
I N A U G U R A L – D I S S E R T A T I O N
zur

Erlangung der Doktorwürde

der

Naturwissenschaftlich–Mathematischen Gesamtfakultät

der

R U P R E C H T – K A R L S – U N I V E R S I T Ä T

H E I D E L B E R G

vorgelegt von

Dipl.-Math. Jürgen Gutekunst

aus Tübingen

Tag der mündlichen Prüfung

13. Februar 2019





FEEDBACK CONTROL FOR

AVERAGE OUTPUT SYSTEMS

Gutachter

PD DR. ANDREAS POTSCHKA

PROF. DR. DR. H. C. MULT. HANS GEORG BOCK



IV



Zusammenfassung
In dieser Arbeit stellen wir neue Methoden zum Design ökonomischer nichtlinearer modell-
prädikativer Regler für Average Output Optimal Control Problems (AOCPs) vor. Bei AOCPs
handelt es sich um Optimalsteuerungsprobleme mit unendlichen Zeithorizonten und Ziel-
funktionalen, welche die gemittelte Performance des Systems messen. Solche Probleme tre-
ten bei vielen kontinuierlich ablaufenden Prozessen auf, wie etwa beim Betrieb eines Kraft-
werks. Aufgrund der unendlichen Zeithorizonte und der daraus resultierenden intrinsischen
Nicht-Eindeutigkeit der Lösungen ist das Aufstellen geeigneter Nonlinear Model Predictive
Control (NMPC) Schemata für AOCPs ein schwieriges Problem.

Oft basieren Untersuchungen zum Closed-Loop-Verhalten ökonomischer NMPC Sche-
mata auf Dissipativitätsbedingungen an das dynamische System und das zugrundeliegen-
den Zielfunktionskriterium, welche schwierig zu überprüfen sind.

Die entwickelten Methoden basieren auf der Beobachtung, dass periodische Lösungen
hervorragend zur Approximation von Lösungen von AOCPs geeignet sind. Diese Eigenschaft
wird ausgenutzt, indem der Prädiktionshorizont in einen transienten und einen periodi-
schen Teil aufgeteilt wird.

Zur Analyse des resultierenden Systemverhaltens werden neue Methoden entwickelt, die
darauf beruhen, die Differenz der Lösungen von aufeinanderfolgenden NMPC Subproble-
men zu analysieren. Es wird gezeigt, dass diese Differenz unter geeigneten Voraussetzungen
mit fortschreitender Zeit gegen Null konvergiert. Dieser Ansatz beruht im Gegensatz zu vie-
len anderen ökonomischen NMPC Schemata nicht auf Dissipativitätsannahmen, sondern
vielmehr auf Annahmen an die Steuerbarkeit des dynamischen Systems sowie der eindeuti-
gen Lösbarkeit der auftretenden NMPC Subprobleme.

Als Resultat können wir zeigen, dass das resultierende System eine ökonomische Perfor-
mance erzielt, die mit der optimalen periodischen Performance übereinstimmt.

Darüber hinaus erweitern wir den vorgestellten Ansatz in zwei Richtungen: Zuerst be-
trachten wir ein allgemeineres Szenario mit parameterabhängiger Dynamik und Parame-
tern, die sich während des Betriebs ändern können. Die Parameteränderungen können zu ei-
ner Änderung des optimalen periodischen Verhaltens führen, insbesondere auch zur Ände-
rung der optimalen Periodenlänge. Dieser Tatsache wird dadurch Rechnung getragen, dass
die Periodenlänge als freie Optimierungsvariable in das NMPC Subproblem mitaufgenom-
men wird. Als zweites Szenario betrachten wir den Fall von Systemen mit zeitabhängigem,
periodischem Zielfunktionskriterium und zeigen, dass die vorgestellten Methoden auch auf
solche Systeme angewandt werden können.

Die vorgestellten Methoden sind im Rahmen des NMPC Toolkits MLI implementiert und
werden an einer Reihe von anspruchsvollen Anwendungsproblemen getestet. Die Simula-
tionsergebnisse bestätigen, dass die ökonomische Performance der resultierenden Closed-
Loop Systeme tatsächlich mit der optimalen periodischen Performance übereinstimmt.
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Abstract
In this work we propose new methods for the design of economic Nonlinear Model Predictive
Control (NMPC) feedback schemes for Average Output Optimal Control Problems (AOCPs).
AOCPs are Optimal Control Problems (OCPs) defined on infinite time horizons with averag-
ing performance critera as objective functionals. Such problems arise frequently for contin-
uously operating systems such as for example power plants. Due to the infinite time horizon
and the resulting intrinsic non-uniqueness of solutions, the design of appropriate NMPC
schemes for AOCPs is challenging.

Often, the analysis of the closed-loop behavior of economic NMPC schemes depends on
dissipativity conditions on the dynamical system and the associated performance criterion,
which sometimes can be hard to check.

The methods we develop are based on the observation that periodic solutions exhibit ex-
cellent approximation properties for AOCPs, which is exploited by splitting the time horizon
and the objective functional of the NMPC subproblems into a transient and a periodic part.

For the analysis of the closed-loop behavior of the resulting controller we develop new
methods that essentially work by showing that the (appropriately defined) difference of two
subsequent NMPC subproblem solutions vanishes asymptotically. Complementary to many
other economic NMPC schemes, this approach is not based on dissipativity assumptions on
the dynamical system and the associated performance criterion but rather on assumptions
on existence of periodic orbits, controllability of the dynamical system, and uniqueness of
the NMPC subproblem solutions itself.

As a result, we can show that the economic performance of the closed-loop system is equal
to the economic performance of the optimal periodic solutions.

Furthermore, the approach is extended in two directions. First, we consider the general
setting of a parameter dependent dynamical system where the parameter can be subject to
change during operation. This parameter change can lead to a change in the optimal pe-
riodic behavior, in particular also to a change of the optimal period, which we take into ac-
count by including the period as an optimization variable in the NMPC subproblem. Second,
we show that the approach can also be applied to systems with time-dependent periodic
performance criteria.

All the described methods are implemented within the MATLAB NMPC toolkit MLI and are
applied to a number of demanding applications. The simulation results confirm that the
generated closed-loop trajectories perform economically equally well as the optimal peri-
odic trajectories.
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Introduction
Nonlinear Model Predictive Control (NMPC) is an advanced feedback control method capa-
ble of controlling dynamic processes while at the same time satisfying process constraints.
The method is based on repeatedly solving Optimal Control Problems (OCPs) on finite time
horizons and updating the control inputs.

More recently, the interest in NMPC applications that directly consider an economic ob-
jective criterion has been rising. Contrary to tracking NMPC applications the setup of the
underlying NMPC subproblems becomes more and more crucial for the closed-loop perfor-
mance of the NMPC controller. The reason for this is that the economic objective criterion
usually does not satisfy a dissipativity condition that can be used to prove stability via a LYA-
PUNOV-argument and therefore a simple finite horizon approximation of the infinite horizon
OCP does not necessarily yield a stable NMPC controller.

In this work we consider systems with the objective to optimize the average economic
output. Such systems are difficult to treat in the NMPC context because they usually do
not have unique solutions on the infinite time horizon since the average performance only
depends on the asymptotic behavior (and not on the current control inputs).

We focus on the question on how an economic NMPC subproblem has to be set up in
order to produce an economically optimal and stable feedback while dealing with the afore-
mentioned difficulties.

Contributions
The aim of this thesis is to develop an economic NMPC scheme for Average Output Optimal
Control Problems (AOCPs) that requires as little a priori knowledge of the offline problem
solution as possible while meeting requirements on recursive feasibility, economic perfor-
mance and stability. The main contributions and results of this thesis can be described as
follows.

Approximation of AOCP Solutionswith Periodic Solutions
Periodic continuation allows to interpret periodic solutions of dynamical systems on finite
horizons as solutions on the infinite horizon. We use this observation for the approximation
of AOCP solutions with periodic solutions. According to a result of Grammel [47], a control-
lability assumption on the dynamical system is sufficient to guarantee arbitrarily good ap-
proximation properties of periodic solutions to the optimal average output objective value.
In fact we show that under a certain compactness assumption on the set of feasible states
and controls the solution of an infinite horizon AOCP can be approximated arbitrarily well
with quasi-periodic solutions (independently of any controllability).
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NMPCwith Periodicity Constraint for Optimal Economic Performance
We extend and modify an idea of Limon et al. [77] to define an economic NMPC controller
that is based on the good approximation properties of periodic solutions for AOCP. The pre-
diction horizon of the NMPC subproblems is split into a transient and a periodic part, allow-
ing the process to converge towards an optimal periodic orbit. The objective functional of
the underlying NMPC subproblems depends purely (up to a small regularizing term) on the
economic performance during the prediction horizon and the formulation includes a peri-
odicity constraint. The necessary a priori knowledge for the setup of the NMPC subproblems
is reduced drastically: only the period is required.

Stability Analysis of the ProposedNMPC Scheme
We analyze the closed-loop behavior of the proposed NMPC scheme and consider the ques-
tions of recursive feasibility, economic performance and stability.

Complementary to the usual approach in many stability proofs for economic NMPC
schemes that rely on dissipativity properties of the performance criterion and the dynam-
ical system and/or convex performance criteria, our approach is based on assumptions on
controllability of the dynamical system, compactness of the set of feasible states and con-
trols and uniqueness and continuous dependence of the NMPC subproblem solution with
respect to the initial value.

NMPCwith Variable Horizon Lengths
As an extension of the NMPC controller based on periodic approximations with fixed period,
we propose a controller that takes the period as a free optimization variable into account.
Such a controller can be advantageous in a scenario where the dynamical system is governed
by a parameter-dependent right-hand side and the optimal period of the optimal periodic
operation changes with the parameter.

Our investigations show that only minor modifications of the assumptions needed for the
stability proof for the fixed-period controller are necessary to prove stability also for such a
controller.

NMPC for Systemswith Time-Periodic Performance Criterion
We also apply the feedback scheme based on periodic solutions to systems where periodicity
is induced by a time-periodic objective criterion (e.g. a periodically varying electricity price).
Stability of the resulting feedback trajectory at the optimal periodic trajectory is shown.

Numerical Case Studies
To showcase the performance of the proposed NMPC controllers we consider several nu-
merical examples of increasing complexity.

In a first part we consider three examples with periodic performance criterion. The first
example is a model of a hydrostorage power plant with one state, two controls, and linear

2
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dynamics. The second example is a doubletank system, which is also considered as a bench-
mark problem for economically oriented NMPC in Huang and Biegler [63]. It has two states,
one control and nonlinear dynamics. As a third example we consider a four-tank system,
which has four states, two controls, and nonlinear dynamics.

In a second part we consider the powerkite system, which is a flying kite connected via
a long tether to a motor/generator at a ground platform. By controlling the kite in a smart
way it is possible to generate electric energy. This system is described by a strongly nonlin-
ear dynamical system with 9 state and 3 control variables and possesses a highly unstable
behavior. For this system we consider the scenario of varying wind conditions and apply the
controller using a fixed period as well as the controller using variable periods.

Thesis Outline
The thesis consists of three parts. Part I provides the necessary theoretical background on
OCPs and NMPC, in Part II our contributions are presented and in Part III we describe the
implementation as well as numerical case studies.

Part I starts with the introductory Chapter 1, where we present necessary essential ma-
thematical background leading to the definition of OCPs. Furthermore a brief overview on
solution methods for OCPs with a focus on the Direct Multiple Shooting method is given.

In Chapter 2 we introduce the principles behind NMPC as a feedback generating method.
Existing approaches such as Tracking NMPC and Economic Nonlinear Model Predictive
Control (E-NMPC) are reviewed including the analysis of the corresponding closed-loop be-
havior via the well known LYAPUNOV-stability arguments.

Part II begins with Chapter 3 where we introduce Average Output Optimal Control Prob-
lems (AOCPs) and discuss the difficulties that arise from the non-uniqueness of solutions in
the context of feedback generation via NMPC. We observe good approximation properties of
periodic solutions for AOCPs and, based on a compactness assumption on the set of feasible
states and controls, we prove the existence of quasi-periodic solutions that can approximate
the optimal average output arbitrarily well.

In Chapter 4 we briefly review existing economic NMPC schemes for AOCPs and develop a
novel economic NMPC scheme that is based on the observation of the good approximation
properties of periodic solutions for AOCPs. Based on a controllability assumption of the
dynamical system and an assumption on uniqueness and continuous dependence of the
NMPC subproblem solutions with respect to the initial value we develop a novel stability-
theory for the proposed NMPC controller.

In Chapter 5 the NMPC scheme is extended in two directions. First, we consider a sce-
nario where the system dynamics are subject to changing parameters and the optimal peri-
odic operation (also the optimal period) can change with the parameter. This is taken into
account by including the period as an additional optimization variable in the NMPC sub-
problem. Using time transformations this results in a new NMPC scheme for which we can
prove a stability result using similar methods as in the previous chapter. As a second scenario
we consider the case of systems with time-periodic performance criteria and show how the
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NMPC scheme of Chapter 4 can also be applied to such systems by making only slight mod-
ifications.

Part III starts with Chapter 6 where we describe the implementation of the proposed
NMPC schemes based on the software package MLI and give a brief overview over the nu-
merical algorithm used therein.

Chapter 7 contains three numerical case studies where we apply the NMPC scheme for
systems with time-periodic performance criterion presented in Chapter 5 to three examples
from the energy sector.

In Chapter 8 we present a numerical case study in which we apply the controllers for time-
independent performance criteria presented in Chapter 4 for fixed period and in Chapter 5
for variable period to the example of a flying energy producing powerkite. We compare the
results of both controllers for two scenarios, one in which the wind speed stays constant and
one in which the wind speed changes severely.
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Chapter 1
Optimal Control Problems
In this chapter, we give a brief introduction into the theory of Optimal Control Problems
(OCPs) and introduce some fundamental definitions needed throughout this thesis. An OCP
is the problem of finding a control for a dynamical system such that a predefined objective
criterion is optimized while satisfying a set of constraints.

The dynamical system is described by a set of state and control variables (x and u) and
the control variables make it possible to influence the behavior of the system. For a given
control, the future behavior of the system is determined by a set of differential equations
and the initial state of the system. In this thesis, we consider dynamical systems that are
described by Ordinary Differential Equations (ODEs). An OCP usually includes an initial
value constraint and additional constraints that are imposed throughout the time horizon,
which could be for example fuel limitations or safety bounds.

The fields of application for OCPs are widespread and important applications can be
found among others in biology [76], economics [28, 4], engineering (in particular chemical
process engineering) [45, 75, 31] and aerospace [79].

1.1 Elements of Functional Analysis
We begin the chapter with some basic function space definitions that are necessary to define
OCPs as infinite dimensional optimization problems on BANACH1 spaces. We largely follow
the presentation of Gerdts [46].

Definition 1.1 (Absolutely Continuous Functions and L∞)
Let T := [t0, tf] ⊂R be a compact interval with t0 < tf.

• A function f : T →R is called absolutely continuous if for every ε> 0 there exists δε > 0
such that for any finite sequence of pairwise disjoint subintervals (ai ,bi ) ⊂ T with
ai ,bi ∈ T it holds that∑

i
|bi −ai | ≤ δε ⇒ ∑

i

∣∣ f (bi )− f (ai )
∣∣≤ ε. (1.1)

The set of all absolutely continuous functions on T is denoted by AC (T ).

• The space ACn(T ) is defined as the product

ACn(T ) :=AC (T )×·· ·×AC (T )︸ ︷︷ ︸
n times

. (1.2)

1Stefan Banach 1892 - 1945

7



CHAPTER 1 Optimal Control Problems

• The space L∞(T ) is defined as the set of all measurable functions f : T → R that are
essentially bounded:

esssup
t∈T

∣∣ f (t )
∣∣ := inf

N⊂T
N has measure zero

sup
t∈T \N

∣∣ f (t )
∣∣<∞. (1.3)

• The space Ln∞(T ) is defined as the product space

Ln
∞(T ) := L∞(T )×·· ·×L∞(T )︸ ︷︷ ︸

n times

. (1.4)

• The space ACn
loc([t0,∞)) is defined as the space of all functions f : [t0,∞) → Rn such

that on every compact subinterval T̃ ⊂ [t0,∞) for the restriction it holds that

f |T̃ ∈ACn(T̃ ). (1.5)

• The space Ln
∞,loc([t0,∞)) is defined as the space of all functions f : [t0,∞) → Rn such

that on every compact subinterval T̃ ⊂R≥0 for the restriction it holds that

f |T̃ ∈ Ln
∞(T̃ ). (1.6)

4

It is well known that AC (T ) and L∞(T ) endowed with the norm
∥∥ f

∥∥∞ := esssupt∈T f (t ) are
BANACH spaces (see for example [103]). If it is clear from the context, we sometimes omit
the interval T for notational convenience and write Ln∞ for Ln∞(T ). The set of continuous
functions from T or R to R is denoted by C (T ) respectively C .

In order to use the concepts of differentiability for mappings defined between BANACH

spaces, we introduce the concept of the FRÉCHET2 differentiability.

Definition 1.2 (FRÉCHET Differentiability)
Let (V ,‖·‖V ), (W,‖·‖W ) be BANACH spaces and U ⊂V an open subset. A function f : U →W
is called FRÉCHET differentiable at x ∈U , if there exists a continuous, linear operator A : V →
W such that

lim
h→0

∥∥ f (x +h)− f (x)− Ah
∥∥

W

‖h‖V
= 0. (1.7)

If such a linear operator A exists for x ∈U , then it is unique, and we write D f (x) and call it
the FRÉCHET-derivative of f at x. 4

2Maurice René Fréchet 1878 - 1973
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1.2 Dynamical Systems
In this section, we define dynamical systems as a mathematical model to describe the evolu-
tion of continuous processes. We introduce important stability concepts, which are helpful
to analyze the asymptotic behavior of such systems.

1.2.1 Initial Value Problems and the PICARD-LINDELÖF Theorem
A dynamical system can be seen as description of a process (a function of time) where future
states of the process follow from the current state according to an evolution rule. In this the-
sis, we consider dynamical systems, where the states are represented by vectors in Rnx and
the evolution rule is defined by an Ordinary Differential Equation (ODE). With an explicit
ODE, the time derivative of a process is a function of time and state and we write:

ẋ(t ) = f (t , x(t )). (1.8)

Due to this notation for ODEs, the function f is sometimes also called the right-hand side.
If the right-hand side f is only a function of the state (there exists an f̃ : Rnx → Rnx such
that f (t , x) = f̃ (x) for all possible arguments (t , x) in the domain of f ), we call the ODE “au-
tonomous”. With the function f and some time/state point we can define

Definition 1.3 (Initial Value Problem (IVP))
An Initial Value Problem (IVP) is a function f :Σ⊂R×Rnx →Rnx (where Σ is an open subset)
together with a pair (t0, x0) ∈ Σ called the initial condition. For a given compact interval
T ⊂ R with t0 ∈ T , we call a function x ∈ ACn(T ) a solution of the IVP if x(t0) = x0 and
ẋ(t ) = f (t , x(t )) holds for almost all t ∈ T . 4

If the function f satisfies some regularity conditions, the PICARD-LINDELÖF3 theorem pro-
vides local existence and uniqueness statements for the IVP.

Theorem 1.4 (Local PICARD-LINDELÖF Theorem)
Let f : Σ ⊂ R×Rnx → Rnx be continuous and locally LIPSCHITZ continuous in the second
variable on Σ:∥∥ f (t , x)− f (t , y)

∥∥≤ M
∥∥x − y

∥∥ for all (t , x), (t , y) ∈Σ.

Then there exists an open interval I ⊂ R containing t0 and a unique, differentiable function
x : I →Rnx such that x(t0) = y0 and ẋ(t ) = f (t , x(t )) for all t ∈ I .

Proof See for example [110, Theorem 2.2]. �

This local version ensures existence of a solution for IVPs at least for a short time interval. If
the domain Σ of f contains a set of the form [a,b]×Rnx , the unique local solutions can be
glued together and the existence of solution on the whole interval [a,b] can be guaranteed:

3Émile Picard 1856 - 1941, Ernst Leonard Lindelöf 1870 - 1946
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Theorem 1.5 (Global PICARD-LINEDLÖF THEOREM])
Let T be a compact interval and Σ an open subset of R×Rnx such that T ×Rnx ⊂ Σ. Let
f :Σ→Rnx be continuous and uniformly LIPSCHITZ continuous in the second variable on Σ:∥∥ f (t , x)− f (t , y)

∥∥≤ M
∥∥x − y

∥∥ for all (t , x), (t , y) ∈Σ.

Then there exists a unique differentiable function x : T →Rnx such that x(t0) = y0 and ẋ(t ) =
f (t , x(t )) for all t ∈ T .

Proof See for example [2, Theorem 4.1.4]. �

In the following, we will assume that if the solution of an IVP exists, it will always be unique.
The abbreviation Φ(τ; x0, t0) stands for the value of the solution of the IVP ẋ(t ) = f (t , x(t ))
with initial value x(t0) = x0 at time τ ∈ R. The mapping Φ can be interpreted as the time-
dependent flow-mapping of the time-dependent vector-field ẋ(t ) = f (t , x(t )). GRÖNWALL’S4

Lemma implies the continuity of the flow-mapping for sufficiently smooth right-hand sides
f (see for example Khalil [71, Theorem 3.5]).

1.2.2 Stability of Solutions
The question of how small changes of the initial value affect the (long-term) behavior of the
solution of an IVP is analyzed in stability theory. In particular, stability concepts are of great
importance for analyzing robustness properties of systems that are subject to perturbations.

The concept of class kappa functions as comparison functions, which were first intro-
duced by Hahn [57, 56] and became a standard tool in stability theory for nonlinear systems
with the work Sontag [106], are useful to formalize the definition of stability.

Definition 1.6 (Class K Functions)
We define the following subsets of C (R≥0) and C (R≥0 ×R≥0):

K := {α ∈ C(R≥0) :α is strictly increasing and α(0) = 0},

K∞ := {α ∈K and lim
t→∞α(t ) =∞},

L := {α ∈ C(R≥0) :α is strictly decreasing and lim
t→∞α(t ) = 0},

KL := {β :R≥0 ×R≥0 :β is continuous, β(·, t ) ∈K and β(t , ·) ∈L for all t ∈R≥0}. 4

Remark 1.1 ClassK functions have the following properties concerning inversion and com-
position: Let α1,α2 ∈K∞ and α ∈L. Then it holds:

• α1 is invertible and for the inverse it holds α−1
1 ∈K∞,

• α1 ◦α2 ∈K∞,

• α◦α1 ∈L,

4Thomas Hakon Grönwall 1877 - 1932
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• α1 ◦α ∈L.

Furthermore, for α3 ∈K and β ∈KL it holds that α3 ◦β ∈KL. 4

We introduce the following stability concepts for IVPs with autonomous ODEs.

Definition 1.7 (Stability of IVP Solutions )
A solution xref : R≥0 → Rnx of the IVP ẋ(t ) = f (t , x(t )) with initial value x(0) = x0 ∈Rnx is said
to be

• LYAPUNOV 5 stable, if for any ε≥ 0 there exists δ≥ 0 such that

‖x −xref(t )‖ ≤ ε ⇒ Φ(τ; x, t ) exists and ‖Φ(τ; x, t )−xref(t )‖ ≤ δ for all τ≥ t ,

• locally asymptotically stable, if there exists a function β ∈ KL and an open set U ⊂
R×Rnx containing {(t , x) ∈R≥0 ×Rnx : x = xref(t )} such that for any (t , x) ∈U it holds

– Φ(τ; x, t ) exists for all τ≥ t ,

– ‖xref(τ)−Φ(τ; x, t )‖ ≤β(‖x −xref(t )‖ ,τ− t ) for all τ≥ t .

• locally uniformly asymptotically stable, if there exists δ ≥ 0 and a function β ∈ KL
such that

– ‖x −xref(t )‖ ≤ δ ⇒ Φ(τ; x, t ) exists and is unique for all τ≥ t ,

– ‖x −xref(t )‖ ≤ δ ⇒ ‖Φ(τ; x, t )−xref(t )‖ ≤β(‖x −xref(t )‖ ,τ− t ) for all τ≥ t . 4

To illustrate the concept of stability, we include some simple examples.

Example: Linear Systems
Let us consider the case of an IVP with a linear right-hand side, i.e. ẋ(t ) = Ax(t ) where A ∈
Rnx×nx is a matrix. Let x0 ∈ Rnx be the initial value at time t0. It is well known that the
unique solution of this IVP is defined for all times and can be represented using the matrix
exponential:

Φ(τ; x0, t0) = e A(τ−t0)x0. (1.9)

It can be shown that for the induced matrix norm (‖A‖ := sup{‖Ax‖ , x ∈ Rnx with ‖x‖ = 1})
and the matrix exponential it holds:∥∥eB ∥∥≤ eλmax(B), for all B ∈Rnx×nx , (1.10)

where λmax(B) denotes the largest real part of the eigenvalues of the matrix B . It follows for
the solution

‖Φ(τ; x0, t0)‖ ≤ ∥∥e A(τ−t0)∥∥‖x0‖ ≤ eλmax(A)(τ−t0) ‖x0‖ . (1.11)

5Aleksandr Mikhailovich Lyapunov 1857 - 1918
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This shows that if the largest real part of the eigenvalues of A is negative, the constant zero-
solution (xref( · ) ≡ 0) of the IVP ẋ(t ) = Ax(t ) with initial value x(0) = 0 is locally uniformly
asymptotically stable cf. Figure 1.1a.

Example: Steady-States of Affine Linear Systems

Let ẋ(t ) = Ax(t )+b be an affine linear dynamical system with A ∈ Rnx×nx and b ∈ Rnx . Any
x0 ∈ Rnx with Ax0 +b = 0 is called a steady-state for the system, because the right hand side
vanishes and consequently for any τ≥ t0 it holds thatΦ(τ; x0, t0) = x0. By substituting x̃(t ) :=
x(t )− x0, the original ODE transforms to the equivalent linear system ˙̃x(t ) = Ax̃(t ) and the
question is reduced to the question of stability of the zero solution for the linear system.

As we have seen in the previous example, 0 is a locally uniformly stable solution of a linear
dynamical system if the eigenvalues of A have negative real part. Therefore, in this case
the steady-state x0 is locally uniformly asymptotically stable for the original system ẋ(t ) =
Ax(t )+b.

Example: LYAPUNOV Stable but not Locally Asymptotically Stable

For r0 ≥ 0 and ϕ0 ∈ [0,2π] consider the IVP(
ẋ1(t )
ẋ2(t )

)
=

(
x2(t )
−x1(t )

)
with initial value x(t0) = r0

(
sin(ϕ0)
cos(ϕ0)

)
∈R2. (1.12)

The solution of this system is then given by

Φ(τ; x0, t0) = r0

(
sin(τ+ϕ0)
cos(τ+ϕ0)

)
. (1.13)

The solutions move along circles of radius r0 counterclockwise with constant angular veloc-
ity (Figure 1.1b). It follows that for any two solutions x1, x2, the difference ‖x1(τ)−x2(τ)‖
will be independent of τ and therefore constant. This means that for all τ ≥ t0 and for any
x, y ∈R2 it holds that∥∥Φ(τ; x, t0)−Φ(τ; y, t0)

∥∥= ∥∥x − y
∥∥ , (1.14)

and consequently any solution is LYAPUNOV stable. Equation (1.14) also implies that no so-
lution is locally asymptotically stable.

12
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a) A =
(−0.2 −1

1 0

)
. b) A =

(
0 −1
1 0

)
.

Figure 1.1:The above pictures show two linear systems that evolve according to ẋ(t ) = Ax(t ).
For the system on the left, 0 is a locally uniformly asymptotically stable solution because
the solution Φ(τ; x0, t0) converges to zero for all x0 ∈ R2. For the system on the right, any
circle-parametrized solution is LYAPUNOV-stable but not asymptotically stable, because the
solutions move on circular trajectories around the center with constant angular velocity and
distance to the center.

Figure 1.2: The above picture shows two sample solutions of the LORENZ system on the time
interval [0,50]. The blue trajectory corresponds to the solution x with initial value x(0) =
(1,1,1)T and the red trajectory corresponds to the solution x̃ with a slightly perturbed initial
value x̃(0) = (1.01,1.01,1.01)T . Below, the distance ‖x(τ)− x̃(τ)‖ is plotted. It can be seen that
although the two initial values are quite close, they soon have a large distance.
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Example: The LORENZ System
The LORENZ6 system is the prime example of an ODE showing chaotic solution behavior.
The system is three dimensional and its evolution is described by the right-hand side

f

x1

x2

x3

=
 σ(x2 −x1)

x1(ρ−x3)−x2

x1(x2 −βx3)

 (1.15)

with the parameters σ = 10,β = 8
3 ,ρ = 28. It can be shown that for many initial values, the

solutions of this system behave chaotic, i.e. a small change of the initial value leads to a large
difference in later states known as the Butterfly Effect and do not satisfy any of the above
stability definitions. This effect is illustrated in Figure 1.2, where the evolution of two sample
solutions with close initial values is depicted as well as the evolution of their distance.

Although being a deterministic system, making a prediction of the future behavior is very
difficult because it would require perfect knowledge of the initial state. Such systems are the
subject of chaos theory [109].

1.2.3 LYAPUNOV Functions
LYAPUNOV functions are of outstanding importance for stability theory. The method of ana-
lyzing stability properties of dynamical systems by means of a LYAPUNOV function was first
introduced by LYAPUNOV in his Ph.D. thesis [81] and is also known as “LYAPUNOV ’S second
method”. Roughly speaking, a LYAPUNOV function is a function that assigns a non-negative
value to each possible state of the system with the additional properties that it is strictly de-
creasing along solutions of the dynamical system and that its minimum is attained at some
reference (steady-)state of the system. Such functions can be used to show that every solu-
tion of the system is converging to the reference state.

If such a function exists, its values can be interpreted as an analogue to some kind of en-
ergy that is stored in the system. The energy is dissipating with time and the system is con-
verging to the state with minimal energy, which is the reference state.

We introduce a variation of this method that can also be used to prove stability for time
varying solutions of non-autonomous systems.

Let xref :R≥0 →Rnx be a solution of the IVP ẋ(t ) = f (t , x(t )) with initial value x(0) = x0.

Definition 1.8 (LYAPUNOV-Like Functions)
Let U ⊃ {(t , x) ∈ R≥0 ×Rnx : x = xref(t )} be an open set and V : U → R≥0 ∪ {+∞} a continuous
function. The function V is called a LYAPUNOV-like function for the solution xref, if there
exist functions α1,α2 ∈K∞ and α3 ∈K such that

• for all (t , x) ∈U the following inequalities hold:

α1(‖x −xref(t )‖) ≤V (t , x) ≤α2(‖x −xref(t )‖), (1.16)

6Edward Norton Lorenz 1917 - 2008
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• for all (t , x) ∈U the solution Φ(τ; x, t ) exists for all times τ≥ t , the solution stays inside
U and satisfies

∂

∂τ
V (τ,Φ(τ; x, t )) ≤−α3(‖xref(τ)−Φ(τ; x, t )‖). (1.17)

4

The existence of a LYAPUNOV-like function for a reference solution now implies asymptotic
stability for this solution.

Lemma 1.9 (Existence of LYAPUNOV-Like Function Implies Stability)
Let V : U → R≥0 be a LYAPUNOV-like function for the solution xref : R≥0 → Rnx of the IVP
ẋ(t ) = f (t , x(t )) with initial value x(0) = x0. Then xref is locally asymptotically stable.

Proof From (1.16) and (1.17), for any (t , x) ∈U and τ≥ t it follows

∂

∂τ
V (τ,Φ(τ; x, t )) ≤−α3

(
α−1

2 V (τ,Φ(τ; x, t ))
)

. (1.18)

This implies that τ 7→V (τ,Φ(τ; x, t )) is bounded from above by the solution of the IVP ẏ(τ) =
−α3(α−1

2 (y(τ)) with y(t ) =V (t , x). Becauseα3◦α−1
2 ∈K, according to Lemma A.2 there exists

a KL-function β that is an upper bound for those IVP solutions (and consequently also for
τ 7→V (τ,Φ(τ; x, t ))):

V (τ,Φ(τ; x, t )) ≤β(V (t , x),τ− t ). (1.19)

In combination with the inequalities (1.16) we get

‖Φ(τ; x, t )−xref(τ)‖ ≤α−1
1

(
β (α2(‖x −xref(t )‖),τ− t )

)
. (1.20)

Since the function (a,b) 7→ α−1
1

(
β(α2(a),b)

)
is again a KL function (see Remark (1.1)) the

proof is finished. �

In the context of feedback control, the following relaxed version of the previous Lemma is
of interest. It can occur that the continuous condition (1.17) can’t be checked but instead a
discrete version for a sequence of times (ti = t0 + i∆T )i∈N holds:

V (ti+1,Φ(ti+1; x, ti )) ≤V (ti , x)−α(‖x −xref(ti )‖). (1.21)

The discrete analog to Definition 1.8

Definition 1.10 (Discrete LYAPUNOV-Like Function)
Let U ⊃ {(t , x) ∈ R≥0 ×Rnx : x = xref(t )} be an open set and V : U → R≥0 ∪ {+∞} a continuous
function. V is called a discrete LYAPUNOV-like function for the solution xref, if for a sequence
of times (ti = t0+i∆T )i∈N with∆T > 0 there exist functionsα1,α2 ∈K∞ andα3 ∈K such that

• for all (t , x) ∈U the following inequalities hold:

α1(‖x −xref(t )‖) ≤V (t , x) ≤α2(‖x −xref(t )‖), (1.22)

15
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• for all i ∈N and all (ti , x) ∈U the solution Φ(τ; x, ti ) exists for all times τ≥ ti , the solu-
tion stays inside U and satisfies

V (ti+1,Φ(ti+1; x, ti )) ≤V (ti , x)−α3(‖x −xref(ti )‖), (1.23)

• for (ti , x) ∈U and τ ∈ [ti , ti+1) it holds

V (τ,Φ(τ; x, ti )) ≤V (ti , x). (1.24)
4

With this definition, we can formulate a discrete version of Lemma 1.9:

Lemma 1.11 (Existence of Discrete LYAPUNOV-Like Function Implies Stability)
Let V : U → R≥0 be a discrete LYAPUNOV-like function for the solution xref : R≥0 → Rnx of the
IVP ẋ(t ) = f (t , x(t )) with initial value x(0) = x0. Then there exists a KL function β such that
for all (ti , x) ∈U and τ≥ ti it holds that

‖xref(τ)−Φ(τ; x, ti )‖ ≤β(‖xref(t )−x‖ ,τ− ti ). (1.25)

Proof Because of (1.22) and (1.23), there exists a K∞ function α̃ such that for any (ti , x) ∈U
it holds

V (ti+1,Φ(ti+1; x, ti )) ≤V (ti , x)− α̃(V (ti , x)). (1.26)

Lemma A.3 guarantees the existence of a KL function β̃ with the property that

V (t j ,Φ(t j ; x, ti )) ≤ β̃(V (ti , x), t j − tk ) (1.27)

holds for all i , j ∈ N and x ∈ Rnx such that j ≥ i and (ti , x) ∈ U . Now let τ ≥ ti be arbitrary.
Then, for the unique k ∈Nwith τ ∈ [tk , tk+1) we can calculate

V (τ,Φ(τ; x, ti )) ≤︸︷︷︸
(1.24)

V (tk ,Φ(tk ; x, ti )) ≤ β̃(V (ti , x), tk − ti )

≤ β̃(V (ti , x),τ− ti+1) (because of τ− ti+1 ≤ tk − ti and β̃ ∈KL)

= β̃(V (ti , x),τ− ti −∆T ).

For (s, t ) ∈R≥0 × [∆T,∞) we define the function β̂ as follows:

β̂(s, t ) := β̃(s, t −∆T )+ 2s∆T

t +∆T
. (1.28)

By definition, the function β̂ satisfies the inequality

V (τ,Φ(τ; x, ti )) ≤ β̂(V (ti , x),τ− ti ) (1.29)

16
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for all τ≥ ti +∆T . We can extend β̂ continuously to R≥0 ×R≥0 by setting

β̂(s, t ) := β̂(s,∆T )+ 2s∆T

t +∆T
for (s, t ) ∈R≥0 × [0,∆T ). (1.30)

It can be checked that the resulting function β̂ is a KL function. By definition of β̂, which in
particular implies s ≤ β̂(s, t ) for all t ∈ [0,∆T ), and the property (1.24) it follows

V (τ,Φ(τ; x, ti )) ≤V (ti , x) ≤ β̂(V (ti , x),τ− ti ) (1.31)

for all τ ∈ [ti , ti+1). This shows that inequality (1.29) also holds for τ ∈ [ti , ti+1). Together with
the inequalities (1.22), β̂ can now be used to construct a KL function β that satisfies (1.26)
and the proof is finished. �

1.3 Discrete Time Systems
Discrete time systems can be seen as the discrete equivalent of dynamical systems. In such
systems, the evolution is described by a transition map F :Rnx →Rnx which maps the current
state x ∈ Rnx to the state at the next time instant, which is denoted by x+ := F (x). Since the
“evolution rule” F is defined on Rnx , for any initial value x0 ∈Rnx there automatically exists a
unique sequence (yk )k∈N that solves the discrete initial value problem

y0 = x0 and yk+1 = F (yk ) for all k ∈N. (1.32)

For a repeated application of the function F we also write F n := F ◦ · · · ◦F︸ ︷︷ ︸
n times

.

A dynamical system ẋ(t ) = f (x(t )) can be transformed into a discrete time system using a
equidistant time grid (ti = i∆T )i∈N.

The evolution rule F is then just defined by using the flow mapping Φ of the dynamical
system (we suppose that the solution for the dynamical system exists for all initial values
and all times, i.e. the flow map Φ is well defined):

F (x) =Φ(∆T ; x,0). (1.33)

It is clear that for any given initial value x0 this evolution rule will generate a sequence
(xk )k∈N that corresponds to the sequence (Φ(k∆T ; x0,0))k∈N.

Stability of Solutions
Similar to the stability theory of IVPs, the question of the asymptotic behavior of discrete
time systems is of great interest. The stability notion of Definition 1.7 can be transferred to
the discrete case:

Definition 1.12
A solution (yk )k∈N of the discrete time system x+ = F (x) with initial value y0 = x0 is called

17



CHAPTER 1 Optimal Control Problems

• LYAPUNOV-stable, if for any ε≥ 0 there exists δ≥ 0 such that∥∥x − yk
∥∥≤ ε⇒

∥∥∥F j (x)− yk+ j

∥∥∥≤ δ for all j ∈N,

• locally uniformly asymptotically stable, if there exists a function β ∈ KL and δ > 0
such that for any k ∈N and any x ∈Rnx with

∥∥x − yk
∥∥< δ it holds∥∥∥yk+ j −F j (x)

∥∥∥≤β(∥∥x − yk
∥∥ , j

)
for all j ∈N. (1.34)

4

As in the continuous case, LYAPUNOV-like functions constitute an important tool in the anal-
ysis of the asymptotic behavior of discrete time systems.

Definition 1.13 (LYAPUNOV-Like Functions for Discrete Time Systems)
Let (yk )k∈N be a solution of the discrete time system x+ = F (x) and let U ⊂ N×Rnx be a
neighborhood of {(k, yk ),k ∈ N}. A continuous function V : U → R≥0 is called a LYAPUNOV-
like function for the solution (yk )k∈N if there exist K∞ functions α1,α2 and a K function α3

such that

• U is invariant under F , i.e. (k, x) ∈U ⇒ (k +1,F (x)) ∈U ,

• for all (k, x) ∈U it holds

α1
(∥∥x − yk

∥∥)≤V (k, x) ≤α2
(∥∥x − yk

∥∥)
, (1.35)

• V (k +1,F (x)) ≤V (k, x)−α3(V (k, x)) for all (k, x) ∈U . 4

The corresponding stability result is the following.

Lemma 1.14 (Stability of Discrete Time Systems)
If V : U →R≥0 is a LYAPUNOV-like function for a solution solution (yk )k∈N of the discrete time
system x+ = F (x), then (yk )k∈N is a uniformly asymptotic stable solution of the discrete time
system.

Proof Application of Lemma A.3 shows the existence of a KL-function β such that

V (k + j ,F j (x)) ≤β(V (k, x), j ) for all (k, x) ∈U and j ∈N (1.36)

holds. The inequalities (1.35) finish the proof. �

1.4 Optimal Control Problems as Infinite Dimensional Optimization
Problems

Often, the evolution of the dynamical process not only depends on the current state but also
on a control input u ∈ Rnu which can be used to influence the system. For a given control
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function u ∈ Lnu∞ (T ), the time-derivative of such a controlled system can then be expressed
as ẋ(t ) = f (x(t ),u(t )). Together with an initial value this gives rise to an IVP. The possibility
to influence the system via an external input function u motivates the question of the “best”
way to influence a system such that a prescribed objective is optimized.

We now introduce the formal definition of an OCP on the compact time interval T =
[t0, tf] ⊂R in general standard form.

Let

f :R×Rnx ×Rnu →Rnx (1.37a)

` :R×Rnx ×Rnu →R, (1.37b)

m :Rnx →R, (1.37c)

c :R×Rnx ×Rnu →Rnc , (1.37d)

Ψ : (Rnx ×Rnu )mΨ →RnΨ (1.37e)

be sufficiently smooth functions.

Definition 1.15 (Standard Optimal Control Problem on a Finite Time Horizon)
An Optimal Control Problem (OCP) is an infinite dimensional optimization problem of the
following form

min
x∈ACnx (T ),

u∈Lnu∞ (T )

ϕ(x ,u) :=
∫ tf

t0

`(τ, x(τ),u(τ))dτ+m(x(tf)) (1.38a)

s. t. x(t0) = x0, (1.38b)

ẋ(τ) = f (τ, x(τ),u(τ)), τ ∈ T , (1.38c)

0 ≤ c(τ, x(τ),u(τ)), τ ∈ T , (1.38d)

0 =Ψ(x(t0),u(t0), . . . , x(tmΨ ),u(tmΨ )). (1.38e)

The optimal objective value of this OCP is denoted byϕ(x0). The mapping x 7→ϕ(x) is called
the optimal value function. 4

We call a pair (x ,u) ∈ ACnx (T )× Lnu∞ (T ) admissible for problem (1.38), if it satisfies con-
straints (1.38b)-(1.38e). The performance criterion (1.38a) consists of an integral contribu-
tion (the LAGRANGE7-type objective) with integrand `(τ, x(τ),u(τ)) and of an end-point con-
tribution m(x(tf)), which is called MAYER8-type objective. An OCP with an objective function
of this type is called a “BOLZA9-type” OCP.
The first constraint (1.38b) is the initial value constraint. Constraint (1.38c) is the ODE-
constraint and has to be satisfied almost everywhere on T . The expression ẋ(t ) can be
evaluated for almost all t ∈ T because the derivative of an absolutely continuous function
exists almost everywhere. The path constraint (1.38d) is formulated as inequality constraint,

7Joseph-Louis Lagrange 1736 - 1813
8Christian Gustav Adolph Mayer 1839 - 1908
9Oskar Bolza 1887 - 1942
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which in particular also includes equality constraints and has to be satisfied almost every-
where on T . In most OCPs throughout this thesis, we consider path constraints that are time
independent and decoupled in state and control, i.e. of the form

c(τ, x,u) =
(

cx (x)
cu(u)

)
. (1.39)

This case also includes the so called simple bound constraints, which are box-constraints
on state and control variables imposed on the whole time horizon. Constraint (1.38e) is a
coupled interior point constraint which is evaluated at a finite grid of time points t0 < . . . <
tmΨ in T . Note that for notational convenience we often state the initial value constraint
(1.38b) separately from Ψ. Another important type of a coupled interior point constraint
that frequently occurs in this thesis is the periodicity constraint, which is of the form

Ψper(x(ti ), x(t j )) = x(ti )−x(t j ), (1.40)

for some ti < t j in T .
We use the quite abstract general form of Definition (1.38) to define OCPs in order to high-

light the underlying structure that all OCPs have in common. However, when we define a
new OCP, most of the time we state the path constraints and the coupled constraints in their
explicit form to facilitate the understanding.

OCPs asOptimization Problems on BANACH Spaces
In the following, we define general optimization problems on BANACH spaces and show how
Problem 1.38 can be embedded in this framework.

Definition 1.16 (General Constrained BANACH Space Optimization Problem)
Let V ,W,U be BANACH spaces, J : V →R a functional, C : V →W , G : V →U operators, S ⊂V
a closed convex set and K ⊂U a closed convex cone with 0U as vertex. The following problem
is a general constrained BANACH space optimization problem

min
w∈S

J (w) (1.40)

s. t. G(w) ∈ K ,

C (w) = 0W . 4

With the definitions

V :=ACnx (T )×Lnu∞ (T ),

W := Lnu∞ (T )×L
neq
∞ (T )×RnΨ ,

U := Lineq
∞ (T ),

K :=
{

k ∈ LN nx

∞ (T ) : k(t ) ≥ 0Rnineq a.e. in T
}

,

S :=V ,
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J (x ,u) :=
∫ tf

t0

`(τ, x(τ),u(τ))dτ+m(x(tf)),

C (x ,u) :=


x(t0)−x0

ẋ( · )− f ( · , x( · ),u( · ))
ceq( · , x( · ),u( · )),

Ψ(x(t0),u(t0), . . . , x(tmΨ ),u(tmΨ ))

 ,

G(x ,u) := cineq( · , x( · ),u( · )),

we can interpret the OCP (1.38) as a general constrained BANACH space optimization prob-
lem as in Definition 1.16.

Under certain smoothness assumptions on the functions f ,c,`,m,c,Ψ it can be shown
that the BANACH space functionals J ,C and G are FRÉCHET differentiable. For a more de-
tailed discussion, we refer the reader to Gerdts [46, Chapter 2].

Existence of Solutions
In general, statements on the existence of solutions of the OCP (1.38) are difficult to make.
However, in some special cases, it can be shown that the subset of functions that satisfy the
constraints is a compact subset of V = ACnx (T )× Lnu∞ (T ). For example, Lee and Markus
[73] prove existence for OCPs with control constraints and a right-hand side f where the
control enters linearly and in Berkovitz [11] existence of optimal controls based on convexity
assumptions is discussed.

1.4.1 Important Special Cases
In the following, we discuss some important frequently arising special types of OCPs and
show how they can be transformed to an OCP of standard form as in Definition 1.15.

AutonomousOCPs
In the case the functions `, f and c are time independent, i.e. of the form

` :Rnx ×Rnu →R, (1.41)

f :Rnx ×Rnu →Rnx , (1.42)

c :Rnx ×Rnu →Rnc , (1.43)

we call the OCP an autonomous OCP. By augmenting the time as auxiliary differential state
xaux with ẋaux := 1 and initial condition xaux(t0)( · ) = t0 every non-autonomous OCP can be
transformed into an autonomous OCP.
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OCPswith PureMAYER-TypeObjective or Pure LAGRANGE-Type
The LAGRANGE objective term

∫ tf
t0
`(τ, x(τ),u(τ))dτ can be transformed into a MAYER-type

objective contribution by augmenting the auxiliary state

ẋ`(τ) := `(τ, x(τ),u(τ)) with x`(t0) := 0 (1.44)

to the system. Conversely, if the MAYER term function m of the objective is differentiable, the
equation

m(x(tf))−m(x(t0)) =
∫ tf

t0

dm

dx
(x(τ)) f (τ, x(τ),u(τ))dτ (1.45)

can be used to transform a MAYER-type objective into a LAGRANGE-type objective. For some
numerical solution approaches of the OCP (i.e. Direct Multiple Shooting or Direct Collo-
cation methods) the MAYER-type form is preferred, as it allows to reduce the complexity of
evaluating the objective-criterion, since the final value x(tf) explicitly occurs as optimization
variable.

OCPswith Variable TimeHorizon
The OCP (1.38) has a fixed time horizon. With the help of the time transformation

t (τ) := t0 + (tf − t0)τ (1.46)

we can transform the general OCP of Definition 1.15 to an OCP on the normalized time hori-
zon [0,1]. This substitution technique also allows the reduction of an OCP with free initial
and free final time to an OCP on a fixed time horizon by including the initial time and final
time as additional parameters that can also be subject to optimization.

1.4.2 Optimal Control Problemswith Time-DelayObjective
In the course of this thesis, a special kind of OCP with time-delayed objective function will
occur. This class of OCP has an objective function with a LAGRANGE term ` that depends
not only on state and control variables at time t but also on state and control variables at the
shifted time t +Ts . Let ` : T × (Rnx ×Rnu )2 →R be sufficiently smooth and let Ts ∈R be such
that t0 < tf −Ts .

Definition 1.17 (Optimal Control Problem with Time-Delay Objective)
An OCP with time-delay objective function is an infinite dimensional optimization problem
of the following form

min
x∈ACnx (T ),

u∈Lnu∞ (T )

ϕ(x ,u) :=
∫ tf−Ts

t0

`(τ, x(τ),u(τ),τ+Ts , x(τ+Ts ),u(τ+Ts ))dτ (1.47a)

s. t. x(t0) = x0, (1.47b)

ẋ(τ) = f (τ, x(τ),u(τ)), τ ∈ T , (1.47c)
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0 ≤ c(τ, x(τ),u(τ)), τ ∈ T , (1.47d)

0 =Ψ(x(t0),u(t0), . . . , x(tmΨ ),u(tmΨ )). (1.47e)
4

Reduction to Non-DelayedOCP
We show how the time-delay OCP of Definition (1.47a) can be reduced to an OCP of stan-
dard form. The method we describe is a modification of a method described in Guinn [55].
For simplicity, we only consider a time-delayed OCP without the interior point constraints
(1.47e). The extension to the case with coupled interior point constraint is straightforward.
Let us suppose that the time delay Ts is an integral fraction of the length T := tf−t0 of the time
horizon, i.e. Ts = K

N T with K < N and K , N ∈N+. Furthermore, let (x ,u) ∈ACnx (T )×Lnu∞ (T ).
To reduce the problem, we introduce new state and control variables yi ∈ Rnx and wi ∈ Rnu

for i ∈ {1, . . . , N } that are defined on T̃ := [
t0, t0 + 1

N T
]

and set

yi (τ) := x
(
τ− i −1

N
T

)
and wi (τ) := u

(
τ− i −1

N
T

)
. (1.48)

For i ∈ {1, . . . , N } we define the functions fi : T̃ ×Rnx ×Rnu →Rnx

fi (τ, yi , wi ) := f

(
τ+ i −1

N
T, yi , wi

)
, (1.49)

for i ∈ {1, . . . , N −K } the functions `i : T̃ ×Rnx ×Rnu ×Rnx ×Rnu →R

`i (τ, yi , wi , yi+K , wi+K ) := `
(
τ+ i −1

N
T, yi , wi ,τ+ K + i −1

N
T, yi+K , wi+K

)
(1.50)

and for i ∈ {1, . . . , N } the functions ci : T̃ ×Rnx ×Rnu →R

ci (τ, yi , wi ) := c

(
τ+ i −1

N
T, yi , wi

)
. (1.51)

Now we set

(y , w ) :=


 y1

...
yN

 ,

 w1
...

wN


 ∈ACN nx (T̃ )×LN nu∞ (T̃ ). (1.52)

It is clear that if (x ,u) satisfies the ODE-constraint (1.47c), (y , w ) satisfies the following ODE-
constraint

ẏ(τ) = f̃ (τ, y(τ), w (τ)) :=

 f1(τ, y1(τ), w1(τ))
...

fN (τ, yN (τ), wN (τ))

 ∈RN nx ,τ ∈ T̃ . (1.53)
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Similarly, if (x ,u) satisfies the path constraint (1.47d), (y , w ) satisfies the following path con-
straint

c̃(τ, y(τ), w (τ)) :=

 c1(τ, y1(τ), w1(τ))
...

cN (τ, yN (τ), wN (τ))

≤ 0N nc ,τ ∈ T̃ . (1.54)

And finally, if (x ,u) satisfies the initial value constraint (1.47b), (y , w ) satisfies the following
constraint

y1(t0) = x0. (1.55)

From Definition 1.48 it follows that the following equations are satisfied for (y , w ):

yi

(
t0 + 1

N
T

)
= yi+1(t0) for i ∈ {1, . . . , N −1}. (1.56)

Conversely, if (y , w ) ∈ ACN nx (T̃ ) × LN nu∞ (T̃ ) satisfies constraints (1.53) – (1.55) and the
transversality constraints (1.56), we can construct a pair (x ,u) ∈ACnx (T )×Lnu∞ (T ) that sat-
isfies constraints (1.47c) – (1.47e). Altogether, if we merge the initial value constraint (1.55)
and the constraints (1.56) into one coupled interior point constraint Ψ̃, we reduced the time-
delayed OCP to the following OCP of standard form.

min
y∈ACN nx (T̃ ),

w∈LN nx∞ (T̃ )

∫
T̃

N−K∑
i=1

`i (τ, yi (τ), wi (τ), yi+K (τ), wi+K (τ))dτ (1.57a)

s. t. ẏ(τ) = f̃ (τ, y(τ), w (τ)), τ ∈ T̃ , (1.57b)

0 ≤ c̃(τ, y(τ), w (τ)), τ ∈ T̃ , (1.57c)

0 = Ψ̃
(

y(t0), w (t0), y
(

t0 + 1

N
T

)
, w

(
t0 + 1

N
T

))
. (1.57d)

1.5 Optimal Control Problemswith Infinite TimeHorizons
Up to this point we only considered OCPs with finite time horizons T . It is also possible
to define OCPs on infinite time horizons. However it is necessary to choose appropriate
optimality criteria in this case. We begin this section with an instructive example and then
introduce some optimality criteria for OCPs on infinite time horizons.

Example: Indefinite Objective
Consider the 2-dimensional dynamical system described by the linear ODE

ẋ(t ) =−
(
1 0
0 1

)
x(t )+

(
1 0
0 2

)
u(t ) (1.58)
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with the state and control bounds

02 ≤ x(t ) ≤ 2 · 12 for i = 1,2, t ∈R≥0,

02 ≤ u(t ) ≤ 2 · 12 for i = 1,2, t ∈R≥0.
(1.59)

Let `(t , x,u) := −‖u‖2
2 be the performance criterion and x(0) = (0,0)T the initial state of the

system at time t = 0. We want to find an admissible pair (x ,u) ∈ AC2
loc × L2

∞,loc such that∫ ∞
0 `(u)dt is minimized. For a given function u ∈ L2

∞,loc the solution at time t > 0 of the IVP

defined by (1.58) with initial value x(0) = (0,0)T can be expressed explicitly by the formula

x(t ) =
∫ t

0
e−t+τ

(
1 0
0 2

)
u(τ)dτ. (1.60)

Using this formula, we can verify that the following pair (x ,u) ∈AC2
loc ×L2

∞,loc satisfies the
bounds and solves the ODE for all times.

x(t ) :=



(
2(1−e−t )

0

)
for t ∈ [0, ln(2))(

1

0

)
for t > ln(2)

and u(t ) :=



(
2

0

)
for t ∈ [0, ln(2))(

1

0

)
for t > ln(2)

(1.61)

Similarly, we can check that the pair (x̃ , ũ) ∈AC2
loc ×L2

∞,loc defined by

x̃(t ) :=



(
0

2(1−e−t )

)
for t ∈ [0, ln(2))(

0

1

)
for t > ln(2)

and ũ(t ) :=



(
0

1

)
for t ∈ [0, ln(2))(

0

0.5

)
for t > ln(2)

(1.62)

solves the ODE (1.58) with the same initial value and also satisfies the bounds (1.59). In both
cases, after an initial transient phase, the systems enter a constant steady-state and remain
there for all times. In the first case, the steady-state is (xs ,us ) = (

(1,0)T , (1,0)T
)

and in the
second case it is (x̃s , ũs ) = (

(0,1)T , (0,0.5)T
)
. The value of the performance criterion ` at the

two steady-states can be calculated as

`(xs ,us ) =−1 and `(x̃s , ũs ) =−0.25 (1.63)

and therefore, the performance integral is unbounded in both cases:∫ ∞

0
`(u(t ))dt =

∫ ∞

0
`(ũ(t ))dt =−∞ (1.64)

However, one could argue that the first solution (x ,u) is preferable over the second one,
because the performance of its steady-state beats the performance of the steady-state of the
second solution. Therefore the first solution will perform better in an average sense.
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Optimality Criteria for Infinite Horizons
The above example illustrates the need of more general optimality concepts for infinite hori-
zon OCPs. Several optimality criteria for infinite horizon OCPs can be found in the literature
[24, 30] that circumvent this problem. We introduce the following functionals.

Definition 1.18 (Infinite Horizon Objective Functionals)
For (x ,u) ∈ACnx

loc ×Lnu
∞,loc, T ∈R≥0 and λ> 0 we define the functionals

ϕT (x ,u) :=
∫ T

0
`(τ, x(τ),u(τ))dτ, (1.65)

ϕ∞(x ,u) := lim
T→+∞

ϕT (x ,u), (1.66)

ϕavg(x ,u) := limsup
T→+∞

1

T
ϕT (x ,u), (1.67)

Jλ(x ,u) := limsup
T→+∞

∫ T

0
e−λτ`(τ, x(τ),u(τ))dτ. (1.68)

In case any of the limits does not exists, the value of the functional is defined to be +∞. 4

Definition 1.19 (Infinite Horizon OCP)
Let ϕ be one of the functionals ϕ∞,ϕavg, Jλ. Then we call the following problem an infinite
horizon OCP.

inf
(x ,u)∈ACnx

loc×Lnu
∞,loc

ϕ(x ,u) (1.69a)

s. t. x(t0) = x0 (1.69b)

ẋ(τ) = f (τ, x(τ),u(τ)),τ ∈R≥0, (1.69c)

0 ≤ c(τ, x(τ),u(τ)),τ ∈R≥0. (1.69d)
4

As in problem (1.38), we call a pair (x ,u) ∈ACnx
loc×Lnu

∞,loc admissible on the time horizon R≥0,
if it satisfies constraints (1.69b)-(1.69d). Note that in problem (1.69) we use “inf” instead of
“min” in the finite horizon OCP (1.38), as the space ACnx

loc ×Lnu
∞,loc is not closed.

Definition 1.20 (Optimality on Infinite Horizons )
If in problem (1.69) ϕ=ϕ∞, we call an admissible pair (x∗,u∗) strongly optimal, if
ϕ∞(x∗,u∗) <∞ and if for any admissible pair (x ,u) ∈ACnx

loc ×Lnu
∞,loc

ϕ∞(x∗,u∗) ≤ϕ∞(x ,u) (1.70)

holds.
If in problem (1.69) ϕ=ϕavg, we call an admissible pair (x∗,u∗) average optimal, if
ϕavg(x∗,u∗) <∞ and if for any admissible pair (x ,u) ∈ACnx

loc ×Lnu
∞,loc

ϕavg(x∗,u∗) ≤ϕavg(x ,u) (1.71)
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holds. 4

If we reconsider the example at the start of this Section, we can calculate

ϕ∞(x ,u) =−∞, ϕ∞(x̃ , ũ) =−∞, (1.72)

ϕavg(x ,u) =−1, ϕavg(x̃ , ũ) =−0.25. (1.73)

This shows that the functionalϕavg can distinguish the two admissible pairs (x ,u) and (x̃ , ũ).

Another benefit of the functionals ϕavg and Jλ is, that contrary to ϕ∞, they are bounded
on the set of admissible pairs for a greater class of problems.

Lemma 1.21 (Boundedness of Objective Functionals )
Let the set A := {(x,u) ∈Rnx ×Rnu : ∃t ∈R : 0 ≤ c(t , x,u)} be compact and let L :Rnx ×Rnu →R

be a smooth function such that for all (t , x,u) ∈R× A

|`(t , x,u)| ≤ L(x,u) (1.74)

holds. Then ϕavg and Jλ are bounded on the set of admissible pairs for problem (1.69).

Proof Because of (1.74), for any admissible pair (x ,u) ∈ ACnx
loc × Lnu

∞,loc and any T ∈ R≥0 it
holds

∣∣ϕT (x ,u)
∣∣= 1

T

∣∣∣∣∫ T

0
`(τ, x(τ),u(τ))dτ

∣∣∣∣ (1.75)

≤ 1

T

∫ T

0
L(x(τ),u(τ))dτ. (1.76)

Because 0 ≤ c(τ, x(τ),u(τ)) holds for almost all τ ∈R, it follows that (x(τ),u(τ)) ∈ A for almost
all τ ∈ R. The smooth function L is bounded from above by a number C < ∞ which then
implies

ϕavg(x ,u) ≤C . (1.77)

Similarly, for any T > 0 it holds∣∣∣∣∫ T

0
e−λτ`(τ, x(τ),u(τ))dτ

∣∣∣∣≤ ∫ T

0

∣∣∣e−λτC
∣∣∣dτ= C

λ
(1−e−λT ) < C

λ
, (1.78)

which proves Jλ(x ,u) ≤ C
λ . �

1.6 SolutionMethods
In this section we give a small overview on methods that can be used to solve OCPs numeri-
cally.
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1.6.1 Indirect Approaches
PONTRYAGIN’s10 Maximum Principle is the fundament of indirect methods. It states neces-
sary optimality conditions that can be used to transform the infinite dimensional OCP (1.38)
into a Multi Point Boundary Value Problem (MPBVP). An overview of numerical methods
for solving the arising MPBVP can be found in Ascher et al. [6]. Two of the most important
methods used for discretizing the MPBVPs are the collocation method [105] and the multiple
shooting method [90, 22, 17, 34] which both transform the MPBVP into a finite dimensional
system of nonlinear equations. In the indirect approach, first the optimality conditions for
the infinite dimensional problem are set up first and then a discretization is applied. This is
also the reason why the indirect approach is sometimes referred to as First Optimize then
Discretize approach. The solution process requires an initial guess for all primal and dual
variables of the MPBVP, which can be difficult to obtain, especially for the dual variables of
the constraints. Furthermore, the derivation of the necessary optimality conditions is a dif-
ficult process that requires insight in the problem structure and cannot be automated. For
these reasons, indirect approaches are not very well suited for the fast solution of OCPs.

1.6.2 Direct Approaches
Contrary to the indirect approaches, the first step in the direct approaches is the discretiza-
tion of the infinite dimensional OCP. This directly transforms the infinite dimensional OCP
into a finite dimensional NLP. The resulting NLP then can be solved by an appropriate nu-
merical method, e.g. the Sequential Quadratic Programming (SQP) method [89] or an In-
terior Point method [116]. Because of the order of discretization and optimization, direct
approaches are sometimes referred to as First Discretize then Optimize approaches. In the
following, we give a brief introduction into the Direct Multiple Shooting method due to Bock
and Plitt [20] for discretizing OCPs, since it is the basis for our solution algorithms.

1.6.3 TheDirectMultiple ShootingMethod
Multiple shooting methods were first used for solving Boundary Value Problems (BVPs)
[22, 16, 90, 17], as they also occur for example in the indirect approaches. The Direct Mul-
tiple Shooting method for OCPs is first described in [20] and [91]. We will describe how the
Direct Multiple Shooting method transforms the infinite dimensional OCP (1.38) into a finite
dimensional NLP.

TimeDiscretization
As a first step, we partition the time interval T = [t0, tf] into N intervals

t0 < t1 < . . . < tN = tf. (1.79)

10Lev Semyonovich Pontryagin 1908 - 1988
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Often, the intervals are chosen to be equidistant, but this is not necessary. We assume that
the times {t0, . . . , tmΨ } (from the coupled interior point constraint Ψ (1.38e)) are all elements
of the time grid.

Control Discretization
The control functions on T are defined piecewise on the intervals Ti := [ti , ti+1]. In principle,
any finite dimensional parametrization

Bi : Ti ×Rn
q
i →Rnu (1.80)

can be used. Common choices of such parametrizations include

• piecewise constant:
nq

i = nu and Bi (τ, qi ) := qi for all i = 0, . . . , N −1,

• piecewise linear:
nq

i = 2nu and Bi (τ, (qi ,1, qi ,2)) := qi ,1 + τ−ti
ti+1−ti

qi ,2 for all i = 0, . . . , N −1.

For simplicity we assume that for all i ∈ {0, . . . , N −1} the dimension nq
i is the same (= nq ).

Then the vector

q := (q0, . . . , qN−1, qN ) ∈R(N+1)nq
(1.81)

represents the control function ũq on T

ũq : T →Rnu , (1.82)

t 7→
{

Bi (τ, qi ) for τ ∈ [ti , ti+1),

BN−1(tN , qN−1) for τ= tN .
(1.83)

Note that the last component qN is not necessary to define the function ũq because {tN }
has measure zero. We include it qN for notational convenience and fix it with the auxiliary
constraint 0 = qN − qN−1. If a continuous control function is desired, additional continuity
conditions can be added (e.g. qi ,2 = qi+1,1 for all i in the case of piecewise linear interpola-
tions). In this thesis, we always use a piecewise constant control parametrization.

State Parametrization
For each grid point ti , we introduce a state variable si ∈Rnx . The vector

s := (s0, . . . , sN+1) ∈R(N+1)nx (1.84)

together with the vector q then represents the following function:

x̃(s,q) : T →Rnx , (1.85)
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Figure 1.3: On the left, two state trajectories corresponding to the state/control variables
(s̃i , qi ) (blue) and (si , qi ) (red) can be seen. The states (s̃i ) are initialized along the dashed
black line and the resulting trajectory has shooting-discontinuities (blue dashed lines). The
states (si ) correspond to a initialization that results in a continuous state trajectory. On the
right, the piecewise constant control function corresponding to (qi ) is depicted.

τ 7→
{

x(τ; si ,Bi ( · , qi ), ti ) for τ ∈ [ti , ti+1),

sN+1 for τ= tN+1.
(1.86)

Here, the expression x(τ; si ,Bi ( · , qi ), ti ) denotes the solution of the IVP

ẋ(t ) = f (t , x(t ),Bi ( · , qi )), x(ti ) = si , (1.87)

at time τ. The function x̃(s,q) is continuous on all subintervals Ti , but it may contain jump
discontinuities at the grid points. With the definition

gi (si , qi ) := x(ti+1; si ,Bi ( · , qi ), ti ), (1.88)

the continuity of x̃(s,q) at time ti+1 is equivalent to the equation (the matching condition)

gi (si , qi )− si+1 = 0. (1.89)

In other words, the pair (s, q) induces a solution (x̃(s,q), ũq ) of the IVP

ẋ(t ) = f (t , x(t ),u(t )) with x(t0) = s0 (1.90)

on the interval T , if condition (1.89) is satisfied for i ∈ {0, . . . , N − 1}. An illustration of two
pairs of state/control variables that induce a continuous trajectory respectively a trajectory
with shooting discontinuities can be found in Figure 1.3.
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Constraint Discretization

The path constraints (1.38d) are enforced at the grid-points {ti , i = 0, . . . , N } of the time dis-
cretization:

0 ≤ c(ti , x̃(s,q)(ti ), ũq (ti )). (1.91)

This directly translates to constraints at the coefficients (s, q):

0 ≤ c(ti , si , qi ) for i ∈ {0, . . . , N }. (1.92)

Analogously, the coupled interior point constraint (1.38e) translates to

0 =Ψ(t0, s0, q0, . . . , tmΨ , smΨ , qmΨ ). (1.93)

Note that even if constraint (1.92) is satisfied, constraint (1.38d) can be violated for (x̃(s,q), ũq )
between the shooting nodes. There are different ways to handle this problem, if strict satis-
faction of the path constraint between the shooting nodes is important. First, refining the
time grid can be considered. Theoretically, it is also possible to introduce a new auxiliary
differential state ẋaux(t ) := c(t , x(t ),u(t ))− with initial condition xaux(t0) = 0. Here v− de-
notes the component-wise projection to the negative part for v ∈ Rn . Then xaux(tf) = 0 is
equivalent to satisfaction of the path constraint c(t , x(t ),u(t )) almost everywhere, and the
path constraint could be eliminated from the OCP (1.38) by adding the final value constraint
xaux(tf) = 0. However, the projection onto the negative part is not differentiable at 0, which
in practice would make it necessary to replace the projection with some smooth approxima-
tion. Another possibility is, to incorporate the path constraint for all time points t ∈ T . This
leads to a so-called semi-infinite program [59]. It is also possible to keep track of the local
extrema of the path-constraint function c and incorporate additional constraints at these
points as described in Potschka [93] and Potschka et al. [95].

Objective Function Discretization

Using definitions (1.85) and (1.82), we can calculate the objective value of the pair (x̃(s,q), ũq )
as follows:

ϕ(x̃(s,q), ũq ) =
∫ tf

t0

`(τ, x̃(s,q)(τ), ũq (τ))dτ+m(tf, x̃(s,q)(tf)) (1.94)

=
N−1∑
i=0

∫ ti+1

ti

`(τ, x(τ; si ,Bi ( · , qi ), ti ),Bi (τ, qi ))dτ+m(tf, sN ) (1.95)

=:
N−1∑
i=0

Li (si , qi )+M(sN ). (1.96)
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TheMultiple Shooting NLP
Using the described discretization, we can transform the infinite dimensional optimization
problem (1.38) into the following finite dimensional optimization problem:

min
s∈R(N+1)nx ,
q∈R(N+1)nu

φ(s, q) :=
N−1∑
i=0

Li (si , qi )+M(sN ) (1.97a)

s. t. 0 = gi (si , qi )− si+1, i ∈ {0, . . . , N −1}, (1.97b)

0 ≤ c(ti , si , qi ), i ∈ {0, . . . , N }, (1.97c)

0 =Ψ(s0, q0, . . . , smΨ , qmΨ ). (1.97d)

0 = qN −qN−1. (1.97e)

A variety of numerical solution algorithms for NLPs exists cf. [12] or [89]. Suitable meth-
ods include Interior Point methods [116] and SQP methods [89]. The structure of problem
(1.97) plays an important role in the efficient numerical treatment. For example in an SQP
method, the fact that the objective function (1.97a) and the shooting constraints (1.97b) are
decoupled, leads to a special block-diagonal structure of the Hessian approximations. By us-
ing condensing techniques as described in [91, 20], the continuity condition (1.97b) allows
to reduce the number of optimization variables in the Quadratic Program (QP) subproblems
considerably.

1.7 Summary
After introducing some fundamental function space definitions we started this chapter by
defining the concepts of dynamical systems, IVPs and stability of solutions for IVPs. Based
on these definitions we introduced OCPs with finite time horizons and BOLZA objective
functionals as a class of infinite dimensional optimization problem on BANACH spaces. We
showed how an OCP with delay objective functional can be transformed into a standard OCP
with BOLZA objective functional. For the class of OCPs with infinite time horizons we moti-
vated the need of special averaging objective functionals.

Finally we discussed how an infinite dimensional OCP can be transcribed into a finite
dimensional NLP to make its solution numerically tractable. In particular we described the
Direct Multiple Shooting method.
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Chapter 2
Stability Theory of NonlinearModel Predictive Control
In this chapter, we give a brief introduction of the main principles and the theory behind
NMPC with a focus on stability theory for the resulting systems. Nonlinear Model Predictive
Control (NMPC) is an advanced feedback control method for dynamical systems.

We define the moving horizon and the shrinking horizon NMPC schemes and show how
the closed-loop behavior of a moving horizon NMPC scheme based on a tracking subprob-
lem can be analyzed. Furthermore we define economic NMPC and present stability results
for state-of-the-art economic NMPC schemes for dissipative systems.

2.1 Motivation andHistorical Background
2.1.1 Feedback ControlMethods
As we have seen in the previous chapter, solutions of dynamical systems can exhibit unsta-
ble behavior which leads to unpredictable development of the process. Open-loop control
therefore is not suitable for controlling such processes and the use of feedback control meth-
ods that monitor the process and intervene correctively if necessary, is indispensable (see
Figure 2.1).

Simple examples for feedback controllers are Proportional-Integral-Derivative (PID) [1] or
Fuzzy controllers [112], that can be used for keeping dynamical systems at desired setpoints
by continuously monitoring the distance of the current process state to the desired setpoint
and taking appropriate measures.

However, such controllers do not explicitly consider the dynamical model of the con-
trolled process and thus have limited ability to anticipate the future behavior of the system
accurately. Furthermore, many processes in practice are subject to constraints such as pres-
sure, temperature or fuel consumption limits which cannot be taken into account by such
controllers.

This motivates the need for a feedback control method that both has the ability to accu-
rately predict the future behavior of the process based on a dynamical model and is capable
to take into account operational constraints as well.

These requirements fit well in the framework of optimal control. In NMPC, the feedback
is based on the repetitive process of solving an (appropriately chosen) OCP with the current
system state as initial value and using the resulting control solution as feedback control.

The great flexibility offered by this approach furthermore allows to create controllers that
go beyond simple setpoint-tracking tasks.
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Controller System

Disturbances

u∗(t)x0 x

a) Open-loop control without feedback. The resulting system behavior will very likely deviate from the
predicted open-loop control solution due to disturbances.

Controller System

Disturbances

u∗
k

Measurements

xk

xk

b) Closed-loop control with Feedback Loop. The current system state is measured and the control
input is generated by the controller as a function of the current system state. Disturbances can be
rejected by appropriate control reactions.

Figure 2.1:Open-loop control vs. closed-loop control.

2.1.2 Historical Development
In this section we want to give a short overview of the historical development of NMPC. Due
to the great abundance of NMPC literature, this overview does not claim to be complete and
rather has to be seen as a selection of important developments. The development of NMPC
can be traced back to works of KALMAN1 [69, 70] from the early 60’s. He was working on
Linear Quadratic Regulator (LQR) problems where a controlled process is governed by a dis-
crete linear model and the objective is an infinite sum of squared deviations form the origin.
It was shown that the optimal control solution of the LQR problem is a linear mapping from
the initial value which can be represented by the gain matrix. This matrix can be calculated
as the solution of a matrix RICATTI2 equation.

This approach can be regarded as a precursor of NMPC and its strength was based on
the fact that a general model was used to predict the systems future behavior. Despite its
powerful stabilizing properties for linear systems, the theory of LQR had only little impact in
the process industries due to its failure to handle constraints and nonlinear process behavior
[102].

One of the first works where the central idea of NMPC can be found for discrete linear sys-
tems with control constraints is Propoi [97]. For nonlinear systems the idea was anticipated
in the book of Lee and Markus [74] from 1967:

1Rudolf Emil Kálmán 1930 - 2016
2Jacopo Francesco Riccati 1676 - 1754
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“One technique for obtaining a feedback controller synthesis from knowledge of
open-loop controllers is to measure the current control process state and then
compute very rapidly for the open-loop control function. The first portion of
this function is then used during a short time interval, after which a new mea-
surement of the process state is made and a new open-loop control function is
computed for this new measurement. The procedure is then repeated.” Lee and
Markus [74, Page 423]

This shows that the central ideas of NMPC were formulated relatively early considering
that the seminal contributions of the theory of optimal control such as the maximum prin-
ciple Pontryagin et al. [92] (1962) and the principle of dynamic programming Bellman [9]
(1957) were formulated not long before.

In the beginning the formulation of the basic NMPC idea was rather a theoretical ob-
servation then a practical approach because neither powerful computers nor suitable soft-
ware was available to “very rapidly” solve the arising OCPs. This changed with algorithmic
progress for constrained linear and quadratic programs in the 1970s. Especially in the field
of process control, where the system dynamics is often comparably slow, applications are
reported in Richalet et al. [102], Cutler and Ramaker [33], Prett and Gillette [96].

While early versions of NMPC often did not automatically ensure stability, the systematic
analysis of the stability properties of NMPC by means of LYAPUNOV-functions and terminal
constraints started with the work of Chen and Shaw [26]. Within the 1990s, the stability anal-
ysis for NMPC schemes with terminal constraints and terminal costs was further developed
in Nicolao et al. [88], Magni and Sepulchre [82], Chen and Allgöwer [27].

From the 2000’s on, the interest in NMPC schemes that go beyond regulatory and tracking
tasks and directly incorporate an economic performance criterion received increasing inter-
est cf. Helbig et al. [58], Engell [38], Rawlings and Amrit [99], Grüne et al. [52], Faulwasser and
Bonvin [39] and Grüne and Pannek [51, Chapter 8]. For an overview on recent developments
in this direction we refer the reader to the overview articles of Ellis et al. [37] and Müller and
Allgöwer [85].

2.2 Basic Principles of NonlinearModel Predictive Control
In this section, we introduce the main ideas behind the Moving Horizon and Shrinking Hori-
zon NMPC as an abstract sequence of solutions of parametrized OCPs.

Consider a dynamical system governed by the ODE ẋ(t ) = f (t , x(t ),u(t )) with f sufficiently
smooth and u(t ) the control input. Let furthermore `,m,c be sufficiently smooth functions
as in (1.37).

2.2.1 TheMoving Horizon Scheme
As the name already indicates, the Moving Horizon NMPC scheme is based on OCPs with
time horizons moving forward in time. More specifically it is based on a family Pmove(t , x)
of OCPs parametrized in initial time t ∈ R and initial state x ∈ Rnx based on the dynamical
system ẋ(τ) = f (τ, x(τ),u(τ)) with time horizons T t := [t , t +T ] of constant length T .
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As an example of such a parametrized family of OCPs, we consider the following standard
OCP Pmove(t , x) based on the functions `,m,c and Ψ:

min
x∈ACnx (T t ),

u∈Lnx∞ (T t )

ϕ(x ,u) :=
∫
T t
`(τ, x(τ),u(τ))dτ+m(x(t +T )), (2.1a)

s. t. x(t ) = x, (2.1b)

ẋ(τ) = f (τ, x(τ),u(τ)), τ ∈ T t , (2.1c)

0 ≤ c(τ, x(τ),u(τ)), τ ∈ T t (2.1d)

0 ≤Ψ(t +T, x(t +T )). (2.1e)

Letϕ∗(t , x) denote the optimal objective value for problem Pmove(t , x). We could as well con-
sider any other OCP with time horizon length T containing the dynamical system constraint
(2.1c) as well as the initial value constraint (2.1b).

The problem Pmove(t , x) is called the “NMPC Subproblem” for the Moving Horizon NMPC
scheme:

Algorithm 1 Moving horizon NMPC scheme.

1: Choose a sampling time grid T := {ti ∈R : t j < t j+1 for all j ∈N},
2: i ← 0,
3: while true do
4: At time ti determine the state of the system xi ∈Rnx

5: Solve Pmove(ti , xi ), (x?i ,u?
i ) (the “Open-Loop” prediction)

6: For τ ∈ [ti , ti+1) apply the control u?
i (τ) to the system

7: i ← i +1
8: end while

The resulting “Closed-Loop” state trajectory xµ(·; x0, t0) : [t0,∞) →Rnx and control trajec-
tory uµ(·; x0, t0) : [t0,∞) →Rnu are defined as

xµ(τ; x0, t0) : = x?i (τ) for τ ∈ [ti , ti+1), (2.2)

uµ(τ; x0, t0) : = u?
i (τ) for τ ∈ [ti , ti+1). (2.3)

As “Cost-to-Go” function for the NMPC scheme we denote the optimal objective function
evaluated along the closed-loop trajectory:

t 7→ϕ∗(t , xµ(t ; x0, t0)). (2.4)

This function plays an important role in the analysis of the closed-loop behavior.

Remark 2.1 (Measurement of Initial State) In practice, it is often not possible to determine
the exact state of the system at a given time. The measurement process rather has to be
interpreted as a function of the true state plus a measurement error term:

ηk = f meas(xk )+ek . (2.5)
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The problem of recovering the true state xk of the process as accurately as possible from the
measurement ηk at the current time (and possible also at past times) is called the “State Esti-
mation” problem. The probably most commonly used method (cf. [67]) for state estimation
is based on KALMAN filter methods (for linear models) (Kalman [69]) or extended KALMAN fil-
ters (nonlinear case) (Julier and Uhlmann [68]). Another method is based on “Moving Hori-
zon Estimation”, which can be viewed as the dual problem to the moving horizon NMPC
subproblem. In this method, the estimation problem is interpreted and formulated as a pa-
rameter estimation problem with a time horizon that includes measurements of the past and
ends at the current time.

For more detailed overview on state estimation methods we refer the reader to [98, Chap-
ter 4]. In this work, we assume that full state information is always available. 4

The characterizing property of any moving horizon NMPC scheme is, that it is based on
NMPC subproblems of constant horizon length and the decisions are based on the predicted
behavior of the system on a time horizon moving forward in time.

Under the assumption that the problems Pmove(t , x) always have a unique solution, the
initial state x0 and initial time t0 are determining the closed-loop trajectory xµ(·; x0, t0) for
all times. To avoid notational clutter, we sometimes omit the initial time t0 and the initial
value x0 and write xµ(τ) for xµ(τ; x0, t0) and uµ(τ) for uµ(τ; x0, t0) if it becomes clear from the
context.

2.2.2 The Shrinking Horizon Scheme
Some processes are only defined on a fixed time horizon, i.e., they end at an a priori known
end time T . A moving horizon scheme does not make sense in this case because at some
time the end of the moving horizon will pass the time T . For such processes, the “Shrinking
Horizon” scheme can be an alternative.

Contrary to the moving horizon scheme, the shrinking horizon NMPC scheme is based on
a family of OCPs Pshrink(t , x) with time horizons T t

shrink = [t ,T ] ending at the pre-specified
fixed time T ∈R.

An example for such a parametrized family of OCPs could be the following problem :

min
x∈ACnx (T t

shrink),

u∈Lnu∞ (T t
shrink)

ϕ(x ,u) :=
∫ T

t
`(τ, x(τ),u(τ))dτ+m(x(T )) (2.5)

s. t. x(t ) = x,

ẋ(τ) = f (τ, x(τ),u(τ)),τ ∈ T t
shrink,

0 ≤ c(τ, x(τ),u(τ)), τ ∈ T t
shrink,

0 ≤Ψ(T, x(T )).

Analogously to the moving horizon scheme we denote the solution of Pshrink(ti , xi ) by
(x?i ,u?

i ). The shrinking horizon NMPC scheme is defined as the moving horizon NMPC
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scheme in Algorithm 1 with the only difference that the sampling time gridT is a partition of
[t0,T ] and that the problems Pmove(ti , xi ) are replaced by the problems Pshrink(ti , xi ).

The closed-loop state and control trajectories for the shrinking horizon scheme are de-
fined in the same way as for the moving horizon scheme:

xµ(τ; x0, t0) : = x?i (τ) for τ ∈ [ti , ti+1), (2.6)

uµ(τ; x0, t0) : = u?
i (τ) for τ ∈ [ti , ti+1). (2.7)

An essential difference of moving and shrinking horizon scheme arises due to the “Prin-
ciple of Optimality”

“An optimal policy has the property that whatever the initial state and initial
decision are, the remaining decisions must constitute an optimal policy with
regard to the state resulting from the first decision.” Bellman [9, R.E. Bellman
1957]

which for the solutions of the shrinking horizon problems Pshrink(ti , xi ) guarantees that

(x?i+1,u?
i+1) = (x?i ,u?

i )|T ti+1
shrink

(2.8)

holds for all i , provided xi+1 = x?i (ti+1) holds for all i (perturbation free, no plant-model
mismatch). As a consequence, for a shrinking horizon NMPC scheme it holds that

(xµ,uµ) = (x?0 ,u?
0 ). (2.9)

This means that the closed-loop behavior of the system will be exactly as predicted by the
first open-loop prediction. In particular, this implies recursive feasibility and stability of the
shrinking horizon NMPC scheme.

This is a fundamental difference to the behavior of a moving horizon NMPC controller,
where the closed-loop trajectory can be very different from the open-loop predictions.

2.3 Closed-Loop Behavior
As we have seen above, for the shrinking horizon NMPC scheme the closed-loop trajectory
is identical to the solution of the first NMPC subproblem. This means that, in theory, already
from the first sampling time on, the behavior of the system until the end time T is known.

This is fundamentally different for moving horizon NMPC schemes, where the principle
of optimality cannot be applied and a number of questions concerning the properties of
the resulting controlled system arise. These questions deal with important topics such as
recursive feasibility, stability and economic performance of the closed-loop system.

Since the closed-loop behavior describes how the system will actually behave (contrary to
“Open-Loop” predictions of the NMPC subproblems), it is of great importance to understand
how the setup of the NMPC subproblem affects the closed-loop behavior of the system.
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2.3.1 Recursive Feasibility
From the definition of the moving horizon NMPC Algorithm 1 it is not clear whether the
closed-loop feedback trajectory (xµ,uµ) exists at all, i.e. the NMPC method is well defined.
Since NMPC is a feedback method for controlling processes, it is of great importance that the
feedback trajectory exists. Any infeasibility of the NMPC subproblem leads to a failure of the
feedback method and the controlled process will behave in an uncontrolled manner, which
could be catastrophic.

The desired property of the NMPC algorithm that guarantees the existence of the closed-
loop feedback trajectory is called “Recursive Feasibility”. Put in simple words, this property
guarantees that if the NMPC subproblem at some sampling-time ti is feasible, then the sub-
sequent NMPC subproblem at the next sampling time ti+1 is also feasible.

Definition 2.1 (Recursive Feasibility )
An NMPC scheme with sampling times T = {ti , i ∈ N} based on the subproblems P (t , x) is
called recursively feasible, if for any i ∈N and x ∈Rnx it holds

P (ti , x) is feasible ⇒ P (ti+1, x?i (ti+1)) is feasible . (2.10)
4

Often, recursive feasibility is guaranteed by including appropriate terminal weights and /
or terminal constraint of the form 0 ≤Ψ(x(ti +T )) to the formulation of the NMPC subprob-
lem (cf. the survey [84]).

In general, recursive feasibility will depend on the formulation of the NMPC subproblems.
In particular the functions `,m,c, the sampling time grid T and the length of the time hori-
zon T are important parameters that have to be chosen appropriately.

The recursive feasibility property can be considered as the minimal requirement for an
NMPC controller, because then an NMPC controller is at least able to deliver a feedback that
keeps the controlled process within the imposed operational bounds (0 ≤ c

(
τ, xµ(τ),uµ(τ)

)
for almost all τ≥ t0) provided the first NMPC subproblem P (x0, t0) is feasible.

2.3.2 Stability of NMPC Schemes
Provided the NMPC algorithm has the recursive feasibility property, the next important
question is asking for the long-term behavior of the closed-loop feedback. Suppose the pur-
pose of the NMPC method is stabilization of the process at a predefined reference trajectory
xref : [t0,∞) → Rnx . Then, stability of the NMPC scheme at this reference can be defined in
an analogue way as it is done for solutions of IVPs in Section 1.2.2.

Definition 2.2 (Stability of an NMPC Feedback at a Reference Solution)
Let (xref,uref) :R≥0 →Rnx ×Rnu be a solution of the IVP ẋ(t ) = f (t , x(t ),u(t )) with initial value
x(0) = x0 ∈Rnx . We say an NMPC algorithm is

• LYAPUNOV-stabilizing the system at (xref,uref) if for any ε ≥ 0 there exists δ > 0 such
that for all i ∈N it holds:

‖x −xref(ti )‖ ≤ ε ⇒ ∥∥xµ(τ; x, ti )−xref(τ)
∥∥≤ δ for all τ≥ ti ,
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• locally asymptotically stabilizing the system at (xref,uref), if for any i ∈ N there exists
δ> 0 and a function β ∈KL such that

‖xref(ti )−x‖ ≤ δ ⇒ ∥∥xref(τ)−xµ(τ; x, ti )
∥∥≤β(‖x −xref(ti )‖ ,τ−ti ) for all τ≥ ti , (2.11)

• locally uniformly asymptotically stabilizing the system at (xref,uref), if there exists a
δ> 0 and a function β ∈KL such that

‖xref(ti )−x‖ ≤ δ ⇒∥∥xref(τ)−xµ(τ; x, ti )
∥∥≤β(‖x −xref(ti )‖ ,τ− ti ) for all i ∈N and for all τ≥ ti .

(2.12)
4

The knowledge that an NMPC scheme is stabilizing a system at a trajectory xref, is useful
to understand the closed-loop behavior of the resulting system as it allows to transfer prop-
erties of (xref,uref) to (xµ,uµ).

2.3.3 Economic Performance
If some performance criterion `e :R×Rnx×Rnu →R (which can be different from the function
` used in the NMPC subproblem) is associated to the dynamical system, it is an important
question how the closed-loop trajectory (xµ,uµ) performs with respect to `e. This means
that the development of

t 7→
∫ t

t0

`e(τ, xµ(τ),uµ(τ))dτ (2.13)

has to be understood. This question is closely related to the stability properties of the NMPC
scheme. If it is known that the controller stabilizes the system at some reference trajectory
(xref,uref), the asymptotic behavior of

∫ t
t0
`e(τ, xµ(τ),uµ(τ))dτ will be equal to that of the ref-

erence trajectory provided the initial value xµ(t0) = x0 of the closed-loop system is close
enough to the reference value xref(t0).
It could also happen that none of the presented stability definitions (in Section 2.3.2) applies
but the system nevertheless produces closed-loop trajectories that perform economically
well.

2.4 Tracking/Stabilizing NonlinearModel Predictive Control
Stabilization of a given dynamical system at a desired reference trajectory is one of the first
and most important applications of NMPC [102, 44].

In the following, we introduce tracking NMPC as an example of a moving horizon NMPC
scheme based on an NMPC subproblem, which is an OCP of tracking type, and analyze its
closed-loop behavior with respect to recursive feasibility and stability.
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2.4.1 Problem Formulation
The informal formulation of a tracking problem is quite straight-forward. Given a dynamical
system ẋ(t ) = f (t , x(t ),u(t )) together with some path constraints 0 ≤ c(t , x(t ),u(t )) and a
reference solution (xref,uref) ∈ACnx

loc ×Lnu
∞,loc of the system that satisfies the path constraint

almost everywhere, a way of generating feedback is searched that reliably keeps the system
close to the reference trajectory and steers the system back to the reference trajectory in case
of perturbations.

2.4.2 The Tracking Subproblem
We set up the NMPC subproblem for the tracking controller by defining a tracking OCP. The
tracking OCP minimizes the L2-distance of the predicted trajectory to the reference trajec-
tory subject to some additional constraints that guarantee recursive feasibility and stability
of the resulting NMPC controller.

TrackingObjective Functional
For (x ,u) ∈ACnx (T t )×Lnx∞ (T t ) (with T t := [t , t +T ]) we define tracking LAGRANGE term

`track(τ, x,u) := ‖x −xref(τ)‖2 +‖u −uref(τ)‖2 (2.14)

and the associated tracking objective functional

ϕt ,track(x ,u) :=
∫
T t
`track(τ, x(τ),u(τ))dτ. (2.15)

The functional ϕt ,track is bounded from below by 0 and it vanishes if and only if
(x(τ),u(τ)) = (xref(τ),uref(τ)) holds for almost all τ ∈ T t .

Terminal Constraints
The terminal constraints in the tracking NMPC subproblem are often used to guarantee re-
cursive feasibility and stability.

They can be of the following type:

• Terminal Region Constraint:

x(t +T ) ∈ X (t +T ), (2.16)

where X (t+T ) would be a vicinity of xref(t+T ), for example X (t+T ) = Bδ(xref(t+T )) =
{x ∈Rnx : ‖x −xref(t +T )‖ ≤ δ} with δ not too big.

• Terminal Equality Constraint:

x(t +T ) = xref(t +T ). (2.17)
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Such a terminal constraint immediately implies recursive feasibility of the NMPC
scheme, since it ensures that the admissible trajectories can be extended for arbitrarily
long time intervals by (xref,uref).

In practice, the terminal constraint is usually represented by a function Ψter : R×Rnx → R

and then is of the form 0 ≤Ψter(t +T, x(t +T )).

The Tracking NMPC Subproblem
The complete tracking subproblem Ptrack(t , x) (here with terminal equality constraint (2.17))
then looks as follows:

min
x∈ACnx (T t ),

u∈Lnx∞ (T t )

ϕt ,track(x ,u) (2.18a)

s. t. x(t ) = xi , (2.18b)

ẋ(τ) = f (τ, x(τ),u(τ)), τ ∈ T t , (2.18c)

0 ≤ c(τ, x(τ),u(τ)), τ ∈ T t , (2.18d)

0 = x(t +T )−xref(t +T ). (2.18e)

2.4.3 Closed-Loop Behavior of the Tracking NMPCController
We discuss the properties of the moving horizon NMPC controller that is based on the track-
ing NMPC subproblem Ptrack(t , x). We assume that close to the reference trajectory, the dy-
namical system ẋ(t ) = f (t , x(t ),u(t )) has the following controllability property.

Assumption 2.1 (Controllability in Vicinity of Reference Trajectory)
There exists δ > 0 and a K-function η such that for any (t , x) ∈ R×Rnx with ‖x −xref(t )‖ ≤ δ

there exists a pair (x ,u) ∈ACnx (T t )×Lnx∞ (T t ) such that (x ,u) is admissible for Ptrack(t , x) and

∫
T t

(‖x(τ)−xref(τ)‖+‖u(τ)−uref(τ)‖)dτ≤ η(‖x −xref(t )‖). (2.19)
4

We include the following stability result for tracking NMPC because it nicely illustrates the
role of the design of the tracking NMPC subproblem in particular the role of the terminal
constraint (2.18e) for the stability properties of the resulting closed-loop system.

Lemma 2.3 (Recursive Feasibility and Stability of the Tracking NMPC Algorithm)
The moving horizon NMPC controller with NMPC subproblem Ptrack(ti , xi ) defines a recur-
sively feasible, at (xref,uref) locally uniformly asymptotically stabilizing controller.

Proof Recursive Feasibility: Let i ∈ N and x ∈ Rnx be such that Ptrack(ti , x) is feasible. Let
(xi ,ui ) ∈ACnx (T ti )×Lnu∞ (T ti ) be admissible for Ptrack(ti , x). We can now extend this solution
to the interval T ti ∪T ti+1 = [ti , ti+1+T ] by concatenating it with (xref,uref) the following way:
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(x̃i+1, ũi+1)(τ) :=
{

(xi ,ui )(τ) if τ ∈ T ti ,

(xref,uref)(τ) if τ ∈ T ti+1 \T ti .
(2.20)

From this definition it clearly follows that that the restriction (xi+1,ui+1) := (x̃i+1, ũi+1)|T ti+1

is admissible for the OCP Ptrack(ti+1, xi (ti+1)).
Stability: Let (x?i ,u?

i ) ∈ACnx (T ti )×Lnu∞ (T ti ) be the solution of problem Ptrack(ti , xi (ti )) at
sampling time ti . Then, just as in the proof of recursive feasibility, by concatenating this so-
lution with (xref,uref), we get an admissible pair (xi+1,ui+1) for problem Ptrack(ti+1, x?i (ti+1)).
By evaluating ϕti+1,track(xi+1,ui+1), we get an upper bound for ϕti+1,track(x?i (ti+1)):

ϕti+1,track(xi+1,ui+1) =
∫ ti+1+T

ti+1

‖xi+1(τ)−xref(τ)‖2 +‖ui+1(τ)−uref(τ)‖2 dτ

=
∫ ti+T

ti+1

∥∥x?i (τ)−xref(τ)
∥∥2 +∥∥u?

i (τ)−uref(τ)
∥∥2

dτ

+
∫ ti+T

ti+T
‖xref(τ)−xref(τ)‖2 +‖uref(τ)−uref(τ)‖2 dτ︸ ︷︷ ︸

=0

=ϕti ,track(xi )−
∫ ti+1

ti

∥∥x?i (τ)−xref(τ)
∥∥2 +∥∥u?

i (τ)−uref(τ)
∥∥2

dτ.

Now we give an upper bound for the term
∫ ti+1

ti

∥∥x?i (τ)−xref(τ)
∥∥2︸ ︷︷ ︸

=:‖∆(τ)‖2

dτ. We calculate

∣∣∣∣ ∂∂τ ‖∆(τ)‖2
∣∣∣∣= ∣∣2∆(τ)∆̇(τ)

∣∣
= ∣∣2∆(τ)(ẋ?i (τ)− ẋref(τ))

∣∣
= ∣∣2∆(τ)( f (x?i (τ),u?

i (τ))− f (xref(τ),uref(τ)))
∣∣

≤ 4LM ‖∆(τ)‖

(2.21)

Here L is the global LIPSCHITZ-constant of the right-hand side f and M the diameter of the
set of the feasible states/controls. Because of ∂

∂τ
‖∆(τ)‖2 ≥−4LM ‖∆(τ)‖, the solution of the

IVP γ̇(t ) =−4LM
√
γ(t ) with γ(ti ) = ‖∆(ti )‖2 is a lower bound for ‖∆(τ)‖2. The solution γ can

be expressed analytically and we get (with c = 4LM):

‖∆(τ)‖2 ≥ γ(τ) = 1

4
(c2(τ− ti )2 +2cδ(τ− ti )+δ2). (2.22)
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This shows that the difference ‖∆(τ)‖2 doesn’t decrease arbitrarily fast and in fact implies the
existence of a K∞-function α1 such that∫ ti+1

ti

∥∥x?i (τ)−xref(τ)
∥∥2

dτ≥α1
(∥∥x?i (ti )−xref(ti )

∥∥)
(2.23)

holds. This implies that for the closed-loop trajectory xµ and for all i ∈N it holds

ϕtrack,i+1(xµ(ti+1)) ≤ϕtrack,i (xµ(ti ))−α1
(∥∥xµ(ti )−xref(ti )

∥∥)
. (2.24)

The same calculation also shows

ϕtrack,i (x) ≥α1(‖x −xref(ti )‖) (2.25)

for all i ∈ N and x ∈ Bδ(xref(ti )). Furthermore, the controllability assumption implies the
existence of a K-function α2 such that

ϕtrack,i (x) ≤α2 (‖x −xref(ti )‖) (2.26)

holds for all i ∈N and xi ∈ Bδ(xref(ti )).
Now, similar to the proof of the stability Lemma (1.11) for IVPs, the properties (2.23), (2.24)

and (2.26) are used to prove the existence of a KL-function β such that∥∥xµ(τ; xi , ti )−xref(τ)
∥∥≤β(‖xi −xref(ti )‖ ,τ− ti ) (2.27)

holds for all i ∈N, x ∈ Bδ(xref(ti )) and τ≥ ti . �

The Lemma shows that the tracking NMPC controller, under reasonable assumptions (2.1),
is capable of producing a locally asymptotically stabilizing feedback.

2.5 Economic NonlinearModel Predictive Control
In tracking NMPC the reference trajectory is usually the result of some OCP itself (often
with an economically motivated running-cost `e). The tracking NMPC controller then has
a purely regulatory function and ensures that the process is stabilized at the desired refer-
ence trajectory. However, from an economical viewpoint, the tracking controller can per-
form suboptimal. In particular, perturbations or parameter changes can result in the fact
that the reference trajectory itself is not economically optimal anymore.

The idea of E-NMPC is, to not only let the controller act as stabilizing instance but rather
let it do the optimization simultaneously. In E-NMPC instead of a tracking functional, the
original economic performance criterion `e is used in the NMPC subproblem. This allows
for greater flexibility in the controller design, since the controller is not just steering the sys-
tem to a predefined reference trajectory.

The convenient stability properties of tracking NMPC do not easily transfer to such eco-
nomic NMPC schemes. It is not at all clear how good (in the sense of the economic per-
formance criterion `e) the resulting closed-loop system of such a controller performs or if
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any asymptotic stability properties hold. The reason for this insufficiency is that, contrary to
a tracking NMPC controller, the cost-to-go function not necessarily has the properties of a
LYAPUNOV-function.

For the case of dissipative steady-states or dissipative periodic steady-states, there exist
stability results for economic NMPC, which we will present in the following. A comprehen-
sive overview for the dissipative steady-state case can be found in Ellis et al. [37], for the
dissipative periodic case we also refer the reader to Zanon et al. [120] and Zanon et al. [123].

2.5.1 Economic NonlinearModel Predictive Control for SystemswithOptimal Dissipative
Equilibria

Consider the autonomous system ẋ(t ) = f (x(t ),u(t )) with LIPSCHITZ continuous economic
performance criterion `e : Rnx ×Rnu → R and a path-constraint 0 ≤ c(x,u). The working
assumption in this section is the following.

Assumption 2.2 (Existence of Strictly Dissipative Steady-State)
The system has a steady-state (x∗

e ,u∗
e ) ∈ Rnx ×Rnu that is strictly dissipative, i.e. there exists

a K∞-function σ and a continuously differentiable function λ :Rnx →R such that

• λ is bounded on Ax := {x ∈Rnx : ∃u ∈Rnu with 0 ≤ c(x,u)},

• The inequality

σ
(∥∥x −x∗

e

∥∥)+∇λ(x)T f (x,u) ≤ `e(x,u)−`e(x∗
e ,u∗

e ) (2.28)

holds for all (x,u) ∈Rnx ×Rnu with 0 ≤ c(x,u). 4

The existence of a strictly dissipative steady-state (x∗
e ,u∗

e ) has strong consequences. For
example, it implies that the best average output with respect to `e is equal to `e(x∗

e ,u∗
e ).

To see this, let t ∈R≥0 and (x ,u) ∈ACnx
loc ×Lnu

∞,loc be any state/control trajectory that satis-
fies the ODE and path constraint 0 ≤ c(x(τ),u(τ)) for almost all τ ∈ R≥0. Then, by using the
strict dissipativity property (2.28), we can calculate∫ t

0
`e(x(τ),u(τ))dτ≥

∫ t

0

(
`e(x∗

e ,u∗
e )+σ(∥∥x(τ)−x∗

e

∥∥)+∇λ(x(τ))T f (x(τ),u(τ))
)

dτ

(2.29)

= t`e(x∗
e ,u∗

e )+
∫ t

0
σ

(∥∥x(τ)−x∗
e

∥∥)
dτ+ λ(x(t ))−λ(x(0))︸ ︷︷ ︸

bounded, because Ax is bounded

(2.30)

It follows

limsup
t→+∞

1

t

∫ t

0
`e(x(τ),u(τ))dτ≥ `e(x∗

e ,u∗
e ). (2.31)

Furthermore, we assume that the system is controllable in a vicinity of the steady-state
(x∗

e ,u∗
e ) in a sense similar to Assumption 2.1.
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Assumption 2.3 (Controllability in Vicinity of x∗
e )

There exists a δ> 0 and aK-function η such that for any x ∈Rnx with
∥∥x −x∗

e

∥∥≤ δ there exists
a pair (x ,u) ∈ACnx ([0,T ])×Lnu∞ ([0,T ]) that satisfies ẋ(t ) = f (x(t ),u(t )) and 0 ≤ c(x(t ),u(t ))
almost everywhere and∫ T

0

(∥∥x(τ)−x∗
e

∥∥+∥∥u(τ)−u∗
e

∥∥)
dτ≤ η(∥∥x −x∗

e

∥∥)
. (2.32)

4

For such systems, we now discuss the properties of the NMPC scheme based on the fol-
lowing NMPC subproblem Pe(ti , xi ) defined on the time horizons T ti = [ti , ti +T ]:

min
x∈ACnx (T ti ),

u∈Lnu∞ (T ti )

ϕe(x ,u) :=
∫
T ti

`e(x(τ),u(τ))dτ+M(x(ti +T )) (2.33a)

s. t. x(ti ) = xi , (2.33b)

ẋ(τ) = f (x(τ),u(τ)),τ ∈ T ti , (2.33c)

0 ≤ c(x(τ),u(τ)),τ ∈ T ti , (2.33d)

x(ti +T ) ∈X. (2.33e)

Contrary to the tracking approach, here the objective functional directly measures the
economic performance of the trajectory itself. The function M :Rnx →R≥0 is a penalty term
with the property that there exists a K∞-function α such that

M(x) ≤α(∥∥x∗
e −x

∥∥)
(2.34)

holds for all x ∈ Rnx . The terminal region X is a closed set containing x∗
e and the purpose

of the terminal constraint (2.33e) is, similar to constraint (2.18e) in the tracking NMPC sub-
problem, to guarantee recursive feasibility via an auxiliary control law defined on X.

Assumption 2.4 (Auxiliary Control Law)
There exists a smooth map κ : X ⊂ Rnx → Rnu such that the solution Φκ( · ; x0, t0) of the IVP
ẋ(τ) = f (x(τ),κ(x(τ))) with x(t0) = x0 ∈ Ax exists for all initial values x0 ∈ Ax and for all times
τ≥ t0 and has the following properties:

• it stays in X:

Φκ(τ; x0, t0) ∈X for all τ≥ t0, (2.35)

• it satisfies the path constraints

0 ≤ c(Φκ(τ; x0, t0),κ(Φκ(τ; x0, t0))) for all τ≥ t0, (2.36)
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• the terminal penalty M satisfies

∂

∂τ
M(Φκ(τ; x0, t0)) ≤−`e(Φκ(τ; x0, t0),κ(Φκ(τ; x0, t0))) for all τ≥ t0. (2.37)

4

This assumption implies that the cost-to-go function is decreasing along closed-loop tra-
jectories.

Lemma 2.4 (Monotonically Decreasing Cost-to-Go)
Let Assumption 2.4 hold for the system ẋ(t ) = f (x(t ),u(t )). Then the economic NMPC
scheme based on the NMPC subproblem Pe(t , x) is recursively feasible and the sequence
(ϕe(x?i ,u?

i ))i∈N is monotonically decreasing.

Proof Recursive feasibility directly follows from Assumption 2.4. In particular (2.35) and
(2.36) can be used to extend any admissible pair for problem Pe(ti , xi ) to an arbitrary long
time horizon. Property (2.37) can be used for the following calculation with x f := x?i (ti +T ):

M(Φκ(ti+1 +T ; x f , ti +T ))−M(x f ) ≤−
∫
T ti

`e(Φκ(τ; x f , ti +T ),κ(Φκ(τ; x f , ti +T )))dτ.

(2.38)

Therefore, with the optimality of (x?i+1,u?
i+1) it follows:

ϕe(x?i+1,u?
i+1) ≤

∫ ti+T

ti+1

`e(x?i (τ),u?
i (τ))dτ

+
∫ ti+1+T

ti+T
`e(Φκ(τ; x f , ti +T ),κ(Φκ(τ; x f , ti +T )))dτ

+M(Φκ(ti+1 +T ; x f , ti +T ))

(2.39)

≤
∫ ti+T

ti+1

`e(x?i (τ),u?
i (τ))dτ+M(x f ) (2.40)

=ϕe(x?i ,u?
i )−

∫ ti+1

ti

`e(x?i (τ),u?
i (τ))dτ (2.41)

Since we may assume that `e ≥ 0 holds for all admissible states/controls, this shows that the
sequence

(
ϕe(x?i ,u?

i )
)

i∈N is monotonically decreasing. �

Contrary to the case of tracking NMPC, the decreasing cost-to-go function not necessarily
implies stability at the steady-state (x∗

e ,u∗
e ). The reason for this is that (x∗

e ,u∗
e ) not necessarily

minimizes `e.
It turns out that the dissipativity condition (2.28) is the crucial ingredient that ensures

asymptotic stability of the economic NMPC controller [36, 100].

Lemma 2.5 (Asymptotic Stability of Economic NMPC)
Let Assumptions 2.2, 2.3 and 2.4 hold. Then the economic NMPC scheme defined by the
NMPC subproblems Pe(ti , xi ) (2.33) is locally asymptotically stable at (x∗

e ,u∗
e ).
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Proof As the proof works similarly to the stability proof for tracking NMPC we only give an
outline. Without loss of generality we may assume that `e(x∗

e ,u∗
e ) = 0 and λ(x∗

e ) = 0. We
consider the functional ϕ̃ :ACnx (T t )×Lnu∞ (T t ) →R defined by

ϕ̃(x ,u) :=ϕ(x ,u)+λ(x(t )). (2.42)

Slightly abusing notation, we consider the function x 7→ ϕ̃(x∗,u∗), where (x∗,u∗) is the solu-
tion of problem Pe(t , x) and show that this functions serves as a LYAPUNOV-like function for
the NMPC scheme.

Let (x?k ,u?
k )k∈N be the sequence of trajectories resulting from the economic NMPC scheme

with initial value x0 at time t0. The dissipativity condition (2.28) now allows to show that ϕ̃
is decreasing along the sequence (xk )k∈N = (x?k (tk ))k∈N:

ϕ̃(xk+1) =ϕ(xk+1)+λ(xk+1) (2.43)

(2.41)≤ ϕ(xk )−
∫ tk+1

tk

`e(x?k (τ),u?
k (τ))dτ+λ(xk+1) (2.44)

= ϕ̃(xk )−λ(xk )−
∫ tk+1

tk

`e(x?k (τ),u?
k (τ))dτ+λ(xk+1) (2.45)

= ϕ̃(xk )−
∫ tk+1

tk

(
`e(x?k (τ),u?

k (τ))−∇λ(x?k (τ))T f (x?k (τ),u?
k (τ))

)
dτ (2.46)

≤ ϕ̃(xk )−
∫ tk+1

tk

σ
(∥∥x?k (τ)−x∗

e

∥∥)
dτ. (2.47)

This implies the existence of a K∞-function α3 such that

ϕ̃(xk+1) ≤ ϕ̃(xk )−α3
(∥∥xk −x∗

e

∥∥)
(2.48)

holds for all k ∈N. The controllability Assumption 2.3 together with the LIPSCHITZ- continu-
ity of `e and the continuity of λ imply the existence of a K∞-function α2 such that

ϕ̃(x) ≤α2
(∥∥x −x∗

e

∥∥)
(2.49)

holds for all x ∈X. Furthermore, the dissipativity Assumption 2.2 implies

ϕ̃(xk ) ≥
∫ tk+T

tk

σ
(∥∥x?i (τ)−x∗

e

∥∥)
dτ+λ(x?i (tk +T )) (2.50)

Since λ is non-negative, this implies the existence of a K∞ function such that

ϕ̃(x) ≥α1
(∥∥x −x∗

e

∥∥)
(2.51)

holds for all x ∈ Ax . Altogether, with Lemma 1.11 this implies the existence of a KL-function
β such that∥∥xµ(tk ; x, ti )−x∗

e

∥∥≤β(∥∥x −x∗
e

∥∥ , tk − ti
)

(2.52)
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holds for all k, i ∈Nwith k ≥ i and all x ∈X. �

As can be seen, strict dissipativity is a property of the model and the performance criterion
that guarantees proper performance of an economic NMPC scheme. However, there may be
cases where the dissipativity of the performance criterion is difficult to verify or not given
at all. In these cases, it is possible to modify the stage-cost in a way that makes it strictly
dissipative for a desired steady-state (xs ,us ). This modification can be achieved by adding
a tracking term α : Rnx ×Rnu → R≥0 that is positive definite at (xs ,us ) to the stage-cost `e.
The benefit of this method proposed by Rawlings et al. [100] is that it allows to apply the
economic-NMPC scheme to a greater class of stage-costs than only the strictly dissipative
ones.

Strong Duality
Whether a combination of system and performance criteria satisfies the strict dissipativity
condition (2.2) for a steady state can be difficult to verify.

A property that is easier to verify and that implies strict dissipativity is called strong duality.

Definition 2.6 (Strong Duality of the Steady-State Problem )
If for the steady-state (xs ,us ) there exists a K∞-function σ and a multiplier λ̃ ∈Rnx such that

for the “rotated” stage cost L(x,u) := `e(x,u)+ λ̃T f (x,u)−`e(xs ,us ) it holds

L(x,u) ≥α(‖x −xs‖) for all (x,u) with 0 ≤ c(x,u), (2.53)

the steady-state (xs ,us ) is called “Strongly dual”. 4

Strong duality clearly implies the strict dissipativity assumption (2.2), since the multi-
plier λ̃ can be interpreted as linear function λ : Rnx → R, x 7→ λ̃T x which satisfies the strict-
dissipativity property.

2.5.2 Variants of Economic NonlinearModel Predictive Control
There exist a number of variants of the proposed economic NMPC controller discussed in
the previous section. We briefly point out some of the important extensions. For a more
detailed discussion, we refer the reader to the “Economic NMPC” chapter in [51].

Fixed Terminal-Constraint
If the terminal-region constraint (2.33e) is replaced by the constraint

x(ti +T ) = x∗
e , (2.54)

the resulting controller will automatically have the recursive feasibility property. This is be-
cause any admissible combination (x ,u) ∈ ACnx (Ti ) × Lnu∞ (Ti ) for problem Pe(ti , xi ) then
can be extended to an admissible pair for problem Pe(ti+1, x(ti+1)) by applying the (steady-
state)-control u∗

e . The terminal penalty term M can be omitted for such a controller, since
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the terminal constraint (2.54) will guarantee that the state x∗
e is reached at the end of the

prediction horizon ti +T and the value of M(x(ti +T )) would be constant for all admissible
trajectories. Consequently, also the auxiliary control law of Assumption 2.4 can be dropped.
Assumption 2.2 also leads to asymptotic stability for this controller, see e.g. [100, Theorem
2].

Steady-State Terminal Constraint
All the presented economic-NMPC schemes have in common that the steady state (x∗

e ,u∗
e )

has to be known a priori, because the terminal penalty M has to be designed such that it
is positive definite at x∗

e and the terminal region X in constraint (2.33e) or respectively the
constraint (2.54) depend explicitly on x∗

e .
An alternative controller design that does not require a terminal penalty and a priori

knowledge of the steady-state x∗
e replaces the terminal region constraint (2.33e) by the fol-

lowing steady-state constraint

0 = f (x(ti +T ),u(ti +T )). (2.55)

Similar to the case of the fixed terminal constraint, the auxiliary control-law Assumption 2.4
can then be dropped, because constraint (2.55) allows continuation of any admissible pair,
as (x(ti +T ),u(ti +T )) ∈Rnx ×Rnu is a steady state.

No Terminal Constraints
There also exist economic NMPC schemes that do not require terminal constraints. Under
certain assumptions on the system, it is possible to prove near optimal performance of the
closed-loop at least for a neighborhood of x∗

e . The “Turnpike-Property” [25] plays a central
role in this context. Roughly speaking, the steady-state x∗

e satisfies the turnpike property, if
the better (with respect to the economic performance) an admissible state trajectory is, the
longer it stays in a vicinity of the steady state.

For a thorough discussion on the design of economic NMPC schemes based on the turn-
pike properties we refer the reader to [50, 39, 86].

2.5.3 Economic NonlinearModel Predictive Control for Dissipative Periodic Systems
As we will also discuss in greater detail in the next chapter, steady-state operation not al-
ways constitutes the economically optimal way to operate a system. There may exist ad-
missible periodic trajectories that outperform the best steady state. For such systems, the
theory presented in the previous sections does not apply, because any system that satisfies
Assumption 2.2 is economically optimally operated at the steady-state (x∗

e ,u∗
e ). Therefore,

a generalization of the presented economic-NMPC scheme is necessary for such systems.
In the following, we present the necessary generalizations that allow to set up an economic
NMPC controller that extends the stability theory to the case of periodic systems. These gen-
eralizations are well known and for a discrete setting presented for example in Zanon et al.
[123].
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Similar to the case of dissipative steady-states (see Assumption 2.2), there exists a notion
of dissipativity for periodic solutions. The following assumption is a generalization of As-
sumption 2.2.

Assumption 2.5 (Strict Periodic Dissipativity)
There exists a Tp(> 0)-periodic solution (xp ,up ) ∈ACnx ([0,Tp])×Lnu∞ ([0,Tp])) of
ẋ(t ) = f (x(t ),u(t )) that satisfies 0 ≤ c(xp (t ),up (t )) for all t ∈ [0,Tp] (periodic in the sense that
xp (0) = xp (Tp)), a continuously differentiable function λ : R×Rnx → R≥0 and a K∞ function
σ such that

• λ is Tp-periodic in the first argument:

λ(t , x) =λ(t +Tp, x) for all (t , x) ∈R×Rnx , (2.56)

• λ is bounded on the set R× Ax (with Ax := {x ∈Rnx : ∃u ∈Rnu with 0 ≤ c(x,u)})

• for all (t , x,u) ∈R× Ax ×Rnu with 0 ≤ c(x,u) it holds that

σ(distp(x))+∇tλ(t , x)+∇xλ(t , x) f (x,u) ≤ `e(x,u)−`e(xp (t ),up (t )), (2.57)

where the distance of (x,u) ∈Rnx ×Rnu to the trajectory xp is denoted by

distp(x) := min
τ∈[0,Tp]

∥∥x −xp (τ)
∥∥ . (2.58)

4

Similar to the calculation for the steady-state case after Assumption 2.2, it can be shown that
Assumption 2.5 implies that the average economic performance of any admissible solution
for the system cannot be better than the economic performance of (xp ,up ).

To see this, let k ∈N and (x ,u) ∈ACnx
loc×Lnu

∞,loc be any state/control trajectory that satisfies
the ODE and path constraint 0 ≤ c(x(τ),u(τ)) for almost all τ ∈R≥0.

Then, by using the strict dissipativity property (2.57) we can calculate∫ kTp

0
`e(x(τ),u(τ))dτ≥

∫ kTp

0

(
`e(xp (τ),up (τ))+σ(distp(x(τ)))

)
dτ

+
∫ kTp

0

(∇tλ(τ, x(τ))+∇xλ(τ, x(τ)) f (x(τ),u(τ))
)
dτ

(2.59)

= k
∫ Tp

0
`e(xp (τ),up (τ))dτ+

∫ kTp

0
σ(distp(x(τ)))dτ

+λ(kTp, x(kTp))−λ(0, x(0))

(2.60)

= k
∫ Tp

0
`e(xp (τ),up (τ))dτ+

∫ kTp

0
σ(distp(x(τ)))dτ︸ ︷︷ ︸

≥0

+λ(0, x(kTp))−λ(0, x(0))︸ ︷︷ ︸
bounded

(2.61)
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It follows

limsup
t→+∞

1

t

∫ t

0
`e(x(τ),u(τ))dτ≥ 1

Tp

∫ Tp

0
`e(xp (τ),up (τ))dτ. (2.62)

This calculation shows that a system that satisfies Assumption 2.5 can be operated optimally
at the “Periodic Steady-State” (xp ,up ) ∈ ACnx ([0,Tp]) × Lnu∞ ([0,Tp])). Therefore, it makes
sense to ask for an economic NMPC scheme that is asymptotically stable at (xp ,up ).

For an economic NMPC controller a certain degree of controllability is necessary and the
following assumption can be seen as an extension of the controllability Assumption 2.3 in
the steady-state case to the periodic case.

Assumption 2.6 (Controllability at Periodic Steady-State)
There exists a δ ≥ 0 and a K∞-function η such that for any x0 ∈ Rnx with distp(x) ≤ δ there
exists a pair (x ,u) ∈ ACnx ([0,T ]) × Lnu∞ ([0,T ])) such that x(0) = x0, 0 ≤ c(x(τ),u(τ)) for all
τ ∈ [0,T ] and∫ T

0

(∥∥x(τ)−xp (τ)
∥∥+∥∥u(τ)−up (τ)

∥∥)
dτ≤ η(

distp(x)
)
. (2.63)

4

The generalization of the auxiliary control law Assumption 2.4 to the periodic case reads
as follows:
Assumption 2.7 (Periodic Auxiliary Control Law and Terminal Penalty)
There exists

• a family (Xt )t∈R of compact subsets of Rnx such that xp (t ) ∈ Xt and Xt+Tp = Xt for all
t ∈R,

• a smooth map κ :Rnx →Rnu ,

• a terminal penalty function M :R×Rnx →R≥0 with a K∞-function η satisfying

M(τ, x) ≤ η(distp(x)) for all (τ, x) ∈R×Rnx , (2.64)

such that the solution Φκ( · ; x0, t0) of the IVP ẋ(t ) = f (x(t ),κ(x(t ))) with x(t0) = x0 ∈X exists
for all initial values x0 ∈Xt0 and for all times t ≥ t0 and has the following properties:

• it remains inside the family (Xt )t∈R

Φκ(τ; x0, t0) ∈Xτ for all τ≥ t0, (2.65)

• it satisfies the path constraints

0 ≤ c(Φκ(τ; x0, t0),κ(Φκ(τ; x0, t0))) for all τ≥ t0, (2.66)

• the terminal penalty M satisfies

∂

∂τ
M(τ,Φκ(τ; x0, t0)) ≤−`e(Φκ(τ; x0, t0),κ(Φκ(τ; x0, t0))) for all τ≥ t0 (2.67)
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along the solution. 4

Now consider the economic NMPC scheme based on the NMPC subproblem Pe(ti , xi )
defined on the time horizons T ti = [ti , ti +T ]:

min
x∈ACnx (T ti ),

u∈Lnu∞ (T ti )

ϕ(x ,u) :=
∫
T ti

`e(x(τ),u(τ))dτ+M(ti +T, x(ti +T )) (2.68a)

s. t. x(ti ) = xi , (2.68b)

ẋ(τ) = f (x(τ),u(τ)), τ ∈ T ti , (2.68c)

0 ≤ c(x(τ),u(τ)), τ ∈ T ti , (2.68d)

x(ti +T ) ∈Xti+T . (2.68e)

Note that beside the adapted terminal penalty function M , the structure of this OCP is almost
identical to the NMPC subproblem for the dissipative steady-state case defined in (2.33). The
important difference is the time-dependent terminal-constraint (2.68e), which was constant
in the steady-state case. The time-varying terminal constraint accounts for the fact that the
economic optimal way to operate the system is periodic and not just a steady-state.

With the assumptions that are generalizing the case of the strict dissipative steady-state in
the previous section, it is possible to extend the stability result for strictly dissipative steady-
states (Lemma 2.5) to the case of strict periodic dissipative systems.

Lemma 2.7 (Asymptotic Stability of E-NMPC for Periodic Dissipative Systems )
If Assumptions 2.5, 2.6 and 2.7 hold, the set

{
(x(τ),u(τ)),τ ∈ [0,Tp]

}
is asymptotically stabi-

lized by the closed-loop feedback resulting from the economic NMPC scheme defined by the
subproblems Pe(ti , xi ), i.e. there exist a KL-function β, such that∥∥xµ(t j ; x, tk )

∥∥
p ≤β(distp(x), t j − tk ) for all j ≥ k ∈N and x ∈Xtk . (2.69)

Proof The proof is almost identical to the proof of Lemma 2.5. Again, a modified objective
functional will serve as LYAPUNOV-like function. The “rotated” functional ϕ̃ : ACnx ([t , t +
T ])×Lnu∞ ([t , t +T ]) →R this time is defined by

ϕ̃(x ,u) :=ϕ(x ,u)+λ(t , x(t )). (2.70)

Again let (x?k ,u?
k )k∈N be the sequence of trajectories resulting from the E-NMPC scheme with

initial value x0 at time t0. A similar calculation as in the proof of Lemma 2.5 shows that
the strict periodic dissipativity Assumption 2.5 and the auxiliary control law Assumption 2.7
imply the following inequality

ϕ̃(xk+1) ≤ ϕ̃(xk )−
∫ tk+1

tk

σ
(
distp(x?k (τ))

)
dτ (2.71)
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for all k ∈N. Note that the distance function distp( · ) is LIPSCHITZ-continuous (with constant
1) and therefore (2.71) implies the existence of a K∞-function α3 such that

ϕ̃(xk+1) ≤ ϕ̃(xk )−α3
(
distp(xk )

)
(2.72)

holds for all k ∈N. The controllability Assumption 2.6 implies the existence of aK∞-function
α2 such that

ϕ̃(x) ≤α2
(
distp(x)

)
(2.73)

holds for all x ∈Rnx . On the other hand the periodic dissipativity property (2.57) implies the
existence of a K∞-function α1 such that

ϕ̃(x) ≥α1
(
distp(x)

)
(2.74)

holds for all x ∈X. Altogether this implies the existence of a KL-function β such that∥∥xµ(tk ; x, ti )
∥∥

p ≤β(
distp(x), tk − ti

)
(2.75)

holds for all k, i ∈Nwith k ≥ i and all x ∈Xti . �

Remark 2.2 The above stability Lemma only shows that the distance of the closed-loop tra-
jectory to the set Xp := {x ∈ Rnx : distp(x) = 0} asymptotically decreases and not that the
closed-loop feedback is stabilized at the trajectory (xp ,up ). This means that the distance∥∥xµ(t ; x0, t0)−xp (t )

∥∥ does not necessarily decrease asymptotically. In a discrete setting, the
situation is different because there the next state is completely determined by the current
state and the current control input which can the be used for the following conclusion:

(xµ(ti ),uµ(ti )) ≈ (xp (τ),up (τ))

⇒ (xµ(ti+1),uµ(ti+1)) ≈ (xp (τ+ ti+1 − ti ),up (τ+ ti+1 − ti )),
(2.76)

Contrary to this, in the continuous setting, the control input at the time-instant ti does not
determine xµ(ti+1) uniquely (the control input on the whole interval [ti , ti+1] is necessary),
making the conclusion (2.76) in this case difficult. For a more detailed analysis of the discrete
case we refer the reader to Zanon et al. [123]. 4

A-Priori Knowledge of (xp ,up )

As we have seen, the periodic E-NMPC controller based on the subproblems Pe(ti , xi ) re-
quires a priori knowledge of the period Tp (as the terminal constraint sets have to be chosen
periodic with period Tp), the terminal penalty function M and the periodic terminal regions
(Xt )t∈R. This means that a certain amount of knowledge of the periodic trajectory (xp ,up ) is
necessary to set up such a controller.

Furthermore, it is clearly the case that any phase-shifted version of (xp ,up ) yields the same
economic output as (xp ,up ), since the system ẋ(t ) = f (x(t ),u(t )) is autonomous and `e does
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not depend on time. Therefore, when defining the terminal region sets (Xt )t∈R, there is a
somehow arbitrary choice involved since these sets have to be neighborhoods of (Xt )t∈R.

2.6 Summary
After a brief overview on the historical development of NMPC, we gave a quick introduction
to the central ideas behind NMPC. The repetitive process of measuring the current system
state, solving an OCP with the obtained state as initial value and giving the obtained control-
input to the plant was explained. Important questions concerning the closed-loop behavior
of the resulting controller such as recursive feasibility and asymptotic stability properties
were discussed. The stability properties of a tracking NMPC controller were analyzed and
E-NMPC was introduced as an NMPC variant that attempts to combine the regulatory tasks
of (tracking) NMPC with a simultaneous optimizing task. Based on dissipativity assump-
tions, stability results for economic NMPC schemes for steady-states and periodic steady-
states were discussed.

What remains open is the question on whether it is possible to design economic NMPC
schemes that do not explicitly rely on dissipativity assumptions and a-priori knowledge of
economic optimal trajectories. In the remaining part of this thesis we develop a design ap-
proach for economic NMPC that, complementary to the schemes presented in this chapter,
is based on good approximation properties of periodic solutions and assumptions on the
NMPC subproblems rather than on dissipativity assumptions.
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Part II
NonlinearModel Predictive Control
for AverageOutput Systems
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Chapter 3
AverageOutput Optimal Control Problems
In this chapter we define and discuss one of the main subjects of this thesis, Average Output
Optimal Control Problems (AOCPs). We introduce AOCPs as an extension of the class of
finite horizon OCPs to infinite horizons, dealing with possibly indefinite objective integrals
by using an averaging formulation. The averaging formulation usually will come at the cost
of non-uniqueness of the solution of the AOCP.

We discuss the approximation properties of periodic solutions that can, under certain
controllability assumptions, approximate the optimal average output arbitrarily well. Fur-
thermore, we show that in case the set of admissible states is compact, a natural approxi-
mation property of quasi-periodic solutions arises that does not require any assumptions on
controllability.

3.1 OCPswith AverageOutput Objective on Infinite TimeHorizons
3.1.1 Problem Setup
We consider a controlled dynamical system ẋ(t ) = f (x(t ),u(t )) that is subject to a path con-
straint of the form 0 ≤ c(x(t ),u(t )) for all times. Associated to this system is a performance
criterion ` :Rnx ×Rnu →R.

We are interested in the question of how to optimally operate this system on the infinite
time horizon T := R≥0. To put this question in mathematical terms, it can be formulated as
an infinite horizon OCP P∞:

inf
x∈ACnx

loc(T ),

u∈Lnu
∞,loc(T )

∫ ∞

0
`(x(τ),u(τ))dτ (3.1a)

s. t. ẋ(τ) = f (x(τ),u(τ)), τ ∈ T , (3.1b)

0 ≤ c(x(τ),u(τ)), τ ∈ T . (3.1c)

As we have already seen in Section 1.5, even for simple dynamical systems, the objective
functional of Problem P∞ can be unbounded and thus this formulation in many cases is not
very useful.

For this reason, we replace the objective functional by the average objective output func-
tional of Definition 1.18

ϕavg(x ,u) := limsup
T→+∞

1

T

∫ T

0
`(x(τ),u(τ))dτ, (3.2)
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and work with the following compactness Assumption.

Assumption 3.1 (Compactness of the Admissible States and Controls )
The set of admissible states and controls Ac := {(x,u) ∈Rnx ×Rnu : 0 ≤ c(x,u)} is compact. 4

Lemma 1.21 then guarantees that for the following modified version Pavg of Problem P∞

inf
x∈ACnx

loc(T ),

u∈Lnu
∞,loc(T )

ϕavg(x ,u) (3.3a)

s. t. ẋ(τ) = f (x(τ),u(τ)), τ ∈ T , (3.3b)

0 ≤ c(x(τ),u(τ)), τ ∈ T . (3.3c)

the objective functional is bounded on the set of admissible state/control trajectories. There-
fore the existence of an admissible trajectory (x ,u) for problem Pavg is sufficient to guarantee
the existence of the infimum which we denote by ϕ∗

avg.
If an initial value value constraint x(t0) = x0 is added to the above Problem, we denote it

by Pavg(x0) and the infimum of the objective functional by ϕ∗
avg(x0).

We call an infinite horizon OCP of the form Pavg or Pavg(x0) an AOCP.

3.1.2 Non-Uniqueness of AverageOutput Optimal Control Problem Solutions
Although the compactness Assumption 3.1 guarantees the well-definedness of the infimum
ϕ∗

avg(x0), the existence of a unique solution for Pavg(x0) cannot be expected. First, there may
be no admissible state/control trajectory pair with ϕ∗

avg(x ,u) =ϕ∗
avg(x0). Second, even in the

case the infimum ϕ∗
avg(x0) is attained by an admissible pair (x ,u), the combination of the

infinite time horizon and the averaging objective functional often imply that uniqueness of
solutions of problem Pavg(x0) cannot be expected. This is due to the fact that the averaging
functional ϕavg does not depend on the initial behavior of (x ,u), but only on its asymptotic
behavior, as can be seen in the following calculation.

Invariancewith Respect to Phase Shifts and Independence of Initial Behavior
Let t1 ∈R≥0 and T > t1. For any (x ,u) ∈ACnx

loc([0,∞))×Lnu
∞,loc([0,∞)) we have

1

T

∫ T

0
`(x(τ),u(τ))dτ= 1

T

(∫ t1

0
`(x(τ),u(τ))dτ+

∫ T

t1

`(x(τ),u(τ))dτ

)
(3.4)

= 1

T

∫ t1

0
`(x(τ),u(τ))dτ+ T − t1

T

1

T − t1

∫ T

t1

`(x(τ),u(τ))dτ. (3.5)

Because lim
T→∞

T−t1
T = 1, this shows

ϕavg(x ,u) =ϕavg ((x ,u)◦ [τ 7→ τ+ t1]) . (3.6)

From this equation it follows that the average output does not depend on the behavior of
(x ,u) on the interval [0, t1]. Moreover, it shows that the average output is invariant with
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respect to phase shifts: If for (x1,u1), (x2,u2) ∈ACnx
loc([0,∞))×Lnu

∞,loc([0,∞)) there exist t1 <
t2 ∈R≥0 such that

(x1,u1)(τ+ t1) = (x2,u2)(τ+ t2) (3.7)

holds for all τ ∈R≥0, then it follows

ϕavg(x1,u1) =ϕavg ((x1,u1)◦ [τ 7→ τ+ t1])

=ϕavg ((x2,u2)◦ [τ 7→ τ+ t2]) =ϕavg(x2,u2).

Example: Controllability implies Non-Uniqueness
In the following, we want to illustrate how a certain degree of controllability of a dynamical
system together with the observed invariance of the averaging objective functional with re-
spect to phase shifts implies that the corresponding AOCP solutions are not unique.
Consider a system with the following controllability property.

Definition 3.1 (Tmax-Controllability (cf. Grammel [47]))
A system ẋ(t ) = f (x(t ),u(t )) with path-constraint 0 ≤ c(x,u) is said to be Tmax-controllable,
if for any two y0, y1 ∈ Ac

x := {x ∈ Rnx : ∃u ∈ Rnu : (x,u) ∈ Ac } there exists a pair (xy0,y1 ,uy0,y1 ) ∈
ACnx ([0,Tmax])×Lnu∞ ([0,Tmax])) and a time 0 ≤ ty0,y1 ≤ Tmax such that the following holds

• ẋy0,y1 (τ) = f (xy0,y1 (τ),uy0,y1 (τ)) for almost all τ ∈ [0,Tmax],

• 0 ≤ c(xy0,y1 (τ),uy0,y1 (τ)) for almost all τ ∈ [0,Tmax],

• xy0,y1 (0) = y0 and x(ty0,y1 ) = y1. 4

For a Tmax-controllable system, an admissible trajectory (x ,u) ∈ACnx
loc([0,∞))×Lnu

∞,loc([0,∞))

and an arbitrary element y1 ∈ Ac
x , we can define the pair (x̃y1 , ũy1 ) ∈ ACnx

loc([0,∞)) ×
Lnu
∞,loc([0,∞)) as follows:

(x̃y1 , ũy1 )(τ) :=


(xx0,y1 ,ux0,y1 )(τ), if τ ∈ [0, tx0,y1 ),

(xy1,x0 ,uy1,x0 )(τ− tx0,y1 ), if τ ∈ [tx0,y1 , tx0,y1 + ty1,x0 ),

(x ,u)(τ− (tx0,y1 + ty1,x0 )), if τ ∈ [tx0,y1 + ty1,x0 ,∞).

(3.8)

The average output of (x̃y1 , ũy1 ), independently of y1, is equal to the average output of
(x ,u) because (x ,u) = (x̃y1 , ũy1 )◦[τ 7→ τ+tx0,y1 +ty1,x0 ]. This shows that for Tmax-controllable
systems, AOCPs do not have unique solutions.

Remark 3.1 (Non-Uniqueness and NMPC) The independence of the averaging functional
ϕavg with respect to the initial behavior of the trajectories and the resulting non-uniqueness
are the reasons why AOCPs in principle are not suited as NMPC subproblems. This becomes
clear when one remembers the NMPC principles according to which only the (in this case
arbitrary) initial part of the open-loop control solution (of the NMPC subproblem) is applied
to the system. 4
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3.2 Periodic Approximations
As we have seen in the previous section, in general there exists no unique solutions for
AOCPs. In this section we discuss how at least good approximations for AOCPs can be found,
in particular using periodic solutions.

Motivation for Periodic Operation
A straightforward and simple approach for approximating a solution of the AOCP Pavg, is to
limit the search to the set of feasible steady-states. This reduces the infinite dimensional
problem to the following finite dimensional steady-state optimization problem

inf
(x,u)∈Rnx ×Rnu

`(x,u), (3.9a)

s. t. 0 = f (x,u), (3.9b)

0 ≤ c(x,u). (3.9c)

This simplification certainly is not satisfactory because the set of steady states could be
empty and furthermore, the optimal way to operate a system with respect to average out-
put not always consists in steady-state operation, as we already have seen in Section 2.5.3.
There it was shown that strict periodic dissipativity implies optimality of periodic operation.

Steady state solutions can be interpreted as a special class of periodic solutions (the ones
with period zero) and therefore it is not surprising that periodic solutions have greater ap-
proximation potential then steady-state solutions. The fact that periodic operation (with
period greater then zero) of dynamical systems in some cases can outperform steady-state
operation started to receive attention in the 1970s, in particular in the field of chemical pro-
cess engineering [7, 54]. As early examples, periodic operation of consecutive-competitive
reactions in a Continuous Stirred-Tank Reactor (CSTR) is considered in [101] and [72].

Criteria that help to figure out whether periodic operation can outperform steady-state
operation are analyzed for discrete and continuous systems in [15] and [14].

Focusing on periodic solutions has the benefit that it reduces the time horizon and trans-
forms the infinite horizon AOCP to a finite horizon OCP. In the following, we discuss a num-
ber of approximation properties of periodic solutions that justify this approach.

3.2.1 LowDimensional Cases
For a two dimensional state-space, there is a remarkable existence result for average-optimal
periodic trajectories that is, however, based on the concept of “relaxed controls”. A relaxed
control function u : R≥0 →P(Rnu ) takes values in the set P(Rnu ) of probability measures on
Rnu . For x ∈Rnx and µ ∈P(Rnu ) the right-hand side and the performance criterion then have
to be interpreted as

f (x,µ) :=
∫
Rnu

f (x,u)µ(du) resp. `(x,µ) :=
∫
Rnu

`(x,u)µ(du). (3.10)

For the theory of relaxed controls we refer the reader to Young [119] and Warga [113].
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Employing relaxed controls, Artstein and Bright [5] prove the following result.

Lemma 3.2 (Existence of Average Optimal Periodic Trajectories [5])
Let nx = 2 and let compactness Assumption 3.1 hold. If the path constraint c is only state
dependent, then there exists a Tp <∞, a Tp-periodic state trajectory xp and a relaxed control
function up such that (xp ,up ) satisfy the relaxed ODE constraint, the path constraint and

1

Tp

∫ Tp

0
`(xp (τ),up (τ))dτ=ϕ∗

avg. (3.11)

Proof See [5, Theorem A]. �

It has to be noted that the fact that the system is described by an ordinary differential equa-
tion is not essential for the existence of optimal periodic trajectories.

The result rather is based on a topological property ofR2 that is exploited in a similar man-
ner as it is done in the POINCARÉ1-BENDIXSON2 theorem [10]. The POINCARÉ-BENDIXSON

theorem states that a bounded solution of an ODE without stationary points in the ω-limit
set converges to a trajectory that is a JORDAN3-curve 4.

3.2.2 Periodic Approximations via Controllability
For higher dimensional state-spaces a controllability assumptions on the system ẋ = f (x ,u)
implies good approximation properties of periodic solutions. The following result of Gram-
mel [47] is remarkable, because it not only states that periodic solutions exist that approxi-
mate the best average output arbitrarily well, but it also gives a bound on the required period
to achieve a desired approximation quality.

Lemma 3.3 (Periodic Approximation Lemma)
Let compactness Assumption 3.1 hold and let the system have the Tmax-controllability prop-
erty (3.1). Let P ∈ R≥0 be an upper bound for |`(·)| on the set of admissible states/controls
A. Then for any ε > 0 there exists a time 0 < Tε ≤ 6PTmax

ε and a pair (x ,u) ∈ACnx ([0,Tε])×
Lnu∞ ([0,Tε]) such that

• (x ,u) satisfies the ODE constraint ẋ(τ) = f (x(τ),u(τ)) and the path constraint 0 ≤
c(x(τ),u(τ)) for almost all τ ∈ [0,Tε],

• x is periodic: x(0) = x(Tε),

• 1
Tε

∫ Tε
0 `(x(τ),u(τ))dτ≤ϕ∗

avg +ε.

Proof The proof can be found in Grammel [47, Lemma 3.1]. �

1Henri Poincaré 1854 - 1912
2Ivar Otto Bendixson 1861 - 1935
3Marie Ennemond Camille Jordan 1838 - 1922
4A JORDAN-curve is the image of an injective continuous map of the circle in the two-dimensional plane.
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The version in [47] is even stronger, as it states that for an arbitrary initial value x0 ∈ Ax ,
there exists a Tε periodic pair (x ,u) starting at x0 with all the properties stated in the lemma
above. This indicates that the estimate for the required period Tε ≤ 6PTmax

ε might be conser-
vative, since it really shows that any point x0 ∈ Ax is contained in a Tε-periodic ε suboptimal
trajectory, which is a stronger statement then just the existence of any Tε-periodic ε subop-
timal trajectory, and there might very well be ε suboptimal periodic trajectories with shorter
periods.

3.2.3 Quasi Periodic Approximations
As we will prove in the following, in a general setting the compactness Assumption 3.1 alone
(without any controllability property) is already sufficient for the following approximation
property of quasi-periodic solutions for AOCPs.

Lemma 3.4 (Quasi Periodic Approximations)
Let Assumption 3.1 hold and let the set of admissible trajectories for problem Pavg be non-
empty. Then for any δ,ε > 0, there exist a positive number Tδ,ε ∈ R≥0 and a pair (x ,u) ∈
ACnx ([0,Tδ,ε])×Lnu∞ ([0,Tδ,ε]) such that

• (x ,u) satisfies the ODE constraint ẋ(τ) = f (x(τ),u(τ)) and the path constraint 0 ≤
c(x(τ),u(τ)) for almost all τ ∈ [0,Tδ,ε],

• x is “almost” periodic:
∥∥x(0)−x(Tδ,ε)

∥∥≤ δ,

• the average output of (x ,u) is close to ϕ∗
avg:

1

Tδ,ε

∫ Tδ,ε

0
`(x(τ),u(τ))dτ≤ϕ∗

avg +ε. (3.12)

Proof Since the set of admissible trajectories for problem Pavg is not empty, we can choose a
pair (x ,u) ∈ACnx

loc([0,∞))×Lnu
∞,loc([0,∞)) withϕavg(x ,u) ≤ϕ∗

avg+ε. Let (ti )i∈N be a monotonic
sequence with ti → ∞. We consider the sequence of the average outputs in the intervals
[tk , tk+1],

dk := 1

tk+1 − tk

∫ tk+1

tk

`(x(τ),u(τ))dτ. (3.13)

With this definition and any n ∈N it holds that

1

tn

∫ tn

0
`(x(τ),u(τ))dτ= 1

tn

n−1∑
k=0

(tk+1 − tk )dk . (3.14)

Taking the limit n →∞ on both sides of the equation yields the average outputϕavg(x ,u) and
shows that dk ≤ϕavg(x ,u) must hold for an infinite number of indices k ∈N. If dk ≤ϕavg(x ,u)
would only hold for a finite number of indices, the limit of the right hand side of the equation
would be greater than ϕavg(x ,u). Because the system is autonomous, we may assume that
dk ≤ ϕavg(x ,u) holds for all k ∈ N. Since the set Ac is compact, also the projection onto the
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first factor Ac
x = πx (Ac ) ⊂ Rnx is compact and there exists x∗ ∈ Ac

x and a subsequence (t̃i )i∈N
of (ti )i∈N such that x(t̃i ) → x∗ ∈ Ac

x . Then there exists an index k0 with∥∥x(t̃k0 )−x(t̃k0+1)
∥∥≤ δ. (3.15)

By construction, the pair (x̃ , ũ) ∈ACnx ([0, t̃k0+1 − t̃k0 ])×Lnu∞ ([0, t̃k0+1 − t̃k0 ]) defined by

(x̃ , ũ)(τ) := (x ,u)(τ+ t̃k0 ) (3.16)

has all the desired properties and the proof is finished. �

3.2.4 TheAssociated Periodic Optimal Control Problem
The approximation properties of periodic solutions discussed in this section allow the ap-
proximate solution of an AOCP by transforming it to an OCP with finite time horizon using a
periodicity constraint.

Approximationwith Fixed Period
Suppose a suitable period Tp is known. Then the following OCP Perfix

Tp
with periodicity con-

straint can be defined on the time horizon T = [0,Tp].

min
x∈ACnx (T ),

u∈Lnu∞ (T )

φfix
Tp,per(x ,u) := 1

Tp

∫ Tp

0
`(x(τ),u(τ))dτ (3.17a)

s. t. ẋ(τ) = f (x(τ),u(τ)), τ ∈ T , (3.17b)

0 ≤ c(x(τ),u(τ)), τ ∈ T , (3.17c)

0 = x(Tp)−x(0). (3.17d)

It is clear that any admissible pair (x ,u) ∈ ACnx (T )× ∈ Lnu∞ (T ) of problem Perfix
Tp

can

be extended to the infinite time horizon R≥0 by periodic continuation and thus induces
an admissible pair (x̃ , ũ) ∈ ACnx

loc(R≥0) × Lnu
∞,loc(R≥0)) for problem Pavg with the property

φfix
Tp,per(x ,u) =ϕavg(x̃ , ũ).

Approximationwith Free Periods
It is also possible to define a periodicity-constrained OCP without explicitly fixing the period.
In this case the period T can be considered as an additional optimization variable (within
some simple bounds T ≤ T ≤ T ). Since the straight-forward formulation of the resulting
problem would result in optimization over the spaces ACnx ([0,T ]) and Lnu∞ ([0,T ]), which
then are varying with the optimization variable T , a time-transformation to the standard
time horizon [0,1] is used to get a proper OCP.
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With the substitution τ(t ) = T t , the objective averaging integral transforms as follows:

1

T

∫ T

0
`(x(τ),u(τ))dτ=

∫ 1

0
`(x(T t ),u(T t ))dt . (3.18)

Then, by replacing the original state and control variables by x̃(t ) := x(T t ) and ũ(t ) := u(T t ),
the transformed OCP Perfree looks as follows.

min
x̃∈ACnx ([0,1]),

ũ∈Lnu∞ ([0,1]),
T∈R

φfree
per (x̃ , ũ) :=

∫ 1

0
`(x̃(τ), ũ(τ))dτ (3.19a)

s. t. ˙̃x(τ) = T f (x̃(τ), ũ(τ)),τ ∈ [0,1], (3.19b)

0 ≤ c(x̃(τ), ũ(τ)), τ ∈ [0,1], (3.19c)

0 = x̃(1)− x̃(0), (3.19d)

T ≤ T ≤ T . (3.19e)

It is clear that any admissible triple (x̃ , ũ,T ) ∈ ACnx ([0,1])× Lnu∞ ([0,1])×R for the above
problem corresponds to an admissible pair (x ,u) ∈ ACnx ([0,T ]) × Lnu∞ ([0,T ]) for problem
Perfix

T with φfix
T,per(x ,u) = φfree

per (x̃ , ũ), simply by reversing the time-substitution and setting
(x ,u)(τ) := (x̃ , ũ)(τ/T ) for τ ∈ [0,T ].

In combination with the approximation Lemma 3.3, this shows that under suitable con-
trollability assumptions, problem Perfree offers a way to calculate approximations of any de-
sired quality to the infinite horizon AOCP by adjusting the bounds for T according to Lemma
3.3. The smaller the lower bound T and the greater the upper bound T is set, the better is
the possible approximation.

3.3 Summary
In this chapter we introduced AOCPs as OCPs with averaging performance criterion on in-
finite time horizons. The averaging objective allows to consider problems that otherwise
would have an indefinite objective integral. Together with a compactness assumption, it is
possible to show that the infimum of the average outputs always exists provided that the set
of admissible trajectories is not empty.

Due to the averaging nature of the objective functional, uniqueness cannot be expected
for solutions of AOCPs, since the objective does not depend on the initial behavior but only
on the asymptotic behavior. We illustrated this with a simple example for a system satisfying
a certain controllability property.

This is also the reason why in principle AOCPs with initial value constraint are not a suit-
able base for an NMPC subproblem.

In the second section we focused on periodic approximations for AOCPs. In a simple,
two-dimensional case, the topological properties of R2 allow to conclude that the optimal
average-output can be realized with a periodic solution. In a more general setting we have
shown that a compactness assumption on the set of admissible states/controls is sufficient
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to prove the existence of quasi-periodic solutions with arbitrary close average output com-
pared to the optimal average output.

Finally we have shown how to set up corresponding periodic OCPs that exploit these ap-
proximation properties and allow to solve AOCPs approximately by reducing them to finite
horizon OCPs with a periodicity constraint.
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Chapter 4
Economic NonlinearModel Predictive Control for Average
Output Optimal Control Problems
In this chapter, we address the main topic of this thesis: feedback control for AOCPs. As
we have seen in the previous chapter, the problem formulation for AOCPs is fairly straight-
forward. However, the infinitely long time horizon and the thereby induced uniqueness-
issues for solutions pose great problems in the context of feedback generation, in particular
because the average output functional ϕavg does not depend on the initial behavior of the
trajectories (cf. Remark 3.1).

We begin this chapter by discussing some existing approaches for economic NMPC for
AOCPs. Then we present our approach which is based on periodic solutions and extends an
existing “Self Tracking” approach by Limon et al. [77] to a more general nonlinear setting.

By means of controllability assumptions on the dynamical system and regularity assump-
tions on the proposed NMPC subproblems we can prove a stability result for the resulting
controller which shows that the closed-loop trajectories have an economic performance that
is equal to the economic performance of the optimal periodic trajectory.

4.1 Problem Formulation and Existing Approaches
Problem Formulation
Let ẋ(t ) = f (x(t ),u(t )) be a dynamical system with a path constraint 0 ≤ c(x,u) and a perfor-
mance criterion `(x,u) such that the functions f ,c,` are sufficiently smooth and the set of
admissible states/controls Ac := {(x,u) ∈Rnx ×Rnu : 0 ≤ c(x,u)} is compact (Assumption 3.1).
Our aim is to define an economic NMPC subproblem for this system such that the resulting
moving horizon NMPC scheme is recursively feasible and has an average economic output
as close as possible to the optimal average output ϕ∗

avg of the corresponding AOCP.
Furthermore, we try to keep the amount of a priori information needed to set up the

NMPC subproblem as small as possible. Examples for such a priori information are pre-
calculated trajectories, special terminal constraints and terminal penalty terms.

In the following, we give a brief overview of existing NMPC schemes for AOCPs and point
out the strengths and limitations.

4.1.1 Tracking
Although it is not an economic NMPC scheme, we add tracking NMPC in the list of existing
methods, because tracking NMPC schemes can locally be equivalent (producing the same
feedback) to an economic NMPC cf. [121] and[122].
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Tracking NMPC schemes are based on a pre-calculated reference orbit
(xref,uref) ∈ACnx

loc(R≥0)×Lnu
∞,loc(R≥0) which for example could be a solution of the AOCP Pavg.

With this reference solution, a tracking controller can be set up as it is described in Sec-
tion 2.4. The well understood stability properties of tracking NMPC imply that the resulting
feedback trajectory will robustly converge to the reference trajectory.

However, such a controller requires the solution of the corresponding AOCP beforehand.
Furthermore, because the tracking objective criterion of the NMPC subproblems is decou-
pled form the real economic performance criterion, possible changes of the optimal refer-
ence solution (e.g. resulting from parameter-changes of the dynamical system) would have
to be taken into account by updating the tracking reference trajectory. An example of such
a tracking NMPC scheme that is based on multiple pre-calculated solutions can be found in
Ilzhöfer et al. [64].

The Phase Problem
Another issue with tracking controllers arises when the reference solution is not constant,
i.e. not a steady-state. In this case, any time shifted version of the reference trajectory has
an equally good average economic output. Consequently the tracking controller could be
defined with any of the shifted reference trajectories, which implies that in the setup of the
NMPC subproblem an additional choice of phase is necessary. A tracking NMPC scheme
without a terminal region constraint as in (2.16) or a terminal equality constraint as in (2.17)
can furthermore lead to suboptimal performance if the wrong phase of the reference solu-
tion is tracked.

4.1.2 Economic NonlinearModel Predictive Control for Dissipative Systems
In case the system satisfies a strict dissipativity condition for a steady state (Assumption 2.2)
or for a periodic solution (Assumption 2.5), it is possible to set up an NMPC controller with
the original performance criterion ` as performance criterion in the NMPC subproblem.

We described these approaches in Sections 2.5.1 (steady state case) and 2.5.3 (periodic
case). The objective functional for the NMPC subproblem at sampling-time ti with horizon
T ti = [ti , ti +T ] for such schemes is of the form

ϕ(x ,u) =
∫
T ti

`(x(τ),u(τ))dτ+M(ti +T, x(ti +T )). (4.1)

The MAYER-term function M in these approaches guarantees asymptotic stability of the re-
sulting closed-loop trajectories. It has to satisfy a descent condition (2.37) (steady-state case)
respectively (2.65) (periodic case) along trajectories resulting from an auxiliary control law.

Such schemes often also require terminal constraints such as (2.33e) or (2.68e) that ensure
recursive feasibility of the NMPC scheme by means of an auxiliary control law.

In Müller and Grüne [86], an economic NMPC scheme without terminal constraint for
a strictly periodic dissipative system with period Tp is presented. It is based on a multi-
step controller, where the applied control solution only is updated after a full period. For
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this controller, using suitable controllability assumptions, the authors prove near average
optimal performance and convergence to the optimal periodic orbit.

The existing economic NMPC schemes offer closed-loop stability and performance guar-
antees for dissipative systems. However, dissipativity conditions can be difficult to check,
especially for the case of periodic dissipativity. Furthermore a certain amount of a priori in-
formation on the optimal orbit is necessary to set up the controllers with time-dependent
terminal regions and terminal penalties.

4.1.3 Self-Tracking Economic NonlinearModel Predictive Control
An approach that also serves as foundation for our method is the single-layer E-NMPC pro-
posed by Limon et al. [77] for periodic (with period Tp ∈N) time-varying discrete affine linear
systems, i.e. systems of the form

x(k +1) = f (k, x(k),u(k)) := A(k)x(k)+B(k)u(k), (4.2)

with A(k) ∈ Rnx×nn and B(k) ∈ Rnx×nu time periodic such that A(k) = A(k +Tp) and B(k) =
B(k +Tp) for all k ∈N. The time-dependent performance criterion is given by a function ` :
N×Rnx ×Rnu →R that satisfies `(k, x,u) = `(k+Tp, x,u) for all (x,u) ∈Rnx ×Rnu . Furthermore
` is assumed to be non-negative and convex in (x,u) for all k ∈N. As set of feasible states and
controls Z (k) ⊂ Rnx ×Rnu at time k ∈ N they consider closed and convex polyhedrons that
contain the origin and also satisfy the periodicity condition Z (k) = Z (k +Tp) for all k ∈N.

As discrete NMPC subproblem with horizon length N (≤ Tp) at sampling time k with initial
value x ∈Rnx the following NLP is chosen (where ‖·‖X and ‖·‖U are some weighted norms on
Rnx andRnu and Zr (i ) a closed convex polyhedron contained in the relative interior of Zr (i )):

min
x̄0,...,x̄N∈Rnx ,

xa
0 ,...,xa

Tp
∈Rnx ,

ū0,...,ūN−1∈Rnu ,
ua

0 ,...,ua
Tp−1∈Rnu

N−1∑
i=0

(∥∥x̄i −xa
i

∥∥2
X
+∥∥ūi −ua

i

∥∥2
U

)
+

Tp−1∑
i=0

`(k + i , xa
i ,ua

i ) (4.3a)

s. t. x̄0 = x, (4.3b)

x̄i+1 = f (i +k, x̄i , ūi ), i = 0, . . . , N −1, (4.3c)

(x̄i , ūi ) ∈ Z (i +k), i = 0, . . . , N −1, (4.3d)

x̄N = xa
0 , (4.3e)

xa
i+1 = f (i +k, xa

i ,ua
i ), i = 0, . . . ,Tp −1, (4.3f)

(xa
i ,ua

i ) ∈ Zr (i +k), i = 0, . . . ,Tp −1, (4.3g)

xa
0 = xa

Tp
. (4.3h)

Here, beside the predicted trajectory represented by (x̄0, . . . , x̄N ) an artificial trajectory rep-
resented by (xa

0 , . . . , xa
Tp

) is considered and the objective functional is the combination of the
difference of artificial trajectory and predicted trajectory (measured with the norms ‖·‖X and
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‖·‖U) and the economic performance of the artificial trajectory. Both artificial and predicted
trajectory are subject to the discrete evolution of the system ((4.3c) and (4.3f)) and the end-
value of the predicted trajectory is set to be equal to the initial value of the artificial trajec-
tory (4.3e). The path constraint sets Zr ( · ) in (4.3g) are slightly restricted versions of the sets
Z ( · ), which ensures that the path constraint (4.3d) is not active in case the first sum of the
objective (4.3a) vanishes. Furthermore, a periodicity constraint is imposed on the artificial
trajectory (4.3h).

Using the convexity of the performance criterion ` and a controllability condition of the
linear system, the authors prove stability of the resulting closed-loop feedback trajectory at
the optimal Tp-periodic trajectory via a LYAPUNOV-argument.

What makes this approach different from other economic NMPCapproaches is, that the
objective is split up in an economic part and a self-tracking-part which vanishes if the op-
timal periodic orbit is reached. Furthermore no a priori calculation of the optimal periodic
trajectory is necessary (e.g. for setting up a terminal constraint).

4.1.4 Limitations
All of the three above mentioned NMPC schemes have their limitations. First, each tracking
approach requires an a priori calculated steady-state or a reference solution. In case of a
parameter change in the process dynamics or the objective function, this reference needs to
be updated accordingly.

The pure economic schemes rely on dissipativity properties of the system which can be
hard to verify. Adding a regularizing tracking term to the cost-function as described e.g. in
[100] can help to guarantee stability for non-dissipative systems. Such schemes also often
require terminal constraint regions that have to be computed beforehand and have to be
updated accordingly in case of a change in the system parameters.

The self-tracking approach by Limon et al. [77] does not require the offline solution of a
steady-state or periodic OCP, however the self-tracking weights (represented by the weighted
norms ‖·‖X and ‖·‖U in (4.3a)) have to be chosen and the setting is discrete affine linear with
a performance criterion that is positive and convex in the state and control variables.

4.2 A Controller BasedOn Periodic Solutions
In this section we propose a new NMPC controller for Average Output Systems working with
periodic solutions. The controller is based on similar ideas as the one presented in [77] (cf.
Section 4.1.3), as we also use a periodicity constraint and a objective functional which is the
combination of a self-tracking term and an economic contribution.

However, in comparison to [77], our setting is quite different as we consider systems with
nonlinear dynamics and the approach we present is not restricted to periodic and convex
performance criteria. Furthermore, the objective functional of the NMPC subproblem we
chose does not contain a state self-tracking term as in (4.3a) but rather a performance self-
tracking term and our stability theory is based on assumptions on the existence of periodic
orbits and uniqueness and continuous dependence of solutions of the NMPC subproblems
rather than on the convexity of the performance criterion.
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We proceed with the definition of the NMPC subproblem and give a detailed explanation
of the objective functional and the imposed constraints. Then we outline the strategy we use
for analyzing the closed-loop behavior of the resulting system.

4.2.1 The SubproblemNPfix
Tp

(t , x)

For a uniformly spaced grid of sampling times T := {ti = i∆T, i ∈N} we define an NMPC sub-
problem in the following way.

Objective Functional
The time horizon T ti = [ti , ti +Tt +Tp] for the NMPC subproblem at the sampling time ti

is split in a transient phase of length Tt, T ti
trans = [ti , ti +Tt] and a periodic phase of length

Tp, T ti
per = [ti +Tt, ti +Tt +Tp]. The objective functional is split into parts corresponding to

transient and periodic phase.
Let (x ,u) ∈ACnx (T t )×Lnu∞ (T t ). The contributionϕfix

per(x ,u) of the periodic part is defined
to be the average economic performance of the periodic part of the time horizon:

ϕfix
per(x ,u) := 1

Tp

∫
T ti

per

`(x(τ),u(τ))dτ. (4.4)

The main contribution of the transient part is defined as the L2-difference of the economic
performance along the transient phase and the economic performance shifted forward by
Tp and weighted with a discount-factor term with ρ > 1:

ϕfix
trans,`(x ,u) :=

∫
T ti

trans

ρτ−ti
∣∣`(x(τ),u(τ))−`(x(τ+Tp),u(τ+Tp))

∣∣2 dτ. (4.5)

Additionally, a contribution over the transient time horizon consisting of the L2-deviation
(measured with some weighted norm ‖·‖U) on Rnu of the control function and the control
function shifted forward by Tp, also weighted with the discount-factor term is added:

ϕfix
trans,u(u) :=

∫
T ti

trans

ρτ−ti
∥∥u(τ)−u(τ+Tp)

∥∥2
U

dτ. (4.6)

Both partsϕfix
trans,`(x ,u) andϕfix

trans,u(u) are combined and added up to the complete transient
objective functional:

ϕfix
trans(x ,u) :=ϕfix

trans,`(x ,u)+ϕfix
trans,u(u). (4.7)

For notational convenience, we introduce the shifted-difference operator 1

DTp : [t , t +Tt +Tp]R→ [t , t +Tt]
R (4.8)

1For two sets A,B we denote the set of mappings from A to B by AB .
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which is defined to map a function α ∈ [t , t +Tt +Tp]R to the difference of α and a α shifted
forward by Tp:

DTp (α)(τ) :=α(τ)−α(τ+Tp). (4.9)

By making use of the shift operator DTp , the contribution of the transient objective can be
expressed as

ϕfix
trans(x ,u) :=

∫
T ti

trans

ρτ−ti
∣∣DTp (`(x ,u)) (τ)

∣∣2 dτ+
∫
T ti

trans

ρτ−ti
∥∥DTp (u)(τ)

∥∥2
U

dτ. (4.10)

Remark 4.1 (Purpose of the Control Deviation Term (4.5) of the Objective Functional) The
purpose of the control self-tracking term

ϕfix
trans,u(u) =

∫
T ti

trans

ρτ−ti
∥∥DTp (u)(τ)

∥∥2
U

dτ

becomes apparent in the proof of Lemma 4.2. In the case the transient objective vanishes,
it guarantees that u(τ) = u(τ+Tp) holds for almost all τ in the interval [ti , ti +Tt]. This fact
together with the slightly relaxed path constraints in the transient part of the horizon (cf.
constraint 4.15d) and the continuity of the path constraint function c then allow the con-
clusion that at least for a small time-interval I around ti +Tt (in particular in the transient
phase) the relaxed path constraint 0 ≤ c(x(τ),u(τ))+ε is not active.

It has to be noted that ϕfix
trans,u can be omitted in case the path constraint function c is

independent of the control input, because in this situation already the continuity of the state
trajectory is sufficient to conclude that the relaxed path constraint is not active for a small
time interval at the end of the transient horizon. 4

The objective functional is now the sum of transient and periodic contribution, where the
transient part additionally is weighted with a factor wtrans ∈R>0:

ϕfix(x ,u) = wtransϕ
fix
trans(x ,u)+ϕfix

per(x ,u). (4.11)

Constraints
As in every NMPC scheme, the initial value constraint and the ODE-constraint are included
in the NMPC subproblem.

The path constraint is treated differently in the transient and the periodic part of the time
horizon. In the transient part it is slightly relaxed (by using a small ε> 0) while in the periodic
part it remains unchanged:

0 ≤ c(x(τ),u(τ))+ε1nc for τ ∈ T ti
trans, (4.12)

0 ≤ c(x(τ),u(τ)) for τ ∈ T ti
per. (4.13)
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The relaxation in the transient part is necessary to avoid issues with controllability. This
will become clear in the proof of Lemma 4.2 which plays an important part in our closed-
loop analysis. The practical relevance is rather negligible since the factor ε can be chosen
arbitrarily small.

In addition to these constraints, we include the periodicity constraint

x(ti +Tt) = x(ti +Tt +Tp) (4.14)

in the formulation.
This constraint will guarantee recursive feasibility of the NMPC scheme. Combined with

the objective contribution of the periodic part, this constraint also allows the conclusion that
an admissible pair (x ,u) ∈ACnx (T ti )×Lnu∞ (T ti ) can be periodically extended to a pair (x̃ , ũ)
on the infinite time horizon with average economic performance ϕavg(x̃ , ũ) =ϕfix

per(x ,u).

TheNMPC SubproblemNPfix
Tp

(t , x)

Summarizing the above explanations, the NMPC subproblem we consider at time t for the
initial value x can be stated as follows (NPfix

Tp
(t , x)):

min
x∈ACnx (T t ),

u∈Lnu∞ (T t )

ϕfix(x ,u) = wtransϕ
fix
trans(x ,u)+ϕfix

per(x ,u) (4.15a)

s. t. x(t ) = x, (4.15b)

ẋ(τ) = f (x(τ),u(τ)), τ ∈ T t , (4.15c)

0 ≤ c(x(τ),u(τ))+ε1nc , τ ∈ T t
trans, (4.15d)

0 ≤ c(x(τ),u(τ)), τ ∈ T t
per, (4.15e)

0 = x(t +Tt)−x(t +Tt +Tp). (4.15f)

We denote the optimal objective value for problem NPfix
Tp

(t , x) by ϕfix,∗(x) (skipping t since it

is independent of the initial time t ) and define

Adfix
Tp

:=
{

x ∈Rnx : NPfix
Tp

(t , x) is feasible
}

. (4.16)

4.2.2 Interpretation of the TransientWeight
In the following, we will describe how the transient weight wtrans in the objective functional
(4.15a) can be interpreted economically.

The periodicity constraint (4.15f) allows the extension of any admissible trajectory (x ,u)
of problem NPfix

Tp
(t , x) to an arbitrary prolonged horizon (for simplicity we assume t = 0). For

example, for any k ∈N+ we have the identity

ϕfix
per(x ,u) =

∫ Tt+Tp

Tt

`(x ,u)dτ= 1

k

∫ Tt+kTp

Tt

`(x̃ , ũ)dτ, (4.17)
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where (x̃ , ũ) is the periodic extension of (x ,u) from [Tt,Tt+Tp] to the (probably much longer)
interval [Tt,Tt +kTp]. If the transient weight is chosen as wtrans = 1

k , it holds that

ϕfix(x ,u) = 1

k
ϕfix

trans(x ,u)+ 1

k

∫ Tt+kTp

Tt

`(x̃ , ũ)dτ. (4.18)

The objective functional ϕfix(x ,u) of problem NPfix
Tp

(t , x) then can be replaced by

ϕ̃fix(x ,u) :=ϕfix
trans(x ,u)+

∫ Tt+kTp

Tt

`(x̃ , ũ)dτ (4.19)

without changing the solution of NPfix
Tp

(t , x) (only multiplication with the constant k hap-

pened). Clearly, for large k the economic contribution of the integral
∫ Tt+kTp

Tt
`(x̃ , ũ)dτ be-

comes the dominant term in ϕ̃fix(x ,u) because the interval [Tt,Tt+kTp] gets longer while the
transient contribution ϕfix

trans(x ,u) remains the same.

This shows how the transient weight wtrans can be interpreted as a parameter that can be
used to artificially prolong the periodic horizon of the problem.

4.3 Closed-Loop Behavior of the Controller Based onNPfix
Tp

(t , x)

In this section we analyze the properties of the controller based on the NMPC subproblem
NPfix

Tp
(t , x). Often when analyzing the closed-loop properties of an NMPC controller, the

goal is to prove asymptotic stability of the closed-loop trajectory at some reference trajec-
tory (xref,uref).

But for several reasons, we pursue a different strategy.

First we have to remember what the purpose of the NMPC controller is. The purpose
of the controller first and foremost is to generate a feedback for the system that results in
an economically optimal performance. We have already seen that the economic average
performance of any pair (x ,u) ∈ACnx

loc(R)×Lnu
∞,loc(R) is invariant with respect to time-shifts,

therefore there exist a lot of trajectories with equally good economic performance. There is
no reason why the controller should stabilize the system at a particular reference solution
when there exist a whole family of equally well performing alternatives.

A second scenario could be a perturbation that happens at time t and suddenly shifts the
system state from xref(t ) to xref(t̃ ) with t̃ 6= t . In case the controller is stabilizing the system at
xref, the system will converge back to xref in the long run. However, by applying the control
τ 7→ uref(τ+ t̃ − t ) from time t on it would be possible to keep the system on the shifted
reference trajectory (xref,uref) ◦

(
τ 7→ (τ+ t̃ − t )

)
from time t on which has an equally good

economic performance as (xref,uref).

For this reasons it is not necessarily a shortcoming for a NMPC controller if it does not
stabilize a system at a given reference solution and we focus our considerations on a different
interpretation of stability.
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4.3.1 StrategyOutline
Instead of attempting to prove stability of the resulting controller at some reference solution,
we pursue a different strategy. After observing that the controller has the recursive feasibility
property (in Section 4.3.3), which follows from the periodicity constraint (4.15f), we begin
analyzing the development of the optimal objective value function along the closed-loop
trajectory. Let xk ∈ Rnx denote the state of the closed-loop system at sampling time tk , i.e.
xk = xµ(tk ; x0, t0).

Assumptions on controllability, regularity and uniqueness of the NMPC subproblems and
the periodic OCP Perfix

Tp
(3.17) then are used to show that the transient objective part of the

solution (xt ,x ,ut ,x ) of the subproblem NPfix
Tp

(t , x) reaches its optimal value (0) if and only if
the periodic part reaches its optimal value (Lemma 4.2). This observation together with the
discount factor ρ of the transient objective part (4.10) allows us to conclude that the transient
(ϕfix

trans(xtk ,xk ,utk ,xk )) and periodic parts (ϕfix
per(xtk ,xk ,utk ,xk )) of the objective function asymp-

totically converge to their respective optimal values for k → ∞ (Lemma 4.4). This shows
in particular that the average economic performance of the periodic part of the predicted
open-loop solutions (xtk ,xk ,utk ,xk ) asymptotically converges to the optimal periodic average
performance.

Then we have to transfer the knowledge we gained for the development of the predicted
open-loop solutions to the development of the actual closed-loop trajectory (xµ,uµ). To do
so, we analyze the rate of change of solutions of subsequent NMPC subproblems. We com-
pare the solutions of the subproblems at sampling time tk and tk+1 for increasing k ∈ N.
This comparison can be done although the solutions are defined on different time hori-
zons T tk and T tk+1 simply by restricting both solutions to their intersection T tk ∩T tk+1 =
[tk+1, tk +Tt +Tp].

If the rate of change between subsequent NMPC subproblems can be controlled, it is pos-
sible to transfer information from the solutions of the subproblems to information on the
behavior of the closed-loop trajectory. This transfer can be accomplished by making use of
a telescope argument. In Theorem 4.9 we summarize the results and prove that the average
output of the closed-loop system will be equal to the average output of the best Tp-periodic
solution.

To illustrate the explained procedure, we include the dependency graph that connects the
assumptions and statements in Figure 4.1.

4.3.2 Assumptions on Subproblems and onOptimal Periodic Orbits
The strategy outlined above is based on a number of regularity and uniqueness assumptions
on the NMPC subproblems NPfix

Tp
(tk , xk ) and on the periodic OCP Perfix

Tp
we introduced in

Section 3.2.4 of the previous chapter.
The first assumption ensures the existence of optimal Tp-periodic solutions of the periodic

OCP (3.17).

Assumption 4.1 (Existence of Optimal Periodic Solutions )
Problem Perfix

Tp
(3.17) has a solution. Byφfix,∗

Tp,per we denote the objective value of the solution.4
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Controllability
Assumption 4.3

Existence of
descent directions

Assumption 4.2

Uniqueness and continuous
dependence of subproblem solution

with respect to
initial value

Assumption 4.4

Existence of
optimal periodic orbits

Assumption 4.1

NMPC scheme based on subproblems
of the form NPfix

Tp
(t , x)

Locally inactive
path constraints

Lemma 4.1

Recursive feasibility

Self-Similarity vanishes
for optimal objective

Lemma 4.6

Bounds for functions
that vanish on
identical sets
Lemma A.4

Transient objective optimal
iff complete objective optimal

Lemma 4.2

Guaranteed descent
of transient objective

Lemma 4.3

Discrete LYAPUNOV Lemma
Lemma A.3

Asymptotic decrease
of objective
Lemma 4.4

Self-Similarity
bounded from

above by objective
Lemma 4.7

Open-loop converges to
closed-loop
Lemma 4.8

Economic performance
of closed-loop
Theorem 4.9

Compactness of A

Figure 4.1:Dependency graph illustrating the strategy of the closed-loop analysis described
in Section 4.3.1 for the NMPC scheme based on the subproblems NPfix

Tp
.
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Remark 4.2 For the sake of a simplified notation, for the rest of this chapter we may assume
without loss of generality that

φfix,∗
Tp,per = 0 (4.20)

holds. This can be achieved by adding a suitable constant to the performance criterion `. 4

Additionally we need the existence of descent directions for suboptimal Tp-periodic solu-
tions.

Assumption 4.2 (Existence of Descent Directions)
Let (x ,u) be an admissible Tp-periodic pair for problem Perfix

Tp
(3.17) with suboptimal objec-

tive φfix
Tp,per(x ,u) > φfix,∗

Tp,per. Then there exists a neighborhood Ut ⊂ R of 0 and a FRÉCHET-

differentiable homotopy H = (Hx , Hu) : Ut →ACnx ([0,Tp])×Lnu∞ ([0,Tp]) that satisfies the fol-
lowing conditions:

1. it starts at (x ,u):

H(0) = (x ,u), (4.21)

2. for all s ∈Ut , H(s) is admissible for Perfix
Tp

,

3. the derivative of the objective functional evaluated along the homotopy is negative at
s = 0:

∂

∂s
φfix

Tp,per(H(s))|s=0 < 0. (4.22)
4

Furthermore, we need a controllability assumption on the dynamical system and a regularity
assumption on the NMPC subproblems.

Assumption 4.3 (Controllability)
For any interval T = [ts, tf] ⊂ R and any pair (x ,u) ∈ACnx (T )×Lnu∞ (T ) that satisfies ẋ(t ) =
f (x(t ),u(t )) for t ∈ T there exists an open neighborhood U ⊂ Rnx of x(ts) and a FRÉCHET-
differentiable mapping C = (Cx ,Cu) : U →ACnx (T )×Lnu∞ (T ) that satisfies

• C (x(ts)) = (x ,u),

• for any y ∈U , the pair C (y) ∈ACnx (T )×Lnu∞ (T ) satisfies the ODE,

• for any y ∈U it holds Cx (y)(ts) = x(ts),

• for any y ∈U it holds Cx (y)(tf) = y . 4

Assumption 4.4 (Uniqueness and Continuous Dependence of Solutions )
The family of NMPC subproblems NPfix

Tp
(t , x) has the following properties:
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• For x ∈ Adfix
Tp

problem NPfix
Tp

(t , x) has a unique solution denoted by (xt ,x ,ut ,x ) which

depends on the initial time t ∈R and the initial value x ∈Rnx ,

• the solution-mapping

Sol :R×Adfix
Tp

→ACnx (T t )×Lnu∞ (T t ),

(t , x) 7→ (xt ,x ,ut ,x )

is continuous. 4

Since the problem NPfix
Tp

(t , x) is autonomous, i.e., neither the performance criterion nor the

dynamics or the path constraint explicitly depend on time, it is clear that

(xt ,x ,ut ,x ) = (x0,x ,u0,x )◦ [τ 7→ τ− t ] (4.23)

holds and can always be used to transform problem NPfix
Tp

(t , x) to the problem NPfix
Tp

(0, x) on
the standard time horizon T := T 0 = [0,Tt +Tp].

4.3.3 Recursive Feasibility
As we already pointed out in Section 2.3, recursive feasibility is the minimal requirement for
any NMPC controller. The NMPC scheme based on the subproblems NPfix

Tp
(tk , xk ) will have

this property independently of the choice of the transient horizon length Tt ∈ R≥0, the tran-
sient weighting factor wtrans ∈R≥0 and the discount factor ρ > 1. This is due to the periodicity
constraint (4.15f) that is incorporated in the OCP-formulation.

To see this, we define the following extension operator

Extk :ACnx (T tk )×Lnu∞ (T tk ) →ACnx (T tk+1 )×Lnu∞ (T tk+1 )

by setting

Extk (x,u)(t ) :=
{

(x ,u)(t ) for t ∈ [tk+1, tk +Tt +Tp] = T tk ∩T tk+1 ,

(x ,u)(t −Tp) for t ∈ [tk +Tt +Tp, tk+1 +Tt +Tp] = T tk+1 \T tk ,
(4.24)

and apply it to an admissible pair (x ,u) for problem NPfix
Tp

(tk , xk ).

We can check that (x̃ , ũ) := Extk (x,u) is an admissible pair for problem NPfix
Tp

(tk+1, x(tk+1)):

• (per definition) it satisfies the initial value constraint (4.15b)

x̃(tk+1) = x(tk+1),

• it satisfies the ODE-constraint (4.15c) almost everywhere on T tk+1 , because (x̃ , ũ) is
just the periodic extension of (x ,u) which satisfies it almost everywhere on T tk ,

• it satisfies the relaxed path constraint in the transient phase (4.15d) T tk+1
trans, because

(x ,u) satisfies it on T tk
trans and (even the “unrelaxed” path-constraint) on T tk

per,
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• it satisfies the path constraint in the periodic phase (4.15e) T tk+1
per because on T tk+1

per ∩
T tk

per it is identical to (x ,u) and on T tk+1
per \T tk

per per definition it corresponds to (x ,u) on

T tk
per \T tk+1

per ,

• it satisfies the periodicity constraint (4.15f) because the extension operator is defined
to periodically extend (x ,u).

This shows that the NMPC controller based on the subproblems NPfix
Tp

(tk , xk ) has the recur-

sive feasibility property.

4.3.4 Asymptotic Decrease of theOptimal Objective Value
The key observation we exploit in the process of showing that the objective value function
is asymptotically decreasing along the closed-loop, is that the transient part of the objective
functional vanishes if and only if the complete combined objective (transient and periodic
part) attains its optimal value.

In accordance with our notation of the optimal objective value ϕfix,∗(x) of problem
NPfix

Tp
(t , x), we define the functions ϕfix,∗

per , ϕfix,∗
trans and ϕfix,∗ on the set Adfix

Tp
as follows:

ϕfix,∗
trans(x) :=ϕfix

trans(xt ,x ,ut ,x ), ϕfix,∗
per (x) :=ϕfix

per(xt ,x ,ut ,x ), ϕfix,∗(x) :=ϕfix(xt ,x ,ut ,x ).

(4.25)

From the definition of the objective functionals it follows that for all x ∈ Adfix
Tp

it holds that

ϕfix,∗(x) = wtransϕ
fix,∗
trans(x)+ϕfix,∗

per (x). (4.26)

The following Lemma is a technical result that shows that whenever the transient objective
vanishes for an admissible pair of trajectories, there is a small time-interval at the end of the
transient time horizon in which the path constraint (4.15d) is not active. We will need this
Lemma in the proof of Lemma 4.2.

Lemma 4.1 (Locally Inactive Path Constraints)
Let x ∈ Adfix

Tp
and let (x ,u) ∈ ACnx (T )× Lnu∞ (T ) be admissible for problem NPfix

Tp
(t , x) with

ϕfix(x ,u) = 0. Then, for any ε̃> 0 there exists a vicinity Uε̃ ⊂R of t +Tt such that for all τ ∈Uε̃

it holds:

0nc < c(x(τ),u(τ))+ ε̃1nc . (4.27)

Proof Because of the path-constraint (4.15e) in the periodic part of the time horizon, 0 ≤
c (x(t +Tt),u(t +Tt)) holds. Since ϕfix

trans(x ,u) = 0 it follows that

ϕfix
trans,u(u) =

∫ t+Tt

t
ρτ−t ∥∥DTp (u)(τ)

∥∥2
U

dτ
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vanishes and thus u(τ) = u(τ+Tp) holds for almost all τ ∈ [t , t +Tt]. Combining this with
the LIPSCHITZ-continuity of c (c is smooth and c−1 ([0,∞)) = Ac is compact and therefore in
particular LIPSCHITZ-continuous with some constant Lc > 0) implies∥∥c (x(τ),u(τ))− c

(
x(τ+Tp),u(τ+Tp)

)∥∥≤ Lc
∥∥x(τ)−x(τ+Tp)

∥∥ (4.28)

for almost all τ ∈ [t , t+Tt]. Since all norms on finite dimensional real vector spaces are equiv-
alent, this inequality (with an appropriately adjusted LIPSCHITZ constant) also holds for the
maximum norm ‖·‖max.

The periodicity constraint (4.15f) and the continuity of x then imply the existence of a
vicinity Uε̃ of t +Tt such that∥∥c (x(τ),u(τ))− c

(
x(τ+Tp),u(τ+Tp)

)∥∥
max < ε̃ (4.29)

holds for all τ ∈ Uε̃. Let now τ ∈ Uε̃. The path-constraint (4.15e) in the periodic part of the
horizon ensures 0 ≤ c

(
x(τ+Tp),u(τ+Tp)

)
. In combination with the inequality (4.29) this

implies that 0 < c(x(τ),u(τ))+ ε̃1nc . �

With a contradiction argument we can now show that the vanishing of the transient objective
part is equivalent to the periodic part of the objective reaching its optimal value.

Lemma 4.2 (Transient Objective is Optimal iff Complete Objective is Optimal)
Let Assumptions 4.2 (existence of descent directions) and 4.3 (controllability) hold and let

x ∈ Adfix
Tp

. Then ϕfix,∗
trans(x) = 0 if and only if ϕfix,∗(x) =φfix,∗

Tp,per.

Proof It is clear that ifϕfix,∗(x) =φfix,∗
Tp,per holds, ϕfix,∗

trans(x) has to vanish because it is by defini-

tion non-negative and

ϕfix,∗(x) = wtransϕ
fix,∗
trans(x)+ϕfix,∗

per (x) ≥ wtransϕ
fix,∗
trans(x)+φfix,∗

Tp,per (4.30)

holds with wtrans > 0.
On the other hand, let us assume that ϕfix,∗

trans(x) = 0. We prove ϕfix,∗(x) = φfix,∗
Tp,per by a con-

tradiction argument. To this end we assume that ϕfix,∗(x) >φfix,∗
Tp,per. For notational conve-

nience we use the abbreviation (x ,u) := (xt ,x ,ut ,x ) for the rest of this proof and further-
more we may assume t = 0 since problem NPfix

Tp
(t , x) (4.15) is autonomous. Then, since

(x ,u)|Tper
can be interpreted as admissible pair for Perfix

Tp
(3.17), Assumption 4.2 guaran-

tees the existence of a neighborhood Ut ⊂ R of 0 and a FRÉCHET-differentiable homotopy
H : Ut →ACnx (Tper)×Lnu∞ (Tper) that satisfies the following conditions:

1. it starts at (x ,u)|Tper
:

H(0) = (x ,u)|Tper
, (4.31)

2. for all s ∈Ut , H(s) is an admissible pair for Perfix
Tp

,
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3. the derivative of the objective functional evaluated along the homotopy is negative at
s = 0

∂

∂s
φfix

Tp,per(H(s))|s=0 < 0. (4.32)

Lemma 4.1 guarantees the existence of a δ̃> 0 such that (x ,u) satisfies the inequality

0 ≤ c(x(τ),u(τ))+ ε

2
1nc for all τ ∈ [Tt − δ̃,Tt]. (4.33)

Furthermore, the controllability assumption 4.3 guarantees the existence of a neighbor-
hood Ux ⊂ Rnx of x(Tt) and a FRÉCHET-differentiable mapping C : Ux →ACnx ([Tt − δ̃,Tt])×
Lnu∞ ([Tt − δ̃,Tt]) satisfying

• C (x(Tt)) = (x ,u)|[Tt−δ̃,Tt],

• for any y ∈ Ux , the pair C (y) ∈ACnx ([Tt − δ̃,Tt])×Lnu∞ ([Tt − δ̃,Tt]) is a solution of the
dynamical system,

• for any y ∈Ux it holds C (y)(Tt − δ̃) = (x ,u)(Tt − δ̃).

Note that because of the continuity of C (remember that ACnx ([Tt−δ̃,Tt])×Lnu∞ ([Tt−δ̃,Tt]) is
endowed with the norm ‖·‖∞ cf. Definition 1.1), the neighborhood Ux can be chosen such
that C (y)(τ) satisfies the relaxed path-constraint (4.15d) for all τ ∈ [Tt − δ̃,Tt] and all y ∈Ux .

The mappings H and C can be glued together (see Figure 4.2) to define the homotopy
Ψ= (Ψx ,Ψu) : Ut →ACnx (T )×Lnu∞ (T ) as follows:

Ψ(s)(τ) :=


(x ,u)(τ) for τ ∈ [0,Tt − δ̃],

C (H(s)(0))(τ) for τ ∈ [Tt − δ̃,Tt],

H(s)(τ) for τ ∈ [Tt,Tt +Tp].

(4.34)

The neighborhood Ut may have to be shrinked such that H(s)(0) ∈Ux for all s ∈Ut . Then,
per construction of Ψ, it can be seen that Ψ(s) ∈ACnx (T )×Lnu∞ (T ) satisfies the path con-
straints in the transient phase (4.15d) as well as in the periodic phase (4.15e) for all s ∈Ut . It
can also be verified thatΨ(s) satisfies the initial value constraint (4.15b), the ODE-constraint
(4.15c) and the periodicity constraint (4.15f) for all s ∈Ut and thus Ψ(s) ∈ACnx (T )×Lnu∞ (T )
is admissible for NPfix

Tp
(t , x) for all s ∈Ut .

Now we consider the derivative of the objective functional evaluated along this homotopy

∂

∂s
ϕfix(Ψ(s)) = ∂

∂s

(
wtransϕ

fix
trans(Ψ(s))+ϕfix

per(Ψ(s))
)

(4.35)

at s = 0. Since ϕfix
trans : ACnx (T )×Lnu∞ (T ) → R≥0 is differentiable, the composition ϕfix

trans ◦Ψ :
Ut →R≥0 is also a differentiable mapping. But because Ψ(0) = (x ,u) we know ϕfix

trans(Ψ(0)) =
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0. Therefore ϕfix
trans ◦Ψ attains its global minimum at s = 0 and the derivative must vanish:

∂

∂s
ϕfix

trans(Ψ(s))|s=0 = 0. (4.36)

From the definition ofΨ(s)(τ) for τ ∈ [Tt,Tt+Tp] in (4.34) and the properties of the homotopy
H , it follows that

∂

∂s
ϕfix

per(Ψ(s))|s=0 < 0. (4.37)

Now, (4.36) and (4.37) imply

∂

∂s
ϕfix(Ψ(s))|s=0 < 0. (4.38)

Therefore in a vicinity of s = 0 there exist an s̃ such that

ϕfix(Ψ(s̃)) <ϕfix,∗(x). (4.39)

But because Ψ(s̃) is an admissible pair for problem NPfix
Tp

(t , x), this is a contradiction to the

optimality of (x ,u) and the proof is finished. �

We now proceed with the analysis of the development of the objective function
ϕfix,∗(xµ(t )) along closed-loop trajectories.

Lemma 4.3 (Guaranteed Objective Decrease)
Let ϕfix,∗(xk ) = wtransϕ

fix,∗
trans(xk )+ϕfix

per(xk ) be the objective value of the NMPC subproblem

NPfix
Tp

(tk , xk ) at sampling time tk . Then for the optimal objective value of the NMPC subprob-

lem NPfix
Tp

(tk+1, xk+1) with initial value xk+1 := xtk ,xk (tk+1), the following inequality holds:

ϕfix,∗(xk+1) ≤ ρ−∆T wtransϕ
fix,∗
trans(xk )+ϕfix,∗

per (xk ). (4.40)

Proof Let (x ,u) := (xtk ,xk ,utk ,xk ). As it was shown in Section 4.3.3 (recursive feasibility), the
pair Extk (x ,u) ∈ACnx (T tk+1 )×Lnu∞ (T tk+1 ) is admissible for problem NPfix

Tp
(tk+1, xk+1). There-

fore, it can be used to bound ϕfix,∗(xk+1) from above. To do so, we evaluate ϕfix (Extk (x ,u)).
Since the extension operator Extk preserves the economic performance in the periodic part,
it holds that ϕfix

per (Extk (x ,u)) =ϕfix,∗
per (xk ). Now we evaluate the transient part of the objective

ϕfix
trans (Extk (x ,u)).

From the definition of the Extk -operator it follows Extk (α)(τ) = Extk (α)(τ+ Tp) for any

τ ∈ [tk +Tt, tk+1 +Tt] = T tk+1
trans \T tk

trans and α : T tk →R. Therefore

DTp (`(Extk (x ,u))) (τ) = 0 for τ ∈ T tk+1
trans \T tk

trans (4.41)
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a) On the interval [0,Tt − δ̃] all trajectories Ψx (s) coincide with xx . On the periodic part [Tt,Tt +Tp],
Ψx (s) is defined by the homotopy Hx (s) of Assumption 4.2 and on the part [Tt − δ̃,Tt] it is given by
s 7→ Cx (Hx (s)(0)), where Cx is the mapping of Assumption 4.3. Ψ is defined by gluing together both
homotopies, see Figure (b).

b) Detailed picture of (Ψx (s))s∈(−ε,ε) on the interval [Tt− δ̃,Tt]. For each s ∈ (−ε,ε), the state Hx (s)(0) ∈
Rnx is reached from the state xx (Tt − δ̃) in time δ̃ via the state trajectory Cx (Hx (s)).

Figure 4.2: Illustration of the family of state trajectories (Ψx (s))s∈(−ε,ε). The color of the tra-
jectories is associated to the homotopy parameter s according to the color bar on the right.
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and

DTp (Extk (u)) (τ) = 0 for τ ∈ T tk+1
trans \T tk

trans. (4.42)

Similarly, for any α : T tk →R and τ ∈ [tk+1, tk +Tt] = T tk+1
trans ∩T tk

trans it holds

Extk (α)(τ) =α(τ) and Extk (α)(τ+Tp) =α(τ+Tp), (4.43)

and therefore

DTp (`(Extk (x ,u))) (τ) = DTp (`(x ,u)) (τ) for τ ∈ T tk+1
trans ∩T tk

trans (4.44)

and

DTp (Extk (u))(τ) = DTp (u)(τ) for τ ∈ T tk+1
trans ∩T tk

trans. (4.45)

We evaluate the transient objective functional ϕfix
trans at Extk (x ,u):

ϕfix
trans (Extk (x ,u)) =

∫
T tk+1

trans ∩T tk
trans

ρτ−tk+1
(∣∣DTp (` (Extk (x ,u))) (τ)

∣∣2 +∥∥DTp (Extk (u))(τ)
∥∥2
U

)
dτ

+
∫
T tk+1

trans \T tk
trans

ρτ−tk+1
(∣∣DTp (` (Extk (x ,u))) (τ)

∣∣2 +∥∥DTp (Extk (u))(τ)
∥∥2
U

)
dτ

(4.46)

The integrals over T tk+1
trans \T tk

trans vanish because of (4.41) and (4.42). For the integrals over

T tk+1
trans ∩T tk

trans, we can use (4.44) and (4.45) and get∫
T tk+1

trans ∩T tk
trans

ρτ−tk+1
(∣∣DTp (`(x ,u)) (τ)

∣∣2 +∥∥DTp (u)(τ)
∥∥2
U

)
dτ (4.47)

≤
∫
T tk

trans

ρτ−tk+1
(∣∣DTp (`(x ,u)) (τ)

∣∣2 +∥∥DTp (u)(τ)
∥∥2
U

)
dτ (4.48)

= ρtk−tk+1

∫
T tk

trans

ρτ−tk
(∣∣DTp (`(x ,u)) (τ)

∣∣2 +∥∥DTp (u)(τ)
∥∥2
U

)
dτ (4.49)

≤ ρ−∆Tϕfix
trans(x ,u), (4.50)

which finishes the proof. �

Remark 4.3 (Necessity of the Discount Factor) In the proof of the previous Lemma it be-
comes apparent why the discount factor ρ is used in the definition of the transient objective
part (4.10). The estimate (4.48) is conservative since it neglects the integrals∫

T tk
trans\T tk+1

trans

ρτ−tk+1
∣∣DTp

(
`(xxk ,uxk )

)
(τ)

∣∣2 dτ+
∫
T tk

trans\T tk+1
trans

ρτ−tk+1
∥∥DTp (u)(τ)

∥∥2
U

dτ. (4.51)
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This means that the transient objective value at least gets smaller by the amount correspond-
ing to this term. However, the two integrals could be zero even if ϕfix

trans(xxk ,uxk ) is non-zero
itself. In this case, only the discount factor ρ > 1 guarantees the decrease of the objective
functional. 4

This Lemma shows that as long the transient part of the objective is non-zero, a decrease
of the objective value at the next sampling time can be expected. In Lemma 4.2 we have
seen that a zero transient objective implies also optimal periodic objective part. This com-
bined with the previous Lemma allows us now to prove that the optimal objective value is
asymptotically decreasing along closed-loop trajectories.

Lemma 4.4 (Asymptotic Decrease of the Objective Function Along Closed-Loop)
Let Assumption 4.1 (existence of optimal periodic orbits), 4.2 (existence of descent direc-
tions), 4.3 (controllability) and 4.4 (uniqueness and continuous dependence of subproblem
solutions) hold. Then there exists a KL function β such that for any x0 ∈ Adfix

Tp
and the result-

ing sequence of states xk = xµ(tk ; t0, x0) of the closed-loop trajectory it holds that:

ϕfix,∗(xk ) ≤β(ϕfix,∗(x0), tk ). (4.52)

Proof From Lemma 4.3 it follows

ϕfix,∗(xi+1) ≤ ρ−∆T wtransϕ
fix,∗
trans(xi )+ϕfix,∗

per (xi ) =ϕfix,∗(xi )−(1−ρ−∆T )︸ ︷︷ ︸
∈(0,1]

wtransϕ
fix,∗
trans(xi ). (4.53)

Furthermore, Lemma 4.2 states that ϕfix,∗
trans does not vanish as long as ϕfix,∗ is suboptimal.

Assumption 4.1 (existence of optimal periodic orbits) implies the existence of x ∈ Adfix
Tp

with
ϕfix,∗(x) = 0 and thus, since Adfix

Tp
⊂ Ac

x is compact, Lemma A.4 guarantees the existence of a
K∞-function α̃ such that

α̃
(
ϕfix,∗(x)

)
≤ϕfix,∗

trans(x) (4.54)

holds for all x ∈ Adfix
Tp

. Combined with (4.53), this implies

ϕfix,∗(xi+1) ≤ϕfix,∗(xi )− (1−ρ−∆T )wtransα̃
(
ϕfix,∗(xi )

)
. (4.55)

Since also α : s 7→ (1 − ρ−∆T )wtransα̃(s) is a K∞-function, Lemma A.3 can be applied and
proves the existence of a KL-function β with the desired properties. �

4.3.5 Open-Loop Solutions vs. Closed-Loop Behavior
In the previous section we have seen that under suitable conditions on the dynamical system
and on the NMPC subproblems, the optimal objective value functionϕfix,∗ converges to zero
(=φfix,∗

Tp,per) along closed-loop trajectories. This fact alone is not yet sufficient to conclude that

the closed-loop trajectory has a good economic average performance, it just proves that the
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NMPC subproblem solutions (the open-loop solutions) have a good economic performance.
For example, it does not exclude the possibility of a scenario in which the closed-loop trajec-
tory moves closely along an optimal periodic orbit but changes its direction from sampling
time to sampling time.

However, in this section we will show that the uniqueness and continuity Assumption 4.4
on the NMPC subproblems implies that such a case cannot occur and that the asymptotic
descent of ϕfix,∗ also implies that the average economic performance of the closed-loop tra-
jectory converges to the average economic performance of the best periodic trajectory.

To this end we define a self-similarity function, which measures the difference of subse-
quent NMPC subproblem solutions. We use this function as a tool to show that this differ-
ence tends to zero along the closed-loop trajectory because it can be bounded by means of
the optimal objective value function ϕfix,∗.

Definition 4.5 (Self-Similarity Function)
We call the function S : Adfix

Tp
→R≥0 defined by

S(x) :=
∫ Tt+Tp

∆T

(∥∥xx (τ)−x∆T,y (τ)
∥∥+∥∥ux (τ)−u∆T,y (τ)

∥∥)
dτ, (4.56)

with y := xx (∆T ) the self-similarity function (see Figure 4.3) 4

Figure 4.3: Illustration of the self- similarity function S. The green area between xx and x∆T,y

with (y = xx (∆T )) corresponds to the integral
∫ Tt+Tp

∆T

∥∥xx (τ)−x∆T,y (τ)
∥∥dτ in the definition of

S(x). It vanishes if and only if xx (τ) = x∆T,y (τ) holds for almost all τ ∈ [∆T,Tt +Tp].

From the continuity and uniqueness Assumption 4.4 it follows that the function S is contin-
uous because it is the composition of continuous maps (in particular, the solution mapping
x 7→ (xx ,ux ) and the evaluation mapping x 7→ x(∆T ) are both continuous).
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The function S has the following interesting property: It can easily be checked that if for
any x ∈ Adfix

Tp
it holds that S(x) = 0, then for y = xtk ,x (tk+1) this implies

(xtk ,x ,utk ,x )|T tk ∩T tk+1 = (xtk+1,y ,utk+1,y )|T tk ∩T tk+1 . (4.57)

The above equation is reminiscent of the Principle of Optimality for shrinking horizon NMPC
(see Section 2.2.2), which states that the difference of subsequent NMPC subproblem solu-
tions on the intersection of their time horizons vanishes.

The idea behind defining the function S is that if we can prove that S converges to 0 eval-
uated along the closed-loop trajectory xµ, we know that the difference of subsequent NMPC
subproblem solutions also converges to zero, which in turn implies that the difference of the
NMPC subproblem solutions to the closed-loop trajectory itself also converges to zero.

The important observation that justifies this approach is the following:

Lemma 4.6 (Self-Similarity Vanishes if Objective is Optimal)
Let Assumption 4.4 (uniqueness and continuous dependence of subproblem solutions)

hold. Then for any x ∈ Adfix
Tp

with ϕfix,∗(x) =φfix,∗
Tp,per it holds that S(x) = 0.

Proof Let x ∈ Adfix
Tp

withϕfix,∗(x) = 0 and let (x ,u) := (xt ,x ,ut ,x ). Without loss of generality we
may again assume t = 0. As we have seen in the proof of Lemma 4.3, for the pair Ext(x ,u) ∈
ACnx ([∆T,∆T +Tt+Tp])×Lnu∞ ([∆T,∆T +Tt+Tp]) (which is admissible for NPfix

Tp
(∆T, xx (∆T )))

it holds that:

ϕfix
per(Ext(x ,u)) ≤ϕfix(x ,u) = 0. (4.58)

But because ϕfix
per is bounded from below by φfix,∗

Tp,per = 0, it follows that ϕfix
per(Ext(x ,u)) = 0.

Because 0 is the optimal objective value, the uniqueness property in Assumption 4.4 implies
that Ext(x ,u) is the solution of problem NPfix

Tp
(∆T, x(∆T )) (which is equivalent to Ext(x ,u) ◦

[τ 7→ τ+∆T ] being the solution of problem NPfix
Tp

(x(∆T ))).

Therefore, according to the definition of S,

S(x) =
∫ Tt+Tp

∆T
(‖x(τ)−Ext(x)(τ)‖+‖u(τ)−Ext(u)(τ)‖)dτ. (4.59)

But from the definition of the extension operator Ext (4.24) in Section 4.3.3, it follows that
Ext(x) and Ext(u) coincide on [∆T,Tt +Tp] with x and u respectively, which means the inte-
gral in (4.59) vanishes and S(x) = 0. �

Lemma 4.6 can be exploited to prove that the optimal objective functionϕfix,∗ can be used
as an upper bound for S in the following sense.

Lemma 4.7 (Upper Bound for Self-Similiarity)
Let Assumptions 4.1 (existence of optimal periodic solutions) and 4.4 (uniqueness and con-
tinuous dependence of subproblem solutions) hold. Then there exists a K-function α such
that

S(x) ≤α(ϕfix,∗(x)) (4.60)
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holds for all x ∈ Adfix
Tp

.

Proof The previous Lemma shows that for the continuous functions S and ϕfix,∗, which are
both defined on the compact set Adfix

Tp
, it holds

ϕfix,∗(x) = 0 ⇒ S(x) = 0. (4.61)

Furthermore, because of Assumption 4.1, the function ϕfix,∗ does vanish for some x ∈ Adfix
Tp

.
Therefore, according to Lemma A.4, there exists a K-function α with the desired property. �

The asymptotic decrease of the optimal objective value functionϕfix,∗ and the fact that the
self-similarity function S can be bounded byϕfix,∗ as stated in the above Lemma implies that
also the function S decreases asymptotically along closed-loop trajectories. In the following
Lemma we show how this in turn implies that the difference between the predicted NMPC
subproblem solutions and the actual closed-loop trajectory also decreases asymptotically.

For the sampling time ti and the state xi ∈ Adfix
Tp

we define

diff(ti , xi ) :=
∫
T ti

(∥∥xti ,xi (τ)−xµ(τ)
∥∥+∥∥uti ,xi (τ)−uµ(τ)

∥∥)
dτ. (4.62)

Lemma 4.8 (Telescope Argument for the Closed-Loop)
Let Assumptions 4.1 (existence of optimal periodic solutions), 4.2 (existence of descent di-
rections), 4.3 (controllability) and 4.4 (uniqueness and continuous dependence of subprob-
lem solutions) hold. Then there exists a KL-function β such that for all x0 ∈ Adfix

Tp
and the

resulting closed-loop sequence (xi )i∈N it holds that

diff(ti , xi ) ≤β(ϕfix,∗(x0), ti ). (4.63)

Proof According to Lemma 4.4, there exists a KL-function β1 such that for the objective
ϕfix,∗ and all i ∈N+ it holds that

ϕfix,∗(xi ) ≤β1(ϕfix,∗(x0), ti ). (4.64)

Using the estimate (4.60) of Lemma 4.7, for all i ∈N it holds

S(xi ) ≤α
(
β1

(
ϕfix,∗(x0), ti

))
. (4.65)

Since α is a K-function and β1 is a KL-function, β̃ := α ◦β1 is also a KL-function. Now
we calculate the integral of (4.63) using the fact that (xµ,uµ) is per definition identical to
(xt j ,x j ,ut j ,x j ) on the interval T t j \ T t j+1 = [t j , t j+1]. Let n ∈ N such that n∆T ≤ Tt + Tp <
(n +1)∆T , such that for all sampling times ti it holds that T ti ⊂ [ti , ti+n]. Then we calculate

diff(ti , xi ) =
∫
T ti

(∥∥xti ,xi (τ)−xµ(τ)
∥∥+∥∥uti ,xi (τ)−uµ(τ)

∥∥)
dτ (4.66)
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=
i+n∑

j=i+1

∫ t j+1

t j

(∥∥∥xti ,xi (τ)−xt j ,x j (τ)
∥∥∥+∥∥∥uti ,xi (τ)−ut j ,x j (τ)

∥∥∥)
dτ. (4.67)

With the abbreviations

d k
i , j :=

∫ tk+1

tk

(∥∥∥xti ,xi (τ)−xt j ,x j (τ)
∥∥∥+∥∥∥uti ,xi (τ)−ut j ,x j (τ)

∥∥∥)
dτ, (4.68)

the triangle-inequality and a telescope-sum we get the inequality

diff(ti , xi ) =
i+n∑

j=i+1
d j

i , j ≤
i+n∑

j=i+1

j−1∑
l=i

d j
l ,l+1. (4.69)

Rearranging the summation order gives

diff(ti , xi ) ≤
i+n∑

j=i+1

j−1∑
l=i

d j
l ,l+1 =

i+n−1∑
l=i

i+n∑
j=l+1

d j
l ,l+1. (4.70)

Since d j
l ,l+1 ≥ 0 for all l ≤ j ≤ l +n we get

diff(ti , xi ) ≤
i+n−1∑

l=i

i+n∑
j=l+1

d j
l ,l+1 ≤

i+n−1∑
l=i

l+n∑
j=l+1

d j
l ,l+1. (4.71)

Using the definition of d j
l ,l+1 and the estimate (4.65) we get

diff(ti , xi ) ≤
i+n−1∑

l=i

l+n∑
j=l+1

∫ t j+1

t j

(∥∥∥xti ,xi (τ)−xt j ,x j (τ)
∥∥∥+∥∥∥uti ,xi (τ)−ut j ,x j (τ)

∥∥∥)
dτ (4.72)

=
i+n−1∑

l=i
S(xl ) ≤

i+n−1∑
l=i

β̃(ϕfix,∗(x0), tl ) (4.73)

≤ nβ̃(ϕfix,∗(x0), ti ). (4.74)

Since (s, t ) 7→ nβ̃(s, t ) is a KL-function, the proof is finished. �

We summarize the results of the analysis of the closed-loop behavior in the following the-
orem.

Theorem 4.9 (Economic Closed-Loop Performance)
Let Assumptions 4.1 (existence of optimal periodic orbits), 4.2 (existence of descent direc-
tions), 4.3 (controllability) and 4.4 (uniqueness and continuous dependence of subproblem
solutions) hold. Let x0 ∈ Adfix

Tp
be the state of the system at the initial time t0. Then the re-

sulting closed-loop trajctory (xµ,uµ) ∈ACnx
loc ×Lnu

∞,loc from the NMPC scheme based on the
subproblems NPfix

Tp
(4.15) exists for all times and for the average economic performance it
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holds

lim
T→∞

1

T

∫ t0+T

t0

`(xµ(τ),uµ(τ))dτ=φfix,∗
Tp,per. (4.75)

Proof Via the estimate (4.63) of the previous Lemma we get the estimate∫
T ti

per

(∥∥xti ,xi (τ)−xµ(τ)
∥∥+∥∥uti ,xi (τ)−uµ(τ)

∥∥)
dτ≤ diff(ti , xi ) ≤β(ϕfix,∗(x0), ti ). (4.76)

This shows that for the economic performance of (xµ,uµ) on the intervals T ti
per it holds

lim
i→∞

∣∣∣∣∣∣∣∣∣∣∣∣
1

Tp

∫
T ti

per

`(xµ(τ),uµ(τ))dτ− 1

Tp

∫
T ti

per

`(xti ,xi (τ),uti ,xi (τ))dτ︸ ︷︷ ︸
=ϕfix,∗

per (xi )

∣∣∣∣∣∣∣∣∣∣∣∣
= 0. (4.77)

On the other hand, in Lemma 4.4 it was shown that lim
i→∞

ϕfix,∗(xi ) = 0(= φfix,∗
Tp,per) holds. In

combination with (4.77) this implies the assertion. �

ANote on the Transient Part of theObjective Functional
The ideas presented in this chapter can be extended to a broader class of controllers by using
different transient objective functionals ϕfix

trans,`. The crucial property of the transient objec-
tive functional, which in particular is used in the proof of Lemma 4.3, is that the integrand
of ϕfix

trans,` at time τ ∈ T t
trans needs to vanish if (x(τ),u(τ)) = (x(τ+Tp),u(τ+Tp)) holds. This

means that ϕfix
trans,` can be replaced by

ϕfix
trans,g (x ,u) :=

∫
T t

trans

ρτ−t ∣∣g (x(τ),u(τ))− g (x(τ+Tp),u(τ+Tp))
∣∣2 dτ, (4.78)

where g : Rnx ×Rnu → R is an arbitrary function. As long as Assumption 4.4 (uniqueness
and continuous dependence of subproblem solutions) holds, all the results presented in this
chapter will carry over to the NMPC scheme where ϕfix

trans,` is replaced by ϕfix
trans,g .

In the work of Limon et al. [77] the integrand of the transient contribution at a time τ

directly measures the geometric distance between the states/controls in the transient part
and the states/controls (evaluated at τ+kTp with k being an integer such that τ+kTp is in
the periodic part of the horizon):∥∥(x ,u)(τ)− (x ,u)(τ+kTp)

∥∥2 such that τ+kTp ∈ [ti +Tt, ti +Tt +Tp]. (4.79)
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In contrast to that, we take the “performance”-distance, which at a given time τ measures
the difference of the performance criterion evaluated at time τ and at time τ+Tp, plus an
additional control-distance term:

∣∣DTp (`(x ,u))(τ)
∣∣2 +∥∥DTp (u)(τ)

∥∥2
U
= ∣∣`(x ,u)(τ)−`(x ,u)(τ+Tp)

∣∣2 +∥∥u(τ)−u(τ+Tp)
∥∥2
U

.

(4.80)

There are two reasons behind this choice. First it gives the controller more freedom to pos-
sibly find economically better ways to steer the system to an economically optimal periodical
orbit, since it does not penalize the geometric distance to the periodic part of the trajectory
but rather the difference of the economic performance in the transient and periodic part.

Second, it reduces the need of weighting factors that balance the different scales of the
transient objective contribution and the periodic objective contribution. The different scales
stem from the fact that the periodic objective contribution measures an economic quantity
(the performance of the system in the periodic part of the time horizon) and the transient
part of the objective contribution (4.79) measures a geometric quantity, whereas in (4.80) it
measures the difference of economic contributions. Still, in our approach a weighting factor
for the control difference term

∥∥u(τ)−u(τ+Tp)
∥∥2
U

is needed, which is encoded in the norm
‖·‖U.

4.4 Summary
After a brief overview on existing NMPC approaches for AOCPs, we developed a novel NMPC
approach, that is based on ideas similar to [77] and exploits the good approximation proper-
ties of periodic solutions to AOCPs.

The presented NMPC scheme is based on an NMPC subproblem with periodicity con-
straint and an objective functional that is split up in a transient and periodic part. We pro-
ceed with a thorough analysis of the closed-loop behavior of the resulting controller, which is
based on controllability assumptions on the dynamic system and regularity assumptions on
the NMPC subproblems. Independent of explicit dissipativity assumptions we prove asymp-
totic decrease of the cost-to-go function along the closed-loop.

Furthermore we define a self-similarity function, which measures the distance of subse-
quent NMPC subproblem solutions. We show that this function asymptotically decreases
along the closed-loop trajectories and we use it to prove that the closed-loop trajectory re-
sulting from the controller has asymptotically the same economic performance as the opti-
mal periodic operation.
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Chapter 5
Extensions to Free Period and Systemswith Periodic
Performance Criterion
In this chapter, we generalize the ideas behind the NMPC controller presented in the previ-
ous chapter in two directions.

First, we consider a scenario where the system dynamics are parameter dependent as-
suming that the current parameter is known to the controller at all times and can change
abruptly. Our working assumption in this case will be that for different parameters differ-
ent periodic solutions will be optimal. In particular we assume that also the period of the
optimal periodic solution can change with the parameter. To take this into account in the
NMPC context, we include the period into the NMPC subproblems as optimization variable
and analyze the properties of the resulting controller.

In a second scenario, we consider systems with time-periodic performance criterion and
apply a modified version of the NMPC controller presented in the previous chapter. In this
scenario, we choose the period of the performance criterion also as length of the periodic
part of the NMPC subproblem horizon. The properties of the resulting controller are ana-
lyzed.

Throughout this chapter, we assume that the feasible region defined by the path constraint

Ac := {
(x,u) ∈Rnx ×Rnu : 0nc ≤ c(x,u)

}
(5.1)

is compact.

5.1 Extension to Free Periods
5.1.1 Parameter Dependent Right-Hand Sides
In this section we consider a scenario where the right-hand side f additionally depends on a
parameter p ∈Rnp , i.e., is of the form f :Rnx ×Rnu×P →Rnx . The set P of possible parameters
is assumed to be a compact subset ofRnp . For a given parameter p ∈ P the dynamical system
then is governed by the ODE

ẋ(t ) = fp (x(t ),u(t )) := f (x(t ),u(t ), p). (5.2)

The parameter can change with time and is continuously monitored. We assume that the
information of its exact value at the current time is always available to the controller. Our
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goal is to design a NMPC scheme that can use this information and automatically react ap-
propriately in case a parameter change occurs.

The scenario of changing parameters has to be taken into account in the NMPC subprob-
lems, because the controller relies on the accurate prediction quality of the dynamic model
equations. For the NMPC scheme presented in the previous chapter this means that the
ODE-constraint ẋ(t ) = f (x(t ),u(t )) of the subproblem NPfix

Tp
(ti , xi ) at sampling time ti obvi-

ously has to be changed to ẋ(t ) = fpi (x(t ),u(t )), where pi is the value of the parameter at this
sampling time.

However, it is not sufficient to only replace the ODE constraint. Also the periodicity con-
straint x(ti +Tt) = x(ti +Tt +Tp) could cause problems. This is because a Tp0 -periodic so-
lution (x ,u) for ẋ(t ) = fp0 (x(t ),u(t )) does not need to be a solution, let alone a periodic
solution with period Tp0 of ẋ(t ) = fp1 (x(t ),u(t )) for a different parameter p1 6= p0. It may
even be the case that for the new parameter p1 there exist no Tp0 -periodic solutions of
ẋ(t ) = fp1 (x(t ),u(t )) at all. In this case the NMPC controller that is based on Tp0 periodic
solutions will generate a infeasible NMPC subproblem.

Even if there exist Tp0 -periodic solutions of ẋ(t ) = fp1 (x(t ),u(t )) it could happen that for a
different period Tp1 6= Tp0 there exists periodic solutions with better average economic per-
formance (see the powerkite application example in Chapter 8).

We formalize the scenario of parameter dependent optimal periodic orbits with the fol-
lowing assumption, which will be the basis for our considerations.

Assumption 5.1 (Existence of Optimal Periodic Solution for Different Parameters)
For any p ∈ P there exists a solution of the problem Perfree

p

min
x∈ACnx ([0,1]),

u∈Lnu∞ ([0,1]),
T∈R

φfree
p,per(x ,u) :=

∫ 1

0
`(x(τ),u(τ))dτ (5.3a)

s. t. ẋ(t ) = T fp (x(t ),u(t )),t ∈ [0,1], (5.3b)

0 ≤ c(x(t ),u(t )), t ∈ [0,1], (5.3c)

0 = x(1)−x(0), (5.3d)

T ≤ T ≤ T . (5.3e)

The optimal objective value is denoted by φfree,∗
p,per . 4

Remark 5.1 As in problem Perfree in Section 3.2.4, a time-transformation resulting from the
substitution t (τ) = Tτ is used in the formulation of problem Perfree

p . Any admissible triple
(x ,u,T ) ∈ACnx ([0,1])×Lnu∞ ([0,1])×R for problem Perfree

p corresponds to a T -periodic solu-

tion (x̃ , ũ) := (x ,u) ◦ [t 7→ t/T ] ∈ACnx ([0,T ])×Lnu∞ ([0,T ]) of the system ẋ(t ) = fp (x(t ),u(t ))

with average economic performance 1
T

∫ T
0 `(x̃(τ), ũ(τ))dτ=φfree

p,per(x ,u). 4

In the following, we discuss the necessary modifications of the NMPC subproblems that
allow us to extend the NMPC scheme presented in the previous chapter to the described
scenario.
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5.1.2 NMPC Subproblemwith Free Period
Inclusion of the Period Tp asOptimization Variable
The main idea for extending the controller based on the subproblems NPfix

Tp
(ti , xi ) to the vary-

ing parameter case is to include the period Tp as an optimization variable (within reasonable
bounds) in the NMPC subproblem rather than have it fixed to a given number.

To illustrate our approach of including the period as optimization variable we first state a
“naive” version of the modified NMPC subproblem and then apply a time transformation to
normalize the time horizons and get a proper OCP.

The “Naive” NMPC Subproblem
As in the NMPC subproblems for a fixed period NPfix

Tp
(ti , xi ), we split the time horizon in a

transient and a periodic part. In order to have time horizons of constant length after the
reparametrization, we choose the transient horizon length Tt to be a constant multiple of
the periodic horizon length:

Tt := ct Tp with fixed ct ∈R>0. (5.4)

The variable Tp then will be the variable controlling the period.
For a pair (x ,u) ∈ ACnx ([ti ,Tt +Tp])× Lnu∞ ([ti , ti +Tt +Tp]), the objective is split up in a

transient part

ϕ̃free
p,per(x ,u,Tp) := 1

Tp

(∫ ct Tp

0
ρτ

∣∣DTp (`(x(τ),u(τ)))
∣∣2 dτ+

∫ ct Tp

0
ρτ

∥∥DTp (u)(τ)
∥∥2
U

dτ

)
, (5.5)

and the periodic part

ϕ̃free
p,trans(x ,u,Tp) := 1

Tp

∫ ct Tp+Tp

ct Tp

` (x(τ),u(τ))dτ. (5.6)

Remark 5.2 The integral
∫ ct Tp

0 ρτ
∥∥DTp (u)(τ)

∥∥2
U

dτ is included for the purpose also explained

in Remark 4.1. It guarantees that in case the transient objective ϕ̃free
p,trans vanishes, then for

almost all τ ∈ [0,ct Tp] the term DTp (u)(τ) = u(τ)−u(τ+Tp) also vanishes. 4

Since Tp will be subject to optimization, the factor 1/Tp has to be included in the tran-
sient and the periodic part of the objective. In the periodic part, this factor makes sure that
the contribution in (5.6) corresponds to the average performance during one period, and in
the transient part it is necessary to avoid that the contribution in (5.5) gets smaller just by
decreasing Tp which would skew the transient objective functional towards smaller periods.

The path-constraints are treated in the same way as in the NMPC subproblem NPfix
Tp

(ti , xi )

and are slightly relaxed in the transient part.
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We then arrive at the following problem ÑP
free
p (xi ) (with T ti := [ti , ti +Tt +Tp]):

min
x∈ACnx (T ti ),

u∈Lnu∞ (T ti ),
Tp∈R

ϕ̃free
p (x ,u,Tp) = wtransϕ̃

free
p,trans(x ,u,Tp)+ ϕ̃free

p,per(x ,u,Tp) (5.7a)

s. t. x(ti ) = xi , (5.7b)

ẋ(τ) = fp (x(τ),u(τ)), τ ∈ [ti , ti +Tt +Tp], (5.7c)

0 ≤ c(x(τ),u(τ))+ε1nc , τ ∈ [ti , ti +Tt], (5.7d)

0 ≤ c(x(τ),u(τ)), τ ∈ [ti +Tt, ti +Tt +Tp], (5.7e)

0 = x(ti +Tt)−x(ti +Tt +Tp), (5.7f)

T ≤ Tp ≤ T . (5.7g)

Problem ÑP
free
p (xi ) is not an OCP because the spacesACnx ([ti , ti +Tt+Tp]) and Lnu∞ ([ti , ti +

Tt+Tp]) are varying with the length of the periodic horizon, Tp, which also is an optimization
variable of the problem.

To overcome this issue, we need to normalize the time horizons.

Normalization of the TimeHorizon

To transform ÑP
free
p (xi ) to an OCP with fixed time horizon, we reparametrize it to the time

horizon [0,ct +1] = [0,ct Tp+Tp]/Tp via the same time transformation [τ 7→ Tpτ] which is also
used in the formulation of Perfree

p in Assumption 5.1.

The objective functionals ϕ̃free
p,trans (5.5) and ϕ̃free

p,per (5.6) transform to the functionalsϕfree
p,trans

andϕfree
p,per on ACnx ([0,ct +1])×Lnu∞ ([0,ct +1])×R≥0 which are defined as follows. For (x ,u) ∈

ACnx ([0,ct +1])×∈ Lnu∞ ([0,ct +1]) the transient part is

ϕfree
p,trans(x ,u,T ) :=

∫ ct

0
ρτT |D1 (`(x(τ),u(τ)))|2 dτ+

∫ ct

0
ρτT ‖D1(u)(τ)‖2

Udτ, (5.8)

and the periodic part is

ϕfree
p,per(x ,u) :=

∫ ct+1

ct

` (x(τ),u(τ))dτ. (5.9)

Note that the multiplication with the averaging factor 1/T that is present in the objec-
tive functionals ϕ̃free

p,per (5.5) and ϕfree
p,trans (5.6) only seemingly disappeared due the time-

transformation. The values of the integrals still correspond to the averaged values of ϕ̃free
p,trans

and ϕ̃free
p,per.
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This results in the problem NPfree
p (xi ):

min
x∈ACnx ([0,ct+1]),

u∈Lnu∞ ([0,ct+1]),
T∈R

ϕfree
p (x ,u,T ) = wtransϕ

free
p,trans(x ,u,T )+ϕfree

p,per(x ,u) (5.10a)

s. t. x(0) = xi , (5.10b)

ẋ(τ) = T fp (x(τ),u(τ)), τ ∈ [0,ct +1], (5.10c)

0 ≤ c(x(τ),u(τ))+ε1nc , τ ∈ [0,ct ], (5.10d)

0 ≤ c(x(τ),u(τ)), τ ∈ [ct ,ct +1], (5.10e)

0 = x(ct )−x(ct +1), (5.10f)

T ≤ T ≤ T . (5.10g)

Remark 5.3 The solution at time t ≥ t0 of the IVP ẋ(t ) = T fp (x(t ),u(t )) with initial value
x(t0) = x0 is denoted by x(t ; x0,u, p,T, t0). We use the notation

Adfree
p := {x ∈Rnx : NPfree

p (x) is feasible} (5.11)

for the set of admissible initial values for this problem. 4

5.1.3 Assumptions for the Free-Time Case
In order to generalize the results obtained for the NMPC controller of the previous chapter
to the scenario of parameter dependent dynamics described in the beginning of this section,
we need extended versions of Assumptions 4.2 (existence of descent directions), 4.3 (control-
lability) and 4.4 (uniqueness and continuous dependence of subproblem solutions) which
we state in the following.

The modified version of Assumption 4.2 reads as follows:

Assumption 5.2 (Existence of Descent Directions)
Let p ∈ P and (x ,u,T ) ∈ACnx ([0,1])×Lnu∞ ([0,1])×R be an admissible triple for problem Perfree

p

with suboptimal objective φfree
p,per(x ,u,T ) > φfree,∗

p,per . Then there exists a neighborhood Ut ⊂ R
of 0 and a FRÉCHET-differentiable homotopy H : Ut → ACnx (T )×Lnu∞ (T )×R that satisfies
the following conditions:

1. it starts at (x ,u,T ):

H(0) = (x ,u,T ), (5.12)

2. for all s ∈Ut , H(s) is an admissible pair for Perfree
p ,
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3. the derivative of the objective functional evaluated along the homotopy is negative at
s = 0:

∂

∂s
φfree

p,per(H(s))|s=0 < 0. (5.13)
4

As the modified NMPC subproblem will have a transient horizon length proportional to
the period Tp (see equation (5.4)), the controllability Assumption 4.3 has to be modified ac-
cordingly.

To understand the reason for this, we need to recapitulate the proof of Lemma 4.2, which
plays a central role in the analysis of the closed-loop behavior. In this proof, a homotopy of
admissible trajectories for the NMPC subproblem is constructed by first using the existence
of descent directions assumptions to get a family of periodic trajectories of improving output
and then gluing it together with a transient homotopy consisting of trajectories that start
at the initial value and end at the start values of the trajectories of the periodic homotopy
(see Figure 4.2b). The controllability assumption ensures that such the transient homotopy
exists. When transferring this proof to the new situation with varying periods, it has to be
taken into account that the length of the transient phase is varying with the period since
both are proportional.
This means that a transient homotopy has to be constructed in such a way that not only the
desired state is reached at the end of the transient phase, but also (since the length of the
transient phase also changes) it has to be reached at the right time.

Since we cannot define homotopies in function spaces of varying horizon-length, we have
to use time-reparametrizations to define the homotopy on function spaces with horizon-
length normalized to the interval [0,1].

The modified controllability assumption then reads as follows:

Assumption 5.3 (Time-Controllability)
For any p ∈ P , any T ∈ R>0 and any (x ,u) ∈ ACnx ([0,1]) × Lnu∞ ([0,1]) that satisfy ẋ(t ) =
T fp (x(t ),u(t )) on [0,1] there exist neighborhoods Ux ⊂ Rnx of x(1) and Ut ⊂ R>0 of T and
a FRÉCHET-differentiable mapping C : Ux ×Ut →ACnx ([0,1])×Lnu∞ ([0,1]) such that

• C (x(1),T ) = (x ,u),

• for any (y, s) ∈Ux ×Ut , the pair (x̃ , ũ) :=C (y, s) ∈ACnx ([0,1])×Lnu∞ ([0,1]) satisfies ˙̃x(t ) =
s fp (x̃(t ), ũ(t )) on [0,1], x̃(0) = x(0) and x̃(1) = y . 4

Remark 5.4 As we show in Lemma B.2, for affine linear systems the time-controllability as-
sumption follows from the KALMAN rank condition. 4

The last modified assumption we need is the extension of Assumption 4.4 to the NMPC
subproblem NPfree

p (x).

Assumption 5.4 (Existence, Uniqueness and Continuous Dependence of Solutions)
The family of NMPC subproblems NPfree

p (x) has the following properties:
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• The set of admissible initial values is independent of p ∈ P :

Adfree
p1

= Adfree
p2

for any p1, p2 ∈ P. (5.14)

We denote this set by Adfree.

• For any x ∈ Adfree and any p ∈ P , the solution of problem NPfree
p (x) is unique. We

denote it by (xp,x ,up,x ,Tp,x ).

• the solution-mapping

Solfree : P ×Adfree →ACnx ([0,ct +1])×Lnu∞ ([0, (ct +1)])×R,

(p, x) 7→ (xp,x ,up,x ,Tp,x )

is continuous. 4

5.1.4 NMPC Scheme Based onNPfree
p (x)

After we have defined the NMPC subproblem we solve at sampling time ti with initial state xi

and parameter p, there are still some extra steps to consider compared to the NMPC schemes
presented until now. The solution of problem NPfree

p (xi ) is defined on a normalized time
horizon and has to be transformed back to the physical time-scale before the resulting con-
trol can be applied until the next sampling time.

Back-Transformation of the Subproblem Solution to the Physical Time-Scale
The solution (xp,xi ,up,xi ,Tp,xi ) ∈ACnx ([0,ct +1])×Lnu∞ ([0,ct +1])×R of NPfree

p (xi ) at sampling

time ti corresponds to a pair (x̃p,xi , ũp,xi ) ∈ACnx ([ti , ti +Tp,xi (ct +1)])×Lnu∞ ([ti , ti +Tp,xi (ct +
1)]) in the physical time-scale, which is obtained by reversing the time-transformation as
follows:

(x̃p,xi , ũp,xi )(τ) := (xp,xi ,up,xi )
(
(τ− ti )/Tp,xi

)
. (5.15)

The pair (x̃p,xi , ũp,xi ) then satisfies (5.7b)-(5.7f) for Tp = Tp,xi and Tt = ct Tp,xi .

Sampling Times
Complementary to the NMPC approaches presented in this thesis until this point, we do not
use a uniformly spaced sampling time grid for the NMPC scheme based on the subproblems
NPfree

p (xi ).: Instead we (recursively) choose the sampling time ti+1 by adding a constant frac-
tion ∆T ·Tp,xi to ti . The next sampling time then is defined as

ti+1 := ti +∆T ·Tp,xi , (5.16)
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and the state xi+1 then accordingly is

xi+1 := x̃p,xi (ti+1) = xp,xi (∆T ). (5.17)

This sampling time choice clearly corresponds to a sampling time of constant length (=∆T )
in the normalized time-scale of NPfree

p (xi ). Note also that∆T ·Tp,xi cannot become arbitrarily
small or big because Tp,xi satisfies the constraint (5.10g).

Remark 5.5 The choice of the sampling times is motivated by the numerical implementa-
tion of the NMPC scheme. The problem NPfree

p (xi ), which is defined on the normalized time
horizon [0,1+ ct ], is solved using a Multiple Shooting Discretization approach. In our im-
plementation the shooting intervals are of constant length and correspond to the sampling
time intervals. If the expected initial state of the NLP arising from the next NMPC subprob-
lem is given by the state at a shooting node of the current NMPC subproblem, then the NLP-
solution corresponding to the current NMPC subproblem can be used to generate a good
initial guess for the NLP-solution corresponding to the next NMPC subproblem. If the sam-
pling times are chosen according to (5.16), this will be the case. 4

We summarize the proposed NMPC scheme for the parameter dependent scenario in-
cluding the back-transformation step and the adaptive choice of the sampling times in the
form of the following algorithm.

Algorithm 2 NMPC scheme for parameter dependent scenario with free period.

1: Choose an initial sampling time t0 ∈R, i ← 0,
2: while true do
3: At time ti determine the state xi ∈Rnx and parameter pi ∈ P of the system,
4: Solve the problem NPfree

pi
(xi ), denote its solution by (xpi ,xi ,upi ,xi ,Tpi ,xi ),

5: Back-transform the solution (xpi ,xi ,upi ,xi ,Tpi ,xi ) to the pair (x̃pi ,xi , ũpi ,xi ) on the phys-
ical time-scale [ti , (ct +1)Tpi ,xi ] as described in (5.15),

6: Set ti+1 := ti +∆T Tpi ,xi and for τ ∈ [ti , ti+1) apply the control uµ(τ) := ũpi ,xi (τ) to the
system,

7: i ← i +1
8: end while

As can be seen, in the proposed algorithm the parameter pi is continuously monitored
and used as an input for the NMPC subproblems. In the following theoretical investigations
of the asymptotic behavior of the controller we assume that the parameter stays constant
(which is also why we drop the index in the following). Nevertheless the results can be ap-
plied to all scenarios where the parameter eventually stays constant or stays constant for
longer periods of time.

5.1.5 Asymptotic Decrease of Optimal Objective Function and Closed-Loop Behavior
Based on the assumptions presented in Section 5.1.3, in this section we analyze the proper-
ties of the closed-loop trajectory resulting from the NMPC scheme of Algorithm 2.
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Strategy
The approach for the analysis of the closed-loop behavior of the NMPC scheme based on the
subproblems NPfree

p (xi ) is similar to the approach in the previous Chapter 4.
Again, the assumptions on controllability 5.3 and existence of descent-directions 5.2 can

be used to prove that the transient part of the objective ϕfree,∗
p,trans vanishes if and only if the

complete objective ϕfree,∗
p = wtransϕ

free,∗
p,trans +ϕfree,∗

p,per vanishes. As in Lemma 4.4, this result is
used to prove asymptotic decrease of the objective function ϕfree,∗

p along the closed-loop
trajectory. Then again by means of a continuous self-similarity function it can be shown
that the average economic performance of the closed-loop trajectory is converging to the
performance of the best Tp-periodic admissible solution.

Recursive Feasibility
The NMPC scheme based on the subproblems NPfree

p (xi ) presented in Section 5.1.4 has the
recursive feasibility property which again is a direct consequence of the periodicity con-
straint (5.10f). To show this we define the extension operator for the problem on the nor-
malized time horizon:

Ext∆T :ACnx ([0,ct +1])×Lnu∞ ([0,ct +1])×R≥0 →ACnx ([0,ct +1])×Lnu∞ ([0,ct +1])×R≥0,

(x ,u,T ) 7→ (x̃ , ũ,T ),

(5.18)

where (x̃ , ũ) is defined as follows

(x̃ , ũ)(τ) :=
{

(x ,u)(τ+∆T ) for τ ∈ [0,ct +1−∆T ],

(x ,u)(τ+∆T −T ) for τ ∈ [ct +1−∆T,ct +1].
(5.19)

With this operator, as in Section 4.3.3, it can be checked easily that if (x ,u,T ) is admissible
for NPfree

p (xi ), then Ext∆T (x ,u,T ) is admissible for NPfree
p (xi+1) with xi+1 := x(∆T ), which

means the NMPC scheme is recursive feasible.

Transient Objective and CombinedObjective Vanish on the Same Sets
The central ingredient in the closed-loop analysis is again the observation that the assump-
tions on existence of descent directions and on controllability imply that the transient part
of the objective vanishes if and only if the combined objective with transient and periodic
objective vanishes.

Lemma 5.1 (Transient Objective is Optimal iff Complete Objective is Optimal)
Let Assumptions 5.2 (existence of descent directions) and 5.3 (time-controllability) hold, let

p ∈ P and x ∈ Adfree. Then ϕfree,∗
p,trans(x) = 0 if and only if ϕfree,∗

p (x) =φfree,∗
p,per .

Proof The proof of this Lemma is very much along the lines of the proof of Lemma 4.2,
except for that the optimization variable T of problem NPfree

p (x) also has to be taken into
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account. Without loss of generality we may assume in this proof that φfree,∗
p,per = 0 holds.

First, it is clear that ϕfree,∗
p (x) = 0 implies ϕfree,∗

p,trans(x) = 0.
Now lets assume ϕfree,∗

p,trans(x) = 0 and ϕfree,∗
p,per (x) > 0, i.e. the performance on the periodic

part is suboptimal. Let (x ,u,T ) := (xp,x ,up,x ,Tp,x ) be the solution of NPfree
p (x). Then be-

cause ofϕfree,∗
p,per (x ,u,T ) > 0, according to Assumption 5.2, there exists a neighborhood Wt ⊂R

around 0 and a FRÉCHET-differentiable homotopy H = (Hx , Hu , HT ) : Wt → ACnx ([ct ,ct +
1])×Lnu∞ ([ct ,ct +1])×R that satisfies the following conditions:

1. it starts at (x ,u,T ):

H(0) = (
(x ,u)|[ct ,ct+1],T

)
, (5.20)

2. for all s ∈Wt , H(s) is admissible pair for Perfree
p ,

3. the derivative of the periodic objective functional evaluated along the homotopy is
negative at s = 0:

∂

∂s
ϕfree

p,per(H(s))|s=0 < 0. (5.21)

Similarly as in Lemma 4.1, it can be shown that there exists a δ̃ > 0 such that (x ,u) satisfies
the inequality

0 ≤ c(x(τ),u(τ))+ ε

2
1nc for all τ ∈ [ct − δ̃,ct ]. (5.22)

Assumption 5.3 then guarantees the existence of neighborhoods Ux of x(ct ) and Ut of T
and a FRÉCHET-differentiable mapping C : Ux ×Ut →ACnx ([ct − δ̃,ct ])×Lnu∞ ([ct − δ̃,ct ]) such
that

• C (x(ct ),T ) = (x ,u)|[ct−δ̃,ct ],

• for any (y, s) ∈ Ux ×Ut , the pair (x̃ , ũ) := C (y, s) ∈ ACnx ([ct − δ̃,ct ])× Lnu∞ ([ct − δ̃,ct ])
satisfies ˙̃x = s fp (x̃ , ũ) on [ct − δ̃,ct ], x̃(ct − δ̃) = x(ct − δ̃) and x̃(ct ) = y .

Because the mapping C is continuous, the neighborhoods Ux and Ut can be chosen such
that (x̃ , ũ) = C (y, s) satisfies the path constraint 0 ≤ c(x̃(τ), ũ(τ))+ε1nc for all τ ∈ [ct − δ̃,ct ].
The homotopy H and the mapping C are now used to construct a family of admissible triples
for NPfree

p (x). We define Ψ = (Ψx ,Ψu ,ΨT ) : Wt →ACnx ([0,ct +1])×Lnu∞ ([0,ct +1])×R≥0 by
setting

(Ψx (s),Ψu(s))(τ) :=


(x ,u)

(
τHT (s)

T

)
for τ ∈ [0,ct − δ̃],

C (Hx (s)(ct )) (τ) for τ ∈ [ct − δ̃,ct ],

Hx (s)(τ) for τ ∈ [ct ,ct +1].

(5.23)

and ΨT (s) := HT (s). For an illustration of the definition of Ψ see Figure 5.1. Now, at least for
s sufficiently close to 0, the triple Ψ(s) satisfies all the constraints (5.10b) -(5.10g) and with
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the same argumentation as in the proof of Lemma 4.2 we get

∂

∂s
ϕfree

p (Ψ(s))|s=0 < 0, (5.24)

which is a contradiction to the optimality of (x ,u,T ) for problem NPfree
p (x). �

GuaranteedDescent of theOptimal Objective Value Function
The extension operator Ext∆T not only is used to prove recursive feasibility, it also is used to
prove the following Lemma which is the extension of Lemma 4.3 and guarantees the descent
of ϕfree,∗

p along closed-loop trajectories.

Lemma 5.2 (Guaranteed Objective Decrease)
Let p ∈ P and let (xi )i∈N be the sequence of initial states resulting from the NMPC scheme,
i.e. xi+1 := xp,xi (∆T ). Then for any i ∈N the following estimate holds:

ϕfree,∗
p (xi+1) ≤ ρ−∆T wtransϕ

free,∗
p,trans(xi )+ϕfree,∗

p,per (xi ). (5.25)

Proof The proof is similar to the proof of Lemma 4.3. First it can be observed that the
extension operator Ext∆T leaves the economic performance in the periodic part invariant:
ϕfree

p,per

(
Ext∆T (xp,xi ,up,xi )

) = ϕfree
p,per(xp,xi ,up,xi ). Furthermore by using the definition of the

extension operator it can be shown that

ϕfree
p,trans

(
Ext∆T (xp,xi ,up,xi )

)≤ ρ−∆Tϕfree
p,trans(xp,xi ,up,xi ), (5.26)

which finishes the proof. �

The two previous Lemmata 5.1 and 5.2 again allow us now to show asymptotic decrease of
the objective functional ϕfree,∗

p along closed loop trajectories.

Lemma 5.3 (Asymptotic Decrease of the Objective Function Along the Closed-Loop)
Let Assumptions 5.1 (existence of optimal periodic trajectories), 5.2 (existence of descent
directions), 5.3 (time-controllability) and 5.4 (uniqueness and continuous dependence of
subproblem solutions) hold and let furthermore p ∈ P . Then there exists a KL function β

such that for x0 ∈ Adfree
p and the subsequent sequence of states (xi )i∈N of the closed-loop

trajectory it holds

ϕfree,∗
p (xi ) ≤β(ϕfree,∗

p (x0), i ). (5.27)

Proof Lemma 5.2 implies

ϕfree,∗
p (xi+1) ≤ϕfree,∗

p (xi )− (1−ρ−∆T )wtransϕ
free,∗
p,trans(xi ) (5.28)
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a) The varying period variable ΨT (s).

b) The family (Ψx (s))s∈(−ε,ε).

c) The family (Ψx (s))s∈(−ε,ε) after reversing the time-transformations.

Figure5.1: Illustration of the families (ΨT (s))s∈(−ε,ε) and (Ψx (s))s∈(−ε,ε) in (5.1a) and (5.1b). All
the state/control trajectories (Ψx (s),Ψu(s)) are defined on the normalized horizon [0,ct +1]
and solve the ODE ẋ(t ) =ΨT (s) f (x(t ),u(t )). In (5.1c), the normalization to the time horizon
[0,ct + 1] is reversed and each triple (Ψx (s),Ψu(s),ΨT (s)) corresponds to a pair (ys , ws ) ∈
ACnx ([0, (ct +1)ΨT (s)])×Lnu∞ ([0, (ct +1)ΨT (s)]) defined on the physical time-scale by setting
(ys , ws )(τ) := (Ψx (s)(ΨT (s)τ),Ψu(s)(ΨT (s)τ)).

106



EXTENSIONS TO FREE PERIODAND SYSTEMSWITH PERIODIC PERFORMANCECRITERION CHAPTER 5

for all i ∈N. Since ϕfree,∗
p,trans and ϕfree,∗

p vanish on the same set (which is nonempty because of
Assumption 5.1) and Adfree,p is compact, Lemma A.4 implies the existence of a K∞-function

α̃ such that α̃
(
ϕfree,∗

p (y)
)
≤

(
ϕfree,∗

p,trans(y)
)

holds for all y ∈ Adfree,p . Therefore (5.28) implies

ϕfree,∗
p (xi+1) ≤ϕfree,∗

p (xi )− (1−ρ−∆T )wtransα̃
(
ϕfree,∗

p (xi )
)

(5.29)

Since α : s 7→ (1−ρ∆T )wtrans is also a K∞ function, Lemma A.3 implies the existence of a
KL-function β such that

ϕfree,∗
p (xi ) ≤β

(
ϕfree,∗

p (x0), i
)

(5.30)

holds for all i ∈N and the proof is finished. �

Closed-Loop Behavior
As for the controller with fixed period, we analyze the closed-loop behavior by comparing
solutions of subsequent NMPC subproblems. As pointed out before, in our analysis we as-
sume that the system parameter p remains constant, i.e. pi ≡ p. Since the time horizons
for the NMPC scheme based on NPfree

p (xi ) are of varying length, this comparison is not as
straight-forward as in Definition 4.5.

The solutions of the NMPC subproblems first have to be transformed back to the physical
time-scale. After this back-transformation it can happen that two subsequent solutions are
defined on time horizons of different length. However, exploiting the periodicity constraint
(5.10f), both solutions can be extended to an arbitrary horizon length. We extend both so-
lutions to the length (ct +1)T and then can compare them on the overlapping parts of the
horizon as in Definition 4.5.

The commutative diagram in Figure 5.2 illustrates how the extension step of a triple
(x ,u,T ) ∈ACnx ([0,ct +1])×Lnu∞ ([0, (ct +1)])×R to the horizon [0,(ct +1)T ] can be formalized
and interpreted as the composition of a periodic extension operator Per, a reparametrization
operator Rep and a restriction operator Res.

The operator Per is defined as (where η(s) := s−bsc denotes the fractional part of a number
s ∈R)

(x ,u,T ) 7→ ([
τ 7→ x

(
ct +η(τ− ct )

)]
,
[
τ 7→ u

(
ct +η(τ− ct )

)]
,T

)
(5.31)

For the solution (xp,y ,up,y ,Tp,y ) of problem NPfree
p (y), the pair Extmax(xp,y ,up,y ,Tp,y ) ∈

ACnx ([0, (ct +1)T ])×Lnu∞ ([0, (ct +1)T ] can be seen as the predicted system behavior over the
prolonged time horizon [0,(ct +1)T ].

With the help of the Extmax-operator, we can compare the behavior of the predicted solu-
tion Extmax(xp,xi ,up,xi ,Tp,xi ) shifted to T ti := [ti , ti + (ct +1)T ] with the behavior of the pre-
dicted solution Extmax(xp,xi+1 ,up,xi+1 ,Tp,xi+1 ) shifted to T ti+1 := [ti +∆T Tp,xi , ti +∆T Tp,xi +
(ct + 1)T ] by comparing both trajectories on the intersection T ti ∩T ti+1 . This leads to an
extension of the self-similarity function of Definition 4.5:
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ACnx ([0,ct +1])×Lnu∞ ([0, (ct +1)])×R

Extmax

$$

Per

++
ACnx

loc ×Lnu
∞,loc ×R
Rep:(x ,u,T )7→(x

( ·
T ),u( ·

T )
)

��
ACnx

loc ×Lnu
∞,loc

Res
��

ACnx ([0, (ct +1)T ])×Lnu∞ ([0, (ct +1)T ])

Figure 5.2:Definition of the operator Extmax.

Definition 5.4 (Self-Similarity Function, Free Period Case)
The function Sfree : Adfree

p →R≥0 defined by

Sfree(x) :=
∫ (ct+1)T

∆T Tp,x

(∥∥Extmax(xp,x ,up,x ,Tp,x )(τ+∆T Tp,x )−Extmax(xp,y ,up,y ,Tp,y )(τ)
∥∥)

dτ,

(5.32)

with y := xp,x (∆T ) is called the self-similarity function for problem NPfree
p (x). 4

Note that Assumption 5.4 implies that Sfree is continuous , because it is the composition of
continuous functions.

Similarly as in Lemma 4.6, Assumptions 5.1 (existence of optimal periodic solutions) and
5.4 (uniqueness and continuous dependence of subproblem solutions) can be used to show
that the function Sfree vanishes for any x ∈ Adfree with ϕfree,∗

p (x) = 0 and that there exists a
K-function α such that

Sfree(x) ≤α
(
ϕfree,∗

p (x)
)

(5.33)

holds for all x ∈ Adfree.
This fact combined with the asymptotic decrease of the objective function ϕfree,∗

p along
the closed-loop can be used to show that the L1-difference of the closed-loop trajectory to
the extended predicted solutions

diff(ti , xi ) :=
∫ (ct+1)T

0

∥∥Extmax(xp,xi ,up,xi ,Tp,xi )(τ)− (xµ,uµ)(τ+ ti )
∥∥dτ (5.34)

decreases asymptotically.
Via a telescope argument, we can calculate the L1-distance of the closed-loop trajectory

to the extended predicted solutions.
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Lemma 5.5 (Asymptotic Improving Prediction Quality)
Let Assumptions 5.1 (existence of optimal periodic solutions), 5.2, 5.3 (existence of descent
directions) and 5.4 (uniqueness and continuous dependence of subproblem solutions) hold.
Then there exists a KL-function β such that for any x0 ∈ Adfree,p and the resulting closed-
loop sequence (xi )i∈N it holds

diff(ti , xi ) ≤β
(
ϕfree,∗

p (x0), i
)

(5.35)

for all i ∈N.

Proof Similar as in Lemma 4.8, the proof is based on a telescope sum argument and the fact
that per definition (xµ,uµ) coincides with τ 7→ Extmax(xp,xi ,up,xi ,Tp,xi )(τ− ti ) on the interval
[ti , ti+1 := ti +∆T Tp,xi ]. With the telescope argument, diff(ti , xi ) can be bounded by a sum∑ j=i+n

j=i Sfree(x j ). But Sfree(xi ) is asymptotically decreasing for increasing i , which is due to
(5.33) and the fact that ϕfree,∗

p (xi ) is asymptotically decreasing (Lemma 5.3) for increasing
i . �

The results of our analysis of the closed-loop behavior can be summarized in the following
theorem.

Theorem 5.6 (Economic Closed-Loop Performance, Free Period Case)
Let Assumptions 5.1 (existence of optimal periodic orbits), 5.2 (existence of descent direc-
tions), 5.3 (time-controllability) and 5.4 (uniqueness and continuous dependence of sub-
problem solutions) hold. Let x0 ∈ Adfree

Tp
be the state of the system at the initial time t0.

Then the resulting closed-loop trajectory (xµ,uµ) ∈ ACnx
loc ×Lnu

∞,loc from the NMPC scheme
described in Algorithm 2 based on the subproblems NPfree

p (5.10) exists for all times and for
the average economic performance it holds:

lim
T→∞

1

T

∫ t0+T

t0

`(xµ(τ),uµ(τ))dτ=φfree,∗
p,per . (5.36)

Proof The proof is analogue to the proof of Theorem 4.9. �

5.2 Systemswith Time-Periodic Performance Criterion
The systems we considered in the previous chapter and in the previous section had a perfor-
mance criterion `which did not depend on time. In this section we want to consider systems
with time-periodic performance criterion. We investigate the question whether it is possible
to set up an NMPC controller similar to the one presented in Chapter 4 for such systems.
As the length of the periodic part of the horizon we choose the a-priori given period of the
performance criterion `. Under assumptions similar as in the case of a time-independent
performance criterion we can show that for such a controller the average economic perfor-
mance of the closed-loop is equal to performance of the best periodic solution.
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Problem Setting: Time-Periodic Performance Criterion
We consider a dynamical system that evolves according to ẋ(t ) = f (x(t ),u(t )) with an asso-
ciated path constraint c : Rnx ×Rnu → Rnc and an associated time-dependent periodic per-
formance criterion ` with period Tp ∈ R>0, i.e. a function ` : R×Rnx ×Rnu → R such that
`(t , x,u) = `(t +Tp, x,u) holds for all (t , x,u) ∈ R×Rnx ×Rnu . For such systems it is a natural
question to ask for Tp-periodic solutions.

The arising follow-up question in the NMPC context is, whether the controller presented
in Chapter 4 is also applicable to such systems. This could be done by simply taking the pe-
riod Tp of the performance criterion ` as the period for the periodic part of the time horizon
of the NMPC subproblem.

TheNMPC Subproblem
In order to apply the NMPC controller presented in Section 4.2, the objective functional has
to be adapted to take into account the explicit time-dependency of the performance crite-
rion `. For (x ,u) ∈ACnx (T t )×Lnu∞ (T t ), the transient and the periodic parts of the objective
contribution for the NMPC subproblem at sampling time t are then of the form

ϕfix,`
trans(t , x ,u) :=

∫
T t

trans

ρτ−t ∣∣`(τ, x(τ),u(τ))−`(τ+Tp, x(τ+Tp),u(τ+Tp))
∣∣2 dτ

+
∫
T t

trans

ρτ−t ∥∥DTp (u)(τ)
∥∥2 dτ.

(5.37)

and

ϕfix,`
per (t , x ,u) :=

∫
T t

per

`(τ, x(τ),u(τ))dτ. (5.38)

We explicitly include the initial time t in the arguments of ϕfix,`
trans and ϕfix,`

per to emphasize
the time-dependency.

The full NMPC subproblem NPfix,`
Tp

(t , x) we consider reads as follows:

min
x∈ACnx (T t ),

u∈Lnu∞ (T t )

ϕfix,`(ti , x ,u) = wtransϕ
fix,`
trans(t , x ,u)+ϕfix,`

per (t , x ,u) (5.39a)

s. t. x(t ) = x, (5.39b)

ẋ(τ) = f (x(τ),u(τ)), τ ∈ T t , (5.39c)

0 ≤ c(x(τ),u(τ))+ε1nc , τ ∈ T t
trans, (5.39d)

0 ≤ c(x(τ),u(τ)), τ ∈ T t
per, (5.39e)

0 = x(t +Tt)−x(t +Tt +Tp). (5.39f)
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By ϕfix,`,∗(t , x) we denote the value ϕfix,`(t , xt ,x ,ut ,x ) at the solution (xt ,x ,ut ,x ) of problem
NPfix,`

Tp
(t , x). We define the set of admissible initial times and states for this problem

Adfix,`
Tp

:= {(t , x) ∈R×Rnx : NPfix,`
Tp

(t , x) is feasible } ⊂R×Ac
x . (5.40)

5.2.1 Assumptions for the Time-Dependent Performance Criterion Case
The analysis of the closed-loop behavior of the resulting NMPC controller is based on as-
sumptions that are very similar to the ones used in the previous Chapter 4. The only differ-
ence stems from the fact that for the objective functionals now it has to be taken into account
that the performance criterion ` is time-dependent.

We state these assumptions again in the following.

Assumption 5.5 (Existence of Optimal Periodic Solutions )
There exists a solution for the OCP Perfix,`

Tp

min
x∈ACnx ([0,Tp]),

u∈Lnu∞ ([0,Tp])

φ`Tp,per(x ,u) := 1

Tp

∫ Tp

0
`(τ, x(τ),u(τ))dτ (5.41a)

s. t. ẋ(τ) = f (x(τ),u(τ)), τ ∈ [0,Tp], (5.41b)

0 ≤ c(x(τ),u(τ)), τ ∈ [0,Tp], (5.41c)

0 = x(Tp)−x(0). (5.41d)

The optimal objective value is denoted by φ`,∗
Tp,per. 4

This assumption ensures that the set of admissible initial times/states Adfix,`
Tp

is nonempty.

Assumption 5.6 (Existence of Descent Directions)
Let (x ,u) be an admissible Tp-periodic pair for problem Perfix,`

Tp
with suboptimal objec-

tive φ`Tp,per(x ,u) > φ`,∗
Tp,per. Then there exists a neighborhood Ut ⊂ R of 0 and a FRÉCHET-

differentiable homotopy H = (Hx , Hu) : Ut →ACnx ([0,Tp])×Lnu∞ ([0,Tp]) that satisfies the fol-
lowing conditions:

1. it starts at (x ,u):

H(0) = (x ,u), (5.42)

2. for all s ∈Ut , H(s) is admissible for Perfix,`
Tp

,

3. the derivative of the objective functional evaluated along the homotopy is negative at
s = 0:

∂

∂s
φ`Tp,per(H(s))|s=0 < 0. (5.43)

4
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Assumption 5.7 (Uniqueness and Continuous Dependence of Solutions)
The family of NMPC subproblems NPfix,`

Tp
(t , x) has the following properties:

• For (t , x) ∈ Adfix,`
Tp

problem NPfix,`
Tp

(t , x) has a unique solution which we denote by

(xt ,x ,ut ,x ) depending on the initial time t ∈R and the initial value x ∈Rnx ,

• the solution-mapping

Sol : Adfix,`
Tp

→ACnx (T t )×Lnu∞ (T t ),

(t , x) 7→ (xt ,x ,ut ,x )

is continuous. 4

5.2.2 Closed-Loop Behavior of the NMPC Scheme Based onNPfix,`
Tp

(ti , xi )

As the strategy for the analysis of the closed-loop behavior is again similar to the strategy we
used in chapter 4, we will not give detailed proofs for every statement but rather only point
out where the arguments have to be adjusted to take into account the time-periodic nature
of the performance criterion.

As before, we consider the closed-loop trajectory resulting from solving NPfix,`
Tp

(ti , xi ) for
a equidistant grid of sampling times ti = i∆T with xi ∈ Rnx being the state of the system at
time ti .

Recursive Feasibility
The first observation is that the NMPC scheme has the recursive-feasibility property. As
we already noticed in Section 4.3.3, recursive feasibility follows from the set of constraints
(5.39b)- (5.39f). This property is independent of the structure of the objective functional be-
cause the periodicity constraint always allows to construct an admissible pair of trajectories
for problem NPfix,`

Tp
(ti+1, xi+1) simply by periodically extending any admissible pair of trajec-

tories for NPfix,`
Tp

(ti , xi ).

Asymptotic Objective Decrease
In order to show that the optimal objective value ϕfix,`,∗(tk , xk ) decreases asymptotically to
φ`,∗

Tp,per we begin with the following Lemma which is the analogue to Lemma 4.2.

Lemma 5.7 (Transient Objective is Optimal iff Complete Objective is Optimal)
Let Assumptions 5.6 (existence of descent directions) and 4.3 (controllability) hold and let

(t , x) ∈ Adfix,`
Tp

. Then ϕfix,`,∗
trans (t , x) = 0 if and only if ϕfix,`,∗(t , x) =φ`,∗

Tp,per.

Proof The proof is again analogue to the proof of Lemma 4.2. Therefore we only sketch the
central contradiction argument. Let (x ,u) be admissible for NPfix,`

Tp
(t , x) with ϕfix,`

trans(t , x ,u) =
0 and ϕfix,`

per (t , x ,u) > φ`,∗
Tp,per. Then Assumption 5.6 (existence of descent directions) implies
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the existence of a homotopy H : (−ε,ε) →ACnx (T t
per)×Lnu∞ (T t

per) of periodic trajectories with
improving economic output and H(0) = (x ,u)|T t

per
. Assumption 4.3 (controllability) allows

to extend the homotopy H : (−ε,ε) → ACnx (T t
per)× Lnu∞ (T t

per) to a homotopy Ψ : (−ε,ε) →
ACnx (T t )×Lnu∞ (T t ) consisting of of admissible pairs of trajectories for NPfix,`

Tp
(t , x). But by

construction, it has the property

∂

∂s
ϕfix,`

per (t , H(s))|s=0 < 0, (5.44)

which proves that (x ,u) is not optimal for NPfix,`
Tp

(t , x). �

The following Lemma is the analogue version of Lemma 4.3.

Lemma 5.8 (Objective Decrease)
Let (ti , xi ) ∈ Adfix,`

Tp
. Then for (ti+1, xi+1) := (ti +∆T, xti ,xi (ti +∆T )) it holds

ϕfix,`,∗(ti+1, xi+1) ≤ ρ−∆T wtransϕ
fix,`,∗
trans (ti , xi )+ϕfix,`,∗

per (ti , xi ). (5.45)

Proof The proof is analogue to the proof of Lemma 4.3. �

This result will be exploited to show that the sequence (ϕfix,`,∗(ti , xi ))i∈N converges to the
optimal Tp-periodic output φ`,∗

Tp,per. To do so, the values of ϕfix,`,∗
trans (ti , xi ) need to be bounded

in terms of the values of ϕfix,`,∗
trans (ti , xi ).

For this purpose, we combine the two previous Lemmas 5.7 and 5.8 to prove the following.

Lemma 5.9 (Asymptotic Decrease of the Objective Function Along the Closed-Loop)
Let Assumptions 5.5 (existence of optimal periodic solutions), 5.6 (existence of descent di-
rections), 4.3 (controllability) and 5.7 (uniqueness and continuous dependence of subprob-
lem solutions) hold. Then there exists a KL function β such that for (t0, x0) ∈ Adfix,`

Tp
the

following estimate holds:

ϕfix,`,∗(ti , xi ) ≤β(ϕfix,`,∗(t0, x0), ti ). (5.46)

Proof The proof of this Lemma is analogue to the proof of Lemma 4.4. Only one argument
has to be extended to cope with the fact that the functions ϕfix,`,∗, ϕfix,`,∗

trans and ϕfix,`,∗
per this

time additionally depend on the initial time of the OCP. First, Lemma 5.8 implies that the
inequality

ϕfix,`,∗(ti+1, xi+1) ≤ϕfix,`,∗(ti , xi )− (1−ρ−∆T )︸ ︷︷ ︸
∈(0,1]

ϕfix,`,∗
trans (ti , xi ), (5.47)

holds for all i ∈ N. The time-periodicity of ` and the definition of the OCP NPfix,`
Tp

(t , x)
furthermore imply that the problems NPfix,`

Tp
(t , x) and NPfix,`

Tp
(t +Tp, x) are equivalent and
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therefore the functions ϕfix,`,∗, ϕfix,`,∗
trans and ϕfix,`,∗

per can be interpreted as functions defined
on [0,Tp]×Rnx ∩Adfix,`

Tp
. This intersection is compact because Adfix,`

Tp
is a subset of R×Ac

x

where Ac
x is compact and [0,Tp] is also compact. Furthermore,the term ϕfix,`,∗

trans (t , x) vanishes

if and only if ϕfix,`,∗(t , x) =φ`,∗
Tp,per (Lemma 5.7) an application of Lemma A.4 guarantees the

existence of a K∞-function α̃ such that

α̃(ϕfix,`,∗(t , x)) ≤ϕfix,`,∗
trans (t , x) (5.48)

holds for all (t , x) ∈ R×Rnx . In combination with (5.47) this implies the existence of a K∞-
function α such that

ϕfix,`,∗(ti+1, xi+1) ≤α(ϕfix,`,∗(ti , xi )) (5.49)

holds for all i ∈N. Applying Lemma A.3 then finishes the proof. �

By means of the following version of the self-similarity function, we can transfer the result
from the previous Lemma to a result on the economic performance of the closed-loop.

Definition 5.10 (Self-Similarity Function)
We call the function S`fix : Adfix,`

Tp
→R≥0 defined by

S`fix(t , x) :=
∫ t+Tt+Tp

t+∆T

(∥∥xt ,x (τ)−xt+∆T,y (τ)
∥∥+∥∥ux (τ)−ut+∆T,y (τ)

∥∥)
dτ, (5.50)

with y := xt ,x (t +∆T ) the self-similarity function for problem NPfix,`
Tp

(t , x). 4

Similar as in Lemma 4.7 it can be shown that in the situation of the previous lemma the
self similarity function can be bounded from above as follows

Lemma 5.11 (Upper Bound for Self-Similarity Function)
Let Assumptions 5.5 (existence of optimal periodic solutions) and 5.7 (uniqueness and con-
tinuous dependence of subproblem solutions) hold. Then there exists a K-function α such
that for all (t , x) ∈ Adfix,`

Tp
it holds that

S`fix(t , x) ≤α(ϕfix,`,∗(t , x)). (5.51)

Proof Analogue to the proof of Lemma 4.7. �

With this function it is possible to bound the difference of the predicted open loop solutions
and the closed-loop trajectory

diff(ti , xi ) :=
∫
T ti

(∥∥xti ,xi (τ)−xµ(τ)
∥∥+∥∥uti ,xi (τ)−uµ(τ)

∥∥)
dτ. (5.52)

via a telescope argument. The result is the analogue to Lemma 4.8:
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Lemma 5.12 (Telescope Argument for the Closed-Loop)
Let Assumptions 5.5 (existence of optimal periodic solutions), 5.6 (existence of descent di-
rections), 4.3 (controllability) and 5.7 (uniqueness and continuous dependence of subprob-
lem solutions) hold. Then there exists a KL-function β such that for all (t0, x0) ∈ Adfix,`

Tp
and

the resulting closed-loop sequence (xi )i∈N it holds that

diff(ti , xi ) ≤β(ϕfix,`,∗(t0, x0), i ). (5.53)

Proof Analogue to the proof of Lemma 4.8. �

This lemma together with the asymptotic decrease of ϕfix,`,∗ along the closed-loop (Lemma
5.9) implies that the average economic performance of the closed-loop is equal to the av-
erage economic performance of the optimal periodic operation φ`,∗

Tp,per (cf. the calculation

(4.77)).
Again we can summarize the results of our analysis of the closed-loop behavior in the

following theorem.

Theorem 5.13 (Economic Closed-Loop Performance, Time-Dependent Case)
Let Assumptions 5.5 (existence of optimal periodic orbits), 5.6 (existence of descent direc-
tions), 4.3 (controllability) and 5.7 (uniqueness and continuous dependence of subproblem
solutions) hold. Let (t0, x0) ∈ Adfix,`

Tp
be the pair of initial time and initial state of the system.

Then the resulting closed-loop trajectory (xµ,uµ) ∈ ACnx
loc ×Lnu

∞,loc from the NMPC scheme
based on the subproblems NPfix,`

Tp
(t , x) (5.39) exists for all times and for the average economic

performance it holds

lim
T→∞

1

T

∫ t0+T

t0

`(xµ(τ),uµ(τ))dτ=φ`,∗
Tp,per. (5.54)

Proof The proof is analogue to the proof of Theorem 4.9. �

5.3 Summary
In this chapter we proposed the extension of the economic NMPC scheme we presented in
the previous chapter in two directions.

First, we considered the scenario of a parameter dependent dynamical system where the
optimal periodic orbit (including its period) is changing with the parameter. To take this
into account we included the period as optimization variable in the NMPC subproblem. Un-
der similar assumptions on controllability, existence of optimal periodic orbits and unique-
ness of NMPC subproblem solutions as in the previous chapter, we proved that the resulting
NMPC controller has an economic performance equal to the optimal periodic trajectory.

Second, we described how the controller can be extended to a scenario where the perfor-
mance criterion ` is time dependent and time-periodic with an a priori given period. Similar
results on the closed-loop performance for this controller were obtained.
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Chapter 6
Numerical Implementation
In this chapter we give a detailed description of how the proposed NMPC controllers are im-
plemented within the MATLAB NMPC toolkit MLI (see Wirsching [114]). First we explain the
transcription of the infinite dimensional NMPC subproblems to finite dimensional NLPs.
Then a quick introduction on the interior point method used for solving the NLPs is given
followed an overview of the numerical methods that are used to evaluate the arising nonlin-
ear functions and their derivatives.

6.1 Discretization of the NonlinearModel Predictive Control Subproblems
For the numerical solution of the infinite dimensional OCPs that occur in the proposed
NMPC schemes as NMPC subproblems, the problems have to be transformed to a form that
can be handled by a computer. This transformation is done by using the Direct Multiple
Shooting method (Bock [17]) which belongs to the class of “First Discretize then Optimize”
approaches (see Section 1.6.2).

We proceed with a detailed description of the multiple shooting NLPs that result from the
NMPC subproblems. Since the objective functionals of the NMPC subproblems contain a
non-standard time-delay contribution, we attribute a special focus on the discretization of
the objective functionals.

6.1.1 The Fixed Period Case
In the following, we describe the multiple shooting discretization for problem NPfix

Tp
(ti , xi ),

which is the NMPC subproblem for the NMPC scheme presented in Section 4.2.

TimeDiscretization
The first step in setting up the discretized version of NPfix

Tp
(ti , xi ) is to choose an appropriate

partition of the time horizon. Since the dynamical system we consider is autonomous, we
may assume (for notational convenience) that the time horizon is T = Ttrans ∪Tper = [0,Tt]∪
[Tt,Tt +Tp] (instead of [ti , ti +Tt +Tp]). We choose an equidistant shooting time grid with
interval lengths ∆T . The interval length ∆T is chosen equal to the sampling time of the
NMPC scheme, which allows for efficient initialization of subsequent NMPC subproblems
by shifting the NLP variables. Since the OCP contains the coupled periodicity constraint
(4.15f), it is important that the times Tt and Tt +Tp are elements of the shooting time grid.
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As a consequence, the length Tt of the transient time horizon and the length Tp of the
periodic time horizon are chosen to be multiples of the uniform shooting interval length
∆T .

In practice, we achieve this by fixing a number Np ∈N of shooting intervals for the periodic
part of the horizon, which then fixes the shooting interval length to ∆T = Tp/Np . Then the
length Tt of the transient time horizon is defined as a multiple NT∆T of the interval length
∆T . This results in the shooting interval grid

T := {
t j = j∆T, j ∈ {

0,1, . . . , Nt +Np +1
}}

. (6.1)

Control Parametrization and State Discretization
The control functions are chosen to be constant on the shooting intervals. Therefore, we
identify the (Nt + Np )-tuple q := (q0, . . . , qNt+Np−1) ∈ Rnu×(Nt+Np ) with the control function
uq ∈ Lnu∞ (T )

uq (τ) := q j for τ ∈ [t + ( j −1)∆T, j∆T ). (6.2)

Corresponding to this control parametrization, the state trajectories are parametrized by the
values at the shooting time-nodes t j which are denoted by s j ∈ Rnx . Then, as described in
Section 1.6.3 the (Nt +Np +1)-tuple of Rnx vectors

s := (s0, s1, . . . , sNt+Np ) ∈Rnx×(Nt+Np+1) (6.3)

together with the control vector q = (q0, . . . , qNt+Np−1) ∈ Rnu×(Nt+Np ) can be interpreted as
the (possibly discontinuous) state trajectory x(s,q) : T →Rnx which is defined as

x(s,q)(τ) :=
{

x(τ; s j , q j , t j ) for τ ∈ [t + ( j −1)∆T, t + j∆T ),

sNt+Np for τ= t +Tt +Tp.
(6.4)

The pair (s, q) ∈ Rnx×(Nt+Np+1) ×Rnu (×Nt+Np ) thus can be identified with the pair (x(s,q),uq )
of state and control functions. The resulting NLP has Nx := nx (Nt + Np + 1) optimization
variables corresponding to the state variables s and Nu := nu(Nt+Np ) optimization variables
corresponding to the control parametrization variables q .

Constraint Discretization
The initial value constraint (4.15b) and the ODE-constraint (4.15c) are transformed into the
equality constraint at s0 − x0 = 0 and the matching constraints. Because the dynamical sys-
tem is assumed to be autonomous, all shooting continuity conditions are of the form

x(∆T ; s j , q j ,0)− s j+1 = 0 for j = 0, . . . , Nt +Np −1. (6.5)
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With the notation M(s j , q j ) := x(∆T ; s j , q j ,0) the shooting continuity constraints transform
to

M(s j , q j )− s j+1 = 0 for j = 0, . . . , Nt +Np −1. (6.6)

The path constraints in the transient part (4.15d) and in the periodic part (4.15e) of the time
horizon are imposed on the state/control values at the shooting nodes. The periodicity con-
straint (4.15f) simply transforms to

sNt − sNt+Np = 0. (6.7)

Objective Function Discretization

The calculation of the objective value corresponding to the state/control variable (s, q) is
split into the calculation of the objective contribution corresponding to the transient part of
the horizon and the contribution corresponding to the periodic part of the horizon.

For the periodic part, the objective contribution translates to the sum

Vfix
per(s, q) :=ϕfix

per(x(s,q),uq ) =
Nt+Np∑

j=Nt

∫ ( j+1)∆T

j∆T
`(τ; x(τ; s j , q j , t j ), q j )dτ. (6.8)

With the notation L(s j , q j ) := ∫ ∆T
0 `(τ; x(τ; s j , q j ,0), q j )dτ every integral can be interpreted

as function of (s j , q j ) and the objective transforms to the sum

Vfix
per(s, q) =

Nt+Np∑
j=Nt

L(s j , q j ). (6.9)

According to (4.10), the transient contribution is given by

Vfix
trans(s, q) : =ϕfix

trans(x(s,q),uq )

=
∫
Ttrans

ρτ
∣∣DTp

(
`(x(s,q),uq )

)
(τ)

∣∣2 dτ+
∫
Ttrans

ρτ
∥∥DTp (uq )(τ)

∥∥2
U

dτ.
(6.10)

Both integral terms can be split up into the sum of integrals over the shooting intervals
of the transient horizon. By using the functions LT : Rnx ×Rnu ×Rnx ×Rnu → R and U T :
Rnu ×Rnu →R for j = 0, . . . , Nt −1, which are defined as

LT (s, q, s̃, q̃) : =
∫ ∆T

0
ρτ

∣∣`(x(τ; s, q,0), q)−`(x(τ; s̃, q̃ ,0), q̃)
∣∣2 dτ, (6.11)

U T (q, q̃) : =
∫ ∆T

0
ρτ

∥∥q − q̃
∥∥2
U

dτ, (6.12)
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we can express Vfix
trans(s, q) as follows:

Vfix
trans(s, q) =

Nt−1∑
j=0

ρ j∆T LT (s j , q j , s j+Np , q j+Np )+
Nt−1∑
j=0

ρ j∆T U T (q j , q j+Np ). (6.13)

Summing up the transient and periodic contributions of the objective function, we can now
define the NLP-objective function Vfix :RNx ×RNu →R for the NMPC subproblem at sampling
time ti as follows:

Vfix(s, q) :=wtransVfix
trans(s, q)+Vfix

per(s, q) (6.14)

= wtrans

(
Nt−1∑
j=0

ρ j∆T LT (s j , q j , s j+Np , q j+Np )+
Nt−1∑
j=0

ρ j∆T U T (q j , q j+Np )

)

+
Nt+Np∑

j=Nt

L(s j , q j ).

(6.15)

The Complete NLP
With the above described multiple shooting discretization the infinite dimensional OCP
NPfix

Tp
(ti , xi ) is transcribed into the following finite dimensional NLPfix

Tp
(ti , xi ).

min
(s,q)∈RNx ×RNu

Vfix(s, q) (6.16a)

s. t. 0 = s0 −xi , (6.16b)

0 = M(s j , q j )− s j+1, for j = 0, . . . , Nt +Np −1, (6.16c)

0 ≤ c(s j , q j )+ε1nc , for j = 0, . . . , Nt , (6.16d)

0 ≤ c(s j , q j ), for j = Nt +1, . . . , Nt +Np , (6.16e)

0 = sNt − sNt+Np . (6.16f)

6.1.2 The Free Period Case
The discretization of the NMPC subproblems of the NMPC feedback controller with free pe-
riods presented in Section 5.1, is in principle similar to the case of the controller with fixed
period. The main difference is that, since the period T ∈R is an optimization variable, it also
will be included in the resulting NLP.

As in the fixed period case, we give a detailed description of how the transcription of the
(infinite dimensional) NMPC subproblem NPfree

p (xi ) to a finite dimensional NLP is accom-
plished.

TimeDiscretization
The time horizon of the problem NPfree

p (p, xi ) is the (normalized) interval T = [0,ct + 1].
Again we use a equidistant shooting time grid. Since we want the time ct to be part of the
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shooting-grid (which makes it easy to evaluate the periodicity constraint), we need to choose
the relative transient horizon length ct appropriately. To do so, we first fix a number Np ∈N
of shooting intervals for the periodic part of the horizon and then choose the transient hori-
zon length ct to be a multiple of the shooting interval length 1/Np : ct = Nt /Np . This results
in the following time grid (with t j := j /Np ):

0 = t0 < t1 < . . . < tNt︸︷︷︸
=ct

< . . . < tNt+Np︸ ︷︷ ︸
=ct+1

. (6.17)

Control Parametrization and State Discretization
Similar to the case of the fixed period controller, we use a control parametrization that
identifies the (Nt +Np )-tuple q := (q0, . . . , qNt+Np−1) ∈ Rnu×(Nt+Np ) with the control function
uq ∈ Lnu∞ (T )

uq (τ) := q j for τ ∈ [t j , t j+1). (6.18)

Corresponding to this control parametrization, the state trajectories are parametrized by the
values at the shooting nodes t j which are denoted by s j . Then the (Nt + Np + 1)-tuple of
Rnx vectors s = (s0, . . . , sNt+Np ) ∈ Rnx×(Nt+Np+1) together with the control function uq and
a period parameter T ∈ R≥0 can be interpreted as (possibly discontinuous) state trajectory
x(s,q,T ) : T →Rnx that is defined as

x(s,q,T )(τ) :=
{

x(τ; s j , q j , p,T, t j ) for τ ∈ [t j , t j+1),

sNt+Np for τ= ct +1.
(6.19)

Here, the expression x(τ; s j , q j , p,T, t j ) stands for the solution of the IVP ẋ = T F (x, q j , p) at
time τ with initial value s j at time t j , see Remark 5.3.

The triple (s, q,T ) ∈Rnx×(Nt+Np+1) ×Rnu×(Nt+Np ) ×R is then identified with the triple
(x(s,q,T ),uq ,T ) ∈ ACnx (T )× Lnu∞ (T )×R and the NLP will have Nx := nx (Nt + Np + 1) opti-
mization variables corresponding to the state variables s j ,Nu := nu(Nt + Np ) optimization
variables corresponding to the control parametrization variables q j and one optimization
variable corresponding to the period variable T .

Constraint Discretization
The only difference to the fixed period case in the constraint discretization is that the match-
ing conditions will also depend on the variable T that corresponds to the period variable.

For the state trajectory x(s,q,T ) to be continuous at the shooting node t j , the shooting con-
tinuity conditions

x(t j+1; s j , q j , p,T, t j ) = s j+1 (6.20)
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has to be satisfied for j = 0, . . . , Nt +Np −1. Since the system is assumed to be autonomous
and t j+1 − t j = 1/Np , condition (6.20) is equivalent to

x(1/Np ; s j , q j , p,T,0) = s j+1. (6.21)

Beside on s j , s j+1 and q j , this condition additionally depends on the optimization variable
T . By introducing the function M :Rnx ×Rnu ×R→Rnx defined as
M(s j , q j ,T ) := x(1/Np ; s j , q j , p,T,0), the shooting-continuity conditions then translate to
the following NLP-constraints:

M(s j , q j ,T )− s j+1 = 0 for j = 0, . . . , Nt +Np −1. (6.22)

Objective Function Discretization
For calculating the objective value of the triple (x(s,q,T ),uq ,T ) ∈ACnx (T )×Lnu∞ (T )×R that is
associated with the NLP-variable (s, q,T ), the different objective contributions are first split
in transient and periodic parts and then further into parts corresponding to the shooting
intervals.

For the periodic part, according to (5.9), we get

Vfree
p,per(s, q,T ) :=ϕfree

p,per(x(s,q,T ),uq ) =
∫ ct+1

ct

`(x(s,q,T )(τ),uq (τ))dτ (6.23)

=
Nt+Np−1∑

j=Nt

∫ t j+1

t j

`(x(τ; s j , q j , p,T, t j ), q j )dτ. (6.24)

With the notation L(s j , q j ,T ) := ∫ 1/Np

0 `(x(τ; s j , q j , p,T,0), q j )dτ, this simplifies to the sum

Vfree
p,per(s, q,T ) =

Nt+Np−1∑
j=Nt

L(s j , q j ,T ). (6.25)

The transient part of the contribution is treated similarly as in the fixed period case.
According to (5.8) the contribution is

Vfree
p,trans(s, q,T ) : =ϕfree

p,trans(x(s,q,T ),uq ,T ) (6.26)

=
∫ ct

0
ρτT |D1 (` (x(τ),u(τ))))|2 dτ+

∫ ct

0
ρτT ‖D1(u)(τ)‖2

Udτ. (6.27)

Both integrals can be split into sums over the shooting intervals of the transient horizon. By
using the functions LT :Rnx ×Rnu ×Rnx ×Rnu ×R→R and U T :Rnu ×Rnu ×R→R, which are
defined as

LT (s, q, s̃, q̃ ,T ) : =
∫ 1/Np

0
ρτT ∣∣`(x(τ; s, q, p,T,0), q)−`(x(τ; s̃, q̃ , p,T,0), q̃)

∣∣2 dτ, (6.28)
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U T (q, q̃ ,T ) : =
∫ 1/Np

0
ρτT ∥∥q − q̃

∥∥2
U

dτ, (6.29)

we can express Vfree
p,trans(s, q,T ) as follows:

Vfree
p,trans(s, q,T ) =

Nt−1∑
j=0

ρ j /Np LT (s j , q j , s j+Np , q j+Np ,T )+
Nt−1∑
j=0

ρ j /Np U T (q j , q j+Np ,T ). (6.30)

Summing up the objective contributions of the transient and the periodic parts, the NLP-
objective function Vfree :RNx ×RNu ×R→R can be written as

Vfree
p (s, q,T ) :=wtransVfree

p,trans(s, q,T )+Vfree
p,per(s, q,T )

=wtrans

(
Nt−1∑
j=0

ρ j /Np LT (s j , q j , s j+Np , q j+Np ,T )+
Nt−1∑
j=0

ρ j /Np U T (q j , q j+Np ,T )

)

+
Nt+Np−1∑

j=Nt

L(s j , q j ,T ).

(6.31)

The Complete NLP
With the above described Multiple Shooting discretization the infinite dimensional OCP
NPfree

p (xi ) is transcribed into the finite dimensional NLPfree
p (xi ).

min
(s,q,T )∈RNx ×RNu ×R

Vfree
p (s, q,T ) (6.32a)

s. t. 0 = s0 −xi , (6.32b)

0 = M(s j , q j ,T )− s j+1, for j = 0, . . . , Nt +Np −1, (6.32c)

0 ≤ c(s j , q j )+ε1nc , for j = 0, . . . , Nt , (6.32d)

0 ≤ c(s j , q j ), for j = Nt +1, . . . , Nt +Np , (6.32e)

0 = sNt − sNt+Np , (6.32f)

T ≤ T ≤ T . (6.32g)

6.1.3 The Time-Periodic Objective Criterion Case
The discretization of the NMPC subproblems arising in the NMPC scheme presented in Sec-
tion 5.2 is done in the same way as we already described in Section 6.1.1. The only difference
is that one has to take into account that the performance criterion ` explicitly depends on
time. This results in the fact that the discretized objective functional also depends on the
initial time of the time horizon of the NMPC subproblem. Since the generalization to this
case is straight-forward, we refrain here from its explicit description.

125



CHAPTER 6 NUMERICAL IMPLEMENTATION

6.1.4 Evaluating the NLP Functions
We discuss how the functions associated with the NLPfix

Tp
(ti , xi ) and NLPfree

p (xi ) are evaluated.

To omit redundant descriptions, we only describe the evaluation process for the problem
NLPfree

p (xi ), as the case of the fixed period problem NLPfix
Tp

(ti , xi ) is essentially the same just

without the additional period variable T .

Constraint Evaluation
The evaluation of the initial value constraint, the discretized path constraints and the peri-
odicity constraint is straight-forward.

For evaluating the shooting-constraint functions M(s j , q j ,T ) = x(1/Np ; s j , q j , p,T,0) of
NLPfree

p (xi ), it is necessary to solve the IVP ẋ(τ) = T fp (x(τ), q j ) with x(0) = s j on [0,1/Np ]. As
we describe below, the evaluation of the shooting constraints is done simultaneously with
the evaluation of the terms Lper(s j , q j ,T ) occurring in the objective function.

Objective Evaluation
For the evaluation of the objective function Vfree

p (s, q,T ), the parts corresponding to the tran-
sient and the periodic part of the time horizon have to be considered separately. We be-
gin with the contribution corresponding to the periodic part of the horizon. To evaluate

this part, terms of the form Lper(s j , q j ,T ) := ∫ 1/Np

0 `(x(τ; s j , q j , p,T,0), q j )dτ have to be com-
puted. This is done by augmenting the auxiliary differential state xaux to the original ODE
and defining ẋaux := `(xaux, q j ). The solution of the (nx +1)-dimensional-dimensional IVP(

ẋ(τ)
ẋaux(τ)

)
=

(
T · fp (x(τ), q j )
`(x(τ), q j )

)
,

(
x(0)

xaux(0)

)
=

(
s j

0

)
(6.33)

at time 1/Np then is used to compute Lper(s j , q j ,T ). Note that from the solution of IVP (6.33)
also the term x(1/Np ; s j , q j , p,T,0) can be extracted. Since the computation of this term any-
way is necessary for evaluating the shooting constraints, it is possible to combine the evalu-
ation of the shooting constraints with the evaluation of the objective function by solving the
IVP (6.33).

For the evaluation of the transient part of the objective, it is necessary to compute the
integrals

LT j (s j , q j , s j+Np , q j+Np ,T ) :=
∫ ( j+1)/Np

j /Np

ρτT ∣∣D1
(
`(x(s,q,T ),uq )

)
(τ)

∣∣2 dτ. (6.34)

The integrand in this expression depends on x(s,q,T )(τ) and on x(s,q,T )(τ+1) because the term
D1

(
`(x(s,q,T ),uq )

)
(τ) is given by

D1
(
`(x(s,q,T ),uq )

)
(τ) = `(x(s,q,T )(τ),uq (τ))−`(x(s,q,T )(τ+1),uq (τ+1)). (6.35)
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Evaluating this difference for τ ∈ [ j /Np , ( j +1)/Np ], for the first summand it holds

`(x(s,q,T )(τ),uq (τ)) = `(x(τ; s j , q j , p,T, j /Np ), q j ) (6.36)

= `(x(τ− j /Np ; s j , q j , p,T,0), q j ) (6.37)

and for the second summand it holds

`(x(s,q,T )(τ+1),uq (τ+1)) = `(x(τ+1; s j+Np , q j+Np , p,T, ( j +Np )/Np ), q j+Np ) (6.38)

= `(x(τ; s j+Np , q j+Np , p,T, j /Np ), q j+Np ) (6.39)

= `(x(τ− j /Np ; s j+Np , q j+Np , p,T,0), q j+Np ) (6.40)

Since the integrand of LT j (s j , q j , s j+Np , q j+Np ,T ) contains the square of the absolute value
of D1

(
`(x(s,q,T ),uq )

)
(τ), the term LT j (s j , q j , s j+Np , q j+Np ,T ) depends on both (s j , q j ) and

(s j+Np , q j+Np ) non-linearly.
For the computation of LT j (s j , q j , s j+Np , q j+Np ,T ) we have to solve the auxiliary (nx+nx+1)-
dimensional IVP ẋ1(τ)

ẋ2(τ)
ẋaux(τ)

=

 T · fp (x1(τ), q j )
T · fp (x2(τ), q j+Np )

ρ(τ+ j /Np )T
∣∣∣`(x1(τ), q j )−`(x2(τ), q j+Np )

∣∣∣2

 ,

 x1(0)
x2(0)

xaux(0)

=
 s j

s j+Np

0

 , (6.41)

on the interval [0,1/Np ]. Then, according to (6.37) and (6.40) it holds

LT j (s j , q j , s j+Np , q j+Np ,T ) = xaux(1/Np ). (6.42)

For a brief description of the numerical methods used for the integration of the IVPs see
Section 6.3.1.

6.2 Interior PointMethods

For our prototypical implementation of the proposed NMPC controller we solve the resulting
NLPs with the software package IPOPT (Wächter and Biegler [117]) which is based on an
Interior Point method ([89, Chapter 19]).

In the following, we briefly describe the main ideas behind the NLP solver IPOPT, for a
more detailled description we refer the reader to [117]. The method is based on a primal-
dual barrier approach. In a first step, the NLP is transformed into a standard form

min
x∈Rn

ϕ(x) (6.43a)

s. t. c(x) = 0, (6.43b)

x ≥ 0. (6.43c)
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This can be accomplished by introducing slack variables, if necessary. Then, for µ ∈ R≥0 the
equality constrained barrier problem

min
x∈Rn

ϕµ(x) :=ϕ(x)+µ
n∑

i=1
ln(x(i )) (6.44a)

s. t. c(x) = 0 (6.44b)

is solved approximately. By considering the barrier problems for a sequence of barrier pa-
rameters µ that converges to zero, the solution of the original problem is approximated with
increasing accuracy. The barrier problems itself are solved by a damped NEWTON method
applied to the primal-dual equations of the barrier problem which can be written in the
form (with diag(x) ∈Rn×n being the diagonal matrix with the entries of x on the diagonal)

∇xϕ(x)+∇x c(x)λ− z = 0 (6.45)

c(x) = 0 (6.46)

diag(x)diag(z)1n −µ1n = 0. (6.47)

For each NEWTON-iterate (xk ,λk , zk ), a search direction (d x
k ,dλ

k ,d z
k ) has to be calculated as

the solution of the (at (xk ,λk , zk )) linearized primal-dual equations of the barrier problem.
This corresponds to the solution of the linear system

∇2
xx

(
ϕ(xk )− c(xk )Tλk

) ∇x c(xk ) −In

∇x c(xk )T 0 0
diag(zk ) 0 diag(xk )

d x
k

dλ
k

d z
k

=−
∇xϕ(xk )+∇x c(xk )λk − zk

c(xk )
diag(xk )diag(yk )1n −µ1n

 .

(6.48)

When the search direction is computed, a step size 0 < αk < 1 is computed using a back-
tracking line-search procedure described in [118] and the next NEWTON-iterate then is de-
fined as (xk+1,λk+1, zk+1) := (xk ,λk , zk )+αk (d x

k ,dλ
k ,d z

k ). The line-search method employed
in IPOPT ensures global convergence of the procedure. When a certain optimality error of
the NEWTON-iterates is below a threshold, a new barrier problem with a smaller µ is consid-
ered (FIACCO-MCCORMICK-approach cf. Fiacco [42]).

6.3 Numerical Integration andDerivative Generation
The process of solving the NLPs arising from the NMPC subproblems requires the evalua-
tion of the objective and constraint functions as well as first- and second-order derivative
information. This information is required for the computation of the search directions for
the NEWTON-step according to (6.48).

As we have seen in section 6.1.4, the NLP objective function as well as the NLP constraints
are computed by solving various IVPs. Therefore numerical methods for solving IVPs as well
as, since our NLP-methods are derivative based, numerical methods for calculating deriva-
tives of IVP solutions (also called sensitivities) are required.
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In particular, for a given IVP,

ẋ(τ) = f (τ, x(τ), q, p), x(ts) = x0, τ ∈ [ts, te], (6.49)

the following data has to be supplied by numerical methods:

• the final state x(te; x0, q, p, ts) ∈Rnx ,

• the derivative of the final state with respect to initial value, controls and parameters

∂x(te; x0, q, p, ts)

∂(x0, q, p)
∈Rnx×(nx+nq+np ), (6.50)

• second-order derivatives (Hessians) of the form

∂2
(
x(te; x0, q, p, ts)Tλ

)
∂(x0, q, p)2 , (6.51)

where λ ∈Rnx corresponds to a multiplier arising in the NLP.

6.3.1 Numerical Integration
The evaluation of the final values x(te; x0, q, p, ts), we use the integrator package SolvIND

with a RUNGE-KUTTA-FEHLBERG method [40, 41].

This method belongs to the class of one-step methods which divides the time horizon
[ts, te] into a discretization grid t0 := ts,< t1 < . . . ,< tN := te and approximates the solution of
the IVP at these grid points according to the iteration formula

ηk+1 := ηk +hkΦ(tk ,hk ,ηk ), hk := tk+1 − tk . (6.52)

The generating function Φ :R×R×Rnx →Rnx for a RUNGE-KUTTA-method with s ∈N stages
is defined as

Φ(t ,h,η) :=
s∑

i=1
ci ki , ki := f

(
t +αi h,η+h

s∑
j=1

Bi j k j , q, p

)
(6.53)

with suitable chosen coefficients α,c ∈Rs and B ∈Rs×s . The method we employ is of explicit
type, since it uses a matrix B whose entries Bi j vanish for j ≥ i . This means that the definition
of ki in (6.53) is well posed since the right-hand side of the equation only depends on k j with
j < i , i.e., ki can be calculated explicitly using this formula.

With appropriately chosen coefficients c,α,B and number of stages s, the method is con-
sistent and stable, see e.g. [108].

Since the choice of the discretization grid is of great importance for the accuracy of the ob-
tained approximations ηk , the integrator package SolvIND employs an adaptive discretiza-
tion scheme based on estimates of the local truncation error.
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6.3.2 Derivative Generation
There are several ways how derivatives of a function f can be calculated numerically. First,
there is the possibility to calculate the derivative of F symbolically “by hand”. This has the
advantage of high accuracy, but it requires differentiation by the user, which is error-prone
especially if the function F is complicated.

Another possibility is differentiation by the method of finite differences, where the deriva-
tive in the direction v is approximated by the quotient F ′(x) · v ≈ F (x+hv)−F (x)

h with a suffi-
ciently small number h ∈ R>0. This method is very easy to implement but it suffers from
amplification of rounding errors if h is chosen too small.

For efficient numerical derivative generation, especially in the context of derivatives of
IVP-solutions, the integrator package SolvIND uses a different method based on the prin-
ciple of Internal Numerical Differentiation (IND) (Bock [18]) in combination with tech-
niques of Automatic Differentiation (AD) (Speelpenning [107], Griewank [49]) and TAYLOR1-
coefficient propagation (Bischof et al. [13]). Because of their importance in the efficient com-
putation of derivatives, we briefly review the basic ideas behind these concepts.

AD and Taylor Coefficient Propagation
AD is a technique for evaluating derivatives for a large class of functions F : Rnx → Rnm that
can be expressed as a sequence of elementary operations such as addition, multiplication,
subtraction, division, sin, exp, etc. The computational evaluation of such functions is done
by constructing an evaluation graph with elementary operations at the nodes and interme-
diate results at the edges.

The idea in AD is that the computational graph can also be used to compute the derivatives
by repeatedly making use of the chain rule. We illustrate this with the example of a function
F that is just the composition of various other functions:

F = Fn ◦Fn−1 ◦ . . .◦F1. (6.54)

ForwardMode
The forward mode of AD can be used to compute directional derivatives of the form
∂F
∂x (x) ·v ∈Rnm for a direction v ∈Rnx without the need to compute the whole JACOBIAN 2. By
introducing the intermediate results wk defined recursively as wk+1 := Fk (wk ) and w1 = x

and the intermediate derivatives wk := ∂Fk
∂wk

(wk ), the chain rule can be used to calculate

∂F

∂x
(x) · v = wn ·wn−1 . . . w1 · v. (6.55)

This expression can be evaluated simultaneously to traversing the evaluation graph of F (x) =
Fn(Fn−1(. . . (F1(x)))) in the forward direction (hence the name forward mode), i.e., in the di-

1Brook Taylor 1685 - 1731
2Carl Gustav Jacob Jacobi 1804 - 1851
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rection of increasing indices. The complete JACOBIAN can be calculated by applying the for-
ward mode to a set of basis vectors of Rnx .

ReverseMode
The reverse mode of AD is also based on the chain rule, but it is based on traversing the
evaluation graph in the direction of decreasing indices, i.e., in the opposite direction of the
evaluation order (hence the name reverse mode). It was first proposed in the master-thesis

Linnainmaa [78] and can be used to calculate adjoint derivatives of the form ∂(aT ·F )
∂x (x) ∈Rnm

for adjoint directions a ∈Rnx . Applying the chain rule

∂(aT ·F )

∂x
(x) = aT ∂Fn

∂wn
(wn)◦ . . .◦ ∂F1

∂w1
(w1) (6.56)

and traversing from the outside to the inside gives rise to the following rule in which the

adjoint direction a is propagated backwards according to aT
k−1 := aT

k
∂Fk
∂wk

(wk ) for k = n, . . . ,2

until the final value aT
1 = ∂(aT ·F )

∂x (x) is reached. Since the intermediate results wk are neces-
sary for performing the backward propagation step, it is necessary to calculate these results
beforehand and save them on tape or use a checkpointing strategy (see Griewank [48]) to
reduce the necessary amount of memory.

Despite this additional memory requirements, the reverse mode can be more efficient
compared to the forward mode of AD especially if nm ¿ nx . For example, the calculation
of the full JACOBIAN J = ∂F

∂x (x) with the forward mode requires one forward sweep for each
column J ·ei of the JACOBIAN, i.e. nx forward sweeps. Compared to this, in the reverse mode
the JACOBIAN is built row by row, requiring one backward sweep per row, i.e. nm backward
sweeps.

The computational cost of one (forward or reverse) sweep is proportional to the compu-
tational cost of evaluating the function F itself.

TAYLOR-Coefficient Propagation
The fact that most elementary functions are locally analytic implies that they can be rep-
resented by local TAYLOR-series. The TAYLOR-coefficients can be used to calculate deriva-
tives (also of higher order) since the derivatives can be extracted from the coefficients of
the TAYLOR-polynomials. As an example, the directional derivative ∂F

∂x (x) · v can simply be
extracted as the degree one coefficient of the TAYLOR-expansion of t 7→ F (x+ t ·v). The tech-
niques of forward and reverse mode AD can be transferred and applied to truncated TAYLOR-
expansions instead of directional or adjoint derivatives to calculate derivatives or arbitrary
order efficiently. Instead of directions, TAYLOR-coefficients are propagated along the evalu-
ation graph.

For a detailed overview on evaluating derivatives using AD-techniques in combination
with TAYLOR-coefficients we refer the reader to Griewank [49] and Bischof et al. [13].
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External Numerical Differentiation and Internal Numerical Differentiation
In order to compute sensitivities of IVP solutions, it is again possible to consider the inte-
gration procedure described in Section 6.3.1 as black-box and apply a finite-difference ap-
proximation. This method is referred to as External Numerical Differentiation (END) and
suffers from rounding errors and high computational costs for applying the integration rou-
tine multiple times with perturbed initial values and parameters.
Therefore it is desirable to interpret the integration procedure as a sequence of elementary
operations and apply techniques of AD. However, the adaptive discretization schemes that
ensure a certain accuracy of the integration procedure are based on conditional statements
which are not differentiable at some points and thus make it impossible to apply AD.

The remedy here is to first apply the integration procedure with the adaptive discretization
scheme and then, for applying AD, freeze the adaptive discretization scheme and treat it as a
fixed grid. This results in an integration scheme that can indeed be interpreted as a sequence
of smooth elementary operations and thus AD can be applied. This principle is referred to as
the principle of Internal Numerical Differentiation (IND) and was introduced in Bock [18, 19]
and is used in the integrator package SolvIND.

6.4 Summary
In this chapter we gave an overview of the numerical implementation of the proposed NMPC
schemes. We gave a detailed description of the transcription of the infinite dimensional
OCPs to finite dimensional NLPs via the direct multiple shooting method and a brief descrip-
tion of the NLP solution algorithm which is based on an interior point method. Furthermore
we described the numerical methods behind the evaluation and derivative generation for
the NLP functions.
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Chapter 7
Examples with Time-Periodic Objective
In this chapter we apply the controller presented in Section 5.2 to several examples with
time-periodic performance criteria.

The first example is a toy-problem modelling the control of a hydrostorage power plant.
The second example is a system of two connected water tanks with water flowing from tank
1 to tank 2 and a controllable inflow to tank 1. The last example is a system of 4 connected
water tanks.

7.1 Hydrostorage Power Plant
The hydrostorage power plant example is a toy example modelling a system that can be used
to convert potential energy of water stored in a elevated reservoir into electricity by using a
generator. The upper water reservoir can be filled using a pump. The objective is to maxi-
mize the economic profit under the assumption that the electricity price is periodically vary-
ing with a period of Tp = 24h.

7.1.1 Model Equations and Performance Criterion
The system is described using an ODE with the water level x1 ∈ R of the upper reservoir as
state variable and two control variables uin,uout ∈ R representing the flow rates of the in-
flow/outflow pump at a given time instant. The higher the water level in the upper reservoir,
the more power is needed to pump more water into the reservoir and the more power can be
generated by letting water flow out through the generator.
If A ∈R denotes the cross-surface of the upper water reservoir, the system is described by the
following ODE

ẋ1(t ) = f

(
x1(t ),

(
uin(t )

uout(t )

))
:= uin(t )−uout(t )

ρwater A
. (7.1)

The (dimensionless) electricity price is assumed to vary periodically according to the for-
mula:

p(t ) := 0.1 · (3.6 ·106)−1 · (sin(tπ/Tp)2 +1) [J−1]. (7.2)

This corresponds to a electricity price between 0.1 and 0.2 per [kWh]. The performance cri-
terion is the electric power of the pump minus the electric power at the generator times the
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x1

H uin uout

Pump Generator

Figure 7.1: Illustration of the hydrostorage power plant.

(dimensionless) electricity price

`

(
t , x1,

(
uin

uout

))
:= p(t )︸︷︷︸

[1/J]

(uin −uout)g (x1 +H)︸ ︷︷ ︸
[J/h]

. (7.3)

It measures the economic performance of the system at at given time/state (the sign of ` is
negative when the system generates electricity).

The objective of the system is to maximize the economic revenue while satisfying the op-
erational constraints of the system. The constraints are given in form of simple bound con-
straints on the water level in the upper reservoir and the in-/outflow rates. The parameters
describing the model with the operational constraints can be found in Table 7.1. For sim-
plicity we assume the water density to be 1kg/l.

State Description Lower bound Upper bound
x1 Water level reservoir 0.1m 3m
Control Description Lower bound Upper bound
uin Flow rate inflow-pump 0l/h 20 ·106l/h
uout Flow rate generator 0l/h 40 ·106l/h
Parameter Description Value
g Gravitational acceleration 9.81m/s2

A Cross section of reservoir 100,000m2

H Height of reservoir above pump/generator 250m
ρwater Water density 1000kg/m3

Table 7.1: State and control bounds and parameters of the hydrostorage system.
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7.1.2 Controller Setup

We consider three different scenarios for the hydrostorage system. The scenarios are dis-
tinguished by different initial states. In the first scenario we consider the initial state where
the water level in the reservoir is close to the lower bounds, in the second scenario we con-
sider the initial state where the water level in the reservoir is close to the upper bounds and
in the third scenario we consider the initial state that corresponds to the optimal periodic
operation. To each of the scenarios we apply the NMPC controller presented in Section 5.2
based on the NMPC subproblems of the form NLPfix,`

24 (ti , xi ) with sampling time intervals
corresponding to 1h. We test various controller configurations differing in the length of the
transient horizon Tt. As transient weight we use wtrans = 1. The weighted norm for the con-
trol self-tracking term is defined as

‖u‖U := 10−7(|uin|+ |uout|). (7.4)

All controllers use the discount factor ρ = 1.01 and the transient part of the horizon is re-
laxed to 0 ≤ c(x,u)+ε with ε= 10−6 (see constraint (6.16d) in NLPfix,`

24 (ti , xi ).

7.1.3 Results of NMPC Simulations

All NMPC simulations are run for 120h. To evaluate the economic performance for a gener-
ated closed-loop trajectory (xµ,uµ), we consider the moving average output

AO(t , xµ,uµ) := 1

Tp

∫ t+Tp

t
`(τ, xµ(τ),uµ(τ))dτ (7.5)

and compare the behavior of t 7→ AO(t , xµ,uµ) with the value of the optimal average output

φ`,∗
24,per ≈−5.57 ·102[h−1] (which we calculate in Section 7.1.4).

Initial Value onOptimal Periodic Trajectory

The initial value at time t0 = 0 corresponding to the optimal periodic solution depicted in
Figure 7.5 is x0 = 1.6m. We apply NMPC controllers with the given data and transient hori-
zon lengths of 12h and 24 h. The results for the controller with Tt = 12h are shown in Figure
7.2. The closed-loop state trajectory stays on the optimal periodic solution and the eco-
nomic average output corresponds to the optimal periodic average output. The controller
with Tt = 24h performed equally good and also shows no deviation from the optimal peri-
odic deviation.

135



CHAPTER 7 EXAMPLESWITH TIME-PERIODICOBJECTIVE

a) Closed-loop state trajectory and moving average out-
put for Tt = 12h.

b) Closed-loop control profile for Tt = 12h.

Figure 7.2:NMPC simulations with initial value on the optimal periodic trajectory and tran-
sient horizon length Tt = 12h. No deviation to the optimal periodic behavior can be observed
and the economic average output is equal to φ`,∗

24,per.

Initial Value close to Lower Bounds

In this scenario we choose an initial value at time t0 = 0 close to the lower bounds of the
system x0 = 0.2m. We apply NMPC controllers with transient horizon lengths of 12h and 24
h. The results are shown in Figure 7.3.
Both controllers, the one with transient horizon length 12h and the one with horizon length
24h gradually fill up the water reservoir by pumping in water at times when the electricity
price p is low. Both controllers reach the water level that corresponds to the optimal peri-
odic trajectory after less then 20 h. The controllers sacrifice economic performance in the
beginning to reach the optimal periodic operation.

Initial Value Close to Upper Bounds

In this scenario we choose an initial value at time t0 = 0 close to the upper bounds of the
system x0 = 2.9m. We apply NMPC controllers with transient horizon lengths of 12h and
24h. The results are shown in Figure 7.4.
Both controllers, the one with transient horizon length 12h and the one with horizon length
24h reach the water level that corresponds to the optimal periodic trajectory in less then 10h.
The controllers exploit the high water level in the beginning (no water needs to be pumped
in the reservoir, which saves electricity).
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a) Closed-loop state trajectory and moving average output for
Tt = 12h.

b) Closed-loop control profile for Tt =
12h.

c) Closed-loop state trajectory and moving average output for
Tt = 24h.

d) Closed-loop control profile for Tt =
24h.

Figure 7.3:NMPC simulations with initial value close to lower bound and transient horizon
length Tt = 12h (upper plots) respectively Tt = 24h (lower plots). Both controllers steer the
system back to the optimal periodic behavior after an initial phase of filling up the water
reservoir. After 20h, no deviation to the optimal periodic trajectory can be observed any-
more.
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a) Closed-loop state trajectory and moving average output for
Tt = 12h.

b) Closed-loop control profile for Tt =
12h.

c) Closed-loop state trajectory and moving average output for
Tt = 24h.

d) Closed-loop control profile for Tt =
24h.

Figure 7.4:NMPC simulations with initial value close to upper bound and transient horizon
length Tt = 12h (upper plots) respectively Tt = 24h (lower plots). Both controllers steer the
system back to the optimal periodic behavior after an initial phase of letting water flow out
from the water reservoir. This results in an economic performance better then φ`,∗

24,per in the
beginning. After around 10h, no deviation to the optimal periodic trajectory can be observed
anymore.

138



EXAMPLESWITH TIME-PERIODICOBJECTIVE CHAPTER 7

7.1.4 Optimal Periodic Operation
Although it is not necessary for the NMPC controller, for comparison reasons we determine
the optimal Tp-periodic trajectory. We solve the periodic OCP Perfix,`

24 (5.41) using a multiple
shooting discretization with uniform shooting interval length of 1 time-unit, i.e. 24 shooting
intervals.
The solution (xper,uper) of the discretized OCP Perfix,`

24 with state trajectory and the corre-
sponding control profile is depicted in Figure 7.5 and has an average output of

φ`,∗
24,per ≈−5.57 ·102[h−1]. (7.6)

Figure 7.5: Optimal periodic operation of the hydrostorage system. On the left the optimal
periodic water level development, on the right the optimal periodic control input. The water
is pumped up when the electricity price is low and it is flowing out through the generator
when the electricity price is high.

7.2 Double-Tank System
The double-tank example is a system of a two connected water tanks with water flowing from
the first tank into the second. Apart from the connection of the tanks, the water flows out of
the second tank and there is a controllable inflow uin at the first tank. This example is a
slightly modified version of the double-tank example in [63] where it is used as a benchmark
problem for an economically oriented NMPC scheme with periodic constraints.
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7.2.1 Model Equations and Performance Criterion
The states of the system are the water levels x1, x2 in each tank. The outflow-rate of each tank
is proportional to the square-root of the water level and the outflow rate of the second tank
is subject to a lower bound.

The system can be described by the ODE(
ẋ1(t )
ẋ2(t )

)
= f

((
x1(t )
x2(t )

)
,uin

)
:=

(
0.16uin(t )−0.4

p
x1(t )

0.4(
p

x1(t )−p
x2(t ))

)
. (7.7)

Note that the right-hand side f is not differentiable for water levels 0, however, on the com-
pact set of feasible states and controls defined by the simple bounds (see Table 7.2), the right-
hand side is differentiable and LIPSCHITZ continuous. For this reason the simple bound are
slightly moved away from 0 The performance criterion ` of the system is the inflow-rate uin

multiplied with a time-dependent price p:

`(t ,uin) := p(t )uin. (7.8)

The price p is sinusoidally varying with a period of Tp = 10:

p(t ) := sin(tπ/Tp)2 +0.1. (7.9)

The task is to operate the system such that the average output with respect to the perfor-
mance criterion ` is minimized. As the example is a toy-example, all states, controls and
other parameters are dimensionless. The system is subject to constraints in the form of sim-
ple bounds on the water levels in the tanks and the inflow control that have to be satisfied
during operation, see Table 7.2.

x1

uin

x2

Figure 7.6: The setup of the two
water tanks of the double-tank
system.

State Description Lower
Bound

Upper
Bound

x1 Water level tank 1 0.001 3
x2 Water level tank 2 0.16 3
Control Description Lower

Bound
Upper
Bound

uin Water Inflow Tank 1 0 5

Table 7.2: State and control bounds of the double-
tank system.

7.2.2 Controller Setup
We consider three different scenarios for the double-tank system. The scenarios are distin-
guished by different initial states. In the first scenario we consider the initial state where the
water level in both water tanks is close to the lower bounds, in the second scenario we con-
sider the initial state where the water level in both water tanks is close to the upper bounds
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and in the third scenario we consider the initial state that corresponds to the optimal peri-
odic operation. To each of the scenarios we apply the NMPC controller presented in Section
5.2 based on the NMPC subproblems of the form NLPfix,`

10 (ti , xi ) with sampling time inter-
vals corresponding to 1 time step. We test various controller configurations differing in the
length of the transient horizon Tt. As transient weight we use wtrans = 1. The weighted norm
for the control self-tracking term is defined as

‖u‖U := 0.1 · |uin| . (7.10)

All controllers use the discount factor ρ = 1.01. The path constraint in the transient part of
the horizon is relaxed to 0 ≤ c(x,u)+ε1nc with ε= 10−6 (constraint (6.16d) in NLPfix,`

10 (ti , xi )).

7.2.3 Results of NMPC Simulations
All NMPC simulations are run for 100 time units. To evaluate the economic performance for
a generated closed-loop trajectory (xµ,uµ), we consider the moving average output

AO(t , xµ,uµ) := 1

Tp

∫ t+Tp

t
`(τ, xµ(τ),uµ(τ))dτ (7.11)

and compare the behavior of t 7→ AO(t , xµ,uµ) with the value of the optimal average output

φ`,∗
10,per ≈ 0.3264 (which we calculate in Section 7.2.4).

Initial Value onOptimal Periodic Trajectory
The initial value at time t0 = 0 corresponding to the optimal periodic solution depicted in
Figure 7.10 is x0 = (0.7954,0.2728)T . We apply NMPC controllers with the given data and
transient horizon lengths of 10 and 20 time units. The results for are shown in Figure 7.7.
In both NMPC simulations, the controller keeps the water levels in the two tanks on the opti-
mal periodic trajectory and the moving average output corresponds to the optimal periodic
performance.

Initial Value Close to Lower Bounds
In this scenario we choose an initial value at time t0 = 0 close to the lower bounds of the
system x0 = (0.1,0.26)T . We apply NMPC controllers with transient horizon lengths of 10
and 20 time units. The results are shown in Figure 7.8.
In both NMPC simulations, after around 10 time units the water levels of both tanks reach
the water levels corresponding to the optimal periodic trajectories. In the beginning, the
controllers pump a little more water into tank 1 then the reference control uin,per, to reach
the optimal periodic operation. This results in an initially slightly worse average output,
before the optimal periodic average output is reached in around 10 time units.
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a) Closed-loop state trajectory and moving average output for
Tt = 10.

b) Closed-loop control profile for Tt = 10.

c) Closed-loop state trajectory and moving average output for
Tt = 20.

d) Closed-loop control profile for Tt = 20.

Figure 7.7:NMPC simulations for the double-tank example with initial value on optimal pe-
riodic trajectory. Plots (a) and (b) show the results of the controller with Tt = 10 and plots
(c) and (d) show the results of the controller with Tt = 20. No deviation from the optimal
periodic behavior (the dotted lines) can be observed, which shows that the controller keeps
the process within the optimal periodic operation regime.

142



EXAMPLESWITH TIME-PERIODICOBJECTIVE CHAPTER 7

a) Closed-loop state trajectory and moving average output for
Tt = 10.

b) Closed-loop control profile for Tt = 10.

c) Closed-loop state trajectory and moving average output for
Tt = 20.

d) Closed-loop control profile for Tt = 20.

Figure 7.8: NMPC simulations for the double-tank example with initial value close to lower
bounds. Plots (a) and (b) show the results of the controller with Tt = 10 and plots (c) and
(d) show the results of the controller with Tt = 20. In both simulations, the optimal periodic
trajectory is reached after around 10 time units. To reach the optimal periodic operation
regime, in the beginning more water is pumped into the upper tank to which can be seen at
the control profiles in (b) and (d).
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Initial Value Close to Upper Bounds

In this scenario we choose an initial value at time t0 = 0 close to the lower bounds of the
system x0 = (2.9,2.9)T . We again apply NMPC controllers with transient horizon lengths of
10 and 20 time units. The results are shown in Figure 7.9.
In both NMPC simulations, after around 20 time units the water levels of both tanks reach the
water levels corresponding to the optimal periodic trajectories. It can also be observed that,
compared to the closed-loop state trajectories, the moving average performance reaches the
level of the optimal periodic performance significantly faster (in around 10 time units). This
highlights the fact that the transient objective of the NMPC scheme is dominated by the con-
tributionϕfix,`

trans(t , x ,u) (5.37) which measures the deviation from periodicity of the economic
output and is independent of the state-behavior.

7.2.4 Optimal Periodic Operation

For comparison reasons we determine the optimal periodic operation of the double-tank
system. To do so, we solve the periodic OCP Perfix,`

10 (5.41) using a multiple shooting dis-
cretization with uniform shooting interval length of 1 time-unit, i.e. 10 shooting intervals.
The solution (xper,uper) of the discretized OCP Perfix,`

10 with state trajectory and the corre-
sponding control profile is depicted in Figure 7.10 and has an average output of

φ`,∗
10,per ≈ 0.3264. (7.12)

7.3 Four-Tank System
The four-tank system is a laboratory plant consisting of four water tanks that are inter-
connected with pumps and valves and an additional water reservoir. It was introduced
as a control-benchmark model in Johansson [65]. It serves as a tracking Model Predictive
Control (MPC) benchmark problem in [3] and, in the version we consider, as an E-NMPC-
benchmark problem in [77].

7.3.1 Model Equations and Performance Criterion

The system consists of four upper water tanks with x = (x1, x2, x3, x4) denoting the water
levels in each tank and one lower water tank. The lower water tank is connected with the two
upper tanks via pumps which act as controls u = (ua ,ub) in the system (see Figure 7.11).
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a) Closed-loop state trajectory and moving average output for
Tt = 10.

b) Closed-loop control profile for Tt = 10.

c) Closed-loop state trajectory and moving average output for
Tt = 20.

d) Closed-loop control profile for Tt = 20.

Figure 7.9:NMPC simulations for the double-tank example with initial value close to upper
bounds. Plots (a) and (b) show the results of the controller with Tt = 10 and plots (c) and
(d) show the results of the controller with Tt = 20. In both simulations, the optimal periodic
operation regime is reached after around 20 times units. Compared to the closed-loop state
trajectories, the average output of the closed-loop system in both simulations is already on
the level of the optimal periodic performance after 10 time units.
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Figure 7.10: Optimal periodic operation of the double-tank system. As can be seen at the
optimal periodic control uin on the right, water is pumped into the upper water tank during
the period when the electricity price is relatively low.
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1

3 4

2

γa γb

ua ub

Figure 7.11: Illustration of
the four-tank system.

Parameter Value Description
Hmax 1.2m Maximum water level in each tank
Hmin 0.2m Minimum water level in each tank
Qmax 2.5m3/h Maximal flow through each pump
Qmin 0m3/h Minimal flow through each pump
a1 1.341 ·10−4m2 Discharge constant of tank 1
a2 1.533 ·10−4m2 Discharge constant of tank 2
a3 9.322 ·10−5m2 Discharge constant of tank 3
a4 9.061 ·10−5m2 Discharge constant of tank 4
A 0.03m2 Cross section of all tanks
γa 0.3 Parameter of three way valve a
γb 0.4 Parameter of three way valve b

Table 7.3: Parameters of the four-tank system.
The water outflow of each of the upper tanks is proportional to the square-root of its water-

level. Pump A feeds tank 1 and 4 with γa being the relative part of the pumped water flowing
into tank 1 and 1−γa the relative part flowing into tank 4. Pump B feeds tank 2 and 3 with
γb being the relative part of the pumped water flowing into tank 2 and 1−γb the relative part
flowing into tank 3.

The dynamic equations describing the system can be derived using BERNOULLI’S1 law and
mass balance:

ẋ1 =−a1

A

√
2g x1 + a3

A

√
2g x3 + γa

3600A
ua (7.13a)

ẋ2 =−a2

A

√
2g x2 + a4

A

√
2g x4 + γb

3600A
ub (7.13b)

ẋ3 =−a3

A

√
2g x3 + 1−γb

3600A
ub (7.13c)

ẋ4 =−a4

A

√
2g x4 + 1−γa

3600A
ua (7.13d)

Note that right-hand side defined by the above equations is not differentiable for water levels
0. However, on the compact set of feasible states and controls defined by the simple bounds
(see Table 7.3), the right-hand side is differentiable and LIPSCHITZ continuous. The time-
periodic economic performance criterion ` penalizes the use of the pumps and has a term
that is inversely proportional to the combined water level in the lower two tanks. It is defined
as follows

`(t , x,u) = (
u2

a +p(t )u2
b

)+15
2H min

A(x1 +x2)
(7.14)

where the function p is periodic with period Tp = 150s:

p(t ) = 0.15sin

(
2πt

150

)
+1. (7.15)

1Daniel Bernoulli 1700 - 1782
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The task is to operate the system such that the average output with respect to the perfor-
mance criterion ` is minimized.

7.3.2 Controller Setup
We consider three different scenarios for the four-tank system. The scenarios are distin-
guished by different initial states. In the first scenario we consider the initial state where the
water levels in the four-tanks is close to the lower bounds, in the second scenario we consider
the initial state where the water level in the reservoir is close to the upper bounds and in the
third scenario we consider the initial state that was used in [77]. To each of the scenarios we
apply the NMPC controller presented in Section 5.2 based on the NMPC subproblems of the
form NLPfix,`

150 (ti , xi ) with sampling time intervals of 5s. We test various controller configura-
tions differing in the length of the transient horizon Tt. As transient weight we use wtrans = 1.
The weighted norm for the control self-tracking term is defined as

‖u‖U := 0.1 · |ua |+0.1 · |ub | . (7.16)

The length of the transient horizon is chosen as Tt = 150s. All controllers use the discount
factor ρ = 1.01 and the path constraint in the transient part of the horizon is relaxed to 0 ≤
c(x,u)+ε1nc with ε= 10−6 (see constraint (6.16d) in NLPfix,`

150 (ti , xi )).

7.3.3 Results of NMPC Simulations
Each simulation is run for 150 sampling times, which equals 750s. To evaluate the economic
performance for a generated closed-loop trajectory (xµ,uµ), we consider the moving average
output

AO(t , xµ,uµ) := 1

Tp

∫ t+Tp

t
`(τ, xµ(τ),uµ(τ))dτ (7.17)

and compare the behavior of t 7→ AO(t , xµ,uµ) with the optimal periodic performance

φ`,∗
150,per ≈ 11.21 (for the calculation of φ`,∗

150,per see Section 7.3.4).

Initial Value close to Lower Bounds
In this scenario we choose an initial value at time t0 = 0 close to the lower bounds of the
system x0 = (0.3,0.3,0.3,0.3)T . The results are shown in Figure 7.12.
After an initial phase of pumping more water into the tanks compared to the periodic refer-
ence controls ua,per and ub,per, the optimal periodic trajectories are reached at around 500s.
The average performance converges smoothly to the optimal periodic performance after be-
ing worse initially due to the cost of heavier pump usage.

Initial Value Close to Upper Bounds
In this scenario we choose an initial value at time t0 = 0 close to the upper bounds of the
system x0 = (1.1,1.1,1.1,1.1)T . The results are shown in Figure 7.13.
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a) Closed-loop state trajectories.

b) Closed-loop control input and average performance.

Figure 7.12: NMPC simulations with Tt = 150s for the four-tank system with initial values
close to lower bounds. After an initial correction phase where the controller pumps more
water into the tanks to reach the optimal periodic behavior, the optimal periodic regime is
maintained.
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After an initial phase heavy pump usage (first pump b then pump a are at full power see Fig-
ure 7.13b), the optimal periodic trajectories are reached at around 500s. While at t = 100s the
closed-loop states still are far off the optimal periodic trajectory, at the same time the average
performance already reaches the level of the optimal periodic performance. Again, as in the
double-tank example (see Figure 7.9), this highlights the fact that the transient objective of
the NMPC scheme is dominated by the contributionϕfix,`

trans(t , x ,u) (5.37) which measures the
deviation from periodicity of the economic output and is independent of the state-behavior.

Initial Value as in [77]
In this scenario we choose the initial value at time t0 = 0 that was also considered in the
NMPC simulations in [77]: x0 = (0.4594,0.9534,0.4587,0.9521)T . The results are shown in
Figure 7.3.3.
It can be observed that after around 300s the optimal the optimal periodic operation is
reached. In the beginning, the controller applies strong control actions that deviate dras-
tically from the periodic reference controls ua,per and ub,per. As can be seen at the average
performance plot, after producing initially an economic output that is better than the opti-
mal periodic output in the first 100s, the average output of the system reaches the level of
the optimal periodic output after around 300s.

7.3.4 Optimal Periodic Operation
For comparison reasons we determine the optimal periodic operation of the four-tank sys-
tem. To do so, we solve the periodic OCP Perfix,`

150 (5.41) using a multiple shooting discretiza-
tion with uniform shooting interval length of 5s, i.e. 30 shooting intervals.
The solution (xper,uper) of the discretized OCP Perfix,`

150 with state trajectory and the corre-
sponding control profile is depicted in Figure 7.15 and has an average output of

φ`,∗
150,per ≈ 11.21. (7.18)
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a) Closed-loop state trajectories.

b) Closed-loop control input and average performance.

Figure 7.13:NMPC simulations with Tt = 150s for the four-tank with initial values close to the
upper bound. In (b) it can be seen that in an initial phase the controller deviates drastically
from the optimal periodic controls (ua,per,ub,per) to reach the optimal periodic trajectory.
At the time around 100s, while the states are still far off the optimal periodic trajectory, the
average performance gets already quite close to the optimal periodic performance.
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a) Closed-loop state trajectories.

b) Closed-loop control input and average performance.

Figure 7.14:NMPC simulations with Tt = 150s for the four-tank system with initial value as in
[77]. After an initial correction phase where the controller deviates strongly from the optimal
periodic controls, the optimal periodic trajectories are reached after around 200s.
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Figure 7.15:Optimal periodic operation of the four-tank system. The control profiles on the
right plot show that the pump b, whose use is penalized by the time-periodic price p (see
(7.15)), is mainly used in the second half of the period because in this phase the price is
lower.
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Chapter 8
The Powerkite Example
Converting wind-energy into electricity by using flying kites is an idea motivated first in
LOYD [80]. The example we consider in this chapter is a single kite connected via a tether
to an electricity generator at a ground platform. By pulling on the tether, the kite drives the
generator and kinetic energy is transformed into electricity. The generator can also be used
as a motor to pull the kite back.

Such a system has a number of advantages over traditional wind-turbines. Since the
amount of energy that can be extracted out of the wind varies with the cube of the wind
speed, a high flying kite can exploit the stronger winds speeds in higher altitudes. Because
the relative wind speed on a wind-turbine blade is the highest at its fast moving wing-tips,
the tips are the place where most of the energy is harvested of the wind (see Canale et al. [23,
Figure 5]). A kite-wing can be flown in a way that it simulates the tips of a wind turbine but
with a much higher surface. Additionally, such a system does not require a huge mast that
needs to be strong enough to withstand the wind-forces generated by the blades and to sup-
port a heavy generator, nor does it require the same logistical effort for transportation of the
necessary components which becomes more and more of a limiting factor for conventional
wind-turbines (cf. Cotrell et al. [32], Jose et al. [66]).

However, it turns out (see Diehl [35], Hou and Diehl [60]) that the energy-optimal orbits
of such system are not open-loop stable, which means that small disturbances can lead to
entirely different trajectories. These instability problems need to be addressed by suitable
feedback controllers.

In the following, we describe the dynamical model of the system and apply the NMPC
controller based on the subproblems with fixed period NPfix

Tp
(ti , xi ) and the NMPC controller

based on the subproblems with free period NPfree
p (ti , xi ) to the system for different wind-

speed scenarios and compare the results. We compare the results with the optimal periodic
performance.

8.1 Model Description and Performance Criterion
We consider the system of a power generating flying kite as described in [61] and [64]. It
consists of a flying wing connected to a generator/motor on a ground platform via a tether
(see Figure 8.1). The wind blows in the ex direction, where ex is a unit vector. The unit
vector ez points to the sky and together with ey := ez × ex the three vectors ex ,ey ,ez form an
orthonormal right-handed basis of the Euclidean space. For the purpose of describing the
position of the kite wing relative to the ground platform, we use the convenient spherical
coordinates q = (r,Φ,θ). The position of the kite then can be written as P = r er . A local
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ground platform with generator/motor

tether

kite-wing

wind

Figure 8.1: Illustration of the powerkite system.

orthonormal basis in spherical coordinates can be defined as follows

[er ,eΦ,eθ] :=
 sin(θ)cos(Φ) sin(θ)sin(Φ) cos(θ)

−sin(Φ) cos(Φ) 0
−cos(θ)cos(Φ) −cos(θ)sin(Φ) sin(θ)

T

[ex ,ey ,ez ] (8.1)

The wind at the ground level h0 is assumed to blow in ex direction with velocity w0. We
assume that the wind velocity w is height-dependent according the wind shear model [83,
Chapter 2]

w(h) = ln(h)− ln(hr )

ln(h0)− ln(hr )
w0, (8.2)

where hr is the roughness length. The effective wind vector (which is the difference of the
wind vector and the kite velocity vector) can be written as

we = wex − Ṗ = wex − ṙ er − r sin(θ)Φ̇eΦ+ r θ̇eθ (8.3)

By a suitable yaw control the transversal axis et of the kite wing (the unit vector pointing
from the left to the right wingtip) is always perpendicular to the effective wind vector we .
The roll angle Ψ (whose time-derivative Ψ̇ acts as control variable) is the angle between the
unit vector et going from the left to the right wingtip and the unit vector er :

sin(Ψ) = et ·er . (8.4)

The Equations ofMotion
The Lagrangian formalism can be used (see e.g. [61]) to derive the equations of motion for
spherical coordinates q = (r,θ,Φ)T :

q̈ = S−1F /m +apseudo, (8.5)
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where S is a diagonal scaling matrix, apseudo a pseudo-acceleration, m the effective inertial
mass:

S =
1 0 0

0 r sin(θ) 0
0 0 −r

 , (8.6)

apseudo =
−r̈ + r (θ̇2 + sin(θ)2Φ̇2)− ṁ

m ṙ ,
−2(cot(θ)Φ̇θ̇+ ṙ

r Φ̇)− ṁ
m Φ̇

cos(θ)sin(θ)Φ̇2 −2 ṙ
r θ̇− ṁ

m θ̇

 , (8.7)

m = mk +ρcπ

(
dc

2

)2

r︸ ︷︷ ︸
Cable Mass

/3. (8.8)

The total force F acting on the kite is the sum of aerodynamical lift and drag forces

Faer = Flift +Fdrag =
1

2
ρACL ‖we‖2 en + 1

2
ρA(cD,0 +KC 2

L)‖we‖we (8.9)

with en := we
‖we‖ ×et being the direction of the aerodynamical lift, the gravitational force

Fg = (V ρ−m)g

cos(θ)
0

sin(θ)

 , (8.10)

and the friction of the cable

Ff =
cD,Cρdc r

8
‖we‖we . (8.11)

To prevent the cable from coiling up, the winding number η is augmented to the states and
its time derivative is given by

η̇= Φ̇θ̈− θ̇Φ̈
2π(Φ̇2 + θ̇2)

. (8.12)

Altogether the system has 9 differential state variables

x := (r,Φ,θ, ṙ ,Φ̇, θ̇,Ψ,CL ,η)T (8.13)

and 3 control variables

u := (r̈ ,Ψ̇,ĊL)T . (8.14)

Summarizing the equations of motion and the differential equation for the winding number,
the dynamics of the system can be described by a differential equation

ẋ = fw0 (x,u), (8.15)
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with right-hand side fw0 : R9 ×R3 → R9. Here the index w0 indicates the dependency of the
equations with respect to the wind speed w0. The parameters used in the description of the
model-equations can be found in table 8.1. Furthermore, the system is subject to simple
bounds on state and control variables which are listed in Table 8.2.

Parameter Value Description
mk 850kg mass of the kite
A 500m2 effective wing area
V 720m3 volume
cD,0 0.04 aerodynamic drag coefficient
K 0.04 induced drag constant
g 9.81m/s2 gravitational constant
ρ 1.23kg/m3 density of the air
ρc 1450kg/m3 density of the cable
cD,C 1 frictional constant
dc 0.05614m diameter of the cable
w0 10m/s wind velocity at ground level
h0 100m ground level
hr 0.1m roughness length

Table 8.1: Parameters of the powerkite model.

State Description Lower bound Upper bound
r Radial coordinate 1250m 1550m
Φ Azimuthal angle −0.34rad 0.34rad
Θ Polar angle 0.85rad 1.45rad
ṙ Rope velocity −40m/s 15m/s
Φ̇ Azimuthal angle change −0.2rad/s 0.2rad/s
Θ̇ Polar angle change −0.2rad/s 0.2rad/s
Ψ Roll angle −0.29rad 0.29rad
CL Lift coefficient 0.3 1.5
η Winding number −1 1
Control Description Lower bound Upper bound
r̈ Rope acceleration −50m/s2 50m/s2

Ψ̇ Roll angle change −0.065rad/s 0.065rad/s
ĊL Lift coefficient change −3.5/s 3.5/s

Table 8.2: State and control bounds of the powerkite model.

For a more detailed description and derivation of the right-hand side we refer the reader to
[61]. An implementation of the right-hand side for this dynamical system can also be found
as part of the Automatic Control and Dynamic Optimization environment ACADO [62].
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Performance Criterion
The performance criterion ` we consider is the power output generated at the generator of
the ground platform. Note that the generator may also act as a motor to pull the kite back.
The objective is to generate as much average energy-output as possible. Therefore, since we
formulate OCPs as minimization problems we use the convention that ` is negative when
power is generated and positive when power is used.

The power output at the generator depends on the effective inertial mass of the kite and
cable system and of the radial acceleration and velocity (power equals force times velocity):

`(x,u) =−mr̈ ṙ ·S`. (8.16)

We use the scaling factor S` := 10−6 so that ` measures the power in [MW].

8.2 Wind Speed Scenarios
In our NMPC simulations we consider two different wind speed development scenarios,
which we describe in the following.

8.2.1 ConstantWind Speed
As a first simulation scenario we consider the case where the wind speed is fluctuating
around 10m/s with a normally distributed noise with standard deviation 0.1m/s changing
every 5s. The wind speed development is depicted in Figure 8.2a.

8.2.2 ChangingWind Speed
As a second case we consider a simulation scenario where in the first 120s the wind speed
is increasing form 10m/s to 16m/s, staying at 16m/s for 240s, decreasing again to 10m/s for
120s and then staying at 10m/s until the end of the simulation. As in the constant wind speed
scenario, a noise which is normally distributed with standard deviation 0.1m/s changing
every 5s is added. The wind speed development is depicted in Figure 8.4a.

8.3 Controller Setup
We carry out NMPC simulations with the controller with fixed period as well as with the con-
troller for free period. For the free period controller we define the lower and upper bounds
on the period as in problem Perfree

w0
, namely T p = 6s and T p = 30s. To showcase the different

behavior of fixed vs. free period NMPC we choose a period Tp = 11.28s for the fixed period
NMPC controller, which corresponds to the optimal period for wind speed 10m/s.

All scenarios are tested with two different transient horizon lengths Tt = Tp and Tt = 1
2 Tp

for the fixed period controller respectively ct = 1 and ct = 1
2 for the free period controller. The

shooting intervals are chosen such that one period is divided in Np = 20 shooting intervals,
which translates to a discretization of the complete prediction horizon into altogether 30
shooting intervals (Tt = 1

2 Tp or ct = 1
2 ) respectively 40 shooting intervals (Tt = Tp or ct = 1).
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The discount factor is set to ρ = 1.01. As transient weight we use wtrans = 1 and the
weighted norm for the control self-tracking term is defined as

‖u‖U := 0.1 · |r̈ |+10 · ∣∣Ψ̇∣∣+ ∣∣ĊL
∣∣ . (8.17)

The path constraint in the transient part of the horizon is relaxed to 0 ≤ c(x,u)+ε1nc with
ε = 10−6 (see constraint (6.16d) in NLPfix

Tp,w (ti , xi ) or (6.32d) in NLPfree
w (xi )). For the fixed

period controller, the sampling intervals coincide with the shooting intervals (they are of the
uniform length Tp/Np = 11.28s/20 = 0.564s) and for the free period controller the sampling
times are adaptively chosen as described in Section 5.1.4 and 6.1.2, i.e., between T p /Np =
0.3s and T p /Np = 1.5s.

8.4 Results of NMPC Simulations
We discuss the obtained simulation results for the different controllers and wind speed sce-
narios. Each of the NMPC simulations is run for a duration of 1500 samples. As initial value
x0 for all simulations we choose a value on an optimal periodic orbit for wind speed 10m/s
with period Tp = 11.28s. To facilitate the comparison of the fixed and the free period con-
troller, we always present the results of both controllers for the same wind speed scenario
together.

Notes on the Comparison of Results
In the following, we briefly explain how we compare the results for the two different con-
trollers.

As a measure of the current average performance, we consider the moving average per-
formance as we did in the previous chapter. However, since the sampling intervals and the
employed periods are not pre-determined to a fixed value in the case of the free period con-
troller, the definition of the moving average of the produced energy over one period is not as
straightforward as in the case of the fixed period controller cf. (7.5). It does not make sense
to consider a moving average energy output of the form t 7→ 1/T

∫ t+T
t `(xµ(τ),uµ(τ))dτ with

fixed T in this case.

Instead, for each sampling time ti , we consider the average performance over the next
Np = 20 consecutive sampling time intervals:

AO(ti , xµ,uµ) := 1

ti+Np − ti

∫ ti+Np

ti

`(xµ(τ),uµ(τ))dτ. (8.18)

This definition of the moving average output is in accordance with the definition (7.5) we
used for closed-loop trajectories resulting from the fixed period controller as the two defini-
tions coincide for the case of a fixed period.

The development of AO is included in Figures 8.2a, 8.3a, 8.4a and 8.5a as a measure of the
average energy output at a given sampling time.
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In Tables 8.3, 8.4 and 8.5 we compare the performance results for the different NMPC
schemes. Each table considers a fixed time interval and compares the results of the fixed
period controller with the results of the free period controller with transient horizon length
of half a period respectively transient horizon length of a full period.
The considered time intervals are always rounded to the nearest elements of the sampling
time grid of the underlying NMPC scheme. This is the reason why the considered length of
the intervals differs slightly for the fixed period and the free period controller. We state the
actual considered interval length in column 4 and the total produced energy during this time
in column 3. The resulting average performance is stated in column 5. Column 6 contains
the weighted mean value of the moving average output AO, which for an interval [tns , tne ] of
sampling times is defined as

Mean(AO) =
∑ne−1

i=ns
AO(ti , xµ,uµ)(ti+1 − ti )

tne − tns

. (8.19)

We use this value because the simple average performance on an interval of fixed length is
not necessarily a fair comparison measure since the fixed interval not always includes an
integer number of periods.

For comparison purposes we use the optimal periodic average performance for different
wind speeds with fixed and free period, which we calculate at the end of this chapter in Sec-
tion 8.5.

8.4.1 Results for the ConstantWind Speed Scenario
In the constant wind speed scenario, the moving average output of both the fixed period
and free period controllers oscillates around the optimal values φfix,∗

10m/s,11.28s,per, see Figure
8.2a (transient horizon length Tt = 0.5Tp and ct = 0.5) and Figure 8.3a (transient horizon
lengthTt = Tp and ct = 1). The employed period of the free period controller oscillates slightly
below the optimal period for wind speed 10m/s. Table 8.3 shows that both controllers eco-
nomically perform equally well up to a marginal difference (around 0.2% difference of the
total energy produced). This can be explained due to the fact that free period controller
most of the time uses a period that is slightly below the optimal period which seems to be an
effect of the continuously oscillating wind speeds. The table also shows that the controllers
with longer time horizon only very slightly improve the economic performance.

Summarizing the results for the constant wind speed scenario, we reach the conclusion
that both the fixed period and free period controller perform equally well and very close to
the economically optimal periodic performance if the fixed period is appropriately chosen.

8.4.2 Results for the ChangingWind Speed Scenario
In the changing wind speed scenario, the moving average output of the fixed period con-
troller oscillates around the level ofφfix,∗

11.28s,16m/s,per during the strong wind phase and around
the level of φfix,∗

11.28s,10m/s,per during the phase with weaker wind, see Figure 8.4a (transient
horizon length Tt = 0.5Tp and ct = 0.5) and Figure 8.5a (transient horizon lengthTt = Tp and
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a) Employed period of free period controller, wind speed scenario and resulting average performance
for both controllers. The employed period for the free period controller oscillates slightly below the
optimal period length. The moving average output is oscillating around the optimal periodic average
output for wind speed 10m/s. Both the free and fixed period controller perform roughly equally well.

b) Phase portrait for powerkite NMPC simulation. The closed-loop trajectories from both controllers
converge towards the form of a horizontal figure 8.

Figure 8.2:NMPC simulation results for constant wind speed scenario with transient horizon
length Tt = 1

2 Tp respectively ct = 1
2 . Both the fixed and free period controller perform very

similar.
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a) Employed period of free period controller, wind speed scenario and resulting average performance
for both controllers. Very similar behavior as in the case of the shorter transient horizon can be ob-
served (cf. Figure 8.2a).

b) Phase portrait for powerkite NMPC simulation. The closed-loop trajectories from both controllers
converge towards the form of a horizontal figure 8.

Figure 8.3:NMPC simulation results for constant wind speed scenario with transient horizon
length Tt = Tp respectively ct = 1. The results are very similar to the results of the controller
with shorter transient horizon (Figure 8.2).
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transient
horizon
length

controller total en-
ergy [MJ]

considered
time [s]

average
perfor-
mance
[MW]

Mean(AO)
[MW]

Tt = 0.5Tp fixed 4535.68 800.17 5.67 5.68
ct = 0.5 free 4526.29 800.47 5.65 5.66
Tt = Tp fixed 4539.61 800.17 5.67 5.68
ct = 1 free 4528.43 800.35 5.66 5.67

Table 8.3:NMPC simulation results for the constant wind speed scenario for the time interval
[0s,800s]. Both controllers show very similar performance.

transient
horizon
length

controller total en-
ergy [MJ]

considered
time [s]

average
perfor-
mance
[MW]

Mean(AO)
[MW]

Tt = 0.5Tp fixed 4818.22 239.82 20.09 19.99
ct = 0.5 free 4916.47 239.99 20.49 20.46
Tt = Tp fixed 4832.13 239.82 20.15 20.05
ct = 1 free 4917.94 240.06 20.49 20.46

Table 8.4:NMPC simulation results for the varying wind speed scenario for the time interval
[120s,360s] with strong wind (w0 = 16m/s). The free period controller outperforms the fixed
period controller because it always employs the optimal period length.

ct = 1). Similarly, the moving average output of the free period controller oscillates around
the level of φfree,∗

16m/s,per during the strong wind phase and around the level of φfree,∗
10m/s,per during

the phase with weaker wind. The employed period of the free period controller is constantly
adapting to the optimal period corresponding to the current wind speed.

Table 8.4 shows a detailed comparison of the economic performance during the phase
of strong wind. The free period controller performs significantly better during this phase
(around 1.7% for transient horizon length Tt = Tp and ct = 1 and around 2% for transient
horizon length Tt = 0.5Tp and ct = 0.5). This effect can also be observed over the whole
considered time interval, see Table 8.5. The tables also show that the controllers with longer
time horizon only very slightly improve the economic performance.

Summarizing the results from the changing wind speed scenario, we reach the conclusion
that the free period controller can outperform the fixed period controller because it always
employs the optimal period which corresponds to the current operating conditions (in this
case the changing wind speed parameter) of the system.
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a) Employed period of free period controller, wind speed scenario and resulting average performance
for both controllers. The period is adapted according to the current wind speed and converges towards
the optimal period for the phase of strong wind. The moving average output for both controllers os-
cillates around the values of the optimal periodic operation. During the strong wind phase, the free
period controller significantly outperforms the fixed period controller because it can adapt the period
accordingly while the fixed period controller is using a suboptimal period.

b) Phase portrait for powerkite NMPC simulation for both controllers. In both closed-loop trajectories,
two different horizontal figure 8 can be observed. These correspond to the time intervals when the
wind speed remains for a while at 16m/s respectively 10m/s. While the figure 8 are quite similar during
the phase of 10m/s wind speed, they differ noticeably during the strong wind phase.

Figure8.4:NMPC simulation results for changing wind speed scenario with transient horizon
length Tt = 1

2 Tp respectively ct = 1
2 .
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a) Employed period of free period controller, wind speed scenario and resulting average performance
for both controllers. Compared to the results for shorter transient horizon in Figure 8.4a no substantial
differences can be observed.

b) Phase portrait for powerkite NMPC simulation for both controllers. In both closed-loop trajectories,
two different horizontal figure 8 can be observed. These correspond to the time intervals when the
wind speed remains for a while at 16m/s respectively 10m/s.

Figure8.5:NMPC simulation results for changing wind speed scenario with transient horizon
length Tt = Tp respectively ct = 1. Compared to the results for transient horizon length Tt =
0.5Tp respectively ct = 0.5 (cf. Figure 8.4), similar performance can be observed.
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transient
horizon
length

controller total en-
ergy [MJ]

considered
time [s]

average
perfor-
mance
[MW]

Mean(AO)
[MW]

Tt = 0.5Tp fixed 8621.97 650.07 13.26 13.28
ct = 0.5 free 8788.61 650.26 13.52 13.54
Tt = Tp fixed 8637.58 650.07 13.29 13.30
ct = 1 free 8789.18 650.48 13.51 13.53

Table 8.5: NMPC simulation results for the varying wind speed scenario for the time inter-
val [0s,650s]. The free period controller outperforms the fixed period controller because it
always employs the optimal period length.

8.5 Optimal Periodic Operation
To get reference values for the optimal average performance, we calculate the optimal pe-
riodic orbits for the described system for different wind speeds w0 reaching from 10m/s to
16m/s.

Free Period
To determine the optimal periodic operation for a given wind speed w0, we consider the
periodic OCP Perfree

w0
(5.3) with the period bounded between T p = 6s and T p = 30s.

Problem Perfree
w0

is discretized using a Direct Multiple Shooting discretization with a uni-
form shooting grid consisting of 20 shooting intervals and piecewise constant controls. To
get a unique solution of this problem we have to include an initial value constraint for the
winding number 0 = η(0) (note that the objective value of the solution is not affected by this
additional constraint). The results are summarized in Table 8.6. We note that in all of the
solutions we obtained the bound T ≤ T ≤ T (5.3e) is inactive. We denote the optimal period
for wind speed w by T ∗

p,w .

Fixed Period
As we did in the free period case, we determine the optimal periodic operation for the differ-
ent wind speeds w0 between 10m/s and 16m/s with the period fixed to Tp = 11.28s, which
corresponds to the optimal period for the wind speed w0 = 10m/s.

This is done by solving the periodic OCPs Perfix
Tp,w0

which is equivalent to Perfree
w0

, where the
inequality constraint on the period (5.3e) is replaced by the appropriate equality constraint.

The results are summarized together with the results for the free period case in Table 8.6.
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Fixed Period Free Period
w0 [m/s] Average

Output
[MW]

Period [s] Average
Output
[MW]

Period [s] Improvement
[%]

10 5.68 11.28 5.68 11.28 0.00
11 7.35 11.28 7.37 10.55 0.33
12 9.27 11.28 9.35 10.14 0.83
13 11.47 11.28 11.63 9.77 1.33
14 13.99 11.28 14.24 9.43 1.78
15 16.83 11.28 17.20 8.98 2.18
16 20.04 11.28 20.54 8.71 2.51

Table 8.6:Optimal periodic average energy output for different wind speeds. Column 2 and
3 show the results of Perfix

Tp,w0
where the period is fixed to Tp = 11.28s (which is the optimal

period for a wind speed of 10m/s). Column 4 and 5 show the results corresponding to the
problems Perfree

w0
, where the period is included as an optimization variable. In general the av-

erage energy output increases strongly with the wind speed. Additionally, by comparing the
optimal average outputs with fixed and with free period (columns 2 and 4) it can be observed
that there is further potential for improvement by optimizing the period. The optimal period
decreases for increasing wind speed. The relative improvement in percent can be seen the
last column.
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Conclusion andOutlook
In this thesis we have developed a novel approach for the design of economic NMPC schemes
for AOCPs. The approach is based on the observation that periodic solutions exhibit excel-
lent approximation properties to infinite horizon AOCPs. Compared to classical tracking
NMPC or E-NMPC with terminal constraints, our approach only requires a minimal amount
of a priori knowledge of the optimal economic behavior of the system, namely a period.

We have developed a stability theory for our method, which, complementary to the usual
approaches in stability analysis for E-NMPC, does not rely on dissipativity conditions of the
system (which are often hard to verify) but rather on assumptions on controllability and
on the continuous dependence of the NMPC subproblem solutions with respect to the ini-
tial value. As a result of our closed-loop analysis we have shown that the proposed NMPC
scheme achieves an economic performance which is on par with the optimal periodic eco-
nomic performance.

Furthermore, we have developed two extensions of the presented NMPC scheme. The first
one treats the period as an additional optimization variable and is suited for systems with
changing parameters. The second is an adaption for systems with periodic performance
criteria.

All the presented NMPC schemes are implemented within the Matlab NMPC framework
MLI and tested in a number of challenging application examples. The theoretical properties
of the closed-loop analysis have been confirmed in our NMPC simulations and the average
economic performance of the controllers reached the same level as the average performance
of the optimal periodic trajectories.

Real-Time Feasible Efficient Numerical Implementation
As part of the case studies in this work, we have solved the NMPC subproblems using an
interior-point method. We have chosen this approach because of its robustness. However,
for an efficient, real-time feasible implementation other solution algorithms have to be con-
sidered. For example, an SQP method can be used for the iterative solution of the occurring
NLPs. For the transformation of the high-dimensional but due to the Direct Multiple Shoot-
ing discretization sparse QPs into smaller but dense QPs, structure-exploiting condensing
techniques can be used. As the objective function and the periodicity constraint are both
coupled, the standard condensing techniques have to be enhanced to take this additional
structure into account. This can be done by first transforming the OCP into a standard (non-
coupled) OCP as described in Section 1.4.2 and then apply standard techniques.

Furthermore, additional speedup of the calculations can be achieved by using Multi-Level
Iteration (MLI) schemes as presented in [114] and [43]. Based on contraction-criteria for
the SQP-iterations this method can yield considerable computational savings by adaptively
updating the arising matrices and vectors.
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Application to Differential Algebraic Equations (DAEs), Partial Differential Equations (PDEs)
and Switched Systems
As we have pointed out in Chapter 3 the good approximation properties of periodic solutions
do only partially rely on the fact that the system is described by a system of ODEs. Extensions
of the theory in the direction of systems described by DAEs, PDEs or even switched systems
(systems with discontinuities in the right hand side) with state-discontinuities could be con-
sidered [21].

Examples for systems that can be modeled using switches and that exhibit intrinsic pe-
riodic behavior include Simulated Moving Bed [111, 94] and Multicolumn Countercurrent
Solvent Gradient Purification [8] processes.

NMPCwith Adaptive Horizon Lengths
The NMPC controller we have proposed in Section 5.1 works with a time horizon of varying
length since the period is included as a free optimization variable in the OCP. In our numer-
ical case-studies we observed that, especially if the controlled process is close to the optimal
periodic orbit, a controller with relatively short transient horizon can perform equally well
as a controller with a longer transient horizon.

As a shorter time horizon reduces the computational complexity of the NMPC subprob-
lems (and thus the required time for their numerical solution), a controller that reduces the
length of the transient horizon in case the process is close to the optimal periodic promises
further computational speedup.
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Appendix A
Comparison Functions andKL-Bound for LYAPUNOV-Like
Functions
This appendix collects some elementary results concerning comparison functions which are
important in the stability considerations in this thesis. The following elementary result al-
lows that in many cases K functions can additionally be assumed to be smooth.

Lemma A.1 (K and K∞ Functions Have Smooth Lower Bounds )
Every K-function is bounded from below by a smooth K function and every K∞-function is
bounded from below by a smooth K∞ function.

Proof TheK∞ part is part of Clarke et al. [29, Lemma 2.5]. However, since there only a sketch
of the proof is provided, we include a different direct proof using convolutions. Let α ∈ K.
Let γ : R → R≥0 be a smooth function with support in [0,1], positive on (0,1) and strictly
bounded from above by +1. An appropriately chosen bump-function can be used for this
purpose. The convolution α∗γ :R→R≥0 is defined as

α∗γ(t ) :=
∫
R
α(τ)γ(t −τ)dτ. (A.1)

Note that here we interpret α as a function on R by setting α(s) = 0 for all negative s. The
function α∗γ is smooth, because the convolution of a continuous function with a smooth
function is automatically also smooth. It is a lower bound for α because

α∗γ(t ) =
∫
R
α(τ)γ(t −τ)dτ=

∫ t

t−1
α(τ)︸︷︷︸
<α(t )

γ(t −τ)︸ ︷︷ ︸
≤1

dτ≤α(t ). (A.2)

It is strictly increasing on R≥0, as the following calculation for 0 ≤ t1 < t2 shows.

α∗γ(t1) = γ∗α(t1) =
∫
R
γ(τ)α(t1 −τ)dτ=

∫ 1

0
γ(τ)α(t1 −τ)dτ

<
∫ 1

0
γ(τ)α(t2 −τ)dτ=

∫
R
γ(τ)α(t2 −τ)dτ= γ∗α(t2) =α∗γ(t2)

(A.3)

This shows that α∗ γ is a K function. Furthermore, if α is a K∞ function, the property∫ 1
0 γ(τ)dτ> 0 implies that lim

t→∞α∗γ(t ) =∞ holds and therefore α∗γ is also a K∞ function.�
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Lemma A.2 (KL Bound for LYAPUNOV-Like Functions with Continuous Descent Property)
Let α :R≥0 →R≥0 be a K function. Then there exists a KL-function β such that for any t0 ∈R
and x0 ∈R≥0, for any solutionΦ(t ; t0, x0) of the IVP

ẋ(t ) =−α(x(t )) with x(t0) = x0. (A.4)

it holds

Φ(t ; t0, x0) ≤β(x0, t − t0). (A.5)

Proof With Lemma A.1 let α̃ ∈ K be a smooth lower bound of α. It can be shown that the
solution of the IVP

ẋ(t ) =−α̃(x(t )) with x(t0) = x0 (A.6)

is unique, exists for all times (PICARD-LINDELÖF) and is an upper bound for any solution of
the IVP (A.4). Then, according to Khalil [71, Lemma 4.4] there exists a KL functionβwith the
desired property (A.5) for the solutions of the IVP (A.6). The Lemma follows since solutions
of (A.6) are upper bounds for solutions of (A.4) with the same initial value. �

A similar statement holds in a discrete setting.

Lemma A.3 (KL Bound for Discrete LYAPUNOV-Like Functions)
Let α be a K∞ function and let ϕα(t ) := t −α(t ) for t ∈ R≥0. Then there exists a KL function
β such that

ϕk
α(t ) ≤β(t ,k) for all t ∈R≥0 and k ∈N (A.7)

holds (here ϕk
α(t ) is an abbreviation for ϕα ◦ · · · ◦ϕα︸ ︷︷ ︸

k times

(t )).

Proof Since α ∈K∞, there is a smooth (in particular continuously differentiable) K∞ func-
tion α̃ that is a lower bound for α (see Lemma (A.1)). Now consider the function

γ : t 7→
∫ t

0

˙̃α(τ)

2 ˙̃α(τ+1)
dτ. (A.8)

From its definition it is clear that 0 ≤ γ̇(t ) ≤ 0.5 holds for all t ∈ R≥0. This implies that γ is
LIPSCHITZ continuous with constant ≤ 0.5. From the definition it also follows that γ̇(t ) ≤ ˙̃α(t )
holds for all t ∈R≥0 and therefore, since γ(0) = α̃(0) = 0, the function γ is a lower bound for α̃
(and for α). Furthermore γ is strictly increasing because γ̇(t ) > 0 for t > 0. This shows that γ
is a K function. Now define the function ϕγ as follows

ϕγ(t ) := t −γ(t ) for t ∈R≥0. (A.9)

The LIPSCHITZ continuity of γ with constant ≤ 0.5 implies that ϕγ is strictly increasing.
Furthermore, since γ is a lower bound for α, ϕγ is an upper bound for ϕα. It follows that
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ϕk
γ(t ) ≥ ϕk

α(t ) holds for all k ∈ N and t ∈ R≥0. Now define β̃ : (t ,k) 7→ ϕk
γ(t ). For any k ∈ N it

holds that β̃(0,k) = 0 and β̃(·,k) is a strictly increasing function. Furthermore, for any t ∈R≥0

the sequence
(
β̃(t ,k)

)
k∈N is strictly decreasing and converges to zero for k → ∞ (since the

sequence is strictly decreasing it converges to some limit t∗ ∈R, and the continuity ofϕγ im-
plies t∗ =ϕγ(t∗), which means t∗ = 0). Now β̃ has all the properties of a KL function, except
that it is only defined on R≥0 ×N instead of R≥0 ×R≥0. But for each t ∈ R≥0, the sequence
(β̃(t ,k))k∈N can be extended to an L function β(t , ·) by linear interpolation. The resulting
function β is a KL function with all the desired properties. �

Lemma A.4 (Bounds for Functions that Vanish on the Same Sets )
Let K ⊂Rnx be compact and let f , g : K →R≥0 be two continuous functions with the property

f (x) = 0 ⇒ g (x) = 0 (A.10)

and let the set f −1(0) be nonempty. Then there exist K∞-functions α1 and α2 such that

g (x) ≤α1( f (x)) (A.11)

and

α2(g (x)) ≤ f (x) (A.12)

holds for all x ∈ K .

Proof Consider the function d :R≥0 →R≥0 defined by

d(s) := max
x∈ f −1([0,s])

g (x). (A.13)

For any s ≥ 0 the set f −1([0, s]) is a nonempty and compact set since g is continuous and
f −1([0, s]) is a closed subset of the compact set K . Therefore the function d is well defined.
By definition, d is non-decreasing and for any x ∈ K it holds that

g (x) ≤ d( f (x)). (A.14)

We now prove lims→0 d(s) = 0. Let ε > 0 and consider the set Aε := g−1([0,ε)). Since g is
continuous, Aε is open and its complement Ac

ε ⊂ K is closed and thus compact. The function
f therefore has a lower bound δε on Ac

ε which can be chosen greater than 0 because f does
not vanish on Ac

ε. This implies

f (x) ≤ δε⇒ g (x) ≤ ε (A.15)

and thus d(δε) ≤ ε.
By setting

α
(
1/2k

)
:= d

(
1/2k−1

)
·
(
1+1/2k

)
(A.16)
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for k ∈ Z we can define a piecewise affine linear function α : (0,∞) → R≥0 which per con-
struction is strictly increasing, continuous and an upper bound of d . Furthermore, it can be
checked that lim

s→0
α(s) = 0 which shows that α is a K function. Since any K function can be

bounded from above by a K∞ function, this proves the existence of α1.
BecauseK∞ is closed under inversion andα2 :=α−1

1 satisfies (A.12), the proof is finished.�
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Appendix B
Controllability
In this Appendix we discuss controllability properties for affine linear dynamical systems.
The explicit representation of control functions by means of the controllability Gramian al-
lows to prove that the KALMAN rank condition implies both the controllability Assumption
4.3 and the time-controllability Assumption 5.3.

B.1 Controllability for Linear Systems
Consider the affine-linear controlled system

ẋ(t ) = Ax(t )+Bu(t )

with A ∈ Rnx×nx and B ∈ Rnx×nu . For the initial value x(0) = x0 and a control function u ∈
Lnu
∞,loc(R≥0), the solution of the IVP is given by

x(t ) = exp(At )x0 +
∫ t

0
exp(A(t −τ))Bu(τ)dτ. (B.1)

If the controllability Gramian

G(t ) :=
∫ t

0
exp(A(t −τ))BB T exp

(
AT (t −τ)

)
dτ ∈Rnx×nx (B.2)

can be inverted for a given t ∈ R≥0, then the state y ∈ Rnx can be reached from the origin
0 ∈Rnx in time t by applying the control function

uy,t (τ) := B T exp
(

AT (t −τ)
)

G(t )−1 y. (B.3)

Furthermore, it can be shown that KALMAN Rank Condition

rank
([

B |AB | · · · |Anx−1B
])︸ ︷︷ ︸

C (A,B)∈Rnx×nu nx

= nx (B.4)

implies the invertibility of the matrix G(t ) for any t ∈R≥0 (see e.g. Rugh [104, Theorem 9.5]).
The explicit expression of the required control to reach desired state leads to the following

Lemma.
Lemma B.1 (KALMAN Rank Condition Implies Controllability Assumption 4.3)
If the affine-linear system ẋ(t ) = Ax(t )+Bu(t ) satisfies the KALMAN rank condition, then the
controllability Assumption 4.3 holds.
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Proof Let (x̃ , ũ) ∈ACnx ([0,T ])×Lnu∞ ([0,T ]) be a solution of the dynamical system with ini-
tial value x̃(0) = x0 and final value x̃(T ) = xT . Then for any ∆x ∈ Rnx , the control function
u∆x,T ∈ Lnu∞ ([0,T ]) according to (B.3) is well defined because G(T ) is invertible due to the
KALMAN rank condition. With the previous considerations, it is clear that the dynamical sys-
tem with the control function ũ +u∆x,T reaches the state xT +∆x from the initial state x0 in
time T . This induces the mapping Cu : Rnx → Lnu∞ ([0,T ]) with Cu(y) := ũ +uy−xT . With Cx :
Rnx → ACnx ([0,T ]) defined as Cx (y)(τ) := x(τ; x0,Cu(y)) it is straightforward to check that
Cu induces a FRÉCHET-differentiable mapping C := (Cx ,Cu) :Rnx → Lnu∞ ([0,T ])×ACnx ([0,T ])
satisfying all the required properties imposed in Assumption 4.3. �

B.2 Time-Controllability for Linear Systems
For affine linear systems, the KALMAN rank condition (B.4) not only implies the controllabil-
ity Assumption 4.3, but also the stronger time-controllability Assumption 5.3.

Lemma B.2 (KALMAN Rank Condition Implies Time-Controllability Assumption 5.3)
If the dynamical system ẋ(t ) = Ax(t )+Bu(t ) satisfies the KALMAN Rank Condition, then the
time-controllability Assumption 5.3 holds.

Proof For x0 ∈ Rnx and T0 ∈ R>0 let Φ(t ; x0,u,T0) denote the solution at time t of the IVP
ẋ(τ) = T0 (Ax(τ)+Bu(τ)) with initial value x(0) = x0. As we have seen in Lemma B.1, the
KALMAN rank condition implies that the state y ∈Rnx can be reached from the origin in time
T0 ∈R>0 by applying the control function (see equation (B.3))

uy,T0 (τ) = B T exp
(

AT (T0 −τ)
)

G(T0)−1 y (B.5)

to the original dynamical system. This implies that with the control input ũy,T0 := uy,T0 ◦(τ 7→
T0τ) the dynamical system ẋ(τ) = T0 · (Ax(τ)+Bu(τ)) reaches the state y from the origin in
time 1. The induced mapping S :Rnx ×R≥0 → Lnu∞ ([0,1]) defined by S(y, t ) := ũy,t satisfies

Φ(1;0,S(y,T ),T ) = y (B.6)

for all (y,T ) ∈ Rnx ×R>0 and is FRÉCHET-differentiable, which follows from the explicit rep-
resentation of uy,T in (B.5). Let now (x ,u) ∈ACnx ([0,1])×Lnu∞ ([0,1]) be a solution of the IVP

ẋ(τ) = T1 (Ax(τ)+Bu(τ)) , x(0) = x0. (B.7)

By setting C (y,T ) := u +S(y −Φ(1; x0,u,T ),T ) we can define a mapping C that satisfies

• C (x(1),T1) = u,

• Φ(1; x0,C (y,T ),T ) = y for all (y,T ) ∈Rnx ×R>0,

which proves that Assumption 5.3 holds for the affine-linear system ẋ = (Ax +Bu). �

176



Danksagung
An dieser Stelle gebührt mein Dank allen, die mich während der Erstellung dieser Arbeit in
Heidelberg unterstüzt haben. Herausheben möchte ich an dieser Stelle meine Mentoren und
Lehrer der Fakultät für Mathematik und Informatik, Hans Georg Bock, Johannes Schlöder
und Andreas Potschka für deren entgegengebrachtes Vertrauen und die zahlreichen Denk-
anstöße, die wesentlich zum Gelingen dieser Arbeit beigetragen haben.

Ich möchte ich mich bei allen Kollegen der Arbeitsgruppen Simulation und Optimierung,
Model-Based Optimizing Control für die angeneheme und kooperative Arbeitsatmosphäre
der vergangenen Jahre bedanken. Für die Diskussionen im Kontext meiner Arbeit danke ich
besonders Alexander Buchner, Johannes Herold, Christian Kirches, Manuel Kudruss, Huu
Chuong La, Conrad Leidereiter, Andreas Meyer, Andreas Schmidt und María Eléna Suaréz-
Garcés.

Der Graduiertenschule HGS MathComp, die mir unter anderem die Teilnahme an Kon-
ferenzen in Hanoi und Pittsburgh ermöglicht hat, gebührt mein besonderer Dank. Für die
Unterstützung in organisatorischen Angelegenheiten geht mein Dank an die Verwaltung der
Arbeitsgruppe Simulation und Optimierung, Abir Al-Laham, Margret Rothfuß, Anastasia Val-
ter, Anja Vogel und Jeannette Walsch sowie der Verwaltung der HGS, Ria Hillenbrand-Lynott
und Sarah Steinbach. Für die Unterstützung in Promotionsangelegenheiten geht mein Dank
an Dorothea Heukäufer vom Dekanat der Fakultät für Mathematik und Informatik.

Abschliessend möchte ich mich herzlich bei meiner Familie für die kontinuierliche Unter-
stützung und den Rückhalt während meiner Zeit in Heidelberg bedanken.

177



178



Bibliography
[1] K. J. Åström and T. Hägglund. PID controllers. International Society for Measurement

and Control, Research Triangle Park, N.C, 1995. ISBN 1556175167.

[2] S. Ahmad and A. Ambrosetti. A Textbook on Ordinary Differential Equations. Springer
International Publishing, 2015. DOI: 10.1007/978-3-319-16408-3.

[3] I. Alvarado. Model Predictive Control for Tracking Constrained Linear Systems. PhD
thesis, Ph. D. dissertation, Univ. de Sevilla, 2007.
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Nomenclature
List of Symbols
4 End of a definition, remark or assumption
� End of a proof
In Identity matrix in Rn×n

\ Set difference
diag(v) Diagonal matrix with the entries of the vector v on the diagonal

Function Spaces
AB Set of functions f : A → B
C (T ) Space of continuous functions f : T →R

ACn(T ) Space of absolutely continuous functions f : T →Rn

ACn([t0,∞)) Space of locally absolutely continuous functions f : [t0,∞) →Rn

Ln∞(T ) Space of measurable functions f : T →Rn equipped with ‖·‖∞
Ln
∞,loc([t0,∞)) Space of locally measurable functions f : [t0,∞) →Rn equipped with ‖·‖∞

K,K∞,L,KL Comparison functions cf. Definition 1.6

Black Board Symbols
Z,N,N+ Set of the integers, natural numbers including (excluding) zero
R,R≥0,R>0 Set of the real numbers (non-negative, positive) numbers
Rn Space of n-dimensional real-valued vectors
Rn×m Space of n ×m matrices with real entries
1n Vector with entries 1 in Rn

0n Zero Element of Rn

Optimal Control Problems
NPfix

T NMPC subproblem with fixed period T

NPfix,`
T NMPC subproblem with fixed period T for periodic performance criterion `

NPfree
p NMPC subproblem with free period for parameter p

Perfix
T Periodic OCP with period T

Perfix,`
T Periodic OCP with periodic performance criterion ` and period T

Perfree
p Periodic OCP with free period for parameter p
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NMPCObjective Functionals
ϕfix

per Periodic objective functional of problem NPfix
T

ϕfix
trans Transient objective functional of problem NPfix

T
ϕfix Objective functional of problem NPfix

T

ϕfix,`
per Periodic objective functional of problem NPfix,`

T
ϕfix,`

trans Transient objective functional of problem NPfix,`
T

ϕfix,` Objective functional of problem NPfix,`
T

ϕfree
p,per Periodic objective functional of problem NPfree

p

ϕfree
p,trans Transient objective functional of problem NPfree

p

ϕfree
p Objective functional of problem NPfree

p

Objective Functionals for periodic OCPs
φfix

T,per Objective Functional of problem Perfix
T

φ`T,per Objective Functional of problem Perfix,`
T

φfree
p,per Objective Functional of problem Perfree

p

Roman Symbols
x( · ) State trajectory
u( · ) Control trajectory
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List of Acronyms
AD Automatic Differentiation
AOCP Average Output Optimal Control Problem
BVP Boundary Value Problem
CSTR Continuous Stirred-Tank Reactor
DAE Differential Algebraic Equation
E-NMPC Economic Nonlinear Model Predictive Control
END External Numerical Differentiation
IND Internal Numerical Differentiation
IVP Initial Value Problem
LQR Linear Quadratic Regulator
MLI Multi-Level Iteration
MPBVP Multi Point Boundary Value Problem
MPC Model Predictive Control
NLP Nonlinear Program
NMPC Nonlinear Model Predictive Control
OCP Optimal Control Problem
ODE Ordinary Differential Equation
PDE Partial Differential Equation
PID Proportional-Integral-Derivative
QP Quadratic Program
SQP Sequential Quadratic Programming
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