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Zusammenfassung

Das Problem der photometrischen Abschätzung von Rotverschiebungen ist heutzutage ein
Schwerpunktthema der Astronomie. Dies ist auf die Notwendigkeit der Berechnung von Ent-
fernungen für eine Vielzahl von Quellen zurückzuführen, wie es die Datenflut der letzten Jahre
erfordert. Die Möglichkeit, Rotverschiebungen durch Spektroskopie zu schätzen, ist bei einer
solchen Datenlawine allerdings nicht machbar. Photometrische Rotverschiebungen stellt die
Antwort auf dieses Problem dar, ist aber nur auf Kosten einer gewissen Genauigkeit möglich.
Der Erfolg bevorstehender Vorhaben hängt von der Verfügbarkeit photometrischer Rotver-
schiebungen ab. Das Ziel dieser Arbeit ist es, innovative Methoden für die photometrische
Rotverschiebung vorzuschlagen. Hierzu werden zwei Modelle vorgestellt. Das erste ist ein voll-
automatisiertes Modell, das auf der Kombination eines faltenden neuronalen Netzwerks mit
einem Gemischdichte-Netzwerk basiert, um die Rotverschiebungen probabilistisch direkt aus
den Bildern zu ermitteln. Das zweite Modell basiert auf Merkmalen, indem es eine Kombina-
tion von photometrischen Parametern durchführt, um ein Vorauswahlmodell in einem riesigen
Merkmalsraum anzuwenden. Die hier vorgeschlagenen Modelle erwiesen sich im Vergleich zu
den gängigsten Modellen aus der Literatur als sehr effizient. Ein Teil der Arbeit geht auf die
Fehlerabschätzung und die Qualität der Vorhersagen ein. Die vorgeschlagenen Modelle sind sehr
allgemein gehalten und können auf verschiedene Themen in der Astronomie und darüber hinaus
angewendet werden.

Abstract

The problem of photometric redshift estimation is a major subject in astronomy, since the
need of estimating distances for a huge number of sources, as required by the data deluge of
the recent years. The ability to estimate redshifts through spectroscopy does not scale with
this avalanche of data. Photometric redshifts provide the required redshift estimates at the
cost of some precision. The success of several forthcoming missions is highly dependent on the
availability of photometric redshifts.
The purpose of this thesis is to provide innovative methods for photometric redshift estimation.
Two models are proposed. The first is fully-automatized, based on the combination of a con-
volutional neural network with a mixture density network, to predict probabilistic multimodal
redshifts directly from images. The second model is features-based, performing a massive com-
bination of photometric parameters to apply a forward selection in a huge feature space. The
proposed models perform very efficiently compared to some of the most common models used
in the literature. An important part of the work is dedicated to the correct estimation of the
errors and prediction quality.
The proposed models are very general and can be applied to different topics in astronomy and
beyond.
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Chapter 1

Introduction

In the recent years astronomy is experiencing great changes and an era of new discoveries seems
ready to start. Much has changed in the last twenty years both in the knowledge and the perception
that we have of the Universe, and in the methods with which astronomical research is conducted.
This is due, on one hand, to a new generation of instruments, which are exploring the whole
electromagnetic spectrum in a detail never reached before. Furthermore, neutrino and astroparticle
astronomy, and more recently gravitational waves observations, are opening new windows to the
Universe, giving the possibility to observe known phenomenona in a new fashion and to discover
ones previously unobserved. Such a revolution is generating a true explosion of the available
information, which is bringing astronomy in the regime of Big Data [Szalay and Gray, 2006,
Estévez, 2016]. On the other hand, the availability of more powerful hardware solutions, and the
realization of novel and clever software applications, are opening the possibility to mine, analyze
and make discoveries in this huge amount of data, following Jim Gray’s fourth paradigm [Hey
et al., 2009]. The information explosion experienced by astronomy [Brunner et al., 2002] requires
the implementation of new techniques and methods, in order to treat and analyze such an amount
of data.

The interest of the astronomical community in machine learning has constantly grown in the last
ten years, while pursuing solutions in the fields of data analysis and management, automation,
visualization and knowledge discovery [Biehl, 2018]. Traditional techniques are no longer sufficient
for these tasks. Instead machine learning (and deep learning) have proved to be very useful in as-
tronomy and several models have been successfully applied. The problem is not just in the amount
of data collected (already in the Petabyte domain and looking forward to the Exabyte domain),
but also in their complexity and heterogeneity. Therefore, machine learning based techniques are
nowadays being introduced at each level of the data processing, from acquisition to storage, anal-
ysis and visualization. This is independent from the particular astronomical problem or field of
application in which machine learning is used. To give some examples, machine learning models
have been successfully adopted for: classification or selection problems, like star-galaxy separation
[Ball et al., 2006] and quasar detection [Richards et al., 2009]; morphological classification [Diele-
man et al., 2015]; galaxy clustering [Polsterer et al., 2016]; regression problems, e.g. photometric
redshift estimation [D’Abrusco et al., 2007]; time series analysis [Mahabal et al., 2017]. It should
be pointed out that the enormous growth in popularity of machine learning techniques is also due
to the parallel growth of computational power, and the consequent explosion of deep learning ap-
plications [Bengio et al., 2012] in several fields of scientific research, and in industrial applications
too. An important role is also acquired by the availability of several software packages explicitly
devoted to build machine learning models. Just to mention a few, the Python packages scikit-learn
[Pedregosa et al., 2011], astroML [Vanderplas et al., 2012], or Theano [specific for deep learning
Theano Development Team, 2016] are widely used in the astronomical community.

Machine learning is the automated induction of a model from observed data. The induction is
guided by the optimization of a loss function which quantifies how well the data support a model
under scrutiny. This translates into tuning the free parameters of a model so that the loss function
is minimized. This optimization is known as learning. Typically machine learning is distinguished
in supervised and unsupervised learning. Supervised learning seeks a mapping between inputs
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(covariate/independent variables) and desired outputs (response/outcome). Regression and clas-
sification are typical such examples. On the contrary, in unsupervised learning no targets are
available and the algorithm is expected to find patterns and structures in the data. For instance,
such structures may be clusters, overdensities or outliers.

An important class of machine learning models is constituted by deep learning methods [Dechter,
1986]. This is a class of neural networks which is characterized by many layers of non linear calcu-
lation units which are generally able to automatically learn data representation and abstractions,
to do dimensionality reduction and feature extraction, in several kind of tasks. For example, these
models can be used for classification or for regression problems, for speech recognition, computer
vision, natural language processing. Frequently used models are convolutional neural networks [Le-
Cun et al., 2015], recurrent neural networks [Hopfield, 1982] and long short-term memory [LSTM
Hochreiter and Schmidhuber, 1997] networks.

In this context, the problem of photometric redshift estimation assumed great importance in the
recent years. Redshift is fundamental in astronomy, and in particular in cosmology, for its role in
the measurement of distances and other cosmological quantities. In fact, redshift constitutes the
last step, in combination with the Hubble’s Law, of the cosmic distance ladder. Therefore, the
availability of precise redshift estimates for a large amount of sources is mandatory for building
models about the structure, the dynamics and the evolution of the Universe. Redshift is typically
measured via spectroscopy [Yip et al., 2004], being, by definition, the shift in the spectral lines of
galaxies and quasars due to the expansion of the Universe. Unfortunately, spectroscopical analysis
is a complex and time consuming task, and it is not possible to obtain spectroscopic redshifts for
all sources needed which are currently observed by modern digital surveys [Le Fèvre et al., 2005,
Newman et al., 2015]. Photometric redshifts are meant to solve this problem, allowing astronomers
to obtain redshift estimates for a huge number of sources, by using only photometric information,
at the cost of lower precision. The success of several forthcoming missions and projects is highly
based on the availability of precise photometric redshifts.

In literature, the estimation of photometric redshifts is mainly based on two different approaches:
template fitting and training set based techniques. The former, also defined as spectral energy
distribution (SED) fitting method [Bolzonella et al., 2000], is based on the estimation of a pho-
tometric SED, obtained from the known photometry of a certain class of sources. The observed
SEDs are then compared to a set of known templates, based on reference spectra, in order to find
the best fit through a χ2 minimization. The estimated redshift is given by the best fitting template
spectrum. This method has the advantages of being simple and precise, but it is penalized by the
requirement of a high number of templates.

Generally, photometric redshift estimation is mainly based on the application of supervised models
[Laurino et al., 2011], with some exceptions [Carrasco Kind and Brunner, 2014]. For this reason,
a representative sample of spectrospic redshifts is necessary in order to train the selected model
and make predictions. In literature, a wide variety of different machine learning models have been
used to solve this task. Decision trees [DT Breiman et al., 1984], k-Nearest Neighbours [kNN Fix
and Hodges Jr, 1951], random forest [RF Breiman, 2001] and neural networks are just some of
the most used models, due to their efficiency and good general performance. All these methods
are based on the use of a vector of input data called features. These features can be defined as a
parametrization of the photometric input space. Traditionally, the features used for photometric
redshift estimation are plain magnitudes and colours [D’Abrusco et al., 2007]. In order to improve
the performance, and the quality of the predictions, one should aim, on one hand, for a better
performing model, and on the other hand, on a better representation of the available information
as given by synoptic surveys.

This thesis is a cumulative work based on three publications that I developed, together with col-
leagues, during my PhD studies. The common background of these works is devoted to satisfy the
expressed need of improving the global performance of the photometric redshift estimation process
by developing novel and affordable methodologies. In the first of the three papers (Publication
I), a new model will be presented, based on the application of a modified convolutional neural
network [CNN LeCun and Bengio, 1995] to perform the redshift estimation directly from images.
Such a model is able to automatically extract features from the original multiband images, there-
fore optimizing the usage of the available information. It will be demonstrated that the proposed
model gives a substantial improvement in the performance of the predictions. This paper, hav-
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Chapter 1. Introduction

ing been published in the proceedings of the European Symposium on Artificial Neural Networks
2017, is more dedicated to the technical aspects of the model, which is based on combination of
a convolutional neural network and a mixture density network [MDN Bishop, 1994]. The second
paper (Publication II), published in the journal Astronomy & Astrophysics, extends the previous
work, adopting the proposed model, called deep convolutional mixture density network (DCMDN),
for different experiments, namely the redshift estimation for galaxies, quasars and a mixed and
contamined catalog. Automatic models have several advantages, because the task of feature extrac-
tion and selection is completely addressed by the machine. Unfortunately, the risk is that they can
become black boxes, in which it is hard to understand the reason for the machine behaviour or to
physically interpret the automatically estimated features [Knight, 2018]. Moreover, convolutional
neural networks based models are highly computationally expensive and require time to reach the
convergence point. Therefore, the possibility to have a fixed set of well defined, interpretable and
high performing features is still useful for real applications. In this view, the third and final pub-
lication composing this thesis (Publication III), also published in Astronomy & Astrophysics, is
dedicated to establishing a method for finding the best performing set of features within a huge set
built by the massive combination of all the available photometric and shape informations delivered
by the Sloan Digital Sky Survey [Abolfathi et al., 2018] database. This is done by adopting a
forward selection model [Pahikkala et al., 2010], based on repeated kNN experiments on random
subsamples of the available dataset, in order to generate a tree of features, from which to select
the best performing branch. Those features have been then physically interpreted with respect to
the typical spectral emission lines for quasars [Charlton and Churchill, 2000]. The final purpose of
establishing these two different and, from a certain point of view, alternative methods, is to give
to the community a good and affordable way to estimate photometric redshifts for a huge number
of sources.

An important part of the work is dedicated to the correct estimation of the errors in the prediction
process and to the statistical tools that should be used to deal with this problem. The true nature
of the problem has to be found in the way in which photometric redshifts are estimated. Redshifts
can be predicted as point estimates or as probability density functions (PDFs). It goes without
saying that the latter is a much more correct way to proceed. In fact, a probabilistic description
associates an error to the redshift measure, adding much more information with respect to a point
estimate. Furthermore, in this thesis the estimated PDFs are treated as multimodal functions,
generated by a Gaussian Mixture Model (GMM). Such a description is necessary to take into
account the degeneracy introduced by the broadband photometric system, which does not allow
the characterization of the redshift with a single peak distribution. In order to correctly deal with
the evaluation of an error between a density distribution and a point estimate (the spectroscopic
redshift), a novel statistical tool for astronomy has been introduced from the weather forecast field:
the continuous rank probability score [CRPS Hersbach, 2000a]. This score, as an integral function,
is specifically meant for this task and has been used also as a loss function on which the proposed
neural network model has been trained. The choice of the loss function is an important aspect
for building a solid machine learning model, and in particular, when dealing with PDFs. Training
the model using a proper score is fundamental in order to predict better calibrated and sharper
distributions. The concepts of calibration and sharpness, their optimization and a discussion
about the correct estimation of errors also constitute an important part of the thesis. Moreover,
another tool has been introduced to visually inspect these characteristics of the PDFs, namely the
probability integral transform [PIT Gneiting et al., 2005].

This introduction constitutes the starting point for the construction of a workflow for the correct
estimation of probabilistic multimodal photometric redshifts. From a technological point of view,
the use of such methodologies requires an intensive application of graphics processing units (GPUs),
in order to parallelize and speed up the calculations necessary to train the machine learning models.
Deep learning models were conceptually known since the ’80s, but their implementation for the
solution of astronomical problems, and in many other fields, became possible in the recent years,
as already stated, due to the big improvements in the computational speed and parallelization
techniques. This strong collaboration is driving astronomy toward a new era, and the new field
of astroinformatics [Ball and Brunner, 2010] is rising. In the near future, the interoperability
between astronomy and computer science will become essential in order to face the challenges
brought up by the new generation of instruments and the data explosion that will completely
reverse the way in which research is performed. The amount of available data will be so huge,
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that instead of acquiring new data for the confirmation of hypothesis and theories, scientists will
mine into databases, searching for knowledge, patterns and trends, following the paradigm defined
as knowledge discovery in databases [KDD Zhang et al., 2002]. Photometric redshift estimation is
just one important example of this new way to do astronomical research, but the methodologies
presented here are very general. The final purpose is to develop methods and techniques that could
be applied to several problems and that can allow the community to be ready for the revolution
that is to come.
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Chapter 2

Photometric redshift

This chapter of the thesis is meant to present a general overview about photometric redshift, as the
publications constituting the core of my work are focused on this topic. The chapter will start with
a general definition of redshift as a fundamental cosmological parameter. Some historical notes
will be given, from the introduction of the photometric redshift concept, following its development
through the publications and the methods that constitute the milestones in the field. Therefore, the
modern developments and the two main categories of methods for phometric redshift estimation will
be presented, namely SED template fitting methods and empirical training set/machine learning
methods. Finally, the last section will be dedicated to probabilistic redshift estimation and its
importance for the field.

2.1 Cosmological redshift

Cosmological redshift is defined as the physical phenomenon of the shift toward redder wavelengths
of the spectral lines of galaxies, due to the expansion of the Universe in the Hubble flow [Hubble,
1929]. Redshift is defined by the general formula:

z =
λobs − λemit

λemit

where λobs and λemit are, respectively, the wavelength measured for a particular spectral line
from a certain receeding galaxy, and the wavelength of the same spectral line as measured in the
laboratory. The Universe expansion generates a stretch of the spectrum of a factor 1 + z. The
concept of redshift is directly related to the scale factor of the Universe, as it is expressed in the
Einstein’s equations, assuming a Friedmann-Lemaitre-Robertson-Walker (FLRW) metric. In fact,
redshift is related to the scale factor by the relation:

1 + z =
a(t0)

a(t)
that gives: a(t) =

1

1 + z

Here a(t0) is the scale factor at the present age of the Universe, which by definition is equal to 1.
Therefore, redshift can be used to calculate the scale factor of the Universe at the age of object
which is emitting the light. If the distance between two objects in an expanding Universe described
by the FLRW metric is expressed by d(t) = a(t)d0, with d0 defined as the distance at t0, then it is
possible to define the so called Hubble parameter as:

H =
˙a(t)

a(t)
and the Hubble’s law is consequently given by: ˙d(t) = Hd(t)
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2.2. Historical overview

Redshift can be connected, at least for low redshifts, to the expansion velocity, by the relation
v = cz, where c is the speed of light. Therefore, taking into account Hubble’s Law in its form
involving the Hubble constant H0, v = H0d, it is clear that redshift constitutes a distance measure
which can be used to estimate the distances for galaxies and quasars. At higher redshifts, the
relation between velocity and redshift does not hold, due to the high velocity involved, and it
becomes model dependent, but this does not change the nature of the problem.

In particular, through Hubble’s Law, redshift becomes fundamental as a final step in the cosmic
distance ladder. Up to now, the cosmic distance ladder constitutes the only way to obtain correct
distances at increasing scale in the Universe, by calibrating every step through the previous one
using the so called standard candles, i.e. objects for which the absolute magnitude is known.
Therefore their distance can be derived from the distance modulus m −M = 5 log d − 5. In the
framework of the cosmic distance ladder, the Hubble’s law constitutes the only way to estimate
the distance of quasars and distant galaxies, for which other methods cannot be applied. It should
be noted that this aspect could change in the near future, as there are indications that the recently
observed gravitational waves [Abbott et al., 2016] could be used as standard sirens in order to
retrieve the Hubble constant without any form of distance ladder [Abbott et al., 2017]. Moreover,
redshift is a fundamental quantity in order to estimate the age of the Universe and other important
cosmological parameters, upon which the standard model is based.

2.2 Historical overview

Fundamentally, redshift is measured with spectroscopy. Unfortunately, the process of taking spec-
tra, reducing and analyzing them in order to estimate redshift is long and complicated, and can
be performed only for a limited number of brighter sources. The spectroscopic redshift obtained
in this way can reach a very high precision, but in order to obtain a robust redshift measurement,
at least two well identified spectral features have to be detected. On the other hand, the need
for redshift measurements (and therefore distances) is nowadays growing in the community. As
already sketched in the introduction, the success of several projects and missions will be mainly
based on the possibility to access affordable and precise measurements of redshift for a huge num-
ber of sources. Photometric redshifts represent the solution to this problem. In fact, an estimate
of redshift can be derived by using multiple filters, which are affected by the shift toward the red of
the most prominent spectroscopic features through the broadband filters themselves. Relying on
the availability of photometric measurements (e.g. magnitudes and colors), the sample of sources
for which it is possible to obtain such measurements is much larger than the spectroscopic one.
Furthermore, broadband images can be obtained for sources which are several magnitudes fainter
compared to spectroscopic observations. The price that has to be paid is the lower precision
characterizing photometric redshifts with respect to their spectroscopic counterpart, but this is
still enough for many applications for which this kind of information is required. For this reason,
nowadays photometric redshifts are becoming fundamental in a number of different astrophysical
applications. For example, they are used to study the formation and evolution of galaxies and the
relation between their properties and the dark halo [Fontana et al., 2000, Coupon et al., 2015].
Cluster identifications and evolution of Active Galactic Nuclei (AGN) are other important fields of
application [Finoguenov et al., 2007, Miyaji et al., 2015]. Finally, dark energy studies are highly de-
pendent on the availability of photometric redshifts, in particular for the weak lensing tomography
approach [Hu, 1999], which is/will be used in major projects like the Dark Energy Survey [DES
Abbott et al., 2018], the Large Synoptic Survey Telescope [LSST LSST Science Collaborations
et al., 2017] or Euclid [Laureijs et al., 2011].

The definition of photometric redshift is older than its spectroscopic counterpart. It was introduced
by Baum [1962] who first proposed the idea of comparing spectral energy distributions of different
ellipticals in clusters, derived from nine bands, with those of galaxies belonging to the Virgo cluster,
in order to estimate their redshift. The concept behind this work was quite simple: multiband
photometry can be interpreted as a low resolution spectrum, and hence this could be used to derive
an estimate of the redshift. Despite Baum’s work, his idea was abandoned for the next 20 years, as
redshift was mainly calculated from spectroscopy. The interest in photometric redshift started to
grow again in the last 20 years, thanks to the availability of CCD photometry and the new digital
surveys. Koo [1985] proposed the use of photometric redshifts as a poor person’s redshift machine,
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Chapter 2. Photometric redshift

using linear combinations of four bands photometry to derive the redshift. In this approach, two-
color plots were defined, from the considered four bands, in order to separate galaxies by type
and redshift and to retrieve an estimate of the redshift by properly calibrating [Bruzual A., 1983]
the relation between those colors and the redshift itself. The author found in this case a good
agreement with the corresponding spectroscopic detection. Koo’s work was based on data taken
with photographic plates.

The first attempt to calculate photometric redshifts by mean of CCD data was performed by
Loh and Spillar [1986], which used six-band photometry to fit the spectral energy distribution of
galaxies. Both these first attempts were biased by the poor photometry quality of the available
data, obtained from photographic plates or from the first CCDs ever used in astronomy, which were
small and affected by limited quantum efficiency, compared to the detectors available nowadays.
The advent of digital imaging and of the big synoptic survey, however, changed this perspective and
with these new data available, the interest in photometric redshifts increased. One of the reasons
for this renewed interest is surely due to the better quality of the available photometric data.
Moreover there is the need to obtain redshift measurements for the huge, and always increasing,
number of sources which are observed by the recent digital surveys. The integration time required
for spectroscopical analysis simply does not scale with the amount of data collected by the SDSS,
for example, and this situation will become increasingly worse when instruments like the LSST
will become operational. In Connolly et al. [1995] magnitude and color information were used in
combination for the first time to retrieve the redshift by means of a quadratic function fit. All the
methods presented until now are mainly based on SED fitting techniques.

A different approach was proposed by Steidel et al. [1996, 1998], where it was demonstrated that
redshift can be estimated from photometric data by detecting prominent breaks in the spectral
energy distribution of the galaxy, like the 4, 000 Å Balmer break and the 1, 216 Å Lyman break.
Following their work, this method, called dropout technique, relies on the large break in the con-
tinuum flux of the sources occurring at the 912 Å Lyman limit, due to neutral hydrogen absorption
around star-forming regions. The breaks correspond to a sudden increase of the flux continuum
from lower to higher wavelenghts. The radiation absorption by neutral gas around star forming
regions of galaxies causes the spectrum below the Lyman break to become faint and, reversely, it
becomea very bright at longer wavelengths. For redshifts around z = 3, the Lyman break is shifted
to ultraviolet/optical wavelengths and can be used to detect galaxies at that redshift. However, the
detection of gradients in the fluxes in contiguous filters could reveal a break and act as a feature
to estimate the redshift.

In general, it is demonstrated that most of the information used to generate photo-z comes from
the 4, 000 Å Balmer break and the 1, 216 Å Lyman break in galaxy spectra. Following Salvato
et al. [2018], the former can be explained by the absorption of photons, which are more energetic
with respect to the Balmer limit at 3, 646 Å, and the combination of absorption lines from ionised
metals in stellar atmospheres, in particular A-type stars. The latter, as already said, is due to
absorption of light below the Lyman limit at 912 Å and the absorption due to the intergalactic
medium. For this reason, one expects to find the best photometric redshifts estimates at redshifts
where such breaks fall between the used bands. In general, for optical surveys, the best estimates
are around z ∼ 0.7, corresponding to the 4, 000 Å break falling in the i band. For the same reasons,
infrared measurements are helpful for galaxies at higher redshifts. Therefore, multi-band images
of a field containing high redshift galaxies can be used to identify those objects that disappear
in the bluest filters, due to the redshifted Lyman limit. The advantages of this method are its
simplicity and speed, the fact that it is based on extrinsic properties and the absence of biases or
selection effects which are typically introduced by templates and different fitting methods. On the
other hand, the application of SED fitting also brings a redshift probability distribution, further
information about galaxy properties and utilizes all the available photometry, not being limited by
the band in which the break is prominent. Generally speaking, any photometric redshift estimation
method should be designed in order to detect, directly or indirectly, the key features represented
by the breaks. This is true for methods based on the assumption of a theoretical/physical model,
like SED fitting, but also for empirical methods, like those based on machine learning. However it
has to be considered that breaks are broad features. This is the reason for which it is important to
plan a multiwavelength approach. As multiple redshifts can correspond to the same color [Benítez
et al., 2009], the use of several filters can help to get rid of degeneracies.

12



2.3. Modern developments and methods for photometric redshift estimation

2.3 Modern developments and methods for photometric red-
shift estimation

As already sketched in the introduction, there are basically two main categories of methods for
photometric redshift estimation: template fitting and training-set/machine learning based meth-
ods. The former was used in almost all the early works on photometric redshifts and it is based
on the assumption of a theoretical physically-motivated model, given by the templates. The latter
increased in popularity in the last years, as more training sets of spectroscopic redshifts became
available for deriving empirically the relationship between photometric data and redshift. These
methods are characterized by the absence of an imposed theoretical model, which is instead de-
termined empirically by the algorithm in a data-driven way. In the following subsections the two
methods will be analyzed in detail, with the focus on the main milestones in both of them.

2.3.1 Theoretical model-based methods: spectral energy distribution
template fitting

The SED fitting method, as previously introduced, is based on the fit of the global shape of spectra
and on the detection of prominent spectral features. The spectral energy distributions obtained
from the observed photometry are then compared to those obtained from a set of reference spectra,
or templates. The photometric redshift is given by the best fit between the photometric SED
and the template spectra. Following Bolzonella et al. [2000], the fit is performed through a χ2

minimization procedure between the observed SED of a given galaxy and the set of templates, by
the relation:

χ2(z) =

Nfilters∑

i=1

[
Fobs,i − b× Ftemp,i(z)

σi

]2

where Fobs,i, Ftemp,i and σi are the observed and template spectral distributions with the relative
uncertainties in the i filter, while b is a normalization constant. Alternatively, in Lanzetta et al.
[1996] the χ2 minimization was substituted by a likelihood function maximization:

L(z, T ) =
∏

i

exp

{
− 1

2

[
fi −AFi(z, T )

σi

]2}

where fi are the measured fluxes with uncertainties σi given the modelled fluxes Fi(z, T ) at an
assumed redshift z for spectral type T and normalization factor A over four filters i = 1 . . . 4. This
last work constitutes a good example of the importance of photometric redshift estimation, as it
is used to study high redshift galaxy candidates in relation to their environment and photometric
and physical properties to understand their star formation history with respect to the evolution of
the hosting galaxy.

The templates used for the fit fix the theoretical/physical model that is assumed on top of the
method. In general, the first templates commonly used for SED fitting were determined by Coleman
et al. [1980] for different spectral type of low redshift galaxies. Such templates are empirical
spectro-photometric SEDs. Alternatively, SEDs can be built theoretically from stellar population
synthesis models, like those given by Bruzual A. and Charlot [1993], Vazdekis et al. [1996]. Stellar
population based models are very important in order to understand the stellar content of sources
and are used to derive several properties of galaxies, not just photometric redshifts. For example,
the models from Maraston [2005], Maraston et al. [2009] are used in the SDSS to perform the
best fit between the observed ugriz magnitudes of the SDSS - Baryon Oscillation Spectroscopic
Survey [BOSS Dawson et al., 2013] with the spectroscopic redshifts determined by the BOSS
pipeline itself. Describing how stellar population models are built is beyond the scope of this
thesis, but I will briefly provide some indications for sakeness of completeness. In general, if not
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considering the case of active galactic nuclei (AGN), galaxies emission is mainly dominated by the
stellar component. This light could be detected directly or reprocessed by the gas and dust which
constitutes the interstellar medium (ISM). Therefore, the synthetic model has to take into account
the spectra of the single stars, or stellar populations, together with effects due to gas and dust
extinction, evolution and morphological properties. All these charecteristics are the building blocks
of generating a reliable model. This can be done basically by applying two different methods. The
first, established by Charlot and Bruzual [1991], is defined as isochrone synthesis and uses star
isochrones in the Hertzsprung-Russel diagram. The spectra of all the stars are integrated along
the isochrones to compute the total flux. The second method [Buzzoni, 1989] is based on the fuel
consumption approach, in which the fuel is integrated along the evolutionary track. The main
idea behind this approach is that the luminosity of post-main sequence stars, which are the most
luminous, is directly linked to the available fuel for stars at the turnoff mass. However, it has to be
stated that the quality of photometric redshifts predicted by SED fitting does not depend only on
the type of available templates, but also on their coverage of the color-redshift space [Chevallard
and Charlot, 2016].

SED fitting (and photometric redshift estimation in a more general sense) became very popular
with the release of the Hubble Deep Field [HDF Williams et al., 1996], containing multi-band data
of galaxies up to 29 magnitude. At that epoch, conventional spectroscopy was not able to observe
such faint objects, therefore photometric redshifts became a necessity. HDF represented a big
challenge due to the lack of suitable high quality empirical SED templates at short wavelengths,
as the UV light is shifted in the optical. Furthermore, one also had to take into account the
possibility that high redshift galaxies SEDs were consistently different from those obtained for
galaxies in the local Universe, and the effects due to intergalactic hydrogen extinction. For these
reasons, in Sawicki et al. [1997], hybrid templates were derived, combining local empirical SEDs
with model-based SEDs.

Nowadays, several codes are publicly available to perform photometric redshift estimation based
on SED fitting. A very popular library is the GISSEL’98 from Bruzual A. and Charlot [1993],
a synthetic collection of galaxies spectra including 200 tracks of ages from 200 million up to 16
billion years for elliptical galaxies, constructed with evolutionary models from the same authors.
The HyperZ code from Bolzonella et al. [2000] is based on this library, and it is used to perform
photometric redshift estimation through χ2 minimization. To compare the observed with the
fiducial photometry, the absorption from the Lyman forest [Madau, 1995] and the reddening to the
redshifted SEDs are applied. Another popular code is Le Phare [PHotometric Analysis for Redshift
Estimations Arnouts and Ilbert, 2011], based on PEGASE [Fioc and Rocca-Volmerange, 1999] and
GISSEL population synthesis models. Even in this case the program is based on a simple χ2

fitting method between the theoretical and observed photometric catalog. A simulation program
is also available in order to generate realistic multi-color catalogs, taking into account additional
observational effects. Le Phare has been used, for example, to derive photometric redshift catalogs
for the Canada-France Hawaii Telescope Legacy Survey (CFHTLS) [Ilbert et al., 2006] and for the
COSMOS2015 photo-z catalog [Laigle et al., 2016]. In particular, the latter catalog is obtained by
combining the visible photometry with near-ultraviolet, near- and mid-infrared information from
different instruments. The final catalog contains more than half million sources, over 2 deg2, with
1 < z < 6. Taking this last work as example, it is clear that the SED fitting method requires a
high number and different types of templates. In particular, this is true if the model is not tuned
on a restricted redshift range. In the case of a wide redshift range instead, and many object types,
the model requires a configuration that should be as general as possible. In the derivation of the
COSMOS2015 catalog, templates from spiral, ellipticals, blue star-forming galaxies were included,
together with several extinction laws. In Salvato et al. [2009, 2011], photometric redshifts are
estimated for Chandra and XMM-Newton selected sources counterparts via adopting ad hoc built
hybrid templates. Additional information like optical variability, morphology and X-ray flux has
been used to build the model. Such an approach serves as a baseline for future missions like
eROSITA [Cappelluti et al., 2011].

A Bayesian version of the SED fitting has been developed by Benítez [2000] in order to overcome
some of the intrinsic weaknesses of the method. In fact, the main sources of error of template-based
models, as described by Sawicki et al. [1997] and Fernández-Soto et al. [1999], can be divided in
two broad categories: color/redshift degeneracies and templates incompleteness. The former arises
when the line corresponding to a certain template self-intersects, or when two different templates
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interesect at points which correspond to different redshifts. Such degeneracy will clearly increase
with increasing redshift range and number of templates included. Random photometric errors have
an effect too, causing a blurring and/or thickening of the color-redshift relation. The global effect is
an increase in the error between predicted photometric redshifts and in the number of catastrophic
outliers (objects which sensibly deviate from the ideal diagonal line in photometric versus spec-
troscopic redshift plot). Using additional filters does not necessarily improve performance because
the information contained in colors can be redundant, and therefore not helpful in breaking the
degeneracy. The addition of more templates is also not able to solve the latter source of errors
because one should, in principle, include a template for every type of galaxy. Furthermore, the
addition of too many templates could worsen the degeneracy. Therefore, the Bayesian treatment
is useful because it can allow to include additional information, apart from colors and magnitudes,
weighting the templates by its prior probability, helping to break the degeneracy. Apart the BPZ
code from Benítez [2000], several other Bayesian-based methods have been developed, like GOODZ
[Tanaka, 2015] and BEAGLE [Chevallard and Charlot, 2016]. An important part of these works
is focused on finding proper and efficient priors to improve the redshift estimation. In fact, priors
have to be used with great care, as there is always the risk of including inaccurate information.
The main problem concerning an approach based on Bayesian methods is the high demand of
computational resources and the slowness of calculation which is typical of such models.

2.3.2 Empirical model-based methods: training set and machine learn-
ing

Empirical training set and machine learning methods are based on the availability of a training set,
composed of photometric data and spectroscopic redshifts. The method searches for an optimal
fit between photometry and redshifts, by means of several machine learning algorithms, that can
be used to predict photometric redshifts from photometric data only. The main advantage of the
method is that it is basically empirical, so it does not depend on the knowledge of galaxies SEDs, but
it requires a sufficiently large dataset in order to properly optimize the model. For this reason, such
methods acquired popularity in the recent years thanks to the data explosion due to the synoptic
digital surveys. Empirical methods are not directly based on physically motivated models. Instead,
the model is found empirically from the algorithm, namely training the machine to optimize the
internal weights which characterize a function in the parameter space. In other words, the model
learns, through a training sample, the mapping between photometry and redshift. The training
phase is exactly the optimization process of the model by means of the training set, in order to
choose the best set of parameters. Once this phase is over, the model can be fixed and used for
predictions with an unknown set of data. In general, machine learning methods often demonstrated
to produce more accurate and robust results, taking into account complicated correlations existing
between the inputs and targets. Machine learning methods have several advantages, like the
possibility to incorporate additional observables, and to avoid systematic effects associated with
the photometry by means of the adopted training set. However it is very important to use a well
representative training sample in order to avoid biases [Hoyle et al., 2015a].

A first attempt was done by Connolly et al. [1995], where two samples of 254 and 2, 025 galaxies,
respectively, based on four bands photometry, obtained from digitized photographic plates, were
fitted using a linear and a quadratic function. This work is at the basis of all the successive
developments obtained using empirical methods. In fact, they used the four filters as input features,
measuring the root mean square error dispersion (σz) in the two cases of the linear fit and the
quadratic fit. The latter model gave superior performance with respect to the former and the fit
could be further improved reducing the redshift range of the fit, performing it in bins. Considering
the broadband photometry as a low-resolution spectrum, it is not possible to identify the spectral
signature in a particular emission or absorption feature through a particular bandpass. Instead
what the model detects is just the effect of passing the overall shape of the continuum through
the different filters as the redshift increases, with the break at 4, 000 Å acting as a prominent
spectral feature that is typically identified. Such a method, as specified by the authors, had the
goal of being applied at the forthcoming SDSS, which in the following years became a gold mine
for this field of research. Further developments were obtained by Brunner et al. [1997], which used
CCD photometry instead of photographic plates data, and from Wang et al. [1998], which used a
modification of the Connolly et al. [1995] method to determine photometric redshifts for the HDF.
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Neural networks have been applied in astronomy since the second half of the ’90s for several
purposes, from morphological classification of galaxies [Lahav et al., 1996] to star/galaxy separation
and object detection [Andreon et al., 2000]. An approach based on neural networks, for photometric
redshift estimation, was proposed by Firth et al. [2003], Vanzella et al. [2004], Collister and Lahav
[2004]. In these works, the authors applied a multilayer perceptron model [MLP Rosenblatt, 1958,
Bishop, 1995], taken from the computer science field, to determine photometric redshifts using
magnitudes and colors from the first data release of the SDSS or the HDF as input.

Although neural networks increased their popularity in the following years, many other machine
learning models have been used to perform the task. This is the case, for example, of Gerdes et al.
[2010], who applied decision trees [DT Quinlan, 1986] to predict photometric redshifts in the form
of PDFs. The popular random forest model [RF Breiman, 2001] was instead adopted by Carliles
et al. [2010]. Other approaches involve the application of methods based on nearest neighbours
[Abazajian et al., 2009] or support vector machines [SVMs Wadadekar, 2005]. A MLP model has
been used in D’Abrusco et al. [2007], where the neural network is adopted to estimate photometric
redshift for two samples taken from the SDSS, namely general galaxies and luminous red galaxies
[LRG Eisenstein et al., 2001]. In this work, objects are pre-classified as nearby (z < 0.25) and
distant (0.25 < z < 0.50). Then, a feature selection is performed, from which magnitudes and colors
are identified as the most efficient parameters. Several models from the literature are compared
with the method proposed by the authors. This expresses the need of the community to test
different methods in order to build an efficient and well performing pipeline for photometric redshift
estimation.

All the models presented until now are fully supervised. However, the availability of a spectroscopic
sample can constitute a hard issue for the realization of a representative dataset to train the model
and achieve the best performance. For this reason, unsupervised methods have been investigated
too. They differ from neural networks or random forests because they do not require a sample of
targets (e.g. spectroscopic redshifts). Typically, these models perform a clustering in order to find
groups and similarities in the photometric space.

However, in order to compare the performance on many different methods, the PHoto-z Accuracy
Testing programme [PHAT Hildebrandt et al., 2010] was developed, as an international effort to
create a standardized common platform composed by two parts: PHAT0, based on simulations to
test the basic functionalities of the different models, and PHAT1, which is based on data from the
Great Observatory Origins Deep Survey [GOODS Dickinson et al., 2003]. The PHAT1 catalog has
been used with a modified version of the MLP, namely the MLP with a quasi Newton algorithm
[MLPQNA Cavuoti et al., 2015] and the platform DAMEWARE [Brescia et al., 2014], by Cavuoti
et al. [2012]. The model adopted is based on an approximated calculation of the Hessian matrix, in
place of the typically used Jacobian, used for the minimization of the loss function in the MLP. This
permits, as claimed by the authors, to improve the convergence of the neural network, and then
the global performance, by avoiding local minima. In [Laurino et al., 2011] the authors propose a
method called Weak Gated Experts (WGE), which is characterized by the application of different
data mining techniques on samples of optical galaxies and quasars from the SDSS. The WGE is
based on features, basically magnitudes and colors, and can be described by three main steps.
First, the feature space is properly partitioned. For each partion, a prediction model, or expert, is
determined, which maps each pattern of the feature space to the target space. In this way, a new
feature space is defined from the outputs of the predictors. Finally, a new gate predictor is trained,
mapping the patterns of the new feature space with respect to the targets. This method combines
efficient clustering and regression techniques, as the first partitioning of the features space is done
by using k-means clustering [MacQueen, 1967] models. The subsequent steps instead are based on
MLPs.

A method based on feature selection and a different way to explore the parameter space has
been proposed by Polsterer et al. [2014]. In this work the authors demonstrate how an efficient
feature selection can substantially improve the performance of photometric redshift estimation. The
features obtained are somewhat unusual with respect to the commonly used features adopted in the
literature, namely magnitudes and colors. In order to find the best set of features to be used for the
task, the authors apply a simple but striking approach: huge amounts of features combinations are
tested via a massive parallel feature selection based on the intensive use of GPUs. The regression
model used in this case is a simple k-nearest neighbour. Such model proved to be particularly
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efficient for the task, having to deal with large amount of patterns in a low-dimensional features
space [Polsterer et al., 2013]. The method presented in this work will constitute the starting point
for the work presented in the Publication III included in the thesis.

2.3.3 Probabilistic redshift estimation

From a general point of view, most of the works presented in the previous overview were based on
finding photometric redshifts in the form of point estimates, independently from the method cho-
sen. Anyhow, in the last years, with the refinement of the techniques and the improvement of the
technologies used for the task, the attention of the community shifted to determining probability
density functions. The reason for this interest is straightforward: PDFs contain much more infor-
mation which is important for the estimation of several cosmological measurements, like galaxy
clustering, weak lensing, baryon acoustic oscillations and mass functions of galaxy clusters [Reid
et al., 2010, Ho et al., 2012, Jee et al., 2013]. The quality of such measures is highly dependent
on the availability of huge samples of galaxies with precise distances estimates, as demonstrated
by Martí et al. [2014]. Furthermore, a description based on PDFs allows to better describe the
whole redshift phenomenon, and in particular the presence of multimodality effects, treatment of
extreme outliers, and so on. On the other hand, one has to take into account that the growth of
photometric-only surveys simply does not scale with their spectroscopic equivalent. Therefore, the
given cosmological measurements will depend on the availability of photometric redshifts. The ef-
fectiveness of the methods presented will then tremendously increase if they will be able to provide
not just a point estimate but a PDF. This is demonstrated, for example, in Myers et al. [2009],
where the additional information given by redshift PDFs is used to measure quasi-stellar objects
clustering in the SDSS, improving substantially the performance with respect to the use of point
estimates; or in Mandelbaum et al. [2008], where the information contained in photo-z PDFs is
used for weak-lensing calibration. Further noticeble works in the field are those from Sheth [2007],
van Breukelen and Clewley [2009], where it is demonstrated how the use of PDFs can improve cos-
mological measurements, namely luminosity function and cluster detection. The two works from
the same authors, Carrasco Kind and Brunner [2013, 2014], present two methods, the former being
supervised and based on random forests, the latter instead unsupervised with the application of
self-organizing maps [SOMs Kohonen, 1982], to derive photometric redshift PDFs. In particular,
the first work proposes a method called Trees for Photo-Z (TPZ), in which the outputs of the
decision trees composing the forest are used to generate PDFs.

In the recent years an increasing number of publications have been released proposing methods
to estimate photometric redshifts in the form of PDFs. An example is the one given by Cavuoti
et al. [2017], in which the authors establish a method, called Machine-learning Estimation Tool for
Accurate PHOtometric Redshifts (METAPHOR), to predict photo-z PDFs by building a modular
workflow based on the MLPQNA neural network. Here, the density distributions are derived by
properly perturbing the parameter space, in order to obtain multiple test-sets from which deriving
different estimates of photometric redshifts. Therefore, the photometric redshifts are binned and
for each bin the probability that a given photo-z value belongs to each bin is calculated. The results
are compared to popular methods like RF, kNN and Le Phare, with respect to several statistical
indicators (bias, standard deviation, median absolute deviation, fraction of outliers, skewness),
obtaining a clear improvement. Another remarkable approach is the one given by Sadeh et al.
[2016]. In this work, the authors utilize ensembles of machine learning models, like neural networks
and decision trees, to estimate PDFs by considering the different sources of uncertainties where the
prediction deviates from the ideal result. In fact, in general, the uncertainty on the photometric
redshift can be due to: inputs, machine learning model, unrepresentative training set or incomplete
training set. Following the cited paper, the first three sources of uncertainty can be incorporated
in a meaningful PDF, while the latter causes the arising of degeneracy. The use of ensembles of
machine learning models is particularly helpful in the exploitation of uncertainties and differences
in performance due to the choice of the hyperparameters and/or architectures. Every machine
learning model, in fact, is characterized by a certain number of hyperparameters. Their choice and
the configuration of the model is always exposed to a certain degree of arbitrariness. This effect can
be controlled and limited by using multiple models with different choices of the hyperparameters,
which are commonly known as ensembles.
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Therefore, from all the previous discussion we can state that there are two main methods for the
estimation of photometric redshifts in the form of PDFs. The first is based on the so called binned
classification [Gerdes et al., 2010]. The full redshift range is divided into small bins and, by using a
spectroscopic training set, a set of classifiers runs for every bin. Basically, each classifier examines
every pattern, evaluating the probability that its redshift falls within the given bin. The PDF is
then reconstructed by examining the distribution of such probabilities with redshift. The second
method is the one used in the previously cited Sadeh et al. [2016], based on the construction of
the PDF from the results obtained by ensembles of machine learning models.

A good overview of the topics focused in this chapter can be found in Salvato et al. [2018]. Whatever
the method or the model adopted, the correct estimation of photometric redshifts, particularly in
the case of PDFs, demands the use of proper statistical tools to evaluate and minimize the errors.
In the next chapter I will analyze this aspect in detail, in connection with the tools introduced in
the publications presented in this thesis.
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Statistical tools and methodologies

Obtaining high quality photometric redshift estimates will be a major issue for a number of projects
and missions in the near future. One is the Euclid mission [Laureijs et al., 2011]. Euclid’s main
goal will be the investigation of dark energy, dark matter and gravity, by means of studying two
independent cosmological probes: weak gravitational lensing and baryonic acoustic oscillations.
Such measures will be highly dependent on the availability of affordable photometric redshifts,
for which the European Space Agency (ESA) and the Euclid Consortium have established specific
quality requirements. In particular, following the analysis of Abdalla et al. [2008], Bordoloi et al.
[2010], the Euclid Definition Study Report [Laureijs et al., 2011] states that the standard deviation
with respect to the true redshifts should be σz/(1 + z) ≤ 0.05(required)-0.03(goal). Moreover,
the percentage of catastrophic outliers should be below 10%(required)-5%(goal) and the error in
mean redshift per bin below 0.002. Typically, the performance of the estimates are evaluated by
checking:

• bias: zphot − zspec;
• precision: defined as the normalized standard deviation (zphot − zspec)/(1 + zspec) or the

normalized median absolute deviation 1.48×median(|zphot − zspec|/(1 + zspec));

• fraction of outliers: fraction of sources having |zphot − zspec| > Nσ or |zphot − zspec|/(1 +
zspec) > 0.15.

The main problem is the fact that these kind of measurements and error functions work very well
when dealing with point estimates, but can lead to misleading results when handling PDFs. This
problem will be addressed in Publication II presented in the Chapter 4 of this thesis and further
discussed in Sec. 5.4. In the following sections I will just present the new statistical tools that had
to be applied in order to correctly estimate the errors and to predict affordable photometric redshift
PDFs, namely the continuous rank probability score and the probability integral transform. The
third section, in particular, will be dedicated to the concepts of calibration and sharpness. Then
I will introduce the concept of proper scoring rules. The last four sections of the chapter will be
focused, respectively, on multimodalities, feature selection, artificial neural networks and parallel
computing.

3.1 Continuous rank probability score

The continuous rank probability score [CRPS Hersbach, 2000b] is a verification tool specifically
meant for probabilistic forecast systems. In particular, the CRPS is an ideal tool for estimating an
error between a predicted density distribution and a point-like target value. The general definition
of the CRPS, following Hersbach [2000b], is given by the formula:

CRPS = CRPS(P, xa) =

∫ ∞

−∞
[P (x)− Pa(x)]2dx

19



Chapter 3. Statistical tools and methodologies

where P (x) and Pa(x) are the cumulative distribution functions (CDFs) for a corresponding density
distribution ρ(x) and an occurence value xa. Therefore:

P (x) =

∫ x

−∞
ρ(y)dy , Pa(x) = H(x− xa)

with H(x) being the well-known Heaviside step function:

H(x) =

{
0, for x < 0

1, for x ≥ 0

So the CRPS measures the difference between predicted and occurred cumulative distributions, as
it can be seen in Fig. 3.1

Figure 3.1: Example plot of the CRPS calculation between a Gaussian probability density distribu-
tion and a redshift target value (left plot). The cumulative distribution function and the Heaviside
function are shown in the right plot and the CRPS corresponds to the integral between these two
functions, given by the red area.

Usually, the CRPS is averaged over an area and a number of cases, as:

CRPS =
∑

k

wkCRPS(P k, xka)

3.2 Probability integral transform

The probability integral transform [PIT Gneiting et al., 2007] is defined as the value that a predic-
tive CDF attains at the target. Practically, it is a visual tool to verify how a set of observations or
predictions can be modelled as coming from a particular distribution. It is based on the statement
that if a random variable xt has a continuous distribution, with its cumulative distribution function
being Ft(xt), the PIT is defined as:

pt = Ft(xt)

and, in the ideal case, has a uniform distribution. Therefore the uniformity of the PIT is a necessary
condition to achieve a perfect prediction, and this can be practically verified calculating the value
pt for every predicted PDF and plotting a histogram, as shown in Fig. 3.2.

The three different cases shown in Fig. 3.2 depict the reasons for prediction deficiency. Case a
corresponds to the optimal case of a uniform distribution. Tecnically speaking, we refer to this
case as well calibrated. The U-shaped histogram shown in figure b corresponds to distributions
that, on average, are too narrow and it is affected by underdispersion. Figure c instead refers to
the case of overdispersion, in which the predicted distributions are too wide. Clearly one could
also find triangle-shaped histograms, which means that the distributions are biased.
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Figure 3.2: Three examples of PIT histograms. Case a refers to a well calibrated PIT. Case b
shows a underdispersed prediction, in which the distributions are on average too narrow. Case c
shows distributions affected by overdispersion, or too broad.

3.3 Calibration and sharpness

Following Gneiting et al. [2007], the basic idea behind the use of the CRPS and the PIT is to
evaluate the performance of the predictions based on the paradigm of “maximizing the sharpness of
the predictive distributions subject to calibration”. Calibration refers to the statistical consistency
between the predicted density distribution and the target value. Sharpness instead expresses
how well the predicted distribution is concentrated. Therefore, calibration is a joint property of
predictions and target, while sharpness is a property of the predictions only. Clearly, the more
concentrated the predictions are, the sharper, and therefore better, they are, subject to a good
calibration.

In general, there are several types of calibration. In this case, I will refer to the so called probabilistic
calibration. Let’s consider a CDF distribution Gt as the natural probability distribution of a certain
phenomenon, from which xt is a randomly drawn observed value (target). Ft is instead the CDF
of the probabilistic predictive distribution. Therefore the sequence (Ft)t=1,2,... is probabilistically
calibrated with respect to the sequence (Gt)t=1,2,... if:

1

T

T∑

t=1

Gt ◦ F−1t (p) −→ p for all p ∈ (0, 1)

Probabilistic calibration is then equivalent to having uniformity in the PIT values. Hence, when
doing predictions, whatever method we choose, the best we can hope is that Ft = Gt. From a
practical point of view, aiming for this goal means, as said before, maximizing the sharpness of the
predictive distributions subject to calibration. This paradigm is defined as the sharpness principle,
as expressed in Gneiting et al. [2007]. In this publication the authors deeply discuss the impor-
tance of using proper scores with respect to the sharpness principle and the optimization of the
prediction performance. This is also related to particular conditions which can arise when dealing
with real applications, like conditional heteroscedasticity. This concept expresses the existence of
sub-populations characterized by different variances or statistical dispersion. In this cases, the
width of prediction intervals can exhibit strong variability, and therefore the average width is not
sufficient to characterize the sharpness. The combined use of proper scores, like the CRPS, and
of visual diagnostic tools like the PIT, can help to solve such issues, in particular when dealing
with probabilistic predictions of continues variables. The advantages given by the combined use of
these tools will be further discussed in Sec. 5.4.
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3.4 Proper scoring rules

As stated by Gneiting et al. [2007], the CRPS is a proper scoring rule. In general, a scoring
rule assigns a numerical score to a certain probabilistic prediction, giving a summary measure of
the performance of the prediction itself. Ideally, a scoring rule should address calibration and
sharpness simultaneously. Defining s(F, x) as the score given by a certain predicted distribution F
with respect to the target x, the scoring rule is proper if s(F, x) for the target x drawn from the
natural distribution G is minimized if F = G. If this minimum is unique, then the scoring rule is
defined as strictly proper. The definition can also be expressed by stating [Gneiting and Raftery,
2004] that:

s(G,G) ≤ s(F,G) (3.1)

where s(F,G) is the expected value of s under G. Here it is assumed that s is a penalty scoring rule
(e.g. the root mean square error), which has to be minimized in order to achieve the best result.
In case of a reward (like for the likelihood), s has to be maximized, and therefore the definition
becomes s(G,G) ≥ s(F,G). However, if this property is valid for every F and G, the scoring rule
is defined as proper.

The CRPS is a proper score and with respect to other commonly used scoring rules proved to be
sensibly more robust [Gneiting and Raftery, 2004]. In principle, as it will be demonstrated in the
appendix of Publication II, the minimization of the negative log-likelihood is equivalently efficient
and considered a proper score too. On the other hand, the log-likelihood is much focused on the
spatial positioning of the predictions, while the CRPS is better related to sharpness.

Other examples of proper scoring rules are the already cited root mean square error (derived from
the Brier score [Brier, 1950]) and the logarithmic score [Good, 1952]. A detailed analysis on proper
scoring rules and, in particular, on the advantages of adopting the CRPS in the case of continuous
variables and predictive densities is given by Gneiting and Raftery [2004].

3.5 Multimodalities and Gaussian mixtures

We have already seen how the estimation of photometric redshifts takes substantial benefits from a
density distribution representation. We can assume such a density distribution to be Gaussian. On
the other hand, estimating the redshift as a point estimate or as a single peak distribution would
imply that from a given photometric set of features a single photometric redshift can be derived,
i.e. there is a single redshift solution. Unfortunately, as showed in Polsterer [2017], this is not true.
In fact, in many cases multimodality effects arise, allowing the association of multiple redshifts to
the same source. In other words, for a given photometry, the solution is not unique and multiple
redshifts are admissible, with varying probability. There are multiple reasons for this behavior.
Different physical mechanisms can be at work and modify how the source looks with redshift.
Ambiguities can be due also to a limited number of photometric measurements available and to
the noise affecting them. Moreover, the broadband filter system used to derive the input features
can itself cause degeneracies. For example, in the case of the SDSS, the ugriz system [Gunn et al.,
1998], shown in Fig. 3.3, is subject to degeneracies coming from the width of the filters. In fact,
several narrow features can fall in the same broad filter curve, making it hard to disentangle them.
This effect can be immediately verified when looking at Fig. 3.4. Here three spectra of quasars
at different redshifts are shown, on top of the same broadband filter curves depicted in Fig. 3.3.
It can be noticed how the spectral lines move through the filter system due to the redshift effect.
Moreover, it is evident that the degeneracy introduced by the width of the filter curves can be
easily removed only in the narrow regions at the intersections between the filters. This explains the
many attempts in the literature to get rid of degeneracies by using different features such as several
magnitudes and colors. Theoretically this allows us to detect distinctive spectral characteristics
(e.g. the Lyman or Balmer break) or to capture narrow features when passing in intersections
between the filters.
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3.5. Multimodalities and Gaussian mixtures

Figure 3.3: Filter curves defining the ugriz system of the SDSS

For all of these reasons, it is evident that when predicting redshift PDFs, one should take into
account multimodalities. The solution proposed in this thesis is the adoption of a Gaussian mixture
model [GMM Mclachlan and Basford, 1988] to fit the input photometry to the spectroscopic target.
A GMM is a probability distribution defined as:

p(x) =

M∑

m=1

wmN (µm, σ
2
m) (3.2)

whereN (µm, σ
2
m) is a normal distribution and wm is its weight. The use of the GMM is particularly

convenient with respect to the adoption of the CRPS as score function. In fact, in the case of a
Gaussian distribution, the CRPS can be easily calculated with the formula:

CRPS
(
N (µ, σ2), x

)
=

σ√
π

(
1−√πx− µ

σ
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(x− µ√

2σ2

)
−
√

2 exp

(
− (x− µ)2

2σ2

))

as in Gneiting and Raftery [2004], and with erf indicating the error function. Expressing the
Gaussian probability density and its CDF as φ and Φ respectively, the previous relation becomes:

CRPS
(
N (µ, σ2), x

)
= σ

(
x− µ
σ

(
2Φ

(
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)
− 1

)
+ 2φ
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)
− 1√

π

)

Similarly it is possible to calculate the CRPS for a GMM, as showed in P. Grimit et al. [2006],
obtaining:

CRPS

(
M∑

m=1

wmN (µm, σ
2
m), x

)
=

M∑

m=1

wmA(x − µm, σ2
m) − 1

2

M∑

m=1

M∑

n=1

wmwnA(µm − µn, σ2
m + σ2

n)

where wi is the weight of the i-th member of the mixture and:
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(a)

(b)

(c)

Figure 3.4: The plots show the spectra of three quasars at different redshifts on top of the SDSS
filter curves. It can be noticed how the shift of the spectrum moves the different spectral features
through the broadband filters and the degeneracy caused by the width of the filters. The only
regions in which the degeneracy is removed are the intersections between neighbouring filter curves.
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A(µ, σ2) = 2σφ

(
µ

σ

)
+ µ

(
2Φ

(
µ

σ

)
− 1

)

expresses the expectation for the absolute value of a normal random variable having mean µ and
variance σ. With this background, the CRPS can not only be implemented as a score function to
estimate the performance of the adopted machine learning models, but also as a loss function, to
perform the training of the neural networks, which will be extensively shown in the publications
presented in the next chapter.

3.6 Feature selection

Machine learning models require input data in which the original information is condensed to
a restricted number of representative parameters. This has to be done in order to make the
information itself and the models more interpretable for humans, to reduce the training time and
to avoid the curse of dimensionality [Bellman, 1961]. This expression refers to the fact that,
intuitively, in high-dimensional spaces the increase of dimensions generates a faster increase of the
space volume, causing the data to become sparse. Therefore, the data are no longer representative
and the results can become poor or unreliable. On the other hand, increasing the number of input
features is necessary to increase the generalization capability of the model, avoiding overfitting
or, for example, to break degeneracies, as in the case of photometric redshift estimation. For this
reason, one should always try to find a decent balance between increasing the dimensionality of
the input space and limiting the number of parameters to avoid the curse of dimensionality.

In this sense, feature selection is a fundamental step to build a reliable and efficient model. Typ-
ically it follows the related step of feature extraction, which is used to express the original in-
formation in a number of parameters, like, for example, magnitudes and colors extraction from
astronomical images. Feature selection is meant to select only the necessary parameters, removing
those which are shown to not improve the result, are redundant or highly correlated. There are
plenty of methods to perform this task, from a manual selection to algorithms based on selection
criteria and completely automated methods. Feature selection has the advantage to not transform
the input data, in contrast to other techniques, e.g. applying principal component analysis. This
can be preferable when the meaning of the features is relevant in order to find relationships be-
tween the parameters for a better comprehension of the physics of the problem. Feature selection
methods can be roughly divided in three categories. Filter methods are completely independent
from the model used to solve the problem or perform the predictions and are based on correlation
coefficients to rank the features. That is to say, they do not involve specific learning methods,
relying only on general characteristics of the data to evaluate and select the most reliable feature
subsets. Wrapper methods instead are based on the performance of the same machine learning
model selected for the task. Therefore, they select the features which best fit with that specific
model. For example, the greedy forward selection [Pahikkala et al., 2010] used for the feature selec-
tion presented in Publication III is a wrapper method. Finally, embedded methods are a group of
techniques which perform the feature selection as part of the model building process. The feature
selection automatically performed by the DCMDN, as showed in Publication II, is an embedded
method. A good overview about the field can be found in Guyon and Elisseeff [2003]. A detailed
description of these methods goes beyond the scope of this thesis but, as the problem also involves
machine learning models applied to astronomical problems, I want to give a brief overview of the
major milestones in this field.

An important work is that by Donalek et al. [2013], in which the authors apply several feature
selection techniques on data from the Catalina Real-Time Transient Survey [CRTS Djorgovski
et al., 2011] and Kepler [Borucki et al., 2010] to classify transient events. In this work five different
methods are adopted to select the best performing features for the classification with several
machine learning models. The results are then compared with those obtained using all the available
features, generally showing an improvement in the performance when finding the best feature
selection. The problem of feature selection has been treated in detail in the literature, not just
in relation to the solution of a specific problem, but also with the aim of defining a specific set
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of features which could be used in general by the community. For example, in the case of time
series analysis, the work from Richards et al. [2011] is particularly relevant, as the authors define
a set of periodic and non-periodic features from light curves, which have become widely used in
the community. The use of features is fundamental when dealing with light curves, or time series
in general, as the original data are typically not regularly sampled nor observed with the same
number of epochs and signal-to-noise ratio. Therefore features represent a homogeneization of the
data, which are transformed to a vector of real numbers by using statistical and model fitting
procedures. The same features have been used, for example, in D’Isanto et al. [2016] in order to
develop a novel method of feature selection, based on the random forest feature importance, to
classify transient sources from the CRTS with neural networks. In particular, this work is focused
on the identification of cataclismic variables, of supernovae and the separation between galactic
and extra-galactic sources.

With regard to photometric redshift estimation, many works, even some reported in Sec. 2.2, focus
on the choice of parameters used in order to improve the performance. The features proposed in
Laurino et al. [2011], which are point spread function (psf) magnitudes, model magnitudes and the
related colors, have become almost a standard in machine learning based models used to derive
photo-z. Instead, in Polsterer et al. [2014], a different approach is adopted in order to find the
best features for photometric redshift estimation. The authors perform a brute force combination
of several photometric parameters, and select the most efficient with a greedy forward selection
method. This constitutes the basis for the work presented in Publication III, as it permits us to
make a better use of the photometry contained in the SDSS catalog, improving the general perfor-
mance, and to find new features, which can be interpreted in a physical sense. The new features are
based not only on magnitudes and colors but on different combinations of them and they include
further photometric information too, like radii and ellipticities. The improvement obtained by
considering additional photometric information in the feature selection is further demonstrated by
Hoyle et al. [2015b]. In this work the selection is based on the feature importance estimated by the
Gini index [Gini, 1912] as it is calculated in Decision Trees from the scikit-learn [Pedregosa et al.,
2011] implementation. In Publication III a comparison between the feature ranking obtained with
the proposed method and the importance calculated with the Gini index as used in the RF model
is also performed.

3.7 Artificial neural networks

A detailed description of machine learning models would be beyond the scope of this thesis, but
in this section I want to give the rudiments, without any claim of completeness, about artificial
neural networks (ANN), which are useful to understand the models presented in Chapter 4.

ANNs are a class of machine learning models inspired by the structure of the biological brain
[McCulloch and Pitts, 1943]. In fact, the main calculation unit is called neuron, and neurons are
interconnected, in order to transmit signals, like it happens for synapses in the biological brain.
Typically, neural networks are based on supervised learning and can be used for classification
and regression tasks. One of the simplest ANN models is the multilayer perceptron (see Fig. 3.5),
composed of an input layer, one or more hidden layers and an output layer. Every layer is composed
of several neurons. All the neurons are fully-connected to all the neurons of the sub-sequent layer
and every connection includes a weight.

ANNs in general, and the MLP more specifically, are basically complex functions of the inputs x,
parametrized by weights w, i.e. the parameters optimized during the training, and a particular
activation function f , which is the function applied to the input of every neuron. Following Bishop
[1995], the relation between input and output, for a MLP like that shown in Fig. 3.5, is given by:

yk(x,w) = g
(∑

j

w
(2)
kj f

(∑

i

w
(1)
ji xi + b

(1)
j

)
+ b

(2)
k

)

Here b indicates a bias added to the sum and the function g used for the output typically is the
identity for regression problems and a logistic or softmax function for classification problems. In
general, the activation functions most commonly used are
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3.7. Artificial neural networks

Figure 3.5: Example of a multilayer perceptron characterized by two input neurons, one hidden
layer with three neurons and a single output.

tanh =
ez − e−z
ez + e−z

, sigmoid =
1

1 + e−z
, ReLu = max(0, z)

namely the hyperbolic tangent, the sigmoid and the rectified linear unit. The process of evaluating
yk is commonly referred as forward propagation. Therefore the network is trained to optimize
the weights, minimizing the loss function between the predictions and the targets, in our case
the spectroscopic redshifts. Once the network is trained, it is frozen, so not updating anymore the
parameters, and used to perform the prediction on an unknown dataset. In other words, the neural
network performs a high dimensional interpolation from which the model learns to generalize the
task by means of the training sample. For this reason, it is very important that the training
set used is well representative with respect to the specific problem. For example, in the case of
photometric redshift estimation the feature space needs to be representative of the the photometric
and physical properties of the sources. If this should not be the case the model could have problems
generalizing correctly, losing accuracy. Typically, the minimization of the loss function is achieved
by adopting the backpropagation algorithm [Rumelhart et al., 1988], during which the weights are
updated using the so called gradient descent. If LF = LF (y(x), xt) is the loss function between
the predictions y and the targets xt, then the weights are updated following the rule:

W ′i = Wi − η∇(LF )

where the parameter η, called learning rate, represents, intuitively, how quickly or slowly the update
of the weights is done. The choice of the learning rate is particularly important, as it is related
with the capability of the network to converge efficiently and to avoid local minima.

In the papers cited in Sec. 2.3.2, the MLPs adopted for the experiments have a quite simple struc-
ture, based on few hidden layers and a limited number of neurons. The root mean square error
(RMSE) is typically used as error function. This is a common choice when predicting point esti-
mates, but I will deeply analyze in Publication II and in Sec. 5.4 the reasons why it is not ideal
when dealing with probability density functions. The use of deep architectures, with many fully
connected layers, became popular only in the recent years, due to the increase of the data complex-
ity and hence the need to apply more elaborate models that can deal such complexity. However, a
fundamental role was played by the increase of computational power and the improvements in the
field of parallel computing, as it will be discussed in Sec. 3.8.
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(a) (b)

Figure 3.6: Example representing the reconstruction of a noisy sinusoidal function performed with
a MLP, from x to y (a), and from y to x (b). In case (b) the prediction is poor as the relation we
are trying to approximate is not a function, as the same input value can correspond to multiple
output values.

3.7.1 Mixture density network

An important extension of the MLP is the so called mixture density network [MDN Bishop, 1994,
1995]. Typically the output of a MLP is modelled as a single Gaussian density (regression task) or
as a Bernoulli distribution (classification task). In constrast, the MDN outputs are input dependent
density distributions, modelled as a Gaussian mixture model, given by Eq. 3.2. Following Bishop
[1995], if y are the outputs of the neural network, then the MDN will define the means, variances,
and mixing coefficients of a GMM with K components, respectively, as:

µk = yµk , σk = exp(yσk ) , πk =
exp(yπk )

∑K
l=1 exp(yπl )

where the mixing coefficients must satisfy:

K∑

k=1

πk = 1 , 0 ≤ πk ≤ 1

The MDN is particularly useful when dealing with data characterized by multimodalities, and
for this reason in Publication I I will present how to build a model composed by combining a
convolutional neural network and a mixture density network for photometric redshift estimation.

In Fig. 3.6 and Fig. 3.7, an example taken from Bishop [1994] is given, in order to clarify the
utility of MDNs in such a case. In Fig. 3.6a I plot noisy data generated from a sinusoidal function.
The task is a regression problem in which we would like to reconstruct the underlying function.
The function is approximated with a MLP (with a single output neuron), which learns to predict
the values y given the input x. The prediction, as shown by the plot, is good enough. Now we
consider the inverse problem, where the y axis is swapped with the x axis. In other words, y are
now the inputs and x are the outputs. As shown in Fig. 3.6b, training the same MLP on this
task, the prediction gives poor results. The reason why the MLP does not perform well is the
fact that the relation we are trying to approximate is no longer a function, as the same input
value can correspond to multiple output values. Therefore, to perform this prediction correctly, a
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(a) (b)

(c)

Figure 3.7: Example representing the reconstruction of the same noisy sinusoidal function from
Fig. 3.6, performed with a MDN based on a GMM with K = 3 Gaussian components. In (a) the
results are shown, while in (b) the behavior of the parameters of the GMM with respect to the
input data is depicted. In (c) a sample from the MDN predictions is shown with respect to the
original data.

model able to predict multiple outputs for each input is required. The standard MLP is not able
to fullfil such a requirement. For this reason, a mixture density network has to be used. Here I
use a MDN characterized by a GMM with K = 3 Gaussian components and the likelihood as loss
function. In Fig. 3.7a and Fig. 3.7b the results are given. It can be noticed that for every input
data point, the output can be given by any of the k predicted means µk (bottom plot in Fig. 3.7b),
each characterized by a probability represented by the mixing coefficients. The mixing coefficiens
indicate the regions of input space for which each mean µk is responsible for modelling the data. In
particular, Fig. 3.7b shows how the GMM parameters vary with respect to the input data. Finally,
in Fig. 3.7c a sample from the MDN predictions is shown with respect to the original data. It can
be noticed that the shape is captured very well by the sampled data. This example clarifies the
necessity to use a mixture density network, based on a probabilistic model, in order to deal with
multimodalities.
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3.8 Parallel computing

Most of the work presented in this thesis is based on an intensive application of parallel computing,
performed by adopting graphics processing units (GPUs). This type of computation is carried out
by executing many calculations or processes concurrently. Typically this is done by breaking a
computational task in several similar subtasks, which can be processed independently and whose
results can be combined afterward. It can be performed on a single machine equipped with multi-
core or multi-processor hardware, or on multiple machines, arranged in a cluster or grid structure,
which work on the same task. Until the first years of the 2000s, frequency scaling was the principal
way to increase a computer performance, as the runtime of a program is trivially given by the
number of instructions multiplied by the average time per instruction. The problem in this kind of
approach lies in the fact that power consumption P is directly related to the processor frequency
F by the relation:

P = C × V 2 × F

where C is the capacitance per clock cycle and V is the voltage. Therefore, increases in frequency
imply increases in power consumption, and this brought about a drastic change in the way im-
provement of performances in computing is obtained. Producers started to develop (also in the
desktop sector) central processing units (CPUs) characterized by multiple cores in order to deal
with the problems of power consumption and overheating.

Ideally, one would expect that the speed-up obtained from parallelization should be linear. This
means that doubling the number of processing units should half the runtime. Unfortunately, this
is only partially true and the speed-up is almost linear only for a small number of units, flattening
out as they increase. The relation expressing the potential speed-up of an algorithm on a parallel
platform is given by Amdahl’s law [Amdahl, 1967, Rodgers, 1985]:

Slatency(s) =
1

1− p+ p
s

where Slatency(s) is the potential speed-up in latency to execute the whole task, s is the speed-up
related only to the parallelizable part of the task and p is the percentage of execution time that the
part of the task affected by the parallelization originally had. Amdahl’s law is shown graphically
in Fig. 3.8. The two relations:

Slatency(s) ≤ 1

1− p , lim
s→∞

Slatency(s) =
1

1− p

show, on one hand, that the theoretical speed-up in the execution of the task increases by improving
the resources and, on the other hand, that the part of the task which cannot be improved by the
parallelization constitutes always a limit for the speed-up itself.

For our purposes, I would like to focus on parallelization performed with GPUs. This is also ad-
dressed as general purpose computing on graphics processing units (GPGPU). Typically GPUs are
applied for computers graphics and their use for different applications only recently became a trend
in computer science and engineering. There is to say that the availability of GPU-based solutions
contributed enormously to the growth in popularity of deep learning applications in every field.
The reason lies in the fact that computer graphics is mainly based on algebric matrix operations,
which is used in most deep learning models, for example in convolutional neural networks [Lecun
et al., 1998]. In the case of neural networks, the speed up is mainly due to the parallelization of the
stochastic gradient descent [Kiefer and Wolfowitz, 1952], based on the calculation of the gradient
in minibatches, during the backpropagation phase. The gradient, in fact, is typically not calculated
on the whole data sample, as this operation would be too much computationally demanding. The
data are divided in minibatches and the gradient is calculated for each object in the minibatch,
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Figure 3.8: Evolution of the theoretical speed-up in latency, according to Amdahl’s law, of a certain
task with respect to the number of processors used and for different percentages of p. Image from
Wikipedia.

taking the mean of the values obtained. When the calculation in a minibatch is completed, the
weights are updated, and the procedure is repeated for the subsquent minibatch. As the weights
are fixed for the calculation in every minibatch, this operation can be parallelized, performing it
simultaneously for every object contained in the minibatch.

A GPU is a programmable heterogeneous multi-processor chip, highly tuned for graphics. Their
architecture based on multiple cores is meant to deal with vertex, primitive and fragment generation
and processing, in order to create 3D graphics. In particular, fragment operations are based
on shaders [Pixar, 1989, Upstill, 1989]. These are a class of algorithms which were originally
meant to deal with the appropriate levels of light, darkness and color within an image. Nowadays
they are widely used in computer graphics for a number of specialized functions, and even for
tasks not related to graphics at all. By using shaders, the elements which characterize an image
(position, hue, saturation, brightness, contrast, vertices, or textures) can be customized on the
fly. This can be done using algorithms specifically defined in the shader and characterized by a
high degree of flexibility. All these parameters can therefore be modified by external variables
or textures introduced by the program calling the shader. However, each shader needs to be
processed independently, and cannot be explicitly parallelized. In other words, every fragment
is characterized by an independent logical sequence of control. From this comes the necessity
of having multiple cores which each control a single fragment process, allowing parallelization.
Older cards needed to utilize separate processing units for each different shader type (geometry,
vertex, pixel, etc.). Modern GPUs are instead based on the Unified Shader Model, characterized
by the fact that all the shader stages in the rendering pipeline possess the same capabilities.
Therefore GPUs are designed to work on textures mapping and polygons rendering, rotation and
translation of vertices, manipulation of the same vertices and textures using shaders, oversampling
and interpolation techniques to reduce aliasing. In other words, they handle all the visual elements
that characterize gaming, videos, graphic softwares and so on. Basically, all these tasks are based
on matrix and vector operations, and this makes GPUs so suitable for other kind of applications
which demand a high level of parallelization for such calculations. A modern dedicated GPU
typically interfaces with the motherboard by the PCI Express (PCIe) slot. The term dedicated
refers to the fact that the GPU has its own RAM dedicated to the card’s use. Furthermore, with
the increase in the employment of GPUs for different purposes, a dedicated cache has also been
included in the new generation cards.

The increase in terms of performance with respect to CPU based applications is dramatic. This
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Type Hardware Running time/epoch
CPU Intel Core i7 - 1 core 4h 8m
CPU Intel Core i7 - 8 cores 82m
GPU Nvidia Titan X 90 s
GPU Nvidia Pascal P100 83 s
GPU Nvidia Pascal P40 81 s

Table 3.1: Running time per epoch in a photometric redshift estimation experiment using the
deep learning model presented in the publications of this thesis. The performance of different
architectures, based on CPU and GPU, are compared.

can be seen from Tab. 3.1, where the execution time of a single epoch for the deep learning model
presented in the publications of this thesis in a photometric redshift estimation experiment is
compared with respect to different hardware architectures. The running time per epoch goes from
the order of hours, for CPU based architectures, to seconds, in the presence of dedicated GPUs.
Considering that the convergence of the model requires at least some hundreds or thousands of
iterations, it is clear that such technologies can be successfully adopted only in combination with
an intensive use of GPU computing. Clearly, one has always to deal with possible bottlenecking
effects which can limit the performance and take into account that Amdahl’s law is valid also
in the case of parallelization with GPUs. Therefore the availability on the market of powerful
GPUs at reasonable prices is one of the main reasons behind the explosion in the interest in
deep learning solutions. Several implementations have been developed in order to make use of
such technologies in many fields, from image to speech recognition, using common smartphone or
powerful clusters. In the last few years, astronomy has started to take advantage of these techniques
too, and GPU computing and deep learning solutions are constantly increasing in popularity in
the community, in several fields of research, from the experimental and observational side to the
simulation one. To use Prof. Alex Szalay’s words, “modern science is approaching the point where
novel computational algorithms and tools, combined with computational thinking, will become as
indispensable as mathematics” [Szalay, 2011].
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Chapter 4

Publications

4.1 Overview

The present thesis is written in cumulative form, as allowed from the ’Appendix 2, to §7 (2)
Regulations concerning the conferral of doctoral degrees / Promotionsordnung ’ of the University
of Heidelberg. Three publications are required for the submission of a cumulative thesis, and during
my PhD studies I have been involved in the articles hereby reported. In all these publications I
am first author and they have been published in well-known and refereed scientific journals or
conference proceedings. The articles are included here in the same form they have been published
in the indicated journals. None of these publications has been or will be used in a cumulative
thesis of another co-author.

Publication I

Title: ’Uncertain photometric redshifts via combining deep convolutional and mixture density
networks.’

Authors: Antonio D’Isanto, Kai Lars Polsterer

This article has been published in ESANN 2017 proceedings, European Symposium on Artificial
Neural Networks, Computational Intelligence and Machine Learning. Bruges (Belgium), 26-28
April 2017, i6doc.com publ., ISBN 978-287587039-1. It has been reviewed by three independent
referees.

All rights reserved.

The publication is accessible via https://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/
es2017-56.pdf

Publication II

Title: ’Photometric redshift estimation via deep learning - Generalized and pre-classification-less,
image based, fully probabilistic redshifts’

Authors: Antonio D’Isanto, Kai Lars Polsterer

This article has been published in Astronomy & Astrophysics (A&A).

Credit: A. D’Isanto & K.L. Polsterer, A&A, 609, A111, 2018, reproduced with permission c©ESO.

33

https://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2017-56.pdf
https://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2017-56.pdf


Chapter 4. Publications

Publication III

Title: ’Return of the features - Efficient feature selection and interpretation for photometric
redshifts’

Authors: Antonio D’Isanto, Stefano Cavuoti, Fabian Gieseke, Kai Lars Polsterer

This article has been published in Astronomy & Astrophysics (A&A).

Credit: A. D’Isanto, S. Cavuoti, F. Gieseke and K. L. Polsterer, 2018, A&A, 616, A97, reproduced
with permission c©ESO.
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Uncertain Photometric Redshifts via Combining
Deep Convolutional and Mixture Density

Networks

A. D’Isanto1, K. Polsterer1.

1- Heidelberg Institute for Theoretical Studies (HITS)
Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg - GERMANY

Abstract. The need for accurate photometric redshifts estimation is
a major subject in Astronomy. This is due to the necessity of efficiently
obtaining redshift information without the need for spectroscopic analy-
sis. We propose a method for determining accurate multi-modal predictive
densities for redshift, using Mixture Density Networks and Deep Convo-
lutional Networks. A comparison with the Random Forest is carried out
and superior performance of the proposed architecture is demonstrated.

1 Introduction

Determining the distance of an object via redshift is an important task in As-
tronomy. Redshift is the measure of the shift of galaxies spectral lines due to
the expansion of the Universe and it is directly related to their distances. There-
fore, it plays a fundamental role in cosmological research. Redshift is measured
through spectroscopical analysis. Due to long integration times and costly in-
strumentation requirements, it is not possible to measure this property for all
objects in the Universe. Therefore an alternative way is to estimate the redshifts
based on photometric measurements. However, the uncertainty of such a photo-
metric approach is higher than the measurement errors in spectroscopy. For this
reason, the astronomical community is interested in quantifying the uncertainty
of redshift estimates via predictive distributions instead of merely working with
point estimates. We propose two neural network models inspired by Mixture
Density Networks (MDN) [1]. The first architecture is a deep MDN designed
to take photometric features as inputs and which generates predictive redshift
distributions. The second architecture combines a Deep Convolutional Network
(DCN) [2] with a MDN, in order to obtain probability densities for redshift, given
images as input. In particular the latter approach achieves better predictions
due to its use of image data. In contrast to using condensed pre-defined fea-
tures, this allows to capture more details of the objects. We compare the results
obtained with a widely used tool in the related literature, the Random Forest
(RF) [3] [4]. Furthermore, in this paper, we use two statistical tools, namely the
continuous rank probability score (CRPS) and the probability integral transform
(PIT), in order to properly estimate the quality of the obtained results [5].
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2 Statistical tools: CRPS and PIT

In this section we briefly describe the statistical tools used to evaluate the pre-
dictions of the proposed models. As discussed in [6], a predictive distribution
explains well an observation if it is well calibrated and sharp; as stated in [6],
calibration expresses the consistency between predictions and observations, while
sharpness refers to the concentration of the predictions in the probability distri-
bution. CRPS quantifies both desired properties, while the PIT provides a visual
appreciation of them. The CRPS [7] is meant to compare a distribution with an
observation (see Fig.1):

CRPS = CRPS(F, xa) =

∫ +∞

−∞
[F (x)− Fa(x)]

2dx (1)

where F (x) and Fa(x) represent respectively the cumulative density functions
(CDFs) of the probability density function (PDF) and of the observation, namely:
F (x) =

∫ x

−∞ f(t)dt and Fx = H(x − xa), with H(x) being the Heaviside step-
function. We use the CRPS as a score function to express the results of the
predictions and as a loss function for the proposed neural networks.

The PIT is defined by the value given by the CDF of the predictions Ft at
the observation xt, that is to say: pt = Ft(xt). If the predictions are ideal, then
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Fig. 2: Three different examples of probability integral transforms (PIT s) for
overdispersed, well calibrated and underdispersed distributions.
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the distribution pt is uniform. In Fig. 2, this can be verified by plotting the
histogram of the distribution: if it shows a uniform shape, than the distribution
is well calibrated; if it is U-shaped or center-peaked, it is underdispersed or
overdispersed, respectively. From the analysis of the PIT it is possible to infer
whether or not the distribution is biased.

3 Deep learning algorithms

In the next two subsections a description of the deep learning algorithms we
used for the experiments follows.

3.1 Mixture Density Network

The Mixture Density Network (MDN) [1] is a particular model of Multilayer
Perceptron with an output defined via a mixture model. The output distribution
is a mixture of Gaussians p(θ|x) =

∑n
j=1 ωjN (μj , σj), with N (μj , σj) being a

normal distribution. The means, variances and weights, are parametrized by the
outputs z of the network:

μj = zμj , σj = exp(zσj ) , ωj =
exp(zωj )∑n
i=1 exp(z

ω
i )

. (2)

Commonly the MDN employs negative log-likelihood as a loss function. In this
work we use the CRPS as the loss function, because we want the trained MDN
to produce predictive distributions that are both well calibrated and sharp as
measured by the CRPS.

3.2 Deep Convolutional Network

A Deep Convolutional Network (DCN) [2] is a neural network in which several
convolutional and sub-sampling layers are coupled with a fully-connected net-
work, which is particularly adept at learning from raw image data. In our case,
we want to estimate redshifts directly from images, without the need to extract
photometric features. In fact the DCN, filtering the input images with proper
filter weights, is able to automatically extract the feature maps that become the
input data of the fully-connected part. We combine a modified version of the
LeNet-5 [2] architecture with the MDN (see Section 3.1), obtaining what we call
a Deep Convolutional Mixture Density Network (DCMDN). In Tab. 1 there are
the two different architectures used for the experiments respectively with 28x28
and 16x16 images. Many different architectures had been evaluated, including
more compact and less deep convolutional parts. The architectures found to
perform best have been chosen for this work. We are aware that cross validation
is an appropriate tool to prevent overfitting of the architecture. Due to compu-
tational limitations we use a simple hold out strategy, only. The architectures
were designed to run on GPU, using a cluster equipped with Nvidia Titan X.
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# Type Size Maps Activ
1 input 28x28 / /
2 Conv 3x3 256 tanh
3 Pool 2x2 256 tanh
4 Conv 2x2 512 tanh
5 Pool 2x2 512 tanh
6 Conv 3x3 512 ReLu
7 Conv 2x2 1024 ReLu
8 MDN 500 / tanh
9 MDN 100 / tanh
10 output 15 / Eq. 2

# Type Size Maps Activ
1 input 16x16 / /
2 Conv 3x3 256 tanh
3 Pool 2x2 256 tanh
4 Conv 2x2 512 tanh
5 Pool 2x2 512 tanh
6 Conv 2x2 1024 ReLu
7 MDN 500 / tanh
8 MDN 100 / tanh
9 output 15 / Eq. 2

Table 1: DCMDN architectures for the two image sizes.

4 Experiments

The data used for the experiments are taken from the Sloan Digital Sky Survey
Quasar Catalog V [8], based on the seventh data release of the Sloan Digital
Sky Survey (SDSS), consisting in 105, 783 spectroscopically confirmed quasars,
in a redshift range between 0.065 and 5.46. We perform the experiments with
the proposed architectures using a random subsample of 50, 000 data items.
Each data item has a feature and an image representation in five different filter
bands (ugriz ). We compare the performances of MDN and DCMDN with the
widely used RF [4]. The RF, in its original design, does not produce predictive
distributions. In order to obtain a predictive distribution, we first collect the
predictions zt,n of each individual decision tree t in the RF, for every n-th data
item. We take T = 256 number of trees in the forest and define the predictive
distribution for the RF by fitting a mixture of five Gaussian components to the
outputs, p(θ|x) =

∑5
j=1 ωjN (θ|(μj , σj)), as described also in Section 3.1 for

the MDN. The RF and the MDN are trained on the feature representation of
the data items. The original five features are ugriz magnitudes extracted from
the images. To avoid biases due to object intrinsic parameters like luminosity,
all possible pairwise differences (aka. colors) are used additionally. Therefore
a 15-dimensional feature vector is used as input. We divide the dataset in a
training and a test set, both containing 25, 000 patterns. The DCMDN is trained
on the image representation of the data items. The images are obtained using the
Hierarchical Progressive Surveys (HIPS) [9] protocol and performing a proper
cutout on client side, in order to obtain the desired dimensions. Each data item is
originally a stack of five images in the ugriz filters. Similarly to the features, we
additionally form the color images from the ugriz images by taking all possible
pairwise differences, thus obtaining a stack of 15 images. The images are taken
in two sizes: 28x28 pixels2 and 16x16 pixels2. Every object is then represented
by a tensor of dimension 15x28x28 or 15x16x16. In order to make the network
rotation invariant, we also perform data augmentation. We take rotations of each
image at 0, 90, 180, 270 degrees, obtaining a training set of 100, 000 images, a
validation set of 50, 000 images and a test set of 50, 000 images. Dropout with a
ratio of 60% together with early stopping is used to limit overfitting.
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Fig. 3: Results of the prediction obtained with the MDN and the DCMDN (two
different input sizes), compared with the RF results. For each experiment, three
plots are present. The upper plots compare the spectroscopic redshift with the
predictive density produced by the model, with the color indicating the summed
probability density of the distributions. In the two lower plots, the histogram
of the PIT values and the histogram of the individual CRPS values, are shown.
The mean CRPS value is also reported.

5 Analysis of results

The results of the experiments are reported in Fig. 3. In the RF experiment,
the model reaches a score of 0.20 and the PIT histogram shows overdispersion.
Feeding a RF with the plain pixel information, as done for the DCMDN, results
in a CRPS of 0.195 with high overdispersion. The performance of the MDN
is a bit worse in terms of the CRPS (score of 0.21) compared to the RF, with
a better calibrated PIT. With the DCMDN architecture a significantly better
result in terms of the CRPS (0.19 for 28x28, 0.17 for 16x16 images) is achieved.
The usual deviation of experiments with other data folds is 0.005 in CRPS. The
resulting PIT is acceptable, although it is still underdispersed, which slightly
improves for the 16x16 images experiment. The reduced size of the images is
more focusing on the central region and ignores neighboring objects and hence
improves the result in both, CRPS and PIT. The reason for the better overall
performance of the DCMDN is the fact, that the features described in Section 4
use only a fraction of the available information. In fact, the process of extracting
historically motivated features is common in Astronomy. In this process a lot
of information gets lost. Instead, using images, the DCMDN is able to auto-
matically determine thousands of features, leading to a better prediction of the
redshifts.
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6 Conclusions

The main purpose of this work was to show how to produce predictive densities
for redshifts using deep learning architectures. Using a Gaussian Mixture Model
as output, we generate very good probabilistic predictions based on features or
images as input. The comparison with a RF based approach shows better per-
formance for our proposed architectures. We show that the proposed DCMDN
displays the best performance as it makes use of the entire information given
by the images. The use of the PIT allows us to evaluate the produced predic-
tive distributions for underdispersion and overdispersion, indicating that some
optimization with respect to calibration can still be done.

We firmly believe that the results obtained with our proposed methods need
little improvements before becoming a standard in predicting probabilistic red-
shift based on photometric data. As regression problems are very common in
Astronomy, this approach can easily be applied to other scientific questions.
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ABSTRACT

Context. The need to analyze the available large synoptic multi-band surveys drives the development of new data-analysis methods.
Photometric redshift estimation is one field of application where such new methods improved the results, substantially. Up to now,
the vast majority of applied redshift estimation methods have utilized photometric features.
Aims. We aim to develop a method to derive probabilistic photometric redshift directly from multi-band imaging data, rendering
pre-classification of objects and feature extraction obsolete.
Methods. A modified version of a deep convolutional network was combined with a mixture density network. The estimates are
expressed as Gaussian mixture models representing the probability density functions (PDFs) in the redshift space. In addition to
the traditional scores, the continuous ranked probability score (CRPS) and the probability integral transform (PIT) were applied as
performance criteria. We have adopted a feature based random forest and a plain mixture density network to compare performances
on experiments with data from SDSS (DR9).
Results. We show that the proposed method is able to predict redshift PDFs independently from the type of source, for example
galaxies, quasars or stars. Thereby the prediction performance is better than both presented reference methods and is comparable to
results from the literature.
Conclusions. The presented method is extremely general and allows us to solve of any kind of probabilistic regression problems based
on imaging data, for example estimating metallicity or star formation rate of galaxies. This kind of methodology is tremendously
important for the next generation of surveys.

Key words. methods: data analysis – methods: statistical – galaxies: distances and redshifts

1. Introduction

In recent years, the availability of large synoptic multi-band sur-
veys increased the need of new and more efficient data analysis
methods. The astronomical community is currently experiencing
a data deluge. Machine learning and, in particular, deep-learning
technologies are increasing in popularity and can deliver a solu-
tion to automate complex tasks on large data sets. Similar trends
can be observed in the business sector for companies like Google
and Facebook. In astronomy, machine learning techniques have
been applied to many different uses (Ball & Brunner 2010). Red-
shift estimation is just one relevant field of application for these
statistical methods. Constant improvements in performances had
been achieved by adopting and modifying machine learning ap-
proaches. The need for precise redshift estimation is increasing
due to its importance in cosmology (Blake & Bridle 2005). For
example, the Euclid mission (Laureijs et al. 2012) is highly de-
pendent on accurate redshift values. Unfortunately, measuring
the redshift directly is a time consuming and expensive task as
strong spectral features have to be clearly recognized. There-
fore, redshifts extracted via photometry based models provide
a good alternative (Beck et al. 2016). At the price of a lower
accuracy compared to the spectroscopic measurements, photo-
metric redshift estimates enable the processing of huge num-
bers of sources (Abdalla et al. 2011). Moreover, by combining
photometric and spectroscopic techniques, low signal-to-noise
spectra of faint objects can be better calibrated and processed
(Fernández-Soto et al. 2001).

Photometric redshift estimation methods found in the liter-
ature can be divided in two categories: template based spec-
tral energy distribution (SED) fitting (e.g. Bolzonella et al. 2000;
Salvato et al. 2009) and statistical and/or machine learning al-
gorithms (e.g. Benítez 2000; Laurino et al. 2011). In this work
we will focus on the latter ones and in particular on the ap-
plication of deep-learning models. Most machine learning ap-
proaches demand a large knowledge base to train the model.
Once trained, such models allow us to process huge amounts
of data and to automatically generate catalogs with millions of
sources (as done in Brescia et al. 2014). Instead of generating
point estimates only, extracting density distributions that grant
access to the uncertainty in the prediction is gaining more fo-
cus in the community (Carrasco Kind & Brunner 2013). This
scheme is increasingly important for the success of the Euclid
mission, which depends on highly precise and affordable proba-
bilistic photometric redshifts (Dubath et al. 2017).

Due to the advent of faster and more specialized compute ar-
chitectures as well as improvements in the design and optimiza-
tion of very deep and large artificial neural networks, more com-
plex tasks could be solved. In recent years, the so called field of
deep-learning was hyped together with big-data-analytics, both
in the commercial sector as well as in science. Astronomy has al-
ways been a data-intense science but the next generation of sur-
vey missions will generate a data-tsunami. Projects such as the
Large Synoptic Survey Telescope (LSST) as well as the Square
Kilometre Array (SKA) are just some examples that demand
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processing and storage of data in the peta- and exabyte regime.
Deep-learning models could provide a possible solution to ana-
lyze those data-sets, even though those large networks are lack-
ing the ability to be completely interpretable by humans.

In this work, the challenge of deriving redshift values from
photometric data is addressed. Besides template fitting ap-
proaches, several machine-learning models have been used in
the past to deal with this problem (Collister & Lahav 2004;
Laurino et al. 2011; Polsterer et al. 2013; Cavuoti et al. 2015;
Hoyle 2016). Up to now, the estimation of photometric redshifts
was mostly based on features that had been extracted in advance.
A Le-Net deep convolutional network (DCN; LeCun et al. 1998)
is able to automatically derive a set of features based on imaging
data and thereby make the extraction of tailored features obso-
lete. Most machine-learning based photometric redshift estima-
tion approaches found in the literature just generate single value
estimates. Template fitting approaches typically deliver a prob-
ability density function (PDF) in the redshift space. Therefore
currently the machine learning based approaches are either mod-
ified or redesigned to deliver PDFs as well (Sadeh et al. 2016).
We have proposed a combined model of a mixture density net-
work (MDN; Bishop 1994) and a DCN. The MDN hereby re-
places the fully-connected feed-forward part of the DCN to di-
rectly generate density distributions as output. This enables the
model to use images directly as input and thereby utilize more in-
formation in contrast to using a condensed and restricted feature-
based input set. The convolutional part of the DCN automat-
ically extracts useful information from the images which are
used as inputs for the MDN. The conceptual idea of combin-
ing a DCN with a MDN together with details on the implemen-
tation have been presented to the computer science community
in D’Isanto & Polsterer (2017) while this publication addresses
the challenges of photometric redshift estimation on real world
data by using the proposed method. A broad range of network
structures have been evaluated with respect to the performed ex-
periments. The layout of the best performing one is presented
here.

The performance of the proposed image-based model is
compared to two feature-based reference methods: a modified
version of the widely used random forest (RF; Breiman 2001)
which is able to produce PDFs and a plain MDN. The predicted
photometric redshifts are expressed as PDFs using a Gaussian
mixture model (GMM). This allows the capture of the uncer-
tainty of the prediction in a compact format. Due to degeneracies
in the physical problem of identifying a complex spectral en-
ergy distribution with a few broadband filters only, multi-modal
results are expected. A single Gaussian is not enough to repre-
sent the photometric redshift PDF. When using PDFs instead of
point estimates, proper statistical analysis tools must be used,
taking into account the probabilistic representation. The con-
tinuous ranked probability score (CRPS; Hersbach 2000) is a
proper score that is used in the field of weather forecasting and
expresses how well a predicted PDF represents the true value.
In this work, the CRPS reflects how well the photometrically es-
timate PDF represents the spectroscopically measured redshift
value. The CRPS is calculated as the integral taken over the
squared difference between the cumulative distribution function
(CDF) and the Heaviside step function of the true redshift value.
In contrast to the likelihood, the CRPS is more focused on the
location and not on the sharpness of the prediction. We have
adopted the probability integral transform (PIT; Gneiting et al.
2005) to check the sharpness and calibration of the predicted
PDFs. By plotting a histogram of the CDF values at the true
redshift over all predictions, overdispersion, underdispersion and

biases can be visually detected. We demonstrate that the CRPS
and the PIT are proper tools with respect to the traditional scores
used in astronomy. A detailed description of how to calculate
and evaluate the CRPS and the PIT are given in Appendix A.

The experiments were performed using data from the Sloan
Digital Sky Survey (SDSS-DR9; Ahn et al. 2012). A combina-
tion of the SDSS-DR7 Quasar Catalog (Schneider et al. 2010)
and the SDSS-DR9 Quasar Catalog (Pâris et al. 2012) as well
as two subsamples of 200 000 galaxies and 200 000 stars from
SDSS-DR9 are used in Sect. 3.

In Sect. 2 the machine learning models used in this work
are described. The layout of the experiments and the used data
are described in Sect. 3. Next, in Sect. 4 the results of the ex-
periments are presented and analyzed. Finally, in Sect. 5 a sum-
mary of the whole work is given. In the appendix, an introduc-
tion on CRPS and PIT is given, alongside with the discussion of
the applied loss function. Furthermore, we motivate the choice
of the number of components in the GMM used to describe
the predicted PDFs. Finally, the SQL queries used to download
the training and test data as well as references to the developed
code are listed.

2. Models

In this section the different models used for the experiments are
described. The RF is used as a basic reference method while the
MDN and the DCN are used to compare the difference between
feature based and image based approaches.

2.1. Random forest

The RF is a widely used supervized model in astronomy to solve
regression and classification problems. By partitioning the high
dimensional features space, predictions can be efficiently gen-
erated. Bagging as well as bootstrapping make those ensembles
of decision trees statistically very robust. Therefore RF is of-
ten used as a reference method to compare performances of new
approaches. The RF is intended to be used on a set of input fea-
tures which could be plain magnitudes or colors in the case of
photometric redshift estimation (Carliles et al. 2010). In its orig-
inal design, the RF does not generate density distributions. To
produce PDFs, the results of every decision tree in the forest are
collected and a Gaussian mixture model (GMM) is fitted. The
PDF is then presented by a mixture of n components:

p(x) =

n∑

j=1

ω jN(x|µ j, σ j), (1)

where N(x|µ j, σ j) is a normal distribution with a given mean
µ j and standard deviation µ j at a given value x. Each compo-
nent is weighted by ω j and all weights sum to one. To calcu-
late the CRPS for a GMM, the equations by Grimit et al. (2006)
can be used. For the proposed experiments a model composed
of 256 trees is used. As input the five ugriz magnitudes and the
pairwise color combinations are used, obtaining a feature vector
of 15 dimensions per data item.

2.2. Mixture density network

An MDN (Bishop 1994) is a modified version of the widely
known multilayer perceptron (MLP; Rosenblatt 1962), produc-
ing distributions instead of point estimates. The MLP is a super-
vized feed-forward neural network, whose main calculation unit
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Fig. 1. Architecture of the mixture density network. Next to the input layer, two hidden and fully interconnected layers are depicted. As output a
vector for each parameter of the GMM is predicted (µ, σ, ω). Based on this compact description, a density distribution can be generated.

is called neuron. The neurons are arranged in layers, an input
layer, one or more hidden layers, and an output layer. Several
hyperparameters characterize the architecture of an MLP. The
activation function is a non-linear function applied to the data
as they pass through the neurons. Commonly a sigmoidal func-
tion or hyperbolic tangent (tanh) are utilized. In recent years, the
MLP has been widely used in astronomy, for example to estimate
redshifts based on photometric features (Brescia et al. 2013).

The MDN interprets the output vector o of the network as
the means µ, standard deviations σ and weights ω of a mixture
model, using n Gaussians as basis functions:

µ j = oµj ,

σ j = exp(oσj ),

ω j =
exp(oωj )

∑n
i=1 exp(oωi )

with j ∈ 1...n and o = {oµ, oσ, oω}. (2)

Commonly, MDNs are trained using the log-likelihood as loss
function. In this application the focus is more on the distribu-
tion and shape than on the location of the prediction; hence the
CRPS is adopted as loss function. A detailed analysis of the per-
formances of both loss functions is provided in Appendix B. The
CRPS increases linearly with the distance from the reference
value while the log-likelihood increases with the square of the
distance. Like the RF, the MDN is a feature-based model and
therefore can use exactly the same input features: plain magni-
tudes and colors. A generalized architecture of an MDN is shown
in Fig. 1.

2.3. Deep convolutional mixture density network

A DCN is a feed-forward neural network in which several con-
volutional and sub-sampling layers are coupled with a fully-
connected part. In some sense, it is a specialization of the fully

interconnected MLP model. By locally limiting the used in-
terconnections in the first part, a spatial sensitivity is realized.
Thereby the dimensionality of the inputs is reduced step-wise in
every layer. The second part makes use of the so-called feature
maps in a flattened representation, using them as input for an
ordinary MLP.

This kind of network architecture finds wide application in
the fields of image, video and speech recognition due to its capa-
bility of performing some kind of dimensionality reduction and
automatic feature extraction. A DCN model was chosen because
of its ability to deal directly with images, without the need of pre-
processing and an explicit features extraction process. The net-
work is trained to capture the important aspects of the input data.
By optimizing the condensed representation of the input data in
the feature maps, the performance of the fully connected part is
improved. Every input data item is a tensor of multi-band im-
ages. In the experiments the five ugriz filters from SDSS as well
as the pixel-wise differences were used. Those image gradients
can be compared to the colors in feature based approaches that
minimize the effects of object intrinsic variations in luminosity.
In the convolutional layers, the input images are spatially con-
volved with proper filters of fixed dimensions. Hereby “proper”
denotes a size that corresponds to the expected spatial extension
of distinctive characteristics (filter of the dimension 3 × 3 and
2 × 2 have been selected for the application at hand). The filters
constitute the receptive field of the model.

After the convolution with the filters, a non-linear function
is applied. The tanh was used in this work as expressed by the
following relation:

Hk = tan h(Wk ∗ X + bk). (3)

In general, for every filter k the hidden activation Hk is calculated
by using the filter weight matrix Wk and the filter bias bk. The
outputs of the previous layer H are used as inputs X for the suc-
ceeding convolutional layer. The first layer is directly fed with
the imaging data that should be processed. This filtering system
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Fig. 2. Architecture of the deep convolutional mixture density network. This architecture directly uses image matrices as input. In this figure, three
convolutional layers are drawn, showing the local connection between the different layers. In the fully connected part, a MDN with one hidden
layer is used and a vector for each parameter of the GMM is given as result (µ, σ, ω). A sample of a predicted PDF is shown exemplarily.

with local connection make the architecture sensitive to spatial
input patterns. The filters are tiled through the entire visual field,
with a fixed stride, generating a new representation of the input,
that is, the feature maps. A useful tool to pursue the down sam-
pling is to apply max-pooling between the convolutional layers.
Those pooling filter typically select only the maximum value in
confined region, typically of dimension 2 × 2 or 3 × 3. Convo-
lutional and pooling layers are alternated until the desired com-
plexity in terms of feature maps is obtained. In addition, those
layers are alternated with rectified linear unit (ReLu) layers, in
which the non-linear activation function is substituted by a non
saturating function:

Hk = max(0,Wk ∗ X + bk). (4)

This function has many advantages; in particular it increases the
efficiency of the gradient descent process, avoiding vanishing
gradient problems. Furthermore, using only comparison, addi-
tion and multiplication operations it is computationally more ef-
ficient. The choice of the activation functions, namely the tanh
and the rectified linear unit, influences the convergence and per-
formance of the neural network. Therefore, the activation func-
tion has to be considered as a free parameter when designing
the network architecture. In our case, switching to the rectified
linear unit improved the performance of the predictions notably.
Many different combinations have been tested, choosing the best
performing one. The feature maps constitute the input for the
fully connected part, which has in general the same behavior as
a MLP. In the proposed model, we substitute the usual fully con-
nected part with a MDN in order to generate PDFs instead of sin-
gle point estimates. For this reason, this combined architecture
is denoted by us as deep convolutional mixture density network
(DCMDN). The structure of the DCMDN is sketched in Fig 2.
Furthermore, as for the MDN, the CRPS is used as loss function.

Several hyperparameters influence the layout of the network
architecture as well as the training phase. Multiple combinations

have been tested extensively. Due to the immense amount of
possible parameter combinations the currently used solution was
obtained by clever manual engineering. The most influencing pa-
rameters are listed below:

– global architecture: this includes the number and types of
layers in the local-connected part and the number of hidden
layers and neurons characterizing the fully-connected part.

– activation function: defines the non-linear function to pro-
cess the input values of a neuron.

– number of filters: influences the number of generated feature
maps and therefore the amount of extracted features.

– filter shape: characterizes the dimensions of the filters used;
it can vary from layer to layer.

– max-pooling shape: as for the filters, it specifies the dimen-
sion of the area to which the max-pooling is applied.

– learning rate: influences the step-size during the gradient de-
scent optimization. This value can decrease with the number
of trained epochs.

– number of epochs: defines how often the whole training data
set is used to optimize the weights and biases.

– batch size: as a stochastic gradient descent optimization
strategy was chosen, this number defines the amount of train-
ing patterns to be used in one training step.

The presented model exhibits many advantages for the appli-
cation to photometric redshift estimation tasks. It can natively
handle images as input and extract feature maps in a fully-
automatized way. The DCMDN does not need any sort of pre-
processing and pre-classification on the input data and as shown
in the experiments section, the performances are far better with
respect to the reference models. The reason for an improvement
with respect to the estimation performance is the better and ex-
tensive use of the available information content of the images.
Besides automatically extracting features, their importance with
respect to the redshift estimation task is automatically deter-
mined too. Feature based approaches make use of the condensed
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information that is provided through previously extracted fea-
tures only. Those features are good for a broad set of applica-
tions but not optimized for machine learning methods applied to
very specific tasks.

Depending on the size of the network architecture, an ex-
tremely high number of weights and biases has to be optimized.
This allows the network to adopt to not significant correlations
in the data and therefore overfit. While good performances are
achieved on the training data, the application to another data-
sets would exhibit poor results. To limit the effect of overfitting,
the dropout technique can be applied; randomly setting a given
percentage of the weights in both parts of the network to zero.
As deep-learning methods highly benefit from a huge amount of
training objects, data augmentation is a common technique. By
simply rotating the images by 90◦, 180◦ and 270◦ and flipping
the images, the size of the training data-set can be increased by
a factor of four and eight, respectively. This reduces the nega-
tive effects of background sources and artifacts on the predic-
tion performance. Moreover, the early stopping technique can
be applied to limit the chance of overfitting. As soon as the per-
formance that is evaluated on a separate validation set starts to
degrade while the training error is still improving, the training is
stopped even before reaching the anticipated number of epochs.
The DCMDN is based on the LeNet-5 architecture (LeCun et al.
1998) and realized in Python, making use of the Theano library
(Theano Development Team 2016).

The architecture implemented by us is meant to run on
graphics processing units (GPUs) as the training on simple cen-
tral processing units (CPUs) is by far too time consuming. In our
experiments a speedup of factor of ≈40× between an eight-core
CPU (i7 4710MQ 2.50 GHz × 8) and the GPU hardware was ob-
served. During the experiments a cluster equipped with Nvidia
Titan X was intensively used, allowing us to evaluate a larger
combination of network architectures and hyperparameters.

3. Experiments

In the following sections the experiments performed with the
presented models are described. Those experiments are intended
to compare the probabilistic redshift prediction performances of
different models on different data-sets. The data-sets used for
training the models as well as evaluating the performances are
described in the following.

3.1. Data

All data-sets have been compiled using data from SDSS. To gen-
erate a set of objects that cover the whole range of redshifts, sep-
arate data-sets for quasars and galaxies have been created. The
SDSS Quasar Catalog Seventh Data Release (Schneider et al.
2010), containing 105, 783 spectroscopically confirmed quasars
and the SDSS Quasar Catalog Ninth Data Release (Pâris et al.
2012), containing 87, 822 spectroscopically confirmed quasars,
are used as basis for the quasar data-set. The two catalogs had
to be combined because the former contains confirmed sources
from SDSS II only, while the latter is composed of 91% of new
objects observed in SDSS III-BOSS (Dawson et al. 2013). In this
way a catalog with a much better coverage of the redshift space
has been composed (see Fig. 3). Furthermore, two samples com-
posed of 200 000 randomly chosen galaxies and 200 000 ran-
domly picked stars from DR9 (Ahn et al. 2012) have been se-
lected (queries are stated in Appendix F). The objects that have
been classified by the spectroscopic pipeline as stars are assigned
a redshift of zero. These objects are mandatory to crosscheck

Fig. 3. Redshift distribution of the quasar data from DR7, DR9 and the
combined catalog, respectively.

the performance on objects that have not been pre-classified and
therefore might be contaminated with stellar sources.

For every catalog the corresponding images from SDSS DR9
in the five ugriz filters have been downloaded. The images
have been downloaded using the Hierarchical Progressive Sur-
veys (HiPS) data partitioning format (Fernique et al. 2015), in
a 28 × 28 square-pixels format, and subsequently pairwise sub-
tracted, in order to obtain color images corresponding to the col-
ors used in the feature-based experiments. As described above,
those pixel wise gradients minimize the effects of object intrinsic
variations in luminosity.

3.2. Setup and general configuration

Three different categories of experiments have been performed,
each using the three models of Sect. 2 to compare the perfor-
mances. Before stating the details of the single experiments, a
brief description of the general parameters adopted for the mod-
els is given. The experiments with the RF and the MDN are
feature-based, while the DCMDN is trained on the image rep-
resentations of the data items. As input features for the two ref-
erence models, magnitudes in the ugriz filter are used together
with all pair-wise color combinations. For the RF models a fixed
structure with 256 decision trees was chosen. Bootstrapping was
used for creating the individual trees. Neither the depth nor the
number of used features have been limited. The MDN architec-
tures use 15 inputs neurons (corresponding to the 15 input fea-
tures) followed by two hidden layers containing 50 and 100 neu-
rons, respectively. 15 output neurons are used to characterize
the parameters of a GMM with n = 5. Photometrically esti-
mated redshift distributions are of complex and multimodal na-
ture (Kügler et al. 2016). The choice of 5 Gaussian components
is based on experiments where the Bayesian information crite-
rion (BIC) was used as a metric. Depending on the redshift re-
gion calculated for, the BIC is indicating values between one
and five components. The results presented in Appendix C indi-
cate that five components are, on average, a good choice. For the
DCMDN, many different architectures have been tested, com-
prising less deep and compact convolutional parts. The archi-
tecture that gave the best performances was finally created via a
clever manual and empirical engineering. The learning rate influ-
ences the size of the steps when applying gradient descent during
the training with the backpropagation algorithm. For the experi-
ments presented in this work a tanh was chosen with the learning
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Table 1. Layout of the DCMDN architecture for the experiments with
the galaxies catalog.

# Type Size # Maps Activation
1 input 15 × 28 × 28 / /
2 convolutional 3 × 3 256 tanh
3 pooling 2 × 2 256 tanh
4 convolutional 2 × 2 512 tanh
5 pooling 2 × 2 512 tanh
6 convolutional 3 × 3 512 ReLu
7 convolutional 2 × 2 1024 ReLu
8 MDN 500 / tanh
9 MDN 100 / tanh

10 output 15 / Eq. (2)

Notes. Stacks of 15 input images of the size 28 × 28 square-pixels are
used.

rate degrading over the number of epochs. To prevent overfit-
ting, a common technique is to stop training as soon as the train-
ing and evaluation error starts to diverge (early stopping). When
training both different network architectures an early stopping
rule was applied, varying the learning rate from a maximum of
0.01 to a minimum of 0.001 and changing the mini-batch size
from 1000 to 500. In the DCMDN, dropout with a ratio of 60%
is applied to limit overfitting.

The evaluation of the performances of the models in the dif-
ferent experiments is done by using commonly used scores. The
root mean square error (RMSE), the median absolute deviation
(MAD), the bias and the σ2, are calculated based on the mean
of the predicted redshift probability distributions and on the first
(most significant) mode. In addition, a normalized version is cal-
culated by weighting the individual prediction errors with the
true redshifts before calculating the final scores. Moreover, in
the experiments labeled as “selected”, the objects that show a
complex and/or multi-modal behavior based on the predicted
PDFs are excluded from the score calculation. Those complex
objects do not allow a single value as prediction result and there-
fore do not support a meaningful evaluation through the standard
scores. The results without the objects showing ambiguous pre-
dictions are presented in addition to the scores obtained on all
objects with the previously mentioned performance measures.
To be more precise, only objects that fulfill

|µ1 − µ2| < (σ1 + σ2)
or

ω1 > 0.9545, (5)

have been selected. Here µ1, µ2, σ1 and σ2 denote the means and
the variances of the first two most significant modes of the pre-
dicted PDFs. The modes are chosen based on their weights ω j,
with ω1 being the weight of the strongest mode. This selection
criterion just picks objects where the first two modes are close
to each other with respect to their widths or those objects with
an extremely dominant first mode. The value of ω1 was chosen a
priori to ensure that 2σ of the joined distribution are represented
by the dominant peak.

As PDFs need proper tools and scores for evaluation, the
CRPS and PIT for every experiment are reported as well. Those
measures are much better able to report the performance of the
estimations with respect to the spectroscopic redshifts. In fact,
they are capable of taking the location and the shape of the den-
sity distribution into account; important characteristics which the

Table 2. Layout of the DCMDN architecture for the experiments with
the quasar and the mixed catalog.

# Type Size # Maps Activation
1 input 15 × 16 × 16 / /
2 convolutional 3 × 3 256 tanh
3 pooling 2 × 2 256 tanh
4 convolutional 2 × 2 512 tanh
5 pooling 2 × 2 512 tanh
6 convolutional 2 × 2 1024 ReLu
7 MDN 500 / tanh
8 MDN 100 / tanh
9 output 15 / Eq. (2)

Notes. Stacks of 15 input images of the size 16 × 16 square-pixels are
used.

commonly used scores can not capture. Typically a k-fold cross-
validation is performed to prevent overfitting when training and
evaluating machine learning models. Due to the extreme com-
putational demands when training the DCMDN, only a simple
hold out strategy was used to evaluate the performance. This is
reasonable, as the same training, test and evaluation data-sets are
used for all models. The reported performances therefore allow
a fair and qualitative comparison between the individual models,
even though the presented absolute performances might slightly
vary depending on the used training and testing data. To be able
to present an absolute performance which can be quantitatively
compared to those in other publications, adequate reference data-
sets have to be defined and published. The architectures used for
the DCMDN are stated in Tables 1 and 2. Two different input
sizes for images have been used, depending on the experiment.
Larger images are used for galaxies while quasars and the mixed
experiments use smaller images. For this reason two different
architectures are presented.

3.2.1. Experiment 1 – Galaxies

In the first experiment we perform the prediction of redshift
PDFs on galaxies only. The 200 000 patterns contained in the
galaxies catalog are split in a training and test-set, both contain-
ing 100 000 objects each. The images for all experiments have
been cut-out with a size of 28 × 28 square-pixels. Only the galax-
ies experiment kept the original size. As galaxies are extended
objects this enables a better use of the available information. To-
gether with the five ugriz images, all color combinations are built
and hence a 15 × 28 × 28 dimensional tensor is retrieved as ob-
ject representation to be used as input for the DCMDN. The ar-
chitecture of the DCMDN that was used for this experiment is
specified in Table 1. This first experiment is intended to test and
compare the performances of the three models on objects in the
low redshift range, taking into account the spatial extension. As
most objects of the galaxies sample are in a redshift range of
z ∈ [0..1], this provides a good testbed for the nearby Universe.
Experiment 1 is just based on galaxies and therefore a strong bias
is introduced in the training phase. The derived models are just
producing usable redshift estimations when applied to images of
galaxies. Such a model is limited to objects with a correct and
proper pre-classification and selection.
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3.2.2. Experiment 2 – Quasars

In the second experiment PDFs are estimated for quasars. The
quasar catalog is composed of 185 000 objects; the DR7 and
DR9 catalogs are combined selecting all the objects and remov-
ing double ones. The quasar experiments have been performed
using 100 000 objects in the training-set and 85 000 in the test-
set. This makes the size of the data used for training comparable
to the previous experiment. In this experiment the size of the in-
put images for the DCMDN is reduced to 16 × 16 square-pixels
in order to save computational resources and speed up the train-
ing. As quasars are more compact sources, a smaller cut-out
should be sufficient to capture the details of the spatial distribu-
tion and still include information from the hosting galaxy. The
same color combinations used in the first experiment were cre-
ated and a 15 × 16 × 16 tensor is used as input for the DCMDN.
The architecture of the DCMDN that was used for this exper-
iment is specified in Table 2. The quasar experiment tests the
performance for less extended objects that cover a wider range
of redshift z ∈ [0...6]. Similarly to the first experiment, the mod-
els of the second experiment were heavily dependent on a correct
pre-classification of objects.

3.2.3. Experiment 3 – Mixed

Finally, in the third experiment a mixed catalog was used. By
combining quasars, galaxies and stars we are able to test and
evaluate the performances of the three models independently
from the nature of the sources. The step of pre-classifying ob-
jects is hereby made obsolete. The stars that have been added can
be considered as contamination; as faint cool stars can be easily
confused with quasars. This makes the use-case of photometric
redshift estimation more realistic to the challenges of processing
yet unseen objects with an uncertain classification. To be able
to derive a proper PDF for all objects, stars have been assigned
a redshift of z = 0. As stated above, the whole catalog is com-
posed of 585 000 objects. In this experiment, 300 000 patterns
were used for training and 285 000 for testing and the dimen-
sion of the input images is reduced to 16 × 16 square-pixels. The
DCMDN has therefore the same architecture as used in the pre-
vious experiment (see Table 2). This experiment is intended to
evaluate the performances of the models in a realistic use-case.
Hence the results of this experiments are the most notable, as no
biases through a pre-classification phase are introduced. Such an
experiment should be part of every publication, introducing a
new data-driven method for photometric redshift estimation.

4. Results

The experiments of Sect. 3 have been performed on a GPU clus-
ter. The detailed results are presented in the following.

4.1. Experiment 1 – Galaxies

The results of the first experiment are depicted in Figs. 4 and
5. In both figures the estimated redshifts are plotted against the
spectroscopic redshifts. To be comparable to results from other
publications in the field of photometric redshift estimation, in
Fig. 4 the complex estimated PDFs are compressed into a sin-
gle point estimate. This compression is realized by either taking
the plain mean, the first and most dominant mode of the mixture
model or by taking the mean of objects that do not exhibit an am-
biguous PDF (see Eq. (5)). Based on these three simplified rep-
resentations of the estimated PDFs, the traditional scores have

been calculated. Those values are reported in Table 3 and show
a similar performance as other publications (e.g. Laurino et al.
2011) that used a comparable data-set. All three models used
for testing show a very similar performance. It is notable, that
due to the nature of the used different models, the MDN and
the DCMDN show a slightly better generalization performance
especially in those regions where the transition of characteris-
tic spectroscopic features through the broadband filters do not
allow a distinct separation. In those redshift regions where the
degeneracy of the reverse determination of the spectral energy
distribution and distinct spectral features through the low spec-
tral resolution image data is dominating, selecting the first mode
instead of using the mean value shows a poorer performance.
This is especially the case for z ≈ 0.35 and z ≈ 0.45. When
selecting only those objects for evaluation that do not have an
ambiguous behavior, the mentioned redshift regions become un-
derpopulated in the diagnostic plots. For the DCMDN this ef-
fect is not as prominent as for the other two reference models
due to the ability to make use of a larger base of information.
As presented in Fig. 4, compressing the PDFs into single val-
ues does not cover the full complexity of the redshift estima-
tions. In particular, the selection of outliers having no unique
single dominant redshift component in the PDF demonstrates the
multi-modal nature of the photometric redshift estimation task.
Therefore, a visible improvement of the performance can be no-
ticed when selecting only the subset of patterns which show no
multi-modal behavior. For these reasons, a proper probabilistic
evaluation of the PDFs has to be performed. Thus, in Fig. 5 a
diagnostic plot is introduced which preserves the overall infor-
mation of the density distributions. Alongside this probabilistic
comparison between the estimated redshift distributions and the
spectroscopic values, the PIT and the CRPS are used as proper
tools. In the upper plot, the spectroscopic redshift is compared
with the generated predictive density of every data item. Hereby
the logarithm of the summed probability density for each red-
shift bin is plotted. In the two lower plots, the histograms for the
PIT and the individual CRPS are given, together with the value
of the mean CRPS. Analyzing the plots, it is notable that the RF
performs slightly better with respect to the PIT. In all cases the
PIT shows a more or less well calibrated uniform distribution of
the evaluated CDFs at the corresponding spectroscopic redshifts.
The MDN and the DCMDN in particular exhibit a more uniform
and cleaner alignment toward the diagonal line which indicates
the ideal performance.

4.2. Experiment 2 – Quasars

In Fig. 6 the results of the second experiment are shown in the
standard plot. All estimated PDFs have been transferred into
point estimates as it was done for the results of the first ex-
periment. In Table 4 the corresponding scores are presented.
As expected, the performances achieved with the mean val-
ues are comparable to point estimates obtained by other meth-
ods (Laurino et al. 2011). When using the first modes of the
predicted density distributions, the degeneracies caused by the
poor spectral resolution of the broadband photometry become
visible. Especially in the redshift areas around z ≈ [0.5...0.9]
and z ≈ [1.5...2.5] a strong multi-modal behavior can be ob-
served. In those areas, picking the first mode does not necessary
provide the best estimate, as both redshifts are equally likely.
The task of uniquely assigning a redshift based on poorly re-
solved broadband observations is in some regions a degener-
ated problem. The better description of the probability distri-
butions results therefore in a symmetry along the line of ideal
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Fig. 4. Results of Experiment 1 (galaxies). The estimated redshifts are plotted against the spectroscopic redshifts, which are considered ground
trues. As in Table 3 the plots are done for all three considered models (left to right) as well as with the mean, dominant mode and unambiguous
objects (top to bottom). In addition, the number of unambiguous objects is reported.

Table 3. Results of Experiment 1 (galaxies).

Criterion Model Bias(∆z) σ2(∆z) Mad(∆z) rmse(∆z) Bias(∆znorm) σ2(∆znorm) Mad(∆znorm) rmse(∆znorm)
RF 0.0001 0.0033 0.0164 0.0575 –0.0017 0.0018 0.0133 0.0431

Mean MDN 0.0016 0.0034 0.0174 0.0589 –0.0003 0.0019 0.0141 0.0442
DCMDN 0.0018 0.0030 0.0157 0.0548 –0.0003 0.0017 0.0128 0.0409

RF 0.0031 0.0042 0.0171 0.0652 0.0010 0.0022 0.0139 0.0471
First mode MDN 0.0029 0.0039 0.0172 0.0628 0.0010 0.0021 0.0140 0.0459

DCMDN 0.0060 0.0031 0.0167 0.0561 0.0029 0.0016 0.0135 0.0407
RF 0.0001 0.0023 0.0147 0.0484 –0.0011 0.0013 0.0121 0.0365

Selected MDN 0.0021 0.0027 0.0165 0.0523 0.0006 0.0015 0.0136 0.0391
DCMDN 0.0017 0.0023 0.0146 0.0485 –0.0001 0.0013 0.0120 0.0366

Notes. Based on the estimated PDFs the traditional scores have been calculated. This was done by using the mean, the most dominant mode and
the mean of the selected unambiguous objects, respectively.
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Fig. 5. Results of Experiment 1 (galaxies) with a fully probabilistic evaluation and representation of the estimated PDFs. For each model, three
plots are present. In the upper one, the predicted density distribution for each individual object is plotted at the corresponding spectroscopic
redshift. The colors hereby indicate the logarithm of the summed probability densities using 500 redshift bins per axis. In the two lower plots, the
histogram of the PIT values and the histogram of the CRPS values are shown, respectively. The mean CRPS values are reported, too.

performance. Due to selection effects by observing a limited
and cone-shaped volume, the distribution of objects with respect
to cosmological scales results in not perfect symmetric behav-
ior. The necessity of a multi-modal description becomes even
more obvious when objects with an ambiguous density distri-
bution are not taken into consideration. This way of excluding
sources with estimated ambiguous redshift distributions can be
considered a correct method to filter possible outliers, hence the
selection of objects that show an uni-modal behavior is purely
done based on the probabilistic description. In all three differ-
ent representation of the complex PDFs through a single point
estimate, the DCMDN exhibits a better performance. This is
also reflected by the scores that are presented in Table 4. For
the RF, the partitioning of the high-dimensional feature space
orthogonal to the dimension axis does not provide a generalized
representation of the regression problem. When covering a wider
redshift range the predictions exhibit more differences perfor-
mance wise. Therefore the performance of the RF drops in this
experiment with respect to the other models as the MDN and
DCMDN produce much smoother predictions along the ideal di-
agonal of the used diagnostic plot. With respect to catastrophic
outliers, the DCMDN has a superior performance when com-
pared with the other two models. This is consistent with the re-
sults from the first experiment. When analyzing the probabilis-
tic representation of the prediction results in Fig. 7, the superior
performance of the DCMDN is striking. The CRPS especially
indicates the quality of the predictions made by the DCMDN.
In fact, by using images the DCMDN can utilize all the
contained information and automatically extract the best usable
features.

4.3. Experiment 3 – Mixed

The experiment with the mixed catalog is the most challeng-
ing one. It tests how well the advantages of a deep convolu-
tional network architecture can be used to render the step of
pre-processing and pre-classifying objects obsolete. This exper-
iment is much closer to the real application compared to the pre-
vious cases. In Fig. 8 and Table 5 the results of Experiment 3 are
reported and evaluated as single point estimates. As in the pre-
vious experiments, the PDFs are therefore compressed. When
using the mean or the first mode as representation, the DCMDN
significantly outperforms the RF and the MDN. In the case of
selecting unambiguous PDFs only, the result of the DCMDN is
close to the ideal performance. The obtained results confirm the
indications of the previous experiments. The fully probabilistic
representation of the results of the third experiment are presented
in Fig. 9. When using proper tools and scores for evaluation, the
DCMDN is the best model with respect to the CRPS. Both, the
RF and the MDN exhibit similar CRPS results, as they did in
all the three experiments. In the representation of the PITs the
differences in calibration can be further analyzed. The RF shows
a nearly uniform distribution with an extreme peak in the cen-
ter. Due to the partitioning of the high-dimensional feature space
performed by the RF, most of the stars are perfectly recovered.
As stars are fixedly assigned a redshift of z = 0, the chosen way
of fitting a GMM to the individual decision tree results produces
the central peak. This can be seen as an extreme overdispersion
of the predictions in relation to the true values. With respect to
the estimated PDFs, the CDFs at the truncated true value z = 0
is always very close to 0.5. For a stellar object, only a very few
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Fig. 6. Results of Experiment 2 (quasars). The estimated redshifts are plotted against the spectroscopic redshifts. As in Fig. 4 the plots are sorted
by the models (left to right) and the extracted point estimate (top to bottom).

Table 4. Results of Experiment 2 (quasars).

Criterion Model Bias(∆z) σ2(∆z) Mad(∆z) rmse(∆z) Bias(∆znorm) σ2(∆znorm) Mad(∆znorm) rmse(∆znorm)
RF 0.007 0.217 0.145 0.466 –0.033 0.048 0.050 0.222

Mean MDN –0.002 0.216 0.156 0.465 –0.037 0.048 0.054 0.223
DCMDN 0.011 0.168 0.128 0.411 –0.023 0.035 0.045 0.189

RF 0.002 0.319 0.087 0.564 –0.026 0.066 0.031 0.258
First mode MDN –0.058 0.282 0.095 0.535 –0.052 0.068 0.034 0.267

DCMDN –0.043 0.206 0.095 0.456 –0.038 0.048 0.034 0.222
RF 0.005 0.162 0.111 0.402 –0.024 0.037 0.039 0.194

Selected MDN –0.010 0.098 0.086 0.314 –0.017 0.021 0.030 0.145
DCMDN 0.004 0.047 0.075 0.217 –0.004 0.009 0.026 0.095

Notes. Similarly to experiment 1, the traditional scores are presented. The score have been calculated with the mean, the most dominant mode and
the mean of the selected unambiguous objects.
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Fig. 7. Results of Experiment 2 (quasars) with a fully probabilistic evaluation. As in Fig. 5 three plots per model are used to visualize the
probabilistic performance of the estimated PDFs.

decision trees might return a redshift z > 0, given the large num-
ber of ≈100 000 stars used in the training sample. During train-
ing the MDN got biased by the large number of stellar compo-
nents with redshift set to z = 0. Therefore the corresponding
PIT indicates a tendency to underestimate the redshift. A com-
plex, asymmetric behavior in the shape of the estimated PDFs
is not captured when using the classical scores and diagnostic
plots only, as the bias on the mean of the PDFs is close to zero
for this experiment. For the DCMDN we can observe two short
comings. Overall, the generated PDFs are overdispersed. This
effect is caused by the large fraction of stellar objects with a fixed
value and the other objects covering the full redshift range. The
model tries to account for this highly unbalanced distribution
in the redshift space when being optimized. Generating broader
distributions for one part of the objects while creating very nar-
row estimates for the stellar population is hard to be achieved
by a generalizing model. The second effect observed is the pres-
ence of outliers where the CDF indicates an extreme value. This
is caused by objects in the high redshift range being highly un-
derrepresented in the training sample. The DCMDN architec-
ture has a superior capability of generalization and makes better
use of the information contained in the original images, giving a
boost in the final performance, together with a good separation
of the stars from quasars.

5. Conclusions

The aim of this work is to present and test a new method for
photometric redshift estimation. The novelty of the presented
approach is to estimate probability density functions for red-
shifts based on imaging data. The final goal is to make the ad-
ditional steps of feature-extraction and feature-selection obso-
lete. To achieve this, a deep convolutional network architecture

was combined with a mixture density network. Essential for a
proper training is the use of the CRPS as loss function, taking
into account not only the location but also the shape and lay-
out of the estimated density distributions. The new architecture
is described in a general and conceptional way that allows using
the concept for many other regression tasks in astronomy.

In order to perform a fair evaluation of the performance of
the proposed method, three experiments have been performed.
Three different catalogs have been utilized for evaluation, con-
taining galaxies, quasars and a mix of the previous catalogs plus
a sample of stars. The experiments were chosen to test the per-
formance on different redshift ranges and different sources. The
last experiment was designed to test the model in a more realistic
scenario, where a contamination with stellar sources and there-
fore a confusion between no and high redshift objects is synthet-
ically introduced. This experiment is intended to test whether the
pre-classification of objects can be omitted, too.

In all three experiments a modified version of the random
forest and a mixture density network are used as feature-based
reference models. To be comparable to the literature, the tradi-
tional scores and diagnostic plots have been used. As we demon-
strate, the usual way of expressing the results of the prediction
quality through the traditional scores is not able to capture the
complexity of often multi-modal and asymmetric distributions
that are required to correctly describe the redshift estimates.
Therefore, proper scores and tools have been applied in addition
to analyzing the results in a probabilistic way, that is, the CRPS
and PIT. These indicators can be considered proper tools to esti-
mate the quality of photometric redshift density distributions. As
summarized in Table 6, the DCMDN architecture outperforms
the two reference models. The same relative performances can
be observed with the traditional diagnostics, too. When using
the PDFs to find and exclude ambiguous objects, the DCMDN
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Fig. 8. Results of Experiment 3 (mixed). The estimated redshifts are plotted against the spectroscopic redshifts. As in the figures of the two other
experiments, the plots are sorted by the models (left to right) and the extracted point estimate (top to bottom).

Table 5. Results of Experiment 3 (mixed).

Criterion Model Bias(∆z) σ2(∆z) Mad(∆z) rmse(∆z) Bias(∆znorm) σ2(∆znorm) Mad(∆znorm) rmse(∆znorm)
RF –0.001 0.288 0.043 0.536 –0.072 0.126 0.028 0.363

Mean MDN –0.006 0.279 0.043 0.528 –0.073 0.125 0.031 0.362
DCMDN 0.007 0.210 0.022 0.458 –0.041 0.089 0.016 0.301

RF 0.040 0.435 0.020 0.660 –0.029 0.150 0.013 0.388
First mode MDN –0.027 0.393 0.024 0.627 –0.067 0.191 0.016 0.442

DCMDN –0.001 0.287 0.018 0.536 –0.036 0.124 0.013 0.355
RF –0.001 0.118 0.016 0.343 –0.029 0.059 0.012 0.245

Selected MDN –0.006 0.114 0.023 0.337 –0.034 0.052 0.017 0.230
DCMDN 0.002 0.043 0.012 0.206 –0.007 0.014 0.010 0.120

Notes. Similarly to experiment 1 and 2, the traditional scores have been calculated.
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Fig. 9. Results of Experiment 3 (mixed) with a fully probabilistic evaluation. As in Fig. 5 three plots per model are used to visualize the probabilistic
performance of the estimated PDFs.

Table 6. Summary table of all the experiments.

Exp. Model CRPS PIT
RF 0.021 well calibrated

Galaxies MDN 0.022 biased
DCMDN 0.021 slightly overdispersed

RF 0.187 well calibrated
Quasars MDN 0.190 well calibrated, few outliers

DCMDN 0.167 well calibrated, few outliers
RF 0.150 extremely overdispersed

Mixed MDN 0.150 overdispersed and biased
DCMDN 0.120 overdispersed, some outliers

always produces the best results. Its ability to generalize from
the training data, together with the larger amount of used avail-
able information permits a better probabilistic estimate of the
redshift distribution and therefore a better selection of spurious
predictions.

As shown in the last experiment, the DCMDN performs
two very important tasks automatically. During the training of
the network, a set of thousands of features is automatically ex-
tracted and selected from the imaging data. This minimizes the
biases that are introduced when manually extracting and se-
lecting features and increases the amount of utilized informa-
tion. The second and probably most important capability of the
DCMDN is to solve the regression problem without the neces-
sity of pre-classifying the objects. The estimated PDFs reflect in

the distribution of the probabilities the uncertainties of the clas-
sification as well as the uncertainties of the redshift estimation.
This is extremely important when dealing with data from larger
surveys. The errors introduced through a hard classification into
distinct classes limits the ability of finding rare but interesting
objects, like high redshifted quasars that are easily mistaken with
cool faint stars. A wrong initial classification would mark those
quasars as stellar components even though the probability of be-
ing a high redshifted object is not negligible. A fully probabilis-
tic approach including feature extraction, feature selection and
source classification is less affected by selection biases.

The performance of the two feature-based reference meth-
ods is in accordance with results from the literature. The boost
in performance observed for the DCMDN is related to the better
use of information and the automatic selection of the best per-
forming features. As the DCMDN model was trained with data
from the SDSS it could in principle be applied to every source
in the SDSS database, without concern for the nature of the
source, by directly using the images. Only the selection biases
that have been introduced when selecting the targets for spectro-
scopic follow-up observations in SDSS have to be considered,
as those are preserved by the trained model. Our approach pro-
vides the machinery to deal with the avalanche of data we are
facing with the new generation of survey instruments already to-
day. Such fully-automatized and probabilistic approaches, based
on deep learning architectures, are therefore necessary.
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Appendix A: CRPS and PIT

The CRPS is defined by the relation:

CRPS = CRPS(F, xa) =

∫ +∞

−∞
[F(x) − Fa(x)]2dx (A.1)

where F(x) and Fa(x) are the CDFs relative to the predicted
PDF f (t) and the observation xa, respectively. Namely: F(x) =∫ x
−∞ f (t)dt and Fx = H(x − xa), with H(x) being the Heaviside

step-function. In case the PDF is given as a GMM, the CRPS can
be calculated through the following formula in closed form:
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and φ
(
y−µ
σ

)
, Φ

(
y−µ
σ

)
respectively represent the PDF and the CDF

of a normal distribution with a mean of zero and a variance of
one evaluated through the normalized prediction error y−µ

σ
.

The probability integral transform (PIT) is generated with
the histogram of the values:

pt = Ft(xt) (A.4)

being Ft the CDF of the predicted PDF evaluated at the observa-
tion xt. In Fig. A.1 some example PITs are given.

Fig. A.1. Visual guide to the usage of a PIT. In case the estimated PDFs
are to broad with respect to the position of the true value, a convex
histogram with a peak in the center can be observed (a). As soon as
the predicted densities are too narrow, the evaluation of the CDF at the
true redshift exhibits in most cases just very low and very high values.
Therefore a concave, U-shaped histogram will be produced (c). Only
in the case where the widths of the predicted densities is in accordance
with the deviations from the true measurements, a uniformly distributed
histogram is generated (b). This indicates sharp and well calibrated pre-
dictions.

Appendix B: CRPS vs. log-likelihood
as loss-function

We compared the performance of the MDN when trained with
the log-likelihood and the CRPS as loss functions, in order to
investigate the differences in the behavior of the model. The ex-
periment was performed on the data used for the quasar experi-
ment, split in independent subsets for training (100 000 objects)
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Fig. B.1. Comparison of the performance when using the log-likelihood
(red) and the CRPS (blue) as loss-functions for training the MDN. For
different epochs the CRPS and log-likelihood scores as well as the PIT
histograms are provided.

and testing (85 000 objects). The results are shown in Fig. B.1.
In this plot we report the performance expressed by using both
the log-likelihood and the CRPS as score functions, at different
epochs of the training phase. Moreover, the correspondent PIT
histograms for these epochs are shown. Training the network
with the log-likelihood improves the performance in terms of
the log-likelihood itself, respect to the same architecture trained
using the CRPS. As expected, when training with the CRPS, the
observed results are opposite to the previous case. The PIT his-
tograms indicate a better performance when the neural network
is trained using the CRPS, leading to a well calibrated PIT al-
ready after 500 epochs. Moreover, the PIT of the model trained
using the log-likelihood starts to degrade again at 10 000 epochs.
This does not happen when using the CRPS for training, as the
CRPS accounts for calibration and sharpness of the predictions.
For this reason, the choice of the CRPS as loss function is rea-
sonable, in order to obtain sharper and better calibrated PDFs.

Appendix C: Number of Gaussian components

In order to choose an appropriate number of Gaussian compo-
nents, an experiment has been performed using the RF model for
the quasar data-set and calculating the BIC following Schwarz
(1978). The mean score has been calculated over different red-
shift bins, for different numbers of Gaussian components. The
plot shows that extreme values, like n = 1 or n = 7 tend to
exhibit bad performance in multiple regions. Instead, the results
using n = 3 and n = 5 are comparably good. The BIC score is
based on the log-likelihood calculation, therefore we consider a
choice of n = 5 to be reasonable for this work, keeping in mind
that our model is trained using the CRPS.
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Fig. C.1. Distribution of the mean Bayesian information criterion score,
with respect to redshift and number of Gaussian components. The plot
depicts that different regions of the redshift range demand a different
number of components. On average, the use of n = 5 is a reasonable
choice. The experiment is performed using the RF and the quasar data-
set.

Appendix D: Code

The code used to do this research can be found on the ASCL1.

Appendix E: Data

The SDSS object IDs of the randomly extracted stars and galax-
ies are available as supplementary information. In addition the
SDSS IDs of the quasars are provided as a plain ASCII file.

The results of the predictions done with the DCMDN archi-
tecture for the three experiments are made available as ASCII
files, too. Those files contain the spectroscopic redshifts of the
test objects followed by 15 outputs that can be used to calcu-
late the GMM parameters (five means, five sigmas, five weights)
as described in Eq. (2). This allows reproduction of the perfor-
mance of our model.
galaxies_id.csv contains the SDSS object IDs of the galaxies
used for the experiments.
quasars_id.csv contains the SDSS object IDs of the quasars
used for the experiments.
stars_id.csv contains the SDSS object IDs of the stellar ob-
jects used for the experiments.
galaxies_output.csv keeps the predictions generated with
the DCMDN in the first experiment.
quasars_output.csv keeps the predictions generated with the
DCMDN in the second experiment.
mixed_output.csv keeps the predictions generated with the
DCMDN in the third experiment.

1 http://www.ascl.net/ascl:1709.006

Appendix F: SQL-queries

The following queries have been used to generate the galaxies
and stars catalogs via CasJobs:

“Query used to create the galaxies catalog”

1 SELECT TOP 200000
2 p.objid,p.ra,p.dec,
3 p.u,p.g,p.r,p.i,p.z,
4 p.psfMag_u, p.psfMag_g,
5 p.psfMag_r, p.psfMag_i,
6 p.psfMag_z, p.modelMag_u ,
7 p.modelMag_g , p.modelMag_r ,
8 p.modelMag_i , p.modelMag_z ,
9 s.specobjid , s.class,

10 s.z AS redshift
11 INTO mydb.DR9_galaxies_with_modMag
12 FROM PhotoObj AS p
13 JOIN SpecObj AS s ON
14 s.bestobjid = p.objid
15 WHERE s.z BETWEEN 0 AND 6.0
16 AND s.class = ’GALAXY’
17 ORDER BY NEWID()

“Query used to extract stellar sources from the SDSS”

1 SELECT TOP 200000
2 p.objid,p.ra,p.dec,
3 p.u,p.g,p.r,p.i,p.z,
4 p.psfMag_u, p.psfMag_g,
5 p.psfMag_r, p.psfMag_i,
6 p.psfMag_z, p.modelMag_u ,
7 p.modelMag_g , p.modelMag_r ,
8 p.modelMag_i , p.modelMag_z ,
9 s.specobjid , s.class,

10 s.z AS redshift
11 INTO mydb.DR9_stars
12 FROM PhotoObj AS p
13 JOIN SpecObj AS s ON
14 s.bestobjid = p.objid
15 WHERE s.class = ’STAR’
16 ORDER BY NEWID()
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ABSTRACT

Context. The explosion of data in recent years has generated an increasing need for new analysis techniques in order to extract
knowledge from massive data-sets. Machine learning has proved particularly useful to perform this task. Fully automatized methods
(e.g. deep neural networks) have recently gathered great popularity, even though those methods often lack physical interpretability.
In contrast, feature based approaches can provide both well-performing models and understandable causalities with respect to the
correlations found between features and physical processes.
Aims. Efficient feature selection is an essential tool to boost the performance of machine learning models. In this work, we propose a
forward selection method in order to compute, evaluate, and characterize better performing features for regression and classification
problems. Given the importance of photometric redshift estimation, we adopt it as our case study.
Methods. We synthetically created 4520 features by combining magnitudes, errors, radii, and ellipticities of quasars, taken from the
Sloan Digital Sky Survey (SDSS). We apply a forward selection process, a recursive method in which a huge number of feature sets
is tested through a k-Nearest-Neighbours algorithm, leading to a tree of feature sets. The branches of the feature tree are then used to
perform experiments with the random forest, in order to validate the best set with an alternative model.
Results. We demonstrate that the sets of features determined with our approach improve the performances of the regression models
significantly when compared to the performance of the classic features from the literature. The found features are unexpected and
surprising, being very different from the classic features. Therefore, a method to interpret some of the found features in a physical
context is presented.
Conclusions. The feature selection methodology described here is very general and can be used to improve the performance of
machine learning models for any regression or classification task.

Key words. methods: data analysis – methods: statistical – galaxies: distances and redshifts – quasars: general

1. Introduction

In recent years, astronomy has experienced a true explosion in
the amount and complexity of the available data. The new gen-
eration of digital surveys is opening a new era for astronomical
research, characterized by the necessity to analyse data-sets that
fall into the Tera-scale and Peta-scale regime. This is leading
to the need for a completely different approach with respect to
the process of knowledge discovery. In fact, the main challenge
will no longer be obtaining data in order to prove or disprove a
certain hypothesis, but rather to mine the data in order to find
interesting trends and unknown patterns. The process of discov-
ery will not be driven by new kinds of instrumentation to explore
yet unobserved regimes, but by efficient combination and analy-
sis of already existing measurements. Such an approach requires
the development of new techniques and tools in order to deal

? The three catalogues are only available at the CDS via
anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via
http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/616/A97

with this explosion of data, which are far beyond any possibil-
ity of manual inspection by humans. This necessity will become
urgent in the next years, when surveys like the Large Synoptic
Survey Telescope (LSST; Ivezić et al. 2008), the Square Kilo-
meter Array (SKA; Taylor 2008), and many others, will become
available. Therefore, machine learning techniques are becoming
a necessity in order to automatize the process of knowledge ex-
traction from big data-sets. In the last decade, machine learn-
ing has proved to be particularly useful to solve astrophysical
complex non-linear problems, both for regression (see for in-
stance Hildebrandt et al. 2010; Bilicki et al. 2014; Cavuoti et al.
2015; Hoyle 2016; Beck et al. 2017) and classification tasks (see
Mahabal et al. 2008; Rimoldini et al. 2012; Cavuoti et al. 2013a;
D’Isanto et al. 2016; Smirnov & Markov 2017; Benavente et al.
2017). These techniques find nowadays many applications in
almost all the fields of science and beyond (Hey et al. 2009).
In the literature, two main machine learning branches can be
found that deal with the selection of the most relevant informa-
tion contained in the data. The first traditional way consists in
the extraction and selection of manually crafted features, which
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are theoretically more suitable to optimize the performance. In
Donalek et al. (2013) feature selection strategies are compared
in an astrophysical context.

The second option is using automatic feature selection
models and became more popular in more recent years. For ex-
ample, Athiwaratkun & Kang (2015) delegate this task to the
machine by analysing the automatically extracted feature rep-
resentations of convolutional neural networks. In convolutional
neural networks, during the training phase the model itself de-
termines and optimizes the extraction of available information
in order to obtain the best performance. The challenge of feature
selection is fundamental for machine learning applications, due
to the necessity of balancing between overfitting and the curse of
dimensionality (Bishop 2006), which arises when dealing with
very high-dimensional spaces. Therefore a clever process of fea-
ture selection is needed to overcome this issue. In this setting,
a different strategy was chosen for this work, in which a for-
ward selection algorithm (Guyon & Elisseeff 2003) is adopted to
identify the best performing features out of thousands of them.
We decided to apply this procedure in a very important field:
photometric redshift estimation. Due to the enormous impor-
tance that this measurement has in cosmology, great efforts have
been lavished by the astronomical community on building ef-
ficient methods for the determination of affordable and precise
photometric redshifts (Richards et al. 2001; Hildebrandt et al.
2008, 2010; Ball et al. 2008). Photometric redshifts are of ex-
treme importance with respect to upcoming missions, for ex-
ample the forthcoming Euclid mission (Laureijs et al. 2011),
which will be based on the availability of photometric redshift
measures, and the Kilo Degree Survey (KiDS; de Jong et al.
2017), which aims to map the large-scale matter distribution
in the Universe, using weak lensing shear and photometric red-
shift measurements (Hildebrandt et al. 2016; Tortora et al. 2016;
Harnois-Déraps et al. 2017; Joudaki et al. 2017; Köhlinger et al.
2017). Furthermore, photometric redshifts estimation is cru-
cial for several other projects, the most important being the
Evolutionary Map of the Universe (EMU; Norris et al. 2011),
the Low Frequency Array (LOFAR; van Haarlem et al. 2013),
Dark Energy Survey (Bonnett et al. 2016), the Panoramic Sur-
vey Telescope and Rapid Response System (PANSTARRS;
Chambers et al. 2016), and the VST Optical Imaging of the
CDFS and ES1 Fields (VST-VOICE; Vaccari et al. 2016). In
light of this, we propose to invert the task of photometric redshift
estimation. That is to say, having stated the possibility to deter-
mine the redshift of a galaxy based on its photometry, we want to
build a method that allows us to investigate the parameter space
and to extract the features to be used to achieve the best perfor-
mance. As thoroughly analysed in D’Isanto & Polsterer (2018),
the implementation of deep learning techniques is providing an
alternative to feature based methods, allowing the estimation of
photometric redshifts directly from images. The main concerns
when adopting deep learning models are related to the amount
of data needed to efficiently perform the training of the net-
works, the cost in terms of resources and computation time, and
the lack of interpretability related to the features automatically
extracted. In fact, deep learning models can easily become like
magic boxes and it is really hard to assign any kind of physical
meaning to the features estimated by the model itself. There-
fore, a catalogue-based approach still has great importance, due
to the gains in time, resources, and interpretability. In particu-
lar, this is true if a set of significant features is provided, in
order to concentrate the important information with respect to
the problem in a reduced number of parameters. Both methods,
based on automatically extracted features or on selected features,

constitute the starting point to build an efficient and perform-
ing model for redshift estimation, respectively. The topic of fea-
ture selection is a well-treated subject in the literature (see for
example Rimoldini et al. 2012; Tangaro et al. 2015; Hoyle et al.
2015; D’Isanto et al. 2016). The forward selection approach we
used (Gieseke et al. 2014) is meant to select between thousands
of features generated by combining plain photometric features
as they are given in the original catalogue. No matter what se-
lection strategy is applied, the final results have to be compared
to those obtained with the traditional features from the litera-
ture (D’Abrusco et al. 2007; Richards et al. 2009; Laurino et al.
2011) and with automatically extracted features. The aim is to
find the subsets that give a better performance for the proposed
experiments, mining into this new, huge feature space and to
build a method useful to find the best features for any kind of
problem. Moreover, we propose to analyse the obtained fea-
tures, in order to give them a physical explanation and a con-
nection with the processes occurring in the specific category of
sources. Such an approach also demands a huge effort in terms
of computational time and resources. Therefore, we need an ex-
treme parallelization to deal with this task. This has been done
through the intensive use of graphics processing units (GPU),
a technology that is opening new doors for Astroinformatics
(Cavuoti et al. 2013b; Polsterer et al. 2015; D’Isanto & Polsterer
2018), allowing the adoption of deep learning and/or massive
feature selection strategies. In particular, in this work, the fea-
ture combinations are computed following Gieseke et al. (2014)
and Polsterer et al. (2014), using a GPU cluster equipped with
four Nvidia Pascal P40 graphic cards1. Likewise for Zhang et al.
(2013), the k-Nearest-Neighbours (kNN; Fix & Hodges 1951)
model is used, running recursive experiments in order to esti-
mate the best features through the forward selection process.
This choice has been done because the kNN model scales very
well with the use of GPU, with respect to performance and
quality of the prediction, as shown in Heinermann et al. (2013).
In this way, for each run of the experiment, the most con-
tributing features are identified and added to previous subsets.
Thereby, a tree of feature groups is created that afterwards can
be compared with the traditional ones. The validation experi-
ments are performed using a random forest (RF) model (ap-
plication in astronomy Carliles et al. 2010). We will show that
this approach can strongly improve performance for the task
of redshift estimation. The improvement is due to the identifi-
cation of specific feature subsets containing more information
and capable of better characterizing the physics of the sources.
In the present work, we perform the experiments on quasar
data samples extracted from the Sloan Digital Sky Survey Data
Release 7 (SDSS DR7; Abazajian et al. 2009) and Data Re-
lease 9 (SDSS DR9; Ahn et al. 2012). The proposed approach
is very general and could be also used to solve many other
tasks in astronomy, including both regression and classification
problems.
In Sect. 2 the methodology and models used to perform the ex-
periments are described together with the statistical estimators
used to evaluate the performance. The strategy adopted for the
feature selection is also explained. Section 3 is dedicated to the
data used and the feature extraction process. In Sect. 4 the exper-
iments performed and the results obtained are described. Finally,
in Sect. 5 the results are discussed in detail and in Sect. 6 some
conclusions are drawn.

1 https://images.nvidia.com/content/pdf/tesla/
184427-Tesla-P40-Datasheet-NV-Final-Letter-Web.pdf
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2. Methods

The main purpose of this work is to build an efficient method
capable of generating, handling and selecting the best features
for photometric redshift estimation, even though the proposed
method is also able to deal with any other task of regression
or even classification. We calculate thousands of feature com-
binations of photometric data taken from quasars. Then, a for-
ward selection process is applied, as will be explained in more
detail in the next sections. This is done to build a tree of best
performing feature subsets. This method has to be considered
as an alternative to the automatic features extraction used in
D’Isanto & Polsterer (2018). Both methods can be useful and ef-
ficient, depending on the nature of the problem, and on the avail-
ability of data and resources. For this reason, the results obtained
with both methods will be compared. The experimental strat-
egy is based on the application of two different machine learn-
ing models and evaluated on the basis of several statistical tools.
In the following these models, kNN and RF, are presented. The
strategy used to perform the feature selection is then depicted
in detail and we give a description of the statistical framework
used for the experiments’ evaluation and of the cross validation
algorithm.

2.1. Regression models

As mentioned above, our method makes use of kNN and RF
models, which are described in detail in the following subsec-
tions, while the details regarding the deep convolutional mixture
density network (DCMDN) used to compare the results with
an automatic features extraction based model can be found in
D’Isanto & Polsterer (2018).

2.1.1. kNN

The kNN (Fix & Hodges 1951) is a machine learning model
used both for regression and classification tasks (Zhang et al.
2013). This model explores the feature space by estimating the k
nearest points (or neighbours) belonging to the training sample
with respect to each test item. In our case the distance involved is
calculated through a Euclidean metric. In the case of a regression
problem (like redshift estimation), the kNN algorithm is used to
find a continuous variable averaging the distances of the k se-
lected neighbours. The efficiency of the algorithm is strongly
related to the choice of the parameter k, which represents the
number of neighbours to be selected from the training set. The
best choice of this parameter is directly related to the input data,
their complexity, and the way in which the input space is sam-
pled. Clearly, the most simple case is a model with k = 1. In this
case, a prediction equal to the target of the closest pattern in the
training set is associated to each pattern. Increasing the k pa-
rameter could improve the precision of the model (this is due
to the increasing generalization capability), but can also gener-
ate overfitting (Duda et al. 2000). In our experiments, the choice
of the k parameter was part of the learning task by evaluating
a set of possible values. The kNN is one of the simplest ma-
chine learning algorithms, but even if it could be outperformed
by more complex models, it has the advantage of being very
fast and in any case quite efficient. Another possible problem
concerning the use of the kNN model is given by possible dif-
ferences in the range of the input features. This could generate
problems and misleading results in the estimation of distances
in the parameter space. For this reason, all the features used in
this work have been normalized using the min-max normaliza-
tion technique (Aksoy & Haralick 2000).

2.1.2. Random forest

The RF (Breiman et al. 1984) is one of the most popular
ensemble-based machine learning models, and could be used for
regression and classification tasks (see Carliles et al. 2010, for an
application to photometric redshift estimation). It is an ensemble
of decision trees, where each tree is meant to partition the feature
space in order to find the best split that minimizes the variance.
Each decision tree is built by adding leaf nodes where the input
data are partitioned with respect to a different chosen feature, re-
peating the process for all the possible choices of variables to be
split. In case of a regression problem, the root mean square error
(RMSE) is computed for each possible partition, and the par-
tition which minimizes the RMSE is chosen. The RF averages
the results provided by many decision trees, each trained on a
different part of the training set through the bagging technique
(Breiman 1996). This avoids overfitting due to single decision
trees growing too deep. Moreover, the decision tree makes use
of the bootstrapping technique (Breiman 1996) in order to in-
crease the performance and stability of the method and reduce
overfitting at the same time. This consists in giving, as input, a
different random sub-sample of the training data to each deci-
sion tree. The RF uses the feature bagging during the training
phase. This consists in selecting a random subset of features at
each split. Bootstrapping and bagging help to avoid correlations
between single decision trees, which could appear when train-
ing them on the same training set and in the presence of strong
features selected multiple times.

2.2. Features selection strategy

The huge number of features evaluated, as described in Sect. 3,
imposes the need to establish an efficient feature selection pro-
cess. In fact, in order to estimate a subset of the best f = 10 fea-
tures2, starting with r = 4520 features, would imply, if we want
to test all the possible combinations, the following number of
experiments:

n =
r!

f ! ∗ (r − f )!
= 9.7 × 1029. (1)

Assuming that a nonillion experiments are too many to be per-
formed, a more efficient approach had to be chosen. Therefore,
we decided to apply a forward selection process (Mao 2004) as
described in the following. The number of features used for the
experiment was iteratively increased. In other words, to select
the first best feature a kNN model for each of the r = 4520
features was trained in a one-dimensional feature space. Due
to the memory limitations of the hardware architecture used,
the feature selection was done by performing 100 kNN exper-
iments, selecting for each of them a random subset of 20 000
data points and using a five-fold cross validation (see Sect. 2.4
for more details). The repeated experiments on different training
samples were meant to generate statistics of the features in order
to identify the most frequently selected ones. This was done to
minimize the biases introduced by the random extraction of the
training data. Since 100 runs were performed, sometimes more
than one feature was selected. The basic idea behind the pro-
posed strategy is to select a limited number of best-performing
features per step. The number of features which were actually
selected were chosen by evaluating the occurrence of each of
them as the best feature in all of the 100 runs. Therefore, for

2 The reason for selecting 10 features is discussed in Sect. 4.3 and
Fig. 6.
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Fig. 1. Workflow used to generate tree structure. The black boxes rep-
resent states where multiple operations are started in parallel or parallel
operations are joined. The iteration is stopped when each branch of the
tree has a depth of 10. A five-fold cross validation is applied for every
model evaluation step.

each iteration a minimum of one and a maximum of three fea-
tures were selected. After choosing the best features, they were
fixed and the next run was performed in order to choose the sub-
sequent features. This method was iterated until the tenth feature
was selected. A tree with a maximum branching number of three
was derived, because in every step a maximum number of three
features that best improve the model were chosen. Each branch
can be seen as a set of best-performing-feature combinations.
The necessity of performing a high number of experiments on
different data subsets is caused by the slightly varying behaviour
of the kNN model with respect to different input patterns. The
whole workflow is summarized in Fig. 1. The cross validation,
moreover, was used in order to further reduce any risk of over-
fitting.

2.3. GPU parallelization for kNN

The feature selection is done by parallelizing the experiments on
a GPU cluster. The massive use of GPUs proved to be manda-
tory in order to deal with such an amount of data, features,

k values, and runs on randomly sampled data-sets. Following
Heinermann et al. (2013) and Gieseke et al. (2014), the kNN al-
gorithm has been parallelized by using GPUs. Typically, GPU-
based programs are composed by a host program running on
central processing unit (CPU) and a kernel program running
on the GPU itself, which is parallelized on the GPU cores in
several threads or kernel instances. This scheme is particularly
adapted to kNN models, due to the advantages obtained by par-
allelizing matrix multiplications. In the code used for this work
(Gieseke et al. 2014) the calculation is performed by generating
matrices containing the distances of the selected features from
the query object. This calculation is entirely performed on the
GPU, while the CPU is mainly used for synchronization and for
updating a vector containing the selected features at every step.
The approach based on this method proved to speed up the cal-
culation by a factor of ∼150. We modified the given code to start
the selection process with a given set of already selected fea-
tures. This was done to enable the generation of the feature trees
based on 100 random subsets.

2.4. Statistical estimators and cross validation

The results have been evaluated using the following set of statis-
tical scores for the quantity ∆z = (zspec−zphot)/(1+zspec) express-
ing the estimation error3 on the objects in the blind validation set:

– bias: defined as the mean value of the normalized residuals
∆z;

– RMSE: root mean square error;
– NMAD: normalized median absolute deviation of the nor-

malized residuals, defined as NMAD(∆z) = 1.48 × median
(|∆zi −median(∆z)|);

– CRPS: the continuous rank probability score (Hersbach
2000) is a proper score to estimate how well a single
value is represented by a distribution. It is used following
D’Isanto & Polsterer (2018).

The prediction of redshifts in a probabilistic framework has
many advantages. The ability of reporting the uncertainty is the
most important one to mention. In order to correctly evaluate the
performance of the features in a probabilistic setting, the CRPS
was added to the set of scores. By using the RF as a quantile
regression forest and fitting a mixture of Gaussians to the pre-
dictions of the ensemble members, a probability distribution can
be generated and the CRPS can be calculated. The DCMDN,
by definition, predicts density distributions that are represented
by their mean when calculating the scores used for point
estimates.

As stated before, all the indicators are then averaged on the
k folds of the cross validation. Through this approach, the stan-
dard deviation is also obtained as a measure of the error on each
statistical estimator. We do not report those values as the errors
were small enough to be considered negligible. Cross validation
(Kohavi 1995) is a statistical tool used to estimate the generaliza-
tion error. The phenomenon of overfitting arises when the model
is too well adapted to the training data. In this case, the perfor-
mance on the test set will be poor as the model is not general
enough. A validation set is defined, in order to test this gener-
alization of the model, with respect to the training data, on an
unseen and omitted set of data. In particular, cross validation be-
comes necessary when dealing with small training sets or high-
dimensional feature spaces.

3 We note that ∆z denotes the normalized error in redshift estimation
and not the usually used plain error.
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In this kind of approach, the data-set is divided into k sub-
sets and each of them is used for the prediction phase, while all
the k − 1 subsets constitute the training set. The training is then
repeated k times, using all the subsets. The final performance is
obtained by averaging the results of the single folds and the error
on the performance is obtained by evaluating the standard devi-
ation of the results coming from the different folds. In this work,
we adopt a k-fold cross validation approach, with k = 5 for the
kNN experiments and k = 10 for the RF experiments.

3. Data

In the following subsections the details about the data-set used
and the feature combinations performed for the experiments are
outlined.

3.1. Data-sets

The experiments are based on quasar data extracted from the
SDSS DR7 (Abazajian et al. 2009) and SDSS DR9 (Ahn et al.
2012). Three catalogues have been retrieved for the experi-
ments. Moreover, images for the DCMDN experiments have
been downloaded making use of Hierarchical Progressive Sur-
vey (HiPS; Fernique et al. 2015).

Catalogue DR7a. Catalogue DR7a is the most conservative with
respecttothepresenceofbaddataorproblematicobjects.It isbased
onDR7only,withcleanphotometryandnomissingdata; thequery
used is reported in Appendix D. Furthermore, to be more conser-
vative,wechecked the spectroscopic redshifts in twodifferent data
releases (9 and 12) and we decided to cut all the objects with a dis-
crepancy in zspec not fulfilling the given criteria

|zDR7 − zDR9| < 0.01, and
|zDR7 − zDR12| < 0.01, and
|zDR12 − zDR9| < 0.01.

The final catalogue contains 83 982 objects with a spectroscopi-
cally determined redshift.

Catalogue DR7b. Catalogue DR7b has been obtained using the
same query used for Catalogue DR7a, but removing the image
processing flags. This has been done in order to verify if the
presence of objects previously discarded by the use of these flags
could affect the feature selection process. The catalogue has been
cleaned by removing all the objects with NaNs and errors bigger
than a value of one, ending with a catalogue containing 97 041
objects.

Catalogue DR7+9. Catalogue DR7+9 has been prepared mixing
quasars from DR7 and DR9 in order to perform the feature selec-
tion with a different and more complete redshift distribution. The
difference in the redshift distribution of the two catalogues can
be seen from the histogram in Fig. 2. The catalogue has been
cleaned with the same procedure adopted for Catalogue DR7b
and the common objects between DR7 and DR9 have been used
only once. This produced a catalogue of 152 137 objects. In the
following sections, the results obtained with this catalogue are
discussed in depth.

3.2. Classic features

In classic redshift estimation experiments for quasars and galax-
ies, as can be found in the literature (e.g. D’Abrusco et al.
2007), for SDSS data colours are mainly used as features. To

Fig. 2. Histogram showing the redshift distribution of the catalogues
with objects from DR7 only and DR7 plus DR9. The distribution for
the catalogue DR7b is not reported here because the difference with
respect to catalogue DR7a is practically negligible.

Table 1. Types of features downloaded from SDSS and their combina-
tions in order to obtain the final catalogue used for the experiments.

Magnitudes σ Radii Ellipticities

modelMag / Extinction devRad devAB
petroMag / Extinction expRad expAB
psfMag / Extinction petroRad
devMag / Extinction petroR50
expMag / Extinction petroR90

Plain 25 + 25 dereddened 25 25 10
Combined 1 225 Differences 300 Pairs 300 Differences 45 Differences

2450 Ratios 90 Ratios
Total 4520 3725 325 325 145

Notes. The number of each feature type is given alongside with the final
number of synthetically derived features.

be comparable, we decided to use a set of ten features as our
benchmark feature set. Colours of the adjacent filterbands for
the point spread function (PSF) and model magnitudes are used
together with the plain PSF and model magnitudes. In SDSS, the
model magnitudes are the best fitting result of an exponential or
de Vaucouleurs model. All Classic10 features can be found in the
first column of Table 2.

3.3. Combined features

For each of the three catalogues, the features concerning mag-
nitudes and their errors, radii, ellipticities, and extinction are
retrieved. An overview of the features is shown in Table 1.
Magnitudes that have been corrected for extinction are denoted
with an underline indicating that, for example, umodel is equiva-
lent to umodel − uextinction. The parameter space has been enriched
by performing several combinations of the original features
(Gieseke et al. 2014). A similar feature generation approach was
applied also in Polsterer et al. (2014) but with a limited set of
plain features and combination rules. In other words, the mag-
nitude features were combined obtaining all the pairwise dif-
ferences and ratios, both in the normal and dereddened version.
The errors on the magnitudes have been composed taking their
quadratic sums. Finally, radii and ellipticities have been com-
posed through pairwise differences with ratios only for the el-
lipticities. The final catalogue consists of 4520 features for each
data item. It has to be noted that the Classic10 features are of
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course included in this set of features. In Table 1, the types and
amounts of the features obtained following this strategy are spec-
ified. As appears from the table, the feature combinations can be
divided into several groups:

– simple features: magnitudes, radii, and ellipticities as down-
loaded from the SDSS database;

– differences: pairwise differences of the simple features;
colour indexes are a subset of this group utilizing only ad-
jacent filters;

– ratios: ratios between the simple features; an important sub-
set of this group is the one containing ratios between differ-
ent magnitudes of the same filter; we will define this subset
as photometric ratios;

– errors: errors on the simple features and their propagated
compositions.

As we will see in the following, the ratios group, and its sub-
group, the photometric ratios, are particularly important for the
redshift estimation experiments.

4. Experiments and results

The feature selection was performed applying the forward selec-
tion strategy, as described in Sect. 2.2, on the three catalogues.
The verification of the resulting feature sets was performed using
the RF. This algorithm is widely used in literature, and therefore
the results obtained here can be easily compared to those with
different feature selection strategies.

In addition, experiments using the classic features were
performed, in order to compare their performances with the
proposed selected features. Already at an early stage of the ex-
periments, it turned out that only four selected features are suf-
ficient to achieve a performance comparable to classic features.
Therefore the scores are always calculated separately for the full
set of ten selected features (Best10) and the first four (Best4) fea-
tures only. To compare the results with a fully automated feature
extraction and feature selection approach, a DCMDN was also
used for the experiments.

It has to be noted that in some cases the same features sets
have been found but exhibiting a different ordering. In these
cases, all the subsets have been kept for the sake of correct-
ness. In the next subsections the three experiments and the corre-
sponding results are shown. The two experiments with Catalogue
DR7a and DR7b are designed to provide results that are compa-
rable to the literature. For a scientifically more interesting inter-
pretation, the less biased, not flagged, and more representative
Catalogue DR7+9 was used for the main experiment. Therefore,
only the results and performances of the first two experiments
are given in a summarized representation, reserving more space
for a detailed description of Experiment DR7+9. Further details
concerning the results obtained with Catalogue DR7a and DR7b
are shown in Appendix A.

4.1. Experiment DR7a

The feature selection on the Catalogue DR7a produced 22 sub-
sets of ten features each. Only 20 features, of the initial 4520,
compose the tree. The three features,

– gpsf/umodel

– ipsf/zmodel

– zmodel/zpsf,
appear in all the possible branches. For all presented feature sets,
the RF experiments were performed. The best performing ten
features are indicated in the second column of Table 2 (DR7a

Table 2. Classic and best feature subsets obtained by the feature selec-
tion process of the experiments on the three catalogues.

Classic10 DR7a Best10 DR7b Best10 DR7+9 Best10

rpsf ipsf/imodel ipsf/imodel ipetro/ipsf

rmodel gpsf/umodel gpsf/umodel gps f − umodel

upsf − gpsf rpsf/imodel rpsf/imodel iexp/rpsf

gpsf − rpsf idev/ipsf idev/ipsf

√
σ2

rmodel
+ σ2

rdev

rpsf − ipsf rpsf/gmodel zpsf/imodel rpsf/gexp

ipsf − zpsf ipsf/zmodel rpsf/gexp ipsf/zmodel

umodel − gmodel rpsf − rpetro rpsf − rpetro ipsf − idev

gmodel − rmodel

√
σ2

rmodel
+ σ2

gexp
ipsf − ipetro rpetro/rpsf

rmodel − imodel zmodel/zpsf zmodel/zpsf ipsf − rmodel

imodel − zmodel ipsf − ipetro

√
σ2
gmodel

+ σ2
gdev

zexp/zpsf

Notes. After the selection process, the RF was used to identify the fea-
ture branches of the corresponding trees that show the best performance.

Table 3. Summary of the scores obtained with the RF and DCMDN
models in the three experiments.

Exp Set # Features Mean RMSE NMAD

DR7a Classic10 10 −0.024 0.163 0.051
Best4 4 −0.023 0.163 0.080
Best10 10 −0.014 0.124 0.044
DCMDN 65 536 −0.020 0.145 0.043

DR7b Classic10 10 −0.030 0.180 0.059
Best4 4 −0.027 0.183 0.087
Best10 10 −0.019 0.145 0.050
DCMDN 65 536 −0.024 0.171 0.032

DR7+9 Classic10 10 −0.033 0.207 0.073
Best4 4 −0.032 0.206 0.100
Best10 10 −0.023 0.174 0.060
DCMDN 65 536 −0.027 0.184 0.037

Notes. The DCMDN automatically extracted 65 536 features for each
experiment. The resulting scores are also given.

subset) in the order of their occurrence. The performances are
compared with the results of the Classic10 features presented in
the first column of the same table. A summary of the most im-
portant results is shown in the first section of Table 3. As shown
in Table 3, the experiment with the Best10 subset outperforms
the experiment with the Classic10 features with respect to all the
statistical scores.

Moreover, in Table 3 the results obtained using the DCMDN
are shown in order to compare the predictions with a model
based on automatic features selection. The DCMDN model au-
tomatically extracts 65536 features from images in the five fil-
ters ugriz of size 16× 16 pixel2. This model is meant to gener-
ate probability density functions (PDFs) in the form of Gaus-
sian mixtures instead of point estimates. Therefore, in order to
calculate the scores, the weighted mean of every PDF with re-
spect to the mixture components has been estimated. As shown
in the table, the performance is superior with respect to the
Classic10 features and the Best4 subset, but it is outperformed
by the Best10 subset of features. The performances of these four
sets have been compared using the CRPS score, as reported in
the left section of Table 4. Those results are consistent with the
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Table 4. Table showing the performance of the different feature subsets
with respect to the CRPS score for the three catalogues.

DR7a CRPS DR7b CRPS DR7+9 CRPS

Classic10 0.110 Classic10 0.131 Classic10 0.167
Best4 0.154 Best4 0.172 Best4 0.203
Best10 0.089 Best10 0.106 Best10 0.140
DCMDN 0.099 DCMDN 0.124 DCMDN 0.146

previously found results. A detailed listing of the results is given
in Appendix A with the individual feature tree being visualized
as a chord diagram (Krzywinski et al. 2009).

4.2. Experiment DR7b

In the experiment performed with Catalogue DR7b, the proposed
model selected 26 features generating 41 subset combinations.
Only the following two features appear in all the subsets:

– ipsf/ipetro
– gpsf/umodel.

From the RF validation runs, the subset reported in the third col-
umn of Table 2 (DR7b) produces the best performance. The most
important results are shown in the second section of Table 3, in
which the results obtained with the previous experiment (DR7a)
are confirmed. This is valid considering both the RMSE and the
CRPS indicators. The CRPS is shown in the middle section of
Table 4. Therefore, the performance given using the Best10 sub-
set is superior to that using the Classic10 features. The DCMDN
model is outperformed too. Several features can be found in both
experiments with catalogues DR7a and DR7b and the general
structure of the tree between the two experiments is compa-
rable. Therefore, the exclusion of photometric flags seems not
to affect substantially the global process of feature selection. It
can be noticed, however, that the general performance degrades.
This is due to the increased presence of objects characterized
by a less clean photometry. The detailed feature selection re-
sults for this experiment and the chord diagram are also shown in
Appendix A.

4.3. Experiment DR7+9

The feature selected from the Catalogue DR7+9 are shown in
Table 5. In Fig. 3 a chord diagram is given to visualize the struc-
ture of the individual subsets. In this experiment the model se-
lected 14 individual features grouped in nine subsets. Due to the
different redshift distribution, different features are selected with
respect to the previous experiments. The following six features
are in common between all the subsets:

– ipsf − idev
– ipsf/zmodel
– gpsf − umodel

– ipetro/ipsf
– rpsf/gexp

– iexp/rpsf .
The best performing subset is shown in the fourth column of
Table 2 (DR7+9 subset), while in the third section of Table 3
results obtained with the RF experiments are given. Moreover,
in the right section of Table 4 the results with the CRPS as
indicator are provided. For this experiment we also report the
zspec versus zphot plots in Fig. 4. This classical representation
visualizes the better concentration along the ideal diagonal for

both the Best10 features as well as the features derived through
the DCMDN. When using the features in a probabilistic con-
text, the better performance with respect to outliers of the
DCMDN can be observed (Fig. 5). The probability integral
transform (PIT Gneiting et al. 2005) histograms show very sim-
ilar performances for all the feature sets that were selected.
Besides the outliers, the estimates are sharp and well cali-
brated, exhibiting no difference in comparison to the results
generated with the Classic10 features. This is a good indica-
tion that no systematic biases were added through the selection
process.

Finally, the performance obtained with the Classic10 features
is compared to the ones achieved with the Best10 features in a
cumulative way. In Fig. 6, the RMSE and the NMAD are plot-
ted with respect to the number of features of the Best10 set that
were used. This is important in order to show that starting with
the 4th feature, the model reaches already a performance com-
parable with the Classic10 features. Originating in the random
data sampling during the selection process, the resulting differ-
ent feature subsets do not show obvious differences in the qual-
ity of the final performance. In fact, the results obtained with
the Best10 subset are far better with respect to the performance
obtained using the Classic10 features and the DCMDN. This
is a confirmation of the quality and strength of the proposed
method.

5. Discussion

In the following subsections we discuss in detail the features
found with the proposed method, the improvement in perfor-
mance of the photometric redshift estimation models in compar-
ison to the classic features, and the physical interpretation of the
selected features.

5.1. Features

The results obtained from the feature selection process for the
three experiments demonstrate that most of the information can
be embedded in a limited number of features with respect to the
initially generated amount of pairwise combinations. The fol-
lowing four features have been selected and are in common be-
tween all the three experiments:

– rpsf − rpetro
– ipsf − idev
– ipsf/zmodel

– rpsf/iexp.
This is a clear indicator that those features contain some es-
sential information. Besides noting that they encode spatial and
morphological characteristics, we have no clear explanation.
Some features, as will be analysed in the next sections, can be
clearly connected to physical processes occurring in the consid-
ered sources. Other features are instead much harder to inter-
pret, which demands a deeper analysis in the future. Given that
photometric redshifts are just used as a testbed for the proposed
methodology, such an analysis is beyond the scope of this work.
A quick and shallow inspection of the features exhibits that the
ratios and differences play a major role. In Table 5 for the ex-
periment DR7+9 the different groups of features are highlighted
using different background patterns. This visually summarizes
the dominant occurrence of those groups. In fact, all the features
except the 4th (errors) belong to one of these two groups. More-
over, the individual branches of feature sets employ a feature
of the same group for the first seven positions, showing a great
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Table 5. Detailed feature branches obtained from the feature selection for the DR7+9 experiment.

id Feature 1 Feature 2 Feature 3 Feature 4 Feature 5 Feature 6 Feature 7 Feature 8 Feature 9 Feature 10

1 ips f − idev zps f − zmodel

2∗ rpetro/rps f zexp/zps f

3
√
σ2

rmodel
+ σ2

rdev
ips f − rmodel

4 ips f − idev

5 ipetro/ips f gps f − umodel iexp/rps f rps f /gexp ips f /zmodel ips f − idev zps f − zmodel rpetro/rps f

6 rpetro/rps f ips f − idev zps f − zmodel

7
√
σ2

gmodel
+ σ2

rdev
zps f − zmodel

8 zps f − zmodel rpetro/rps f ips f − idev

9 rps f − rpetro

Notes. The 2nd branch, indicated with the ∗ symbol, is the best performing subset with respect to the experiments using the RF. The ratios and
photometric ratios are indicated, respectively, with vertical lines and dots. The differences are with horizontal lines and the errors are with north
west lines. The colour code for the features is the same as shown in the chord diagram in Fig. 3.

color name feature

. A ipetro/ips f

. B gps f -umodel

. C iexp/rps f

. D
√
σ2

rmodel + σ2
rdev

. E
√
σ2

gmodel + σ2
rdev

. F rps f /gexp

. G ips f /zmodel

. H ips f − idev

. I rpetro/rps f

. J zps f − zmodel

. K ips f -rmodel

. L rps f − rpetro

. M zexp/zps f

. N ips f -idev

Fig. 3. Chord diagram of the features derived in Experiment DR7+9. Every feature is associated to a specific colour, and starting from the first
feature A it is possible to follow all the possible paths of the tree, depicting the different feature subsets. Ordered from outside to inside, the external
arcs represent the occurrences of a particular feature: the total percentage of the individual connections, the numbers and sources of connections
entering, and the numbers and targets of connections exiting. (Note the branches splitting in feature C and re-joining in feature F).
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Fig. 4. Comparison of the spectroscopic (true) redshifts (zspec) against the photometrically estimated redshifts (zphot) of the different feature sets in
experiment DR7+9.

Fig. 5. PIT histograms for experiment DR7+9 for the different features sets, as shown in Table 4. Except the PIT of the DCMDN, all other feature
sets generate results with significant outliers at the extrema.

stability in the composition of the branches. The experiment
based on the DR7+9 catalogue generates a much less complex
structure of the tree of feature sets with respect to experiments
DR7a and DR7b. Fewer branches and a reduced number of fea-
tures are selected. Reasons for this behaviour are the more com-
plete redshift distribution of catalogue DR7+9 with respect to the
other two and the improvement in SDSS photometry from DR7
to DR9. This drives the model to find the required information in
a reduced number of efficient features. The analysis of the tree
composition and features distribution can be done following the
chord diagram shown in Fig. 3. The chord diagram is an optimal
visualization tool for the description of a complex data structure.
In this diagram, every feature is associated to a specific colour,
and starting from the first feature (A) it is possible to follow all
the possible paths of the tree, depicting the different feature sub-
sets. Ordered from outside to inside, the external arcs represent
the occurrences of a particular feature: the total percentage of
the individual connections, the numbers and sources of connec-
tions entering, and the numbers and targets of connections exit-
ing. Therefore, the chord diagram, coupled with Table 5, gives
a clear description of the structure and composition of the tree
of features. In addition, in Table 5 the same colour code as in
the chord diagram is adopted, to identify the features and their
distribution. The chord diagram clearly visualizes that the fea-
ture trees split at feature C and later rejoin at feature F. In com-
parison to the chord diagram obtained for Experiment DR7+9,
the two chord diagrams for experiments DR7a and DR7b (see
Appendix A) immediately visualize the higher complexity of
those trees. From Fig. 3 and Table 5 it appears that, apart from
a few exceptions, the selected features follow a precise scheme.
No classic colour indexes or any of the Classic10 features have
been chosen, while only differences between different magni-
tudes of the same band or differences between different type of
magnitudes play a certain role. The ratios have been all selected
in the extinction-corrected version, except for the subcategory of
the photometric ratios. This can be understood considering that

the latter are ratios between magnitudes of the same filter where
the contribution of the extinction correction tends to cancel out.

Another relevant aspect in experiment DR7+9 is that all the
15 features in the tree are exclusively a composition of magni-
tudes and their errors. Neither radii nor ellipticities have been
chosen during the selection process. As only quasars have been
used in the experiments, this introduces a bias to the selec-
tion process in favour of magnitudes and against shape-based
features. This is a clear indication that just the magnitudes
are required to describe the objects and explore the parameter
space in the setting of photometric redshift estimation. Although
photometric ratios are shape-related parameters, they express the
ratio between the centred and the extended part of a component
that can be interpreted as flux of the hosting galaxy. Therefore,
here a bias introduced by using quasars for the experiments can-
not be observed.

It is remarkable that photometric errors are selected as fea-
tures, given that there is no obvious physical relation between the
redshift of the considered objects and the measurement errors re-
ported by the photometric pipeline of SDSS. Therefore it is im-
portant to consider how errors are derived in the SDSS, based on
flux measurements (Lupton et al. 1999). Magnitude errors quan-
tify the discrepancy between the fitted photometric model (psf,
model, petrosian, etc.) and the observed pixel-wise distribution
of spatially correlated fluxes with respect to the applied noise
model. Therefore, it is evident that the errors on the single mag-
nitudes appear to be larger for fainter objects, a physical property
that is directly correlated to distance. In addition, the deviation
of spatial flux distributions from the applied spatial photomet-
ric models are good morphological indicators; for example, the
shape and size of the hosting galaxy are correlated with redshift.
The workflow adopted is able to capture these dependencies,
selecting a composition of errors as an important feature of the
best set.

Even though 4520 features were synthetically created by
combining base features, only 15 were selected in experiment
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Fig. 6. Comparison of model performance with regard to the number of
used features. The root mean square error and normalized median ab-
solute deviation of the results from the DR7+9 RF experiments are pre-
sented. As reference line the performance achieved with the Classic10
features is shown. As it can be seen, from the fourth feature on, the per-
formance of the subsets outperforms the Classic10 features. After the
ninth feature, the improvement settles. When adding many more fea-
tures, the performance will start to degrade.

DR7+9 (19 and 26 for experiments DR7a and DR7b, respec-
tively). Furthermore, some features encode the same type of
information with just subtle differences in composition. It is re-
markablethateveryfeaturethat isbuiltonmagnitudesincorporates
aPSFmagnitude.Moreover, themodelandexponentialmagnitude
in the SDSS are related4, with the model magnitude being just the
better fitting model when comparing an exponential and a de Vau-
couleurs profile. In the first stages of the selection process, the pro-
posed algorithm does not select differing branches but identifies
essential features to produce good results when photometrically
estimating redshifts. These observations are also valid for the re-
sults found in experiments DR7a and DR7b.

5.2. Comparison of performance

Using the RF, the validation experiments were carried out on
every feature set. The second subset, indicated as Best10, gave
a slightly better performance than the others. Even though we
would not consider this as a substantial effect, we decided to
choose this as our reference set. It can be noticed from Fig. 6
that from the 4th feature on, every subset delivers a perfor-
mance comparable to the performance of all ten features in the
Classic10 set, with respect to the RMSE. Consistently, the use
of more than four features outperforms the Classic10, indepen-
dently of the subset used. Adding more features improves fur-
ther the performance and the trend becomes asymptotic around
the 9th feature. At a certain point, adding many more features
results in a degradation of the redshift estimation performance.
After the 8th feature, the contribution is of a minor nature. Just
to have a fair comparison to the Classic10 features, we decided
to pick the same number of ten features, even though a smaller
number is sufficient to outperform the Classic10 features. The
performance improvement is evident seeing the results reported
in Table 3 and Fig. 4. It is important to note that the CRPS results
(Table 4) confirm the performance shown with respect to the
other scores. When predicting PDFs instead of point estimates,
the PIT histograms (Fig. 5) indicate the DCMDN as the best cal-
ibrated model. This result is reasonable because the DCMDN is
the only model trained using the CRPS as loss function, which

4 http://classic.sdss.org/dr7/algorithms/photometry.
html#mag_model

Table 6. Cross experiments performed with the RF, using the Best10
sets obtained from every experiment with all the three catalogues.

Exp. Catalogue Catalogue Catalogue
DR7a DR7b DR7+9

DR7a 0.124 0.146 0.176
DR7b 0.125 0.145 0.176
DR7+9 0.124 0.147 0.174

Notes. The results are expressed using the RMSE. It can be noticed
the negligible difference of performance, for every catalogue, indepen-
dently from the feature set used.

is focused on the PDFs calibration. The kNN and the RF are
instead based on the optimization of point estimates using the
RMSE. Therefore, the calibration of the PDFs estimated using
the DCMDN is superior. The use of such a probabilistic model
is helpful to handle the presence of extreme outliers, since it is
not based on the minimization of the RMSE, as discussed in
D’Isanto & Polsterer (2018). The usage of PDFs allows us to
identify objects with an ambiguous redshift distribution, while
in a point estimation scenario, where just the mean of such a
distribution would be considered, the estimates of those objects
would result in extreme outliers.

Six features of the best subset are ratios of different magni-
tudes. Three of them are plain ratios, while three are photometric
ratios. Analysing the fourth column of Table 2, it appears that
one of the components of these features is always a PSF magni-
tude, coupled with a model, petro, or exp magnitude. Therefore,
from the analysis of the results obtained, we can state that the
reason for the performance improvement is not in the choice of
some specific features, or in a particular subset of features, but
in their type and in the combination of certain groups.

All these aspects are clear indicators to demonstrate the fol-
lowing two conclusions. The proposed method is highly stable,
enabling us to derive subsets of features that are equivalently
well-performing and similar, based on a common structure. In
this sense, the improvement with respect to the use of Classic10
features is clear. In order to prove the robustness of the proposed
method, we performed some experiments using for each data-set
the Best10 features obtained with the other two catalogues, as
shown in Table 6, and the results were almost as good as in the
other cases. The method captures the inherent structure of the
physical properties of the sources, which is essential to provide
good photometrically estimated redshifts for quasars.

5.3. Physical interpretation

In contrast to deep learning models, feature-based approaches
have the advantage of allowing an interpretation in a physical
context. Therefore the features selected by our approach are dis-
cussed in the following. By analysing the importance of each
feature of the Best10 set in smaller redshift bins, the contribu-
tion of certain spectral features can be understood. In Fig. 7 the
importance is presented for sliding bins of ∆z = 0.2 based on
the Gini index (Breiman et al. 1984). The Gini index is used in
the RF to perform the segmentation of the parameter space or-
thogonally to its dimensions at every node. As all ten features
contribute individually, the total contribution is normalized to
one and the individual lines are presented in a cumulative way.
The relative importance of each feature clearly does not reflect
their ordering, as they have been assembled by a forward fea-
ture selection algorithm. In particular, the first feature of the best
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Fig. 7. Importance of every feature of the Best10 subset from experiment DR7+9. For a sliding redshift bin of ∆z = 0.2, the importance of every
feature was calculated in a localized regression model based on the Gini index as utilized by the RF. The colour code used is the same adopted for
the chord diagram in Fig. 3.

set does not show a dominant role when using multiple features.
When building a photometric regression model based on just a
single feature, the concentration index in the i band provides the
best tracer for distance. Therefore a concentration index in the
i band is consequently chosen in all the three experiments. This
selection is of course heavily biased by the distribution of our
training objects with respect to redshift and by the fact that ob-
jects for training are selected based on the classification of the
spectral template fitting of SDSS.

As soon as more photometric features are used, the spectral
energy distribution and distinct spectral features are the domi-
nant source of information for estimating the redshifts. Those
features are mainly ratios. To use ratios instead of colours is a
surprising fact, as in the literature colours are the usual choice
for photometric redshift estimation models. In Fig. 7 one can in-
spect how the different features contribute at different redshift
bins, building a well-performing model that covers the full red-
shift range. Besides some very narrow redshift regions, no clear
structure with preference of some photometric features can be
observed at higher redshifts (z > 4). This is due to the poor
coverage of the training and validation data in that range. The
ordering of the features in the Best10 set and their importance as
shown in Fig. 7 can be compared with the global feature impor-
tance as obtained from the RF experiment (Table 7). The feature
importance calculated on the overall redshift distribution gives
different indications with respect to the bin-wise analysis, but it
is quite consistent with the original order obtained from the fea-
ture selection. This is a further demonstration of the stability and
robustness of the proposed method.

The different behaviours and importance found for the fea-
tures in the individual redshift bins can be partially explained by
analysing distinct features in the spectral energy distribution. By
carefully inspecting the emission lines of quasars as reported by
the SDSS spectral pipeline, a connection between some photo-
metric features and emission lines could be found. Those features
that are composed of adjacent filter bands are very sensitive to
spectral lines that are in the vicinity of the overlapping area of
filter transmission curves. This can be explained by a flipping
of the feature, for example positive or negative for colours and
above or below one for ratios. Already a little shift of an emission

Table 7. Features of the Best10 set from experiment DR7+9, ordered by
decreasing importance as expressed by the score of the RF based on the
Gini criterion.

Position Feature Score
1 N1 gpsf − umodel 0.424
2 H1 ipetro/ipsf 0.121

3 N1
√
σ2

rmodel
+ σ2

rdev
0.092

4 H1 iexp/rpsf 0.072
5 == rpsf/gexp 0.071
6 == ipsf/zmodel 0.064
7 N2 ipsf − rmodel 0.062
8 H1 ipsf − idev 0.042
9 N1 zexp/zpsf 0.026

10 H2 rpetro/rpsf 0.025

Notes. The change with respect to the initially found ordering of the
presented approach, and the RF score are reported, too.

line with respect to the redshift is enough to create a significant
change in the feature space that is detected and utilized by the ma-
chine learning model. Five features of the Best10 share this char-
acteristic. Therefore the discussion with respect to emission lines
is focused on selected features that are composed of magnitudes
from neighbouring filter bands. Using the well known relation

z =
λobserved

λemitted
− 1 =

λfilter intersection

λqso emission line
− 1, (2)

it is possible to calculate the redshift at which a specific emis-
sion line becomes traceable when using a certain filter combina-
tion. The proposed features capture many distinct emission lines,
showing peaks in the redshift bins where the lines appear. This
is shown in Figs. 8 and 9, where the feature importance has been
compared with the classic features of the corresponding bands.
To understand better the influence of the usage of magnitudes
describing extended objects, both the PSF and the model magni-
tudes of the classic features where used for comparison. In Fig. 8
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Fig. 8. Feature importance of the five features from the Best10 set composed by magnitudes from neighbouring bands. As in Fig. 7, for a sliding
redshift bin of ∆z = 0.2, the importance of every feature was calculated. The results are compared to the classic features using PSF magnitudes of
the same bands. Based on the characteristics of the ugriz filters, the wavelengths indicating the start, centre, and end of the overlapping regions are
used to overplot the positions of particular quasar emission lines using Eq. (2). The used colour code is the same as in Fig. 3, while corresponding
features of the Classic10 set are always shown in grey.
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Fig. 9. Feature importance of the five features from the Best10 set composed by magnitudes from neighbouring bands. As in Fig. 7, for a sliding
redshift bin of ∆z = 0.2, the importance of every feature was calculated. The results are compared to the classic features using model magnitudes of
the same bands. Based on the characteristics of the ugriz filters, the wavelengths indicating the start, centre, and end of the overlapping regions are
used to overplot the positions of particular quasar emission lines using Eq. (2). The used colour code is the same as in Fig. 3, while corresponding
features of the Classic10 set are always shown in grey.

A97, page 13 of 21

4.4. Return of the features

69



A&A 616, A97 (2018)

the comparison is performed with respect to PSF colours, while in
Fig. 9 the same comparison is done with respect to model colours.
By using Eq. 2, a selected set of spectral emission lines of quasars
has been convolved with the corresponding filter characteristics
to annotate the plots. Besides the maximum of the overlapping
region, the start and the end of the intersection are depicted. We
defined the upper and lower limits as the points at which the sen-
sitivity of the filter curve is equal to 0.001 in quantum efficiency.
It can be seen that many emission lines perfectly correspond to
peaks in importance exhibited by the features of the Best10 set.
This can be observed only partially for the classic features.

In particular, purely PSF or model magnitude-based colours
have a different and often complementary contribution for sev-
eral spectral lines. This is due to the fact that either concentrated
or extended characteristics of the analysed objects are consid-
ered. The proposed features are more suitable than classic fea-
tures to describe the peaks at distinct emission lines. Considering
the NV − Lyα lines for the gpsf − umodel feature, the comparison
between the extended and concentrated classic features clearly
indicates that an extended component of the source is captured
via this feature. Keeping in mind that a pixel size of 0.4′′ of the
SDSS camera corresponds5 at a redshift of z ≈ 2.2 to ≈3.4 kpc,
this is a clear indicator that the hosting galaxy is significantly
contributing to the solution of the photometric redshift estima-
tion model. A similar behaviour can be observed for the NV−Lyα
lines in the rpsf/gexp feature, while the MgII emission line mainly
appears in the PSF colour. Therefore the MgII emission line can
be considered to be more prominent in the central region of
the objects. Between the most notable lines, the Lyman-α and
the Balmer series can be identified. Other important lines found
are the CII , CIII , CIV, OI,OII,OIII,OVI , and the MgII lines. Be-
sides the identified peaks caused by specific emission lines, some
peaks in weight stay unexplained. Even though it is possible to
distinguish between mostly spatially extended or concentrated
characteristics of the objects, an association of a single emis-
sion line fails. In those cases not the transition of a line between
two filters but an overall shape relation is captured by the se-
lected parameters. As the selected features combine the strength
of identifying line transitions as well as morphological charac-
teristics, the resulting boost in performance of the photomet-
ric redshift estimation model can be well explained. To explain
the meaning of the selected features that use a combination of
features extracted from the same photometric band and thereby
describe a morphological structure of the source, further image-
based investigations are necessary. This proves that a model
using the proposed feature selection approach is better able to ex-
ploit the information that represents the underlying physical and
morphological structure as well as the processes going on in the
sources.

6. Conclusions

In this work a method to select the best features for photomet-
ric redshift estimation is proposed. The features are calculated
via a greedy forward selection approach, in which the features
are selected from a set of 4520 combinations based on the pho-
tometric and shape information stored in the SDSS DR7 and
DR9 catalogues. By randomly sampling the training data and
running multiple kNN experiments, trees in which every branch
constitutes a subset of features were generated for all the exper-
iments. The obtained branches were then validated using a RF
model and compared to the results obtained using classic sets
5 Using Wright (2006) with H0 = 69.6,ΩM = 0.286,ΩDE = 0.714.

of features. Moreover, the results were compared with a con-
volutional neural network based model, meant to automatically
perform the feature extraction and selection. Three experiments,
based on different catalogues, were carried out. The first cata-
logue was obtained selecting quasars from SDSS DR7 and ap-
plying photometric flags. The second catalogue was composed
of quasars from SDSS DR7 too, but without using photometric
flags. Finally, the third catalogue was made by mixing SDSS
DR7 and DR9 quasars, in order to extend the redshift distri-
bution. We have shown that all the sets obtained in all the ex-
periments outperform the Classic10, and in particular a best-
performing branch has been identified for each catalogue. The
best sets also gave a better performance with respect to the au-
tomatic model (even though the latter typically shows a better
calibration and is less affected by outliers when predicting PDFs
instead of point estimates). The new best features obtained in
the present work are not immediately comprehensible. Further
analysis shows a relation between the dominant features of the
Best10 set and the emission lines of quasars, which correspond
to the peaks of importance of the different features along the red-
shift distribution. The same analysis carried out on the Classic10
features proves that the latter are not able to capture the same
physical information as compactly as the selected features. This
explains why the results obtained with the proposed method are
outstanding with respect to the ones obtained with the Classic10
features. Moreover, we demonstrate that the proposed features
fill the redshift space in a complementary way, each adding infor-
mation that is relevant in different redshift ranges. The proposed
method is highly stable, as shown from the distribution of the
features and the groups to which they belong. The experiments
show that the useful information is concentrated in a reduced
number of features, which are typically very different from the
Classic10. Furthermore, we verified that the difference in terms
of performance with respect to the various sets is almost negli-
gible. This demonstrates that the true advantage with respect to
the Classic10 features is not given by the selected features them-
selves, but from their distribution and type in the specific set.
Therefore, the stability shown from the different branches, for
example the common distribution scheme of the features, and
the ability to better capture the underlying physical processes,
explains the superior performance obtained. The method is very
general and could be applied to several tasks in astrophysics (and
not only in astrophysics). In the future we propose to apply it to
different sources (i.e. galaxies with and without an active nu-
clei) in order to verify if the obtained features are general or if
they are only related to the fine structure of the data itself and to
this specific population of sources. This includes the question of
how much the processes of the active galactic nuclei dominate
with respect to the processes in the surrounding galaxy the fea-
ture selection approach. It goes without saying that this first step
made in the interpretation of the new features could open new
doors in the understanding of the physics of quasars with respect
to distance and age by providing better and more precise trac-
ers. On the other hand, the method shows a different approach
alternative to the application of deep learning, but also employ-
ing GPUs intensively. Both approaches are meant to establish
an affordable and well-performing method to precisely predict
photometric redshifts, in light of the upcoming missions and
instruments in the near future.
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Appendix A: Additional tables and figures

In this section, the additional tables for the features selection and
the tree structure, together with the related chord diagrams for
the experiments DR7a and DR7b are given. A brief explanation
of how to read a chord diagram follows.

A.1. Chord diagram: how to read

The chord diagram is a tool to visualize complex structures and
relations in multidimensional data, which is arranged in a ma-
trix shape. The data are disposed in a circle and each element, in
our case the features, is associated with a different colour. The
relations between the elements are expressed by ribbons which

connect them, with a specific width related to the importance of
that specific connection. Therefore, the different ribbons can en-
ter or exit from every arc, representing the features. The chord
diagrams utilized for this work are characterized by three ex-
ternal arcs for each feature. Ordered from outside to inside, the
external arcs represent the occurrences of a particular feature:
the total percentage of the individual connections, the numbers
and sources of connections entering, and the numbers and tar-
gets of connections exiting. Therefore, starting from the first fea-
tures indicated in the captions, it is possible to follow all the
possible paths of the tree, depicting the different feature subsets
and their global scheme. Splitting points, joints, and complex in-
terplay between feature groups can thereby be analyzed intui-
tively.

Table A.1. Detailed feature branches obtained from the feature selection for the experiment DR7a.

id Feature 1 Feature 2 Feature 3 Feature 4 Feature 5 Feature 6 Feature 7 Feature 8 Feature 9 Feature 10

1 σgmodel zmodel/zps f ips f − idev

2 gps f /iexp ips f /zmodel zmodel/zps f σgmodel

3 gpetro/rpetro

4 ips f /imodel σgmodel zmodel/zps f idev/ips f

5 ips f − ipetro

6 ips f /zmodel gpetro/rpetro σgmodel ips f − idev

7 zmodel/zps f

√
σ2

rmodel
+ σ2

gdev

8 ips f /iexp rps f /iexp idev/ips f

9 idev/ips f σgmodel

10 gps f /iexp ips f /zmodel idev/ips f σgmodel rps f − rpetro gpetro/rpetro

11 gps f /umodel

√
σ2

rmodel
+ σ2

gdev

12 zmodel/zps f σgmodel zmodel/zps f ips f − idev

13 σgmodel rps f − rpetro

14 ips f − ipetro idev/ips f rdev/rps f

15 ips f /zmodel gpetro/rpetro

√
σ2

rmodel
+ σ2

gdev
rps f − rpetro

16 rdev/rps f

17 σgmodel

18
√
σ2

rmodel
+ σ2

gdev
zmodel/zps f ips f − ipetro

19 ips f /imodel rps f /imodel idev/ips f rps f /gmodel rps f − rpetro

20∗ ips f /zmodel

√
σ2

rmodel
+ σ2

gexp

21 gps f /iexp σgmodel gpetro/rpetro zmodel/zps f

22 ips f − ipetro

Notes. The 20th branch, indicated with the ∗ symbol, is the best performing subset with respect to the experiments using the RF. The ratios and
photometric ratios are indicated, respectively, with vertical lines and dots. The differences are marked with horizontal lines and the errors with
north west lines. The color code for the features is the same as shown in the chord diagram in Fig. A.1.
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Fig. A.1. Chord diagram for the experiment DR7a. Every feature is associated to a specific colour, and starting from the first features (H, J) it is
possible to follow all the possible paths of the tree, depicting the different feature subsets.
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Table A.2. Detailed feature branches obtained from the feature selection for the experiment DR7b.

id Feature 1 Feature 2 Feature 3 Feature 4 Feature 5 Feature 6 Feature 7 Feature 8 Feature 9 Feature 10

1 rps f − rpetro ips f − idev

2 gps f /rmodel idev/ips f

3 ips f − idev rps f − rpetro

√
σ2

gmodel
+ σ2

gdev

4 ips f − idev

5 ips f /zmodel rps f − rpetro idev/ips f

6 gps f /rexp gps f − gdev

7 ips f − idev

√
σ2

gmodel
+ σ2

gdev

8 idev/ips f

9 ips f /iexp rps f /iexp zmodel/zps f ips f − ipetro gps f − gdev

10 ips f − idev

√
σ2

gmodel
+ σ2

gdev

11 gps f /rmodel rpetroR − zpetroR90

12 idev/ips f rps f − rpetro

√
σ2

gmodel
+ σ2

gdev

13∗ zps f /imodel gps f − gdev

14 ips f − idev

√
σ2

gmodel
+ σ2

gdev

15 gps f /rexp gps f − gdev

16
√
σ2

gmodel
+ σ2

gdev

17 gps f − gdev

18 zexp/zps f

19 rdev/rps f idev/ips f

√
σ2

gmodel
+ σ2

gdev
zmodel/zps f

20 gps f /umodel ips f /zmodel gps f /rmodel gps f − gdev

21 zmodel/zps f rps f − rpetro

√
σ2

gmodel
+ σ2

gdev

22 ips f − ipetro gps f − gdev

23 gdev/rpetro rps f − rpetro

√
σ2

gmodel
+ σ2

gdev

24 rps f − rpetro zmodel/zps f

25 idev/ips f rpetroR − zpetroR90

26 rps f /gexp rdev/rps f

√
σ2

gmodel
+ σ2

gdev
zmodel/zps f

27 zps f /iexp rdev/rps f idev/ips f

28 rpetroR − zpetroR90

29 ips f /imodel rps f /imodel ips f /zpetro

30 rps f /gpetro

√
σ2

gmodel
+ σ2

gdev

31 ips f /zpetro

32 rps f /gexp

√
σ2

gmodel
+ σ2

gdev

33 ips f /zmodel gps f /rmodel

34 idev/ips f rps f − rpetro ips f − ipetro zmodel/zps f gps f − gdev

35
√
σ2

gmodel
+ σ2

gdev

36 rps f /gexp

37 ips f /zpetro

38 zps f /imodel rpetroR − zpetroR90

39
√
σ2

gmodel
+ σ2

gdev

40 rps f /gmodel rpetroR − zpetroR90

41 gmodel − gexp

Notes. The 13th branch, indicated with the ∗ symbol, is the best performing subset with respect to the experiments using the RF. The ratios and
photometric ratios are indicated, respectively, with vertical lines and dots. The differences are marked with horizontal lines and the errors are with
north west lines. Finally, the only feature composed by radius is indicated with a grid. The color code for the features is the as same shown in the
chord diagram in Fig. A.2.
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Fig. A.2. Chord diagram for the experiment DR7b. Every feature is associated to a specific colour, and starting from the first features (H, I) it is
possible to follow all the possible paths of the tree, depicting the different feature subsets.

Appendix B: Data

The SDSS object IDs and coordinates of the extracted quasars
for the three catalogues are available as supplementary informa-
tion, as ASCII files.
dr7a.csv contains the SDSS object IDs and coordinates of the
quasars for experiment DR7a.

dr7b.csv contains the SDSS object IDs and coordinates of the
quasars for experiment DR7b.
dr7+9.csv contains the SDSS object IDs and coordinates of the
quasars for experiment DR7+9.

Appendix C: Code

The code of the DCMDN model is available on the ASCL6.

6 http://www.ascl.net/ascl:1709.006
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Appendix D: SDSS QSO query

In the following, the statements used to query the SDSS database are provided.

D.1. Experiment DR7

SELECT
s.specObjID, p.objid, p.ra, p.dec, s.targetObjID, s.z, s.zErr,
p.psfMag_u, p.psfMag_g, p.psfMag_r, p.psfMag_i, p.psfMag_z,
p.psfMagErr_u, p.psfMagErr_g, p.psfMagErr_r, p.psfMagErr_i, p.psfMagErr_z,
p.modelMag_u, p.modelMag_g, p.modelMag_r, p.modelMag_i, p.modelMag_z,
p.modelMagErr_u, p.modelMagErr_g, p.modelMagErr_r, p.modelMagErr_i, p.modelMagErr_z,
p.devMag_u, p.devMag_g, p.devMag_r, p.devMag_i, p.devMag_z,
p.devMagErr_u, p.devMagErr_g, p.devMagErr_r, p.devMagErr_i, p.devMagErr_z,
p.expMag_u, p.expMag_g, p.expMag_r, p.expMag_i, p.expMag_z,
p.expMagErr_u, p.expMagErr_g, p.expMagErr_r, p.expMagErr_i, p.expMagErr_z,
p.petroMag_u, p.petroMag_g, p.petroMag_r, p.petroMag_i, p.petroMag_z,
p.petroMagErr_u, p.petroMagErr_g, p.petroMagErr_r, p.petroMagErr_i, p.petroMagErr_z,
p.extinction_u, p.extinction_g, p.extinction_r, p.extinction_i, p.extinction_z,
p.devRad_u, p.devRad_g, p.devRad_r, p.devRad_i, p.devRad_z,
p.expRad_u, p.expRad_g, p.expRad_r, p.expRad_i, p.expRad_z,
p.petroRad_u, p.petroRad_g, p.petroRad_r, p.petroRad_i, p.petroRad_z,
p.petroR90_u, p.petroR90_g, p.petroR90_r, p.petroR90_i, p.petroR90_z,
p.petroR50_u, p.petroR50_g, p.petroR50_r, p.petroR50_i, p.petroR50_z,
p.devAB_u, p.devAB_g, p.devAB_r, p.devAB_i, p.devAB_z,
p.expAB_u, p.expAB_g, p.expAB_r, p.expAB_i, p.expAB_z i

FROM
SpecPhoto as s, PhotoObjAll as p

WHERE
p.mode = 1 AND p.SpecObjID = s.SpecObjID AND
dbo.fPhotoFlags(’PEAKCENTER’) != 0 AND
dbo.fPhotoFlags(’NOTCHECKED’) != 0 AND
dbo.fPhotoFlags(’DEBLEND_NOPEAK’) != 0 AND
dbo.fPhotoFlags(’PSF_FLUX_INTERP’) != 0 AND
dbo.fPhotoFlags(’BAD_COUNTS_ERROR’) != 0 AND
dbo.fPhotoFlags(’INTERP_CENTER’) != 0 AND
p.objid=s.objid and (specClass = 3 OR specClass = 4) AND
s.psfMag_i > 14.5 AND (s.psfMag_i - s.extinction_i) < 21.3 AND
s.psfMagErr_i < 0.2

D.2. Experiment DR7b

SELECT
s.specObjID, p.objid, p.ra, p.dec, s.targetObjID, s.z, s.zErr,
p.psfMag_u, p.psfMag_g, p.psfMag_r, p.psfMag_i, p.psfMag_z,
p.psfMagErr_u, p.psfMagErr_g, p.psfMagErr_r, p.psfMagErr_i, p.psfMagErr_z,
p.modelMag_u, p.modelMag_g, p.modelMag_r, p.modelMag_i, p.modelMag_z,
p.modelMagErr_u, p.modelMagErr_g, p.modelMagErr_r, p.modelMagErr_i, p.modelMagErr_z,
p.devMag_u, p.devMag_g, p.devMag_r, p.devMag_i, p.devMag_z,
p.devMagErr_u, p.devMagErr_g, p.devMagErr_r, p.devMagErr_i, p.devMagErr_z,
p.expMag_u, p.expMag_g, p.expMag_r, p.expMag_i, p.expMag_z,
p.expMagErr_u, p.expMagErr_g, p.expMagErr_r, p.expMagErr_i, p.expMagErr_z,
p.petroMag_u, p.petroMag_g, p.petroMag_r, p.petroMag_i, p.petroMag_z,
p.petroMagErr_u, p.petroMagErr_g, p.petroMagErr_r, p.petroMagErr_i, p.petroMagErr_z,
p.extinction_u, p.extinction_g, p.extinction_r, p.extinction_i, p.extinction_z,
p.devRad_u, p.devRad_g, p.devRad_r, p.devRad_i, p.devRad_z,
p.expRad_u, p.expRad_g, p.expRad_r, p.expRad_i, p.expRad_z,
p.petroRad_u, p.petroRad_g, p.petroRad_r, p.petroRad_i, p.petroRad_z,
p.petroR90_u, p.petroR90_g, p.petroR90_r, p.petroR90_i, p.petroR90_z,
p.petroR50_u, p.petroR50_g, p.petroR50_r, p.petroR50_i, p.petroR50_z,
p.devAB_u, p.devAB_g, p.devAB_r, p.devAB_i, p.devAB_z,
p.expAB_u, p.expAB_g, p.expAB_r, p.expAB_i, p.expAB_z
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into mydb.qso_dr7_noflags from SpecPhoto as s, PhotoObjAll as p

WHERE
p.SpecObjID = s.SpecObjID AND
p.objid=s.objid and (specClass = 3 OR specClass = 4)

D.3. Experiment DR7+9

SELECT
m.objid, m.ra AS ra1, m.dec AS dec1,
n.objid, n.distance,
p.ra AS ra2, p.dec AS dec2,
p.objid, p.ra, p.dec, p.psfMag_u, p.psfMag_g, p.psfMag_r, p.psfMag_i,
p.psfMag_z,p.psfMagErr_u, p.psfMagErr_g, p.psfMagErr_r, p.psfMagErr_i,
p.psfMagErr_z,p.modelMag_u, p.modelMag_g, p.modelMag_r, p.modelMag_i, p.modelMag_z,
p.modelMagErr_u, p.modelMagErr_g, p.modelMagErr_r, p.modelMagErr_i,
p.modelMagErr_z,p.devMag_u, p.devMag_g, p.devMag_r, p.devMag_i, p.devMag_z,
p.devMagErr_u, p.devMagErr_g, p.devMagErr_r, p.devMagErr_i, p.devMagErr_z,
p.expMag_u, p.expMag_g, p.expMag_r, p.expMag_i, p.expMag_z,p.expMagErr_u, p.expMagErr_g,
p.expMagErr_r, p.expMagErr_i, p.expMagErr_z,p.petroMag_u, p.petroMag_g, p.petroMag_r,
p.petroMag_i, p.petroMag_z,p.petroMagErr_u, p.petroMagErr_g, p.petroMagErr_r,
p.petroMagErr_i, p.petroMagErr_z,p.extinction_u, p.extinction_g, p.extinction_r,
p.extinction_i, p.extinction_z,p.devRad_u, p.devRad_g, p.devRad_r, p.devRad_i,
p.devRad_z,p.expRad_u, p.expRad_g, p.expRad_r, p.expRad_i, p.expRad_z,p.petroRad_u,
p.petroRad_g, p.petroRad_r, p.petroRad_i, p.petroRad_z,p.petroR90_u, p.petroR90_g,
p.petroR90_r, p.petroR90_i, p.petroR90_z,p.petroR50_u, p.petroR50_g, p.petroR50_r,
p.petroR50_i, p.petroR50_z,p.devAB_u, p.devAB_g, p.devAB_r, p.devAB_i, p.devAB_z,p.expAB_u,
p.expAB_g, p.expAB_r, p.expAB_i, p.expAB_z
into mydb.quasar_dr7_dr9_allphoto from MyDB.dr7_dr9_quasar AS m

CROSS APPLY dbo.fGetNearestObjEq( m.ra, m.dec, 0.5) AS n
JOIN PhotoObj AS p ON n.objid=p.objid
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Chapter 5

Discussion

The work presented in the three publications reported in Chapter 4 has been carried out with
the aim of developing well performing methods for photometric redshift estimation. Two main
methods have been presented and several novel approaches introduced into the field, both from a
methodological and statistical point of view. In the following sections I will discuss these aspects in
detail and combine the results obtained in a common overview in order to clarify the most important
advances that this work brings to the field. I will also outline the strenghts and weaknesses of the
two models and discuss the open questions which demand further analysis.

5.1 Fully automated model

The first method is based on the implementation of a deep learning model, the DCMDN, which is
fully automated and provides the feature extraction and redshift estimation directly from images
in the form of density distributions. Such a model has been succesfully applied to different cat-
alogs taken from the SDSS. This method presents several novel aspects; while the application of
convolutional neural networks for redshift estimation directly from images had been done already
by Hoyle [2016], this latter work is based on the prediction of pure point estimates on a catalog
composed only by galaxies and with an error estimation based on the classical parameters used in
the literature. The model presented in Publication I and Publication II, thanks to the combination
of a convolutional neural network with a mixture density network, allows the prediction of multi-
modal PDFs, with all the advantages already stated in Sec. 2.3.3. Moreover the use of the CRPS
and of the PIT allows for the correct estimate of the error for the predicted PDFs, seeking the best
calibration and sharpness. The use of the CRPS as a loss function for the training of the neural
network constitutes an absolute novelty, both in astronomy and computer science. The correct
implementation of this function was a challenge also from a technical point of view. In fact, the
code of the DCMDN has been realized in the Theano environment [The Theano Development Team
et al., 2016]. This library is specifically meant to realize machine learning models with the Python
language and it is characterized by a symbolic structure which generates a graph containing the
architecture of the model before the runtime phase. The introduction of a loss function based on
the calculation of an integral with symbolic variables brought up many technical issues which had
to be solved in order to reach a correct convergence of the model. In the field of computer science,
much effort has been put by the community into finding proper and efficient loss functions when
dealing with machine learning models, as shown in Janocha and Czarnecki [2017]. However, the
use of the CRPS for this task is particularly important to predict distributions by means of a model
which is already built with a focus on the maximization of the sharpness, subject to calibration.
As already stated, the CRPS has been originally adopted in the weather forecast field, but we
applied it for the first time in astronomy and as a loss function for a neural network (also related
to the computer science field). Therefore, I have to point out that the probabilistic model used
to realize the DCMDN, with the CRPS implemented as loss function for a neural network, has
been recently applied in the same field, as reported in Rasp and Lerch [2018], where our model is
cited. In this work the authors adopt a fully connected neural network model to perform weather
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forecast predictions in a novel way with respect to statistical post-processing of the errors, which is
traditionally used in the field. This approach highly benefits from the use of the CRPS for a Gaus-
sian distribution as a loss function, giving a correct mathematical background for the attempt of
sharpness maximization subject to calibration. A modified version of the CRPS has been recently
adopted in the medical sector [Avati et al., 2018] as well. In this paper the CRPS is introduced
as loss function to optimize a recurrent neural network [Hopfield, 1982] and the performances are
compared to those obtained by using the maximum likelihood, finding significant benefits. This is
due to the fact that the CRPS is focused, as already said, on the sharpness maximization, while
the likelihood is more related to the spatial positioning of the predictions.

Concerning the astronomical field, I want to report that the approach proposed in Publication II
constitutes the basis for the work from Pasquet et al. [2018]. In this paper, the authors adopt the
CRPS and the PIT as scoring rules to assess the quality of their predictions, namely photometric
redshift PDFs determined from images, as in our model, with a convolutional neural network based
architecture. The results shown are, theoretically, superior to what we obtain with the DCMDN,
but the training is performed in several, smaller, redshift ranges, allowing in this way a higher
precision.

The use of the DCMDN brings several advantages, which we verified from the results of the ex-
periments and the extensive discussion given in Publication II. However there are some points
that require further analysis to better understand the advantages of such a model and what re-
quires further improvement. A fully automatic model based on a convolutional network is able to
automatically generate thousands of features, leaving the machine performing the task of feature
extraction and selection. In other words, the network performs a dimensionality reduction, reduc-
ing the original images to a (high) number of parameters and focusing on those which prove to
be most important to maximizing the performance. This has two main disadvantages. The main
risk is losing control of what happens inside the machine, which tends to become a sort of black
box [Knight, 2018]. In fact, the process of weights optimization, which produces the features out
of the feature maps, is completely managed by the machine without any need of intervention by
humans. It goes without saying that the automation of the pipeline which extracts photometric
redshift starting from raw images is a clear advantage, but it is important to preserve knowledge
and control of every step of the process, to avoid mistakes or misleading results. There are several
studies in the field with respect to this problem, and in particular in computer science there are
several possible solutions proposed in the literature [Hohman et al., 2018]. This goes deep into the
field of visualization problems and visual analytics and essentially the problem is reconducted to
the comprehension of the five W’s and How (Why, Who, What, How, When and Where). In more
detail, following Hohman et al. [2018], the following questions should find an answer:

• Why: why would one want to apply visualization in deep learning?

• Who: who would use it and have benefit from visualization?

• What: what data, features and relationships can eventually be visualized?

• How: how can we practically visualize these data, features and relationships?

• When: when, in the learning process, is the visualization applied?

• Where: where, in the architecture of the model, has the visualization been used?

The detailed description of the techniques at study to answer the five W’s and How goes beyond
the scope of this thesis. Unfortunately at the current stage none of the proposed techniques has
been applied in the astronomical field. Currently I am discussing the problem with several collegues
and working to find solutions.

The second disadvantage given by fully automated models is deeply connected with the first one:
the lack of interpretability of the produced features. Traditionally, the features manually generated
and used in the literature have a well defined physical meaning which can be connected to the
nature and the properties of the problem itself. In the case of photometric redshift estimation,
for example, magnitudes represent a low resolution approximation of the spectrum from which the
spectroscopic redshift has been extracted. Features can be manually engineered by taking into
account the specific problem considered and/or the model adopted, as pointed out in Sec. 3.6, or
as a result of a dimensionality reduction. The automatically generated features of the DCMDN

79



Chapter 5. Discussion

are instead nothing more than a huge vector of numbers. They constitute a discretization of
the original information contained in the images and even if some physical property or meaning
correlated with the characteristics of the sources should be embedded into them, it is very hard, at
the current stage, to specifically identify them. This problem affects also different models of neural
networks, even more specifically focused on feature extraction and dimensionality reduction, like
autoencoders [Liou et al., 2008, Gianniotis et al., 2016]. It goes without saying that finding efficient
visualization techniques which could be helpful to disentangle the choices and the mechanisms
happening into the architecture, in order to unveil the black box, could be equally helpful in finding
an interpretation for the automatically produced features.

However, the implementation of such models allows to reach performances and to treat amounts of
data, which are already well beyond any human capability of inspection and analysis. A striking
example of the possibilities open by such technologies, not related to astronomy, is that given
by the neural network model able to beat the world champion of the game AlphaGo [Hölldobler
et al., 2017]. This model has been subsequently defeated by another neural network [Silver et al.,
2017], proving the rapid advancements in the field. Therefore it is worthwhile experimenting with
such technologies, also in the view of developing online models. The DCMDN, and all the other
models depicted in this thesis, are in fact all based on offline analysis. This means that the data
has been already pre-processed and downloaded from the databases where they were stored. This
way of processing data is indeed useful for many applications, but in the near future, with the
data cascade coming by instruments like SKA or LSST, an online approach in which the data are
reduced, analysed and processed in real time will be advisable, if not mandatory.

5.2 Feature based model

The approach depicted in Publication III is meant to combine the advantages given by feature based
methods, in particular concerning the physical intepretability, with the attempt to maximize the
amount of useful information taken as input by a machine learning model. Despite the attempts
reported in Sec. 2.2-2.3, traditionally all the works dedicated to photometric redshift estimation
have found magnitudes and colors as best features for this task, even after a feature selection with
many other features. The use of all the parameters contained in the SDSS database, and their
massive combination, goes in the direction of obtaining a huge number of features by which we are
trying to include as much information as possible in the selection process. Many of the features
obtained are correlated or redundant; therefore the forward selection allows the model to focus
only on the most important features, but with a much wider choice with respect to manual feature
selections based on some tens of parameters. Moreover, as it is shown in the paper, the way in
which the features are built and combined boosts the performance. It appears that what really
makes the difference is not the single feature but the global structure of the sets. Furthermore, as
compositions of well known features, whose meaning is clear, one can try to interpret the selected
features physically. The proposed method cannot work for all the features and for every physical
case, but it can give an indication of the general meaning of the selected features and on the
mechanisms going on in the machine, which correspond to specific physical processes characterizing
the sources. In this sense, the improvement in performance noticed by using the proposed features
was also explained. The new features are able to fully capture the processes going on in the
sources, namely quasars, identifying spectral emission lines, which are just partially correlated
with the classic features. This is an additional confirmation that the behavior of the model is
correct. In fact, as it is stated in the paper, no shape related features have been selected by the
model. This is due to the fact that quasars are point-like sources, so radii and ellipticities have
much less influence as the kNN explores the feature space with respect to flux-related features.
However, it is expected that shape-related features will have a more prominent role when dealing
with galaxies, as they are extended objects. Some preliminary results on new experiments I am
currently conducting seem to confirm this hypothesis.

Further research into the literature, especially in the computer science and machine learning field,
has shown that the important role acquired by ratios and differences of features is understandable
in terms of the dependance of the machine learning model from the representation of the feature
vector. In this sense, it is not uncommon to adopt this kind of mathematical transformations for
feature engineering [Heaton, 2017]. I believe that such evidence makes still stronger the result
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obtained, as it is possible to establish a connection between a pure data-driven effect and the
physics, explained from the corrispondence between feature importance and spectral lines. In
other words, the internal structure of the data is reflected in a cleverly engineered feature space,
allowing the model to capture relationships and patterns which mirror the physical nature of the
sources. It must be noticed that the combinations designed for the chosen parameters, producing
the final number of features, was limited (together with the size of the data sample) by the GPU
memory amount. In the case of the Nvidia Pascal P40 used for the experiments 1, the memory
was of 24 GB. Theoretically there is no other limit, except the memory resources, to the number of
combinations that could be investigated, indefinitely increasing the number of features which can be
given to the model. A possible extension of the method could reckon, for example, on more complex
combinations of the parameters, which could generate still novel and better performing features.
This, however, could have the side effect of making their interpretation even more complicated.

The forward selection performed has to be included in the field of the wrapper methods, as already
specified in Sec. 3.6. This category of algorithms are based on the use of the predictive model also
for the feature selection process. Therefore the feature set found will be particularly adapt to that
particular model, giving the best performance in combination with it. On the other hand, this
could be considered a weakness, as the feature set could be not general enough to give good results
with different models. For this reason the evaluation of the best set has been performed using
the RF instead of the kNN. In this case, the performance given by the RF is satisfying enough
to assume that the features found are reflecting not just properties related to the specific model
adopted, but more general effects connected to physical properties. This is further confirmed by
the given physical description. However it has been shown in the paper that the RF is giving a
different feature importance with respect to the ordering of the features as selected by the forward
selection based on the kNN. This can be explained by the differences occurring between the two
methods. It is important to point out that each step of the forward selection is conducted by
performing 100 independent experiments, each extracting a random subsample from the data.
The random sampling, together with the cross validation, is meant to avoid a selection of features
that by chance perform well on a particular dataset. In other words, these tools are useful in
preventing overfitting and lack of generalization of the model.

It is evident that the features found with this method are highly related to the specific problem
and the sources considered. This is a disadvantage with respect to the DCMDN model, which
allows the estimation of photometric redshifts independently from the composition of the catalog
with good performances. In Sec. 5.3 the performance of the two models will be compared in more
detail, with particular focus on the results obtained with respect to the loss functions used and the
PIT.

5.3 Performance comparison

The performances given by both of the methods presented are clearly superior to those obtained
with traditional models taken from the literature, like RF or even plain neural networks trained
with classic features. The results obtained in the publications for the quasar catalogs can be
roughly compared with those, for example, given by Laurino et al. [2011], and they appear to be
comparable and in the same order of magnitude and often better. The comparison can be only at
a rough level, as the catalogs are not exactly the same, but being mostly composed by the quasars
contained in the DR7 of SDSS. However it should be considered that the experiments, in this work,
had no pre-processing or data selection based on quality flags, nor post-processing or catastrophic
outliers removal has been performed, as was done instead in Laurino et al. [2011]. Removing those
objects which are noticeably deviating from the ideal line improves dramatically the performance.

A comparison must also be carried out with the results from Polsterer et al. [2014], Gieseke et al.
[2014]. In these works, which are preliminary for what is depicted in Publication III, the funda-
mentals of the photometric redshift estimation via massive feature selection are established. In
particular, in Polsterer et al. [2014] the idea of a massive combination of features is presented,
in order to find a possible best combination of features in a set of 55 parameters. A brute force
approach is used, testing all the possible 4-features out of 341, 055 combinations, to find the best.

1http://images.nvidia.com/content/pdf/tesla/184427-Tesla-P40-Datasheet-NV-Final-Letter-Web.pdf
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In Gieseke et al. [2014] instead, the algorithm for the extreme parallelization in the greedy forward
selection is presented, with particular focus on the improvement with respect to the computational
time. By adopting this algorithm it was possible to realize the work presented in Publication III,
increasing the number of available features from 55 to 4, 520. The forward feature selection was
necessary to find the possible best combinations, as described in the paper. The results obtained
are not directly comparable with respect to those shown in these two works, due to the differences
in the dataset adopted. However, there is a methodological improvement given by the generation
of the feature tree and the detailed statistical analysis performed. Furthermore, the given physical
interpretation provides an explanation of the behavior of the model in a new fashion, finding a
connection with the processes going on in the sources which is beyond a pure data-driven approach.

Another important aspect which I would like to outline is the comparison between the automated
model, namely the DCMDN, and the feature based model. By looking at the mere numbers,
namely RMSE and CRPS, the forward selection model would appear preferable, as it gives the
best performance in terms of pure error. However, if looking at the PIT, it can be noticed that
the calibration achieved with the DCMDN is superior to any other model. The reason is that the
DCMDN is trained using the CRPS as loss function. Therefore the model is forced to maximize the
calibration. In this sense it is important to understand the use case for the photometric redshifts,
in order to select the most appropriate model and the form, based on a point estimate or a PDF. In
particular this last point should be considered when choosing the preferred model. The DCMDN
generates true multimodal PDFs, due to its use of a mixture density network in the fully connected
part. The model is meant to predict the parameters (means, variances and weights) defining a
Gaussian mixture. The feature based model instead is based on a pipeline which ends by adopting
a RF, which is not natively generating PDFs. The only way to obtain a density distribution, in
this case, is to fit the Gaussian mixture to the predictions of every single tree in the ensemble.
This model is clearly more focused on the study of the features and their behavior with respect
to the classic ones. Nothing prevents the use of the selected features with a model meant to deal
with density distributions, like a plain mixture density network.

I want to point out once more that in the experiments shown in the three publications I attempt
to not use quality flags as they are given in the SDSS documentation2. In fact, by adopting these
flags, a catalog can be cleaned in order to obtain a perfectly clean photometry. However I believe
that such an operation makes an experiment less similar to a realistic use case, which is important
in order to develop techniques suitable for future mission implementations and online training
tasks. Therefore the catalogs were cleaned only with respect to objects presenting meaningless
detections like ’NaNs’ or absurd values of magnitudes and errors, which could cause a complete
failure of the training phase. Instead problematic objects were kept, as this is the challenge that
a well performing and efficient model should deal with. It has been shown in Publication II that
a proper cleaning of the data, by adopting post-processing techniques, can dramatically improve
the results in terms of the error function. The question is how much such an operation could
be legitimate with respect to the development of an affordable model which could be used in a
realistic case. Moreover it has to be taken into account the possibility that objects characterized
by bad detections or proving to be catastrophic outliers could potentially be the most interesting
sources, demanding further investigations. The problem of outliers treatment will be analyzed in
more detail in Sec. 5.4.

5.4 Correct estimation of errors

In Chapter 3 I gave an overview of the tools introduced in this thesis to correctly estimate the
errors and the quality of the predictions, namely the CRPS and the PIT. This has been motivated
by the need to correctly deal with density distributions and to take into account multimodalities.
Moreover, the adoption of a proper scoring rule like the CRPS permits to perform the predictions
by attempting to maximize the sharpness subject to calibration. All these aspects have been
already pointed out in Publication II, but hereby I would like to briefly extend the discussion
focusing on the reasons for which the adoption of correct error measures is fundamental in order
to obtain affordable predictions.

2https://www.sdss.org/dr14/tutorials/flags/
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Figure 5.1: Example of misleading result obtained by evaluating the error given a PDF prediction
via its mean. The bimodal distribution shown, composed by two normal distributions is here
reduced to its mean, and the true redshift value is shown. It is obvious that the value of the true
redshift is much closer to the second peak of the distribution than to its mean, which is also falling
in a region of low probability density of the distribution. The plot is taken from Polsterer et al.
[2016].

Typically the traditional statistics used in the literature [D’Abrusco et al., 2007, Laurino et al.,
2011] to estimate errors in the photometric redshift estimation field are the deviation between the
true value and the predicted value, or bias, the root mean square error and/or standard deviation
and the mean absolute deviation. It is common to apply normalization with respect to redshift in
order to express a relative error. These kinds of statistics are well suited to deal with point estimates
and their deviations with respect to the true values. However, in case of PDFs predictions, the
results given in such a way are not precise enough and can even be completely misleading. The
calculation of such statistics in fact requires the reduction of the PDF to a single value in order to
perform a comparison with the true value. This is typically done by estimating the mean of the
distribution. Unfortunately, this operation, in the presence of multimodal distributions, is highly
dangerous, as the results can be completely wrong. A clarifying example is given in Fig. 5.1 where,
following Polsterer et al. [2016], a bimodal distribution is shown as a composition of two Gaussian
distributions. It is clear that, in such a case, reducing the distribution to its mean to evaluate the
performance, by means of the classical scores, is completely misleading. In fact, the true redshift
is much closer to one of the peaks than to the mean value. Furthermore the mean of the PDF is
in a region of the distribution exhibiting a low probability density, making meaningless to express
the predicted redshift by the mean and the error with respect to the true value by the RMSE. This
clarifies why the information given by a PDF should be used entirely, withouth oversimplifying the
predictions, wasting useful information and producing useless results.

Another important point which should be further discussed is the treatment of outliers. Following
the Euclid requirements already reported in Chapter 3 and stated by Laureijs et al. [2011], the
number of outliers for the photometric redshift estimation pipeline of the mission should be such
that the quantity σz/(1 + z) needs to be less than 5%. This requirement is connecting the analysis
of outliers to the error measure and it has to be treated carefully when predicting PDFs. In fact,
this operation can generate several problems, as it is shown in Fig. 5.2. It is common in literature
[Sadeh et al., 2016, Asorey et al., 2016, Cavuoti et al., 2017] to detect the amount of outliers by
adopting a threshold criterion (e.g. 5%). This is done by shifting every PDF of the corresponding
true redshift and then co-adding them. The resulting stacked PDF is used to evaluate the amount
of predictions deviating too much from the ideal line, or, in other words, which are exceeding the
given threshold.

In Fig. 5.2, four different models are depicted. The models are simulations of extreme cases
obtained by perturbating true data accordingly. Fig. 5.2a gives an example of a PDF predicted by
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Figure 5.2: Plots representing different statistical indicators for four different models. From top
to bottom, an example of a PDF predicted by the used model, the stacked PDF, the true versus
estimated redshift density plot, the PIT histogram and the CRPS are shown. The four models
represent, respectively, a sample of predictions characterized by narrow Gaussians (Model One),
broad Gaussians (Model Two), bimodal Gaussians mixtures (Model Three) and an ideal case with
broad Gaussians with the mean very close to the true value (Model Four).

84



5.4. Correct estimation of errors

each model, already shifted by the true redshift. For each of them, the stacked PDF (Fig. 5.2b),
the density plot of the true redshifts versus the sum of the predicted PDFs (Fig. 5.2c), the PIT
(Fig. 5.2d) and the CRPS (Fig. 5.2d) are given. The colored bands in the stacked PDF plots
represent the outliers treshold as defined in Laureijs et al. [2011]. In Model One, a sample of
narrow Gaussian distributions is used to estimate the redshifts. The PDFs are designed to be
characterized by a small σ and shifted to a higher or lower value with respect to the true redshift.
Due to the small σ value, the true redshift is not well captured by the predicted distributions.
In Model Two, the distributions are broader, as they have been simulated by selecting a larger σ
value. In this case, the true redshift is falling in the PDF even if, due to the shift, this is never
very well predicted. Model Three instead shows a case in which the PDFs are given by a Gaussian
mixture model composed of two Gaussians. The model has been designed to characterize the
distributions such that one of the two peaks is representing the true redshift well, while the second
peak is further away. Finally, Model Four represents an almost ideal case, in which the means of
the predicted PDFs are all close to the true redshift, without any shift.

An analysis based merely on the stacked PDF and the true versus estimated redshift plot gives
results that can be highly misleading, as proven by calculating the PIT and the CRPS. In Model
One the stacked PDF has a relative minimum correspondending to the true redshift and because
of the narrow distributions never capture it, the PIT is extremely underdispersed. Even if there
are almost zero outliers, this cannot be considered a good prediction. Model Two improves the
situation, as the PDFs are broader and the true redshift is typically falling into the distribution.
However, due to the shift, none of the predictions are predicting the true value, and this still
generates a underdispersed PIT. Moreover the amount of outliers in this case, as indicated by
the stacked PDF, is not negligible. Model Three, due to the bimodal configuration, generates
a extremely high number of outliers and this is shown also from the very poor CRPS value.
Despite this, the PIT is perfectly uniform. In fact, the PIT is just expressing the calibration of
the predicted distributions. As in this model the true redshift is well captured by one of the two
peaks, the histogram gives a uniform distribution. Model Four, as already said, is a almost ideal
case, giving good performance in terms of the CRPS and a uniform PIT plot. This model is
barely distinguishable from Model Two if only the stacked PDF and the density plot are taken into
account.

From the comparison of these models, it becomes clear that stacking PDFs is not a good solution
for detecting and defining outliers and estimating the performance. In fact, following the definition
given in Eq. 3.1, the stacked PDF is not a proper score. The treshold at the tails of the distribution,
which is fixed to remove outliers, can potentially cut the minimum of the natural distribution
that makes the statement valid. In other words, reporting the natural probability distribution
does not give the minimum expected penalty. Outliers, intended as problematic sources, should
be instead treated by adopting a probabilistic description and not defining them by the relative
difference between the true redshift and parts of the PDF, nor based on the area of the stacked
PDF [Polsterer et al., 2016]. The use of a probabilistic indicator (e.g. the likelihood) as outlier
criterion is recommended instead. In this sense, a comparison between the use of the likelihood
and/or the CRPS as scoring and loss functions has been already done in Publication II. However, a
good analysis on this subject is given by Gebetsberger et al. [2017], where likelihood and CRPS are
adopted as score functions in the context of non-homogenous regression models for post-processing
ensemble weather forecasts. As it has already been stated, the likelihood is more focused on the
spatiality. This means that it is more sensitive to outliers with respect to the CRPS [Selten, 1998].
As shown in Gneiting et al. [2005] this sensitivity leads to generating overdispersed predictions.

As shown in Fig. 5.2, it is evident that, in order to estimate the performance and to deal with
outliers, the combination of different tools, like the CRPS and the PIT, are necessary. None of
these tools alone, in fact, are able to correctly express the quality of the predictions. The previously
described ambiguities are mainly created by the use of a measurement like the RMSE, which is not
ideal in the case of distributions, and by the stacked PDF, which is not a proper score. Instead,
the requirement of a probabilistic description is related to the importance assumed in such a
framework by calibration and sharpness, which are connected to the adoption of proper scores and
to the quality of the predicted distributions.

A description based on proper scores, like the likelihood or the CRPS, and a correct errors esti-
mation is also fundamental to correctly take into account multimodalities. In particular, the effect
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Figure 5.3: Workflow depicting the traditional process of photometric redshift estimation, in the
different steps which bring from raw images to the redshift. The two methods presented in this
thesis are indicated on distinct paths, as different alternatives to improve the original workflow.

of multimodalities becomes important to distinguish between sources characterized by degener-
acy, and so exhibiting multiple density peaks, and true outliers, which deviate from the ideal line
for other reasons. A description based on a Gaussian mixture model, like the one presented in
this thesis, allows the association of every source to multiple redshift values, corresponding to the
different peaks of the PDF, each with a specific probability.

Taking all these considerations into account, it would be appropriate that the tools presented could
become a standard, as already happened in Pasquet et al. [2018] and in Tanaka et al. [2018], which
adopted the CRPS and PIT to estimate the quality of their predictions in the field of photometric
redshift estimation.

5.5 A comprehensive overview

The two models presented in this thesis follow a common scheme, which starts from raw images
and ends with photometric redshift estimation. Such workflow is depicted in Fig. 5.3. From a
very general point of view the process always begins from photometric images, which are used
to extract fluxes and magnitudes, with their errors. Traditionally such parameters constitute the
basis for features, which can be the same magnitudes and/or colors. In the literature there are
several works in which other bands besides the optical ones have been used, like the infrared. The
feature extraction phase is followed by the feature selection, which can be manual or automated,
and then a model is applied to predict photometric redshifts. It must be noted that when using
template based models, instead of machine learning techniques, the workflow stays unchanged. In
fact, template models are based on the estimation of photometric features, which are required to
fit the spectral energy distribution. The models proposed are inserted in these schemes, allowing
automatizing, or to improve the efficiency and performance of certain steps in the workflow.

The DCMDN is a fully automated model. Therefore, starting directly from images, a single model
takes care of the feature extraction and selection phase, by means of the convolutional part, and of
the photometric redshift estimation through the fully-connected part of the network. The model
is fully probabilistic, pre-classification less and takes into account multimodalities. Moreover, it is
trained using a proper score like the CRPS, maximizing the sharpness of the predicted PDFs.

The feature based model instead requires a feature extraction step, which is done by the massive
combination of the 90 parameters taken from the SDSS. The feature selection is then performed
applying the forward selection in order to generate a feature tree. In this sense, this method employs
two different machine learning models: the kNN, which is used during the feature selection phase,
and the RF, which is adopted to test the different branches of the tree and find the best feature
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combination. The feature selection step in this case is not automated and still requires human
knowledge and intervention, but it is developed in a novel and more efficient way. This permits us
to make better use of the information contained in the data, originally extracted from the images.

In Fig. 5.3, both alternative paths to the general workflow cross a model box, which delivers the
final photometric redshift estimation. In the case of the DCMDN, this model is represented by
the fully connected part of the network, while for the feature based model, it is just the RF used
to predict the redshifts with the selected features. However, the workflow is not model dependent
and in both cases different models and/or different architectures could be adopted. One can even
increase the complexity of the workflow by using ensembles in order to find the best configuration
or the best model with respect to the selected task.

In conclusion, the presented scheme can have many different interpretation and variations, but
the general idea and the steps to do will be always more or less the same, even if embedded into
the models adopted. The variations on the workflow are meant to improve the performance, the
affordability and the statistical consistency of the evaluation process, to speed up and facilitate the
calculation and, in the end, to develop a model which could give photometric redshift estimates
for as many sources as possible.

The work presented in this thesis has mainly a methodological purpose. It is meant to give to the
community affordable methods and techniques to deal with the problem of photometric redshift
estimation, to correctly treat the errors and to manage with features extraction, selection and
interpretation. It goes without saying that the concept, and even the two methods presented in
the thesis, are quite general, and can be applied to many other astronomical problems, whether
they are regression or classification tasks.
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Conclusion

The work presented in this thesis is dedicated to the development of novel methodologies for pho-
tometric redshift estimation with machine learning methods. Photometric redshifts are important
as a fundamental measurement to retrieve distances in the cosmological field and as a major step
of the cosmic distance ladder. Traditionally obtained from spectroscopy, photometric redshift es-
timation became a necessity in the recent years, in order to obtain distances of a larger sample of
objects. This constitutes a major subject due to many forthcoming projects and missions, which
will investigate several open questions in astronomy. Studies concerning galaxy formation and evo-
lution, dark matter, dark energy, gravitational lensing, and many more, will be highly dependent
on the availability of redshift estimates for a huge number of sources. Spectroscopy alone could
never satisfy such a need. Photometric redshifts constitute a reasonable compromise in this sense,
allowing us to obtain the required estimates at the cost of some precision.

On the other hand, the Big Data explosion experienced by astronomy, with the availability of
many synoptic all-sky surveys, triggered an increasing interest in the community on this topic. The
huge amount of photometric information available nowadays increased as well as the interest in an
approach based on machine learning techniques. Machine learning, and in particular deep learning,
became increasingly popular in the recent years in many fields of research, not just astronomy
related. This is due to the big improvement in computational capabilities and the availability of
hardware resources able to deal with the demands of such technologies. Nowadays the astronomical
literature is full of machine learning applications, both for regression and classification problems,
adopting supervised or unsupervised models. The benefit from the adoption of such methodologies
is evident: the pipeline of the photometric redshift estimation process, depicted in Fig. 5.3, can be
partially or totally automated. This potentially allows, once the chosen model is properly trained,
to quickly obtain photometric redshifts for millions of sources.

The discussion in the community is nowadays focused on several topics concerning photometric
redshift estimation. The most obvious subject is devolved to the improvement of the global quality
of the predictions, reducing as much as possible the error between the estimated values and the
spectroscopic counterparts. This aspect is based on the implementation of new methods and
models, but also on different usage of the available data. However other themes are directly
connected and involved in the discussion. It has been extensively discussed that photometric
redshifts are often degenerate and can highly benefit from a description based on probability
density functions and taking into account multimodalities. For this reason, the error treatment in
presence of PDF estimates consitutes a major problem in the field. Another important topic, more
related to the machine learning aspect, is the interpretability of the features used for the redshfit
estimation, when different from plain magnitudes and colors and in particular when obtained by
means of automated models.

The two models presented in the thesis, coupled with the statistical tools and techniques intro-
duced, are meant to deal with these issues. The DCMDN model, based on the combination of
a convolutional neural network with a mixture density network, is able to predict photometric
redshifts directly from images, in the form of PDFs, fully probabilistic, multimodal and source
independent. The model is fully automated, so features are extracted and selected automatically
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by the neural network. The introduction of the CRPS as a loss function consents to predict well
calibrated and sharp PDFs. The advantage of such an approach has been already recognized by
the community, as it was recently applied both in astronomy, for photometric redshift estimation,
and in the weather forecast field too, by using the CRPS as a loss function for a neural network.
However the model has two major disadvantages: it tends to be a black box, as the user can lose
control of the internal behavior of the network, and it is hard to give an interpretation for the
features automatically extracted by the convolutional part.

The problem of interpretability is well known to those who deal with deep learning applications. At
the current stage, there are no substantial improvements in understanding the behavior of convo-
lutional neural network based models and the features produced by them, despite several attempts
involving visualization and statistical techniques. On the other hand, features based on known
physical parameters and selected by means of a feature selection algorithm can be understood and
interpreted, at least from a theoretical point of view. The second model presented, based on a mas-
sive feature generation and a selection performed adopting a forward selection model, is meant to
improve the performance in the prediction of the photometric redshift estimates and, at the same
time, to guarantee a certain degree of interpretability in the selected features. The improvement
is given by the combination of the advantages obtained from a human-based knowledge together
with the high amount of information brought in by the massive combination of parameters and the
forward selection done on such a huge number of features. Some of the features obtained have been
interpreted by finding a correspondence between the feature importance calculated with the RF
and quasar emission lines. It has been proven that this correspondence is only partially captured
by classic features, namely magnitudes and colors.

Therefore the two proposed methods allow to predict photometric redshifts improving the per-
formances with respect to other methods and solving several issues which traditionally affect the
models in the literature of the field. The comparison between the two models has shown that the
feature-based one obtains superior performances with respect to the error function, while the anal-
ysis of the PIT proves that the DCMDN is able to predict better calibrated PDFs. An important
part of the work is dedicated to correctly estimating the quality of the predictions, in particular
when dealing with PDFs. In this sense, the CRPS and the PIT are fundamental tools in guarantee-
ing the prediction of well calibrated and sharp density functions. The importance of a probabilistic
description for photometric redshifts and the necessity to take into account multimodalities have
been also deeply discussed. This discussion is particular important due to upcoming missions like
Euclid. In particular, concerning the Euclid mission, it has been demonstrated that the require-
ments established could potentially lead to misleading results.

This entire work has been accomplished by making intensive use of GPU computing, in order
to parallelize the models adopted. Such technologies in the recent years allowed for a satisfying
and efficient implementation of deep learning models. In fact, as the theory behind them was
known already for several decades, only the increment in computational power of the last ten years
allowed for the implementation of them for practical purposes. Nowadays, deep learning tech-
nologies, thanks to hardware improvement and data explosion, constitute the milestone for many
applications which have great impact on our everyday life. Self-driving cars, real-time automated
translation, and facial recognition are just few examples of the important role acquired by deep
learning in our society. In this sense, astronomy is surely benefitting from the implementation
of machine learning in solving a manifold of different problems. On the other hand, astronomy
itself is a good playground to test such applications in a safe environment. Surely, in the field
of the X-informatics, astronomy is between those scientific fields which are experiencing the most
radical transformation in terms of the application of the fourth paradigm. The work presented in
this thesis, apart the improvements and advantages that could bring in the field, constitutes also a
good use case to show the power of machine learning application for astronomical problems. This
is why the methods and the models presented have been developed in the most general way, in
order to allow the community to apply them for different problems and research fields.

Let the data speak for themselves has been said. To do this we need instruments able to hear their
voice. I would like to think that this could constitute a small step toward the revolution of this
new astronomy.
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In the following I report the reprint permission granted from ESO for Publication II and Publication
III.
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