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 1 List of essential abbreviations 

Acaca 
ACC 
AceCS1 
ACL (Acly) 
ACSL 
ActB 
AGE  
Aldoa 
AML12 
AMPK 
AmpB 
ASNS 
ATF4 
ATF6 
ATP 
B2m 
BSA 
CHOP  

Acetyl-Coenzyme A carboxylase alpha 
Acetyl-CoA carboxylase 
Cytoplasmic acetyl-CoA synthetase 
ATP citrate lyase 
Long-chain acyl-CoA synthetase 

-actin 
Advanced glycation endproduct  
Aldolase A (fructose-biphosphate) 
Hepatocytes, mouse 
5' adenosine monophosphate-activated protein kinase 
Amphotericin B 
Asparagine synthetase 
Activating transcription factor 4 
Activating transcription factor 6 
Adenosine triphosphate 
Beta-2 microglobulin  
Bovine serum albumin 
DNA-damage inducible factor 3 (Ddit3) 

CoQ  
CO2 
Cpt1b 

Coenzyme Q  
Carbon dioxide 
Carnitine palmitoyltransferase 1B 

DM 
DN 
Echs 
eNOS 

eIF2 
Eno1 

Diabetes mellitus 
Diabetic neuropathy 
Enoyl coenzyme A hydratase (mitochondrial) 
Endothelial nitric oxide synthase 
Eukaryotic initiation factor 2  
Enolase 1 (alpha) 

ETC  
FAD(H2) 
FAO 
FAS(N) 
FCS 
FMN 

Electron transport chain  
Flavin adenine dinucleotide  
Fatty acid oxidation 
Fatty acid synthase 
Fetal calf serum 
Flavin mononucleotide 

GAP(DH)  Glyceraldehyde 3-phosphate (dehydrogenase)  
Glut 1 
Glut 3 
Gpx 
HbA1c  
HG 
HK2 
H2O2 
HO• 

Glucose transporter 1 
Glucose transporter 3 
Glutathione peroxidase  
Hemoglobin A1c 
High glucose  
Hexokinase 2 
Hydrogen peroxide 
Hydroxyl radical 



Abbreviations 

2 
 

Hprt 
IENFD 
iNOS 

IRE1 

LG 
Lipe 
LKB1 
M1 
MEF 
MES13 

Hypoxanthine guanine phosphoribosyl transferase  
Intraepidermal nerve fiber density 
Inducible nitric oxide synthase 
Inositol-requiring enzyme 1 alpha 
Low glucose 
Lipase 
Liver kinase B1 
Kidney epithelial (tubular) cells, mouse 
Mouse embryonal fibroblasts 
Messangial cells, mouse 

MG 
MHP 
NAC 
nNOS 
NO 
NOS  
NOX 
NSC 
Mdhfd2 
mtNOS 
mtO2 
NAD(H) 
NADP(H)  
O2 

O2•- 

Methyl glyoxal 
mitochondrial hyperpolarization 
N-Acetylcystein  
Neuronal nitric oxide synthase 
Nitric oxide 
Nitric oxide synthase 
NAD(P)H oxidases 
Nerve conduction study 
Methylenetetrahydrofolate dehydrogenase 2 
Mitochondrail nitric oxide synthase 
Mitochondrial oxygen consumption 
Nicotinamide adenine dinucleotide 
Nicotinamide adenine dinucleotide phosphate  
Oxygen 
Superoxide 

O-GlcNAc  O-Linked β-N-acetylglucosamine  
PARP  
Pck2 
PBMC 

Poly(ADP-ribose) polymerase  
Phosphoenolpyruvate carboxykinase 2 
Peripheral blood mononuclear cells 

PKC  
P/S 

Protein kinase C  
Penicillin streptomycin 

ROS  
RNS 
RnS18 
RT 
SOD 
Srebp1 
SW10 

Reactive oxygen species  
Reactive nitrogen species 
18S ribosomal RNA  
Room temperature 
Superoxide dismutase  
Sterol regularory element binding protein 1 
Schwann cells, mouse 

STZ  Streptozotocin  
T1DM Type 1 diabetes  
T2DM  
TCA 
Trib3 

Type 2 diabetes  
Tricarboxylic acid 
Tribbles pseudokinase 3 
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2 Introduction 

2.1 Diabetes Mellitus 

The prevalence of Diabetes mellitus (DM) has increased dramatically over the last decade. 

According to the International Diabetes Federation (IDF) Diabetes Atlas, 415 million people 

worldwide were diagnosed with diabetes in 2015.  The prevalence of diabetes in adults was 

estimated to be 8.8%, mainly due to the increasing prevalence of type 2 diabetes mellitus 

(T2DM) which is closely linked to the epidemic of obesity, and is expected to increase about 5% 

per year (Ogustova et al., 2017; Ziegler et al., 2008; Zimmet et al., 2001). Moreover, the IDF 

reported that 318 million adults are estimated to have impaired glucose tolerance or 

prediabetes, giving them a higher risk of developing the disease.  

DM is characterized by hyperglycemia resulting from insulin resistance, inadequate insulin 

secretion, excessive glucagon secretion or a combination of these factors. DM is primarily 

diagnosed by fasting blood glucose levels or by glycated haemoglobin (HbA1c). Prediabetes is 

diagnosed by a fasting blood glucose >100 mg/dL or HbA1C 5.7-6.4%. A diagnose of DM is given 

when fasting blood glucose is >126 mg/dL or HbA1c>6.5%. Type 1 diabetes mellitus (T1DM) 

characterized by insulin deficiency due to pancreatic -cell loss, resulting into many changes in 

the organism including hyperglycaemia (Alberti and Zimmet, 1998). The aetiology of T1DM is 

not completely understood, however, it is suggested the pathogenesis of the disease involves T 

cell-mediated β-cells destruction (Davies et al., 1994). On the other hand, T2DM is associated 

with the dysfunction of the pancreatic -cells, disruption of secretory function of adipocytes and 

impaired insulin action in liver and defect in insulin-mediated glucose uptake in the muscle (Cai 

et al., 2005; Spranger et al., 2003). The defects are evident early in the course of the disease, 

and emerging evidence suggests that mitochondria play an important role in these processes. 

Both T1DM and T2DM are associated with similar long-term diabetic complications, such as 

cardiomyopathy, nephropathy, neuropathy, retinopathy and atherosclerosis, which to some 

extent appear to result from pathogenic processes at mitochondrial level (Sivitz and Yorek, 

2010). 
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2.2 Diabetic neuropathy 

Diabetic neuropathy (DN) is a common micro-vascular complication of long term diabetes and 

its prevalence is 30-50%, depending on the method used for diagnosis (Tesfaye et al., 2010). DN 

is characterized by distal-to-proxomal loss of peripheral nerve axons. However, there is also 

evidence for vascular-independent development of neuropathy (Bierhaus et al., 2012; Eberhardt 

et al., 2012). DN is a debilitating, complex disorder and associated with a wide range of clinical 

manifestations, including hypersensitivity (hyperalgesia and allodynia), hyposensitivity, diabetic 

foot ulcers and neuropathic osteoarthropathy (Yagihashi et al., 2011), together with structural 

changes in peripheral nerve including endoneurial microangiopathy, abnormal Schwann cell 

pathology and axonal degeneration (Malik et al., 2005). The reason why axons are very sensitive 

to hyperglycemia and metabolic changes is due to the close interaction with the nerve blood 

supply and the large population of mitochondria (Edwards et al., 2010; Vincent et al., 2004; 

Vincent et al., 2010). When the mitochondria are damaged, axons undergo metabolic changes 

leading to energy failure and neurodegeneration.  

Nerve biopsies of patients with diabetes have shown nerve fiber degeneration and clusters of 

regenerating axons (Engelstad et al., 1997). Reduced nerve conduction velocity due to de 

myelination and the loss of small and large myelinated fibers, and reduced nerve action 

potentials as result of axon loss have been observed in symptomatic neuropathy (Stewart et al., 

1996). Alterations in nerve conduction velocity can be detected in patients with asymptomatic 

neuropathy, however, its presence does not predict the onset of the disease. Moreover, 

alterations in myelination of small nerve fibers and small fiber loss, present in the early stage of 

DN do not affect the sensory action potential detected by routine nerve conduction study (NCS) 

(Dyck et al., 2010; Vinik et al., 2006). Skin biopsies have been taken to determine intraepidermal 

nerve fiber density (IENFD) when small-fiber neuropathy is suspected and is a reliable tool for 

the diagnosis of distal symmetric polyneuropathy in patients with DM (Timar et al., 2016). A 

non-invasive quantitative method for the diagnosis of DN is corneal confocal microscopy, which 

is more sensitive than NCS or IENFD (Shtein and Callaghan, 2013).  

The main treatment of DN is tight glycemic control. To control the pain, medication such as 

corticosteroids, carbamazepine, clonazepam, phenytoin, or paracetamol in combination with 
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codeine phosphate can be used (Said et al., 2007; Yagihashi et al., 2011). However, such 

medication is not uniformly effective in all DN patients.  Many patients are resistant to one or 

more analgesics. Furthermore, such drugs have adverse side effects such as nausea, vomiting 

and depression of the central nerve system (Nawroth et al., 2010, Javed et al., 2015). Although a 

combination of certain medication might be effective to relieve the pain in DN, the secondary 

effects can still reduce the quality of life. 

The lack of treatment options for DN reflects the incomplete understanding of its 

pathophysiology. Although chronic hyperglycemia is mainly accepted as the primary course of 

DN in both T1DM and T2DM patients, other emerging factors such as impaired insulin signaling, 

hypertension, and dyslipidemia (mainly in T2DM) might precede hyperglycemia. Preclinical and 

some clinical studies indicate that DN is induced by microvascular disease, mainly focused on 

axonal degeneration secondary to ischemia and hypoxia (Callaghan et al., 2012a). However, this 

is likely to be one aspect in the complex pathophysiology of DN.  

Clinical studies have indicated that normalizing blood glucose only partially prevents the 

manifestation of DN in T1DM patients (Albers et al., 2010) and does not prevent neuropathic 

symptoms in T2DM (Boussageon et al., 2011, Callaghan et al., 2012b). Moreover, lowering of 

blood glucose does not diminish the symptoms of DN in either T1DM or T2DM. Data from 

pancreatic transplantations in T1DM patients with DN showed normal blood glucose after 

transplantation and stability of DN, but no improvement in symptoms (Navarro et al 1997). In a 

study of 427 patients with mild to moderate DN, elevated triglyceride correlated with impaired 

sural myelinated fiber density, a direct measurement of neuropathy, but no association 

between glycemic control and neuropathy was found in this cohort (Wiggin et al., 2009). 

Bongaerts et al. showed that the prevalence of peripheral neuropathy was increased to the 

same extended in non-diabetic individuals with combined impaired fasting blood glucose and 

impaired glucose tolerance as compared to diabetic patients (Bongaerts et al., 2012). 

Furthermore, a major adverse side effect of intensive glycemic control is increased occurrence 

of hypoglycaemic episodes with a risk of brain injury and death. Therefore, to avoid 

hypoglycemic crisis, the acceptable target blood glucose level in controlled individuals is usually 

set to values above normal (6.7 to 10 mmol/L in Diabetes Control and Complications Trial and 6 
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mmol/L in U.K. trail in T2DM patients) (Nathan et al., 1993; Skyler, 1993). In prediabetic 

patients, it has been shown that glucose control does not target the pathogenesis of DN and 

hence is an ineffective treatment by itself (Smith et al., 2006). In addition, Gaede et al showed 

that a multifactorial treatment against hypertension, dyslipidemia and micro albuminuria along 

with aspirin and antioxidants was only effective against diabetes related cardiovascular disease, 

including nephropathy and retinopathy, while the prevalence of DN remained unaffected 

(Gaede et al., 1999). 

The majority of clinical and basic research has focused primarily on the effects of hyperglycemia 

on neurons. However, in the earliest descriptions of DN pathology in 1979 it was described that 

axonal degeneration is accompanied by Schwannopathy, which is characterized by degenerative 

changes in myelin sheets, basement membrane hyperplasia, crystalloid inclusion bodies and 

aggregates of glycogen particles in the cytoplasm of Schwann cells (Yagihashi et al., 1979). There 

is now increasing evidence that Schwann cells are equal indispensable component in the 

maintenance of neuronal structure and function, providing nourishment to axons, and promote 

survival and growth upon neuronal injury (Mizisin et al., 2014). Moreover, alterations in 

Schwann cells have been reported in experimental models of DN. Studies in rodents have shown 

that Schwann cells regulate many aspects of axonal function and that the disruption of Schwann 

cell metabolism induced by diabetes leads to diminished neuronal support factors and the 

accumulation of neurotoxic intermediates, including acyl carnitine species, palmitoylcarnitines 

and linoleylcarnitine, contributing to neuronal degeneration, endothelial dysfunction and 

subsequently to DN (Freeman et al., 2016; Viader et al., 2013).  

2.3 Molecular mechanism of diabetic complications: Unifying theory 

The unifying theory is based on studies which showed increased reactive oxygen species (ROS) 

production under hyperglycemic conditions (Brownlee et al., 2005; Nishikawa et al., 2000). 

During periods of hyperglycemia, cells which take up glucose independently of blood insulin 

levels such as mesangial cell in kidney, capillary endothelial cells, neurons and Schwann cells will 

incorporate large amount of glucose leading to extreme high intracellular glucose 

concentrations (Brownlee et al., 2001). The increase metabolic flux through glycolysis due to 
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elevated glucose levels results in increased levels of substrates for the tricarboxylic acid (TCA) 

cycle and oxidative phosphorylation, causing elevated electron flux in complex III of the electron 

transport chain and subsequently the overproduction of ROS in the mitochondria (Figure 1). It 

has been shown that elevated ROS formation induces DNA damage resulting in the activation of 

poly(ADP-ribose) polymerase (PARP), which induces poly(ADP- ribosyl)ation of nuclear proteins 

and NAD+ depletion (Atorino et al., 2001; Du et al., 2003; Du et al., 2000; Kanwar and Kowluru, 

2009). The accepter of PARP is glyceraldehyde-3-phosphate dehydrogenase (GAPDH), which is 

translocated to the nucleus where it is inhibited. The poly(ADP- ribosyl)ation of GAPDH together 

which NAD+ depletion leads to the accumulation of  glycolytic intermediates upsteam of GAPDH, 

such as fructose-6-biphosphate, glyceraldehyde-3-phosphate and dihydroxy acetone phosphate, 

which are major precursors of advanced glycation endproducts (AGEs) (Ahmed, 2005; Brownlee 

et al., 2005; Bierhaus et al., 2005). Moreover, the inhibition of GAPDH by PARP also activates 

the polyol pathway (Vincent et al., 2004), the hexosamine pathway (Brownlee 2001; Sayeski et 

al., 1996), as well as protein kinase C (and subsequently NF-B) (Xia et al., 1994), all which are 

involved in hyperglycemia induced cellular dysfunction and the subsequent development of 

diabetic complications.  

Figure 1. Scheme of the Unifying theory, adapted figure of Brownlee (Brownlee, 2001).  

According to the unifying theory, diabetic complications can be explained due to hyperglycemia induced ROS 

production by one or more of the four pathways; polyol pathway, hexosamine pathway, protein kinase c (PKC) 

pathway and advanced glycation end products (AGEs). 
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2.4 Mitochondria, reactive oxygen species and diabetes  

Mitochondria have a pivotal role within the unifying theory, as they are the source of the ROS 

which trigger the subsequent steps leading to cellular dysfunction under hyperglycemia. Under 

normal physiological conditions the mitochondria, through oxidative phosphorylation, is the 

primary metabolic pathway for ATP production from glucose. In the presence of molecular 

oxygen (O2), glucose is metabolized to Acetyl CoA that is then oxidized to carbon dioxide (CO2) 

once it enters the TCA cycle by the reduction of NAD to NADH. NADH is then utilized by the 

electron transport chain (ETC) as part of the oxidative phosphorylation (Chen and Zweier, 2014; 

Kowaltowski et al., 1999). A total of thirteen ATP molecules can be produced from one glucose 

molecule when all the reduced coenzymes are oxidized by the ETC and used for mitochondrial 

oxidative phosphorylation (Balaban 1990). In addition, to energy production, the mitochondria 

are also involved in the maintenance of the cellular calcium homeostasis, in addition to carrying 

out critical reactions involved in cell signaling and programmed cell death (Georgiou et al., 

2015).  

The mitochondrial ETC is an efficient system for ATP production, however, given the very nature 

of the alternating one-electron oxidation-reduction reactions, side-reactions with O2 can occur 

resulting in its reduction to the superoxide (O2•-). It is estimated from in vitro experiments 

using isolation mitochondria that 0.12-2% of respiration goes to O2•- production (Murphy, 

2009). The addition of a second electron and two protons generates hydrogen peroxide (H2O2), 

whilst the addition of a third electron produces the hydroxyl radical (HO•). These three oxygen 

containing compounds are collectively referred to as ROS, and they represent a major class of 

endogenous reactive metabolites. Under normal conditions, ROS function as second messenger 

and has health beneficial effects (Ray et al., 2012; Ristow and Schmeisser, 2014). However, 

when produced in an excess, ROS can lead to the disruption of cellular signaling leading to a 

state referred to as oxidative stress. ROS, despite the their short half-life (1 - 4 µs) and 

subsequent limited sphere of influence, can target several cellular molecules such as lipids, 

proteins, and DNA, thereby inducing peroxidation, conformational changes, DNA crosslinks, as 

well as DNA strand breaks (Birben et al., 2012; Brand et al., 2004; Jena, 2012).  
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Within the mitochondria, the major sources of ROS are complex I (NADH dehydrogenase) and 

complex III (coenzyme Q (CoQ)) (Figure 2), however, the O2•- production depends on the local 

concentrations of O2 and electron donors such as NADH and flavin adenine dinucleotide 

(FADH2). Complex I couples the transfer of two electrons from NADH in two one-electron steps 

to the freely diffusible electron carrier coenzyme Q (CoQ). One molecule of flavin mononucleotide 

(FMN) and several iron-sulphur clusters participate in the reaction as redox groups (Weiss et al., 

1991). It remains unclear which component of the complex is the major source of O2•-, 

however, it has been suggest that either flavin mononucleotide (FMN) or the iron-sulfur cluster 

could be responsible (Kushnareva et al., 2002; Kussmaul and Hirst, 2006; Vinogradov and 

Grivennikova, 2005).  

Complex III oxidizes ubiquinol to ubiquinone and passes the electrons by asymmetric absorption 

onto two electrons acceptor cytochrome c oxidase and then to one electron acceptor 

cytochrome c. (Mitchell et al., 1975; Zhang et al., 1998). During this asymmetric absorption O2•- 

can be produced. However, the exact mechanism of O2•- production at the Qo site still remains 

a matter of debate, whether the formation of O2•- is induced by a semi forward reaction by the 

oxidation of ubisemiquinone radical or by the semi-reverse reaction transmitted by the 

oxidation of cytochrome c (Bleier et al., 2016). 

Figure 2. The electron transport chain.  

The electron transport chain is a series of electron transporters embedded in the inner mitochondrial membrane 

that shuttles electrons from NADH and FADH2 to oxygen. In this process, protons are pumped from the 

mitochondrial matrix to the inter membrane space, and oxygen is reduced to form water. 
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Under normal conditions mitochondria are rarely in the state of excessive ROS formation since 

the body has evolved an endogenous anti-oxidant defense system that counterbalance toxic 

ROS levels, consisting of low-molecule scavengers, such a vitamins, glutathione, vitamin and 

enzymatic oxidants. Common enzymatic antioxidants include superoxide dismutase (SOD) to 

detoxify O2•-, catalase (CAT) to detoxify H2O2, glutathione peroxidase (GPx) to detoxify lipid 

peroxidases, and glutathione reductase (GRx) to detoxify HO• (Chelikani et al., 2004; Johansen 

et al., 2005;  Farachi and Didion,  2004; Okado-Matsumoto et al., 2001). 

Despite the prevailing view that overproduction of mitochondrial ROS is a central mechanism in 

the development of diabetic complications, there are only a few clinical and experimental 

studies which have reported increased indicators of oxidative stress and altered mitochondrial 

function. It has been shown in peripheral blood mononuclear cells (PBMCs) that mitochondrial 

oxygen consumption (mtO2) was increased in diabetic patients (Hartman et al., 2014). 

Widlansky et al., found that PBMCs of patients with type 2 diabetes have decreased 

mitochondrial mass, increased mitochondrial hyperpolarization (MHP), as well as increased 

H2O2, and O2•- production (Widlansky et al., 2010). VanderJagt et al., however, has shown in 

patients with T1DM that with respect to complications, plasma and intracellular markers of 

oxidative stress remain unchanged (VanderJagt et al., 2001). It has also been shown in 

lymphocytes (CD4+CD8+) from patients with T1DM that whilst MHP was increased, mtO2 

remained unchanged and glycolysis was increased (Chen et al., 2017). In murine models of 

diabetes, it has been shown that with respect to mitochondrial dysfunctions, the result can vary 

considerably depending upon the models, the type of diabetes, as well as the organs and 

methods used for analysis. For example, it was shown in Ins2± Akita mice that mitochondrial 

ATP production was unchanged in the heart, liver and kidney. However, mtO2, was decreased in 

the heart, increased in the kidney and remained unchanged in the liver (Bugger et al., 2008; 

Bugger et al., 2009). De Cavanagh et al. showed that mitochondrial H2O2 production was 

increased in the kidneys of STZ-diabetic rats (De Cavanagh et al., 2008). However, the renal O2•- 

production has been shown to be decreased in STZ-diabetic mice. Impaired respiration was 

observed in mitochondrial isolated from heart and brain, whereas it was increased in the kidney 

(Dugan et al., 2013). Studies to mitochondrial properties revealed increased mitochondrial size 
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in endothelial cells of patients with T1DM (Cester et al., 1996) whereas the mitochondrial size in 

skeletal muscle of patients with T2DM was found to be decreased (Kelley et al., 2002). In STZ-

diabetic rats no change in matrix volumes of gastrocnemius, heart and liver mitochondria was 

observed as compared to the control. Moreover, superoxide production of gastrocnemius and 

heart mitochondria was unchanged, whilst the respiratory coupling was increased (Herlein et 

al., 2009). Boudina et al. showed that heart mitochondria of leptin receptor-deficient db/db 

mice generated excess of ROS and are, in fact, mildly uncoupled (Boudina et al., 2007). Based 

upon such studies it can be concluded that whilst increased oxidative stress maybe a general 

feature of diabetes, it may not necessary be directly associated with alterations to the 

mitochondria.  

2.5 Mitochondrial dysfunction in diabetic neuropathy 

Within the context of DN, there is increasing evidence to suggest that mitochondrial dysfunction 

is a key pathological contributor to the complication. Accumulation of mitochondria together 

with vesicles, neurofilaments and mildly enlarged mitochondrial has been reported in 

intraepidermal axons in both clinical and experimental diabetes (Ebenezer et al., 2007; 

Fernyhough et al., 2010). Interestingly, mitochondrial abnormalities in neurons of patients 

which peripheral neuropathy are often localized in Schwann cells (Kalichman et al., 1998; 

Schroder et al., 1993, Viader et al., 2013). Degenerative alterations in nerve fibers are 

accompanied by the presence of enlarged of mitochondria and effaced cristae and numerous 

vacuoles in Schwann cells, whereas axonal mitochondria appeared to be relatively normal in 

human peripheral neuropathy (Kalichman et al., 1998). Moreover, studies of human sensory 

neurons and experimental models of DN have shown impaired mitochondrial activity and 

bioenergetics (Freeman et al., 2016; Schroder et al., 1993), which was not associated with ROS 

production, suggesting that within the context of DN, there are mitochondrial-independent 

sources of ROS. The mitochondrial dysfunction that has been reported in Schwann cells has 

been shown to impact on axonal function and this association has been suggested to play an 

important role in DN (Freeman et al., 2016, Viader et al., 2013). 



Introduction 

12 
 

In vitro studies have shown that Schwann cell exposed to high glucose causes oxidative stress,  

accompanied by increased activation of apoptosis regulators such as BAX and caspase 9, and 

decreased levels of anti-apoptotic protein Bcl-12, indicating internal mitochondrial stress  (Han 

et al., 2014).  The study of a transgenic mouse model of tissue-specific deletion of the 

mitochondrial transcription factor A gene (Tfam) with impaired mitochondrial metabolism 

exclusively in Schwann cells (Tfam-SCKOs) revealed peripheral neuropathy secondary to 

targeted mitochondrial defects in Schwann cells and showed a neuropathy phenotype closely 

resembling DN (Viader et al., 2011). The disruption of the mitochondria within Schwann cells 

activates the integrated stress response, inducing a shift away from fatty acid synthesis towards 

lipid oxidation, leading to the accumulation of acyl-carnitines; an important intermediated of 

the -oxidation pathway (Viader et al., 2013). Once released from the Schwann cells, acyl 

carnitines can induce neurodegeneration, highlighting the importance of Schwann cell 

metabolism in in axon- glia interactions and neuronal function. Studies looking at the effect of 

hyperglycemia on Schwann cell metabolism have also revealed alterations in the mitochondrial 

proteasome and decreased efficiency of coupled respiration, which was shown to be 

independent of superoxide production (Zhang et al., 2010). 

2.6 Reactive nitrogen species and mitochondrial function 

There is emerging evidence of the importance of RNS in DN and neuropathy pain. Nitric oxide 

(NO) is free radical and is a major RNS generated within the body. It is synthesized from l-

arginine by the enzyme nitric oxide synthase (NOS). Three isoforms of NOS has been 

characterized; endothelial (eNOS), neuronal (nNOS) and inducible NOS (iNOS). Increased glucose 

levels have been  associated with elevated serum NO levels in T2DM patients (Adela et al 2015; 

Assmann et al., 2016) together with increased plasma levels asymmetric dimethylarginine and 

altered arginine methylation in both T1DM and T2DM (Lee et al., 2011; Tarnow et al., 2004).  

Besides inflammatory cells found in the nerve roots, where demyelination is predominately 

found, Schwann cells themselves can also release NO when activated by inflammatory stimuli 

and hyperglycemia (Gadau, 2012). In vitro studies in human Schwann cells exposed to high 

glucose have been reported to have elevated levels of nitrosylated proteins together with 
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increased iNOS expression, both markers of nitrosative stress (Obrosova et al., 2005). The 

importance of NO in DN is supported by the effect of iNOS and nNOS deletion in STZ-diabetic 

mice which showed improved nerve conductivity and reduced hypoalgesia (Vareniuk et al., 

2008, Vareniuk et al. 2009). Moreover, in an in vitro neuron-Schwann cells co-culture model, 

high concentrations of NO induced robust demyelination of the neurons, whereas the Schwann 

cell viability remained unchanged, indicating that the loss of myelin is selective damage to 

neuron rather than to the Schwann cells (Lehmann et al., 2007).  These findings indicate that  

NO is involved in the pathological changes observed in inflamed nervous system, characterized 

by  axonal injury and subsequently myelin degeneration, also described as the Wallerian effect.   

To understand the effect of NO in Schwann cells and its effect on demyelination and 

neurodegeneration in DN it is important to focus on the relationship between NO and 

mitochondrial metabolism. The first report of the presence of a mitochondrial isoform of NOS 

(mtNOS) was first described by Bates et al., which showed immunocytochemical localization of 

NOS in rat brain and liver mitochondria (Bates et al., 1995). mtNOS is described as a protein of 

the inner mitochondrial membrane that generates NO in Ca2+-dependent manner (Ghafourifar 

and Richter 1997; Giulivi et al., 1998; Ghafourifar and Cadenas, 2005; Finocchietto et al., 2009) 

but this is debated by others (Lacza et al., 2006; Lacza , 2009; Tay et al., 2004; Venkatakrishnan 

et al., 2009). Another theory is that mitochondria might produce NO via another mechanism, 

specifically, the reduction of nitric to NO by ubisemiquinone in cytochrome bc1 complex (Kozlov 

et al., 1999). It is noteworthy that eNOS is located on the outer membrane of mitochondria in 

endothelial cells as well as in neurons, suggesting that mitochondria might regulate NO activity 

and, in return, eNOS might regulate mitochondrial function (Goligorski, 2004; Gao et al., 2004; 

Henrich et al., 2002).  

An effect of NO on mitochondrial respiration is supported by the finding that NO binds to the 

oxygen site of cytochrome c oxidase (complex IV) (Boelens et al., 1984; Blackmore 1991, Brunori 

et al., 2004, Horvat et al., 2006), indicating that NO is an inhibitor of cytochrome c oxidase in 

competition with oxygen (Figure 3). Brown et al. reported that NO addition to isolated 

cytochrome oxidase immediately inhibited oxygen consumption which was reversed when NO 

was broken down, confirming that NO is potent and fast inhibitor of cytochrome c oxidase 
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(Brown et al., 2002). Another study showed that non-toxic concentrations of NO had little effect 

on basal respiration but reversibly decreased the mitochondrial reserve capacity in endothelial 

cells (Dranka et al., 2010). These findings imply that NO has a high affinity for cytochrome c 

oxidase, thereby affecting mitochondrial maximal respiration and reserve capacity.  

NO can also react spontaneously with superoxide anion in the mitochondria to form 

peroxynitrite, which is a highly reactive radical, 1000 times more oxidizing than H2O2 (Muijsers 

et al., 1997; Pacher et al., 2007). Peroxynitrite damage is stable and in some tissues, such as the 

retina, it is not reversed upon improvement of blood glucose levels (Kowluru et al., 2007; Pacher 

et al., 2005). Peroxynitrite can inhibit mitochondrial complex I, II, IV and V, thereby reducing 

mitochondrial respiration (Brown et al., 2001). Peroxynitrite has multiple cytotoxic effect 

including protein nitration and s-nitrosylation, breakage of single DNA strands and base 

modification, activation of PARP which alters the gene transcription and expression, leading to 

mitochondrial dysfunction and eventually apoptosis (Pacher et al., 2005; Szabo et al., 2007). 

Accumulation of 3-nitrotyrosine, a product of peroxynitrite-induced protein nitration has been 

reported in periphreral nerves and dorsal root ganglion of ob/ob mice (Drel et al., 2006), STZ-

diabetic mice (Drel et al., 2007; Vareniuk et al., 2007) and rats (Obrosova et al., 2005). 

Moreover, elevated levels of NOS and 3-nitrotyrosine have been reported in diabetic patients, 

Figure 3. Effect of nitric oxide and peroxynitrite on mitochondrial respiration.  

Nitrite oxide (NO) reversely inhibits cytochrome c oxidase (complex IV) and NO induced S-nitrosylation can 

inhibit complex I (at the long term), whereas peroxynitrate (ONOO-) can inhibit complexes I, II, IV and V (ATP 

synthase). These alterations can lead to proton leak and the activation of the permeability transition pore and 

subsequently to NO-induced cell death. 
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particularly in the Schwann cells from patients with DN (Askwith et al., 2012; Gadau, 2012). 

These findings suggest that diabetes not only induces oxidative stress, but also induces 

oxidative-nitrosative stress in the peripheral nerve system in patients with DN. The association 

of Schwann cell dysfunction and DN is summarized in Figure 4. 

 

Figure 4. Schwann cell dysfunction in diabetic neuropathy, adapted from Gonçalves et al., 2017.  

In diabetic patients hyperglycaemia ultimately leads to reduced neuronal support from Schwann cells. In Schwann 

cells, hyperglycemia and dyslipidaemia induces increased signaling through the receptor for advanced glycosylation 

end products (RAGE) and subsequently to increased flux through glycolysis by aldose reductase and the generation 

of reactive oxygen species, including peroxynitrite, and decreased expression of -nerve growth factor (NGF) and 

neurothrophin 3 (NT3). This leads to local oxidative damage, inflammation and a switch to an immature Schwann 

cell phenotype. It also affects mitochondrial function by the increased expression of complex I, II, IV and V, and ATP 

production whereas the oxygen consumption is reduced. In addition, it reduces the production Schwann-cell-

derived neurotrophic factors, including ciliary neuronotrophic factor (CNTF) and desert hedgehog (DHH), which 

affects vascular endothelial cell function. Endothelial cells also express aldose reductase, and increased polyol 

pathway flux activates proinflammatory and prothrombotic pathways that reduce nerve blood flow. Disruption of 

neuronal support by Schwann cells and its effect on the vascular system contributes to development of DN. 
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2.7 Aim Study 

The primary treatment for diabetes is tight control of a patient’s blood glucose levels. However, 

recent studies showed that hyperglycemia alone is insufficient to account for the development 

and the progression of diabetic complications. Metabolomic and proteomic analysis has 

revealed that a failure of energy homeostasis, particularly within the Schwann cell-rich sciatic 

nerve may be a driving force in the pathogenesis of DN. The aim of this study was to investigate 

the effect of hyperglycemia on mitochondrial energy homeostasis in Schwann cells. Primary 

mouse immortalized Schwann cells (SW10) and mouse embryonal fibroblasts (MEF) were 

cultured for 6 days under high glucose conditions (25 mM) as an in vitro model for long term 

hyperglycemia, and compared to cells cultured under low glucose conditions (5 mM).  To 

determine the mitochondrial bioenergetics of the cells, glucose uptake, mitochondrial 

properties, reactive metabolites, glycolysis and mitochondrial respiration were measured. The 

four activation pathways of ROS described by the unifying theory were assessed, together with 

pathways involved in mitochondrial metabolic dysfunction described by Viader et al., such as of 

fatty acid synthesis, fatty acid oxidation and the integrated stress response (Viader 2013). Since 

nitric oxide might also play an important role in hyperglycemia induced changes in 

mitochondrial function, the expression of the three different NOS isoforms, nitric oxide and S-

nitrosylated protein concentration were determined. 
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3 Material and Methods 

3.1 Mouse Model 

The animal experiments are performed in accordance of EU and national regulations for animal 

experimentation and all animal work was approved by the local ethics committee 

Regierungspräsidium Karlsruhe, Germany (file number: 35-9185.81/G295/15). Wild type mice 

(C57BL/6N) were obtained from Charles River, Sulzfeld, Germany. Mice were housed in groups of 

maximal 3 animals/cage in temperature- and humidity- controlled rooms with a 12 h light/dark 

cycle, having free access to food and drinking water. Diabetes was induced by intra-peritoneal 

injection of Steptozotocin (STZ 50 mg/kg bodyweight, in 50 mM Sodium citrate, pH 4.5) for 3 or 

5 successive days in eight weeks old mice (Like and Rossini, 1976). Wild-type age-matched 

littermates receiving sodium citrate served as controls. Blood glucose levels  of blood samples 

taken  from the tail vein were determined once a week, using a ACCU-CHEK sticks (Bierhaus et 

al., 2004; Bierhaus et al., 2012) and adjusted with insulin glargin (Lantus, Sanofi) to 350 mg/dl. 

After 3 or 6 months STZ-induced diabetes the animals were sacrificed using carbon dioxide and 

peritoneal cavity lavage was performed post-mortem. After reperfusion with ice-cold PBS, 

sciatic nerves were taken and washed in ice-cold PBS, excessive fat tissue was removed, and 

directly snap-frozen and stored at -80 °C or used directly for the acyl carnitines assay. 

3.2 Cell culture 

Murine embryonic fibroblasts (MEF; ATCC®, CRL-2991™), murine hepatocytes (AML12; ATCC®, 

CRL-2254), murine renal tubular cells (M1; ATCC®, CRL-2038), murine mesangial cells (MES13;  

ATCC®, CRL-1927) and murine Schwann cells (SW10; ATCC®, CRL-2766™) were all primary 

immortalized cell lines obtained from ATCC®.  MEF were cultured in DMEM medium (1 g/L 

glucose, Gibco™, 31885-023) supplemented with 10% Fetal Calf Serum (FCS; Sigma®, C8056), 

1% penicillin streptomycin (P/S; Sigma®, P0781),  Amphotericin B (AmpB; Sigma®, A2942), and 

1% Non-Essential Amino Acids (NEAA, Sigma®, M7145). AML12 were cultured in DMEM-F12 

medium (17.5 mM glucose, Gibco™, 11320-074), supplemented with 10% FCS, 1% P/S, 1% AmpB, 

40 ng/ml dexamathasone (Sigma®, D1756), 10% Insulin-Transferrin-Selenium (Gibco™, 41400-

045) and 50 g/ml gentamycin (Sigma®, G1397). M1 were cultured in DMEM medium (1 g/L 
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glucose, Gibco™,  31885-023) supplemented with 10% FCS, 1% P/S and  1% AmpB, 15 mM HEPES 

(Sigma®, TMS-003), 0.5 mM sodium pyruvate (Sigma®, S8636), 2.5 mM L-glutamine (Sigma®, 

G7513) and 1.2 g/L sodium bicarbonate (Sigma®, S8761). MES13 were cultured in DMEM (1 g/L 

glucose, Gibco™,  31885-023) supplemented with 10% FCS, 1% P/S, 1% AmpB and 14 mM HEPES. 

SW10 were cultured in DMEM medium (1 g/L glucose, Gibco™,  31885-023) supplemented with 

10% FCS, 1% P/S and 1% AmpB. MEF, AML12, M1 and MES13 were incubated at 37°C, whereas 

SW10 were incubated at 33°C. To determine the effect of high glucose MEF, M1, MES13 and 

SW10 were cultured in high glucose DMEM (4.5 g/L glucose DMEM, Gibco™, 41965-039) and 

AML12 were cultured in high glucose DMEM-F12 (Gibco™, 11320-074, supplemented with 

glucose (Sigma®, G7021), 50 mM final concentration) suplemented with the appropriate 

supplements as described. MEF, M1, MES13 and SW10  cultured in DMEM (1 g/L glucose) and 

AML12 cultured in DMEM-F12 (17.5mM glucose) for equal amount of time served as control.  

3.3 Patient study 

3.3.1 Participants 

This study was performed in accordance with the ethical principles of the Declaration of 

Helsinki. The study protocol was approved by the local ethical committee of the Medical Faculty 

of the University of Heidelberg (HEIDIS-2: S-515/2012), and all participants signed an informed 

consent form. Fourteen patients with T2DM were included. Nine age-matched heathy 

volunteers with no recorded medical conditions and a body mass index <25 served as controls. 

The study design was prospective and uncontrolled. 

3.3.2 Isolation PBMCs 

For this study, peripheral blood mononuclear cells (PBMCs) were isolated from 9 ml venous 

blood of overnight fasted non-diabetic control and T2DM patients.  Erythrocyte lysis buffer (ECL; 

150 mM NH4Cl, 10 mM NaHCO3, 2 mM EDTA, pH 7.3) was added to the blood and filled up to 50 

ml in total, mixed thoroughly and incubated for 20 min on ice. The PBMCs are pelleted by 

centrifugation at 1300 rpm and 4°C for 10 min. The pellet was resuspended in 1 ml ECL Buffer, 

transferred into a new 1.5 ml tube and incubated on ice for 5 min. The PBMCs are pelleted by 
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centrifugation at 1300 rpm and 4°C for 5 min. The pellet is resuspended in 1 ml PBS Buffer and 

cell number was determined using a coulter counter. PBMCs were kept on ice and used within 1 

hour after isolation. 

3.4 Unifying theory 

3.4.1 Glucose uptake 

Glucose uptake was measured by flow cytometry analysis, using the fluorescent glucose analog 

2-(N-(7-Nitrobenz-2-oxa-1,3,diazol-4-yl)Amino)-2-Deoxyglucose (2-NDBG; Invitrogen™, N1319). 

After 3, 6, 12 or 24 days of high glucose treatment the cells were washed with PBS and 1.5 x 105 

cells per well  were seeded into a 12-well plate. After overnight attachment at 33°C for SW10 

and 37°C for MEF, the cell monolayer was washed with PBS. To each well, 1 ml  Kreb’s Ringer - 

HEPES buffer (KRH buffer; 136 mM NaCL,4.7 mM KCL, 1.25 mM CaCl2, 1.25 mM MgSO4, 10 mM 

HEPES and 0,1% fatty acid free bovine serum albumin (BSA), pH 7.4, 37°C) containing 1 drop/ml 

NucBlue Life Ready Probes Reagent (Hoechst 33342; Invitrogen™, R37605) was added to stain 

the living cells. The cells were incubated at 37°C, 5% CO2 for 30 min, protected from light. 

Thereafter the KRH buffer was removed and the cell monolayer was washed once with KRH 

buffer (37°C). To each well 0.5 ml KRH buffer containing appropriated concentration of 2-NDBG 

(5 M, 10 M, 25 M, 50 M, 75 M or 100 M) was added to the cell monolayer and 

incubated for 1 h at 37°C, protected from light. The cells were harvested, centrifuged (1300 

rpm, 5 min, 4°C) and resuspended in 0.5 ml ice-cold FACS buffer (10% FCS, 1mM EDTA in PBS). 

The cells were analyzed using Becton Dickinson LSR II flow cytometer (Heidelberg, Germany). 

3.4.2 Polyol pathway; Sorbitol 

The amount of sorbitol in the samples was determined using a D-Sorbitol Colormetric Assay Kit 

(Biovision®, K631-100), according to the manufacturer’s protocol. In the assay, sorbitol is 

oxidized to fructose with the proportional development of intense color with an absorbance 

maximum at 560 nm. Freshly isolated cells, 1 x 106 per condition, were lysed using 100 l RIPA 

buffer containing 50 mM Tris-HCl pH 7.5, 150 mM NaCl, 1% Triton X-100, 0.5% Na-deoxycholate, 

0.1% SDS, 1 mM DTT, 1% protease inhibitor cocktail (Sigma®, P9599) and 40 U/ml benzonase 
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(Millipore®, 71206). The cell lysates were diluted 1:10 in dH2O. To each well of a 96-well plate, 

50 l sample or sorbitol standard and 50 L reaction mix was added. After 30 min incubation at 

37°C the O.D. at 560 nm was measured using microplate reader. Sorbitol level was calculated 

from the standard curve and correct for the protein concentration measured by Bradford. 

3.4.3 Hexosamine pathway; Glycolsylation  

Glycosylation was determined by immunoblotting using primary antibody against O-Linked β-N-

acetylglucosamine (O-GlcNAc (CTD110.6); Cell Signaling Technology®, 9875) as described 

below. 

3.4.4 Protein kinase C pathway; PKC activity 

Protein Kinase C (PKC) activity was determined using PKC kinase acitivity assay kit (Enzo® Life 

Sciences, ADI-EKS-420A) according to manufacturer’s protocol. Fresh isolated cells were lysed 

used Lysis Buffer(20 mM MOPS, 5 mM EGTA, 2 mM EDTA, 1% NP40, 1 mM DTT, 1% protease 

inhibitor cocktail (Sigma®, P9599) and 1% phosphatase inhibitor cocktail (HALT™; Thermo Fisher 

Scientific, 78420) for 10 min on ice. The sample lysates were sonicated (3 times 20 sec) and 

centrifuged (13000 rpm, 15 min). The supernatant was transferred in pre-chilled 1.5 ml tubes 

and kept on ice. To each well of the PKC Substrate Microtiter Plate 50l kinase Assay Dilution 

Buffer is added and incubated for 10 min at RT. The liquid was aspirated and all samples were 

added to the wells. The reaction was initiated by adding 10 L of diluted ATP solution, except 

the blank, and incubated for 90 min at 30°C on a shaker (rotate angle 60 rpm). All the wells were 

aspirated and 40 l of Phosphospecific Substrate Antibody was added to each well, except the 

blank, and incubated at RT for 1 h. The wells were washed 4 times with Wash Buffer. 40 mL of 

the diluted Anti-Rabbit IgG:HRP Conjugate was added to each well, except the blank, and  

incubated at RT for 30 min. The wells were washed again 4 times with Wash Buffer. To each well 

60ml of Tetramethylbenzidine Substrate Buffer was added and incubated for 30 min at RT. The 

reaction was stopped by adding 20 l of Stop Solution to each well. The absorbance was 

measured at 450 nm and corrected for 570 nm using microplate reader.  
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3.4.5 AGE pathway; Methylglyoxal 

The concentration of MG in the samples was determined by liquid chromatography with 

tandem mass spectrometric detection (LC-MS/MS), as described previously (Rabbani and 

Thornalley, 2014). Briefly, 1 x 106 cells/sample were deproteinized by adding 10 μl of 20% 

trichloroacetic acid and the internal standard of 2 pmol of [13C2]-MG (prepared in-house) was 

added. For the derivatization of MG, the samples and standard (0-20 pmol MG) were incubated 

with 100 μM 1,2-diamonbenzene, 100 μM diethylenetriamine-penta-acetic acid, 5 mM sodium 

dithionite stabilizer and 0.3% (w/v) NaN3 in the dark at RT for 4 hrs (Dobler et al., 2006; 

Thornalley and Rabbani, 2014). Samples were analysed by LC-MS/MS using an ACQUITY UPLC-I 

class with a Xevo TQ-S mass spectrometric detector (Waters Corporation). A BEH C18 column 

(ACQUITY, 1.7 μm, 100 x 2.1 mm, Waters Corporation) fitted with a pre-column (ACQUITY, 1.7 

μm, 5 x 2.1 mm, Waters Corporation) was used to separate the samples. The mobile phase was 

0.1% formic acid with a linear gradient of 0-100% of 0.1% formic acid in 50% (v/v) acetonitrile 

over 10 min at a flow rate of 0.2 ml/min. The column was washed with 100% of 0.1% formic acid 

in 50% (v/v) acetonitrile and re-equilibrated with 100% of 0.1% formic acid. LC-MS/MS settings 

were: capillary voltage 0.5 kV, desolvation gas flow 800 l/h and cone gas flow 150 l/h, source 

temperature 150°C, desolvation gas temperature 350°C. The analytes were measured by 

positive ionization with multiple reaction monitoring with a retention time of 5.9 min and the 

Mass transition (parent ion > fragment ion; collision energy; cone voltage) were: MG 145.01 > 

77.10; 24 eV; 2 V and [13C2]-MG 148.06 > 77.16; 24 eV; 2 V.  A calibration curve was established 

from 0-20 pmol of MG and the limited MG detection was a concentration of  0.520 pmol. 

3.5 Mitochondrial properties and reactive metabolites 

Mitochondrial mass, mitochondrial polarity, O2•-, ROS and NO were determined using 

MitoTracker™ Orange CMTM-Ros (Invitrogen™, M7510), JC-1 (Invitrogen™, T3168), MitoSOX™ Red 

(Invitrogen™, M36008), CM-H2DCFDA (Invitrogen™, C6827) and DAF-FM Diacetate (Invitrogen™, 

D23844) fluorescent dyes, respectively.  The cells were harvested, counted and 1.5 x 105 cells 

per well were seeded into a 12-well plate. After overnight attachment at 33°C for SW10 and 

37°C for MEF, the cell monolayer was washed with PBS. The cell monolayer was washed with 
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PBS, and 0.5 ml KRH buffer containing Hoechst (1 drop/ml), MitoTracker™ Orange CMTM-Ros 

(300nM) or JC-1 (2M) was added to the respective wells, incubated at 37°C, 5% CO2 for 30 min, 

protected from light. After incubation the cell monolayer was washed with PBS, 0.5 ml of KRH 

buffer was added and incubated at 37°C, 5% CO2 for 1 h, protected from light. The cells were 

harvested, centrifuged (1300 rpm, 5min, 4°C) and resuspended in 0.5 ml ice-cold FACS buffer 

(10% FCS, 1mM EDTA in PBS). The cells were analyzed using Becton Dickinson LSR II flow 

cytometer (Heidelberg, Germany). 

3.6 Mitochondrial bioenergetics 

3.6.1 Optimization cell density and reagents XF96 Seahorse Bioanalyzer 

For optimization of the reagents 2 x 104 cells/well of XF96 cell culture plate (Agilent Seahorse 

XF, XF96 FluxPack) and attached overnight at 33°C for SW10 and 37°C for MEF.  Optimization of 

the reagents was performed using the protocol and algorithm program in the XFe96 Seahorse 

Bioanalyzer. Briefly, 1 h before the assay the medium was changed to Agilent Seahorse XF Assay 

Medium (Agilent Seahorse, 102353-100) supplemented with Glucose (Sigma, D8375, 10mM), 

Glutamine (Sigma® 59202C, 2 mM) and sodium pyruvate (Sigma, S8636, 1 mM). The 

concentrations of oligomycin (Sigma®, 75351), Carbonyl cyanide 4-(trifluoromethoxy)-

phenylhydrazone (FCCP; Sigma® C2920), Rotenone (Sigma®, R8875) and Antimycin A (Sigma®, 

A8674) were optimized over a concentration range using 2 x 104 cells/well for both cell types. 

The bioenergetics Mito stress assay was performed using the algorithm program in the XFe96 

Seahorse Bioanalyzer. 

3.6.2 Glycolysis 

Glycolysis was measured using the Seahorse Bioanalyzer (XF96 Bioanlyzer, Aligent) according to 

the manufacturer’s protocol. SW10 and MEF cells were seeded 2 x 104 cells/well of XF96 cell 

culture plate (Agilent Seahorse XF, XF96 FluxPack) and attached overnight at 33°C for SW10 and 

37°C for MEF. On the day of the assay, the media was changed to Agilent Seahorse XF Assay 

Medium (Agilent Seahorse, 102353-100) supplemented with 2 mM Glutamine (Sigma®, 

59202C), and incubated for 1 h prior assay in a non-CO2 incubator at 37°C. Injections of glucose 
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(Sigma®, D8375, 10 mM final), oligomycin (Sigma® 75351, 1 μM final) and 2-deoxoy-d-glucose 

(2-DG; Sigma® D8375, 0.1 M final) were diluted in the Agilent Seahorse XF Assay Medium and 

loaded onto ports A, B and C respectively. The machine was calibrated and the assay was 

performed using Glycolytic Stress Test protocol as suggested by the manufacturer (Agilent 

Seahorse Bioscience, Supplemental figure 19). The assay was run in one plate with 8-10 

replicates. The assay was repeated at least 3 times, both LG and 6dHG cultured cells on one 

plate. The rate of glycolysis is calculated as the extracellular acidification rate (ECAR) after the 

addition of glucose. Glycolytic capacity is the rate of increase in ECAR after the injection of 

oligomycin following glucose. Oligomycin inhibits mitochondrial ATP production and therefore 

shifts the energy production to glycolysis with increase in ECAR revealing maximum glycolytic 

capacity of the cells. The glycolytic reserve is the difference between glycolytic capacity ECAR 

rate and glycolysis ECAR rate. The non-glycolic ECAR is calculated as the ECAR after the addition 

of 2-DG that competitively inhibits the formation of glucose-6-phosphate from glucose and 

thereby the glycolysis. 

3.6.3 Mitochondrial respiration 

Mitochondrial respiration was measured using the Seahorse Bioanalyzer (Aligent Seahorse, XF96 

Bioanlyzer) as described before (Salabei et al., 2014). SW10 and MEF cells were seeded 2 x 104 

cells/well of XF96 cell culture plate (Agilent Seahorse XF, XF96 FluxPack) and attached overnight 

at 33°C for SW10 and 37°C for MEF.  On the day of the assay, the media was changed to Agilent 

Seahorse XF Assay Medium (Agilent Seahorse, 102353-100) supplemented with glucose (10 

mM), sodium pyruvate (1 mm) and Glutamine (2 mM), and incubated for 1 h prior assay in a 

non-CO2 incubator at 37°C. Injections of oligomycin (1 M final), FCCP (1 μM final), a 

combination of rotonone and antimycin-A (1 μM final each) were diluted in the Agilent 

Seahorse XF Assay Medium and loaded onto ports A, B and C respectively. The machine was 

calibrated and the and the assay was performed using Mito Stress Test protocol on one XF96 

cell culture plate 8-10 replicates and the assay was repeated at least 3 times. The following 

indices of mitochondrial respiration were calculated as previously described before (Brand and 

Nicholls, 2011). Basal oxygen consumption rate (OCR) is the difference in OCR without any 

substrates and the OCR after addition of a combination of rotenone and antimycin-A, inhibiting 
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complex I and III respectively. ATP production is the ATP turnover via oxidative phosphorylation 

and calculated as the difference in OCR after the addition of oligomycin (ATP synthase, complex 

V inhibitor) and basal OCR. Maximal respiration is induced by FCCP which uncouples ATP from 

ADP and calculated as the difference between OCR after addition of FCCP and OCR after the 

addition of the combination of rotenone and antimycin-A. The spare respiratory capacity is 

calculated as the difference in OCR with FCCP and basal OCR. From these data the bioenergetic 

health index (BHI) was calculated as described before (Chacko et al., 2014). 

3.7 Quantitative real-time PCR 

3.7.1 RNA extraction and cDNA synthesis  

Flash frozen cell pellets (1 x 106 cells/ sample) were homogenized in RTL lysis buffer. The 

subsequent extraction was performed according to the manufacturer’s protocol (Qiagen 

RNaesy kit, spin column protocol, Quagen). Quantification of RNA was performed using a 

photometer (Eppendorf, GmbH). A total of 2 g of RNA were used for the cDNA synthesis 

reaction and performed according to the manufacturer’s protocol (High-capacity cDNA Reverse 

Transcription Kit, Thermo Fisher Scientific).  

3.7.2 Quantitative real-time PCR  

cDNA was diluted 1:10 with dH2O and used for qPCR analysis performed in duplicates with 

QuantiNova™ SYBR® Green qPCR Kit (Qiagen, 1076717). Briefly, 2 μl of cDNA was transferred 

into a 96-well qPCR microplate and 18 μl of reaction mix containing 1 x SYBR Green Mastermix, 

200 nM forward primer and 200 nM reverse primer (Eurofins Genomics, Germany) was added 

(Table 1). The plate was sealed with a film and centrifuged (1000 rpm, 4°C, 2 min). Quantitative 

real-time PCR analysis was performed using Roche LightCycler 480 applying the following 

protocol (Table 2). The cross-points (Cp) were calculated and the relative ratio of the mRNA 

levels were determined applying the following formula 2 x (2 Cp(target)-Cp(reference))-1 and 

using the geometric mean of the Cp values of B2m, Actb, Hprt, and Rn18s as a reference (Hruz 

et al., 2011; Svingen et al., 2015). 
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Table 1. Primers    
     

Target Gene Species Gene ID   Sequence [5'→3'] 

Acaca mouse 107476 for ATGGGCGGAATGGTCTCTTTC 

      rev TGGGGACCTTGTCTTCATCAT 

Acly mouse 104112 for AGGAAGTGCCACCTCCAACAGT 

      rev CGCTCATCACAGATGCTGGTCA 

Actb mouse 11461 for GGCTGTATTCCCCTCCATCG 

      rev CCAGTTGGTAACAATGCCATGT 

Aldob mouse 230163 for GAAACCGCCTGCAAAGGATAA 

      rev GAGGGTCTCGTGGAAAAGGAT 

Asns mouse 27053 for GCCCAAGTTCAGTATCCTCTC 

      rev TAAATACATGCCCACAGATGCC 

Atf4 mouse 11911 for GGCTATGGATGATGGCTTGG 

      rev AATTGGGTTCACTGTCTGAGG 

B2m mouse 12012 for TTCTGGTGCTTGTCTCACTGA 

   rev CAGTATGTTCGGCTTCCCATTC 

Chop (Ddit3) mouse 13198 for AAGTGCATCTTCATACACCACC 

      rev TTGATTCTTCCTCTTCGTTTCCTG 

Cpt1b mouse 12895 for GCACACCAGGCAGTAGCTTT 

      rev CAGGAGTTGATTCCAGACAGGTA 

Eno1 mouse 13806 for TGCGTCCACTGGCATCTAC 

      rev CAGAGCAGGCGCAATAGTTTTA 

Echs1 mouse 93747 for TTGTGAACTTGCCATGATGTGT 

      rev TGCTCGGGTGAGTCTCTGAG 

Fasn mouse 14104 for GGGTGCTGACTACAACCTCTCC 

      rev TGCACAGACACCTTCCCGTC 

Glut1 mouse 20512 for ACCAAAAGCAACGGAGAAGAG 

   rev GGCATTCCGAAACAGGTAACTC 

Glut3 mouse 20527 for ATGGGGACAACGAAGGTGAC 

      rev GTCTCAGGTGCATTGATTGACTC 

Hadha mouse 97212 for TGCATTTGCCGCAGCTTTAC 

      rev GTTGGCCCAGATTTCGTTCA 

Hk2 mouse 15277 for TGATCGCCTGCTTATTCACGG 

      rev AACCGCCTAGAAATCTCCAGA 

Hmgcr mouse 15357 for TGGTGGGACCAACCTTCTAC 

      rev GCCATCACAGTGCCACATAC 

Hprt mouse 15452 for TCAGTCAACGGGGGACATAAA 

     rev GGGGCTGTACTGCTTAACCAG 

Lipe mouse 16890 for CCAGCCTGAGGGCTTACTG 

      rev CTCCATTGACTGTGACATCTCG 

Pck1 mouse 18534 for CTGCATAACGGTCTGGACTTC 

      rev CAGCAACTGCCCGTACTCC 

Pck2 mouse 74551 for ATGGCTGCTATGTACCTCCC 

      rev GCGCCACAAAGTCTCGAAC 

Mthfd2 mouse 17768 for AATTAAGCGAACAGGCATTCCA 

      rev AGGATCGTGTGCTTCTTCAG 

eNOS mouse 18127 for GGCTGGGTTTAGGGCTGTG 

      rev CTGAGGGTGTCGTAGGTGATG 

iNOS mouse 18126 for GTTCTCAGCCCAACAATACAAGA 

   rev GTGGACGGGTCGATGTCAC 
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3.8 Immunoblot 

3.8.1. Protein isolation cells 

Cells, 1 x 106 per condition in triplicates, were washed with PBS and isolated using trypsin and 

were centrifuged (1300 rpm, 4°C, 5 min). The samples were washed with PBS and centrifuged as 

described, for 2 times. Protein isolation was performed using RIPA buffer (50 mM Tris-HCl pH 

7.5, 150 mM NaCl, 1% Triton X-100, 0.5% Na-deoxycholate, 0.1% SDS, 1 mM DTT, 1% PIC and 40 

U/ml benzonase). Per sample 100 l RIPA was added, vortexed for 30 sec, incubated for 1 h on a 

360° rotator in cold room (4°C) and centrifuged (14000 rpm, 4°C, 30 min). The protein 

concentration of the supernatant was determined using Bradford reagent and the samples were 

stored at -20°C until further analysis (Bradford, 1976). 

  

Target Gene Species Gene ID   Sequence [5'→3'] 

nNOS mouse 18125 for CTGGTGAGGGAACGGGTCAG 

      rev CCGATCATTGACGGCGAGAAT 

Rn18s mouse 19791 for CGGCTACCACATCCAAGGAA 

   rev GCTGGAATTACCGCGGCT 

Srebp1 mouse 20787 for CATGCCATGGGCAAGTACAC 

      rev TGTTGCCATGGAGATAGCATCT 

Trib3 mouse 228775 for CACTTTAGCAGCGGAAGAGG 

   rev GTGTAGCTCGCATCTTGTCC 

Table 2. Thermocycler protocol for qPCR   

   

  Temperature, °C Time Ramp rate, °C/sec Number of cycles 

Preincubation 95 7 min 4.4 1 

Amplification 95 10 sec 4.4  

 60 20 sec 2.2 45 

  72 1 sec 4.4   

Melting curve 95 5 sec  4.4  

 65 1 sec 2.2 1 

  97 5 acquisitions/°C 0.11   

Cooling 4 forever 4.4 1 
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3.8.2 Cell lysis and protein isolation for GLUT 1  

Glut 1 is highly hydrophobic and consists of 12 transmembrane segments, and can form 

aggregates upon cell lysis, resulting in a Glut 1 smear by immunoblot. Therefore a special cell 

lysis protocol is recommended to minimize Glut 1 aggregation as described by Zhao et al., 2008. 

Cells are lysed in Glut 1 lysis buffer (1% Triton X-100, 0.1% SDS, 1% protease inhibitor cocktail 

(Sigma®, P9599)) for 1 h on ice and centrifuged (13000 rpm, 10 min, 4°C). Protein concentration 

of the supernatant was determined by Bradford (Bradford, 1976). To fully collapse GLUT 1 

bands, the GLUT 1 Glycosylation was removed using PNGase F kit (New England Biolabs®, 

P0704S) according to the manufacturer’s protocol. To 10 g protein in 9 l dH2O, 1 l of 

denaturing buffer was added and incubated for 30 min at RT. After incubation, 4 l dH2O, 2 l 

G7 reaction buffer, 2 l NP-40 and 2 l PNGaseF was added, vortexed for 20 sec and incubated 

for 1 h at 37°C. Glut sample buffer (5x sample buffer; 1.56 ml 2M Tris-HCL (pH 6.8), 1 g SDS, 5 ml 

glycerol, 2.5 ml 2-mercaptoethanol, 5mg bromophenol blue) is added at 1x to the samples,  

incubated for 30 min at RT before loading the gel.  

3.8.3 Immunoblot 

About 10-20 μg protein were denaturated by incubation in Laemmli buffer, containing 0.8% 

SDS, 4% glycerol, 100 mM DTT, 25 mM Tris-HCl (pH 6.8), 0.005% bromophenol blue, at 98°C for 

10 min (Laemmli, 1970), unless mentioned otherwise. Proteins were separated by SDS-PAGE 

(pre-casted 4-20% gels, Mini-PROTEAN® TGX™, Bio-Rad) applying 160 V for 50 min and 

transferred onto a nitrocellulose membrane applying 25 V for 30 min. Transfer was checked 

using Ponceau Red and membranes were blocked using 3% Bovine Serum Albumin (BSA; 

Sigma®, A8806) in TBS-T or in the case of O-GlcNAc, Phospho-Acetyl CoA-Carboxylase and 

Phospho-ATP citrate lyase in Pierce™ Protein-Free Blocking Buffer (Thermo Fischer Scientific, 

37572). After 1 h blocking at RT, the primary antibody was added in the appropriate 

concentration (Table 3). After overnight incubation at 4°C the membranes were washed with 

PBS-T and incubated with the secondary antibody anti-Rabbit IgG coupled to horseradish 

peroxidase for 1 h at RT (Table 4). The proteins were detected using ECL™ reagent (GE 

Healthcare, RPN2106). For reprobing, membranes were stripped in an 80°C water bath for 20 
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min using Stripping buffer (0.2 M glycine pH 2.5 and 0.05% Tween 20). Thereafter, the 

membranes were washed with TBS-T, blocked and processed as described above. Images were 

acquired and quantified using the GS-800® calibrated densitometer and Quantity One ® 1-D 

analysis software, Bio-Rad.  

Table 3. Primary antibodies    

    

Antibody Isotype Company Dilution 

Acetyl-CoA Carboxylase (ACC) Rabbit Cell Signaling Technology, 3676 1/1000 

Phospho-ACC (Ser79) Rabbit Cell Signaling Technology, 11818 1/1000 

AceCS1  Rabbit Cell Signaling Technology, 3658 1/1000 

b-Actin Rabbit Cell Signaling Technology, 4970 1/1000 

ACSL1 Rabbit Cell Signaling Technology, 9189 1/1000 

AMPKa Rabbit Cell Signaling Technology, 2535 1/1000 

Phospho-AMPKa (Tyr172) Rabbit Cell Signaling Technology, 9957 1/1000 

AMPKb1/2 Rabbit Cell Signaling Technology, 4150 1/1000 

Phospho-AMPKb1 (Ser182) Rabbit Cell Signaling Technology, 4186 1/1000 

ASNS Rabbit Sigma, HPA029318 1/1000 

ATF-4 Rabbit Cell Signaling Technology, 11815 1/1000 

ATF-6 Rabbit Cell Signaling Technology, 65880 1/1000 

ATP-Citrate Lyase (ACL) Rabbit Cell Signaling Technology, 4332 1/1000 

Phospho-ACL (Ser445) Rabbit Cell Signaling Technology, 4332 1/1000 

CaMKII Rabbit Cell Signaling Technology, 4436 1/1000 

CHOP Rabbit Cell Signaling Technology, 5554 1/1000 

elF2a Rabbit Cell Signaling Technology, 5324 1/1000 

Phospo-elF2a (Ser 51) Rabbit Cell Signaling Technology, 3398 1/1000 

iNOS Rabbit Novus Biologicals, NB300-605SS 1/500 

FAS Rabbit Cell Signaling Technology, 3180 1/1000 

Glut 1 Rabbit Abcam, ab115730 1/10000 

Glut 3 Rabbit Abcam, ab41525 1/8000 

IRE1a Rabbit Cell Signaling Technology, 3294 1/1000 

LKB1 Rabbit Cell Signaling Technology, 3047 1/1000 

PhosPho-LKB1 Rabbit Cell Signaling Technology, 3482 1/1000 

O-GlcNAc Mouse Cell Signaling Technology, 9875 1/1000 

 

Table 4. Secundary antibodies  
   
Antibody Company Dilution 

Rabbit IgG, HRP-linked Cell Signaling Technology, 7074 2x dilution of 

Mouse IgG, HRP-linked Cell Signaling Technology, 7076 Primary antibody 
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3.9 Fatty acid oxidation  

3.9.1 BODIPY fatty acid uptake 

The fatty acid uptake of short chain and mid-chain fatty acid was determined using FL C5 (4,4-

Difluoro-5,7-Dimethyl-4-Bora-3a,4a-Diaza-s-Indacene-3-Pentanoic Acid) (BODIPY® FL C5, 

Invitrogen™, D3834) and C1, C12 (4,4-Difluoro-5-Methyl-4-Bora-3a,4a-Diaza-s-Indacene-3-

Dodecanoic Acid) (BODIPY® C1, C12 500/510, Invitrogen™, D3823) respectively, according to 

manufacturer’s protocol. After 6 days of high glucose treatment the cells were washed with PBS 

and 1.5 x 105 cells per well were seeded into a 12-well plate. After overnight attachment at 33°C 

for SW10 and 37°C for MEF, the cell monolayer was washed with PBS. To each well, 1 ml KRH 

buffer containing 1 drop/ml NucBlue Life Ready Probes Reagent (Hoechst 33342; Invitrogen™, 

R37605) was added to stain the living cells. The cells were incubated at 37°C, 5% CO2 for 30 min, 

protected from light. The media of the cell monolayer was removed and washed once with PBS. 

To each well 0.5 ml KRH buffer containing appropriate concentration (0.5 M, 1 M, 2.5 M, 5 

M, 7.5 M and 10 M) of BODIPY® was added, and incubated at 37°C for 5 min, protected 

from light. The cells were harvested by trypsination, centrifuged (1300 rpm, 5min, 4°C) and 

resuspended in 0.5 ml ice-cold FACS buffer (10% FCS, 1mM EDTA in PBS). The cells were 

analyzed using Becton Dickinson LSR II flow cytometer (Heidelberg, Germany). 

3.9.2 Octanate fatty acid oxidation 

Measurement of fatty acid oxidation was performed using octanoate in combination with the 

Aligent Seahorse XF Cell Mito Stress test according to adapted manufacturer’s XF Palmitate-BSA 

FAO Substrate protocol in permeabilized cells using saponin (Salabei et al., 2014). Cells were 

seeded into XF96 cell culture plate, 2 x 104 cells per well in substrate limited medium (1% FCS), 

allowed to attach overnight. The compounds were dissolved in Mannitol and Sucrose buffer 

(MAS buffer; 70 mM Sucrose, 220 mM Mannitol, 10 mM KH2PO4, 5 mM MgCl2, 2 mM HEPES, 1 

mM EGTA and fatty acid free BSA, pH 7.2) . The compounds in were loaded into the ports of the 

assay cartridge, octanoate (1 mM final, co-injected with 25 mg/ml Saponin, 0.5 M L-Carnitine, 

0.5 mM malate and 1 mM ADP in MAS buffer), oligomycin (1 M final), FCCP (0.5 M final), and 

a combination of rotenone and antimycin-A (1 M final each), in ports A, B, C and D 
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respectively. The media of the cells was exchanged to MAS buffer 10 min prior start of the 

assay. The machine was calibrated and the assay was performed using Mito Stress Test protocol 

on one XF96 cell culture plate 8-10 replicates.  

3.9.3 Acetylcarnitines 

Fresh isolated sciatic nerves were rinsed 2 times with wash media (4.5 g/L DMEM containing 

10% FCS, 1% P/S and 1% AmpB). Single sciatic nerves were transferred  into al well of 24-well 

plate containing 1 ml culture media (4.5 g/L DMEM containing 10% FCS, 1% P/S 1% AMPB, 2 

mM L-glutamine, 100 ng/ml Nerve Growth Factor (Sigma®, N8773)). After 48 h media was 

collected and snap-frozen. The samples were sent to the Kinderklinik Stoffwechellabor, 

Heidelberg and concentrations of acyl carnitines were assessed using liquid chromatography 

coupled fluorescence detection (Dr. J. G. Okun, Stoffwechsellabor, Kinderklinik Heidelberg). 

3.10 Nitric Oxide  

3.10.1 eNOS, nNOS and iNOS  

The gene expression of eNOS, nNOS and iNOS in whole protein lysates of both SW10 and MEF 

cultured for 6 days in either high glucose condition or control low glucose condition was 

determined by quantitative real-time PCR as previously described (see 3.7). 

3.10.2 Nitric oxide synthase  

Nitric oxide synthase (NOS) activity was determined using NOS Activity Colorimetric Assay kit 

(Biovision®, K205-110), according to the manufacturer’s protocol. In this assay, NO generated 

by NOS undergoes series of reactions and reacts with Griess Reagent 1 and Griess Reagent 2 to 

generate a colored product with absorbance at 540 nM. The cells were lysed using ice-cold NOS 

assay buffer containing 0.1% PIC, homogenized by passing the cells 20 times through a 30 gauge 

needle and centrifuged (10,000 g, 10 min, 4°C). Protein concentrations were determined by 

Bradford (Bradford, 1979). To each well 60 l sample (300 g protein in 60 L NOS assay buffer), 

Nitrite standard or positive control and 40 l reaction mix was added. After 1h incubation at 

37°C, 50 L of Griess Reagent 1 and 50 L of Griess Reagent 2 was added to the wells, incubated 
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for 10 min at RT and O.D. at 540 nm was measured using microplate reader. NOS activity was 

calculated from the standard curve and correct for the amount of protein measured by Bradford 

(Bradford 1976). 

3.10.3 S-Nitrosylation 

3.10.3.1 Isolation mitochondria  

Mitochondria of Schwann cells (10 x 106 cells / condition) were isolated according to Cox and 

Emili with slight modifications (Cox and Emili, 2006). Briefly, the cells were homogenized in ice-

cold isolation buffer I (250-STMDPS) containing 250 mM mannitol, 50 mM Tris (pH 7.4), 5 mM 

MgCl2 and 1 % protease inhibitor cocktail (Sigma®) using a 18 gauge syringe. The lysate was 

centrifuged (800 g, 4 °C, 15 min, 2x). The supernatant was the source for the mitochondria was 

transferred to a new tube and centrifuged (6000 g, 4°C, 15 min). The mitochondria were 

resuspended in isolation buffer II containing 280 mM mannitol, 10 mM MgCl2, 5 mM K2HPO4, 10 

mM MOPS, 1mM EGTA, pH 7.4 and centrifuged (6000 g, 4°C, 15 min, 3x). Isolated mitochondria 

were resuspended in respiration buffer containing 250 mM sucrose, 15 mM KCl, 1 mM EGTA, 5 

mM MgCl2, 30 mM K2HPO4, pH 7.4. Mitochondria were kept on ice and the S-nitrosylation assay 

was performed within 1 h after isolation. 

3.10.3.2 S-Nitrosylation assay 

The level of S-Nitrosylation in Schwann cells (10 x 106 cells/condition) and isolated mitochondria 

of Schwann cells was determined using the Pierce™ S-Nitrosylation Western Blot Kit (Thermo 

Fisher Scientific, 90105) according to the manufacturer’s protocol with slight adaptations. 

Briefly, samples were washed 2 times with PBS and lysed in HENS Buffer, incubated on ice for 10 

min, sonicated and centrifuged (10,000 g, 20 min, 4°C). Protein concentration was determined 

by Bradford (Bradford 1976). Protein concentrations were prepared to 1 mg/ml in 100 L HENS 

Buffer. To each sample methyl methanethiosulfonate (MMTS, 20 mM final concentration) was 

added, vortex mixed and incubated for 30 min at RT. To precipitate the protein, 6 volumes of 

ice-cold acetone were added, incubated for 1 h at -80°C and centrifuged (10,000 g, 30 min, 4°C). 

To each pellet 1 ml acetone was added and centrifuged (10,000 g, 10 min, 4°C) to remove all 
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MTTS. The acetone was removed and the pellet was dried using vacuum centrifuge 

concentrator (medium speed, 40°).  1 ul of labeling reagent (2 mM) and 2 uL of sodium 

ascorbate (1M) was added to the pellet and incubated for 90 min at RT. Thereafter, 6 volumes 

of ice-cold acetone was added, incubated overnight at -80°C for 1 h and centrifuged (10,000 g, 

30 min, 4°C). The pellets were washed with 1 ml ice-cold acetone, centrifuged (10,000 g, 10 min, 

4°C) and dried using vacuum centrifuge (medium speed, 40°) for 30 min. To each sample 50 ul of 

1x reducing Laemmli sample buffer was added and heated for 10 min at 98°C. Immunoblotting 

was performed as previously described using anti-TMT antibody 1:1000 in 5% nonfat dry milk in 

1x TBS-T as primary anti-body and anti-mouse IgG HRP linked antibody (Cell Signaling 

Technology, 7060s) 1:2000 in 5% nonfat dry milk in 1x TBS-T as secondary antibody. 

3.10.4 Nitric oxide and ROS expression 

Cells were incubated with 1mM DetaNONOate (Cayman Chemical, 146724-94-9) in low or high 

glucose medium for 30 min at 37°C, 5% CO2 to measure the effect of direct NO on mitochondrial 

function and S-nitrosylation, as a positive control for NO. To determine the effect of NOS 

inhibition on mitochondrial function different concentrations of L-NG-monomethyl Arginine 

citrate (L-NMMA, Santa Cruz®, sc-364686), and N-[3-(Aminomethyl)benzylacetamidine 

Dihydrochloride (1400W, Santa Cruz®, sc-3564)  was added and incubated for 16hrs prior start 

of the assay. NO and ROS were determined using and DAF-FM Diacetate (Invitrogen™, D23844) 

and CM-H2DCFDA (Invitrogen™, C6827) fluorescent dyes, respectively, as previously described. 

The cells were analyzed using Becton Dickinson LSR II flow cytometer (Heidelberg, Germany). 

3.11 Mitochondrial bioenergetics PBMCs 

3.11.1 Glycolysis and mitochondrial respiration 

Glycolysis and mitochondrial respiration was determined using the Seahorse Bioanalyzer (XF96 

Bioanlyzer, Aligent) according to the manufacturer’s protocol, with a few adaptations. Prior 

start of the assay, the XF96 cell culture microplate was coated with 50 µM poly-D lysine 

(Sigma®, A-003-E), 50 l/well and incubated at 37°C for 1 h. The PBMCs of each subject were 

diluted to a concentration of 1.7 x 106 cells/ml using the appropriate assay medium; Glycolysis 
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assay medium (XF Base Medium (Agilent Seahorse, 102353-100) + 1 mM sodium pyruvate) and 

MitoStress assay medium (XF Base Medium + 5 mM glucose + 1 mM sodium pyruvate).  A total 3 

x 105 cells in 175 µl per well were seeded, 16 wells/subject (8 wells for glycolysis assay and 8 

wells for mitochondrial stress assay, Supplemental figure 20). To attach the PBMCs the plate 

was centrifuged at 600 rpm for 2 min with no brake. The plate was rotated 180° and centrifuged 

(600 rpm, 2 min, no brake) for equal distribution of the cells. The XF96 cell culture microplate 

was incubated in a non-carbon dioxide incubator at 37 °C for 30 min. The glycolysis and 

mitochondrial respiration of the PBMCs were determined simultaneously as described above 

(3.6.2 and 3.6.3).  Glycolysis was measured by sequential injection of glucose (10 mM final 

concentration), oligomycin (1 M final concentration) and 2-DG (100 mM final concentration) in 

Glycolysis assay medium. Mitochondrial respiration was measured by sequential injection of 

oligomycin (1 M final concentration), FCCP (0.25M final concentration) and a combination of 

rotenone and antimycin A (1M final concentration each) in MitoStress assay medium.  

3.11.2 Staining PBMCs for flow cytometry 

3.11.2.1 2-NDBG glucose uptake 

PBMCs were diluted in KRH buffer to a concentration of 5 x 106 cells/ml and 100 µl (0.5 x 106 

cells) are transferred into wells of a V-shaped, non-binding 96-well plate. The plate was 

centrifuged (1300 rpm, 3 min, RT). To each well 100 µl of KRH buffer + 0.1% FCS are added and 

the plate was incubated at 37 °C for 30 min and centrifuged (1300 rpm, 3 min, RT). Glucose 

uptake was measured using the fluorescent glucose analog 2-NDBG as previously described. In 

short, 100 µl of the different 2-NDBG solutions (5, 10, 25, 50 and 100 µM in KRH buffer + 0.1% 

FCS) were added to the appropriate wells and incubated at 37 °C for 1 h, protected from light. 

The plate was centrifuged (1300 rpm, 3 min, RT). 150µl KRH buffer + 0.1% FCS was added to 

each well and centrifuged (1300 rpm, 3 min, RT). This step was repeated once more and the 

samples were stained with CD-antibodies as described below. 
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3.11.2.2 Mitochondrial mass and ROS 

To determined mitochondrial mass and ROS production the PBMCs were stained with 

Mitotracker® Green (Invitrogen™, M7514) and MitoSOX™ Red (Invitrogen™, M36008),  respectively. 

To the respective wells 100 L KRH buffer + 0.1% FCS containing Mitotracker® Green (300 nM) 

or MitoSOX™ Red (30 M) was added and incubated for at 37°C for 30 min. The plate was 

centrifuged (1300 rpm, 3 min, RT). 150 µl KRH buffer + 0.1% FCS was added to each well and 

centrifuged (1300 rpm, 3 min, RT). This step was repeated once more and the samples were 

stained with CD-antibodies as described below. 

3.11.2.3 Specific CD-antibodies 

And cells were stained with 50 mL the CD-antibodies, diluted 1:250 in FACS buffer, to measure 

the glucose uptake in granulocytes, monocytes, T-cells and T-helper cells using Alexa Fluor® 647 

anti-human CD66b antibody (clone: G10F5, Biolegend, cat. no. 305110 APC/Cy7) Brilliant 

Violet™ anti-human CD14 antibody (clone: HCD14, Biolegend, cat. no. 325628),  anti-human CD3 

antibody (clone: UCHT1, Biolegend, cat. no. 300426) and Alexa Fluor® 700 anti-human CD4 

antibody (clone: OKT4, Biolegend, cat. no. 317426) respectively. The plate was incubated in ice 

protected from light for 15 min. The plate was centrifuged (1300 rpm, 3 min, RT) and the 

samples were dissolved in total 1 ml FACS buffer transferred into a FACS tubes and stored on ice 

until further analysis. The samples were analysed using Becton Dickinson LSR II flow cytometer 

(Heidelberg, Germany). 

 

 

 

 

 

 

 

  

Table 5.  Fluorophores  

  
Fluorophore Channel/Colour 

2-NDBG FITC 

MitoSOXTM PE 

MitoTracker® Green FM FITC 

CD3 AlexaFluor 700 

CD4 APC/Cy7 

CD14 Brillant Violet 421 

CD66b APC 
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3.12 Statistical analysis 

Statistical analyses were performed using GraphPad Prism 7 and the level for statistical 

significance was defined as p < 0.05. Outlier elimination was performed applying Tuckey’s 

method of leveraging the interquartile range (Tukey, 1977). Differences between data groups 

were evaluated for significance using one-sample t-test. 
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4 Results 

4.1 Cells specific changes in response to glucose 

4.1.1 Increased glucose uptake 

To determine the effect of high glucose on cellular glucose uptake, murine endothelial 

fibroblasts (MEF),  kidney tubular epithelial cells (M1), mesangial cells (MES13) and Schwann 

cells (SW10) were cultured under normal glucose (LG, 5 mM) and under high glucose (HG, 25 

mM), representative of hyperglycemia in patients, for 3 days. Murine hepatocytes (AML12) 

were found to grow better under 12.5 mM glucose, as such, this concentration of glucose was 

considered as normal condition (LG) and 50 mM glucose was considered as high glucose (HG) 

condition. The glucose uptake was measured by flow cytometry analysis using the glucose 

analog, 2-NDBG. The amount of intracellular 2-NDBG fluorescence was calculated per 1 x 106 per 

minute and the slope of linear regression fit was calculated from the data points. Increased 2-

NDBG uptake was observed in the MEF (slope 3.128 ± 0.1269 versus 3.833 ± 0.3195; p=0.0042) 

(Figure 5.A), AML12 (slope 3.352 ± 0.08488 vs 3.908 ± 0.05; p=0.0079) (Figure 5.B) MES13 (slope 

5.074 ± 0.1799 vs 10.08 ± 0.2302; p<0.0001) (Figure 5.D) and SW10 (slope 6.866 ± 0.3613 vs 

8.134 ± 0.3545; p=0.0231) (Figure 5.E) when cultured for 3 days under HG conditions compared 

LG cultured cells, but no changes was observed in M1 (Figure 5.C) cells. Focusing on the 100 uM 

2-NDBG uptake, the uptake was increased by 31% in MEF (334.8 ± 10.89 vs 439.6 ± 16.68; 

p=0.0042), 14% increase in both AML12 (365.9 ± 18.09 vs 418.3 ± 3.611; p=0.0079) and SW10 

(732.2 ± 41.46 vs 835.7 ± 28.06; p=0.0231) a 83% increase in MES13 (557 ± 8.389 vs 1021 ± 

10.73; P<0.0001). 

To determine the long term effect of hyperglycemia, a time course study was performed. MEF, 

M1 and AML12 were selected representing one cell type for neurons, kidney and liver 

respectively. MEF, M1 and AML12 were cultured for 6, 12 and 24 days and glucose uptake 

measured, as described. After 6 days of HG treatment, maximal 2-NDBG uptake was observed in 

the MEF (Figure 6.A, D) and M1 (Figure 6.B, E); in MEF the uptake was increased by 65% (314.9 ± 

18.6 vs 519.6 ± 97.95; p<0.0001) and in M1 the uptake was increased 128% (346 ± 38.59 vs 

787.2 ± 110.4; p<0.0001). The 2-NDBG uptake of did not increase any further after 6 days in 
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either cell type. In contrast, maximal 2-NDBG uptake in the AML-12 cells was observed after 12 

days of HG (Figure 6.C, F); uptake was increased 73% (332.2 ± 47.91 vs 575.8 ± 52.33; p<0.0001) 

and increased further after 24 days by 92% (332.2 ± 47.91 vs 639.2 ± 174.8; p=0.0036), as 

compared to LG cultured cells.  

4.1.2 Altered mitochondrial properties and reactive metabolites  

To determine the effect of high glucose on mitochondrial properties and reactive metabolites in 

MEF, AML12, M1, MES13 and SW10 were cultured for 3 days in high glucose (HG) media or low  

Figure 5. 2-NDBG glucose uptake in short term hyperglycemia.  

Using 2-NDBG, glucose uptake was analyzed in fibroblasts (MEF) (A), hepatocytes AML12 (B) and renal tubular 

cells (M1) (C), mesangial cells (MES13) (D) and Schwann cells (SW10) (E) cultured for 3 days in high glucose 

media (3dHG) versus low glucose media (LG). Mean fluorescence intensity (MFI) was plotted against the 

concentration of 2-NDBG used and the slope was calculated. The maximal 100uM 2-NDBG uptake was calculated 

for all the cell type (F). Data is represented as mean +/- SD, n=3. For statistical analysis two sided t-test was 

applied *p<0.05, **p<0.01, ****p<0.0001. 
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glucose media (LG) by flow cytometry. ROS was increased by 11% in MEF (92.73 ± 1.102 vs 103.3 

± 2.028; p=0.00042), 86% in AML12 (55.33 ± 0.5774 vs 103.3 ± 5.132; p=0.0034), 108% in M1 

(103.3 ± 2.028 vs 215 ± 5; p=0.001), whereas 203% increase was observed in MES13 (620.6 ± 

424.2 vs 1878 ± 407.7; p=0.0208) and 159% SW10 (2930 ± 969.3 vs 7599 ± 2369; p=0.0117) 

(Figure 7.A). O2•- was increased by 27% in MEF (135.7 ± 3.055 vs 173 ± 3; p=0.0001), indicating 

that not all superoxide production was used to form ROS. In AML12 O2•- was increase by 46% 

(53.67 ± 4.726 vs 78.33 ± 4.726; P=0.0017), whereas the ROS production was elevated by 1.8-

fold indicating that the ROS formation was also derived from another source next to O2•- 

(Figure 7.C). O2•- was increased by 217% in MES13 (1990 ± 532.9 vs 6318 ± 718.2; p=0.0011)  

and  by  214%  in  SW10  (1259  ±  575.1  vs  3955  ±  272.3;  p=0.0018),  which  is  in accordance 

with the increase in ROS production. In contrast, in M1 O2•- was reduced with 10% (161.3 ± 

Figure 6.  2-NDBG glucose uptake in long term hyperglycemia.  

Using 2-NDBG, glucose uptake was analyzed in fibroblasts (MEF) (A), hepatocates AML12 (B) and renal tubular cells 

(M1) (C) cultured for 3, 6, 12 and 24 days in high glucose media (HG) versus low glucose media (LG). Mean 

fluorescence intensity (MFI) was plotted against the concentration of 2-NDBG used and the slope was calculated. 

The maximal 100uM 2-NDBG uptake was calculated for MEF (D), M1 (E) and AML12 (F). Data is represented as 

mean +/- SD, n=3. For statistical analysis two sided t-test was applied **p<0.01, ***p<0.001, ****p<0.0001. 
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2.517 vs 151 ± 3.464 ± 2; p=0.0139) observed, indicating another source for ROS. Another 

source for ROS might be NO (Figure 7.B). NO was increased by 119% in MEF (61.67 ± 0.5774 vs 

135.3 ± 7.572; P=0.0033), 108% in AML12 (91 ± 26 vs 189.7 ± 10.6; p=0.0127), 32% in M1 (684.7 

± 12.42 vs 904.3 12.22; p=0.0001), and trend towards increased NO in SW10 (3714 ± 9065 ± 

4857; p=0.116). However, no change in NO was observed in MES13 (Figure 7.B). 

An indirect indication for mitochondrial stress is changes in mitochondrial properties such as 

mitochondrial mass and mitochondrial density. No changes in mitochondrial polarity by JC-1, a 

marker for mitochondrial density, were observed in any of the cell types (Figure 7.D). However, 

Figure 7. Mitochondrial properties and reactive metabolites. 

The different murine primary cell lines, fibroblast (MEF), hepatocytes (AML12),  renal tubular cells (M1), mesangial 

cells (MES13) and Schwann cells (SW10) were cultured for 3 days in high glucose media (3dHG) as compared to 

low glucose (LG) cultured cells. ROS, NO, Superoxide, michondrial membrane potential and mitochondrial mass 

were measured by flow cytometry using DCF (2’,7’-dichloro-dihydro-fluorescein) (A), DAF-FM (4-Amino-5-

5methylamino-2’7’-Difluorescien Diacetate) (B) and MitoSOXred ™ (C), JC-1 (D) and MitoTracker® Orange FM (E) 

respectively. Mean fluorescence intensity (MFI) was detected by flow cytometry. Data is represented as mean +/- 

SD, n=3. For statistical analysis two sided t-test was applied *p<0.05, **p<0.01 and ***p<0.001.  
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mitochondrial mass was increased in MEF (1817 ± 89.63 vs 4961 ± 833.2; p=0.0029) and M1 

(2213 ± 43.65 vs 2969 ± 154.4; p=0.001) (Figure 7.E). The changes in mitochondrial reactive 

metabolites are not in line with the changes in mitochondrial properties, suggesting a 

disconnection between the two.   

4.2 Increased glucose uptake and glucose transporters expression in Schwann cells and 

fibroblasts 

Due to the importance of Schwann cells in pathophysiology of DN, it was decided to focus 

specifically on this cell type. Moreover, the isolation of Schwann cells from sciatic nerves often 

results in a co-culture of Schwann cells and fibroblasts. Therefore, SW10 and MEF were taken to 

investigate whether the hyperglycemia induced changes are cell type specific or occur in both 

cell types. The study of these two cell types is relevant to diabetic neuropathy as the firstly 

represent the major cell type found within the sciatic nerve and secondly, it has been suggest 

that metabolic dysfunction within the sciatic nerves play an important role in the 

pathophysiology of diabetic neuropathy. Previous data had shown that maximal glucose uptake 

was reached at 6 days of high glucose for most cell lines therefore all subsequent experiments 

were continued with 6 days of high glucose treatment.   

Increased glucose uptake was associated with increased expression in glucose transporter 

expression. A tendency towards increased Glut 1 gene expression in MEF (0.07551 ± 0.02032 vs 

0.1008 ± 0.01640; p=0.1668) (Figure 8.A) and, despite its low expression, a trend towards 

increased Glut 3 gene expression was observed in SW10 (0.00132 ± 0.00005 vs 0.00156 ± 

0.000156; p=0.0676) (Figure 8.B). A 107% increase in Glut 1 protein expression was observed in 

MEF (440.211 ± 139.474 vs, 909.066 ± 139.853 p=0.0147) (Figure 8.C, D), whereas Glut 3 which 

more neuronal specific glucose transporter, was increased by 75% in SW10 (0.75 ± 0.06 vs 1.31 

± 0.28; p=0.0267) (Figure 8.C and E), as compared to LG cultured cells. However, Glut 3 protein 

expression was reduced by 28.3 % in MEF (1.77 ± 0.19, 1.27 ± 0.16; p=0.0246) (Figure 8.C and E).  

The expression of glucose transporter 2 (Glut 2) and glucose transporter 4 (Glut 4) remained 

unaffected (data not shown). These findings together with the glucose uptake data indicate that 
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increased glucose uptake in response to high glucose is due increased expression of Glut 3 in 

SW10 and Glut1 in MEF. 

Figure 8.  Glucose uptake and glucose transporter expression.  

MEF and SW10 were cultured under high glucose condition for 6 days (6dHG) as compared to low glucose 

condition (LG). The mRNA expression of glucose transporter 1 (Glut 1) (A) and glucose transporter 3 (Glut 3) (B) 

were determined by RT-qPCR. Imunnoblotting (C) was performed to analyze the protein expression of Glut 1 (D) 

and Glut 3 (E). Data is represented as mean +/- SD, n=3. For statistical analysis two sided t-test was applied 

*p<0.05. 

4.3 High glucose does not affect the pathways of the unifying theory  

The effect of high glucose on the polyol pathway wat determined by measuring levels of sorbitol 

in the samples of SW10 and MEF cultured for 6 days in high glucose or low glucose. Sorbitol 

level were increased by 13% in MEF (702.733 ± 40.02 vs 797.08, p=0.0203) in response to 6 days 

high glucose treatment, whereas no differences in the sorbitol levels were observed in SW10 

(Figure 9.A), suggesting that this cell culture model of long term high glucose does upregulate 

the polyol pathway in MEF but not in SW10. 
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Figure 9. Effect  of high glucose on pathways of the unifying theory.  

MEF and SW10 were cultured under high glucose condition for 6 days (6dHG) as compared to low glucose 

condition (LG). Sorbotol was determined by D-Sorbitol Colormetric Assay (A). Glycosylation was determined by 

immunoblotting (C) using primary antibody against O-Linked β-N-acetylglucosamine (B). The effect of high 

glucose on PKC pathway was determined by PKC activity assay (D). Methyl glyoxal concentration were 

determined by LC-MS/MS as a marker for AGE formation (E). MG levels in MEF cells (E) and the media (F) was 

determined, after being cultured for 24h, 48h and 72 h in high glucose (HG) versus low glucose media (LG). Data 

is represented as mean +/- SD, n=3. For statistical analysis two sided t-test was applied *p<0.05, **p<0.01. 

The hexosamine pathway was investigated by measuring the post-translational modification, O-

linked N-acetylglucosamine (O-GlcNAc) (Figure 9.B, C). No differences in O-GlcNAc protein 

expression was observed in MEF. However, O-GlcNAc protein concentration was increased by 

38% in SW10 (0.08 ± 0.01 vs 0.11 ± 0.01, P= 0.0086) as compared to LG cultured cells (Figure 

9.C), indicating a 6 days of high glucose treatment did upregulate hexosamine pathway only in 

SW10. Protein kinase C activity was measured by ELISA. No differences in PKC activity was 

observed in both SW10 and MEF in response to the high glucose treatment (Figure 9.D), 

suggesting that high glucose condition did not affect the PKC pathway in this cell culture model.  
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To determine the effect of high glucose on AGEs pathway in SW10 and MEF the MG levels, the 

precursor of AGEs, were measured by LC-MS/MS.  No differences in the intracellular MG levels 

were observed in both cell types (Figure 9.E). To investigate the effect of short term high 

glucose also intracellular (cells) and extracellular (media) MG levels in MEF cultured for 24h, 48h 

and 72h in high glucose media was measured. No changes in MG levels were observed in 24h, 

48h and 72h of high glucose versus normal glucose cultured MEF cells (Figure 9.F). These finding 

indicate that both short and long term high glucose does not affect MG levels, and there by the 

AGEs pathway.  

4.4 Decreased glycolysis and mitochondrial respiration 

Previous data has shown that there are differences in reactive metabolites and mitochondria 

properties under high glucose condition, whilst the pathways of unifying theory are not active 

(Figure 3), therefore mitochondrial function was determined. The Seahorse XF96 Bioanalyzer 

instrument can measure glycolysis and oxidative phosphorylation simultaneously in the same 

cells.  Glycolysis is determined through measurements of the extracellular acidification rate 

(ECAR) of the surrounding media of the cells, which is predominately from the excretion of lactic 

acid per unit time after its conversion from pyruvate (Wu et al., 2007) Glucose is supplied to 

feed glycolysis, and the difference between ECAR before and after addition of glucose is a 

measure of the glycolytic rate, which is called glycolysis in our results. Oligomycin inhibits ATP 

synthase in the ETC, thereby reducing the ATP/ADP ratio which drives glycolysis and 

subsequently to maximum conversion of glucose to pyruvate or lactate also called glycolytic 

capacity. The difference between ECAR before and after the addition of oligomycin is equal to 

the glycolytic reserve capacity of cells. 2-DG inhibits the first step in glycolysis. Therefore, the 

ECAR measured after 2-DG addition accounts for the non-glycolytic ECAR of cells (TeSlaa and 

Teitell, 2014). 

In response to 6 days of high glucose treatment, the glycolysis was decreased by 72% (23.7 ± 4.4 

vs 6.6 ± 3.4; p=0.006) (Figure 10.A, C) together with a 67% decrease in glycolytic capacity (70 ± 

11, vs 23.0 ± 12.0 p= 0.0168) (Figure 10.D) and a 45% decrease in glycolytic reserve (46.3 ± 11 vs  
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Figure 10. Effect high glucose on glycolysis. 

MEF and SW10  were cultured under high glucose condition for 6 days (6dHG) as compared to low glucose condition 

(LG). The glycolysis was in MEF (A) and Sw10 (B) detemined by measuring the extracellular acidification rate (ECAR) 

of the surrounding media using the XF96 Seahorse Bioanalyzer.  Glycolsis (C),  glycolytic capacity (D) and glycolytic 

reserve (E) were measured by sequential injection of 10mM glucose, 1mM oligomycin and 100mM 2-Deoxy-D-

glucose (2-DG). Non-glycolytic acidification (F) is calculated as the difference between basal ECAR and ECAR after the 

injection of 2-DG. Data is represented as mean +/- SEM (n=9). For statistical analysis two sided t-test was applied 

*p<0.05, **p<0.01. 
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Figure 11. Effect high glucose on  in mitochondrial respiration.  

MEF and SW10 were cultured under high glucose condition for 6 days (6dHG) as compared to low glucose 

condition (LG). The mitochondrial respiration in MEF (A) and SW10 (B) detemined by measuring the oxygen 

consumption rate (OCR) of the surrounding media using the XF96 Seahorse Bioanalyzer. First the basal OCR (C) 

was measured. The ATP production (D) the maximal respiration (E) and non-mitochondrial respiration (F) were 

measured after sequential injection of 1mM oligomycin, 0.5mM FCCP and a combination of 1mM rotenone and 



Results 

46 
 

25.4 ± 11.9; P=0.0018) in MEF (Figure 10.A, E). In the SW10 cells, the glycolytic capacity was 

decreased by 15% (86.53 ±5.4 vs 73.6 ± 6 P=0.0325) (Figure 10.D) and the glycolytic reserve was 

also decreased by 15% (67.87 ± 5.3 vs 57.43 ± 3.3; p=0.0419), (Figure 10.E), whereas the 

glycolytic rate (Figure 10.B, C) remained unaffected in response to 6 days of high glucose 

treatment. Interestingly, the non- glycolytic acidification in SW10 was increased by 34% (62.5 ± 

2.7 vs 83.63 ± 10.9; P=0.0297) (Figure 10. F), in response to hyperglycemia, as compared to cells 

cultured in LG media.  Although elevated glucose uptake and glucose transport protein were 

observed previously, these finding suggest downregulation of the glycolysis pathway in 

response to hyperglycemia. Interestingly, the non-glycolytic acidification was increased in SW10, 

indicating another source for extracellular acidification rather than glycolysis itself.  

Another source of acidification might come from mitochondrial oxidative phosphorylation. 

Oxidative phosphorylation was determined by measuring the oxygen consumption rate (OCR) 

using the Seahorse XF Bioanalyzer. First the basal OCR, also called basal respiration of the 

surrounding media of the cells is measured followed by serial injection of the compounds 

oligomycin, carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone (FCCP), and a combination 

of rotenone and antimycin A . Oligomycin, which inhibits ATP synthase (complex V of the ETC), 

was added to calculate the amount of OCR is used for ATP production. FCCP is an uncoupling 

agent disrupting the ECT leading to maximum electron flow and subsequently maximal 

respiration. The spare respiratory capacity can be calculated as the difference in OCR of basal 

respiration and maximal respiration.  The higher the reserve capacity the more effective the 

mitochondria are to meet their need for ATP and energetic demand in response to stress.  

In response to 6 days of high glucose, the maximal respiration decreased by 19% in MEF (205.5 

± 19.36 vs 165.8 ± 33.86; p=0.0076) (Figure 11.A, E), together with a reduction in spare 

respiratory capacity of 37% (118.7 ± 19.85 vs 74.66 ± 25.08), as compare to LG cultured cells.  In 

1mM antimycin-A, respectively. Spare respiratory capacity (G) is calculated as the  difference in OCR of  maximal 

respiration and OCR of basal respiration. Proton leak is calculated as the difference in OCR related to ATP 

production and non-mitochondrial respiration (H). From these OCR values the bioenergetic health index (BHI) (I) 

was calculated. Data is represented as mean +/- SEM, n=9. For statistical analysis two sided t-test was applied 

*p<0.05, **p<0.01, ***p<0.001. 



Results 

47 
 

SW10 the maximal respiration was decreased by 28% (301.3 ± 59.11 vs 216.8 ± 28.82; P=0.0014, 

n=9) (Figure 11.B, E) and the spare respiratory capacity reduced by 58% (134.4 ± 40.5 vs 56.93 ± 

24.6; p=0.0001, n=9) (Figure 11.F). The other functional markers of mitochondrial respiration 

remained unaffected.  

Chronic metabolic stress causes defects in the mitochondrial respiratory machinery as 

characterized by reduced ATP-linked respiration, reduced reserve capacity and increased non-

mitochondrial respiration (e.g. ROS formation). These bioenergetically inefficient damaged 

mitochondria also show increased proton leak and require higher levels of ATP to meet their 

energy demand in order to maintain organelle integrity, leading to increased basal 

mitochondrial respiration. Each of these different parameters is susceptible to different forms 

of oxidative stress. Chacko et al. proposed that due to the close interactive nature of these 

different parameters, they can be integrated into a single value known as the Bioenergetic 

Health Index (BHI) (Chacko et al., 2014). The BHI can be calculated as follows:  

 

In general, defects in the ETC lead to reduced BHI due to decrease in reserve capacity, ATP-

linked respiration or increased uncoupling. It is important to note that cells which show a 

decrease reserve capacity, but an increase in proton leak and non-mitochondrial respiration can 

still potentially provide sufficient ATP to meet the energetic demands of the cell, but is less 

efficient. Calculation of BHI of our data showed a decrease in bioenergetic health in response to 

hyperglycemia in both cell types (Figure 11.H), mainly due to the decrease in mitochondrial 

reserve capacity, implying that in the response to high glucose both SW10 and MEF are less 

efficient to meet the energetic demand of the cell. 

4.5 Decreased expression of glycolysis related genes and altered fatty acid metabolism in 

Schwann cells 

Based upon the finding that glycolysis is reduced in response to high glucose in our cell culture 

model, the expression of several genes in the glycolysis pathways was determined by qPCR.  

mRNA expression of Hk2 (0.0541 ± 0.0051 vs 0.0307 ± 0.0062; p=0.0221), PCK2 (0.1834 ± 0.0211  
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Figure 12. Glycolysis and fatty acid oxidation (FAO) related gene and protein expression.  

The mRNA expression of genes related to the glycolsis pathway including hexkinase-2 (HK2), aldolase-alpha 

(Aldoa), enolase 1 (Eno1) and phosphosenolpyruvate carboxykinase (PCK2) (A) and for the FAO pathway 
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vs 0.0277 ± 0.0276 p=0.005) was observed in MEF (Figure 12.A) and decreased mRNA 

expression of Hk2 (0.0182 ± 0.0023 vs 0.0107 ± 0.0004; P=0.0049) and Aldoa (0.5820 ± 0.0376 vs 

0.4986 ± 0.0080; P=0.0198) was observed in SW10 thereby confirming the previous findings that 

glycolysis pathway in response to high glucose is reduced.  

As the glycolysis pathway is reduced, the mitochondria must use another pathway to meet their 

energy demand, since previous data showed that the ATP production remained unaffected in 

both cell types (Figure 11.D). Another important mitochondrial energy fuel, next to glucose, is 

fatty acid oxidation (FAO).  Therefore, in addition to the glycolysis related genes, genes related 

to FAO were also screened. Increased mRNA expression of Acaca was observed in both MEF 

(0.03797 ± 0.00548 vs 0.05281 ± 0.00336; p=0.0161) and SW10 (0.03038 ± 0.00092 vs 0.03776 ± 

0.00123; p=0.0012) (Figure 12.B) in response to high glucose treatment. Moreover, Cpt1a, 

which transports long-fatty acid into the mitochondrial matrix and is the rate limited step on 

FAO, was increased in MEF (0.00086 ± 0,00012 vs 0.0015 ± p=0.0102) and SW10 (0.000495 ± 

0.00007 vs 0.001016  ± 0.000069; p=0.0009).  Increased mRNA of Echs (0.1101 ± 0.0036 vs 

0.1377 ± 0.0052; p=0.0017), Fasn (0.1695 ± 0.0106 vs 0.1976 ± 0.0111; p=0.0337) and trend 

toward increased Lipe (0.0017 ± 0.0008 vs 0.003281 ± 0.0007) p=0.0575) was observed in 

response to high glucose treatment in MEF, but not in SW10. The increase in FAO was 

confirmed on protein level by immunoblot in SW10 (Figure 12.C, D). In response to high glucose 

treatment AceCS1 (1 ± 0.0294 vs 1.3267 ± 0.0903; P=0.0192), Acl (1 ± 0.0978 vs 1.4390 ± 0.1208; 

p=0.0195), Po4-ACC (1 ± 0.4996 vs 1.8735 ± 0.4252; P=0.0274)  protein expression were 

elevated and a trend towards increased PO4-Acl (1 ± 0.128 vs 1.5350 ± 0.386; p=0.0577) was 

observed in SW10 when cell were culture for 6 days in HG media as compared to cell cultured in 

LG media, but not in MEF. Fasn was reduced in MEF (1 ± 0.1153 vs 0.6999 ± 0.1168 p=0.0262), 

including  (Acaca) carnitine acyl transferase (Cpt1b), enoyl-CoA hydratase (Echs), fatty acid synthase (Fasn) and 

hormone sentive lipase (Lipe) (B) was determined by RT-qPCR. Immunoblotting was performed to measure the 

FAO related protein expression (C, D) of the folowing proteins AceS1, ATP-citate lyase (ACL), (ACS1), Acetyl-CoA 

carboxylase (ACC), fatty acid synthase (FASN), phoshorylated ACL (Po4-ACL) and phosphorylated ACC (Po4-ACC). 

The data is summarized in a figure (E). Data is represented as normalized ratio (LG cultured cells was set to 1) +/- 

SD, n=3. For statistical analysis two sided t-test was applied *p<0.05, **p<0.01, ***p<0.001.  
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but not in SW10.  These findings indicate that high glucose induces a metabolic switch from 

glycolysis towards FAO in SW10, summarized in figure (Figure 12. E). 

To investigate the importance of fatty acids as an energy fuel the mid- and long- chain fatty acid 

uptake was determined by flow cytometry analysis using BODIPY-C5 and BODIPY-C12 

respectively. No alterations in mid-chain fatty acid uptake in MEF (Figure 13.A) and in SW10 

(Figure 13.B) was observed. In addition, no changes in long chain fatty acid uptake were 

observed in both cell types (Figure 13.C, D). However, the fatty acid synthesis was altered after 

6 days of high glucose treatment. Decreased gene expression of Srebp1 (1 ± 0.0899 ± vs 0.6928 

± 0.1092; p= 0.0198), Acly (1 ± 0.2049 vs 0.6886 ± 0.0236 p= 0.028), and a trend in towards 

decreased Fasn was found in MEF (1 ± 0.1603 vs 0.6771 ±0.2171 p=0.0523). In SW10 the gene 

Figure 13. Fatty acid uptake and  fatty acid gene expression 

Fatty acid  uptake was determined by flow cytometry using BODDIPY 5 to measure short-chain fatty acid uptake in 

MEF (A) and SW10 (C), and BODIPY C12 to measure mid-chain fatty acid uptake in MEF (B) and SW10 (D) cultured 

for under high glucose conditions (6dHG) versus low glucose control conditions (LG). Real time qPCR was 

performed to determine the mRNA expression of genes related to fatty acid synthesis pathway (E). Data is 

represented as normalized ratio (LG cultured cells was set to 1) +/- SD, n=3. For statistical analysis two sided t-test 

was applied *p<0.05, **p<0.01. 
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expression of Srebp1, Hmcgr (1 ± 1911 vs 0.6661 ± 0.0342; p=0.0408) and Acly (1 ± 0.0154 vs 

0.8197 ± 0.0497; p=0.0078) were significantly decreased (Figure 12.E). In contrast, when 

determining the effect of octanoate on mitochondrial respiration, increased mitochondrial 

respiration (0.1112 ± 0.4502 vs 6.0899 ± 0.1492; p<0.0001) was observed in MEF cultured under 

high glucose condition (Figure 14.A). However, the ATP production was decreased by 40% 

(2.3918 ± 0.0565 vs 1.4282 ± 0.1308; p=0.0003) in high glucose cultured MEF upon octanoate 

addition (Figure 14.B), suggesting that octanoate is not used as an energy fuel in high glucose 

cultured MEF. Interestingly, upon octanoate addition there is increased ATP production by 32% 

(4.4718 ± 0.0836 vs 5.9053 ± 0.1436; p=0.0001) in high glucose cultured SW10 (Figure 14.D), 

indicating that high glucose cultured SW10 use octanoate as an energy fuel. Taken together, 

these findings suggesting that high glucose induces remodeling of Schwann cell mitochondrial 

metabolism away from fatty acid synthesis towards fatty acid oxidation in order to generate 

ATP. 

 Figure 14. Effect octanoate on mitochondrial respiration in permeabilized MEF and SW10. 

Effect of octanoate as an energy fuel for mitochondrial respiration was determined by sequential injection of 

both 25mg/ml saponin and 1mM octanoate, and 1mM oligomycin using the XF96 Seahorse Bioanalyzer to 

measure the effect of octanoate on basal respiration in MEF (A) and SW10 (C), and on ATP production in MEF (B) 

and SW10 (D), respectively. Data is represented as normalized ratio to the control without octanoate +/- SD, 

n=3. For statistical analysis two sided t-test was applied ***p<0.001, ****p<0.0001. 



Results 

52 
 

 4.6 No activation of the integrated stress response, the uncoupled protein response and the 

AMPK pathway 

Previous studies have shown that the activation of the integrated stress response (IRS),  the 

uncoupled protein response (UPR) and or 5’AMP-activated protein kinase (AMPK) pathway can 

be a regulator of a metabolic switch towards FAO pathway (Viader et al., 2013; O’Neill et al., 

2013). The effect of hyperglycemia on IRS was determined by qPCR and immunoblotting.  In 

response to 6 days of high glucose treatment several genes of the fatty acid synthesis pathway 

were downregulated in both cell types as compared to LG cultured cells. In MEFs, the gene 

expression of ATF4 was reduced by 31% (1 ± 0.0899 vs 0.6928 ± 0.1092; P=0.0198), but not in 

SW10. ASNS gene expression in SW10 was reduced by 43% (1 ± 0.3276 vs 0.5729 ± 0.06138; 

P=0.0083), but not in MEF. In MEFs, the Mthfd2 gene expression was reduced by 85% in MEF (1 

± 0.3012 vs 0.1527 ± 0.0209; p=0.0083) and in SW10 it was reduced by 44% (1 ± 0.1553 vs 

0.5601 ± 0.0185; p= 0.0079). The gene expression of Trib3 was reduced by 73% in SW10 (1 ± 

0.2495 vs 0.2706 ± 0.0084; p=0.0068), whereas it was almost completely gone in MEF (1 ± 

0.3847 vs 0.0397 ± 0.0085; p=0.0179) (Figure 15.A).  

However, the reduction in IRS gene expression was not completely reflected on the protein 

level. The protein expression of ATF4 was downregulated by 61% in MEF (1 ± 0.3281 vs 0.3932 ± 

0.0534; p=0.0341), confirming the downregulation of ATF4 in MEF. In contrast, phosphorylated 

Elf2 protein expression was increased by 70% in MEF (1 ± 0.1432 vs 1.696 ± 0.1830; p=0.0168). 

In SW10 the Elf2 protein expression was decreased by 22% (1 ± 0.0611 vs 0.7756 ± 0.0150; 

p=0.035) (Figure 15.B, C).  The protein levels of the other downstream markers of IRS were not 

altered in response to high glucose treatment in both cell types. Taken together, these findings 

indicate that the IRS is not associated with the metabolic switch to FAO.  

The UPR and AMPK pathway were assessed by immunoblotting. No changes in IRE and ATF6 

protein expression, both markers of the UPR, were observed in response to high glucose in both 

SW10 and MEF. Concerning the AMPK pathway, in SW10 the phosphorylated-AMPK protein 

expression was increased by 47% (0.3176 ± 0.0728 vs 0.4666 ± 0.0436; p=0.0383), however, 

when normalized to total expression of AMPK effect was gone. No alterations in protein 
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expression of in AMPK and phosphorylated AMPK were observed in both cell types (Figure 

15.D, E). Taken together, these findings indicate that the UPR or AMPK pathway is not 

associated with the metabolic switch to FAO. 

 Figure 15. The ISR, UPR and AMPK pathway. 

The effect of high glucose on possible induces of the metabolic switch towards increased FAO was determined. 

mRNA expression of genes related to maladaptive intergrated stress response (IRS); activating transcrition factor 4 

(ATF4), DNA-damage inducible factor (CHOP) asparagine synthetase (ASNS), methylenetetrahydrofolate 

dehydrogenase 2 (MTHFD2), tribble pseudokinase 3 (TRIB3) was determined by RT-qPCR (A). Immunoblotting was 

performed to measure protein expression of genes related to the IRS (ATF4, CHOP, ASNS) and the uncoupled 

protein response (UPR); inositol-requiring enzyme 1 alpha (IRE1), activating transcription factor 6 (ATF6), 

eukaryotic initiation factor 2 (elF2a) and phoshorylated elF2a (Po4-elF2a) (B, C). Immunoblotting was performed to 

measure protein expression of 5’-adenosine monophosphate activated protein kinase (AMPKa, AMPKb), 

phosphorylated AMPK (Po4-AMPKa, Po4-AMPKb) (D, E). Data is represented as normalized ratio +/- SD, n=3. For 

statistical analysis two sided t-test was applied *p<0.05, **p<0.01. 

 4.7 High glucose induces NOS activation in Schwann cells 

Since the differences in mitochondrial metabolism are not associated with the activation of the 

IRS, UPR or the AMPK pathway, there must be another inducer of the metabolic switch. 
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Interestingly, it has been shown that in response to nitric oxide inducer DetaNonoate, the 

maximal mitochondrial respiration is reduced (Dranka et al., 2010), indicating that nitric oxide 

can suppress mitochondrial oxidative phosphorylation and thereby the capability of the cell to 

respond to an energetic demand. Moreover, nitric oxide can induce FAO (Doulias et al., 2013, Le 

Gouill et al., 2007; Stavniichuk et al., 2010). This, together with our previous finding that nitric 

oxide is upregulated in response to high glucose (Figure 7.B) was an indication to investigate the 

nitric oxide pathway in our cell culture model of long term hyperglycemia.  

Figure 16. Effect of high glucose on nitric oxide pathway.  

MEF and SW10 were cultured under high glucose condition for 6 days (6dHG) as compared to low glucose 

condition (LG). The mRNA expression of inducible nitric oxide synthase (iNOS) was determined by RT-qPCR (A). 

The NOS activity was measured by colorimetric based assay (B). Nitric oxide production was determent by flow 

cytometry, using fluorophore DAF-FM (C). Immunoblotting (D) was performed to measure the amount of total S-

nitrosylation (S-Nitro) in mitochondrial fraction (Mito) and whole cell lysate (Cell) (E). Data is represented as 

mean +/- SD, n=3, and for S-nitrosylation assay n=2. For statistical analysis two sided t-test was applied *p<0.05, 

**p<0.01, ****p<0.0001.  
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To investigate the role of the nitric oxide synthase pathway, eNOS, iNOS and nNos gene 

expression were determined by qPCR. Whilst the iNOS mRNA expression was low, the 

expression was increased by 60% (0.00002528 ± 0.0000034 vs 0.00004039 ± 0.0000022, 

P=0.0030) in MEF and increased by 222% (0.00000047 ± 0.00000008 vs 0.00000146 ± 

0.00000058; p<0.0425) in SW10, in response to high glucose treatment (Figure 16.A). The other 

two isoforms, eNOS and nNOS were undetectable (data not shown). The nitric oxide activity, 

measured by colorimetric assay, was found to be upregulated by 87% in MEF (11173.67 ± 

1066.99 vs 20852.67 ± 2147; P= 0.022) and upregulated by 29% in SW10 (18981.83 ± 691.06 vs 

24530.83 ± 1367.17; p=0.0033) when cultured for 6 days under high glucose condition (Figure 

16.B). The increase in NO production in SW10 was confirmed by flow cytometry analysis using 

DAF-FM. The nitric oxide concentration was increased by 63% (1 ± 0.0417 vs 1.628 ± 0.0453;   

P<0.0001) in response to 6 days of high glucose treatment (Figure 16.C). Elevated NOS is 

associated with increased S-nitrosylation in diabetes (Doulias et al., 2013). Therefore S-

nitrosylation of cellular and mitochondrial fractions was detected by immunoblotting. Increased 

protein S-nitrosylation was observed in the mitochondrial fraction of SW10 and not in cellular 

fractions, whereas S-nitrosylation was unaffected in mitochondrial and cellular fractions of MEF 

(Figure 16.D, E). Taken together, these finding indicate that NOS is upregulated in response to 

high glucose and induces S-nitrosylation of mitochondrial proteins in Schwann cells. 

Classic NOS inhibitors were tested to determine whether they are able to reduce NO 

production. Different concentrations of NOS inhibitor L-NAME in high glucose cultured cells did 

not reduce NO back to the levels observed low glucose cultured cells (Figure 17.A). The same 

was observed with the iNOS specific inhibitor 1400W (Figure 17.A). When cell were incubated in 

high glucose media together with the anti-oxidant N-acetylcysteine (NAC, 500M) for 6 days, 

oxidative stress was reduced (3287 ± 193.2 vs 168.8 ± 107; p>0.0001) (Figure 17.C). However, 

NAC did not reduce the increase of 75% (827.1 ± 43.7 vs 1451 ± 93.5; p=0.0005) in NO measured 

in high glucose cultured SW10 back to control (LG) levels (Figure 17.B), indicating that despite 

increased expression and activity, the increase NO is not dependent on NOS.  
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 Figure 17. Effect nitric oxide inhibitor on NO and oxidative stress. 

SW10 cells were cultured for 6 days under high glucose conditions (HG) versus control conditions (LG).  The 

effect of 16hrs stimulation with nitric oxide inhibitors L-NAME and 1500W in SW10 HG on nitric oxide production  

using DAF fluorescent probe was determined by flow cytometry (A). The effect of anti-oxidant N-

acetylcysteine  NAC on nitric oxide production and oxidative stress production in high glucose cultured cells for 6 

days was determined by flow cytometry, using DAF (B) and DCF (C) fluorescent probe respectively. Data is 

represented as mean +/- SD, n=3. For statistical analysis two sided t-test was applied *p<0.05, ***p<0.001, 

****p<0.0001. 

4.8 Increased glycolytic capacity, mitochondrial respiration and superoxide formation in 

PBMCs of T2DM 

In order to compare mitochondrial bioenergetic changes observed in our in vitro model of long 

term hyperglycemia in SW10 and MEF to what is happening in diabetic patients, freshly isolated 

PBMCs of T2DM patients and non-diabetic controls was collected. In collaboration, the glucose 

uptake was analyzed by flow cytometry in different cell types, distinguished by specific surface  
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Figure 18. Glucose uptake in PBMCs. 

Using 2-NDBG, glucose uptake was analyzed in granulocytes (A), monocytes (B) and T-cells (C), which were 

separated by cell type-specific cell surface markers. Mean fluorescence intensity (MFI) was ploted against the 

concentration of 2-NDBG used and the slope was calculated. Data is represented as mean +/- SD. For statistical 

analysis two sided t-test was applied.  

markers, of a randomly-chosen subset of seven or eight patients per group. The glucose uptake 

was not altered in any of the analyzed cell types in diabetic patients as compared to the control 

patients (Figure 18. A, C). However, the different cell types took up different amounts of glucose 

with the monocytes taking up the most and the T-cells taking up the least amount of glucose 

after 30 min of starvation. Despite the unchanged glucose uptake between control and diabetic 

patients, glucose metabolism was found to be increased (Figure 19.A). No changes in glycolysis 

itself was observed (Figure 19.C), which supports the findings of the glucose uptake in the 

different PBMC subtypes. However the glycolytic capacity, which is a measure of the maximum 

rate of conversion of glucose to pyruvate or lactate, was increased by 34% (30.7 ± 11.31 vs 

41.04 ± 10.49; p=0.0361) (Figure 19.D) in PBMCs of T2DM as compared to control.  In PBMCs of 

T2DM the glycolytic reserve, which is the difference between the maximum glycolytic capacity 

and the basal glycolytic rate, was increased by 63% (9.6 ± 5.301 vs 15.66 ± 6.813; p=0.0346) 

(Figure 19.E). The increased glycolytic capacity together with the glycolytic reserve indicates 

that the capacity of the cells to generated ATP from glycolysis is upregulated in PBMCs of T2DM. 

Another important source for ATP production is mitochondrial oxidative phosphorylation. It has 

been shown that the mitochondrial metabolism is elevated in PBMCs of diabetic patients 

(Chacko et al., 2013). In our study the mitochondrial respiration was increased in PBMCs of 

T2DM as compared to the control (Figure 19.B). The basal mitochondrial respiration in PBMCs of 

T2DM was increased by 45% (15.49 ± 3.852 vs 22.52 ± 7.184; p=0.0139) (Figure 19.F), the OCR 

related to ATP production, after the injection of oligomycin, was increased by 44% (15.3 ± 5.109  

Control Diabetic
0

10

20

30

40

50

s
lo

p
e
 (

D
 M

F
I/
 D

 µ
M

 2
-N

D
B

G
)

Glucose Uptake Granulocytes

Control Diabetic
0

10

20

30

40

50

Glucose Uptake Monocytes

s
lo

p
e
 (

D
 M

F
I/
 D

 µ
M

 2
-N

D
B

G
)

Control Diabetic
0

10

20

30

40

50

s
lo

p
e
 (

D
 M

F
I/
 D

 µ
M

 2
-N

D
B

G
)

Glucose Uptake T-cellsA B C



Results 

58 
 

vs 22.01 ± 7.105; p=0.0205) (Figure 19.G) and the FCCP induced mitochondrial maximal 

respiration was increased by 65% (47.31 ± 21.6; 77.86 ± 28.78; p=0.0101) (Figure 17.H). Elevated 

mitochondrial bioenergetics is associated with increased ROS formation in PBMCs of T2DM 

(Hartman et al., 2014). In collaboration, the O2•- production of PBMCs of T2DM (n=8) and aged 

matched controls (n=7) was determined by flow cytometry using MitoSOXred™. The O2•-  

Figure 19. Bioenergetic profiles of PBMCs.  

Glycolysis (A) and Mitochondrial respiratory function (B) of isolated PBMCs of T2DM patients and agematched 

controls were analyzed using a XF96 Bioanalyzer. Glycolytic stress was determined by basal measurement of extra 

acidification rates (ECAR) following injection of 10 mM glucose, 1 mM oligomycin and 100 mM 2-deoxy-D-glucose 

(2-DG) to measure glycolysis (C), glycolytic capacity (D), glycolytic reserve (E) and non-glycolytic acidification. The 

basal measurement (F) of oxygen consumtion rates (OCR) of mitochondrial respiration were followed by 

sequential injections of 1 mM oligomycin, 0.25 mM FCCP and a combination 1 mM rotenone and 1 mM antimycin 

A (Rot & Anti-A) to measure ATP production (G), maximal respiration (H) and non-mitochondrial respiration. Data 

is represented as mean +/- S.E.M., n=14 for T2DM patients and n=9 for control patients. For statistical analysis 

two sided t-test was applied * p<0.05.  
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production was increased in all analyzed PBMCs; about 10-fold in the granulocytes (282 ± 101 vs 

2931 ± 646 MFI; p=0.0026) (Figure 20.D), about 6-fold in the monocytes (1930 ± 839 vs 11710 ± 

2583 MFI; p=0.0012) (Figure 20.E) and about 6.5-fold in the T-cells (1036 ± 545 vs 6760 ± 1470 

MFI; p=0.0048) (Figure 20.F). No alterations in mitochondrial mass of the different types of 

PBMCs was observed. The enhanced glycolytic reserve, together with mitochondrial respiratory 

capacity, reflects a higher metabolic capacity to maintain intracellular ATP levels. Moreover, the 

increased mitochondrial respiration together with elevated O2•- production in PBMCs of T2DM 

support the theory that hyperglycemia induced increase in electron transfer donors (NADH and 

FADH2) leads to hyperpolarization of the mitochondrial membrane and increased ATP/ADP 

ratio. The high electron chemical gradient can induce partial inhibition of ETC complex III and 

subsequently activate of coenzyme Q, driving the reduction of oxygen to generate free O2•-. 

Figure 20. Mitochondrial mass and superoxide production. 

Using MitoTracker® Green FM, mitochondrial mass was analyzed in granulocytes (A), monocytes (B), and T-cells (C), 

which were separated by cell type-specific cell surface markers. Mitochondrial superoxide oxidation was 

determined in granulocytes (D), monocytes (E) and T-cells (F) using MitoSOX™. Mean fluorescence intensity (MFI) 

was detected by flow cytometry. Data is represented as mean +/- SD, n=14 for T2DM patients and n=9 for control 

patients. For statistical analysis two sided t-test was applied **p<0.01.  
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5 Discussion 

5.1 Hyperglycemia induced alterations are cell type specific. 

In this study a long-term hyperglycemia cell culture model was used to investigate the 

downstream effects of glucose in vitro. It was shown that the alterations in glucose uptake, and 

glucose transporter expression, mitochondrial reactive metabolites in response to 6 days of high 

glucose were cell type specific. For instance, elevated glucose uptake in fibroblasts was 

associated with increased GLUT 1 expression, whereas this was associated with increased GLUT 

3 expression in Schwann cells. These finding are in agreement with previous studies showing 

tissue specific expression of glucose transporters; GLUT 1 is expressed in membranes of 

erythrocytes, muscles, adipose tissue and brain; GLUT 2 is mainly expressed in hepatocytes and 

pancreatic -cells; GLUT 3 is expressed in the brain and nerve cells and GLUT 4 is only expressed 

in adipocytes and muscles (Gould and Holman et al., 1993). The cell specific effect on 

hyperglycemia is in agreement with the observation of tissue specific differences in 

development of insulin resistance in animal models of diabetes and in diabetic patients (Jelenick 

et al., 2014; Nakae et al., 2001; Rask-Madson and Kahn 2013). In addition to glucose 

transporters, tissue specific expression of lipoprotein lipase and insulin receptor may also 

provide an explanation for the tissues specific effects observed in diabetes (Kim et al. 2001; 

Thirone et al., 2006).  Meta-analysis has indicated that both tissue specific and non-specific 

genes and pathways are associated with diabetes pathogenesis and common pathway affecting 

diabetes development is activated through different genes at different tissues (Mei et al., 2017). 

The cell specific effects on hyperglycemia and/or insulin resistance may also explain to some 

extent the differential responsiveness of diabetic patients to the same treatment; if one 

mechanism was to explain all diabetic complications, one specific treatment targeting this 

pathway would prevent all diabetic complications, which is not the case. It is therefore 

important to determine not only the effects of hyperglycemia on specific tissues but also on the 

specific cell types which constitute the tissue. 
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5.2 Unifying theory not applicable in Schwann cells and fibroblast cell culture model of 

hyperglycemia 

Under high glucose condition for 6 days, the cell types studied showed increased glucose uptake 

and increased generation of reactive metabolites including O2●- and NO. This is in agreement 

with the unifying theory suggesting that increased glucose uptake leads to increased ROS 

formation. However, these increased were not reflected by an increase in either glycolysis or 

ATP-related oxygen consumption.  

The first pathway which is activated in the unifying theory is the polyol pathway. In this study 

increased sorbitol levels were observed in fibroblasts in response to high glucose, whereas it 

was unchanged in the Schwann cells, indicating that high glucose does not affect the polyol 

pathway. Increased polyol flux is known to be regulated by aldose reductase. The inhibition of 

aldose reductase has been reported to improve neuronal function in diabetic mice (Obrosova et 

al., 2003). This has been confirmed in another study which showed that aldose reductase 

deficient mice are protected against neuropathy, mediated by preservation of glutathione and 

NADPH pools (Ho et al., 2006). Although these studies indicate a role of aldose reductase in 

diabetic neuropathy, clinical study of aldose reductase inhibitors showed that the polyol 

pathway cannot completely account for the development of neuropathy (Goto et al., 1995). It 

has subsequently been shown that under severe hyperglycemia aldose reductase deficient 

diabetic mice still develop neuronal dysfunction (Yagihashi et al., 2001; Yagihashi et al., 2011). 

Despite many preclinical studies, the exact mechanism of how the polyol pathway is involved in 

DN remains inconclusive. Earlier studies proposed the osmotic theory which describes that 

increased flux through the polyol pathway induces intracellular hyperosmolarity due to the 

accumulation of impermeable sorbitol in the cytoplasm, lead to cell expansion and lysis (Gabbay 

et al., 1975; Kinoshita et al., 1990. Although this mechanism might be involved in some diabetic 

complications, there is no consistent evidence of nerve edema or swollen cells within the 

diabetic nerve (Jakobson et al., 1985).  

With respect to the triosephosphate-depending pathways, it was shown in this study that PKC 

activity remained unchanged in both Schwann cells and fibroblasts. Moreover, methylglyoxal 
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levels were not increased in either short or long term hyperglycemia cell culture model, 

suggesting that the AGE pathway is not active. This is   in contrast to the unifying theory which 

states that ROS are required for the inactivation of GAPDH and the activation of 

triosephosphate-depending pathways (PKC and AGE). This inconsistency with the unifying 

theory would explain why most clinical trials using antioxidants or inhibitors of the pathways of 

the unifying theory have not prevented or reduce the pathogenesis of DN. 

This study in Schwann cells and fibroblasts showed no activation of the AGE pathway. Glycation 

has been implicated in the pathogenesis of diabetic neuropathy (Thornally, 2002; Sugimotto et 

al., 2008; Quattrini et al., 2007). Accumulation of  AGEs has been shown in several components 

of peripheral nerve tissues, including endoneurial vessels, nerve fibers and Schwann cells, in 

human and animal diabetic nerves and associated with decreased myelinated nerve fiber 

density (Sugimotto et al., 1997; Sugimotto et al., 2008; Quattrini et al., 2007). In vitro, when 

exposed to high concentration of AGEs, Schwann cells underwent apoptosis with release of 

tumor necrosis factor (TNF)‐α and other inflammatory cytokines. AGE receptor (RAGE) 

overexpression in mice showed delayed nerve conduction velocity (NCV) and neuronal changed 

which were more severe diabetic condition (Wada et al., 2007), whereas RAGE-deficient mice 

are protected against the induction of neuropathy (Toth et al., 2008).  Indirect evidence of the 

role of AGEs in neuropathy is the treatment with aminoguanidine in experimental neuropathy, 

which inhibits AGE production and improved neuronal blood flow, nerve conductive viscosity 

and myelinated fiber structure (Kihara et al., 1991). However, it should be noted that 

aminoguanidine also acts as an anti-oxidative function and is an inhibitor for iNOS (Cameron et 

al., 2005). Moreover, due to the secondary side effects, it has been withdrawn as a drug for the 

treatment of diabetes. Clinical trials of the anti‐glycation agent, benfotiamime, has shown some 

protection against diabetic retinopathy and neuronal dysfunction (Hammes et al., 2003; Haupt 

et al., 2005), while others have shown that long term treatment with benfotiamime in T1DM 

patients had no significant effect upon neuronal function (Fraser et al., 2012).  These data 

implies that there is still no effective compound that can suppress the AGE formation in vivo and 

improve diabetic neuropathy in humans and would also suggest that the AGE pathway is not the 

most important pathway involved in the pathogenesis of diabetic neuropathy. Taken together, 
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the data in this study would suggest that the pathways described in unifying theory are not 

activated in Schwann cells and cannot explain the increase in O2●- and NO production. 

Whilst this study showed no differences in the pathways of the unifying theory, this might be 

explained by the changes in observed in  mitochondrial metabolism  in Schwann cells and 

Fibroblasts which are the opposite to what was expected.  This study revealed that culturing 

Schwann cells and fibroblasts under high glucose condition leads to impaired spare respiratory 

capacity and glycolytic capacity, whilst the non-glycolytic extracellular acidification and fatty 

acid oxidation was increased in Schwann cells. This would suggest that the decrease in oxygen 

consumption in respond to an energetic demand is associated with an adaptation to fatty acids 

as a substrate for oxidation. As such, the absence of glucose through glycolysis as an energy fuel 

rather than its accumulation and a shift towards increased lipid oxidation might be the driving 

force in Schwann cell metabolic adaptation to hyperglycemia and subsequently to neuronal 

changes in diabetes. 

5.3 High glucose induces a metabolic switch towards fatty acid oxidation in Schwann cells 

This study showed a metabolic switch from glycolysis towards fatty acid oxidation in Schwann 

cells under high glucose condition. Diabetes is associated with altered lipid levels in the 

circulation and neurons. Especially the altered fatty acid metabolism in Schwann cells is linked 

to neuropathy (Freeman et al., 2016, Viader et al., 2013). This can be explained by the fact that 

Schwann cells have a very active lipid metabolism and share many molecular features with 

adipocytes (Verheijen et al., 2003). As observed in adipocytes, Schwann cells transport long 

fatty acid via carnitine palmitoyl-transferase 1 (CPT1) from extra cellular space into the 

cytoplasm. Increased CPT1 expression been shown in cultured Schwann cells in response to long 

chain fatty acid treatment  (Hinder et al., 2014).  In rodents, high fat diet activates lipogeneses 

and induces accumulation of oxidized lipids in peripheral nerves, indicating a prediabetic 

condition (Obrosova et al., 2007). Disrupted lipid metabolism is also observed in peripheral 

nerves of streptozotocin induced (STZ) diabetic mice, including reduced short-chain triglycerols 

(Freeman et al., 2016). A study in a mouse model of Schwann cell mitochondrial defects to 

peripheral neuropathy also linked mitochondrial dysfunction with altered lipid cell metabolism 
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leading to neuron degeneration and subsequently neuropathy (Viader et al., 2013). In this study 

mitochondrial dysfunction in Schwann cells induced a metabolic switch away from lipid 

synthesis towards lipid oxidation. Viader et al., showed that increased lipid oxidation in 

Schwann cells leads to the depletion of myelin lipids and increased -oxidation and a 

subsequent substrate overload of Acetyl-CoA which are then converted in to acyl carnitines. 

Once released, the acetyl carnitines are detrimental to the nearby neurons, leading to 

neurodegeneration (Viader et al., 2013). Interestingly, increased lipid peroxidation and DNA 

oxidation was already observed in sciatic nerves of 1-2 weeks old STZ diabetic rats prior the 

development of many functional and structural defects and remained constant over many 

months (Cunha et al., 2008).  Exposure of human Schwann cells to high glucose condition 

reduced the production of phospholipids that was restored by aldose reductase inhibitor, 

suggesting that hyperglycemia dysregulates Schwann cell lipid metabolism via the polyol 

pathway (Kuruvilla and Eichberg, 1998). These findings suggest that Schwann cells play an active 

role in DN rather than passive insulators for axons. Schwann cells are critical sensors of axonal 

activity, and play an important role in the axon energy supply. The disruption of this important 

crosstalk between Schwann cell and neuron due to increased -oxidation in Schwann cells in 

response to hyperglycemia might underlie DN.  

The limitation of this study concerning -oxidation is that only indirect evidence of increased -

oxidation in Schwann cells in response to long term high glucose levels was observed. This study 

showed increased protein phosphorylation of acetyl citrate lyase and acetyl-CoA carboxylase, 

together with increased gene expression of carnitine palmitoyltransferase 1, indicating an 

increased flux towards -oxidation when Schwann cells are cultured under high glucose 

condition. Metabolome analysis using LC-MS/MS has to be performed to determine which 

metabolites of the FAO pathway is affected by high glucose. Moreover, Schwann cells have long 

been known to provide trophic support for axons (Varon and Bunge, 1978), and study in mutant 

mice that lack Schwann cells showed a developmental loss of PNS neurons/axons (Birchmeier et 

al., 2009). Furthermore, the interaction between Schwann cells and neurons needs to 

considered, as such cross-talk may play an important role in potential diabetes induced changes. 

As such it cannot be excluded that the changes are observed in this study are not truly reflecting 
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the in vivo situation. Therefore, the results obtained in current study should be verified in 

Schwann cell and neuron co-culture system as described (Hyung et al., 2015; Wiese et al., 2010). 

To determine the effect of Schwann cell dependent acyl carnitine accumulation, medium of 

Schwann cells isolated from Sciatic nerves of 3 month and 6 months STZ diabetic mice (model 

T1DM) and ob/ob mice (model T2DM) cultured for 48 hrs in appropriated medium should be 

analyzed for acetyl carnitine concentrations (described by Viader et al., 2013). Preliminary data 

showed a trend towards increased acetyl carnitine release, especially C18, release in media of 3 

months STZ diabetic mice (Table 6), which was not observed in 6 months STZ diabetic mice (n=3) 

(Table 7), suggesting that increased acyl carnitine release upon aberrant lipid metabolism in 

Schwann cells might play an important role in the early onset of experimental DN. In addition, 

acyl carnitine concentrations and the metabolic intermediates of the glycolysis pathway and the 

fatty acid oxidation pathway in the sciatic nerves of experimental diabetes models should be 

determined to verify whether the metabolic effect observed in vitro are reflected in vivo.  

Dyslipidemia is a significant contributor to the development of DN. Although lipid lowering 

drugs are effective in reducing morbidity and mortality from diabetic cardiovascular events, the 

extent of their effect in relation to neuropathy is not fully understood. The Fremantle Diabetes 

study in patients with T2DM using statins and fibrates as a means of lipid lowering, showed that 

treatment with fenofibrate reduced the appearance of neuropathy determined by the Michigan 

Neuropathy Scoring Instrument (Davis et al., 2008). The Field Study Fenofibrate and Event-

Lowering in Diabetes in patients reported lower rate of non- traumatic amputations in patients 

with T2DM treated with fenobrate as compared to placebo (Rajamani et al., 2009). The possible 

explanation of the positive effect of fenobrate was found in obese db/db mice, where 

finofibrate activates the PPAR-AMPK-PGC1 pathway, which is part of the cellular antioxidant 

system, in the sciatic nerve, thereby improving the neuronal function in these animals (Cho et 

al., 2014). However, other studies have reported no effect of lipid lowering treatment on DN 

(Emad et al.,  2018), or in contrast, showed that lipid lowering drugs, such as fibrates and 

statins, negatively affects DN (Corrao et al., 2004; Phan et al., 1995; Vilholm et al., 2014; 

Weimer, 2003). West et al showed that the prevalence of peripheral neuropathy following drug 

consumptions was 4–14 times higher among patients using statins (West, 2011). In the current 
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study, fatty acid synthesis was shown to be decreased, whilst -oxidation was increased in 

Schwann cells upon high glucose treatment. Reducing fatty acid concentrations further by lipid 

lowering drugs may therefore disturb this balance even further, leading to Schwann cells 

metabolic dysfunction and subsequently to axon demyelination and neuropathy. For example, it 

has been shown that statin reduced remyelination in the CNS (Miron et al., 2009).  

*p=0.05 

 
Table 7. Acyl carnitines measurement in 6 months STZ diabetic mice  
       

 6mWT 6mSTZ   
Type Acylcarnitine Mean (umol/l) SD Mean (umol/l) SD Fold Change (%) p-value 

C0 3,116 0,697 2,606 0,573 -16 0,242 

C2 3,608 0,563 3,268 0,364 -9 0,290 

C4 0,096 0,045 0,117 0,028 22 0,399 

C5 0,078 0,033 0,083 0,033 6 0,825 

C6 0,040 0,024 0,026 0,026 -35 0,400 

C8 0,025 0,029 0,007 0,006 -73 0,204 

C10 0,052 0,005 0,059 0,032 13 0,651 

C12 0,038 0,024 0,032 0,010 -17 0,603 

C14 0,025 0,016 0,018 0,013 -26 0,511 

C16 0,040 0,027 0,030 0,015 -23 0,527 

C18 0,067 0,019 0,045 0,014 -32 0,077 

 

  

Table 6. Acyl carnitines measurement in 3 months STZ diabetic 
mice   

       

 3mWT 3mSTZ   
Type Acylcarnitine Mean (mol/l) SD Mean (mol/l) SD Fold Change (%) p-value 

C0 2,029 0,224 2,982 0,679 47 0,082 

C2 7,042 0,385 8,755 0,749 24 0,024 * 

C4 0,139 0,059 0,173 0,048 25 0,482 

C5 1,905 0,165 4,429 1,732 133 0,066 

C6 0,041 0,007 0,041 0,020 0 0.999 

C8 0,030 0,007 0,004 0,007 -86 0,013* 

C10 0,015 0,010 0,013 0,006 -14 0.768 

C12 0,032 0,022 0,041 0,013 27 0,575 

C14 0,017 0,016 0,011 0,010 -38 0,588 

C16 0,053 0,032 0,047 0,033 36 0,818 

C18 0,011 0,005 0,079 0,048 640 0,072 
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5.4 The metabolic switch depends on the nitric oxide pathway 

In this study, it was shown that after 6 days of high glucose treatment, there was increased iNOS 

activity and NO protein expression together with and reduced maximal respiration. Moreover, 

using the soluble nitric oxide donor, DetaNONOate, had little impacted on basal mitochondrial 

function but reduced mitochondrial respiratory capacity and spare respiratory capacity in 

Schwann cells cultured under normal glucose conditions, confirming the link that nitric oxide 

reduces mitochondrial maximal respiration. This is consistent with the findings of Dranka et al., 

which showed that treatment with DetaNONOate reduced maximal respiration in bovine aortic 

endothelial cells in dose-dependent manner, which was reversed upon NO donor removal 

(Dranka et al., 2010).  

NO or other derived RNS can affect mitochondrial function under physiological and pathological 

conditions. NO reacts with heme moieties and thus can reversibly reduce activity of iron-

containing enzymes such as cytochrome c oxidase (complex IV of the ETC), thereby inhibiting 

mitochondrial maximal respiration and spare respiratory capacity (Lacza et al., 2009). Primary 

cultures of astrocytes activated to express iNOS by interferon- and endotoxin revealed NO 

production up to 1 M, and this endogenous NO reduced mitochondrial respiration by the 

inhibition of  cytochrome c oxidase , which was reversed upon inhibition of NOS  or removing 

NO by oxyhemoglobin (Brown et al., 1995). This is supported by another study where the 

addition of NO donors to neuroblastoma rapidly reduced mitochondrial respiration, whereas 

NOS inhibitors had the opposite effect, suggesting a constitutive inhibition of cytochrome c 

oxidase by NO within the cells (Sarti et al., 2003).  

NO also interacts strongly with superoxide anion, which is generated and released from the ETC 

complex I and III, to form peroxynitrite. iNOS is a key regulator in peroxynitrite induced injury to 

peripheral nerve, and functional and structural changes of diabetic neuropathy. It has been 

reported that nitrosative stress in Schwann cells and axons, rather than in dorsal ganglion root 

ganglion, underlies the development and progression of DN (Vareniuk et al., 2008). 

Peroxynitrite can have diverse effects on mitochondrial function, including protein S-

nitrosylation. Nitrosylation of critical thiols by NO has been described as important in the 
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control of the activity of certain enzymes such as glyceraldehyde-3-phosphate dehydrogenase, 

caspases, and transglutaminase (Melino et al., 1997; Mohr et al., 1996), or proteins involved in 

intracellular signal transduction, such as the ryanodine receptor. In the current study, increased 

s-nitrosylation of mitochondrial protein was found to occur under high glucose conditions. 

Further studies, involving proteomic are required to identify which mitochondrial proteins are 

modified by S-nitrosylation and in turn how the modified protein(s) are affecting mitochondrial 

function.  

This study showed in Schwann cells that both nitric oxide pathway and fatty acid oxidation is 

upregulated in response to high glucose. It is therefore postulated that NO is involved in the 

metabolic switch towards FAO in Schwann cells. There is accumulating evidence to suggest that 

NO affects lipid metabolism in diabetes. Binding of Ca2+ to the pore of Cav1.1., as well as the 

activation of CAMKK11 and NOS, is required for normal mitochondrial -oxidation (Georgiou et 

al., 2015). Douilias et al. showed that NO regulates mitochondrial fatty acid metabolism through 

reversible protein S-nitrosylation across 6 different mouse tissues (Doulias et al., 2013).  iNOS, in 

particular, has been implicated in S-nitrosylation in peripheral nerve and not in ganglion root, 

and STZ-induced diabetic iNOS-/- mice are partially protected against nerve damage as 

compared to the wild type mice (Vareniuk et al., 2008). It has been shown that iNOS expression 

is increased in human Schwann cell cultured for 24 hrs in high glucose medium (30mM) versus 

control (5mM), whereas inhibition of 4-hydroxyl-nononal, a product of lipid peroxidation, 

reversed iNOS expression back to the concentration observed in the control (Obrosova et al., 

2005). A study on nitrosative stress and DN showed elevated 12/15 lipogenase expression and 

activation in the sciatic nerve of STZ diabetic and high fat diet-fed mice, as well as in human 

Schwann cells cultured under high glucose condition. Inhibition of 12/15 lipogenase in the 

sciatic nerve reduced nitrated protein and and large and small fiber dysfunction, indication a 

role of 12/15 lipoxygenase in nitrosative stress (Stavniichuk et al., 2010).  The association 

between nitric oxide and lipid metabolism was confirmed by the observation of defective 

mitochondrial -oxidation by elevated intracellular lipid levels in cardiomyocytes of eNOS -/- 

mice (Le Gouill et al., 2007). Moreover, it was shown that NO regulates -oxidation via 

reversible protein S-nitrosylation. Proteins of glucose metabolism and TCA cycle as well as very 
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long acyl-CoA dehydrogenase (VLCAD), which catalysis the first step of -oxidation have been 

found to be S-nitrosylated  in wild type mouse livers and absent in  the livers of eNOS-/- mice 

(Doulias et al., 2013). Another study has reported that nitrate enhanced mice skeletal muscle -

oxidation and reduced long chain fatty acids levels in a dose-respond manner (Ashmore et al., 

2015), supporting the theory that NO affects mitochondrial -oxidation.  

The findings in the current study of increased NOS together increased nitrosylation of 

mitochondrial proteins indicates that either NO or peroxynitrite is transferred into to the 

mitochondria or NO is produced within the mitochondria. Since classical iNOS inhibitors L-NAME 

and 1400W did not reverse the increase in NO, it can be concluded that upregulation of NO 

might be due mitochondrial NOS (mtNOS).  This was supported by the finding that the 

antioxidant N-acetylcysteine (NAC), which can directly scavenge free radicals, did reduce O2●- 

levels in high glucose culture Schwann cells back to normal levels, whereas the NO levels 

remained unaffected. This study is in agreement with other studies that showed NO production 

and NOS activity in the mitochondria, which was not attenuated by classical NOS inhibitors, such 

as W1400 and L-NAME, and were unable identify mtNOS as one of the three classic NOS 

isoforms (Tatoyan et al., 1998; Lacza et al., 2003). Mitochondrial NO is produced via the 

mitochondrial nitric oxide synthase (mtNOS), which is located in the inner membrane or 

mitochondrial matrix (Ghafourifar and Cadenas, 2005; Tatoyan et al., 1998). mtNOS is a Ca2+ 

dependent voltage-dependent enzyme whose generation of NO is regulated by mitochondrial 

membrane potential and which in turn regulates the activity of the ETC. Although the 

mitochondrial NOS levels are low, mitochondrial NO production might be underestimated due 

to the fast elimination of NO by cytochrome oxidase (Pearce et al., 2002).  Several studies have 

reported that mtNOS generates peroxynitrite which leads to a reduction in the activity of 

cytochrome c oxidase (complex IV) and a reduced maximal mitochondrial respiration of the cells  

and eventually apoptosis (Cadenas et al., 2001; Ghafourifar et al., 1999). In contrast, S-

nitrosylation of caspase-3, which inhibits the apoptotic effect of the protein, indicates an anti-

apoptotic role for mtNOS in protecting cells from unwanted apoptosis and organelles from 

proteolytic activity of the caspase. These findings indicate a crucial role of mitochondria derived 

NO in the regulation of cell signaling. It has been shown that eNOS is attached to the outer 
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mitochondrial membrane in sensory neurons and endothelial cells (Gao et al., 2004; Henrich et 

al., 2002), indicating that mtNOS might be a cellular NOS enzyme and that mitochondria might 

regulate NOS activity and, conversely, that eNOS might regulate mitochondrial function (Lacza 

et al., 2009). Although the existence of a genuine mtNOS seems to be ambiguous, mitochondrial 

derived NO and RNS could play an important role on cellular function and the pathophysiology 

of diabetes and its complications. 

5.5. Increased mitochondrial bioenergetics in PBMCs of T2DM 

In this study the effect of diabetes on mitochondrial metabolism in PBMCs of patients with 

T2DM was also determined. A trend towards increased glycolysis and increased glycolytic 

capacity and mitochondrial respiration together with increased ROS production in PBMCs of 

T2DM was observed, as compared to non-diabetic controls.  This is in accordance with previous 

findings in PBMCs of  patients with T2DM. It has been shown in PBMCs of patient with T2DM 

that the mitochondrial oxygen consumption was increased, consistent with higher production of 

ROS (Hartman et al., 2014). Widlansky et al. reported decreased mitochondrial mass, increased 

mitochondrial hyperpolarization, as well as increased H2O2 and O2●- in PBMCs of patients with 

T2DM (Widlansky et al., 2010). Increased levels of ROS have also been reported in lymphocytes 

of diabetic patients with severe nephropathy, however the type of diabetes was not specified 

(Nam et a., 2008). These findings support the unifying theory, where an increase in glycolytic 

flux leads to increased mitochondrial respiration and ROS formation.  

Several studies reported that reduced glycolytic capacity is associated with apoptosis, whereas 

increased glycolytic capacity is associated with cellular reprograming and differentiation (Chung 

et al., 2011, Folmes et al., 2010). Therefore, the increased glycolytic capacity observed in PBMCs 

of T2DM observed in this study might indicate cellular reprograming of the immune cells in 

order to cope with hyperglycemic conditions. However, the direct effect of diabetes on 

glycolysis in PBMCs has not been extensively studied. Increased levels of fructose 2,6-

bisphosphate, as a measurement for glycolysis, has been shown in monocytes of diabetic 

patients and was  associated with immune dysfunction in T2DM (Atsumi et al., 2007; Shaheena 

et al., 2012), indicating that glycolysis is upregulated in PBMCs of T2DM patients. Interestingly, 
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differential mitochondrial bioenergetics has been shown in monocytes, lymphocytes, 

neutrophils and platelets (Kramer et al., 2013; Pelletier et al., 2014).  

The find of such studies, to some extent, provide the clinical evidence that diabetes can be 

characterized by increased oxidative stress. However, this phenotype is not necessary 

associated with alterations in mitochondrial function; a positive association between 

mitochondrial function and ROS production would have been expected as the major source of 

ROS. Furthermore, whilst the blood provides the easiest and most readily accessible source of 

patient material, it is often overlooked that it is an organ in itself and that alterations detected 

within the blood may not necessary reflect the biochemical and/or molecular situation which is 

occurring within the tissue. This is particularly relevant in diabetes, as it is a disease which can 

affect multiple organs and the complications relevant for mortality and morbidity affect 

parenchymal organs. Future studies would therefore involve the functional analysis of 

mitochondria in the blood versus the tissue(s).  

5.6 Conclusion and future directions 

This study revealed a cell specific response towards high glucose, showing the importance of 

tissue-specific changes in cellular energy metabolism in diabetic complications-prone tissues. 

Interestingly, high glucose induced a metabolic switch from glycolysis towards lipid oxidation in 

Schwann cells, implying an important role of mitochondrial lipid metabolism in Schwann cells in 

response to hyperglycemia. In addition, increased NO levels together with proteins S-

nitrosylation might be an important inducer of this metabolic switch. Metabolomic analysis 

should clarify which proteins are S-nitrosylated in Schwann cells under high glucose conditions 

and how these alterations are associated with the metabolic switch. Future study would focus on 

the effect of enhanced Schwann cell lipid oxidation in vivo. Furthermore, in vitro, the interaction 

between Schwann cells and neurons would be studied. These lines of inquiry would increase our 

knowledge about cell specific alterations in mitochondrial metabolism in diabetes and its effect 

interactions between different cell types. Within the context of DN, understanding such 

interactions would lead to a better understanding of the pathophyiology of the disease and in 

doing so allow for the development of new theraupetic targets. 
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6 Summary  

Diabetic neuropathy (DN) is a prevalent, complex and debilitating chronic complication of 

diabetes mellitus. The main clinical treatment is the tight control of blood glucose levels. 

However, there is accumulating evidence that this does not reduce the incidence and the 

progression of DN, suggesting that other pathways are involved. Aberrant Schwann cells 

metabolism, characterized by a shift from fatty acid synthesis towards fatty acid oxidation, may 

play an important role in neuronal dysfunction and subsequently neuropathy.  

In this study the effect of high glucose condition on the downstream mitochondrial metabolism 

in different cell types was investigated. This study revealed a cell type specific increase in 

glucose uptake, mitochondrial properties and reactive metabolites in response to high glucose. 

Collectively, this data supports the emerging idea of tissue-specific alterations in energy 

metabolism in diabetic complications-prone tissues, such as the peripheral nerves. Hence, this 

data shows the importance to investigate the tissue- and cell-specific effect and interactions in 

response to hyperglycemia in diabetes. 

Focusing on the effect of hyperglycemia in diabetic neuropathy, the research was continued in 

Schwann cells and fibroblasts. Markers of the unifying theory including sorbitol, PCK activity and 

methylglyoxal were mainly unaffected in both fibroblast and Schwann cells in response to high 

glucose, as compared to low glucose cultured cells. Moreover according to unifying theory, 

hyperglycemia induces an increased glucose flux through glycolysis leading to increased 

mitochondrial bioenergetics and subsequently to increased ROS formation causing cellular 

damage and the development of diabetic complications. However, under long term 

hyperglycemia the glycolytic capacity and the mitochondrial spare respiratory capacity was 

reduced in both cell lines, indicating that the capacity of the cells to respond to an energetic 

demand was diminished when cultured for 6 days under high glucose condition. The reduced 

glycolytic and respiratory capacity was not reflected in the ATP production and reactive 

metabolite production. Interestingly, the non-glycolytic acidification was increased in Schwann 

cells indicating an alternative energy source for the mitochondria to produce ATP and/or 

reactive metabolites.  
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Another important energy source for mitochondria is the oxidation of fatty acids. This study 

showed a metabolic switch from glycolysis towards increased fatty acid oxidation in Schwann 

cells in response to high glucose. In addition, increased dependency on the medium chain fatty 

acid octanoate in high glucose cultured Schwann cells was observed, confirming the importance 

of fatty acid metabolism in Schwann cells. Moreover, an increase in nitric oxide synthesis, nitric 

oxide production, and protein S-nitrosylation was observed in the Schwann cells cultured under 

chronic high glucose conditions. Upon stimulation with the nitric oxide inducer DetaNONOate 

the mitochondrial maximal respiration and spare respiratory capacity of Schwann cells was 

reduced as observed upon hyperglycemia. Previous studies have shown that nitric oxide and S-

nitrosylation can induce a shift from fatty acids towards lipid oxidation, leading to an 

accumulation of fatty -oxidation in intermediates, such as acetyl carintines. Once released it 

leads to neuron degeneration and neuron demyelination and subsequently to neuropathy. 

Future experiments are required to confirm this hyperglycemia induced nitric oxide synthesis 

and lipid oxidation alterations and interaction in Schwann cells. 

This study indirectly confirms the importance of lipid metabolism in Schwann cell in response to 

hyperglycemia and that nitric oxide synthesis and protein S-nitrosylation may play an important 

role in the mitochondrial metabolic switch from glycolysis toward fatty acid oxidation. Future 

study should concentrate on 1) which proteins are S-nitrosylated in response to hyperglycemia 

in Schwann cells and how this is associated with altered mitochondrial Schwann cell 

metabolism, including decreased glycolysis and increased lipid oxidation, 2) the effect of 

increased lipid oxidation in Schwann cells on neuronal function and 3) how these metabolic 

changes in Schwann cell upon diabetes affect the nearby neurons. Increasing our knowledge 

about cell specific alterations in mitochondrial metabolism in diabetes will lead to a better 

understanding of the pathophysiology of diabetic neuropathy and the development of new 

therapeutic targets. 
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7. Zusammenfassung 

Die diabetische Neuropathie (DN) ist eine weit verbreitete, komplexe und schwächende 

chronische Komplikation des Diabetes mellitus. Die wichtigste klinische Behandlung ist die 

strenge Kontrolle des Blutzuckerspiegels. Es gibt jedoch zunehmend Hinweise, dass dies die 

Ausbildung und das Fortschreiten von DN nicht verringern, und andere Mechanismen beteiligt 

sein müssen. Veränderungen im Stoffwechsel von Schwann Zellen, gekennzeichnet durch eine 

Verschiebung von der Fettsäure-Synthese zur Fettsäureoxidation, könnten eine wichtige Rolle 

bei neuronaler Dysfunktion und Neuropathie spielen. 

In dieser Studie wurde der Einfluss von Hyperglykämie auf den mitochondrialen Metabolismus 

in verschiedenen Zelltypen untersucht. Als Reaktion auf hohe Glukosewerte zeigten sich ein 

zelltypspezifischen Anstieg der Glukoseaufnahme, veränderte mitochondriale Eigenschaften und 

Akkumulation von reaktiven Metaboliten. Diese Daten unterstützen die Idee von spezifischen 

Veränderungen des Energiestoffwechsels in diabetischen, komplikationsanfälligen Geweben, 

wie den peripheren Nerven. Daher zeigen diese Daten, wie wichtig es ist, den gewebs- und 

zellspezifischen Effekt und die Interaktionen bei Hyperglykämie in Diabetes zu untersuchen.  

Mit dem Fokus auf der Auswirkung von Hyperglykämie auf diabetische Neuropathie wurde die 

Forschung in Schwann-Zellen und Fibroblasten fortgesetzt. Marker der „Unifying Theory“, wie 

Sorbitol, PCK-Aktivität und Methylglyoxal, waren sowohl in Fibroblasten- als auch in Schwann-

Zellen als Reaktion auf hohe Glucose unverändert. Darüber hinaus postuliert die „Unifying 

Theory“ bei Hyperglykämie einen erhöhten Glukosefluss durch Glykolyse, was zu einer erhöhten 

mitochondrialen Bioenergetik und zu einer erhöhten ROS-Bildung führt. Diese verursachen 

Zellschäden und die Entwicklung diabetischer Komplikationen. Unter Langzeit-Hyperglykämie, 

bei 6-tägiger Kultivierung mit hoher Glukose, waren jedoch die glykolytische Kapazität und die 

mitochondriale Reserve-Atemkapazität in beiden Zelllinien reduziert. Dies weist auf eine 

verringerte Reaktionsfähigkeit der Zellen, auf einen erhöhten Energiebedarf, hin. Die reduzierte 

glykolytische und respiratorische Kapazität spiegelte sich nicht in der ATP-Produktion und der 

Produktion reaktiven Metabolite wider. Interessanterweise war die nicht-glykolytische 
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Ansäuerung in Schwann-Zellen erhöht, was auf eine alternative Energiequelle für die Produktion 

von ATP und / oder reaktive Metaboliten durch die Mitochondrien hinweist. 

Eine weitere wichtige Energiequelle für Mitochondrien ist die Oxidation von Fettsäuren. Diese 

Studie zeigte einen metabolischen Wechsel von der Glykolyse zu einer erhöhten 

Fettsäureoxidation in Schwann-Zellen als Reaktion auf hohe Glukose. Zusätzlich wurde eine 

erhöhte Abhängigkeit von Octanoate, einer Fettsäuren mittlerer Kettenlänge, in Hoch-Glucose-

kultivierten Schwann-Zellen beobachtet, was die Wichtigkeit des Fettsäuremetabolismus in 

Schwann-Zellen bestätigt. Darüber hinaus wurde eine Zunahme der Stickstoffoxid-Synthese und 

-Produktion und der Protein-S-Nitrosylierung in diesen Schwann-Zellen beobachtet. 

Stimulierung mit dem Stickoxidinduktor DetaNONOate reduzierte die maximale Atmung und die 

Reserve-Atemkapazität der Mitochondrien in Schwann-Zellen, wie bei Hyperglykämie 

beobachtet. Frühere Studien haben gezeigt, dass Stickoxid und S-Nitrosylierung eine 

Verschiebung von der Fettsäure- zur Lipidoxidation induzieren können, was zu einer Anhäufung 

von fettigen -Oxidation in Zwischenprodukten, wie Acetylkartinin, führt. Bei Freisetzung führt 

es zu neuronaler Degeneration und Demyelinisierung und anschließend zu Neuropathie. 

Weitere Experimente sind erforderlich, um diese Änderungen bei der Stickoxidsynthese und 

Lipidoxidation und ihre Wechselwirkungen in Schwann-Zellen zu bestätigen. 

Diese Studie bestätigt indirekt die Bedeutung des Lipidstoffwechsels in hyperglykämischen 

Schwann-Zelle und die mögliche Rolle von Stickstoffoxidsynthese und die Protein-S-

Nitrosylierung beim metabolischen Wechsel von der Glykolyse zur Fettsäureoxidation, in 

Mitochondrien. Zukünftige Studien sollten sich auf folgende Fragen konzentrieren: 1) Welche 

Proteine werden in hyperglykämischen Schwann-Zellen S-nitrosyliert und wie korreliert dies mit 

dem veränderten mitochondrialen Metabolismus, einschließlich verminderter Glykolyse und 

erhöhter Lipidoxidation? 2) Wie wirkt sich die erhöhte Lipidoxidation in Schwann Zellen auf ihre 

neuronale Funktion aus? 3) Wie beeinflussen die metabolischen Veränderungen in der 

Schwann-Zelle die benachbarten Neuronen? Die Erweiterung unseres Wissens über 

zellspezifische Veränderungen des mitochondrialen Metabolismus bei Diabetes wird zu einem 

besseren Verständnis der Pathophysiologie der diabetischen Neuropathie und der Entwicklung 

neuer therapeutischer Ziele führen. 
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9. Appendix  

 

Supplemental figure 19. XF96 Bioanalyzer protocol.  

The program set-up for XF96 Bioanalyzer for both the Glycolsis assay and the MitoStress test. The time of the “Mix” 

and “Measure” steps can be adjusted as desired. It is important to keep the “measure” steps 2-3min, since 2 

minutes is the minimal time required to generate a rate.  

 

 

Supplemental figure 20. XF96 Bioanalyzer plate layout for PBMCs.    

Plate layout for simultaneous measurement of Mitochondrial stress test and the glycolytic stress tested. First and 

last column were filled with only media and used for blank correction. The first four rows (A-D) were used for the 

mitochondral stress test. The last four rows (E-F) were used for the glycolyctic stress test. Mitochondrial stress test 

and glycolytic stress test was performed in octuplicates per subject.  



Publications 

90 
 

10 Publications 

Manuscript in preparation 

Volk, N., Smit, T.T.A.,  Kliemank, E., Gröner, J.B., Eckstein, V., Fleming, T.H., Nawroth, P.P. 

(2018). Mitochondrial function in white blood cells: protocol for isolation and measurement of 

mitochondrial properties, glycolysis and mitochondrial respiration.  

Conference procedings 

Smit, T.T.A, Fleming, T.H., Nawroth P.P. (2017). Metabolic shift from glycolysis towards lipid 

peroxidation in Schwann cells in response to hyperglycemia. 4th Heidelberg International 

Symposium on Diabetic Complications. 

Smit, T.T.A, Fleming, T.H., Nawroth P.P. (2017). Metabolic shift from glycolysis towards lipid 

peroxidation in Schwann cells in response to hyperglycemia. EASD 53-p980. 

Smit, T.T.A, Fleming, T.H., Nawroth P.P. (2016). Metabolic shift from Glycolysis towards lipid 

peroxidation in Schwann cells in response to hyperglycemia. 3rd Heidelberg International 

Symposium on Diabetic Complications. 

Smit, T.T.A, Fleming, T.H., Nawroth P.P. (2015). The Importance of Enzymatic Regulation of 
Methylglyoxal Metabolism in Diabetic Neuropathy. 2nd Heidelberg International Symposium on 
Diabetic Complications. 
 

 

 

 



Curricullum Vitae 

91 
 

11 Curriculum Vitae  

Personal information  

Name:    Tamara Tjitske Antje Smit  

Address:   Blumenthalstraße 7,  

69120 Heidelberg 

Telephone:   +49 (0)176 81480736  

E-mail:   tta.smit@gmail.com  

Date of birth:   07-05-1988  

Place of birth:  Achtkarspelen  

Nationality:   Dutch  

Education  

12/2014 - 06/2018 University of Heidelberg, Germany. 

SFB 1118, DIAMICOM (associate member) 

• Doctoral degree  

Internal Medicine and Clinical Chemistry, Prof. Dr. P.P. Nawroth:  

Metabolic switch from glycolysis towards fatty acid oxidation in Schwann 

cells in response to high glucose. 

09/2011 - 03/2014 University of Groningen, the Netherlands. 

Faculty of Biology, Master Biomedical Sciences, P-variant, degree 

• Master of Science 

Clinical Pharmacology, Prof. Dr. R.H. Henning and Dr L.E. Deelman. Master 

essay: Mitochondrial dysfunction in diabetes mellitus: pathophysiology 

and therapeutic opportunities. 

Medical Biology (CAVAREM), Dr. G. Krenning.  Colloquium: Epigenetic 

disbalance of GLUT4 in diabetic cardiovascular complications.  

08/2007 - 12/2011  University of Groningen, the Netherlands. 

Faculty of Biology, Bachelor Biomedical Sciences, degree 



Curricullum Vitae 

92 
 

• Bachelor of Science  

Neurobiology, Prof. Dr. H.W.G.M. Boddeke. Bachelor essay: Microglia: the 

physiology and its role in the aging brain.  

08/2000-07/2007 Dockinga College, the Netherlands. 

VWO, Nature and Health (Natuur en Gezondheid), degree. 

• VWO 

Work experience  

09-12/2013   University Medical Centre Groningen, the Netherlands.  

• Clinical Pharmacology, Prof Dr. R.H. Henning, in collaboration with 

pharmaceutical company Sulfateq (Groningen).  

Student assistant; determining the effect of several potential anti-

apoptotic drugs on mitochondrial respiration using mitochondrial 

respiration assay of Seahorse Bioscience and cell culturing.  

04/2011-06/2011  University Medical Centre Groningen, the Netherlands.  

• UMCG and University of Groningen.  

Student assistant for the course Biomedical Sciences. 

Internships  

03/2012-04/2013  University of Mannheim, Germany. 

• Endocrinology and diabetology, Prof. Dr. H.P. Hammes. Research 

project: Signaling transduction pathways involved in progressive 

diabetic retinopathy.  

05/2011-07/2011  University Medical Centre Groningen, the Netherlands.  

• Clinical pharmacology, Prof Dr. R.H. Henning and Dr H.R. Bouma. 

Research project: Adenosine receptors play an important role in 

leukocytendynamics during suspended animation in mice.



Acknowledgement 

93 
 

12 Acknowledgement  

I am indebted to all of the people who helped and supported me to accomplish this thesis. 

I would like to thank Prof. Dr. Peter P. Nawroth for giving me the opportunity to work in his 

laboratory and for his valuable comments during preparation of the thesis. I would like to thank 

my supervisor Dr. Thomas H. Fleming for fruitful discussions, advice and support. 

I would like to thank all the collaborators, who helped with this work. Thanks to Dr. J. G. Okun of 

the Kinderklinik to measure acyl carnitines. Thanks to Dr. Nadine Volk for measuring the 

reactive metabolites in PBMCs.  

A big thank you goes to all the current and former colleagues of the department of AG 

Nawroth/Fleming, AG Nawroth/Mendler and AG Nawroth/Tyedmers. I would like to thank Ita 

Hernandez for the organizing lab trips and social activities. Elisabeth Kliemank, Anja Buhl, Serap 

Kaymak and Katarina Abramovic for their technical support, helping me to learn the German 

language and Axel Erhardt for his effort in the animal facility. 

Thanks also to Brigitte Löser and Mirjam Knöll for their organizational work allowing the 

scientist to focus on their research. 

A big thank you goes to my friends and family for their support and above all the acceptation 

that I was working and living in another country and sometimes had little time for them. In 

particular I like to thank my parents and my brother, without whom this work would not have 

been possible, because they have always believed in me and supported me during my doctoral 

study with infinite patience and loving care. They sended me sometimes Dutch magazines and 

Dutch specialities, including cheese and liquorice, so I would not miss home. My nephews for 

their beautiful drawings and post cards. My grandmother for her loving support, telling me to 

study hard, but also to have fun and follow my dreams. 

The biology buddies; Rianne, Hilda and Thea for their friendship and understanding life as a PhD 

student. It feels like yesterday when we met 11 years ago during the first year of our Biology 

study at the University of Groningen. Although we lived in different countries, we tried to meet 



Acknowledgement 

94 
 

when possible, having nice weekend trips, lovely dinners, interesting discussions and always 

understanding eachother when research does not go as planned. Sjoerd and Hilda, I will never 

forget that you guys cycled from Groningen to Heidelberg to visit me. 

 



Eidesstattliche Versicherung 

95 
 

13 Eidesstattliche Versicherung  

1. Bei der eingereichten Dissertation zu dem Thema „Metabolic switch from glycolysis towards 

fatty acid oxidation in Schwann cells in response to high glucose“ handelt es sich um meine 

eigenständig erbrachte Leistung.  

2. Ich habe nur die angegebenen Quellen und Hilfsmittel benutzt und mich keiner unzulässigen 

Hilfe Dritter bedient. Insbesondere habe ich wörtlich oder sinngemäß aus anderen Werken 

übernommene Inhalte als solche kenntlich gemacht.  

3. Die Arbeit oder Teile davon habe ich bislang nicht an einer Hochschule des In- oder Auslands 

als Bestandteil einer Prüfungs- oder Qualifikationsleistung vorgelegt.  

4. Die Richtigkeit der vorstehenden Erklärung bestätige ich.  

5. Die Bedeutung der eidesstattlichen Versicherung und die strafrechtlichen Folgen einer 

unrichtigen oder unvollständigen eidesstattlichen Versicherung sind mir bekannt. Ich versichere 

an Eides statt, dass ich nach bestem Wissen die reine Wahrheit erklärt und nichts verschwiegen 

habe. 

 

 

 

 

 

---------------------------------------     --------------------------------------- 

Ort und Datum         Unterschrif

 


