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Abstract

Metal nanoparticles play a significant role in exhaust combustion. They oxidize harmful products

like carbon monoxide and hydrocarbons in order to prevent major environmental and health

issues. In a converter, platinum nanoparticles (Pt NPs) are impregnated in a thin coating of a

porous ceramic oxide. Due to their high surface-to-volume ratio, Pt NPs can provide high catalytic

activities; however, elevated temperatures in the exhaust gas flow lead to thermal deactivation of

the catalyst via sintering, thereby resulting in large losses in efficiency over the catalyst’s lifetime.

In this thesis, the sintering behavior of 5-6 nm sized Pt NPs synthesized via block copolymer

micellar nanolithography on various planar oxide-based substrates is investigated. First, their

coarsening on both crystalline and amorphous silica (SiO2) and alumina (Al2O3) is evaluated in

regard to the mechanisms of Ostwald ripening and particle migration and coalescence. Sinter

studies at 750°C in air reveal an enhanced thermal stability on the amorphous alumina-support

Al2O3(a). Second, key influencing parameters on the sinter resistivity of the Pt NPs are identified.

An increased NP adhesion on the amorphous substrates, a higher roughness and surface potential,

as well as a larger contact angle of water on Al2O3(a) are all found to significantly contribute to

enhanced sinter stability.

Furthermore, the thermal behavior of Pt NPs on dual-structured surfaces is examined at the in-

terface between Al2O3(a) and SiO2 to study the impact of compositional surface heterogeneities.

The particles favor the high metal interaction Al2O3(a)-side over the low metal interaction SiO2-

side as shown by their diffusion away from the silica. Additionally, structural heterogeneities

on sapphire wafers with varying tilt angles, and thus step edges of different height and size,

contribute to a smaller increase in Pt NP diameter over time on the more tilted substrates when

exposed to 1200°C under vacuum compared to NPs on less tilted substrates. Hereby, larger

sintered particles are observed to preferably align along the step edges. This is due to a locally

increased surface potential at the edges and because these edges function as Ehrlich-Schwoebel

barriers. Thereby they hinder the diffusion of particles on the substrate. Lastly, the sinter stability

of Pt NPs is successfully enhanced via the deposition of an isolating silica or alumina layer by sol-

gel techniques. These films are shown not to cover the Pt NPs and also prevent the migration of

platinum clusters toward each other during sinter studies at 750°C under atmospheric conditions.

Taken together, this data contributes to a better understanding of the thermal stability of Pt NPs

catalysts with respect to the underlying support. The information gained from these sinter studies

can be harnessed in the design of more thermally stable Pt NP catalysts, which can ultimately

contribute to more environmentally sustainable technologies.
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Kurzfassung

Metallische Nanopartikel spielen eine entscheidende Rolle in der Abgasnachbehandlung. Sie oxi-

dieren für die Umwelt und die Gesundheit schädliche Substanzen, wie Kohlenstoffmonoxide und

Kohlenwasserstoffe. In einem Fahrzeugkatalysator sind Platinnanopartikel (Pt NP) in eine dünne

poröse Oxidkeramik imprägniert. Aufgrund ihres großen Oberfläche-zu-Volumen-Verhältnisses

zeigen Pt NP eine hohe katalytische Aktivität. Allerdings verursachen hohe Temperaturen des

Abgasstroms eine thermische Deaktivierung des Katalysators durch Sinterprozesse. Dieses führt

mit der Zeit zu großen Effizienzverlusten.

In dieser Arbeit wird das Sinterverhalten von 5-6 nm großen Pt NP, die mit der Block-Copolymer

Nanolithographie synthetisiert werden, auf verschiedenen planaren, oxid-basierten Substraten

untersucht. Zuerst wird die Vergröberung der Partikel auf kristallinem und amorphem Silizium-

dioxid (SiO2) und Aluminiumoxid (Al2O3) in Bezug auf die Sintermodelle Ostwald-Reifung und

Partikelmigration und Koaleszenz evaluiert. Sinterstudien an der Luft zeigen bei einer Temperatur

von 750°C eine erhöhte thermische Stabilität der Nanopartikel auf amorphem Aluminiumoxid

Al2O3(a). Anschließend werden maßgebliche Einflussfaktoren auf die Widerstandsfähigkeit der

NP gegenüber dem Sintern ermittelt. Eine erhöhte Pt NP-Adhäsion auf den amorphen Substraten,

eine ausgeprägtere Rauhigkeit, ein höheres Oberflächenpotential und ein vergrößerter Kontakt-

winkel von Wasser auf Al2O3(a) tragen erheblich zur Sinterstabilität bei.

Darüber hinaus wird das thermische Verhalten der Pt NP auf strukturierten Oberflächen an der

Grenzfläche von Al2O3(a) und amorphen SiO2 untersucht, um den Einfluss der chemischen

Oberflächenzusammensetzung zu erörtern. Dabei hat sich Al2O3(a) aufgrund einer höheren

Wechselwirkung mit Metallen gegenüber dem SiO2 durch die bevorzugte Diffusion der Pt NP

von SiO2 zu Al2O3(a) als überlegen gezeigt. Zusätzlich wird die Auswirkung struktureller

Oberflächenheterogenität auf die NP-Stabilität anhand verkippter Saphir-Wafer aufgezeigt. Bei

1200°C im Vakuum ist die Größenzunahme der Partikel auf stärker gekippten Oberflächen kleiner,

wobei die gesinterten Pt NP sich bevorzugt an den Stufenkanten anlagern. Dieses lässt sich auf

ein lokal höheres Oberflächenpotential und auf eine Funktionsweise der Kanten als Ehrlich-

Schwöbel Barrieren zurückführen, die eine Partikeldiffusion auf dem Substrat verlangsamen.

Zuletzt wird die Sinterstabilität der Pt NP erfolgreich durch die Abscheidung einer isolierenden

SiO2- oder Al2O3-Schicht zwischen den Partikeln über das Sol-Gel-Verfahren erhöht. Diese

Schichten bedecken die NP dabei nicht, verhindern aber gleichzeitig in Sinterexperimenten bei

750°C an der Luft die Migration von Platin-Clustern.

Anhand der Ergebnisse der durchgeführten Sinterstudien wird ein besseres Verständnis für die

Erzeugung thermisch stabiler und hocheffizienter Pt NP-Katalysatoren bezüglich des darunter lie-

genden Substrats gewonnen. Somit leistet diese Arbeit einen wichtigen Beitrag zur Entwicklung

umweltverträglicher Technologien.
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1 Introduction

Over the past 40 years, metal nanoparticles (NPs) with lateral dimension of less than 100 nm

have been utilized in a wide variety of scientific applications [58, 94, 69, 167]. Due to their small

sizes and high number of surface atoms, the surface area-to-volume ratio is large and thus, their

physical-chemical properties can differ significantly from their bulk material [58, 114]. One such

property is the reduction of the melting points, first studied and reported for tin by Takagi and

Wronski in 1954 and 1967 [140, 160]. Other affected characteristics include changes in electrical

conductivity, magnetic permeability and fluorescence, partly caused by quantum effects occuring

at the nanometer-scale [10]. Additionally, a high chemical reactivity due to the large surface

area, and therefore numerous catalytically active sites, makes NPs great candidates for catalytic

applications [58]. Ever since the degradation of hydrogen peroxide via platinum nanoparticles (Pt

NP) in the 19th century [7], NPs have gained tremendous importance in heterogenous catalysis

and are now utilized in 90 % of all chemical processes worldwide [41, 123]. Noble metal

nanoparticle catalysts are able to transform harmful products into less toxic ones. Thereby they

ensure to meet stricter environmental regulations, while also lowering health risks despite an

increasing world population [41, 96]. Pt NPs can make chemical conversion highly selective

in many hydrogenation and dehydrogenation reactions, as well as in alkylation and selective

oxidation reactions [123, 2]. These include, for example, the hydrogenolysis of ethane [113],

ethylene [112] and propene [166]. Pt NPs specifically oxidize carbon monoxide (CO) and

hydrocarbons (HC) during exhaust combustion, thus playing a major role in the reduction of

emissions [27]. For applications in car converters, they are impregnated into substrates consisting

of a thin coating (“washcoat”) of a porous ceramic oxide, commonly alumina (Al2O3) or silica

(SiO2) on a ceramic monolith [20, 56, 28], see Figure 1.1. Supplementary noble metal NPs, e. g.

rhodium, help to reduce nitrogen oxide (NOx) [20].

Enhanced catalytic activities and selectivities depend on size, shape and composition of the metal

NPs [75]. Based on the efficiency with which adsorbates and intermediate reactants bind to the

NPs, their size can have different effects on the reaction rates. For some processes, smaller NPs

show higher reaction rates, while the opposite is true in other cases. Additionally, some NPs

reveal a specific size range in which they facilitate the best activity for catalytic processes [42].

While more research has been conducted on the size-dependency than on the shape-dependency

of the catalytic activity [96], one study by Narayanan et al. shows that tetrahedral Pt NPs with

a larger amount of surface atoms at corners and edges are significantly more active compared to

cubic ones [99]. Lastly, the role of the support on the catalytic performance of NPs has been

investigated. “Strong metal-support interactions” (SMSI) between the noble metal NPs and the

substrate can improve their catalytic reactivity [171]. First reported on titania [142, 141], Pt

NPs also exhibit advantageously altered properties on other oxides, such as magnetite [109] and
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Figure 1.1: Schematic illustration of impregnated metallic NPs (e.g. Pt and Rh) on a porous
ceramic oxide washcoat for the catalyzation of harmful emission gases (CO, HC, and
NOx).

ceria [30]. Here, the support can transfer charges to or from the particles and provide additional

reaction sites. This was demonstrated by Fukuoka et al. on Pt NPs in mesoporous silica during

the oxidation of CO [54]. Additionally, the support can stabilize NPs, but it can also encapsulate

NPs at higher temperatures or cause structural and/ or shape-related changes, as summarized in a

review by Cuenya et al.. Hence, the influence of the underlying support cannot be ignored [41].

While aiming for a high catalytic activity and selectivity, long-term stability is one of the most

important criteria for an effective and functional catalyst [2, 97]. Catalyst deactivation, defined

as the loss of catalytic activity and selectivity over time, is a major and very costly industrial

challenge [16]. Different mechanisms can lead to catalyst failure. Reactants or impurities can be

strongly adsorbed on the surface of the catalyst and thus block the active sites. Sulphur, as one

example, can poison Pt-based catalysts. During fouling, the surface of the catalyst is physically

covered by deposited species, which again hinders the catalytic reaction at the barred active sites.

Also, other chemical reactions occuring with the molecules in the gas phase or the substrate can

diminish the desired activity. Furthermore, mechanical failure originates from crushing when

the catalyst or its support experience thermal expansion and compression or it can be caused by

attrition processes. During this process, the catalytic material is lost and the substrate onto which

the catalyst is impregnated is destroyed [16, 97]. Lastly, elevated temperatures exceeding 1000°C

can lead to thermal deactivation of the catalyst, which is especially a problem within car exhaust

systems [28, 65]. Approximately 10 % of the initial Pt NPs are emitted from a car converter, either

thermally or mechanically induced, which can then lead to toxicologial problems [143, 41].

Sintering as a thermal degradation process is defined as the decline of the catalytically active

surface area due to the thermodynamically favorable growth of the NPs [97, 16, 33]. Two models

have been proposed to describe the coarsening of NPs through an increase in average particle

size and a broadening of the particle size distribution (PSD): (1) larger NPs grow at the expense

of smaller ones through the diffusion of small adatoms towards the larger particles triggered by a

chemical potential difference, a process referred to as Ostwald Ripening (OR); (2) NPs migrate on

the surface and coalesce upon meeting, a phenomenon termed particle migration and coalescence

(PMC) [65, 44].
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Figure 1.2: In this PhD thesis, the sintering behavior of Pt NPs was studied (a) on crystalline
and amorphous silica and alumina with the evaluation of its contributing surface
properties, (b) on dual-structured silica and alumina substrates, (c) on tilted sapphire
wafers, and (d) with an isolating silica or alumina layer.

Pt NP sintering has been studied on various substrates under diverse conditions. Model systems

with lower complexity help to analyze and characterize the influence of individual parameters

including the particle size or elemental composition on the thermal stability of the Pt NPs. Also,

their coarsening behavior on individual substrates has been studied. Although the commonly used

oxide materials alumina and silica have been compared with each other regarding their suitability

as Pt NP catalyst substrates [169], neither their physical or chemical parameters nor the impact

of these on the sintering behavior of Pt NPs have been examined experimentally. Thus, the focus

of this PhD thesis is to explore crystalline and amorphous silica and alumina as possible supports

during sinter studies at 750°C under atmospheric conditions (Figure 1.2a). Additionally, the

contribution of NP adhesion, substrate roughness, surface potential and energy are analyzed as

key influencing parameters on NP sintering. Furthermore, the Pt NPs are tested on structured

surfaces composed of two materials, amorphous alumina and silica (Figure 1.2b), as well as on

tilted crystalline sapphire wafers with step edges of varying height and size (Figure 1.2c). During

sinter studies in air at 750°C or under vacuum at 1200°C, the influence of compositional and

structural heterogeneities on the coarsening behavior of Pt NPs is revealed. Lastly, an increased

sinter stability of Pt NPs is successfully achieved through the deposition of an isolating silica or

alumina layer between the particles by simple sol-gel techniques in order to prevent the particles

from migrating towards each other (Figure 1.2d).

Identifying key factors of the common industrially used silica and alumina substrates on metal NP

sinter resistivity, these sinter studies lay the foundation for an improved design of highly efficient

and stable catalysts. Thus, the amount of costly and harmful Pt NPs in exhaust combustion

systems can be reduced while maintaining a high activity to fulfil upcoming strict regulations on

exhaust standards.





2 Fundamentals of techniques

In this chapter, first the theoretical background for the synthesis of Pt NPs via block copolymer

micellar lithography will be introduced. Following, the principles of the used characterization

methods including scanning electron microscopy, transmission electron microscopy, atomic force

microscopy, lateral force microscopy and Kelvin probe force microscopy, as well as contact angle

measurements, ellipsometry, and dynamic light scattering are presented. In the last part, the

materials and methods for the experiments are listed.

2.1 Synthesis of platinum nanoparticles

Monodispersed NPs of uniform sizes can be synthesized via block copolymer micellar nano-

lithography (BCML) as a “bottom-up” technique. Generally, “bottom-up” procedures involve

molecular or atomic components that assemble and form more complex and larger-sized struc-

tures [23]. In contrast, methods like lithography are used for “top-down” approaches, in which

nanostructures are fabricated by starting from materials with large dimensions and breaking them

down to the sub-µm-level [23]. BCML offers strict control of NP size and interparticle distance,

and is based on the utilization of diblock copolymers [132, 131]. Block copolymers contain

different polymer blocks that are commonly immiscible followed by microphase separation [59].

Dominated by long-ranging repulsive and short-ranging attractive forces, the copolymers self-

assemble to ordered structures. Depending on the type and length of the polymer segments in the

block copolymer, spheres, cylinders, lamellae and other complicated structures are formed. The

Flory-Huggins interaction parameter and the degree of polymerization determine the most stable

structural confirmation with the lowest energy [52]. For the BCML-synthesis of Pt NPs, diblock

copolymers consisting of one hydrophobic segment of polystyrene (PS) (Figure 2.1a) and one

hydrophilic segment of poly-2-vinylpyridine (P2VP) (Figure 2.1b) were chosen.

Balancing repulsive forces due to incompatibility in hydrophilicity and short-ranging attractive

covalent bonds between the two polymer parts, micelles are formed in the presence of a selective

n

N

m

(a) (b)

Figure 2.1: Chemical structures of block copolymer segments used for BCML of Pt NPs:
(a) polystyrene (PS) and (b) poly-2-vinylpyrridine (P2VP).
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solvent [52, 57]. The more soluble segment then forms a corona around the insoluble inner

block [59]. Controlled by the molecular weight of the block copolymers and the interactions of

the polymer blocks among each other, as well as with the solvent, the diameter of the micelles can

be adjusted [57]. Yet, a certain critical micelle concentration (CMC) has to be reached in order

for the first micelles to assemble, while the concentration of single chains in solution remains

constant [84, 59, 133]. As illustrated in Figure 2.2a, micelles with a core of the less soluble P2VP

polymer segment and an outer shell of soluble PS are formed while being stirred in toluene [84].

In these nanoreactors, metal precursor salt is selectively dissolved into each micelle. This then

changes the thermodynamic properties of the solution and the kinetic stability of the micelles.

Newly formed ionic bonds between the metal precursor and the P2VP segment lower the CMC

and stabilize the micellar aggregates [84, 93]. By varying the concentration of metal salt and thus

the loading of the micelles, the size of the nanoparticles can be controlled [57, 84]. The resulting

micellar solution can either be dip or spin coated onto the substrates [84]. During the spin coating

process a thin film is deposited onto a flat, rigid surface by centrifugal draining and evaporation

of the solvent [134, 121]. In the first step the micelle solution is added onto the substrate, which

is then accelerated until a desired rotational velocity is reached. Due to centrifugal forces, the

solution spreads on the substrate and surplus is lost at the edge. Simultaneously thinning of

the micellar film occurs until an equilibrium thickness is achieved. This is either caused by

pressure effects or by an increased viscosity due to evaporation of the solvent in a following

step [62, 121]. Since spin coating is a very easy, fast and versatile technique, it was the method

of choice in this work (Figure 2.2b). A dense film of micelles can be achieved with long-range

van der Waals interactions acting on the micelles during solvent evaporation [128]. This leads

to a quasi-hexagonal pattern of micelles as a result of attractive capillary forces and opposite

repulsive steric and electrostatic interactions [84]. Through choosing different polymer weights

of the diblock copolymers, the spacing between the NPs can be regulated [57]. By applying

a hydrogen / argon-plasma the polymer is removed and the metal salt is reduced, resulting in

quasi-hexagonally arranged platinum nanoparticles (Figure 2.2b and c).

Besides platinum nanoparticles, gold, silver, and palladium NPs have been reported to be

synthesized via BCML with diameters ranging from 1 to 15 nm and an interparticle spacing

of 25 to 250 nm [85]. Additionally, bimetallic NPs can be formed by this technique through the

separate addition of two metal precursor salts [129]. Many different flat materials can serve as

substrates upon resistance to the solvent and the plasma exposure. This includes silicon, gold,

glass, sapphire, titania, mica, and gallium arsenide [130, 57, 84]. Recently, 3D-substrates, like

µm-sized glass spheres, have been immobilized with BCML-synthesized NPs [55]. One of the

novel aspects of the BCML technique is the regular arrangement of the NPs on the substrates.

Furthermore, the particles are free to contribute to chemical and physical interactions and are

very stable without organic coatings supporting or stabilizing them [130].

2.2 Characterization methods

Due to the Pt NPs’ small size, characterization techniques of high magnification and superior

sensitivity are needed to obtain high-quality information on their size, shape, morphology



2.2 Characterization methods 7

t > 12 h + Pt salt

ω ω ω

(a)

(b)

t > 12 h plasma

ω

Pt NPs

(c)

Figure 2.2: Scheme illustrating the synthesis of Pt NPs via BCML: (a) the block copolymer PS-
b-P2VP is dissolved in toluene and forms micelles. Afterwards, platinum precursor
salt is added to the polymer solution and exclusively dissolved in the micelles. (b) The
loaded micelles are then spin coated unto the desired substrates. Finally, the polymer
matrix is removed during an hydrogen / argon-plasma and the metal salt is reduced,
yielding (c) quasi-hexagonally arranged Pt NPs.
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and structure [110]. In this thesis, transmission electron microscopy and scanning electron

microscopy (SEM) were used for imaging, while the height of the Pt NPs for particle size

distributions (PSDs) during sinter studies was obtained by atomic force microscopy (AFM).

Additionally, information regarding the roughness of the supports was gained by tapping mode-

AFM. NP adhesion could be monitored with the lateral force microscopy mode at the AFM and

Kelvin probe force microscopy using AFM was performed to determine the surface potentials of

the substrates. Lastly, contact angle measurements revealed disclosure of the surface tension of

water on the different supports. With the help of energy dispersive X-ray spectroscopy at the SEM

and X-ray photoelectron spectroscopy the samples were analyzed with respect to their elemental

and chemical composition. For the isolation of Pt NPs with different layers, the layer-solution was

characterized with dynamic light scattering regarding its particle sizes and the layer thickness was

determined by ellipsometry.

2.2.1 Transmission electron microscopy

In general, electron microscopes generate magnified pictures with atomic resolution by using

an electron beam and focusing it via electrostatic or electromagnetic lenses under high vacuum

conditions. The advantage of a beam consisting of electrons is their short de-Broglie-wavelength

which is approximately more than 12 orders of magnitude smaller compared to light [156]. In a

transmission electron microscope (TEM), a resolution of less than 1 nm can be reached and so

images on the atomic scale are achievable [110, 155].

When exposing a sample to fast-moving electrons, a variety of interactions with the sample can

occur and these different phenomena can be exploited to obtain information about it (Figure 2.3).

In the case of TEM, a very thin and conductive sample is penetrated by an electron beam. This

incident beam interacts with the sample and its electrons are scattered at the crystal lattices

of the investigated material. These electrons are detected and an image is derived [1, 155].

Evaluating the contrast between the sample and the background, morphological and structural

information about the sample are obtained [110]. Commonly, different lenses are necessary to

create the picture. Condensor lenses direct the electron beam from the electron source in a parallel

alignment before it is spread by the sample. Subsequently, objective lenses, intermediate lenses

and projector lenses help to acquire the final image. The latter two lenses are responsible for

achieving the desired magnification while also compensating each others’ lense defects [156, 1].

Spherical aberrations are caused by defects in all of the above mentioned electron lenses which

transform points to disks. Also chromatic aberrations can occur when the electron beam is not

monoenergetic and thus, they induce a loss of image quality. Furthermore, astigmatism triggered

by an electron beam, that is not in perfect symmetric alignment to the lense axis, and distortions

often induced by operating lenses at non-ideal focal lengths can diminish the high-resolution in

the picture [156]. Depending on the choice of either detecting the transmitted or diffracted beam,

a bright or dark field image with a respective bright background and dark sample structure in the

first case and vice versa in the dark field mode can be reconstructed [1].
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Figure 2.3: Schematic illustration of electron beam interactions with the sample. The incident
electron beam causes X-rays, transmitted, secondary (SE) and / or backscattered (BE)
electrons to be released from the sample, each of which provides different information.

2.2.2 Scanning electron microscopy

Unlike TEM, in a scanning electron microscope (SEM) the electrons do not penetrate the thick

conductive sample, but interact with the surface and are scattered back. Here, the electron beam

is scanned across the substrate and the differently scattered electrons are detected [110]. Since the

spot size of the electron beam and hence the interaction volume of the electrons with the atoms in

the substrate are bigger than atomic distances, the resolution of a SEM is in the lower nanometer

range and thus not as good as with the TEM. However, larger areas and the surfaces of bulk

materials can be scanned with less time needed and easier sample preparation [110]. Therefore,

the SEM is the most widely used electron beam instrument [1].

A focused electron beam is scanned across the substrate and an image with very good spatial

resolution, and thus a three-dimensional impression, is received. When the electrons hit the

sample surface, depending on their energy, a variety of interactions can occur with the atoms of the

substrate. These then cause the formation of secondary products (Figure 2.3). They can be utilized

for different imaging modes and analytical techniques. The collisions of the electron beam with

the atoms are either elastic when the electron is deflected without the hand-off of energy towards

the specimen or inelastic when energy for another process is transferred from the electron to

the atom and a different electron or X-rays are emitted. The most commonly used type of

deflected electrons for imaging are the secondary and backscattered electrons (Figure 2.3) [156].

Secondary electrons (SE) with low kinetic energy are the result of inelastic scattering processes in

which the outermost electrons are released from the substrate surface into the vacuum leaving an

ionized atom behind. Yet, only secondary electrons very close to the spot where the incident

electron beam hits the sample are obtained and used for surface reconstruction in the Inlens

mode [156, 34]. On the contrary, backscattered electrons (BE) contain higher energies and are

caused by elastic scattering deeper within the sample and so contain in-depth information. Since

the backscatter coefficient correlates with the atomic number, conclusions about the type of the

material can be drawn [34]. Recording both secondary and backscattered electrons yields images
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Figure 2.4: Scheme illustrating the principle of EDX: By inelastic scattering of the incident
electron beam with an inner-shell electron, the latter one is released from the sample.
Thus, an electron from an outer-shell fills the vacancy triggering a characteristic X-
ray which can be analyzed qualitatively and quantitatively.

in the SE2-mode and combines high topographical contrast with detailed surface structures.

However, material contrast on the nanometer-scale can only be detected with the energy selective

backscattered (ESB)-mode that exclusively uses backscattered electrons to create the image [34].

Similar to TEM, electromagnetic condensor and objective lenses focus the electron beam coming

from a gun. Afterwards, scan coils guide the beam on the specimen in a scan pattern. If secondary

or backscattered electrons are generated, they are amplified upon reaching the specific detector

and translated to a final picture [1].

Additionally, energy dispersive X-ray spectroscopy (EDX) at the SEM can be used for analytical

characterization of the sample surface. As shown in Figure 2.3 incident electrons can also induce

the emission of X-rays. Through inelastic scattering with an inner-shell electron, energy is

transferred and this electron leaves its orbital. The generated hole is then filled by another electron

from an outer energy level shell triggering a characteristic X-ray with the energy between the

outer and the inner orbital (Figure 2.4). Depending on if the electron leaves the L or M shell

and falls down onto the core one K, the emitted radiation is termed Kα in the first and Kβ in the

second case [124, 156]. Since the specific energy of the characteristic X-ray wavelength correlates

with each individual element, qualitative identification and quantitative analysis through the peak

energy and the integrated peak intensity respectively can be achieved. Yet, EDX is more sensitive

to heavy elements due to an increased emission probability [124].

2.2.3 Atomic force microscopy

Atomic force microscopy (AFM) is a versatile technique that provides information of the surface

structure with high resolution and good accuracy on the sub-nanometer scale, as well as on

microstructural properties. Unlike in electron microscopes, all samples, independent of their

conductivity, can be measured and imaged under atmospheric conditions, in vacuum or in liquid.

In an AFM a sharp and solid probe is applied onto these samples and scanned over its surface,

resulting in a map of its height information [47, 25]. When the tip is brought in close contact
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Figure 2.5: Scheme illustrating the principle of AFM. A tip mounted on a cantilever is deflected by
forces acting between the sample’s surface and the tip when scanned over the sample.
This is monitored by a laser pointed to the cantilever and its reflection is detected by
a four-segmented photodiode.

with the sample, interactions between these two materials take place. On one hand long-

range attractive forces including Coulombic electrostatic forces or van der Waals interactions,

compete with short-range repulsive forces when atomic inner electron shells overlap [25]. These

interactions then lead to the deflection of the tip mounted on a cantilever, which is monitored

through a laser pointed to the head of the cantilever and its reflection is detected by a four-

segmented photodiode (Figure 2.5).

Piezoelectric scanners move the tip or sample in the x- and y-axes to map the scanning area by

translating an electrical potential into a mechanical movement of the tip or sample. The probe can

then detect forces on the piconewton-scale, which are amplified and projected as an image [47].

At the AFM, images of a combination of the sample topography and the tip geometry can be

received in three different main modes. These can be divided into ones which obtain the static

deflection of the cantilever or ones which analyze its dynamic oscillation. For contact mode,

the tip is scanned across the sample while being permanently in contact with it. In this mode,

strong short-range repulsive forces act on the cantilever and this leads to a high resolution of

these images. Meanwhile, a feedback control evaluates the measured deflection of the cantilever

to maintain either a constant total force on the sample or a constant distance between the tip and

the sample. When the tip is removed from the surface during the measurement, the attractive

forces gain importance and oscillating cantilevers are used for non-contact scan modes with the

advantage of preventing sample damage. Changes in oscillation amplitude or frequency caused

by the interacting forces between tip and sample lead to a difference in cantilever resonance

frequency and can be detected. Lastly in tapping scan mode, the oscillating tip is scanned across

the sample while touching it during each oscillation cycle. In this case, attractive and repulsive

forces are measured and registered allowing the elimination of lateral forces while perceiving

information about surface properties as well [47, 25].
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Lateral force microscopy

In addition to topographical information, the AFM can be used to gain information regarding

the surface friction characteristics of the sample or to study the adhesion of nanoparticles on

the substrates. One of the scan modes is the lateral force microscopy (LFM) which measures the

mechanical interaction of the tip in contact mode by detecting the lateral twisting of the cantilever.

This torsion is caused by the friction occuring on the tip as it scans across the sample. By using a

cantilever which is more resistant to lateral bending compared to bending in the normal direction,

the signal can be split up in height or shape and friction information [47, 119]. Upon calibration

of the sensitivity or stiffness and spring constant of each individual cantilever this technique

allows the quantification of differences in sample properties. First, the deflection sensitivity α

can be obtained by recording force-distance curves when engaging the cantilever towards the

sample surface and then retracting it. Afterwards, the spring constant kLFM can be determined by

measuring the mechanical response of the cantilever to thermal noise [122]. With these values

and the experimentally obtained deflection of the cantilever V , the force F between the tip and the

sample can be calculated relying on Hooke’s law [64]

F = kLFM ·α ·V. (2.1)

In this thesis, NP adhesion on different substrates is measured by applying LFM-scans to

determine the force F necessary in order to remove the NPs from the samples.

Kelvin probe force microscopy

With the help of AFM-based Kelvin probe force microscopy (KPFM) surface potential maps

can be recorded. When calibrating the tip with reference samples of known work function, for

example chromium or nickel, an absolute value of the work function for metals and semicon-

ductors can be determined [47]. First introduced in 1991, KPFM is useful for measuring the

contact potential difference (CPD) between a tip and a sample [102]. Used in dual-pass mode,

the topography is recorded in a first scan and in a second non-contact scan the electric field

changes are analyzed [78]. In this latter scan, the tip and sample with different Fermi levels form

a capacitor (Figure 2.6a). Upon electrical contact between the tip and the sample, their Fermi

levels align through the flow of electrons until an equilibrium is reached (Figure 2.6b). Thus, the

tip and the sample are charged, which leads to the formation of the CPD and results in the creation

of a surface dependent electric field. To sense this electric field, an AC bias is additionally applied

to the cantilever. Triggered by electrostatic interactions with the existing electric field between the

tip and the surface, the cantilever is deflected and oscillates. Changes in the oscillation amplitude

or frequency are quantified directly via amplitude modulation KPFM (AM-KPFM) (Figure 2.7a)

or frequency modulation KPFM (FM-KPFM) (Figure 2.7b). Using a feedback loop of the AFM-

system, a DC bias voltage is applied to compensate the CPD so that the electric force does not act

on the cantilever any longer, which returns to its original position (Figure 2.6c). As a result, the

applied DC bias voltage directly corresponds to the CPD (VCPD) [78, 170], which is defined as
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Figure 2.6: Energy and charge diagrams illustrating KPFM technique: (a) Tip and sample
with different Fermi levels (EF in regard to the vacuum level EV ) form a capacitor.
(b) Upon electrical contact between the tip and the sample, their Fermi levels align
through the flow of electrons until an equilibrium is reached, leaving the tip and the
sample charged. (c) A DC bias voltage is then applied to compensate the occuring
CPD (VDC) [92].
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Figure 2.7: Schematic illustration of KPFM operation with (a) amplitude modulation (AM) versus
(b) frequency modulation (FM) mode [92].
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VCPD =
Φtip−Φsample

−e
(2.2)

with the work functions of tip Φtip or sample Φsample and the elementary charge e [92].

The electrostatic force Fel between the tip and the sample, which form the capacitor with distance

z and capacitance C is

Fel =−
1
2

δC
δ z

(∆V )2. (2.3)

ΔV as the potential difference includes the intrinsic CPD (VCPD), the externally applied DC

voltage (VDC) and an AC voltage (VAC)

∆V =VDC±VCPD +VAC · sin(ωt). (2.4)

In AM-KPFM the electric force is measured due to the modulation of the AC bias at the

frequencies ω in the second term and 2ω in the third term, which can be seen when substituting

equation 2.4 in 2.3

Fel =
δC
δ z

((VDC±VCPD)
2 +

1
2

V 2
AC)+

δC
δ z

(VDC±VCPD)VAC · sin(wt)+
1
4

δC
δ z

V 2
AC · cos(2wt). (2.5)

Then, the oscillation amplitude at ω is nullified when VDC =VCPD [92, 39].

However, in FM-KPFM the electric force gradient is detected

F ’
el =

δFel

δ z
. (2.6)

Thus, when VDC =VCPD applies, the electric force gradient is nullified and the surface potential is

obtained

F
′

el =
δ 2C
δ z2 ((VDC±VCPD)

2 +
1
2

V 2
AC)+

δ 2C
δ z2 (VDC±VCPD)VAC · sin(wt)+

1
4

δ 2C
δ z2 V 2

AC · cos(2wt).

(2.7)

Here, the electric force gradient is detected by monitoring the change in effective spring constant

of the cantilever, which correlates to its resonance frequency [92, 39]. The latter method is more

complex, yet has the advantage of higher lateral resolution because the force gradient is more

sensitively measured by the small tip than by the whole cantilever as with AM-KPFM [170].

2.2.4 Contact angle measurements

Contact angle measurements can reveal information about surface properties of solid substrates.

In the case of the simple and most commonly used sessile drop method, a liquid drop is placed
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Figure 2.8: Scheme illustrating principle of sessile-drop contact angle measurement: The contact
angle θ is obtained by manually placing a tangent to the side of the drop. The
surface tension between liquid and vapor γLV , the interfacial tension between drop
and solid γSL, as well as the surface energy of the solid sample in air (vapor) γSV can
be correlated to each other via the Young’s equation (2.8).

on the sample and a tangent is manually drawn to the drop via a goniometer-technique [79, 101].

The contact angle θ is formed due to the interaction of attractive cohesive forces at the molecules

within the liquid and attractive adhesive forces between the molecules inside the drop and the

surface. Upon reaching an equilibrium, the liquid-vapor surface tension γLV of the drop, the

interfacial tension γSL between the drop and the solid substrate underneath and the surface energy

γSV of the solid substrate in air (vapor) are related by the Young’s equation from 1805 and

illustrated in Figure 2.8 [111, 79, 168]

γLV · cosθ = γSV − γSL. (2.8)

Yet, due to the two unknown parameters γSL and γSV , this method can only give a starting point

for determining the surface energy of the underlying substrate [79].

2.2.5 X-ray photoelectron spectroscopy

Using X-ray photoelectron spectroscopy (XPS), along with EDX, a sample can be analyzed with

respect to its chemical composition and electronic structure. Unlike EDX, an incident beam of

X-rays is used in this technique provoking photoemission. Thus, an electron from an inner-

shell receives the energy from the X-rays and is therefore emitted from the sample (Figure 2.9).

Its kinetic energy Ek can then be measured by an electron spectrometer and an X-ray induced

photoelectron spectrum for the sample is gained. Since the obtained energy depends on the photon

energy of the initial X-ray beam hν , the binding energy of the electron Eb as an intrinsic material

parameter is calculated according to the following formula with Φ as the work function of the

spectrometer [157, 26]

Eb = hν−Ek−Φ . (2.9)

The received photoelectron spectrum shows all electrons with a binding energy less than the

incident hν and thus, the electronic structure of the material is given. The peaks in the spectrum

correspond to the emitted electrons which are elastically scattered without any energy loss, while

the inelastic scattered electrons form the background of the spectrum [157].
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Figure 2.9: Scheme illustrating principle of XPS: An incident X-ray beam provokes the emission
of an electron from an inner-shell, whose kinetic energy can be measured by an elec-
tron spectrometer and the intrinsic binding energy of the material can be calculated.

2.2.6 Dynamic light scattering

With the help of dynamic light scattering (DLS) the size of spherical particles in the nanometer-

range can be measured by detecting their Brownian motion which is caused by collisions of the

particles with the molecules in the solvent. Hereby, an increased speed of motion is observed

for smaller particles compared to larger ones. During the measurement the temperature has to be

controlled for evaluation due to its effect on solvent viscosity [73, 38, 60]. Then, the size of the

particles with the hydrodynamic radius rH can be calculated using the Stokes-Einstein equation

rH =
kT

6πηD
. (2.10)

with the Boltzmann constant k, the temperature T , the viscosity of the solvent η, and the

translational diffusion coefficient D [73, 106]. Importantly, the hydrodynamic radius refers to the

radius of a particle in the liquid with the same translational diffusion coefficient as the measured

particle. Thus, the hydrodynamic radius can vary from the radius of the “real” particle due to

adsorption of solvent molecules to it [106]. Additionally, the translational diffusion coefficient

also depends on different parameters besides the size of the particle which cause changes to the

measured radii. Surface structure, solvent and particle concentration, as well as the shape of the

particles directly affect rH [73].

For the DLS measurement, a vertically polarized laser is directed at the particles in a cuvette

(Figure 2.10). Afterwards, the fluctuations in intensity of the scattered laser light are detected

as a function of time. Hereby, the intensity I is correlated to the diameter of the particle d

by I ∝ d6. Thus, bigger particles contribute significantly more to the observed laser intensity

compared to smaller ones while at the same time smaller particles yield a much higher fluctuating

intensity than bigger ones. These effects are analyzed by autocorrelating the obtained data from

the detector in the time domain. This results in a particle size distribution of the measured

spherical particles [73]. Yet, sedimentation and additional collisions between particles can falsify

the analysis.
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Figure 2.10: Scheme illustrating the principle of DLS: A vertically polarized laser is directed at
the spherical particles. Its scattered light intensity is detected and compared to an
autocorrelation yielding a size distribution of the measured particles.

2.2.7 Ellipsometry

Properties of thin films can be precisely measured using spectroscopic ellipsometry. Parameters

such as layer thickness, surface roughness, interfacial layer formation and optical constants can

be derived [144, 159, 95]. Ellipsometry detects noninvasively the change in polarization state of a

light beam which is reflected on a solid flat sample. It yields the ellipsometric parameters Psi (Ψ)

and Delta (Δ), correlated to each other according to the following formula

tan(Ψ) · ei∆ = ρ =
rp

rs
(2.11)

with the Fresnel reflection coefficients of the sample rp and rs for p- and s-polarized light. p-

polarized light is oriented in the plane of incidence while s-polarized light is oriented perpen-

dicular to it [95, 159]. During the measurement, the complex ratio ρ is obtained as a function

of wavelength which can then be converted to the optical constant index n and extinction

coefficient kext of the sample material describing the way light behaves in the given material.

This leads to the index and thickness of the layer. Hereby, the relative phase difference parameter

Δ is especially sensitive for very thin films [95, 159]. Light is an electromagnetic wave and

depending on orientation and phase, it is differently polarized, ranging from linearly to circularly

to elliptically. In a spectroscopic ellipsometry analysis, a monochromatic light of known linear

polarization reflects at the surface of the sample (Figure 2.11) and is then detected and analyzed

as now elliptically polarized light [144, 159].

Since Ψ and Δ are obtained by ellipsometry, the film thickness and optical constants have to be

extracted from the data. For analysis, a model of the different sample layers is created and its

parameters are compared and adjusted with the measured experimental data. Thus, the difference

quantified as the mean square error between the data has to be minimized in order to obtain good

and valuable data [159, 95, 144]. One of the most common model functions to describe the

dispersion behavior of transparent materials like alumina are the Cauchy equations, which will be

used in this thesis

n(λ ) = An +
Bn

λ 2 +
Cn

λ 4 + . . . (2.12)
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Figure 2.11: Scheme illustrating the principle of ellipsometry: A monochromatic light of known
linear polarization (with its electromagnetic field Ein(t)) reflects at the sample
surface and is then analyzed and detected as elliptically polarized light (Eout(t))
on the other side[159].

kext(λ ) = Ak +
Bk

λ 2 +
Ck

λ 4 + . . . (2.13)

with the fitting parameters An, Bn, Cn, Ak, Bk and Ck, and the wavelength of light λ [45].

2.3 Materials and experimental methods

This section provides information about exact experimental procedures and the used chemicals

for the different chapters. Furthermore, sample preparations and necessary details for the

characterization of the specimens with the above mentioned techniques are given.

2.3.1 Synthesis of platinum nanoparticles on different substrates and their
characterization in sinter studies

BCML-synthesis of Pt NPs

For all of the following experiments, Pt NPs were synthesized via the BCML-technique, as

described in chapter 2.1. All glassware was cleaned in peroxymonosulfuric acid (mixture of

concentrated 95-98 % sulfuric acid (Carl Roth) and 30 % hydrogen peroxide (Merck) at a ratio

of 3:1) prior further handling. To produce the micelles for BCML, the block copolymer PS(400)-

b-P2VP(64), synthesized by the DWI Aachen with a number average molar mass Mn(PS) of

41,600 g/mol and Mn(P2VP) of 6,700 g/mol, was dissolved in > 99.5 % toluene (Carl Roth)

at a concentration of 3 mg/ml and stirred for 24 h. Hexachloroplatinic (IV) acid hexahydrate
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(H2PtCl6·6 H2O) (Merck) with a molecular weight of 517.94 g/mol was added to the micelle

solution at a loading ratio L of 0.35, calculated by the following equation

L =
m(metal salt) ·M(PS−b−P2V P)

m(PS−b−P2V P) ·M(metal salt) · [UnitsV P]
. (2.14)

with mass m, molar mass M and average amount of vinylpyridine monomers [Units VP]. After

dissolution of the metal salt, micelles were then immobilized on different substrates by spin

coating at 8000 rpm for 1 min on a WS-400B-6NPP Lite spin processor (Laurell Technologies).

Prior to it, the solution was filtered with 0.2 µm syringe filters (Rotailabo PTFE, Carl Roth).

Afterwards, the spin coated samples were exposed to a 10 % hydrogen / 90 % argon plasma

(W10) (PS210 microwave plasma, PVA TePla) at 350 W and 0.4 mbar gas pressure for 45 min in

order to remove the polymer and to reduce the platinum salt. Following this procedure, 6 nm Pt

NPs with narrow size distribution were obtained in a quasi-hexagonal pattern with interparticle

distributions ranging between 80 and 120 nm.

Size characterization of Pt NPs via TEM

The size of the Pt NPs was measured using TEM (CM 200, Philips) with a LaB6-cathode at

200 kV and a CCD-camera (GATAN). For this purpose, TEM copper or gold grids with silica

membranes and 400 mesh size (Plano) were cleaned in an oxygen plasma (GIGAbatch 360M,

PVA TePla) at 150 W and 0.4 mbar gas pressure for 15 min. Afterwards, the Pt NPs were

immobilized on the TEM grids by the placement of a 10 µl micelle solution drop onto it and

a plasma-treatment with W10 gas, as described above. The nanoparticle size was analyzed from

bright-field TEM-images with the software ImageJ (NIH).

Substrates for sinter studies

Two crystalline substrates, quartz crystal SiO2(0001) +/- 0.5° and sapphire Al2O3(1-102) +/- 0.5°

were bought from CrysTec. Amorphous silica SiO2(ox) was obtained by oxidizing Si(100)-wafers

(Siegert Wafer) in air at 750°C for more than 10 h to create an oxide layer of about 100 nm. The

Central Scientific Facility Materials, MPI for Intelligent Systems, Stuttgart, manufactured the

amorphous alumina Al2O3(a) via physical vapor deposition (PVD). Here, a 100 nm thick alumina

layer was added onto Si wafers using a self-constructed Pfeiffer Vacuum Classic 500 FKM-

sputtering machine. A sputter rate of 2 Å/sec, a process pressure of 7 ·10−6 mbar, and a 99.99 %

Al2O3-target (Target Materials) were used. All substrates were cleaned in peroxymonosulfuric

acid prior the experiments.

To record the sintering of Pt NPs at the interface between SiO2(ox) and Al2O3(a), dual-structured

substrates were fabricated. As illustrated in Figure 2.12, negative photoresist (AR-N 7500.078,

Allresist) was applied onto one half of the supporting silica or alumina substrate. A 50 nm-layer

of the other respective material, alumina or silica, was deposited onto this layer via PVD by the

Central Scientific Facility Materials, MPI for Intelligent Systems, Suttgart. Afterwards, Pt NPs

were immobilized onto the substrates through spin coating at 8000 rpm for 1 min and treated in
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Figure 2.12: Preparation of dual-structured samples with Pt NPs: The supporting substrate
(either silica or alumina) is partly covered with a photoresist. The superimposed
material (either alumina or silica) is deposited onto the substrate and micelles
loaded with platinum salt are spin coated onto it. After plasma treatment with
W10-gas, the polymer is removed and the metal salt is reduced to Pt NPs. The
photoresist and its superincumbent layers are removed in a final sonication step
using an acetone-ethanol mixture.

a W10-plasma at 150 W and 0.4 mbar gas pressure for 45 min (100 Plasma System, PVA TePla).

Finally, sonication in acetone (Carl Roth) and > 99.8 % ethanol (Carl Roth) at a 1:1-ratio for

1-3 min removed the resist and its superincumbent layer.

Annealing for sinter studies

The supported Pt NPs on the individual amorphous and crystalline silica and alumina wafers

were annealed under atmospheric conditions at 750°C for up to 60 min in a chamber furnace

(Nabertherm). However, for the sinter study on the dual-structured surfaces the NPs were placed

in the oven for longer time durations ranging up to 6 h.

Characterization of Pt NPs for sinter studies

The analysis of Pt NPs on different substrates before and after annealing at 750°C was performed

with SEM at 5 kV (Zeiss Ultra 55). Prior to the SEM-measurements, the samples were coated with

a carbon layer of around 7 nm in an EM ACE200 carbon coating device (Leica Microsystems).

The Inlens- and ESB-detector were used for imaging. Pt was confirmed to be present in the NPs

on the dual-surface substrates by EDX in the SEM at 5 kV as well. Additionally, Pt NP height

measurements on these substrates for particle size distribution calculations were conducted in

tapping mode with PPP-NCHR tips (Nanosensors) on a MultiMode 8 AFM equipped with a

NanoScope V controller (Digital Instruments, Bruker).

Characterization of substrate properties that influence Pt NP sintering

Adhesion of the Pt NPs onto the four different substrates, crystalline and amorphous silica

and alumina, was studied in lateral force microscopy-mode at the AFM. The spring constant
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of each DNP-S10 cantilever (Bruker) was determined for the individual substrates in a thermal

tune process, yielding a value of approximately 0.2 N/m. The substrate roughness was studied

with a PPP-NCHR tip (Nanosensors) in tapping mode and a scan rate of 0.6 Hz. The surface

potential was measured with a Pt-Ir SCM-Pit tip (Bruker) and a lift scan of 45.6 nm by amplitude

modulation Kelvin probe force microscopy at the AFM. For calibration-purposes, freshly polished

nickel- and chromium-samples were used as references. The samples were prepared by affixing

them on small metal plates with the help of Leit-Silver (Sigma-Aldrich). Lastly, the contact

angles of ten 1 µl-water drops on the 10 mm x 10 mm-substrates were obtained at the contact

angle measurement device OCAH 200 (DataPhysics Instruments). With the help of the SCA 20

software (DataPhysics Instruments) images of the drops were taken and tangents were manually

placed at the perimeter of the drops, from which the contact angles could be calculated.

2.3.2 Sintering of platinum nanoparticles on tilted sapphire wafers

Cleaning and annealing of tilted Al2O3-wafers

Crystalline sapphire substrates with a (0001)-direction, Al2O3(0001) < 0.1° were bought from

CrysTec. Four different tilting angles of 0.1°, 4°, 9° and 15° towards the (1-102)-plane crystal

orientation were tested in further experiments. In order to remove the amorphous layer at the

surface generated during the polishing process by the company and to reveal the lattice planes, the

sapphire wafers first had to be cleaned and annealed. For this procedure, they were rubbed with

acetone and treated in an oxygen-plasma at 350 W, 0.4 mbar gas pressure for 45 min (GIGAbatch

360M, PVA TePla). In a second step, the wafers were annealed at 1400°C for 24 h with a

heating and cooling rate of 10°C/min in a high temperature Supertherm HT oven (Nabertherm).

Afterwards, the cleaning procedure with acetone and oxygen-plasma was repeated and the wafers

were finally cleansed in peroxymonosulfuric acid prior the experiments.

Characterization of tilted Al2O3-wafers

The obtained topography of the tilted-substrates was studied with a PPP-NCHR tip (Nanosensors)

in tapping mode and a scan rate of 0.6 Hz at the AFM. Further analysis of the step heights and

step sizes was performed with the NanoScope Analysis 1.5-program (Bruker). Additionally, the

surface potential at the lattice planes of 0.1°- and 15°-tilted alumina was measured with Pt-Ir

SCM-Pit tips (Bruker) and Pt-Si FM-SPL-tips (Nanosensors), by frequency modulation Kelvin

probe force microscopy at a Dimension Icon AFM (Bruker) equipped with a NanoScope V

controller (Digital Instruments, Bruker). The samples were prepared by affixing them on small

metal plates with the help of Leit-Silver (Sigma-Aldrich). For calibration-purposes, freshly

polished nickel- and chromium-samples were used as references.

Sinter studies of Pt NPs on tilted Al2O3-wafers

For sinter studies, 6 nm Pt NPs, synthesized via the BCML-technique, were immobilized on the

sapphire wafers via spin coating and plasma-treatment in W10-gas. Afterwards, the samples were
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Figure 2.13: Chemical structure of tetraethyl orthosilicate (TEOS).

either directly placed into sample boats for sinter studies in air and annealed in a chamber oven at

750°C for up to 30 min or placed in glass-capillaries under vacuum and annealed in a tube furnace

(Heraeus ROK F7, Heraeus). The latter sinter study was performed at 1200°C over a 48 h-time

period. The characterization of Pt NPs on the sapphire substrates before and after annealing

at the two different temperatures was performed with SEM. Prior to these measurements, the

samples were coated with a carbon layer of approximately 7 nm to ensure conductivity. The

Inlens-detector was used for imaging. For determining the NP size SEM-pictures with 2048 x

1536 pixels were taken at a magnification of 100 kx and their diameters were analyzed with the

software ImageJ.

2.3.3 Silica and alumina layers for isolation of Pt NPs

Synthesis of silica layer

The SiO2-film was formed through the preparation of a sol made from tetraethyl orthosilicate

(TEOS) (Figure 2.13), according to the protocol of Rouse et al. [116].

A 0.01 M aqueous solution of TEOS was generated by adding > 99.9 % pure TEOS (Sigma-

Aldrich) to Milli-Q-water and stirring it at approximately 400 rpm for 2 h. Then, a 0.1 M

aqueous sodium hydroxide solution (NaOH), prepared with > 99.0 % pure 200 mg NaOH-

platelets (Merck) in Milli-Q-water, was pipetted into the TEOS-water-solution to generate a

TEOS:base-ratio of 35:1. This solution was stirred for 24 h before using it for experiments.

20 µl of it was spin coated onto amorphous alumina substrates immobilized with 6 nm Pt NPs at

3000 rpm for 1.5 min to form a film.

Characterization of silica layer and sinter study with platinum nanoparticles

First, the aging of the TEOS-solution was monitored by spin coating the sol onto amorphous-

alumina substrates within a time period of 21 days. These samples were then characterized with

tapping mode-AFM. Secondly, the chemical composition of the SiO2-film was analyzed with a

Thermo VG Theta Probe 300 XPS system (Thermo Fisher Scientific). A monochromatic Al Kα

radiation was used as incident beam and spectral decomposition was performed by subtraction

of a Shirley-type inelastic background. Also, the coverage of the Pt NPs with the silica layer

was studied by TEM. Cross sections were prepared by glueing two identical samples together,

cross-cutting with a tungsten-saw and grinding them with SiC sandpaper to a thickness of around
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Figure 2.14: Chemical structure of (a) aluminum-tri-sec-butoxide (ASB) and (b) ethylacetoac-
etate (EAA).

300 µm. Afterwards, the samples were polished with diamond spray, thinned to approximately

30 µm through a dimple-process and lastly, thinned to its final thickness with the help of a

precision ion polishing sytem mdel 691 (Gatan).

To study the sintering behavior of isolated Pt NPs with the SiO2-film, the samples were annealed

in a chamber furnace in air at 750°C for up to 4 h. Inlens- and SE2-images at the SEM allowed

the optical characterization and evaluation of this phenomenon.

Synthesis of alumina layer

The Al2O3-layer was formed through the preparation of a sol made from alkoxide aluminum-

tri-sec butoxide (ASB) (Sigma-Aldrich) with 97 % purity (Figure 2.14a), and a chelating agent

ethylacetoacetate (EAA) (Sigma-Aldrich) with > 99 % purity (Figure 2.14b) , following the work

of Nass et al. [100].

A 1.0 mol/l ASB-solution in anhydrous 99.9 % isopropanol (IPA) (Sigma-Aldrich) and a 1.0 mol/l

EAA-solution in IPA were generated by individually stirring them for 1 h in a glovebox under

nitrogen atmosphere to avoid ASB hydrolysis in the presence of water. Then, the two solutions

were mixed at a molar ratio of 1:1 and allowed to stir for another 3 h. Simultaneously, a 0.33 mol/l

aqueous solution of IPA (VWR International) was stirred for 1 h and afterwards, the ASB/EAA

and aqueous IPA-solution were added to each other at a molar ratio of 1:1 with a peristaltic pump

and a flow rate of 1.047 ml/min. The final solution was stirred for another 24 h and then allowed

to age for a couple of weeks before using it for experiments. Prior to it, the solution was filtered

with a 0.2 µm syringe filter (Rotailabo PTFE, Carl Roth) to remove agglomerates and dirt.

15 µl of the final solution was spin coated onto amorphous alumina substrates with 6 nm Pt NPs at

3000 rpm for 1 min to form a film. Afterwards, organic residues were removed from the samples

through a heat treatment at 500°C for 1 h in a chamber oven.

Charcterization of alumina layer and sinter study with platinum nanoparticles

First, the particle sizes in the final sol were characterized by DLS at a Zetasizer 3000 HSA

(Malvern Instruments). 1 ml of the solution was added to a cuvette and allowed to adjust to

25°C before starting the four measurements for 900 sec each. Additionally, the layer thickness of

the spin coated alumina solution was determined with ellipsometry. The sol was spin coated onto



24 2 Fundamentals of techniques

stir 1h

stir 1h

stir 3h

(molar ratio 1:1)
ASB/ EAA-solution

ASB/ IPA
1.0 mol/l (10 ml)

EAA/ IPA
1.0 mol/l (10 ml)

H
2
O/ IPA

0.33 mol/l (30 ml)
stir 1h

peris
ta

ltic
 p

um
p 

(fl
ow ra

te
 1

.0
47 m

l/m
in

)
stir 24h

(molar ratio 

ASB:EAA:H
2
O 

= 1:1:1)

0.5 M alumina sol

inert atmosphere

Figure 2.15: Scheme illustrating the synthesis of the ASB-EAA-stock solution for experiments to
create an alumina-layer.

amorphous alumina substrates at different concentrations, ranging from 0.01 mol/l to 0.1 mol/l.

The thickness of these samples was then measured at a M-2000 ellipsometer (J.A. Woollam). The

obtained data was fitted to a model created with the Complete Software (J.A. Woollam) by using

the Cauchy equations (Equations 2.12 and 2.13). The model consisted of a silicon wafer with

a native silicon dioxide layer, an approximately 100 nm alumina layer and the thin spin coated

Al2O3-layer deposited from the ASB-EAA-solution. Here, the mean square error was minimized

to avoid fitting errors. Thirdly, the chemical composition of the Al2O3-film was analyzed with

XPS, details listed above. At last, the coverage of the Pt NPs with the alumina layer was studied

by TEM. Cross sections were prepared as described above with the silica layer.

To study the sintering behavior of isolated Pt NPs with this Al2O3-film, the samples were annealed

in a chamber furnace in air at 750°C for up to 4 h. Inlens- and SE2-images at the SEM allowed

the optical characterization and evaluation of this phenomenon.
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sintering

Metal nanoparticles supported on oxides, as described in the introduction (chapter 1), are used

as catalysts for various chemical reactions. During these applications and especially at high

temperatures, the NPs show highly dynamic behavior by moving across the surface, coalescing

with other NPs, and changing their shapes under the reacting atmosphere [150, 149]. Sintering as

a thermal degradation process of the NPs is a coarsening phenomenon mediated by mass transfer

surface diffusion. Its successful control at the interface between metal and oxide are crucial

for designing superior stable and active catalysts [32]. Two basic concepts have been proposed

to describe NP sintering: Ostwald ripening (OR) and particle migration and coalescence (PMC).

During OR, larger NPs grow at the expense of smaller ones through the diffusion of small adatoms

towards larger particles, triggered by a chemical potential difference (Figure 3.1a). The driving

force is the reduction in total free energy. Secondly, in the PMC-phenomenon NPs migrate on the

surface and coalesce upon meeting (Figure 3.1b) [65, 44, 14].

Rate and diffusion equations help to model the observed NP behavior in kinetic experiments and

are based on theories for nucleation- and growth-processes in thin films [150].

3.1 Atomic processes in crystal growth of thin films

Due to thermodynamic reasons, two-dimensional islands and three-dimensional clusters of atoms

are usually more common compared to uniform coatings in thin film deposition processes. The

(a)

adatoms

Ostwald 

ripening
particle migration 

and coalescence

(b)

Figure 3.1: Scheme illustrating the basic concepts of (a) Ostwald ripening (OR) and (b) particle
migration and coalescence (PMC). During OR, larger NPs grow at the expense of
smaller ones through the diffusion of small adatoms towards the larger particles,
triggered by a chemical potential difference. Yet, during PMC, NPs migrate on the
substrate surface and coalesce upon meeting.
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nucleation early growth late growth

Figure 3.2: Scheme illustrating the different stages of cluster formation (nucleation) and
growth [172].

formation and growth of clusters can be split up in three stages regarding their dynamics with its

underlying fundamental surface processes. First, nucleation (Figure 3.2) of the clusters takes

place when they reach a critical radius. Afterwards, an early and late growth stage follow,

in which the nuclei develop a considerable size by capturing atoms from the supersaturated

adatom gas phase first and then evolving by cluster-cluster interactions such as ripening and

coalescencing [172]. Meanwhile, surface diffusion, adsorption and desorption processes are the

determining factors for the clustering kinetics.

When trying to achieve a uniform film, three different growth modes can be distinguished

depending on the relative surface energies of the materials. If material B is deposited onto the

substrate, material A, and the corresponding surface energies γA and γB are related to each other

with the effective interfacial energy γ∗of material B on material A by the following equation

γA + γ
∗>

γB (3.1)

then, the growth of islands instead of a uniform thin layer will occur. This first growth mode is

named Volmer-Weber system. Here, the atoms of material B are more attracted to themselves

than they are to material A. On the other hand, if this condition does not apply, a uniform film can

be produced as a Frank-van der Merwe-system. In this case, the atoms of the deposited material

show higher bonding onto the substrate than they do towards themselves. When a combination of

the above mentioned phenomena occurs, an intermediate layer- and island-structure is the result,

which is known as a Stranski-Krastanov growth [17, 150, 149, 172].

During nucleation and growth, various atomic processes are happening at the surface. As can be

seen in Figure 3.3, atoms first arrive from the vapor phase with a rate R

R =
p√

2πmkT
(3.2)

and the gas pressure p, the atomic mass m, the Boltzmann constant k and the absolute tempera-

ture T. Thus, single adatoms are created on the substrate and their areal density n1(t) rises with

time t, according to

n1(t) = R · t. (3.3)

Regulated by temperature, these small adatoms stay on the substrate for a short adsorption

residence time τa and migrate with the diffusion coefficient D.

τ
−1

a = νa · e
−Ea
kT (3.4)
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Figure 3.3: Atomic processes occuring on the surface during nucleation and growth of stable
metal clusters or thin films [150, 148].

Hereby, the residence time is controlled by the atomic vibration frequency νa and the adsorption

energy Ea. The diffusion coefficient can be described in a simple term with the diffusion

frequency νd , which is usually smaller than νa, the diffusion energy Ed and the jump distance a

D =
νda2

4
· e
−Ed
kT . (3.5)

Therefore, the following average migration length x of the adatom before it evaporates again can

be calculated by

x =
√

Dτa =
a
2

√
νd

νa
· e

Ea−Ed
2kT . (3.6)

While the adatom diffuses across the substrate, it meets other adatoms and they can form small

clusters depending on their binding energy Eb towards each other and their areal density. Later

on, this process can continue forming larger, and larger clusters [150].

Different surface diffusion processes are reported for metal nanoparticles on substrates. Surface

diffusion is defined as a stochastic process of mass transport due to the driving force of a local

chemical potential. This transport is described according to Fick’s second law by

δc
δ t

=
δ

δx

(
D · δc

δx

)
(3.7)

with the concentration c [145]. One of the observed diffusion mechanisms for single metal

atoms on metal surfaces is a hopping phenomenon, in which an adatom randomly moves over

the surface by thermal activation. If a driving force like a chemical potential gradient acts on the

adatom, its random movement will preferentially occur along the maximum gradient direction of

the decreasing chemical potential [147]. Other possible mechanisms are the tunneling of metal

particles, which is often observed for light atoms such as hydrogen, and the atomic exchange as in

interdiffusion, where an adatom changes sites with a nearest neighbor substrate atom [147, 149].

Generally, these nucleation and diffusion processes are altered in the presence of surface defects,

which can change the diffusion coefficient and the binding energy of the adatom to the sub-

strate [148]. Lattice steps can hinder the migration of adatoms and atom clusters on a surface

as diffusion barrier, trap adatoms at its boundary or guide them along the step. When an atom

reaches the lattice step from the upper side, it is either stopped there and reflected while remaining

on the upper step side, or it can cross it [145]. Hereby, the atoms first encounter an energy barrier
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Figure 3.4: Scheme illustrating the Ehrlich-Schwoebel (ES) barrier with the diffusing energy
Edi f f of the particles on the substrate and the energy barrier ∆EES, which acts on
the NPs encountering the lattice step.

∆EES at the step edge, which is called the Ehrlich-Schwoebel (ES) barrier. This especially occurs

at lower temperatures, where the particles are less able to surmount it (Figure 3.4) [149].

In later growth stages, not only do single atoms diffuse over the surface, but 2D islands or 3D

clusters of atoms migrate as well. One possible mechanism is the temporary stretching of atom-

bonds in the cluster. Movement results when the stretching happens in a whole chain. Otherwise,

metallic clusters can migrate over a metal surface through a random diffusion of atoms at the

periphery or at a step edge. Also, these last mentioned atoms can detach from a cluster, diffuse

across the substrate surface and attach again to the same one or to a different cluster nearby,

changing its size and shape [147]. Thus, a displacement of the NP’s mass centre is obtained and

it can be modelled either by a random walk problem for a single adatom close to this step edge or

by a continuum equation with a noise term reflecting fluctuations of the cluster periphery [145].

And lastly, the whole cluster can diffuse and glide over the substrate by thermal activation [147].

In this late growth stage, the clusters then start to coalesce, when growing into each other and if

the cluster density on the surface is sufficiently high enough. Otherwise, differently sized clusters

interact with each other upon overlapping of the diffusion length of its individual adatoms. Due

to a difference in concentation, smaller clusters will shrink and larger ones will grow in this OR-

process [145, 172]. A first theoretical and analytical model for OR was reported by Lifshitz and

Slyozov in 1961 and further improved by Wagner, known as LSW theory [82, 152, 83]. The

Gibbs-Thomson effect is used as a driving force, which relates the droplet solubility c(r) to its

radius r of curvature according to

c(r) ∝ e
1
r . (3.8)

Therefore, larger clusters are favored and more stable compared to smaller ones [145].

To gain information about the relationship between Pt NPs and the underlying oxide substrate, as

it is of interest for this PhD thesis, information of thermodynamically favored processes for the

metal-oxide interface can be found in the literature. For example, when Pt is deposited onto an
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oxide such as alumina or silica, one possible phenomenon then could be its oxidation to platinum

oxide.

Pt (s) + Al2O3/SiO2 (s)→PtOx (s) + Al/Si (s)

This can only happen, if the reaction has a negative standard free energy change ∆H < 0 [32].

Yet, the affinity of platinum as a late transition metal to oxygen is very low compared to other

metals and to aluminum and silicon in Al2O3 and SiO2. Thus, this reaction is very unlikely to

occur. Otherwise, as a second phenomenon stable intermetallic compounds can be found for some

metals A on oxide substrate BO.

2 A (s) + BO (s)→AO (s) + AB (s)

This is especially reported with silica as the substrate BO. Hiraki et al. for example described the

identification of a Pt2Si and PtSi phase upon the annealing of a Pt-Si interface, when depositing

platinum on silicon [70]. Also, other mixed oxides such as NiAl2O4 were detected when exposing

a nickel catalyst onto an alumina substrate [115].

A last possible theory of prevailing interactions in a metal-oxide system is the wetting of the

metal on the substrate. Following equation 3.1, the metal-oxide interfacial free energy has to be

matched with the individual surface energies of the metal and the oxide. Although no explicit

values of these energies are available for platinum on alumina or silica, the general reported trend

is that mid-to-late transition metals, including platinum, do not wet oxides like alumina and silica

according to this thermodynamic criterion [32].

3.2 Nanoparticle sintering models

Derived from models of atomic processes in thin films, it has been tried to describe NP sintering

with theoretical equations aiming at forecasting the sintering kinetics and the development of the

particle size distributions (PSDs) over time. Generally, a growth law according to

d̄q− d̄q
o = Kt (3.9)

can be obtained with the average diameter d̄ over time t, the initial mean diameter d0, a

temperature-dependent constant K and a varying integer q for the different sintering mecha-

nisms [66]. Following, models for PMC and OR are presented.

3.2.1 Particle migration and coalescence

The mobilities of NPs at a certain temperature can be calculated using the particle diffusion

coefficient Dp. Then, the probability of NP migration and coalescence can be evaluated.

Following Fick’s diffusion law, Dp for spherical particles can be expressed as a function of the
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Figure 3.5: Scheme illustrating the PMC process of coalescing nanoparticles with the intermedi-
ate stages of neck growth and neck elimination [6, 164].

surface self-diffusion coefficient Ds, the atomic diameter da and the particle diameter d by the

following equation [66]

Dp =
24
π
·
(

da

d

)4

·Ds. (3.10)

Hereby, Ds is determined by the frequency factor Ds0 and the activation energy Eact

Ds ≈ Ds0 · e
−Eact

kT . (3.11)

Inserting experimentally observed values for Ds0 and Eact of platinum, reveals that migration

distances x of spherical Pt NPs depend strongly on the diameter of the particles, as presented by

Harris et al.

x = 2 ·
√

Dpt. (3.12)

During a time interval t of 2 h, a NP migrating distance of more than 10 µm for NPs with a

diameter of 1 nm is calculated. In contrast, NPs with a diameter of 5 nm only migrate 540 nm [66,

24]. Thus, if the interparticle distance is known, the probability of particles migrating towards

each other and subsequently coalescing can be assumed.

To obtain the sintering kinetics of supported NPs, Ruckenstein and Pulvermacher reported a

theoretical approach for the PMC-mechanism [117, 118]. Under the restriction of only binary

collisions, they describe the evolution of the number of NPs per unit area on the support nk over

time by

dnk

dt
=

1
2 ∑

i+ j=k
Ki jnin j−nk

∞

∑
i=1

Kikni. (3.13)

Hereby, nk increases when i NPs coalesce with j NPs while i+ j = k. Otherwise, it decreases

when k NPs coalesce with any other particle. The coefficients Ki j and Kik represent rate constants

for collisions between two particles and the factor 1
2 in front of the first term excludes counting

the occuring interactions twice. Depending on whether the NP sintering process is limited by the

diffusion of the migrating particles towards each other or if it is restricted by the coalescence of

the particles, different equations for these coefficients have been derived [66]. Ruckenstein and

Pulvermacher were thus able to modify the simple growth law (equation 3.9) for PMC to express

the change of surface area over time with the exponent q = 7 as following
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d̄7− d̄7
o = Kt (3.14)

while the coefficient K is dependent on Ki j [66].

Asoro et al. reported to observe the PMC mechanism of around 3 nm Pt NPs with a scanning-

transmission electron microscope by tracking the neck growth stage, which is schematically

illustrated in Figure 3.5. Afterwards, the neck is eliminated until complete coalescence is

reached [164]. Through mass transport mechanisms including grain boundary, surface and

volume diffusion, this stage is thermodynamically favored through the reduction in chemical

potential at the contact points of the NPs [6].

3.2.2 Ostwald ripening

On the other hand, NP sintering can be governed by OR. Based on the work of Lifshitz and

Slyozov [82] and lateron Wynblatt and Gjostein [165, 163, 164], theoretical models for OR can

be established with the Gibbs-Thompson relation (equation 3.8). These theoretical equations

describe the evolution of NPs’ radii over time when metal adatoms detach from smaller particles,

diffuse randomly on the substrate and preferentially attach to larger particles. The interparticle

transport of adatoms is illustrated in the upper graph of Figure 3.6. The average metal adatom

concentration on the oxide substrate is presented as c̄s (cs), the adatom concentration right next to

the particle as c
′
s and the adatom concentration on the NP’s surface as cp [66, 105]. If c

′
s < c̄s, the

adatoms will diffuse from the substrate towards the particle with a radius larger than the critical

one. Against it for c
′
s > c̄s, the adatoms will preferentially detach from the particle and diffuse

onto the oxide. The energy needed for the adatom to attach to or detach from the particle is

shown in the lower graph of Figure 3.6 with Hps +Hsm. Hps represents the respective enthalpy

difference between the bound state of the adatom onto the particle and its state on the substrate as

freely diffusing adatom, while Hsm is the migration energy of the adatom on the substrate. Ead,m

stands for the sublimation energy of the bulk maderial and Ead,s for the sublimation energy of the

support.

On the basis of this plot (Figure 3.6) and subsequent considerations, kinetic equations for two

different rate-limiting cases are obtained. In the first one, OR is restricted by the detachment and

attachment of the adatoms at the NP’s edge, termed interface controlled. Here, the radius of each

NP develops over time as a function of the critical radius r∗ by

dr
dt

=
sinθ · sββ

′
ceq

p γmΩ2

α1kTr2 ·
( r

r∗
−1
)
. (3.15)

Yet, in the second case, OR can also be limited by the diffusion rate of adatoms between the

nanoparticles, referred to as diffusion controlled. Thus, the following equation for r(t) is derived

dr
dt

=
D1βceq

p γmΩ2

ln
( l

r·sinθ

)
α1kTr3

·
( r

r∗
−1
)
. (3.16)

For equations 3.15 and 3.16, the radius of the particle is presented by r · sinθ , as sketched in

Figure 3.6. s is the interatomic spacing, ceq
p the adatom concentration of an indefinitely particle,
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Figure 3.6: Scheme illustrating the concentration of metal adatoms on a substrate surface in the
upper picture and the corresponding energetics in the lower picture [66, 105].

γm the surface energy and Ω the atomic volume of the metal particle. l represents the distance

from the NP’s center until the adatom concentration reaches c̄s, D1 the diffusion coefficient of the

monomer on the oxide, k the Boltzmann constant and T the temperature in Kelvin. Additionally,

a geometry factor depending on the structure of the NP with α1 = 0 25 · (2− 3·}cosθ + cos3 θ)

is introduced. Furthermore, the jump frequency of the adatoms on the oxide is described by

β
′
= νs · e(

−Hsm
kT ). Here, νs is the vibrational frequency of an adatom on the support. Additionally,

β =
νp
νs
· e
(
−Hps

kT

)
is used with the vibrational frequency of an adatom on the particle νp to obtain

the equations 3.15 and 3.16 [105, 66]. Wynblatt and Gjostein were then able to express the change

of surface area over time for diffusing adatoms on the oxide substrate during OR by the simple

growth law (equation 3.9) with the exponent q = 4 and a rate constant Ad depending on D1 as

following [66]

d̄4− d̄4
o =

27
32

Ad · t. (3.17)

Additionally to the migration of metal adatoms on the oxide substrate, the diffusion can also take

place by metal oxide adatoms when under oxidizing conditions. As example, platinum oxide can

form on alumina and silica in air by [71, 72]

2 Pt (s) + O2 (g)→ PtOx (g).

The reported changes in enthalpy for the above shown reaction of platinum to platinum oxide are

significantly smaller than the energy needed for platinum to evaporate or for adatoms to leave

a particle and diffuse on the oxide substrate. So, in the presence of oxygen, the formation of

platinum oxide appears to be thermodynamically more favorable. Thus, the platinum oxide can

either diffuse on the substrate or migrate through the vapor phase towards larger particles. While
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Figure 3.7: Calculated PSDs for the two sintering mechanisms: (a) OR and (b) PMC, according
to [44].

the coefficient for the growth law continues to be q = 4 for the diffusion of platinum oxides on

the substrate, for the vapor phase transport the equation 3.9 changes to

d̄2− d̄2
o =

1
2
·Avt (3.18)

with the rate constant Av [66]. Yet, the exponent q is reported to decrease with progressing time

or with increasing temperature [66].

3.3 Characteristics and influencing factors of nanoparticle

sintering

With the above described equations, graphs for the evolution of the particle size distribution (PSD)

after sintering for a certain time can be evolved. Summarized by Datye et al., two different PSDs

are obtained for the sintering of metal nanoparticles on oxide supports for OR and PMC, as

illustrated in Figure 3.7. Distinguishing features are the asymmetric shape which is skewed to

the left for OR with the observation of very small particle and skewed to the right for PMC. In

this case, tiny particles are absent due to the migration and coalescence of the particles without

forming adatoms or without the shrinkage of these. Secondly, a cut off size with a diameter below

twice the mean diameter is mentioned for OR, while the graph for PMC displays a tail towards

large particles [44, 61, 164].

So far, the dominating mechanism for NP sintering was discovered either by applying these

illustrated differences to the experimentally observed PSDs or by extracting the slope of the

curve from the simple growth laws as discussed above with equations 3.14, 3.17 and 3.18 [65].

Hansen et al. distinguish three qualitative phases for the sintering of metal NP as heterogeneous

catalysts [65]: The first one is characterized by a rapid decline in surface area due to the

loss of small particles, as well as a slow increase in the size of bigger particles, obtained

by Monte Carlo simulations. Thus, it can be concluded that OR is the governing sintering

mechanism at the beginning with Brownian motion of larger particles only minorly contributing

to the sintering if at all. Then in the second time interval, the rate of surface area decline

slows down. TEM experiments of samples in phases two and three show stationary particles

supplementary to larger ones which migrated and coalesced upon contact when they were in
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close proximity towards each other. Yet, other phenomena such as the sintering of the support

can take place in the third stage when the Tammann temperature TTammann of the support has been

exceeded with TTammann = 0 52 ·T bulk
melting. At this temperature (in Kelvin) surface atoms start being

mobile [65, 12]. However, in agreement with Moulijn et al., Hansen et al. came to the conclusion

that the dominating mechanism for NP sintering is the surface migration of adatoms rather than of

whole particles [65, 97]. Also, Datye et al. negated that the sintering mechanism can be derived

from PSDs. Their arguments include that all experimentally obtained PSDs for OR- and PMC-

conditions could be fit to the same PSD shape, as well as that no evidence of a PSD skewed to

the left was received for OR-governing experiments due to the lack of tiny particles. This could

be caused by a PMC mechanism of the adatoms, their instability at high temperatures or by the

limitation of analytical methods to detect them. Additionally, the cut-off reported for OR could

not be seen in sinter studies and thus, a right-skewed PSD should not be exclusively appointed to

a dominating PMC-mechanism [44].

Parameters influencing the sintering of metal nanoparticles

Sintering is strongly dependent on temperature, time, atmosphere, and support, as well as the

metal used in the catalyst, its loading and its preparation [15]. As the most important variable,

high temperatures significantly enhance the sintering. Also, it greatly varies in different atmo-

spheres. Thereby, a water- or oxygen-containing atmosphere causes much more NP coarsening

compared to an exclusive hydrogen- or nitrogen-environment [15, 74]. This can, for example,

be caused by a favored formation of metal oxide adatoms in the presence of oxygen. The

choice of material also influences the sintering behavior with its thermal stability correlating

to the material’s sublimation energy under reducing or inert atmospheres. Also a decreasing

loading ratio of NP catalyst on the support slows down the coarsening due to an increased

interparticle distance. Additionally, the support can have a strong impact on the NP’s stability

at elevated temperatures. The value of metal-support interactions dictates the wetting behavior of

the metal, the mobility of the nanoparticles and the rate of adatom detachment and attachment

on the particles [15, 19]. For example, rare earth oxides such as ceria stabilize the metal

nanoparticles in the catalyst through their ability to act as an “oxygen storage”. If it is used

additionally to another oxide support, such as γ-alumina, ceria can hinder phase transformations

of the alumina which would otherwise lead to a subsequent surface area decline. By the “strong

metal-support interaction” effect, the metal particles are anchored onto the ceria through a Ce-

O-Metal bond, as introduced in chapter 1 [33, 13, 11, 98, 36, 22]. Hereby, more metal-support

interactions are directly proportional to a higher thermal stability. An increased support surface

area as physical property of the underlying substrate also reduces the sintering speed of metal

nanoparticles [15]. In addition, heterogeneities in the support surface change NP coarsening

behavior. As demonstrated by Tabib Zadeh Adibi et al., these heterogeneities cause bimodal or

multimodal particle size distributions in experimental TEM-sinter studies with 3 nm Pt NPs on

alumina and silica [139].

Learning from these parameters, some attempts were made to prevent NP sintering. Wettergreen

et al. reported an increased thermal stability of Pt22 and Pt68 clusters through size selection

and thus eliminated the main driving force of chemical potential difference in OR [158]. Other
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improvements could be achieved by alloying the metal nanoparticles with a second metal material

of higher melting point, such as Rh in Pt NPs, or by encapsulating the nanoparticles in a thermally

stable and chemically inert oxide shell [33, 65].





4 Sintering of platinum nanoparticles on

amorphous and crystalline silica and

alumina

Pt NP sintering has been studied on different substrates under various conditions. Techniques

comprising TEM, both in and ex situ, and AFM [125, 126], 2D- and 3D-indirect nanoplasmonic

sensing (INPS) [80, 137], high-pressure XPS [108] and in situ high-energy grazing incidence

X-ray diffraction at a synchroton [67] have all been used to examine the thermal deactivation of

the NPs on γ- and amorphous alumina, as well as on silica. Yet, although these substrates have

been compared with each other regarding their suitability as Pt NP catalyst substrates, neither their

physical and chemical substrate parameters nor their influence on the sintering behavior of Pt NPs

have been examined experimentally. Thus, in this chapter the sintering behavior of ~6 nm Pt NPs

on both crystalline and amorphous SiO2 and Al2O3 after thermal aging in air using a simplified

model sytem was observed with scanning electron microscopy. Particle size distributions (PSDs)

as a function of aging time were evaluated with AFM. The investigated parameters included Pt NP

adhesion to the substrates measured with LFM, surface roughness analyzed using tapping mode-

AFM, the surface potential of the substrates obtained by KPFM and surface energy received

by contact angle measurements. Additionally, the behavior of the Pt NPs on dual-structured

amorphous SiO2- and Al2O3-substrates during high temperature treatments was investigated with

a specific interest concerning the NPs’ behavior at the interface between these two materials.

4.1 Platinum nanoparticles synthesized via block copolymer

micellar nanolithography

For this work, Pt NPs were synthesized via the BCML-technique. With the block copolymer

PS(400)-b-P2VP(64) at a concentration of 3 mg/ml and a metal salt loading of 0.35, 5-6 nm sized

Pt NPs were fabricated in toluene in a quasi-hexagonal pattern. In the SEM image Figure 4.1a, the

regular arrangement of the NPs can be seen and in Figure 4.1b, the quasi-hexagonal structure is

pointed out. This is caused by the attractive capillary forces during evaporation of the toluene and

repulsive steric and electrostatic interactions between the micelles [84]. Since the platinum salt,

hexachloroplatinic acid hexahydrate, does not stabilize the micelles as well as other precursor

salts, such as the one for gold nanoparticles, the monodispersity is not ideal and not all Pt NPs

are perfectly hexagonally arranged [74]. In Figure 4.1c, the particle sizes of the synthesized

nanoparticles are presented and reveal a highly narrow particle size distribution with a mean
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Figure 4.1: (a) and (b) SEM images of Pt NPs synthesized with the BCML technique, which results
in a quasi-hexagonal pattern. (c) Size distribution of the synthesized Pt NPs centered
around 5-6 nm and was obtained by TEM.

diameter of 5.67 nm and a standard deviation of 0.92 nm. This result was obtained by analysis

of more than 500 Pt NPs in bright-field TEM pictures at a magnification of 175 kx and by image

processing with the software ImageJ. These NPs were used for all further experiments to study

their coarsening behavior at high temperatures on different substrates.

4.2 Sinter studies with scanning electron and atomic force

microscopy

These 6 nm sized Pt NPs were immobilized on four different substrates: crystalline quartz

SiO2(0001), thermally oxidized silica SiO2(ox), crystalline sapphire Al2O3(1-102) and amor-

phous alumina Al2O3(a). Their sintering behavior was studied in air at 750°C for 60 min. In the

following Figures 4.2, 4.3, 4.4 and 4.5, SEM images of the resulting Pt NP coarsening are shown.

Additionally, corresponding PSDs were obtained from height measurements in the AFM and are

presented below the SEM images. Pt NPs on all four substrates were organized in a regular quasi-

hexagonal pattern and exhibit a narrow Gaussian-shaped height distribution in the AFM graphs

centered around 4-5 nm directly after BCML synthesis.

4.2.1 Crystalline quartz SiO2(0001)

On the crystalline silica, the structure of the Pt NPs starts to degrade after 10 min at 750°C,

resulting in larger, sintered NPs (Figure 4.2). After 20 min, the original structure is no longer

discernible and the particle sizes have increased considerably. Following this trend, the NP

coarsening on the crystalline silica continues at 30 and 45 min until only few large platinum

particles can be seen in the SEM image at the 60 min-time point. Interestingly, a light shadow

around the sintered NPs can be seen from 10 to 60 min. This is most likely induced by wetting

of platinum clusters which are attaching to the larger particles and thus, provoke the build-up of

these few massive ones. Accordingly, the PSDs of the Pt NPs have undergone substantial change

from 0 to 60 min. The formerly sharp Gaussian-shaped distribution broadens with a clear tail

towards larger sizes. In Table 4.1, the extracted mean height, standard deviation and the number of

evaluated NPs from the PSDs are presented for each time interval. Even though the nanoparticles
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Figure 4.2: SEM images and corresponding PSDs of Pt NPs on SiO2(0001) during sinter studies
in air at 750°C after different time periods. The scale bar in all SEM pictures
represents 200 nm.

0 min 10 min 20 min 30 min 45 min 60 min
mean height 4.19 6.01 6.47 9.69 9.18 8.19

standard deviation 1.00 1.75 2.90 6.80 6.28 4.54
number of NPs 1598 535 227 100 88 36

Table 4.1: Mean heights, standard deviations and the numbers of evaluated NPs extracted from
PSDs obtained with AFM for the sintering of Pt NPs on SiO2(0001).
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are approximately 5.5 to 6 nm in size in the TEM measurements, the obtained NPs’ heights are

lower in the AFM. This is caused by flattening of the initial spherical particles and their wetting

on the substrate. Albeit the mean height and standard deviation are calculated from a far-from

Gaussian-shaped distribution; they give a first indication of the NP size or height evolution over

time at 750°C.

It can be seen that the NPs coarsen from a mean height of 4.19 ± 1.00 nm at 0 min via

6.01 ± 1.75 nm and 6.47 ± 2.90 nm at 10 and 20 min to the larger values of 9.69 ± 6.80 nm

at 30 min, 9.18 ± 6.28 nm at 45 min and 8.19 ± 4.54 nm at 60 min. Yet, it must be considered

that the analyzed NPs from 20 min on are remarkably less in number compared to the first time

points because of the occuring sintering phenomenon (Table 4.1). At 20 min the size distribution

broadens considerably towards larger sizes. The following PSDs, between 30 and 60 min, are

much more dispersed with the appearance of significantly enlarged particles up to approximately

25 nm.

Since no small particles are observed in the AFM-measurements and since the quasi-hexagonally

ordered pattern is quickly lost through the migration of the particles towards each other, PMC is

assumed to be the dominant sintering mechanism for these Pt NPs on crystalline silica. In this

case, when two small NPs of 4.19 nm initial mean height coalesce, the sintered particle’s radius

can be calculated to a size of approximately 5.93 nm. This correlates nicely with the increase in

NP mean height to 6.01 nm at 10 min. Also a peak shift in the PSD from below 5 to approximately

6 nm is clearly visible at this time point (Figure 4.2).

4.2.2 Thermally oxidized, amorphous silica SiO2(ox)

On the amorphous, thermally oxidized silica (Figure 4.3), the hexagonal Pt NP pattern has

degraded less than on the crystalline silica (Figure 4.2) after exposure at 750°C for 10 min. The

sintering that has taken place at this moment manifests itself as a change in the PSDs, observable

as a coarsening of the initially sharp Gaussian-like distribution towards smaller and larger sizes

with only a slight change of the number of NPs per unit area. This can be seen by the calculated

mean height values and standard deviations obtained in the AFM (Table 4.2). Between 0 min

and 10 min, the mean height does not change with 4.03 nm and 4.06 nm, while the standard

deviation is more than doubled to 1.84 nm at 10 min compared to 0.81 nm at 0 min. This trend

continues further for 20 min with a mean height of 4.17 nm and a standard deviation of 2.60 nm,

which can also be seen in the PSD-graph. While the main peak remains below 5 nm, an enhanced

tail towards larger particle sizes and a simultaneous existance of very small clusters is detected.

However at 20 min, the hexagonal arrangement of the Pt NPs becomes indiscernible in the SEM

picture and the NPs visually coarsen significantly. This degradation of the NP structure proceeds

during the following time intervals of 30, 45 and 60 min yielding a reduced number of bigger

particles.

For the evolution of the NP height, the PSD curves change significantly after 20 min. At 30 min,

a bimodal height distribution was observed with one peak remaining below 5 nm and a second

peak between 9 and 10 nm, resulting in an increased mean height of 6.84 nm and a standard

deviation of more than 4 nm. By 45 min, the AFM graph reveals a very broad size distribution
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Figure 4.3: SEM images and corresponding PSDs of Pt NPs on SiO2(ox) during sinter studies in
air at 750°C after different time periods. The scale bar in all SEM pictures represents
200 nm.

0 min 10 min 20 min 30 min 45 min 60 min
mean height 4.03 4.06 4.17 6.84 11.23 6.09

standard deviation 0.81 1.84 2.60 4.07 7.85 4.48
number of NPs 1234 734 378 247 67 165

Table 4.2: Mean heights, standard deviations and the numbers of evaluated NPs extracted from
PSDs obtained with AFM for the sintering of Pt NPs on SiO2(ox).
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with NPs up to 25 nm, thus the mean height jumps to a value greater 11 nm. Finally at 60 min,

the PSD regains a shape similar to the 20 min-PSD with a single peak below 5 nm again and a tail

towards heights of 23 nm. During the Pt NP coarsening on amorphous silica, particles of smaller

size than those in the original sample (0 min) were also detected. This leads to the conclusion

that the governing sintering mechanism in this case is Ostwald ripening (OR), where adatoms or

platinum clusters leave the smaller NPs to attach to larger ones. Additionally, if two particles

would coalesce by PMC their radius would change from 4.03 nm at 0 min to approximately

5.7 nm. This phenomenon is not seen in the PSDs since the single peak remains at the sample

height value of approximately 4-5 nm and does not shift to higher ones for the first 20 min. Thus,

PMC can be ruled out as the dominant sintering mechanism.

This finding agrees with reports about sintering of Pt NPs on amorphous silica by other groups.

For example, Larsson et al. detected asymmetric, bimodal PSDs with very large NPs using INPS

and TEM at 550°C in 4 % O2/Ar atmosphere and came to the assumption that OR facilitates

the thermal coarsening of these 3.3 nm-sized Pt NPs [80]. Similarly, Tabib Zadeh Adibi et al.

employed TEM to observe 3.0 nm-sized Pt NPs sintering at 500-600°C in the same atmosphere

as above on sputtered silica. They saw a progression in the PSDs that began with a single peak

distribution and continued via a bimodal distribution back to a single peak distribution. Also,

they observed small NPs on all of the samples and concluded OR to be the mechanism behind

the sintering. They assume the small NPs to indicate metal redispersion by either (a) trapping

these particles due to large interparticle distances or by (b) the formation of Pt oxide, which

might interact less with metallic NPs [139]. OR of Pt NPs with the formation of volatile Pt oxide

particles has also been reported by Porsgaard and colleagues during thermal treatments of 2 nm

and 4 nm-sized Pt NPs on amorphous SiO2/Si(111) at temperatures above 450°C in XPS [108].

Finally, Simonsen et al. used in situ TEM to identify OR as the dominant sintering mechanism

on amorphous silica-samples after exposure of 1.5 nm Pt NPs to 650°C in synthetic air [127]

and Benavidez et al. agreed with this by proving that random migration and then coalescence of

around 2.5 nm-sized Pt NPs did not occur at 550°C in a 560 Pa oxygen-atmosphere during an

environmental TEM study. However, they detected very close-by neighboring NPs to fuse via

neck formation and elimination resulting in an anomalous growth pattern with a tail in the PSD

towards larger sizes even for the OR sintering mechanism [21].

4.2.3 Crystalline sapphire Al2O3(1-102)

On the crystalline alumina, rapid sintering of the Pt NPs can be seen in Figure 4.4. The hexagonal

structure is already lost after 10 min and larger particles start to appear, while the number of Pt

NPs per unit area decreases significantly. This development continues at the following heating

periods coupled with the appearance of a few particles up to even 25 nm. Additionally, shadows

around these coarsened bigger particles are seen, indicating the sintering and coalescence of

platinum clusters onto them between 10 and 60 min. Simultaneously, the size evolution is

indicated by the height graphs obtained in the AFM. Starting with a narrow Gaussian-shaped PSD

and a single peak at 4.81 ± 0.98 nm for the 0 min-sample, the height distributions broaden at the

following time intervals. At 10 min, the central peak has moved to a mean size of 6.50± 2.22 nm
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Figure 4.4: SEM images and corresponding PSDs of Pt NPs on Al2O3(1-102) during sinter
studies in air at 750°C after different time periods. The scale bar in all SEM pictures
represents 200 nm.

0 min 10 min 20 min 30 min 45 min 60 min
mean height 4.81 6.50 8.71 12.68 13.79 11.13

standard deviation 0.98 2.22 2.81 6.23 7.51 2.54
number of NPs 1294 448 154 99 52 85

Table 4.3: Mean heights, standard deviations and the numbers of evaluated NPs extracted from
PSDs obtained with AFM for the sintering of Pt NPs on Al2O3(1-102).
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and a tail towards larger particles with sizes above 15 nm appears. Next at 20 min, the PSD

shifts further and centers at 8.71 nm with a standard deviation of 2.81 nm caused by the incidence

of large platinum particles up to 25 nm. Then at 30 min, the peak flattens and a very broad

distribution with many sintered NPs occurs, pointed out by a mean height of 12.68 nm and a

huge standard deviation of more than 6 nm. Continuing at 45 min, particles of less than 8 nm

are only rarely detected while large ones are dominant in the PSD. This phenomenon is less

pronounced in the final AFM graph at 60 min, which reveals a PSD centered between 11 and

12 nm. Since a decreasing number of NPs is analyzed and evaluated for these mean height and

standard deviation values, as well as for the PSD graphs, the results can only be used to give a

hint towards the sintering mechanism.

Summarizing, the obtained PSD-graphs for Al2O3(1-102) reveal an immediate broadening of the

height distributions towards larger sizes and a shift of its center from less than 5 nm towards

11-12 nm, while very small particles cannot be detected at any given time point. Therefore, the

migration of whole particles and their coalescence upon meeting as for PMC can be concluded

to govern the sintering behavior. In this case, if two individual nanoparticles with an initial

4.8 nm height fuse together the calculated mean size of the resulting particle is approximately

6.8 nm. This correlates nicely with the observed central peak shift for the 10 min-PSD. In

agreement, Hejral et al. present notable and rapid sintering of Pt stripes with a height of 2 nm on

crystalline alumina Al2O3(0001) at 277°C, measured with in situ high-energy grazing incidence

x-ray diffraction and online mass spectrometry [67].

4.2.4 Amorphous alumina Al2O3(a)

On the amorphous alumina, the sintering behavior of the Pt NPs is presented in Figure 4.5.

Without visible indication of coarsening, the nanoparticles remain in their quasi-hexagonal

arrangement for 30 min. Only then, after 45 min a few slightly larger particles appear in the

SEM images. This progress is also presented in the corresponding PSDs, obtained with AFM,

and its calculated mean height and standard deviation values (Table 4.4). The mean height with a

sharp single peak centers at approximately 5 nm for the first two time points at 0 min and 10 min,

while only shifting slightly towards 6 nm at 20 min. Yet at 30 min, this peak comes back to

below 5 nm, most probably caused by small inaccurancies in the measurements. This shape of

the PSD continues with a single peak at around 5 nm for 45 min as well. At later time values

however, some larger particles of sizes between 10 and 20 nm arise. Thus, the standard deviation

increases to more than 2.5 nm for this heating period. Later at 60 min, the sintering is visible by

an agglomeration of a few clustered particles with a height of up to 25 nm in the PSD, while many

NPs still remain in their original hexagonal pattern. Thus, the information obtained from SEM

and AFM strongly indicates Ostwald ripening to be the prevalent sintering mechanism. None of

the PSDs reveal a peak shift of the graphs towards bigger sizes as predicted by the PMC model.

If this was the case, the center of the distribution would have evolved from approximately 5 nm

towards almost 7 nm.

These findings are in accordance with results by Simonsen et al. who showed OR of approx-

imately 3 nm-sized Pt NPs on amorphous alumina at temperatures up to 650°C [125, 126].
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Figure 4.5: SEM images and corresponding PSDs of Pt NPs on Al2O3(a) during sinter studies in
air at 750°C after different time periods. The scale bar in all SEM pictures represents
200 nm.

0 min 10 min 20 min 30 min 45 min 60 min
mean height 4.92 4.66 5.64 4.12 5.57 4.67

standard deviation 1.39 0.87 1.30 2.15 2.53 3.83
number of NPs 626 783 726 306 337 171

Table 4.4: Mean heights, standard deviations and the numbers of evaluated NPs extracted from
PSDs obtained with AFM for the sintering of Pt NPs on Al2O3(a).
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Tabib Zadeh Adibi et al. also investigated the sintering behavior of 5-6 nm-sized Pt NPs with

INPS at 625°C for 10 h in an oxygen-containing atmosphere. During the coarsening of these

nanoparticles towards a diameter of approximately 7 to 8 nm, they especially observed the loss

of very small particles and thus concluded OR to dominate this phenomenon [137]. Later on,

this group presented an enhanced sinter model for OR by a 3D-nanocone-structure of alumina,

in which they also detected tiny particles during the thermal treatment at 600°C in 4 % O2/Ar-

gas [138].

Summary of sinter study

In the performed sinter studies at 750°C under atmospheric conditions, Pt NPs coarsen mainly via

PMC on the studied crystalline substrates. The PSDs show that the corresponding mean heights,

and thus diameters of the nanoparticles evolve towards larger sizes without the evidence of small

particles. The Pt NPs behave quite differently on the tested amorphous substrates where OR is

the driving mechanism behind the sintering process. On thermally oxidized and amorphous silica,

this is manifested in a bimodal distribution of larger particles combined with tiny ones. Pt NPs

exhibit significantly higher sinter stability on the amorphous alumina compared to the other three

substrates. Larger NPs slowly begin to arise after 45 min without much loss of the hexagonal

nanoparticle arrangement. This finding is in agreement with a study by Tabib Zadeh Adibi and

coauthors where they applied heat treatments with temperatures up to 600°C in a 4 % O2/Ar

atmosphere. They reported a higher sinter stability of Pt NPs on sputtered alumina compared to

sputtered amorphous silica and attributed this higher stabilization to a larger degree of Pt wetting

on the alumina [139].

4.3 Parameters influencing sintering behavior

To gain a deeper understanding of Pt NP sintering behavior on the four different investigated

substrates, several parameters were analyzed. Thus the adhesion of the nanoparticles to the

substrates was measured with LFM, surface roughness was determined in tapping mode-AFM and

surface potential of the substrates was obtained with KPFM. Lastly, contact angle measurements

revealed disclosure of the surface tension of water on the different supports.

4.3.1 Adhesion of platinum nanoparticles

First, the adhesion of Pt NPs to the different substrates was studied with LFM, which measures the

force of friction between the sample and the tip in contact mode [107]. Hereby, the normal force

(FN) is applied to the tip at the cantilever during its horizontal movement across the specimen

(Figure 4.6a). Therefore, FN was adjusted in this experiment. Following a procedure described

by Eppler et al. [50], an area of 3 µm x 3 µm was scanned with a reduced normal force. As an

example, the regular arrangement of the Pt NPs can be seen on crystalline alumina in Figure 4.6b.

Then, an increasing FN was applied onto a smaller area of 1 µm x 1 µm until all Pt NPs were

removed. Afterwards, the original area of 3 µm x 3 µm was scanned again with the initial
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Figure 4.7: Comparison of measured FN to study Pt NP adhesion on different substrates.

normal force (Figure 4.6c) to verify the complete removal of the NPs. Further AFM images

of the adhesion study with LFM are presented in Figure A.1 in Appendix A.

The obtained FN-values needed to remove the Pt NPs from the alumina and silica substrates

before and after heat treatment at 750°C for 10 min are shown in Figure 4.7. For the samples

that were not thermally treated (0 min) the resulting normal force needed to remove all of the Pt

NPs was generally slightly lower on the crystalline substrates than on the amorphous substrates

pertaining for both silica and alumina. Crystalline silica and alumina required normal forces of

37.2 ± 7.0 nN and 53.6 ± 3.7 nN respectively compared to 52.3 ± 5.0 nN and 66.3 ± 8.1 nN

for the amorphous supports. Hereby, the lowest adhesion of the NPs is seen on the crystalline

silica-substrate. Treatment at 750°C for 10 min only caused a minor difference in the measured

FN-value for the crystalline alumina with an increase of approximately 2 nN to 55.7 ± 8.3 nN.

On the crystalline silica-substrate a higher FN-value was obtained with 61.5 ± 14.3 nN, which

is still very comparable to the 0 min-datapoints of all other samples. However, a drastic change

was found for the NP adhesion on the amorphous supports during the heat treatment, which was

reflected in significantly higher FN-values. Both amorphous silica and alumina required FN-values

of 109.4± 12.3 nN and 114.8± 16.3 nN to remove the NPs and thus show an almost two-fold gain
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Figure 4.8: Surface roughness (Rq), obtained via AFM, of silica and alumina substrates before
and after sintering in air at 750°C for 1 h.

in FN . Though all small nanoparticles could be scraped off of the amorphous surfaces, some larger

sintered particles that had formed during the 10 min oven treatment could not be removed with

the AFM, as seen in Figure A.1 in Appendix A on the amorphous silica-sample. Such an increase

in FN of approximately 50 nN for nanoparticle removal has also been reported for these two

substrates [50, 146]. As underlying reasons, Eppler et al. assumed that a Pt silicide formation is

involved [50], whereas Tsirlin et al. explained it as a function of increased interaction between the

Pt NPs and the alumina substrate [146]. By correlating sintering and adhesion properties of Pt NPs

on crystalline and amorphous silica and alumina it becomes evident that NPs adhere more strongly

to amorphous substrates, especially after heat treatment. Overall, NPs sinter less on amorphous

substrates than on crystalline ones. The mechanism by which they sinter on amorphous supports

is dominated by Ostwald ripening, whereas on crystalline substrates NPs sinter through PMC.

Thus, it can be concluded that stronger adhesion contributes to Ostwald ripening by increasing Pt

NP immobilization. The adhesion of the NPs to the substrates plays a role in the sintering kinetics

of Pt NPs on the four tested substrates.

4.3.2 Substrate roughness

As a second parameter, the roughness of these different substrates was studied with AFM to

evaluate its influence on the Pt NP sintering. Height information of the substrates was obtained

by slow scans in tapping mode. The resulting image root mean squared roughness parameter

(Rq), defined as the root mean square average of height deviations, is used to make a statement

on the surface roughness. The measured roughness values were determined on samples before

and after 1 h heat treatment at 750°C and are displayed in Figure 4.8. At 0 min, crystalline

and amorphous silica, as well as crystalline alumina all displayed very similar Rq-values and

maximum vertical distances between the highest and lowest surface points with Rq equivalent

being 0.117± 0.014 nm, 0.142± 0.007 nm and 0.105± 0.004 nm correspondingly. Also, during

the heat treatment at 750°C for 1 h, the measured values changed only slightly to 0.134 ± 0.007

for SiO2(0001), 0.148± 0.007 nm for SiO2(ox) and 0.107± 0.001 nm for Al2O3(1-102). In stark
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Figure 4.9: KPFM-study with a Pt-Ir tip on silica and alumina before and after sintering in air
at 750°C for 1 h.

contrast, the amorphous alumina substrates were characterized by significantly greater roughness

of 0.372 ± 0.020 nm before and 0.356 ± 0.010 nm after the heat treatment. Generally, for all

substrates no morphological surface alterations became evident during the entire hour of the heat

treatment. Due to the sputtered, thick amorphous 100 nm-layer, the roughness on the Al2O3(a)-

support is almost three-fold greater than on all other tested surfaces.

Since the sintering rate is considerably reduced on the amorphous alumina, it can be concluded

that surface roughness is one parameter that obviously contributes to Pt NP sinter stability. This

emphasizes the fact that substrate height heterogeneities play a more important role in Pt NP

sintering than adhesion, which increased on both amorphous silica and alumina substrates.

4.3.3 Surface potential study with Kelvin probe force microscopy

The surface potential was measured with AFM-based amplitude modulation (AM-) KPFM, which

is useful for detecting the contact potential difference between a tip and a sample. Thus, the work

function as well as the surface potential can be obtained [102]. Typically used for metals or

semiconductors, Ludeke et al. also applied the KPFM-technique to oxides such as silica and

alumina layers [88]. Accordingly, the here measured VCPD-values between the used Pt-Ir tip and

the samples before and after 1 h at 750°C are depicted in Figure 4.9. These were -153.0± 8.3 mV

and -122.8 ± 9.9 mV for the crystalline silica and alumina-samples before the heat treatment.

During the 1 h-time interval at 750°C, the values changed insignficantly to -225.7 ± 30.0 mV

and -136.0 ± 17.9 mV respectively, so this exposure to high temperatures does not effect the

surface potential of these substrates. Due to high measurement inaccuracies on isolating oxide-

samples, standard deviations of ± 100 mV can be neglected. Hence the two tested crystalline

supports revealed very similar potentials. Additionally, for the amorphous silica-samples surface

potentials of 97.0± 47.1 mV before and -50.1± 54.4 mV after the oven procedure at 750°C were

gained. While these values are higher compared to the crystalline substrates, they do not show a

significant rise. Thus, all the measured potentials on crystalline and amorphous silica, as well as
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crystalline alumina are comparable, ranging between -200 mV and +100 mV. In stark contrast, a

considerably higher surface potential – more than 500 mV above the values of the other surfaces –

was obtained on amorphous alumina. Hereby, the values reached 591.6 ± 54.3 mV before and

636.9 ± 65.2 mV after the heat treatment. Again, the high temperatures of 750°C in the oven

do not seem to considerably change the surface potential of the substrates. Yet, the major rise

between maximum 100 mV for amorphous silica and 600 mV for the amorphous alumina reflects

a significant surface potential difference between the tested samples.

The matching work functions Φsample for these materials can be calculated by the converted form

of equation 2.2

Φsample = Φtip + e ·V.

The work function of the tip Φtip was determined by performing reference measurements on

chromium and nickel. Thus, the work function of amorphous alumina is calculated to be 4.8 eV,

whereas the other three substrates – crystalline and amorphous silica, as well as crystalline

alumina – have work functions ranging from 5.5 eV to 5.7 eV. Illustrating and explaining this

work function difference with the help of energy diagrams, Figure 4.10a shows the higher surface

potential of the amorphous alumina substrate in contrast to the other supports as in Figure 4.10b.

As a result of this higher potential the electrons on the surface of amorphous alumina need less

energy to leave the substrate from their Fermi energy level EF to reach the vacuum energy level

EV , resulting in a higher reactivity. Also considering the stronger adhesion of the Pt NPs on the

amorphous alumina substrate during the LFM-measurements, the formation of a bond between

these two materials seems likely.

In conclusion, a high surface potential, as seen on the amorphous alumina-support, is one of the

factors contributing to a decrease in the Pt NP sintering at high temperatures.
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Figure 4.11: Contact angles of water on crystalline and amorphous silica and alumina before
(0 h) and after heat treatment for 10 min and 1 h at 750°C.

4.3.4 Surface energy via contact angle measurements

As a last parameter, the contact angle of water was measured on amorphous and crystalline

silica, as well as alumina. Figure 4.11 presents the obtained contact angles for the different

substrates before and after a 10 min and 1 h-heat treatment at 750°C. For crystalline silica, angles

of 28.7 ± 2.1°, 30.0 ± 2.9° and 30.8 ± 4.2° and for crystalline alumina, angles of 24.2 ± 2.6°,

25.4± 1.9° and 27.8± 3.3° were detected for 0 h, 10 min and 1 h at 750°C respectively. However

on amorphous silica, the contact angle increased to 42.3± 1.2°, 42.9± 1.5° and 42.9± 2.4°, thus

revealing a considerably more hydrophobic behavior of the water drop on this support compared

to the two crystalline substrates. Lastly, the contact angles showed higher values by more than

15° for the amorphous alumina with 58.1 ± 3.0°, 59.4 ± 2.9° and 59.1 ± 3.1°. Hereby, the

water wets significantly less on these lastly tested substrate compared to the other ones. Overall,

the heat treatment does not effect the contact angles of water on these substrates. Yet, since the

interfacial tension between the water drop and the substrate, as well as the surface energy of the

substrate in air are unknown, the surface energy of the underlying support cannot be calculated

(see Equation 2.8 in chapter 2.2.4). But the overall trend of the water contact angles on crystalline,

as well as amorphous silica and alumina correlates very well with the observed sintering of Pt

NPs on these supports. A higher contact angle refers to a less pronounced sintering through the

Ostwald ripening process, while very low contact angles as seen on the two crystalline substrates

refer to rapid Pt NP-coarsening via the PMC-mechanism. The enhanced wetting of water on the

crystalline substrates could relate to a more distinct wetting of platinum and therefore a higher

surface diffusion of whole Pt NPs on these latter supports. The shadows seen on the crystalline

alumina and silica during the above sinter studies (Figure 4.2 and 4.4) strongly support this thesis.



52 4 Sintering of platinum nanoparticles on amorphous and crystalline silica and alumina

4.4 Sintering of platinum nanoparticles on dual-structured

substrates with silica and alumina

The sintering behavior of Pt NPs at the interface between two amorphous materials, silica and

alumina, was studied using dual-structured substrates comprising both an alumina- and a silica-

section. The particles were immobilized on one of the two materials and then heated to 750°C for

different time intervals. Via SEM combined with energy dispersive X-ray spectroscopy (EDX)

the sintering was characterized and platinum was identified in the grown particles.

4.4.1 Platinum nanoparticles on SiO2(a) interfacing particle-free Al2O3(a)

For the first sinter study, Pt NPs were placed on the amorphous silica SiO2(a)-side of the dual

surface substrate comprising silica and amorphous alumina, Al2O3(a). Their thermal behavior

was studied over a time period of 90 min and the resulting SEM images are presented in

Figure 4.12a. As it can be seen, the initial regularly arranged Pt NPs at 0 min begin to sinter

quickly by loosing their quasi-hexagonal pattern and larger agglomerated particles can be detected

after 15 min. This behavior is identical to the one which was observed on the single surface

amorphous silica samples shown in Figure 4.3. Sintered NPs up to 60 nm were observed in TEM

images (Figure 4.13). These larger particles occur most frequently at the approximately 50 nm

high border towards the amorphous alumina. The preferred migration and clustering of Pt NPs

in the direction of this interface, where they are more sinter stable, is attributable to the existence

of an Ehrlich-Schwoebel barrier, which is theoretically introduced in chapter 3.1 and a schematic

illustration of this barrier is shown in Figure 3.4. At this barrier an additional potential needs to

be overcome by the NPs to enable them to cross over the border towards alumina [48, 120].

Thus, the barrier slows down nanoparticle migration with the local accumulation of sintered

Pt NPs. Yet, those Pt NPs that were initially situated far away from this boundary are not

affected. After 30 min, some Pt NPs can be discovered on the amorphous alumina. By detecting

backscattered electrons in the SEM, material contrast caused by different atomic numbers of the

imaged elements can be made visible. With the ESB-detector, heavier materials like platinum

- recognizable by their brighter intensity - can be distinguished from the substrates with lighter

elements, such as Al, Si, and O in alumina and silica [3]. This trend of accumulated sintered

Pt NPs on the silica-section at the interface towards amorphous alumina continues through the

60 min-time point. And lastly, at 90 min, NPs migrating onto the amorphous alumina were

observed at and right behind the border of silica to alumina. Using EDX on these 90 min-

samples proves that the bright spots on the amorphous alumina are Pt NPs. In the EDX spectra of

Figure 4.14, the measured local points are confirmed to contain platinum by showing a platinum

peak at 2.049 keV.

The sintering behavior of these Pt NPs was also observed in comparison to control samples,

as shown in Figure B.1a in Appendix B. For these samples, dual-structured amorphous silica-

alumina-substrates were fabricated without depositing Pt NPs onto them. During a sinter study

over the time interval of 120 min, no migrating bright spots and no platinum could be detected

anywhere. Our observations support the hypothesis that, due to thermodynamic reasons, noble
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metal nanoparticles do not to stay on rather low metal interaction domains, which in this case is the

amorphous silica-side. Instead, they partially migrate onto high metal interaction domains, such

as the amorphous alumina with its high surface potential. This sintering behavior is schematically

illustrated and summarized in Figure 4.16a.

4.4.2 Platinum nanoparticles on Al2O3(a) interfacing particle-free SiO2(ox)

In a second experiment, the Pt NPs were placed on the amorphous alumina Al2O3(a)-side of

the dual surface substrate and their thermal behavior was studied over a time period of 6 h.

The result of this sinter study is shown in Figure 4.12b. The choice of longer time intervals

to observe NP growth during sintering on amorphous alumina is related to the increased sinter

stability demonstrated in the individual substrate study in Figure 4.5. Comparable with the above

described Pt NPs on the silica-section (Figure 4.12a), the particles are well arranged in their

hexagonal pattern at 0 min on the Al2O3(a) (Figure 4.12b). The hereby observed coarse silica
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layer on the 0 min-sample is caused by an incomplete removal of the resist. This phenomenon also

occured on the reference 0 min-sample without Pt NPs, as shown in Figure B.1b in Appendix B,

which looks very similar. Due to their high sinter stability, the Pt NPs remain in their original

structure for the first 1 h. After about 2 h at 750°C, the original hexagonal pattern of the NPs

starts to disintegrate as NPs migrate away from the border facing the amorphous silica SiO2(ox).

As expected, the NPs sinter more slowly in those areas of the amorphous alumina that are more

distant from the border than those very close to it. At the interface the samples also show a slightly

changed morphology which is probably caused by the removal of the resist through sonication.

This evolution continues in the 4 h-sample with only a few small particles being left in the region

close to the barrier towards silica. Furthermore, after exposure at 750°C for 6 h, no small Pt NPs

were observed anymore on the alumina near the interface border. However, few large NPs were

found on the alumina. These could be identified as platinum particles using EDX (Figure 4.15).

The platinum peak in the EDX spectrum is detected at the reported 2.049 keV-energy mark. Yet,

none of the coarsened sintered Pt NPs were found on the silica.

The sintering behavior of the Pt NPs was verified using control samples, which are presented in

Figure B.1b in Appendix B. Again, the substrates exhibited no morphological changes that could

interfere with the sintering behavior of Pt NPs on these supports. Additionally, both the diffusion

of aluminum ions into silica as well as the diffusion of silicon ions into alumina could be ruled

out by EDX measurements.

Pt NPs sinter much faster on amorphous silica compared to alumina, and preferably migrate into

close proximity of the interface (Figure 4.16a). On the contrary, Pt NPs on alumina sinter at a

much slower rate and remain on the alumina-side with no visible preferred migration towards the

interface to the silica (Figure 4.16b). This suggests that Pt NPs prefer to localize on or as near as

possible to the alumina surface, most likely due to its enhanced sinter stability properties.

4.5 Summary

The sintering behavior of Pt NPs on crystalline and amorphous silica and alumina was studied

under atmospheric conditions at 750°C. Fast coarsening of the NPs to large particles and the

quick loss of their original quasi-hexagonal pattern suggests PMC to be the dominant sintering

mechanism on the crystalline substrates. In contrast, Pt NPs on the amorphous substrates
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Figure 4.16: Scheme summarizing the sintering behavior of Pt NPs on structured amorphous
silica- and alumina-samples. (a) Pt NPs placed on amorphous silica preferably
migrate to the interface towards alumina, and some sintered Pt NPs can be detected
on the alumina-side after thermal treatment at 750°C. (b) Pt NPs placed on amor-
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remain in their original hexagonal arrangement for longer and very small particles appear over

time, suggesting that Ostwald ripening governs this sintering behavior. The comparison of

amorphous silica and amorphous alumina reveals that NPs coarsen much faster on amorphous

silica. Amorphous alumina displays by far the highest sinter stability.

Pt NPs surface adhesion, substrate roughness, surface potential and energy were analyzed and

their influence on sintering behavior was examined. The Pt NPs adhere much more strongly to

the amorphous substrates than to the crystalline supports, especially after heat treatment at 750°C

for 10 min. In this case, an almost twofold increase in nanoparticle adhesion was detected on the

amorphous silica and alumina supports. Thus, stronger adhesion tends to slow down the sintering

by impacting the Ostwald ripening process through an advanced Pt NP immobilization. Yet, one

primary contributing factor impacting the thermal stability of the nanoparticles is the surface

roughness of the amorphous alumina, which is approximately three times greater compared

to crystalline alumina and the two tested silica-samples. Hereby, more pronounced substrate

height heterogeneities on the amorphous alumina reduce the sintering more than an increased NP

adhesion, which was enhanced on both amorphous supports. Additionally, the surface potential

of the substrates was investigated with KPFM and amorphous alumina was found to have a

considerably higher potential than all the other substrates. This suggests the surface potential

of the underlying substrate to be another important factor contributing to the improved sinter

stability of Pt NPs on this support. Because amorphous alumina exhibits an increased reactivity,

a bond formation between the Pt NPs and the amorphous alumina is hypothesized to take place.

Lastly, the contact angles of water on the tested substrates correlate very well with the observed

sintering behavior of the Pt NPs. A higher contact angle, thus a lower wetting of water on the

substrate, reveals an increased Pt NP sinter stability. This is possibly caused by a reduced Pt NP

flattening and therefore, less profound surface diffusion of platinum clusters as detected on the

amorphous substrates with OR as dominant sintering mechanism. In sum, the increased surface

roughness and the higher surface potential of the substrate underneath the catalytically active
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Pt NPs are two dominant factors for governing their sintering behavior, while NP adhesion and

surface energy of the support play an important role for the sintering mechanism.

After classifying some important parameters, the performance of Pt NPs on dual-structured

substrates containing an amorphous silica- and an amorphous alumina-side was investigated

during heat treatments at 750°C, with specific interest in the behavior at the interface between

these two materials. NPs situated on the silica-section were generally quicker to grow into

larger particles and also showed directional migration towards the interface, which acts as an

Ehrlich-Schwoebel barrier. Thus, sintered nanoparticles tend to accumulate at the border towards

amorphous alumina. As time progressed, Pt NPs also crossed over it and could be detected on the

alumina-section of these samples. EDX and ESB exclusively identified platinum in the migrated

nanoparticles. On the other hand, when Pt NPs were placed on amorphous alumina of increased

sinter stability and with an interface towards amorphous silica, the NPs remained unaltered until

much later time points. In general, Pt NPs immobilized on alumina coarsen much slower. No

diffused NPs on the silica-side could be detected at any time with the NPs remaining on the

alumina-section. In sum, it appears that Pt NPs favor the high metal interaction alumina substrate

with its properties concerning advanced sinter resistivity over the low metal interaction silica

substrate.





5 Sintering of platinum nanoparticles on tilted

sapphire wafers

In chapter 4, Pt NP sintering was studied on crystalline and amorphous silica and alumina

substrates while examining the impact of substrate properties on the sintering behavior. In

contrast, this chapter will investigate nanoparticle coarsening on sapphire wafers, Al2O3(c),

with different tilt angles. Hereby, the surface structuring was performed on the same substrate

material excluding the impact of different chemical compositions. Alumina was chosen due

to its common application in car converters for exhaust combustion [20]. The structuring was

obtained by varying the tilt angle of the sapphire wafers between 0.1° and 15°. This yielded

surface heterogeneities in the lower nanometer range of maximum 15 nm. During sinter studies

in air and under vacuum, the influence of nanometer-sized surface structuring on the Pt NP’s

thermal stability was analyzed. Hereby, the focus was placed on whether the step edges act as

Ehrlich-Schwoebel (ES) barriers, thus hindering the diffusion of platinum clusters.

5.1 Analysis of tilted sapphire wafers

Nowadays, sapphire as a multifunctional material with its advantages of inertness and superior

thermal and mechanical stability is used for diverse engineering purposes in addition to its

implementation for catalytic functions. These include the application as substrates for the growth

of epitaxial semiconductor films, such as silicon or gallium nitride or for the fabrication of

integrated circuits and aligned single-walled carbon nanotubes [46, 90, 40, 63]. Hereby, during the

chemical vapor deposition of gallium nitride, the lattice parameters of the latter and sapphire do

not completely match depending on the use of r-plane (1-102) or c-plane (0001) sapphire, yielding

diverse dislocation densities in the gallium nitride layer and thus it influences the resulting layer-

quality [90, 40]. In the past couple of years, tilting the sapphire substrate has been studied with

its influence for the epitaxial growth of such layers [104].

In this thesis, c-plane (0001) Al2O3-wafers with tilting angles of 0.1°, 4°, 9° and 15° towards the r-

plane (1-102) have been used, as illustrated in Figure 5.1. It is of interest if the nanoparticles show

deviations in their sintering behavior depending on the exposed (0001)-lattice edges. Through an

extensive cleaning procedure with acetone, an oxygen plasma and peroxymonosulfuric acid, as

well as a heat treatment at 1400°C for 24 h, the amorphous layer was removed on the tilted

substrates and the step edges were observed in AFM. The resulting height profiles, which were

obtained within the framework of an internship by master student Sarah Young, B.Sc. under my

superivision, are shown in Figure 5.2.
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(0001)

(1-102)

4°

Figure 5.1: Scheme of 4°-tilted Al2O3(c)-wafer.

The 0.1°-tilted sapphire substrates reveal regular lattice edges on a height scale in the picometer

range. As seen in Figure 5.3a, the average step height is 0.26± 0.04 nm and the step size is around

344.67 ± 43.10 nm (Figure 5.3b). Thus, the 5-6 nm sized Pt NPs for the sinter study, which

show heights ranging between 4 and 5 nm in AFM-measurements, are much larger compared to

the step height of these 0.1°-tilted wafers, serving as a reference later on. Also, the step size

should not influence the sintering behavior of the Pt NPs with a size more than 60-times the

nanoparticle’s diameter and approximately 3-times the interparticle distance between the particles

of 80 to 120 nm. When comparing this “flat” substrate with the small 0.1°-angle to the other tilted

wafers while keeping a constant height scale from +13.5 nm to -14.2 nm, as shown in Figure 5.2

on the right side, the step edges are hardly visible.

Secondly, in Figure 5.2 on the left side, the step edges of the 4°-tilted sapphire substrates are

imaged via AFM and are displayed with a height scale of +3.5 nm to -3.7 nm. Their mean step

height is measured to be 3.56 ± 0.92 nm, while their step size is 50.37 ± 12.40 nm (Figure 5.3a

and b). For these wafers, the step size has decreased significantly to a seventh of the 0.1°-tilted

ones and so very close edges are appearant. In the 3D-view of Figure 5.2, the edges are clearly

observable when comparing all substrates with each other on a constant height scale. In this case,

the 5-6 nm sized NPs are a little bit larger than the step heights, yet are in their size range. Thus

the NPs to are hypothesized to notice the (0001)-lattice edges. Additionally, with an approximate

interparticle distance of 80-120 nm, only one individual NP is supposed to be on a step from a

vertical viewpoint due to the decreased step sizes.

As third substrates, sapphire wafers with 9°-tilting angles are examined and their height profile

is presented in Figure 5.2 with an individual height scale of +5.6 nm to -6.2 nm on the left side

and in a 3D-view with the constant height scale for comparison on the right side. Here, the

lattice plane edges are even closer to each other than on the 4°-wafers and reveal a step size of

33.67 ± 15.56 nm (Figure 5.3b). Thus again as with the 4°-substrates, each NP with a large

interparticle distance of around 100 nm is separately placed on a step when viewed perpendicular

to it. The step height of the 9°-tilted sapphires increases to 4.06 ± 1.18 nm (Figure 5.3a), which

is comparable to the Pt NP height in AFM of 4-5 nm (as for example in Figure 4.2). This

nanoparticle size is slightly lower than the TEM-determined diameter of 5-6 nm for the NPs

due to wetting and flattening of the nanoparticles on the substrate.

Lastly, the 15°-tilted substrates result in a disparate AFM height image than the 4° and 9° ones.

They reveal an increased step size with 110 ± 34.75 nm while not following the trend of smaller

steps for larger tilting angles (Figure 5.3b), which is also seen in the AFM 1D- and 3D-images
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Figure 5.2: Height profiles of 0.1°, 4°, 9° and 15°-tilted Al2O3(0001)-wafers by AFM. On the
left side (1D), the height scale is individually adapted showing finer structures, while
on the right side, the substrates are compared in a 3D-view with a consistent height
scale.
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Figure 5.3: Comparison of step (a) height and (b) size of 0.1°,4°,9° and 15°-tilted Al2O3(0001)-
wafers.

in Figure 5.2. In this case, the Pt NPs disclose similar interparticle distances with the 15°-lattice

plane sizes. However, as expected the step height increases to 11.00 ± 3.84 nm (Figure 5.3a) and

so, the NPs with a diameter of 5-6 nm and an AFM height of 4-5 nm are smaller than the lattice

plane height differences. Thus, the particles are suspected to migrate differently on these steps

compared to a flat surface like the 0.1°-tilted wafers. In this case, the step edges are suspected to

act as diffusion barriers [136].

As a note, it has to be mentioned that not all tilting wafers - independent of the 4°, 9° or 15°

tilt angle - display the exact same step heights and step sizes and therefore, the height profiles

are subject to variations due to the cutting and processing by the company as it could be seen on

wafers from different batches.

Furthermore, the surface potential of 0.1°- and 15°-tilted sapphire wafers was examined with

frequency modulation (FM-)KPFM. Due to an increased sinter stability in high surface potential

areas, as seen on the amorphous alumina, the question arises if the NPs experience a similar

phenomenon by locally different potentials on the tilted sapphire wafers. In comparison with

AM-KPFM, the FM-KPFM technique shows improved lateral resolution on small height and

potential scales due to the recording of the force gradient which is more sensitively detected by

the small tip than by the whole cantilever as with AM-KPFM [170].

First, the measured height- and potential-AFM images of a 0.1°-tilted Al2O3-substrate are

presented in Figure 5.4. The profiles of height and surface potential differences in the marked

boxes are graphed on the right side and the small step illustration with the arrow indicates the view

on the lattice planes. For this 0.1°-tilted sapphire wafer, a normalized height drop from 156 pm

to −192 pm and thus, a difference of approximately 350 pm was measured while scanning over

the lattice plane edge. At the same time, a decline and relative minimum in the potential was

observed. Right before the edge appears, the surface potential peaked slightly at +25 mV, while

it then dropped to −40 mV at the very end of the step edge. Afterwards, it rose again to a similar

potential as before on the other step with relative fluctuations between −10 mV to +10 mV.

Therefore, the potential on the steps appears not to be impacted by a nearby edge. Only very

close to it a change in surface potential of up to 65 mVcan be detected, which results in a rapid

drop of the potential while scanning over the lattice plane edge.
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Figure 5.4: Height- and potential-images of a 0.1°-tilted Al2O3(0001)-wafer in FM-KPFM.
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Figure 5.5: Height- and potential-image of a 15°-tilted Al2O3(0001)-wafer in FM-KPFM.
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Secondly, wafers with 15°-tilting angle were observed with FM-KPFM. In Figure 5.5, the height-

and potential-images are demonstrated with the respective presentation of the height and potential

difference-graphs. Hereby, the behavior of the surface potential is illustrated over three lattice

plane edges. These edges exhibited height differences between maximum +20 nm and −19 nm

and so a drop in height as far as 39 nm occured. At the same time, the potential indicated a

significant drop, when the AFM tip was scanned across each step edge. The average surface

potential on the step remained similar with only one peak right at the top of the shown edge.

Here, the potential rose to +58 mV and then declined to −67 mV which yielded a difference

of around 125 mV. The other lattice plane edges did not display this peak, yet appear to have

a constant surface potential. This single peak might be caused by surface irregularities and

measurement inaccuracies. However, directly after each step edge the potential sinks very rapidly

by approximately 70 mV.

Summarizing the FM-KPFM experiments, the surface potential experiences a considerable

reduction when the AFM tip is scanned over a step edge. Very close to the top of the lattice

plane edge an additional increase in potential can be measured for some steps. Yet, the surface

potential is relatively constant for all lattice planes remote from this edge. Thus, the drop in

potential, as well as the acting of the step edges as diffusion barriers should impact the NP’s

behavior in the sinter studies [136].

5.2 Sinter studies of platinum nanoparticles on tilted sapphire

wafers

The sintering behavior of 5-6 nm sized Pt NPs was then studied on the above characterized 0.1°,

4°, 9° and 15°-tilted c-plane (0001) sapphire wafers. Hereby, the discrepancies in nanoparticle

coarsening were examined with a special focus on the influence of different step heights and sizes

of these tilted substrates. The sinter studies were performed at 750°C in air and also at 1200°C

under vacuum.

5.2.1 Sinter study in air at 750°C

The coarsening behavior of Pt NPs on 0.1°, 4° and 9°-tilted sapphire wafers was analyzed during

a sinter study at 750°C under atmospheric conditions. The resulting SEM pictures are shown

in Figure 5.6. At 0 min, the Pt NPs are well-arranged in their quasi-hexagonal structure on the

0.1°-tilted substrates, which serve as references. After a heat treatment at 750°C for 10 min, the

nanoparticles start to sinter and bigger platinum clusters are oberved. In general the particles start

to spread on the sapphire substrate, visible by flat enlarged spots compared to the initial state.

This is most probably due to wetting of the Pt NPs and diffusion processes of platinum on the

sapphire-surface. Additionally, the hexagonal pattern starts to disintegrate. Sintering for longer

times, big clustered nanoparticles appear at 20 min while only a minor fraction of small original

particles can still be found. At this time point, most of the Pt NPs sintered to large ones, which

is comparable with the sinter study on crystalline r-plane (1-102) alumina, as seen in Figure 4.4.
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Figure 5.6: SEM images of Pt NPs on 0.1°, 4° and 9°-tilted Al2O3(0001)-wafers during sinter
studies in air at 750°C after different time periods. The scale bar in all SEM pictures
represents 200 nm.

On Al2O3(1-102) the particles migrated and coalesced upon meeting each other and the PMC

mechanism was determined to govern the coarsening of the Pt NPs. This also seems very likely

to be the case on these 0.1°-tilted substrates. From the SEM-images in Figure 5.6, the contribution

of Ostwald ripening (OR) cannot be evaluated due to the rapid sintering in the oxygen-containing

air.

Also on the 4°-tilted ones, the NP structure appears to be highly regular at the initial 0 min-time

point, which supposes that the step heights and sizes of the lattice planes do not interfere with the

spin coating process of the micelles. Because of an average step size of approximately 50 nm and

an interparticle distance of 80-120 nm, the Pt NPs are individually placed on these lattice steps in

a perpendicular direction of the latter ones. After exposing the nanoparticles to a heat treatment

at 750°C for 10 min, big clustered particles start to show up. At the same time, spread out smaller

platinum particles are preferentially observed at the edges of the steps which seem to be favored

by the nanoparticles. This is possibly caused by the measured higher surface potential at the edge

before it starts to drop when crossing it. Later on at 20 min, the bigger particles continue to grow
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Figure 5.7: SEM images and corresponding PSDs of Pt NPs on 0.1°, 4°, 9° and 15°-tilted
Al2O3(0001)-wafers. The scale bar in all SEM pictures represents 200 nm.

and less small nanoparticles are detected. Again most of the particles appear to prefer the edge of

the (0001)-lattice plane steps.

Lastly, the sintering behavior of Pt NPs on 9°-tilted sapphire wafers is presented in Figure 5.6.

Contrary to the 0.1° and 4°-ones, the Pt NPs are not regularly arranged in their quasi-hexagonal

structure anymore, caused by higher step heights. Here, the particles tend to align rather along

the bottom of the lattice plane edges due to a local trapping of the micelles during spin coating.

After a heat treatment at 750°C for 10 min, big sintered nanoparticles are seen and the structure

of the small particles dissolves completely. Interestingly, for all 0.1°, 4° and 9°-tilted wafers

these bigger platinum clusters are especially located very close to each other and not frequently

scattered across the whole surface of the wafer. Continuing the oven procedure for 20 min, almost

none of the small nanoparticles can be detected for the 9°-tilted sapphire substrates anymore. Only

very spread out and big sintered ones are visible, preferably positioned at the step edges. Even

though the nanoparticle diameter is in the range of the step heights on the 4° and 9°-tilted supports,

no obvious difference in sintering mechanism can be distinguished. The step edges, which act as

Ehrlich-Schwoebel barriers, do not hinder the migration of the nanoparticles or the diffusion of

the adatoms if OR is present when compared to the reference flat 0.1°-tilted substrates. This is

either induced by the high temperature which provides the energy to overcome this barrier or

by sintering through volatile platinum oxide particles in the oxygen-containing atmosphere.Yet,

overlapping of the spread out big sintered particles and neck formation of these ones, as described

for the PMC meachnism, are apparant.

5.2.2 Sinter study in vacuum at 1200°C

To further evaluate the sintering behavior at a slower pace, another study was performed under

vacuum at 1200°C during a time period of 48 h. The absence of oxygen is reported to decrease the

sintering rate due to the favorable formation of metal oxide clusters with lower adsorption energies
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Figure 5.8: SEM images and corresponding PSDs of Pt NPs on 0.1°-tilted Al2O3(0001)-wafers
during sinter studies under vacuum at 1200°C after different time periods. The scale
bar in all SEM pictures represents 200 nm.

0 h 2 h 4 h 7 h 16 h 32 h 48 h
mean height 12.89 14.74 14.68 16.66 16.85 18.42 20.46

standard deviation 2.96 3.87 4.94 4.14 5.30 6.38 5.89
number of NPs 964 1044 1846 1005 827 812 364

Table 5.1: Mean heights, standard deviations and the numbers of evaluated NPs extracted from
PSDs obtained with SEM for the sintering of Pt NPs on 0.1°-tilted Al2O3(0001)-wafers
during sinter studies under vacuum at 1200°C.
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and thus a faster transport across the substrate towards other particles in oxygen-containing

atmospheres [74, 66, 164]. The nanoparticle coarsening in vacuum was monitored through SEM-

images and particle size distributions (PSDs) were extracted from these high-resolution pictures

with the help of the program ImageJ. The PSDs are presented underneath the corresponding

SEM images. Importantly, the resolution limit of the SEM in the range of the NPs’ size and the

approximately 7 nm carbon coating of the samples to achieve conductive specimens have to be

considered when evaluating the obtained results.

As the starting position, the 0 h-samples of 0.1°, 4°, 9° and 15°-tilted sapphire wafers with

immobilized 5-6 nm Pt NPs are presented in Figure 5.7. Here, the NPs are regularly arranged

in their quasi-hexagonal pattern on the 0.1°-substrates. On the 4°-ones, the continuous structure

starts to break down. This phenomenon is further intensified on the 9° and 15°-tilted wafers and

provoked by the rising step heights of the latter more tilted substrates. There, the micelles are

locally trapped at the bottom of the edges during spin coating and the nanoparticles align along

the steps, presenting an irregular hexagonal structure. This effect is particularly present on the

15°-wafer due to an approximately two-fold higher step height compared to nanoparticle size.

The associated PSDs underneath the SEM images reveal a Gaussian-shaped distribution for all

of the 0 h-samples on the different substrates. However, the shape of the graph with its main

peak varies slightly and therefore, mean nanoparticle diameter values of 12.89 ± 2.96 nm on the

0.1°-, 12.88 ± 3.24 nm on the 4°-, 11.96 ± 3.26 nm on the 9°- and 12.49 ± 2.83 nm on the 15°-

tilted supports are calculated. The considerable higher average diameter of 12-13 nm in the SEM

images compared to the 5-6 nm size measured by TEM can be explained by the approximately

7 nm-thick carbon coating on the SEM samples to avoid charging triggered by the electron beam.

Also, the variations in mean nanoparticle diameter and standard deviations in SEM of the same

Pt NP solution are induced by the following size analysis in ImageJ. For this a threshold has to be

applied, which yields minorly diverging results.

Afterwards, the nanoparticle coarsening was observed for the 0.1°-tilted sapphire wafers over 48 h

and the resulting SEM-images and PSDs are shown in Figure 5.8. The 0.1°-substrates serve as

references since their step height is significantly smaller than the NP size and since their step size

is considerably larger than the NP interparticle distance. So, the Pt NPs should not be majorly

affected by the exposed steps. Due to the absence of oxygen, the sintering rate is drastically

reduced and the time interval was extended to much longer periods. After 2 h, the intial structure

of the nanoparticles begins to disintegrate by the diffusion of whole nanoparticles on the sapphire

surface. Because of this phenomenon and the absence of very small particles, Ostwald ripening

can be ruled out as dominating sintering mechanism which agrees with the previous results in

chapter 4. Also, the center of the main peak in the PSD shifts from around 13-14 nm for 0 h to

15 nm for 2 h. Additionally, a few larger sintered particles are detected with sizes ranging up

to 35 nm. The general average diameter and standard deviation (shown in Table 5.1) changes

from 12.89 ± 2.96 nm at 0 h to 14.74 ± 3.87 nm for 2 h. Continuing this trend, the PSD further

broadens at 4 h with a central peak shift to 15-18 nm and a calculated mean and standard deviation

of 14.68 ± 4.94 nm, while large particles with a size up to 40 nm are seen in the SEM image.

After treatment at 1200°C for 7 h, the center of the peak further moves to 17-18 nm. Yet, most of

the initial small particles are still observed in their regular arrangement. This changes drastically
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Figure 5.9: SEM images and corresponding PSDs of Pt NPs on 4°-tilted Al2O3(0001)-wafers
during sinter studies under vacuum at 1200°C after different time periods. The scale
bar in all SEM pictures represents 200 nm.

0 h 2 h 4 h 7 h 16 h 32 h 48 h
mean height 12.88 13.60 15.15 15.32 16.12 17.89 18.28

standard deviation 3.24 4.24 4.17 3.52 4.33 6.14 6.22
number of NPs 885 1172 990 948 576 623 297

Table 5.2: Mean heights, standard deviations and the numbers of evaluated NPs extracted from
PSDs obtained with SEM for the sintering of Pt NPs on 4°-tilted Al2O3(0001)-wafers
during sinter studies under vacuum at 1200°C.
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after 16 h and can be seen in the corresponding SEM-image. The structure is almost completely

dissolved and more NPs grow in size. From this time point on, the PSDs broaden with a rise in

particle sizes to values above 20 nm. Thus, the average mean diameters and standard deviations

which only give an indication on the sintering behavior of the Pt NPs increase to 18.42± 6.38 nm

for 32 h and 20.46 ± 5.89 nm for 48 h. At the last time point, only a reduced number of larger

platinum particles are visible while the majority of the small ones disappeared. The governing

sintering mechanism seems to be PMC as mentioned above due to the disintegration of the original

structure. However, the absence of very small nanoparticles cannot be guaranteed due to the lower

resolution of these PSDs obtained with SEM compared to the ones obtained by AFM in chapter 4.

Yet, the increasing step heights on the subsequently presented substrates make precise height-

measurements at the AFM impossible. Thus, Ostwald ripening could contribute to the sintering

behavior of these Pt NPs, which has to be further analyzed.

Next, the nanoparticle coarsening was monitored on the 4°-tilted sapphire wafers and the resulting

SEM-images and PSDs are shown in Figure 5.9. The Pt NPs start to lose their original structure

after 2 h through particle diffusion on the Al2O3(c)-surface which visibly continues for the 4 h

and the 7 h-samples. Simultaneously bigger sintered nanoparticles are featured at these time

points. Also a few larger ones are detected at 2 h and presented in the PSD with a tail of diameter

sizes up to 32 nm. Yet, at the 4 h-time point, even larger particles with 40 nm diameter appear.

Generally the central peak in the PSDs shifts to around 15 nm during the first 7 hours, while it was

initially detected at 13-14 nm. The calculated mean diameters and standard deviations (Table 5.2)

underline this trend with 12.88 ± 3.24 at 0 h, 13.60 ± 4.24 nm at 2 h, 15.15 ± 4.17 nm at 4 h

and 15.32 ± 3.52 nm at 7 h. As seen on the 0.1°-sample, the NP structure is almost completely

disintegrated on the 4°-tilted substrate at 16 h and more sintered particles are observed. With

a broadened PSD and an average diameter of 16.12 ± 4.33 nm, further coarsening is indicated.

Continuing for 32 h and 48 h, the small particles start to disappear to a greater extent and a more

pronounced tail towards nanoparticles with sizes above 40 nm is detected. Thus, the mean NP

diameter increases to 17.89 ± 6.14 nm at 32 h and 18.28 ± 6.22 nm at 48 h. As it can be seen

in the latter SEM pictures, the sintered nanoparticles align preferentially at the edge of the steps,

which could be related to the higher surface potential at these points before it drops over the edge.

Noticeably, the steps on all of these 2 h to 48 h-samples differ in size compared to the 0 h-sample

(Figure 5.7). Yet, this nanoparticle coarsening behavior was repetitively seen on samples with

narrower steps as well.

Following, the nanoparticle coarsening was monitored on the 9°-tilted sapphire wafers and the

resulting SEM-images and PSDs are shown in Figure 5.10. While the nanoparticles tend to be

more aligned along the steps at 0 h (Figure 5.7), at 2 h no considerable loss in Pt NP-structure is

observed, opposed to the 0.1°- and 4°-substrates. Here, the average diameter in the corresponding

PSD (Table 5.3) increases from 11.96 ± 3.26 nm to 14.54 ± 3.51 nm. However, this is caused

by a few larger particles with a size of approximately 30 nm, while the central peak is still

observed at the same position as on the starting sample. Continuing the heat treatment for 4 h

and 7 h, a rising number of bigger sintered particles with diameters up to 40 nm is detected.

This leads to larger standard deviations with 4.21 nm for 4 h and 4.08 nm for 7 h. Yet due to

many unsintered small particles, the average diameter does not change with 13.96 nm at 4 h and
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Figure 5.10: SEM images and corresponding PSDs of Pt NPs on 9°-tilted Al2O3(0001)-wafers
during sinter studies under vacuum at 1200°C after different time periods. The scale
bar in all SEM pictures represents 200 nm.

0 h 2 h 4 h 7 h 16 h 32 h 48 h
mean height 11.96 14.54 13.96 14.73 16.44 17.46 16.94

standard deviation 3.26 3.51 4.21 4.08 4.68 5.64 6.34
number of NPs 843 1082 1097 985 662 347 324

Table 5.3: Mean heights, standard deviations and the numbers of evaluated NPs extracted from
PSDs obtained with SEM for the sintering of Pt NPs on 9°-tilted Al2O3(0001)-wafers
during sinter studies under vacuum at 1200°C.
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14.73 nm at 7 h. Most small NPs still preferentially remain in their position along the steps

with no obvious hexagonal arrangement while a few agglomerate. This is likely generated by the

diffusion of platinum clusters on the sapphire-surface at this high temperature. As seen before

on the other tilted wafers, after 16 h the nanoparticles show a rising number of large particles

and an advanced coarsening, which is also indicated by the broader size distribution with a mean

diameter and standard deviation of 16.44± 4.68 nm. It appears that less small particles exist while

the majority of the particles is enlarged at this time point. Furthermore, after the heat treatment at

1200°C for 32 h, very large clusters of approximately 50 nm arise. The quantity of small particles

diminishes and the average diameter shifts to 17.46 ± 5.64 nm. Hereby, the particles are clearly

more arranged towards the step edges when compared to the starting alignment along the bottom

of the steps. Thus, the higher surface potential at the lattice step edges presumably attracts the

nanoparticles which could be caused by higher particle-substrate interactions leading to longer NP

retention times there. Also, they can act as ES barriers so the nanoparticles are hindered to cross

over the edges and therefore, the diffusion and migration of the sintered particles is stopped there

for some time. The 48 h-time point emphasizes this behavior with large 50 nm-sized sintered

particles at the edges and few small nanoparticles remaining at the bottom of the steps. Hereby,

the mean diameter of 16.94 ± 6.34 nm is similar to the one at 32 h.

Lastly, the nanoparticle coarsening was monitored on the 15°-tilted sapphire wafers and the

resulting SEM-images and PSDs are shown in Figure 5.11. As it could be seen in Figure 5.7,

the nanoparticles are almost completely placed at the bottom of the steps at 0 h. After an oven

treatment for 2 h, this phenomenon remains while only a few slightly bigger particles of 20-

30 nm size are detected at the step edges. Thus the PSD results in a similar average diameter for

these first two time points, but an increased standard deviation (Table 5.4). They are calculated

to be 12.49 ± 2.83 nm for the 0 h-sample and 12.82 ± 3.67 nm for the 2 h-sample. This

trend is reinforced on the 4 h-wafer, where more sintered particles with a size of 40-45 nm

migrate towards the edges with the observed higher surface potential, yielding a mean diameter

of 13.96 ± 4.09 nm. Generally, the structure of the small nanoparticles appears to be unaffected

during longer heating periods up to 7 h in comparison with the flat 0.1°- and 4°-tilted sapphire

wafers. Here at 7 h, the PSD still shows a narrow size distribution without a shift of the central

peak and an average diameter of 14.20 ± 3.67 nm for the 15°-tilted samples. At 16 h however,

the NPs’ regular structure disintegrates. At this time point, very small particles are observed at

the bottom of the steps, while sintered ones are located at the edges. Even though large 40 nm-

sized agglomerates are present, the PSD continues to remain at a mean of 14.54 ± 4.36 nm due

to the abundance of small unsintered nanoparticles. However, it has to be noted that the sizes of

these small particles are difficult to evaluate due to the dominant step edges in the SEM and in

the ImageJ-analysis. Thus, their diameter can differ from the actual value. Yet, at 32 h and 48 h,

the distributions of the diameters broaden and large coarsened particles are clearly observed at

the step edges. This is also presented by the increasing mean size average and standard deviation

of 15.11 ± 7.11 nm for 32 h and 17.09 ± 7.10 nm for 48 h. As mentioned above the edges

demonstrate higher surface potentials which seems to be favored by the sintered Pt NPs, as

observed in the SEM images.
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Figure 5.11: SEM images and corresponding PSDs of Pt NPs on 15°-tilted Al2O3(0001)-wafers
during sinter studies under vacuum at 1200°C after different time periods. The scale
bar in all SEM pictures represents 200 nm.

0 h 2 h 4 h 7 h 16 h 32 h 48 h
mean height 12.49 12.82 13.96 14.20 14.54 15.11 17.09

standard deviation 2.83 3.67 4.09 3.67 4.36 7.11 7.10
number of NPs 495 920 1369 1242 715 488 505

Table 5.4: Mean heights, standard deviations and the numbers of evaluated NPs extracted from
PSDs obtained with SEM for the sintering of Pt NPs on 15°-tilted Al2O3(0001)-wafers
during sinter studies under vacuum at 1200°C.
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Figure 5.12: Mean diameters extracted from PSDs of 0.1°, 4°, 9° and 15°-titled Al2O3(0001)-
wafers under vacuum at 1200°C after different time periods.

In general, on the 4°, 9° and 15°-tilted sapphire wafers, different morphologies of the substrate

are visible. Some reveal clear and precise edges, while others seem to show flatter ones, as in

Figure 5.9 and 5.10. Also the step sizes vary considerably between the tested substrates, seen in

Figure 5.10 and 5.11. On one hand, this is generated by divergently cut sample batches bought

by CrysTec. On the other hand, a restructuring of several surfaces additionally appears, even

though, all subtrates were annealed at the same temperature and for the same time duration. This

could impact the obained results and thus, the performed sinter studies can only be considered as

pretests.

A summary of the above calculated average diameters and standard deviations in the 1200°C-

vacuum sinter study is presented in Figure 5.12. Generally speaking, the Pt NPs all coarsen

over the 48 h-time interval independent on the tilting angle of the sapphire wafers. However, the

increase in average diameter is slightly less on the 9°- and 15°-samples with a mean diameter of

around 17 nm after the heat treatment compared to 18 nm for the 4°-ones and 20.5 nm for the

0.1°-ones. It appears that the nanoparticle sintering is reduced and slows down on the more tilted

substrates. Interestingly, the large particles all preferentially align along the step edges for the

4°-, 9°- and 15°-tilted samples where a higher surface potential is present. This agrees with the

observed slower NP sintering on the amorphous alumina which demonstrated an increased surface

potential measured in KPFM compared to the other three tested substrate materials (Figure 4.9).

Thus, the nanoparticles tend to prefer these locations. Additionally, the step edges can act

as Ehrlich-Schwoebel barriers that hinder the surface migration and diffusion of the platinum

clusters. Due to the irregular intial nanoparticle arrangement on the more tilted supports, a clear

distinction of the underlying sintering mechanism is complex and not fully possible. As opposed

to the AFM, the SEM does not allow to record tiny particles. Ostwald ripening by the diffusion

of adatoms could participate in the nanoparticle coarsening mechanism, yet can not be explicitly

concluded from the SEM images. On the contrary, migration of larger sintered platinum particles

at 1200°C under vacuum was seen on the SEM images from the bottom of the steps to the edges,
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as for example on the 16 h-, 32 h- and the 48 h-15°-tilted samples in Figure 5.11. This leads to

the conclusion that PMC plays a crucial rule in the sintering of Pt NPs on tilted sapphire wafers.

5.3 Summary

Differently tilted c-plane (0001) sapphire wafers were characterized regarding their height profiles

in AFM. With increasing tilt angles varying from 0.1° to 15°, the substrates reveal steps with

elevating step heights. These are comparable to the nanoparticle diameters for the 4°- and 9°-

ones and exceed the nanoparticle size for the 15°-ones. Simultaneously, the step size decreases

overall to a dimension similar or smaller than the average interparticle distances between two

platinum nanoparticles. Both effects cause the NPs to not be continuously arranged in the quasi-

hexagonal pattern anymore on the more tilted supports due to local trapping of the micelles during

the spin coating process on the bottom of the steps. With FM-KPFM the surface potential was

measured on a flat 0.1°-substrate in analogy to the 15°-substrate. Generally, a significant drop

in potential was observed when the AFM tip was scanned over the edges. On the 0.1°-sample a

65 mV-decrease was detected, while the 15°-sample with a much higher step height revealed a

125 mV-decline. As seen on the amorphous alumina, the sinter stability is greatly enhanced in

high surface potential areas. Thus, the drop in potential, as well as the functioning of the step

edges as diffusion barriers should impact the NP’s behavior in the sinter studies.

Afterwards, the coarsening behavior of Pt NPs was studied on these sapphire wafers. First, it was

analyzed in a sinter study under atmospheric conditions at 750°C over 20 min yielding no distinct

variation in NP coarsening for 0.1°, 4° and 9°-tilted substrates. Rapid sintering was observed for

all samples with PMC governing it. In order to slow down this process and to further study the

effect of the step edges on the sintering behavior of Pt NPs, the second sinter study was performed

under vacuum at 1200°C for a time period of 48 h. In the absence of oxygen, the coarsening rate

of the nanoparticles could be significantly reduced. Thus, the sintering in the first study has to

occur at least partially via the diffusion and migration of volatile platinum oxide clusters when

compared to the vacuum sinter study. Here, all of the nanoparticles slowly coarsened on the

tested sapphire wafers with tilt angles between 0.1° and 15° during 48 h through the appearance

of very large 50 nm-sized particles. Yet, the increase in average diameter of the sintered platinum

clusters was slightly less for the more tilted substrates compared to the flatter supports. Also,

the nanoparticles remained longer in their initial arrangement before losing its regular structure

during the heat treatment. The majority of the large sintered particles could then be detected at

the step edges of the tilted wafers after 48 h, as hypothesized in the FM-KPFM experiments.

This observed phenomenon is attributed to the higher local surface potential at the edges before it

drops when crossing it and to the functioning of the edges as Ehrlich-Schwoebel barriers, which

hinder the migration and diffusion of the particles. Yet, the obtained results can only be taken as

indications due to different surface appearances on equally tilted sapphire wafers. This is either

caused by variations in the cutting-process by the company or generated by the reconstruction

of the surfaces at 1200°C over extended time periods. However, a decrease in sintering rate was

observed on more tilted wafers and thus substrates with surface heterogeneities or structuring

composed of step edges can enhance the sinter stability.





6 Isolation of platinum nanoparticles via oxide

layers

After investigating the influence of the substrate regarding its physical and chemical properties

on the sintering behavior of platinum nanoparticles, this chapter focuses on isolating these

nanoparticles from each other. By depositing a thin oxide layer on, or preferably around, the

particles, this research aims to increase the Pt NPs’ coarsening resistance by hindering surface

diffusion of platinum clusters or of whole particles. All Pt NPs were immobilized on amorphous

alumina, Al2O3(a), and the effect of a thin silica and a thin alumina layer was tested during sinter

studies in air at 750°C.

For this thesis, the synthesis of oxide layers was adapted from Dipl.-Ing. Mirjam Eisele, Institute

for Materials Science Chair 3 at the University of Stuttgart. Additionally, after establishing

the experimental procedures the presented results were obtained within the framework of a

masterthesis by Tingyu Zhang, B.Sc. under my supervision.

6.1 Theoretical background for nanoparticle isolation with silica

and alumina layers

6.1.1 Sol-gel synthesis of silica and alumina layers

Due to its superior simplicity, as well as high purity and homogeneity of the achieved products

and due to its low processing temperatures, the sol-gel technique is favored for synthesizing

inorganic ceramic oxides and glasses in complex shapes or as thin coatings [68, 31, 153]. The

characteristic feature hereby is the transformation of a solution or sol into a rigid gel with

tunable porosity. Typically starting with a metal alkoxide solution, as seen in Figure 6.1, a

sol as dispersion of colloidal particles in a liquid solution is formed through hydrolyzation and

condensation 

reactions 

hydrolysis

metal

alkoxide

solution

c

spincoating

xerogel film

sol

Figure 6.1: Schematic principle of a modified sol-gel process used in this thesis to obtain porous
ceramic oxide layers.
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condensation reactions. These colloids are small solid particles of sizes ranging between 1 nm and

100 nm. During the condensation monomers polymerize and build up chains and particles which

furthermore, grow larger in diameter and agglomerate towards an interconnected 3D network.

This gel consists of polymer chains larger than 1 µm and pores in the sub-µm-size range. Coatings

can then be achieved by either dip or spin coating it onto the substrates [31, 153]. Depending on

the way the liquid in the pores is removed either an areogel of low overall density is fabricated by

drying under hypercritical conditions or a xerogel is produced when drying at ambient pressures

through thermal evaporation [68].

First only used to prepare common glasses and ceramics in the 18th century [153], coatings

and films are gaining importance. These are of particular interest for ionic conductors, for

antireflection purposes with the example of indium tin oxide and its advanced insulation properties

in glass windows or for corrosion protection applications due to their distinguished chemical

stability [77, 68, 153, 18]. Fibers are another fabrication shape for sol-gel synthesized glasses and

ceramics [68]. As an example, Choi et al. recently reported the fabrication of silica nanofibers

with diameters as small as 200 nm [37]. Additional applications of sol-gel processed materials

feature the use of areogels as thermal superinsulators in solar energy systems with porosities up

to 98 % [151] and their operation as catalysts or catalyst supports in the case of silica, alumina,

zirconia and titania amongst other inorganic ceramic oxides [103]. Lastly, in the past 25 years the

sol-gel synthesis has also been implemented in the biomaterials field. Lu et al. synthesized a 2-

100 nm thick silica shell with incorporated fluorescent dies around superparamagnetic iron oxide

nanoparticles. Thus, they were able to create multifunctional particles that can be triggered by an

externally applied magnetic field and simultaneously tracked by in situ fluoresence microscopy

for medical and biological appliations [87]. As a result of low processing temperatures and mild

conditions during the sol-gel technique, enzymes and proteins can also be encapsulated to yield

biosensors, electrodes or other advanced biomaterials [8]. For example, Arcos et al. applied

sol-gel materials composed of silica as drug delivery systems for bone tissue regeneration [4].

In the seventies, one decisive step for the wide popularity of the sol-gel technique was the achieve-

ment by Stoeber et al. to synthesize monodispersed spherical silica particles while controlling the

morphology and size of the powder. They hydrolyzed tetraethyl orthosilicate (TEOS) in alcoholic

solutions and in the presence of ammonia which served as the morphological catalyst. Thus,

colloidal particles with diameters ranging between 50 nm and 2 µm were achieved [135, 18].

To explain the principle of sol-gel polymerization, the mechanism of silica is given as an example.

SiO2-gels are obtained from silicon alkoxide solutions through the occurence of different reaction

steps, which are outlined in Figure 6.2. First, TEOS with R = CH2CH3 partially hydrolyzes in

water to form silanol Si-OH groups (Figure 6.2a). Afterwards, instead of fully hydrolyzing to

silicic acid, condensation between either two silanols (Figure 6.2b) or between a silanol and an

ethoxy group (Figure 6.2c) takes place resulting in a bridging siloxane Si-O-Si group [31, 68].

Meanwhile water or alcohol are ejected and remain in the pores of the network [68]. These

reactions are initiated at various sites within the solution resulting in sol particles whose cross-

linking depends on the pH amongst other parameters. Depending on the utilization of an acid- or

base-catalyst different final gel shapes are observed. At low pH with a resulting slow hydrolysis,

the silica gel constitutes of rather linear molcules with occasional cross-links. However at high
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Figure 6.2: (a) Hydrolysis or (b) water and (c) alcohol condensation to form SiO2-structure in
silica solution via TEOS-based sol-gel synthesis.

pH, fast hydrolysis occurs and so independent clusters with more branches are build up. In this

thesis, porous silica films were synthesized following the route of Rouse et al. by a base-catalyzed

sol-gel procedure of TEOS in aqueous solution [116].

Similarly, alumina-gels are obtained by a sol-gel synthesis following the procedure of Nass et

al. [100]. However, since the aluminum alkoxide aluminum-sec-butoxide (ASB) starting material

leads to rapid precipitation during the hydrolysis step, it first has to be chelated with the ligand

ethylacetoacetate (EAA), as seen in the reaction of Figure 6.3a. This significantly slows down the

reactivity of the aluminum alkoxide towards water [9]. Afterwards, hydrolysis (Figure 6.3b) as

described above occurs and a sol of small particles is formed [100].

Such nanocrystalline alumina is then reported to be used as heterogeneous catalyst support with

the advantages of high surface area and an elevated number of active alumina sites for the catalytic

reaction [91, 154].

6.1.2 Isolation of nanoparticles against sintering

Over the past ten years, isolating noble metal nanoparticles with oxide layers for catalytic

applications has become increasingly important to avoid nanoparticle sintering and thus the

loss of their catalytic activity. Shielding nanoparticles from each other, Ma et al. tested a

20-30 nm thick amorphous silica layer via atomic layer deposition on approximately 5 nm-

sized gold nanoparticles which were immobilized on titania. This yielded stabilized particles

against nanoparticle coarsening, yet, a loss of catalytic activity resulted from the coverage

with SiO2 [89]. Later on, Feng et al. were able to prove an inhibition of sintering at 500°C

for compactly and densely covered 1-2 nm palladium nanoparticles (Pd NPs) with a thicker

alumina-layer on Al2O3-substrates via atomic layer deposition. When applying an extremely

thin alumina coat, Pd NPs’ activity could be preserved during methanol decomposition. They

attributed these phenomena to an improved anchorage of the nanoparticles on the substrates

through the alumina layer and to the coverage of only low-coordination palladium sites which
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aluminium-sec-butoxide (ASB) with ethylacetoacetate (EAA) and subsequent (b) hy-
drolysis. R is CH3 and R

′
is OC2H5 with n = 1-4 [100].

do not effect the NPs’ activity [51]. Other approaches include individual encapsulation of gold

nanoparticles in hollow silica spheres to separate the metal particles from each other and achieve

higher sinter stabilities. Simultaneously, the particles are shielded from poisoning by adsorbing

molecules [162]. Similarly, Arnal et al. packed individual gold nanoparticles in zirconia spheres

with 3-4 nm pores in the shell which stabilized them against elevated temperatures. However, this

synthesis route is costly and time-consuming [5]. On the other hand, mesoporous silica can be

a promising candidate to slow down NP coarsening. Unsupported 14 nm platinum nanoparticles

were covered with a 17 nm-thick SiO2-shell and resisted sintering up to 750°C under atmospheric

conditions. At the same time, the mesoporous structure of the silica layer allowed the free access

of the reactants in the ethylene hydrogenation and CO oxidation to reach the platinum core and

so, Joo et al. claimed to reach catalytic activities comparable to that of uncovered platinum

nanoparticles [76]. Another example is the encapsulation of 3 nm-sized Pt NPs on 120 nm silica

beads by a thin layer of mesoporous silica with a thickness of only few tens of nanometers.

These nanoparticles were observed to coarsen less at temperatures of 800°C, while regaining

their catalytic activity for cis- and trans-2-butenes in the presence of hydrogen after etching of

the silica layer [81]. Applying a TEOS-based reaction, Dai et al. synthesized a porous silica

coating around 3-4 nm Pt NPs deposited on titania nanofibers. Sintering in air at a temperature

of 750°C was reduced because the silica sheath slowed down the surface diffusion of platinum

clusters or particles by acting as a physical barrier. However, the hydrogenation of methyl red

demonstrated a concurrent drop in catalytic acitivity by almost 40 % [43]. Lastly, Lu et al.
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prevented the coverage of 3-4 nm Pt NPs on a fibrous structure of titania by first capping the

particles with PVP before depositing a silica layer via a TEOS-based sol-gel process. Afterwards,

the polymer was removed during a calcination step and the Pt NP-surrounding silica coating of

a few nanometers slowed down the nanoparticle coarsening. When studying their activity by the

model reduction reaction of p-nitrophenol, the turn over was slowed down by silica coatings as

thick as the platinum particles [86]. Thus, the importance of controlling the layer-thickness to

achieve high sinter stability and to maintain high catalytic activity is stressed.

In this chapter, 5-6 nm Pt NPs immobilized on stable amorphous alumina supports were isolated

from each other either by a silica or by an alumina layer which were synthesized via sol-

gel techniques. The nanoparticle sintering behavior was analyzed at 750°C under atmospheric

conditions regarding these two layer materials. The goal was to achieve an enhanced sinter-stable

system which could be applied in automotive exhaust combustion applications.

6.2 Isolation of platinum nanoparticles via silica layer

To begin with, the Pt NPs were isolated by a TEOS-based SiO2-layer. This layer was charac-

terized by focusing on structure, composition and coverage of the nanoparticles. Following the

coarsening of these nanoparticles was analyzed in a sinter study with SEM.

6.2.1 Characterization of silica layer

First, the aging of the colloidal particles in the synthesized silica solution was studied with AFM.

In Figure 6.4, the resulting images of particles at different aging time ranging between one and

21 days are presented with a constant height scale.

As it can be seen in these AFM images (Figure 6.4) and also later on in the SEM pictures

(Figure 6.7), the xerogel film appears to rather consist of individual nanoparticles instead of being

a dense layer due to its low thickness of a few nanometers. Evaluating the height by comparting it

to the AFM height scale, the colloidal nanoparticles reveal a size remarkably below 4 nm after spin

coating the solution onto the amorphous alumina substrates which also comprises a roughness on

a 3 nm-scale.

Thus, after 1 day of TEOS sol aging time, tiny silica particles are obtained. These visibly grow

during longer stirring times of the solution prior to the spin coating process until they reach a

diameter three-to-four-times the initial one after 21 days. The observed triangles are measured

independently of the scanning direction, thus it can be assumed that the particles do not exhibit a

perfectly spherical shape. Independent of optional measurement inaccurancies and tip artefacts,

the size evolution of the silica particles in the sol over time is clearly preserved. This trend was

also described by Rouse et al. and Eisele [116, 49]. They explained the growth of colloidal silica

particles by a stop of nucleation when the monomer concentration falls below a specific solubility

value. Thereupon, the particles continue to only grow through the addition of further monomers.

These are distributed in the solution and rise in number by the dissolution of smaller silica
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Figure 6.4: Aging study of silica-solution over time with AFM.
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Figure 6.6: (a) and (b) Cross sections of isolated Pt NPs with a silica layer in TEM.

particles according to the Ostwald ripening concept for nanoparticles. Over time, the amount

of bigger particles increases while smaller particles disappear [49].

Secondly, the composition of the layer was examined with XPS. The received spectra for

silicon (Si2p), oxygen (O1s) and aluminum (Al2p) are presented in Figure 6.5a, b and c

respectively. Plotting the counts versus binding energy for silicon reveals a main Si2p peak

with 18.4 at% at 102.9 eV which is very close to the reported silicon peak in silica of 103.2-

103.8 eV [35]. The slight shift towards lower binding energies in the measured sample is caused

by an overcompensation of positive charges when photoelectrons are removed from an isolating

sample. The oxygen O1s curve can be fitted to two peaks with binding energies of 532.3 eV and an

amount of 41.5 at%, as well as 531.1 eV and an amount of 12.9 at%. These values correspond to

oxygen reported in silica with an energy of 532.5-533.3 eV and in alumina of 530.0-531.8 eV [35].

The first peak at a higher energy with a bigger portion of oxygen is generated by the silica layer,

while the second smaller peak is triggered by the amorphous alumina substrate underneath the Pt

NPs and the silica layer. The support also gives rise to the detected aluminum Al2p peak with a

binding energy of 74.5 eV and an amount of 17.0 at% which exists in the range of known Al2p

peaks for alumina with binding energies ranging between 73.5 eV and 74.5 eV [35]. Thus, the

formation of a pure silica layer by the colloidal particles obtained in this TEOS-based sol-gel

synthesis without observing any impurities can be concluded in the XPS spectra. Also, the layer

is assumed to be thin because of the detected amorphous alumina underneath the silica layer.

Lastly, the arrangement of the Pt NPs and the silica particles was investigated in TEM. Cross

sections of samples with immobilized platinum particles and a thin silica layer were imaged

and are shown in Figure 6.6a and b. Dark round spots indicate the platinum nanoparticles with

diameters of 5-6 nm on top of the amorphous alumina support. Also a thin irregular brighter strip

with a size less than 5 nm when compared with the Pt NPs is observed which corresponds to

the synthesized sol-gel silica layer. It does not cover the particles but instead can be seen to be

deposited around them. Therefore, the conclusion can be drawn that the silica layer is not spread

on top of the platinum nanoparticles and so the necessary active platinum sites should remain

available for the catalytic reaction.
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6.2.2 Sinter study of platinum nanoparticles isolated with silica layer

Afterwards, the isolated Pt NPs with a silica layer around them were tested in a sinter study at

750°C under atmospheric conditions and their resistance to nanoparticle coarsening was analyzed

with SEM. In Figure 6.7, the resulting images are presented for time intervals of 0 h, 1 h,

2 h and 4 h. Pt NPs without a surrounding silia layer on amorphous alumina are taken as

references to compare the sintering behavior with and without the SiO2-isolation. Inlens-pictures

of the silica-coated substrates reveal information about the surface with higher resolution at the

nanometer-scale, while the SE2-ones of the same samples contain in-depth information about the

material contrast since the detected BE-electrons have backscatter coefficients that correlate with

the atomic number of the element [34]. Due to variations in BCML-synthesis, the interparticle

distance varies between the different samples. Yet for the same time point, the samples with and

without the silica layer always reveal similar particle density on the substrates prior to the heat

treatment.

At 0 h the Pt NPs are regularly arranged in their quasi-hexagonal pattern on the references, as well

as on the substrates with a SiO2-layer in the Inlens- and SE2-images. In Inlens-mode the bigger

brighter spots correspond to the Pt NPs while the smaller, coarse and darker ones present the silica

colloids. To distinguish these further, the high-atomic-number element platinum is seen as bright

points when analyzed with the SE2-detector and the light elements Si, O and Al from the layer

and the substrate disappear in the background highlighting the hexagonal structure of the Pt NPs.

After 1 h-heat treatment at 750°C, few platinum particles start to leave the regular structure on

the reference sample. Since most other small particles remain in their original pattern, Ostwald

ripening can be concluded to govern the sintering behavior of the Pt NPs on Al2O3(a), as also

proven in chapter 4. In comparison, the silica coated samples disclose a more ordered Pt NP

structure with almost all nanoparticles still in their intial positions. This enhanced sinter stability

is clearly identified at the 2 h-time interval. While most of the nanoparticles on the reference

sample disappeared and larger particles are formed, no such evidence is seen on the NP-sample

with the silica isolation. Here, the vast majority of the Pt NPs stays in the hexagonal arrangement.

Overall more nanoparticles appear which was caused by an initially reduced interparticle distance

on both the silica isolated and the reference samples at 2 h. Lastly, at 4 h, this trend continues

with a significant amount of approximately 60-70% of the originally sized small nanoparticles

remaining on the amorphous alumina substrate when separated from each other with a SiO2-

layer. No obvious sintering can be detected on the samples. However, very big platinum particles

of sizes ranging between 50 and 100 nm are visible on the references revealing nanoparticle

coarsening without the protective silica layer in between the particles. Lu et al. attribute the

reduced sintering rate of the isolated Pt NPs to a weaker bonding between the platinum and the

surrounding silica layer which acts as an additional energy barrier, the Ehrlich-Schwoebel barrier.

This SiO2-layer causes a diminished diffusion and migration of the Pt NPs or platinum adatoms

on their tested titania support [86].

TEM cross sections of annealed alumina samples with immobilized Pt NPs and a separating SiO2-

layer at 750°C for 2 h are displayed in Figure C.1 in Appendix C. The platinum nanoparticles are

observed as dark points without having grown in size on the amorphous alumina. Additionally,
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Figure 6.7: SEM images with different detectors of Pt NPs with and without an isolating silica
layer during sinter studies in air at 750°C after different time periods. The first
column presents the samples without the silica layer (references), obtained by the
Inlens-detector. The second and the third columns show images of the samples with
the silica layer obtained by the Inlens-detector for topographical information, and by
the SE2-detector for material contrast information respectively. The scale bar in all
SEM pictures represents 200 nm.
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the thin layer composed of colloidal silica particles appears as a lighter band on the alumina and

around the nanoparticles without showing coverage of these ones. Thus, it can be concluded

that the silica layer does not, or only slightly, changes its morphology during the sinter process

without an indication of interferring with the nanoparticles. These remain uncovered during the

heat treatment.

Additionally, an attempt was made to test the catalytic activity of the isolated Pt NPs via

the demonstration of an azo-bond hydrogenation in the dye methyl red (see Figure D.1 in

Appendix D) with Ultraviolet-visible spectroscopy (UV-Vis), as reported by Briseno et al., Dai

et al. and Formo et al. [29, 43, 53]. Secondly, the reduction of p-nitrophenol (Figure D.3a in

Appendix D) as a model reaction for catalytic activities of Pt NPs by Lu et al. was studied on

the samples as well [86]. Yet due to an insufficient loading of Pt NPs, as identified by inductively

coupled plasma optical emission spectroscopy (ICP-OES), no significant changes in UV-Vis

spectra could be detected for both chemical reactions (Figure D.2 and D.3b in Appendix D).

Even the sensitive CO adsorption method via calometry failed because of the extremely low Pt

NP concentration on the substrates. Therefore, the catalytic activity could not be successfully

measured for the nanoparticles.

Summarizing, the TEM cross sections revealed uncovered Pt NPs when a silica layer is deposited

around the NPs to separate them from each other. Sinter studies at 750°C in air proved the

increased stability against NP coarsening. Thus, the isolation of Pt NP with SiO2 is a promising

concept to create an improved sinter-stable exhaust combustion system.

6.3 Isolation of platinum nanoparticles via alumina layer

The Pt NPs were also isolated by a sol-gel-synthesized Al2O3-layer. This layer was characterized

by focusing on particle size of alumina colloids in the sol. Additionally, the coating thickness,

its composition and its deposition related to the nanoparticles were investigated. Later on, the

coarsening of these nanoparticles was analyzed in a sinter study with SEM.

6.3.1 Characterization of alumina layer

The sol consisting of colloidal alumina particles was examined regarding its particle sizes with

DLS. The resulting graph is shown in Figure 6.8 and reveals a formation of Al2O3-colloids with

a hydrodynamic radius below 10 nm. Hereby, the majority of the particles were detected at a size

below 4 nm. This yields an average diameter of 2.56 nm and a standard deviation of 2.41 nm.

Since dirt easily contributes to measurement inaccuracies and since these particles are near the

lower measurement range, the obtained DLS-data can only give an indication of the existing

colloidal particle sizes. Yet, it can be concluded that tiny alumina nanoparticles contribute to the

layer formation.

The thickness of the resulting dense layer was then measured with ellipsometry and is illustrated

in Figure 6.9. Different concentrations of the alumina solution ranging from 0.01 mol/l to

0.1 mol/l were tested. The resulting layer thickness before and after a calcination step at 500°C
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Figure 6.8: Characterization of particle sizes in alumina solution measured by DLS.
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Figure 6.9: Layer thickness of 0.01-0.1 mol/l concentrated spin coated alumina solutions:
(a) Comparison of the thickness before (25°C) and after (500°C) a 1 h-heat treatment
at 500°C in air. (b) Inset of heat-treated samples regarding the correlation between
layer thickness and concentration.

for 1 h is presented in the 25°C- and 500°C-curves in Figure 6.9a. For the samples without a

following heat treatment a layer thickness of 5.62 ± 0.94 nm for 0.01 mol/l, 25.74 ± 6.41 nm

for 0.05 mol/l, 36.75 ± 0.36 nm for 0.075 mol/l and 56.52 ± 1.6 nm for 0.1 mol/l was obtained.

Thus, the spin coating of a higher concentrated sol linearly correlates with a thicker alumina

layer afterwards. However, the heat treatment at 500°C for 1 h drastically reduces the layer

thickness by approximately 80 % to 1.38± 0.35 nm for 0.01 mol/l, 4.78± 0.75 nm for 0.05 mol/l,

6.61 ± 0.52 nm for 0.075 mol/l and 11.76 ± 0.61 nm for 0.1 mol/l. For an improved illustration,

these values are plotted additionally in Figure 6.9b. The linearly corresponding evolution of layer

thickness with sol concentration also applies in this case. The detected shrinkage in thickness

is induced by a combustion of the inclosed organic components including butoxide and the

chelating agent. Therefore, the ASB-EAA-based sol-gel technique allows a fine tuning of the

layer thickness. In initial tests the TEM cross sections of an alumina layer with a 0.075 mol/l-

concentration and a thickness of 6-7 nm revealed completely covered nanoparticles. So, for

further experiments, a sol concentration of 0.03 mol/l was used yielding an approximate alumina

layer-thickness of 3 nm which is smaller than the 5-6 nm sized Pt NPs.
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Figure 6.10: XPS-spectra of isolating alumina layer on silicon regarding (a) Al-peak and (b) O-
peak to confirm Al2O3-formation.

The chemical composition of the isolating alumina layer on silicon was investigated with XPS.

The obtained spectra of aluminum (Al2p) and oxygen (O1s) are shown in Figure 6.10a and b

respectively. Hereby, the measured aluminum reveals a main Al2p peak at 73.6 eV with 30 at%

and a minor peak at 74.4 eV with 8.7 at%. These fit exactly into the reported range of binding

energies for aluminum in alumina with 73.5-74.5 eV [35]. Similarly, two oxygen O1s peaks exist

with 40.9 at% at a binding energy of 530.3 eV and with 12.5 at% at 531.5 eV which fit to the

reported oxygen O1s-spectra in alumina between 529.9 eV and 531.8 eV as well. Since a high

concentration of alumina solution was used in this XPS measurement which resulted in a thick

layer, no Si-peak could be detected.

Lastly, TEM cross sections of Pt NPs immobilized on amorphous alumina, Al2O3(a), which

consists of a thick alumina layer deposited via PVD on a silicon wafer, and a 0.03 mol/l-sol

derived isolating Al2O3-layer are presented in Figure 6.11. The dark spots mark the platinum

nanoparticles, while a sligthly different grey band compared to the amorphous alumina support

can be identified as the isolating Al2O3-layer. In both TEM images, the derived alumina layer is

not on top of the Pt NPs since its height is visibly less than the nanoparticles. Thus, the platinum

particles remain uncovered during the spin coating process of the alumina sol and the following

calcination step.
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Figure 6.11: (a) and (b) Cross sections of isolated Pt NPs with an alumina layer in TEM.
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6.3.2 Sinter study of platinum nanoparticles isolated with alumina layer

The sintering behavior of 5-6 nm Pt NPs with an isolating alumina layer was studied with SEM

in Inlens- and SE2-mode and the obtained images are displayed in Figure 6.12. Comparable to

the study with the silica layer, as in Figure 6.7, samples with the layers are compared to reference

samples without regarding the arrangement and number of Pt NPs. At 0 h, the Pt NPs are regularly

positioned in their quasi-hexagonal structure on the reference caused by the BCML-synthesis.

This can also be seen for the samples with the alumina layer when analyzed with the SE2-detector,

which allows the differentiation of platinum from the light elements aluminum and oxygen that

are present in the alumina layer and the substrate underneath the particles. In the Inlens-picture,

the Pt NPs are also explicitly visible, yet the alumina layer structure causes a highly nonuniform

and disturbed background. As it appears, the layer has an irregular structure displaying circles

of varying sizes which either indicate a hole or a thinner area of sol-gel derived and deposited

Al2O3. Also, the interparticle distance between the Pt NPs on the two samples with alumina layer

at 0 h and 1 h are diminished in comparison with the ones on the reference. This phenomenon is

caused by unpreventable differences in spin coating of the Pt NP-BCML-solution, yet it does not

interfere with the sinter study. On the contrary, closer NPs are subject to an increased coarsening

behavior.

After 1 h at 750°C, few nanoparticles start to disappear on the references, similar to the ones in the

sinter study with the silica layer as in chapter 6.2.2. This is also induced by an Ostwald ripening

process where platinum adatoms or clusters preferentially leave smaller nanoparticles and diffuse

over the surface until they reach bigger ones. However, no bigger particles are detected at this

time point. In comparison, the Pt NPs with an isolating alumina layer around them do not seem to

be influenced by the heat treatment because all of them remain in their original positions without

an indication of nanoparticle or cluster migration, as seen in the SE2-picture. After 1 h, no

circular spots of the alumina are visible in the Inlens-mode anymore suggesting a uniform thin

layer without irregularities. In contrast, the layer visibly begins to coarsen again at the 2 h-time

interval and continues to do so at 4 h where big holes appear. This is triggered by a morphological

transfomation of the thin Al2O3-layer at these high temperatures. Though the layer undergoes

a reconstruction process, the platinum nanoparticles are left uncovered in TEM cross sections

of samples annealed at 750°C for 2 h. The TEM images are shown in Figure C.2a and b in

Appendix C. Hence, the layer does not grow in size or on top of the particles. This would hinder

their catalytic activity which again could not be analyzed due to the limited Pt NP loading as

explained in chapter 6.2.2. However, during the SEM-sinter study, the Pt NPs on the samples

with an alumina layer remain unaffected by its morphological changes and at 2 h, a large majority

of Pt NPs are found in the initial pattern with similar interparticle distances as on the references.

No indication of NP coarsening can be drawn and the branch of NPs on the bottom right corner in

this picture was generated by variations in micelle deposition during the BCML-synthesis. On the

2 h-reference sample, an increasing number of platinum particles is missing while one of them

is enlarged due to NP sintering. Lastly, at 4 h, almost none of the original 5-6 nm Pt NPs on

the reference samples are visible anymore but large clustered particles with sizes between 50 nm

and 100 nm are detected. If the nanoparticles are separated from each other with a 3 nm alumina

layer, a majority of these, approximately 80-90 %, remain in their original spots and no bigger Pt
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Figure 6.12: SEM images with different detectors of Pt NPs with and without an isolating alumina
layer during sinter studies in air at 750°C after different time periods. The first
column presents the samples without the alumina layer (references), obtained by the
Inlens-detector. The second and the third columns show images of the samples with
the alumina layer obtained by the Inlens-detector for topographical information,
and by the SE2-detector for material contrast information respectively. The scale
bar in all SEM pictures represents 200 nm.
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NPs are formed. Interestingly, the small platinum nanoparticles all disappear when this alumina

layer is destroyed as it can be seen in the holes of the Inlens- and the corresponding SE2-images

at the 4 h time point. This proves that the sol-gel derived alumina layer successfully prevents a

coarsening of Pt NPs and enables the establishment of an improved sinter-stable system.

6.4 Summary

In this chapter, the goal was to isolate Pt NPs from each other by depositing a thin oxide layer

around the particles in order to increase their coarsening resistance by hindering surface diffusion

of platinum clusters or whole particles. First, nanoparticles were separated via a silica layer

derived from a TEOS-based sol-gel synthesis. AFM allowed the characterization of the sol and

revealed a growth in colloidal silica particle sizes upon aging time which was not seen for the

following sol of alumina in the second layer system. An XPS study confirmed the formation of

only SiO2 in the silica layer without impurities or side products and cross sections of immobilized

Pt NPs with the silica layer in TEM showed that the particles remain uncovered during the spin

coating process of the sol. Thus, their catalytic activity should only be minorly affected by

the silica. This could not be analyzed by the model reactions of methyl-red hydrogenation or

p-nitrophenol due to an insufficient platinum loading which did not yield detectable changes

in absorbance measured with UV-vis (Appendix D). In a subsequent sinter study, only few

nanoparticles disappeared from their original position during a 4 h-heat treatment at 750°C when

separated from each other by the silica layer while a large majority of approximately 60-70 %

did not show any indications for sintering. However, when matched to reference samples without

the SiO2-layer, considerable sintering could be seen on these ones by the appearance of large

clustered Pt NPs.

Secondly, an alumina layer was deposited on the samples with Pt NPs and investigated in

comparison with the silica-one. DLS measurements demonstrated that the synthesized sol consists

of tiny alumina colloids with sizes mainly below 4 nm and layers manufactured out of these are

linearly correlated to the sol concentration. Thus, a 3 nm-thick alumina layer consisting of Al2O3

without impurities, as tested in XPS, was used for further experiments which did not cover up

the Pt NPs, as proven by the TEM cross sections. During a sinter study at 750°C in air, a large

majority with approximately 80-90 % of the platinum particles remained in their initial quasi-

hexagonal arrangement and sintering only occurred in the places where the isolating alumina

layer was destroyed due to morphological reconstruction at high temperatures.

Consequentially, both the silica and the alumina layer successfully separate the Pt NPs from

each other and significantly slow down the sintering rate when compared to samples without

these protecting films. Since only a minor difference in NP coarsening could be observed in

the sinter studies with SiO2 and Al2O3, the layers act as Ehrlich-Schwoebel barrier independent

of their composition hindering the diffusion of platinum adatoms, clusters or whole particles

on the underlying support surface. Thus, an isolating oxide layer around the catalytic active

nanoparticles is a promising concept to create sinter-stable exhaust combustion systems.





7 Conclusion

To investigate the thermal stability of platinum nanoparticles in modern car converters, model

systems with lower complexity have been used in this PhD thesis. The sintering behavior of 5-

6 nm Pt NPs, synthesized via BCML, was studied on both crystalline and amorphous silica and

alumina substrates with SEM and AFM. Additionally, the influence of individual parameters on

the NP’s thermal stability could be independently analyzed and characterized.

Sinter studies at 750°C under atmospheric conditions for 60 min revealed fast coarsening of the

Pt NPs on the crystalline substrates with a quick loss of their original quasi-hexagonal pattern.

Here, PMC was the dominant sintering mechanism. In contrast, Pt NPs on amorphous substrates

remained in their initial arrangement for longer times. In addition, the appearance of very small

particles proposes OR to govern the sintering behavior on these supports; however, amorphous

alumina displayed three times higher thermal stability compared to the other tested substrates. As

key parameters, the surface adhesion of Pt NPs, substrate roughness, surface potential and energy

were investigated by LFM, AFM, AM-KPFM and contact angle measurements. Pt NPs were

attached more strongly to the amorphous substrates than on the crystalline supports, especially

after a heat treatment at 750°C. This gave rise to an almost twofold increase in nanoparticle

adhesion; thus, a stronger adhesion tends to slow down the sintering by impacting the OR process

through an advanced Pt NP immobilization. However, one of the main contributing factors

impacting the sintering stability of the nanoparticles is the surface roughness of the amorphous

alumina, which was approximately three times greater on amorphous alumina when compared

to crystalline alumina and the two tested silica-samples. Additionally, the surface potential was

found to also have a considerably higher value on amorphous alumina and as such, a greater

reactivity of the alumina with the Pt NPs is suggested when compared to the other substrates.

Lastly, a low contact angle of water on the crystalline supports correlates well with a more distinct

wetting of platinum. Therefore, a higher surface diffusion of whole Pt NPs was hypothesized for

PMC which governs NP coarsening on these crystalline supports. In sum, the increased surface

roughness and the higher surface potential of the substrate underneath the catalytically active

Pt NPs are two dominant factors for governing their sintering behavior, while NP adhesion and

surface energy of the support play an important role in the sintering mechanism.

Furthermore, the Pt NPs were tested on structured surfaces composed of an amorphous alumina-

and silica-side during heat treatments in air at 750°C with a focus on the behavior at the interface

between these two materials. NPs situated on the silica were generally faster to grow into larger

particles and also showed directional migration with a following accumulation towards and at

the interface, which acts as an Ehrlich-Schwoebel barrier. Later on, Pt NPs were also observed

to cross over the border and could be detected on the alumina-section. Alternatively, when

Pt NPs were placed on the amorphous alumina-side with an increased sinter stability and an
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interface towards amorphous silica, the NPs remained unaltered until much later time points

due to slower coarsening. No diffused NPs could be detected on the silica-section at any time

with the NPs remaining on the alumina-side. Thus, it appears that Pt NPs favor the high metal

interaction alumina substrate with the above tested characteristics over the low metal interaction

silica substrate, thereby revealing the influence of compositional structuring on the coarsening

behavior of Pt NPs.

Afterwards, the impact of structural heterogeneities on the thermal stability of the Pt NPs was

examined with differently tilted c-plane (0001) sapphire wafers. They showed increasing step

heights and overall decreasing step sizes for more tilted substrates in AFM-measurements. In

a sinter study under atmospheric conditions at 750°C, very fast NP coarsening via PMC was

observed due to a proposed volatile platinum oxide formation without a distinct variation in NP

behavior on the 0.1°, 4° and 9°-tilted substrates. Slowing down the sintering rate in the absence of

oxygen, a second sinter study performed under vacuum at 1200°C showed a smaller increase in

average diameter of the sintered platinum clusters for the more tilted-sapphire wafers compared

to the flatter ones. Accordingly, the majority of the large sintered particles could be detected at the

step edges where a significant drop in surface potential was measured when crossing over it in FM-

KPFM-measurements. Also, the edges function as Ehrlich-Schwoebel barriers, thus hindering the

migration and diffusion of the particles; so the positive influence of surface structuring consisting

of different height irregularities on the coarsening behavior of Pt NPs could be identified.

Lastly, the sinter resistance of Pt NPs on amorphous alumina was successfully increased by the

deposition of an isolating silica or alumina layer between them by simple sol-gel techniques.

These films hindered the surface diffusion of platinum clusters or whole particles from migrating

towards each other. Sinter studies at 750°C under atmospheric conditions demonstrated no obvi-

ous indications for particle coarsening over a 4 h-time period for the NPs with either separating

layer when compared to reference samples without the silica- or alumina-protection. While TEM

cross sections showed that the particles were uncovered by the thin layers, the sintering could be

significantly reduced using these approaches. Independent of their composition, the diffusion of

Pt clusters could be decelerated.

Thus, an isolating oxide layer around the catalytically active nanoparticles on amorphous alumina

with a high substrate roughness, NP adhesion and surface potential compared to the other three

tested substrates is a promising concept to create sinter-stable exhaust combustion systems.

Implementing these promising findings from the model system to an industrially relevant scale

will be the next step. This would then reduce the amount of costly and harmful Pt NPs while

maintaining a high activity in order to fulfill upcoming strict regulations on exhaust standards, as

well as to lower the health risks in high population density areas with an increasing number of

cars.
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A Adhesion of platinum nanoparticles on

further substrates

Further AFM images of the NP adhesion study with LFM can be seen in the supplementary

Figure A.1.
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Figure A.1: AFM images of NPs on (a) crystalline SiO2(0001) without heat treatment, on (b) ther-
mally oxidized amorphous SiO2(ox) after 10 min at 750°C and on (c) amorphous
Al2O3(a) without heat treatment, each measured with reduced FN (before) and after
applying a higher FN (after) to remove the NPs.
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Though all small NPs could be scraped off of the SiO2(ox)-sample surface, some larger sintered

particles that had formed during the 10 min oven treatment could not be removed with the AFM.



B Control sinter study on dual-structured

substrates

Supplementary Figure B.1 shows control samples for observing the sintering behavior of Pt NPs

on dual-structured surfaces.
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Figure B.1: Control samples of dual-structured substrates composed of a silica- and an alumina-
side without Pt NPs during heat treatment at 750°C (compare with Figure 4.12). No
interfering phenomena which could alter the sintering behavior of Pt NPs on these
supports could be detected.



126 B Control sinter study on dual-structured substrates

For these samples, amorphous silica-alumina-substrates were fabricated, as described in Fig-

ure 2.12 without depositing Pt NPs onto them. Afterwards, they underwent the same heat

treatment at 750°C as the surfaces in Figure 4.12. These references exhibit no morphological

changes that could interfere with the sintering behavior of Pt NPs on the supports, neither for

the dual-structured surfaces with amorphous silica on alumina (Figure B.1a) nor with amorphous

alumina on silica (Figure B.1b). During a sinter study over the time period of 120 min in the

first case and 4 h in the second case, no migrating bright spots and no platinum could be detected

anywhere. Additionally, both the diffusion of aluminum ions into silica, as well as the diffusion

of silicon ions into alumina could be ruled out by EDX measurements.



C Cross sections of isolating silica and

alumina layers

TEM cross sections of annealed alumina samples with immobilized Pt NPs and a separating

SiO2- or Al2O3-layer at 750°C for 2 h are displayed in Figure C.1 and Figure C.2 respectively. In

both cases, the Pt NPs are detected as dark spots without an increase in nanoparticle size on the

amorphous alumina-substrate during the heat treatment. Additionally, the thin layers composed

of colloidal silica particles (Figure C.1a and b) and colloidal alumina particles (Figure C.2a and

b) appear as a lighter band on the alumina and around the nanoparticles without showing coverage

of these ones. So, it can be concluded that neither the silica nor the alumina layer changes

significantly in height during the sinter process, thus leaving the nanoparticles uncovered and

hence the catalytically active sites free.
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Figure C.1: (a) and (b) Cross sections of isolated Pt NPs with a silica layer after a 2 h-heat
treatment at 750°C in TEM.
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Figure C.2: (a) and (b) Cross sections of isolated Pt NPs with an alumina layer after a 2 h-heat
treatment at 750°C in TEM.





D Catalytic activity of isolated platinum

nanoparticles

The catalytic activity of platinum nanoparticles can be tested by the hydrogenation of methyl red

as a model reaction [43]. In the presence of hydrogen, Pt NPs break the N = N bond of methyl

red, as it can be seen in Figure D.1. Hereby, a loss of the initial red color is triggered, which can

be monitored by UV-vis spectroscopy.

The goal of these experiments was to analyze the catalytic activity of platinum nanoparticles

with isolating silica and alumina layers from chapter 6. When testing the Pt NPs without layers

surrounding them, the resulting absorption spectra are shown in Figure D.2a. As references, a

silicon-wafer (light green curve), one with a 100 nm amorphous alumina layer, Al2O3(a), and

exposed to hydrogen (dark green curve), as well as a silicon wafer plus alumina layer with Pt NPs

(light orange curve) were used. In these cases, the absorption spectra revealed no color change of

the methyl red solution and therefore, no catalytic activity was indicated. Afterwards, the methyl

red solution was bubbled with hydrogen in the presence of Pt NPs on amorphous alumina (dark

orange curve). Yet, no differences in absorption through the conversion of methyl red could be

detected either. ICP-OES measurements revealed a very low platinum loading on the samples

which attributes to the unaltered UV-vis spectra for methyl red. Following, the absorption spectra

of methyl red with a sample of tenfold Pt NPs amount was monitored by UV-vis (Figure D.2b).

Here, a slight drop in absorbance was observed for the sample with platinum particles compared

to a reference sample without the particles (Si-wafer curve). However, this decrease cannot

be taken as a significant reduction caused by the conversion of the azo dye since it could also

be triggered by interfering environmental influences and measurement inaccurancies. Thus, the

catalytic activity of isolated Pt NPs could not be tested with this described method.
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Figure D.1: Hydrogenation of methyl red as a model reaction to test the catalytic activity of Pt
NPs [43].
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Figure D.2: UV-vis spectra of methyl red solution (a) on a silicon wafer (Si-wafer/ light green
curve) plus the 100 nm amorphous alumina-layer (+ Al2O3(a)/ dark green curve))
plus 1x spin coated Pt NPs (+ Pt/ light orange curve) as references before hydro-
genation reaction. Additionally, the spectrum of Pt NPs with H2 ( + Pt + H2/ dark
orange curve) is graphed after the unsuccessful hydrogenation reaction of methyl
red. Then (b), the amount of Pt NPs was increased ten-fold and the resulting UV-vis
spectra of methyl red on Si-wafer with H2 (light green curve) as a reference and Pt
NPs with H2 (dark orange curve) are displayed.

Afterwards, another model reaction, the conversion of the yellow p-nitrophenol (4-NP) to

the colorless p-aminophenol (4-AP) by sodium borohydride NaBH4 via the intermediate 4-

nitrophenolate ion (4-NPI) (Figure D.3a) was analyzed for determining the catalytic activity of Pt

NPs [161]. The absorbance spectra for a reference sample of Si-wafer and for one with a tenfold

concentration of Pt NPs (+ Pt) were recorded and are presented in Figure D.3b. Again, no color

change was detected and therefore, no 4-NP was successfully transformed to 4-AP. This is also

caused by the limited concentration of platinum on the samples.

OH

NO2

OH-

o-

NO2

NaBH4

o-

NH2

Pt NPs

350 400 450

0.5

1.0
 Si-wafer
 + Pt

(a)

a
b

s
o

rb
a

n
c

e

(b)

wavelength/ nm4-NP 4-NPI 4-AP

Figure D.3: (a) Conversion from p-nitrophenol (4-NP) to p-aminophenol (4-AP) as a model
reaction to test the catalytic activity of Pt NPs [161]. (b) UV-vis spectra of 4-NP
solution before (Si-wafer/ light green curve) and after conversion reaction with Pt
NPs (+ Pt/ dark green curve).

Summarizing, the catalytic activity of isolated Pt NPs could not be proven by these two model

reactions involving methyl red and p-nitrophenol due to a very small platinum concentration.
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