fragmentation, and protocol overhead. Surprisingly though, the Skylake chipset
shows severe performance degradation compared to the older Haswell CPU. One
plausible explanation is the latency inflected by the PAUSE instruction of the Skylake
microarchitecture [163, 164]. When using a spinlock in kernel space to ensure mutual
exclusion, the Linux operating system uses the CPU’s PAUSE instruction. While

148

5.6 Performance Analysis

(a) NUMA-aware socket binding. (b) TCP host kernel parameters.

Figure 5.27: Netperf bandwidth performance for EXN with different TCP/IP
tuning configurations.

the latency of the PAUSE instruction in older microarchitectures is about 10 CPU
cycles, the Skylake microarchitecture has been extended to as many 140 cycles.
Figure 5.26b presents the netperf benchmark results for two TCP streams. It is

noticeable that, starting with two parallel streams, EXN is able to provide the full
bandwidth performance of the Extoll technology. For message sizes ranging from 4
KB to 128 KB, EXN provides 8.82 GB/s. Similar to the single stream experiments,
the Skylake system provides an inferior bandwidth performance compared to Haswell.
In addition, Figure 5.27 presents two experiments where the TCP/IP system

configuration has been modified. Figure 5.27a presents the results of the evaluation
of the NUMA phenomenon. When an application is executed without any system
tuning, the operating system can schedule the application to different CPU cores
residing on different sockets depending on the current workload of the system.
Therefore, between different application runs, variability in the overall performance
can be observed. In case of network communication, this can result in a decreased
bandwidth performance. In these experiments, netperf has been assigned to a specific
socket through the numactl tool, i.e., NUMA node 0 and NUMA 1. The EXN module
has been run in the polling mode. As can be seen in Figure 5.27a, the NUMA aware
socket binding has a severe impact on the overall bandwidth performance. When
being assigned to NUMA node 1, the peak bandwidth for a single TCP connection
is 5.3 GB/s, while two streams result in a peak performance of 7.2 GB/s.

The second experiment series is presented in Figure 5.27b. The Haswell system’s
sysctl is configured as described in section 5.6.1.1. Especially for larger message
sizes, a single stream TCP connection can benefit from this configuration. The peak
bandwidth performance is increased to 8.3 GB/s for a single stream. For multiple
streams, this configuration has no impact on the overall bandwidth.

149

5 RDMA-Accelerated TCP/IP Communication

(a) Haswell system, NUMA node 0. (b) Haswell system, NUMA node 1.

(c) Skylake system.

Figure 5.28: TCP/IP PingPong benchmark results for TCP connections.

5.6.3.2 Latency Results

Another important metric for HPC systems is the latency performance. Figure
5.28 shows the results of the TCP-PingPong benchmark for the EXN module and
the direct sockets address family AF_EXTL. Figure 5.28a and Figure 5.28b display
the latency results from the Haswell system, including experiments for the NUMA
phenomenon. Depending on the CPU socket, the observed latency of AF_EXTL
varies between 0.85 us and 1.3 us for small messages. For EXN, the observed latencies
vary even more, i.e., for small messages in between 5.7 and 8.6 us. In Figure 5.28c, the
latency performance of the Skylake system is displayed. As expected, the observed
latency for EXN is much higher as for the Haswell system when bound to NUMA
node 0. AF_EXTL, on the other hand, is an interesting case. Even though it does
not utilize any spinlocks in its implementation, the latency performance is inferior
when compared to the Haswell system. This phenomenon needs further investigation.

5.6.3.3 Host CPU Utilization

For most large-scale applications, transferring data with high bandwidth and low
latency is a key criterion for increasing the overall application performance. However,

150

5.6 Performance Analysis

Figure 5.29: Host CPU utilization during netperf bandwidth test.

the overhead associated with a message transfer is also an important factor for
the overall system performance. As described in section 2.2.2, there are two data
transmission methods: PIO and DMA. PIO is typically utilized for small message
transfers and performed by the CPU. In case of DMA, a descriptor is usually
assembled, which describes the data to be transferred. The actual data transfer is
performed by a DMA controller without the involvement of a CPU, which allows the
overlapping of communication and computation.

In order to monitor the host CPU utilization, two methods have been used during
the experiments. netperf provides a command line option to enable the monitoring
of the local and remote host CPU. In addition, vmstat can be used to collect and
display a summary about the main memory and CPU utilization, but also to monitor
processes, interrupts and block I/O. Both methods have been utilized to monitor
the system statistics of the EXN module on the Haswell system. Figure 5.29 shows
the CPU utilization results for interrupt-driven and polling mode. Note that both
modes have a moderate CPU utilization even though both need to traverse the
TCP/IP stack. Recall that EXN has an internal switch between the eager protocol
utilizing the VELO unit and the rendezvous protocol, which relies on the RMA unit
for data transmission. With increasing message sizes, both modes consume less CPU
resources. This is mainly because VELO enforces a PIO data transfer mechanism
while RMA offloads the data transfer to the Extoll NIC.

5.6.4 MPI Performance

Besides the microbenchmark analysis, the point-to-point MPI benchmark collection of
the OSU Micro-Benchmarks suite 4.3 [74] is evaluated. The intention of this analysis
is to receive an understanding about the potential performance an application would
observe when being run over EXN. As before, each benchmark is run 10 times and
the results are calculated as the arithmetical average of the runs.

151

5 RDMA-Accelerated TCP/IP Communication

(a) Small payload sizes. (b) Large payload sizes.

Figure 5.30: OMB latency performance comparing Skylake and Haswell.

Figure 5.31: OMB bandwidth per-
formance comparing Skylake and
Haswell.

Figure 5.32: OMB message rate
performance comparing Skylake and
Haswell.

Figure 5.30 displays the results of the osu_latency benchmark for the Haswell and
the Skylake systems. As previously observed, the Skylake system performs inferior
compared to Haswell, when run over a code that relies on Linux’s spinlock mechanism.
Note that MPI applications run over the native Extoll OpenMPI implementation
can utilize the full performance capabilities of the Extoll NIC, even when executed
on a Skylake architecture. The reason for this is that the Extoll OpenMPI MTL is
based on the user space libraries, and therefore, bypasses the operating system. It is
noteworthy that the latency results of MPI over EXN are comparable to the raw
performance measurements obtained through netperf.
Figure 5.31 presents the results of the osu_bw benchmark, which measures the

unidirectional bandwidth of a point-to-point communication. While the latency
performance is almost identical for MPI and netperf, the bandwidth results fall
short, when compared to netperf. Even though the Haswell system is configured in
accordance with the knowledge obtained through the microbenchmarks, the OpenMPI
installation cannot utilize the bandwidth capabilities for a single connection. One

152

5.7 TCP/IP Summary

possibly reason could be that the OpenMPI configuration is suboptimal and needs
to be tuned for TCP/IP.

Besides bandwidth and latency, another important metric is the message rate. As
introduced in chapter 2, the message rate describes the number of messages that
can be sent by a single process or rank in a specified period of time. The message
rate is a good indicator for how well the processing of independent processes can
be overlapped, but varies for different message sizes, is limited by the bandwidth
and highly depends on the sending and receiving overhead. Figure 5.32 presents
the message rate results for MPI over EXN. It can be seen that the message rate is
pretty stable for message sizes between 32 bytes and 8 KB.

5.7 TCP/IP Summary
Even though the traditional TCP/IP communication stack introduces significant
overhead, the support of legacy application codes enables the broad utilization of
specialized SAN technologies. In addition, TCP/IP is supported by almost every
communication environment. By providing TCP/IP communication means, different
solutions can be tested before providing a native software implementation.
This chapter introduced two TCP/IP-based communication protocols for Extoll:

EXT-Eth and EXT-DS. EXT-Eth describes the transmission of Ethernet frames over
Extoll and emulates Ethernet communication. The protocol adds IP addressing and
address resolution support to the Extoll interconnect and provides asynchronous,
two-sided RDMA operations for large message sizes. The default MTU size enables
the usage of super jumbo frames, which allows the protocol two fully utilize Extoll’s
bandwidth capabilities, and provides L3 routing support. The EXN module imple-
ments the EXT-Eth protocol and provides a traditional network interface to the
Linux kernel. An initial performance evaluation with two Extoll Tourmalet ASICs
shows promising results. While the latency is impacted by the latency of traversing
the TCP/IP stack, the peak bandwidth of Extoll can be fully leveraged by EXN.
EXT-DS, on the other hand, introduced the acceleration of TCP point-to-point

connections by providing kernel bypass data transfers, while maintaining traditional
streaming socket semantics. The protocol describes two modes: BCopy and ZCopy.
The BCopy mode provides seamless support for legacy applications, which means
that the additional buffer copy from user to kernel space is still required. The ZCopy
mode provides a true zero-copy data path, but expects application buffers to be
pinned to the Extoll card, which allows physical addressing of the memory and

153

5 RDMA-Accelerated TCP/IP Communication

prevents the exemption of the buffer through the operating system. Besides the
protocol specification, a prototype implementation of EXT-DS was presented through
the introduction of a new transport protocol called AF_EXTL. Currently, the address
family supports the BCopy mode and is limited to VELO communication. However,
an initial evaluation showed that the latency performance of EXT-DS is able to
provide similar results as the native Extoll communication. For small messages, the
latency is about 0.85 us. Given that the EXN module was able to provide the peak
bandwidth of Extoll, it is expected that EXT-DS will be able to achieve similar
results while minimizing the host CPU utilization even further.

154

C
h

a
p

t
e

r

6
Efficient Lustre Networking Protocol Support

Top-tier scientific HPC systems are constantly increasing in scale to improve appli-
cation resolution and reduce the time to solution. Such an increase in scale also
intensifies the system complexity and decreases the overall system reliability. To
cope with system failures, most scientific applications periodically write out memory
states. Besides storing numerical output from simulations, this defensive, bursty I/O
(i.e., checkpointing) is one of the main sources of I/O activity in HPC environments.
Therefore, the efficient storage connectivity is an essential requirement to serve the
needs of large-scale scientific codes. This chapter discusses how a parallel file system
such as Lustre can effectively leverage the capabilities of the Extoll interconnect.
Lustre is an open-source, parallel, distributed file system for Linux-based system

environments [165, 166]. Its design targets massive scalability, high performance,
and high availability. Within the scientific HPC community, Lustre is one of the
most deployed file system solutions due to its support for data-intensive applications,
which makes it an attractive choice for this work. The majority of the worldwide
TOP100 supercomputing deployments utilizes Lustre for their high-performance
parallel file and storage systems. For example in the TOP500 list from November
2017, nine of the TOP10 and more than 70 of the TOP100 systems deployed Lustre.
However, one of the key disadvantages of Lustre is its lack of implementation-specific
documentation, in particular the Lustre networking protocol called LNET.
The contributions of this chapter are twofold. First, it provides a comprehensive

analysis and summary of the Lustre networking protocol semantics and interfaces,
which need to be understood in order to design the protocol support for a custom
interconnect such as Extoll. The second contribution is the design and implementation

155

6 Efficient Lustre Networking Protocol Support

of the Extoll Lustre Networking Driver (EXLND), which maps the LNET protocol
semantics onto the Extoll networking technology. This chapter summarizes and
extends contributions to international workshops and conferences [15, 16].

6.1 Introduction to the Lustre File System
Lustre provides a single, POSIX-compliant name space for small to medium-scale
deployments, but also for large-scale storage platforms with hundreds of petabytes.
Lustre’s architecture employs a client-server network where distributed, object-based
storage is managed by servers and accessed by clients utilizing an efficient network
protocol. On a client, the mounted Lustre file system is represented as a coherent
POSIX file system to applications. But, clients do not access storage directly; all
I/O transactions are sent over the network.
The key concept of Lustre is to separate large, throughput-intensive block I/O

from its small, random, IOPS-intensive metadata traffic. In other words, Lustre
separates the metadata storage (inode) and block data storage (file content).

The following sections provide an introduction to the Lustre file system components,
the network protocol, I/O operations and file striping. More details about the Lustre
file system internals can be found in a technical report written by Wang et al. [167]
and the Lustre Operations Manual [168].

6.1.1 File System Components

Lustre is a parallel file system utilizing distributed, object-based storage, which
is managed by servers and accessed by client computers over a high performance
interconnection network. Three different categories of servers can be distinguished:
management, metadata, and object storage servers. The following provides an
overview of the major Lustre hardware components [168]:

MGS + MGT The Management Server (MGS) acts as a global registry and stores
the configuration information and service state for all active Lustre file system
components. There is usually only one MGS for a given network and all Lustre
components register with the MGS during startup. Lustre clients retrieve
information from the MGS when mounting the file system. The MGS stores
the configuration data on the Management Target (MGT).

MDS + MDT The Metadata Server (MDS) records and presents the file system
namespace (file and directories) and is responsible for defining the file layout, i.e.,

156

6.1 Introduction to the Lustre File System

Lustre’s	architecture	uses	distributed,	object-based	storage	managed	by	servers	and	accessed	
by	client	computers	using	an	efficient	network	protocol.	There	are	metadata	servers,	
responsible	for	storage	allocation,	and	managing	the	file	system	name	space,	and	object	
storage	servers,	responsible	for	the	data	content	itself.	A	file	in	Lustre	is	comprised	of	a	
metadata	inode object	and	one	or	more	data	objects.

Lustre	is	a	client-server,	parallel,	distributed,	network	file	system.	Servers	manage	the	
presentation	of	storage	to	a	network	of	clients,	and	write	data	sent	from	clients	to	persistent	
storage	targets.

There	are	three	different	classes	of	server:
• Management	server	provides	configuration	information,	file	system	registries
• Metadata	servers	record	file	system	namespace,	inodes.	The	metadata	servers	maintain	

the	file	system	index.
• Object	storage	servers	record	file	content	in	distributed	binary	objects.	A	single	file	is	

comprised	of	1	or	more	objects,	and	the	data	for	that	file	is	organized	in	stripes	across	the	
objects.	Objects	are	distributed	across	the	available	storage	targets.

Lustre	separates	metadata	(inode)	storage	from	block	data	storage	(file	content).	All	file	
metadata	operations	(creating	and	deleting	files,	allocating	data	objects,	managing	
permissions)	are	managed	by	the	metadata	servers.	Metadata	servers	provide	the	index	to	
the	file	system.	Metadata	is	stored	in	key-value	index	objects	that	store	file	system	inodes:	
file	and	directory	names,	permissions,	block	data	locations,	extended	attributes,	etc.

Lustre Scalable Storage

4

Object Storage
Targets (OSTs)

Metadata
Target (MDT0)

Management
Target (MGT)

Storage servers
grouped

into failover pairs

Lustre Clients (1 – 100,000+)

High Performance Data Network
(Omni-Path, InfiniBand, Ethernet)

Management
Network

Object Storage
Servers

Object Storage
Servers

Management
& Metadata

Servers

Additional
Metadata
Servers

DNE Metadata
Targets (MDTi - MDTj)

Figure 6.1: Lustre file system components in a basic setup [165].

the location of data objects. The MGS stores the metadata in key-value index
objects, which contain the file system inodes (such as filenames, directories,
permissions and file layout), on the Metadata Target (MDT). The MGS and
MDS can be co-located and share storage space. To improve metadata scaling
and system-wide fault tolerance, the Distributed Namespace (DNE) feature can
be used to store metadata across multiple MDTs.

OSS + OST The main task of Object Storage Servers (OSSs) is to provide file I/O
services and network request handling for their local Object Storage Targets
(OSTs). An OSS serves as a block device to the clients. Files can be striped
across multiple OSTs and written to concurrently.

Clients Lustre clients can be computational, visualization or desktop nodes. Each of
the clients expose the Lustre file system to the operating system by mounting
a POSIX-compliant instance utilizing the Lustre network protocol (LNET).
Applications can use standard POSIX calls for Lustre I/O.

Network One of the most crucial components is the network. Lustre is a network-
based file system and all I/O transactions are sent over the network using
RPCs. It is common that clients have no local persistent storage.

Each type of server has its storage target devices directly attached. Various forms
of data storage are possible, including simple hard disks, but also enterprise grade
network attached storage. Recent versions of Lustre (≥ 2.6) utilize the Zettabyte File
System (ZFS), based on the OpenZFS implementation, as the default data storage
back end [168], older versions use Lustre’s native LDISKFS, a modified version of

157

6 Efficient Lustre Networking Protocol Support

LNET

Network RPC

OSC-1 OSC-N

LOV MDC

Llite

VFS

...

data metadata

LNET

Network RPC

OST

OBDfilter Ldlm

Fsfilt wrapper

ldiskds

data req lock req

dispatch req

LNET

Network RPC

MDS

Journal Ldlm

Fsfilt wrapper

Client OSS MDS

MD req MD lock req

dispatch req

VFS

Figure 6.2: An overview of the internal Lustre architecture [167].

EXT4. Figure 6.1 displays an example configuration deploying all of the previously
described Lustre file system components. The clients are connected to the storage
system over a high performance data network, e.g., Infiniband or Omni-Path. On the
top left, an MGS with its MGT and a MDS with its MDT are displayed. To improve
the metadata performance and provide failover services, additional metadata servers
and metadata targets can be configured. On the top right, the OSSs are shown.
Each OSS serves four OSTs. In addition to the high performance data network, the
servers are connected over an additional management network.
Another important Lustre component is its modularized software architecture.

Figure 6.2 provides an overview of the architecture internals on the client, OSS, and
MDS. On the client site, the Virtual File System (VFS) module provides the POSIX
interface to the Lustre clients. The clients access files or directories using POSIX
calls through the VFS and Lustre returns the metadata and data. All Lustre network
I/O is transmitted using the Lustre Network protocol (LNET).

6.1.2 Network Communication Protocol

The Lustre Networking protocol, called LNET, provides the network abstraction
for Lustre [169, 170]. LNET is implemented as a modular software architecture, as
shown in Figure 6.3, which provides an abstract communication interface to Lustre.
It consists of two layers:

(1) the LNET code module, which is used by Lustre to interface the network;

158

6.1 Introduction to the Lustre File System

Vendor Network Device Drivers / Libraries

Lustre Network Drivers (LNDs)

LNET Code Module

Network RPC API

Lustre Request Processing

Application I/O

• Move small and large IO requests
• Uses RDMA if possible
• Generate events

• Similar to Sandia Portals with some
new and different features

• Support for multiple network types
• Including routing API

• Zero-copy marshalling libraries
• Service framework and request dispatch
• Connection and address naming
• Generic recovery infrastructure

Figure 6.3: Overview of the LNET software architecture [165].

(2) the Vendor-specific Lustre Network Driver (LND), which provides a layer of
abstraction from the network hardware to LNET.

Each supported network type implements its own hardware-specific LND. The LND
utilizes the native network interface below and features an LNET-specific standard
interface to communicate with upper layers. LNET is independent from the Lustre file
system; the LNET core module and the LNDs are implemented as kernel modules in a
separate directory of the source tree. The Lustre network protocol is connection-based
and end-points maintain a shared, coordinated state. For each active connection
from a client to a server storage target, a server keeps exports, while a client keeps
imports as an inverse of the server exports. The Lustre manual [168] lists the key
features of LNET as follows:

• Native support for multiple, commonly-used networks via LNDs, including
Infiniband and TCP/IP-enabled networks like Gigabit Ethernet;

• RDMA support, depending on the underlying network technology;

• High availability and recovery features with failover for the servers;

• Support of multiple network types simultaneously, with routing between multi-
ple LNET subnets and disparate networks by employing LNET routers.

LNET supports heterogeneous network environments and routing natively, which
means that Lustre nodes can exist in two or more different physical networks. I/O can
be aggregated across multiple independent network interfaces, which enables network
multipathing. Dedicated routing nodes, called LNET routers, provide a gateway
between different LNET networks and allow servers and clients to be multi-homed.

159

6 Efficient Lustre Networking Protocol Support

Portal Table

Portali ME0 ME1 MEN

MDIgnore Bits
Match Bits

Portal Index

Match Entry List

Process

Buffer Event Queue
PortalM

...

Figure 6.4: Illustration of the Lustre LNET addressing scheme [167].

LNET is a message passing API, which originated from the Sandia Portals API [171].
As a consequence, LNET inherits some of the Portals API’s properties. Internally,
peers are referenced by a global process ID. The global process ID consists of a
network identifier (NID) in the format <address>@<network type>[network number] and
a Lustre-internal process ID. In this context, a request posted to another node is
performed through an RPC. In Lustre, a portal consists of a list of match entries
(MEs). Each ME can be associated with a buffer, as displayed in Figure 6.4, and
contains match bits and ignore bits, which are 64-bit identifiers that are used to
decide if the incoming message can utilize the associated buffer space. The ME list
of a portal is used to associate an incoming LNET message with its portal, and also,
to find the corresponding memory descriptor (MD) [167].
LNET differentiates different payload types, including requests, bulk read/write

data (large I/O to be written or read by clients), and metatraffic (file lock grants/re-
leases, OSTs for specific file, etc.). To illustrate the Portals-like RPC mechanism,
the following describes how a bulk data transfer from an OSS to a client is initiated
(as shown in [167]). First, the client posts a request to a server to send the data
back to the client. For example, this could be an RPC containing the request to
read ten blocks from a file and the information that the client is ready to receive a
bulk data transmission. After receiving the request, the OSS initiates the bulk data
transfer to the client. Once the data transmission is completed, the server notifies
the client of the completion by sending a reply message. As there are two different
data flows, the bulk data and the reply data, the Lustre client needs two portals for
this transfer. The portals in this example are called bulk portal and reply portal.

Most LNET actions are initiated by Lustre clients. The most common activity for
a client is to initiate an RPC to a specific server target. A server may also initiate

160

6.1 Introduction to the Lustre File System

an RPC to a target on another server. For example, an MDS sends an RPC to the
MGS to retrieve configuration data; or an RPC from MDS to an OST to update
the MDS’s state with available space data. An OSS is relatively passive: it waits for
incoming requests from either an MDS or Lustre clients.

6.1.3 Client Services and File I/O

The Lustre client is implemented as a kernel module. It provides an interface between
the Linux virtual file system and the Lustre servers, and presents an aggregate view
of the Lustre services to the host operating system as a POSIX-compliant file system.
To applications, a Lustre client mount looks just like any other file system, with files
being organized in a directory hierarchy.

6.1.3.1 Client I/O Overview

Lustre employs a client-server communication model. Each connection has an initiator
(the client end of the connection) and a target (the server process). The client must
be able to retrieve file-specific metadata from the MDS when opening or closing a file,
but also needs to interface with the OSTs for direct data access. The main Lustre
client services [165] are the management client (MGC), one or more metadata clients
(MDC) and one object storage client (OSC) per configured OST in the file system.

The logical metadata volume (LMV) aggregates the MDCs and presents a single
logical metadata namespace to the Lustre clients, which enables the transparent
access to all MDTs. This allows the client to see the directory tree stored on multiple
MDTs as a single coherent namespace, and striped directories are merged on the
clients to form a single visible directory to users and applications.

The logical object volume (LOV) aggregates the OSCs to provide transparent access
across all the OSTs. Thus, a client with a mounted Lustre file system sees a single,
coherent, synchronized namespace, and files are presented within that namespace as
single addressable data objects, even when striped across multiple OSTs. Several
clients can write to different parts of the same file simultaneously, while, at the same
time, other clients can read from the file. Figure 6.5a provides an overview of the
client services and possible client-server interactions

Figure 6.5b illustrates an exemplary file access initiated by a Lustre client. First,
the Lustre client sends an RPC to the MDS to request a file lock (1). This can either
be a read lock with look-up intent or a write lock with create intent. When the MDS
has processed the request, it returns a file lock and all available metadata and file
layout extended attributes to the Lustre client (2). If the file is new, the MDS will

161

6 Efficient Lustre Networking Protocol Support

(a) Client-servers interaction.

Data stripe 0
Data stripe 3
Data stripe 6

Data stripe 1
Data stripe 4
Data stripe 7

Data stripe 2
Data stripe 5
Data stripe 8

1 2

3

1

2

3

File open request
Return Layout EA,
FID (Object A, Object B, Object C)
Read or write objects in parallel

(b) Lustre client requesting file data.

Figure 6.5: Overview of Lustre I/O operations [165].

also allocate OST objects for the file based on the requested layout when the file is
opened for the first time. With the help of the file layout information, the client is
able to access the file directly on the OSTs (3).

6.1.3.2 Overview of Metadata and File Layout Key Terminology

Each file in Lustre has a unique layout. The layout is described through several
attributes. In the following, an overview of metadata attributes, the file layout, and
the locking mechanism is presented.

Lustre Inode On Linux and other Unix-like operating systems, an inode is a data
structure that stores a file’s metadata information except its name and the actual
data. In the context of Lustre, a Lustre inode corresponds to an MDT inode. The
default inode size is 2 KB and contains the metadata for a Lustre file. The metadata
consists of typical metadata from stat(), e.g., the user identifier, group identifier
and permissions, and layout extended attributes (Layout EAs).

File Identifier With the introduction of the Lustre 2.x series, Lustre file identifiers
(FIDs) have replaced UNIX inode numbers and are used to identify files or objects.
An FID is a unique 128-bit value comprising of a 64-bit sequence number, which is
used to locate the storage target, a 32-bit object identifier (OID), which references
to the object within the sequence, and a 32-bit version number, which is currently
unused. The sequence number is unique across all Lustre targets in a file system
(OSTs and MDTs). FIDs are not bound to a specific target, they are never re-used
and can be generated by Lustre clients.

162

6.1 Introduction to the Lustre File System

FID

Layout EA

OST0
Object A

OST1
Object B

OST1
Object C

OST0

OST1

OST1

Object A Data Stripe 0

Object B Data Stripe 1

Object C Data Stripe 2

Metadata Server Object Storage Server

(a) Layout extended attributes.

File A File B File C OST Object

OST0 OST1 OST2

0

3

6

1

4

2

5

0
0

(b) Striping, RAID 0 pattern.

Figure 6.6: Lustre file layout overview [165].

Layout Extended Attributes Lustre utilizes Layout EAs to save additional infor-
mation about a file. Layout EAs are stored on an MDT inode and contain POSIX
access control lists (ACLs), the file layout information (e.g., the location of the data)
such as OSTs and object ID, and OST pool memberships. When a client wants to
access (read from or write to) a file, it first queries the MDT with a request to fetch
the list of FIDs containing the file’s data. With this information, a client can directly
connect to the OSSs where the data objects are located at and perform I/O on the
file. If the file is a regular file (not a directory or symbolic link), the layout points to
1-to-N OST object(s) on the OST(s) that contain the file data. There are mainly
two possible cases. If the layout EA points to one OST object, all of the file data is
located on that particular OST. If it points to more than one OST object, the file
data is striped across multiple different OSTs with one object per OST.

File Striping File striping is one of the key factors leading to the high performance
of Lustre at larger scales. Lustre has the ability to stripe data across multiple OSTs
in a circular round-robin fashion, which is comparable to the RAID 0 pattern. The
file layout is allocated by the MDS when the file is accessed for the first time and
fixed once the file is created. The stripe layout is selected by the client, either by
the configured policy (e.g., inheritance from the parent directory) or by the user
or application at runtime utilizing the Lustre user library llapi. llapi provides a
set of commands used for setting Lustre file properties within a C program running
on a cluster environment. Striping can be used to improve the overall throughput
performance by enabling the aggregate bandwidth to a single file to exceed the
bandwidth of a single OST. The number of objects in a single file is called stripe
count. When a segment or “chunk” of data which is written to a particular OST

163

6 Efficient Lustre Networking Protocol Support

LNET LND NICRPC API

lnd_

lnet_

LNet_

Figure 6.7: LNET API naming conventions.

object exceeds the specified stripe size, the next chunk of data is written to the next
object. The maximum number of OSTs that a single file can be striped across is
2000, even though a Lustre file system can comprise of more than 2000 OSTs.

Lustre Distributed Lock Manager The Lustre Distributed Lock Manager (LDLM)
provides byte-granular file and fine-grained metadata locking. It ensures that files
are coherent between all clients and servers. Each MDT and OST has its own LDLM.
Metadata servers use inode bit-locks for file lockup, state, extended attributes, and
layout. Object storage servers provide extent-based locks for OST objects. File data
locks are managed for each OST. Clients can be granted read extent locks for a part
or all of a file, allowing multiple concurrent readers access to the same file. Clients
can be granted non-overlapping write extent locks for regions of the file. Multiple
Lustre clients may access a single file concurrently for both read and write, which
should minimize potential bottlenecks during file I/O.

6.2 Lustre Networking Semantics and Interfaces
LNET is designed to be lightweight and efficient. It supports message passing for
processing RPCs and RDMA for bulk data transfers. Even though the Lustre project
is open source, there is almost no documentation available about its implementation
details. Especially for LNET, the documentation is limited to its source code, a
master thesis by T. Groschup [172] focusing on Lustre version 2.4, and a technical
report by Wang et al. [167], which describes Lustre’s internals for version 1.8, and
therefore, is mostly outdated.

In order to map the Lustre network protocol to a new interconnect technology such
as Extoll, it is particularly important to understand Lustre’s networking semantics
and interfaces. The following sections present a comprehensive overview of LNET’s
building blocks, including an API summary, LNET’s communication semantics, and
the credit system. In addition, an overview of existing LNDs is provided.

164

6.2 Lustre Networking Semantics and Interfaces

1 typedef struct lnet_lnd {
2 int (* lnd_startup)(struct lnet_ni *ni);
3 void (* lnd_shutdown)(struct lnet_ni *ni);
4 int (* lnd_ctl)(struct lnet_ni *ni , unsigned int cmd , void *arg);
5 int (* lnd_send)(struct lnet_ni *ni , void *private ,
6 lnet_msg_t *msg);
7 int (* lnd_recv)(struct lnet_ni *ni , void *private ,
8 lnet_msg_t *msg , int delayed , unsigned int niov ,
9 struct kvec *iov , lnet_kiov_t *kiov , unsigned int offset ,

10 unsigned int mlen , unsigned int rlen);
11 int (* lnd_eager_recv)(struct lnet_ni *ni , void *private ,
12 lnet_msg_t *msg , void ** new_privatep);
13 void (* lnd_notify)(struct lnet_ni *ni , lnet_nid_t peer ,
14 int alive);
15 void (* lnd_query)(struct lnet_ni *ni , lnet_nid_t peer ,
16 cfs_time_t *when);
17 int (* lnd_accept)(struct lnet_ni *ni , cfs_socket_t *sock);
18 void (* lnd_wait)(struct lnet_ni *ni , int milliseconds);
19 int (* lnd_setasync)(struct lnet_ni *ni , lnet_process_id_t id ,
20 int nasync);
21 } lnd_t;

Listing 6.1: The LND struct.

6.2.1 Naming Conventions and API Summary

For the communication between LNET and an LND, three API groups can be
distinguished, as illustrated in Figure 6.7. Function names starting with LNet
are external function calls from the upper layers. All other functions using lower
cases belong to the internal API of LNET. Within LNET, an LND has two sets
of APIs. If a function name starts with lnd_, it is part of the API used by LNET
to communicate with an LND. If a function name starts with lnet_, it describes
the interface for the LND to communicate with LNET. In addition, there are two
important data structure types, which are used in nearly every function call to the
LND: (1) lnet_ni_t, which provides all information about the LND for Lustre, and
(2) lnet_msg_t, which describes an LNET message.

The LND has to be registered with LNET. Otherwise, LNET does not know how
to utilize the network interface. This is done in the manner of a Linux kernel module.
LNET provides a structure called lnd_t, which consists of function pointers, as
displayed in Listing 6.1. Even though an LND is not required to implement all of
the listed functions, the following list describes the minimal set of functions that
need to be implemented by an LND in order to provide full functionality:

(1) lnd_startup(), lnd_shutdown(): These functions are called from LNET to
bring up or shut down a network interface corresponding to the LND.

165

6 Efficient Lustre Networking Protocol Support

(2) lnd_send(), lnd_recv(), lnd_eager_recv(): These functions are called for
sending or receiving outgoing and incoming LNET messages respectively.

(3) lnd_query(): Despite being described as optional [167], LNET will not start
an LND if this method is not implemented.

The second set of function calls are LNET routines exported for LNDs to use:

(1) lnet_register_lnd(), lnet_unregister_lnd(): Each LND module has to
call these functions to register or unregister an LND type at module startup or
shutdown respectively.

(2) lnet_parse(): For each message received, an LND has to call this function to
notify LNET that a new message has arrived. After parsing the header, LNET
forwards the message to an LND’s receive function. An LND can indicate its
RDMA capability by calling this function with the RDMA flag set to one.

(3) lnet_finalize(): This function is called by LNDs for both incoming and
outgoing messages. When a message has been sent, this call informs LNET
about the status by generating a corresponding LNET event. For an incoming
messages, this call indicates that the payload has been received.

6.2.2 Memory-Oriented Communication Semantics

The Lustre network protocol utilizes two memory-oriented communication semantics
to propagate requests between Lustre clients and servers:

LNetPut() This function sends data asynchronously and is mostly issued by clients
to request data from a server or to request a bulk data transmission to a server.
Servers use LNetPut() to send a reply back to the client.

LNetGet() This function serves as a remote read operation and is used by servers to
retrieve data in bulk read transmissions from clients. Clients issue this function
only in one case, the router pinger. This technique is used to verify whether
an LNET router is still alive.

Internally, these two functions are mapped onto LNET messages, and LNET
expects a specific behavior from an LND, which depends on the message type. The
following sections provide an overview of the LNET message types and the expected
communication semantics, but also describe the characteristics of the payload of an
LNET message.

166

6.2 Lustre Networking Semantics and Interfaces

Table 6.1: Overview of LNET message types.

Type Description
PUT A PUT message is used to indicate that data is about to be sent through

an RDMA transfer from the node to the peer. This is the simplest LNET
message.

ACK An ACK message is used when the connection of a client or server is
established. It is also used as an optional response to a PUT and can be
explicitly requested by the sender. The ACK message is then generated by
the LNET layer once it receives the PUT.

GET A GET message is used by a sender to request data from a peer and always
expects a REPLY message in return.

REPLY The REPLY message is the response to a GET message.

6.2.2.1 LNET Message Types

LNET defines four main message types, as presented in Table 6.1. The type is
indicated in the field msg_type of the structure lnet_msg_t. The following LNET
message combinations can occur: PUT, PUT+ACK, ACK, and GET+REPLY. A Portal RPC
can either be one or a union of the described message combinations. Also, an LND
must support all four message types to be fully functional. In general, an LNetPut()
initiates the transmission of a PUT message with an optional ACK, while LNetGet()
is translated into the message combination GET+REPLY.

6.2.2.2 Communication Semantics

For both LNetGet() and LNetPut(), LNET calls an LND’s send function and hands
the LNET message over in form of a lnet_msg_t structure. It is the task of an LND
to decode the message and process it accordingly. After an LNET message has been
sent, LNET expects to be notified from an LND by calling lnet_finalize() once
the transmission is completed.
For an LNetPut(), this is all that needs to be done on the client (initiator) side.

The LNetGet() needs to be treated differently. As the initiating node does not have
any data to be sent to the target node, since the LNET message representing a GET
does not have any data attached. But, it does contain a memory descriptor, which
describes the data sink for the GET message. To notify LNET that the data has been
written to the sink buffer, an LND needs to generate a REPLY message. Both the GET
and the REPLY message need to be passed to lnet_finalize() upon completion of
the data transmission.

167

6 Efficient Lustre Networking Protocol Support

LNET LND LND LNET

LNetPut()

Return

Initiator Target

Figure 6.8: Overview of LNetPut() communication sequence.

LNET LND LND LNET

LNetGet()

Return

GET data

Return

Initiator Target

Figure 6.9: Overview of LNetGet() communication sequence.

168

6.2 Lustre Networking Semantics and Interfaces

On the target side, the hardware must notify an LND that a new message has
arrived. This can be done through interrupts or an LND can periodically poll for
new messages, e.g., by using kernel threads. After receiving a new message, an
LND forwards the header of the message to LNET by calling lnet_parse(). LNET
checks if the message has arrived at its final destination and calls an LND’s receive
function for the received message. In addition, an LND can forward private data to
the receive function through the parameter void *private of lnet_parse().
In case of an LNetPut(), the receive function is called with an LNET message

containing the local data sink, and is expected to write the data to this buffer. After
the copy operation, the LND must call lnet_finalize() for the corresponding
LNET message to signalize that the data has been received. In case of an LNetGet(),
the receive function is called with the data that has to be sent to the initializing
node, which is attached to an LNET message. After the data has been sent,
lnet_finalize() has to be called with the corresponding LNET message.
The chronological sequence of LNET and LND API calls for LNetPut() and

LNetGet() is illustrated in Figures 6.8 and 6.9 respectively. It is at the discretion of
an LND how the actual data transfer is implemented.

6.2.2.3 Payload and Memory Descriptors

As mentioned before, the payload of an LNET message is restricted to a maximum of
1 MB, and the number of segments cannot exceed 256 pages. Unlike TCP/IP, LNET
does not fragment or re-assemble messages. LNET assumes that upper layers, such
as Portal RPC, never provide a payload bigger than 1 MB. There are several reasons
for this limitation – for example the pre-set limit makes the buffer management
easier. Also, some low-level drivers have a limited number of scatter/gather buffers,
such as 256. Another benefit is that an upper layer such as Portal RPC can fragment
data more easily if buffers are posted in pages.
The payload attached to an LNET message resides behind a memory descriptor

(MD). The send function of an LND only receives an LNET message, and has to
check for the data in the LNET message. In case of a PUT, the payload is directly
attached to the LNET message. In case of a GET+REPLY, there is no data attached,
but the data sink information is encoded in the message. The receive function of an
LND receives an LNET message with explicit pointers to the memory regions that
have to be used. A memory descriptor points to one of two different buffer types:

1. Kernel virtual address space, which is continuously mapped and organized in
data structures of type struct kvec (see Listing 6.2);

169

6 Efficient Lustre Networking Protocol Support

1 struct kvec {
2 void * iov_base ; /* *never* holds a userland pointer */
3 size_t iov_len ;
4 };

Listing 6.2: A memory descriptor fragment with a kernel virtual address.

1 typedef struct {
2 /* Pointer to the page where the fragment resides */
3 struct page * kiov_page ;
4 /* Length in bytes of the fragment */
5 unsigned int kiov_len ;
6 /* Starting offset of the fragment within the page. Note that
7 * the end of the fragment must not pass the end of the page;
8 * i.e., kiov_len + kiov_offset <= PAGE_CACHE_SIZE . */
9 unsigned int kiov_offset ;

10 } lnet_kiov_t ;

Listing 6.3: A page-based fragment of a memory descriptor.

2. A page list, which is organized in data structures of type lnet_kiov_t, as
displayed in Listing 6.3.

For messages larger than a page, both buffer types are organized as arrays of the
respective type. An array describes the whole memory of the message, but the pages
do not have to be continuous in physical memory. Also when the memory region is
fragmented, all fragments but the first one start on a page boundary, and all but the
last end on a page boundary. For bulk data transfers, an LND needs to map the
buffer onto scatter/gather lists, which can be physically addressed by the NIC and
are pinned in the main memory.

6.2.3 Credit System

Lustre provides a user-tunable credit system for the send and routed receive paths.
The credit counts can be accessed through /proc/sys/lnet/ and configured through
module parameters. The following credits need to be configured on a Lustre client
for a given LND:

Peer Credits The peer credit specifies the number of concurrent sends to a single
peer. A negative credit count indicates the number of messages are awaiting a
credit.

TX Credits The TX credit specifies the number of concurrent sends to all peers. A
negative credit count indicates the number of messages are awaiting a credit.

170

6.2 Lustre Networking Semantics and Interfaces

Every send consumes one peer credit and one TX credit. In addition, Lustre
provides credits accounting when routers receive a message destined for another peer.
The peer and TX credits have an impact on how well a network connection scales
with an increasing number of concurrent accesses. But, the higher the credit count,
the more memory resources are consumed by an LND. For communication to routers
not only the TX and peer credits must be tuned, but also the global router buffer
and peer router buffer credits need to be configured:

Peer Router Credit The peer router credit governs the number of concurrent re-
ceives from a single peer. Its main objective is to prevent a single peer from
using all router buffer resources. A credit is given back when the receive
completes.

Global Router Buffer Credit This credit allows messages to be queued in order to
select non-data RPCs versus data RPCs with the intent to avoid congestion.
LNET router nodes have a limited number buffers. The router buffer credits
ensure that a receive only succeeds if appropriate buffer space is available.

6.2.4 Available Lustre Network Drivers

The most widely used network technologies for Lustre storage systems are TCP/IP
networks and RDMA-capable networks that support the OFED software environment
(refer to section 5.2.1). For TCP/IP networks, the ksocklnd.ko module, also referred
to as Sockets LND, implements the LNET driver. Its implementation differs from
the presented LNET semantics and message types. The Sockets LND utilizes
its own message type called HELLO, which is used to mimic traditional TCP/IP
communication, and does not support any other message type.

For RDMA network technologies, the ko2iblnd.ko module, also referred to as o2ib
LND, supports Infiniband, Omni-Path, and RoCE in conjunction with the OFED
environment. The LND supports all of the described message types. Its implementa-
tion follows closely the described memory-oriented communication semantics. Its
bulk data transmission relies on Scatter/Gather Elements (see section 6.4.2).

Besides these two main LNDs, several other LNDs have been introduced over time.
Examples are the Gemini LND [173] and the Portals4 LND [174]. As indicated by its
name, the Gemini LND provides support for Cray’s Gemini interconnect technology.
The Portals4 LND implements the LNET driver for the BXI interconnect [175] and
relies on the Portals 4 API. Currently, it is not included in the official Lustre release.

171

6 Efficient Lustre Networking Protocol Support

TCP/IP

socklnd

LNET Code Module

Network RPC API

Lustre Request Processing

Application I/O

gnilnd o2iblnd exlnd

Gemini
Infiniband,

Omni-Path, RoCE Extoll

Figure 6.10: Lustre software environment with EXLND.

6.3 Design Challenges and Strategy
The main objective of EXLND is to provide an efficient mapping of Lustre’s network
protocol semantics onto the Extoll interconnect technology. Recapitulating the
findings about LNET and its semantics from the previous section, EXLND needs to
fulfill the following tasks:

• EXLND should support the LNetGet() and LNetPut() communication seman-
tics and all LNET message types by efficiently mapping those to suited Extoll
functional units and communication patterns. Candidates for the data transfers
are both the VELO and RMA units.

• The solution should provide an efficient mechanism to support scatter/gather
DMA operations. Recall that LNET messages can have a payload of up to 256
pages, which can be mapped onto scatter/gather lists.

• The general structure of an LND needs to be maintained so that EXLND can
seamlessly blend into Lustre’s and LNET’s modular environment. Specifically,
the expected sequence of API calls needs to be maintained.

Figure 6.10 displays the extended Lustre software environment with the targeted
Extoll support. The design strategy for EXLND comprises of a twofold approach.
First, the utilization of the ATU address translation scheme for scatter/gather lists
is explored in section 6.4. The second part of the design focuses on the support of
the LNET communication scheme by leveraging the RMA unit’s innovative notifi-
cation mechanism. The data transmission protocols and LNET message matching
mechanism are presented in section 6.5. A prototype implementation of EXLND is
presented in section 6.6.

172

6.4 Efficient RDMA with Vectored I/O Operations

6.4 Efficient RDMA with Vectored I/O Operations
Most modern NICs provide on-chip support for RDMA operations and address trans-
lation, which enables scatter/gather DMA. Among other things, those scatter/gather
operations, also referred to as vectored I/O, have two major benefits: atomicity
and efficiency. Atomicity means that one process can write into or read from a
set of physical buffers, which can be scattered throughout the physical memory,
without the risk that another process might perform I/O on the same data. In
addition, this mechanism improves the efficiency since one vectored I/O operation
can replace multiple ordinary reads or writes, and therefore, reduces the overhead.
Scatter/gather DMA controllers provide the hardware support for scatter/gather
I/O. To initiate such an operation, a controller needs the input modifier, also known
as scatter/gather list, to offload the transfer to the NIC.
As described in section 6.2.2.3, the payload of an LNET message can consist of

up to 256 pages. It is desirable to transfer the payload in one operation instead of
multiple RDMA reads or writes. Other LNDs, such O2IB LND, implement vectored
I/O by mapping the attached memory regions onto so called scatterlists. Within the
kernel, a buffer to be used in a scatter/gather DMA operation is represented by an
array of one or more scatterlist structures. As presented in section 3.2.5, the Extoll
design features the address translation unit, which can be utilized to map page lists
and contiguous kernel buffers into the Extoll address space. This functionality is
used to provide scatter/gather DMA over Extoll.
The remainder of this section is organized as follows. First, the term physical

buffer list is introduced followed by an overview of how Infiniband utilizes so called
scatter/gather elements to support vectored I/O. The last part of this section focuses
on the design and its limitations of scatter/gather DMA support for Extoll.

6.4.1 Memory Management

In the context of RDMA-enabled NICs, memory regions refer to continuous memory
areas, which have been pinned in main memory and registered with a NIC. Such
non-shared memory regions are also called physical buffer lists and consist of page
or block lists, as depicted in Figure 6.11. NICs can access these physical buffers by
using their physical addresses. Another important characteristic is that they cannot
be swapped out of the main memory, which enables scatter/gather transfers.

For page lists, the page size has to be an integral power of two and all pages have
to have the same size. The data can start at an offset into the first page, referred

173

6 Efficient Lustre Networking Protocol Support

Page List

Page 0

Page 1

Page N-1

Page N

...

Block List

Block 0

Block 1

Block N-1

Block N

...

Page size = 2x

Figure 6.11: Physical buffer lists.

to as first byte offset, and can end on a non-page boundary, which means that the
last page can be partially filled. Pages do not have to be continuous in memory. To
perform scatter/gather I/O with page lists, the following input modifiers are needed:
the page size, the first byte offset, the length, and the address list of the pages.

For block lists, the pages where the blocks are residing on need to have the same
size. The block size itself is arbitrary and depends on the sizes supported by the NIC.
As for the data boundaries, the same rules as for page lists apply. The data can start
at an offset into the first block and can end at an offset into the last block. The
dashed lines in Figure 6.11 outline the block versus data boundaries. The following
modifiers are needed for scatter/gather transfers: the block size, the first byte offset,
the length, and the address list of the blocks.
Depending on the underlying NIC technology, two different types of address

translations can be distinguished: onloading and offloading. In case of onloading,
the address translation is moved to the CPU and handled by the driver software. In
case of offloading, the hardware typically has a dedicated controller that is able to
gather data out of the memory onto the wire. Offloading bypasses the operating
system and reduces the load on the CPUs.

6.4.2 Infiniband Verbs and Scatter/Gather Elements

As previously described in section 3.4.1 about Infiniband, work requests are placed
onto a queue pair and can be categorized in send and receive work requests. When
the request processing is completed, a work completion (WC) entry can optionally
be placed onto a completion queue (CQ), which is associated with the work queue.

174

6.4 Efficient RDMA with Vectored I/O Operations

PD
wr_id

sg_list*
num_sge=2

next*

wr_id
sg_list*

num_sge=1

next*

wr_id
sg_list*

num_sge=3

next*

addr
Length=N1 bytes

Lkey=W
addr

Length=N2 bytes
Lkey=X

addr
Length=N3 bytes

Lkey=Y

addr
Length=N4 bytes

Lkey=Z
addr

Length=N6 bytes
Lkey=Z

addr
Length=N9 bytes

Lkey=Z

N1 Bytes

N2 Bytes

N3 Bytes

N4 Bytes
N5 Bytes

N6 Bytes
N7 Bytes
N8 Bytes

N9 Bytes

addr
Length=N1 bytes

Lkey=W
rkey

addr
Length=N2 bytes

Lkey=X
rkey

addr
Length=N3 bytes

Lkey=Y
rkey

addr
Length=Sum(N4->N9)

Lkey=Z
rkey

Sum of N4
through N9

ibv_send_wr

ibv_send_wr

ibv_send_wr

ibv_sge

ibv_sge

ibv_sge

ibv_mr

ibv_mr

ibv_mr

ibv_mr

Write Requests Scatter/Gather
Elements Memory

Figure 6.12: Relation of work requests, scatter/gather elements, main memory,
memory regions and protection domain [176].

Scatter/Gather Elements (SGE) are used to define the memory address to write
to or read from and are associated with a work request. An SGE is a pointer to
a memory region, which has been pinned through a protection domain (PD) and
can be accessed by an HCA for read and write operations. Typically, a memory
region is a contiguous set of memory buffers, which have been registered with an
HCA. The registration of a memory region causes the OS to provide the HCA with
the virtual-to-physical mapping of that particular region, but also pins the memory,
which means that the OS cannot swap the memory out onto secondary storage. The
successful memory registration among other things returns two objects called Lkey
and Rkey, which need to be used when accessing memory regions. The key pair
provides authentication means. The Lkey (local key) can be used to access local
memory regions, while the Rkey (remote key) needs to be sent to remote peers, so
that they can directly access a local memory region through RDMA operations. As
already mentioned, a memory region belongs to a protection domain, which provides
an effective bonding between QPs and memory regions. PDs can be seen as an
aggregating entity. Figure 6.12 presents a detailed overview of the relation between
work requests, SGEs, main memory, and protection domains.

HCAs have an on-chip scatter/gather DMA controller that enables the gathering
of data (page lists and block lists) out of the memory onto the wire in a single DMA

175

6 Efficient Lustre Networking Protocol Support

transaction. This means that scatter/gather I/O can be completely offloaded to the
HCA. This feature is utilized by the O2IB LND for bulk data transmissions.

6.4.3 Scatter/Gather DMA Operation Support for Extoll

Recall from section 3.2.5 that the ATU acts as an MMU for the Extoll NIC, especially
for the RMA unit, and therefore, is suitable to provide scatter/gather support for
RDMA operations through the RMA unit. By default, the ATU kernel module
allocates 128 GATs with an NLP size of 4 KB. Each GAT can map up to 218 NLPs,
which translates to 218 ∗ 4 KB = 1 GB of mappable main memory per GAT. The
ATU provides address translation offloading for two types of memory regions: pages
lists and continuously allocated kernel virtual buffers.
The payload of an LNET message is limited by the LNET MTU, which is 1 MB

per transmission, and can comprise of up to 256 pages with a page size of 4 KB.
The payload is described by a memory descriptor, which points to an associated
buffer that is allocated utilizing GFP (get free pages) flags. The GFP flags ensure
that the returned buffer consists of pages, but do not pin the buffer into the main
memory. The buffer either consists of an array of pages (array of lnet_kiov_ts) or
a continuously allocated kernel virtual buffer of type struct kvec, which can be
translated into a scatterlist consisting of pages. This means that the LNET design
aligns well with the capabilities of the ATU design, which indicates that for Lustre
the address translation can be completely offloaded to the Extoll NIC.

Within the scope of this work, the Extoll kernel API has been extended to provide
ATU memory registration services for kernel modules such as LNDs. There are
two functions available for memory registration, one for scatterlists and one for
page lists. Both return a software NLA, which can be used to build RMA software
descriptors. In addition, a de-registration function has been implemented, which
expects the software NLA, the corresponding VPID, and the number of mapped
pages as parameters. For example for page lists, the ATU expects the following input
modifiers in order to perform a correct address translation: the VPID of the kernel
process, the pointer to the first entry in page list of type struct page, the number
of list entries, and the number of bytes (also called stride) that need to be added to
reach the next entry of type struct page in the list.
When using the Extoll kernel API to register memory regions, the requesting

process needs to make sure that the provided buffer is pinned into main memory so
that the buffer can not be exempt by the OS and be swapped out onto secondary
storage. This is a necessary requirement when working with physical addresses.

176

6.5 Support for LNET Protocol Semantics

When memory is swapped out before the RMA operation gets completed, the address
translation results in a general protection error, which ultimately leads to a compute
node failure.
In general besides the support for page lists and continuous buffer space, it is

desirable to provide scatter/gather DMA operations for block lists. However, the
current ATU design does not support address translation offloading for such physical
buffer lists. It requires an additional piece of kernel code, which handles such buffer
types. One idea is to copy memory blocks into continuously allocated buffer space,
e.g., for small fragments, and then, map this buffer to an NLA.

6.5 Support for LNET Protocol Semantics
The mapping of the LNET protocol semantics onto the Extoll technology comprises of
two components: the data transmission protocols themselves and a message matching
mechanism on both the initiating and the target side. The following sections provide
the specification of the data transmission protocols followed by the description of
how incoming messages are matched with their corresponding LNET messages.

6.5.1 Data Transmission Protocols

EXLND distinguishes two types of transmission protocols: immediate sends and bulk
data transfers. The transmission protocol is chosen depending on the message type,
but also the size of the payload.

6.5.1.1 Immediate Send

Similar to the eager protocol of EXT-Eth presented in section 5.4.1.2, the immediate
send splits the payload of an LNET message in 120 byte-sized fragments and sends
the data directly through multiple VELO sends. The immediate send is used for
messages of type ACK, which typically have no payload attached, and fit in one VELO
message. It can also be used for messages of type PUT or GET for small payload
sizes. A user-tunable threshold, similar to EXT-Eth, defines the upper limit for the
immediate send path. On the receiving side, the VELO message containing the last
fragment of the payload notifies EXLND that all data has been received, re-assembles
the payload, and then, passes it to the upper layers.

177

6 Efficient Lustre Networking Protocol Support

LNET EXLND EXLND LNET

LNetPut()

Responder
Notification

Completer
Notification

RMA GET

Return Return

Initiator Target

Figure 6.13: Overview of LNetPut() communication sequence over Extoll.

LNET EXLND EXLND LNET

LNetGet()

Completer
Notification

Requester
Notification

Return

Return

Initiator Target

Figure 6.14: Overview of LNetGet() communication sequence over Extoll.

178

6.5 Support for LNET Protocol Semantics

6.5.1.2 Bulk Data Transfer

In general, a send path can be divided in two steps: the setup and registration of the
data buffers, and the transmission itself. One of the main design goals of EXLND is
to minimize the number of LND-internal messages that need be exchanged in order
to perform an LNetPut() or LNetGet(). This is achieved by internally interchanging
the RMA operations performed by EXLND. In case of a PUT message, EXLND
performs a rendezvous GET in order to read the data from the initiating node and
write it directly to the target node. In case of a GET message, EXLND performs a
rendezvous PUT, which writes the payload directly to the data sink on the initiating
node. In this context, rendezvous means that the RMA operation is advertised
through a VELO message from the initiating node.

Rendezvous GET Protocol

As described in section 6.2.2, an LNetPut() triggers the transmission of a PUT message,
while the ACK message is optional. The PUT message has a memory descriptor attached,
which describes the data to be sent over the network. Typically, a client needs to
send a PUT request to the destination node. Once the target has allocated the PUT
sink, the target informs the initiator of the availability and the PUT operation can
be performed. For Extoll, EXLND maps the PUT source buffer to an NLA. If the
payload is provided in form of a page list, EXLND only needs to make sure that the
buffer is pinned, and then, can directly utilize the kernel API to map the buffer to
RMA-addressable memory. For a buffer of type kvec, EXLND needs to translate
the buffer into an array of pinned pages, before it registers the memory.

A PUT message is transmitted through the rendezvous GET protocol. This means
that the payload of the LNET message on the initiating node acts as a GET source
buffer for the target side. First, the GET source address and LNET header are sent
to the target node by encapsulating the information into a VELO message. On the
target side, lnet_parse() calls EXLND’s receive function, which in turn initiates
the RMA GET operation. The beauty of this approach is that there is no further
communication required between the participating peers. Upon completion of the
GET operation, the RMA unit generates two notifications, one on the initiating
and one on the target node. On the initiating side, an RMA responder notification
notifies EXLND that the send operation has succeeded, which results in the finalizing
of the LNET message. On the target side, an RMA completer notification informs
EXLND of the successful data transmission and the LNET message can be finalized.
Figure 6.13 outlines the complete PUT sequence.

179

6 Efficient Lustre Networking Protocol Support

Rendezvous PUT Protocol

When the send function is called by LNetGet(), EXLND receives a message of type
GET from LNET. GET messages have no data attached, but encode the information
about the GET sink buffer. EXLND maps this buffer to an NLA, and the rendezvous
PUT protocol is used to transmit the data to the target node. This means that
when the target parses the incoming header of the GET message, EXLND’s receive
function receives a REPLY message, which provides the data source information for
the transmission. The source buffer is also mapped to an NLA and the receive
function triggers an RMA PUT operation to the initiating node.
Once the transmission has successfully completed, two RMA notifications are

written. On the initiating side, a completer notification informs EXLND that the
data has been received. On the target node, a requester notification informs EXLND
that the PUT operation has been performed. On both sides, the notification is used
to find the corresponding LNET message. The NLAs are de-registered and the LNET
messages can be finalized.

6.5.2 Message Matching and Descriptor Queues

Upon the completion of a bulk data transmission, LNET has to be notified about
the completed transfer by finalizing the corresponding LNET message through
lnet_finalize(). As previously described, EXLND utilizes Extoll’s RMA noti-
fication mechanism. These notifications can be associated with different EXLND
events on the initiating and target nodes, and used to implement a message matching
mechanism. In accordance with Figures 6.13 and 6.14, the following EXLND events
can be distinguished:

LNetPut Done – Initiator: The payload of the PUT message has been sent and the
initiating node can de-register the associated software NLA. Since the data
transfer has been performed through an RMA GET from the target node, a
responder notification is generated on the initiating node.

LNetPut Done – Target: The payload of the PUT message has been received and
the target node can de-register the associated software NLA. Since the data
transfer has been performed through an RMA GET from the target node, a
completer notification is generated.

LNetGet Done – Initiator: The data has been received from the target node and
the associated software NLA can be de-registered. Since the data transfer

180

6.5 Support for LNET Protocol Semantics

U
n

m
at

ch
ed

 L
N

ET
 m

e
ss

a
ge

 d
e

sc
ri

p
to

rs

P
o

o
l o

f u
n

u
se

d
 LN

E
T

 m
e

ssa
ge

 d
e

scrip
to

rs

...
...

Sending LNET header via VELO or starting a RMA transfer

Upon reception of matching RMA Notification

...
...

Figure 6.15: The movement of list elements representing unfinished transfers.

has been performed through an RMA PUT from the target node, a completer
notification is generated on the initiating node of the GET message.

LNetGet Done – Target: The data has been written to the initiating node of the
GET message and the target node can de-register the associated software NLA.
Since the data transfer has been performed through an RMA PUT from the
target node, a requester notification is generated.

To match incoming RMA notifications with pending LNET messages, EXLND
defines three descriptor queues, with each of them corresponding to one of the three
notifications types. Each peer (clients and servers) implements these queues.
Recall from section 5.4.2.1 that RMA notifications contain a field with the start

address (physical or NLA) of the last read or write performed by the RMA unit.
Extoll divides RMA transfers larger than the RMA’s MTU in multiple frames of the
size of the RMA MTU. This fragmentation is performed by the requester, which
means that the requester knows the original start address of a read or write operation.
The other two RMA subunits, responder and completer, only know where the read or
write of the last frame has started, which means that the corresponding notification
contains the start address of the last frame. This address needs to be calculated on
each node perform initiating the bulk data transmission. Depending on the expected
EXLND event, this either happens in EXLND’s send or receive function.

Since EXLND knows all possible event types and their expected RMA notifications,
EXLND adds the pending LNET message to the corresponding descriptor queue and
connects it with the address that is expected to be seen in the RMA notification.

181

6 Efficient Lustre Networking Protocol Support

1 # add to /etc/ modprobe .d/ lustre .conf
2 options lnet networks ="ex(ex0)"

Listing 6.4: Lustre configuration for EXLND.

For the address calculation, the equation presented in section 5.4.2.2 can be reused.
Afterwards, EXLND initiates the data transfer by sending the header of the LNET
message through VELO or performing an RMA operation. When EXLND receives a
new RMA notification, the corresponding descriptor queue is searched. When the
address can be matched, EXLND has found the corresponding LNET message and
the message is finalized it through lnet_finalize().

The descriptor queues are realized as double linked lists. At module startup time,
EXLND initializes a pool of empty message descriptors. When a new transfer is
started, EXLND’s send and receive functions search for an empty entry, initialize its
values, and put it into the correct descriptor queue, depending on the expected RMA
notification. After an LNET message has been freed, the corresponding list item is
moved back into the pool of free descriptors. This is done to avoid allocating and
freeing memory for every send and receive, which would be rather time-consuming
compared. Figure 6.15 illustrates the movement of list elements.

6.6 EXLND: Extoll Lustre Network Driver
Within the scope of this work, a prototype implementation of the Extoll Lustre
Network Driver (EXLND) is realized in form of the kernel module kexlnd.ko, which
utilizes Extoll’s kernel API to interface the Extoll NIC. The prototype is compatible
with Lustre versions 2.8 and 2.10, which are currently the most widely deployed
Lustre releases. EXLND implements the mandatory function pointers, as described
in section 6.2.1, and register the LND type EXLND in LNET’s subsystem.
The current version of EXLND implements the immediate send protocol for

messages of ACK. For all other message transmission, the module relies on the
rendezvous PUT and rendezvous GET protocols, as presented in section 6.5.1.2. To
support efficient bulk data transfers through scatter/gather DMA, EXLND utilizes
the address translation mechanism introduced in section 6.4.3 and maps the payload
buffers to software NLAs. The default LNET credit configuration is as follows: TX
credits = 256, peer credits = 8, and peer router credits = 0. This is the recommended
standard configuration for LNET credits. To configure EXLND as an LNET interface,
a Lustre configuration file needs to be created in the normal modprobe configuration

182

6.7 Preliminary Performance Results

options directory (typically /etc/modprobe.d/), which contains an entry for EXLND.
Listing 6.4 displays the line that configures EXLND as an LNET interface with the
name ex. The current state of the prototype is able to configure and mount a small
scale Lustre file system.

6.7 Preliminary Performance Results
This section provides a preliminary performance evaluation of the prototype imple-
mentation of EXLND. The LNET self-test facility is leveraged to simulate Lustre
metadata and I/O traffic over EXLND.

6.7.1 System Setup and Methodology

The Haswell and Skylake test systems presented in section 5.6.2 are utilized for an
initial evaluation of EXLND. The systems run CentOS Linux version 7.3.1611 with
kernel release 3.10.0-514.26.2.el7. In order to compile EXLND, a self-compiled Lustre
version 2.10.1 is installed on the system nodes.

Testing a self-written LND is not an easy task. The main reason for this is that
an LND lives inside of LNET. The functionality of an LND and LNET are tightly
coupled; almost every function implemented by an LND interfaces with the upper
LNET layer. Therefore, it cannot be simply loaded and tested like a normal kernel
module. For evaluation purposes, LNET provides its own testing facility called
LNET self-test [168]. The LNET self-test is implemented as a kernel module, which
runs on top of LNET and the Lustre network drivers. Its main purposes are to (1)
test the connection ability, (2) run regression tests, and (3) test the performance for
a given Lustre network. The self-test provides the following two benchmarks, which
measure the bandwidth and the count of remote procedure calls (RPCs) per second
for a configured LNET interface:

ping The ping benchmark generates short request messages, which in turn generate
short response messages. It can be used to measure the latency and overhead
for small messages, but also to simulate the Lustre metadata traffic.

brw The brw (bulk read write) benchmark can be used to transfer data from the
target to the source (read benchmark) or from the source to the target (write
benchmark) in bulk data transfers. The payload size can be configured through
the size parameter. This test is used to measure the network bandwidth for a
given LND and simulates Lustre I/O traffic of a mounted file system.

183

6 Efficient Lustre Networking Protocol Support

(a) Thread scaling, I/O size = 1 MB. (b) I/O scaling, #threads = 8.

Figure 6.16: LNET self-test: bulk read test simulating Lustre I/O traffic.

In general, LNET is not interested in the normal network latency. Recall that
LNET was derived from the Portals API, and therefore, relies on the abstraction of
remote procedure calls for communication purposes. Instead of sending a message,
LNET calls a procedure on another node and the node responds in the same way.
Therefore, LNET measures how many RPCs can be performed per second. However,
the equivalent to an RPC is the count of ping packets that can be sent per second.
Consequently, the inverse of the RPCs per second count can be interpreted as the
half round trip latency through the LNET stack with latency = 1

RPCs .
LNET provides an LND for TCP/IP networks. Therefore, it can be used out-of-the

box for Ethernet networks, i.e., EXN can be used to configure a Lustre network. To
facilitate a baseline, all benchmarks were performed over Gigabit Ethernet (GigE),
10 Gigabit Ethernet (10GigE), EXN, and EXLND.

6.7.2 LNET Self-Test Results

Figure 6.16 presents the results of the brw read benchmark. This benchmark simulates
a client server communication where the client wants to read data from the server,
and therefore, sends a read request. Internally, this means that the client sends a PUT
message to the server, which in turn initiates the bulk data transfer from the server
in form of a PUT message. Considering the design of the rendezvous GET protocol,
which is used to transmit messages of type PUT, and the related communication
overhead, EXLND performs surprisingly well, since EXLND has to perform two
RMA GET operations to perform the communication sequence.

In Figure 6.16a, the payload size is fixed to 1 MB and the number of concurrently
reading threads is scaled up to 256 threads. Starting with eight concurrent threads,
the network is saturated and provides 6.8 GB/s of read performance. Figure 6.16b,

184

6.7 Preliminary Performance Results

(a) Thread scaling, I/O size = 1 MB. (b) I/O scaling, #threads = 8.

Figure 6.17: LNET self-test: bulk write test simulating Lustre I/O traffic.

Figure 6.18: LNET self-test: ping test simulating Lustre metadata traffic.

on the other hand, presents the I/O scaling results. The number of concurrently
reading threads is fixed to 16 and the size of the payload is scaled up to 1 MB. The
limit of 1 MB is inflicted by the LNET MTU. Starting with a payload size of 192
KB, the network is saturated with a peak bandwidth of 6.8 GB/s.

Figure 6.17 shows the results of the brw write benchmark. In contrast to the read
benchmark, the write benchmark simulates a client server communication where the
client wants to write data to the server, and therefore, sends a write request in form
of a PUT message to the server. In turn, the server initiates the bulk read transfer by
sending a GET message to the client. In comparison to the read sequence, the write
sequence comprises of an RMA GET and an RMA PUT operation, which introduces
less overhead then two RMA GET operations. Figures 6.17a and 6.17b present the
thread scaling and I/O scaling results for the write benchmark respectively. It can
be seen that the peak bandwidth of about 7.7 GB/s is reached for eight concurrent
threads starting with a payload size of 128 KB.
Figure 6.18 displays the results of the ping benchmark. As mentioned before,

the ping benchmark measures how the number of RPCs that can be performed per
second. While the payload size is fixed, the number of concurrent threads can be

185

6 Efficient Lustre Networking Protocol Support

configured for the benchmark. For EXLND, the maximum bandwidth is reached
starting with four concurrent threads. An interesting observation can be made for
one thread. As mentioned before, the the inverse of the RPCs per second can be used
to calculate the half round trip latency for LNET. EXN achieves 245000 RPCs/s
for one thread, which results in a latency of approximately 4.1 us. EXLND, on the
other hand, performs 33100 RPC/s for one thread. This translates to a latency of
about 1.5 us. Considering the microbenchmark results presented in section 5.6.3,
these results align well with previously measured network latencies.
In addition to the benchmark results presented in this section, the same set of

benchmarks has been performed on the Skylake system. As previously presented
for EXN, the same performance degradation effects have been measured. Like EXN,
EXLND riles on the spinlock mechanism of the Linux operating system, which
introduces the latency of the PAUSE instruction every time a descriptor is en- or
dequeued in one of the descriptor queues.

6.8 EXLND Summary
The contributions of this chapter were twofold. The first part focused on the analysis
and summary of the Lustre networking protocol, which is an essential prerequisite
to develop a custom LND. Even though Lustre is one of the most popular parallel
file systems, its developer community is very small and most features are barely
documented, especially from a developer’s point of view. Therefore, providing a
comprehensive overview is a valuable contribution to the entire HPC community.
The second contribution comprised the design and implementation of EXLND,

which leverages the capabilities of Extoll to provide efficient storage connectivity
in large-scale HPC deployments. One of the key characteristics of EXLND is the
minimized communication overhead needed to transfer messages between networking
peers. The innovative notification mechanism of the RMA unit can be used to reduce
unnecessary RDMA sink or source availability advertisements, but also eliminates
the need to send a completion message after successfully reading or writing data.
In addition, the support of scatter/gather DMA operations has been added to the
Extoll software stack, which enables efficient bulk data transmissions. This feature
is needed to support the LNET message payloads of up to 1 MB in size.

The evaluation of the EXLND prototype implementation has demonstrated good
performance characteristics. It can be seen that read requests initiated by a client
perform slightly worse than write requests to a server. This is due to the protocol

186

6.8 EXLND Summary

overhead introduced by the nature of LNET. Another metric evaluated for EXLND is
the RPCs per second count. The results indicate that a single thread has a half-round
trip latency of 1.5 us. Given that this benchmark measures the latency including the
complete LNET stack, this result is rather promising.

Parallel file systems provide great performance and scalability. However, projecting
these to the user applications can be a challenge, mainly due to load imbalances
and resource contentions of network and storage system components. The following
chapter leaves the world of the Extoll interconnect and presents two user space tools,
which attempt to resolve I/O contention in busy HPC environments, where multiple,
concurrent applications compete for resources. The target system is the Titan
supercomputer, which utilizes the Cray Gemini interconnect in a 3D torus topology.
Therefore, it is expected that the presented results can be directly transfered to a
large-scale system utilizing the Extoll technology, which also employs a 3D torus
topology.

187

C
h

a
p

t
e

r

7
Resource Contention Mitigation at Scale

While the previous chapters have evolved around the Extoll technology and focused
on the improvement of network communication, this chapter discusses transparent
load balancing and resource contention mitigation techniques from the client side.
This research project was made possible through a collaboration between the Oak
Ridge National Laboratory and the Computer Architecture Group.
Proportional to the scale increases in HPC systems, many scientific applications

are becoming increasingly data-intensive, and parallel I/O has become one of the
dominant factors impacting the large-scale application performance. The lack of
a global workload coordination coupled with the shared nature of storage systems
cause load imbalance and resource contention over the end-to-end I/O paths, which
results in severe performance degradation. Efficient use of extreme-scale computing
resources often requires extensive application tuning and code modification. This
results in a steep learning curve for scientific application developers to understand the
complex I/O subsystem, but also to address the I/O load imbalance and contention
issues. Therefore, it is a major hurdle for applications to adopt and take advantage
of any underlying improvements.
To ease this transition in the most transparent way, this chapter introduces two

easy-to-use load balancing frameworks: Aequilibro and TAPP-IO. Both solutions
rely on the topology-aware Balanced Placement I/O (BPIO) algorithm [177], which
transparently balances data across all available storage system components. Aequili-
bro translates the benefits of BPIO into the platform-neutral middleware ADIOS.
With this unification, ADIOS-enabled applications can effortlessly take advantage of
BPIO’s performance benefits without any further modifications. TAPP-IO (Trans-

189

7 Resource Contention Mitigation at Scale

Cray XK-7 3D Torus

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

Lustre Router Nodes
run parallel file system

client software and
forward I/O operations

from HPC clients.

440 router nodes
configured as LNET

routers on Titan

SION II
Infiniband Network

1600 ports, 56 Gbit/sec
Infiniband switch complex

Storage Servers (OSSs)
Lustre parallel file system

288 Dell servers with
64 GB of RAM each

Enterprise Storage (OSTs)
controllers and large racks

of disks are connected
via Infiniband.

36 DataDirect SFA12K-40
controller with

NL-SAS drivers and
8 Infiniband FDR

connections per pair

Titan Compute
Cluster

Figure 7.1: Infrastructure and I/O path between Titan and Spider II [177].

parent Automatic Placement of Parallel I/O) is a dynamic, shared load balancing
framework, which transparently intercepts file creation calls during runtime to balance
the workload over all available storage targets. The usage of TAPP-IO requires no
application source code modifications and is independent from any I/O middleware.

The reminder of the chapter is organized as follows. The first part introduces the
target and evaluation platform Titan, and provides some background information
about observing load imbalance at large scales and performance tuning methodologies
for center-wide parallel file systems. The main part introduces the I/O middleware
Aequilibro and the high-level I/O library TAPP-IO. The last section concludes the
chapter by presenting benchmark and evaluation results. This chapter summarizes
and extends various contributions to international conferences [17, 19, 18].

7.1 Spider II – A Leadership-Class File System
This section presents an overview of the Titan supercomputer [178, 179] and Spider
II [180] in order to facilitate an understanding of the target and evaluation platform.
Titan is a hybrid-architecture Cray XK7 system with 18,688 compute nodes and
710 TB of total system memory. Each node contains both 16-core AMD Opteron
CPUs and NVIDIA K20X Kepler GPUs. The high capability compute machine is
backed by the center-wide parallel file system Spider II, which is based on the Lustre

190

7.2 The Need for Balanced Resource Usage

technology. Spider II is one of fastest and largest POSIX-complaint parallel file
systems and is designed to serve write-heavy I/O workloads. Figure 7.1 shows the
topology diagram, and in particular, the multi-layered end-to-end I/O path.

On the back-end storage side, Spider II has 20,160 Near-Line SAS disks organized
in RAID 6 arrays. Each of these RAID arrays acts as an OST. The OSTs are
connected to the OSSs over direct InfiniBand (IB) FDR links. At the time of this
writing, a patched version of Lustre 2.8 was running on the I/O servers. The storage
system is split into two distinct, non-overlapping sections, atlas1 and atlas2, and
each is formatted as a separate name space to increase reliability, availability, and
overall metadata performance. Each file system has 144 OSSs and 1,008 OSTs. Each
OSS is connected to a 36-port IB FDR top-of-the-rack (TOR) switch and two DDN
controllers. Each TOR switch (36 in total) is connected with a total of 8 OSSs. Each
switch also connects to two 108-port aggregation switches. The aggregation switches
provide connectivity for the Lustre metadata and management servers.
On the front-end at the compute side, there are two different types of nodes on

Titan: compute and Lustre I/O router, also known as LNET router, nodes. Both
types of nodes are part of the Gemini network [129] connected in a 3D torus topology.
Each node has a unique network ID (NID) for addressing purposes. 440 XK7 service
nodes are configured as Lustre LNET router nodes. Of these, 432 are used for file
I/O and 8 are used for metadata operations. Titan’s I/O routers are connected to
the Spider II TOR switches via InfiniBand FDR links. Note that the Spider II TOR
switches enable these I/O routers to reach to the back-end storage system (OSSs
and OSTs). By default, Lustre uses a round-robin algorithm to pick routers. The
first alive router on top of the list will be picked to route the message and then will
be placed at the end of the list for the next round to provide a load balance among
multiple routers. Each Spider II TOR switch is assigned an LNET route.

7.2 The Need for Balanced Resource Usage
To cope with system failures, most scientific applications periodically write out
memory states. These bursty writes, i.e., checkpointing data, can cause resource con-
tention leading to hotspots which are detrimental to parallel application performance.
Hotspots lead to variations in completion times across processes, and therefore, to
a blocking behavior and wasted computational capacity. The rule of thumb for
checkpointing is that it should not take more than 10% of the application run time
per hour. As the HPC systems grow in scale, the cumulative memory size also grows,

191

7 Resource Contention Mitigation at Scale

0
1
2
3
4
5
6
7
8
9
10
11
12

0 250 500 750 1000

OST index

F
r
e
q
u
e
n
c
y

(a) Default OST Placement

0

10

20

30

40

0 50 100 150

OSS index

F
r
e
q
u
e
n
c
y

(b) Default OSS Placement

200
210
220
230
240
250
260
270
280
290
300

200 202 204 206 208 210 212 214 216 218

LNET index

F
r
e
q
u
e
n
c
y

(c) Default LNET Placement

0

1

2

3

4

5

0 250 500 750 1000

OST index

F
r
e
q
u
e
n
c
y

(d) Balanced OST Placement

20
21
22
23
24
25
26
27
28
29
30

0 50 100 150

OSS index

F
r
e
q
u
e
n
c
y

(e) Balanced OSS Placement

220
221
222
223
224
225
226
227
228
229
230

200 205 210 215

LNET index

F
r
e
q
u
e
n
c
y

(f) Balanced LNET Placement

FIG. 2: COMPARISON OF RESOURCE USAGE DISTRIBUTION: DEFAULT VS. BALANCED

Another congestion control mechanism was presented in [15].
The proposed method was again based on throttling resources
and specifically designed for HPC clusters with InfiniBand
networks. The design concept was to limit and load-control
the multipath expansion in order to maintain low and bounded
network latency for I/O traffic. A Step-Back-on-Blocking
(SBB) flow-control mechanism that primarily addresses the
allocation effectiveness in high-radix interconnection networks
was proposed in [16]. This method combined the advantages
of the wormhole and cut-through routing algorithms for torus
networks, while adding a means for adaptive allocation of the
communication resources.

We have demonstrated [17] that such congestion and load
imbalance can still occur at scale, and have a great negative
impact on I/O performance on systems such as Cray’s propri-
etary Gemini interconnect [11], which has adopted adaptive
routing techniques for mitigating congestions. By and large,
despite a large body of existing research works, it remains an
active topic for further investigation.

The second research thread takes a file and storage-system
centric view to tackle such problem. In [18], it was proposed
to modify the PVFS file system [19] to achieve better I/O
load balancing. In [20], authors described a load imbalance
problem for cloud data centers. Their algorithm was designed
to adjust the two end points on the I/O path, computational
virtual machines and virtual disks, to balance the overall load
in a data center. Other approaches have been proposed such
as, replicating data or moving the I/O intensive compute jobs
to eliminate hot spots [21].

Our proposed approach differs from previous work in that
it combines the optimization done at the interconnect network
(fine grain routing with topology-awareness) and balanced data
placement tracked and set at the application layer to tackle the
I/O load imbalance problem. It is also more applicable in a
typical HPC computing environment. We discuss the detailed

design of proposed placement strategy in the next section.

III. BALANCED PLACEMENT STRATEGY

In this section, we describe our placement algorithm that
aims to balance per job I/O resource allocation. In the most
general case, the problem can be formulated as:

C = w1R1 + w2R2 + w3R3 . . .+ wnRn,

subject to w1 + w2 + w3 + . . . wn = 1, where C is the cost
of an I/O path being evaluated, Ri is the resource component
along the I/O path, and wi is the weight factor assigned to
the resources. If the goal is to minimize the I/O cost, then a
weight factor reflects the likelihood of the particular type of
resource to be a point of contention. Resources in our case can
be logical I/O routes (i.e., LNET), or actual file system and
networking devices (i.e., Lustre I/O routers, OSSes, OSTs, and
SION InfiniBand TOR leaf switches). We aim at distributing
the I/O traffic evenly across resource components to avoid
points of contention. However, such a scheme needs to take
into consideration the topology and resource dependencies.

A. Need for Balanced Resource Usage

To understand the need for balanced placement and justify
why the proposed algorithm works, we conduct the following
illustrative experiment.

We launch 4096 processes with each process doing a single
file I/O operation against half of the Spider II file system. The
traces of those files are analyzed to examine the utilization
distribution of different components.

Figure 2 (a), (b) and (c) shows the resource usage distri-
bution for OSTs, OSSes, and LNETs, respectively. Recall that
there are a total of 1008 OSTs, 144 OSSes, and 18 LNETS
in one half of the Spider II file system. We observe that
there exists a significant variation in usage across components

(a) OST utilization.

0
1
2
3
4
5
6
7
8
9
10
11
12

0 250 500 750 1000

OST index

F
r
e
q
u
e
n
c
y

(a) Default OST Placement

0

10

20

30

40

0 50 100 150

OSS index

F
r
e
q
u
e
n
c
y

(b) Default OSS Placement

200
210
220
230
240
250
260
270
280
290
300

200 202 204 206 208 210 212 214 216 218

LNET index

F
r
e
q
u
e
n
c
y

(c) Default LNET Placement

0

1

2

3

4

5

0 250 500 750 1000

OST index

F
r
e
q
u
e
n
c
y

(d) Balanced OST Placement

20
21
22
23
24
25
26
27
28
29
30

0 50 100 150

OSS index

F
r
e
q
u
e
n
c
y

(e) Balanced OSS Placement

220
221
222
223
224
225
226
227
228
229
230

200 205 210 215

LNET index

F
r
e
q
u
e
n
c
y

(f) Balanced LNET Placement

FIG. 2: COMPARISON OF RESOURCE USAGE DISTRIBUTION: DEFAULT VS. BALANCED

Another congestion control mechanism was presented in [15].
The proposed method was again based on throttling resources
and specifically designed for HPC clusters with InfiniBand
networks. The design concept was to limit and load-control
the multipath expansion in order to maintain low and bounded
network latency for I/O traffic. A Step-Back-on-Blocking
(SBB) flow-control mechanism that primarily addresses the
allocation effectiveness in high-radix interconnection networks
was proposed in [16]. This method combined the advantages
of the wormhole and cut-through routing algorithms for torus
networks, while adding a means for adaptive allocation of the
communication resources.

We have demonstrated [17] that such congestion and load
imbalance can still occur at scale, and have a great negative
impact on I/O performance on systems such as Cray’s propri-
etary Gemini interconnect [11], which has adopted adaptive
routing techniques for mitigating congestions. By and large,
despite a large body of existing research works, it remains an
active topic for further investigation.

The second research thread takes a file and storage-system
centric view to tackle such problem. In [18], it was proposed
to modify the PVFS file system [19] to achieve better I/O
load balancing. In [20], authors described a load imbalance
problem for cloud data centers. Their algorithm was designed
to adjust the two end points on the I/O path, computational
virtual machines and virtual disks, to balance the overall load
in a data center. Other approaches have been proposed such
as, replicating data or moving the I/O intensive compute jobs
to eliminate hot spots [21].

Our proposed approach differs from previous work in that
it combines the optimization done at the interconnect network
(fine grain routing with topology-awareness) and balanced data
placement tracked and set at the application layer to tackle the
I/O load imbalance problem. It is also more applicable in a
typical HPC computing environment. We discuss the detailed

design of proposed placement strategy in the next section.

III. BALANCED PLACEMENT STRATEGY

In this section, we describe our placement algorithm that
aims to balance per job I/O resource allocation. In the most
general case, the problem can be formulated as:

C = w1R1 + w2R2 + w3R3 . . .+ wnRn,

subject to w1 + w2 + w3 + . . . wn = 1, where C is the cost
of an I/O path being evaluated, Ri is the resource component
along the I/O path, and wi is the weight factor assigned to
the resources. If the goal is to minimize the I/O cost, then a
weight factor reflects the likelihood of the particular type of
resource to be a point of contention. Resources in our case can
be logical I/O routes (i.e., LNET), or actual file system and
networking devices (i.e., Lustre I/O routers, OSSes, OSTs, and
SION InfiniBand TOR leaf switches). We aim at distributing
the I/O traffic evenly across resource components to avoid
points of contention. However, such a scheme needs to take
into consideration the topology and resource dependencies.

A. Need for Balanced Resource Usage

To understand the need for balanced placement and justify
why the proposed algorithm works, we conduct the following
illustrative experiment.

We launch 4096 processes with each process doing a single
file I/O operation against half of the Spider II file system. The
traces of those files are analyzed to examine the utilization
distribution of different components.

Figure 2 (a), (b) and (c) shows the resource usage distri-
bution for OSTs, OSSes, and LNETs, respectively. Recall that
there are a total of 1008 OSTs, 144 OSSes, and 18 LNETS
in one half of the Spider II file system. We observe that
there exists a significant variation in usage across components

(b) OSS utilization.

0
1
2
3
4
5
6
7
8
9
10
11
12

0 250 500 750 1000

OST index

F
r
e
q
u
e
n
c
y

(a) Default OST Placement

0

10

20

30

40

0 50 100 150

OSS index

F
r
e
q
u
e
n
c
y

(b) Default OSS Placement

200
210
220
230
240
250
260
270
280
290
300

200 202 204 206 208 210 212 214 216 218

LNET index

F
r
e
q
u
e
n
c
y

(c) Default LNET Placement

0

1

2

3

4

5

0 250 500 750 1000

OST index

F
r
e
q
u
e
n
c
y

(d) Balanced OST Placement

20
21
22
23
24
25
26
27
28
29
30

0 50 100 150

OSS index

F
r
e
q
u
e
n
c
y

(e) Balanced OSS Placement

220
221
222
223
224
225
226
227
228
229
230

200 205 210 215

LNET index

F
r
e
q
u
e
n
c
y

(f) Balanced LNET Placement

FIG. 2: COMPARISON OF RESOURCE USAGE DISTRIBUTION: DEFAULT VS. BALANCED

Another congestion control mechanism was presented in [15].
The proposed method was again based on throttling resources
and specifically designed for HPC clusters with InfiniBand
networks. The design concept was to limit and load-control
the multipath expansion in order to maintain low and bounded
network latency for I/O traffic. A Step-Back-on-Blocking
(SBB) flow-control mechanism that primarily addresses the
allocation effectiveness in high-radix interconnection networks
was proposed in [16]. This method combined the advantages
of the wormhole and cut-through routing algorithms for torus
networks, while adding a means for adaptive allocation of the
communication resources.

We have demonstrated [17] that such congestion and load
imbalance can still occur at scale, and have a great negative
impact on I/O performance on systems such as Cray’s propri-
etary Gemini interconnect [11], which has adopted adaptive
routing techniques for mitigating congestions. By and large,
despite a large body of existing research works, it remains an
active topic for further investigation.

The second research thread takes a file and storage-system
centric view to tackle such problem. In [18], it was proposed
to modify the PVFS file system [19] to achieve better I/O
load balancing. In [20], authors described a load imbalance
problem for cloud data centers. Their algorithm was designed
to adjust the two end points on the I/O path, computational
virtual machines and virtual disks, to balance the overall load
in a data center. Other approaches have been proposed such
as, replicating data or moving the I/O intensive compute jobs
to eliminate hot spots [21].

Our proposed approach differs from previous work in that
it combines the optimization done at the interconnect network
(fine grain routing with topology-awareness) and balanced data
placement tracked and set at the application layer to tackle the
I/O load imbalance problem. It is also more applicable in a
typical HPC computing environment. We discuss the detailed

design of proposed placement strategy in the next section.

III. BALANCED PLACEMENT STRATEGY

In this section, we describe our placement algorithm that
aims to balance per job I/O resource allocation. In the most
general case, the problem can be formulated as:

C = w1R1 + w2R2 + w3R3 . . .+ wnRn,

subject to w1 + w2 + w3 + . . . wn = 1, where C is the cost
of an I/O path being evaluated, Ri is the resource component
along the I/O path, and wi is the weight factor assigned to
the resources. If the goal is to minimize the I/O cost, then a
weight factor reflects the likelihood of the particular type of
resource to be a point of contention. Resources in our case can
be logical I/O routes (i.e., LNET), or actual file system and
networking devices (i.e., Lustre I/O routers, OSSes, OSTs, and
SION InfiniBand TOR leaf switches). We aim at distributing
the I/O traffic evenly across resource components to avoid
points of contention. However, such a scheme needs to take
into consideration the topology and resource dependencies.

A. Need for Balanced Resource Usage

To understand the need for balanced placement and justify
why the proposed algorithm works, we conduct the following
illustrative experiment.

We launch 4096 processes with each process doing a single
file I/O operation against half of the Spider II file system. The
traces of those files are analyzed to examine the utilization
distribution of different components.

Figure 2 (a), (b) and (c) shows the resource usage distri-
bution for OSTs, OSSes, and LNETs, respectively. Recall that
there are a total of 1008 OSTs, 144 OSSes, and 18 LNETS
in one half of the Spider II file system. We observe that
there exists a significant variation in usage across components

(c) LNET utilization.

Figure 7.2: Default resource usage distribution on Spider II [177].

resulting in larger amounts of data to be written out during each checkpoint window.
This pushes the limits and capabilities of parallel file and storage systems; the growth
trajectories for these two are not always the same. Most scientific HPC applications
make no difference between defensive I/O and scientific output. In fact, they do I/O
operations at regular pre-defined intervals and expect a minimal amount of time to
be spent in I/O subroutines.

As can be seen in section 7.1, parallel I/O systems are inherently complex, partic-
ularly in the context of end-to-end I/O paths. For example at the starting point of a
typical I/O path, an application can use a high-level I/O library, such as HDF5 [50],
for various reasons including portability, improved data management, and enhanced
metadata capabilities. HDF5 is implemented on top of MPI-IO [181] which, in
turn, performs POSIX I/O calls against a parallel file system such as Lustre [166].
Furthermore before an I/O request reaches its eventual storage target, it may have
to traverse through the compute fabric (e.g., a 3D torus or Dragonfly, or a plain
fat-tree), and a large-scale storage network fabric (e.g., InfiniBand). Finally, the
request reaches the backend storage that provides a block interface, though the par-
allel file system sits on top and across these backend storage devices. In large-scale
HPC deployments, file systems are often shared among applications concurrently
running on a single system and sometimes among applications running on multiple
systems (e.g., a center-wide file system). This often results in file system and network
contention. The observed I/O bandwidth at the application level is much lower than
the theoretical peak bandwidth of the underlying storage system.

Resource contention has a negative impact on the performance and scalability in a
large-scale file and storage system such as Spider II. A simple experiment [177] can be
used to illustrate the need for balanced resource utilization. An application with 4096
processes is launched on Titan with each of the processes creating and performing a
single write operation to an individual file on the parallel file system. Afterwards,

192

7.3 Related Work

the striping pattern and file traces for every created file are evaluated, which can be
used to determine the utilized OSTs, OSSs and LNET routers. Figure 7.2 presents
the default Lustre resource usage distribution for OSTs, OSSs, and LNET routers,
respectively. It can be observed that there is a significant variation in usage across
different Lustre components, even though Lustre employs a round-robin resource
allocation scheme. This variation and the resulting contention is due to the lack of
a system-wide I/O load organizer on modern distributed large-scale HPC systems.
Parallel file and storage systems supporting these large-scale systems only have a
partial view of the overall I/O activity and can only try to optimize the resource
usage at one end of the I/O path. Also, Xie et al. [182] observed that most I/O load
imbalances are the result of improper resource allocation within a given scientific
application, which makes this work particularly relevant.

7.3 Related Work
While moving towards the exascale era, resource contention and performance variabil-
ity in HPC systems remain a major challenge. I/O workload imbalance paired with
the increasing gap between compute capabilities of HPC systems and the underlying
storage system are known issues in the HPC domain [183, 184].
Several research studies have addressed these problems to provide better I/O

techniques. For example, Gainaru et al. [185] introduce a global scheduler that
minimizes congestion caused by I/O interference by considering the application’s
past behaviors when scheduling I/O requests. Herbein et al. [186] present a job
scheduling technique that reduces contention by integrating I/O-awareness into
scheduling policies. As shown by Yildiz et al. [184], scheduler-level solutions not
always lead to improved performance even though it helps to control the level of
interferences.

Some research efforts consider network contention as the major contributor to I/O
load imbalance. Luo et al. [187] introduce a preemptive, core-stateless optimization
approach based on open loop end-point throttling. Jiang et al. [188] introduce new
endpoint congestion-control protocols to address the differentiation between network
and endpoint congestion more properly. Li et al. [189] present ASCAR, a storage
traffic management system for improving the bandwidth utilization and fairness of
resource allocation. But, these techniques cannot be adopted for scientific HPC
systems like Titan. There are too many applications and the I/O patterns change
drastically between different job runs.

193

7 Resource Contention Mitigation at Scale

Another area takes a file and storage-system centric view. Zhu et al. [190] present
CEFT-PVFS, a modification of the PVFS file system [191], to achieve a better
workload balance. Singh et al. [192] address the problem of load imbalance in the
setting of cloud data centers. Congestion and load imbalance can still occur at
large scale as demonstrated by Dillow et al. [193]. Luu et al. [194] analyze the
problem of low I/O performance on leading HPC systems. They use Darshan [195]
logs of over a million jobs representing a combined total of six years of I/O. Even
though the platforms’ file systems have a peak throughput of hundreds of GB/s, only
few applications experience high I/O throughput. Lofstead et al. [196] introduce
Adaptive IO, a set of dynamic and proactive methods for managing I/O interference.
The methods are bundled in a new ADIOS transport method that dynamically shifts
work from heavily used areas of the storage system to areas that are more lightly
loaded. The design is limited on how quickly a coordinator can react to storage load
dynamics. Liu et al. [197] introduce an ADIOS transport method that attempts to
re-route I/O to less loaded storage areas while applying a throttling technique that
limits how much data can be re-routed during writing.

A third area of related work is introduced by commercial data centers where load
imbalance and Quality of Service (QoS) are also major concerns for multi-tenant
systems. Such methods and techniques are exemplified by Pulsar [198], Baraat [199],
and Corral [200]. Pulsar consists of a logically centralized controller with full visibility
of the data center topology and a rate enforcer inside the hypervisor at each compute
node. It offers tenants their own dedicated virtual data centers (VDC) to ensure
end-to-end throughput guarantees. Baraat is a decentralized, task-aware scheduling
system. It schedules tasks in a FIFO order, and avoids head-of-line blocking by
dynamically changing the level of multiplexing in the network. Based on data from
past data center studies, the application behavior is characterized in order to apply
the task-aware scheduling heuristic. Corral is based on the assumption that a large
fraction of production jobs are recurring with predictable characteristics. It uses
characteristics of future workloads to determine an offline schedule which coordinates
the placement of data and tasks.

In the scientific HPC context though, the application requirement and expectation,
the highly specialized workload, and the architectural design and integration workflow
present some unique challenges on leveraging techniques developed in cloud computing
and data center settings [201]. Many of the assumptions made for commercial
data center performance optimizations are not applicable to large-scale scientific
simulation systems. For example, scientific HPC systems do not have a global view

194

7.4 Observations and Best Practices for File I/O

on all available system resources and allocations. Also, storage and I/O systems have
been shifting from a machine-exclusive paradigm to a data-centric paradigm where
the mixed workload becomes a norm and much less predictable than before [202].
The scientific workloads itself differ from commercial workloads, e.g. search queries,
data analytics jobs, and social news-feeds. Commercial and scientific applications
have different requirements [201]. While commercial codes can be classified as
high-throughput computing, scientific workloads are categorized as latency-sensitive,
large-scale, and tightly coupled computations. They assume the presence of a high-
bandwidth, low-latency interconnect, a parallel distributed file system shared between
compute nodes, and a head node that can submit MPI jobs to all worker nodes.

7.4 Observations and Best Practices for File I/O
When working with parallel file systems such as Lustre, several different research
studies and papers have addressed the question of how to optimize the file striping
pattern. The following provides an overview of best practices and key observations.

(1) The stripe alignment [42, 203] of data can be critical. When using the file-per-
process access pattern with a large number of files/processes, it is best to set
the stripe count to one (i.e., no striping is used). For the single-shared-file
access pattern, the stripe count should equal the number of writing processes
(i.e., aggregators). This limits the OST contention and decreases the possibility
that multiple processes communicate with the same OST at the same time.

(2) Besides stripe alignment, the size and location of I/O operations should be
carefully managed. By mapping writing processes to specific servers, the
number of concurrent operations on a single server can be reduced. This is
especially helpful when file locks are handed out on a per-server basis (e.g.,
Lustre) to minimize the file locking contention [42, 204].

(3) The I/O request size (i.e., the transfer size) should be large [42], i.e., a full
stripe width or greater. In general, large files, large transfers, and a larger
number of I/O clients results in a larger aggregate bandwidth.

(4) When working with large data sets, it is recommended to use high-level I/O
libraries or middleware such as ADIOS, HDF5, or SIONlib [42, 205]. They
map application abstractions onto storage abstractions and provide portability,
but also organize accesses from many processes. Also, MPI, not the file system,
should be used for communication.

195

7 Resource Contention Mitigation at Scale

(5) Besides the file access organization from the application side, the compute
system itself can play a key factor in limiting the overall performance, e.g.,
network congestion can lead to a suboptimal I/O performance. By identifying
and eliminating hotspots, providing better routing algorithms and careful
placement of I/O routers, network congestion can be mitigated [206].

(6) Even though a data-centric file system may have a high theoretical peak
bandwidth, the real performance is what the users observe under file system
congestion. For advanced users, it is a good practice to expose low-level
infrastructure details in a programmable fashion, e.g., through a user library,
to achieve better performance [177, 206].

Recapitulating the observations and best practices, the rule of thumb for Lustre file
striping, in particular the stripe count, can be summarized as follows [207]:

• #files ≥ #OSTs → reduce the Lustre contention and OST file locking:

stripe count = 1 (7.1)

• #files < #OSTs → utilize as many OSTs as possible:

stripe count =
⌊

#OSTs
#files

⌋
(7.2)

• #files = 1 → maximize the parallel access performance:

stripe count =

#Aggregators, if #Aggregators ≤ #OSTs;

#OSTs, otherwise.
(7.3)

7.5 End-to-End Performance Tuning
Over the past decade, the Oak Ridge Leadership Computing Facility has presented
several different strategies to address system performance variability [206]. The
following sections present two performance tuning methodologies, which address
observations (5) and (6) introduced in section 7.4.

7.5.1 Fine-Grained Routing Methodology

The fine-grained routing (FGR) congestion avoidance methodology [193, 208] was first
introduced with the Jaguar supercomputing system [209]. The system utilized two

196

7.5 End-to-End Performance Tuning

BC DE BC DE BC DE

FG A HI FG A HI FG A HI

BC DE BC DE BC DE

FG A HI FG A HI FG A HI

BC DE BC DE BC DE

FG A HI FG A HI FG A HI

BC DE BC DE BC DE

FG A HI FG A HI FG A HI

X = 0 2 4 6 8 10 12 14 16 18 20 22 24

Y=0

4

8

12

Figure 7.3: Topological XY representation of Titan’s I/O routers [211].

different network technologies, the Cray SeaStar [210] and InfiniBand, which where
target to network congestion leading to severely limited aggregate I/O performance.
FGR employed two components to mitigate network contention. First, it paired
topologically close clients and I/O servers, which avoided link saturation by reducing
the load on common SeaStar torus links. Second, a new LNET router configuration
was introduced, which assigned weights to different LNET routes based on the client
to I/O server pairings. With the system upgrade from Jaguar to Titan, two key
system components changed. The file system was upgraded to Spider II and the Cray
SeaStar interconnect was exchanged with the Cray Gemini. The FGR method has
been updated to better match the new system and to provide additional optimizations.
For Titan and the Spider II file system, the fine-grained routing method comprises
of two steps [211]. The first step is to place LNET router nodes as equidistant from
each other as possible. This guarantees a fair I/O router distribution across the
machine. The second step is to pair clients with their optimal LNET routers, which
intends to minimize the end-to-end hop counts and congestion.
Recall that there are 440 LNET routers and 36 InfiniBand TOR switches. The

switches are named based on their location in Spider II (row (1-4) and index within
row (a-i)): atlas-ibsw{1-4}{a-i}. Out of the 440 LNET routers, 432 are used for file
I/O and 8 are used for metadata operations. The I/O routers are equally distributed
among the TOR switches with each switch providing 12 connections to Titan. The
router naming scheme is based on the connected switch and index: rtr{1-4}{a-i}-
{1-12}. Four I/O routers are grouped in a module which aligns well with the four
rows of Spider II. Each of the nodes within a given module connects to the same
“letter” (A-I) switch in each row. For the final router placement, the Spider II file
system is further subdivided into four sections each serving two rows of Titan. This

197

7 Resource Contention Mitigation at Scale

Algorithm 2 Fine-grained routing algorithm [211]
1: procedure Route Selection Algorithm (RG, C)
2:
3: Divide RG into 4 sub-groups: RG(1) . . .RG(4).
4: for all sub-groups RG(i) do . i ranges 1 to 4
5: C[y] ← y coordinate of C
6: RG

1 (i) ← first router module in the ith sub-group
7: RG

1 (i)[y] ← y coordinate of RG
i (S)

8: if (C[y] == RG
1 (i)[y]− 1)

9: or (C[y] == RG
1 (i)[y])

10: or (C[y] == RG
1 (i)[y] + 1)

11: or (C[y] == RG
1 (i)[y] + 2) then

12: break with sub-group i selected
13: end if
14: end for
15:
16: i ← index of selected sub-group
17: r1, r2, r3 ← first, second, and third router module of selected sub-group i
18: dmin ← ∞
19: Indexprimary ← ∞
20:
21: for j in 1, . . . , 3 do
22: dcurrent ← dist(C[x], rj[x]) . distance along X dimension
23: if dcurrent < dmin then
24: Indexprimary ← j
25: dmin ← dcurrent

26: end if
27: end for
28: primary router module ← RG

Indexprimary
(i)

29: backup router modules ← two other modules in the ith sub-group
30:
31: return <primary and backup router modules>
32:
33: end procedure

is necessary to limit the hops in Y-direction due to Gemini’s limited bandwidth in
this direction. For a given router group, e.g., rtr{1-4}{a}-{1-12}, 12 subgroups are
assigned to the sections with three of each subgroup per section. The positions for
router A are set manually while the subsequent routers are placed approximately 1

3

around the X- and Z-dimensions. Figure 7.3 displays the final I/O router placement
in Titan. Each box in the figure represents a cabinet, where X and Y denote the
dimensions in Titan’s 3D torus topology. Colored boxes represent cabinets containing

198

7.5 End-to-End Performance Tuning

at least one I/O module [206]. Similar colors correspond to identical router groups.
For a detailed description of the placement heuristic refer to Ezell et al. [211].
Algorithm 2 describes the second step of FGR, namely how a client chooses the

optimal I/O router module for a given router group. In the FGR algorithm, RG
i (S)

denotes the ith I/O router module in the Gth router group and Sth sub-group, with
i ∈ {1, . . . ,4}, G ∈ {1, . . . ,9}, and S ∈ {1, . . . ,3}. The fine-grained routing algorithm
needs two input parameters, the coordinates C, presented as (X,Y,Z), in the 3D torus
of the client and the destination router group (RG). It can be divided in two parts.
First, the sub-group whose Y-coordinates are in close proximity with the input client
(lines 4–14) is chosen. Second, the routers of the selected sub-group are returned.
The one with the shortest distance to the input client is made the primary router, the
other two serve as backups. The X-direction crosses cabinet boundaries. Therefore, it
is desirable to minimize the hop count in the X-direction. For both the LNET router
placement and the client-to-LNET router module assignment algorithm, various
scripts exists to ensure that all nodes are cabled correctly and can communicate with
each other. These scripts can also be used to generate mapping files containing the
topology and routing information in X-, Y-, and Z-directions. These mapping files
can be used to initialize the balanced placement I/O strategy.

7.5.2 Balanced Placement I/O Strategy

There are several possible approaches to address the end-to-end resource contention
problem. One possibility would be the improvement of the Lustre resource allocation
scheme. But, this would only address one end of the problem, and also, it would
introduce a significant amount of LNET configuration overhead since every storage
system comes with its own system design. Therefore, the possibility was disregarded.
Another way to achieve balanced resource utilization is the deployment of a

centralized, system-wide I/O coordination and control mechanism. For example,
Fastpass [212] is a network framework that aims for high utilization with zero queuing
for data centers. For large-scale scientific HPC systems, this approach is not feasible.
Multiple applications are running concurrently, with a variety of different I/O patterns
and workloads. A system-wide I/O organizer requires the coordination between
different subsystems (often designed and provided by different vendors), as well as
scientific application code changes to participate in system-wide coordinated I/O.
Therefore, even though it is possible to design a system-wide I/O coordinator, it is
practically prohibited to be deployed. The system-wide I/O request coordination
would lead to a tremendous communication overhead, and therefore, it would likely

199

7 Resource Contention Mitigation at Scale

Algorithm 3 Balanced placement algorithm [177]
1: procedure Balanced Placement (List of NIDs, List of OSTs)
2:
3: lnet_freq ← 0, rtr_freq ← 0, oss_freq ← 0, ost_freq ← 0
4: random_offset ← randomly selected reachable LNETs
5:
6: for all NIDs in the input NID list do
7: lnet ← random_offset
8:
9: for all reachable OSTs do
10: cost ← MAX
11: oss ← ost2oss() . map OST to OSS
12: mycost ← placement_cost(lnet_freq, rtr_freq, oss_freq, ost_freq)
13: if (mycost < cost) then
14: mycost ← cost
15: picked_ost ← ost
16: picked_oss ← oss
17: end if
18: end for
19:
20: record NID and the selected OST
21: increment lnet_freq, rtr_freq, oss_freq, ost_freq
22: end for
23:
24: end procedure

lead to a sub-optimal utilization of the available computational resources. The third
approach is to balance the I/O workload on an end-to-end and per job basis.
This technique is adopted by the Balanced Placement I/O (BPIO) library [177],

which uses a lightweight placement cost function that takes a weighted average of
how frequently different file and storage system resources have been traversed by
previous I/O requests issued by the same application. The most general case is
defined by

C = w1R1 + w2R2 + ...+ wnRn =
n∑

i=1
wiRi (7.4)

where C is the cost of an I/O path, Ri is a resource component, and wi is the relative
weight factor with ∑n

i=1 wi = 1. For Lustre, possible resource components are logical
I/O routes (i.e., LNETs), or actual file system and networking resources (i.e., Lustre
I/O routers, OSSs, and OSTs). BPIO intelligently allocates I/O paths for a parallel
file system and employs a placement strategy that provides a binding between an
I/O client (compute node or MPI rank ID) and a storage target for a given I/O

200

7.6 Design Objectives and Strategy

phase while aiming at an even I/O traffic distribution across resource components
to avoid points of contention. This is ensured by taking the topology and resource
dependencies into consideration. The library utilizes the mapping files generated by
the previously described fine-grained routing congestion avoidance method. FGR
organizes I/O paths to minimize end-to-end hop counts and congestion. This is done
by pairing clients with their closest possible, and in the case of Titan, optimal LNET
router. When the BPIO library is initialized, it parses the mapping files to retrieve a
list of all available file system and storage components, but also extracts the routing
information between different system components. For Lustre based systems, the
placement cost function C is defined as shown in Equation 7.5.

C = w1 × rtr_freq + w2 × lnet_freq + w3 × oss_freq + w4 × ost_freq (7.5)

rtr_freq, lnet_freq, oss_freq, and ost_freq are the usage frequency of I/O routers,
LNETs, OSSs, and OSTs, respectively, and w1, w2, w3, and w4 are the relative weight
factors. For the Spider II system, the weight factors are set to the following values:
w1 = w2 = w3 = 0.2, w4 = 0.4. These values are chosen based on the observation
that storage targets are typically more imbalanced than other storage components.

For a given I/O client, the BPIO library employs Algorithm 3, which loops over all
reachable storage targets to choose one with the lowest placement cost per compute
node. This is repeated for all active I/O processes of an application only once before
it enters the I/O write phase. An initial performance evaluation of the library was
performed on the Titan supercomputer [178].

7.6 Design Objectives and Strategy
Recapitulating the last section, it can be said that the BPIO library provides a
lightweight, tunable placement mechanism, which utilizes a placement cost function
that can be tuned to meet the target system. The introduced overhead is kept
to a minimum since the balancing function is called only once per I/O phase and
the internal data structures are kept as simple as possible. But, it is important
to understand that the BPIO library simply returns a list containing the optimal
binding between an I/O client and an OST for the next I/O phase. It does not
provide a mechanism for the actual data placement nor file layout. The application
developer has to modify the scientific code and needs to know how to set Lustre file
properties in a C/C++ program using the llapi [168]. This is particularly difficult
when taking different I/O interfaces and workload patterns into consideration.

201

7 Resource Contention Mitigation at Scale

In order to increase the application adaptability and transition, this chapter
contributes two easy-to-use load balancing frameworks: Aequilibro and TAPP-IO.
Both integrations rely on the topology-aware BPIO algorithm and combine the
placement information with the key observations for optimal file striping patterns,
as described in section 7.4. Also, they support three major I/O interfaces: POSIX
I/O, MPI-IO, and parallel HDF5. This ensures a broad application compatibility,
since the interfaces are widely used on current HPC systems. As pointed out by a
recent evaluation of HPC system workloads [194], between 50% and 95% of jobs use
the POSIX I/O API. The remaining jobs use either MPI-IO directly or high-level
libraries built atop MPI-IO such as HDF5.

Aequilibro Aequilibro [17, 19] (derived from Latin: “keep in a state of equilibri-
um/balance”) aims to unify two key approaches to cope with the imbalanced use of
I/O resources. It utilizes the topology-aware BPIO method for mitigating resource
contention and combines it with the advantages of the platform-neutral I/O middle-
ware ADIOS, which provides a flexible I/O mechanism for scientific applications. But,
Aequilibro does not support single shared file I/O. The design and implementation
is described in section 7.7.

TAPP-IO TAPP-IO (Transparent Automatic Placement of Parallel I/O) [19, 18] is
designed to work with parallel file systems and does not require any modifications to
application or I/O library source code. It is implemented as a user space library and
transparently intercepts file creation calls during runtime to balance the workload
over all available storage targets.
The TAPP-IO framework works with both dynamically and statically linked

applications, and proposes a new placement strategy to support not only file-per-
process I/O, but also single shared files. This opens the door to a new class of
scientific applications that can leverage the BPIO placement library for improved
performance. An overview of the design and implemented is presented in section 7.8.

7.7 Aequilibro – An I/O Middleware Integration
Aequilibro is implemented as an optional feature in the file creation and write phase for
selected ADIOS transport methods, and makes the following two contributions. First,
ADIOS-enabled applications can effortlessly take advantage of BPIO’s balancing
strategy without any further modifications. Second, ADIOS provides a simple way
to use multiple different I/O interfaces without the need for the user to explicitly

202

7.7 Aequilibro – An I/O Middleware Integration

1 <?xml version ="1.0" encoding ="UTF -8"?>
2 <adios - config host - language ="C">
3 <adios -group name=" example ">
4 <var name=" var_test " type=" integer "/>
5 </adios -group >
6 <method group=" example " method =" MPI_AGGREGATE ">
7 num_aggregators =64; num_ost =512
8 </ method >
9 <buffer max -size -MB="32" allocate -time="now"/>

10 </adios - config >

Listing 7.1: Example ADIOS XML configuration file.

adopt and integrate BPIO library calls. Therefore, it can be used as a simple, yet
efficient evaluation framework for BPIO.

7.7.1 Transport Methods

ADIOS provides a mechanism to externally describe an application’s I/O requirements
by providing an XML-based configuration file. This results in a runtime selectable
technique, which replaces I/O interface calls with basic ADIOS operations such as
adios_open() and adios_write(). Depending on the specified transport method, a
different application I/O pattern and I/O interface is used to access files. Listing 7.1
shows an example XML configuration file for the ADIOS framework.
Two example transport methods are POSIX and MPI_AGGREGATE. POSIX takes

advantage of the concurrency of parallel file systems and implements the simplest
parallel I/O pattern, known as file-per-process. Each writing process is responsible
for writing data to its own output file. One of the processes is managing an index
file. Overall, the transport method creates an index file along with a subdirectory
containing all of the files written individually by the application’s processes.

MPI_AGGREGATE is a sophisticated, MPI-IO-based technique derived from the MPI
transport methods. Instead of using the default data aggregation model of the local
MPI installation, it provides a user-tunable method, which aggregates data from
multiple MPI processes into larger chunks of data before writing them out to the
file system. A subset of application processes acts as an aggregator for a subset of
peers. This pattern is also known as single shared file I/O with collective buffering.
The number of aggregators (i.e., writing MPI ranks) and the number of OSTs are
tunable, and can be set by the user at runtime. The method creates a collection of
individual files, with one file corresponding to each of the aggregators. In addition,
the user can provide Lustre-specific striping information, e.g., stripe count and size.

203

7 Resource Contention Mitigation at Scale

Scientific Application

Buffering Scheduling Transformation

POSIX MPIAggregate HDF5 ...

BPIO Library

External
Metadata
(XML file)

ADIOS API

Parallel File System

Interface layer

Service layer

Transport methods

Load balancing

Figure 7.4: Aequilibro software stack.

7.7.2 Software Design and Implementation

Aequilibro aims to resolve the resource contention problem by integrating BPIO into
ADIOS. The software architecture of ADIOS comprises of several layers, as depicted
in Figure 7.4. The best way to combine BPIO and ADIOS is to select well-suited
transport methods and implement the BPIO library calls directly into these methods.
In doing so, the BPIO library acts as a shim layer between the transport methods
and the parallel file system, as depicted by Figure 7.4.

The load balancing library is integrated in the transport methods POSIX, MPI_AG-
GREGATE, and PHDF5. There main reason for this decision is that when Aequilibro
was initially designed, Spider II was still running Lustre version 2.4. Therefore,
Aequilibro inherited the file placement and striping limitations of this release. Lustre
2.4 lacked the ability to provide fine-grained control of object placement. With
Lustre release 2.7, a new feature [213] was introduced, which provides the user with
the possibility to define a striping pattern for single shared files. This feature is
leveraged by TAPP-IO (see section 7.8).

7.7.2.1 File Creation Interfaces

Listing 7.2 presents the standard POSIX calls to open and possibly create a file.
Given a pathname, open() as well as creat() return a file descriptor, which is
a small, nonnegative integer. The parameter flags describes the access mode
and must include O_RDONLY, O_WRONLY, or O_RDWR, which either opens the file in
read-only, write-only, or read/write mode, respectively. The parameter mode is
optional and is only needed when the flag O_CREAT is specified. It describes the
file access permissions. The Lustre user library llapi offers a similar API to open
and create new files. Listing 7.3 displays the call syntax for llapi_file_create()

204

7.7 Aequilibro – An I/O Middleware Integration

1 /* open , creat - open and possibly create a file */
2 int open(const char *pathname , int flags);
3 int open(const char *pathname , int flags , mode_t mode);
4
5 int creat(const char *pathname , mode_t mode);

Listing 7.2: Overview of file create and open calls.

1 /* llapi_file_open , llapi_file_create - open and possibly
2 create a file or a device on a Lustre filesystem */
3 int llapi_file_open (const char *name , int flags , int mode ,
4 unsigned long long stripe_size , int stripe_offset ,
5 int stripe_count , int stripe_pattern);
6
7 int llapi_file_create (const char *name ,
8 unsigned long long stripe_size , int stripe_offset ,
9 int stripe_count , int stripe_pattern);

Listing 7.3: llapi open and create calls.

and llapi_file_open(). flags and mode are similar to the POSIX API. The main
difference between the calls is that llapi calls can be used to pre-create a Lustre file
descriptor for a file with the provided striping information. The library allocates the
file objects on the specified OSTs and creates a Lustre inode on the MDS before
forwarding the call to open().

7.7.2.2 Integration of BPIO with ADIOS

The ADIOS framework is initialized by a user application by calling adios_init().
The initialization of BPIO library is integrated in this call, which triggers the
configuration of BPIO with the system-specific, FGR-based mapping files. Also, the
list of allotted I/O clients is created. At the entry point of an I/O write phase, the
BPIO library is invoked by ADIOS with the list of allotted I/O clients. Depending
on the selected transport method, this takes place in the adios_open() or the
adios_groupsize() call. The BPIO library returns a list with the I/O-client-to-
OST assignment. Aequilibro uses this information to create the file descriptor, as
described in Algorithm 4.

For POSIX I/O, a file is created with Lustre’s llapi library. Internally, the stripe
size, stripe count, and start OST of a file are set via the logical object volume (LOV)
layer and stored in the data structure lov_user_md. LOV handles the client access
to OSTs. Following observation (1) from section 7.4, the stripe count is set to one,
which limits the OST contention. In the end, the striping information is applied by

205

7 Resource Contention Mitigation at Scale

Algorithm 4 Data placement algorithm: file-per-process pattern
1: stripe_count ← 1, stripe_size ← 1 MB, fd ← 0
2: stripe_pattern ← LOV_PATTERN_RAID0
3:
4: clients ← Balanced Placement (NIDs, OSTs) . Update NID/OST binding
5: ost_offset ← number of available OSTs
6:
7: if (clients[my_rank] ≥ ost_offset) then
8: ost ← clients[my_rank] − ost_offset
9: else
10: ost ← clients[my_rank]
11: end if
12:
13: fd ← llapi_file_open(filename, stripe_size, ost, stripe_count, stripe_pattern)
14: if (transport_method == MPI_AGGREGATE) then
15: close(fd)
16: Invoke MPI_File_open()
17: else if (transport_method == PHDF5) then
18: close(fd)
19: Invoke H5Fcreate()
20: else
21: Invoke open()
22: end if

calling the function llapi_file_open(). For MPI-IO and HDF5, the file creation
is divided in two steps. A file is pre-created as described for the POSIX case, and
afterwards, it is opened with MPI_File_open() or H5Fcreate(), respectively.

As described by Wang et al. [177], the algorithm used by BPIO is sensitive to the
size of the possible resources and routing paths. When the number of I/O requests is
small and tightly packed in close proximity, a set of suboptimal OSTs might be used.

7.8 TAPP-IO Framework
TAPP-IO provides users with a transparent auto-tuning framework that takes full
advantage of the optimizations done at the interconnect level, i.e., by utilizing FGR,
and the load balancing done at the file system level through BPIO. The framework
transparently intercepts file I/O calls (metadata operations) during runtime to
distribute the workload evenly over all available storage targets. TAPP-IO’s design
incorporates all of the observations presented in section 7.4. The following sections
describe the design and implementation of the runtime environment.

206

7.8 TAPP-IO Framework

7.8.1 Parallel I/O Support

The TAPP-IO framework proposes a file placement strategy that supports both
file-per-process and single-shared-file I/O access patterns, as described in section
2.4.4. File-per-process scales the single writer I/O pattern to encompass all processes
instead of just one process. Each process performs I/O operations on their own
separate file. Thus, for an application run of N processes, N or more files are
created. In a single-shared-file application I/O pattern, multiple processes perform
I/O operations either independently or concurrently to the same file. The possible
HPC application I/O patterns can roughly be classified as follows (the ratio can be
read as writer count : file count):

(1) N : N , stripe count ≥ 1;

(2) N : M , stripe count ≥ 1, M > N ;

(3) N : M , stripe count ≥ 1, M < N ;

(4) N : 1, stripe count > 1.

Case (1) and (2) describe the file-per-process I/O patterns, case (3) presents a
strategy where the writing is aggregated in M shared files, and case (4) is the single-
shared-file strategy where multiple clients write to multiple ranges within the same
file. With a file-per-process I/O pattern, it is best to use no striping (stripe count of
1), as presented in section 7.4. This limits the storage target contention when dealing
with a large number of files and processes. Therefore, case (2) is disregarded for the
TAPP-IO framework. Case (3) is a special case of case (4) where multiple writers
are aggregated in multiple shared files. TAPP-IO currently supports cases (1), (3),
and (4) with the limitation that the balancing algorithm needs the expected file size
for the shared files. For single shared files, TAPP-IO tries to minimize both the
overhead associated with splitting an operation between storage targets (i.e., stripe
alignment) and contention between writing processes over a single storage target
(i.e., file locking contention). Figure 7.5 displays two possible shared file layouts.
The segmented file layout keeps the data from a process in a contiguous block, while
the strided file layout strides the data throughout the file.

When accessing a single shared file from many processes, the stripe count should
equal the number of processes (refer to section 7.4). The size and location of I/O
operations from the processes should be carefully managed to allow as much stripe
alignment as possible resulting in each writing process accessing only a single storage
target. Analogous to the file-per-process pattern, the algorithm follows the placement

207

7 Resource Contention Mitigation at Scale

Memory buffer

A B C

Memory buffer Memory buffer

A CBACB A CBACB A CBACB

B BBBBB C CCCCCSegmented File

Strided File CBA CBA

CCBBA AAAAA AA

Figure 7.5: Shared file layout patterns.

strategy implied by the segmented file layout. A naive approach would be to set the
stripe count to the number of writer processes and the stripe size to file size

stripe count . But
for Lustre, the stripe size needs to be an even multiple of 65536 bytes. Equation 7.6
describes how the file size can be aligned to match an even multiple of 65536 bytes.

aligned filesize =
⌈

real filesize
65536× 2× number of writers

⌉
(in Bytes) (7.6)

With these parameters, the algorithm tries to achieve high levels of performance
while mitigating storage targets contention at large process counts. The placement
algorithm is invoked only once for every I/O write phase which adds minimal overhead.
The optimal set of storage targets is determined similarly to the balanced placement
algorithm introduced in Algortihm 3. For each stripe of a shared file, the optimal
stripe-to-storage-target assignment is calculated by utilizing of the BPIO placement
cost function.
Algorithm 5 displays a simplified version of the TAPP-IO balancing algorithm.

The implementation of the TAPP-IO balancing framework has been deployed and
tested on Titan’s Spider II file system. In order to specify the striping information
for the file-per-process strategy, it is sufficient to set a file descriptor’s Lustre
striping information via the l lapi library before opening the file via the corresponding
I/O interface (MPI_File_open() or H5Fcreate()). llapi_file_create() allows a
client to specify the stripe size, stripe count, and OST offset of a file via the logical
object volumn manager. When MPI-IO or HDF5 tries to create a file, the I/O layers
transparently adopts the Lustre file descriptor that was previously created. The
existing descriptor is used by Lustre when opening the corresponding file.
With Lustre 2.7 [213], a new feature was introduced that provides the user with

the ability to explicitly specify the striping pattern via an ordered list of OSTs.
The Lustre llapi can be utilized to specify the Lustre striping parameter struct

208

7.8 TAPP-IO Framework

Algorithm 5 TAPP-IO Balancing Algorithm (simplified)
1: /* I/O call, e.g. open(), triggers balancing */
2: osts ← Balanced Placement (NIDs, OSTs) . Update NID/OST binding
3:
4: /* Determine placement parameters */
5: if (File-per-process) then
6: ost ← osts[my_rank]
7: size ← 1 MB
8: count ← 1
9: pattern ← LOV_PATTERN_RAID0
10: else if (Single-shared-file) then
11: struct striping_info param ← 0
12: param->stripe_count ← number of writing processes
13: param->stripe_size ← aligned filesize / stripe count
14: param->osts ← osts . Array with stripe_count entries
15: param->stripe_offset ← param->osts[0]
16: param->striping_is_specific ← true
17: param->stripe_pattern ← 0
18: end if
19:
20: /* Initialize Lustre file descriptor via llapi */
21: fd ← 0
22: if (File-per-process) then
23: fd ← llapi_file_create(filename, size, ost, count, pattern)
24: else if (Single-shared-File) && (my_rank == 0) then
25: fd ← llapi_file_open_param(filename, flags, mode, param)
26: end if
27:
28: close(fd)
29: return __real_function()

llapi_stripe_param (denoted as struct striping_info in Algorithm 5) where a list
of OSTs can be passed to the LOV manager. Unlike the file-per-process strategy
in this example, llapi_file_open_param() is called by MPI rank 0 to create the
Lustre file descriptor. This is a necessary restriction, since only one process can
apply the striping pattern to create the Lustre inode. If the inode has already been
created, the API returns a Lustre error. The TAPP-IO library returns a list of
MPI rank ID to OST assignments which is used to specify the striping pattern.
Currently, the balancing algorithm for single shared files needs the expected file size
from the application in order to match the stripes with the writing processes. Via
MPI_Info_set(), the application can forward the file size by specifying a value pair
(fileSize,value). To utilize TAPP-IO for multiple-shared files, the framework also

209

7 Resource Contention Mitigation at Scale

Application

TAPP-IO I/O Module
TAPP-IO Core

TAPP-IO Common

libc

MPI_Init(), MPI_Finalize()I/O call, e.g. open()

TAPP-IO Library

System Libraries

Figure 7.6: TAPP-IO runtime environment.

needs the number of writing tasks per file and the corresponding MPI communicator.
TAPP-IO extracts the information from the info object and calculates the stripe
size. The stripe size is matched to keep data from a process in a contiguous block.
Processes can concurrently access a single shared file. Still, this feature lacks the
flexibility to dynamically re-size a file.

For the time being, dynamic re-striping or re-sizing of a file comes with an enormous
overhead. The basic idea is to re-create the file with the new striping pattern. But,
this involves the copying (i.e, reading into memory and then writing out of the
memory) of the file to the client and back to the parallel file system. This procedure
is resource consuming, and therefore, not feasible. It is expected that the introduction
of the progressive file layouts [214], which is based on composite layouts, with Lustre
2.10 will provide the means to efficiently enhance the balancing algorithm for single
shared files.

7.8.2 Runtime Environment

TAPP-IO uses function interposition, similar to Recorder [215] and Darshan [195], to
prioritize itself over standard library calls. For dynamically linked applications, the
framework is built as a shared library. Once TAPP-IO is specified as the preloading
library via LD_PRELOAD, it intercepts POSIX I/O, MPI-IO, and HDF5 file creation
calls issued by the application and reroutes them to the balancing framework. For
statically linked applications, the library requires no source code modifications, but
has to be added transparently during the link phase of MPI compiler scripts such as
mpicc or mpif90. This approach is a compromise in that existing binaries must be
recompiled (or relinked) in order to use TAPP-IO. POSIX routines are intercepted
by inserting wrapper functions via the GNU linker’s --wrap argument.
After rerouting the function calls to the TAPP-IO framework, the library evenly

places the data on the available storage targets. This balancing approach is trans-

210

7.8 TAPP-IO Framework

Application: MPI_File_open(MPI_COMM_WORLD,
“testfile”, MPI_MODE_CREATE, info, fd)

TAPP-IO

1. Obtain the address of MPI_File_open() using dlsym()
2. Pre-create Lustre fi le descriptor via TAPP-IO
3. Call real_MPI_File_open(comm, filename,
amode, info, fh)MPI-IO Library: int MPI_File_open(MPI_Comm comm,

char *filename, int amode, MPI_Info info, MPI_File *fh)

Application: open(“testfile”, flags, 0664)
TAPP-IO

1. Obtain the address of open() using dlsym()
2. Pre-create Lustre fi le descriptor via TAPP-IO
3. Call real_open(filename, flags, mode)

POSIX Library: int open(const char *pathname,

int flags, mode_t mode)

MPI-IO Library (unmodified)

C POSIX Library (unmodified)

Application: H5Fcreate(“testfile.h5”,
H5F_ACC_TRUNC, H5P_DEFAULT, plist_id)

TAPP-IO

1. Obtain the address of H5Fcreate() using dlsym()
2. Pre-create Lustre fi le descriptor via TAPP-IO
3. Call real_H5Fcreate(filename, flags,
create_id, new_access_id)High-Level I/O Library: hid_t H5Fcreate(const char

*filename, unsigned flags, hid_t create_id,
hid_t access_id)

HDF5 Library (unmodified)

Figure 7.7: Dynamic interception of I/O functions at runtime.

parent to the user because alterations are made without changes to application and
library source code.

For both dynamically and statically linked applications, TAPP-IO intercepts MPI-
IO routines using the profiling interface to MPI (PMPI). Figure 7.6 illustrates the
TAPP-IO runtime environment. The framework consists of three main components:
TAPP-IO Core, TAPP-IO Common, and TAPP-IO I/O Modules. The core of the
framework handles the initialization and clean up of the library. Before any I/O call
can be rerouted to TAPP-IO, the internal data structures need to be initialized. This
happens during the call to MPI_Init(). The common module hosts the balancing
algorithm and helper functions to maintain module specific I/O characterization
data. In addition, there is an I/O module for every supported I/O interface. The
I/O modules implement the wrapper functions. Figure 7.7 displays the dynamic
interception of I/O routines at runtime. The following sequence illustrates the mode
of operation of TAPP-IO for HDF5:

(1) TAPP-IO intercepts and reroutes H5Fcreate() to the HDF5 I/O module.

(2) TAPP-IO Common provides a list of NID/OST bindings.

(3) A Lustre file descriptor is allocated with the balancing information.

(4) The function returns by calling real_H5Fcreate().

211

7 Resource Contention Mitigation at Scale

The mechanism is the same for the MPI-IO and POSIX I/O. It offers per job
and end-to-end I/O performance improvement in the most transparent way. Cur-
rently, the framework supports the following I/O calls: open[64](), creat[64](),
MPI_File_open(), and H5Fcreate(). These mechanisms have been tested with
the MPICH MPI implementation for both GNU and Cray C, C++, and Fortran
compilers. It also works correctly for both static and dynamic compilation, requires
no additional supporting infrastructure for instrumentation, and is compatible with
other MPI implementations and compilers.

7.9 Data Collection and Analysis
This section presents the analysis results of Aequilibro and TAPP-IO. First, the bench-
marking methodology and test setup are introduced followed by the experimental
evaluation results obtained from the Spider II system.

7.9.1 Benchmarking Methodology

The benchmarking methodology utilizes two benchmarks, the synthetic IOR bench-
mark and the real-world HPC workload S3D. They are used to evaluate to overall
performance improvement, bandwidth, execution time, and I/O interference.

7.9.1.1 IOR Benchmark

The well-known IOR [216] synthetic benchmark tool is adopted to exploit the
strengths and weaknesses of Aequilibro and TAPP-IO. IOR provides a flexible way
of measuring I/O performance under different read or write sizes, concurrencies, file
formats, and access pattern strategies. It supports different I/O interfaces ranging
from traditional POSIX I/O to advanced high-level I/O libraries like MPI-IO and
HDF5, and differentiates parallel I/O strategies between file-per-process and single-
shared-file approaches. Shan et al. [217] have demonstrated that IOR can be used
to characterize and predict the I/O performance on large-scale HPC systems. IOR
is utilized to evaluate the direct exploitation of the BPIO library in comparison to
Aequilibro and TAPP-IO transparently handling I/O for an application.

Table 7.1 displays the IOR benchmark variants used with the file-per-process
strategy. The evaluation is divided into three different I/O performance comparisons.
First, the original version of BPIO is directly used for the data placement by
modifying the IOR source code, referred to as IOR BPIO. Before creating a file

212

7.9 Data Collection and Analysis

Table 7.1: IOR benchmark variants.

Index Variant Description
(I) Default The original IOR benchmark without any modification.
(II) BPIO A modified version of the IOR tool that utilizes the BPIO

library for balanced data placement.
(III) ADIOS An IOR benchmark where all I/O calls are replaced with

the ADIOS API for I/O handling.
(IV) Aequilibro Same code base as IOR ADIOS, but utilizes the BPIO library

for balanced data placement.
(V) TAPP-IO Unmodified IOR benchmark utilizing TAPP-IO via

LD_PRELOAD.

with Lustre’s llapi, the BPIO library is used to determine the compute node (NID)
to OST assignment. The results are compared to the unmodified IOR benchmark
IOR Default. Second, all I/O interface calls are replaced by the ADIOS API. IOR
is used as a workload generator to drive the ADIOS framework, denoted as IOR
ADIOS. Using ADIOS with IOR provides an easy way to stress the file system
while handling file I/O with the ADIOS API. Essentially, IOR is used as a workload
generator to drive the ADIOS framework. A side benefit is that Aequilibro can be
tested without any additional code modification. The third part of the evaluation
provides the comparison of IOR Default and IOR TAPP-IO. For the single shared
file (SSF) I/O strategy, three different variants of the IOR benchmark setups are
used: (I) IOR Default SSF, (II) IOR Optimized SSF, and (III) IOR TAPP-IO SSF.
Variant (I) employs the default Lustre striping configuration (stripe count = 4,
stripe size = 1MB). Variant (II) uses an optimized striping setting (stripe count =
numberOfWriters, stripe size = fileSize / numberOfWritingTask) and the default
Lustre OST placement algorithm. Variant (III) uses the same stripe count and size as
(II), but utilizes the TAPP-IO framework to determine the MPI process ID to OST
binding. The list is used to configure the specific striping information transparently
prior to file creation.

The metrics of interest include the overall execution time and the end-to-end I/O
performance improvement gained by using either BPIO, Aequilibro or TAPP-IO. It
is provided in percentage and calculated with the following equation:

Performance Improvement (in %) = 100 ∗
(
Bandwidth balanced

Bandwidth default

− 1
)

(7.7)

213

7 Resource Contention Mitigation at Scale

In order to accurately model a typical HPC workload behavior, the benchmark
parameters need to be aligned with the desired workloads. The IOR benchmark
provides a wide range of parameters including the API, FilePerProc, WriteFile,
NumTasks, BlockSize, and TransferSize. On Titan, the memory size per node is
32 GB with 2 GB per processor. IOR is run with different block sizes to evaluate
the impact of caching effects and a TransferSize of 1 MB. For POSIX I/O, the fsync
and useO_DIRECT options are set. O_DIRECT bypasses I/O and file system
buffers. For MPI-IO, the same effect can be achieved by enabling the direct_io
MPI-IO optimization hint. For Lustre-specific settings, each file is created with a
stripe size of 1 MB and in the case of file-per-process pattern, a StripeCount of 1 is
used. The stripe size should be aligned with the TransferSize in order to get the best
performance. StripeCount specifies the number of OSTs where the data is striped
across while StripeSize defines the size of one stripe.

7.9.1.2 I/O Interference

Large-scale HPC systems waste a significant amount of computing capacity because
of I/O interferences caused by multiple running applications concurrently accessing
shared parallel file system and storage resources. Lofstead et al. [196] provide a
definition of internal and external interferences to characterize the variability in I/O
performance. The definition is used to evaluate the performance of TAPP-IO in
terms of I/O interferences.

Internal interference When too many write processes from one specific application
try to write to a single storage target at the same time, internal interference can occur.
Write caches are exceeded which leads to a blocking behavior of the application until
the buffers are cleared. The IOR benchmark is to evaluate the internal interference
by writing data of different sizes to OSTs while scaling the number of nodes/writers.
For simplicity reasons, the IOR benchmark is configured to use 1,008 OSTs and
POSIX I/O.

External interference Even if an application would try to evenly use all available
storage system resources, external interference can still occur. This is caused by the
fact that a parallel file system is a shared resource where accesses are shared between
all compute nodes and running applications. To demonstrate the I/O performance
variability, hourly IOR tests with an 1,008 node allocation are performed, one process
per node (one writer per node), and POSIX I/O with the file-per-process I/O strategy.

214

7.9 Data Collection and Analysis

Another characterization metric is the imbalance factor of an I/O action as defined
by Lofstead et al. [196]. It describes the ratio of the slowest (wtimemax) versus the
fastest write (wtimemin) times across all writers:

Imbalance factor = wtimemax

wtimemin

(7.8)

The imbalance factor reflects the impact of the slowest writer on the overall per-
formance. Therefore, the factor can be utilized to characterize the imbalance of an
application.

7.9.1.3 HPC Workload

S3D [218] is a combustion code simulation that is employed on many different HPC
systems. When executed, it generates a large amount of I/O requests. Verifying the
I/O performance of S3D with TAPP-IO is a good indicator for the impact on other
large-scale applications. Unfortunately, S3D is a proprietary code. Genarray3D [219]
is a skeletal I/O application, which utilizes the ADIOS middleware’s XML I/O
specification with additional runtime parameters to emulate the I/O behavior of
S3D. By default, the MPI_AGGREGATE transport method sets the striping information
for a file. In order to run ADIOS with TAPP-IO, the part that specifies the striping
information has to be removed.
In Genarray3D, three dimensions of a global array are partitioned among MPI

processes along X-Y-Z dimensions in the same block-block-block fashion. Each
process writes an N3 partition. The size of each data element is 4 bytes, leading to
the total data size of N3 ∗ P ∗ 4 bytes, where P is the number of processes. One key
difference between the IOR benchmark and Genarray3D is that all cores present on a
compute node are utilized by default. This improves the computational efficiency of
the simulation. On the other hand, Genarray3D generates pressure on single storage
targets, because each compute node hosts its own operating system with a single
mount point per file system.

7.9.2 Experimental Setup

All tests were performed on the Titan supercomputer. In order to get representative
results, two major issues were addressed. First, all experiments were conducted in a
busy production environment. No tests were run during the quiet maintenance mode.
The results show that performance gains can be achieved in an active production
environment. Second, a broad set of compute nodes were used instead of just a

215

7 Resource Contention Mitigation at Scale

certain subset of nodes. This demonstrates that independently from any specific
node set on Titan, an application can readily benefit from the presented balancing
framework. The application level placement scheduler (ALPS) on Titan returns
a node allocation list where nodes tend to be logically close to each other. There
are two attempts to get a higher node coverage. The first one is to submit scaling
tests one after another independently, in the hope that a different set of compute
nodes is covered with every run. The second attempt is to submit scaling runs in
parallel to occupy a larger set of nodes. Both approaches are used to get a broader
coverage. More than 30 scaled runs were obtained for IOR variants (I) to (IV) (see
Table I), with each run ranging from 8 to 4,096 nodes. For each node allocation,
three iterations are performed to obtain the average badwidth results.
All of the described experiments are conducted in a noisy, active production

environment. Therefore, performance numbers may not always be conclusive. To
cope with this issue and to draw consistent observation, multiple tests were performed
with at least three repetitions per run. Iterations within the same run get the same
node allocation. Each iteration executes IOR variants (I) to (IV). This is essential in
order to average out the variance across the same set of allocated nodes. In addition,
a large set of Titan compute nodes were covered throughout these tests. For the
internal interference, more than 30 scaled IOR runs per node allocation have been
performed. The number of allocated nodes ranges from 16 to 1,024 with 16 MPI
processes per node which corresponds to a range from 128 to 16,384 processes in
total. Each process writes a separate file. For the external interference, more than
100 samples were obtained.

7.9.3 Synthetic Benchmark Evaluation

The following sections present the IOR benchmark performance results, including
the overall performance improvement, the application execution time, the achieved
bandwidth, the standard deviation, and the interference results.

7.9.3.1 Performance Imrovement

The results of the scaling runs with a 4 GB file size per writing process and file-per-
process strategy are summarized in Figure 7.8 for 64, 512, 2,048, and 4,096 nodes
respectively. Over a period of four months, more than 30 scaled runs per node
allocation size were obtained. Each sub-figure represents a particular node allocation.
The X -axis represents the enumeration of runs with the same count of node allocation,
but for different sets of nodes. The bandwidth performance of IOR Default and IOR

216

7.9 Data Collection and Analysis

-60

-40

-20

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10

P
e

rf
o

rm
an

ce

Im
p

ro
ve

m
e

n
t

(%
)

Different runs

IOR POSIX I/O with 64 node allocation

Default vs. BPIO
Default vs. TAPP-IO
ADIOS vs. Aequilibro

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10

P
e

rf
o

rm
an

ce

Im
p

ro
ve

m
e

n
t

(%
)

Different runs

IOR POSIX I/O with 512 node allocation

Default vs. BPIO
Default vs. TAPP-IO
ADIOS vs. Aequilibro

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9 10

P
er

fo
rm

an
ce

Im

p
ro

ve
m

en
t

(%
)

Different runs

IOR POSIX I/O with 2048 node allocation

Default vs. BPIO

Default vs. TAPP-IO

ADIOS vs. Aequilibro

0
10
20
30
40
50
60
70
80
90

1 2 3 4 5 6 7 8 9 10

P
e

rf
o

rm
an

ce

Im
p

ro
ve

m
en

t
(%

)

Different runs

IOR POSIX I/O with 4096 node allocation

Default vs. BPIO
Default vs. TAPP-IO
ADIOS vs. Aequilibro

0

20

40

60

80

100

120

140

160

1 2 3 4 5 6 7 8 9 10

P
er

fo
rm

an
ce

Im

p
ro

ve
m

en
t

(%
)

Different runs

IOR MPI-IO 64 node allocation

Default vs. BPIO
Default vs. TAPP-IO
ADIOS vs. Aequilibro

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9 10

P
er

fo
rm

an
ce

Im

p
ro

ve
m

en
t

(%
)

Different runs

IOR MPI-IO 512 node allocation
Default vs. BPIO Default vs. TAPP-IO
ADIOS vs. Aequilibro

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10

P
er

fo
rm

an
ce

Im

p
ro

ve
m

en
t

(%
)

Different runs

IOR MPI-IO 2048 node allocation
Default vs. BPIO
Default vs. TAPP-IO
ADIOS vs. Aequilibro

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10

P
er

fo
rm

an
ce

Im

p
ro

ve
m

en
t

(%
)

Different runs

IOR MPI-IO 4096 node allocation

Default vs. BPIO
Default vs. TAPP-IO
ADIOS vs. Aequilibro

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10

P
e

rf
o

rm
an

ce

Im
p

ro
ve

m
e

n
t

(%
)

Different runs

IOR HDF5 with 64 node allocation
Default vs. BPIO Default vs. TAPP-IO

ADIOS vs. Aequilibro

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9 10

P
e

rf
o

rm
an

ce

Im
p

ro
ve

m
e

n
t

(%
)

Different runs

IOR HDF5 with 512 node allocation

Default vs. BPIO
Default vs. TAPP-IO
ADIOS vs. Aequilibro

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8 9 10

P
er

fo
rm

an
ce

Im

p
ro

ve
m

en
t

(%
)

Different runs

IOR HDF5 with 2048 node allocation

Default vs. BPIO
Default vs. TAPP-IO
ADIOS vs. Aequilibro

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10

P
er

fo
rm

an
ce

Im

p
ro

ve
m

en
t

(%
)

Different runs

IOR HDF5 with 4096 node allocation

Default vs. BPIO
Default vs. TAPP-IO
ADIOS vs. Aequilibro

Figure 7.8: Performance improvements for IOR large-scale runs.

217

7 Resource Contention Mitigation at Scale

3
7

32

52

44

21

31 32

49
54

-2 0

31

91

83

73

46

38
44

51

3
10

-3

33

20 23 23
27 27

32

-20

0

20

40

60

80

100

8 16 32 64 128 256 512 1024 2048 4096

P
er

fo
rm

an
ce

Im

p
ro

ve
m

en
t

(%
)

Number of nodes

Average I/O Bandwidth Improvement

POSIX I/O

MPI-IO

HDF5

Figure 7.9: Average performance
gains (in %): TAPP-IO vs. Default
placement.

0

20

40

60

80

100

120

140

16 32 64 128 256 512 1024 2048 4096

A
p

p
lic

at
io

n
 e

xe
cu

ti
o

n
 t

im
e

 (
in

 s
)

Number of nodes

MPI-IO with 4GB Block Size

IOR Default

IOR TAPP-IO

↓56.8%

↓48.8%

↓39.3%

↓35.1% ↓37.3% ↓35.5%
↓111.3%

↓92.7% ↓10.5%

Figure 7.10: Average application ex-
ecution time for MPI-IO with 4 GB
block size.

BPIO (denoted as Default vs. BPIO), IOR Default and IOR TAPP-IO (denoted as
Default vs. TAPP-IO), and IOR ADIOS and IOR Aequilibro (denoted as ADIOS vs.
Aequilibro) utilizing Equation 7.7 are compared. In all cases, it can be seen that the
balancing provides significant performance improvements for small-, medium-, and
large-scale runs. An exception is the performance for Aequilibro at smaller scales for
POSIX I/O. IOR BPIO and IOR TAPP-IO show similar performance improvement
trends. For POSIX I/O, TAPP-IO provides about 40% of performance improvement
for 2,048 nodes and about 50% for 4,096 nodes. Similar trends can be observed for
HDF5 and MPI-IO at large-scale. For 4,096 nodes, TAPP-IO provides up to 89% of
performance improvement for MPI-IO and 54% for HDF5. It is noteworthy that the
performance improvement achieved by Aequilibro is inferior to BPIO and TAPP-IO.
The additional overhead introduced by the I/O middleware framework lowers the
overall I/O performance. While there are variations across different runs, it can
be observed that the trend remains the same. There are consistent performance
gains across multiple runs and iterations. Optimizing the overall I/O cost leads to a
reduced application execution time (especially for large-scale runs) and therefore, to a
reduced operational cost per executed application. Figure 7.9 shows the performance
improvement averaged over all completed runs for file-per-process I/O and a 4 GB file
size per writing process (see also Figure 7.8). It confirms that TAPP-IO consistently
provides a higher throughput with the balanced placement algorithm. The only
exceptions are MPI-IO for 8 nodes and HDF5 for 32 nodes.

7.9.3.2 Application Execution Time

Figure 7.10 presents the average application execution time of IOR Default and
IOR TAPP-IO for MPI-IO with file-per-process. The percentage on top of the bars
describes the time improvement. A similar trend can be observed for POSIX I/O and
HDF5. From the results, it can be concluded that resolving resource contention at

218

7.9 Data Collection and Analysis

0

20

40

60

80

100

120

140

160

180

8 16 32 64 128 256 512 1024 2048 4096

B
an

d
w

id
th

 (
G

B
/s

)

Number of nodes

IOR POSIX I/O, 128 MB File Size

IOR Default
IOR ADIOS
IOR BPIO
IOR Aequilibro
IOR TAPP-IO

0

50

100

150

200

8 16 32 64 128 256 512 1024 2048 4096

B
an

d
w

id
th

 (
G

B
/s

)

Number of nodes

IOR POSIX I/O, 512 MB File Size

IOR Default
IOR ADIOS
IOR BPIO
IOR Aequilibro
IOR TAPP-IO

0

50

100

150

200

250

8 16 32 64 128 256 512 1024 2048 4096

B
an

d
w

id
th

 (
G

B
/s

)

Number of nodes

IOR POSIX I/O, 1 GB File Size

IOR Default
IOR ADIOS
IOR BPIO
IOR Aequilibro
IOR TAPP-IO

0

50

100

150

200

250

8 16 32 64 128 256 512 1024 2048 4096

B
an

d
w

id
th

 (
G

B
/s

)

Number of nodes

IOR POSIX I/O, 4 GB File Size

IOR Default
IOR ADIOS
IOR BPIO
IOR Aequilibro
IOR TAPP-IO

0

20

40

60

80

100

120

140

160

180

8 16 32 64 128 256 512 1024 2048 4096

B
an

d
w

id
th

 (
G

B
/s

)

Number of nodes

IOR MPI-IO, 128 MB File Size

IOR Default
IOR ADIOS
IOR BPIO
IOR Aequilibro
IOR TAPP-IO

0

20

40

60

80

100

120

140

160

180

200

8 16 32 64 128 256 512 1024 2048 4096

B
an

d
w

id
th

 (
G

B
/s

)

Number of nodes

IOR MPI-IO, 512 MB File Size

IOR Default
IOR ADIOS
IOR BPIO
IOR Aequilibro
IOR TAPP-IO

0

20

40

60

80

100

120

140

160

180

200

220

8 16 32 64 128 256 512 1024 2048 4096

B
an

d
w

id
th

 (
G

B
/s

)

Number of nodes

IOR MPI-IO, 1 GB File Size

IOR Default
IOR ADIOS
IOR BPIO
IOR Aequilibro
IOR TAPP-IO

0

20

40

60

80

100

120

140

160

180

200

220

8 16 32 64 128 256 512 1024 2048 4096

B
an

d
w

id
th

 (
G

B
/s

)

Number of nodes

IOR MPI-IO, 4 GB File Size

IOR Default
IOR ADIOS
IOR BPIO
IOR Aequilibro
IOR TAPP-IO

0

20

40

60

80

100

120

140

8 16 32 64 128 256 512 1024 2048 4096

B
an

d
w

id
th

 (
G

B
/s

)

Number of nodes

IOR HDF5, 128 MB File Size

IOR Default
IOR ADIOS
IOR BPIO
IOR Aequilibro
IOR TAPP-IO

0

20

40

60

80

100

120

140

160

8 16 32 64 128 256 512 1024 2048 4096

B
an

d
w

id
th

 (
G

B
/s

)

Number of nodes

IOR HDF5, 512 MB File Size

IOR Default
IOR ADIOS
IOR BPIO
IOR Aequilibro
IOR TAPP-IO

0

20

40

60

80

100

120

140

160

8 16 32 64 128 256 512 1024 2048 4096

B
an

d
w

id
th

 (
G

B
/s

)

Number of nodes

IOR HDF5, 1 GB File Size

IOR Default
IOR ADIOS
IOR BPIO
IOR Aequilibro
IOR TAPP-IO

0

20

40

60

80

100

120

140

160

8 16 32 64 128 256 512 1024 2048 4096

B
an

d
w

id
th

 (
G

B
/s

)

Number of nodes

IOR HDF5, 4 GB File Size

IOR Default
IOR ADIOS
IOR BPIO
IOR Aequilibro
IOR TAPP-IO

Figure 7.11: Bandwidth performance for IOR (I) to (V) for different file sizes.

219

7 Resource Contention Mitigation at Scale

0

20

40

60

80

8 16 32 64 128 256 512 1024

B
an

d
w

id
th

 (
G

B
/s

)

Number of nodes

IOR MPI-IO, 512 MB Block Size, Single Shared File

IOR Default
IOR Optimized
IOR TAPP-IO

0

20

40

60

80

100

8 16 32 64 128 256 512 1024

B
an

d
w

id
th

 (
G

B
/s

)

Number of nodes

IOR MPI-IO, 2 GB Block Size, Single Shared File

IOR Default
IOR Optimized
IOR TAPP-IO

Figure 7.12: IOR bandwidth performance for MPI-IO and single shared file.

the storage system level directly impacts the overall execution time of the application.
With the advent of big data and the increasing amount of defensive I/O in mind,
it is expected that the balancing mechanism will have a tremendous effect on an
application’s performance.

7.9.3.3 Bandwidth Results

Figure 7.11 summarizes the IOR bandwidth results for different file sizes scaling from
8 to 4,096 nodes for file-per-process. The results illustrate the average bandwidth
per second from over more than 40 scaled runs with at least three repetitions per
IOR variant (refer to Table I) per node allocation within one run. The results were
collected over the period of four months. From the throughput results, the following
observations can be made. First, starting from small-scale runs with at least 16
nodes, our load balancing framework TAPP-IO and the BPIO library both provide
consistent bandwidth improvements. Aequilibro does not provide any significant
improvement for less than 128 nodes. Second, with an increasing number of I/O
processes and allocated computing nodes, POSIX, MPI-IO, and HDF5 benefit from
utilizing TAPP-IO with IOR. For example, IOR TAPP-IO with POSIX I/O achieves
up to 202.7 GB/s on average for a 4,096 node allocation and a 4 GB file size per
writing process. This can be translated to 54% performance improvement compared
to the default data placement with IOR Default. For smaller file sizes, the maximum
bandwidth is less, but the average performance improvement trend remains the same
compared with the default data placement. This consistent improvement can be
observed for MPI-IO and HDF5 as well. Another noteworthy aspect is that the
expected caching effects for smaller file sizes were non-existent. In summary, it can
be said that all IOR variants utilizing a data balancing algorithm are able to provide
similar performance results. But, TAPP-IO makes the application independent from
the need to actively adopt the BPIO mechanism by integrating it into the application
or using an I/O framework such as Aequilibro.

220

7.9 Data Collection and Analysis

0

10

20

30

40

50

60

70

256 512 1024 2048 4096 8192 16384

B
an

d
w

id
th

 (
G

B
/s

)

Number of writers

IOR Default - POSIX I/O

128MB

512MB

1GB

4GB

0

10

20

30

40

50

60

70

80

90

256 512 1024 2048 4096 8192 16384

B
an

d
w

id
th

 (
G

B
/s

)

Number of writers

IOR BPIO - POSIX I/O

128MB

512MB

1GB

4GB

0

10

20

30

40

50

60

70

80

90

256 512 1024 2048 4096 8192 16384

B
an

d
w

id
th

 (G
B

/s
)

Number of writers

IOR TAPP-IO - POSIX I/O

128MB

512MB

1GB

4GB

Figure 7.13: Scaling of aggregate write bandwidth.

Figure 7.12 displays initial performance results of TAPP-IO with the single shared
file balancing algorithm for IOR with MPI-IO for different block sizes. The result
present the average bandwidth out of 30 scaled runs with node allocations ranging
from 8 to 1,024 nodes with one writing process per allocated node. Similar to the file-
per-process mode, TAPP-IO provides significant performance improvement starting
with a node allocation as minimal as 32 nodes. The default Lustre striping pattern
throttles the throughput tremendously. The default striping pattern distributes
the file over 4 OSTs with a striping size of 1. Multiple writing processes try to
access the same OST at the same time. The optimized IOR version provides an
increasing bandwidth compared to the default variant, but still utilizes the Lustre
default OST placement like the file-per-process results. The observed performance
gain by distributing stripes of the same file evenly among available storage targets
is consistent with the observations made for the file-per-process I/O pattern. For
example, TAPP-IO provides a performance improvement of about 75.8% compared to
the optimized placement for 256 nodes. Another consistent observation that should
be noted is that the standard deviation results obtained from different iterations
within the same run was relatively small for TAPP-IO compared to the results
obtained with the Lustre default data placement.

7.9.3.4 Standard Deviation

The IOR benchmark output provides the standard deviation and mean calculated
from the performance results of the executed repetitions per run. While evaluating
the collected benchmarks results, the following consistent observation for all IOR
variants utilizing a balancing algorithm could be made, independently from the I/O
interface. For both Aequilibro and TAPP-IO, the standard deviation is tremendously
lower for all tested file sizes. The standard deviation is a measure to quantify the
amount of variation of a set of data values. In other words, when utilizing BPIO,
the achieved bandwidth of each repetition is relatively close while using the Lustre
default data placement leads to a huge variation among repetitions.

221

7 Resource Contention Mitigation at Scale

0

10

20

30

40

50

60

30 35 40 45 50 55 60 65 70 75 80 85 90 95

Fr
eq

u
en

cy
 (

%
)

Bandwidth (GB/s)

Histogram of I/O Bandwidth on Titan

IOR Default

IOR BPIO

IOR TAPP-IO

Figure 7.14: I/O performance variability due to external interference.

7.9.3.5 Interference Results

Figure 7.13 presents the results of the scaled internal interference tests, as introduced
in Section 7.9.1.2. The results represent the average write bandwidth on Titan for
IOR with POSIX I/O. With an increasing number of nodes and writers, it can be
observed that in the case of IOR Default and IOR ADIOS the effects of internal
interferences consistently decrease the average bandwidth with an increasing number
of writers. For IOR BPIO/TAPP-IO and IOR Aequilibro, the internal interference
effects can still be observed, but they have less impact on the overall bandwidth
performance due to a balanced data distribution over all available storage targets.
Figure 7.14 displays the histograms of I/O bandwidth based on the external

interference tests data collected in over 100 runs. It can be seen that in busy
production environments like Titan, there is a substantial I/O variability between
different runs. Note, BPIO/TAPP-IO and Aequilibro are solely used for the test
runs. There are multiple other applications scheduled at the same time. In addition,
the imbalance factor is calculated based on Equation 7.8. For IOR Default, the
imbalance factor is about 6.9 in average, while for IOR BPIO/TAPP-IO it ranges in
between 1.3 and 1.9 leading to an improvement by a factor of 3.5. For both IOR
ADIOS and IOR Aequilibro, the imbalance factor ranges in between 1.1 and 1.2.
ADIOS offers synchronous write methods. The imbalance factor does not provide
any information about the overall performance.

7.9.4 HPC Workload Evaluation

Scaled runs with 128, 256, 512, 1,024, 2,048, and 4,096 nodes are performed, which
correspond to 2,048, 4,096, 8,192, 16,384, 32,768, and 65,536 MPI processes, re-
spectively. Weak scaling of the problem size grid is used such that each process
generates an 8 MB output/checkpoint file periodically (10 checkpoints in each run).

222

7.10 Summary

0

10

20

30

40

50

60

64 128 256 512 1024 2048 4096

P
er

fo
rm

an
ce

Im

p
ro

ve
m

en
t

(%
)

Number of nodes

Genarray3D - S3D Workload Benchmark

POSIX I/O
MPI-IO
HDF5

Figure 7.15: Average I/O bandwidth improvement for S3D workload.

The I/O bandwidth measurement is performed for default (ADIOS) and balanced
data placement (ADIOS with TAPP-IO) by running three Genarray3D simulations
within the same allocation.

Figure 7.15 displays the summary of the I/O bandwidth improvements observed
for S3D-IO. The improvements are averaged over ten runs for each configuration.
It can be observed that even for small node count runs the performance can be
improved. For large-scale runs, we observe that TAPP-IO significantly improves the
I/O bandwidth. This is consistent with the IOR synthetic benchmark performance
results. For large node/processor counts, applications can directly benefit from
TAPP-IO without any additional code changes.

7.10 Summary
This chapter has introduced Aequilibro, a transparent unification of BPIO and ADIOS,
and TAPP-IO, a dynamic, shared data placement framework, which transparently
intercepts file creation calls. Both tools provide the user with a transparent solution
that takes full advantage of the optimizations done at the interconnect level and the
load balancing done at the file system level. Large-scale applications can directly
benefit from the BPIO end-to-end and per job I/O performance improvements, and
also leverage the optimization presented through the fine-grained routing methodology.
Also, both solutions tune the file layout in accordance with the presented best practices
for large-scale file I/O. While Aequilibro only supports the file-per-process access
pattern, TAPP-IO also provides a balancing mechanism for single shared file accesses.

The effectiveness of both Aequilibro and TAPP-IO has been evaluated on the Titan
supercomputer. IOR, a synthetic benchmark, and S3D, a real-world HPC workload,
have been utilized to analyze the performance for POSIX I/O, MPI-IO, and HDF5
in terms of bandwidth, application execution time, and interferences. The evaluation

223

7 Resource Contention Mitigation at Scale

has been performed over an extended period of time (i.e., over three months) in
order to provide conclusive results. The evalation results have demonstrated that
both Aequilibro and TAPP-IO translate the benefits of BPIO transparently into
an application, while providing consistent performance improvements for different
node allocations. For example, POSIX I/O and MPI-IO can be improved by up to
50% for large-scale runs (i.e., more than 1024 allocated nodes), while HDF5 shows
performance improvements of up to 32%.

224

C
h

a
p

t
e

r

8
Conclusion

Today’s supercomputing systems comprise heterogeneous system architectures. Their
software environments require to be carefully tuned to excel in reliability, programma-
bility, and usability, but also to cope with the extreme concurrency and heterogeneity
of today’s and future systems. One key observation has been that the performance of
such systems is dominated by the time spent in communication and I/O, which highly
depends on the capabilities of the interconnection network and its software ecosystem.
The aim of this work was to resolve the I/O, communication, and concurrency gaps by
designing, implementing, and evaluating intermediate software layers for the Extoll
network technology. In addition, the work has been complemented by a research
study targeting the Titan supercomputing system in order to gain valuable insights
on the impact of the I/O gap at larger scales.
The first contribution has presented the network-attached accelerator (NAA)

approach, which proposes a novel communication architecture for scaling the number
of accelerators and compute nodes independently. The NAA design leverages two
innovative features of the Extoll technology, the SMFU and remote register file
accesses, which allow the remote configuration and operation of accelerator devices
over the network. This work has focused on the design and the implementation
of an intermediate software layer, which allows the disaggregation of accelerator
devices from their PCIe hosts, and introduces a unique technique to virtualize remote
accelerator devices. NAA enables accelerator-to-accelerator direct communication
without local host interaction and dynamic compute resources allocation, which
makes this work particularly interesting for the design of future exascale systems. Two
prototype systems have been evaluated for two different classes of accelerator devices:

225

8 Conclusion

Intel Xeon Phi coprocessors and NVIDIA GPUs. The performance evaluation has
demonstrated that the communication time for direct accelerator communication
can be significantly reduced. Also, the NAA design has been utilized to enable the
booster cluster, which has been deployed in the DEEP prototype system.

The second contribution has evolved around the need to provide high-performance
SANs with the support for legacy codes and protocols. Even today, the TCP/IP
protocol suite, together with the Sockets interface, is one of the most dominant
standards for end-to-end network communication. This work has introduced two
protocols, which target the acceleration of traditional TCP/IP communication over
Extoll. First, Ethernet over Extoll (EXT-Eth) has been presented. The protocol
provides IP addressing and address resolution, but also leverages Extoll’s high
performance capabilities through two-sided, asynchronous RDMA read operations.
The second protocol is Direct Sockets over Extoll (EXT-DS), which provides kernel
bypass data transfers for TCP point-to-point communication. For both protocols,
the evaluation of the prototype implementations has shown promising results. In
addition, EXN, the network driver implementing EXT-Eth, has actively been used
in the DEEP and DEEP-ER prototype systems. In DEEP, EXN has been used to
provide the SSH login channel between the booster nodes. In DEEP-ER, BeeGFS
has been run on top of EXN to provide the storage connectivity [220].
Another important building block of large-scale HPC facilities is the parallel file

and storage system. The third contribution of this work has focused on the Lustre
file system and its network protocol semantics. Even though Lustre is one of the
most popular file system solutions in the world, its implementation details are barely
documented. Therefore, the first part of this work has focused on the comprehensive
analysis of the Lustre network protocol (LNET) semantics. These insights have been
used to efficiently map the LNET protocol onto the Extoll technology. One particular
goal was the minimization of the required communication overhead. The prototype
implementation, called EXLND, leverages the innovative notification mechanism of
Extoll’s RMA unit, which reduces the synchronization overhead to a bare minimum.
An initial performance evaluation has shown that the bandwidth and message rates
are on par with the theoretical peak performance. The documentation of LNET
in combination with the development cycle of an RDMA-capable LND provides
invaluable insights for the entire open science HPC community.
The last but not least contribution of this work has evolved around the Titan

supercomputer and its storage system Spider II, which is based on the Lustre
technology. Load imbalance and resource contention are common problems in large-

226

8.1 Outlook

scale HPC systems. This contribution focuses on the mitigation of these problems and
has introduced the design, implementation, and evaluation of two user-friendly load
balancing frameworks, which combine the best practices recommended for large-scale
file I/O with the topology-aware BPIO algorithm. The resulting solutions distribute
the I/O workload across all available storage system components in an equal manner.
The first solution is called Aequilibro and translates the benefits of BPIO into the
platform-neutral I/O middleware ADIOS. The second framework is called TAPP-IO
and transparently intercepts file creation calls, i.e., metadata operations, to balance
the workload among all available storage targets, without the need to modify the
application code. Both frameworks have been evaluated over extended period of
time. The results obtained through these test runs have confirmed the effectiveness
of the presented solutions. For example, the performance of POSIX I/O and MPI-IO
have been improved by up to 50% for large-scale application runs, while HDF5 has
demonstrated performance improvements of up to 32%.
In summary, it can be said that the challenges that have been phrased at the

beginning of this work have been successfully addressed. By designing, implementing,
and evaluating a variety of intermediate software layers for the Extoll interconnection
technology and the Titan supercomputing system, this work contributes a comprehen-
sive study of network communication and I/O through the entire software ecosystem
in respect to the interconnection network, which makes this a valuable contribution
to both system architects and researchers. In addition, this is the first work that
efficiently leverages all hardware capabilities of the Extoll NIC, thus, proving the
universal applicability of the Extoll research project to the HPC domain.

8.1 Outlook
For future work addressing the Extoll software environment with respect to the
support of different communication protocols, but also the optimization of the
presented load balancing techniques, several possible improvements can be identified:

Network-Attached Accelerators and VPCI

While the booster implementation has been successful and is rather robust, VPCI is
currently limited to one host. This limitation is imposed by the fact that Extoll maps
the accelerator’s device memory over the local SMFU BAR window. In addition,
VPCI adds the accelerator as a virtual PCI device to the local PCI hierarchy. Future
work needs to explore how devices such as GPUs can be efficiently accessed by all

227

8 Conclusion

compute nodes in a local network. One possible solution is the adoption of the Global
GPU Address Space architecture [99]. However, this would require a design shift in
the SMFU configuration. Instead of utilizing the limited interval setup, the address
mask approach could be used to provide a distributed shared address space.

TCP/IP Protocol Support

The current design of EXT-Eth and its network interface EXN does not support
IP multicast groups. To cope with this limitation, a combination of hardware-
backed routing table configuration and additional software is needed to emulate the
promiscuous mode. In addition, the current implementation of AF_EXTL does not
support RMA operations yet, which are required for both the accelerated BCopy
mode and the true zero-copy data transfer mode.

Lustre Networking Support through EXLND

The present-day implementation of EXLND utilizes the immediate send transmission
protocol only for messages of type ACK. By extending the usage of immediate send
to small PUT and GET messages, it is expected that the overall network performance
is improved, but also that the associated overhead can be reduced. In addition,
EXLND does not support the multi-rail routing feature of recent Lustre releases yet.
This feature allows LNET routers to be added as peers with multiple interfaces and
ensures equal traffic distribution among all routers.

Resource Contention Mitigation Techniques

Aequilibro and TAPP-IO both utilize a load balancing heuristic based on a weighted
cost function, but do not consider current system statistics or the filling level of
OSTs. The future version of TAPP-IO will be backed by an “end-to-end control
plane”. The balancing framework will be complemented by a global coordinator,
which gathers statistics from the MDSs and OSSs, collects feedback, and supplies
placement results based on a prediction model back to the clients. On the client
side, TAPP-IO will interact with a MySQL database, which contains the predicted
placement information, i.e., the OSTs and stripe size.

228

List of Abbreviations

ACL Access Control List
ADIOS Adaptable I/O System
AN Accelerator Node
API Application Programming Interface
APIC Advanced Programmable Interrupt Controller
ARP Address Resolution Protocol
ASIC Application Specific Integrated Circuit
ATU Address Translation Unit
AZ-SDP Asynchronous Zero-Copy SDP
BAR Base Address Register
BCopy Buffered Copy
BI Booster Interface
BIC Booster Interface Card
BIOS Basic Input/Output System
BN Booster Node
BNC Booster Node Card
BPIO Balanced Placement I/O
CN Compute Node
CPU Central Processing Unit
CQ Completion Queue
CRC Cyclic Redundancy Check
CUDA Compute Unified Device Architecture
DARPA Defense Advanced Research Projects Agency
DDP Direct Data Placement
DEEP Dynamical Exascale Entry Platform
DEEP-ER DEEP – Extended Reach
DEEP-EST . . . DEEP – Extreme Scale Technologies
DHCP Dynamic Host Configuration Protocol
DMA Direct Memory Access

229

8 Conclusion

DNE Lustre Distributed Namespace
EMP Extoll Management Program
EOP End of Packet
EXLND Extoll Lustre Network Driver
EXT-DS Direct Sockets over Extoll
EXT-Eth Ethernet over Extoll
FGR Fine-Grained Routing
FID File Identifier
FIFO First In First Out
GAT Global Address Table
GATe Global Address Table Entry
GGAS Global GPU Address Spaces
GPGPU General Purpose Graphics Processing Unit
GPU Graphics Processing Unit
HBM2 High Bandwidth Memory 2
HCA Host Channel Adapter
HDF5 Hierarchical Data Format v5
HPC High Performance Computing
HPL High-Performance Linpack
HT HyperTransport
HToC HyperTransport over CAG
I/O Input/Output
IBTA InfiniBand Trade Association
ICMPv6 Internet Control Message Protocol for IPv6
IGMP Internet Group Management Protocol
ION I/O Forwarding Nodes
IP Internet Protocol
IPv4 Internet Protocol Version 4
IPv6 Internet Protocol Version 6
IRQ Interrupt Request
ITR Interrupt Throttling Rate
iWARP Internet Wide Area RDMA Protocol
LAA Locally Administered Address
LAN Local Area Network
LDLM Lustre Distributed Lock Manager
LMV Logical Metadata Volume

230

8.1 Outlook

LND Lustre Network Driver
LNET Lustre Network Protocol
LOV Logical Object Volume
MAC Address Media Access Control Address
MD Memory Descriptor
MDC Metadata Client
MDS Metadata Server
MDT Metadata Target
ME Match Entry
MGC Management Client
MGS Management Server
MGT Management Target
MIC Many Integrated Core
MMIO Memory-Mapped I/O
MMU Memory Management Unit
MPA Marker PDU Aligned
MPI Message Passing Interface
MPP Massively Parallel Multi-Processor
MSI Message Signaled Interrupt
MTL Matching Transport Layer
MTT Message Type Tag
MTU Maximum Transmission Unit
NAA Network-Attached Accelerators
NIC Network Interface Controller
NID Network Identifier
NLA Network Logical Address
NLP Network Logical Page
NLPA Network Logical Page Address
NPD Neighbor Discovery Protocol
NUMA Non-Uniform Memory Access
OFED OpenFabrics Enterprise Distribution
OID Object Identifier
OMB OSU Micro-Benchmarks
OS Operating System
OSC Object Storage Client
OSS Object Storage Server

231

8 Conclusion

OST Object Storage Target
OUI Organizationally Unique Identifier
PCI Peripheral Component Interconnect
PCIe Peripheral Component Interconnect Express
PD Protection Domain
PDU Protocol Data Unit
PGAS Partitioned Global Address Space
PIC Function-independent Code
PIO Programmed Input/Output
PMPI Profiling interface to MPI
POSIX Portable Operating System Interface
QP Queue Pair
RAM Random Access Memory
RC Reliable Connected
RDMA Remote Direct Memory Access
RDMAP RDMA Protocol
RMA Remote Memory Access
RoCE RDMA over Converged Ethernet
RPC Remote Procedure Call
RRA Remote Register File Access
SAN System Area Network
SCI Scalable Coherent Interface
SCIF Symmetric Communication Interface
SCTP Stream Control Transmission Protocol
SDP Sockets Direct Protocol
SGE Scatter/Gather Elements
SHOC Scalable Heterogeneous Computing
SIONlib Scalable I/O library
SMFU Shared Memory Functional Unit
SMP Symmetric Multiprocessor
SMX Streaming Multiprocessor Unit
SOP Start of Packet
SPMD Single Program Multiple Data
SSF Single Shared File
TAPP-IO Transparent Automatic Placement of Parallel I/O
TCP Transmission Control Protocol

232

8.1 Outlook

TLB Translation Look-aside Buffer
TOR Top-of-the-Rack
UAA Universally Administered Address
UD Unreliable Datagram
UDP User Datagram Protocol
UEFI Unified Extensible Firmware Interface
UMA Uniform Memory Access
UPC Universal Parallel C
VELO Virtualized Engine for Low Overhead
VFS Virtual File System
VPID Virtual Process Identifier
WC Work Completion
ZCopy Zero-Copy
ZFS Zettabyte File System

233

List of Figures

1.1 TOP1 system performance and power consumption development. . . 2
1.2 Key factors influencing the total application execution time. 4

2.1 Shared memory system architectures. 10
2.2 Distributed memory architecture. 10
2.3 Communication architecture abstraction following Culler et al. 11
2.4 Communication models in distributed memory systems. 15
2.5 Basic send/receive sequence. 17
2.6 Remote Direct Memory Access operations. 17
2.7 Remote load and store operations. 17
2.8 MPI eager protocol. 20
2.9 MPI rendezvous protocol. 21
2.10 Abstract model of HPC system with external file system. 24
2.11 Typical parallel I/O architecture for data-intensive sciences. 25
2.12 Schemes of storage systems attached to a HPC system. 28
2.13 Single writer I/O pattern. 32
2.14 File-per-process I/O pattern. 32
2.15 Single shared file I/O patterns. 33

3.1 Overview of the Extoll NIC top-level diagram. 36
3.2 Overview of notification mechanism for Extoll PUT and GET. 38
3.3 Sized PUT/GET software descriptor format. 39
3.4 VELO message software descriptor format. 40
3.5 SMFU’s address space layout for the interval configuration. 41
3.6 ATU address translation overview. 43
3.7 Overview of the PCIe Bridge unit. 45
3.8 Overview of the Extoll software environment. 47
3.9 Overview of Infiniband HCA system integration. 49
3.10 PCIe topology. 51

235

List of Figures

3.11 MPI performance overview. 53

4.1 Accelerator development trend in the TOP500 since 2011. 56
4.2 The DEEP Cluster-Booster concept. 58
4.3 PCI Express configuration space header types. 60
4.4 Base address register. 61
4.5 MSI Capability register set for 64-bit address size. 62
4.6 Linux PCI Express enumeration example. 63
4.7 Simplified architectural overview of an Intel Xeon Phi Coprocessor. . 65
4.8 Nvidia’s Kepler GK110 architecture + DRAM 66
4.9 NAA architecture diagram: system versus user view. 70
4.10 PCI Express tree as seen by the Linux operating system with one

network-attached accelerator device. 71
4.11 Abstract software stack view. 73
4.12 Memory mapping between a cluster node and two accelerators. 75
4.13 Interrupt handling within the booster. 77
4.14 System and user view. 79
4.15 Hardware components. 80
4.16 BIC software stack. 81
4.17 Communication paths. 84
4.18 Micro-benchmarks performance of internode MIC-to-MIC communi-

cation using the Extoll interconnect. 86
4.19 Half round-trip latency performance of internode MIC-to-MIC com-

munication using MPI. 87
4.20 Bandwidth and bidirectional bandwidth performance of internode

MIC-to-MIC communication using MPI. 87
4.21 Communication time for the bead-spring polymer melt benchmark. . 89
4.22 Overall application time for 64 threads, 32 Threads/MIC. 89
4.23 Production-ready GreenICE cube. 90
4.24 Control flow of PCI configuration space accesses. 94

5.1 Comparison of the OSI and TCP/IP reference models. 102
5.2 Overview of the TCP/IP data transmission path. 106
5.3 Overview of the TCP/IP data reception path. 107
5.4 Schematic overview of the NAPI functionality. 108
5.5 Overview of interconnects and protocols in the OpenFabrics stack. . . 112
5.6 Overview of the Extoll software stack with TCP/IP extensions. . . . 116

236

List of Figures

5.7 Ethernet over Extoll software frame format. 117
5.8 Transmission of large messages via eager protocol. 118
5.9 Transmission of large messages via rendezvous protocol. 119
5.10 RMA standard notification format. 120
5.11 Payload layout after RMA MTU fragmentation. 121
5.12 MAC address layout universal versus local. 123
5.13 Extoll MAC address layout. 124
5.14 Internet Protocol (IPv4) over Ethernet ARP packet. 125
5.15 Path of an incoming packet in NAPI mode. 128
5.16 Interrupt throttling rate state transitions of the ixgbe driver. 130
5.17 Overview of system calls used in stream sockets connection. 133
5.18 Relation between socket handles, ports, and virtualized hardware. . . 134
5.19 BCopy transmission flow. 137
5.20 RMA transfer sequence and buffer copies for BCopy mode. 137
5.21 ZCopy read transmission flow. 138
5.22 ZCopy write transmission flow. 139
5.23 TCP state transition diagram. 140
5.24 Overview of the socket software stack. 142
5.25 Overview of the Kernel FIFO usage with different message types. . . 144
5.26 Netperf bandwidth performance for TCP streaming connections. . . . 148
5.27 Netperf bandwidth performance for EXN with different TCP/IP

tuning configurations. 149
5.28 TCP/IP PingPong benchmark results for TCP connections. 150
5.29 Host CPU utilization during netperf bandwidth test. 151
5.30 OMB latency performance comparing Skylake and Haswell. 152
5.31 OMB bandwidth performance comparing Skylake and Haswell. 152
5.32 OMB message rate performance comparing Skylake and Haswell. . . . 152

6.1 Lustre file system components in a basic setup. 157
6.2 An overview of the internal Lustre architecture. 158
6.3 Overview of the LNET software architecture. 159
6.4 Illustration of the Lustre LNET addressing scheme. 160
6.5 Overview of Lustre I/O operations. 162
6.6 Lustre file layout overview. 163
6.7 LNET API naming conventions. 164
6.8 Overview of LNetPut() communication sequence. 168
6.9 Overview of LNetGet() communication sequence. 168

237

List of Figures

6.10 Lustre software environment with EXLND. 172
6.11 Physical buffer lists. 174
6.12 Relation of work requests, scatter/gather elements, main memory,

memory regions and protection domain. 175
6.13 Overview of LNetPut() communication sequence over Extoll. 178
6.14 Overview of LNetGet() communication sequence over Extoll. 178
6.15 The movement of list elements representing unfinished transfers. . . . 181
6.16 LNET self-test: bulk read test simulating Lustre I/O traffic. 184
6.17 LNET self-test: bulk write test simulating Lustre I/O traffic. 185
6.18 LNET self-test: ping test simulating Lustre metadata traffic. 185

7.1 Infrastructure and I/O path between Titan and Spider II. 190
7.2 Default resource usage distribution on Spider II. 192
7.3 Topological XY representation of Titan’s I/O routers. 197
7.4 Aequilibro software stack. 204
7.5 Shared file layout patterns. 208
7.6 TAPP-IO runtime environment. 210
7.7 Dynamic interception of I/O functions at runtime. 211
7.8 Performance improvements for IOR large-scale runs. 217
7.9 Average performance gains (in %): TAPP-IO vs. Default placement. . 218
7.10 Average application execution time for MPI-IO with 4 GB block size. 218
7.11 Bandwidth performance for IOR (I) to (V) for different file sizes. . . . 219
7.12 IOR bandwidth performance for MPI-IO and single shared file. 220
7.13 Scaling of aggregate write bandwidth. 221
7.14 I/O performance variability due to external interference. 222
7.15 Average I/O bandwidth improvement for S3D workload. 223

238

List of Tables

3.1 Overview of possible RMA notification type combinations. 37
3.2 Overview of PCIe backdoor registers needed for configuration. 46
3.4 Infiniband versus Ethernet performance comparison. 50

4.1 Description of LAMMPS timings output. 88
4.3 Overview of the benchmark results. 98

5.1 TCP/IP protocol overhead for Gigabit Ethernet under Linux 2.6.18. . 110
5.3 Overview of VELO user tags. 135

6.1 Overview of LNET message types. 167

7.1 IOR benchmark variants. 213

239

Listings

4.1 Overview of the VPCI device structure. 92
4.2 Generic PCI function pointers defined in <include/linux/pci.h>. . . . 93

5.1 Example output of ifconfig for Extoll network interface exn0. 129
5.2 TCP host kernel parameters configuration via sysctl. 146

6.1 The LND struct. 165
6.2 A memory descriptor fragment with a kernel virtual address. 170
6.3 A page-based fragment of a memory descriptor. 170
6.4 Lustre configuration for EXLND. 182

7.1 Example ADIOS XML configuration file. 203
7.2 Overview of file create and open calls. 205
7.3 llapi open and create calls. 205

241

References

[1] Moshe Y. Vardi. ‘Science Has Only Two Legs’. In: Communications of the ACM
53.9 (Sept. 2010), pp. 5–5. issn: 0001-0782. doi: 10.1145/1810891.1810892.

[2] R. H. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bassous, and A. R. LeBlanc.
‘Design of ion-implanted MOSFET’s with very small physical dimensions’.
In: IEEE Journal of Solid-State Circuits 9.5 (Oct. 1974), pp. 256–268. issn:
0018-9200. doi: 10.1109/JSSC.1974.1050511.

[3] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, and D. Burger.
‘Dark silicon and the end of multicore scaling’. In: 38th Annual International
Symposium on Computer Architecture (ISCA). June 2011, pp. 365–376.

[4] TOP500 Supercomputer Sites. url: http://www.top500.org/ (visited on
10/01/2018).

[5] E. Strohmaier, H. W. Meuer, J. Dongarra, and H. D. Simon. ‘The TOP500
List and Progress in High-Performance Computing’. In: Computer 48.11 (Nov.
2015), pp. 42–49. issn: 0018-9162. doi: 10.1109/MC.2015.338.

[6] Benjamin Klenk and Holger Fröning. ‘An Overview of MPI Characteristics
of Exascale Proxy Applications’. In: High Performance Computing. Ed. by
Julian M. Kunkel, Rio Yokota, Pavan Balaji, and David Keyes. Cham: Springer
International Publishing, 2017, pp. 217–236. isbn: 978-3-319-58667-0.

[7] ASCR Advisory Committee. The Opportunities and Challenges of Exascale
Computing. Exascale Advisory Committee Report. 2010. url: https://
science.energy.gov/ascr/ascac/ (visited on 10/07/2018).

[8] Peter Kogge et al. ExaScale Computing Study: Technology Challenges in
Achieving Exascale Systems. http://www.cse.nd.edu/Reports/2008/TR-
2008-13.pdf. Sept. 2008.

243

https://doi.org/10.1145/1810891.1810892
https://doi.org/10.1109/JSSC.1974.1050511
http://www.top500.org/
https://doi.org/10.1109/MC.2015.338
https://science.energy.gov/ascr/ascac/
https://science.energy.gov/ascr/ascac/
http://www.cse.nd.edu/Reports/2008/TR-2008-13.pdf
http://www.cse.nd.edu/Reports/2008/TR-2008-13.pdf

References

[9] Sarah Neuwirth, Dirk Frey, Mondrian Nuessle, and Ulrich Bruening. ‘Scalable
Communication Architecture for Network-Attached Accelerators’. In: IEEE
21st International Symposium on High Performance Computer Architecture
(HPCA). IEEE. 2015, pp. 627–638. doi: 10.1109/HPCA.2015.7056068.

[10] Sarah Neuwirth, Dirk Frey, and Ulrich Bruening. ‘Communication Models for
Distributed Intel Xeon Phi Coprocessors’. In: 2015 IEEE 21st International
Conference on Parallel and Distributed Systems (ICPADS). Dec. 2015, pp. 499–
506. doi: 10.1109/ICPADS.2015.69.

[11] Sarah Neuwirth, Dirk Frey, and Ulrich Bruening. ‘Network-Attached Acceler-
ators: Host-independent Accelerators for Future HPC Systems’. In: Interna-
tional Conference for High Performance Computing, Networking, Storage and
Analysis (SC15). Poster paper. 2015.

[12] Ian Cutress. Host-Independent PCIe Compute: Where We’re Going, We Don’t
Need Nodes. Dec. 2015. url: https://www.anandtech.com/show/9851/
hostindependent- pcie- compute- where- were- going- we- dont- need-
nodes (visited on 10/04/2018).

[13] Sarah Neuwirth, Ulrich Bruening, and Mondrian Nuessle. ‘Measurements with
an Extreme Low-Latency Interconnect on HP Servers’. In: High Performance
- Consortium for Advanced Scientific and Technical Computing User Group
Meeting (HP-CAST 25). Nov. 2015.

[14] Sarah Neuwirth, Mondrian Nuessle, and Ulrich Bruening. ‘Alternative Low-
latency Interconnect Options’. In: High Performance - Consortium for Ad-
vanced Scientific and Technical Computing User Group Meeting (HP-CAST
27). Nov. 2016.

[15] Sarah Neuwirth and Tobias Groschup. ‘Evaluation of Lustre RDMA Per-
formance over Extoll’. In: ISC High Performance Conference 2018 (ISC18),
Exhibitor Forum. June 2018.

[16] Sarah Neuwirth, Tobias Groschup, and Ulrich Bruening. ‘Extoll Lustre Net-
work Driver – Overview and Preliminary Results’. In: Lustre Administrator
and Developer Workshop 2018 (LAD’18). Sept. 2018.

[17] Sarah Neuwirth, Feiyi Wang, Sarp Oral, Sudharshan Vazhkudai, James Rogers,
and Ulrich Bruening. ‘Using Balanced Data Placement to Address I/O Con-
tention in Production Environments’. In: 2016 28th International Symposium
on Computer Architecture and High Performance Computing (SBAC-PAD).
Oct. 2016, pp. 9–17. doi: 10.1109/SBAC-PAD.2016.10.

244

https://doi.org/10.1109/HPCA.2015.7056068
https://doi.org/10.1109/ICPADS.2015.69
https://www.anandtech.com/show/9851/hostindependent-pcie-compute-where-were-going-we-dont-need-nodes
https://www.anandtech.com/show/9851/hostindependent-pcie-compute-where-were-going-we-dont-need-nodes
https://www.anandtech.com/show/9851/hostindependent-pcie-compute-where-were-going-we-dont-need-nodes
https://doi.org/10.1109/SBAC-PAD.2016.10

[18] Sarah Neuwirth, Feiyi Wang, Sarp Oral, and Ulrich Bruening. ‘Automatic
and Transparent Resource Contention Mitigation for Improving Large-scale
Parallel File System Performance’. In: 2017 IEEE 23rd International Confer-
ence on Parallel and Distributed Systems (ICPADS). Dec. 2017, pp. 604–613.
doi: 10.1109/ICPADS.2017.00084.

[19] Sarah Neuwirth, Feiyi Wang, Sarp Oral, and Ulrich Bruening. ‘An I/O Load
Balancing Framework for Large-scale Applications (BPIO 2.0)’. In: Interna-
tional Conference for High Performance Computing, Networking, Storage and
Analysis (SC16). Poster paper. 2016.

[20] David Culler, Jaswinder Pal Singh, and Anoop Gupta. Parallel Computer Ar-
chitecture: A Hardware/Software Approach. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 1998. isbn: 978-0080573076.

[21] William James Dally and Brian Patrick Towles. Principles and Practices of
Interconnection Networks. Morgan Kaufmann Publishers Inc., 2003. isbn:
978-0122007514.

[22] Tse-yun Feng. ‘A Survey of Interconnection Networks’. In: Computer 14.12
(Dec. 1981), pp. 12–27. issn: 0018-9162. doi: 10.1109/C-M.1981.220290.

[23] Ulrich Bruening. Parallel Computer Architecture. Lecture Notes. 2017.

[24] Jose Duato, Sudhakar Yalamanchili, and Lionel Ni. Interconnection Networks:
An Engineering Approach. 1st. Los Alamitos, CA, USA: IEEE Computer
Society Press, 1997. isbn: 978-0818678004.

[25] MPI Forum. MPI: A Message-Passing Interface Standard – Version 1.3. url:
https://www.mpi-forum.org/docs/ (visited on 07/08/2018).

[26] D. B. Gustavson. ‘The Scalable Coherent Interface and related standards
projects’. In: IEEE Micro 12.1 (Feb. 1992), pp. 10–22. issn: 0272-1732. doi:
10.1109/40.124376.

[27] John L. Hennessy and David A. Patterson. Computer Architecture: A Quan-
titative Approach. 5th ed. Elsevier, 2011. isbn: 978-8178672663.

[28] David Culler, Richard Karp, David Patterson, Abhijit Sahay, Klaus Erik
Schauser, Eunice Santos, Ramesh Subramonian, and Thorsten von Eicken.
‘LogP: Towards a Realistic Model of Parallel Computation’. In: Proceedings of
the Fourth ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming. PPOPP ’93. San Diego, California, USA: ACM, 1993, pp. 1–12.
isbn: 0-89791-589-5. doi: 10.1145/155332.155333.

245

https://doi.org/10.1109/ICPADS.2017.00084
https://doi.org/10.1109/C-M.1981.220290
https://www.mpi-forum.org/docs/
https://doi.org/10.1109/40.124376
https://doi.org/10.1145/155332.155333

References

[29] MPICH – High-Performance Portable MPI. url: https://www.mpich.org/
(visited on 07/20/2018).

[30] Network-Based Computing Laboratory. MVAPICH: MPI over InfiniBand,
Omni-Path, Ethernet/iWARP, and RoCE. url: http://mvapich.cse.ohio-
state.edu/ (visited on 07/20/2018).

[31] Software in the Public Interest (SPI). Open MPI: Open Source High Per-
formance Computing. url: https : / / www . open - mpi . org/ (visited on
07/20/2018).

[32] Katherine Yelick et al. ‘Productivity and Performance Using Partitioned
Global Address Space Languages’. In: Proceedings of the 2007 International
Workshop on Parallel Symbolic Computation. PASCO ’07. London, Ontario,
Canada: ACM, 2007, pp. 24–32. isbn: 978-1-59593-741-4. doi: 10.1145/
1278177.1278183.

[33] UPC Consortium. UPC Language Specifications Version 1.3. url: https:
//upc-lang.org/assets/Uploads/spec/upc-lang-spec-1.3.pdf (visited
on 07/22/2018).

[34] Robert W. Numrich and John Reid. ‘Co-array Fortran for Parallel Pro-
gramming’. In: SIGPLAN Fortran Forum 17.2 (Aug. 1998), pp. 1–31. issn:
1061-7264. doi: 10.1145/289918.289920.

[35] LBNL and U.C. Berkeley. GASNet Specification, Version 1.8.1. url: https:
//gasnet.lbl.gov/dist/docs/gasnet.html (visited on 07/22/2018).

[36] High Performance Computing Tools group at the University of Houston and
Extreme Scale Systems Center, Oak Ridge National Laboratory. OpenSHMEM
Application Programming Interface, Version 1.3. url: http://openshmem.
org/site/sites/default/site_files/OpenSHMEM-1.3.pdf (visited on
07/22/2018).

[37] GASPI-Forum. GASPI: Global Address Space Programming Interface – Speci-
cation of a PGAS API for communication, Version 17.1. Feb. 2017.

[38] Andrew D. Birrell and Bruce Jay Nelson. ‘Implementing Remote Procedure
Calls’. In: ACM Transactions on Computer Systems (TOCS) 2.1 (Feb. 1984),
pp. 39–59. issn: 0734-2071. doi: 10.1145/2080.357392.

[39] Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-Dusseau. Operating Systems:
Three Easy Pieces. Version 0.92. Arpaci-Dusseau Books, 2015.

246

https://www.mpich.org/
http://mvapich.cse.ohio-state.edu/
http://mvapich.cse.ohio-state.edu/
https://www.open-mpi.org/
https://doi.org/10.1145/1278177.1278183
https://doi.org/10.1145/1278177.1278183
https://upc-lang.org/assets/Uploads/spec/upc-lang-spec-1.3.pdf
https://upc-lang.org/assets/Uploads/spec/upc-lang-spec-1.3.pdf
https://doi.org/10.1145/289918.289920
https://gasnet.lbl.gov/dist/docs/gasnet.html
https://gasnet.lbl.gov/dist/docs/gasnet.html
http://openshmem.org/site/sites/default/site_files/OpenSHMEM-1.3.pdf
http://openshmem.org/site/sites/default/site_files/OpenSHMEM-1.3.pdf
https://doi.org/10.1145/2080.357392

[40] Sandia National Laboratories (SNL). The Portals 4.1 Network Programming
Interface. url: http://www.cs.sandia.gov/Portals/portals41.pdf
(visited on 07/22/2018).

[41] W. Richard Stevens, Bill Fenner, and Andrew M. Rudoff. UNIX Network
Programming Volume 1, Third Edition: The Sockets Networking API. Addison-
Wesley Professional Computing Series. Addison-Wesley, 2003. isbn: 978-
0131411555.

[42] Robert Latham, Robert Ross, Brent Welch, and Katie Antypas. Parallel I/O
in Practice. Tutorial held in conjunction with SC12 International Conference
for High Performance Computing, Networking, Storage and Analysis. Nov.
2012.

[43] Prabhat and Quincey Koziol. High Performance Parallel I/O. Ed. by Horst
Simon. Chapman & Hall/CRC Computational Science. CRC Press, Oct. 2014.
isbn: 978-1466582347.

[44] NERSC. Introduction to Scientific I/O. url: http://www.nersc.gov/
users/training/online-tutorials/introduction-to-scientific-i-o/
(visited on 07/09/2018).

[45] Benjamin Depardon, Gaël Le Mahec, and Cyril Séguin. Analysis of Six
Distributed File Systems. Research Report. SysFera, Feb. 2013, p. 44. url:
https://hal.inria.fr/hal-00789086.

[46] Eliezer Levy and Abraham Silberschatz. ‘Distributed File Systems: Concepts
and Examples’. In: ACM Comput. Surv. 22.4 (Dec. 1990), pp. 321–374. issn:
0360-0300. doi: 10.1145/98163.98169.

[47] T. D. Thanh, S. Mohan, E. Choi, S. Kim, and P. Kim. ‘A Taxonomy and
Survey on Distributed File Systems’. In: 2008 Fourth International Conference
on Networked Computing and Advanced Information Management. Vol. 1.
Sept. 2008, pp. 144–149. doi: 10.1109/NCM.2008.162.

[48] IEEE and The Open Group. POSIX.1-2017: The Open Group Base Spec-
ifications Issue 7, 2018 edition, IEEE Standard 1003.1-2017. url: http:
//pubs.opengroup.org/onlinepubs/9699919799/ (visited on 07/18/2018).

[49] Argonne National Laboratory. ROMIO: A High-Performance, Portable MPI-
IO Implementation. url: http://www.mcs.anl.gov/projects/romio/
(visited on 07/18/2018).

247

http://www.cs.sandia.gov/Portals/portals41.pdf
http://www.nersc.gov/users/training/online-tutorials/introduction-to-scientific-i-o/
http://www.nersc.gov/users/training/online-tutorials/introduction-to-scientific-i-o/
https://hal.inria.fr/hal-00789086
https://doi.org/10.1145/98163.98169
https://doi.org/10.1109/NCM.2008.162
http://pubs.opengroup.org/onlinepubs/9699919799/
http://pubs.opengroup.org/onlinepubs/9699919799/
http://www.mcs.anl.gov/projects/romio/

References

[50] Mike Folk, Gerd Heber, Quincey Koziol, Elena Pourmal, and Dana Robin-
son. ‘An Overview of the HDF5 Technology Suite and Its Applications’. In:
Proceedings of the EDBT/ICDT 2011 Workshop on Array Databases. AD
’11. Uppsala, Sweden: ACM, 2011, pp. 36–47. isbn: 978-1-4503-0614-0. doi:
10.1145/1966895.1966900.

[51] The HDF Group. HDF5 File Format Specification Version 3.0. url: https://
support.hdfgroup.org/HDF5/doc/H5.format.html (visited on 07/17/2018).

[52] Jay F. Lofstead, Scott Klasky, Karsten Schwan, Norbert Podhorszki, and
Chen Jin. ‘Flexible IO and Integration for Scientific Codes Through The
Adaptable IO System (ADIOS)’. In: 6th International Workshop on Challenges
of Large Applications in Distributed Environments. 2008, pp. 15–24. doi:
10.1145/1383529.1383533.

[53] Oak Ridge National Laboratory (ORNL). The Adaptable IO System (ADIOS).
url: https://www.olcf.ornl.gov/center-projects/adios/ (visited on
03/01/2018).

[54] Wolfgang Frings, Felix Wolf, and Ventsislav Petkov. ‘Scalable Massively
Parallel I/O to Task-local Files’. In: Proceedings of the Conference on High
Performance Computing Networking, Storage and Analysis (SC09). SC ’09.
Portland, Oregon: ACM, 2009, 17:1–17:11. isbn: 978-1-60558-744-8. doi:
10.1145/1654059.1654077.

[55] Mondrian B. Nuessle. ‘Acceleration of the hardware-software interface of a
communication device for parallel system’. PhD thesis. Universität Mannheim,
2009.

[56] M. Nuessle, B. Geib, H. Froening, and U. Bruening. ‘An FPGA-Based Custom
High Performance Interconnection Network’. In: 2009 International Confer-
ence on Reconfigurable Computing and FPGAs. Dec. 2009, pp. 113–118. doi:
10.1109/ReConFig.2009.23.

[57] Holger Froening, Mondrian Nuessle, Heiner Litz, Christian Leber, and Ulrich
Bruening. ‘On Achieving High Message Rates’. In: 2013 13th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing (CCGrid).
May 2013, pp. 498–505. doi: 10.1109/CCGrid.2013.43.

[58] Juri Schmidt. ‘Accelerating Checkpoint/Restart Application Performance in
Large-Scale Systems with Network Attached Memory’. PhD thesis. University
of Heidelberg, Dec. 2017. doi: 10.11588/heidok.00023800.

248

https://doi.org/10.1145/1966895.1966900
https://support.hdfgroup.org/HDF5/doc/H5.format.html
https://support.hdfgroup.org/HDF5/doc/H5.format.html
https://doi.org/10.1145/1383529.1383533
https://www.olcf.ornl.gov/center-projects/adios/
https://doi.org/10.1145/1654059.1654077
https://doi.org/10.1109/ReConFig.2009.23
https://doi.org/10.1109/CCGrid.2013.43
https://doi.org/10.11588/heidok.00023800

[59] Mondrian Nuessle, Patrick Scherer, and Ulrich Bruening. ‘A resource optimized
remote-memory-access architecture for low-latency communication’. In: The
38th International Conference on Parallel Processing (ICCP-09). Sept. 2009.
doi: 10.1109/ICPP.2009.62.

[60] Alexander Giese, Benjamin Kalisch, and Mondrian Nuessle. RMA2 Specifica-
tion, Revision 2.0.5. CAG Confidential.

[61] Heiner Litz, Mondrian Nuessle, Holger Froening, and Ulrich Bruening. ‘VELO:
A Novel Communication Engine for Ultra-low Latency Message Transfers’. In:
The 37th International Conference on Parallel Processing (ICCP-08). Sept.
2008. doi: 10.1109/ICPP.2008.85.

[62] H. Froening and H. Litz. ‘Efficient Hardware Support for the Partitioned
Global Address Space’. In: 2010 IEEE International Symposium on Parallel
Distributed Processing, Workshops and Phd Forum (IPDPSW). Apr. 2010,
pp. 1–6. doi: 10.1109/IPDPSW.2010.5470851.

[63] David Slogsnat, Alexander Giese, Mondrian Nüssle, and Ulrich Brüning. ‘An
Open-source HyperTransport Core’. In: ACM Trans. Reconfigurable Technol.
Syst. 1.3 (Sept. 2008), 14:1–14:21. issn: 1936-7406. doi: 10.1145/1391732.
1391734.

[64] Christian Leber. ‘Efficient Hardware for Low Latency Applications’. PhD
thesis. Universität Mannheim, 2012.

[65] Dirk Frey. Verification and Implementation of PCI Express Endpoint Remote
Configuration using EXTOLL. Diploma Thesis. Universität Mannheim. Oct.
2012.

[66] Heiner Litz. HyperTransport On-Chip (HTOC) Protocol Specification. Version
1.6, Computer Architecture Group, University of Heidelberg.

[67] Gregory F. Pfister. ‘An Introduction to the InfiniBand Architecture’. In: High
Performance Mass Storage and Parallel I/O: Technologies and Applications.
Ed. by Rajkumar Buyya, Toni Cortes, and Hai Jin. Wiley-IEEE Press, 2002.
Chap. 42, pp. 617–632. isbn: 9780470544839. doi: 10.1109/9780470544839.
ch42.

[68] HPC Advisory Council. Interconnect Analysis: 10GigE and InfiniBand in
High Performance Computing. url: http://www.hpcadvisorycouncil.com/
pdf/IB_and_10GigE_in_HPC.pdf (visited on 08/04/2018).

249

https://doi.org/10.1109/ICPP.2009.62
https://doi.org/10.1109/ICPP.2008.85
https://doi.org/10.1109/IPDPSW.2010.5470851
https://doi.org/10.1145/1391732.1391734
https://doi.org/10.1145/1391732.1391734
https://doi.org/10.1109/9780470544839.ch42
https://doi.org/10.1109/9780470544839.ch42
http://www.hpcadvisorycouncil.com/pdf/IB_and_10GigE_in_HPC.pdf
http://www.hpcadvisorycouncil.com/pdf/IB_and_10GigE_in_HPC.pdf

References

[69] Alex Netes. ‘EDR Infiniband’. In: 2015 User Group Workshop. https://www.
openfabrics . org / images / eventpresos / workshops2015 / UGWorkshop /
Friday/friday_01.pdf. Mar. 2015. (Visited on 09/23/2018).

[70] Jeff Hilland, Paul Culley, Jim Pinkerton, and Renato Recio. RDMA Protocol
Verbs Specification Version 1.0. 2003. url: https://tools.ietf.org/html/
draft-hilland-rddp-verbs-00 (visited on 08/28/2018).

[71] RDMA Core Userspace Libraries and Daemons. url: https://github.com/
linux-rdma/rdma-core (visited on 08/24/2018).

[72] PCI-SIG. PCI Express Base Specification Revision 3.0. Nov. 2010.

[73] MindShare Inc, Ravi Budruk, Don Anderson, and Tom Shanley. PCI Express
System Architecture. Ed. by Joe Winkles. Addison-Wesley Developer’s Press,
2003. isbn: 978-0321156303.

[74] Network-Based Computing Laboratory (NBCL), The Ohio State University.
OSU Micro-Benchmarks (OMB). url: http://mvapich.cse.ohio-state.
edu/benchmarks/ (visited on 08/02/2018).

[75] S. Prabhakaran, M. Neumann, S. Rinke, F. Wolf, A. Gupta, and L. V. Kale. ‘A
Batch System with Efficient Adaptive Scheduling for Malleable and Evolving
Applications’. In: 2015 IEEE International Parallel and Distributed Processing
Symposium. May 2015, pp. 429–438. doi: 10.1109/IPDPS.2015.34.

[76] European DEEP Project. url: http://www.deep-project.eu/ (visited on
07/05/2018).

[77] Gene Amdahl. ‘Validity of the Single Processor Approach to Achieving Large-
Scale Computing Capabilities’. In: AFIPS Conference Proceedings. Vol. 30.
1967, pp. 483–485. doi: 10.1145/1465482.1465560.

[78] DEEP Projects. url: https : / / www . deep - projects . eu/ (visited on
07/05/2018).

[79] Norbert Eicker and Thomas Lippert. ‘An accelerated Cluster-Architecture for
the Exascale’. In: PARS ’11, PARS-Mitteilungen, Mitteilungen - Gesellschaft
für Informatik e.V., Parallel-Algorithmen und Rechnerstrukturen 28 (Oct.
2011), pp. 110–119.

250

https://www.openfabrics.org/images/eventpresos/workshops2015/UGWorkshop/Friday/friday_01.pdf
https://www.openfabrics.org/images/eventpresos/workshops2015/UGWorkshop/Friday/friday_01.pdf
https://www.openfabrics.org/images/eventpresos/workshops2015/UGWorkshop/Friday/friday_01.pdf
https://tools.ietf.org/html/draft-hilland-rddp-verbs-00
https://tools.ietf.org/html/draft-hilland-rddp-verbs-00
https://github.com/linux-rdma/rdma-core
https://github.com/linux-rdma/rdma-core
http://mvapich.cse.ohio-state.edu/benchmarks/
http://mvapich.cse.ohio-state.edu/benchmarks/
https://doi.org/10.1109/IPDPS.2015.34
http://www.deep-project.eu/
https://doi.org/10.1145/1465482.1465560
https://www.deep-projects.eu/

[80] Norbert Eicker, Thomas Lippert, Thomas Moschny, and Estela Suarez. ‘The
DEEP project: Pursuing cluster-computing in the many-core era’. In: Proceed-
ings of the 42nd International Conference on Parallel Processing Workshops
(ICPPW) 2013, Workshop on Heterogeneous and Unconventional Cluster
Architectures and Applications. 2013, pp. 885–892. doi: 10.1109/ICPP.2013.
105.

[81] Damian A. Mallon, Norbert Eicker, Maria E. Innocenti, Giovanni Lapenta,
Thomas Lippert, and Estela Suarez. ‘On the Scalability of the Clusters-booster
Concept: A Critical Assessment of the DEEP Architecture’. In: Proceedings of
the Future HPC Systems: The Challenges of Power-Constrained Performance.
2012. doi: 10.1145/2322156.2322159.

[82] A. Kreuzer, N. Eicker, J. Amaya, and E. Suarez. ‘Application Performance
on a Cluster-Booster System’. In: 2018 IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW). May 2018, pp. 69–
78. doi: 10.1109/IPDPSW.2018.00019.

[83] Estela Suarez, Norbert Eicker, and Thomas Lippert. ‘Supercomputing Evolu-
tion at JSC’. In: vol. 49. Publication Series of the John von Neumann Institute
for Computing (NIC) NIC Series. NIC Symposium 2018, Jülich (Germany),
22 Feb 2018 - 23 Feb 2018. John von Neumann Institute for Computing, Feb.
2018, pp. 1–12. url: http://hdl.handle.net/2128/17546.

[84] Jonathan Corbet, Alessandro Rubini, and Greg Kroah-Hartman. Linux Device
Drivers, 3rd Edition. Ed. by Andy Oram. O’Reilly Media, Feb. 2009. isbn:
978-0596005900.

[85] David A. Rusling. The Linux Kernel. Online Book. 1999. url: https://www.
tldp.org/LDP/tlk/tlk.html (visited on 07/07/2018).

[86] George Chrysos. Intel Xeon Phi X100 Family Coprocessor - the Architecture.
url: https://software.intel.com/en-us/articles/intel-xeon-phi-
coprocessor-codename-knights-corner (visited on 07/07/2018).

[87] Intel Xeon Phi Coprocessor System Software Developers Guide. Intel Corpo-
ration. Mar. 2014.

[88] NVIDIA Corporation. NVIDIA’s Next Generation CUDA Compute Archiec-
ture: Kepler GK100. Whitepaper. url: https://www.nvidia.com/content/
PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf (vis-
ited on 09/05/2018).

251

https://doi.org/10.1109/ICPP.2013.105
https://doi.org/10.1109/ICPP.2013.105
https://doi.org/10.1145/2322156.2322159
https://doi.org/10.1109/IPDPSW.2018.00019
http://hdl.handle.net/2128/17546
https://www.tldp.org/LDP/tlk/tlk.html
https://www.tldp.org/LDP/tlk/tlk.html
https://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-codename-knights-corner
https://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-codename-knights-corner
https://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
https://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf

References

[89] Min Si and Yutaka Ishikawa. ‘Design of Direct Communication Facility for
Many-Core Based Accelerators’. In: IEEE 26th International Parallel and
Distributed Processing Symposium Workshops PhD Forum (IPDPSW), 2012.
May 2012, pp. 924–929. doi: 10.1109/IPDPSW.2012.113.

[90] Min Si, Yutaka Ishikawa, and Masamichi Tatagi. ‘Direct MPI Library for Intel
Xeon Phi Co-Processors’. In: Parallel and Distributed Processing Symposium
Workshops PhD Forum (IPDPSW), 2013 IEEE 27th International. May 2013,
pp. 816–824. doi: 10.1109/IPDPSW.2013.179.

[91] Sreeram Potluri, Devendar Bureddy, Khaled Hamidouche, Akshay Venkatesh,
Krishna Kandalla, Hari Subramoni, and Dhabaleswar K. Panda. ‘MVAPICH-
PRISM: A Proxy-based Communication Framework Using InfiniBand and
SCIF for Intel MIC Clusters’. In: Proceedings of the International Conference
on High Performance Computing, Networking, Storage and Analysis (SC13).
SC ’13. Denver, Colorado: ACM, 2013, 54:1–54:11. isbn: 978-1-4503-2378-9.
doi: 10.1145/2503210.2503288.

[92] Sreeram Potluri, Khaled Hamidouche, Devendar Bureddy, and Dhabaleswar K.
Panda. ‘MVAPICH2-MIC: A High Performance MPI Library for Xeon Phi
Clusters with InfiniBand’. In: Extreme Scaling Workshop (XSW), 2013. Aug.
2013, pp. 25–32. doi: 10.1109/XSW.2013.8.

[93] Matthias Noack. HAM-Heterogenous Active Messages for Efficient Offloading
on the Intel Xeon Phi. Tech. rep. Konrad-Zuse-Zentrum für Informationstech-
nik Berlin, June 2014.

[94] Matthias Noack, Florian Wende, Thomas Steinke, and Frank Cordes. ‘A
unified programming model for intra-and inter-node offloading on Xeon Phi
clusters’. In: Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis (SC14). IEEE. 2014, pp. 203–
214. doi: 10.1109/SC.2014.22.

[95] Antonio J. Peña, Carlos Reaño, Federico Silla, Rafael Mayo, Enrique S.
Quintana-Ortí, and José Duato. ‘A complete and efficient CUDA-sharing
solution for HPC clusters’. In: Parallel Computing 40.10 (2014), pp. 574–588.
issn: 0167-8191. doi: 10.1016/j.parco.2014.09.011.

[96] Amnon Barak and Amnon Shiloh. The VirtualCL (VCL) cluster platform.
2013.

[97] Alex Herrera. ‘NVIDIA GRID: Graphics accelerated VDI with the visual
performance of a workstation’. In: Nvidia Corp (2014).

252

https://doi.org/10.1109/IPDPSW.2012.113
https://doi.org/10.1109/IPDPSW.2013.179
https://doi.org/10.1145/2503210.2503288
https://doi.org/10.1109/XSW.2013.8
https://doi.org/10.1109/SC.2014.22
https://doi.org/10.1016/j.parco.2014.09.011

[98] NVIDIA Corporation. Developing a Linux Kernel Module using RDMA for
GPUDirect. url: http://docs.nvidia.com/cuda/gpudirect-rdma/index.
html (visited on 07/03/2018).

[99] Lena Oden and Holger Froning. ‘GGAS: Global GPU address spaces for effi-
cient communication in heterogeneous clusters’. In: 2013 IEEE International
Conference on Cluster Computing (CLUSTER). IEEE. 2013, pp. 1–8. doi:
10.1109/CLUSTER.2013.6702638.

[100] H. Baier et al. ‘QPACE: power-efficient parallel architecture based on IBM
PowerXCell 8i’. English. In: Computer Science - Research and Development
25.3-4 (2010), pp. 149–154. issn: 1865-2034. doi: 10.1007/s00450-010-
0122-4.

[101] The Green500 List. url: http://www.green500.org/ (visited on 07/05/2018).

[102] Ahmed Bu-Khamsin. ‘Socket Direct Protocol over PCI Express Interconnect:
Design, Implementation and Evaluation’. MA thesis. Simon Fraser University,
Canada, 2012.

[103] Akber Kazmi. ‘PCI Express and Non-Transparent Bridging support High
Availability’. In: Embedded Computing Design (Nov. 2004). url: http://
embedded-computing.com/pdfs/PLXTech.Win04.pdf.

[104] David Mayhew and Venkata Krishnan. ‘PCI Express and Advanced Switching:
Evolutionary Path to Building Next Generation Interconnects’. In: Proceedings
of the 11th Symposium on High Performance Interconnects (HOTI’03). 2003.
doi: 0-7695-2012-X/03.

[105] NVIDIA Corporation. NVIDIA NVSwitch: The World’s Highest-Bandwidth
On-Node Switch. Technical Overview. url: https://images.nvidia.com/
content/pdf/nvswitch-technical-overview.pdf (visited on 09/05/2018).

[106] NVIDIA Corporation. NVIDIA DGX-2: The World’s Most Powerful Deep
Learning System for the Most Complex AI Challenges. Data sheet. 2018.

[107] Galibier Overview. EXTOLL GmbH. url: http://extoll.de/index.php/
productsoverview/galibier (visited on 03/01/2018).

[108] OpenFabrics Alliance. OpenFabrics Enterprise Distribution (OFED) / Open-
Fabrics Software Overview. url: https://www.openfabrics.org/ofed-for-
linux/ (visited on 08/22/2018).

[109] Intel MPI Benchmarks User Guide and Methodoly Description. Intel Corpo-
ration. 2016.

253

http://docs.nvidia.com/cuda/gpudirect-rdma/index.html
http://docs.nvidia.com/cuda/gpudirect-rdma/index.html
https://doi.org/10.1109/CLUSTER.2013.6702638
https://doi.org/10.1007/s00450-010-0122-4
https://doi.org/10.1007/s00450-010-0122-4
http://www.green500.org/
http://embedded-computing.com/pdfs/PLXTech.Win04.pdf
http://embedded-computing.com/pdfs/PLXTech.Win04.pdf
https://doi.org/0-7695-2012-X/03
https://images.nvidia.com/content/pdf/nvswitch-technical-overview.pdf
https://images.nvidia.com/content/pdf/nvswitch-technical-overview.pdf
http://extoll.de/index.php/productsoverview/galibier
http://extoll.de/index.php/productsoverview/galibier
https://www.openfabrics.org/ofed-for-linux/
https://www.openfabrics.org/ofed-for-linux/

References

[110] Sandia National Laboratory (SNL). LAMMPS Molecular Dynamics Simulator.
url: http://lammps.sandia.gov/ (visited on 07/05/2018).

[111] Ulrich Bruening, Mondrian Nuessle, and Dirk Frey. ‘An Immersive Cooled
Implementation of a DEEP Booster’. In: Intel European Exascale Labs Annual
Report 2014 (July 2015).

[112] Kilian Polyak. GPUNAA – Network-Attached Accelerators Architecture with
GPGPUs. University of Mannheim. Diploma thesis (supervised by Sarah
Neuwirth and Dirk Frey). June 2016.

[113] Sudhanshu Goswami. ‘An Introduction to KProbes’. In: LWN.net (Apr. 2005).

[114] Anthony Danalis, Gabriel Marin, Collin McCurdy, Jeremy S. Meredith, Philip
C. Roth, Kyle Spafford, Vinod Tipparaju, and Jeffrey S. Vetter. ‘The Scalable
Heterogeneous Computing (SHOC) Benchmark Suite’. In: Proceedings of the
3rd Workshop on General-Purpose Computation on Graphics Processing Units.
GPGPU-3. ACM, 2010, pp. 63–74. doi: 10.1145/1735688.1735702.

[115] Future Technologies Group @ ORNL. The Scalable HeterOgeneous Computing
(SHOC) Benchmark Suite. url: https://github.com/vetter/shoc (visited
on 07/11/2018).

[116] Lena Oden. ‘Direct Communication Models for Distributed GPUs’. PhD thesis.
Heidelberg University, Feb. 2015.

[117] S. Potluri, K. Hamidouche, A. Venkatesh, D. Bureddy, and D. K. Panda.
‘Efficient Inter-node MPI Communication Using GPUDirect RDMA for Infini-
Band Clusters with NVIDIA GPUs’. In: 2013 42nd International Conference
on Parallel Processing. Oct. 2013, pp. 80–89. doi: 10.1109/ICPP.2013.17.

[118] Michael Kerrisk. The Linux Programming Interface – A Linux and UNIX
System Programming Handbook. Ed. by Riley Hoffman. No Starch Press, Inc.,
2010. isbn: 978-1593272203.

[119] S. Deering and R. Hinden. Internet Protocol, Version 6. RFC8200. July 2017.
url: https://tools.ietf.org/html/rfc8200 (visited on 07/15/2018).

[120] Information Sciences Institute, University of Southern California. Internet
Protocol. Ed. by Jon Postel. RFC791. Sept. 1981. url: https://tools.ietf.
org/html/rfc791 (visited on 07/15/2018).

[121] Information Sciences Institute, University of Southern California. Transmis-
sion Control Protocol. Ed. by Jon Postel. RFC793. Sept. 1981. url: https:
//tools.ietf.org/html/rfc793 (visited on 07/15/2018).

254

http://lammps.sandia.gov/
https://doi.org/10.1145/1735688.1735702
https://github.com/vetter/shoc
https://doi.org/10.1109/ICPP.2013.17
https://tools.ietf.org/html/rfc8200
https://tools.ietf.org/html/rfc791
https://tools.ietf.org/html/rfc791
https://tools.ietf.org/html/rfc793
https://tools.ietf.org/html/rfc793

[122] Jon Postel. User Datagram Protocol. RFC768. Aug. 1980. url: https://
tools.ietf.org/html/rfc768 (visited on 07/16/2018).

[123] Hyeongyeop Kim. Understanding TCP/IP Network Stack & Writing Network
Apps. Feb. 2013. url: http://www.cubrid.org/blog/dev- platform/
understanding-tcp-ip-network-stack/ (visited on 07/18/2018).

[124] Jeffrey C. Mogul and K. K. Ramakrishnan. ‘Eliminating Receive Livelock
in an Interrupt-driven Kernel’. In: ACM Transactions on Computer Systems
(TOCS) 15.3 (Aug. 1997), pp. 217–252. issn: 0734-2071. doi: 10.1145/
263326.263335.

[125] Jamal Hadi Salim, Robert Olsson, and Alexey Kuznetsov. ‘Beyonf Softnet’.
In: 5th Annual Linux Showcase and Conference. USENIX Association. 2001,
pp. 165–172.

[126] A. Beifuß, D. Raumer, P. Emmerich, T. M. Runge, F. Wohlfart, B. E. Wolfin-
ger, and G. Carle. ‘A Study of Networking Software Induced Latency’. In: 2015
International Conference and Workshops on Networked Systems (NetSys).
Mar. 2015, pp. 1–8. doi: 10.1109/NetSys.2015.7089065.

[127] Steen Larsen, Parthasarathy Sarangam, Ram Huggahalli, and Siddharth
Kulkarni. ‘Architectural Breakdown of End-to-End Latency in a TCP/IP
Network’. In: International Journal of Parallel Programming 37.6 (Dec. 2009),
pp. 556–571. issn: 1573-7640. doi: 10.1007/s10766-009-0109-6.

[128] Nathan Hanford, Vishal Ahuja, Matthew K. Farrens, Brian Tierney, and Dipak
Ghosal. ‘A Survey of End-System Optimizations for High-Speed Networks’.
In: ACM Computing Surveys (CSUR) 51.3 (July 2018), 54:1–54:36. issn:
0360-0300. doi: 10.1145/3184899.

[129] Robert Alverson, Duncan Roweth, and Larry Kaplan. ‘The Gemini System
Interconnect’. In: 18th IEEE Symposium on High Performance Interconnects
(HOTI ’10). 2010, pp. 83–87. doi: 10.1109/HOTI.2010.23.

[130] J. Chu and V. Kashyap. Transmission of IP over InfiniBand (IPoIB). RFC4391.
Apr. 2006. url: https :/ /tools .ietf . org/ html/ rfc4391 (visited on
08/22/2018).

[131] V. Kashyap. IP over InfiniBand (IPoIB) Architecture. RFC4392. Apr. 2006.
url: https://tools.ietf.org/html/rfc4392 (visited on 08/22/2018).

[132] V. Kashyap. IP Over InfiniBand: Connected Mode. RFC4755. Dec. 2006. url:
https://tools.ietf.org/html/rfc4755 (visited on 08/31/2018).

255

https://tools.ietf.org/html/rfc768
https://tools.ietf.org/html/rfc768
http://www.cubrid.org/blog/dev-platform/understanding-tcp-ip-network-stack/
http://www.cubrid.org/blog/dev-platform/understanding-tcp-ip-network-stack/
https://doi.org/10.1145/263326.263335
https://doi.org/10.1145/263326.263335
https://doi.org/10.1109/NetSys.2015.7089065
https://doi.org/10.1007/s10766-009-0109-6
https://doi.org/10.1145/3184899
https://doi.org/10.1109/HOTI.2010.23
https://tools.ietf.org/html/rfc4391
https://tools.ietf.org/html/rfc4392
https://tools.ietf.org/html/rfc4755

References

[133] Tzahi Oved. ‘User Mode Ethernet Verbs’. In: 12th Annual OpenFabrics Al-
liance Workshop. Apr. 2016.

[134] Tzahi Oved and Alex Rosenbaum. ‘User Space IPoIB Packet Processing’. In:
13th Annual OpenFabrics Alliance Workshop. Mar. 2017.

[135] Tzahi Oved and Rony Efraim. ‘IPoIB Acceleration’. In: 13th Annual Open-
Fabrics Alliance Workshop. Mar. 2017.

[136] Evgenii Smirnov and Mikhail Sennikovsky. ‘Ethernet over Infiniband’. In:
14th Annual OpenFabrics Alliance Workshop. Apr. 2018.

[137] Infiniband Trade Associaton. Supplement to InfiniBand Architecture Specica-
tion Volume 1, Release 1.2.1: Annex A4: Sockets Direct Protocol (SDP). Oct.
2011.

[138] D. Goldenberg, M. Kagan, R. Ravid, and M. S. Tsirkin. ‘Zero copy sockets
direct protocol over infiniband-preliminary implementation and performance
analysis’. In: 13th Symposium on High Performance Interconnects (HOTI’05).
Aug. 2005, pp. 128–137. doi: 10.1109/CONECT.2005.35.

[139] P. Balaji, S. Bhagvat, H. W. Jin, and D. K. Panda. ‘Asynchronous zero-copy
communication for synchronous sockets in the sockets direct protocol (SDP)
over InfiniBand’. In: Proceedings 20th IEEE International Parallel Distributed
Processing Symposium. Apr. 2006. doi: 10.1109/IPDPS.2006.1639560.

[140] Sean Hefty. ‘RSockets’. In: 2012 OFS Developers’ Workshop. 2012.

[141] Network Working Group. Stream Control Transmission Protocol. RFC4960.
Sept. 2007. url: https://tools.ietf.org/html/rfc4960 (visited on
08/22/2018).

[142] R. Recio, B. Metzler, P. Culley, J. Hilland, and D. Garcia. A Remote Direct
Memory Access Protocol Specification. RFC5040. Oct. 2007. url: https:
//tools.ietf.org/html/rfc5040 (visited on 08/20/2018).

[143] H. Shah, J. Pinkerton, R. Recio, and P. Culley. Direct Data Placement over
Reliable Transports. RFC5041. Oct. 2007. url: https://tools.ietf.org/
html/rfc5041 (visited on 08/20/2018).

[144] P. Culley, U. Elzur, R. Recio, S. Bailey, and J. Carrier. Marker PDU Aligned
Framing for TCP Specification. RFC5044. Oct. 2007. url: https://tools.
ietf.org/html/rfc5044 (visited on 08/20/2018).

256

https://doi.org/10.1109/CONECT.2005.35
https://doi.org/10.1109/IPDPS.2006.1639560
https://tools.ietf.org/html/rfc4960
https://tools.ietf.org/html/rfc5040
https://tools.ietf.org/html/rfc5040
https://tools.ietf.org/html/rfc5041
https://tools.ietf.org/html/rfc5041
https://tools.ietf.org/html/rfc5044
https://tools.ietf.org/html/rfc5044

[145] C. Bestler and R. Stewart. Stream Control Transmission Protocol (SCTP)
Direct Data Placement (DDP) Adaptation. RFC5043. Oct. 2007. url: https:
//tools.ietf.org/html/rfc5043 (visited on 08/20/2018).

[146] InfiniBand Trade Association. Supplement to InfiniBand Architecture Specica-
tion Volume 1 Release 1.2.1, Annex A17: RoCEv2. Sept. 2014.

[147] Markus Fischer. ‘GMSOCKS - A Direct Sockets Implementation on Myrinet’.
In: Proceedings 42nd IEEE Symposium on Foundations of Computer Science.
Oct. 2001, pp. 204–211. doi: 10.1109/CLUSTR.2001.959979.

[148] Galen Hunt and Doug Brubacher. ‘Detours: Binaryinterception of Win32
functions’. In: 3rd Usenix Windows NT Symposium. 1999.

[149] Mellanox’s Messaging Accelerator (VMA). url: http://www.mellanox.com/
vma (visited on 07/31/2018).

[150] Y. Lin, J. Han, J. Gao, and X. He. ‘uStream: A User-Level Stream Protocol
over Infiniband’. In: 2009 15th International Conference on Parallel and
Distributed Systems. Dec. 2009, pp. 65–71. doi: 10.1109/ICPADS.2009.105.

[151] ‘IEEE Standard for Local and Metropolitan Area Networks: Overview and
Architecture’. In: IEEE Std 802-2001 (Revision of IEEE Std 802-1990) (Feb.
2002), pp. 1–48. doi: 10.1109/IEEESTD.2002.93395.

[152] David C. Plummer. Ethernet Address Resolution Protocol – or – Converting
Network Protocol Addresses to 48.bit Ethernet Address for Transmission on
Ethernet Hardware. RFC826. Nov. 1982. url: https://tools.ietf.org/
html/rfc826 (visited on 08/23/2018).

[153] Publich Technical Identifiers. Internet Assigned Numbers Authority. url:
https://www.iana.org/ (visited on 08/31/2018).

[154] T. Narten, E. Nordmark, W. Simpson, and H. Soliman. Neighbor Discovery
for IP version 6 (IPv6). RFC4861. Sept. 2007. url: https://tools.ietf.
org/html/rfc4861 (visited on 08/25/2018).

[155] S. Deering. Host Extensions for IP Multicasting. RFC1112. Aug. 1989. url:
https://tools.ietf.org/html/rfc1112 (visited on 08/25/2018).

[156] Jonathan Corbet. ‘Zero-Copy Networking’. In: LWN.net (July 2017).

[157] W. Richard Stevens and Gary R. Wright. TCP/IP Illustrated (Vol. 2): The
Implementation. Addison-Wesley, 1995. isbn: 0-201-63354-X.

[158] Timothy W Curry et al. ‘Profiling and Tracing Dynamic Library Usage Via
Interposition’. In: USENIX Summer. 1994, pp. 267–278.

257

https://tools.ietf.org/html/rfc5043
https://tools.ietf.org/html/rfc5043
https://doi.org/10.1109/CLUSTR.2001.959979
http://www.mellanox.com/vma
http://www.mellanox.com/vma
https://doi.org/10.1109/ICPADS.2009.105
https://doi.org/10.1109/IEEESTD.2002.93395
https://tools.ietf.org/html/rfc826
https://tools.ietf.org/html/rfc826
https://www.iana.org/
https://tools.ietf.org/html/rfc4861
https://tools.ietf.org/html/rfc4861
https://tools.ietf.org/html/rfc1112

References

[159] Linux Manual Page. ld.so, ld-linux.so - dynamic linker/loader. url: http://
man7.org/linux/man-pages/man8/ld.so.8.html (visited on 07/23/2018).

[160] Free Software Foundation, Inc. GNU Binutils Version 2.31. url: https:
//sourceware.org/binutils/docs-2.31/ (visited on 07/23/2018).

[161] Hewlett-Packard. Netperf. url: https://github.com/HewlettPackard/
netperf (visited on 09/28/2018).

[162] Mellanox Technologies. SockPerf Network Benchmarking Utility. https://
github.com/Mellanox/sockperf. Sept. 2018.

[163] Intel Corporation. Intel 64 and IA-32 Architectures Optimization Reference
Manual. June 2016.

[164] Alois Kraus. Why Skylake CPUs Are Sometimes 50% Slower – How Intel Has
Broken Existing Code. url: https://aloiskraus.wordpress.com/2018/
06/16/why-skylakex-cpus-are-sometimes-50-slower-how-intel-has-
broken-existing-code/ (visited on 09/24/2018).

[165] Lustre Community. Introduction to Lustre Architecture. Oct. 2017. url:
http://wiki.lustre.org/images/6/64/LustreArchitecture-v4.pdf
(visited on 04/28/2018).

[166] Peter J. Braam et al. The Lustre Storage Architecture. 2004.

[167] Feiyi Wang, Sarp Oral, and Galen Shipman. Understanding Lustre Filesystems
Internals. Tech. rep. Oak Ridge National Laboratory, Apr. 2009.

[168] Lustre Operations Manual 2.x. 2018.

[169] Lustre Networking – High-Performance Features and Flexible Support for a
Wide Array of Network. Nov. 2008.

[170] Intel. Intel Lustre System and Network Administration – Introduction to Lustre
Network. July 2015. url: https://nci.org.au/wp-content/uploads/2015/
08/02-Introduction-LNET.pdf (visited on 06/22/2018).

[171] Peter J. Braama, Phil Schwan, and Ron Brightwell. Portals and Networking
for the Lustre File System.

[172] Tobias Groschup. Implementation and Evaluation of a Parallel Distributed File
System for the EXTOLL High-Performance Network. University of Heidelberg.
Master thesis (supervised by Sarah Neuwirth). Mar. 2014.

258

http://man7.org/linux/man-pages/man8/ld.so.8.html
http://man7.org/linux/man-pages/man8/ld.so.8.html
https://sourceware.org/binutils/docs-2.31/
https://sourceware.org/binutils/docs-2.31/
https://github.com/HewlettPackard/netperf
https://github.com/HewlettPackard/netperf
https://github.com/Mellanox/sockperf
https://github.com/Mellanox/sockperf
https://aloiskraus.wordpress.com/2018/06/16/why-skylakex-cpus-are-sometimes-50-slower-how-intel-has-broken-existing-code/
https://aloiskraus.wordpress.com/2018/06/16/why-skylakex-cpus-are-sometimes-50-slower-how-intel-has-broken-existing-code/
https://aloiskraus.wordpress.com/2018/06/16/why-skylakex-cpus-are-sometimes-50-slower-how-intel-has-broken-existing-code/
http://wiki.lustre.org/images/6/64/LustreArchitecture-v4.pdf
https://nci.org.au/wp-content/uploads/2015/08/02-Introduction-LNET.pdf
https://nci.org.au/wp-content/uploads/2015/08/02-Introduction-LNET.pdf

[173] James Simmons and John Lewis. ‘Taking Advantage of Multi-cores for the
Lustre Gemini LND Driver’. In: Cray User Group Conference (CUG 2013).
2013.

[174] Gregoire Pichon. ‘Portals4 LND Overview’. In: Lustre Administrator and
Developer Workshop 2017 (LAD’17). Oct. 2017.

[175] S. Derradji, T. Palfer-Sollier, J. Panziera, A. Poudes, and F. W. Atos. ‘The
BXI Interconnect Architecture’. In: 2015 IEEE 23rd Annual Symposium on
High-Performance Interconnects (HOTI). Aug. 2015, pp. 18–25. doi: 10.
1109/HOTI.2015.15.

[176] David A. Deming. ‘InfiniBand Software Architecture and RDMA’. In: 2013
Storage Developer Conference (SDC13). Sept. 2013.

[177] Feiyi Wang, Sarp Oral, Saurabh Gupta, Devesh Tiwari, and Sudharshan S.
Vazhkudai. ‘Improving Large-scale Storage System Performance via Topology-
aware and Balanced Data Placement’. In: 20th IEEE International Conference
on Parallel and Distributed Systems (ICPADS). 2014, pp. 656–663. doi:
10.1109/PADSW.2014.7097866.

[178] Arthur S. Bland, Jack C. Wells, Otis E. Messer, Oscar R. Hernandez, and
James H. Rogers. ‘Titan: Early Experience with the Cray XK6 at Oak Ridge
National Laboratory’. In: Cray User Group Conference (CUG). 2012.

[179] Oak Ridge Leadership Computing Facility. Titan, Cray XK7 Compute System.
url: https://www.olcf.ornl.gov/olcf-resources/compute-systems/
titan/ (visited on 08/29/2018).

[180] Sarp Oral, David A. Dillow, Douglas Fuller, Jason Hill, Dustin Leverman,
Sudharshan S. Vazhkudai, Feiyi Wang, Youngjae Kim, James Rogers, James
Simmons, et al. ‘OLCF’s 1 TB/s, Next-generation Lustre File System’. In:
Cray User Group Conference (CUG 2013). 2013.

[181] Rajeev Thakur, William Gropp, and Ewing Lusk. ‘On Implementing MPI-IO
Portably and with High Performance’. In: 6th Workshop on I/O in Parallel
and Distributed Systems. 1999, pp. 23–32. doi: 10.1145/301816.301826.

[182] Bing Xie, Yezhou Huang, Jeffrey S. Chase, Jong Youl Choi, Scott Klasky,
Jay Lofstead, and Sarp Oral. ‘Predicting Output Performance of a Petascale
Supercomputer’. In: Proceedings of the 26th International Symposium on High-
Performance Parallel and Distributed Computing (HPDC). Washington, DC,

259

https://doi.org/10.1109/HOTI.2015.15
https://doi.org/10.1109/HOTI.2015.15
https://doi.org/10.1109/PADSW.2014.7097866
https://www.olcf.ornl.gov/olcf-resources/compute-systems/titan/
https://www.olcf.ornl.gov/olcf-resources/compute-systems/titan/
https://doi.org/10.1145/301816.301826

References

USA, 2017, pp. 181–192. isbn: 978-1-4503-4699-3. doi: 10.1145/3078597.
3078614.

[183] Sean Ahern et al. Scientific Discovery at the Exascale: Report from the
DOE ASCR 2011 Workshop on Exascale Data Management, Analysis and
Visualization. Tech. rep. 2011. url: http://science.energy.gov/~/media/
ascr / pdf / program - documents / docs / Exascale - ASCR - Analysis . pdf
(visited on 03/05/2018).

[184] O. Yildiz, M. Dorier, S. Ibrahim, R. Ross, and G. Antoniu. ‘On the Root
Causes of Cross-Application I/O Interference in HPC Storage Systems’. In:
2016 IEEE International Parallel and Distributed Processing Symposium
(IPDPS). May 2016, pp. 750–759. doi: 10.1109/IPDPS.2016.50.

[185] Ana Gainaru, Guillaume Aupy, Anne Benoit, Franck Cappello, Yves Robert,
and Marc Snir. ‘Scheduling the I/O of HPC Applications Under Congestion’.
In: 2015 IEEE International Parallel and Distributed Processing Symposium
(IPDPS). 2015, pp. 1013–1022. doi: 10.1109/IPDPS.2015.116.

[186] Stephen Herbein, Dong H. Ahn, Don Lipari, Thomas R. W. Scogland, Marc
Stearman, Mark Grondona, Jim Garlick, Becky Springmeyer, and Michela
Taufer. ‘Scalable I/O-Aware Job Scheduling for Burst Buffer Enabled HPC
Clusters’. In: Proceedings of the 25th ACM International Symposium on High-
Performance Parallel and Distributed Computing. HPDC ’16. Kyoto, Japan:
ACM, 2016, pp. 69–80. isbn: 978-1-4503-4314-5. doi: 10.1145/2907294.
2907316.

[187] Miao Luo, Dhabaleswar K. Panda, Khaled Z. Ibrahim, and Costin Iancu.
‘Congestion Avoidance on Manycore High Performance Computing Systems’.
In: 26th ACM International Conference on Supercomputing (ICS ’12). 2012,
pp. 121–132. doi: 10.1145/2304576.2304594.

[188] Nan Jiang, Larry Dennison, and William J. Dally. ‘Network Endpoint Con-
gestion Control for Fine-grained Communication’. In: Proceedings of the
International Conference for High Performance Computing, Networking, Stor-
age and Analysis (SC15). SC ’15. Austin, Texas: ACM, 2015, 35:1–35:12. isbn:
978-1-4503-3723-6. doi: 10.1145/2807591.2807600.

[189] Yan Li, Xiaoyuan Lu, Ethan Miller, and Darrell Long. ‘ASCAR: Automat-
ing contention management for high-performance storage systems’. In: 31st
Symposium on Mass Storage Systems and Technologies (MSST). IEEE. 2015,
pp. 1–16. doi: 10.1109/MSST.2015.7208287.

260

https://doi.org/10.1145/3078597.3078614
https://doi.org/10.1145/3078597.3078614
http://science.energy.gov/~/media/ascr/pdf/program-documents/docs/Exascale-ASCR-Analysis.pdf
http://science.energy.gov/~/media/ascr/pdf/program-documents/docs/Exascale-ASCR-Analysis.pdf
https://doi.org/10.1109/IPDPS.2016.50
https://doi.org/10.1109/IPDPS.2015.116
https://doi.org/10.1145/2907294.2907316
https://doi.org/10.1145/2907294.2907316
https://doi.org/10.1145/2304576.2304594
https://doi.org/10.1145/2807591.2807600
https://doi.org/10.1109/MSST.2015.7208287

[190] Yifeng Zhu, Hong Jiang, Xiao Qin, Dan Feng, and David R. Swanson. ‘Im-
proved Read Performance in a Cost-effective, Fault-tolerant Parallel Vir-
tual File System (CEFT-PVFS)’. In: 3rd IEEE/ACM International Sympo-
sium on Cluster Computing and the Grid (CCGrid). 2003, pp. 730–735. doi:
10.1109/CCGRID.2003.1199440.

[191] Robert B. Ross, Rajeev Thakur, et al. ‘PVFS: A Parallel File System for Linux
Clusters’. In: 4th Annual Linux Showcase and Conference. 2000, pp. 391–430.

[192] Aameek Singh, Madhukar Korupolu, and Dushmanta Mohapatra. ‘Server-
storage Virtualization: Integration and Load Balancing in Data Centers’. In:
2008 ACM/IEEE Conference on Supercomputing (SC08). 2008, 53:1–53:12.
doi: 10.1109/SC.2008.5222625.

[193] David Dillow, Galen M. Shipman, Sarp Oral, Zhe Zhang, Youngjae Kim,
et al. ‘Enhancing I/O Throughput via Efficient Routing and Placement for
Large-scale Parallel File Systems’. In: IEEE 30th International Performance
Computing and Communications Conference (IPCCC). 2011, pp. 1–9. doi:
10.1109/PCCC.2011.6108062.

[194] Huong Luu, Marianne Winslett, William Gropp, Robert Ross, Philip Carns,
Kevin Harms, Mr Prabhat, Suren Byna, and Yushu Yao. ‘A Multiplatform
Study of I/O Behavior on Petascale Supercomputers’. In: 24th International
Symposium on High-Performance Parallel and Distributed Computing (HPDC
’15). 2015, pp. 33–44. doi: 10.1145/2749246.2749269.

[195] Philip Carns, Kevin Harms, William Allcock, Charles Bacon, Samuel Lang,
Robert Latham, and Robert Ross. ‘Understanding and Improving Com-
putational Science Storage Access through Continuous Characterization’.
In: ACM Transactions on Storage (TOS) 7.3 (Oct. 2011), 8:1–8:26. doi:
10.1145/2027066.2027068.

[196] Jay Lofstead, Fang Zheng, Qing Liu, Scott Klasky, Ron Oldfield, Todd Kor-
denbrock, Karsten Schwan, and Matthew Wolf. ‘Managing Variability in the
IO Performance of Petascale Storage Systems’. In: 2010 ACM/IEEE Interna-
tional Conference for High Performance Computing, Networking, Storage and
Analysis (SC10). 2010, pp. 1–12. isbn: 978-1-4244-7559-9. doi: 10.1109/SC.
2010.32.

[197] Qing Liu, Norbert Podhorszki, Jeremy Logan, and Scott Klasky. ‘Runtime
I/O Re-Routing + Throttling on HPC Storage’. In: 5th USENIX Workshop

261

https://doi.org/10.1109/CCGRID.2003.1199440
https://doi.org/10.1109/SC.2008.5222625
https://doi.org/10.1109/PCCC.2011.6108062
https://doi.org/10.1145/2749246.2749269
https://doi.org/10.1145/2027066.2027068
https://doi.org/10.1109/SC.2010.32
https://doi.org/10.1109/SC.2010.32

References

on Hot Topics in Storage and File Systems (HotStorage ’13). San Jose, CA,
2013.

[198] Sebastian Angel, Hitesh Ballani, Thomas Karagiannis, Greg O’Shea, and Eno
Thereska. ‘End-to-end Performance Isolation Through Virtual Datacenters’. In:
11th USENIX Symposium on Operating Systems Design and Implementation
(OSDI ’14). 2014, pp. 233–248.

[199] Fahad R. Dogar, Thomas Karagiannis, Hitesh Ballani, and Antony Row-
stron. ‘Decentralized Task-aware Scheduling for Data Center Networks’. In:
Proceedings of the 2014 ACM Conference on SIGCOMM. SIGCOMM ’14.
Chicago, Illinois, USA: ACM, 2014, pp. 431–442. isbn: 978-1-4503-2836-4.
doi: 10.1145/2619239.2626322.

[200] Virajith Jalaparti, Peter Bodik, Ishai Menache, Sriram Rao, Konstantin
Makarychev, and Matthew Caesar. ‘Network-aware Scheduling for Data-
parallel Jobs: Plan When You Can’. In: 2015 ACM Conference on Special
Interest Group on Data Communication. 2015, pp. 407–420. doi: 10.1145/
2829988.2787488.

[201] Katherine Yelick et al. The Magellan Report on Cloud Computing for Sci-
ence. Research rep. http://science.energy.gov/~/media/ascr/pdf/
program-documents/docs/Magellan_Final_Report.pdf. 2011. (Visited on
08/29/2018).

[202] Galen Shipman, D. Dillow, Sarp Oral, and Feiyi Wang. ‘The Spider Center
Wide File System: From Concept to Reality’. In: Cray User Group Conference
(CUG 2009). 2009.

[203] The National Institute for Computational Sciences, University of Tennessee at
Knoxville. Lustre Striping Guide. url: https://www.nics.tennessee.edu/
computing-resources/file-systems/lustre-striping-guide (visited
on 08/31/2018).

[204] W. K. Liao and A. Choudhary. ‘Dynamically Adapting File Domain Parti-
tioning Methods for Collective I/O Based on Underlying Parallel File System
Locking Protocols’. In: 2008 SC - International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis. Nov. 2008, pp. 1–12.
doi: 10.1109/SC.2008.5222722.

[205] Sarp Oral. ‘OLCF I/O Best Practices’. In: OLCF User Group Meeting. June
2015.

262

https://doi.org/10.1145/2619239.2626322
https://doi.org/10.1145/2829988.2787488
https://doi.org/10.1145/2829988.2787488
http://science.energy.gov/~/media/ascr/pdf/program-documents/docs/Magellan_Final_Report.pdf
http://science.energy.gov/~/media/ascr/pdf/program-documents/docs/Magellan_Final_Report.pdf
https://www.nics.tennessee.edu/computing-resources/file-systems/lustre-striping-guide
https://www.nics.tennessee.edu/computing-resources/file-systems/lustre-striping-guide
https://doi.org/10.1109/SC.2008.5222722

[206] Sarp Oral et al. ‘Best Practices and Lessons Learned from Deploying and
Operating Large-scale Data-centric Parallel File Systems’. In: Proceedings of
the International Conference for High Performance Computing, Networking,
Storage and Analysis. SC ’14. New Orleans, Louisana: IEEE Press, 2014,
pp. 217–228. isbn: 978-1-4799-5500-8. doi: 10.1109/SC.2014.23.

[207] Tom Edwards. An Introduction to the Lustre Parallel File System. Sept. 2014.

[208] D. A. Dillow, G. M. Shipman, S. Oral, and Z. Zhang. ‘I/O Congestion Avoid-
ance via Routing and Object Placement’. In: Cray User Group Conference
(CUG 2011). 2011.

[209] Arthur S. Bland, Wayne Joubert, Ricky A. Kendall, Douglas B. Kothe, James
H. Rogers, and Galen M. Shipman. ‘Jaguar: The World’s Most Powerful
Computer System – An Update’. In: Cray User Group Conference (CUG
2010). 2010.

[210] R. Brightwell, K. Pedretti, and K. D. Underwood. ‘Initial Performance Evalu-
ation of the Cray SeaStar Interconnect’. In: 13th Symposium on High Perfor-
mance Interconnects (HOTI’05). Aug. 2005, pp. 51–57. doi: 10.1109/CONECT.
2005.24.

[211] Matt Ezell, Dave Dillow, Sarp Oral, Feiyi Wang, Devesh Tiwari, Don E.
Maxwell, Dustin Leverman, and Jason Hill. ‘I/O Router Placement and
Fine-Grained Routing on Titan to Support Spider II’. In: Cray User Group
Conference (CUG 2014). 2014.

[212] Jonathan Perry, Amy Ousterhout, Hari Balakrishnan, Devavrat Shah, and
Hans Fugal. ‘Fastpass: A Centralized “Zero-queue” Datacenter Network’. In:
2014 ACM Conference on SIGCOMM (SIGCOMM ’14). 2014, pp. 307–318.
doi: 10.1145/2619239.2626309.

[213] OpenSFS. Lustre 2.7.0 Released. Mar. 2015. url: http://lustre.org/
lustre-2-7-0-released/ (visited on 06/24/2018).

[214] Richard Mohr, Michael J. Brim, Sarp Oral, and Andreas Dilger. ‘Evaluating
Progressive File Layouts For Lustre’. In: Cray User Group Conference (CUG
2016). 2016.

[215] Huong Luu, Babak Behzad, Ruth Aydt, and Marianne Winslett. ‘A multi-
level approach for understanding I/O activity in HPC applications’. In: IEEE
International Conference on Cluster Computing (CLUSTER). 2013, pp. 1–5.

263

https://doi.org/10.1109/SC.2014.23
https://doi.org/10.1109/CONECT.2005.24
https://doi.org/10.1109/CONECT.2005.24
https://doi.org/10.1145/2619239.2626309
http://lustre.org/lustre-2-7-0-released/
http://lustre.org/lustre-2-7-0-released/

References

[216] Lawrence Livermore National Laboratory (LLNL). Interleaved Or Random
(IOR) Benchmark. url: https : / / github . com / LLNL / ior (visited on
08/03/2018).

[217] Hongzhang Shan, Katie Antypas, and John Shalf. ‘Characterizing and Pre-
dicting the I/O Performance of HPC Applications using a Parameterized
Synthetic Benchmark’. In: 2008 ACM/IEEE Conference on Supercomputing
(SC08). 2008, 42:1–42:12. doi: 10.1109/SC.2008.5222721.

[218] Jacqueline H. Chen, Alok Choudhary, B. DeSupinski, M. DeVries, E. R.
Hawkes, S. Klasky, W. K. Liao, K. L. Ma, J. Mellor-Crummey, N. Podhorszki,
et al. ‘Terascale Direct Numerical Simulations of Turbulent Combustion using
S3D’. In: Computational Science & Discovery 2.1 (Jan. 2009), p. 015001.

[219] J. Logan et al. ‘Skel: Generative Software for Producing Skeletal I/O Ap-
plications’. In: 2011 IEEE Seventh International Conference on e-Science
Workshops. Dec. 2011, pp. 191–198. doi: 10.1109/eScienceW.2011.26.

[220] Cristina Manzano. ‘BeeGFS in the DEEP/-ER Project’. In: BeeGFS User
Meeting 2016, Kaiserslautern (Germany), 18 May 2016 - 19 May 2016. May 18,
2016. url: http://juser.fz-juelich.de/record/811106.

264

https://github.com/LLNL/ior
https://doi.org/10.1109/SC.2008.5222721
https://doi.org/10.1109/eScienceW.2011.26
http://juser.fz-juelich.de/record/811106

	Introduction
	Motivation and Challenges
	Contributions
	Outline

	Communication and I/O in HPC Systems
	Generic Communication Architecture Overview
	Network Communication Hardware
	Interconnection Networks
	Network Interface Controllers

	Communication in Distributed Memory Systems
	Communication Schemes
	Synchronization
	Performance Metrics
	Interprocess Communication Interfaces

	Introduction to Parallel I/O
	Scientific I/O
	Parallel File Systems
	High-level I/O Libraries and Middleware
	Access Patterns

	Extoll System Environment
	Technology Overview
	Functional Units
	Remote Memory Access Unit
	Virtualized Engine for Low Overhead Unit
	Virtual Process ID
	Shared Memory Functional Unit
	Address Translation Unit
	Register File
	PCIe Bridge

	Software Environment
	Kernel Space
	User Space
	EMP: Network Discovery and Setup

	Related Interconnection Standards
	Infiniband
	PCI Express

	Performance Overview
	Test Setup
	Performance Results

	Network-Attached Accelerators
	Motivation
	DEEP Project Series
	Introduction to the PCI Express Subsystem
	PCI Express Address Spaces
	Linux PCI Express Enumeration
	PCI Express Expansion Cards

	Related Work
	Intel Xeon Phi Coprocessor-based Communication Models
	GPU Virtualization and Communication Techniques
	Hardware-related Research

	NAA Software Design
	System Architecture and Problem Statement
	Objectives and Strategy
	Design Space Analysis

	DEEP Booster Architecture
	Hardware Components
	Prototype Implementation
	Prototype Performance Evaluation
	GreenICE – An Immersive Cooled DEEP Booster
	Lessons Learned

	Virtualization of Remote PCI Express Devices
	Concept Overview of VPCI
	PCI Express Device Emulation
	Forwarding PCI Configuration Space Requests
	Device Enumeration
	Forwarding Memory-Mapped I/O Requests
	Interrupt Delivery
	Overall Picture
	Experimental Evaluation

	NAA Summary

	RDMA-Accelerated TCP/IP Communication
	Introduction to the Internet Protocol Suite
	The Network Layer: IP
	The Transport Layer
	Data Transmission and Reception in Linux
	Interrupt Coalescing and NIC Polling with NAPI
	TCP/IP Protocol Overhead and Bottlenecks

	Related Work
	OpenFabrics Enterprise Distribution
	Sockets-like Interfaces

	Objectives and Strategy
	Transmission of Ethernet Frames over Extoll
	Link Frame Transmission and Reception
	Message Matching and Resource Management
	Maximum Transmission Unit
	Address Mapping – Unicast
	Multicast Routing
	EXN: Extoll Network Interface

	Direct Sockets over Extoll
	Protocol Overview
	Setup and Connection Management
	Data Transfer Mechanisms
	AF_EXTL: A Prototype Implementation of EXT-DS

	Performance Analysis
	TCP/IP Configuration Tuning in Linux Systems
	Test System
	Microbenchmark Evaluation
	MPI Performance

	TCP/IP Summary

	Efficient Lustre Networking Protocol Support
	Introduction to the Lustre File System
	File System Components
	Network Communication Protocol
	Client Services and File I/O

	Lustre Networking Semantics and Interfaces
	Naming Conventions and API Summary
	Memory-Oriented Communication Semantics
	Credit System
	Available Lustre Network Drivers

	Design Challenges and Strategy
	Efficient RDMA with Vectored I/O Operations
	Memory Management
	Infiniband Verbs and Scatter/Gather Elements
	Scatter/Gather DMA Operation Support for Extoll

	Support for LNET Protocol Semantics
	Data Transmission Protocols
	Message Matching and Descriptor Queues

	EXLND: Extoll Lustre Network Driver
	Preliminary Performance Results
	System Setup and Methodology
	LNET Self-Test Results

	EXLND Summary

	Resource Contention Mitigation at Scale
	Spider II – A Leadership-Class File System
	The Need for Balanced Resource Usage
	Related Work
	Observations and Best Practices for File I/O
	End-to-End Performance Tuning
	Fine-Grained Routing Methodology
	Balanced Placement I/O Strategy

	Design Objectives and Strategy
	Aequilibro – An I/O Middleware Integration
	Transport Methods
	Software Design and Implementation

	TAPP-IO Framework
	Parallel I/O Support
	Runtime Environment

	Data Collection and Analysis
	Benchmarking Methodology
	Experimental Setup
	Synthetic Benchmark Evaluation
	HPC Workload Evaluation

	Summary

	Conclusion
	Outlook

	List of Abbreviations
	List of Figures
	List of Tables
	Listings
	References

