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Summary 

Mechanotransduction is the ability of living organisms to sense and respond to 

mechanical forces by converting them into a biological response. In mammals, 

mechanotransduction is mediated by specialized sensory neurons which are capable of 

detecting a wide range of mechanical stimuli, relying on the presence 

of mechanotransducer channels on sensory nerve endings. Surprisingly, little is known 

about the properties of mechanotransducers in mammals and thus the mechanisms that 

convert mechanical forces into electrical signals at the peripheral endings of sensory 

neurons and, especially how the cytoskeleton influences it. In previous work, we have 

found that mice lacking the -tubulin acetyltransferase Atat1 display a significant 

decrease in mechanosensitivity across all major fiber types innervating the skin, 

strongly affecting light touch and pain, with no impact on other sensory modalities1. 

We also assessed that such a phenotype does not arise from wide-ranging effects on the 

development, morphology and structure of peripheral sensory neurons but may be 

caused by the lack of a sub-membrane ring of acetylated -tubulin that somehow sets 

the mechanical rigidity of the cells, rendering them more resistant to mechanical 

deformation1. How -tubulin acetylation is capable of setting cellular rigidity remains 

poorly understood. Here, an ultrastructural analysis on sensory nerve endings was 

performed to examine whether the lack of -tubulin acetylation affect microtubules 

(MTs) organization and structure along the sensory neuron axis, from the soma of DRG 

neurons to their peripheral endings. Superresolution microscopy analysis on DRG 

neurons shows that the lack of -tubulin acetylation does not affect the overall MTs 

organization. Moreover, combining high-resolution transmission electron microscopy 

with image analysis, I investigated MT morphology and distribution in the saphenous 



 

nerve from Atat1control and Atat1cKO mice. Our results demonstrated that no major 

differences were observed between MTs from the Atat1cKO compared to the Atat1control 

when minor axis, eccentricity, solidity and perimeter length were compared. These 

results were also confirmed by Cryo-EM observations, suggesting that lack of 

acetylation does not affect MTs ultrastructure in mammals in the absence of mechanical 

stress. Finally, the von Frey assay shows that mice lacking Atat1 not only display a 

profound loss of light touch and pain sensitivity but, in addition, they develop allodynia 

only beginning at day 21 post SNI (spared nerve injury), suggesting that microtubule 

acetylation play an important role in hypersensitivity to mechanical stimuli associated 

with chronic pain. 

 

 



 

Zusammenfassung 

 
Als Mechanotransduktion bezeichnet man die Fähigkeit von lebenden Organismen 

mechanische Kräfte zu erfassen und diese in eine biologische Antwort zu übersetzten. 

In Säugetieren existieren spezialisierte sensorische Neurone, welche an ihren 

sensorischen Nervenenden mechanotransduzierende Kanäle besitzen, mit denen sie 

eine große Bandbreite an mechanischen Stimuli detektieren können. Wie genau die 

Mechanotransduktion in Säugetieren funktioniert ist bis heute nicht bekannt, es gibt 

keine genauen Erkenntnisse darüber wie die mechanischen Kräfte an den Nervenenden 

in elektrische Signale umgewandelt werden und insbesondere ist es unbekannt wie 

dieser Vorgang durch das Zytoskelett beeinflusst wird. Vor kurzem konnte gezeigt 

werden, dass Mäuse mit fehlender -Tubulin Acetyltransferase (Atat1) Aktivität eine 

signifikant geringere Mechanosensitivität in allen wichtigen Fasertypen, welche die 

Haut innervieren, zeigen. Dies führt zu einer geringeren Sensitivität bei der 

Wahrnehmung von leichter Berührung und Schmerz ohne weitere sensorische 

Qualitäten zu beeinflussen1. Wir nehmen damit an, dass der oben beschriebene 

Phänotyp nicht auf grundlegende strukturelle Veränderungen in der Entwicklung/ 

Morphologie von peripheren sensorischen Neuronen zurückzuführen ist, sondern auf 

das Fehlen eines submembranen Ringes des acetylierten -Tubulins, was zu einer 

erhöhten mechanischen Rigidität der Zellen führt und diese resistenter gegenüber 

mechanischer Deformierung macht1. Wie genau dabei -Tubulin die zelluläre Rigidität 

beeinflusst ist noch nicht verstanden. Das Ziel dieser Arbeit ist die sensorischen 

Nervenenden ultrastrukturell vergleichend zu analysieren, um eine mögliche 

Auswirkung des Fehlens der -Tubulin Acetyltransferase Aktivität auf die  

 



 

Organisation und Struktur der Mikrotubuli entlang der sensorischen neuronalen Achse 

von den Somata der Neurone des Spinalganglions bis hin zu deren peripheren 

Endungen zu untersuchen. In einem ersten Ansatz konnten wir mittels superauflösender 

Mikroskopie keinen Unterschied feststellen bezüglich der Organisation der Mikrotubuli 

in den Neuronen des Spinalganglions mit fehlender -Tubulin Acetyltransferase und 

dem Wildtyp. Weiter haben wir die Organisation der Mikrotubuli mittels 

hochauflösender Transmissions Elektronenmikroskopie untersucht. Die Kombination 

von hochauflösender Transmissionselektronenmikroskopie und Bildanalyse 

ermöglichte es uns die Morphologie und Verteilung der Mikrotubuli im Nervus 

Saphenus in Atat1Control und Atat1cKO Mäusen vergleichend zu untersuchen. Unsere 

Ergebnisse zeigen hier keinen relevanten Unterschied in der Struktur und Oragnisation 

der Mikrotubli bezüglich deren Achse, Exentrizität und Solidität. Mit Hilfe von Kryo-

Elektronenmikroskopie konnten die oben genannten Resultate bestätigt  

werden. Das Fehlen der -Tubulin Acetyltransferase Aktivität hat laut unseren 

Ergebnissen keinen Einfluss auf die Ultrastruktur der Mikrotubuli in Säugetierzellen. 

Des Weiteren konnten wir mittels des von Frey assays, welches nach mechanischen 

Stress durch SNI durchgeführt wird, zeigen, dass die -Tubulin Aacetyltransferase 

depletierten Mäuse nicht nur weniger empfindlich gegenüber leichter Berührung und 

Schmerz sind, sondern auch eine Verzögerung im Auftretens der Allodynie zeigen, 

welche hier erst ab Tag 21 auftritt. Daraus können wir schließen, dass die Acetylierung 

der Mikrotubuli scheinbar auch bei der Entwicklung von Hypersensitivität gegenüber 

Schmerzreizen eine Rolle spielt, welche mit chronischen Schmerzen assoziiert ist. 
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1 Introduction 
 

 

1.1 The somatosensory System 

1.1.1 The somatosensory system: a catch-all term to designate a 

multimodal sensory system 

Through our five sensory systems (hearing, olfaction, somatosensation, taste and 

vision) we are presented with an immense range of experiences from the world around 

us, including the sound of our favorite songs, the aroma of roasting coffee,  the pleasure 

of stroking, the taste of good food and the sight of a breathtaking landscape. Each 

system detects specific types of stimuli and transmits this information to the brain, 

where they are processed at a different levels of the central nervous system and 

interpreted finally as sensations of different perceptual characteristics.  

Among the five, only the somatosensory system is multimodal, detecting different types 

of stimuli, including touch (i.e., physical contact with skin) temperature (monitor the 

temperature of the body, external objects and environment), nociception (detection of 

noxious mechanical, thermal, or chemical stimuli that give rise to pain sensation), itch, 

proprioception (information about the position and movement of our body parts through 

the stimulation of muscle and joints) and interoception (information about internal 

organs). 

The ability to detect and discriminate these wide array of stimuli is called 

somatosensation and it is achieved in mammalian skin by multiple specialized sensory 

receptors that relays sensations detected in the periphery and conveys them via sensory 

afferents to the trigeminal ganglia (the sensory function of the trigeminal nerve, which 
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is to provide tactile, proprioceptive, and nociceptive afferents to the face and mouth, 

will not be discussed in this thesis) and dorsal root ganglia, where the cell bodies of the 

first-order neurons are located. Each pseudo-unipolar neuron possesses a bifurcating 

sensory afferent that connects the periphery to the spinal cord and then travel through 

it either in an ipsilateral or a contralateral fashion.  

Broadly, the spinal cord contains the second-order neurons for the fibers carrying pain, 

coarse touch and temperature sensations. The medulla contains the second-order 

neurons for fibers carrying fine touch, position, and vibratory sensations. The fibers are 

then either conveyed to the thalamus, where the third-order neurons are located, or 

conveyed to the cerebellum, carrying information that is not perceived consciously 

(Figure 1). Finally, from the thalamic nucleus, the sensory afferents are projected to the 

cortical sensory areas, where information is integrated and analyzed to direct behavior2. 

 

 

 

Figure 1. Somatosensory pathways. The somatosensory system is a 3-neuron system that relays 

sensations detected in the periphery and conveys them via pathways through the spinal cord, brainstem, 
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and thalamic relay nuclei to the sensory cortex in the parietal lobe. Image from www.physio-

pedia.com/Introduction_to_Neuroanatomy. 

 

 

To initiate a range of sensations, cutaneous sensory neurons display an array of 

anatomical specializations and physiological properties. They can be classified as A, 

A or C fibers based on conduction velocity of action potentials along afferent fibers 

and degree of myelination3,4. A afferents are the fastest due to their large diameters 

and thick myelin sheets. C fibers, which have thin, unmyelinated afferents, are the 

slowest whereas the thinly myelinated A fibers fall between. 

Moreover these receptors can differ in their field size (small or large) and their speeds 

of adaptation (rapidly adapting or slowly adapting). The receptive field size refers to 

the amount of skin area that responds to the stimulus, with smaller areas specializing in 

locating stimuli accurately, while the speed of adaptation refers to how quickly the 

receptor will react to a stimulus and how long that reaction will be sustained after the 

stimulus is removed. 

Sensory neurons can be further designated as mechanoreceptors, thermoreceptors, 

nociceptors, depending on their modality or the sensory stimuli to which they respond. 

They employ a variety of receptor types embedded in the skin, mucous membranes, 

muscles, joints, internal organs, and cardiovascular system to respond to many different 

kinds of stimuli 

In addition, mechanoreceptors are considered rapidly adapting if they adapt to a change 

in stimulus very quickly or slowly adapting if they do not adapt to a change in stimulus 

very quickly4,5. This means that the former can sense right away when the skin is 

touching an object and when it stops touching that object. However, rapidly adapting 

http://www.physio-pedia.com/Introduction_to_Neuroanatomy
http://www.physio-pedia.com/Introduction_to_Neuroanatomy
https://www.boundless.com/psychology/definition/stimulus/
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receptors can't sense the continuation and duration of a stimulus (how long the skin is 

touching an object). These receptors best sense vibrations occurring on or within the 

skin. The latter instead are very good at sensing the continuous pressure of an object 

touching or indenting the skin but are not very good at sensing when the stimulus started 

or ended. 

 

 

1.1.2 Cutaneous sensory receptors 

There are several types of specialized sensory receptors in the skin that can be free 

receptors or encapsulated (Figure 2). Free nerve endings found throughout the body, in 

the epidermis of both glabrous and hairy skin, are characterized by both A- and C-

responses and detect nociception, heat and cold, and light touch.  

A-fibers, such as those innervating slowly adapting, encapsulated Merkel's disks are 

found in the basal layer of the epidermis of fingertips and lips, respond to light touch 

and represent about 25% of the mechanoreceptors of the hand4. 

The Merkel’s disk is part of the Merkel complex together with a specialized Merkel 

cell, which contains synaptic vesicles that appear to release peptides that modulate the 

nerve terminal6. 

Meissner's corpuscles represent about 40% of the sensory innervation of the human 

hand and consist of an elongated capsule made of connective tissue that comprises 

several lamellae of Schwann cells. The center of the capsule contains one or more 

afferent nerve fibers interdigitated between flattened epithelial (laminal) cells. These 

receptors, found in glabrous skin within the dermal papillae just beneath the epidermis 

of the fingers, palms, and soles, are A rapidly adapting, encapsulated receptors 

https://www.ncbi.nlm.nih.gov/books/n/neurosci/A2251/def-item/A2919/
https://www.ncbi.nlm.nih.gov/books/n/neurosci/A2251/def-item/A2855/
https://www.ncbi.nlm.nih.gov/books/n/neurosci/A2251/def-item/A2545/
https://www.ncbi.nlm.nih.gov/books/n/neurosci/A2251/def-item/A2844/
https://www.ncbi.nlm.nih.gov/books/n/neurosci/A2251/def-item/A2263/
https://www.ncbi.nlm.nih.gov/books/n/neurosci/A2251/def-item/A2658/
https://www.ncbi.nlm.nih.gov/books/n/neurosci/A2251/def-item/A2453/
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transducing information about low-frequency vibrations (30–50 Hz) that occur when 

textured objects are moved across the skin4. Consequently, Meissner corpuscles are 

considered to be the discriminative touch system's flutter and movement detecting 

receptors in non-hairy skin. 

Ruffini endings represent about 20% of the receptors in the human hand, are localized 

deep in the dermis as well as in joint ligaments and joint capsules and consist of A 

slowly adapting, encapsulated receptors that detect skin stretch, joint activity, and 

warmth4. The Ruffini corpuscle is cigar-shaped and contains longitudinal strands of 

collagenous fibers that are continuous with the connective tissue of the skin or joint so 

that it can function as cutaneous or proprioceptive receptor depending on its location. 

These elongated, spindle-shaped capsular specializations are oriented with the long axis 

parallel to the stretch lines in skin so that they are particularly sensitive to the cutaneous 

stretching produced by digit or limb movements. 

Hair receptors or lanceolate endings are unencapsulated rapidly adapting nerve endings 

wrapped around the base of hair follicles that detect hair movement and skin deflection.  

The hair follicle afferents enter the follicle to encircle or to form a lattice pattern around 

the hair shaft and most of them are rapidly adapting type (A, A or C- fiber type)5. 

Finally, Pacinian corpuscles are encapsulated, A rapidly adapting receptors located in 

the dermis of glabrous skin, and in the connective tissues of bone, the body wall and 

body cavity. They make up 10–15% of the cutaneous receptors in the hand and detect 

transient pressure, tickle and high-frequency vibration4. 

Indeed the Pacinian corpuscle consists of a single afferent terminal that is surrounded 

by concentrically layered epithelial (laminar) cells that are all encapsulated within a 

sheath. The resulting capsule acts as a filter, allowing only transient disturbances at 

high frequencies (250–350 Hz) to activate the nerve endings7. 

https://www.ncbi.nlm.nih.gov/books/n/neurosci/A2251/def-item/A2658/
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Figure  2. Representation of cutaneous sensory receptor in the skin. Mammalian skin comprises both 

hairy and non-hairy, or glabrous, skin. Glabrous skin is predominantly found on the hands and feet of 

most mammals while hairy skin covers more than 90% of the body surface. Examples for free receptors 

are the lanceolate endings, the hair receptors at the roots of hairs. Encapsulated receptors are the Pacinian 

corpuscles and the receptors in the glabrous skin: Meissner corpuscles, Ruffini corpuscles and Merkel’s 

disks. Image from Victoria E. Abraira and David D. Ginty, Cell (2013) 

 

 

Surprisingly, little is known about how these nerves function, the mechanisms that 

transduce these forces into electrical signals at the peripheral endings of sensory 

neurons and, especially how the cytoskeleton influences it. Several models have been 

suggested regarding how the mechanical force triggers channel opening, among these 

the membrane force model and the tether model seem to be the most accepted. The 

former is supported by evidence in bacterial mechanotrasduction channels MscS and 

MscL8 and eukaryotic potassium channels9,10, which are gated by the force exerted via 

lipids in the membrane; while the latter is represented by Drosophila NompC ion 

channels, shown to be tethered to MTs by means of intracellular structures that have 

been suggested to pull open the channels during mechanotrasduction11 (Figure 3). 
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Nevertheless, those models are not mutually exclusive as, in vivo, the cell membrane 

and other cellular components, such as tethers and/or the underlying cytoskeleton, may 

act in concert to redistribute membrane tension, thus transmitting forces to the channel 

gate. 

 

 

 

Figure 3. Two proposed models for gating mechanosensitive ion channels in prokaryotes and 

eukaryotes: A) the bilayer model describes that prokaryotes ion channels are directly gated by forces 

applied to the lipid bilayer. According to this model the lipid bilayer tension is all that is required for 

activation. B) the tether model has been proposed for Eukaryotes and it requires the channel to be in 

contact with the cytoskeleton and/or extracellular matrix before the stimulus occur. Force applied on this 

tether generates a tension which is thought to pull open the channel.  Image from Kara L. 

Marshall and Ellen A. Lumpkin, Cell (2014). 

 

 

 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Marshall%20KL%5BAuthor%5D&cauthor=true&cauthor_uid=22399400
https://www.ncbi.nlm.nih.gov/pubmed/?term=Marshall%20KL%5BAuthor%5D&cauthor=true&cauthor_uid=22399400
https://www.ncbi.nlm.nih.gov/pubmed/?term=Lumpkin%20EA%5BAuthor%5D&cauthor=true&cauthor_uid=22399400
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1.2 Touch sensation  

Most of our behaviors depend upon our senses which allow to sample the surrounding 

world and extract information critical to our survival. 

Among these, mechanosensation is thought to be the most ancient and the most 

commonly represented in the mammalian repertoire of senses12. Indeed all living 

organisms, from single cells to humans, require some form of mechanosensation to 

survive as early hypothesized by Aristoteles, who linked skills to discriminate different 

tactile stimulations to human intelligence: “In the other senses man is inferior to many 

animals, but in the sense of touch he far surpasses them all in acuity; that is why he also 

the most intelligent of animals13”. 

Multiple senses including touch sensation, proprioception, senses of hearing and 

balance, regulation of blood pressure and systemic fluid homeostasis as well as many 

more vital processes depend upon the ability to respond to mechanical stimulation14. 

Genetic, behavioral and physiological studies in simple organisms, such as Bacteria, C. 

elegans15,16 followed much later by Drosophila17,18 and Zebrafish19, have improved our 

understanding of the fundamental mechanisms of mechanosensory transduction. 

Moreover the development of selective genetic markers in transgenic mouse models 

and the advent of rapid gene silencing technologies have allowed on the one hand to 

manipulate and characterize the functional and anatomical properties of sensory 

neurons and, on the other hand, to shed light on a new family of mechanotransduction 

channels, the Piezo family19-21. The Piezo proteins are a highly evolutionary conserved 

group of mechanically activated ion channels and higher levels of Piezo2 transcripts in 

DRGs placed this gene as a prime candidate to mediate mechanotransduction in touch 

receptor neurons or nociceptor. 
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Direct evidences that Piezo2 can account for mechanotransduction in most vertebrate 

touch receptors come from several studies performed in Zebrafish, mouse and most 

recently in Humans. In particular it has been reported that Piezo2 is a principal 

component of mechanosensory signaling in mouse Aβ LTMRs and human LTMRs20,21. 

Indeed gentle touch is mainly mediated by thickly myelinated Aβ afferents with low 

mechanical thresholds12  while in humans and several other mammals, C-fibers 

sensitive to gentle touch have also been found and it is believed that they are involved 

in social interactions22 or hypersensitivity after injury23. 

Several studies in C. elegans have also suggested that touch sensitivity is dependent on 

both the actin binding protein spectrin24 and the MT cytoskeleton25. In particular, in 

C. elegans, six touch receptor neurons (TRNs) sense gentle touch and uniquely contain 

crosslinked bundles of heavily acetylated 15-protofilament MTs26. Targeted disruption 

of the molecular components of these MTs, MEC7 -tubulin and MEC12 -tubulin, 

and mutation of MEC-17, the major tubulin acetyltransferase27,28 cause touch 

insensitivity25–29, suggesting a specific role of MTs and their acetylation status in 

nematodes mechanosensation. 

In support of this, it has been reported that acetylated MTs may also have an important 

function in mouse sensory neurons, as these neurons have amongst the highest level of 

tubulin acetylation in mouse30. 

In our previous work, we have assessed that mice lacking the -tubulin 

acetyltransferase Atat1, the mammalian orthologue of MEC-17, display a significant 

decrease in mechanosensitivity across all major fiber types innervating the skin with no 

impact on other sensory modalities1. 

Furthermore electrophysiological and morphological analysis indicate that the loss of 

mechanosensitivity is not due to generalized effects on neuronal function, such as 
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axonal transport, axonal outgrowth in vitro, or in the ultrastructure of peripheral nerves 

and their innervation in the skin and spinal cord in vivo, but it is caused by the ability 

of sensory neurons to covert mechanical forces into electrical signals1. 

 

 

1.3 Neuropathic pain: when a physiological and 

protective mechanism becomes the cause of a severe 

health problem  

Nociception and acute pain represents a warning signal for the body, whose role is to 

induce behavioral responses aimed to protect individuals from tissue damage. 

Nociception is mediated by well characterized, multi-synaptic relay systems that are 

triggered in the periphery and then processed at multiple sites in the central nervous 

system, both in the spinal cord and at higher brain centers (Figure 4). Neuronal fibers 

that transmit nociceptive stimuli are classified according to their degree of myelination 

and their diameter in: Aδ, larger and myelinated, and C, smaller and unmyelinated. The 

former ones convey faster neuronal information and are responsible for discriminative 

pain sensitivity (well-localized pain); the latter transmit slowly and are responsible for 

the protopathic pain sensitivity (widespread, poorly-localized pain). Under 

physiological conditions, pain transmission consists of a chain of events that originate 

at the terminal endings of the peripheral sensory fibers (primary sensory neurons): at 

this level a specific stimulus, indicative of a potential tissue damage, may activate 

nociceptors, thus generating an action potential that is transmitted through the axons of 

primary sensory neurons to the dorsal horn of the spinal cord31.  
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Spinal circuits further process sensory inputs and relay them to brain centers via diverse 

pathways, where the perception of pain together with its emotional and aversive 

components is generated32. 

Given its remarkable and complex structure, the nociceptive process is not to be 

considered a simply neural transmission from the peripheral nociceptors to the central 

nervous system, but a very dynamic system, consisting of multiple transmission 

pathways and redundant processes, that can be modulated at each level of the synaptic 

communication and in which all the cellular components interact in a coordinated 

manner to produce the adaptive and protective response desired. 

Maladaptive processes, triggered by pathophysiological factors (such as neural injury, 

trauma, amputation, viral infection, inflammation, tumor growth, exposure to 

neurotoxins, autoimmune disease, vascular diseases, metabolic disorders or stress-

related alterations), may induce states of pathological pain, called neuropathic pain and 

characterized by widespread-pain, sensory deficit, hyper excitability of nociceptive 

transmission, burning sensation, pain following exposure to light.  

Neuropathic pain currently represents one of the most important health problems, as it 

is generally a type of debilitating and chronic disorder that has a negative impact on the 

quality of life, in particular on the ability to work and sleep. Indeed, painful stimuli 

applied to the body regions innervated by the damaged nerves results in abnormal 

sensitivity to a variety of noxious (hyperalgesia) or innocuous (allodynia) stimuli33. 

Neuropathic pain symptoms are generally refractory to pharmacological treatments and 

respond only partially to the available therapies, which on the other hand may often 

induce severe side effects34. 
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Figure 4. Ascending pain transmission way. VP, ventroposterior thalamic nucleus; IL, 

intralaminar nucleus of thalamus.  

From this first point of integration of nociceptive information, axon branch and cross in a ventrolateral 

direction heading to higher brain centers; the different afferent nerve fibers gather in the spinothalamic 

beam, directed to the thalamus. From here the information is relayed to the primary and secondary 

somatosensory cortex through thalamocortical fibers; at the cortical level painful information is 

processed so that the appropriate responses are generated. (Sigma-Aldrich, 2011). 

 

 

 

More recent evidences suggest that the transition from acute pain into chronic pain 

states involves several mechanisms. Indeed, it seems to be caused not only by activity-

dependent changes (functional plasticity) occurring at several levels along the 

nociceptive pathway35, but also by structural remodeling and reorganization of cells, 

synapses and circuits. However, the specific nature of circuit alterations along diverse 
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segments of the nociceptive pathway is yet not well understood and it is not clear 

whether the structural remodeling represents a cause or a consequence of chronic pain.   

Several lines of evidence suggest that both mechanisms may be involved in the 

clinically intractable symptom of allodynia. In particular, two different models, 

currently accepted, seem to explain the cellular basis of allodynia. Both models are not 

mutually exclusive and imply both functional plasticity and structural plasticity. In one 

model,  under physiological conditions, sensory information from nociceptors and 

touch receptors, such as C and Aδ nociceptive fibres, C-type low-threshold 

mechanoreceptors (C-LTMRs) and non-nociceptive amyloid-β (Aβ) afferents)36, are 

processed and modulated by separate neural circuits in the spinal cord. This underlies 

the diversity and specificity of their functions which are lost under neuropathic 

conditions, leading to convergence of inputs onto common subset of neurons which 

typically receives noxious inputs35. The other model is based upon the presence of 

polysynaptic connections between spinal neurons receiving touch and those receiving 

pain inputs that normally are subjected to strong inhibitions. In neuropathic pain states, 

physical loss of spinal inhibitory neurons can activate a crosstalk between touch and 

pain circuits and results in an increased activity in spinal pain pathways. 

Interestingly, Dina and colleagues explored a novel role for the cytoskeleton in the 

regulation of pain plasticity37,38. They found that disruption of each of the three major 

components of the cytoskeleton, actin microfilaments, neurofilaments and MTs, causes 

a significant reduction of hypersensitivity within sensory neuron terminals from rats, 

following intradermal epinephrine injection, with no effects on the prostaglandin E2-

induced hypersensitivity.  

Prostaglandin E2 (PGE2) and epinephrine are inflammatory mediators that act directly 

through G-protein-coupled receptors (CGRPs) on peripheral nociceptive terminals to 
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produce mechanical hyperalgesia, via protein kinase A (PKA) alone or a combination 

of PKA, protein kinase C epsilon (PKC), and extracellular signal-regulated kinases 

(ERK1/2), respectively. Using a model of hyperalgesic priming, where rat hindpaws 

are initially injured with intradermal carrageenan, Dina et al., observed a switch in 

second messenger signaling in response to a subsequent exposure to PGE2. When 

PGE2-mediated hypersensitivity becomes long lived after such priming, it shifts its 

signaling dependence upon PKC and ERK1/2 as well as PKA and it too became 

dependent on an intact cytoskeleton. 

The most intriguing aspect of this work is that such plasticity in cell signaling, where 

the cytoskeleton seems to be one of the major player, may represent a key mechanism 

in the transition from acute pain to chronic pain states and may contribute also in the 

development of allodynia. 

                

 

 

1.4 Microtubules acetylation in cells and disease 

1.4.1 Microtubule basics 

To function properly, all cells interact physically with each other and their surroundings 

and respond to external mechanical forces. Therefore they have to be physically robust 

and maintain their shape and internal organization, but also to rearrange their internal 

components to carry out essential functions like division and movement.  

The variable shape and rigidity of the cell and its ability to move are largely dependent 

on three groups of cytoskeletal protein filaments: actin filaments, MTs and intermediate 
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filaments, each of them responsible for different aspects of the cell’s spatial 

organization and mechanical properties. 

MTs are the largest type of filament, with an outer diameter of about 25 nanometers 

(nm), and they are found in eukaryotic cells as well as some bacteria. MTs are involved 

in many crucial cell processes such as cell shape, motility and division as well as 

intracellular transport and organelle positioning. They also constitute the internal 

scaffold (axoneme) of specialized structure, cilia and flagella, present only in some 

eukaryotic cells.  

MTs represent one of the major cytoskeletal components of neurons, essential for 

cellular migration, intracellular transport, morphological changes during the different 

stages of neuronal development and synapses formation39, and are key components for 

the establishment and maintenance of neuronal polarity, a fundamental feature that 

enable these cells to perform a variety of unique functions40. 

MTs are composed of a protein called tubulin, a heterodimer formed by two 

evolutionary conserved globular proteins called -tubulin and -tubulin, tightly bound 

together in a head-to-tail fashion by noncovalent bonds to form long strands called 

protofilaments that in turn associate laterally to form the hollow, straw-shaped 

filaments of MTs. 

MTs are nucleated from the microtubule-organizating center (MTOC), where -tubulin, 

another type of tubulin, is mostly enriched. Nucleation depends on the -tubulin ring 

complex (TuRC) which serves as template for the formation of MTs39. 

MTs are flexible but also very unstable so that they can disassemble very quickly.  

Indeed MTs switch between phases of growth and disassembly in a process named 

dynamic instability. The change from growth to shrinkage is called a catastrophe, while 

the change to growth is called a rescue (Figure 5). 
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As longitudinal and lateral contacts within the lattice hold most of the subunits (tubulin 

heterodimer -) in a MT in place, the addition and loss of subunits occurs almost 

exclusively at MTs ends. Each subunit has a distinct structural polarity as it contains a 

different molecular configuration at each end called “plus” end and “minus” end. The 

“plus” end of one molecule can only link to the “minus” end of another in a way that 

they are stacked up to form a linear polar polymer, hence conferring MT lattice itself 

structural and dynamic polarity. The plus end, terminated by -tubulin, grows faster, 

undergoes catastrophe more frequently and is a crucial site for regulating MT 

dynamics41. 

MTs dynamic instability is mainly directed and controlled by the binding and 

hydrolysis of the chemical guanosine 5’ triphosphate (GTP), within the -tubulin 

subunit, and regulated in the cytoplasm by the coordinate action of various MAPs, 

motor proteins and the so called “tubulin code”42, which is generated by the expression 

of different - and -tubulin subtypes and by post-translational modification (PTMs) 

of tubulin. 
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Figure 5. MT assembly, organization and dynamics: the basics. From Cecilia Conte and Alfredo 

Cáceres, Nature Neuroscience (2009). 
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1.4.2 Microtubule post-translational modification: “The tubulin code” 

hypothesis 

The ‘‘tubulin code’’ hypothesis is analogous to the “histone code” concept and 

describes how PTMs of specific tubulin subunits within the polymer direct MT-based 

functions at that location42.  

Indeed, tubulin and MTs undergo a remarkable number of posttranslational 

modifications, including detyrosination and tyrosination, Δ2-tubulin generation, 

acetylation, polyglutamylation, polyglycylation, palmitoylation, sumoylation, 

phosphorylation and ubiquitylation27,43. These PTMs are found in all cells with MTs 

and they are particularly diverse in neurons, enriching specialized MT structures such 

as centrioles and basal bodies, neuronal axons, and primary cilia. 

Tubulin can be modified as a soluble dimer or in a MT and both conditions can occur 

at the same time in the cells. 

The majority of PTMs is associated with the C-terminal domains of -tubulin, while 

few of them localize at the C-termini of -tubulin as well as at other regions of the 

tubulin dimers (Figure 6). Many of these modifications occur concurrently and the level 

of each modification is distinctively regulated by the cell, depending on cell 

compartment, cell cycle, development and differentiation. In addition, MTs can be 

modified in a heterogeneous fashion, with different PMTs overlapping or localizing to 

distinct MT domains44. 

Therefore, the heterogeneity of these modification and the fact that multiple PTMs can 

occur on individual tubulin dimers has made very challenging our understanding of the 

rules that these modifications play in determining specific functions. 
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Figure 6. Representation of major tubulin PTMs. From Sudarshan Gadadhar et al., J Cell Sci (2017). 

 

 

 

Most -tubulins contain a C-terminal tyrosine residue which is cyclically removed and 

re-added during a special cycle of detyrosination-tyrosination. 

This detyrosination-tyrosination cycle is conserved in evolution, yet its physiological 

importance is unknown. It initiates with detyrosination, which is mediated by an 

unidentified cytosolic carboxypeptidase (CCP) to expose a glutamate. Detyrosinated 

MTs are enriched in proximal segments of axonal shafts and appear to be associated to 

MTs longevity. Tyrosination is catalyzed by tubulin Tyr ligase (TTL), the first tubulin-

modifying enzyme to be purified45,46 and identified47, and it is an ATP-dependent and 

RNA-independent modification localized prominently on axonal MTs at grown cones. 

TLL expression is critical for development as it has been observed that TLL-null mice 

die within 24 h after birth due to alterations in neuronal networks and organization48.  

Further removal of the next C-terminal Glu residue leads to the irreversible generation 

of Δ2- tubulin49  and and Δ3-tubulin50,51. Even though the functional role of Δ2-MTs 
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remains poorly understood, it seems to be linked to MT stability as Δ2- tubulin is 

enriched in differentiated neurons as well as in centrioles and cilia52. 

Polyglutamylation and polyglycylation are extensions of glutamate or glycine side 

chains on C-terminus of both α- and β-tubulin, mediated by several TTL-like enzymes. 

Polyglutamilation is enriched in neuronal axons53, centrioles and cilia54,55 and it is 

believed to control MTs stability via interaction with severing enzimes56. In contrast to 

Polyglutamylation, polyglycylation is restricted to ciliary tubulin55,57 and it seems to be 

important in the assembly and maintenance of primary cilia and cell proliferation. 

Another important tubulin PTM that has been shown to contribute to MTs stability both 

in vitro and in vivo is called polyamination, a modification that adds positive charge 

through covalent addition of polyamines by a transglutaminase (TG2). TG2 has been 

reported as the primary intracellular tissue-type isoform in brain58, with activity both in 

mammalian CNS and PNS59.  

Inhibiting polyamine synthesis or transglutaminase activity significantly decreases MT 

stability in nervous tissues both in vitro and in vivo in TG2 KO mice, particularly during 

development and maturation60. 

Several other PTMs have been identified on tubulin, which are less abundant or less 

common and, even though little functional insight has been gained, they appear to play 

an important role in the functional diversity of MTs. For example, phosphorylation of 

both - and -tubulin may be associated with the regulation of MT polymerization61,62 

or MT interaction with membranes63; glycosylation or non-enzymatic glycation occur 

on phosphorylated sites and may regulate protein-protein interaction and activity; 

palmitoylation could affect protein interactions with membranes and subcellular 

trafficking; ubiquitination and sumoylation (SUMO) of tubulin have been implicated 

in the proteolytic degradation of misfolded tubulin in cells, but adding a single ubiquitin 
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or SUMO may affect protein interactions, enzyme activity, protein transport or 

localization64,65. 

Tubulin arginylation and methylation66 have also been reported, but no relevant 

functions have been provided so far. The recent discovery that MTs are methylated at 

K40 of -tubulin, the same residue that is acetylated, is very intriguing as it suggests 

that methylation and acetylation may have opposing functionality for MTs as for many 

histone proteins67.  

MT acetylation was first discovered in the flagella of the single-cell green alga 

Chlamydomonas reinhardtii when, following the labelling with tritiated acetate, -

tubulin was found to contain tritium, indicating that the protein contains an acetyl 

moiety68,69. Few years later, thanks to amino acid sequencing and sequence comparison, 

Lys-40 was identified as the acetylation site, conserved from protists to mammals70,71 

but yeast72. Recent advances in proteomics has also identified other multiple acetylated 

sites on - and -tubulin73, such as lysine 252 (K252) of β-tubulin catalyzed by the San 

acetyl transferase and expected to regulate MT polymerization74. However distributions 

and functions of other new acetylated sites remain unknown. 

The enzymes involved in tubulin acetylation were identified long after the discovery of 

the modification itself. In vitro studies identified several candidates with acetyl-

transferase activity including ARD1-NAT1 (arrest-defective 1-amino terminal, α-

amino, acetyltransferase 1), suggested to mildly affect tubulin acetylation75; the 

transcriptional elongation regulator ELP3 (elongator protein 3), part of the 

acetyltransferase complex (ELP, elongator protein complex), shown to affect the 

acetylation of α-tubulin76; and the histone acetyltransferase GCN577 (homolog of yeast 

general control nonderepressible 5). However only recently, MEC-17 and the 

mammalian orthologue ATAT1 (alpha-tubulin acetyltransferase 1) were identified as 
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-tubulin acetyltransferases27,28. They both belong to the GCN5 superfamily of lysine 

acetyltransferases, displaying sequence similarity which are conserved from protists to 

human78. Moreover ATAT1 is now considered as a major tubulin acetyltransferase in 

mammals, indeed deletion of the mouse gene leads to nearly complete loss of tubulin 

acetylation in embryos and various tissues79–81. 

On the contrary, enzymes that deacetylate MTs were much easier to identify. Indeed, 

around 15 years ago, HDAC682,83 and SIRT284 were shown to be responsible for MT 

deacetylation. Interestingly, both of the enzymes have additional substrates other than 

α-tubulin, with HDAC6 having more than 10 identified targets in the cytoplasm. 

 

 

1.4.3 The role of tubulin acetylation in cell and disease 

Acetylation of -tubulin is the most-studied tubulin modification and it occurs after 

MT assembly at the -amine of -tubulin Lys40, which is preserved in all -tubulin 

isoforms.  

The peculiarity of this modification site is its position in the lumen of MTs, therefore, 

the modifying enzymes need to access the luminal surface to execute their function. 

How the acetylase gain access to Lys40 has been unclear for many years and the 

mechanism of luminal entry has recently been described for αTAT185,86. 

Since its initial discovery, tubulin acetylation has been considered a hallmark for long-

lived MTs49,87–89 as it was found mainly on stable MTs resistant to depolymerization 

condition induced by cold shock or nocodazole, but not on dynamic MTs such as those 

in neuronal growth cones90,91. However while some early reports supported this, 
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subsequent studies suggested that tubulin acetylation might be a consequence rather 

than a cause of enhanced MT stability92–95. 

Indeed, it has been observed that Atat1 overespression destabilizes MTs, but it is its 

interaction with them rather than its enzymatic activity that contributes to regulate MTs 

stability92. Moreover, in C. elegans, MEC-17 loss leads to MT instability and axon 

degeneration, independent of its acetyltransferase activity96. 

However these observations are not consistent with more recent discoveries where it 

has been shown that -tubulin acetylation is required for the mechanical stabilization 

of long- lived MTs in cells by directly weakening inter-protofilaments interactions. 

Indeed, microfluidic manipulations demonstrates that inter-protofilaments sliding 

within the lattice enhances MTs flexibility as it facilitates MTs bending due to repeated 

mechanical stress generated by MT-based motors and actomyosin contractility. On the 

contrary, the flexural rigidity of deacetylated MTs has been observed to decrease 

following each consecutive bending cycle, implying that -tubulin acetylation directly 

protects MTs from mechanical fatigue and ageing resulting from compressive forces. 

Moreover, further in vitro reconstitution experiments demonstrate that lack of -tubulin 

acetylation makes MTs more sensitive to mechanical breakage, demonstrating that 

acetylation is directly involved in the modulation of MTs compliance under repeated 

mechanical stress and increases the mechanical resilience97,98. Another example of MT 

resilience through -tubulin acetylation comes from the observation that removing 

MEC-17 from C. elegans touch receptor neurons causes severe lattice defects99,28 that 

can be rescued by paralyzing the animals96. 

It is known that MEC-17/Atat1 is responsible for nearly all acetylation on -tubulin in 

every organism studied44. In C. elegans touch reception neurons, tubulin acetylation 

regulates the protofilament number of MTs and it is necessary for maintaining MTs 
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structure99,100. Indeed MEC-17 loss was found to cause several morphological defects 

in touch receptor neurons as a result of MT defects and reduction of touch sensitivity. 

However, disappearance of touch sensitivity is not shown to be related to the 

acetyltransferase activity of MEC-17. Related to this, mice lacking Atat1 display 

similar morphological defects on sperm flagella92. It has also been observed a 

significant decrease in mechanosensitivity across all major fiber types innervating the 

skin with no impact on other sensory modalities, that is not due to generalized effects 

on neuronal function, such as axonal transport, axonal outgrowth in vitro, or in the 

ultrastructure of peripheral nerves and their innervation in the skin and spinal cord in 

vivo, but is caused by the ability of sensory neurons to covert mechanical forces into 

electrical signals1.Therefore, in contrast to what has been observed in C. elegans, 

tubulin acetylation per se sets the optimal cell stiffness for touch sensation in 

mammalian mechanosensory neurons.   

In addition to regulating MT architecture and cell mechanical elasticity, tubulin 

acetylation appears to be important in various cellular processes, including intracellular 

transport, ciliary assembly in vitro, cell migration and polarity. It has also been reported 

that one of the most frequent ER movement, the sliding along MTs, happens 

preferentially along acetylated MTs101, suggesting a potential role in the trafficking of 

ER material to destinations that can also be present on modified MTs102. Moreover, 

tubulin acetylation regulates immune, stress, inflammation and viral responses under 

challenging conditions in vivo103–107, suggesting potentially important roles under 

adverse conditions. 

Tubulin acetylation is also involved in several neurological disorders. 
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Charcot-Marie-Tooth is a disorder of the peripheral nervous system due to a mutation 

in the 27-kDa small heat-shock protein (HSPB1) that causes axonal loss and decreased 

tubulin acetylation in mice, which can be rescued by HDAC6 inhibitors108. 

Parkinson´s disease (PD) is a common neurodegenerative disorder of the central 

nervous system that mainly affects the motor system and is caused by a combination of 

genetic and environmental factors. One of the most common gene implicated in the 

development of PD is the LRRK2 (leucine-rich repeat kinase 2) that interacts directly 

with -tubulin and inhibits -tubulin acetylation109. Parkinson’s disease-associated 

mutations of these gene form filamentous subcellular structures in Drosophila that can 

be prevented by either the expression of Atat1 or the inhibition of HDAC6110.  

Amyotrophic lateral sclerosis, also known as Lou Gehrig's disease, selectively 

affects motor neurons in the motor cortex of the cerebrum. The cause is not known in 

90% to 95% of cases. A possible implication of HDAC6 has been observed in known 

mice models for this disease. Indeed, loss of Hdac6 associated with increased tubulin 

acetylation, significantly extends survival of these mice and maintains motor axon 

integrity111. Moreover, HDAC6 may also be involved in dementia associated to 

Alzheimer´s disease. Inhibition of HDAC6 activity in mice, promotes tubulin 

acetylation and improves memory by reducing the level of the MT-associated protein 

Tau, a key marker for Alzheimer’s disease112 and significantly improves learning-based 

performance in mice with amyloid-induced hippocampal lesions113,114.  

Tubulin deacetylation, on the other hand, is required for axonal growth and regeneration 

in a mouse model following injuries115. 

Tubulin acetylation has also been linked to cancer in vitro. In particular, elevated 

tubulin acetylation seems to play a role in breast and pancreatic cancers initiation and 

https://en.wikipedia.org/wiki/Environmental_factor
https://en.wikipedia.org/wiki/Motor_neuron
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progression116,117, while loss of tubulin acetylation seems to be involved in multiple 

myeloma. 

More recently, it has been observed that mice lacking -tubulin acetylation display a 

profound loss of mechanical sensitivity to both light touch and painful stimuli with no 

impact on other sensory modalities1. 
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2 Aim of the project 
 

Our previous results indicate also that acetylated - tubulin acetylation influences 

cellular stiffness and its loss lead to a decrease of cellular elasticity1. This is consistent 

and could be considered as a consequence of what has been observed in more recent 

discoveries, where acetylation directly increases MTs lattice plasticity, flexibility and 

resistance to breakage in vitro97,98. 

Intriguingly we observed that acetylated tubulin is highly enriched underneath the 

plasma membrane in peripheral sensory neurons, under the membrane of axons in the 

saphenous nerve and at sensory neuron terminal endings in the cornea1. 

For all these reasons, the goals of this project is to explore the ultrastructure of the 

sensory nerve endings and to examine MTs organization and structure along the sensory 

neuron axis, from DRG neurons to peripheral nerve endings, combining the advantage 

of different genetically labeled lines of mice with high resolution microscopy 

techniques, such as high-resolution confocal microscopy, super resolution microscopy 

and electron microscopy. 

In brief, by learning about the ultrastructural organization of MTs and how they can be 

influenced by their acetylated status, in mammalian peripheral nervous system, this 

work may contribute to shed light for the first time on the role of MTs in mammalian 

mechanosensation. 
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3 Results 
 

In this study I investigated, from an ultrastructural point of view, the contribution of 

MT acetylation to mammalian mechanosensation, taking advantage of transgenic 

mouse lines, Avil-Cre::Atat1fl/fl (referred as Atat1cKO) and Deleter-Cre::Atat1fl/fl 

(referred as Atat1fullKO), generated in our laboratory1. We assessed in our previous work 

that mice are viable and develop normally, except for a profound loss of mechanical 

sensitivity to both light touch and painful stimuli with no impact on other sensory 

modalities1. 

Here, I combined the advantage of the mice line mentioned above with high resolution 

microscopy techniques, such as high-resolution confocal microscopy, super resolution 

microscopy and electron microscopy to explore the ultrastructure of the sensory nerve 

endings and to examine MTs organization and structure along the sensory neuron axis, 

from the soma of DRG neurons to their peripheral endings, in the absence of mechanical 

stress. 

In parallel with the ultrastructural characterization of mice tissues, I also performed a 

behavioral assay, the von Frey assay, following mechanical stress induced by spared 

nerve injury (SNI)118, in order to investigate whether the deletion of the -tubulin 

acetyltransferase Atat1 from peripheral sensory neurons and from the whole animal 

could also have some effect on the development of allodynia, which is a severe side 

effect of neuropathic pain. 
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3.1 Microtubules organization in sensory neurons  

3.1.1 Super-resolution microscopy on sensory neurons from the 

Atat1control and Atat1cKO mice. 

In our previous work, we showed by means of confocal microscopy that acetylated MTs 

form a predominant ring underneath the membrane of sensory neuron cell bodies and 

axons, while -tubulin is broadly distributed across the cytoplasm. Intriguingly, this 

ring was not observed in non mechano-sensory cells, such as fibroblasts where 

acetylated -tubulin is evenly distributed throughout the cell body1. Furthermore, it has 

been observed in osmosensory neurons that mechanotransduction is mediated by a 

unique interweaved MT organization throughout their soma119. We therefore asked 

whether a similar organization is also evident in peripheral sensory neurons, whether 

this structure is dependent upon the presence of acetylated tubulin and whether it could 

be involved in mechanosensation. 

In order to investigate this aspect in more detail, super-resolution dSTORM (direct 

stochastic optical reconstruction microscopy) was performed on DRG neurons stained 

with the anti--tubulin antibody. 

The super-resolution images showed that MTs are indeed characterized by an 

interweaved distributions (Figure 7a-d) in peripheral sensory neurons, similar to 

osmosensory neurons. No difference in the overall organization of MTs between DRG 

neurons from the Atat1control and Atat1cKO mice was observed, suggesting that 

acetylated tubulin is not responsible for that. 

The images were also subjected to a quantitative, unbiased automated analysis, 

performed with the open source software CellProfiler, to measure MTs density, the 

number of MTs cross points and the angular variance of the MT cytoskeleton. The 
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results confirmed that no difference in the general MT network morphology was 

observed between the two genotypes (Figure 8a-i).  

 

Atat1
Control

cKO

Atat1
Control

Atat1cKOAtat1cKO

a b

dc

 

Figure 7. Super-resolution images of MTs in DRG neurons from Atat1control and Atat1cKO. (a-d) 

Immunostaining for a-tubulin on cultured sensory neurons analyzed by superresolution direct stochastic 

optical reconstruction microscopy (dSTORM) reveals MT network organization in Atat1control (a and b) 

and Atat1cKO (c and d). The color code indicates the distance from the objective (red close to objective, 

blue far away). (Scale bar 5 μm). 
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Figure 8. Graphical representation of automated analyses performed on superresolution images of 

anti - α tubulin stained cultured DRG. a) Superresolution image of anti α-tubulin staining of Atat1cKO 

cultured DRG. b) The top left image shows the automated selection of the labelled neuron area marked 

in red. The top right image shows the MT image after binarization. The bottom left image shows a 

skeletonized MT network (in blue), which was used to evaluate the total area occupied by MTs, overlaid 

on the MT superresolution image (in green). Finally, the bottom right image shows the number of branch 

points present in the MT network, with MTs marked in green and the branch points in blue. c) Represents 

the MT original superresolution image in grey, d) the automatically determined orientation of the MTs, 

f) the local angular variance of the MT orientation. The bright pixels indicate a high variance and vice 
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versa. f) Graph showing the MT density in both Atat1Control and Atat1cKO cultured DRG. g)  Graph 

summarizing the density of branch points present in the MT networks between the two genotypes. h) 

Graph representing the angular variance of the MT cytoskeleton between the two genotypes. No 

significant difference is observed between the genotypes in any of the parameter investigated. (t-test, 

p>0.05).Error bars indicate s.e.m. 

 

 

 

3.2 Ultrastructural analysis of microtubules along the 

sensory neuron axis, from DRG whole mount and 

dissociated neurons to peripheral nerve endings, by 

Electron Microscopy (EM) 

Different studies performed in C. elegans have shown that touch sensitivity is 

dependent on six touch receptor neurons (TRNs) that uniquely contain cross-linked 

bundles of heavily acetylated 15-protofilament MTs26. Targeted disruption of the 

molecular components of these MTs, MEC7 -tubulin and MEC12 -tubulin, and 

mutation of MEC-17, the major tubulin acetyltransferase27,28 causes touch 

insensitivity25,29, suggesting a specific role of the MTs and their acetylation status in 

the nematode mechanosensation. Moreover, it has been reported that loss of the 

acetyltransferase MEC-17 alters MT morphology in TRN (touch receptor neurons), 

which display variability in the number of protofilaments and reduction of MTs 

number99. However, it is yet not clear whether, in C. elegans, the loss of touch 

sensitivity observed is caused by the absence of tubulin acetylation in MEC-17 

mutants27,28 or by other  unknown actions of MEC-1727,29,99,120. For instance, MEC-17 
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may play a structural role by binding to the luminal side of MTs and changing some of 

their key property, such as rigidity/flexibility, or else it could influence the transduction 

of signals originating from MTs. 

In support of what has been reported by Akella et al. and Cueva et al. in C. elegans27,100, 

we assessed in our previous work that mice lacking the -tubulin acetyltransferase 

Atat1, the mammalian orthologue of MEC-17, display a significant decrease in 

mechanosensitivity across all major fiber types innervating the skin with no impact on 

other sensory modalities1. We also established that this is dependent upon the 

acetyltransferase activity of Atat1, and that mechanosensitivity can be rescued by 

mimicking α-tubulin acetylation genetically, in Atat1 deficient sensory neurons. 

Our previous results also indicate that acetylated tubulin is highly enriched underneath 

the plasma membrane in peripheral sensory neurons, under the membrane of axons in 

the saphenous nerve and at sensory neuron terminal endings in the skin and the cornea, 

influencing cellular stiffness, elasticity and hence mechanotrasduction1. 
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3.2.1 Microtubules organization in whole mount DRG and dissociated 

neurons from the Atat1control and Atat1cKO mice 

For all the reasons listed above, here I sought to investigate whether the lack of Atat1 

impact upon mammalian mechanosensation by affecting MTs morphology in DRG 

neurons and whole amount DRGs. Indeed, Irini Topalidou and colleagues observed that 

loss of the acetyltransferase MEC-17 alters MTs morphology in C. elegans TRN, which 

display variability in the number of protofilaments and reduction in the number of 

MTs99.  In the light of these observation and our previous results, where we found that 

acetylated tubulin is highly enriched underneath the plasma membrane in peripheral 

sensory neurons, here I have been trying to determine whether and how the number of 

protofilaments in MTs changes under the cortex of the sensory neurons and compare it 

to the one in MTs distributed in the center of the cells, and whether there is variability 

in the MTs density between the Atat1Control and the Atat1cKO mice. 

Freshly dissociated sensory neurons and whole mount DRG from Atat1control and 

Atat1cKO were prepared for transmission electron microscopy. Multiple protocols were 

tested in order to improve sample preservation and staining. For both samples, the first 

fixation was conducted by high pressure freezing (HPF) followed by freeze substitution 

over 1 day for sensory neurons, 5 days for DRGs, prior to plastic embedment. Seventy-

nanometer transverse and cross sections were cut and post stained before imaging. A 

significant number of cells and MTs per cell is required to obtain statistically significant 

results. 

Although I was able to obtain a good sample preservation, this was not sufficient to 

resolve at high resolution the protofilament number of MTs or to assess their density 

within the samples, neither in cultured cells nor in DRG. Indeed the cytoplasm appears 

too dense and full of features to properly identify MTs (Figures 9a-d and 10a-f). 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Topalidou%20I%5BAuthor%5D&cauthor=true&cauthor_uid=22658602
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Figure 9. Transmission electron micrographs showing cross sections of whole mount DRGs from 

Atat1control mice. Images b)-d) show a higher magnification of the images represented in a) and c). the 

images rapresent DRGs containing a cross section, a) and b), and tangential sections, c) and d), of MTs. 

(MTs are marked by black boxes. Scale bars: 100 nm image a), 50 nm image b), 500 nm image c) and 

150 nm image d)). 
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Figure 10. Transmission electron micrographs showing longitudinal sections of cultured DRG 

neurons from Atat1control mice. b),d) and f) show a higher magnification of the images represented in 

a), c) and e), marked by black boxes. Cross sections in images a)-f), and a longitudinal section of MTs 

in image a) are highlighted by black arrows. (Scale bars: 100 nm image a), 200 nm images c), e) and 50 

nm images b), d) and f)). 
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3.2.2 Microtubules organization in the saphenous nerve from the 

Atat1control and Atat1cKO mice 

Here I continued to investigate the effects of Atat1 disruption on the organization of the 

MTs along the sensory neurons axis, with a focus on the saphenous nerve. The 

saphenous nerve fits very well with the purpose of this investigation as it is a cutaneous 

branch of the femoral nerve that contains only sensory afferents. 

I optimized a fixation protocol, performing in parallel both chemical fixation and HPF, 

followed by FS on the Saphenous nerve of the Atat1cKO and Atat1control mice. 

Samples were collected and immediately prepared for transmission electron 

microscopy and electron tomography. Multiple protocols were tested in order to 

improve sample preservation and staining. Seventy-nanometer transverse and cross 

sections were cut and post stained before imaging. Semi-thin serial sections (250 nm 

thick) were collected for electron tomography where each section was viewed at high 

resolution under multiple tilts to produce two single axis tomograms using marker 

alignment procedures and internal features to create weighted back-projection models 

of the tissue in 3D space.  

I found that both the chemical fixation and the combination of HPF and FS give good 

results because not only it allows to count the number the protofilaments in MTs, but 

also to appreciate whether there is a difference, in the shape of MTs between the 

Atat1control and the Atat1cKO (Figure 11a-d and 12). 
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Figure 11. Transmission electron micrographs showing cross sections of chemically fixed 

saphenous nerve from Atat1control and Atat1cKO mice. a-d) show cross sections of MTs in chemically 

fixed (a and b) and HPF and FS (c and d) large myelinated primary afferent fibers from Atat1control and 

Atat1cKO mice (Scale bars 100 nm).  
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Figure 12. Tomographic slices showing showing cross sections of saphenous nerve from Atat1Control 

and Atat1cKO mice. a) and b)show cross sections of MTs in HPF and FS large myelinated primary 

afferent fibers from Atat1control and Atat1cKO mice (Scale bars 600 nm left and 300 nm right image). 

 

 

 

Moreover, we reasoned that this aspect should have been assessed more quantitatively. 

Therefore, we further subjected the images to an unbiased automated analysis, using 

the open source software RELION (REgularized LIkelihood OptimizatioN). 

This analysis is extensively used in Cryo-electron microscopy and consists on the 

computational averaging of thousands of images containing identical particles in order 

to achieve higher signal to noise ratio, taking advantage of software algorithms which 

allow to obtain structures at near-atomic resolution. Several steps are involved in 

structure determination by Single-Particle Cryo-EM which starts with the analysis of 

the 2D image dataset, including 2D clustering and generation of class averages, and 

leads to the 3D model of the specimen. The 2D class averages can be considered a “low 

resolution” sample refinement where heterogeneous particles (MTs in our case), with 

variable conformation or composition, are aligned and grouped into more homogeneous 

subsets using classification procedures. 
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We reason that including in our investigation only the “low resolution” refinement of 

the 2D image dataset would be sufficient to fulfill our demands. Indeed, particles are 

clustered according to their common features (orientation, number of protofilaments, 

broken or complete MTs) and MTs with the same protofilaments number, for instance, 

are grouped in the same class. On the contrary, in case of variability in the number of 

protofilaments or broken MTs, they would fall in different classes. 

Initial data from the single particle averaging analysis, performed in collaboration with 

Shyamal Mosalaganti at EMBL in Heidelberg, show different representative classes of 

MTs: 5 for the Atat1Control and 5 for the Atat1cKO (Figure 13a, b). According to our 

results, no difference in the number of representative classes was observed between the 

Atat1cKO compared to the Atat1Control, suggesting that whether there are differences in 

MTs features, these seem to be the same in both genotype, as indicated by the same 

number of classes averages.  

 

Figure 13. 2D clustering and formation of class averages. a) and b) show representative class averages 

obtained from 95 images Atat1Control (N=953) and 105 Atat1cKO (N=1358), respectively. Images of similar 

views are aligned and averaged to achieve higher signal to noise ratio. This process involves both 

rotational and translational shifting of individual particle images in order to group the data into more 
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homogenous subsets. Particles were aligned and classified using reference-free alignment and k-means 

classification programs implemented in RELION (Scale bar 10 nm).  

 

 

Although this approach is extensively used for structure determination of vitrified 

specimen, we came across several limitations when adjusted it for our purpose.    

One of the limitations we encountered is the size of the dataset. A successful analysis 

requires a dataset of over 10.000 particles and for the present study I was not able to 

obtain more than 1000 particles per genotype from 10 mice in total (5 Atat1control and 5 

Atat1cKO). The reasons for that are the variability of the number of MTs per fibers and 

the poor quality of the MTs due to sample preparation and orientation within the 

samples. The last problem is directly related to the second limitation of this method, 

which is the poor quality of the selected particles. Indeed, including too many poor 

particle may preclude an accurate classification. 

Finally, it is not possible to determine whether the different classes obtained correspond 

to an average of particles differentiated exclusively on the basis of orientation, 

variability in the number of protofilaments, broken MTs or a combination of them. 

For all the reasons listed above, the method turned out to be not eligible for our 

demands. 
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3.2.3 Assessing microtubules distribution and morphology using an 

image analysis pipeline  

I reasoned that a different kind of analysis needed to be implemented in order to assess 

whether and how the loss of Atat1 activity affects MT architecture. Therefore, in 

collaboration with Jose Miguel Serra Lleti, a PhD student in Yannick Schwab team at 

EMBL in Heidelberg, we subjected the EM images to an image analysis workflow 

followed by different statistical tests.  

A comparative study between two genotypes, Atat1control and Atat1cKO, was carried out 

in a total of 13 saphenous nerve sections, belonging to a total of 8 mice (4 Atat1control 

and 4 Atat1cKO), including left and right legs, when possible.  

First of all, we sought to determine the average diameter of MTs that is based on the 

minimum diameter of the fitting ellipse surrounding the MT area or minor axis when 

the MT is complete. The minor axis is an indication of possible deformations in the MT 

structure and doesn´t change with the section angle if the full MT shape is present. On 

the contrary, a distribution of deformed shapes or massive changes in the number of 

protofilaments would have yield differences in the radius.  

After random shuffling of the set of images, we cropped all MTs present on each image 

and considered for this analysis every MT taking into consideration the MT inner and 

outer diameter. Objects too blurry to identify a clear density or mixed with other 

densities in a way that was difficult to determine its shape were discarded. 

Our analysis does not show any significant  difference in the MTs small radius between 

the two datasets, suggesting that no change in MTs shape or size, arising from 

morphological defects can be observed in the Atat1cKO compared to the Atat1control 

(Figure 14). 
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Figure 14. Graph showing the average value of the MTs minor axis per mouse.  

Each box plot corresponds to an average value of the minor axis originates from the analysis performed 

on both legs of each mouse when possible (m2, m6, m7, m8, m9).  

The average value is around 25 nm for all the samples investigated and the standard deviation between 

mice is enough to cover any variability between samples. In order to assess any possible differences 

between means, an ANOVA statistical test was also performed among all the mice samples, considering 

both legs when possible. The ANOVA test shows that some of the samples have indeed different 

populations (ANOVA Test, p < 0.001). 

 

 

Hereafter we asked whether the loss of Atat1 may cause morphological defects in the 

MTs from the Atat1cKO compared to the Atat1control by measuring MTs eccentricity, as 

previously reported from Cueva et al., 2012100. Eccentricity is a measure of how much 

a conic section (a circle, ellipse, parabola or hyperbola) varies from being circular. A 

circle has an eccentricity of zero, so the eccentricity shows how un-circular the curve 

is. In our case, if there is a big number of MTs with deformations (elliptical), the 

eccentricity will hint a potential difference between Atat1control and the Atat1cKO. 

Our results show a difference in the eccentricity distribution means between the two 

genotypes (Figure 15a). In particular, we observed slightly higher values of eccentricity 

in the Atat1cKO compared to the Atat1control. However the cumulative distributions plot 

https://www.mathsisfun.com/geometry/conic-sections.html
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does not confirm this difference (Figure 15b), therefore, the discordant results for 

eccentricity measurements can´t be considered conclusive. Moreover, eccentricity is 

not likely a reliable feature to characterize MTs deformation as, besides MTs 

deformation, it can simply indicate a preferential angle of sectioning more prominent 

in some samples than in others, a sample handling or preparation effect, or it could be 

dependent on the regions of the sample where the sections are collected. For instance, 

there could be the case of a different arrangement and distribution of MTs located at 

the beginning of the sample compared to the ones in the center or towards the end. To 

prove that the difference we observed in figure 16 is really caused by deformation, we 

would need to use additional evidences. 

 

 

 

Figure 15. a) Histogram showing the distributions of the eccentricity means and b) representing 

the cumulative distribution of the eccentricity means from the Atat1control and the Atat1cKO mice. 

a) shows a slight difference in the distribution of eccentricity means between Atat1control (blue) and the 

Atat1cKO (red) mice (t-test; p< 0.05). b) Shows no significant difference between Atat1control (blue) and 

the Atat1cKO (red) for MT eccentricity (Kolmogorov test, p>0.05). 
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In the light of what we found so far, we reasoned that further parameters needed to be 

investigated, such as solidity.  

Solidity describes the extent to which a shape is convex or concave. It is defined by the 

following equation: Area/Convex area, where the area of the shape region is divided by 

the convex hull area of the shape. The solidity of a convex shape is always 1. 

We observed that the MTs from Atat1cKO samples are less solid than the ones from the 

Atat1control, indicating that they contain a larger number of broken MTs (Figure 16 a, b). 

 

 

 

Figure 16. a) Histogram showing the distributions of the solidity means and b) representing the 

cumulative distribution of the solidity means from the Atat1control and the Atat1cKO mice. a) shows 

a slight shift between the two distributions, where the Atat1cKO (red) is less solid than the Atat1control (blu) 

(Maximum solidity is 1, minimum solidity is 0) (t-test; p< 0.05). b) shows no significant difference 

between Atat1control (blue) and the Atat1cKO (red) (Kolmogorov test, p>0.05). 

 

 

Moreover, we observed once more a high variability within samples from the same 

genotypes by plotting individual samples. (Figure 17a-h). In order to solve this 

conundrum and evaluate whether M2 M4r (right leg) and M5l (left leg) behavior is 

dependent upon sample preparation or handling, we decided to count and classify MTs 
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between broken or not broken (Figure 18a, b). The user didn't know a priori any 

information about the phenotype and images where randomized. 

 

 

 

 

Figure 17. Histograms showing the distributions of the solidity means in Atat1Control and Atat1cKO 

mice (M2-M9). Both legs are considered separately when possible (M2, M6-M9).  
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a)-h) Individual histograms show that there is a variability in the distribution of the solidity means within 

samples belonging to the same genotypes (M2-M5 correspond to Atat1Control, M6-M9 correspond to 

Atat1cKO). The Atat1Control M2, M4r, M5l and the Atat1cKO M6l-r, M7r and M9l-r for instance, even 

though belong to different genotypes, show a similar distribution with a relative increase of number of 

MTs characterized by values below 0.5 in the histograms. 

 

 

 

 

 

Figure 18. Transmission electron micrographs showing cropped cross sections of MTs in the 

saphenous nerve from Atat1control and Atat1cKO mice. Image a) shows an example of not broken MT 

while image b) shows a broken MT (Scale bar 40 nm). c) The table shows the counting of normal vs 

broken MTs and the ratio between the two values per each mouse´s leg, when possible. 

 

 

The results shows that M2, M4r, M5l (Atat1control), M6l-r, M7r and M9l-r (Atat1cKO) 

have the highest number of broken MTs. According to these observations, we were not 

able to assess any significant difference between the two genotypes as we observed the 

presence of broken MTs in both.  

Additionally, by observing individual samples we found that within the 4 Atat1cKO 

samples analyzed, only M7r and M9l have indeed an abundance of broken MTs, as it 

is shown from minor axis, eccentricity and solidity distributions of individual 

histograms (Figure 19). 
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Figure 19. Comparison of Individual histograms showing the minor axis, eccentricity and solidity 

distributions from both legs of the Atat1cKO M7 and M9. The histograms show variability in the 

individual distributions for minor axis, eccentricity and solidity in M7r and M9l as indicated by an 

increase of number of MTs characterized by values below 0.5. The slight variability observed, in only 

one of the two legs analyzed, is not statistically significant when compared to the Atat1control samples. 
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 However, the results are not consistent as broken MTs were observed only in one leg 

(Figure 20). We reasoned that this effect can´t be explained by the simple presence of 

Atat1cKO and hypothesize that other factors in the experimental settings may have 

affected the sample status, such as mouse history and sample handlings.  

The main conclusions of the image analysis pipeline, described above, are summarized 

as follows: 

 No major differences were observed between Atat1Control and Atat1cKO when 

minor axis, eccentricity and solidity were compared. 

 Although M7r and M9l Atat1cKO show a massive disarrangement in MTs 

distributions for all the parameters investigated, these data are not consistent as 

were observed in only one of the two legs analyzed and in 2 mice out of 4. 

 By comparing the two datasets (from Atat1Control and Atat1cKO) for all the 

parameters investigated, we are not able to claim dramatic changes in MTs 

morphology  between the two genotypes in the absence of mechanical stress as 

reported in C. elegans and more recently by in vitro observations.   

 

 

3.2.4 Microtubules organization in whole mount DRG and dissociated 

neurons from the Atat1control and Atat1cKO mice by CEMOVIS. 

Since CEMOVIS is a specialized technique requiring advanced EM skills, I benefited 

from a collaboration with the Electron Microscopy Core facility (EMCF) at EMBL in 

Heidelberg. 

Here, to overcome the difficulties encountered with samples processed through HPF 

followed by FS, that may be due to the treatment with chemicals and heavy metals that 

could have masked the clear visualization of MTs in the sample, I reasoned to subject 
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the samples in question to CEMOVIS (Cryo-EM of vitreous sections) where they are 

preserved by rapid freezing, cryo-sectioned and observed by cryo-TEM without further 

contrasting and embedding. 

However, also in this case we encountered some technical problems with the sample 

preparation as neither cultured cells nor DRGs firmly attached on the EM substrates. 

For this reason, many samples were lost during HPF that was used as fixation step. 

Moreover, the few samples we managed to collect were not well preserved most likely 

because not attached properly. 

Since more time was required to optimize a sample preparation protocol in order to 

obtain a statistically significant number of samples for our observations, I reasoned to 

invest more time on the saphenous nerve of which I managed to have good sample 

preparation. 

 

 

3.2.5 Microtubules organization in the saphenous nerve from the 

Atat1control and Atat1cKO mice by CEMOVIS 

As mentioned above, this technique allows to preserve the sample close to native state 

since it does not require the use of heavy metals for sample preservation. Indeed, heavy 

metals are one of the sources of image artifacts as they give rise to complex chemical 

reactions where ion and water shifts cause changes in volume of cellular and subcellular 

compartments. On the other hand, cell organelles might be deformed or new cell 

structures are generated leading to membrane fusion or alteration of cytoskeletal 

components. 

Therefore, I reasoned that a comparison of this technique with plastic embedding would 

be required to confirm our previous observations. 
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The Cryo-EM images represented in figure 20 show that there is no difference between 

the Atat1control and Atat1cKO mice, confirming what I already observed with 

conventional TEM and image analysis. MTs imaged in their native-like state do not 

show any morphological defect in the Atat1cKO samples compared to the control groups. 
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Figure 20. Imaging of vitreous sections by cryo-electron microscopy showing cross sections of 

saphenous nerve from Atat1control and Atat1cKO mice. b), d), and f) show a higher magnification of 

cross sections of MTs in large myelinated primary afferent fibers from Atat1control (a) and Atat1cKO mice 

(c and e) (Scale bar 150nm a), 20nm b), 100nm c) and e), 40nm d) and f)). In the images represented 

above it is possible to clearly appreciate protofilaments in almost all MTs (highlighted by black arrows) 



 

53 
 

3.3 Analysis of mechanical allodynia-like behavior 

induced by Spared Nerve Injury in the mouse 

The spared nerve injury (SNI) model is described as a mouse model of peripheral 

neuropathic pain and involves the ligation of two of the three branches of the sciatic 

nerve (the tibial nerve and the common peroneal nerve), while the sural nerve is left 

intact118,121.  

The SNI model induces symptoms of neuropathic pain such as mechanical allodynia 

i.e. pain due to tactile stimuli that do not normally provoke a painful response122. 

Behavioral modification resulting from mechanical allodynia is quantified by von Frey 

filaments of increasing bending force, which are repetitively pressed against the lateral 

area of the paw123 that is innervated by the spared sural nerve. 

SNI is a well-established model of induced mechanical allodynia in mice and I used it 

here also as method to induce mechanical stress in vivo. 

We demonstrated in a previous work that the deletion of the -tubulin acetyltransferase 

Atat1 from mouse peripheral sensory neurons causes a strong reduction of cutaneous 

mechanical sensation, with a strong impact on both light touch and pain and no effect 

on other sensory modalities1. It is yet not known whether the lack of -tubulin 

acetylation impact on mechanosensation by affecting MTs morphology. I 

demonstrated, in this work, that deacetylated MTs morphology does not change when 

compared to acetylated MTs under physiological condition in mice. On the other hand, 

recent in vitro observation demonstrated that deacetylated MTs are more susceptible to 

breakage when subjected to mechanical stress. Therefore it is interesting to investigate 

whether MTs morphology and mouse behavior change under mechanical stress 

conditions in both Atat1cKO and Atat1fullKO mice.  

https://www.jove.com/science-education/5070/restriction-enzyme-digests
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The von Frey test was performed at different time point after surgery (Figure 22a, b). 

Here I found that both Atat1cKO and Atat1fullKO mice seem not to develop allodynia 

compared to the Atat1Control mice until day 14 post SNI. Interestingly they do develop 

allodynia at day 21 post SNI where no significant differences have been observed 

anymore compared to the control group (Figure 21).   

 

 

 

Figure 21. Graphs showing 50% withdrawal thresholds to von Frey hairs after SNI to test 

mechanical allodynia in the hind paw of Atat1control , Atat1cKO and Atat1fullKO mice. Baseline 

withdrawal thresholds were assesses in both cases 24 hr prior to SNI. Withdrawal thresholds were 

assessed at 2, 7, 14, 21 days following SNI. a)  Graph of von Frey thresholds showing the significantly 

lower response frequency in Atat1cKO animals (Two-way RM ANOVA, Holm-Sidak method, p<0.001). 

At day 21 there is no significant difference anymore in the response frequency between the Atat1cKO and 

Atat1Control groups. b) Graph of von Frey thresholds showing the significantly lower response frequency 

in Atat1fullKO animals (Two-way RM ANOVA, Holm-Sidak method, p<0.001). As per Atat1cKO mice, at 

day 21 there is no significant difference anymore in the response frequency between the two genotypes. 

(n = 5-6 mice per treatment group). 
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4 Discussion 
 

In a previous work we found that lack of tubulin acetylation from mammalian 

peripheral sensory neurons causes a profound loss of mechanical sensitivity in mouse, 

exclusively affecting light touch and pain sensations1. We reasoned that such phenotype 

arises from structural changes in MTs. Therefore, in this thesis I explored whether and 

how lack of tubulin acetylation affects MTs ultrastructural organization in 

mammalian cells and tissues by means of high resolution light microscopy and electron 

microscopy as well as image analysis.   

In parallel with the ultrastructure investigation, a behavioral assay called von Frey assay 

was also performed on mice lacking -tubulin acetylation compared to the control, 

following mechanical stress induced by SNI, in order to investigate whether the deletion 

of the -tubulin acetyltransferatse Atat1 from peripheral sensory neurons and from the 

whole animal could also have some effect on the development of allodynia, which is a 

severe indication of neuropathic pain. Indeed recent in vitro studies showed that lack of 

tubulin acetylation renders MTs more susceptible to breakage under mechanical 

stress97,98. Therefore, here, I sought to investigate whether this is also the case in 

mammals and how this could impact upon the development of allodynia induced by 

mechanical stress, such as SNI.  
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4.1 Lack of -acetylated tubulin does not affect the 

overall organization of microtubules in mammalian 

peripheral sensory neurons 

Mechanotransduction is the ability of living organisms to sense and respond to 

mechanical forces by converting them into a biological response. This mechanism is 

present in eubacteria, archaea and eukarya and is essential for many physiological 

processes, such as the sense of touch, proprioception, hearing as well as homeostasis.  

In mammals, mechanosensation is mediated by specialized sensory neurons which are 

capable of detecting a wide range of mechanical stimuli, relying on the presence 

of mechanotransducer channels on sensory nerve endings. Surprisingly, little is known 

about the properties of sensory mechanotransducers in mammals and thus the 

mechanisms that convert mechanical forces into electrical signals at the peripheral 

endings of sensory neurons and, especially how the cytoskeleton influences it. In vivo 

studies in C. elegans reported that touch sensitivity is dependent on both the actin 

binding protein  spectrin24 and the MT cytoskeleton25. In particular, in C. elegans, 

specialized touch receptor neurons (TRNs) sense gentle touch and uniquely contain 

cross-linked bundles of heavily acetylated 15-protofilament MTs26. Targeted disruption 

of the molecular components of these MTs, MEC7 -tubulin and MEC12 -tubulin, 

and mutation of MEC-17, the major tubulin acetyltransferase27,28 causes touch 

insensitivity25,29, suggesting a specific role of the MTs and their acetylation status in 

the nematode mechanosensation. 

In support of this, it has been reported that acetylated MTs may also have an important 

function in mouse sensory neurons, as these neurons have amongst the highest level of 

-tubulin acetylation in the mouse30.  Moreover, we have assessed in our previous work 
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that mice lacking the -tubulin acetyltransferase Atat1, the mammalian orthologue of 

MEC-17, display a significant decrease in mechanosensitivity across all major fiber 

types innervating the skin and a reduction of the amplitude of mechanically activated 

currents in sensory neurons, strongly affecting light touch and pain, with no impact on 

other sensory modalities1.  Since this effect was not due to generalized effects on 

neuronal function, such as axonal transport, axonal outgrowth in vitro, or in the 

ultrastructure of peripheral nerves and their innervation in the skin and spinal cord in 

vivo, we reasoned that such phenotype may arise from the lack of a sub-membrane ring 

of acetylated -tubulin that somehow sets the mechanical rigidity of the cells, rendering 

them more resistant to mechanical deformation1. 

Indeed, we observed that acetylated tubulin is highly enriched underneath the plasma 

membrane in peripheral sensory neurons, under the membrane of axons in the 

saphenous nerve and at sensory neuron terminal endings in the skin and the cornea. 

How -tubulin acetylation is capable to set cellular rigidity remains poorly understood. 

It has been observed in mammalian osmosensory neurons from the hypothalamus that 

mechanotransduction is mediated by a unique interweaved MT organization throughout 

their soma119. We therefore asked whether a similar organization is also evident in 

peripheral sensory neurons, whether this structure is dependent upon the presence of 

acetylated tubulin and whether it could be involved in mechanosensation. 

According to the results obtained with superresolution dSTORM microscopy, where I 

explored the overall organization of the cytoskeleton in peripheral sensory neurons 

from the Atat1cKO and Atat1control mice, we observed that, similar to osmosensory 

neurons, MTs distribute in an interweaved fashion towards the center of the cells. 

However, no differences or alterations in MTs distribution and arrangement were 

observed in the absence of Atat1. This results suggest that lack of acetylation do not 
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affect the gross organization of MTs in sensory neurons, hence it would be interesting 

to investigate whether the increase of cell stiffness observed is a direct consequence of 

the increase of MTs rigidity or it arises from secondary effects, such as interaction with 

other membrane and cytoskeleton components.In light of this results, I reasoned that 

imaging MTs at higher resolution, using electron microscopy, may give insights into 

this process. 

Moreover, further observations are required to confirm that acetylated tubulin is indeed 

localized under the membrane of axons and especially neuronal endings in the cornea 

or in the skin, where mechanotransduction is known to take place in vivo. I think that 

electron microscopy is more suitable than superresolution microscopy to address this 

particular question considering the high density of MTs in the axons which makes them 

difficult to differentiate using superresolution microscopy. Therefore, I reasoned that 

the higher resolution provided by electron microscopy is required in this context.  

 

 

 

 

 

 

 

 



 

59 
 

4.2 Ultrastructural analysis performed on afferent 

fibers from mouse saphenous nerve, combining EM 

and Cryo-EM, show that lack of Atat1 does not affect 

microtubules morphology in the absence of mechanical 

stress 

In contrast to what has been observed in C. elegans where -tubulin acetylation is 

required for MTs organization but not for touch sensitivity29,99,120, we demonstrated in 

our previous study that acetylated MTs are likely responsible for the loss of 

mechanosensation in Atat1cKO mice1 suggesting that the two organisms may use Atat1 

differently in regulating mechanosensation.  

Our data are supported from other models where MTs have been shown to be involved 

in mechanotransduction, such as Drosophila larval dendritic arborization neurons11 and 

mammalian osmosensory neurons119. 

How the acetyltransferase activity of Atat1 is able to control touch sensation in mice is 

not yet known. Our previous results suggest that tubulin acetylation sets the cellular 

mechanical elasticity, modulating the force distribution in neural membranes, which 

would be altered in its absence due to a disorganization of MTs network. Therefore, its 

lack renders cells stiffer and more force is required to indent the plasma membrane and 

activate mechanosensory channels1.   

In light of the results obtained by superresolution microscopy where the overall 

organization of MTs seems not to be altered by lack of acetylation, I sought to 

investigate, taking advantage of more powerful techniques such as EM and Cryo-EM, 

whether the increase of cellular stiffness associated to a profound loss of 
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mechanosensation in mouse sensory neurons and sensory fibers innervating the skin is 

due to local alterations of the MTs structure. 

Albeit it is known that, in vivo, mechanotransduction occurs at sensory neuron endings, 

our previous work in vitro shows that also the soma of sensory neurons is 

mechanosensitive as we observed a reduction in mechanically activated currents in 

sensory neurons upon Atat1 deletion1. Moreover, we detected a sub-membrane 

localization of acetylated tubulin not only in the soma of sensory neurons and at 

neuronal endings in the cornea, but also in the afferent nerve fibers within the saphenous 

nerve, which are not in themselves mechanosensitive. Therefore, in this work I sought 

to investigate whether and how MTs organization and structure change along the 

sensory neuron axis, from the soma of DRG neurons to their peripheral endings, upon 

Atat1 deletion. However, I was not able to explore MTs morphology by EM neither in 

sensory neurons nor in neuronal endings in the cornea. Indeed, in both cases the 

cytoplasm appeared to be too dense and rich of features to clearly distinguish MTs and 

its protofilaments. Moreover, sensory neurons in culture were too fragile and sensitive 

to grow and properly attach on Cryo-EM supports. In addition, more time was required 

to implement EM and Cryo-EM sample preparation protocols. 

Here, combining high-resolution transmission electron microscopy with image 

analysis, I investigated MTs morphology and distribution in the saphenous nerve from 

Atat1control and Atat1cKO mice.  

Our results demonstrated that no major differences were observed between MTs from 

the Atat1cKO compared to the Atat1control when minor axis, eccentricity and solidity were 

compared. These results were also confirmed by Cryo-EM observations, suggesting 

that lack of acetylation does not affect MTs ultrastructure in mammals in the absence 

of mechanical stress. Indeed, axons may be subjected to mechanical stress to 



 

61 
 

a lesser extent compared to peripheral endings in vivo, which, on the contrary, present 

more direct contacts with the environment through the skin. 

I speculated that the slight difference in solidity measurements observed between the 

two genotypes, where the Atat1cKO samples are likely more deformed or broken, may 

be a consequence of mechanical stress due to several reasons, including sample 

handling and mouse life history and it is depend upon the topology of the sample. In 

support of our hypothesis, recent in vitro observations demonstrated that acetylation 

directly protects long-lived MTs from rupture due to mechanical stress and it is 

particularly enriched in regions of high curvature, suggesting that Atat1 acetylates 

preferentially regions experiencing mechanical stress124,125. Using a system that 

involves microfluidics manipulations, where MTs are subjected to a cycle of 

consecutive bending forces to simulate the effect of repetitive intracellular forces 

inducing mechanical stress, D. Portran and colleagues demonstrated that acetylation 

exerts its protecting effect by strongly enhancing MTs flexibility and decreasing MTs 

flexural rigidity after consecutive bending cycles. On the contrary, they observed that 

deacetylated MTs are more susceptible to breakage following each bending cycle as 

evidenced by an increase of material fatigue124,125. Taken together our results and these 

observations, I reasoned that further investigations into the mechanical properties of 

deacetylated MTs are required, for instance, by designing a proper method in which 

mechanical stress is systematically applied in vivo both to Atat1control and Atat1cKO mice. 

Indeed, I think that under physiological conditions, where MTs are highly bent by 

intracellular forces, also acetylated MTs are subjected to breakage in small percentages. 

This is consistent with what has been found in vitro and in our results, as we observed 

a small percentage of broken MTs also in in the control group. This may be a 

consequence of tissue dissection or sample handling, causing some sort of mechanical 

https://www.macmillandictionary.com/dictionary/british/lesser_1
https://www.macmillandictionary.com/dictionary/british/extent
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stress. On the other hand, I would expect that the percentage of broken MTs 

dramatically increases when MTs lack the protection exerted by acetylation, like in the 

case of the Atat1cKO group, and are subjected to continuous forces inducing mechanical 

stress.  

However, the difference between the two genotypes is not statistically significant as it 

represents the result of 2 mice out of 4 (4 Atat1cKO mice, considering the samples 

obtained from each leg).  This may reflect the presence of compensation mechanisms 

arising either from residual responsiveness or simply from the lack of something which 

is important for the organism. In the latter case, I speculated that this compensation 

mechanism may act by directly affecting the MTs “tubulin code” through changes in 

post-translational modifications patterns. Indeed, it is known that MTs post-

translational modifications could also modify their mechanical properties and binding 

interactions126.  

I think that changes in the PTMs patterns accommodate somehow the changing of 

protofilaments interactions, limiting MTs ultrastructural defects in the absence of 

mechanical stress but not their mechanical properties changes. This supports our 

observations that despite no morphological defects in MTs ultrastructure, Atat1cKO mice 

display a profound loss in touch and pain sensations1. 

Direct observations in real time of MTs behavior under mechanical stress would be the 

most straightforward way to assess the impact of the lack of a-tubulin acetylation on 

MTs ultrastructure in vivo. 

Although there are some difficulties in observing in real time MTs behavior in vivo, it 

would be interesting to investigate whether and how MTs morphology changes, along 

the sensory neuron axis, from the soma of DRG neurons to their axons, after Atat1cKO 

mice are subjected to mechanical stress, for instance, after injury (SNI). 
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4.3 Lack of -acetylated tubulin causes a delay in the 

development of allodynia in Atat1cKO mice compared 

to Atat1Control following SNI 

We assessed in our previous work that mice lacking Atat1 display a profound loss of 

mechanical sensitivity to both light touch and painful stimuli with no impact on other 

sensory modalities1. 

Therefore, we reasoned that it would have been also interesting to investigate whether 

Atat1cKO and Atat1fullKO mice would still be able to develop mechanical allodynia which 

is a severe neuropathic pain condition, following spared nerve injury (SNI)118. SNI is a 

well-established model of induced mechanical allodynia in mice and I thought that it 

could have also been used as method to induce mechanical stress in vivo. Indeed, 

according to what has been reported in literature, acetylation protects long- lived MTs 

from flexural breakage in vitro when they are subjected to repetitive bending forces. It 

is yet not known whether that is also the case in vivo. In this work,  I observed no 

dramatic changes in MTs morphology in the saphenous nerve of mice lacking -tubulin 

acetylation in the absence of mechanical stress97,98. Therefore, I reasoned that 

subjecting the mice to the mechanical stress induced by spared nerve injury could have 

been a way to investigate both the physiological and the morphological response. 

It is well established that mice subjected to SNI experience profound allodynia as early 

as the day following the surgery. Interestingly, I observed that both Atat1cKO and 

Atat1fullKO mice develop allodynia only beginning at day 21 post SNI, where no 

significant differences have been observed anymore compared to the control group. 

Many mechanisms could be responsible for such phenotype, for instance functional and 

structural plasticity of the peripheral mechanosensory terminals along the nociceptive 
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pathway, a delayed activation or miscommunication with the immune system 

components or a combination of both, just to mention a few. It is known indeed that the 

immune system is involved in the development and maintenance of neuropathic pain.  

In addition, I speculated that the delayed recovery might be caused by the mechanical 

stress triggered by the injury. Indeed, MTs from the Atat1cKO and Atat1fullKO mice are 

deprived of the protective action of acetylation and may break when subjected to the 

mechanical stress caused by the nerve injury, giving rise to the phenotype. However, it 

is yet not clear whether MTs are the major players here or they act indirectly through 

interactions with other cellular components. I reasoned that an ultrastructural analysis, 

combining EM and Cryo-EM, on deacetylated MTs in the sural nerve, following the 

mechanicals stress induced by SNI, could give more insights into this process. Indeed, 

the sural nerve is the sensory branch of the sciatic nerve left intact after the injury and 

it is responsible for the hypersensitivity in the lateral area of the paw.  

On the other hand, it would be also interesting to identify the mechanisms behind this 

rescue-like behavior that I observed at day 21 post SNI and whether and how the 

“stressed” MTs play a role in this context. It is conceivable that compensatory 

mechanisms from the complex mechanosensation pathways may reestablish the 

allodynia-like behavior. Indeed, it is known that sensory information, like touch and 

pain, are processed by complex circuits involving excitatory and inhibitory 

interneurons and that changes in the function of these circuits are thought to be 

implicated in the development and maintenance of inflammatory and neuropathic pain. 

However, the specific nature of circuit alterations in diverse segments of the nociceptive 

pathway is not well understood and many studies have reported divergent results. 

Therefore, the role of the “stressed” deacetylated MTs after injury in the delayed 
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recovery remains to be investigated in vivo. For instance, exploring from an 

ultrastructural point of view whether and how MTs morphology changes in this context. 

This results together with our previous work1 suggest that MT acetylation plays an 

important role in mechanosensation and that it could be a potential target for novel 

selective therapeutic drugs to treat mechanical pain and neuropathic pain that 

unfortunately responds poorly to standard pain treatments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.webmd.com/pain-management/guide/pain-management-treatment-overview
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5 Conclusions and outlooks 
 

Over the past 4 years I have characterized from an ultrastructural point of view MTs 

organization and structure along the sensory neuron axis, from the soma of DRG 

neurons to their peripheral endings. In parallel with the ultrastructural characterization 

of mice tissues, I also performed a behavioral assay, the von Frey assay under 

neuropathic pain conditions, on mice lacking Atat1 from peripheral sensory neurons 

and from the whole animal.  

The main conclusions of the work are summarized as follows: 

 Superresolution microscopy analysis on cultured sensory neurons dissociated 

from DRGs shows that the lack of -acetylated tubulin does not affect the gross 

organization of MTs in mammalian peripheral sensory neurons. 

 High-resolution transmission electron microscopy combined with an image 

analysis workflow and Cryo-EM observations demonstrate that lack of 

acetylation does not affect MTs ultrastructure in mammals in the absence of 

mechanical stress. 

 The von Frey test shows that both Atat1cKO and Atat1fullKO mice do not develop 

allodynia compared to the Atat1Control mice until day 14 post SNI, while they do 

so at day 21 post SNI. 

 

Whether the lack of MT acetylation and Atat1 impact on MTs ultrastructure remain to 

be elucidated in mammalian organisms. In fact the next step in this work will be to 

investigate whether and how MTs morphology changes along the sensory neuron axis, 

from the soma of DRG neurons to their axons, after Atat1cKO mice are subjected to 

mechanical stress, following SNI for example. 
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On the other hand, further analysis need to be done also to understand the reasons of 

the delayed recovery, observed in the Atat1cKO and Atat1fullKO mice. For instance, it 

would be interesting to explore whether it is dependent upon further morphological 

changes in “pre-stressed” deacetylated MTs and I believe that EM and Cryo-EM 

techniques may give more insights into this process. 
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6 Materials and methods 
 

6.1 Cultures of DRG neurons 

Mice were euthanized using CO2. Dorsal root ganglion neurons (DRG) from adult mice 

were prepared as previously described127. 

DRGs from all spinal levels were dissected, cleaned from ganglia and collected in a 1.0 

ml tube of phosphate-buffered saline (PBS) on ice. DRGs were then centrifuged at 1000 

rcf for 3 minutes, supernatant was discarded and they were incubated with 1 mg ml−1 

collagenase IV (Sigma) for 25 min in a shaker at 37°C and 800 rpm. 

After centrifuging at 1000 rcf for 3 minutes, the supernatant was discarded and the 

DRGs were incubated with 0.05% trypsin (Sigma) for 15 minutes in a shaker at 37°C 

and 800 rpm. 

A trituration step followed by pipetting up and down with the 1ml tip for 10 times. The 

DRGs were then let sit back to the bottom of the tube, 700 l of supernatant was 

transferred in a new tube with 10% horse serum while the rest was put back in the 

shaker at 37°C and 800 rpm for 10 minutes more. After adding 10% horse serum, the 

content of both tubes was filtered through a 100 um strainer that was washed afterwards 

with 500 l of DRG medium (10% FBS, DMEM + P/S). 

After centrifuging at 1000 rcf for 3 minutes, the supernatant was discarded and the 

pellet was resuspended in a small volume of DRG medium, according to the number of 

cells and the number of dishes needed. The cells were then spot-plated on poly-l-lysine 

(1 mg ml−1)–laminin (50 μg ml−1)-coated coverslips (10 l of cell suspension per 

coverslip), and maintained at 37°C in 5% CO2. Once the cells have attached, 2 hours 

later, 100 l of extra medium was added to the dishes. 
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6.2 Super-resolution microscopy 

Super-resolution microscopy was performed in collaboration with Ulf Matti in the lab 

of Jonas Ries at EMBL Heidelberg. The cells were prepared as described in the 

paragraph above, washed once with 3 ml of warm PBS and then fixed and 

permeabilized for 2 min in cytoskeleton buffer containing 0.3% Glutaraldehyde and 

0.25% Triton X-100. 

Following this, the cells were fixed for 10 min in cytoskeleton buffer containing 

2% Glutaraldehyde and treated for 7 min with 2 ml of 0.1% Sodium Borohydride 

(NaBH4) in PBS. Cells were then washed 3 times for 10 min in PBS. The cells were 

incubated with primary antibody for 30 min (mouse anti α-tubulin, Neomarker, 1:500) 

in PBS +2% BSA After washing 3 times for 10 min with PBS, the cells were transferred 

to the secondary antibody (goat anti mouse Alexa 647, 1:500, Molecular Probes 

A21236) at room temperature for 30 min. The cells were then washed three times with 

PBS for 10 min and then mounted for STORM imaging. At the time of imaging cells 

were overlaid with STORM blinking buffer: 50 mM Tris pH 8.0, 10 mM NaCl, 10% 

Glucose, 100 U/ml Glucose Oxidase (Sigma-Aldrich), 40 μg/ml Catalase (Sigma-

Aldrich). 

 

 

6.2.1 Superresolution image analysis 

The image analysis of MT network morphology on superresolution images of anti - α 

tubulin stained cultured DRG was performed in collaboration with Christian Tischer in 

the ALMF facility at EMBL in Heidelberg, using the open source software 

CellProfiler128, as described in our previous work1. The MT signal was enhanced by a 
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top-hat filter and then binarised with the same manual threshold for all images. Binary 

images were skeletonized using CellProfiler's 'skelPE' algorithm and the resulting 

skeleton was subjected to branchpoint detection. MT density was measured by dividing 

the skeleton length with imaged cell area and MT crossing density was obtained by 

dividing the number of branchpoints with skeleton length. Moreover, the local angular 

distribution of the MTs was measured in order to assess whether they run in parallel, or 

in a crossing manner (angular variance). To this end, each pixel was subjected to a 

rotating morphological filter using a linear structural element with a length of 11 pixels, 

and the angle that gave a maximum response was recorded. The response for angles 

from 0 to 170 degrees was computed at steps of 10 degrees since there is no information 

on MT polarity. Next the local circular variance of the MT orientations was measured 

in a sliding window with a diameter of 51 pixels, using angle doubling as it is commonly 

done for axial data. The circular variance has a value one if the MTs in a given region 

are completely parallel and has smaller values (down to 0) if the MTs are oriented in 

various directions. Finally, the average circular variance of all MT pixels in a given cell 

was computed. If this value were close to one it would mean that locally, on a length 

scale of 51 pixels, the MTs are parallel in most of the cell. 

 

 

6.3 Collection of tissue samples from mice 

6.3.1 Surgical procedure for saphenous nerve dissection in mouse 

Mice were sacrificed using CO2 inhalation, each mouse was then pinned to a dissecting 

board in a supine position and the skin was disinfected with 70% ethanol. As previously 

described by 129, to expose the saphenous nerve, the skin of the inner side of each leg 
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was lifted with forceps and an incision was made from the knee toward the inguinal 

ligament with a pair of sharped scissors, taking great care not to damage the tissue 

underneath. The skin was then removed to make the saphenous nerve visible on its 

entire length up to the inguinal ligament. The nerve and the exposed muscle was rinsed 

with PBS from a syringe frequently. 

The saphenous nerve was gently separated from the connective tissue by using a pair 

of sharpened forceps. First the nerve was detached from the saphenous vessels running 

side by side with the nerve (as shown in Figure 22a, b) and then the connective tissue 

was separated from the nerve carefully millimeter by millimeter. Efforts should be 

made here not to stretch the nerve, as it leads to tearing of the axons. 

Finally the nerve was gently lifted using forceps and collected on a small piece of 

Whatman® Cellulose Filter Paper (diameter 110 mm) by cutting at the proximal and 

distal ends with the use of spring scissors.  

 

 

 

Figure 22. Saphenous nerve dissection. a) shows the medial view of the thigh, lower leg and forefoot: 

the incision was made from the knee toward the inguinal ligament. b) shows the saphenous nerve and 
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the femoral vessels (yellow: nerve, red: arterial; blue: venous) run in the middle of the medial aspect of 

the thigh. Image from Katharina Zimmermann et al., 2009. 

 

 

6.3.2 Surgical procedure for cornea dissection in mouse 

Mice were euthanized using CO2 and the eyes were immediately removed from the 

eyeball by gently pulling and cutting as much muscle and connective tissue surrounding 

it as possible. Effort should be made to squeeze the eyeball as little as possible. 

Once all extraneous tissue was removed, the eyes were placed in Ringer´s solution, in 

order to dissect the cornea out from the eyecup. In fact, the eye will naturally maintain 

its spherical shape while in suspension, allowing to work with this shape rather than 

against it. 

With the cornea facing up, straight forceps were used to pinch up a small fold on the 

side of the eyecup along the corneo-scleral divide and a small incision was made using 

the spring scissors. Holding the eyes still with forceps, the lower scissor blade was 

inserted into and parallel to the incision in order to make a cut along the corneo-scleral 

divide until the cornea is completely separated from the sclera and the rest of the 

eyecup.  
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6.4 Preparation of mouse samples for Electron 

Microscopy 

Fixation is the first and most important step in any electron microscopy (EM) study. 

There are two ways to fix the biological specimens for EM: Chemical fixation by using 

cross-linking agents and physical fixation by high pressure freezing (HPF).  

Here both chemical fixation and HPF and freeze substitution (FS) were performed in 

parallel on mice samples. 

 

 

6.4.1 Chemical fixation of labeled DRG neurons in culture 

Here a transgenic mouse line, Advil-Cre::Rosa26SNAPCaaX, generated in our 

laboratory130 was used, in order to circumvent the fluorescence quenching of GFP 

during EM preparation of the sample.  

The SNAP-tag is an example of covalent self-labeling and consists of an engineered 

O6-alkylguanine-DNA alkyltransferase that can be specifically and irreversibly labeled 

with O6-benzylguanine (BG) derivatives. It satisfies also many of the requirements for 

an in vivo reporter, such as fast and quantitative one-step labeling, minimal off-target 

labeling and low cellular toxicity. Although the Snap-tag is not intrinsically fluorescent, 

the labeling with commercially available fluorophores extending from green to near-

infrared emission is efficient in complex tissue, allowing for multicolored imaging in 

vivo. 

I established a protocol for labeling the cornea in vivo, testing among different SNAP 

substrates (New England Biolabs Inc.): 
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1. BG-430 (excitation maximum at 421 nm and emission maxima at 444 and 484 

nm); 

2. TMR-Star (excitation maximum at 554 nm and emission maxima at 580 nm); 

3. SiR-650 and SiR- 700 (near-infrarerd silicon-rhodamine fluorophores excitable 

at around 640-650 nm and emit around 660-670). 

 

DRG sensory neuron from adult Advil-Cre::Rosa26SNAPCaaX mice were dissected 

and dissociated as described in the paragraph above (Cultures of DRG neurons). 

Sensory neuron cultures were incubated with 5M of the the near-infrared silicon-

rhodamine probes, diluted in DRG medium, for ½ hour at 37 C.  

After the labelling, the sensory neurons in culture were washed with PBS buffer (three 

times for 30 minutes) and imaged in the same buffer. Images were then captured using 

the Widefield Leica DMR with a High resolution colored CCD camera CD50.  

Sensory neuron cultures were finally processed for EM by chemical fixation with 2. 5% 

Glutaraldehyde in PHEM buffer for 2h.  

The neurons were Post-fixed in Osmium diluted in PHEM buffer for 1h, at different 

concentration: 0%, 0, 25%, 0,75%, 1%. To enhance sample contrast, an en bloc stain 

with 1% Uranyl Acetate (in Water) was performed for 1h.  

The sensory neurons were then progressively dehydrated in a series of Acetone washes: 

50%, 70%, 90%, 95% and 100% 3 times, each for 10 minutes. A standard Epon 812 

resin recipe was used for infiltration beginning with a 1:2 dilution of Epon to 100% 

Acetone, followed by 1:1 and 2:1, each for 15 minutes. Finally, samples were left for 2 

hours in 100% Epon before polymerization for 48 h at 60°C.  

The fluorescence was checked after each step of preparation of the sample with the 

Widefield Leica DMR and analyzed with ImageJ software.  
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6.4.2 Chemical fixation of the saphenous nerve 

A total of 20 adult male mice (10 Atat1control and 10 Atat1cKO), 8-10 weeks old and 

weighing between 25–30 g were sacrificed using CO2 inhalation and the saphenous 

nerves from both legs of each mouse were dissected out and placed immediately in a 

petri dish with fresh fixative containing a mixture of 2% Glutaraldehyde, 1% tannic 

acid and 1.8% glucose in a 0.1M Phosphate buffer. Here the nerves were further cut in 

smaller pieces (3 pieces for each nerve) in order to facilitate the penetration of the 

fixative into the tissue. The samples were then transferred in 2 ml tubes submerged in 

fixative, left at RT for 45-60 minutes. Half of the samples were placed at 4°C for 4 

weeks while the other half was first left at RT for further 30 minutes and then processed 

through a microwave-assisted post fixation under vacuum at 80W on a cycle of 2 min 

on-off-on. 

Then to enhance sample contrast, an en bloc stain (0.5% aqueous uranyl acetate) was 

used in the microwave at 150 W with vacuum on 1 min on-off-on cycle.  

The nerves were then progressively dehydrated in a series of ethanol washes (40%, 

50%, 70%, 90%, 95%, 100%), each for 40s in the microwave without vacuum at 250 

W. 

Resin infiltration was under vacuum beginning with a 1:2 dilution of standard recipe 

Epon 812 resin to 100% ethanol followed by 1:1 and 2:1, each for 3 min at 250 W. This 

was repeated twice with 100% Epon before polymerization in specific molds for flat 

embedding at 60°C in the oven.  

Finally, ultrathin sections of 50-70 nm were cut with a diamond knife in an ultra-

microtome, picked up on the Formvar-coated 100 mesh copper/palladium grids and 

analyzed by the Transmission electron microscope (Biotwin CM120 Philips) operated 

at 120kV. 
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6.4.3 High pressure freezing and freeze substitution of the saphenous 

nerve  

A total of 10 adult male mice (10 Atat1control and 10 Atat1cKO), aged postnatal-week 8-

10 and weighing between 25–30 g were sacrificed using CO2 inhalation and the 

saphenous nerves from both legs of each mouse were dissected out and placed in a petri 

dish containing PBS. Here the nerves were further cut at the extremities under the 

binocular in order to remove the damaged part of the tissue caused by the dissection.  

Then the nerve were transferred in specimen carriers (0.1/0.2 mm) filled with Yeast 

paste, used as cryoprotectant, mixed with PBS until the paste had a creamy consistence. 

A second sample carrier (0.3 mm) was placed flat side down as a lid on top of the loaded 

carrier. The whole sandwich was then inserted into the holder of the high pressure 

freezing machine  

(Leica EM HPM10) and frozen. After freezing, the carriers containing the samples were 

immersed in liquid nitrogen and the lids of the carrier sandwich were removed. Sample 

were transferred into cryotubes and stored in liquid nitrogen.  

The high-pressure frozen samples were subjected to freeze-substitution for dehydration 

and chemical stabilization of their fine structure. 

Freeze-substitution was carried out in the AFS-2c unit from Leica according the 

following scheme (Wiebke et al): 100 hours at -90°C in 0.1% tannic acid in acetone; 

washing with acetone 4x30 min; 7 hours at – 90°C in 2% OsO4 in acetone; warming up 

to 4°C by incrementing of 10°C/h; 1 hour incubation at 4°C; washing with acetone 3x20 

min; infiltration in Epon resin:acetone mix 1:1 over 3 hours at 4°C; overnight 

incubation in 90% Epon in acetone at RT; 6 hours incubation in 100% Epon at RT. 

The samples were finally removed from the specimen carriers, transferred in 

embedding molds for flat embedding and let polymerize at 60°C in the oven. Ultrathin 
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sections of 50-70 nm were cut with a diamond knife in an ultra-microtome, picked up 

on the Formvar-coated 100 mesh copper/palladium grids and analyzed by the 

Transmission electron microscope (Biotwin CM120 Philips). Semi-thin serial sections 

(250 nm thick) were also collected for electron tomography and (Tecnai F30, FEI), 

examined at an accelerating voltage of 300 kV, where each section was viewed at high 

resolution under multiple tilts (tilt increments of 1° ranging from ~ +60 to −60 degrees 

along an axis perpendicular to the incoming electron beam) to produce two single axis 

tomograms using marker alignment procedures and internal features to create weighted 

backprojection models of the tissue in 3D space.   

 

 

6.4.4 Chemical fixation of the corneas 

Before attempting to chemically fix corneas, 3 fixation cocktails were tested on the 

corneas from TRPM8BAC-EYFP+/+ mice:  

 

 2.5% Glutaraldehyde, 4% PFA in 0.1M PHEM buffer pH 6.9 for 2h at RT.  

 2.5% Glutaraldehyde, 4% PFA in 0.1M Cacodylate buffer pH 6.93 for 2h at RT.  

 2.5% Glutaraldehyde, 4% PFA in 0.1M Phosphate buffer pH 7.2 for 2h at RT.  

 

To accelerate the process and produce improved morphological results, the corneas 

were post-fixed through a microwave-assisted post fixation under vacuum, with 1% 

Osmium tetroxide buffered in 0.1 M PHEM, 0.1M Cacodylate or 0.1M Phosphate, at 

80W on a cycle of 2 min on-off-on.  

Then to enhance sample contrast, an en bloc stain (0.5% aqueous uranyl acetate) was 

used in the microwave at 150 W with vacuum on 1 min on-off-on cycle. The corneas 
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were then progressively dehydrated in a series of ethanol washes (40%, 50%, 70%, 

90%, 95%, 100%), each for 40s in the microwave without vacuum at 250 W. 

Resin infiltration was under vacuum beginning with a 1:2 dilution of standard recipe 

Epon 812 resin to 100% ethanol followed by 1:1 and 2:1, each for 3 min at 250 W. This 

was repeated twice with 100% Epon before polymerization in specific molds at 60°C 

in the oven.  

Sections of 70 nm were cut with a diamond knife in an ultra-microtome, picked up on 

the Formvar-coated 100 mesh copper/palladium grids and analyzed by the 

Transmission electron microscope (Biotwin CM120 Philips) operated at 120kV. 

 

 

6.4.5 High pressure freezing and freeze substitution of corneas  

Optimal fast freezing requires cryo-immobilization of tissues in a state that is as close 

to native as possible.  

When tissues are rapidly frozen, all contents are immobilized almost immediately. 

These fast-freezing methods involve time scales of milliseconds and are preferable to 

chemical fixation methods that have time scales of seconds or minutes depending on 

the tissue 

For HPF, mice were sacrificed using CO2 inhalation and the eyes were immediately 

placed in Ringer´s solution, in order to dissect the cornea out from the eyecup. 

These corneas were then placed in specimen carriers and fast frozen using a Leica EM 

HPM10 machine. Yeast paste was used as cryoprotectant, obtained by mixing fresh 

yeast with PBS until the paste had a creamy consistence. This because Yeast paste can 

be removed from the sample after freeze-substitution and Epon infiltration by gently 

tapping with forceps.  
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Corneas were then transferred to liquid nitrogen and processed by a relatively long 

freeze substitution scheme: 12 hours at -90°C in FS medium containing 0, 5% UA in 

Acetone; warming to -45°C; washing with acetone, infiltration with Lowicryl resin over 

12 hours at -45°C, 4 hours at -35C, 30 hours at -25°C; polymerization by UV light for 

2 days at -25°C followed by 15 hours at 20°C. After embedding, blocks were cut with 

a diamond knife in an ultra-microtome in order to get 70 nm sections, picked up on the 

Formvar-coated 100 mesh copper/palladium grids and analyzed by the Transmission 

electron microscope (Biotwin CM120 Philips). 

 

 

6.4.6 Olympus Biosystems Cell^R, UV cutting for marking sensory 

terminals into the corneal epithelium 

Here a CLEM (Correlative light and Electron Microscopy) approach was designed for 

this specific purpose. The method takes advantage of a Pulsed 355 nm laser to create a 

marker into the region of interest. It is a method for isolating specific single cells or 

entire areas of tissue from a wide variety of tissue samples based on microscopic 

imaging and utilizing a laser that burns the area of interest. The thickness, texture and 

preparation technique of the original tissue are relatively unimportant.  

First step was to localize the sensory fiber in the cornea from a TRPM8BAC-EYFP+/+ 

mouse with a fluorescent microscope (Olympus CutR widefield nanosurgery) with a 

20x objective lens, taking advantage of its fluorescence. Then with the laser (laser 

power 10%) a region around the fiber of interest was burned in order to create a square 

that could have survived the EM preparation of the sample, as the fluorescence is 

quenched.  
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6.5 Analysis of the 2D image datasets 

The 2D class averaging analysis on electron micrographs representing MTs in 

peripheral sensory afferents from the mouse saphenous nerve was performed in 

collaboration with Shyamal Mosalaganti at EMBL in Heidelberg. 

Once the datasets from 5 Atat1control and 5 Atat1cKO mice were collected, the images 

were randomly chosen and subjected to particle picking in order to select the best 

quality particles (referred to MTs). Particles can be selected in a manual, semi-

automated, and fully automated manner. Here 953 MTs from 95 Atat1control images and 

1358 MTs from Atat1cKO images were windowed out manually using the e2boxer tool 

embedded in the EMAN2 suite131 and assembled into a stack. The window size should 

exceed the approximate particle size by at least 30%. 

Particles were then aligned and classified into more homogenous subsets using 

reference-free alignment and k-means classification programs implemented in 

RELION132 (REgularized LIkelihood OptimizatioN). 

Images of similar views were aligned and averaged to achieve higher signal to noise 

ratio. This process involves both rotational and translational shifting of individual 

particle images, which generally gives information about the 2D views of the sample 

and its inherent heterogeneity. The goal of clustering is to assign n objects to K classes 

(or groups) such that objects within each class are similar to each other, while the group 

averages are as dissimilar from each other as possible. The number of classes K has to 

be decided and then the algorithm is either started in a deterministic or random manner. 

Here, a random initialization was performed where K randomly selected objects from 

the entire set are used as initial templates. After initialization the algorithm proceeds in 

an iterative manner. For each object its similarity to all class averages are computed 
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and the object is assigned to the most similar average, then  based on the new 

assignments, new class averages are computed. 

 

 

 

6.6 Image analysis on microtubules morphology 

Here a pipeline workflow was implemented, in collaboration with Jose Miguel Serra 

Lleti at EMBL in Heidelberg, in order to characterize different microtubule features in 

TEM images. A comparative study between two conditions: Atat1Control (WT) and 

Atat1cKO (Mutant) was carried out on a total number of 13 saphenous nerves from 8 

mice (4 Atat1Control and 4 Atat1cKO). The following schema illustrates the total 

amount of samples used, names and classification between left and right which 

indicates the mouse´s legs: 

 

 

After random shuffling, the set of images was assembled into a stack and all the MTs 

were windowed out from each image in a 100x100 pixel box for further segmentation, 

using a Fiji plugin called Box2Image that was developed for this purpose. Once all the 

MTs from the stack were selected and windowed out, the crops were saved with image 
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coordinates followed by the stack image number. Objects too blurry to identify a clear 

density or mixed with other densities in a way that was difficult to determine its shape 

were discarded: 

 

 

 

Segmentation proceeded according the following steps: Raw gray value data were 

thresholded using adaptive mean thresholding and thresholded MTs were binarized as 

follows: opening morphological operator, removal of borders (10 pixels), tophat to 

detect small particles followed by a xor to remove them, closing and opening 

morphological operators to clean small objects and finally selecting the biggest 

connected component. 

After binarization, the pipeline consisted in obtaining the 7th moment fourier descriptor 

to fit the contour of the biggest binary object. From the result, the contour was obtained 

and used to calculate the area and the fitting ellipse. Ellipse data was hence stored for 

statistical analysis. Ellipse data were hence stored for statistical analysis.  
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First of all, the average diameter of MTs in EM sections was determined.  The MT 

diameter is based on the minimum diameter of the fitting ellipse surrounding the MT 

area, or minor axis, when the MT is complete. The minor axis is an indication of 

possible deformations in the MT structure and does not change with the section angle 

if the full MT shape is present. 

The eccentricity of MTs was calculated as described by Cueva et al., 2012100. 

Eccentricity is a measure of how much a conic section (a circle, ellipse, parabola or 

hyperbola) varies from being circular. A circle has an eccentricity of zero, so the 

eccentricity shows how un-circular the curve is, in this case how un-circular MTs are. 

Finally, solidity was calculated by taking the 7th order fourier descriptor of each MT. 

The resultant contour was compared to the fitting ellipse of the convex hull. From this 

solidity was computed by comparing the approximated smoothed area to the elliptic 

area:  

 

 

 

6.7 Cemovis  

Cryo-electron microcopy of vitrified samples (CEMOVIS) allows to observe cells and 

tissues at high resolution in a close-to-native state. Here chemical fixation and staining 

are fully avoided. Therefore, all steps must be carried on below devitrification 

temperature to obtain successful results. Cemovis was performed in collaboration with 

the EMCF facility at EMBL in Heidelberg. 

 

https://www.mathsisfun.com/geometry/conic-sections.html
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Sample preparation 

Mice were euthanized using CO2. DRGs from all spinal levels were dissected out, 

cleaned from ganglia and transferred in a gold-coated copper type A carrier (0,1/0,2 

mm) filled with 20% dextran, used as cryoprotectant. A second sample carrier (0.3 mm) 

was placed flat side down as a lid on top of the loaded carrier. The whole sandwich was 

then inserted into the holder of the high pressure freezing machine HPM010 (Abra 

Fluid) and immediately vitrified (2100 bars, -196°C). 

 

Dorsal root ganglion neurons (DRG) from adult mice were prepared as previously 

described in the paragraph above (Cultures of DRG neurons) with the following 

modification: neurons were spot-plated on grids specific for CEMOVIS called finder 

grids, prepared as described in(). After 2 days, cells were vitrified in a HPM 010 high-

pressure freezer (2100 bars, -196°C) using the adapted carriers. The cell-bearing grid 

was sandwiched between a gold-coated copper type A carrier (0,1/0,2 mm) and the flat 

side of a type B aluminium carrier with the cells facing the 0,1 mm deep side of the 

type A carrier. 

 

Saphenous nerves from adult mice were prepared as previously described in the 

paragraph above (Surgical procedure for saphenous nerve dissection in mouse). Once 

dissected out, samples were transferred in a gold-coated copper type A carrier (0,1/0,2 

mm) filled with 20% dextran, used as cryoprotectant. A second sample carrier (0.3 mm) 

was placed flat side down as a lid on top of the loaded carrier. The whole sandwich was 

then inserted into the holder of the high pressure freezing machine HPM010 (Abra 

Fluid) and immediately vitrified (2100 bars, -196°C). 
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After the freezing and under liquid nitrogen immersion, the B carrier was discarded and 

the samples, mounted on the A carrier, were stored in LN2 until further use. 

Cryo-ultramicrotomy was performed with a Leica UC6/FC6 cryo-ultramicrotome. A 

45° cryo trim diamond knife was used for trimming away the surrounding material.  

A 35° cryo-immuno diamond knife and micromanipulator from Diatome (Studer et al. 

2014) were used for cryo-sectioning. Both trimming and sectioning were performed at 

-150°C. 50 nm ultra-thin sections (speed to 0,4 mm/s) were collected on C-flat holey 

carbon grids, transferred to a Cryo-TEM Holder (Gatan, Pleasanton) kept at a 

temperature below 170°C, and inserted in cryo-electron microscope, Tecnai Spirit (FEI, 

Eindhoven), operated at 120 kV. 

 

 

 

6.8 Von-Frey assay: Mechanical sensitivity tests  

This assay represent a measurement of Mechanical sensitivity to a stimulus. 

Mechanosensitivity can be determined as the minimum amount of force required to 

elicit a behavioural response, such as the withdrawal of a paw. 

Mice were placed in a plastic mesh on an elevated wire grid and sets of Von-frey 

filaments caliberated to different forces (0.008-6g) are applied to the hindpaw one by 

one. The paw withdrawal threshold is determined for both ipsilateral and contralateral 

paws using the Dixon’s up-down method. The basic premise is that lack of response to 

a filament corresponds to the next higher filament, while a positive response 

corresponds to the next lower filament. This variability can result in a bias since 

repeated testing can change the responsiveness of the animal. I used a modified 
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approach called SUDO (simplified Up-Down approach). This method uses only five 

filament presentations per assay unlike 8 to 9 filament presentations used in up-down 

method133.  

This simplifies the entire protocol and it is less time consuming. Usually the 5th filament 

is presented first. If the animal responds three out of five times, it is possible to proceed 

on to the lower filament or else to the next higher filament. In this way, threshold for 

response is calculated for each force applied.  

 

 

 

Figure 23: SUDO approach to study mechanical sensitivity. The image shows the Simplified Up-

Down method for mechanosensitivity assay, as adapted from RP Bonin.et.al.,Molecular pain,(2014). 
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8 Appendix 

 

8.1 EM chemical fixation of labeled DRG dissociated 

neurons from the Avil-Cre::Rosa26SNAPCaaX mouse 

Here I took advantage of a mouse transgenic line, Advil-Cre::Rosa26SNAPCaaX , 

generated in our laboratory130 in order to circumvent the fluorescence quenching of 

GFP during EM preparation of the sample. 

I applied the Snap-tag system for cell-imaging coupled with the silicon-containing 

rhodamine derivatives SiR-carboxyl and processed the cells for electron microscopy in 

order to test if the fluorescence survives the EM preparation of the sample and thus 

develop novel CLEM strategy. 

The fluorescence was checked after each step of preparation of the sample with the 

Widefield Leica DMR and I found that synthetic fluorophores preserve their post-

embedding fluorescence in the presence of uranyl acetate but not in the presence of 

osmium tetroxide (Figure 24a-f). 

However, osmium tetroxide is really necessary for the preservation of DRG neuron 

membranes and to enhance the contrast of the image (data not shown). 

For this reason, I optimized an HPF and Freeze sub protocol that don’t need Osmium. 
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Figure 24. Light microscopy of dissociated sensory neurons embedded into Epon. a)-f) are 

fluorescence microscope images of 500-nm resin sections of DRG sensory neurons tagged with the 

SNAP system and incubated with the SiR-700 substrate. The pictures show the preservation of the 

fluorescent signal after EM preparation of the sample, in absence of osmium tetroxide a)-c). d)-f) show 

the fluorescence quenching by 0.25% Osmium tetroxide in DRG sensory neurons during the post-fixation 

step of EM preparation (Scale bar 50 m).  

 



 

103 
 

8.2 Ultrastructural analysis of the microtubules in the 

mouse cornea by EM 

In our previous work we have shown that acetylated -tubulin is also enriched under 

the membrane of axons in the saphenous nerve and apparently at sensory neuron 

terminal endings in the cornea where mechanotrasduction takes place1. For this reason 

it would be interesting to further investigate at the ultrastructural level, with electron 

microscopy, the morphology of microtubules and their eventual modifications at the 

peripheral sensory terminals. 

Here I performed in parallel both chemical fixation and HPF followed by FS on the 

corneas both from TRPM8BAC-EYFP+/+ and Avil-Cre::Rosa26SNAPCaaX mice, in 

order to find the best sample preparation protocol that would allow fine ultrastructure 

preservation. 

 

 

8.2.1 Chemical fixation of corneas 

The electron micrographs show a very well-resolved structure of the corneal 

epithelium. However, the sensory terminals lose their myelin sheath early while 

entering the cornea and this makes their tracking very challenging (Figure 25a, b, 26a, 

b). 
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Figure 25. Transmission electron micrographs of cornea cross-sections showing basal cells in the 

basal layer of corneal epithelium. a) and b) The right panel shows at higher magnification what may 

represent peripheral sensory fibers (black arrow) running between basal epithelial cells (Scale bars 5 m 

left and 2m right panel). 

 

 

 

Figure 26. Transmission electron micrographs of Tangential view of potential sensory fibers in the 

basal layer of the corneal epithelium. a) and b) show cross-sections of peripheral sensory fibers 

(highlighted by black arrows) containing one of the characteristic hallmarks, a mitochondria (M) that 

identify such nerve terminals (Scale bars 2 m). 

. 
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8.2.2 Olympus Biosystems Cell^R, UV cutting for marking sensory 

terminals into the corneal epithelium (CLEM approach) 

To overcome the problem described above, I used the following approach to prove that 

the regions of interest seen in the chemical fixed tissue are indeed sensory fibers. First 

I localize the sensory fiber in the cornea from TRPM8BAC-EYFP+/+ mice with the 

fluorescent microscope, taking advantage of its fluorescence and then I burned with the 

laser a region around the fiber of interest in order to create a square that could have 

survived the EM preparation of the sample, that would help me locate the fiber of 

interest in the final resin block, as the fluorescence is quenched (Figure 27a,b, 28a, b).  

I encountered several disadvantages using this method. 

First of all, it doesn’t allow to be fully aware of the square size and of the etching depth 

at which the sample is burned. Indeed one of the problem we observed was to make the 

marker in a layer of the tissue I was not interested in, burning too deep. 

Second it takes a lot of time and effort to find back the marker, once the sample is 

embedded into the resin for the EM preparation. 

Therefore we decided to continue using the on-section CLEM protocol described later 

(see High pressure freezing and freeze substitution of corneas). 
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Figure 27. Cornea etching with the Olympus Cut^R. a) The left panel shows a fluorescence 

microscopy image of the square made by the laser surrounding the sensory terminal in the cornea from 

the TRPM8BAC-EYFP+/+ mouse. b) The right panel is a micrograph of the same sample as in panel a) 

taken by the Leica stereo microscope and showing the preservation of the tissue after etching (Scale bars 

5m left and 6 m right panel). 

 

 

 

Figure 28. Electron micrograph showing the preservation of the burning square (dotted lines), 

made by the Olympus Cut^R in the corneal epithelium, after EM preparation of the sample. Cross 

section of the cornea from the TRPM8BAC-EYFP+/+ mouse after chemical fixation and resin 

embedding.(Scale bar 10 m). 
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8.2.3 High pressure freezing and freeze substitution of corneas 

To overcome the problems described above, I reasoned that HPF would be the best 

approach. This would allow us to use a protocol that preserves the fluorescence in the 

block and do on-section CLEM134. 

When tissues are rapidly frozen, all contents are immobilized almost immediately. 

These fast-freezing methods involve time scales of milliseconds and are preferable to 

chemical fixation methods that have time scales of seconds or minutes depending on 

the tissue. 

For this reason I tried to optimize a CLEM protocol for the cornea from the Avil-

Cre::Rosa26SNAPCaaX mouse line. 

Unfortunately, I encountered some technical problems with the labeling of the tissue 

for unknown reasons and, since I would have also needed a triple transgenic mouse line 

that allows to have both the fluorescence and the reduction of mechanosensitivity, Avil-

Cre::Rosa26SNAPCaaX::Atat1cKO, I reasoned to continue working only on the Avil-

Cre::Atat1cKO mouse line. 

 

 

 


