
Teaching Rationale Management in
Agile Project Courses

Anja Kleebaum1, Jan Ole Johanssen2, Barbara Paech1, and Bernd Bruegge2

1Heidelberg University, Heidelberg, Germany
2Technical University of Munich, Munich, Germany

kleebaum@informatik.uni-heidelberg.de, jan.johanssen@tum.de,
paech@informatik.uni-heidelberg.de, bruegge@in.tum.de

Abstract
Rationale management is beneficial since it supports
decision-making and prevents knowledge vaporiza-
tion. To apply rationale management, developers need
to know how to systematically capture rationale and
how to exploit the documentation. We believe that
teaching these skills to students further integrates ra-
tionale management into the daily work of developers
and has positive effects on both the software develop-
ment process and on the quality of the software. In
this paper, we report on a lecture on teaching ratio-
nale management to students. In this lecture, students
are introduced to a rationale model, to capture and
exploitation methods, and tool support for rationale
management. The goal is to motivate them to apply
rationale management. We present the students’ re-
sults as well as their attitude and feedback towards the
applied methods. Further, we sketch how rationale
management will be applied during the semester.

1 Introduction
Developing software means to continuously solve is-
sues and to make decisions. Developers possess knowl-
edge about decisions, the issues they solve, alterna-
tives, and their justifications. This knowledge is called
decision knowledge or rationale. The success of a
development project strongly depends on the decision-
making abilities of the developers and other relevant
stakeholders. Rationale management supports explicit
decision-making by capturing rationale and by using
the documentation [7]. Developers are said to be re-
luctant to capture rationale systematically [1, 14, 18].
We believe that this can be alleviated by teaching de-
velopers how to capture rationale and by raising their
awareness for the benefits of rationale management.

As part of our previous work, we developed meth-
ods and tool support to integrate rationale manage-
ment into agile development processes, in particular
into continuous software engineering [11, 12]. In
this paper, we report on a lecture on teaching ratio-
nale management to university students. The goal

of this lecture is to teach a rationale model to stu-
dents, to introduce them to methods and tool support
for rationale management, and to motivate them to
apply rationale management in the future. We gave
this lecture as part of an agile multi-project course at
the Technical University of Munich, in which student
teams work on different software projects over the
period of one semester. The projects are initiated by
industrial customers [4]. As a default set of tools, the
students use the issue tracking system JIRA and the
wiki system Confluence. During the lecture, we pre-
sented our methods on rationale management to the
students and they applied parts of our tool support.
We asked students for their feedback on the presented
tools and to perform exercises.

This paper is structured as follows. In Section 2, we
outline background knowledge on rationale manage-
ment and the agile multi-project course. In Section 3,
we present our teaching material including six exer-
cises, and the course of the lecture. Then, we sum-
marize the students’ feedback, present the exercise
results, and discuss lessons learned. In Section 4, we
describe plans on how to evaluate rationale manage-
ment during the agile project course. Section 5 lists
related work and Section 6 concludes the paper.

2 Background
This section introduces the rationale model we use,
basics about issue tracking and wiki systems, our pre-
vious work on integrating rationale management into
agile software development, and a description of the
agile multi-project course that the lecture is part of.

2.1 Rationale Models
A rationale model represents knowledge in the same
way a system model represents a system. Rationale
can be modeled as a graph of rationale elements
and edges that represent the elements’ relationships.
There are various models for building such graphs of
rationale. In general, these models differ in the types
of elements and edges that they allow. For example, an
advanced model is the decision documentation model,



Emoji Name Indicating Phrases

Issue

I have a question . . .
How should . . .
. . . , any suggestions?
We need to discuss how . . .

Alternative
I { suggest | propose } . . .
One { option | proposal } is . . .
What { about |do you think } . . .

Pro
The { advantages | pros } are . . .
I { like | prefer } it because . . .
I agree with user . . .

Con
The { disadvantages | cons } are . . .
I don’t like it because . . .
I disagree with user . . .

Decision
Let’s do . . .
We decided . . .
The best option is . . .

Table 1: Types of rationale elements, their represent-
ing emoji, and indicating phrases adapted from [5].

which makes fine-grained differences in element types
such as implications resulting from a decision or con-
straints that need to be considered [9]. There could
be various types of relationships between rationale
elements, for example, a decision can solve an issue
or it can also lead to a new issue.

In order to teach rationale management, we use
an easy-to-learn model to represent rationale. This
model covers five types of rationale elements: issue,
alternative, pro- and con-argument, and decision (Ta-
ble 1). In our model, we distinguish three types of
relationships, i. e., edge types. The relates to relation-
ship is the default edge type. Only for arguments
different types are used: A pro-argument supports an
alternative or the decision, whereas a con-argument
attacks an alternative or the decision.

2.2 Issue Tracking and Wiki System
Developers can capture rationale in various documen-
tation locations, for example, in the issue tracking
[3, 10, 18] or the wiki system. Issue tracking systems
are widely applied to store requirements, bug reports,
as well as development tasks. They contain various
information types such as functionality or quality re-
quests and as-is descriptions [17]. Wiki systems are
collaborative writing tools that can be applied for
many purposes, for example, for meeting manage-
ment and requirements elicitation [19]. For a lecture
on rationale management, we assume that students
use the issue tracking system JIRA and the wiki system
Confluence.1 JIRA and Confluence are commercial sys-
tems that provide free licenses to universities. Both
systems can be extended with plugins.2

1https://atlassian.com/software
2https://developer.atlassian.com

2.3 Continuous Rationale Management
Agile processes support lightweight, flexible, and con-
tinuous software development. Rationale manage-
ment integrates well into such processes, yet, it should
be easy to apply, i. e., developers should need as lit-
tle effort for it as possible. Capturing and explor-
ing rationale should be non-intrusive, which means
that developers should be able to perform rationale
management as part of their daily practices rather
than having to change their development context.
For example, developers should be able to capture
and explore rationale simultaneously with performing
development tasks, implementing requirements, or
committing code.

In order to fulfill this requirement of non-
intrusiveness, we develop tool support that directly
integrates into the development tools [12]. In particu-
lar, we integrate our tool support into the issue track-
ing system, version control system, wiki system, chat
system, and the integrated development environment.
We refer to our tool support as ConDec, standing for
the continuous management of decision knowledge.
The ConDec tool support is available online.3

While ConDec comprises features to trigger devel-
opers in capturing and exploring rationale [11], in
this paper, we focus on the basic infrastructure neces-
sary for capturing and visualizing rationale as a graph.
Regarding the ConDec tool support, the students get
to know and apply the ConDec JIRA plugin, i. e., the
tool support for the issue tracking system JIRA.

The ConDec JIRA plugin supports different docu-
mentation locations of rationale, e. g., JIRA issues and
comments. On the one hand, rationale elements can
be captured as JIRA issues with special types for issue,
alternative, argument, and decision. Note the differ-
ence between JIRA issue as an abstract container and
the concrete issue as the rationale element. JIRA issue
links are used to link the rationale elements with each
other and also to JIRA issues of other types such as
scenarios or tasks. On the other hand, rationale can
be captured as part of the comments of JIRA issues.

2.4 The iPraktikum
The iPraktikum is a multi-project course in which up
to 100 students work in eight to ten teams on real
problems provided by an industry customer [4].

In particular in the first half of the semester, the
practical character of the course is supported by theo-
retical, yet interactive lectures. During these lectures,
the students learn the basic concepts of agile develop-
ment, release and merge management, modeling, and
usability engineering. Recently, we added a lecture
on rationale management. During the iPraktikum, the
students apply latest tools and frameworks that are
used in real industry projects. Moreover, they get to
use the results of latest research projects, which might

3https://github.com/cures-hub

https://atlassian.com/software
https://developer.atlassian.com
https://github.com/cures-hub


Figure 1: The decision knowledge view as a separate view for performing rationale management in JIRA.

find their way into the development process in the
future. This prepares the students for their future use.

At the time of the rationale management lecture,
they have already been introduced to JIRA and Con-
fluence. Regarding JIRA, they have at least one month
of experience. This knowledge is imparted through
various channels: (a) a development introduction
course in which the students are required to track the
progress of their work via JIRA, (b) the work within
their teams, and (c) a course-wide lecture on man-
aging the backlog, on what JIRA issues are, on how
to close, move, and work with them in sprints. Re-
garding Confluence, we provide the students with a
meeting management introduction at the beginning of
the course. This is handled by the coaches of a team,
a special role within the team that is fulfilled by an
experienced student and which is similar to a scrum
master. The coach can decide on what to present, how-
ever, we provide a guideline that contains the major
aspects of using Confluence. In particular, this relates
to managing the team agenda, i. e., (a) how does a
team meeting schedule look like?, (b) which roles are
present during each meeting?, (c) what are guidelines,
i. e., what to provide as the stand-up information and
when to use it?

3 Lecture on Rationale Management
In this section, we describe the lecture, the results of
its first instantiation, and then discuss these results
and our lessons learned.

3.1 Preparation and Introduction
The lecture is designed to last 90 minutes. Students
are grouped into teams and require a web-connected
device with access to the internet.4 During the lec-
ture, three systems are needed: JIRA, Confluence,

4An alternative would be to run the servers locally and to give
students access to the intranet (not possible for Slack).

Figure 2: The JIRA issue view including the interactive
rationale tree.

and the instant messaging services Slack5. Further,
the ConDec JIRA plugin6 needs to be installed in JIRA
and be enabled for the specific projects that the stu-
dent teams work in. Rationale elements that can be
explored by the students need to be added to the re-
spective JIRA projects, e. g., the elements shown in
Figure 1 and Figure 2. Slack is used as a communi-
cation tool between the instructors and students. In
particular, polls can be created with the Polly Slack
app7 through which students participate during the
lecture.

5https://slack.com
6https://github.com/cures-hub/cures-condec-jira
7https://polly.ai

https://slack.com
https://github.com/cures-hub/cures-condec-jira
https://polly.ai


The first part of the lecture covers background in-
formation about rationale management, such as its
definition, expected benefits, and the rationale ele-
ments. We advise students to use certain phrases
when talking about and capturing rationale (Table 1).
Further, we recommend to phrase issues as questions
ending with a question mark and to end alternatives
with an exclamation mark.

3.2 Capturing, Visualizing, and Filtering
Rationale in JIRA

In the second part of the lecture, the students are
introduced to the JIRA ConDec plugin including the
JIRA issue types for rationale elements (Figure 3).

Figure 3: JIRA issue types available in the project.

Two views for rationale management are shown to
the students: the decision knowledge view (Figure 1)
and the JIRA issue view (Figure 2). The decision
knowledge view is a separate view that holds all ratio-
nale elements and their links for the given project. In
this view, a user can select single rationale elements
and visualize the graph of rationale as a tree, called
rationale tree. In the JIRA issue view, rationale at-
tached to JIRA issues can be explored. For example,
Figure 2 shows the rationale tree for a scenario.

Then, the instructor demonstrates how to create
and link rationale elements shown on the right side
of Figure 1. Afterwards, the students gather in teams
and perform the first exercise:

Exercise 1 Gather your team, open your JIRA project,
and find the scenario already documented in the project.
Answer the question: How many issues are linked to the
scenario?

The students can answer the question via a poll. In
our example, the correct answer is that two issues are
linked to the scenario (Figure 2). The next exercise is
to discuss the content of the solution proposals, i. e.,
the alternatives and decisions.

Exercise 2 Answer the question: Which of the proposed
alternatives and decisions focus on requirements, which
of them on implementation?

In our example, the decision and alternative on the
left are more requirements-related, whereas the deci-
sion on the right is implementation-specific (Figure 2).
With this exercise, the students should learn that ra-
tionale can be captured for all steps in the software
engineering process, including requirements elicita-
tion, implementation, deriving test cases, and when
processing user feedback.

Now, the students will make their first experience
in capturing rationale:

Exercise 3 Link the existing issue “How to save trans-
actions?” to the scenario.

This issue is already part of the JIRA project (Fig-
ure 1) but not linked to the scenario yet. The students
can link the issue via a context menu on the scenario
node (root node in Figure 2).

The students realize that graphs of rationale can
become large and complex. Therefore, filtering is
important. The next exercise addresses filtering:

Exercise 4 Filter the element types so that only the
scenario and decisions are shown in the rationale tree.

Figure 4: Filtered rationale tree.

Figure 4 shows the solution of this exercise. Now,
students discuss rationale in their team:

Exercise 5 Create a new issue “How to persist data?”.
Add the following alternatives: “JSON!”, “SQLite!”. Dis-
cuss and capture pro and cons of each persistence alter-
native in your team. Add more alternatives and make a
decision.

To solve this exercise, the students can add rationale
elements collaboratively from different devices. This
exercise takes about 10 to 15 minutes.

Rationale can be captured in many places. JIRA
issues are just one possible documentation location
to store rationale. In order to demonstrate that there
are other possible documentation locations, the stu-
dents are presented with capturing rationale in JIRA
issue comments (Figure 6). In this lecture, this is
for information only, but, as part of our future work,
we integrate various documentation locations typical
for continuous software engineering and support the
identification of rationale elements with a supervised
text classifier.



Figure 6: Explicit rationale in the comments of the
scenario.

3.3 Rationale-based Meeting Management
Capturing rationale pays off during sprint meetings.
The meeting agenda has an information sharing sec-
tion that lists issues discussed and decisions made
during the last sprint. If meeting agendas are man-
aged in Confluence, the rationale elements captured
in JIRA can be easily imported.
Exercise 6 Gather your team, open your Confluence
space and create a new page called <Rationale Lecture>
(one per team). Create a sub-page called <Your Name>
(every team member). Use the JIRA Issue/Filter macro
to display decisions from your JIRA project. Answer the
question: How many decisions do you see?

The JIRA Issue/Filter macro is used in the exercise
and the search string is expressed using the JIRA query
language (JQL). The JQL string is:

project = <Project Key> AND
issuetype = Decision AND
created > -7d.

In our case, two decisions are shown.

3.4 Results
Two authors of this paper gave the lecture on Novem-
ber 8, 2018. In this section, we present results of this
first instantiation of the lecture.

The first poll was to answer the question what team
a student belongs to. With this poll, we wanted the
students to get warmed up in voting and to get the
number of participating students. In total, 88 students
answered the poll, i. e., about 88 students participated
in the lecture. This number serves as a reference point
for the following, quantitative evaluation results.

Exercise 1 was answered by 64 students, i. e., 73 %
of the participating students, of whom 63 gave the
correct answer.

Regarding the content of the solution proposals,
i. e., the alternatives and decisions, we initially asked
a different question than given in Exercise 2. We asked
the students to describe the difference between the
alternatives and decisions. Since this question seemed
to be hard to answer, we restated the question as given
in Exercise 2. This exercise was verbally performed
and we did not collect any results for it.

After performing Exercise 3, we asked students to
assess how easy it was to link an existing issue to
a scenario via a poll. They were asked to rate the
statement Linking an existing issue to a scenario is
easy with one answer from a five point Likert scale. 59
students participated in this poll, of whom 6 disagreed,
11 were neutral, and 32 agreed with the statement
(Figure 5). After the lecture, we checked whether the
teams correctly performed Exercise 3. In every team
project, the issue was correctly linked to the scenario.

We did not collect any results for or attitudes to-
wards Exercise 4.

For Exercise 5, we created a poll in which the stu-
dents could rate the statement Discussing rationale
using ConDec is simple. 56 students participated in
this poll, of whom 7 disagreed, 13 were neutral, and
35 agreed with the statement (Figure 5).

Number of students

Linking an existing issue to a scenario is easy.

Discussing rationale using ConDec is simple.

I would apply capturing rationale in JIRA issue comments.

I would apply presenting rationale in Confluence pages.

20 0 20 40

strongly disagree disagree neutral agree strongly agree

Figure 5: Students’ attitude towards the presented methods and tools for rationale management.



We asked the students to provide written feedback
on discussing rationale (Table 2) and we analyzed the
rationale graphs. A total of 126 rationale elements
were documented, i. e., a mean value of 12.6 rationale
elements per team with a standard deviation of 9.4
elements. That means that each student contributed
a mean value of 1.4 rationale elements. A mean value
of 3.3 alternatives were documented per team (stan-
dard deviation 1.2). 61 % of the alternatives correctly
ended with an exclamation mark. Seven of the ten
issues correctly ended with a question mark. Four
teams documented the decision. The types of the el-
ements were correctly chosen, e. g., arguments were
not accidentally classified as alternatives.

Student Feedback Our Rationale

Deletion of elements is not
possible.

Permission scheme in the
JIRA project forbids dele-
tion for non-admin users.

If there are many alterna-
tives and arguments, it is
hard to get an overview.
The user needs to scroll
very far to the right to see
all the content.

A better graph visualization
and better, easy-to-apply fil-
ter possibilities are needed.

Rationale elements should
not always be a single
ticket. This seems to end
up in a ticket overflow. Pro-
and con-arguments should
be comments.

Capturing rationale ele-
ments in separate JIRA is-
sues has the advantage that
they can easily be imported
into Confluence. We also
develop the ConDec Conflu-
ence plugin to import ratio-
nale from comments.

Table 2: Summarized feedback provided by students.

After demonstrating that rationale could also be cap-
tured in the comments of the scenario, we asked the
students to rate the statement I would apply capturing
rationale in JIRA issue comments. 61 students partic-
ipated in this poll, of whom 18 disagreed, 24 were
neutral, and 19 agreed with the statement (Figure 5).

After the students performed Exercise 6, we asked
them to rate the statement I would apply presenting
rationale in Confluence pages. 55 students participated
in this poll, of whom 7 disagreed, 13 were neutral,
and 35 agreed with the statement (Figure 5).

A mean value of 58 students participated in the
polls analyzed in Figure 5, which represents 66 % of
all students.

3.5 Discussion and Lessons Learned
Clearly, the results that we collected during the lecture
only represent the students’ first impression about the
presented methods for rationale management and the
ConDec JIRA plugin. As described in the next section,
we will apply a more thorough evaluation process
during the semester.

The results of voting on the statements in Figure 5
lead us to conclude that the majority of the students
liked applying rationale management. More impor-
tant than the votes, the written feedback summarized
in Table 2 encourages us to improve the visualization
and filtering components of the ConDec JIRA plugin.
In general, we had the impression that the students
liked voting on the polls and performing the exercises,
since this made the lecture more interactive [13].

Studying the rationale trees that the students cre-
ated in Exercise 5, we noticed that we did not ask the
students to make a decision. Thus, only four decisions
were documented. As a result, we will restate the
exercise for future use. The students seem to under-
stand the elements of the rationale model (Table 1),
since they correctly classified the element types in
their trees of rationale.

4 Evaluation During Semester
Two teams continue to apply rationale management
during the agile project course. Thus, we will evalu-
ate the explained methods for rationale management,
especially the ConDec JIRA plugin.

We introduced the role of the rationale manager.
The rationale manager is responsible for checking and
improving the rationale quality, i. e., they make sure
that important elements are documented and that
they are consistent. Further, the rationale manager
imports issues and decisions important for the last
sprint into the meeting agenda in Confluence. They
update and add rationale elements after the meeting
in JIRA. The role of the rationale manager is taken by
one student per team. The role is passed on after a
week to a different student, i. e., it is an interchanging
role. After the students have completed the role of the
rationale manager, we ask them to give us feedback
by filling in a questionnaire. We derive the questions
in this questionnaire by considering the variables of
the technology acceptance model [16]: We consider
the perceived usefulness, the perceived ease of use,
and the intention to use. Next to rating statements as
shown in Figure 5, it is important that the students
provide detailed feedback on the features for rationale
management they applied. For example, students
should provide details on what they think is useful or
useless, easy or difficult, and why they think so.

5 Related Work
To the best of our knowledge there is no work that
reports on teaching rationale management. Thus, in
this section, we present related work on applying
rationale management in student projects.

While tools for rationale management have been
evaluated in student projects before, e. g., in [8] and
[2], the following authors especially focus on the pos-
itive effects of rationale management for the success
of the student course.



Dutoit et al. discuss experiences with an integrated,
rationale-based modeling environment in a variety
of software engineering courses [6]. By applying ra-
tionale management, they aim to enhance the com-
munication between instructor and students, to sup-
port students in reflecting their own work, and to
enable the instructor to better monitor the students’
progress. These are valid benefits that we also expect
when students apply rationale management during
the semester as part of the agile project course. Simi-
lar to their modeling environment, ConDec integrates
the rationale elements with the system elements, such
as requirements. In addition, we focus on linking ratio-
nale with development tasks since they represent the
place where developers need to solve issues related to
design and implementation.

Malloy and Burge developed the software engineer-
ing using rationale tool SEURAT_Edu as a web-based
system that replaces the former SEURAT Eclipse8 ex-
tension [15]. Like our tool support, SEURAT_Edu
aims to support students in making the best decision
for an issue under consideration by explicitly reason-
ing about design alternatives. During their evalua-
tion, Malloy and Burge found that the students us-
ing their tool considered more alternatives and put
more thought into decision-making. Similar to their
tool, the ConDec JIRA plugin is web-based, which
allows students to easily collaborate. Their tool in-
tegrates with learning management systems such as
Moodle9, which has the advantage that the learning
management system takes care of authentication and
assignment creation. In our case, this is handled by
JIRA. Similar as we do in the lecture on rationale
management, SEURAT_Edu enables the teacher to
supply students with incomplete rationale that they
are asked to complete. In addition, SEURAT_Edu en-
ables the teacher to create a set of “solution” rationale.
It displays the status to which students reached a so-
lution, in order to encourage them during their tasks.
SEURAT_Edu performs automatic error checks, e. g.,
whether there are issues not solved by a decision. The
ConDec JIRA plugin provides a report page that lists
quality metrics. We plan to integrate support to ensure
the rationale quality in the development process.

6 Conclusion
We presented a lecture on rationale management that
teaches students to apply a rationale model as well as
methods and tool support for rationale management.
The students’ feedback and the exercise results let us
conclude that the students comprehend the usage of
the rationale model and that they are motivated to
apply rationale management. To validate this first
impression, a more detailed evaluation will be part of
the remaining duration of the agile project course.

8https://eclipse.org
9https://moodle.de

Acknowledgements
This work was supported by the DFG (German Re-
search Foundation) under the Priority Programme
SPP1593: Design For Future – Managed Software
Evolution (CURES project). We thank the partici-
pants of the rationale management lecture for their
participation in the exercises as well as the ConDec
developers, inter alia, Tim Kuchenbuch, Jochen Clor-
mann, and Lars Tralle. Furthermore, we would like to
thank Dominic Henze, Matthias Linhuber, and Florian
Angermeir for their technical support and Doris Kei-
del–Mueller for providing valuable feedback on the pa-
per. The emojis are created by Yusuke Kamiyamane10

and licensed under a Creative Commons License.

References
[1] Zoya Alexeeva, Diego Perez-Palacin, and Raf-

faela Mirandola. Design decision documenta-
tion: A literature overview. In Software Architec-
ture, volume 5292 of Lecture Notes in Computer
Science, pages 84–101. Springer, Berlin, Heidel-
berg, 2016.

[2] Rana Alkadhi, Jan Ole Johanssen, Emitza Guz-
man, and Bernd Bruegge. REACT: An approach
for capturing rationale in chat messages. In
11th ACM/IEEE International Symposium on Em-
pirical Software Engineering and Measurement
(ESEM’17), Toronto, Canada, 2017. IEEE.

[3] Manoj Bhat, Klym Shumaiev, Andreas Biesdorf,
Uwe Hohenstein, and Florian Matthes. Auto-
matic extraction of design decisions from is-
sue management systems: A machine learning
based approach. In 11th European Conference
on Software Architecture (ECSA’17), pages 138–
154, Cham, Switzerland, 2017. Springer. ISBN
978-3-319-65830-8.

[4] Bernd Bruegge, Stephan Krusche, and Lukas
Alperowitz. Software engineering project
courses with industrial clients. ACM Trans-
actions on Computing Education, 15(4):17:1–
17:31, 2015.

[5] Michael Doyle and David Straus. How to Make
Meetings Work: The New Interaction Method.
Berkley, 1993. ISBN 978-0425138700.

[6] Allen H. Dutoit, Timo Wolf, Barbara Paech, Lars
Borner, and Jürgen Rückert. Using rationale
for software engineering education. In 18th
Conference on Software Engineering Education
and Training (CSEE&T), pages 129–136, Ottawa,
Canada, 2005. IEEE.

[7] Allen H. Dutoit, Raymond McCall, Ivan Mistrík,
and Barbara Paech. Rationale Management in

10http://p.yusukekamiyamane.com

https://eclipse.org
https://moodle.de
http://p.yusukekamiyamane.com


Software Engineering: Concepts and Techniques.
Springer, 2006. ISBN 978-3-540-30998-7.

[8] Davide Falessi, Giovanni Cantone, and Martin
Becker. Documenting design decision rationale
to improve individual and team design decision
making. In ACM/IEEE International Symposium
on Empirical Software Engineering (ISESE), pages
134 – 143, Rio de Janeiro, Brazil, 2006. ACM.

[9] Tom-Michael Hesse and Barbara Paech. Support-
ing the collaborative development of require-
ments and architecture documentation. In 3rd
International Workshop on the Twin Peaks of Re-
quirements and Architecture, pages 22–26, 2013.

[10] Tom-Michael Hesse, Veronika Lerche, Marcus
Seiler, Konstantin Knoess, and Barbara Paech.
Documented decision-making strategies and de-
cision knowledge in open source projects: An
empirical study on firefox issue reports. Informa-
tion and Software Technology, 79:36–51, 2016.

[11] Anja Kleebaum, Jan Ole Johanssen, Barbara
Paech, Rana Alkadhi, and Bernd Bruegge. Deci-
sion knowledge triggers in continuous software
engineering. In 4th International Workshop on
Rapid Continuous Software Engineering (RCoSE),
pages 23–26, Gotheburg, Sweden, 2018. ACM.

[12] Anja Kleebaum, Jan Ole Johanssen, Barbara
Paech, and Bernd Bruegge. Tool support for de-
cision and usage knowledge in continuous soft-
ware engineering. In 3rd Workshop on Continu-
ous Software Engineering, pages 74–77, 2018.

[13] Stephan Krusche, Nadine von Frankenberg, and
Sami Afifi. Experiences of a software engineer-
ing course based on interactive learning. In
15. Workshop Software Engineering im Unterricht
der Hochschulen (SEUH), pages 32–40, Hanover,
Germany, 2017.

[14] Claudia López, Víctor Codocedo, Hernán As-
tudillo, and Luiz Marcio Cysneiros. Bridging
the gap between software architecture rationale
formalisms and actual architecture documents:
An ontology-driven approach. Science of Com-
puter Programming, 77(1):66–80, 2012.

[15] John Malloy and Janet Burge. SEURAT_Edu: A
tool to assist and assess student decision-making
in design. In 47th Technical Symposium on Com-
puting Science Education (SIGCSE), pages 669–
674, Memphis, Tennessee, USA, 2016. ACM.

[16] Nikola Marangunić and Andrina Granić. Tech-
nology acceptance model: a literature review
from 1986 to 2013. Universal Access in the Infor-
mation Society, 14(1):81–95, 2015.

[17] Thorsten Merten, Bastian Mager, Paul Hüb-
ner, Thomas Quirchmayr, Simone Bürsner, and
Barbara Paech. Requirements communication
in issue tracking systems in four open-source
projects. In 6th International Workshop on Re-
quirements Prioritization and Communication
(RePriCo), pages 114–125, Essen, Germany,
2015.

[18] Benjamin Rogers, Yechen Qiao, James Gung,
Tanmay Mathur, and Janet E. Burge. Using
text mining techniques to extract rationale from
existing documentation. In 6th International
Conference on Design Computing and Cognition,
pages 457–474. Springer, 2014.

[19] Carlos Solis and Nour Ali. Distributed require-
ments elicitation using a spatial hypertext wiki.
In 5th IEEE International Conference on Global
Software Engineering, pages 237–246, Princeton,
NJ, USA, 2010. IEEE.


	Introduction
	Background
	Rationale Models
	Issue Tracking and Wiki System
	Continuous Rationale Management
	The iPraktikum

	Lecture on RationaleManagement
	Preparation and Introduction
	Capturing, Visualizing, and Filtering Rationale in JIRA
	Rationale-based Meeting Management
	Results
	Discussion and Lessons Learned

	Evaluation During Semester
	Related Work
	Conclusion

