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Experimental application of an automated
alignment correction algorithm for
geological CT imaging: phantom study and
application to sediment cores from cold-
water coral mounds
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Abstract: Background: In computed tomography (CT) quality assurance, alignment of image quality phantoms is
crucial for quantitative and reproducible evaluation and may be improved by alignment correction. Our goal was
to develop an alignment correction algorithm to facilitate geological sampling of sediment cores taken from a
cold-water coral mount.

Methods: An alignment correction algorithm was developed and tested with a CT acquisition at 120 kVp and
150 mAs of an image quality phantom. Random translation (maximum 15 mm) and rotation (maximum 2.86°)
were applied and ground-truth was compared to parameters determined by alignment correction. Furthermore,
mean densities were evaluated in four regions of interest (ROIs) placed in the phantom low-contrast section,
comparing values before and after correction to ground truth. This process was repeated 1000 times. After
validation, alignment correction was applied to CT acquisitions (140 kVp, 570 mAs) of sediment core sections up
to 1 m in length, and sagittal reconstructions were calculated for sampling planning.

Results: In the phantom, average absolute differences between applied and detected parameters after alignment
correction were 0.01 ± 0.06mm (mean ± standard deviation) along the x-axis, 0.11 ± 0.08mm along the y-axis, 0.15 ± 0.07°
around the x-axis, and 0.02 ± 0.02° around the y-axis, respectively. For ROI analysis, differences in densities were
63.12 ± 30.57, 31.38 ± 32.10, 18.27 ± 35.57, and 9.59 ± 26.37 HU before alignment correction and 1.22 ± 1.40, 0.76 ± 0.9,
0.45 ± 0.86, and 0.36 ± 0.48 HU after alignment correction, respectively. For sediment core segments, average absolute
detected parameters were 3.93 ± 2.89mm, 7.21 ± 2.37mm, 0.37 ± 0.33°, and 0.21 ± 0.22°, respectively.

Conclusions: The alignment correction algorithm was successfully evaluated in the phantom and allowed a correct
alignment of sediment core segments, thus aiding in sampling planning. Application to other tasks, like image quality
analysis, seems possible.
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Key points

� Simulated misalignment in an image quality
phantom could be corrected

� Average misalignment after correction was
below a single voxel in phantom

� CT imaging facilitates sampling process of
corals from sediment cores

� Alignment correction can improve accuracy
of geological sampling planning

Background
Geometrically accurate positioning of scanned objects as
well as of patients is important for ensuring adequate
image quality and stability of measured computed tom-
ography (CT) numbers. Furthermore, in order to minim-
ise patient radiation exposure, patients should be
centred in the field of view of the CT system. Even more
so, quantitative evaluations, e.g., of standardised image
quality phantoms, rely on the exact positioning of the
imaged object to produce reproducible and accurate
results [1].
CT imaging becomes increasingly important in geos-

ciences, especially in sedimentological cold-water coral
(CWC) studies [2, 3]. High-resolution CT data not only
provides information about qualitative occurrences of
CWC fragments, but also enables the quantification of vis-
ual observations of CWC skeletons in sediment cores from
clast-size and clast-orientation analyses and helps to fur-
ther understand CWC mound growth, combined with
radiometric age determinations as radiocarbon or 230Th/U
[2]. The qualitative information on coral occurrences in
the sediment core further helps for accurate sampling with
minimal disturbance of sediment and other fragments by
allowing to locate CWC fragments below the surface.
Sampling of sediment cores is usually carried out with a

resolution of up to 1 cm. Coral clast sizes of about 2 cm
may easily disturb sediment during sampling; therefore,
non-destructive information from CT imaging can greatly
improve the sampling process. Based on the coral clast
sizes, the accurate orientation of the CT image data used
for visualisation needs to be better than 0.5 cm. As dis-
cussed above, geometrically exact object positioning is im-
portant for quantitative evaluations based on CT image
data and misalignment of cores may lead to deviations in
the expected and actual location of coral clasts within the
sediment cores.
Therefore, the main goal of this study was the develop-

ment of an alignment correction algorithm to facilitate the
CT image-based analysis and systematic sampling of sedi-
ment cores. A simple alignment correction algorithm was
developed for restoring alignment of the imaged cores
with the main axes of the scanner system and evaluated

using image data of a standard image quality phantom.
The algorithm was subsequently used to provide accurate
sagittal reconstructions for the planning of core sampling.

Methods
Sediment cores
During the recently performed research cruise M125 with
the German research vessel Meteor, a 5.83-m-long sedi-
ment core was retrieved from a 25-m-high CWC mound
in 860-m water depth off the coast of Brazil (station
M125–34-2; 21°56,959′ S, 39°32,031′ W; Fig. 1) [4]. This
CWC-bearing sediment core has the potential to provide
an insight into the origin, growth, and demise of these
mounds as well as to carry out paleoceanographic recon-
structions [5, 6].
On board of the vessel, the sediment core was split into

sections of 1m, but remained unopened as a prerequisite
for subsequent CT imaging at the Clinic of Diagnostic and
Interventional Radiology (DIR) of Heidelberg University
Hospital, Heidelberg, Germany. For paleoceanographic
analysis, the 1-m sections are cut by a diamond saw (blade
thickness 2–3mm) along the longitudinal axes while still
frozen in order to avoid sediment and coral disturbances
(see Fig. 1). As described in detail below, CT acquisitions
of the sediment core sections containing CWCs were
performed for sampling planning. However, despite taking
great care to align cores with the main axes of the CT scan-
ner system using the system’s laser sight, shape, length, and
mechanical deformation of cores may influence accurate
core alignment, thus leading to deviations in expected and
actual location of coral clasts within the sediment cores, as
detailed in Fig. 2. To allow for the calculation of geometric-
ally accurate sagittal reconstructions of CT acquisitions of
sediment core sections containing CWCs, an alignment
correction algorithm was developed for restoring align-
ment of imaged cores with the main axes of the CT scan-
ner’s coordinate system. The developed algorithm was
evaluated for its performance using CT acquisitions of a
standard image quality phantom.

Image acquisition
Phantom
For evaluating the algorithm performance, a CT acquisition
of a standard image quality phantom was used (ConeBeam
Phantom, QRM Quality Assurance in Radiology and Medi-
cine GmbH, Möhrendorf, Germany). The phantom was
scanned at 120 kVp tube potential and 150mAs tube
current-time product with a pitch of 0.95 (SOMATOM
Definition Flash; Siemens Healthineers, Forchheim,
Germany). Images were reconstructed with a soft-tissue
kernel (B30f), a slice thickness/increment of 1mm/1mm,
and an isotropic voxel size of 0.39mm by 0.39mm.
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Sediment cores
Six sediment core sections from cold-water coral mounds
taken during research cruise M125, as described above,
were imaged using the abovementioned CT scanner system
(SOMATOM Definition Flash). The cores consist of sedi-
ment embedded in the core liner. Individual core sections
had a length of up to 1m and a diameter of approximately
12 cm. For image acquisition, core sections were manually
aligned with the main axes of the CT scanner coordinate
system using the integrated laser sight system. Image ac-
quisitions were performed at 140 kVp tube potential and
570mAs tube current-time product with a pitch of 0.4. Im-
ages were reconstructed with iterative reconstruction (AD-
MIRE, Siemens Healthineers) using a sharp kernel (I70h
level 3), a slice thickness/increment of 0.5mm/0.3mm,
and an isotropic voxel size of 0.35mm by 0.35mm.

Alignment correction algorithm
A previously developed algorithm for positioning of re-
gions of interest (ROIs) in image quality phantoms was

adapted for the task of correcting sediment core alignment
[7]. The algorithm was designed to restore alignment of a
scanned cylindrical object with the longitudinal axis of the
scanner as defined by the axes of the image stack (Fig. 3).
The algorithm performs the following steps:

1. Detecting three points on the boundary of the
cylinder by one-dimensional edge detection on
each individual image

2. Calculating circle equation for the detected object
on each individual image, determining centre
position and radius

3. Dividing image stack into segments based on
changes in centre position and radius

4. Determining orientation of the longest segment
based on centre positions relative to the CT
coordinate system

5. Applying alignment correction based on determined
orientation by translating and rotating images in the
inverse direction

Fig. 1 a Retrieval of sediment cores off the shore of Brazil during the research cruise M125. b Example of a sediment core equivalent to those
used in this study, cut in half for sampling of core contents. Samples are only taken from one half of the core, while the other half is archived for
reference (photo courtesy of J. Hoffmann)

Fig. 2 Schematic example of the effect of core misalignment on core sampling planning (coronal plane, not to scale). When calculating sagittal
reconstructions, misalignment might lead to a misrepresentation of sample locations (see also Fig. 6). In consequence, samples might be missed
and other samples might be destroyed during the sampling process
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First, three points on the boundary of the cylindrical
object are determined by one-dimensional edge detec-
tion for each image of the image stack. Edge detection is
performed twice along the x-axis of the reconstructed
images from the outside to the inside of the field of view
(once in each direction). The third line search is
performed along the y-axis, from top-to-bottom, thus
omitting the CT scanner’s patient table (see Fig. 3). The
line search is performed along the central rows of the
image, using a bisection algorithm that minimises the
variance of grey values of the two sections [7].
Second, using the three detected points on each image,

the centre coordinates and radius, x0, y0, and r, defined
by the circle equation, are determined for each image:

x−x0ð Þ2 þ y−y0ð Þ2 ¼ r2 ð1Þ

Third, image segments are defined based on the changes
in centre position and radius between images. Here, a
segment is a continuous number of images, which have a
very similar centre and radius: Images belong to the same
segment, if the relative change in radius between two im-
ages is below 0.5% and if the change in position is below
two voxels in x- and y-direction. Segments shorter than
five images are removed. Ideally, this step will yield one
segment containing the entire core (Fig. 4).
Fourth, the longest segment is chosen as the one most

likely belonging to a major section of the object. A
straight line is fit by regression through the determined

circle centres of the chosen segment (see Fig. 4). Based
on the line equation, the offset relative to the centre of
the reconstructed image stack (and thus the CT coordin-
ate system) and the rotation around x- and y-axis can be
determined.
Fifth, the image is translated and rotated using the

inverse of the determined offset and rotation, using the
“Insight Segmentation and Registration Toolkit” (ITK,
Kitware Inc., Clifton Park, NY, USA) [8].

Phantom evaluation
For evaluating algorithm performance, the CT acquisition
of a standard image quality phantom was randomly ro-
tated and translated, alignment correction was performed,
and the algorithmically determined misalignment was
compared to the ground truth.
Parameters for rotation and translation were randomly

determined according to a uniform distribution. The max-
imum translation along x- and y-axis was up to 15mm
each. The maximum rotation around x- and y-axis was up
to 2.86° each (corresponding to 0.05 rad). For larger trans-
lations and rotations, parts of the phantom may be outside
of the reconstructed field of view, making a successful
alignment correction impossible. Rotations and transla-
tions were applied using the abovementioned tool. For
evaluation, the process was repeated 1000 times, algorith-
mically determined rotation and translation were com-
pared to the ground truth of the generated parameters,
and descriptive statistics were calculated.
Furthermore, four ROIs were placed in the low-contrast

section of the phantom and mean CT numbers of the
ROIs were compared for the initial acquisition, before and
after alignment correction (see Fig. 4).

Statistical analysis
Statistical testing was performed using SAS 9.4 (SAS Insti-
tute, Cary, NC, USA). Differences between detected pa-
rameters and ground truth and differences in measured
CT numbers in ROIs were analysed using a one-sample
two-tailed Student t test. The null hypothesis was that
mean differences were equal to zero, which was rejected
at a significance level of α = 0.05. Normality of data was
assessed visually, using histograms and Q-Q scatterplots.

Application to sediment cores
Images of sediment core sections were corrected for
their alignment using the algorithm described above.
Detected misalignment, given as translation and rota-
tion, was recorded. After alignment correction, sagittal
reconstructions were calculated, showing images in par-
allel to the plane where the core is cut for sampling, thus
allowing for planning of core sampling [7]. Sagittal im-
ages were reconstructed at a slice thickness of 5 mm
with an increment of 5 mm, adding a digital ruler as an

Fig. 3 Image example of an axial CT acquisition of a sediment core,
showing the coordinate system referred to as the CT scanner coordinate
system in the manuscript and illustrating the line search to determine
size and position of the scanned object on axial images. Three points a,
b, and c are determined by a bisection algorithm along the search
direction. Note the distribution of coral fragments in the core and the
gap between sediment and core liner at the top of the image
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overlay to the image. Using the sagittal images, corre-
sponding to a different depth below the surface, CWC
fragments were identified and located, aiming to remove
the samples from the sediment core with minimal destruc-
tive effect on neighbouring CWC fragments and surround-
ing sediment.

Results
Phantom study
Average differences between generated parameters and
the parameters detected by the algorithm, which can be
used to investigate a bias in the difference, were -0.03 ±
0.09 mm for translation along the x-axis, 0.00 ± 0.16 mm
for translation along the y-axis, 0.11 ± 0.11° for rotation
around the x-axis, and 0.00 ± 0.05° for rotation around
the y-axis. Mean differences differ significantly from 0,
except for the difference in the translation along the
y-axis (Table 1).
Average absolute differences between generated param-

eters and the parameters detected by the algorithm, which
can be used to determine the magnitude of the difference,
were 0.01 ± 0.06mm for translation along the x-axis, 0.11
± 0.08mm for translation along the y-axis, 0.15 ± 0.07° for

rotation around the x-axis, and 0.02 ± 0.02° for rotation
around the y-axis (Fig. 5).
For ROI analysis, mean CT numbers measured in the

original dataset were -149.76 HU, -77.54 HU, -48.61 HU,
and -17.00 HU. Averages of ROI measurements before
alignment correction were -86.64 ± 30.57 HU, -46.16 ±
32.10 HU, -30.34 ± 35.57 HU, and -7.41 ± 26.37 HU and
-148.54± 1.40 HU, -76.78 ± 0.90 HU, -48.16 ± 0.86 HU,
and -16.64 ± 0.48 HU after alignment correction, re-
spectively. Compared to the original dataset, the average
difference before alignment correction was 63.12 ± 30.57
HU, 31.38 ± 32.10 HU, 18.27 ± 35.57 HU, and 9.59 ±
26.37 HU, while the average difference after alignment
correction was 1.22 ± 1.40 HU, 0.76 ± 0.9 HU, 0.45 ± 0.86
HU, and 0.36 ± 0.48 HU, respectively (see Fig. 5). Differ-
ences in measured CT numbers between ground truth
and alignment corrected data were statistically signifi-
cant (see Table 1).

Sediment cores
Core alignment could be corrected for all six sediment
cores. Average detected parameters, showing a potential
bias in misalignment, were -0.76 ± 4.82 mm for transla-
tion along the x-axis, -7.21 ± 2.37 mm for translation
along the y-axis, 0.37 ± 0.33° for rotation around the
x-axis, and 0.06 ± 0.30° for rotation around the y-axis
(Table 2).
Average absolute parameters, showing the magnitude

of the misalignment, were 3.93 ± 2.89 mm for translation
along the x-axis, 7.21 ± 2.37 mm for translation along
the y-axis, 0.37 ± 0.33° for rotation around the x-axis,
and 0.21 ± 0.22° for rotation around the y-axis. In com-
parison to average, non-absolute results, translation
along the y-axis was negative for all cores, while rotation
around the x-axis was positive for all cores.
Sagittal reconstructions with corrected alignment of sedi-

ment core sections with the CT scanner’s coordinate system
could be calculated. Samples could successfully be taken

Fig. 4 a Example of a plot of detected x-coordinates of the object centre for valid segments (black line), plotted over slice position, for a sediment core.
The blue line indicating core position in x was fit to the largest segment (grey area). b Example axial CT image of the phantom used for evaluation of the
algorithm, showing the placement of regions of interest (ROIs) in the low-contrast section of the phantom

Table 1 Reported p values from the one-sample Student t test,
comparing determined parameters and measured mean CT
numbers to ground truth

Alignment parameter p value

Translation along x 0.000*

Translation along y 0.952

Rotation around x 0.000*

Rotation around y 0.000*

ROI measurement

ROI 1–4 0.000*

ROI region of interest
*Reported as p < 0.0001 by the evaluation software and thus rounded to 0.000
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from the core segments using CT images as guidance to
identify coral fragments for minimally destructive sampling
(Fig. 6).

Discussion
The main goal of this study was the development of an
alignment correction algorithm to facilitate the CT
image-based analysis and systematic sampling of sediment
cores. Based on the phantom analysis, the presented algo-
rithm is able to restore alignment of scanned cylindrical
objects with the main axes of the CT scanner’s coordinate
system. While statistical analysis shows a significant differ-
ence between original and detected parameters, and the
descriptive statistics show a relatively low minimum and
high maximum (see Fig. 5), the highest average absolute

difference in translation of 0.11 ± 0.08mm was clearly
below the height/width of a single voxel of 0.39mm. For
errors in rotation, the effect on the image will be largest at
the end of the phantom and can consequently be estimated
based on the average angle α = 0.15° and the phantom
length l = 143 mm as follows:

Δx ¼ tanα � l
2
¼ 0:18 mm ð2Þ

That is, the average absolute error based on the rotation
of Δx = 0.18 mm was clearly below the height/width of a
single voxel of 0.39mm. Still, differences in CT numbers
measured in ROIs show the sensitivity of quantitative eval-
uations to misalignment (see Fig. 5). In general, parameters
affecting alignment in the x-direction could be determined
with a higher accuracy than parameters affecting alignment
in the y-direction. This might be based on the fact that of
the three points determined by the algorithm, two are
established by line search in the x-direction.
By applying the alignment correction algorithm to the

CT acquisitions of sediment cores containing CWCs, the
alignment of the cores with the main axes of the CT
scanner’s coordinate system could be restored. Sagittal
reconstructions could be calculated, providing accurate
image data as an aid for the sampling process of the
cores. CWC fragments could successfully be extracted
from the sediment cores for further analysis. In the

Fig. 5 Results of the phantom evaluation of algorithmically determined parameters versus ground truth. Boxes indicate upper and lower quartile and
median, diamonds indicate mean, and maximum and minimum are indicated by whiskers. a Difference in translation. b Difference in rotation. c Difference
in CT numbers measured in regions of interest (ROIs) before correction. d Difference in CT numbers measured in ROIs after correction. Note the different
quantities and units and the different scaling of the y-axes

Table 2 Misalignment algorithmically determined for CT
acquisitions of sediment cores

Translation
along x [mm]

Translation
along y [mm]

Rotation
around x [°]

Rotation
around y [°]

Core 1 -4.92 -4.92 0.05 -0.19

Core 2 -0.35 -7.73 0.31 -0.10

Core 3 -2.46 -8.79 0.54 -0.08

Core 4 8.44 -9.84 1.01 -0.07

Core 5 1.05 -8.79 0.24 0.12

Core 6 -6.33 -3.16 0.09 0.70
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future, further image-based analysis of, e.g., CWC com-
position may be facilitated by the use of dual-energy CT.
Phantom alignment for analysis of standardised image

quality phantoms in CT is often based on careful position-
ing of the phantom using the CT system’s laser sight and
phantoms often provide markings to aid positioning [1].
Automatic post-processing and evaluation software for
image quality phantoms may include some form of align-
ment correction as part of quantitative image analysis,
which can be tailored to the individual phantoms, or man-
ual correction may be performed on the acquired images
[1, 7, 9]. Based on the results presented here, the algo-
rithm could be applied to provide a generalised alignment
correction for CT phantoms of various designs. Applica-
tion of alignment correction could simplify phantom posi-
tioning before the acquisition as well as ROI placement
and evaluation after acquisition, thus improving reprodu-
cibility of the analysis [10].
Some limitations of the presented algorithm and its

evaluation have to be considered. Most importantly, the al-
gorithm is unable to detect and/or correct rotations around
the z-axis. This is a consequence of the fact that the CT im-
ages of the sediment cores do not offer any information on
the rotation of the core. In future acquisitions, this could
be alleviated by placing x-ray dense material (e.g., a metal
wire) along the demarcations for cutting at the end of the
core, which would allow to determine rotation. For image
quality phantoms, where the composition of the phantom
is known a priori, a detection of defining features (e.g.,
low-contrast insets, wires for modulation-transfer-function

determination) and their rotation relative to the CT coord-
inate system is possible [7, 9].
Furthermore, the algorithm is limited by the assump-

tions on the size and position of the object, depending
on a successful line search to determine object position.
However, the misalignment necessary to exceed these
limits is so large that it would either be already apparent
during the image acquisition process or result from
operator errors during image reconstruction. The
same reasoning can be applied to the choice of pa-
rameters used for phantom evaluation, which was
limited in the magnitude of the parameters, which is
a limitation resulting from the field of view of the
original phantom acquisition. In practice, deviations
larger than the ones applied here should easily be vis-
ible during the initial orientation of the phantom
using the CT system’s laser sight.
In conclusion, the algorithm presented here was able

to correct misalignment of scanned sediment cores,
enabling the use of CT images to support core sampling
for further analysis. Future application of the algorithm
as part of the automated quantitative analysis of image
quality phantoms seems to be possible.
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Fig. 6 Examples of sagittal reconstructions of CT acquisitions of sediment cores, which were annotated with a digital ruler (not shown) and used during
geological sampling to identify and locate coral fragments below the surface. a Before alignment correction. b After alignment correction. c Difference
image before/after alignment correction. Areas with high density before correction and low density after correction are shown in white, areas with low
density before correction and high density after correction are shown in black. Note the large differences in sample position in-plane and the smaller
differences out-of-plane. For the effect of alignment correction on the sampling process, consider the coral fragment indicated by the arrow. As can be
observed from the difference image, trying to sample this fragment at the location indicated by the uncorrected image would completely miss
the fragment
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