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SUMMARY 

The AP-1 family member JUNB is a context dependent transcriptional regulator implicated in 

essential cellular processes, such as proliferation, differentiation and inflammation. JUNB has 

furthermore been described to function both as tumor suppressor and as oncogene, largely 

dependent on the tumor entity. JUNB loss of function is predominantly observed in leukemia, 

for example in chronic myeloid leukemia as well as acute myeloid leukemia. In contrast, JUNB 

is frequently overexpressed in solid tumors, such as breast and colon cancer, but also in a 

multitude of lymphomas. Functionally, JUNB has been associated with invasion and 

metastasis. Yet, the majority of data linking JUNB to disease progression have been obtained 

either in in vitro experiments or are based on correlational studies. All studies assessing the 

contribution of JUNB to metastasis have focused on JUNB expression in the tumor cells 

themselves. JUNB is, however, an essential regulator in a vast plethora of cells of the tumor 

microenvironment. Such being the case, JUNB is crucial for the development and homeostasis 

of the blood vascular system and has also been implicated in the formation of the lymphatic 

system. Moreover, JUNB controls the differentiation of T helper cells and is required for the 

activation of macrophages. Thus, the aim of this dissertation was to elucidate the functional 

consequences of JUNB loss in the stroma on metastasis in vivo in mice. For this purpose, 

elaborate spontaneous metastasis assays involving primary tumor resections were performed 

using conditional Junb knockout mice and syngeneic cell lines.  

In line with previous findings of the group, primary tumor growth was unaffected by stromal 

deletion of Junb. Strikingly though, stromal JUNB loss facilitated distant metastasis to the lungs 

in a breast cancer model developing spontaneous metastasis. Yet, tumor cell extravasation 

and metastatic colonization were not influenced by Junb ablation, implying that JUNB controls 

the initial steps of the metastatic cascade. In order to mechanistically decipher the contribution 

of stromal JUNB to metastasis, various cellular compartments were analyzed for JUNB-

dependent changes. Despite its essential role in vascular biology, no defects in the blood and 

lymphatic vascular system could be determined in Junb knockout mice. Similarly, fibroblast 

density was unaltered upon ablation of stromal Junb. Remarkably, a prominent accumulation 

of immune cells, in particular of neutrophils, was found upon JUNB loss in primary breast 

tumors and even more strikingly in pre-metastatic lungs. Concomitantly, neutrophil recruiting 

factors, such as Tnfα and Il-1β, were upregulated upon JUNB loss. Bone marrow 

transplantation experiments further pointed towards neutrophil recruitment being mediated by 

deletion of Junb in the stroma rather than a neutrophil-intrinsic mechanism. In an attempt to 

directly link neutrophil accumulation to enhanced metastasis, neutrophils were ablated 

pharmacologically using an anti-LY6G antibody. Yet, depletion efficiency was too low to 

establish direct functional proof. The experiment did, however, clearly confirm the initial data 

that JUNB loss in the stroma promotes breast cancer metastasis. In conclusion, the data of 

this dissertation provide the first functional evidence that deletion of stromal Junb indeed 

facilitates metastatic spread possibly by the formation of a pre-metastatic niche. Since JUNB 

is a target of Mitogen-activated protein kinase (MAPK) signaling, these findings are especially 

important with regard to the development of novel targeted approaches for cancer therapy. 

Unless cancer cells can be targeted specifically, strategies resulting in JUNB loss in the 

microenvironment should be avoided.  
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ZUSAMMENFASSUNG 

JUNB, Mitglied der AP-1 Transkriptionsfaktor-Familie, ist ein kontextabhängiger 

transkriptionaler Regulator, der eine wichtige Rolle in diversen zellulären Prozessen, wie 

Proliferation, Differenzierung and Inflammation spielt. Abhängig von der Krebsart, kann JUNB 

als Tumorsuppressor oder als Onkogen agieren. Der Verlust von JUNB wird hauptsächlich in 

Leukämie, wie z.B. in chronischer myeloischer und akuter myeloischer Leukämie, beobachtet. 

Im Gegensatz dazu findet man JUNB in soliden Krebsarten, z.B. in der Brust oder im Darm, 

aber auch in Lymphomen, häufig überexprimiert. Funktionelle Studien haben JUNB zwar mit 

Invasion and Metastasierung in Verbindung gebracht, dennoch basiert der Großteil dieser 

Daten auf in vitro Experimenten bzw. stellt lediglich eine Korrelation von JUNB zum schnellen 

Fortschreiten des Krebses her. So haben alle Studien, welche den Zusammenhang von JUNB 

und Metastasierung untersucht haben, den Fokus auf JUNB in den Tumorzellen selbst gelegt. 

JUNB stellt jedoch einen essentiellen Regulator in einer Vielzahl von Zellen aus der Tumor-

Mikroumgebung dar. So wurde JUNB eine essentielle Rolle in der Entwicklung und 

Homöostase des Blutgefäßsystems aber auch eine Beteiligung an der Ausbildung des 

lymphatischen Systems zugeschrieben. Des Weiteren reguliert JUNB die Differenzierung von 

T Helfer Zellen und wird für zur Aktivierung von Makrophagen benötigt. Das Ziel dieser 

Dissertation war es daher, die Rolle von JUNB in der Metastasierung in vivo in der Maus zu 

untersuchen. Zu diesem Zweck wurden aufwendige spontane Metastasierungsmodelle nach 

chirurgischer Entfernung des Primärtumors mit konditionalen Junb Knockout Mäusen und 

syngenen Zelllinien angewendet.  

In Übereinstimmung mit früheren Ergebnissen der Arbeitsgruppe war das Wachstum des 

Primärtumors unabhängig von stromalem JUNB. Bemerkenswerterweise förderte die Deletion 

von Junb im Stroma aber die Metastasierung in der Lunge in einem Brustkrebsmodell, welches 

spontan metastasiert. Tumorzellextravasation und metastatische Kolonisierung waren nicht 

vom Junb Verlust beeinflusst. Dies deutet darauf hin, dass JUNB möglicherweise die initialen 

Schritte der metastatischen Kaskade kontrolliert. Um den Beitrag von stromalem JUNB zur 

Regulation der Metastasierung aufzuklären, wurden im Anschluss verschiedene Zelltypen 

hinsichtlich JUNB-abhängiger Veränderungen untersucht. Trotz essentieller Funktionen von 

JUNB in der Vaskulatur konnten nach Junb Deletion keine Defekte des Blut- bzw. 

Lymphgefäßsystems festgestellt werden. Ebenso war die Dichte von Fibroblasten 

unverändert. Interessanterweise waren jedoch Immunzellen, insbesondere Neutrophile, im 

primären Brusttumor aber noch auffälliger in prä-metastatischen Lungen von Junb Knockout 

Mäusen akkumuliert. Gleichzeitig waren Neutrophil-rekrutierende Faktoren, wie Tnfα und Il-1β 

hochreguliert. Experimente mit Knochenmarkstransplantationen deuteten außerdem an, dass 

diese Infiltration von Neutrophilen durch den Verlust von Junb im Stroma vermittelt wird, nicht 

aber durch einen Neutrophil-intrinsischen Effekt. Um die Akkumulation von Neutrophilen direkt 

mit der erhöhten Metastasierung in Verbindung zu setzen, wurden Neutrophile anschließend 

mit Hilfe eines gegen LY6G gerichteten Antikörpers pharmakologisch depletiert. Da die 

Effizienz dieser Neutrophil Depletion jedoch zu gering war, konnte keine direkte Assoziation 

hergestellt werden. Das Depletionsexperiment bestätigte allerdings eindeutig die initialen 

Ergebnisse, dass der Verlust von JUNB im Stroma die Metastasierung von Brustkrebs 

begünstigt. Schlussfolgernd stellen die Daten aus dieser Dissertation den ersten direkten und 

funktionellen Beweis dar, dass die Deletion von stromalem Junb die Metastasierung 

begünstigt. Vermutlich wird dieser Effekt durch die Ausbildung einer prä-metastatischen 

Nische vermittelt. Da JUNB ein nachgeschaltetes Ziel des Mitogen-aktivierten Proteinkinase 
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(MAPK) Signalwegs ist, sind diese Ergebnisse mit Hinblick auf die Neuentwicklung 

zielgerichteter Therapieansätze zur Behandlung von Krebs besonders wichtig. Sofern 

Tumorzellen nicht spezifisch attackiert werden können, sind zielgerichtete Therapien, die 

einen JUNB Verlust in der Tumormikroumgebung nach sich ziehen, unbedingt zu vermeiden.  
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3 INTRODUCTION 

1. INTRODUCTION 

1.1. Metastasis 

In 2018, about 17 million people were diagnosed with cancer around the world and this disease 

resulted in 9.6 million cases in mortality [1, 2]. Horrifyingly, this means that cancer is 

responsible for 1 out of 6 deaths globally making it the second leading cause of death [2]. The 

majority of people do not die due to primary tumor formation, though, but from metastasis. 

Metastasis, the spread of tumor cells from the primary tumor to a distant organ site, is a very 

inefficient process with estimates of less than 0.02% of disseminated tumor cells (DTCs) being 

able to successfully establish a distant lesion [3]. Despite this inefficiency, metastasis remains 

clinically most relevant urging the need to better investigate this deadly disease 

mechanistically. With the help of new elaborate preclinical models formerly unaddressed steps 

in the metastatic cascade can be explored in order to reveal novel drug targets or therapeutic 

windows.  

1.1.1. The metastatic cascade 

Initially, the primary tumor is confined and restricted from spread by the surrounding 

microenvironment and extracellular matrix (Figure 1-1). Upon progression, cancer cells acquire 

the capability of detaching from the primary tumor mass and of invading into the surrounding 

tissue either as individual cells or collectively as a cluster [4, 5]. Depending on the 

microenvironment, individual cells migrate either in an elongated or rounded manner [4, 6]. 

Invasion is facilitated by degradation of extracellular matrix (ECM) which is achieved by 

overexpression of matrix metalloproteinases (MMPs) in tumor cells [7-9]. Besides degradation 

also further alterations to the ECM, such as thickening or linearization of collagen fibers, can 

promote cancer cell invasion by acting as tracks for cancer cells [10].  

After invasion into the stroma, further dissemination of cancer cells can occur via the 

hematogenous or lymphatic route. Tumor cells are directed towards blood endothelial or 

lymphatic vessels by chemotactic signals. It has been shown that tumor cells can migrate 

towards gradients of epidermal growth factor (EGF) [11] or colony-stimulating factor 1 (CSF-1) 

expressed by endothelial cells or macrophages in immediate vicinity [12]. Tumor cell entering 

into the lymphatic system was long believed to be by chance due to the fenestrated 

morphology and absence of pericytes around the initial lymphatics which render them highly 

permeable [13]. Lymphatic endothelial cells do, however, just as blood endothelial cells, 

constitutively express chemokines. Of special note are thereby the CCR7 ligands CCL19 and 

CCL21 [14]. They typically mediate lymphocyte migration into the lymph nodes but have also 

been found to guide CCR7-expressing tumor cells to lymphatic vessels [14, 15].  

Upon contact with a blood vessel, cancer cells invade directly through the vessel wall by a 

process called transendothelial migration and enter the circulation. These circulating tumor 

cells (CTCs) are extremely rare with estimates of only one CTC in 1 billion normal blood cells 

even in patients with metastatic tumors [16]. In the bloodstream, CTCs are exposed to a foreign 

and hostile microenvironment. To withstand hemodynamic forces and shear stress CTCs show 

a surprising plasticity in terms of stiffness and shape of plasma membrane and nuclear 

envelope, most probably also aiding their traverse of constraining capillary beds [17]. 
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Figure 1-1: Schematic representation of the metastatic cascade.  

A portion of cancer cells acquires invasive properties, escapes from the locally confined primary tumor and invades 

the tumor microenvironment. Upon contact with blood or lymphatic vessels, cancer cells intravasate and are 

distributed to a distant organ via the hematogenous or the lymphatic route. At a distant site, cancer cells extravasate, 

invade the local surrounding and eventually grow out to form metastases.  
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To survive in circulation, CTCs furthermore have to become resistant to anoikis, a form of cell 

death initiated upon loss of attachment to neighboring cells or the ECM [18]. It has been shown 

that this resistance can be conferred by inducing epithelial to mesenchymal transition [19], by 

signals from co-travelling stromal cells [20] or by Wnt signaling [21]. Survival can also be 

facilitated if CTCs travel in clusters and therefore retain their intercellular contacts [22]. 

Traversing through the bloodstream in clusters may have an additional benefit: protecting from 

assault by immune cells [23, 24]. CTCs furthermore interact with platelets and use them as a 

“shield” to escape from lysis by NK cells [25]. Nevertheless, also individual CTCs have a 

plethora of mechanisms to evade the immune system, such as downregulation of major 

histocompatibility complex (MHC) class I to hide from cytotoxic T-cells [26] or upregulation of 

cytokeratins to interfere with the recognition of MHC class I by the T cell receptor complex [27]. 

CTCs have furthermore been demonstrated to express PD-L1 (Programmed death-ligand 1) 

resulting in T cell inhibition [28, 29], or CD47 providing an anti-phagocytic signal to myeloid 

cells [30, 31].  

Extravasation, the egress of CTCs out of the circulation, has long been believed to occur when 

CTCs are mechanically retained in the first capillary bed they encounter due to size limitations 

[32]. It is now evident though, that extravasation is much more complex but the exact 

mechanisms are still unclear. Cancer extravasation does, however, resemble leukocyte 

diapedesis under inflammatory conditions leading to the hypothesis that cancer cells may rely 

on similar mechanisms when exiting the vasculature [33]. The exact initial step leading to 

cancer cell arrest in the vasculature is still under debate as both passive trapping in small 

capillaries [34-36] and active adhesion to the endothelium in larger vessels have been 

observed [36-38]. The reports that cancer cells preferentially adhere to certain tissue-specific 

endothelia [37, 39, 40] does, however, point towards a more regulated mechanism than mere 

entrapment. Before firm arrest, leukocytes interact with the endothelium via selectins and start 

“rolling” along the vessel wall. Whether cancer cell “rolling” is crucial for attachment is 

controversial but it has been observed and reported to involve selectins [41-44]. In order to 

establish a stable interaction with the endothelium, cancer cells express different integrins, 

such as α4β1 [45-47] or αvβ3 [48], or CD44 [49] to bind to various cell adhesion molecules 

(CAMs) on the endothelial surface thereby stimulating transendothelial migration.  

Even after successful extravasation, cancer cells are confronted with new challenges at the 

distant organ site, whereby the majority of cells fail to establish macroscopic tumors. These 

cells predominantly enter a state of dormancy or are eliminated from the tissue altogether [50]. 

The persistence of dormant cells may also explain why recurrences can be observed so long 

after primary tumor removal or therapy [51]. When the cell has productively engaged with the 

surrounding matrix and stromal compartment, it can ultimately proliferate and colonize the 

distant organ site forming micrometastasis and eventually overt macroscopic metastasis [52].  

1.1.2. Factors influencing metastasis – “seed versus soil” 

The origin of metastasis initiating cells (MICs) has been highly disputed since Stephen Paget’s 

theory of “seed and soil” in 1889 [53]. Therein, he proposes that metastatic spread is not purely 

directed by blood flow, which had been the prevalent concept at that time [54], but that the 

microenvironment of the metastasis-receiving organ (“soil”) is of pivotal importance and has to 

be susceptible for “seeding” [53]. The proclamation of James Ewing in 1922 that metastatic 

patterns can be solely explained by blood flow has further fueled the discussion [55]. These 

opposing publications have led to two different schools of thought advocating to focus on either 
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intrinsic properties of the tumor cells (“seed”) or on changes in the microenvironment of the 

recipient organ (“soil”) when investigating metastasis.  

1.1.2.1. Tumor-intrinsic properties facilitating metastasis 

Several mechanisms have been proposed with regard to tumor-intrinsic properties being 

required for the cell’s capability to initiate metastasis. Cues for the development of these MICs 

can either reside within the tumor cell itself or are produced by the microenvironment. MICs 

have been suggested to arise by (I) epithelial to mesenchymal transition (EMT) [56], (II) by 

accumulation of mutations in tissue-resident stem cells [57], (III) by selection for driver 

mutations during tumor progression [58] or (IV) by epigenetic regulation [59, 60]. Undergoing 

EMT, tumor cells lose their epithelial characteristics, such as cell polarity and adherens 

junctions [56]. Concomitantly, cells express mesenchymal markers, such as fibronectin, 

vimentin and N-cadherin, and obtain a more spindle-shaped morphology [56]. Besides EMT, 

it has also been reasoned that tissue stem cells could give rise to MICs due to an accumulation 

of mutations [57]. Having stem cell characteristics is, however, not a sure indication for 

metastasis, therefore this theory does not explain the origin of MICs in all tumor types [57]. 

Furthermore, Reiter and colleagues identified that different metastases within individual 

patients shared the same driver mutations suggesting a selection for driver mutations of 

metastasis during tumor progression [58]. Over the past years, it has, however, become 

increasingly clear that metastasis cannot be explained only by the presence of genetic 

mutations. Analysis of mutational load revealed an unexpectedly high variation within cancer 

types [61]. Thereby, melanoma, the most rapidly metastasizing skin cancer [62], showed the 

highest mutational frequency [61], confirming the notion that genetic alteration is facilitating 

metastatic spread. Contrarily, rhabdoid tumors [63] as well as medulloblastoma [64] 

metastasize at high frequency despite their generally low somatic mutational burden [61]. 

Aberrant DNA methylation patterns, such as hypermethylation in tumor suppressor genes [65] 

and, albeit less studied, hypomethylation of oncogenes [66, 67], have already been associated 

with tumor onset and progression. Whether epigenetic regulation also specifically influences 

metastatic dissemination was non-evidenced, though, until distinct changes in methylation 

patterns in key metastatic genes were found. DNA methylation-induced silencing of E-cadherin 

was thereby associated with reduced overall survival and increased metastasis [59] and was 

correlated with enhanced cell motility [60]. Overall, it seems, however, very probable, that all 

these suggested factors do not contribute to the formation of MICs individually but rather act 

in a complex interplay, which is potentially further dependent on the tumor entity or 

environmental factors.  

1.1.2.2. Changes in the microenvironment influencing metastasis – the pre-metastatic niche 

According to the alternative school of thought, investigations were focused on changes in the 

target organs of metastasis (“soil”). Multiple reports stated that the target organs are not just 

passive hosts but are actively modulated by the primary tumor in order to be more permissive 

for metastatic colonization [68]. The microenvironment of the target organ is remodeled even 

prior to arrival of any tumor cell leading to the concept of the formation of the “pre-metastatic 

niche” [68-70]. The pre-metastatic niche is actively prepared by tumor-derived factors and 

extracellular vesicles and involves induction of angiogenesis, remodeling of the ECM, 

metabolic reprogramming and attraction of immune cells [71].  
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One of the earliest events in shaping the pre-metastatic niche is the induction of vascular 

permeability by the secretion of vascular endothelial growth factor A (VEGF-A) thereby 

promoting influx of immune cells and extravasation of CTCs [70, 72]. Later on, VEGF-A is 

required for angiogenesis at the metastatic site [73], thus, enabling macrometastatic outgrowth 

[74, 75]. Apart from the blood vasculature also the lymphatic system is impacted by tumor-

secreted factors, such as VEGF-A/C/D [69, 76] and hepatocyte growth factor (HGF) [77]. 

Multiple reports have linked lymphangiogenesis and lymph node lymphangiogenesis to 

sentinel lymph node metastasis but also to distant metastasis [76, 78-80]. This may at least 

partially be mediated by increasing lymph flow thereby enhancing the chances for tumor cells 

to disseminate but also propagating the distribution of tumor-secreted factors [81]. Besides 

vascular changes also the remodeling of ECM components is important for metastatic 

colonization. Remodeling can be induced by tumor-secreted factors, both enzymatic and non-

enzymatic, such as MMPs, and by reprogramming local fibroblasts to, for example, produce 

fibronectin [69]. In addition, the ECM, especially collagen, can be modified by lysyl oxidase 

(LOX), an enzyme that is secreted by tumor cells upon hypoxia and catalyzes crosslinking of 

collagens and elastins [82, 83]. Supporting the notion that ECM components are important for 

metastatic colonization, Aguago et al. implanted scaffolds into tumor-bearing mice and showed 

enhanced colonization if these scaffolds had been coated with collagen IV or fibronectin [84]. 

Changes in vasculature and ECM in the pre-metastatic niche have been described extensively 

whereas the contribution of metabolic changes is just at the onset of being explored. 

Disseminated tumor cells face multiple challenges when arriving at the metastatic site: 

structural and cellular components differ but also the availability of nutrients, requiring a certain 

plasticity of the cancer cell. Metabolic reprogramming, thus, supports the tumor cells in their 

new environment [85]. As one example, the microRNA miR-122, derived from tumor 

exosomes, promoted metastasis by locally suppressing glucose uptake [86]. Besides these 

effects on local components of the future metastatic sites, tumor-derived factors also stimulate 

recruitment of bone-marrow derived cells and immune cells. In a pioneering study, Kaplan et 

al. demonstrated the attraction of VEGFR1+ bone marrow-derived cells (BMDC) to pre-

metastatic lungs thereby enhancing local permeability and facilitating extravasation and 

colonization [69]. Several groups showed the recruitment of myeloid cells, such as 

macrophages [87, 88], monocytes [88, 89] and neutrophils [88, 90, 91] to pre-metastatic lungs, 

thus, fostering metastasis. Several investigations have, however, also found suppression of 

metastatic dissemination as a consequence of immune cell accumulation in the pre-metastatic 

niche. So, did the infiltration of neutrophils inhibit seeding in a murine breast cancer model 

[92]. These contradictory results as well as the fact that not only tumor-secreted factors but 

also factors deposited by the surrounding stroma can impact the-pre-metastatic niche, have 

made the subject extremely complex. For an overview, further important mediators are listed 

in Table 1-1. 
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Table 1-1: Mediators of the pre-metastatic niche. 

Factor Induced change in pre-metastatic niche Reference 

VEGF-A VEGFR1+ BMDC recruitment to pre-metastatic 

lung, enhancing local permeability, promoting 

metastasis 

[69] 

Placental growth factor 

(PLGF) 

VEGFR1+ BMDC recruitment to pre-metastatic 

lung, upregulation of fibronectin in resident 

fibroblasts, promoting metastasis 

[69] 

Macrophage migration 

inhibitory factor (MIF) 

Secretion of TGFβ and fibronectin, recruitment of 

F4/80+ macrophages and Gr1+ myeloid cells 

[88] 

TGFβ, Tumor necrosis 

factor α (TNFα), VEGF-A 

Induction of S100A8/S100A9, recruitment of Mac+ 

myeloid cells 

[93] 

S100A8/S100A9 Recruitment of Mac1+ myeloid cells, enhanced 

migrational activity of cancer cells; induction of 

serum amyloid A (SAA) 3, increase in metastasis 

[89, 93] 

VEGFR1 signaling (through 

VEGF-A and PLGF) 

MMP9 induction in resident macrophages and 

endothelial cells, increase in metastasis 

[87] 

Granulocyte colony 

stimulating factor (G-CSF) 

mobilization of Ly6G+Ly6C+ granulocytes and 

7/4+ neutrophils, increase in metastasis 

[91, 94] 

Granulocyte colony 

stimulating factor (G-CSF) 

Increased neutrophil infiltration and expression of 

Bv8, S100A8, S100A9 and MMP9, enhanced 

metastasis 

[95] 

Granulocyte colony 

stimulating factor (G-CSF) 

Neutrophil infiltration and arachidonate 5-

lipoxygenase (Alox5) expression, promoting 

metastasis 

[96] 

Tissue inhibitor of 

metalloproteinases (TIMP-

1) 

Increase in stromal derived factor 1 (SDF1) levels, 

increase in susceptibility of liver metastasis 

[90] 

Osteopontin Recruitment of BMDCs and promotion of 

colonization and outgrowth 

[97] 

Interleukin-11, Osteopontin, 

CXCR4, MMP1, TGFβ 

Angiogenesis and osteolysis, increase in bone 

metastasis 

[98] 

SDF1 Direction of CXCR4+ tumor cells to target organs [99] 

MMPs ECM degradation and remodeling, vascular 

remodeling 

[69, 72, 100, 

101] 

miR-122 Metabolic reprogramming, promotes metastasis [86] 

LOX Enhanced invasion [82] 

1.1.3. Organ tropism of metastasis 

As already established above, metastatic spread is not random, but is in fact influenced by 

tumor-intrinsic factors as well as signals coming from the microenvironment. Originally, it was, 
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however, thought that metastatic patterns are solely determined by the anatomic location of 

the primary tumor and dissemination thereafter occurs passively by flow of blood and lymph 

fluid [55]. This would mean that DTCs preferentially home to the organ whose microcapillary 

bed they encounter first. This is indeed observed in prostate cancer, which preferentially 

metastasizes to one organ, namely bone, in particular pelvis and spine [40, 102, 103]. The fact 

that in colorectal cancer sequential organ metastasis via liver to lung is observed [104, 105] 

and that in breast and prostate cancer actually percentagewise more bone metastases are 

detected than can be exclusively deduced from flow characteristics indicates that more factors 

than pure entrapment impact the distribution of metastasis [106]. As already stated in section 

1.1.1 (The metastatic cascade), organ-specific endothelia can influence tumor spread. 

Vascular beds can consist of continuous non-fenestrated endothelium, like in skin or lung, 

continuous fenestrated endothelium, such as in endocrine glands, or discontinuous sinusoidal 

endothelium, for example in the liver, spleen and bone marrow [107]. It may therefore seem 

logical that extravasation is facilitated when the vasculature is lined by a permeable 

discontinuous endothelium rather than a tightly sealed blood brain barrier, but this does not 

explain why different tumor types have different preferences. In addition to a distinct endothelial 

morphology, also the expression of adhesion molecules may play a role why certain organs 

are more affected than others. In line with the observed preferential bone metastasis, prostate 

cancer cells adhered more efficiently to endothelial cells derived from bone marrow than lung 

[104, 108]. These favored interactions of tumor cells to the endothelium were mediated by 

several differentially expressed adhesion molecules, such as various integrins [109], E-selectin 

[110, 111], L-selectin [112] and ICAM-1 [113]. Distinct integrins have, for example, been shown 

to direct cancer cells to respective organs by establishing a favorable pre-metastatic niche. 

Packaging of α6β4 integrin into tumor-shedded exosomes guided cancer cells to the lung, 

whereas integrin αvβ5 targeted them towards the liver [114].  

It is thereby conceivable that metastatic patterns are not exclusively influenced by either flow, 

favorable endothelial adhesion or a permissive pre-metastatic niche but most likely all actions 

combined. As recently highlighted in a publication by Follain et al. melanoma and breast cancer 

metastasis are determined by particular flow patterns but also by active remodeling of the 

endothelial cells at the target site [115]. As a summary, observed organ tropisms are listed for 

various cancer types in Table 1-2.  

Table 1-2: Organ tropism of metastasis. 

Cancer type Metastasis Reference 

Lung cancer Brain, bone, adrenal glands, lymph nodes, 

lung 

[102, 106, 116] 

Breast cancer Lymph node, lung, bone, liver, brain [102, 106, 117] 

Prostate cancer Bone, lymph node [40, 102] 

Colorectal cancer Liver, lung, lymph nodes [104, 105] 

Melanoma Lymph nodes, skin, brain, lung, small 

intestine 

[102, 118] 

Pancreatic cancer Liver, lymph nodes, peritoneum, liver [102] 
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1.2. Breast cancer and breast cancer metastasis 

1.2.1. Molecular subtypes of breast cancer – determinants of metastasis 

Investigations of metastasis frequently make use of models of breast cancer due to the broad 

availability of patient material and preclinical models. Breast cancer is the most frequent cancer 

in women and responsible for 15% of cancer-related deaths in women [2]. Accumulating 

evidence did, however, show that breast cancer is not a single disease but rather consists of 

several distinct pathological entities arising in the breast. It has furthermore become 

increasingly clear that these pathological entities exhibit profoundly different biological 

characteristics as well as prognosis and also differ in their response towards therapy. It is 

therefore crucial to accurately group these breast cancers into different subtypes in order to 

apply the optimal treatment regimen. According to histological examination, breast cancer is 

divided into invasive carcinoma of no special type (NST, formerly invasive ductal carcinoma 

(IDC)) and invasive lobular carcinoma (ILC) [119]. Yet, more important for treatment decisions 

and prediction of prognosis is the classification according to molecular characteristics [120]. 

Assessment of hormone receptor status, as examined by immunohistochemistry, and 

clinicopathological features such as tumor size, stage and nodal involvement, were used to 

categorize breast cancer in the conventional classification system. With the availability of 

microarrays and gene expression profiling this conventional classification has been further 

refined and discovered biomarkers have been incorporated into the system. Based on gene 

expression analysis, at least 4 distinct subtypes have been proposed for breast cancer: 

Luminal A, Luminal B, HER2-overexpression and basal breast cancer [121-123]. A majority of 

triple negative breast cancers (TNBC) fall into the category of basal breast cancers [124]. Due 

to the limited availability of gene expression analyses to physicians, the classical 

immunohistochemical markers, such as progesterone receptor (PR), estrogen receptor (ER) 

and human epidermal growth factor receptor 2 (HER2) in addition to the determination of the 

proliferative index as measured by Ki67 staining, have been adopted to the refined subtypes 

[123]. Several research groups have identified different gene signatures for molecular 

classification of breast cancer leading to inconsistencies in the number of subtypes and 

proposed further subdivision [122, 125, 126]. Moreover, classical immunohistochemical 

marker expression could not be adequately assigned to all proposed subtypes. In an attempt 

to resolve confusion, the American Joint Committee on Cancer (AJCC) has revised the existing 

classification system in its 8th edition in 2018 and added prognostic stage groups [121]. Given 

the topicality, most published studies to date have, however, relied on existing breast cancer 

classifications, which are therefore also used herein and are summarized for clarity in the table 

below (Table 1-3).  
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Table 1-3: Classification of breast cancer subtypes. 

Breast cancer subtype IHC markers Preferential 

metastatic sites 

Reference 

Luminal A ER+ and/or PR+; HER2-; Ki67- Bone,  [127, 128] 

Luminal B ER+ and/or PR+; HER2+/-; 

Ki67- 

Bone [127, 128] 

HER2-overexpression ER-; PR-; HER2+, Ki67+ Bone, brain, liver [127, 128] 

Basal ER-; PR-; HER2-, basal 

markers+ (Keratins); Ki67+ 

Lung, lymph node [127-131] 

As already established in section 1.1.3 (Organ tropism of metastasis), breast cancer 

preferentially metastasizes to the bone, followed by liver, brain, lymph nodes and lung [132]. 

These routes of metastasis have been commonly studied and the monitoring of lymph nodes 

for diagnosis and tumor staging has entered clinical routine. Accumulating evidence shows 

that individual subtypes do not only determine clinical outcome and prognosis but also have 

differential patterns of metastasis. In a large comparative study, ILCs were found to 

predominantly metastasize to peritoneum, gastrointestinal tract and ovaries [133]. In contrast, 

in patients with IDC, metastases to lung/pleura, distant lymph nodes and brain were more 

common [133]. A recent epidemiological study concluded that all breast cancers are 

susceptible to bone metastases but other target organs presented with subtype-specific 

preferences [128]. HER2-overexpressing tumors were more likely to develop brain and liver 

metastasis compared to the luminal subtypes whereas basal breast cancers tended to have 

lung and lymph node metastasis [128, 131].  

1.2.2. Breast cancer subtypes – implications in therapy 

Despite generally declining numbers in breast cancer deaths over the last decades, mortality 

continues to be high especially for advanced stages [134]. But even if women present with 

early-stage disease at diagnosis, almost 30% will eventually develop distant metastasis 

indicating that the effectiveness of current breast cancer therapies is still insufficient [135]. The 

standard of care for breast cancer currently involves chemotherapy, radiation, surgery, 

hormonal therapy as well as immunotherapy but also more targeted approaches relying on 

monoclonal antibodies and small molecule inhibitors [136]. The primary choice of therapy and 

survival thereby depend on tumor stage at diagnosis, age and level of fitness, but also on the 

molecular subtype of breast cancer [137]. A population-based analysis of data extracted from 

the Ontario Cancer Registry concluded that patients with Luminal A breast cancer have the 

greatest survival whereas patients with TNBC do worst [138]. It is quite similar with therapeutic 

options: patients with hormone-receptor positive (HR+) subtypes can benefit from multiple 

targeted therapies whereas options for TNBC patients are still limited to date. For hormone 

receptor-positive breast cancer the mainstay of therapy is endocrine therapy downregulating 

hormone levels or blocking hormone-induced signalling. These therapeutics generally include 

selective estrogen receptor modulators (SERMs), selective estrogen receptor downregulators 

(SERDs) and aromatase inhibitors (AIs) which are usually administered sequentially [139, 140] 

but also combination therapy has been suggested [141]. HER2-targeting therapies are the 

standard regimen of care for HER2-overexpression breast cancers. First line of treatment 
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thereby consists of neoadjuvant therapy with chemotherapy and/or HER2-targeting therapy 

followed by surgery, persistent anti-HER2 therapy and radiotherapy [139, 140]. As already 

mentioned, TNBC is the most aggressive breast cancer subtype and prognosis is generally 

poor. This might at least partially be due to the limited treatment options as molecular targets 

are yet to be defined. Chemotherapy usually involving taxanes, anthracycline or platinum-

based drugs partially in combination with anti-angiogenic therapy (anti-VEGF, bevacizumab) 

is the only FDA-approved treatment option so far [140, 142]. Due to the non-satisfactory results 

of this treatment regimen, several new strategies are currently in clinical testing. The discovery 

of a subtype of TNBC with BRCA1/2 mutations is the first promising step towards a targeted 

therapy suggesting the use of Poly(ADP-ribose) Polymerase Inhibitors (PARP) in combination 

with existing chemotherapy [143].  

Despite initial response to treatment, breast cancer patients often develop resistance, so that 

novel strategies are being exploited and new small molecule inhibitors have been developed. 

An approach successfully tested in the treatment of various solid tumors is immunotherapy, for 

example with PD-1 [144-146] and PD-L1 [147], which is currently tested on patients with TNBC 

[148]. Very promising results were also obtained with Cyclin Dependent Kinase 4 and 6 

Inhibitors for the treatment of hormone receptor positive breast cancer, but also inhibitors 

targeting Histone Deacetylase have entered clinical testing [140]. Moreover, targeting of signal 

transduction pathways and transcription factors is being explored. For the PI3K/AKT as well 

as mTOR pathway small molecule inhibitors have already been approved or are tested in 

clinical trials [140, 149]. Further potential targets identified in preclinical models include retinoid 

receptors, as their ligand retinoid acid was shown to interfere with breast cancer growth and 

invasiveness, and the transcription factor AP-1, which is able to induce cell transformation. 

Aberrant AP-1 activation results in sustained survival and enhanced motility [150]. Blocking of 

AP-1 inhibited proliferation and consequently growth of breast cancer in vitro [151, 152] and in 

vivo [153]. Approaches to target AP-1 include RNA interference [154], transcription factor 

decoys [154] and small molecule inhibitors [150, 155], which have partially advanced to clinical 

trials [155].  

Despite recent advances in breast cancer therapy, therapy resistance and late recurrence 

remain major challenges. The use of systemic chemotherapy as first line treatment for TNBC 

or as a “last option” in advanced stages furthermore poses a detrimental deterioration of quality 

of life for breast cancer patients. This urges the need for the identification of novel therapeutic 

targets but also the exploration and implementation of anti-metastatic therapies.  

1.3. JUNB/AP-1 – a context-dependent transcriptional regulator 

1.3.1. Structure, function, physiology and pathophysiology 

Activating Protein-1 (AP-1) is a family of transcription factors implicated in physiological as well 

as pathological conditions, such as proliferation [156-159], differentiation [156, 157] and 

inflammation [156, 157, 160, 161]. AP-1 members are comprised of homo- or heterodimers 

predominantly formed by JUN (JUNB, c-JUN, JUND) and FOS proteins (FOSB, FOS, FRA-1, 

FRA-2). In addition, also the Activating Transcription factor (ATF) proteins (ATF2, LRF1/ATF3, 

B-ATF, JDP1 and JDP2) can be components of AP-1. Members of the JUN family can 

assemble into homo- and heterodimers whereas FOS proteins need a JUN partner for DNA 

binding. Depending on the exact dimer composition, DNA binding occurs at so called TPA 
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responsive elements (TRE) with a consensus motif 5′-TGA(C/G)TCA-3′ or cyclic AMP 

responsive elements (CRE) (5′-TGACGTCA-3′) [162] but binding has also been demonstrated 

to sites deviating from the optimal sequence [162-164]. Structurally, DNA binding is mediated 

by the evolutionary conserved bZIP domain which can be further subdivided into two distinct 

parts: the basic region mediating DNA binding and the leucine-zipper required for dimerization 

of the two AP-1 members [165, 166] (Figure 1-2).  

AP-1 members are considered immediate early gene products which are rapidly induced upon 

extracellular stimulation by growth factors [167, 168], cytokines [169], stress signals [170], 

carcinogens [171] or tumor promoters such as 12-O-Tetradecanoylphorbol-13-acetate (TPA) 

[168, 172, 173]. Due to its vast involvement in a multitude of signaling pathways, AP-1 activity 

must be tightly controlled. Regulation is achieved at the level of gene expression of AP-1 

subunits, mRNA stability or posttranslationally for example by phosphorylation [165]. Gene 

expression of AP-1 targets is furthermore controlled by cooperative recruitment of additional 

transcription factors and coactivators to promoter regions. In this context, it has been shown 

that AP-1 can interact with CBP/p300 [174, 175], Smad proteins [176], NFAT [177] and Ets 

[178].  

 

Figure 1-2: Structure of the AP-1 dimer bound to DNA. 

The bZIP domain of the v- Jun homodimer in complex with DNA. Structure visualized with PyMOL based on PDB 

entry 2H7H.  

Gene knockout studies have established that the individual AP-1 members cannot compensate 

each other in some cases but are also partially redundant in others. With this approach it has 

been established that JUN [179, 180], JUNB [181], FRA-1 [182] and FRA-2 [183] are 

indispensable for embryonic development as mutants failed to survive until adulthood. 

Embryonic lethality of JUN-null mice could, however, be rescued by re-expression of JUNB 

thereby restoring liver and cardiac defects [184]. Tissue-specific deletion strategies further 

confirmed the notion that individual AP-1 members had distinct functions. JUN was shown to 

be important for liver and heart development [185], eye lid closure [186] and skin homeostasis 

[186, 187] as well as liver regeneration [188] whereas JUNB was found to be essential for 

placentation [181], neovascularization [181] and angiogenesis [189] as well as T helper cell 

differentiation [190, 191]. Genetic ablation of FOS revealed its strong necessity in bone 

development [192] and physiology of the central nervous system [193]. At the cellular level, 
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AP-1 members have been implicated in proliferation, differentiation and survival, where they 

can exert both stimulatory as well as inhibitory functions [165]. As best exemplified in 

proliferation, AP-1 is able to both promote and inhibit cellular growths by regulating gene 

expression of components of the cell cycle control system, such as cyclin A [159], cyclin D1 

[194], cyclin E [195], p16INK [196], p21Cip1 [184] and p53 [184]. 

1.3.2. AP-1 in oncology 

Originally, JUN [197, 198] and FOS [199] had been identified as cellular homologues of the 

retroviral v-Jun and v-Fos which act as oncoproteins inducing aberrations in cell cycle control. 

This hinted the notion that AP-1 could not only have functions in physiology but also be 

involved in pathophysiology and neoplastic transformation. Early studies demonstrated that 

overexpression of AP-1 components could lead to cell immortalization and tumor formation as 

FOS-expressing transgenic mice ultimately developed bone tumors [200-202]. FOS was 

furthermore shown to be essential for the progression of skin tumors in a TPA-induced skin 

cancer model [203]. For JUN proteins, the picture was a little more complex. Despite initial 

reports showing that epidermal expression of a dominant negative JUN mutant lead to a 

substantial reduction in papilloma induction in a two-step skin carcinogenesis mouse model 

[204], deletion of JUN in keratinocytes could not confirm JUN to be absolutely required for skin 

tumourigenesis [186]. In a model of liver cancer, requirement of JUN was restricted to early 

stages whereas in later stages no effect of JUN deletion on tumor progression was found [205]. 

These studies highlight that the involvement of individual AP-1 members in oncogenesis is 

highly dependent on tumor type, stage and differentiation status.  

1.3.3. JUNB in cancer and metastasis 

In contrast to JUN, JUNB has traditionally been considered a tumor suppressor. Original 

publications attributed JUNB anti-tumoral activity due to the observed antagonistic effect on 

JUN-mediated growth and transformation [202, 206]. This notion is furthermore supported by 

the fact that JUNB is downregulated in the hematopoietic stem cell compartment of patients 

with acute myeloid leukemia [207] (Figure 1-3). Similarly, the JUNB promoter is silenced by 

hypermethylation and expression is consequently lost in patients suffering from chronic 

myeloid leukemia [208]. Moreover, inactivation of Junb in the myeloid compartment led to a 

transplantable myeloproliferative disease eventually progressing to blast crisis resembling 

human chronic myeloid leukemia [209]. In line with these findings, JUNB levels have been 

found to be lower in breast [210, 211] and prostate cancer [212, 213] compared to the 

surrounding normal tissue. Contrary results have, however, also been published, underscoring 

that the picture might be less clear than originally thought. Although ectopic expression of Junb 

did not result in an overt phenotype in mice [214], JUNB overexpression has been observed 

in a multitude of human cancers. It has been especially well studied in various lymphomas, 

such as Hodgkin’s lymphoma [215], anaplastic large cell lymphoma [216] and CD30+ diffuse 

large B-cell lymphoma [217] but has also been found in a wide variety of other cancers, for 

example in the colon [218], ovaries [219], breast [210], von Hippel-Lindau-deficient clear-cell 

renal-cell carcinoma (ccRCC) [220] and murine fibrosarcoma [221].  

Although levels of JUNB have been found to be deregulated in a multitude of cancer types, 

functional consequences have not been fully elucidated to date. In a screen of BRAF(V600E)-

mutated cell lines of malignant melanoma, JUNB emerged to confer resistance to Raf inhibitors  
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Figure 1-3: Functions of JUNB in physiology and oncology.  

JUNB positively regulates vascular as well as lymphatic development [227], vascular homeostasis [228] and 

vascular smooth muscle cell (VSMC) contractility and motility [229]. JUNB exerts a negative impact on gene 

expression, especially on inflammatory cytokines [230]. Moreover, JUNB also has a dual role in tumorigenesis. It 

can function as an oncogene, for example in renal cell carcinoma [220], breast cancer [210] and Hodgkin’s 

lymphoma [215]. In leukemia, such as chronic myeloid leukemia [208, 231], JUNB acts as tumor suppressor.  

[222]. In correlational studies, JUNB has been associated with oncogenesis and metastasis 

but findings have been partially contradictory. On one hand, JUNB levels were found 

significantly upregulated in specimens of prostate [213] and breast cancer [210, 211] 

compared to the surrounding normal tissue but on the other hand JUNB levels were negatively 

correlated to tumor stage [210]. In an earlier functional study, ectopic expression of JUNB led 
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to cell transformation in mild fibromatosis cells [221]. In line with the context-dependent 

expression patterns, the association of JUNB with invasiveness also seems to depend on the 

type of cancer. In ccRCC cell lines, diminished JUNB expression by short hairpin-mediated 

knockdown suppressed their invasiveness in vitro and resulted in slower tumor growth and 

reduced angiogenesis in vivo when xenotransplanted into nude mice [220]. Likewise, reduction 

of JUNB levels by siRNA-mediated knockdown decreased the potential of breast cancer cells 

to invade into a collagen matrix upon TGFβ stimulation [223]. Indicating a similar association 

of JUNB with invasive features, Junb levels were induced in mammary cells upon TGFβ-

induced EMT [224] as well as in IL6-driven invasion in uveal melanoma cells [225]. In contrast, 

mice were more prone to invasive cancer development when JUNB had been ablated in the 

prostate epithelium [213]. This enhanced progression was most likely the result of increased 

proliferation and reduced senescence due to attenuated levels of p16Ink4a and p21Cip1 [213]. 

Functional studies connecting JUNB to metastasis are limited so far. By genomic analyses 

Hyakusoku et al. initially identified JUNB as a key regulator of metastasis in head and neck 

squamous cell carcinoma (HNSCC) [226]. The authors showed that genetic deletion of JUNB 

by CRISPR-Cas9 in metastatic HNSCC cell lines limited metastasis to the lungs of nude mice 

in an experimental metastasis assay. Furthermore, cell invasion was reduced as shown in a 

matrigel invasion assay. All these studies have, however, largely focussed on JUNB 

expression in the tumor cells thereby neglecting a potential impact of the surrounding stroma. 

A previous investigation focussing on the contribution of stromal JUNB to primary tumor growth 

and tumor angiogenesis reported no differences between Junb knockout and control mice, 

though [232]. JUNB has, however, been shown to be essential in the blood [228, 229] and 

lymphatic vascular system [227], which are important players in the dissemination of metastatic 

cells. Moreover, JUNB was published to regulate T helper cell polarization [190, 191] and 

macrophage activation [233]. Whether these functions of stromal JUNB play a role in tumor 

progression and metastatic spread has, however, not been addressed so far.  

Taken together, these reports exemplify that JUNB is a highly context-dependent 

transcriptional regulator and its involvement in cancer and metastatic dissemination is by far 

not fully understood. Depending on the tissue, cell type and tumor stage JUNB has different 

roles both promoting as well as inhibiting tumor progression.  

1.4. Objective 

Assessment of primary tumor invasion and metastatic spread are clinically most relevant but 

mechanistically still insufficiently understood. Already several years ago, AP-1 transcription 

factors have been shown to be decisive components in the regulation of essential cellular 

processes, such as proliferation, differentiation and apoptosis. Imbalances in expression levels 

have been linked to pathophysiology and cellular transformation. The AP-1 member JUNB has 

thereby been shown to exert a dual role: it can act both as a tumor suppressor and as an 

oncogene, largely depending on the tumor type and stage. JUNB levels have been found 

deregulated in multiple cancer entities and JUNB has furthermore been linked to invasion and 

metastasis. To date, these links to invasion and metastasis are, however, largely based on in 

vitro experiments assessing matrix invasion in trans-well systems or on experimental 

metastasis assays in vivo. Consequently, these assays ignore the complexity of the metastatic 

cascade and the importance of the surrounding native environment. Existing human studies 

are predominantly correlational and have even yielded partially contradictory results. 

Furthermore most investigations have exclusively examined JUNB expression in tumor cells 
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or focussed on gene expression analyses of the bulk of the tumor or metastatic tissue thereby 

neglecting the potential contribution of stromal JUNB. Direct functional evidence assessing the 

influence of stromal JUNB on metastasis is, thus, still missing.  

Consequently, I aimed to investigate the functional consequences of JUNB loss in the stroma 

on metastasis following an in vivo approach in mice.  

(I) For this purpose, elaborate spontaneous metastasis models involving primary tumor 

excision were performed in vivo, thereby comparing metastatic burden in mice with conditional 

Junb deletion in the stroma to adequate controls.  

(II) Furthermore, various components of the microenvironment, such as tumor angiogenesis, 

lymphangiogenesis and immune cell infiltration were examined in primary tumors and in pre-

metastatic lungs to gain a more mechanistic insight on the role of JUNB in metastasis.  
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2. MATERIALS 

2.1. Antibodies and compounds 

2.1.1. Primary antibodies 

Table 2-1: Primary antibodies used for immunohistochemistry and immunofluorescence 

Antigen Clone Host 
species 

Dilution Antigen 
retrieval 

Company/catalogue 
number 

CD31 polyclonal rabbit 1:200 TE pH 9 Abcam # ab28364 

Lyve-1 ALY7 rat 1:100 TE pH 9 affymetrix #14-0443 

Podoplanin 8.1.1. Syrian 
hamster 

1:500 Citric buffer pH 6 Hybridoma Bank 

mCherry polyclonal rabbit 1:300 Proteinase K Abcam #ab167453 

CD45 30-F11 rat 1:100 Citric buffer pH 6 Novus #NB100-77417 

CD11b EPR1344 rabbit 1:2000 Citric buffer 
pH 6; EDTA pH 8 

Abcam #ab133357 

CD3 CD3-12 rat 1:100/1:200 EDTA pH 8; TE 
pH 9 

Bio-Rad #MCA1477T 

Foxp3 FJK-16s rat 1:100 EDTA, pH 8 ebioscience  

#14-5773-80 

Ly6B.2 7/4 rat 1:300 TE pH 9 Abcam #ab53457 

F4/80 CI:A3-1 rat 1:100 Proteinase K Genetex #GTX26640 

CD8 EPR20305 rabbit 1:2000 TE pH 9 Abcam #ab209775 

 

Table 2-2: Primary antibodies used for flow cytometry 

Antigen Clone Dilution Company/catalogue number 

CD16/CD32 93 1:100 ebioscience # 14-0161-82 

CD45.1  A20 1:200 Invitrogen #48-0453-82 

CD45.2 104 1:500 Biolegend #109814 

CD11B M1/70 1:200 Biolegend #101261 

LY6G 1A8 1:500 BD #551460 

LY6C HK1.4 1:200 Biolegend #128035 

GR-1 RB6-8C5 1:200 Biolegend #108405 

CCR2 475301 1:50 R&D #FAB5538P-025 

 



 
22 MATERIALS 

Table 2-3: Primary antibodies for in vivo use 

Antibody Clone Company/catalogue 
number 

LOT number 

InVivoPlus anti-mouse Ly6G 1A8 BioXCell #BP0075-1 626717M2B 

InVivoPlus rat IgG2a, κ isotype 
control anti-trinitrophenol 

2A3 BioXCell #BP0089 686318F1B 

 

2.1.2. Secondary antibodies 

Table 2-4: Secondary antibodies used for immunohistochemistry and immunofluorescence 

Antigen Host species Dilution Conjugation Company/catalogue 
number 

Rabbit IgG Goat 1:500 biotin Vector Laboratories 
#BA-1000 

Rat IgG Goat 1:500 biotin Vector Laboratories 
#BA-9400 

Syrian Hamster IgG Goat 1:500 biotin Jackson 
ImmunoResearch 
#107-065-142 

Rabbit IgG Donkey 1:250 Alexa 647 Invitrogen #A31573 

Rabbit IgG Goat 1:250 Alexa 546 Invitrogen #A11010 

Rat IgG Goat 1:250 Alexa 647 Invitrogen #A21247 

Rat IgG Goat 1:250 Alexa 546 Invitrogen #A11081 

 

2.1.3. Reagents used for immunofluorescence and flow cytometry 

Table 2-5: Compounds used for immunofluorescence 

Compound Dilution Company/Catalogue number 

Streptavidin-Cy3 1:500 Biolegend #405215 

Hoechst 33342 1:1000 chemodex #CDX-B0030 

 

Table 2-6: Viability dyes used for flow cytometry 

Dye Dilution Company/catalogue number 

Propidium Iodide (PI) 1 µL/test Biolegend #421301 

7-Aminoactinomycin D (7AAD) 2 µL/test Biolegend #420404 
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2.2. Biomolecular reagents and enzymes 

2x Power SYBRTM Green Master Mix Applied Biosystems, UK 

10% Normal Goat Serum Thermo Scientific, USA 

Normal Goat Serum Vector Laboratories, USA 

Oligo (dT)18 primers Thermo Scientific 

Phosphatase Inhibitor Cocktail II Sigma, Steinheim 

Protease Inhibitor Cocktail Sigma, Steinheim 

Proteinase K Sigma, Steinheim 

Random Hexamer primers Fermentas, USA 

RevertAid Reverse Transcriptase Thermo Scientific, USA 

RiboLock RNase Inhibitor Thermo Scientific, USA 

2.3. Buffers and solutions 

Buffer Composition 

ACK erythrocyte lysis buffer (pH 7.2-7.4) 150 mM NH4Cl 

10 mM KHCO3 

0.1 mM EDTA 

Blocking buffer for immunofluorescent staining 5% goat serum 

5% Normal Goat Serum Blocking Solution (10%) 

Blocking buffer for immunohistochemistry 10% goat serum/PBS 

Citrate buffer (pH 6) for antigen retrieval 1.8 mM citric acid  

8.2 mM sodium citrate  

EDTA buffer (pH 8) for antigen retrieval 1 mM EDTA 

Extraction buffer for DNA isolation (pH 12.0) 10 mM Tris-HCl, pH 8.0 

0.1 M NACl 

1 mM EDTA 

1% SDS 

FACS buffer 1% BSA/PBS 

PBS, 10x (pH 7.2) 

 

1.5 M NaCl 

27 mM KCl 

82 mM Na2HPO4 x 2 H2O 

17 mM NaH2PO4 x H2O 

TE buffer (pH 9) for antigen retrieval 10 mM Tris-HCl 

1 mM EDTA 
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2.4. Cell lines, cell culture conditions and reagents 

Table 2-7: Cell lines 

Name Species Tissue Origin 

B16F10 mouse Melanoma R. Offringa, Heidelberg 

EO771.LMB mouse Mammary Carcinoma R. Anderson, Melbourne 

Lewis Lung Carcinoma 
(LL/2-Luc M38) 

mouse Lung Carcinoma Caliper Life Sciences 

 

Table 2-8: Cell culture conditions 

Cell line Culture 
conditions 

Medium Additives Company/catalogue 
number 

B16F10 37°C, 5% CO2 RPMI 1640, 
GlutaMAX 

 

 

10% FBS 

 

 

Sigma #F7524  

EO771.LMB 37°C, 5% CO2 DMEM  

10% FBS 

1% L-glutamine 

20 mM HEPES 

 

Sigma #F7524 

Sigma #G7513 

Lewis Lung 
Carcinoma 

37°C, 8% CO2 DMEM  

10% FBS 

1% L-
glutamine 

 

Sigma #F7524 

Sigma #G7513 

 

Table 2-9: Cell culture reagents 

Reagent Company/catalogue number 

Accutase Sigma #A6964 

Dulbecco’s Phosphate Buffered Saline (DPBS) PAN Biotech #P04-36500 

Trypan Blue Fluka, Neu-Ulm 
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2.5. Chemicals and reagents 

Ammonium acetate (NH4OAc) Roth, Karlsruhe 

Ammonium chloride (NH4Cl) Merck, Darmstadt 

Bovine serum albumin (BSA) PAA, Austria 

Bradford MXTM Expedeon, UK 

Calcium chloride Merck, Darmstadt 

Citric acid AppliChem, Darmstadt 

Chloroform Sigma-Aldrich, Steinheim 

Desoxynucleotide triphosphates Fermentas, Lithuania 

Dimethylsulfoxide (DMSO)  Biomol, Hamburg 

Disodium phosphate (Na2HPO4) Fluka, Seelze 

Dithiothreitol (DTT) Gerbu, Heidelberg 

Eosin B Morphisto, Frankfurt am Main 

Ethanol VWR, France 

Ethylenediamine-tetraacetate (EDTA) Roth, Karlsruhe 

Eukitt® O. Kindler, Bobingen 

FITC-dextran 70 kDa Invitrogen, USA 

Fluorescent Mounting Medium Dako/Agilent, USA 

Hematoxylin Morphisto, Frankfurt am Main 

HEPES Gerbu, Heidelberg 

Hydrogen peroxide (H2O2) AppliChem, Darmstadt 

Isopropanol (2-propanol) Fisher Chemical, UK 

Ketamine hydrochloride (Ketavet100) Zoetis, USA 

Methanol Fisher Chemical, UK 

Nuklease-free water Qiagen, Hilden 

Paraformaldehyde (PFA) Roth, Karlsruhe 

Potassium chloride (KCl) Roth, Karlsruhe 

Potassium bicarbonate (KHCO3) Merck, Darmstadt 

Pre-diluted Protein Assay Standards (BSA) Thermo Scientific, USA 

Sodium chloride Fisher Scientific, UK 

Sodium citrate tribasic dihydrate Fluka, Buchs 

Sodium dihydrogen phosphate (NaH2PO4) Neolab, Heidelberg 

Sodium dodecyl sulfate (SDS) Fluka, Buchs 

Sodium hydroxide Sigma-Aldrich, Steinheim 

Tris hydrochloride (Tris HCl) Roth, Karlsruhe 

Triton-X-100 AppliChem, Darmstadt 

Xylazin hydrochloride (Rompun®) Bayer, Leverkusen 

Xylene VWR, France 
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2.6. Commercially available Kits 

DAB Peroxidase Substrate kit Vector Laboratories, USA 

MiRNeasy® Mini kit Qiagen, Hilden 

VECTASTAIN® Elite® ABC HRP Kit Vector Laboratories, USA 

Venor®GeM Classic Kit Minerva biolabs®, Berlin 

2.7. Consumables 

BD Micro-FineTM+ U-100 Insuline syringes Becton Dickinson, USA 

Cell culture plates Sigma, USA 

Cell strainer (70 µm) Corning, USA 

Cellulose Swabs Beesana® Beese Medical, Barsbuttel  

Conical centrifuge tubes 15 mL Corning, USA 

Conical centrifuge tubes 50 mL Corning, USA 

Cover slips Th. Geyer, Renningen 

CryoTubeTM vials Thermo Fisher, Denmark 

EDTA-coated tubes Microvette® 100 K3E  Sarstedt, Nümbrecht 

ELISA plates 96-well clear Sarstedt, Nümbrecht 

Embedding cassette Histosette Simport, The Netherlands 

Embedding cassette Mega Cassette Sakura, USA 

Feather disposable scalpel Feather, Japan 

Filter pipette tips (10 µL/20 µL/200 µL) Kisker, Steinfurt 

Filter pipette tips (1000 µL) Nerbe Plus, Winsen 

Foam biopsy pads Surgipath® Leica, The Netherlands 

Hypodermin needles  Chirana T. Injecta, Slovac republic 

ImmEdge PenTM Vector Laboratories, USA 

MicroAmp® fast optical 96-well reaction plate Applied Biosystems, USA 

MicroAmp® optical adhesive covers Applied Biosystems, Singapore 

Microplate 96 well clear bottom, black Greiner Bio-One, Frickenhausen 

Object slides Superfrost® Plus Thermo Scientific, USA 

Parafilm PM996 Bemis, USA 

Pasteur capillary pipettes WU, Mainz 

PCR reaction tubes Nerbe Plus, Winsen 

Petri dishes (35 mm, 60 mm) Greiner Bio-One, Frickenhausen 

Pipette tips (10 µL/20 µL/200 µL/1000 µL) Steinbrenner, Wiesenbach 

Povidone Iodine Braunol® B. Braun Melsungen AG, Melsungen 

Reaction tubes (1.5 mL) Sarstedt, Nümbrecht 

Reaction tubes (2 mL) Eppendorf, Hamburg 

Reaction tubes (2 mL, amber) VWR, USA 

Reaction tubes (5 mL) Sarstedt, Nümbrecht 

Serological pipet (2.5 mL/5 mL/10 mL/25 mL)  Corning, USA 

Round bottom tubes Greiner Bio-One, Austria 

Sugi® Eyespear pointed tips Kettenbach, Eschenburg 

Suture Ethilon (4-0/5-0) Ethicon, UK 

Syringes 1 mL Injekt®-F B. Braun Melsungen AG, Melsungen 
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Syringes Terumo® 10 mL Terumo®, Japan 

Tissue embedding medium Histo-Comp® Vogel, Fernwald 

2.8. Equipment 

Animal Trimmer Aesculap® Isis Braun, Suhl 

Axio Scan.Z1 Slidescanner Zeiss, Oberkochen 

Bacterial incubator Kelvitron®t Heraeus Instruments, Hanau 

BD FACSCantoTM II Becton Dickinson, Heidelberg 

Bioruptor Diagenode, Belgium 

Cauterizer Fine Sciene Tools, Heidelberg 

Cauterizer Tips Fine Sciene Tools, Heidelberg 

Cell incubator Heraeus HERA cell 240 Heraeus Instruments, Hanau 

Cell incubator Binder, Tuttlingen 

Centrifuge Biofuge 13 Thermo Scientific, Osterode am Harz 

Centrifuge Heraeus Megafuge 16 Thermo Scientific, Osterode am Harz 

Centrifuge Heraeus Pico 17 Thermo Scientific, Osterode am Harz 

Centrifuge Variofuge 3.0R Heraeus Sepatech,  

Osterode am Harz 

Cooling centrifuge 5403, 5415R Eppendorf, Hamburg 

Digital caliper RS Pro, Mörfelden-Walldorf 

Embedding machine Tissue-Tek TEC Sakura, USA 

Fine scale XS205 DualRange Mettler Toledo, Gießen 

Gooseneck lamp KL1500 Schott, Mainz 

Heating mat Bosotherm 2000 Bosch+Sohn, Jungingen 

Hemavet 950FS Drew Scientific, USA 

Isoflurane gas vaporizer Vapor 19.3 Dräger, Lübeck 

Magnetic stirrer/heat plate Ika® RH basic 2 IKA, Staufen 

Magnetic stirrer/heat plate Variomag Monotherm H+P Labortechnik, München 

Mikroplate reader Clariostar BMG Labtech, Ortenberg 

Mikroscope Leica DMLB Leica, Bensheim 

Mikroscope Nikon Ti Eclipse Nikon, Düsseldorf 

Microscope Olympus TH4-200 Olympus, Japan 

Microtome SM2010 R Leica, Bensheim 

Microtome Hn40 Reichert-Jung/Leica, Bensheim 

NanoDrop UV-VIS ND-1000 Spectrophotometer PeqLab, Erlangen 

pH meter 765 Calimatic  Knick, Berlin 

Pipettes (Pipetman) Gilson, USA 

Pipettes (Eppendorf Research) Eppendorf, Hamburg 

Pipettor Pipetboy acu Integra Biosciences, Switzerland 

Red light lamp LF-15E Zoo Med Laboratories, USA 

Scale KERN® 440-47N Kern & Sohn, Balingen 

Silicon mat René Remie Surgical Skill Centre,  

The Netherlands 

Shaker SD5D CAT Laboratories, Staufen 

Slide Staining Tray Pyramid Innovation, UK 

StepOnePlus Real-time PCR system  Applied Biosystems, UK 
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Sterile GARD Hood VBM600 Baker Company Inc., USA 

Surgical hooks René Remie Surgical Skill Centre,  

The Netherlands 

Surgical tools Fine Science Tools, Heidelberg 

Thermocycler PTC-200 MJ Research, USA 

Thermocycler MJ Mini Bio-Rad Laboratories, Munich 

Thermomixer 5437 Eppendorf, Hamburg 

Water bath GFL, Burgwedel 

Vortex Bender&Hobein/IKA, Staufen 

Vacuum Infiltration Processor Sakura, Heidelberg 

Z2 Coulter Particle Count and Size Analyzer Beckman Coulter, USA 

2.9. Mice 

Table 2-10: Mouse lines 

Mouse line Description Company/origin 

C57BL/6NCrl Wildtype Charles River 

C57BL/6NRj Wildtype Janvier 

B6.SJL-PtprcaLy5.1 Expression of Ptprca DKFZ 

Col1α2-Cre 

B6.Tg(Col1α2-
Cre)23Angl 

Expression of Cre recombinase in multiple 
cell types derived from mesenchyme  

P. Angel, DKFZ 

[234] 

Junb>/> 

B6.Junbtm3Wag/N  

Floxed Junb allele M Schorpp-Kistner, 
DKFZ 

CMV-Cre 

B6.TgN(CMV-Cre)1Cgn 

Ubiquitous expression of Cre Recombinase P. Angel, DKFZ, 
Originally from K. 
Rajewski, Cologne, [235] 

Junb Δ CMV Cre/+ 

B6.Junbtm3.1Angl/+ 

Obtained by crossbreeding CMV-Cre and 
Junb >/+ 

M Schorpp-Kistner, 
DKFZ 

Junb Δ CMV-Cre/+, Col1α2-Cre Obtained by crossbreeding JunbΔ CMV-Cre/+ 
and Col1α2-Cre 

M Schorpp-Kistner, 
DKFZ 

Junb Δ CMV-Cre/Δ Col1α2-Cre Obtained by crossbreeding 
JunbΔ CMV-Cre/+, Col1α2-Cre and Junb >/> 

M Schorpp-Kistner, 
DKFZ 

Junb +/+, Col1α2-Cre Obtained by crossbreeding Col1α2-Cre and 
Junb +/+ 

M Schorpp-Kistner, 
DKFZ 
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2.10. Oligonucleotides 

Table 2-11: Oligonucleotide primers for qRT-PCR 

Gene Forward/ 

reverse 

Sequence Effi-
ciency 

Fragment 
size 

Refe-
rence 

Adgre1 for 

rev 

GTGCCATCATTGCGGGATTC 

AAGAGCATCACTGCCTCCAC 

2.02 79 bp  

B2m for 

rev 

CTCGGTGACCCTGGTCTTTC 

TTGAGGGGTTTTCTGGATAGCA 

1.90 70 bp  

Ccl2 for 

rev 

CGGCTGGAGCATCCACGTGTT 

TAGCAGCAGGTGAGTGGGGC 

2.02 63 bp [236] 

Ccl5 for 

rev 

CCTCACCATATGGCTCGGACACC 

GCGCGAGGGAGAGGTAGGCA 

2.07 57 bp [236] 

Cd163 for 

rev 

GTGCTGGATCTCCTGGTTGTA 

GGAGCGTTAGTGACAGCAGA 

1.87 97 bp  

Cd3ε for 

rev 

CAGGACGATGCCGAGAACATT 

GAGGGCACGTCAACTCTACA 

1.95 70 bp  

Cd8α for 

rev 

GAATCTGCGTGGCCCTTCTG 

ACTAGCGGCCTGGGACATTT 

2.01 94 bp  

Csf3 for 

rev 

GCAGGCTCTATCGGGTATTTCC 

GCAACATCCAGCTGAAGCAA 

1.80 66 bp [237] 

Cxcl1 for 

rev 

CCGAAGTCATAGCCACACTCAA 

GCAGTCTGTCTTCTTTCTCCGTTAC 

1.85 128 bp [238] 

Cxcl2 for 

rev 

AGACAGAAGTCATAGCCACTCTCAAG 

CCTCCTTTCCAGGTCAGTTAGC 

1.94 126 bp [238] 

Cxcl5 for 

rev 

TGCCCTACGGTGGAAGTCAT 

AGCTTTCTTTTTGTCACTGCCC 

1.92 120 bp  

Cxcl12 for 

rev 

TGCATCAGTGACGGTAAACCA 

CACAGTTTGGAGTGTTGAGGAT 

1.96 118 bp [239] 

Foxp3 for 

rev 

GACCCCCTTTCACCTATGCC 

GGCGAACATGCGAGTAAACC 

1.94 107 bp  

Fap for 

rev 

ACGCTGTGCAGTGAGAATCAG 

GACAGTTTTCAGCCATGTCTTCATT 

1.96 70 bp  

Il-1α for 

rev 

GAGAAGACCAGCCCGTGTTG 

TGGATAAGCAGCTGATGTGAAGTAG 

2.10 131 bp J. Leibold 

Il-1β for 

rev 

TTCAGGCAGGCAGTATCACTC 

CGGAGCCTGTAGTGCAGTTG 

1.99 195 bp J. Leibold 

Itgam for 

rev 

CATCCCCCTGCAAGTACCTC 

GGGGGACAGTAGAAACAGCC 

1.92 74 bp  

Klrb1c for 

rev 

AGTGTCTTAGTGCGAGTCTTAGT 

CCAGTCTTGTGGGCACTCTA 

1.92 120 bp  

Ly6c for 

rev 

GCAGTGCTACGAGTGCTATGG 

ACTGACGGGTCTTTAGTTTCCTT 

1.90 140 bp [240] 
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Gene Forward/ 

reverse 

Sequence Effi-
ciency 

Fragment 
size 

Refe-
rence 

Ly6g for 

rev 

TTGTATTGGGGTCCCACCTG 

CCAGAGCAACGCAAAATCCA 

1.91 77 bp [241] 

mCherry for 

rev 

GACCACCTACAAGGCCAAGAAG 

AGGTGATGTCCAACTTGATGTTGA 

1.93 74 bp [242] 

Ppia for 

rev 

AATTCATGTGCCAGGGTGGTG 

TGCCTTCTTTCACCTTCCCAA 

1.84 231 bp  

Prptc for  

rev 

GAGGTGTCTGATGGTGCAAG 

TGTATTCCACTAAAGCCTGATGAA 

1.99 65 bp [243] 

S100a8 for 

rev 

TCCTTGCGATGGTGATAAAA 

GGCCAGAAGCTCTGCTACTC 

1.96 73 bp [244] 

S100a9 for 

rev 

CACCCTGAGCAAGAAGGAAT 

TGTCATTTATGAGGGCTTCATTT 

1.99 95 bp [244] 

Spp1 for 

rev 

GACAACAACGGAAAGGGCAG 

ATCACATCCGACTGATCGGC 

2.05 116 bp  

Tnfα for 

rev 

GTAGCCCACGTCGTAGCAAA 

TTGAGATCCATGCCGTTGGC 

1.89 95 bp  

Vimentin for 

rev 

AGCTGCTAACTACCAGGACACTATTG 

CGAAGGTGACGAGCCATCTC 

1.90 81 bp [242] 

2.11. Software 

BD FACSDiva™ Software Becton Dickinson Biosciences, 

Heidelberg 

EndNote v.X7 Adept Scientific GmbH, Frankfurt 

FlowJo V10 Tree Star, Inc., Ashland, USA 

GraphPad Prism 7.05 GraphPad Software, Inc., La Jolla, USA 

Image J National Institutes of Health, USA 

Inkscape 0.92.3 Inkscape Project, USA 

NIS Elements AR 4.13.04 Nikon, Darmstadt 

Office 2013 Microsoft, USA 

Primer-BLAST, 

https://www.ncbi.nlm.nih.gov/tools/primer-

blast/ 

National Institutes of Health, USA 

StepOne Software v2.3 Life Technologies, Darmstadt 

ZEN2.3 (blue edition) Zeiss, Oberkochen 
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3. METHODS 

3.1. Molecular biology methods 

3.1.1. RNA isolation with on-column DNase-digestion 

Tissue samples stored in QIAzol® lysis reagent (Qiagen) were thawed on ice and disrupted 

mechanically with an ULTRA-TURRAX® T25 (IKA® Labortechnik). Tissue homogenates were 

subsequently transferred to fresh reaction tubes and RNA was isolated using the miRNeasy® 

Mini Kit (Qiagen) according to manufacturer’s instructions. On-column DNase digestion was 

performed with the RNase-Free DNase Set (Qiagen) following manufacturer’s 

recommendations. RNA was finally eluted in 50 µL RNase-free H2O and stored at -80°C until 

further use.  

3.1.2. DNA isolation for quantification of metastatic burden 

For quantification of metastatic burden via Quantitative real time PCR (qRT-PCR) on the 

mCherry reporter, genomic DNA was prepared from the same samples previously processed 

for RNA isolation as described above. The protocol for simultaneous extraction of RNA and 

DNA using Ambion’s ToTALLY RNATM RNA Isolation Kit (Thermo Fisher) was adapted for use 

with the miRNeasy® Mini Kit (Qiagen). Following phase separation with chloroform and 

removal of the aqueous phase, the organic phase including the interphase remain. An equal 

volume of DNA extraction buffer adjusted to pH 12.0 is added and vigorously shaken for 1 min. 

After the phases were allowed to separate for 10 min on ice and centrifuged at 12000 g for 

20 min at 4°C, the aqueous phase was recovered without contamination of any interphase. 

Subsequent to addition of 1/15 volume of 7.5 M NH4OAc and 2 volumes of ice-cold 100% 

ethanol, samples were inverted once and DNA was allowed to precipitate at -20°C O/N. DNA 

was pelleted by centrifugation at 12000 g at 4°C for 30 min and the supernatant discarded 

without detaching the pellet from the vessel wall. Impurities were removed by washing the 

pellet in 70% ethanol. To ensure the pellet stayed attached to the wall of the tube, the 

centrifugation step was repeated as stated above. Remaining ethanol was allowed to 

evaporate at RT and DNA resuspended in 25 µL DNase-free H2O. DNA was solved by 

incubation at 37°C for 2-3 h under shaking and eventually vortexing. DNA was stored at -20°C 

until qRT-PCR.  

3.1.3. Determination of DNA and RNA yield and quality 

To determine the yield and to detect remaining contaminations, RNA and DNA obtained after 

isolation described in sections 3.1.1 (RNA isolation with on-column DNase-digestion) and 3.1.2 

(DNA isolation for quantification of metastatic burden), were measured by the NanoDrop 

Spectrophotometer UV-VIS ND-1000 (PeqLab Biotechnology). A 260/280 ratio of absorption 

of approximately 1.8 or 2.0 was considered pure for DNA or RNA, respectively, and indicated 

neglectable contamination with proteins or phenolic substances. The 230/260 ratio was used 

as an additional indicator. Values between 2.0 to 2.2 were generally regarded as good quality.  
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3.1.4. Reverse transcription 

Double stranded cDNA was synthesized from a total of 2 µg isolated RNA. RNA was diluted 

to 200 ng/µL in H2O, mixed with 0.25 µL Oligo (dT)18 primer (100 μM, Thermo Scientific) as 

well as 0.25 µL Random Hexamer Primer (100 µM, Fermentas) and heated to 65°C for 5 min 

to assure that RNA is fully single-stranded. After this denaturation step, a reaction mixture of 

4 µL 5x Reaction buffer (Thermo Scientific) supplemented with 0.5 µL dNTPs (25 mM, 

Fermentas), 0.5 µL RiboLock RNase Inhibitor (40 U/μl, Thermo Scientific) and 1 µL RevertAid 

Reverse Transcriptase (200 U/µL, Thermo Scientific) was added and reverse transcription 

performed according to the program below (Table 3-1). Assuming optimal efficiency of the 

reaction, cDNA is obtained at a concentration of 100 ng/µL. cDNA was stored at -20°C until 

use.  

Table 3-1: Program for reverse transcription 

Step Temperature  Time 

Reverse transcription 42°C  1 h 

Termination 72°C  10 min 

Cooling 10°C  forever 

3.1.5. Quantitative real time PCR 

Relative target gene expression was determined by quantitative real-time PCR (qRT-PCR) 

using the StepOnePlus Real-Time PCR system (Applied Biosystems). The reaction was 

performed in duplicates in 96-well plates in a total reaction volume of 12.5 µL (Table 3-2). 

Respective forward and reverse primers specific for the target genes are listed in Table 2-11. 

Quantitative real-time PCR was performed according to the following two-step protocol (Table 

3-3). 

Table 3-2: Composition of master mix for quantitative real-time PCR 

Reagent Volume 

cDNA (1 ng/µL) 2.5 µL 

2x Power SYBRTM Green Master Mix 6.25 µL 

Forward primer (50 µM) 0.075 µL 

Reverse primer (50 µM) 0.075 µL 

H2O 3.6 µL 
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Table 3-3: Program of quantitative real-time PCR 

Stage Temperature Time  

Holding 95°C 10 min  

Cycling 95°C 

60°C 

15 s 

1 min 

40 cycles 

Melt Curve 95°C 

60°C 

+0.3°C (up to 95°C) 

15 s 

1 min 

15 s 

 

 

Expression of the gene of interest (GOI) was analysed using StepOneTM software v2.3 (Life 

Technologies) and calculated following the ΔΔCT method. Thereby, the cycle of threshold (CT) 

determined for the GOI is set relative to the CT measured for the reference gene (REF). 

Additionally, the efficiency of the used primer is taken into account. The formula used for 

calculation is given below (Equation 3-1).  

Equation 3-1: Calculation of relative gene expression. 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 =
𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 (𝐺𝑂𝐼)𝛥𝐶𝑇(𝑐𝑜𝑛𝑡𝑟𝑜𝑙 (𝐺𝑂𝐼)−𝑠𝑎𝑚𝑝𝑙𝑒(𝐺𝑂𝐼))

𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 (𝑅𝐸𝐹)𝛥𝐶𝑇(𝑐𝑜𝑛𝑡𝑟𝑜𝑙 (𝑅𝐸𝐹)−𝑠𝑎𝑚𝑝𝑙𝑒(𝑅𝐸𝐹))
 

3.1.6. Validation of primers used for qRT-PCR 

Specific primers used in qRT-PCR were designed using PrimerBLAST (National Institutes of 

Health; https://www.ncbi.nlm.nih.gov/tools/primer-blast/). Primers were optimized for a melting 

temperature of 60°C and a GC content of 40-60%. Primer efficiency was analyzed in a 

qRT-PCR reaction using a 1:3 dilution series of cDNA from the EO771.LMB tumor bulk and 

pre-metastatic lung. cDNA input ranged from 100 ng to 0.14 ng per reaction mixture. Primer 

efficiency was calculated according to the formula below (Equation 3-2), efficiencies between 

1.8 and 2.1 were considered suitable. Only primers which showed an appropriate efficiency 

and specificity as assessed by analysis of the melting curve were used for the experiment. 

Equation 3-2: Calculation of primer efficiency. 

𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 𝐸 = 10−
1
𝑥 

𝑥 - slope of linear regression of CT versus log(cDNA) 

3.2. Protein biochemistry methods 

3.2.1. Whole cell extracts for permeability assay 

Snap-frozen pieces of primary Lewis Lung tumors or lungs were transferred into a reaction 

tube which had been cooled in liquid nitrogen. Tissue was subsequently ground using a tissue 

https://www.ncbi.nlm.nih.gov/tools/primer-blast/
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grinder. Tissue was lysed by adding 50 µL RIPA buffer per 10 mg of tissue. Prior to use, RIPA 

buffer was supplemented with protease and phosphatase inhibitor cocktail (1:100, Sigma) and 

1 mM Dithiothreitol (DTT). After incubation for 15 min on ice, samples were quickly (<30 s) 

sonicated to shear DNA without overheating the sample. To further aid fractionation, samples 

were subjected to three subsequent freeze thaw cycles. Quick snap freezing in liquid nitrogen 

is thereby followed by thawing in a 37°C heating block. Caution was exercised to not fully thaw 

the samples on the heating block but rather vortex until fully liquid in order to prevent 

denaturation of proteins. The supernatant was eventually cleared from remaining debris by 

centrifugation at 16000 g at 4°C for 30 min. Supernatant was stored in the dark at -80°C until 

determination of protein concentration and subsequent fluorescent measurement.  

3.2.2. Determination of protein concentration 

Protein content of obtained whole cell extracts was determined by Bradford assay. Isolated 

lysates were diluted 1:10 in RIPA buffer with supplements as stated above. A Pierce™ Bovine 

Serum Albumin Standard Pre-Diluted Set with BSA dilutions ranging from 125 µg/mL to 

2000 µg/mL was used to generate a standard curve for calculation of protein concentrations. 

RIPA buffer was used as blank. Of each standard and diluted sample 2.5 µL were prepared in 

duplicates in clear 96-well flat bottom plates and 150 µL Bradford MXTM (expedeon) were 

added. Absorption was measured at a wavelength of 595 nm in a microplate reader (BMG 

Labtech).  

3.2.3. Fluorescence measurement of permeability 

Vessel permeability was determined by quantifying the fluorescent intensity of the 

extravasated FITC-dextran in the isolated whole cell protein extracts. As fluorescent intensity 

is influenced by the presence of peptide bonds, the protein concentration of all samples was 

adjusted to 18.2 µg/mL with RIPA buffer. Whole cell extracts isolated from lungs of mice which 

had not been injected with FITC-dextran were treated accordingly and served as diluent for 

the fluorescent standard. This fluorescent standard was prepared by diluting FITC-dextran in 

serial dilutions from 12.5 µg/mL to 0.19 µg/mL. For fluorescence measurement, 55 µL of each 

sample were transferred in duplicates to a black 96-well flat bottom plate with clear bottom. 

Fluorescence of FITC-dextran was measured with excitation at 494 nm and emission at 

521 nm after adjustment of gain in a microplate reader (BMG Biotech). Absolute fluorescence 

intensity/µg protein was calculated from the linear regression generated from the fluorescence 

standard.  

3.3. Cell culture 

3.3.1. Cultivation of cell lines 

Melanoma cell line B16F10 was cultivated in RPMI 1640 medium supplemented with 

GlutaMAXTM (Gibco) and 10% FBS (Sigma). Lewis Lung Carcinoma cell line was grown in 

DMEM (Sigma) supplemented with 10%FBS (Sigma) and 1% L-Glutamine (Sigma). Metastatic 

breast cancer cell line EO771.LMB was cultivated according to Johnstone et al., 2015 [242]. 

In short, the cell line was kept in DMEM (Sigma) with addition of 10% FBS (Sigma), 

1% L-Glutamine (Sigma) and 20 mM HEPES (Gerbu). Medium was renewed every 2-3 days 
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and cells were passaged when 80-90% confluency was reached. For passaging, cells were 

washed once with DPBS and subsequently detached in accutase. To determine the cell 

number, a single cell suspension was obtained by carefully resuspending the cells in respective 

medium and carefully pipetting up and down. Thereafter, cells were automatically counted 

using the cell counter (Z2 Coulter Particle Count and Size Analyzer; Beckman Coulter, USA).  

3.3.2. Contamination test for cell cultures 

Cell lines were regularly tested for mycoplasma contaminations using the Venor®GeM Classic 

Kit (Minerva biolabs®, Berlin). Cell culture supernatant which had been on the cells for at least 

48 h was used and processed according to manufacturer’s instructions. All cell lines were 

tested to be mycoplasma-free.  

To exclude further contaminations, 1-5 Mio cells were harvested and pelleted by centrifugation. 

The pellet was resuspended in 100 µL DPBS and lysed by placing the sample on 95°C for 

15 min. The clear lysate gained after centrifugation at 10000 g for 5 min was transferred to a 

new 1.5 mL safe-lock tube and sent in to Multiplexion (Heidelberg) for analysis. All tested 

samples were free of contamination with Squirrel Monkey Retrovirus, Epstein-Barr virus and 

mycoplasma and also no cross-contamination of cells from a different origin than mouse was 

detected.  

3.4. Animal experiments 

3.4.1. Housing 

C57BL/6N mice were purchased from Charles River or Janvier. Junb+/+, Col1α2-Cre, 

JunbΔ/>, Col1α2-Cre and C57BL/6-Ly5.1 mice were bred in the Center for Preclinical Research of 

the DKFZ. For the experiments, mice were transferred to experimental barriers of the DKFZ 

and housed under specific-pathogen free conditions in individually ventilated cages. A 

temperature of 21°C, humidity of 50-60% and light cycles of 12 h were maintained. Food and 

water were available ad libitum. Genotyping and housing of mice was done as previously 

described [229]. 

All procedures performed on animals were approved by the local government authorities 

(Regierungspräsidium Karlsruhe, AZ G-206/13, G-26/16 and G-93/18) and were conducted 

according to the German Animal Welfare Act.  

3.4.2. Spontaneous metastasis assay 

A single cell suspension was prepared and counted as described above. Cells were diluted 

and stored on ice till injection (Table 3-4). 



 
38 METHODS 

Table 3-4: Preparation of cell suspensions for injection in vivo 

Cell line Number of cells/injection volume Diluent 

B16F10 1 Mio cells/100 µL DPBS 

EO771.LMB 100000 cells/20 µL Culture medium 

LL/2-Luc 1 Mio cells/100 µL DPBS 

6-8 weeks old female mice were anesthetized with isoflurane (O2 Flow 2l/min, 1,5-2 Vol% 

isoflurane), placed on a heating mat to maintain 37°C body temperature and eyes were 

covered with eye ointment to prevent them from dehydration. Mice were shaved around the 

injection site: 4th mammary fat pad left (EO771.LMB) or the right flank (B16F10 and LL2/-Luc). 

The single cell suspension was subsequently filled into 1 mL syringes (Dispomed) and 100 µL 

were injected s.c. with a 27G needle (B16F10 and LL/-Luc). For the EO771.LMB breast cancer 

model, cells were injected into the 4th mammary fat pad using a 500 µL insulin syringe (BD) 

with 30G needle. Formation of a bulge at the injection site indicated the proper application of 

the cell suspension. Mice were kept warm on heating mats until recovered from anesthesia.  

Primary tumor growth was subsequently measured 3 times a week using a digital caliper. 

Primary tumor volume was calculated according to the formula below (Equation 3-3).  

Equation 3-3: Calculation of primary tumor volume. 

𝑉 =
1

2
× 𝑙 × 𝑤2 

𝑙 - length 

𝑤 - width 

The primary tumor was surgically removed once it had reached a size of approximately 

500 mm3. For preoperative analgesia mice were injected with 2 mg/kg of bodyweight 

Metacam® (Meloxicam, Boehringer Ingelheim) s.c. 30 min prior to operation. Mice were 

anesthetized with isoflurane as described above. After an initial incision into the skin at the 

base of the tumor, the skin and surrounding tissue was carefully detached using scissors and 

forceps. Blood vessels were atrophied using a Cauterizer (Fine Science Tools). If the tumor 

had invaded the overlaying skin, it was removed in order to prevent primary tumor regrowth. 

Immediately after excision, mice were thoroughly controlled for persisting bleedings and 

wounds closed using sterile suture thereafter. Mice were maintained on heating mats until 

recovered from anesthesia and observed for motoric defects. Excised primary tumors were 

collected for further analysis either in 4% paraformaldehyde (PFA) in DPBS for histological 

examination or in QIAzol® lysis reagent (Qiagen) for subsequent RNA isolation.  

24 and 48 h after the operation mice were treated with 2 mg/kg bodyweight Meloxicam s.c. for 

postoperative analgesia. Afterwards, mice were controlled 2-3 times a week for general well-

being, wound healing and potential primary tumor regrowth or lymph node metastases.  

Three weeks after primary tumor removal, mice were sacrificed by cervical dislocation and 

perfused with DPBS through the left ventricle. Organs were dissected and processed either for 

RNA isolation or histological analysis as described below.  
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3.4.3. Analysis of tumor-induced changes in lungs and lymph nodes 

Mice were injected with tumor cells and grown as described above. When the primary tumor 

had reached a size of approximately 500 mm3, the experiment was terminated and mice 

euthanized. Primary tumors as well as lungs, inguinal and axillary lymph nodes were excised 

and examined for tumor-induced changes by gene expression analysis and histology. For 

analysis of blood vessel permeability, mice were i.v. injected with 100 µL per 20 g bodyweight 

FITC-dextrane in DPBS (70 kDa, Invitrogen) 30 min before euthanasia. 15 min after the 

injection, mice were anesthetized with 100 mg/kg bodyweight Ketaset (Ketamin hydrochloride, 

Zoetis) and 15 mg/kg bodyweight Rompun® (Xylazin hydrochloride, Bayer). Animals were 

placed on warm heating mats to maintain body temperature and eyes were covered with eye 

ointment. Additional 15 min later, mice were sacrificed by cardiac puncture and perfused with 

DPBS through the left ventricle to remove non-extravasated FITC-dextrane from the 

circulation. Lungs and tumors were immediately snap-frozen in liquid nitrogen and stored at -

80°C until analysis.  

3.4.4. Experimental metastasis assay 

Single cell suspensions of tumor cells were prepared as described above. 6-8 weeks old 

female Junb+/+, Col1α2-Cre or JunbΔ/>, Col1α2-Cre mice were exposed to an infrared lamp to induce 

hyperemia. Mice were subsequently placed in a rodent restrainer and 500000 cells in 200 µL 

DPBS were injected into the tail vein using a 30G needle. Animals were sacrificed when 

reaching termination criteria (19 days after injection) by cervical dislocation and lungs were 

used as described below for either DNA and RNA isolation or histology. 

3.4.5. Bone marrow transplantations 

Total bone marrow of 6-8 weeks old female C57BL/6-Ly5.1 (Junb+/+/CD45.1 isoform), 

C57BL/6N (Junb+/+/CD45.2 isoform) or JunbΔ/>, Col1α2-Cre (CD45.2 isoform) mice was isolated 

from tibiae, femurs and ilia. Total white blood cells were counted automatically (Hemavet 

950FS, Drew Scientific) and diluted in DPBS. Bone marrow suspension was placed on ice and 

directly used for injection without delay.  

Eight weeks old female C57BL/6-Ly5.1 (Junb+/+) or JunbΔ/>, Col1α2-Cre mice were lethally 

irradiated using a fractionated dose of 2x450 cGy 2 hours apart. After additional 2 hours, mice 

were reconstituted by i.v. injection of 3 million bone marrow cells in 200 µL DPBS as already 

described. To compensate for the increased risk of infections 90 mg/kg bodyweight per day 

Sulfamethoxazol and Trimethoprim were administered via the drinking water for 21 days. 

Reconstitution efficiency was assessed 4 weeks after bone marrow transplantation by flow 

cytometric analysis of whole blood. Blood was taken by puncture of the tail vein with a 25G 

needle after exposing the mice to an infrared lamp and collected in EDTA-coated tubes 

Sarstedt, Nümbrecht). When the reconstitution efficiency exceeded 80%, the spontaneous 

metastasis assay was subsequently started on day 32 after bone marrow transplantation 

(details in section 3.4.2 Spontaneous metastasis assay).  

3.4.6. Neutrophil depletion in vivo 

For neutrophil depletion in vivo, a spontaneous metastasis assay using the breast cancer cell 

line EO771.LMB was performed with 6-8 weeks old female Junb+/+, Col1α2-Cre or JunbΔ/>, Col1α2-Cre 
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mice as described in the previous section. Neutrophils were depleted by administration of Ly6G 

blocking antibody (clone 1A8, BioXCell). These experimental mice were thereby compared to 

a control group of mice injected with a matching rat IgG2a, κ isotype control (clone 2A3, 

BioXCell). When the primary tumor was palpable, initial 400 µg in 200 µL DPBS of depleting 

antibody or isotype control were administered i.p. and followed by injections of 100 µg in 

100 µL DPBS 3 times per week (in total 6 injections). The success of neutrophil depletion was 

confirmed by flow cytometric analysis. For that reason, whole blood was drawn from the tail 

vein once a week for 3 consecutive weeks starting after the first antibody injection as previously 

described. For validation of neutrophil depletion in pre-metastatic lungs, mice were treated with 

depleting antibody or isotype control as above and sacrificed when the primary tumor had 

reached a volume of roughly 500mm3. 

3.4.7. Sacrifice mice and sample processing 

At the respective end point or when termination criteria were reached, mice were euthanized 

by cervical dislocation unless stated otherwise. Whole blood was drawn by cardiac puncture 

using syringes and needles pretreated with 0.5M EDTA. Blood was transferred to EDTA-

coated collection tubes and processed within a few hours. Mice were then perfused with DPBS 

through the left ventricle and organs dissected for further analysis. For subsequent gene 

expression studies or DNA isolation, tissue was placed in QIAzol® lysis reagent and 

immediately snap-frozen in liquid nitrogen. Samples were stored at -80°C until RNA isolation. 

For histological examination, tissue was fixed in 4% PFA in DPBS at 4°C for approximately 

24h and ultimately embedded in paraffin. 

3.5. Flow cytometry 

3.5.1. Preparation of blood 

Blood was drawn from mice as described above. For flow cytometric analysis (FACS), 

approximately 45 µL whole blood were transferred to a fresh tube and placed on ice. 

Erythrocytes were lysed by incubating whole blood with ACK lysis buffer for 2 min on ice. Lysis 

was stopped by addition of an equal volume of FACS buffer. Supernatant was decanted after 

centrifugation at 4°C. Erythrocyte lysis was repeated until the remaining cell pellet was white.  

3.5.2. Staining and analysis by flow cytometry 

In order to block non-specific binding of immunoglobulin to Fc receptors, the white cell pellet 

obtained after erythrocyte lysis was resuspended in 50 µL anti-mouse CD16/CD32 antibody in 

FACS buffer at appropriate dilution (Table 2-2). After 5-10 min incubation on ice, cells were 

stained with 50 µL of 2x concentrated antibody cocktail (Table 2-2) for 20 min in the dark. 

Thereafter, cells were washed in 900 µL FACS buffer and resuspended to a final volume of 

300 µL in FACS buffer. To remove any remaining cell clumps, cells were flushed through a 

70 µm strainer shortly before analysis. Dead cells were identified by addition of either 

0.16 µg/mL Propidium Iodide (PI) or 0.33 µg/mL 7AAD depending on the FACS panel. At least 

10000 events were recorded for analysis at the BD FACS Canto II.  
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3.6. Histology 

3.6.1. Tissue fixation and processing for paraffin-embedding 

Immediately after euthanasia of mice as described above, organs were dissected and placed 

in 4% PFA/DPBS at 4°C for approximately 24 h. Tissues were transferred into tissue cassettes 

to 70% ethanol and stored at 4°C under mild shaking until subsequent processing for paraffin 

embedding. Sample processing for paraffin embedding was performed fully automated in the 

Vacuum Infiltration Processor (Sakura) according to the program given below. For paraffin 

embedding, plastic tissue cassettes were removed and tissue placed into metal molds which 

were filled with liquid paraffin. Paraffin was cooled down by placing molds on a 4°C cooling 

plate and blocks separated from molds when paraffin was completely solidified. Paraffin blocks 

were stored at RT until sectioning.  

Table 3-5: Tissue processing prior to paraffin embedding 

Step  Temperature  Time  Cycles  

70% EtOH  35°C  60 min  1  

80% EtOH  35°C  90 min  1  

90% EtOH  35°C  90 min  2  

96% EtOH  35°C  90 min  2  

100% Isopropanol  35°C  90 min  2  

Xylene  40°C  120 min  2  

Paraffin  58°C  120 min  4  

3.6.2. Sectioning of paraffin blocks 

Serial sections of 6 µm were cut by Angelika Kritschke or Bettina Kast using the sliding 

microtome SM2010 R (Leica) or Hn40 (Reichert-Jung). After sections had been smoothened 

in a 40°C water bath, sections were transferred to SuperFrost slides and dried at 42°C O/N. 

Sections were stored dry at RT until staining.  

3.6.3. Hematoxylin and eosin staining 

Tissue sections were stained for hematoxylin and eosin essentially as stated in the table below 

(Table 3-6). Paraffin was removed by immersing the sections in xylene in two subsequent 

steps. Deparaffinization was followed by rehydration of the tissue in an ethanol dilution series 

with decreasing concentration. After incubation in distilled H2O for 2 min, sections were stained 

with hematoxylin for 1-3 min depending on the desired intensity. Prior to counterstaining with 

eosin for 1 min, sections were blued by washing in tap water for 10 min. Excess eosin was 

removed by quickly rinsing the slides in distilled H2O before differentiation by dipping the slides 

into 80% ethanol. Tissue was dehydrated in a series of increasing alcohol concentration and 

eventually mounted in xylene-based mounting medium (Eukitt).  
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Table 3-6: Protocol for hematoxylin and eosin staining 

Step Substance Time Step 

1 

2 

Xylene 1 

Xylene 2 

10 min 

2 min 

Deparaffinization 

3 

4 

5 

6 

9 

96 % ethanol 

80% ethanol 

70% ethanol 

60 % ethanol 

H2O dest. 

2 min 

2 min 

2 min 

2 min 

2 min 

Rehydration 

10 

13 

15 

16 

Hematoxylin 

Tap water 

0.1 % eosin 

H2O dest. 

1-3 min 

10 min 

1 min 

rinse shortly 

Staining 

17 

20 

21 

22 

25 

26 

80% ethanol 

96% ethanol 

96% ethanol 

100% isopropanol 

Xylene 4 

Xylene 5 

dip a few times 

dip a few times 

1 min 

1 min 

5 min  

5 min 

Dehydration 

27 Xylene-based mounting medium 
(Eukitt) 

 Mounting 

3.6.4. Immunohistochemistry staining 

Prior to immunohistochemial staining, tissue sections were deparaffinized and dehydrated as 

stated for hematoxylin and eosin staining above. In the final step of rehydration, PBS was used 

instead of distilled H2O. Depending on the primary antibody used (Table 2-1), antigen retrieval 

was performed according to Table 3-7. 

Table 3-7: Methods of antigen retrieval 

Antigen retrieval Composition Treatment 

Heat-mediated 10 mM citrate buffer pH 6.0 95°C, 15 min 

Heat-mediated 1 mM EDTA pH 8.0 95°C, 15 min 

Heat-mediated 10 mM Tris, 1 mM EDTA pH 9.0 100°C, 25 min 

Enzymatic Proteinase K 20 µg/mL in TE buffer pH 8.0 37°C, 15 min 

After antigen retrieval, slides were washed in PBS for 5 min. To block endogenous peroxidase, 

slides were immersed in 3% H2O2 in Methanol for 10 min at RT. In the case of CD45 staining, 

this step of peroxidase blocking was performed after secondary antibody incubation, as the 

epitope was sensitive to peroxidase treatment. Prior to incubation with 10% goat serum in PBS 

(Vector Laboratories) for 30 min at RT, slides were rinsed in PBS for 5 min and tissue sections 

encircled with ImmEdge PenTM (Vector Laboratories). Sections were stained with primary 
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antibodies appropriately diluted in 10% goat serum in PBS (Table 2-1). One tissue section of 

each slide was left in 10% goat serum without primary antibody and served as staining control. 

After O/N incubation at 4°C, primary antibody was removed and slides washed 3x for 15 min 

in PBS. All sections including staining controls were incubated with biotinylated secondary 

antibodies of the appropriate species at a dilution of 1:500 in 10% goat serum in PBS for 1 h 

at RT. In parallel, a solution containing avidin and horse radish peroxidase (VECTASTAIN® 

Elite® ABC HRP Kit, Vector Laboratories) was prepared 30 min before use. Subsequent to 

secondary antibody incubation, another washing step of 3x 15 min in PBS was conducted and 

sections incubated with ABC reagent for 30 min at RT. After a final washing step in PBS, 

staining was developed with DAB reagent (DAB Peroxidase Substrate kit, Vector 

Laboratories). When a brown signal of desired intensity was visible under the microscope, the 

colorimetric reaction was stopped by transferring the slides into tap water. The sections were 

counterstained by quickly dipping into hematoxylin for <10s and subsequently bluing for 10 min 

under running tap water. Tissue sections were dehydrated and mounted as described above.  

3.6.5. Immunofluorescence staining 

After incubation with primary antibody followed by washing in PBS (section 3.6.4), tissue 

sections were incubated with fluorescently-labelled secondary antibodies for 2 h at RT (Table 

2-4: Secondary antibodies used for immunohistochemistry and immunofluorescence). To 

remove unwanted background, slides were purged in 0.3% Triton-X in PBS for 15 min followed 

by two further washing steps in PBS. To visualize nuclei, sections were counterstained with 

Hoechst 33342, washed and eventually mounted in fluorescent mounting medium (Dako).  

3.6.6. Image acquisition and analysis 

Images were acquired using Nikon Eclipse Ti (Nikon) or Axio Scan.Z1 (Zeiss). For 

presentation, raw images were processed and adjusted for brightness, contrast and gamma 

using the Zen Blue software (Zeiss) or Image J. Unedited images were quantified utilizing 

macros for Image J written by Barbara Costa or myself together with Damir Krunic.  

3.7. Statistical analysis 

Non-normally distributed data of three groups (wildtype, control and knockout mice), such as 

fold changes obtained from gene expression analyses or proportions obtained from 

quantifications of histology or flow cytometry, were statistically analyzed using the non-

parametric Kruskal-Wallis test. To determine the specific sample pair responsible for statistical 

significance, p-values were corrected by multiple comparisons with Dunn’s multiple 

comparisons test. In the experimental metastasis assay, the metastatic burden of the two 

groups (control and knockout mice), which was determined by qRT-PCR or histology, was 

evaluated by Mann-Whitney test. Data following a normal distribution such as number of 

metastatic nodules, vessel area or number of lymphatic vessels, were compared by unpaired 

t-test or One-way ANOVA depending on the number of groups. For three or more groups 

Dunnett’s multiple comparison test was used to correct p-values. Data were analyzed and 

visualized using GraphPad Prism 7.05 (Graphpad Software, Inc.). Annette Kopp-Schneider 

was consulted for statistical advice in the evaluation of flow cytometric data, Tim Holland-Letz 
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aided the analysis of metastatic burden and determination of group sizes for the animal 

licenses.  
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4. RESULTS 

4.1. Selection of metastasis model 

The AP-1 transcription factor JUNB has been implicated in a multitude of physiological as well 

as pathological conditions. As alluded to in section 1.3.3 (JUNB in cancer and metastasis), 

JUNB can act both as a tumor suppressor and as an oncogene in tumor cells but also has 

diverse functions in the stroma. Most prominently, JUNB plays a role in vascular development 

and homeostasis [181, 189, 228, 229], but it has also been described as an important player 

in lymphatic biology [227, 245], macrophage activation [233] and T cell differentiation [190] as 

well as polarization [191]. Moreover, JUNB has been found essential in the release of 

inflammatory cytokines from fibroblasts [246] and dendritic cells upon activation [247]. Studies 

assessing the contribution of JUNB derived from the microenvironment to tumorigenesis in 

vivo have, however, been limited so far [232]. For this purpose, mice with stromal deletion of 

Junb were required. In order to circumvent embryonic lethality of mice with global Junb loss, a 

conditional breeding strategy was applied. Therefore, mice with floxed Junb alleles were 

crossed with mice hemizygous for Junb and expressing Cre recombinase under the control of 

the Col1α2 promoter (Figure 4-1 A). The resulting JunbΔ/Δ, Col1α2-Cre mice display a loss of Junb 

in a wide array of mesenchymal-derived cells, such as fibroblasts, endothelial cells and smooth 

muscle cells but also in a multitude of immune cells and were therefore found appropriate to 

investigate the influence of stromal JUNB on tumor progression and metastasis [234].  

In order to study metastatic spread, the selection of the appropriate model is of uttermost 

importance. As the complex metastatic cascade and the interplay with different components of 

the tumor microenvironment can hardly be mimicked in vitro, the contribution of stromal JUNB 

to metastasis is best assessed in vivo. For this purpose, different metastasis models with 

varying complexity are available.  

The simplest approach is the experimental metastasis model where tumor cells are directly 

introduced into the circulation for example by tail vein or intra-cardiac injection. As this model 

is very straight forward and yields results rapidly within a few weeks, it is widely used to screen 

for factors impacting metastasis [248]. Albeit being very suitable to study extravasation and 

metastatic colonization, this assay has also multiple limitations. In the experimental model, 

there are typically large numbers of tumor cells injected into the blood stream, which is not at 

all resembling the actual clinical situation where CTCs are extremely rare. Even more 

importantly, the assay completely neglects the first steps of the metastatic cascade, such as 

tumor invasion and intravasation [248], making it unsuitable as a primary model for this project. 

The investigation of de novo tumor formation and progression including every step in the 

metastatic cascade is possible with the use of genetically engineered mouse models (GEMM). 

GEMMs model the scenario in humans more closely and can also display tumor heterogeneity 

but can have the disadvantage of rather long latencies and poor penetrance of metastatic 

disease [248, 249]. The requirement to obtain the appropriate genetic background (GEMM 

strain with conditional stromal deletion of Junb) overcomplicate the elaborate breeding 

schemes of Junb-deleted mice and were therefore considered to be technically too challenging 

for this project.  
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Figure 4-1: Schematic representation of the mouse model used in this dissertation.  

(A) Depiction of the genetic mouse model in this study. General experimental setup for the spontaneous metastasis 

assay (B) and for the investigation of lung and lymph node pre-conditioning (C). 

The third option are tumor transplantation models with spontaneous metastasis. Cancer cell 

lines are thereby implanted ectopically or orthotopically, depending on the model, and usually 

form a primary tumor within a few weeks [250]. With the selection of syngeneic cell lines, this 

assay allows the use of immunocompetent mice thereby enabling the investigation of the 

complex crosstalk of the tumor cells with the surrounding stroma.  

Originally, primary tumors had been allowed to grow until distant metastasis was observed 

resulting in enormous primary tumors and, therefore, in a rather artificial scenario. To resemble 

the human situation more closely, whereby the primary therapy involves surgical removal of 

the primary tumors often before detection of macroscopic metastasis, primary tumor resections 

were established for this project. This primary tumor resection furthermore makes it possible 

to observe the mice over a prolonged period of time. Termination criteria due to overly large 

primary tumors are avoided, thus, facilitating metastatic outgrowth. For this project, the 

contribution of JUNB expressed in the microenvironment to metastasis was therefore 

assessed using a spontaneous metastasis model including primary tumor resection (Figure 

4-1 B). In an alternative setting, the experiment was terminated at the time point of primary 

tumor removal in order to examine changes in lungs and lymph nodes pre-conditioned by 

tumor-derived factors (Figure 4-1 C). With this investigation of pre-metastatic organs, the role 

of JUNB in metastasis was elucidated more mechanistically.  

As the mice with conditional deletion of Junb in the stroma (JunbΔ/Δ, Col1α2-Cre) are congenic 

C57BL/6, the availability of cell lines previously reported to be metastatic in the resection model 
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were limited. In order to be able to study both hematogenous and lymphatic metastasis, three 

cell lines derived from cancer entities known to spread via the blood and lymphatic system 

were selected: the B16F10 melanoma model, the LL/2 Lewis Lung Model and the EO771.LMB 

breast cancer model. The B16F10 cell line is a highly metastatic variant of the B16 melanoma. 

It has been widely used in the experimental metastasis assay after tail vein injection and was 

reported to result in robust metastasis to the lungs [251-253]. B16F10 cells had also been 

described to yield spontaneous metastasis after subcutaneous implantation into the back [254, 

255], ear [256] or tail of mice [257]. Implantation into the tail resulted in metastasis to lung and 

lymph node. Yet, no substantial primary tumor growth was observed [257], so that this model 

does not accurately mimic the human situation. In order to give rise to metastasis upon 

subcutaneous injection into the back or ear of mice, primary tumors were allowed to reach 

large sizes [254-256]. Such a setting is again not in line with the clinical situation. For this 

project, a resection model of B16F10 melanoma had to be established, which is in detail 

described in the following section (Section 4.2.1). The Lewis Lung cell line was originally 

derived from a spontaneously arising lung tumor and has since then been widely used in the 

study of primary tumor formation and metastasis [258]. The EO771.LMB breast cancer model 

is a newly available metastatic cell line generated by repeated in vivo passaging and shown to 

metastasize to the lungs [242]. For both the Lewis Lung model [259] and the EO771.LMB 

breast cancer model [242], there were published protocols available describing spontaneous 

metastasis after primary tumor excision, which I adopted for this project and further optimized 

the experimental setup.  

4.2. Functional role of stromal JUNB in metastasis 

4.2.1. Stromal deletion of Junb does not influence primary tumor growth but promotes 

metastasis 

In order to assess the dynamic crosstalk between tumor cells and the surrounding 

environment, a spontaneous metastasis model with the use of three syngeneic cell lines was 

chosen for this project: B16F10 melanoma, Lewis Lung carcinoma (LL/2-Luc) and EO771.LMB 

breast cancer. The spontaneous metastasis assay can in principle be performed in two ways: 

either the tumor is excised after a pre-determined time or at a certain tumor volume. 

Consequently, I first needed to establish and optimize all these models. In order to determine 

the growth kinetics of the individual cancer cell lines in vivo and to define the ideal time point 

of tumor resection, Junb Δ/Δ Col1α2-Cre mice (thereafter called Knockout: KO) and the respective 

controls (Junb +/+, Col1α2-Cre, Controls: CTR as well as C57BL/6N Wildtype: WT) were inoculated 

with the different cell lines and primary tumor formation was monitored (Figure 4-2). B16F10 

and LL/2-Luc were implanted subcutaneously into the flanks of mice, whereas EO771.LMB 

cells were introduced orthotopically into the 4th mammary fat pad. Irrespective of the 

investigated model, primary tumor growth was similar in all genotypes. All three models 

displayed quick primary tumor development and reached exponential growth within 2-3 weeks. 

B16F10 cells grew most rapidly with tumor volumes reaching 500 mm3 after approximately 

14 days (Figure 4-2 A). LL/2-Luc cells displayed a slightly slower primary tumor growth 

reaching 500 mm3 on average on day 15 (Figure 4-2 B). EO771.LMB cells showed a delayed 

tumor onset compared to B16F10 and LL/2-Luc but grew quickly afterwards (Figure 4-2 C). 

Tumor volumes of roughly 500 mm3 were measured around day 17-20 independent of the 

genotype. Due to the rather high variations between the individual mice, I decided to perform 
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the tumor resections according to primary tumor volume rather than time and defined the time 

point of resection as soon as a volume of 500 mm3 was reached for all models. This size was 

chosen as it allowed maximal primary tumor growth and consequently maximal time for tumor 

cells to disseminate without rendering the tumor inoperable. At bigger volumes, tumors 

became highly necrotic and had coopted huge blood vessels in order to sustain their enormous 

need of energy and oxygen. These vessels were extremely challenging to close during the 

surgery. Furthermore, tumors then had partially become invasive by growing attached to the 

peritoneal wall. This would have hindered complete removal of the primary tumor and would 

have let to primary tumor regrowth, consequently resulting in the exclusion of the respective 

mouse from further analysis.  

 

Figure 4-2: Primary tumor growth of B16F10 melanoma, Lewis Lung carcinoma and EO771.LMB breast 
cancer is independent of stromal JUNB.  

Primary tumor growth was not different in B16F10 melanoma (A), Lewis Lung Carcinoma (B) and EO771.LMB (C) 

in mice with stromal Junb deletion (KO) compared to respective controls (CTR and WT). 

For the spontaneous metastasis assay, tumor cells were injected as described above and 

primary tumors were allowed to grow until they reached a size of approximately 500 mm3. 

Thereafter, tumors were surgically removed, wounds closed and mice were allowed to recover. 

After 21 days, mice were euthanized and organs were dissected for further examination of 

metastatic burden. Mice were sacrificed prematurely if termination criteria were met, such as 

overly weight loss, primary tumor regrowth or formation of macroscopic lymph node 

metastases exceeding allowed dimensions. These mice were excluded from analysis of 

metastatic burden.  

The B16F10 cell line had predominantly been used in the experimental but not in the 

spontaneous metastasis model involving primary tumor resections [251-257]. As part of 

establishing this spontaneous model, surgical removal of the primary tumor was performed at 

a size of approximately 500 mm3 for reasons stated above. The time point of 21 days between 

surgery and analysis of lung metastasis was chosen for several reasons. (I) B16F10 cells form 

visible nodules in the lung in the experimental model already after a few days [252]. Assuming 

much fewer circulating tumor cells in the spontaneous model, cells were given more time to 

establish clearly visible macroscopic lesions. (II) In other established metastasis models, the 

time between resection and analysis is typically 14-21 days, for example in the 4T1 breast 

cancer [260-262] or Lewis Lung carcinoma [263-265]. As B16F10 cells displayed similar 

growth characteristics in vivo as 4T1 and LL/2-Luc, 21 days were found suitable. Following this 

experimental setup, virtually no tumors were observed when macroscopically examining the 

lungs at the end point. This first impression was confirmed by histological assessment by 
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hematoxylin and eosin (HE) staining (Figure 4-3 A). In both CTR and KO mice, lung metastasis 

was found extremely inefficient, so that no conclusion could be drawn. 

 

Figure 4-3: Lung metastasis after the spontaneous metastasis assay with B16F10 and LL/2-Luc cells.  

(A) Very inefficient lung metastasis was determined for B16F10 cells by hematoxylin and eosin staining, so that the 

impact of stromal Junb deletion on metastasis could not be assessed. Severe metastatic burden was detected in 

the LL/2-Luc model after staining with hematoxylin and eosin (B) but no difference was observed between the 

different genotypes. Scale bar 2 mm. 

In contrast to the B16 model, the Lewis Lung carcinoma model had been widely used in the 

resection model und was reported to result in strong lung metastasis [264-267]. The 

experimental setup was essentially as described for the B16F10 model. Primary tumors were 

established by subcutaneous injection of tumor cells into the flanks of mice, grown until a size 

of 500 mm3 and resected thereafter. Macroscopic examination of the lungs 21 days after 

primary tumor removal revealed severe lung metastasis in all three genotypes. This first 

impression was subsequently supported by histological assessment. Hematoxylin and eosin 

staining confirmed that in this model no influence of stromal Junb deletion on distant metastasis 

could be detected (Figure 4-3 B). Lung metastasis was so strong in this experimental setup, 

with some mice almost reaching termination criteria at end point, that the effect of JUNB may 

have been masked by the rapid proliferation and outgrowth of the tumor cells in the lung.  

In order to further investigate the impact of Junb on metastasis and to potentially confirm or 

disprove the findings with the LL/2-Luc cell line, the metastasis model using EO771.LMB cells 

stably transduced with an mCherry reporter was used. The experimental setup was adopted 

from the original publication but was essentially the same as already performed for B16F10 

and LL/2-Luc [242]. In contrast to the previous cell lines, EO771.LMB cells were injected 

orthotopically into the mammary fat pad and tumors were allowed to grow until a volume of 

roughly 500 mm3 had been reached. Analysis of metastatic burden in the lungs was performed 

21 days after resection. Upon macroscopic investigation, several surface nodules were 

obvious in KO mice whereas hardly any metastases were observed in neither CTR nor WT. 

For more in-depth analyses a dual approach was followed: one part of the lung was examined 

for metastatic burden by quantification of the mCherry reporter on genomic DNA level by qRT-

PCR, whereas the other part was subjected to histological analysis by HE staining and 

immunohistochemistry for mCherry. In agreement with the macroscopic observations, both 

approaches confirmed a significantly enhanced metastatic burden in KO mice compared to 

WT and CTR (Figure 4-4).  
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Figure 4-4: Role of stromal Junb in metastasis as assessed in the spontaneous metastasis assay.  

Loss of stromal Junb promotes lung metastasis in the EO771.LMB model as shown by quantification of the mCherry 

reporter on genomic DNA levels by qRT-PCR (B), HE staining and immunohistochemistry of the mCherry reporter 

(A). Quantification of the mCherry reporter by immunohistochemistry is displayed in (C). Scale bar 2 mm. Data are 

geometric mean + gemoetric SD (B+C). Significance assessed by Kruskal-Wallis test with P<0.05 as the limit of 

significance. *P≤0.05, ***P<0.001 

In summary, stromal loss of JUNB indeed promotes distant metastasis to the lungs in a murine 

model of breast cancer. As no clear conclusions could be drawn from the experiments with 

B16F10 cells and as no difference was observed in the LL/2-Luc model, the following 

experiments were focused predominantly on the EO771.LMB breast cancer model. Yet, for 

answering some questions, the B16F10 and LL/2-Luc models were also used for 

complementation. 

4.2.2. Stromal loss of Junb does not influence extravasation and metastatic 

colonization 

After Junb was found to play an important role in spontaneous metastasis, I next investigated 

in which step of the metastatic cascade JUNB may be involved. For this purpose, an 

experimental metastasis assay was performed. EO771.LMB cells stably expressing mCherry 

were injected into the tail vein of Junb KO and CTR mice and lung metastasis was examined 

19 days later when end point criteria were reached. Macroscopically, no difference in 

metastasis was noticed. For quantification of metastasis, the same dual approach as described 

in the previous section (4.2.1) was followed. Although there was a trend towards less 

metastasis in Junb KO mice compared to CTR animals, with regard to both numbers of 

metastatic foci as well as metastatic area, statistical significance was not reached (Figure 

4-5 B, C+D). These findings indicate that Junb does not facilitate extravasation and 

colonization in the EO771.LMB model (Figure 4-5).  
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Figure 4-5: Experimental metastasis assay with EO771.LMB breast cancer cells.  

Deletion of Junb does not influence metastatic colonization as shown by histological examination of metastatic 

lungs by HE and immunohistochemistry (IHC) for mCherry (A). Quantification of metastatic area by 

immunohistochemistry (B) and number of metastatic nodules (D) is shown. Metastatic burden was assessed in 

parallel by measuring the presence of the mCherry reporter on genomic DNA by qRT-PCR (C).Scale bar in (A) 

2 mm. Geometric mean shown in (A+B), arithmetic mean in (D). Significance assessed by Mann-Whitney test (B+C) 

or by unpaired t-test (D) with P<0.05 as the limit of significance. *P≤0.05.  

4.3. Alterations in cellular compartments upon stromal JUNB loss 

After it had been established in above experiments, that stroma-derived JUNB indeed 

influences metastatic spread, the aim was now to further decipher which microenvironmental 

compartment was influenced by which mechanism. For this purpose, the spontaneous 

metastasis assay was terminated at the time point of surgical removal, when the primary tumor 

had reached a size of 500 mm3 (Figure 4-1 C). Primary tumors, lungs and lymph nodes were 

dissected and distinct cellular components were analyzed by histology and qRT-PCR for 

changes in gene expression.  
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4.3.1. Tumor associated vascular density and function are JUNB-independent 

Global Junb knockout mice are embryonic lethal due to defects in placentation and 

neovascularization [181]. Furthermore, JUNB was reported to regulate angiogenesis as well 

as tumor angiogenesis [189], vascular contractility [229] and lymphatic development [227] 

thereby establishing Junb as an essential regulator of the vascular system. Therefore, it 

seemed obvious to investigate whether vascular defects were also the underlying cause of the 

metastatic phenotype of Junb.  

For this reason, primary tumors were examined by immunofluorescent staining regarding blood 

vascular and lymphatic density. Quantification of blood vessel area by staining for the 

endothelial marker CD31 did not reveal a difference in Junb KO mice compared to CTR and 

WT, neither in the EO771.LMB nor the B16F10 model (Figure 4-6 A, B+C). In EO771.LMB 

primary tumors, lymphatic vessels, as identified by LYVE-1 staining, were not evenly 

distributed throughout the tumor but predominantly located at the tumor periphery (Figure 4-6 

D). Thus, the number of lymphatic vessels was counted rather than LYVE-1+ area quantified. 

Junb deletion did neither influence the number of all lymphatic vessels nor the number of 

peritumoral lymphatics in particular, in EO771.LMB primary tumors (Figure 4-6 D, E+F). In 

B16F10 tumors, hardly any lymphatics could be detected.  

 

Figure 4-6: Stromal loss of Junb does not affect vascular density in primary tumors of EO771.LMB or 
B16F10.  

Blood and lymphatic vasculature in EO771.LMB primary tumors were assessed by CD31 (magenta, A) and LYVE-1 

(red, D) immunofluorescent staining, respectively. No difference was found between the genotypes. The upper 

panels show the overlay with nuclear Hoechst staining (grey), the lower panels show only the respective marker. 

Of each tumor 5-6 fields were analyzed. Scale bar 100 µm. For quantification of blood vascular density, area 

covered by CD31 was assessed and shown for primary tumors of EO771.LMB (B) and B16F10 (C). Lymphatic 

density was examined in EO771.LMB tumors by counting all LYVE-1+ vessels (E) or by counting only peritumoral 

LYVE-1+ vessels located at the edges of the tumor (F). Quantifications are shown as mean±SD. Significance 

assessed by Kruskal-Wallis test (CD31 area) or One-way ANOVA (Nr. of of LYVE-1+ vessels) with P<0.05 as the 

limit of significance. *P≤0.05.  
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Figure 4-7: Stromal loss of Junb does not influence vascular changes in pre-conditioned lymph nodes in 
the B16F10 model.  

Tumor-draining lymph nodes (LN) were generally bigger than their non-draining counterparts as assessed by 

immunofluorescent staining of CD31 (magenta), LYVE-1 (red) and Hoechst (grey) but this change was independent 

of Junb deletion (B). Representative pictures of an inguinal LN pair from a WT mouse is shown in (A). Ablation of 

Junb does not influence blood vessel density (D) and lymphatic vessel density (F) in pre-conditioned LNs. The 

CD31+ or LYVE-1+ area of two mid-sections of complete LNs was quantified and averaged (D+F). Representative 

images are shown for draining axillary LNs (C+E). The upper panels show the overlay with nuclear Hoechst staining 

(grey), the lower panels show only the respective marker. Scale bar 250 µm. Mean+SD shown in (B), geometric 

mean with geometric SD shown in (D+F). Significance assessed by Kruskal-Wallis test (D+F) or One-way ANOVA 

(B) with P<0.05 as the limit of significance. *P≤0.05. 

As it had been published that changes in vascular density could not only be observed in 

primary tumors but also in organs that had been exposed to tumor-derived factors [268, 269], 

I next investigated whether JUNB had any impact on lymph node vasculature. As tumor-

draining lymph nodes seemed enlarged compared to non-draining counterparts and this 

difference was more obvious in the B16F10 model rather than the EO771.LMB model, I 

decided to study the lymph node pre-conditioning in the B16F10 model. Due to the site of 

implantation, B16F10 tumors predominantly drain to the inguinal and axillary lymph nodes. In 

order to estimate the variability between individual mice and to see whether tumor-derived 

factors had an impact at all, not only lymph nodes on the same site of the tumor (draining) but 

also the respective contra-lateral ones (non-draining) were dissected. The first macroscopic 

impression that draining lymph nodes are bigger in size than their counterparts was confirmed 
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by more thorough histological analysis (Figure 4-7 A). These size differences were observed 

in nearly all mice but were independent of Junb, and indicate that tumor-draining lymph nodes 

were indeed pre-conditioned by tumor-secreted factors (Figure 4-7 B). Lymph nodes possess 

specialized blood endothelial vessels called high endothelial venules (HEVs) which permit the 

egress of lymphocytes out of the circulation into the lymph node cortex [269]. These HEVs can 

undergo morphological changes and express the endothelial marker CD31 [269, 270]. CD31 

was, thus, used to specifically label HEVs in lymph nodes of Junb KO mice as well as of 

respective controls. No difference was found in CD31+ area between the different genotypes, 

though (Figure 4-7 C+D). Similarly, lymphatic vascular density was investigated by LYVE-1 

immunofluorescent staining. No consistent regulation by JUNB was detected but variations in 

lymphatic area among the individual mice were also rather high (Figure 4-7 E+F).  

 

Figure 4-8: Vascular permeability as assessed by tail vein injection of FITC-labelled dextran is not altered 
upon Junb loss.  

(A) Representative pictures of primary LL/2-Luc tumors stained with the endothelial marker CD31 (magenta) and 

nuclear counterstaining with Hoechst (grey) show remains of FITC-dextran (green) inside the circulation but also 

extravasated into the tissue. Scale bar 50 µm. Quantifications of permeability by fluorescent measurement of tissue 

supernatant of LL/-2-Luc pre-conditioned lungs (B) and primary tumors (C). Data are presented as mean with SD. 

Significance assessed by One-way ANOVA with P<0.05 as the limit of significance. *P≤0.05. 

Vascular and lymphatic density in primary tumors but also in pre-conditioned lymph nodes 

were apparently not affected by JUNB loss in the stroma. More important for metastatic spread 

is, however, the functionality of these vessels. As alluded to in the introduction in section 1.1.1 

(The metastatic cascade), more permeable vessels facilitate intravasation but also 

extravasation and consequently promote metastatic spread. In order to test whether JUNB 

might regulate vascular permeability, the LL/2-Luc model was investigated closer because this 

model shows the highest metastatic burden which may be due to a higher vascular 

permeability. Primary Lewis Lung carcinoma cells were injected into Junb KO mice and 

respective controls and a tumor was allowed to form. When the primary tumor had reached a 

size of 500 mm3, vascular permeability was assessed by i.v. injection of a fluorescently-

labelled dextran. This dextran remains within the circulation and extravasates only at sites of 
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enhanced permeability and endothelial damage. Subsequent perfusion of the mice with DPBS 

removed the remaining non-extravasated dextran from the circulation. By immunofluorescent 

staining of the endothelium, sites of vascular leakage can later be localized. In a parallel 

approach, remaining dextran in the tissue can be quantified by fluorescent measurement of 

the supernatant obtained after mincing the tissue. Following this protocol, sites of vascular 

permeability could be visualized by immunofluorescent staining of LL/2-Luc primary tumors in 

both CTR and KO mice and did not seem to be affected upon ablation of Junb (Figure 4-8 A). 

This notion was supported by fluorescent measurement of the remaining dextran, as 

fluorescence intensity was not different neither in LL/2-Luc primary tumors nor in pre-

conditioned lungs (Figure 4-8 B+C).  

In summary, no difference upon Junb KO was determined in vascular and lymphatic density 

neither in primary tumors nor in pre-conditioned organs, such as lymph nodes. In addition, 

vascular permeability was found to be not altered. In conclusion, these findings are in line with 

a previous study of our lab, showing that stroma-derived JUNB seems to be dispensable for 

tumor angiogenesis independently of the tumor model used [232]. In addition, my data also 

indicate, that despite its decisive role in vascular development and physiology, 

lymphangiogenesis and vascular integrity as far as was assessed in this study are also not 

affected by stromal JUNB loss. Thus, the observed phenotype in metastasis does not seem to 

be a consequence of vascular defects.  

4.3.2. Stromal JUNB does not alter fibroblast abundance 

The tumor microenvironment is formed by a multitude of stromal cell types. The predominant 

portion is thereby made up of fibroblasts, also called cancer-associated fibroblasts (CAFs). 

Fibroblasts do not only provide essential structural components by producing various 

components of the ECM but also influence tumorigenesis by secretion of cytokines and growth 

factors. Junb was shown to influence fibroblast proliferation as well as transformation induced 

by Src or Ras which was furthermore shown to also impact tumor growth [196]. Thus, I next 

investigated whether fibroblast content was affected by stromal Junb deletion. Assessment of 

fibroblasts is, however, complicated by the lack of specific markers which are abundantly and 

specifically expressed by all fibroblasts. Rather, different markers are utilized to identify distinct 

subpopulations of fibroblasts. Furthermore, many fibroblast markers can also be expressed by 

tumor cells. Thus, I assessed several published markers, such as Fap (Fibroblast activation 

protein), Fsp1 (Fibroblast specific protein 1/S100A4) and Vim (Vimentin) for their gene 

expression in EO771.LMB breast cancer cells [271, 272]. In contrast to Fsp1 and Vim, only 

Fap showed low expression in the tumor cells. Hence, I continued to examine gene expression 

for Fap in EO771.LMB tumors grown in WT, CTR or Junb KO mice. Fap expression level was 

found to be independent of JUNB, though (Figure 4-9 A). In order to confirm this finding on 

protein level and to be able to assess fibroblast morphology or localization, 

immunohistochemical stainings were performed. As immunohistochemistry for FAP did, 

however, not produce a convincing staining pattern, alternative markers had to be tested. CAFs 

were also reported to be positive for alpha smooth muscle actin (αSMA) [273]. Nevertheless, 

staining for αSMA did only reveal positive cells around larger vessels indicating that these cells 

are rather smooth muscle cells than CAFs. Recently, also the use of Podoplanin (PDPN) as 

fibroblast marker has been more widely observed [274-276]. Staining of tumor sections, 

revealed a distinct staining pattern characteristic for fibroblasts and absent in tumor cells 

confirming its suitability for this project (Figure 4-9 C). Quantification of PDPN+ area as an 

indicator for fibroblast content, was, however, found unaffected by loss of JUNB (Figure 4-9 B). 
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Besides numbers, also morphology or distribution in the tumor were unaltered between the 

genotypes (Figure 4-9 C). The majority of cells expressing PDPN displayed the typical spindle-

like shape resembling mesenchymal cells, but also a few more roundish cells were observed. 

PDPN+ cells were predominantly located lining the tumor-stroma interphase, in close proximity 

to larger vessels and in necrotic areas but could generally also be found rather evenly 

distributed throughout the tissue.  

 

Figure 4-9: JUNB does not play a role in fibroblast abundance, morphology or distribution in EO771.LMB 
primary tumors.  

Fibroblast content as quantified by Fap expression on RNA level (A) and by immunohistochemistry for PDPN on 

protein level (B) did not result in differences between WT, CTR and KO mice. Immunohistochemistry did furthermore 

not show an impact on cell morphology or localization within the tumor (C). PDPN+ area was quantified using whole 

sections of primary tumors. PDPN+ lymphatic vessels were excluded from the analysis as long as they could 

unambiguously be identified by morphology. Scale bar in (C) 200 µm, magnification is shown in the insert: scale 

bar 50 µm. Significance assessed by Kruskal-Wallis test with P<0.05 as the limit of significance. *P≤0.05. 

In summary, the presence of fibroblasts in EO771.LMB primary tumors was not influenced by 

Junb genotype. Likewise, also morphology and distribution were similar.  

4.3.3. Stromal ablation of Junb influences immune cell infiltration into primary tumors 

and pre-metastatic lungs 

Besides endothelial cells and fibroblasts, immune cell infiltrates constitute a major component 

of the tumor stroma. JUNB had been implicated in the activation and differentiation of various 

immune cells. Consequently, I proceeded with the investigation of number, localization and 

composition of the immune cell infiltrate in Junb KO and respective control animals using the 

pan-immune cell marker CD45.  
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Figure 4-10: JUNB impacts CD45+ immune cell infiltration in EO771.LMB primary tumors and pre-metastatic 
lungs.  

Ptprc is upregulated on RNA level in tumors (A) and pre-metastatic lungs but not in unchallenged lungs (D). An 

increased accumulation of CD45+ immune cells as determined by immunohistochemistry for CD45 is not visible in 

primary tumors (B, C) and lungs of unchallenged mice (E, F) but in lungs of EO771.LMB tumor-bearing animals (E, 

F). CD45+ area was quantified using whole sections of primary tumors or lungs. In primary tumors, CD45+ cells 

were accumulating especially at the tumor periphery and within necrotic areas (C). In the lungs, CD45+ cells were 

evenly distributed in the tissue (F). Scale bar 200 µm, insert shows magnification with scale bar 50 µm. Significance 

assessed by Kruskal-Wallis test (Dunnett’s multiple comparison test shown in B) with P<0.05 as the limit of 

significance. *P≤0.05; **P<0.01; ***P<0.001, ****P<0.0001. 

First, I focused on gene expression analysis addressing the bulk of the EO771.LMB primary 

tumor and of pre-metastatic lungs. Absence of tumor cells in these lungs had been confirmed 

by the lack of mCherry expression on DNA level and the missing positive signal in 

immunohistochemistry for mCherry. Hence, expression of protein tyrosine phosphatase, 

receptor type C (Ptprc), coding for CD45, was measured by qRT-PCR in EO771.LMB primary 

tumor samples obtained from Junb KO or respective control mice. Ptprc was found to be 

significantly increased by 1.7-fold in KO tumors compared to CTR and WT (Figure 4-10 A). 

Similarly, Ptprc expression was found to be significantly enhanced by a factor of 1.5 in pre-

metastatic lungs of Junb KO animals (Figure 4-10 D). To exclude a potential influence of JUNB 

on the basal level of immune cell infiltration, lungs of unchallenged mice, such as age matched 

animals which had not been injected with tumor cells, were also analyzed for Ptprc expression. 

Expression in these mice was independent of JUNB indicating that the observed phenotype 

can be specifically attributed to tumor-bearing mice (Figure 4-10 D). Increased gene 

expression can be the result of multiple factors: increased expression of Ptprc on individual 

cells, enhanced number of immune cells or a different composition of the immune cell infiltrate 

as different kinds of immune cells express CD45 at varying levels. Thus, in order to determine 

whether enhanced Ptprc transcript levels in KO mice can be translated into an accumulation 

of CD45+ immune cells in KO mice or is a mere result of increased expression on individual 

cells, EO771.LMB primary tumors and pre-metastatic lungs were immunohistochemically 
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stained for CD45. Analysis of EO771.LMB primary tumors revealed that immune cells could 

be predominantly detected at the tumor periphery and within large necrotic areas, yet being 

unchanged in Junb KO mice (Figure 4-10 C). The overall number of CD45+ cells, as estimated 

by CD45+ area, was not consistently affected by JUNB loss indicating that differences 

observed in gene expression are likely the result of enhanced expression in individual cells or 

are simply too small to be visible on protein level (Figure 4-10 B+C). In unchallenged mice, the 

number of CD45+ immune cells in lungs was not different in KO mice compared to the controls, 

which is in agreement with the data obtained on RNA level (Figure 4-10 E+F). However, as 

soon as the mice did bear a tumor, accumulation of CD45+ cells was vastly increased in all 

genotypes but even more enhanced in lungs of mice with stromal Junb loss (Figure 4-10 E+F). 

Although this increase did not reach statistical significance, it is consistent with the RNA data. 

In general, the differences in CD45 expression between KO mice and controls both on RNA 

and protein level do not even reach a factor of two indicating that immune cell infiltration is not 

massively altered or that not all types of immune cells are influenced by JUNB loss in the same 

way. By gross examination of immunohistochemical staining for CD45, no obvious changes in 

cell composition could be spotted, although it seemed that immune cell infiltrates into necrotic 

areas of the primary tumors were slightly denser in KO mice compared to CTR (Figure 4-10 C). 

This did, however, not translate into a generally enhanced infiltration of CD45+ cells into 

primary KO tumors. It is therefore essential to further profile different immune cell subtypes in 

more detail and to define the immune cells preferentially localizing to necrotic areas.  

These data provide a first hint, that JUNB may indeed promote immune cell infiltration 

potentially providing a mechanistic basis for the observed metastatic phenotype. The fact that 

this phenotype is more pronounced in pre-metastatic lungs than in the primary tumor, further 

implies that JUNB may be important in the pre-conditioning of a future metastatic site.  

In order to clarify whether immune cell infiltration is generally enhanced or whether certain 

subtypes are specifically influenced, further immune cell markers which define certain subsets 

more specifically, were investigated. The same dual approach as for CD45 was followed: a 

rough estimation was obtained by gene expression analysis which was subsequently 

supported by histological assessment. In an initial step towards characterization of the pivotal 

cell type, it was assessed whether rather cells of the innate or the adaptive immune system 

are altered. 

4.3.3.1. Deletion of Junb in the microenvironment enhances accumulation of innate immune 

cells in pre-metastatic lungs 

The innate immune system is the first line of defense against internal and external danger 

signals, such as invading pathogens, and provides a rapid albeit non-specific immune 

response. Cells of the innate immune system are, however, not only essential in the reaction 

against pathogens such as viruses and bacteria but have also been implicated in cancer 

progression and metastasis. Innate immune cells comprise NK cells, macrophages, 

monocytes, dendritic cells and polymorphonuclear cells (PMN), such as neutrophils, 

eosinophils and basophils [277, 278]. As all these cell types in the mouse consistently express 

CD11b, I next focused on CD11b+ cells.  
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4.3.3.1.1. CD11b+ cells 

Similarly, as for Ptprc, integrin alpha M (Itgam), the gene which is encoding CD11b, is 

upregulated in EO771.LMB primary tumors derived from Junb KO mice compared to controls 

(Figure 4-11 A). In line with this, Itgam upregulation is also visible in KO lungs of EO771.LMB-

bearing mice but not in unchallenged animals (Figure 4-11 D). Besides similar patterns of 

expression, CD11b+ cells, visualized by immunohistochemistry for CD11b, are also 

predominantly localized to the tumor periphery and necrotic areas (Figure 4-11 C). Just as 

seen with CD45, CD11b+ immune cell infiltration is independent of JUNB in EO771.LMB 

primary tumors and unchallenged lungs. In contrast, in pre-metastatic lungs from Junb KO 

animals, significantly more CD11b+ myeloid cells were detected (Figure 4-11 B, C, E+F). Of 

note is thereby, that, as opposed to Ptprc, the observed change in Itgam expression is more 

than 2-fold between KO and CTR or WT (Figure 4-11 D). This finding, in addition to 

corresponding spatial patterns, indicates, that the observed phenotype of enhanced CD45+ 

immune cell infiltration is likely due to an increase in CD11+ myeloid cells. 

 

Figure 4-11: JUNB influences accumulation of CD11b+ myeloid cells in EO771.LMB primary tumors and 
pre-metastatic lungs.  

Itgam expression is higher on RNA level in tumors (A) and pre-metastatic lungs (D) derived from KO animals but 

not in unchallenged lungs (D). An enhanced infiltration of CD11b+ immune cells in KO mice, as determined by 

immunohistochemistry for CD11b, is not visible in primary tumors (B, C) and lungs of unchallenged mice (E, F) but 

in lungs of EO771.LMB tumor-bearing animals (E, F). Quantification of CD11b+ area was performed on whole 

sections of primary tumors or lungs. In primary tumors, CD11b+ cells were present especially at the periphery of 

the tumor and within necrotic areas (C), in the lungs CD11b+ cells were evenly distributed throughout the tissue 

(F). Scale bar 200 µm, inset shows magnification with scale bar 50 µm. Significance assessed by Kruskal-Wallis 

test with P<0.05 as the limit of significance. *P≤0.05; **P<0.01; ***P<0.001, ****P<0.0001. 
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4.3.3.1.2. Macrophages 

One prominent cell type of the myeloid lineage are macrophages. The association between 

macrophages and tumorigenesis has been described elaborately coining the term “Tumor-

associated macrophages” (TAMs). Multiple reports have come to the conclusion that TAMs 

can have both tumor-suppressive and tumor-promoting functions, leading to the concept of an 

M1 versus M2 phenotype, respectively [279]. Over time, it has, however, become increasingly 

clear, that the impact of macrophages on tumor cells cannot clearly be differentiated into M1 

versus M2 but is much more complex. One potential explanation for these observed 

phenotypical differences is based on the feature that macrophages can already be present in 

the tissue as tissue-resident macrophages or differentiate from monocytes which are recruited 

to inflammatory sites. Depending on the differentiation status, localization and signals from the 

microenvironment, these cells have different functions in homeostasis and inflammation as 

well as in regard to inflammatory cytokine secretion [280].  

Upon examination of the localization of CD45+ as well as CD11b+ immune cells, it was 

apparent that these cells preferentially localized either to necrotic areas or along the tumor 

periphery, close to the tumor-stroma interphase. As macrophages appear to line up around 

the tumor border or accumulate in necrotic areas, it seemed reasonable to investigate cells of 

the monocyte/macrophage lineage.  

The F4/80 molecule has originally been described as being solely expressed by murine 

macrophages. Since then it has also been found to be expressed by other immune cell types 

and it was shown that F4/80 expression is not uniformly throughout the different macrophage 

subsets [281]. Yet, F4/80 remains the pan-macrophage marker predominantly used in order to 

identify macrophages irrespective of whether they are tissue-resident or monocyte-derived. 

Therefore, F4/80 was also used in this study, in order to clarify whether F4/80+ macrophages, 

or macrophages expressing adhesion G protein-coupled receptor E1 (Adgre1) on RNA level, 

compose the predominant myeloid cell type present in high numbers in pre-metastatic lungs 

of Junb KO animals. In line with previous experiments, gene expression was analyzed in 

EO771.LMB primary tumors and lungs isolated from unchallenged or EO771.LMB tumor-

bearing mice. No statistical difference was detected for Adgre1 expression in primary tumors 

and unchallenged mice, whereas a slight but significant increase was noticed in pre-metastatic 

lungs of KO mice (Figure 4-12 A+B). It should be noted, that Adgre1 expression in pre-

metastatic lungs was generally at a similar level as in lungs of unchallenged mice, indicating 

that it was not specifically induced in the tumor setting. Furthermore, immunohistochemistry 

for F4/80 confirmed on protein level, that macrophage infiltration into primary tumors was 

independent of JUNB (Figure 4-12 C+D). Moreover, F4/80+ cells were predominantly localized 

around the tumor periphery but not so much in necrotic areas of EO771.LMB tumors. This 

provides a further indication that macrophages are not the cell population primarily altered in 

JUNB-deficient mice because both CD45+ and CD11b+ cells were accumulated not only at 

the tumor border but also in necrotic areas. To further support this notion, I measured gene 

expression of Cd163 in primary tumors and lungs. CD163 had been described as an alternative 

pan-macrophage marker and had been proposed by some authors to be M2-specific [282, 

283]. This does, however, remain controversial, as M2-specificity has been disproved by 

others [284]. Alike Adgre1, Cd163 was slightly, albeit non-significantly, increased in primary 

tumors from KO mice but no regulation was obvious neither in unchallenged nor in pre-

metastatic lungs (Figure 4-12 E+F). Macrophages therefore do not seem to be the 

predominant immune cell type being accumulated in the lungs of tumor-bearing animals upon 

JUNB loss. 
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Figure 4-12: Deletion of stromal Junb does not affect macrophage abundance in EO771.LMB primary 
tumors and only mildly influences macrophage count in pre-metastatic lungs.  

In primary tumors, markers of the monocyte and macrophage lineage are not consistently regulated by JUNB on 

RNA level: Adgre1 (A), Cd163 (E) and Ly6c (G). Similarly, in unchallenged as well as pre-metastatic lungs: Cd163 

(F) and Ly6c (H) are not consistently upregulated in Junb KO mice. A significant increase was found in Adgre1 

expression in pre-metastatic lungs from KO animals (B). That JUNB has no effect on F4/80+ macrophages in 

primary tumors was confirmed by immunohistochemical staining of F4/80 (C+D). Quantification of F4/80+ area was 

performed on whole sections of primary tumors. Scale bar 200 µm, inset shows magnification with scale bar 50 µm. 

Significance assessed by Kruskal-Wallis test with P<0.05 as the limit of significance. *P≤0.05, **P<0.01. 
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Nevertheless, in order to exclude the possibility, that not terminally-differentiated macrophages 

but monocytes are increased, gene expression analysis was conducted for Ly6c [280]. Ly6c 

expression was significantly different between the genotypes in primary EO771.LMB tumors 

(Figure 4-12 G), albeit variations among individuals were rather high. An increase was also 

visible in Junb KO pre-metastatic lungs but did not reach significance (Figure 4-12 H). Since 

in primary tumors Adgre1 and Ly6c expression was inconsistent and in pre-metastatic lungs 

the fold change difference between the genotypes was not as substantial as for Itgam, I 

concluded that the increased CD11b+ immune cell infiltration was not due to cells of the 

macrophage/monocyte lineage.  

4.3.3.1.3. NK cells 

NK cells are another essential cell type of the innate immune response and can kill target cells 

without the necessity of prior priming. NK cells are important in the control of early-disease 

cancer and ablation of NK cells has been demonstrated to fuel tumor progression and 

metastasis [285, 286]. Despite this clear anti-tumoral function, NK cells have also been found 

accumulated in breast and colorectal cancer and have been correlated to tumor progression 

[287, 288]. NK cells are furthermore positive for CD11b, and, thus, could be the cell type 

previously observed in high numbers in tumor-bearing KO animals. Consequently, I identified 

NK cells by gene expression analysis of killer cell lectin-like receptor subfamily b member 1c 

(Klrb1c), which is coding for the pan-NK cell marker NK1.1. Klrb1c was significantly 

upregulated in EO771.LMB primary tumors isolated from Junb KO mice but expression was 

comparable in unchallenged as well as pre-metastatic lungs (Figure 4-13 A+B). As the primary 

difference in CD11b+ immune cell infiltration had been seen in pre-metastatic lungs rather than 

primary tumors, NK cells are most likely not the predominant cell type being affected upon 

JUNB loss.  

 

Figure 4-13: Presence of NK cells is different in EO771.LMB primary tumors and lungs with stromal Junb 
ablation.  

JUNB loss does promote NK cell infiltration into primary tumors (A) but does not affect NK cell accumulation in 

unchallenged lungs or lungs from tumor-bearing mice (B) as determined by gene expression analysis for Klrb1c. 

Significance assessed by Kruskal-Wallis test with P<0.05 as the limit of significance. **P<0.01. 
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4.3.3.1.4. Polymorphonuclear cells (PMNs) 

Despite the analysis of all these different innate immune cells, the identity of the cell type 

occupying the necrotic areas in primary EO771.LMB tumors and seemingly accumulated more 

in tumors derived from KO mice remained to be clarified. Closer examination of 

immunohistochemical sections stained for CD45 (Figure 4-10 C) and CD11b (Figure 4-11 C) 

revealed that especially very small leukocytes had invaded into these necrotic areas arguing 

for small lymphocytes or PMNs. PMNs, also called granulocytes, make up a substantial 

proportion of leukocytes in peripheral blood of mice. Neutrophils are the most prominent 

subtype with 20-30% of total white blood cells [289]. Neutrophils are formed in the bone marrow 

and are, due to their very short life span of only a few hours, constantly released into the 

circulation. Upon inflammation, neutrophils are the first immune cell type to arrive at sites of 

injury, typically within minutes [290]. Besides their role in resolving infections, neutrophils have 

also been implicated in tumorigenesis where they have been associated with both tumor-

promoting [91, 96] and suppressive properties [92]. Irrespective of whether pro- or anti-

tumorigenic, neutrophils were reported to accumulate in tumor pre-conditioned organs before 

arrival of tumor cells [91, 92, 96].  

In order to clarify whether neutrophils also accumulated in tumors and pre-metastatic lungs of 

the EO771.LMB model, I examined these tissues by gene expression analysis for Ly6g and 

stained paraffin sections with anti-neutrophil antibody 7/4, which has been demonstrated to 

recognize LY6B.2 [291]. On RNA level, Ly6g was statistically significantly upregulated in 

EO771.LMB primary tumors from KO mice by approximately 2.5-fold (Figure 4-14 A). In line 

with this finding, increased accumulation of LY6B.2+ neutrophils could also be confirmed on 

protein level by immunohistochemistry (Figure 4-14 B+C). In agreement with data obtained 

with CD45 and CD11b, Ly6B.2+ cells localized preferentially to necrotic areas within the tumor 

core (Figure 4-14 C). That these cells also exhibited a roundish morphology and were of similar 

size as CD45+ or CD11b+ cells in necrotic areas, further indicated that the previously observed 

small leukocytes could indeed be neutrophils. Analysis of pre-metastatic lungs yielded an even 

more convincing picture: Ly6g was upregulated approximately 6-fold in lungs isolated from 

tumor-bearing KO mice, while being only slightly induced in non-tumor-bearing KO animals 

(Figure 4-14 D). The same was true for the protein level. Already qualitative assessment of 

immunohistochemical stainings for LY6B.2 showed an enhanced neutrophil infiltration into the 

pre-metastatic KO lungs, which was further substantiated by quantitative analysis (Figure 

4-14 E+F). In the lungs of tumor-bearing KO mice, 3.7 times more Ly6B.2+ cells had 

accumulated compared to WT and CTR, whereas no increase in accumulation was visible in 

unchallenged mice. Also, S100a8 and S100a9, which are abundantly expressed in the cytosol 

of neutrophils, were strongly upregulated 5-fold and 4-fold, respectively (Figure 4-14 J+K), 

further supporting the notion, that neutrophils are indeed the cell type accumulated upon JUNB 

loss. Moreover, the expression pattern of S100a8 and S100a9 also corresponded with Ly6g in 

unchallenged mice further indicating that S100a8 and S100a9 may indeed be derived from 

neutrophils in this setting.  

At last, I investigated whether this accumulation of neutrophils to pre-metastatic lungs was 

specific for the EO771.LMB model or was a more common phenomenon observed upon Junb 

ablation in the stroma. In fact, Ly6g was found to be even higher expressed in pre-metastatic 

lungs of the LL/2-Luc model when compared to the EO771.LMB model (Figure 4-14 G). In the 

B16F10 model, neutrophil infiltration into the pre-metastatic lungs was similar to the 

EO771.LMB model as quantified by immunohistochemistry for Ly6B.2 (Figure 4-14 H+I). 
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Figure 4-14: Junb deletion leads to neutrophil accumulation in primary tumors and pre-metastatic lungs in 
the EO771.LMB, B16F10 and LL/2-Luc model.  

In the EO771.LMB model, enhanced neutrophil infiltration in KO mice was detected by gene expression analysis of 

Ly6g in primary tumors (A) and pre-metastatic lungs (D). This was confirmed by immunohistochemistry using the 

neutrophil marker 7/4 in EO771.LMB primary tumors (B+C) and in pre-metastatic but not in unchallenged lungs 

(E+F). Enhanced neutrophil recruitment to pre-metastatic lungs was also observed by gene expression analysis in 

the LL/2-Luc model (G) and by immunohistochemistry in the B16F10 melanoma model (H+I). In line with increased 

Ly6g expression, S100a8 (J) and S100a9 (K) were also upregulated in lungs of EO771.LMB tumor bearing KO 

animals. Quantification of Ly6B.2+ area was performed on whole sections of primary tumors or lungs. Scale bar in 

overview 200 µm, insert shows a magnification, scale bar 50 µm. Significance assessed by Kruskal-Wallis test with 

P<0.05 as the limit of significance. *P<0.05; **P<0.01; ***P<0.001, ****P<0.0001. 
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Overall, this high upregulation of Ly6g and Ly6B.2 in primary tumors and pre-metastatic lungs 

of KO mice together with the staining patterns of LY6B.2 resembling both CD45 and CD11b 

led to the conclusion that neutrophils are the predominant cell type recruited to these tissues. 

In summary, significantly more neutrophils did accumulate in the lungs of mice lacking Junb in 

the stroma compared to Junb+/+ mice.  

4.3.3.2. Deletion of JUNB in the stroma does not impact recruitment of adaptive immune cells 

The significantly enhanced infiltration of neutrophils into primary tumors as well as into pre-

metastatic lungs of mice with stromal JUNB loss does, however, not exclude that JUNB may 

also have an impact on cells of the adaptive immune system. The adaptive immune response 

is the second arm of immunity, which copes with infections that could not be resolved entirely 

by innate immune cells. The adaptive immunity is only initiated upon contact with innate 

immune cells, such as dendritic cells, functioning as antigen-presenting cells. This initial 

contact results in the activation of T lymphocytes and subsequent differentiation of 

B lymphocytes into antibody-producing plasma cells. The interaction with the innate immune 

system is crucial during infections, but also in tumorigenesis, innate immune cells engage with 

components of the adaptive immune system in multiple ways. In particular, neutrophils have 

been shown to influence cytotoxic T cells and regulatory T cells thereby either promoting or 

inhibiting tumor progression [91]. Consequently, I analyzed primary EO771.LMB tumors and 

pre-metastatic lungs for T cell infiltration in order to determine whether JUNB and JUNB-

mediated neutrophil accumulation may have an impact on the recruitment.  

 

Figure 4-15: CD3+ T cell infiltration in the primary EO771.LMB tumor but not into pre-metastatic lungs is 
negatively influenced by JUNB ablation.  

CD3 expression was markedly reduced in tumors from KO mice as analyzed by gene expression analysis for CD3ε 

(A) or immunohistochemistry for CD3 (B+C). In pre-metastatic and unchallenged lungs, no difference was observed 

neither on RNA (D) nor protein level (E+F). Quantification of immunohistochemistry was performed on whole lung 

or tumor sections. Representative images are shown in (C) for tumors and (F) for lungs. Scale bar 200 µm in larger 

image, inserted magnifications have a scale bar of 50 µm. Significance assessed by Kruskal-Wallis test with P<0.05 

as the limit of significance. *P<0.05; **P<0.01; ***P<0.001, ****P<0.0001. 
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To gain a first insight, CD3+ T cells were examined. By gene expression analysis for CD3ε, a 

significantly reduced expression was detected in EO771.LMB primary tumors from KO mice 

(Figure 4-15 A). As expression was, however, also markedly different between WT and CTR 

mice, no clear conclusion could be drawn yet. Nevertheless, expression of CD3 varies 

considerably between T cell subtypes. In order to clarify, whether total numbers of T cells could 

be affected rather than the composition of the T cell infiltrate, immunohistochemistry for CD3 

was performed. Quantification revealed, that CD3+ T cell infiltration, approximated by 

determining CD3+ areas, was in fact similar between WT and CTR mice but significantly lower 

in KO mice (Figure 4-15 B+C). In contrast, examination of unchallenged and pre-metastatic 

lungs did not reveal changes in CD3+ T cell contents, neither by expression analyses nor by 

immunohistochemical staining (Figure 4-15 D, E+F). This led me to conclude, that JUNB does 

not influence CD3+ T cell recruitment to the lungs but may have an adverse impact on 

infiltration into the primary tumor in the EO771.LMB model. 

In order to assess whether T cells are generally impeded from migrating into the primary 

tumors in Junb KO mice, or whether some class of T cells is preferentially hindered, I 

proceeded with the analysis of T cell subtypes. Regulatory T cells (Tregs) as well as CD8+ T 

cells are thereby the most prominent subtype in the context of cancer.  

 

Figure 4-16: FOXP3+ regulatory T cells accumulate in EO771.LMB primary tumors and lungs independently 
of JUNB.  

Infiltration of Tregs was quantified by qRT-PCR on RNA level for Foxp3 in EO771.LMB primary tumors (A) and 

unchallenged as well as pre-metastatic lungs (B). Accumulation of Tregs was further assessed on protein level by 

immunohistochemistry for FOXP3 (D); quantification of immunohistochemistry in (C). No consistent regulation of 

Tregs was observed in any of these settings. For quantifications, whole sections of primary tumors were used, 

representative images are shown in (D) with scale bar 200 µm. Magnifications are presented as insets with scale 

bar 50 µm. Significance assessed by Kruskal-Wallis test (with Dunnett’s multiple comparison test in C) with P<0.05 

as the limit of significance.*P<0.05; **P<0.01. 
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Treg differentiation and function critically depends on the expression of the transcription factor 

FOXP3. As FOXP3 is claimed to be specifically expressed by Tregs [292, 293], this marker 

was utilized to assess the presence of Tregs in primary tumors and pre-conditioned lungs. 

Gene expression analysis of Foxp3 revealed a similar trend as detected for CD3ε with tumors 

derived from KO mice exhibiting the lowest expression but also substantial differences 

between WT and CTR mice were detected (Figure 4-16 A). This inconsistency was confirmed 

by immunohistochemical analysis of FOXP3+ cells. Thereby, no clear JUNB-dependency 

could be observed (Figure 4-16 C+D). Similar expression patterns were also detected in pre-

metastatic lungs (Figure 4-16 B). Foxp3 expression was at a comparable level between CTR 

and KO mice but significantly higher in WT animals. High variations in unchallenged lungs 

furthered the impression, that FOXP3+ Tregs were not regulated in a JUNB-dependent manner 

in this model.  

Apart from Tregs, also cytotoxic T cells are essential cellular components of the adaptive 

immune response which in addition have crucial functions during tumor progression. Besides 

NK cells, cytotoxic T cells are the main players in recognition and subsequent eradication of 

transformed cells. Cytotoxic T cells are, thus, an immensely important pillar in anti-tumor 

immunity.  

As stromal Junb ablation did result in an overt metastatic phenotype in mice, I was wondering 

whether not only neutrophils were contributing to this effect but also cytotoxic T cells may be 

excluded from the tumor mass or suppressed in their function. Cytotoxic T cells are generally 

defined as being CD8+ T cells. Consequently, the abundance of cytotoxic T cells was 

evaluated by gene expression analysis of CD8α. In primary EO771.LMB tumors, expression 

of CD8α was significantly altered depending on the genotype (Figure 4-17 A). Yet, levels of 

CD8α were considerably higher in tumors derived from WT mice but more similar between 

CTR and KO mice. This discrepancy between WT and CTR mice could be the result of CD8α 

expression by other cell types, such as NK cells. In order to assure that only CD8+ T cells are 

evaluated, CD8 was co-stained together with the pan-T cell marker CD3 on histological 

sections. In line with previous immunohistochemical stainings, the paucity of CD3+ cells was 

apparent in tumors from KO mice, but no obvious difference was detected in the number of 

CD8+ T cells (Figure 4-17 D). For quantification, a macro for ImageJ was utilized enabling 

automated analysis. In this macro, the co-localization of CD3 and Hoechst identified CD3+ 

cells in a previously selected area. If CD3+ cells were additionally positive for CD8, they were 

regarded as CD8+ T cells. Quantification of the immunofluorescent images confirmed the initial 

impression that the number of CD8+ T cells in EO771.LMB tumors was not influenced by Junb 

KO in the stroma (Figure 4-17 C). Similar to primary tumors, no changes in CD8+ cell infiltration 

were observed by gene expression analysis for CD8α neither in unchallenged lungs nor in 

those isolated from tumor-bearing mice (Figure 4-17 B). In agreement with these data, the 

number of CD8+ T cells was also not affected by Junb loss in pre-metastatic lungs when 

assessed by immunofluorescence for CD3 and CD8 as described above (Figure 4-17 E+F). 

Overall, these findings imply that JUNB does not control the numbers of CD8+ T cells infiltrating 

primary tumors or accumulating in pre-metastatic lungs.  

In conclusion, I could not detect any overt JUNB-dependent changes in the recruitment of 

adaptive immune cells to EO771.LMB primary tumors or lungs isolated from tumor-bearing 

mice. Although a significant decrease in the number of CD3+ T cells was observed in primary 

tumors, this difference could not be explained unambiguously by changes in regulatory or 

cytotoxic T cells. Variations among the genotypes were rather high, especially for FOXP3+ 

cells, so that no clear correlation with JUNB loss could be determined.  
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Figure 4-17: Infiltration of cytotoxic T cells is not affected by JUNB loss.  

Infiltration of CD8+ cells was determined by gene expression analysis for CD8α in EO771.LMB primary tumors (A) 

and unchallenged as well as pre-metastatic lungs (B). No consistent JUNB-dependent regulation was detected. 

This was further confirmed by quantification of CD3 and CD8 double positive cells by immunofluorescence in 

EO771.LMB primary tumors (C) and pre-metastatic lungs (E). Quantification was performed in an automated 

manner using a macro for ImageJ on randomly selected T-cell rich fields of the tumor or lung. At least 150 CD3+ 

cells were analyzed for each tumor and at least 300 CD3+ cells for each lung. Representative pictures of T cell-rich 

areas stained for CD3 and CD8 in the tumor (D) and in the lung (F) are shown. CD3+ T cells are labelled in red, 

CD8+ cells are marked in green, nuclear staining by Hoechst in gray. CD3 and CD8 double positive cells appear 

yellow. Left panel shows the overlay with nuclear Hoechst staining, the right panel shows co-localization of CD3 

and CD8 in some cells. Scale bar 200 µm, a blow up is displayed in the inset, scale bar 50 µm. **P<0.01. 

Significance assessed by Kruskal-Wallis test with P<0.05 as the limit of significance. **P<0.01. 

In summary, assessment of immune cell infiltration clearly showed an upregulation of CD45+ 

and CD11b+ myeloid cells in EO771.LMB primary tumors but even more strikingly in pre-
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metastatic lungs isolated from Junb KO mice. More in depth analyses of cellular components 

of the adaptive and innate immune system identified neutrophils as being the predominant 

cells affected by loss of JUNB, based on cell size and morphology as well as specific marker 

expression of Ly6g and LY6B.2. This observation provides first evidence, that JUNB may affect 

distant metastasis by controlling neutrophil recruitment to pre-metastatic organs.  

4.4. Mechanistic assessment of JUNB-dependent neutrophil recruitment 

After investigations of various cellular components of the tumor microenvironment had led to 

the conclusion, that predominantly neutrophil recruitment was enhanced upon stromal JUNB 

loss, several questions still remained. Was the effect of JUNB on neutrophil infiltration direct 

or was it indirectly conveyed by another cell type? Was it mediated by a factor secreted by the 

tumor microenvironment or the tumor itself? Which cell type upregulated potential neutrophil 

attracting chemokines or cytokines? In order to shed some light on these open questions, 

neutrophil recruitment was analyzed in more detail. Furthermore, in vivo experiments were 

performed to differentiate whether the metastatic phenotype was due to JUNB loss in the 

stroma or in the hematopoietic system. Finally, it was addressed whether neutrophils were 

directly responsible for enhanced metastasis in Junb KO mice.  

4.4.1. Neutrophil-recruiting factors are regulated in a JUNB-dependent manner in 

EO771.LMB primary tumors and pre-metastatic lungs 

The neutrophil pool in the circulation has to be constantly replenished due to the short life span 

of only a few hours in mice [294]. Neutrophil production and recruitment are therefore tightly 

controlled. Abnormalities in one of the regulating mechanisms can lead to either deficiencies, 

manifesting as recurrent infections, or excess leading to severe inflammation and associated 

tissue damage [295]. Neutrophils are produced in the bone marrow cavity from granulocyte-

macrophage progenitors (GMP). After maturation, neutrophils are retained within the bone 

marrow via CXCR4-CXCL12 (SDF1) chemokine signaling. Release of mature neutrophils into 

the circulation is subsequently regulated by CXCR2 signaling, predominantly mediated by 

granulocyte-colony-stimulating factor (G-CSF). Upon inflammatory stimuli, G-CSF can be 

augmented potentiating the egress from the bone marrow partly also by reducing CXCL12 

expression by bone marrow stromal cells [296-298]. Further cytokines, such as tumor necrosis 

factor alpha (TNFα) [294], Interleukin-8 (IL-8) [294], Interleukin-1 alpha (IL-1α) [299] and 

Interleukin-1 beta (IL-1β) [300-302] have also been reported to promote neutrophil 

mobilization. In the circulation, neutrophils subsequently react to chemotactic signals, such as 

chemokine (C-X-C motif) ligand 1 (CXCL1, KC), CXCL2 (MIP-2) and CXCL5 (LIX), which are 

the murine orthologues of human IL-8, promoting the recruitment into peripheral tissues [303]. 

Besides these classical chemokines, also further factors have been reported to stimulate 

neutrophil recruitment, namely: CCL2 (monocyte chemoattractant protein 1, MCP-1) [304], 

CCL5 (Regulated upon Activation, Normal T cell Expressed, and Secreted; RANTES) [305], 

Osteopontin [306] and Lipocalin 2 [307].  
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Figure 4-18: Loss of stromal Junb impacts neutrophil-attracting chemokines.  

Expression levels were determined by qRT-PCT of bulk tumors derived from mice with or without JUNB in the 

stroma, as well as in EO771.LMB cells in vitro: Cxcl1 (A), Cxcl2 (B), Cxcl5 (C), Ccl2 (G), Ccl5 (H) and Cxcl12 (I). In 

parallel, these factors were also investigated in lungs isolated from unchallenged or tumor-bearing mice (D-F, J-L). 

Data are represented as geometric mean. Significance was assessed by Kruskal-Wallis test with P<0.05 as the 

limit of significance. *P≤0.05 and **P<0.01. 

In order to determine whether JUNB regulates neutrophil infiltration by influencing gene 

expression of these key neutrophil recruiting factors, existing material of tumors and lungs was 

analyzed by qRT-PCR. In addition to the analysis of bulk tumors derived from Junb KO or 

respective control animals, also pure EO771.LMB cells isolated in vitro were assessed. This 

was necessary in order to differentiate between factors derived from the tumor cells 

themselves and the tumor microenvironment. In a first set of factors, neutrophil chemotactic 

factors were studied. All these chemokines, Cxcl1, Cxcl2, Cxcl5, Ccl2 and Ccl5, except for 

Cxcl12 were expressed by EO771.LMB cells, indicating that Cxcl12 is solely expressed by 
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cells of the tumor microenvironment (Figure 4-18 A-C, G-I). In contrast to all other factors, 

Cxcl1 was expressed 2.3 times higher EO771.LMB cells than in the tumor bulk, implying that 

tumor cells may be its predominant source. No JUNB-dependent regulation was observed for 

Ccl2 and Ccl5, where expression levels were similar or inconsistent between the genotypes 

(Figure 4-18 G+H). For Cxcl1, Cxcl2 and Cxcl5 a higher expression was detected in tumors 

derived from KO mice compared to controls but this did not reach significance for Cxcl5 (Figure 

4-18 A-C). For Cxcl2, not only KO mice but also WT mice showed elevated expression 

compared to CTR animals (Figure 4-18 B). In unchallenged or pre-metastatic lungs, no 

significant changes were observed for any chemokine except for Cxcl12 implying that these 

factors may not play a decisive role in JUNB-dependent neutrophil recruitment to the lungs 

(Figure 4-18 D-F, J-L). Cxcl12 was the only chemokine which showed differential expression 

upon JUNB loss which was only observed in pre-metastatic but not in unchallenged lungs 

(Figure 4-18 L). Consistently with the required downregulation of Cxcl12 for mobilization of 

neutrophils from the bone marrow, Cxcl12 levels were decreased in pre-metastatic compared 

to unchallenged lungs. Contrary to the increased accumulation of neutrophils in pre-metastatic 

lungs of KO mice, Cxcl12 was, however, 40% higher expressed in KO than in CTR and WT. 

Apart from Cxcl2, no major upregulation of chemokines was moreover observed in pre-

metastatic compared to unchallenged lungs indicating that neutrophil accumulation in tumor-

bearing animals may be due to different mechanisms other than upregulation of these 

chemoattractant molecules.  

In a second set of factors, which have been described to function as neutrophil recruiters, some 

more conclusive data could be obtained. In agreement with the analysis of the first set, gene 

expression was quantified by qRT-PCR on tumor bulk and EO771.LMB cells as well as 

unchallenged and pre-metastatic lungs. In contrast to Il-1α, Spp1 (Osteopontin) and Lcn2 

(Lipocalin-2), no expression of Il-1β, Tnfα and Csf3 (G-CSF) could be observed in tumor cells 

alone, indicating that these factors are purely derived from the tumor microenvironment (Figure 

4-19 A-C, G-I). Although significant differences in expression were observed for Csf3 and 

Spp1, no consistent JUNB-dependence could be noticed, excluding these factors as potential 

key regulators (Figure 4-19 G+H). For Il-1α, Il-1β, Tnfα and Lcn2, an increase in expression 

could be detected upon loss of Junb by 2.3, 2.9, 1.6 and 7.7-fold, respectively (Figure 4-19 A-

C; I). This was particularly consistent for Il-1β and Tnfα.  

Interestingly, expression of these factors was also affected in pre-metastatic lungs. In 

particular, Il-1β was clearly upregulated 4-fold in pre-metastatic KO lungs, whereas this 

increase was much milder in unchallenged lungs (Figure 4-19 E). The expression pattern of 

Il-1β therefore corresponds well with the previously observed neutrophil infiltration. Enhanced 

expression in pre-metastatic lungs was also detected for Tnfα and Lcn2, albeit not as 

consistently (Figure 4-19 F+L). For Il-1α, Csf3 and Spp1 no regulation of gene expression in a 

JUNB-dependent manner was detected (Figure 4-19 D, J+K). In the case of Il-1α, expression 

was even diminished in pre-metastatic compared to unchallenged lungs.  

In conclusion, Il-1β and Tnfα display an expression pattern, which is dependent on JUNB and 

correlates very well with the numbers of neutrophils, both in EO771.LMB primary tumors as 

well as in pre-metastatic lungs. The fact that Il-1β and Tnfα could hardly be detected in 

EO771.LMB breast cancer cells, further supports the assumption that these factors are derived 

from the stroma. In addition, also classical neutrophil attracting chemokines, such as Cxcl1, 

Cxcl2 and Cxcl5 showed enhanced expression, which was, however, only observed in primary 

tumors but not in lungs.  
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Figure 4-19: Stromal Junb ablation influences the expression of neutrophil-attracting factors.  

Expression was quantified by qRT-PCT in the tumor bulk isolated from mice with stromal Junb deletion or respective 

controls, as well as in EO771.LMB cells in vitro: Il-1α (A), Il-1β (B), TNFα (C), Csf3 (G), Spp1 (H) and Lcn2 (I). In 

parallel, these factors were also investigated in lungs isolated from unchallenged or tumor-bearing mice (D-F, J-L). 

Data are represented as geometric mean. Significance was assessed by Kruskal-Wallis test with P<0.05 as the 

limit of significance. *P≤0.05 and **P<0.01. 

Taken together, these data provide a first clue that alterations in neutrophil-recruiting factors 

may indeed play a role in JUNB-dependent neutrophil infiltration and metastasis.  
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4.4.2. Functional assessment of neutrophils in JUNB-dependent metastasis 

After identifying Il-1β and TNFα as potential key factors regulating neutrophil infiltration in the 

EO771.LMB primary tumors and pre-metastatic lungs, the cell type serving as their source, 

still had to be identified. Furthermore, a direct proof was missing, that indeed neutrophils 

facilitated metastasis to the lungs. Thus, in order to identify, whether JUNB loss in neutrophils 

was required for the observed metastatic phenotype, two approaches were followed: (I) bone 

marrow transplantations were performed to determine whether JUNB in the stroma or in cells 

derived from the hematopoietic system was essential, and (II) neutrophils were depleted 

pharmacologically using an antibody specifically targeting neutrophils.  

4.4.2.1. Identification of cell type: bone marrow transplantations 

In the first approach, mice with stromal ablation of Junb were subjected to bone marrow 

transplantations in order to decipher, whether the enhanced metastatic burden was due to 

JUNB loss in cells derived from the hematopoietic compartment, such as immune cells, or from 

the stroma, for example endothelial cells or fibroblasts. With this experiment it should further 

be clarified, whether neutrophil accumulation upon Junb KO was due to a neutrophil-intrinsic 

mechanism or whether secretion of neutrophil-recruiting factors by stromal cells was decisive.  

For bone marrow transplantations, WT or Junb KO mice were lethally irradiated and 

subsequently reconstituted with bone marrow isolated either from WT or KO mice. This 

experimental setup resulted in a total of four groups: WT donor-WT recipient (WT>WT), KO 

donor-WT recipient (KO>WT), WT donor-KO recipient (WT>KO) and KO donor-KO recipient 

(KO>KO). In order to be able to differentiate between bone marrow donor and recipient, mice 

expressing different isoforms of CD45, which can be differentiated by flow cytometric analysis, 

were used: CD45.1 or CD45.2. Junb KO mice are congenic C57BL/6N and consequently 

express the alloantigen CD45.2. Depending on the experimental group, respective WT mice 

were chosen being either positive for CD45.1 or CD45.2. As Junb KO mice, had not previously 

been backcrossed to a CD45.1 positive genetic background, donor and recipient could not be 

differentiated in the KO donor-KO recipient group. As both donor and recipient mice did, 

however, carry the same stromal deletion for Junb, this issue was disregarded. Successful 

reconstitution of the bone marrow was confirmed by flow cytometric analysis of whole blood 

using antibodies specifically labelling CD45.1 or CD45.2. After confirmation of successful 

transplantation, the spontaneous metastasis assay with the EO771.LMB cells was performed 

immediately after. The complete experimental setup is presented schematically in Figure 4-20. 
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Figure 4-20: Schematic representation of the experimental setup for the bone marrow transplantation 
experiments. 

A spontaneous metastasis assay was performed subsequently to whole body irradiation and bone marrow 

reconstitution. 

The dose for lethal irradiation is of extraordinary importance for a successful bone marrow 

transplantation. If mice are irradiated sublethally, not all hematopoietic stem cells are 

eradicated leading to low reconstitution efficiencies. Furthermore, sublethal irradiation poses 

the risk of transplant rejection. Too high doses on the other side can lead to radiation-induced 

sickness and mortality [308]. C57BL/6 mice naturally tolerate higher doses of irradiation than 

other commonly used mouse strains [309, 310]. The Junb KO mice used in this metastasis 

project have, however, never been subjected to irradiation. Due to the smaller size and the 

generally more fragile appearance, there was considerable doubt whether KO mice could 

tolerate the same doses as WT C57BL/6 mice. In order to exclude, that mice suffer from 

irradiation-induced morbidity, they were regularly checked for abnormal behavior and body 

weight. In the first days after bone marrow transplantation, all mice lost weight (Figure 4-21 A). 

Weight loss was slightly stronger in KO animals irrespective of whether they had been 

reconstituted with WT or KO bone marrow but none of the mice exceeded weight loss of 20%. 

Approximately one week after bone marrow transplantation, mice had recovered and regained 

their starting body weight. Thereafter, all experimental mice, independent of genotype, put on 

weight similarly as untreated mice. In conclusion, WT and KO mice tolerated the same dose 

of irradiation well and no morbidity was observed.  

Reconstitution efficiency was determined by flow cytometric analysis of blood four weeks after 

bone marrow transplantation. Gating on forward (FSC) versus side scatter (SSC) revealed the 

typical separation of leukocyte subpopulations: granulocytes, monocytes and lymphocytes, 

indicating that these populations are already re-established after bone marrow transplantation. 

(Figure 4-21 C). Subsequent to exclusion of cell doublets and dead cells, reconstitution 

efficiency was determined by gating on CD45.1+ versus CD45.2+ cells (Figure 4-21 D). 

Analysis of all mice, revealed a high reconstitution efficiency above 80%, which was on 

average even higher for irradiated KO mice (Figure 4-21 B). Reconstitution efficiency was 

again measured at the end point of the experiment. Efficiency further increased to above 87% 

for all groups. Mice which did not show these high efficiencies were excluded from subsequent 

analyses.  
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Figure 4-21: Body weight curves and reconstitution efficiency after bone marrow transplantation. 

Junb KO mice tolerated lethal doses of irradiation similarly well as WT mice and showed comparable reconstitution 

efficiencies after bone marrow transplantation. All groups of mice showed an initial weight loss after bone marrow 

transplantation but quickly recovered thereafter (A). Bone marrow transplantation was efficient as assessed by flow 

cytometric analysis in all groups after four weeks and was even higher at end point (B). Flow cytometry revealed 

distinct leukocyte subpopulations by gating of forward (FSC) versus side scatter (SSC): granulocytes (green), 

monocytes (purple), lymphocytes (yellow) (C). Gating strategy for the assessment of the reconstitution efficiency: 

CD45.1 versus CD45.2, a representative plot for a KO>WT mouse is shown (D). CD45.1+CD45.2+ double positive 

cell population in KO>KO mouse (E).  

Surprisingly though, for some KO mice or WT mice reconstituted with KO bone marrow, a 

CD45.1+ CD45.2+ double positive population could be observed (Figure 4-21 E). In depth 

investigation on the origin of these KO mice revealed, that originally FVB/N mice had been 

used for the generation of the Col1α2-Cre mice [234]. FVB/N mice typically express the CD45.1 

alloantigen. CD45.1 expression, thus, remained despite numerous generations of 

backcrossing. The advantage of this double positivity was, however, that the reconstitution 

efficiency could also be analyzed for one KO>KO mouse. Efficiency was thereby at a 

comparable level as for WT>KO mice (Figure 4-21 B).  

After successful establishment of these bone marrow transplantation experiments, the 

spontaneous metastasis assay was conducted subsequently. The EO771.LMB cell line was 

used, because the difference in distant metastasis upon stromal Junb deletion was only 

apparent with this cell line. In agreement with previous experiments, EO771.LMB cells were 

injected orthotopically into the mammary fat pad on day 32 after bone marrow reconstitution.  
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Figure 4-22: Primary tumor growth and distant metastasis is unaffected by JUNB deletion in either the 
hematopoietic or stromal compartment.  

(A) Primary tumor growth of EO771.LMB tumors was similar in all experimental groups. Lung metastasis was 

generally stronger in mice that had undergone bone marrow transplantations (BMT) in comparison to mice that had 

not. Representative images of hematoxylin eosin-stained lung sections of a WT>WT mouse (left) and a CTR mouse 

(right) is shown (B). Lung metastasis was similar in all experimental groups as determined by quantification of the 

mCherry reporter in genomic DNA by qRT-PCR (C) and by measuring the wet lung weight at end point (D). 

Significance was assessed by Kruskal-Wallis test (C) or One-way ANOVA (D) with P<0.05 as the limit of 

significance. *P≤0.05 and **P<0.01. 

Primary tumor growth was followed over time and was indistinguishable between the different 

experimental groups (Figure 4-22 A). In comparison to growth curves without prior bone 

marrow transplantations, tumor growth was, however, slightly delayed (Figure 4-2 C). A 

volume of roughly 500 mm3 was only reached at day 20-23 in contrast to day 17-20 in the initial 

experiments. After primary tumor removal at 500 mm3, mice were allowed to recover for 

21 days until they were euthanized and lungs were investigated for metastasis. Already upon 

macroscopic examination, lung metastasis seemed stronger in all experimental groups in 

comparison to metastatic burden of EO771.LMB tumors in mice which had not undergone 

bone marrow transplantations (BMT) (Figure 4-22 B). The impression that lung metastasis was 

also not different between the experimental groups was further confirmed by quantification of 

the mCherry reporter by qRT-PCR on DNA level and by determination of the lung weights at 

end point (Figure 4-22 C+D). Considering that Junb is lost in the same cellular compartments 

in KO mice without BMT as well as in KO>KO mice after BMT, metastatic load was expected 

to be similar. Indeed, lung metastasis in KO>KO mice did resemble the pattern observed for 

KO mice: some animals did not show any nodules, whereas others showed robust metastasis 

(Figure 4-22 C). Correspondingly, WT>WT mice should behave similar in respect to metastasis 
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as the WT and CTR group of previous experiments. In contrast to initial experiments, where 

metastasis was very weak in both control groups, after BMT, WT>WT mice showed very 

prominent lung metastasis (Figure 4-22 B+C).  

Taken together, lung metastasis was generally stronger after BMT than had been observed in 

initial experiments with EO771.LMB cells. Against expectations, lung metastasis was similar 

between all experimental groups Therefore, these data do not justify a conclusion as of 

whether JUNB loss in the hematopoietic or stromal compartment is essential for distant lung 

metastasis.  

Apart from metastasis, this experiment also had the aim to examine, whether enhanced 

neutrophil recruitment in Junb KO mice was due to a neutrophil intrinsic mechanism or whether 

it was potentially mediated by another stromal cell type. For this purpose, EO771.LMB primary 

tumors isolated from experimental mice after they had undergone BMT were analyzed for Ly6g 

expression. In contrast to tumors isolated in the previous experiments without BMT, the level 

of Ly6g expression was comparable in all groups (Figure 4-23 A). Moreover, the previously 

observed strong upregulation of Ly6g was not detected in KO mice transplanted with KO bone 

marrow. On the contrary, expression levels were more similar to WT and CTR mice. This 

implies that neutrophil infiltration into these tumors was independent from JUNB, irrespective 

of its cellular source. In order to assess, whether only neutrophil infiltration was compromised 

or also systemic levels were impacted, circulating neutrophils were investigated. Flow 

cytometric analysis of whole blood determined a substantially higher number of neutrophils, 

defined as CD11b+Ly6G+Ly6Cint, already present in unchallenged Junb KO mice compared 

to WT (Figure 4-23 B). In mice which had undergone BMT, a significant difference in circulating 

neutrophils was detected at end point (Figure 4-23 B). Mice with stromal loss of Junb showed 

trice as high levels of neutrophils than mice expressing Junb in the stroma. This was 

irrespective of whether mice had received JUNB WT or KO bone marrow during 

transplantation. These results were further supported by measuring absolute neutrophil counts 

in whole blood using the Hemavet 950FS (Drew Scientific, USA). Automated cell counting 

could not confirm the higher neutrophil count in KO mice under non-challenged basal 

conditions, but significantly different levels were noted already four weeks after BMT which 

were further enhanced at end point (Figure 4-23 D). At end point, when metastases had been 

observed, considerable more neutrophils were detected than at the beginning of the 

spontaneous metastasis assay (4 weeks after BMT) in all experimental groups. This increase 

was even more pronounced in mice lacking JUNB in the stroma, being in agreement with the 

data obtained by flow cytometry.  

As this increase in neutrophil count did, however, not completely correspond to enhanced 

metastatic burden in these animals, I expanded my investigation to other cell types. 

Monocytes, as assessed by Ly6c expression, were enhanced in pre-metastatic lungs and 

EO771.LMB primary tumors derived from JUNB KO animals (Figure 4-12 G+H). Furthermore, 

monocytes have repeatedly been associated with extravasation and metastatic seeding [311-

313]. Quantification of circulating monocyte levels, classified as CD11b+Ly6G-Ly6Chi, by flow 

cytometry, revealed a considerable higher number in non-tumor bearing KO mice than in WT 

(Figure 4-23 C). At metastatic end point, monocyte levels were increased on average by 60% 

in mice with stromal loss of Junb, which was not as strongly as neutrophil levels. No significant 

difference between the different experimental groups was observed. These findings were 

supported by absolute cell counting. Although more monocytes were detected at end point 

compared to basal levels or after BMT, absolute monocyte counts were independent of JUNB 

expression (Figure 4-23 E). 
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Figure 4-23: Neutrophil levels in mice that had undergone bone marrow transplantations.  

Neutrophil levels were quantified by expression analysis for Ly6g in EO771.LMB primary tumors isolated from 

different experimental groups (A). Levels of circulating CD11b+Ly6G+Ly6Cint neutrophils were altered depending 

on JUNB expression as assessed by flow cytometry (B), which was supported by automated cell counting (D). 

Circulating CD11b+Ly6G-Ly6chi monocytes were unaffected by JUNB loss in either cellular compartment as 

determined by flow cytometry (C) and absolute cell counting (E). Significance was assessed by Kruskal-Wallis test 

(A, B+C) or One-way ANOVA (D+E) with P<0.05 as the limit of significance. Significance was tested by unpaired t-

test for unchallenged mice (D+E). *P≤0.05, **P<0.01. 

In conclusion, these data indicate, that in particular circulating neutrophils and not monocytes 

are increased in mice with stromal Junb deletion. This argues for an indirect mechanism 

whereby neutrophil recruitment is mediated by another stromal cell type rather than a 

neutrophil intrinsic mechanism. Yet, these enhanced levels of circulating neutrophils did not 

translate into an increased infiltration into primary EO771.LMB tumors potentially pointing 

towards an adverse effect induced by whole body irradiation. This is further substantiated by 

the strikingly enhanced lung metastasis in mice which had undergone BMT in contrast to mice 

which had not been irradiated.  
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4.4.2.2. Pharmacological neutrophil depletion 

In the second approach, neutrophils were depleted pharmacologically in order to determine 

whether neutrophil accumulation is functionally linked to the enhanced metastatic burden in 

KO animals.  

For this purpose, a protocol was followed as essentially described by Coffelt et al. [91]. 

Neutrophils were depleted during the initial phase of the spontaneous metastasis assay with 

the EO771.LMB cell line, which is schematically represented in the figure below (Figure 4-24). 

 

Figure 4-24: Schematic representation of the experimental setup for the neutrophil depletion experiments. 

Neutrophils were depleted pharmacologically by repeated injections of anti-Ly6G antibody 1A8 during the initial 

phase of the spontaneous metastasis assay.  

Neutrophil depletion was achieved by repeated i.p. injections of the neutrophil-specific 

antibody anti-Ly6G (clone 1A8). The control group received the respective isotype control anti-

trinitrophenol (clone 2A3) at the same time intervals, injection volumes and dose. Depletion 

was initiated at day 2 after tumor cell injection when the primary tumor was already palpable. 

Subsequently, antibody treatments were repeated every 2-3 days for a total of seven injections 

until the primary tumor had reached a volume of 500 mm3. Then, the primary tumor was 

excised and mice were sacrificed for the analysis of distant metastasis 21 days after. In order 

to determine the efficiency of the neutrophil depletion, circulating neutrophil levels were 

assessed in whole blood. For this reason, blood was drawn from the tail vein once a week 

starting the day after the first antibody injection. Whole blood was analyzed by multi-color flow 

cytometry. In parallel, automatic cell counting was performed in order to determine absolute 

neutrophil counts and to confirm data obtained by flow cytometry.  
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Figure 4-25: Gating strategy for flow cytometric analysis accurately identified myeloid cells, monocytes and 
neutrophils in whole blood.  

Whole blood is subjected to erythrocyte lysis and subsequently stained with a multi-color panel, in order to identify 

all CD11b+ myeloid cells (A, E) and Gr1hiLy6Cdim neutrophils and Ly6C+Gr1dim monocytes (B, F), as shown for a 

representative example of mice treated with 2A3 isotype control. Correct gating on monocytes was confirmed by 

positive staining for CCR2 (C). Neutrophils were CCR2- (D). Upon treatment with depleting antibody anti Ly6G 

(1A8) no difference was observed in total CD11b+ myeloid cells (E) and Ly6C+Gr1dim monocytes but Gr1hiLy6Cdim 

neutrophils were shifted left (F). 

For flow cytometric analysis, all myeloid cells were identified by CD11b staining after 

erythrocyte lysis and exclusion of doublets and dead cells (Figure 4-25 A). For identification of 

monocytes and neutrophils, a different strategy was applied than for the analysis of the bone 

marrow experiments. As anti-Ly6G 1A8 was used for depletion in vivo, the same antibody 

clone could not be used for analysis ex vivo due to potential false-negative results [314]. 

Analysis was therefore performed with anti-Gr1 (clone RB6-8C5), which recognizes both Ly6C 

and Ly6G. In order to differentiate between monocytes and neutrophils, a co-staining with Ly6C 

was, thus, required. Gating on CD11b+ myeloid cells revealed two distinct populations: 

Gr1hiLy6Cdim neutrophils and Ly6C+Gr1dim monocytes (Figure 4-25 B). Accurate identification 

was subsequently confirmed by analysis of CCR2 expression. Thereby, monocytes stained 

positive for CCR2, whereas neutrophils were negative for CCR2, verifying the applied gating 

strategy (Figure 4-25 C+D). When blood was isolated from mice injected with isotype control 

(2A3), neutrophils stained highly positive for Gr1 (Figure 4-25 B). Upon treatment with 

depleting antibody 1A8, a left shift of the neutrophil population was observed (Figure 4-25 F). 

As binding of antibody 1A8 has, however, also been reported to interfere with RB6-8C5 

binding, this implies that neutrophils indeed bound anti-Ly6G 1A8. In order to account for this 

shift, the neutrophil gate was adjusted for mice treated with anti-Ly6G.  
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Figure 4-26: Quantification of immune cell populations after treatment with neutrophil depleting antibody 
1A8 or respective isotype control. 

Levels of CD11b+ myeloid cells were not affected by 1A8 treatment (A). Neutrophils were specifically depleted at 

day 10 after tumor cell injection but no differences were observed thereafter (B). Monocytes were not directly 

targeted by anti-Ly6G but levels were increased after treatment both in CTR and KO mice (C). Absolute cell counting 

confirmed that circulating neutrophil levels are higher in KO mice than in CTRs but no difference was observed 

upon neutrophil depletion both at day 17 and at end point in any of the investigated cell types (D+E). For 

quantification of flow cytometry at least 30000 events were analyzed.  
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In order to determine, whether the neutrophil population was not only shifted but also reduced 

in numbers, flow cytometric data were analyzed in more detail. Quantification revealed, that 

already unchallenged mice with stromal Junb deletion did have more than 2-fold higher 

numbers of circulating CD11b+ myeloid cells, which increased even more during tumor 

progression (Figure 4-26 A). Despite KO mice having higher levels, no difference was 

observed upon neutrophil depletion, neither in KO nor in CTR mice. By gating specifically on 

the neutrophil population, 4-fold more neutrophils were observed in KO compared to CTR, 

when mice were unchallenged (Figure 4-26 B). This difference furthermore persisted with 

progressing disease. In addition, flow cytometric analysis revealed a striking paucity of 

neutrophils in mice that had received anti-Ly6G antibody injections. On day 10 after tumor 

injection, neutrophils were depleted by 80%, whereas on day 17 depletion was already not as 

efficient anymore reaching only 25%. Eventually, levels were indistinguishable again at end 

point. Despite efficient neutrophil depletion on day 10, no reduction of circulating monocyte 

levels was determined indicating that anti-Ly6G indeed specifically targets neutrophils (Figure 

4-26 C). On the contrary, monocyte levels were even increased by almost 50% upon neutrophil 

depletion both in CTR and KO mice, potentially revealing a compensatory effect.  

Due to the aforementioned binding competition between antibody clones 1A8 and RB6-5C8, 

neutrophil depletion efficiency was not only assessed by flow cytometry but also by automated 

absolute cell counting. Absolute cell counts on day 17 showed that neutrophils were 

specifically enhanced 2.4-fold in Junb KO animals compared to CTR but no difference was 

observed between mice injected with depleting antibody versus isotype control (Figure 

4-26 D). Concomitantly, no changes were apparent in any other cell population, such as 

monocytes, lymphocytes, eosinophils and basophils, confirming the specificity of anti-Ly6G 

antibody. At end point, blood counts resembled the levels on day 17. Neutrophil levels were 

still almost 2-fold higher upon JUNB KO but no change was observed upon treatment with anti-

Ly6G (Figure 4-26 E).  

Taken together, these data show, that anti-Ly6G antibody indeed specifically targets 

neutrophils and also stays bound as indicated by the reduction of mean fluorescence intensity 

for Gr1 observed by flow cytometry. Absolute cell counting did reveal, though, that these 

neutrophils are still present in the circulation irrespective of whether anti-Ly6G has bound or 

not. In conclusion, treatment with neutrophil depleting antibody 1A8 does not actually deplete 

neutrophils but may interfere with recruitment out of the circulation into the tissues.  

Hence, in order to assure that neutrophils are indeed absent in the tissue, their presence after 

anti-Ly6G treatment was evaluated by gene expression analysis and immunofluorescent 

staining in EO771.LMB primary tumor and pre-metastatic lungs. For this purpose, mice were 

treated with anti-Ly6G antibody or isotype control as previously indicated (Figure 4-24). In 

order to enable the assessment of primary tumors and lungs immediately after antibody 

treatment, mice were sacrificed at the time point of primary tumor resection when the tumor 

had reached a volume of approximately 500 mm3. Subsequent examination of primary tumors 

and pre-metastatic lungs by gene expression analysis reproduced data obtained in earlier 

experiments. A significant increase of Ptprc, Itgam and Ly6g expression was revealed in KO 

mice compared to CTR (Figure 4-27 A-F). Further resembling previous data, the difference in 

Ly6g levels between KO and CTR were more striking in pre-metastatic lungs (almost 5-fold) 

than in primary tumors, where expression was enhanced by 1.8-fold (Figure 4-27 E+F). 

Considering the inefficient neutrophil depletion in the circulation, it was moreover not 

surprising, that neutrophils were not impaired from entering neither EO771.LMB primary 

tumors nor pre-metastatic lungs upon anti-Ly6G treatment (Figure 4-27 E-G). Despite 
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repeated injections of neutrophil-specific antibody 1A8, neutrophils were still present at similar 

levels as in control-injected mice as determined by Ly6g gene expression and 

immunohistochemical staining for LY6B.2. Taken together, neutrophils were not efficiently 

ablated neither in the circulation nor in examined peripheral tissues despite continuous 

treatment with anti-Ly6G antibody 1A8.  

 

Figure 4-27: Treatment with neutrophil-specific antibody anti-Ly6G 1A8 does not impair neutrophil 
recruitment.  

Gene expression analysis revealed an increase in Ptprc (A), Itgam (C) and Ly6g (E) expression in primary 

EO771.LMB tumors and pre-metastatic lungs (B, D, F) derived from KO mice compared to CTRs. No reduction in 

neutrophil infiltration was apparent upon anti-Ly6G treatment as assessed by gene expression analysis for Ly6g in 

EO771.LMB primary tumors (E) and pre-metastatic lungs (F) as well as by immunohistochemical staining for LY6B.2 

in pre-metastatic lungs. Representative images are displayed in (G) with scale bar 200 µm, scale bar of inset 50 µm. 

Data are represented as geometric mean±geometric SD. Significance was assessed by Kruskal-Wallis test with 

P≤0.05 as the limit of significance. *P≤0.05 and **P<0.01.  
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In line with previous findings, primary tumor growth was not affected neither by stromal loss of 

Junb nor by treatment with anti-Ly6G antibody (Figure 4-28 A). Antibody injections did also not 

alter the kinetics of primary tumor growth, as sizes of approximately 500 mm3 were reached 

also between days 17-20, just alike the initial experiments (Figure 4-2 C). Reproducing the 

original phenotype, lung metastatic burden as determined by quantification of the mCherry 

sequence in genomic DNA by qRT-PCR was enhanced in Junb KO mice compared to the CTR 

(Figure 4-28 B). Surprisingly, lung metastasis was unchanged upon injection of anti-LY6G, 

both in CTR and KO mice (Figure 4-28 B+C).  

 

Figure 4-28: Primary tumor growth and lung metastasis of EO771.LMB tumors were not affected by anti-
Ly6G treatment.  

Primary tumor growth was not altered neither by JUNB loss nor by neutrophil depletion with anti-Ly6G antibody 

injection (A). Metastatic burden in the lungs as assessed by quantification of the mCherry reporter in genomic DNA 

by qRT-PCR was enhanced upon stromal Junb deletion but not different between mice which had received 

treatment with anti-Ly6G or isotype control (B). Representative pictures of metastasis lungs stained with 

hematoxylin and eosin (C). Scale bar 2000 µm. Data are represented as geometric mean±geometric SD. 

Significance was assessed by Kruskal-Wallis test with P<0.05 as limit of significance. *P≤0.05. n=4-6.  

In conclusion, pharmacological neutrophil depletion by injection with anti-Ly6G antibody was 

evidently insufficient, so that neutrophil accumulation in primary tumors and pre-conditioned 

lungs induced by JUNB loss could not be impeded. Consequently, neutrophil accumulation 

could functionally not be linked to the enhanced metastatic burden in Junb KO mice. 
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5. DISCUSSION 

Multiple studies have revealed that JUNB can function as an oncogene, albeit initially it has 

been described as a tumor suppressor. Data on the association of JUNB with invasion and 

metastasis are limited and largely conflicting so far. In the only functional study, loss of JUNB 

in head and neck squamous cell carcinoma cell lines was shown to impede distant metastasis 

in an experimental assay in nude mice [226]. Yet, this study had multiple limitations, such as 

the artificial introduction of high numbers of CTCs into the circulation and the use of a 

xenotransplantation model. Xenotransplantations completely neglect the complex interplay 

between tumor cells and the syngeneic microenvironment, including the immune system. 

As JUNB had furthermore been reported to be an essential transcriptional regulator in various 

cell types of the tumor microenvironment, the goal of this study was to clarify functionally, 

whether and in which way stromal-derived JUNB influences metastasis. For this purpose, 

JUNB was ablated genetically in the stroma of mice and distant metastasis was evaluated 

using different spontaneous metastasis models, thereby enabling the evaluation of all steps of 

the metastatic cascade.  

In this dissertation, I clearly show for the first time, that JUNB indeed influences metastasis. 

Distant metastasis to the lungs was significantly increased upon stromal deletion of Junb 

compared to Junb+/+ control mice in the EO771.LMB breast cancer model. This JUNB-

dependent metastatic phenotype was, however, not observed in the LL/2-Luc model. In the 

B16F10 model, no clear conclusion could be drawn due to the inefficiency of spontaneous 

metastasis. In order to determine the step in the metastatic cascade influenced by JUNB loss, 

an experimental metastasis assay using EO771.LMB cells was conducted. No significant 

difference in metastatic burden in the lungs could be determined in Junb KO mice compared 

to CTR animals indicating that JUNB loss does not promote tumor cell extravasation and 

metastatic colonization. Subsequent analyses of major components of the microenvironment 

revealed no alterations in vessel as well as fibroblast density and vascular permeability but 

identified a prominent accumulation of neutrophils in EO771.LMB primary tumors and even 

more strikingly in pre-metastatic lungs derived from Junb KO mice. Concomitantly, neutrophil 

recruiting factors, such as Il-1β, Tnfα, Cxcl1, Cxcl2 and Cxcl5 were upregulated in EO771.LMB 

primary tumors and pre-metastatic lungs upon stromal deletion of Junb. In order to determine 

whether JUNB loss in neutrophils is required for the increase in metastasis, two 

complementary approaches were followed: (I) mice were subjected to bone marrow 

transplantations and (II) neutrophils were depleted pharmacologically. Bone marrow 

transplantation experiments showed no difference in distant metastasis but revealed elevated 

levels of circulating neutrophils in mice with stromal Junb KO irrespective of whether they had 

been transplanted with WT or KO bone marrow. These findings imply that neutrophil 

recruitment is mediated by another stromal cell type rather than a neutrophil intrinsic 

mechanism. In order to directly link neutrophil infiltration to increased distant metastasis, 

neutrophils were depleted pharmacologically using the neutrophil-specific antibody anti-LY6G 

1A8. Despite initially highly efficient depletion of circulating neutrophils, neutrophil recruitment 

to the pre-metastatic lungs was indifferent upon injection of anti-LY6G compared to the 

respective isotype control. Similarly, distant metastasis was unaffected by treatment with anti-

LY6G. Yet, the neutrophil depletion experiment does confirm the original data and clearly 

shows that loss of stromal JUNB promotes distant metastasis to the lungs.  
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5.1. B16F10 cells do metastasize very inefficiently in the spontaneous 

metastasis model 

In contrast to my expectations, metastasis was extremely inefficient in the B16F10 melanoma 

model after primary tumor resection, so that the role of JUNB in metastasis could not be 

assessed in this model. 

Although the B16F10 cell line is predominantly used to study metastasis in the experimental 

metastasis assay after tail vein injection [251-253], also spontaneous metastasis has been 

reported [254-257]. In these spontaneous metastasis assays, the primary tumor had, however, 

been allowed to either reach large sizes or it had been implanted at anatomical locations 

restraining its size. Due to these space limitations, for example in the ear [256, 315, 316] or 

tail [257], tumor cells are forced to leave the primary tumor thereby facilitating metastasis to 

the lymph nodes and distant organs, such as lung. With increasing size, tumors furthermore 

start to grow invasively, thus, increasing the likelihood to seed metastases. Following a similar 

experimental setup as in this project, Zang et al. observed distant metastases after 

subcutaneous injection of B16F10 and primary tumor resection [317]. A further detailed 

assessment did, however, reveal, that lung metastasis was only observed in mutant Shb +/- 

mice (Src homology domain containing protein B) but not in the respective wildtype controls. 

Furthermore, primary tumors had been allowed to reach sizes beyond 700 mm3, likely 

explaining the appearance of macroscopic lesions in the author’s investigation [317].  

Apart from experimental differences also the way of tumor transplantation may have affected 

metastatic dissemination. B16F10 melanoma cells had been implanted subcutaneously into 

the flanks of mice, whereas EO771.LMB cells had been injected orthotopically into the 

mammary fat pad. The importance of the local stroma has already been highlighted in earlier 

studies. Wilmanns et al. demonstrated that colon cancer grown at different anatomic sites, 

ectopically or orthotopically, responded differentially to chemotherapeutic agents [318]. Similar 

findings in small-cell lung carcinoma [319] and fibrosarcoma [320] confirmed the necessity of 

orthotopic models. Apart from therapeutic response, the microenvironment also influences 

metastatic efficiency. In several investigations, orthotopic implantation has been demonstrated 

to promote invasion and metastasis as compared to ectopic tumor growth [321-324]. In a 

different approach, co-transplantation of tumor spheroids with orthotopic stromal cells at an 

ectopic location, was shown to facilitate tumor growth and angiogenesis as compared to 

implantation of tumor cells alone or co-implantation with stromal cells derived from other 

organs [325]. As highlighted in these studies, the absence of the orthotopic stroma may 

therefore provide a legitimate explanation for why B16F10 cells did not yield efficient 

metastasis.  

The orthotopic stroma also comprises blood endothelial and lymphatic vessels. The presence 

of these vessels further dictates metastatic patterns and efficiency. The close proximity of 

tumor cells to pre-existing vessels in the skin may therefore be another explanation for why 

B16F10 has been reported to metastasize to sentinel lymph nodes and lung when injected 

intradermally in contrast to subcutaneous implantation [326]. In contrast to prominent blood 

vasculature, in the present work B16F10 primary tumors have failed to efficiently recruit 

lymphatic vessels as determined by the rare presence of LYVE-1+ lymphatic vessels in 

immunofluorescent staining of tumor sections. Despite tumor-induced pre-conditioning of 

sentinel lymph nodes, no lymph node metastases were detected in the B16F10 model. 

Melanoma has, however, been shown to primarily metastasize via the lymphatic system and 
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lymph node metastasis furthermore serves as an important prognostic factor [118, 327, 328]. 

It can, thus, be speculated that lymphangiogenesis was not sufficiently enough induced in 

B16F10 melanoma in this study in order to establish an extensive connection of the primary 

tumor with pre-existing lymphatics from the skin. The absence of these lymphatic vessels may 

consequently have prevented the tumor cells from spreading locally to sentinel lymph nodes 

and distantly to the lung.  

5.2. Metastasis in the Lewis lung carcinoma model was JUNB-

independent 

In contrast to the B16F10 model, LL/2-Luc cells led to overt metastasis in both control and 

stromal Junb knockout mice in a nearly identical time frame. In distinction from the EO771.LMB 

model, no JUNB-dependent metastatic phenotype could, however, be observed.  

The function of JUNB as an oncogene or as a tumor suppressor has been shown to depend 

on tumor stage but predominantly on the cancer entity. Consequently, also the role of JUNB 

may be more decisive in breast cancer metastasis than in metastasis of lung cancer as both 

may rely on different intrinsic molecular mechanisms. For example, LL/2-Luc cells showed 

marked primary tumor invasion into the peritoneal wall, a feature which was hardly observed 

for the EO771.LMB cells. Besides being intrinsically more aggressive and invasive, LL/2-Luc 

cells also exhibit a different route of dissemination compared to EO771.LMB. In principle, 

cancers can metastasize via two routes: either via the lymphatic or the blood vascular system. 

Recently, it has, however, also been shown that cancer cells derived from metastatic lymph 

nodes can spread further and seed in the lung [326]. Solid tumors, such as breast cancer, 

melanoma and lung cancer, are predominantly found to metastasize via the lymphatic route in 

patients [116, 118, 329, 330]. In line with the human data, several reports detected lymph node 

metastases in the EO771 (the parental cell line which EO771.LMB was derived from) [331] 

and LL/2-Luc model [267]. I could furthermore verify, that also EO771.LMB cells do 

metastasize to lymph nodes (data not shown). Yet, in contrast to the clinical situation and 

previous mouse experiments, in my hands LL/2-Luc primary tumors predominantly 

metastasized to the lung via the hematogenous route, as indicated by the rare occurrence of 

lymph node metastasis in the spontaneous metastasis assay. These differences may partially 

be due to the already mentioned different injection sites. Nevertheless, EO771.LMB and LL/2-

Luc exhibit different preferences in respect to hematogenous and lymphatic dissemination, 

which may have been another contributing factor to JUNB-dependent metastasis in the 

EO771.LMB but not in the LL/2-Luc model.  

Apart from these intrinsic differences, there are also some obvious discrepancies in the applied 

experimental design between the EO771.LMB and the LL/2-Luc model. As already described 

above, ectopically and orthotopically implanted tumors differ in their response towards therapy 

and metastatic efficiency, but also alterations in gene expression have been observed [332]. 

Not surprisingly, the two human glioma cell lines U251 and U87 exhibited vastly different gene 

expression profiles when grown in vitro in comparison to in vivo, but major changes were also 

observed when implanted subcutaneously into the hind leg instead of intracerebrally [333]. 

This may indicate that the orthotopic environment is essential for JUNB-dependent metastatic 

dissemination.  
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5.3. JUNB promotes distant metastasis in the EO771.LMB breast cancer 

model 

In this dissertation, a spontaneous metastasis assay with EO771.LMB breast cancer cells was 

successfully established. Orthotopic injections into the mammary fat pad enabled the accurate 

mimicking of the adequate tumor microenvironment. Primary tumor resections led to the 

reproducible appearance of distant metastases in the lungs in a relatively short time and 

without the need to grow primary tumors to large sizes. Labelling of the tumor cells with an 

mCherry reporter furthermore aided quantification of distant metastasis in a dual approach: 

one part of the lung was used for quantification of the reporter in genomic DNA by qRT-PCR 

and the second part was utilized for immunohistochemical staining for mCherry. With this 

assay, the functional contribution of stromal JUNB to distant metastasis was assessed.  

In line with previous reports, tumor growth of EO771.LMB primary tumors was not affected by 

Junb deletion [232]. Strikingly, stromal loss of Junb did, however, increase the capacity of 

these cells to metastasize spontaneously to the lungs. This was apparent already by 

macroscopic examination but further validated following quantification by qRT-PCR and 

immunohistochemistry. In order to decipher at which step of the metastatic cascade Junb loss 

was required, an experimental metastasis assay was performed. Yet, lung colonization after 

tail vein injection of the tumor cells did not reveal a significant difference in lung metastatic 

burden. In fact, metastasis seemed to be even slightly impaired upon Junb deletion. These 

findings imply, that JUNB does not promote metastasis by facilitating extravasation but is more 

likely to enhance the initial steps of the metastatic cascade, such as tumor cell intravasation. 

As the detection of CTCs in this model was, however, unsuccessful, the effect of Junb loss on 

intravasation could not be answered directly. Other than promoting intravasation, loss of Junb 

may also have influenced the formation of a pre-metastatic niche. Consequently, no 

metastasis-boosting effect would have been observed in the absence of a primary tumor. In 

order to determine whether ablation of Junb may have facilitated intravasation or promoted the 

establishment of a pre-metastatic niche, EO771.LMB primary tumor and pre-metastatic lungs 

were investigated for cellular changes as will be discussed in the following section.  

5.4. JUNB does not influence metastatic spread due to vascular defects 

The advantage of being able to study the whole metastatic cascade in the spontaneous 

metastasis assay is also a major obstacle in the quest for the underlying molecular mechanism. 

In addition, deletion of Junb using Col1α2-driven expression of Cre recombinase results in 

ablation of Junb in a plethora of mesenchymal-derived cells, such as endothelial cells, smooth 

muscle cells and fibroblasts, but also in a variety of cells derived from the hematopoietic 

compartment, such as immune cells [234]. Thus, multiple cellular compartments which have 

been attributed essential contributions to metastatic spread are affected by JUNB loss and 

could potentially cause the observed phenotype. For this reason, these major cellular 

compartments were investigated for JUNB-dependent alterations.  

The vascular system is especially important for metastatic spread as it provides the major entry 

points and conduits for disseminated tumor cells to reach distant organs but it also mediates 

tumor cell adherence as an essential step of extravasation. Moreover, the vascular system is 

of extreme importance for the sustained supply of nutrients and oxygen not only to the primary 
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tumor but also to the metastatic site. In addition, successful metastatic colonization has been 

shown to depend on nearby vessels. Sprouting tip cells provide necessary signals, e.g. 

secretion of TGFβ and periostin, enabling dormant cells to escape dormancy, proliferate and 

grow out [334].  

Over the past years, JUNB has been established as an essential transcriptional regulator 

controlling vascular development and homeostasis. This was already determined early on by 

the finding that global Junb KO resulted in embryonic lethality due to defects in placentation 

and neovascularization [181]. Junb KO embryos failed to establish sufficient connections with 

the maternal circulatory system consequently leading to growth retardation and mortality. In 

subsequent studies, JUNB was furthermore found to be important for hypoxia- [189] and 

hypoglycemia-induced [335] Vegf induction, vascular morphogenesis [228] and tumor 

angiogenesis [189]. In vascular smooth muscle cells, JUNB evidently influences motility and 

contractility via its target Myl9 [229]. Therefore, I initially hypothesized that the prominent lung 

metastasis could be the result of vascular defects. For this reason, blood vascular density was 

assessed by immunofluorescent staining for the pan-endothelial marker CD31 on paraffin-

embedded tissue of EO771.LMB primary tumors. Contrary to my expectations, no difference 

could be determined upon JUNB loss.  

Besides hematogenous spread, lymphatic vessels provide an alternative route of 

dissemination for metastatic cells. For breast cancer, lymphatic metastasis is furthermore 

described to be the predominant route [329]. This is evidenced by frequent lymph node 

involvement in patients concerned [330, 336, 337], a finding I could also reproduce in vivo in 

mice using the EO771.LMB model. Junb has been implicated in lymphatic development in 

zebrafish [227]. Ablation of junb genetically using the CRISPR/Cas9 (Clustered Regularly 

Interspaced Short Palindromic Repeats) system or transiently by morpholino-mediated 

knockdown led to a failure of the formation of the parachordal lymphangioblast, the precursor 

of the thoracic duct, the major lymphatic vessel in zebrafish [227, 245]. Yet, evaluation of 

lymphatic vascular density in EO771.LMB primary tumors, did not reveal any JUNB-dependent 

changes.  

As primary tumor growth was unaffected by loss of JUNB, though, I reasoned that the 

vasculature of tumor-preconditioned organs may rather be affected than that of the primary 

tumor itself. Vascular changes by tumor-derived factors in lymph nodes and lungs have been 

associated with disease progression and overall survival [268, 269, 338]. As differences in size 

between tumor-draining and non-draining lymph nodes could already readily be detected 

macroscopically and were more pronounced in the B16F10 than in the EO771.LMB model, I 

decided to study B16F10-pre-conditioned lymph nodes in more detail. Despite the apparent 

enlargement of tumor-draining lymph nodes compared to non-draining counterparts, histologic 

assessment of lymph node vasculature did not reveal any JUNB-dependent defects. 

Considering that the B16F10 model did only metastasize very inefficiently and no lymph node 

metastases were apparent macroscopically, these findings may not be surprising. 

Nevertheless, in addition to a generally increased blood vascular and lymphatic vascular 

density, lymph node pre-conditioning frequently manifests as morphological changes of high 

endothelial venules [68] and enlargement of lymph node sinuses [268, 339, 340]. Although no 

gross differences were detected upon JUNB loss, these features were not examined in detail. 

Consequently, JUNB-dependent changes in lymph node pre-conditioning cannot completely 

be excluded. 
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As no major differences were obvious in the lymph nodes, the following investigations were 

focused on the lungs as the future metastatic sites. Apart from the mere presence of blood and 

lymphatic vessels as entry points for disseminated tumor cells, the functionality of these 

vessels is key for metastatic spread [341-344]. JUNB may be involved in the regulation of 

vascular permeability via its direct target Myl9 [229]. JUNB-deficient vascular smooth muscle 

cells, fibroblasts [229] and endothelial cells [228] showed decreased motility and cytoskeletal 

remodeling, an essential prerequisite for vascular permeability [345, 346]. Since the stromal 

compartment in the different tumor models being used in this dissertation is identical with 

regard to JUNB presence and absence, respectively, I assessed blood vascular permeability 

in the LL/2-Luc model. In this model sufficient metastasis was also seen in control mice, thus, 

allowing for comparative analysis. Extravasated FITC-dextran was readily detectable in 

primary LL/2-Luc tumors by fluorescent microscopy of tumor sections co-stained for the 

endothelial marker CD31. No enhanced permeability in Junb KO mice was, however, 

determined upon quantification by fluorescence measurement.  

Overall, no differences in blood endothelial or lymphatic density as well as permeability could 

be detected which could account for the observed increase in distant metastasis upon Junb 

loss. These findings are in line with a previous report from our lab demonstrating that loss of 

stromal JUNB does not affect primary tumor growth and angiogenesis in the B16 melanoma 

and LL/2-Luc model [232]. Neither microvascular density nor relative blood volume nor 

maturation status of the tumor vasculature were altered upon deletion of stromal Junb [232].  

As the functionality of the vasculature was only examined in the LL/2-Luc model which did not 

show the JUNB-dependent metastatic phenotype, though, model-specific differences cannot 

be excluded. Due to the robustness of LL/2-Luc metastasis, subtle increases in permeability 

or disturbances of endothelial junctions may have been masked. In addition to vascular 

permeability, tumor cell extravasation was not promoted in the experimental metastasis assay 

with EO771.LMB cells further arguing against defects in vascular integrity and endothelial 

junctions upon Junb deletion. Nevertheless, tumor cell extravasation was determined in the 

absence of a primary tumor, whereas permeability was assessed in tumor-bearing animals. 

Consequently, tumor-induced changes cannot be ruled out. Moreover, endothelial cells lacking 

JUNB may also express different sets or varying levels of adhesion molecules, which could 

have contributed to the enhanced tumor cell adhesion and facilitated colonization. In primary 

human keratinocytes, loss of JUNB resulted in the upregulation of Intercellular Adhesion 

Molecule 1 (ICAM-1) as well as N-Cadherin and downregulation of Integrin alpha 2 [347]. In 

comparison to WT littermates, ICAM-1-deficient mice have been shown to be more susceptible 

to liver metastasis from colon carcinoma [348] but have also been reported to be protected 

from lymphoma metastasis [349]. Despite these contrary findings, the importance of ICAM-1 

in metastatic spread is evident. N-Cadherin facilitated binding of invasive breast cancer cells 

to stromal cells [350] and Integrin alpha 2 suppressed breast cancer metastasis [351]. JUNB 

was furthermore suggested to regulate the expression of vascular adhesion molecule 1 

(VCAM-1) [352]. VCAM-1 is essential for leukocyte diapedesis and has been implicated in 

metastasis in a multitude of studies [338, 353-355]. ICAM-1 and VCAM-1 are of particular 

interest as they are upregulated upon pro-inflammatory stimuli such as TNFα [356] and IL-1β 

[357] which were found upregulated in EO771.LMB primary tumors and pre-metastatic lungs 

isolated from Junb KO mice in the present work. ICAM-1 [355, 358] and VCAM-1 [359] 

furthermore mediated adhesion and infiltration into the lungs of neutrophils and other immune 

cells in several experimental mouse models. These potential changes in adhesion would have 

remained undetected when determining the functionality of the vessels with FITC-dextran. It 

may therefore be speculated that an enhanced expression of adhesion molecules induced by 
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pro-inflammatory signals in Junb KO mice may have facilitated neutrophil infiltration and distant 

metastasis.  

5.5. JUNB does not impact fibroblast density 

In addition to blood and lymphatic endothelial cells, fibroblasts make up the majority of the 

tumor stroma. In the tumor, fibroblasts are often present in an activated state, as so-called 

cancer-associated fibroblasts (CAFs), rendering them more prone to support tumor growth and 

metastatic spread. They not only provide an essential structural stability by secretion of ECM 

molecules, such as collagens (type I, III, IV and V) [272, 360, 361], fibrillin [272], fibronectin 

[272, 361] and laminin [361] but have also been shown to influence tumor cell behavior by 

secretion of growth factors and chemokines [361, 362]. More recently, fibroblasts have been 

demonstrated to actively drag cancer cells by heterophilic N-Cadherin E-cadherin interactions, 

thus, stimulating tumor invasion and spread [363]. Especially in breast cancer, the presence 

of CAFs has been correlated with disease progression [364] and response to therapy [365]. 

As JUNB has been implicated in fibroblast proliferation and transformation [196], fibroblast 

abundance was quantified in EO771.LMB primary tumors.  

Fibroblast research is hindered by the lack of specific markers. Typically, fibroblasts are 

characterized by expression for vimentin, FSP1 as well as FAP, and αSMA for activated 

fibroblasts [362]. Investigation of these markers by qRT-PCR or immunohistochemistry did, 

however, reveal, that vimentin and FSP1 are abundantly expressed by EO771.LMB cells 

excluding their use in this study. Expression of Fap was not affected by Junb loss. In order to 

validate this finding on protein level and to assess fibroblast morphology and distribution, an 

immunohistological staining for fibroblast markers was performed. Immunohistochemistry for 

FAP did not result in an adequate staining pattern, whereas immunofluorescence for αSMA 

did only show positive staining around large vessels arguing that these cells are rather vascular 

smooth muscle cells than fibroblasts. In the search of alternative fibroblast markers, 

podoplanin was recently used to identify fibroblasts in B16 melanoma [274], human breast 

cancer biopsies [275] and synovial tissue [276]. Immunohistochemistry for podoplanin did not 

result in JUNB-dependent differences, neither in abundance, distribution nor morphology. In 

recent years, it has, however, become increasingly evident, that fibroblasts are not a 

homogeneous population but are rather composed of several distinct subpopulations. These 

subpopulations have been identified and also characterized according to their marker 

expression [272, 276, 366-368] and have been shown to elicit a differential response towards 

chemo- and immunotherapy [365, 369, 370], or influence tumor cell proliferation and stemness 

[369, 371]. Podoplanin-expressing CAFs have been reported to inhibit tumor cell invasion 

[372], whereas CAFs identified by αSMA and FAP enhanced migration and tumor formation 

[373]. Consequently, it is possible that fibroblasts identified by Fap expression or 

immunohistochemistry for podoplanin in this study represent only one or two fibroblast 

subtypes, which are not affected by Junb deletion.  

Several groups have established that normal fibroblasts and CAFs differ dramatically in their 

transcriptome and proteome [374-377]. Strikingly, fibroblasts also exhibit differential gene 

expression profiles when isolated from the skin of various anatomical sites [272]. Here, the 

abundance of fibroblasts was only investigated in EO771.LMB primary tumors. Yet, it is 

conceivable that lung fibroblasts may be affected differently by stromal JUNB loss. As 

podoplanin is, however, abundantly expressed by type 1 alveolar cells, another fibroblast 
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marker would have been needed for analysis [378]. Apart from type 1 alveolar cells, podoplanin 

is also prominently expressed by other cell types present in the tumor microenvironment. 

Podoplanin is commonly used as a marker for lymphatic endothelial cells [379] but has also 

been described to be expressed by different populations of macrophages [380, 381] and in 

basal keratinocytes during wound healing [382]. Although structures clearly identifiable as 

lymphatic vessels were omitted from analysis, it cannot be excluded that other PDPN+ cell 

types were included and may consequently have skewed the quantification. Concludingly, in 

order to assure the unambiguous identification of fibroblasts and fibroblast subtypes, several 

markers would have needed to be assessed, preferably in combination.  

In addition to phenotypic differences in terms of marker expression, fibroblasts, similarly to 

(lymphatic) endothelial cells or immune cells discussed later on, can also present with an 

altered secretome. Multiple fibroblast-secreted factors, such as lipocalin 2 [230], granulocyte-

macrophage colony-stimulating factor (GM-CSF) [187, 246], keratinocyte growth factor [187, 

246], TNFα [383] and Interferon-γ [161] are in fact regulated by JUNB. Nevertheless, 

expression of fibroblast-secreted factors has not been assessed comprehensively in this study. 

A plethora of cytokines, which are partially also secreted by fibroblasts, will, however, be 

discussed in a later section. Besides growth factors and cytokines, fibroblasts are particularly 

known for their production of ECM molecules. Upon activation, for example in a cancer setting, 

fibroblasts secrete higher amounts of ECM components, but also the composition is vastly 

abnormal [361]. In contrast to normal tissue, CAFs secrete higher amounts of collagens, 

proteoglycans, hyaluronic acid, chrondroitin sulfate and fibronectin, which are partially also 

structurally altered [384, 385]. These ECM molecules can aid cancer progression by forming 

“tracks” for cancer cells but also by functioning as binding sites for adhesion molecules present 

on the surface of disseminated cancer cells [386, 387]. JUNB has been implicated in the 

regulation of fibronectin, collagen type VII alpha 1 [388] and collagen type I alpha 2 upon 

stimulation with TGFβ [389]. Although no gross differences were determined by trichrome 

staining, it cannot be fully ruled out, that Junb KO fibroblasts may specifically have contributed 

to the metastatic phenotype via a fibroblast-derived factor or ECM. 

5.6. Stromal JUNB KO promotes immune cell infiltration into primary 

EO771.LMB tumors and pre-metastatic lungs 

The immune system is essential for the surveillance and elimination of extrinsic danger signals, 

such as pathogens, but also intrinsic threats, for example tissue damage. In addition, the 

immune system plays a pivotal role in the development and progression of cancer. In the initial 

steps, neoplastic transformed cells are recognized by various cells of the adaptive and innate 

immune system and subsequently eliminated. Some tumor cells are able to escape from this 

immunosurveillance, though, enabling outgrowth and tumor dissemination [390]. 

Immunoevasion is mediated by tumor cells decreasing their immunogenicity, e.g. by 

downregulation of MHC molecules, or by active modulation of the immune cells by factors 

derived from tumor cells or the microenvironment [391, 392]. JUNB has been attributed 

important functions in several immune cell types involved in immunosurveillance and immune 

evasion, which are illustrated in the table below (Table 5-1).  
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Table 5-1: Functions of JUNB in immune cells 

Cell type JUNB-mediated response Reference 

TH2 (T helper cell) Promotes TH2 differentiation, induces Il-4, represses Intfg [190, 191, 393] 

TH17 Activation of TH17-lineage specifying genes upon 

inflammation, repression of regulators for other CD4+ T cell 

subsets (TH1, TH2, Treg), induced Il-23  

[394-397] 

Effector Tregs Homeostasis, induced Treg effector genes [398] 

Dendritic cells Induction of pro-inflammatory cytokines Tnfα, Il-6, and Il-12 

upon LPS treatment 

[247] 

Macrophages Macrophage activation 

Macrophage recruitment in psoriasis 

[233] 

[160] 

Myeloid cells Myeloid differentiation 

Mediates monopoiesis 

[231, 399] 

[400] 

NK cells JUNB mediated NK cell killing by regulation of RAE-1ε 

expression on target cells 

[401] 

Neutrophils Regulation of iNOS expression 

Neutrophil recruitment in psoriasis 

[402] 

[160] 

Due to the involvement of JUNB in overwhelmingly many different immune cell types, which 

may contribute to JUNB-dependent metastasis, immune cell infiltration was first assessed 

using the pan-immune cell marker CD45. A significant increase in immune cell infiltration was 

detected upon stromal loss of Junb in EO771.LMB primary tumors but more strikingly in pre-

metastatic lungs. Upon closer examination of distinct immune cell types, it became clear, that 

in particular CD11b+ myeloid cells which were expressing Ly6g and LY6B.2 had accumulated 

in the pre-metastatic lungs as determined by gene expression analysis and 

immunohistochemistry. Due to specific marker expression, morphology, size and spatial 

distribution, these cells could clearly be identified as neutrophils [291, 403]. This conclusion 

was further supported by the significant upregulation of S100a8 and S100a9 in KO lungs. 

S100A8/A9 are abundantly expressed in the cytosol of neutrophils and are frequently used as 

neutrophil markers [96, 404, 405]. Other assessed myeloid cell types, such as monocytes, 

macrophages and NK cells, did not show this prominent upregulation of specific markers in 

pre-metastatic lungs isolated from Junb KO animals, consequently arguing against these cell 

types being responsible for the observed enhanced myeloid cell infiltration. Upon examination 

of cells of the adaptive immune response, no apparent changes were detected in infiltration of 

CD3+ T cells, Tregs and cytotoxic T cells into pre-metastatic lungs. Yet, EO771.LMB primary 

tumors from KO animals showed a lower abundance of CD3+ T cells, which was not the result 

of diminished levels of Tregs or cytotoxic T cells. In conclusion, immune cell infiltration upon 

JUNB loss was predominantly altered in pre-metastatic lungs but not as strongly affected in 

primary tumors. Remarkably, especially cells of the myeloid lineage, in particular neutrophils, 

were found to be accumulated in mice with stromal deletion of Junb. 

Strikingly, these differences in neutrophil infiltration detected in the EO771.LMB model were 

also obvious in the B16F10 and LL/2-Luc model. Neutrophil recruitment to the pre-metastatic 

lungs was significantly enhanced upon stromal Junb deletion in all three models. The extent 
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of upregulation was, however, remarkably different. Whereas neutrophil accumulation was 

comparable between the B16F10 and EO771.LMB model, it was tremendously boosted in the 

LL/2-Luc model. In LL/2-Luc tumor-bearing WT and CTR mice, neutrophil infiltration into lungs 

already reached similar levels as in lungs from KO mice pre-conditioned with EO771.LMB 

tumors. Neutrophil levels in LL/2-Luc tumor-bearing KO mice exceeded levels reached in the 

EO771.LMB model by far. Similar findings in infiltration had already been reported by Dawson 

and colleagues [406]. The authors found a higher number of bone marrow derived cells 

accumulating in Lewis lung primary tumors and metastatic lungs compared to B16F10, did, 

however, not further define the identity of these cells. Assuming that neutrophils in the pre-

metastatic lung promote metastasis, as frequently reported [91, 96, 407], the high metastatic 

burden in the LL/2-Luc model may be explained by the immense numbers of detected 

neutrophils. Neutrophils may have been present in such high numbers already in WT and CTR 

mice that additional accumulation upon Junb loss did not result in a further boost of metastasis 

formation. Supporting this hypothesis, Granot et al. found prominent accumulation of 

neutrophils in the circulation and in lungs pre-conditioned by the highly metastatic 4T1 breast 

cancer cell line but virtually no elevation when mice were injected with the weakly-metastatic 

66cl4 cells [92, 408]. 

Although the dual approach of quantifying immune cell populations by gene expression 

analysis and immunohistochemistry, identified prominent neutrophil accumulation in pre-

metastatic lungs, this approach clearly has limitations. Most obviously, the analyses were 

based on the expression of individual markers, supposedly exclusively expressed by the 

respective cell type. For example, the transcription factor FOXP3 is widely used to specifically 

label Tregs [292, 293]. Research over the past years has, however, revealed the expression 

of FOXP3 in additional cell types, such as CD8+ regulatory T cells [409, 410], invariant NK T 

cells [410, 411] and mammary epithelium [410, 412]. FOXP3 expression in myeloid cells 

remains controversial [410]. Similarly, in agreement with its common use, F4/80 was utilized 

in this project to identify macrophages. Recent evidence does indicate its expression by 

Langerhans cells and eosinophils, though [281]. Furthermore, the expression of CD11b, which 

is widely regarded as a myeloid cell marker, by memory B cells is often neglected [413]. 

Despite its commercial name, anti-neutrophil antibody 7/4, which I used to assess neutrophil 

infiltration, does in fact not only label neutrophils. Contrarily, the 7/4 antibody reacts with the 

LY6B.2 antigen and evidently also marks newly generated inflammatory monocytes, a subset 

of activated macrophages as well as some progenitor cells [291]. These examples illustrate 

the requirement for combinatorial strategies. The study would have benefited from elaborate 

analysis by flow cytometry, allowing the use of simultaneous assessment of multiple markers 

and aiding the unambiguous identification of cell populations. Nevertheless, in this project, 

various immune cell types were assessed using either multiple different markers or 

combinations thereof. This is exemplified by the dual labeling of CD3 and CD8 in order to 

accurately distinguish cytotoxic T cells. The identification of neutrophils is based on even more 

complementary approaches: although the overexpression of Ly6g already indicated neutrophil 

accumulation, this was confirmed by corresponding expression patterns of S100a8/a9, positive 

staining for LY6B.2 and fitting morphological features.  

Surprisingly, specific markers of all investigated myeloid cell populations showed significantly 

elevated expression in EO771.LMB primary tumors from KO mice on RNA level. This did, 

however, only translate into enhanced infiltration on protein level in the case of neutrophils. 

For all other subpopulations, no difference was visible. Similarly, in the examination of the cells 

of the adaptive immune system, inconsistencies were detected in gene expression analysis, 

but were not as obvious upon immunohistological assessment. Consequently, these 
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discrepancies may be the result of the higher detection sensitivity of gene expression analysis 

compared to immunohistochemistry. Cells expressing the respective marker at low levels may 

simply not have been detected by immunohistochemistry. Moreover, all expression analyses 

were performed on only four tumors, whereas a higher number of samples was used for 

quantification of immunohistochemistry. Furthermore, distinct immune subsets express CD45 

at varying levels, so that an increase in Ptprc expression may have reflected the altered 

immune cell composition in EO771.LMB primary tumors [414].  

Only recently, it has been shown that deletion of Junb in FOXP3+ Tregs leads to a reduction 

of Treg numbers [398]. Interestingly, this effect was observed in the colon, but not in lung, liver, 

skin or spleen. Therefore, it may be speculated, that JUNB regulates immune cell infiltration 

differently in various tissues. This may explain why JUNB-dependent accumulation of 

neutrophils is more robust in pre-metastatic lungs compared to primary tumors.  

Furthermore, as indicated in Table 5-1, JUNB has less frequently been indicated in regulating 

immune cell accumulation, but is more commonly described to mediate immune cell activation 

or differentiation. It is, thus, conceivable, that although apart from neutrophils no alterations in 

cell abundance were visible upon Junb loss, these immune cells may still exhibit phenotypic 

differences. This is of particular interest considering neutrophils and their interplay with other 

cells of the immune system. Neutrophils have been reported to enable CD8+ T cell migration 

to inflamed tissue upon influenza infection [415] and are able to efficiently cross-present 

antigens to T cells [416]. Yet, also in cancer, neutrophils influence cytotoxic T cells by 

impacting T cell migration, activation, proliferation and cytokine-release [91, 417, 418]. In 

particular, neutrophils can suppress T cell-mediated immunity via increased expression of 

PD-L1 [419] or inducible nitric oxide synthetase (iNOS) [420]. Due to these 

immunosuppressive functions of neutrophils, they are also often regarded as myeloid-derived 

suppressor cells (MDSC). MDCS are generally defined as cells of myeloid origin, which are 

present in an immature state and able to suppress T cell activity [421]. In mice, MDSCs 

comprise a heterogeneous population of polymorphonuclear MDSCs (PMN-MDSCs), defined 

as CD11b+Ly6G+Ly6Clow, and monocytic (M-MDSCs) MDSCs, which are characterized as 

CD11b+Ly6G−Ly6Chi [421]. Due to overlapping marker expression and morphology, the 

distinction of PMN-MDSCs and neutrophils is complicated and is generally based on 

phenotypic differences: PMN-MDSCs are, in contrast to neutrophils, able to induce 

immunosuppression [421, 422]. In addition, PMN-MDSCs are less granular than neutrophils 

but express higher levels of arginase 1 [423], CD11b and CD66b [424]. After density-gradient 

centrifugation, neutrophils can be differentiated into low density (LDN) and high density 

neutrophils (HDN). HDN are generally regarded as classical neutrophils, whereas LDN were 

shown to also possess immunosuppressive functions classifying them as PMN-MDSCs [425]. 

Because of the mentioned similarities and multiple studies reporting about vastly different 

functions exerted by neutrophils, it is, however, currently controversial whether neutrophils and 

PMN-MDSCs are indeed two different rather than one plastic cell population [422, 426]. Since, 

I did not assess the immunosuppressive functions of the granulocytes accumulated in Junb 

KO mice, I refer to these cells as neutrophils rather than PMN-MDSCs.  



 
100 DISCUSSION 

5.7. Neutrophil-recruiting factors are expressed in a JUNB-dependent 

manner 

Besides regulating immune cell differentiation and activation, JUNB has also been shown to 

mediate neutrophil recruitment in psoriasis [160]. In this context, a plethora of pro-inflammatory 

cytokines, such as Il-1α, Il-1β, Ccl2, Ccl3, Ccl4, Cxcl2, Tnfα and S100a8/a9, were shown to be 

deregulated upon Junb deletion in epidermal keratinocytes. In order to clarify, whether 

neutrophil recruiting factors may also be upregulated upon stromal JUNB loss in this project 

and may consequently have been the cause of the increased neutrophil infiltration, they were 

examined by gene expression analysis in EO771.LMB primary tumors and pre-metastatic 

lungs.  

Classical neutrophil chemoattractants regulate neutrophil egress from the bone marrow into 

the circulation, e.g. CXCL12, or control neutrophil recruitment out of the circulation into 

peripheral tissues, for example CXCL1, CXCL2 and CXCL5 [296, 303]. Examination of these 

chemokines, revealed a specific upregulation of these factors in tumors isolated from Junb KO 

mice. Cxcl1, Cxcl2 and Cxcl5 were, however, also highly expressed by EO771.LMB tumor 

cells and no JUNB-dependent expression was determined in pre-metastatic lungs. Cxcl2 

expression furthermore varied a lot between WT and CTR mice. Overall, this implies that tumor 

cells are the predominant source of these chemokines rather than the microenvironment. The 

fact that expression was inconsistent, in the case of Cxcl2, and that enhanced expression was 

only obvious in the primary tumor but not in the lungs further implies that these changes may 

not be due to the absence or presence of JUNB in the stroma. Cxcl12 was the only chemokine 

which was not expressed by the tumor cells indicating that it is purely derived from the tumor 

stroma. Moreover, Cxcl12 showed consistent upregulation upon Junb loss, both in primary 

tumors and pre-metastatic lungs. Yet, enhanced Cxcl12 levels mediate neutrophil retention in 

the bone marrow, which is in stark contrast to the observed neutrophil accumulation in Junb 

KO mice [427]. Cxcl12 expression has, however, also been reported in capillary endothelial 

cells, likely contributing to neutrophil margination in the lungs [296]. The lung has frequently 

been described to contain large pools of marginated neutrophils [428-430]. Nevertheless, no 

distinction of neutrophils in the lung within the vasculature or outside in the parenchyma was 

attempted in this project. For this reason, no conclusion can be drawn as of whether in fact the 

marginated neutrophil pool was specifically enhanced in tumor-bearing KO mice rather than 

recruitment into the tissue. In addition to the production of CXCL12 by endothelial cells and by 

CXCL12-abundant reticular cells (CAR) in the bone marrow [431], neutrophils themselves 

have also been demonstrated to express CXCL12 [415]. The enhanced expression of Cxcl12 

upon loss of JUNB may therefore simply reflect the increased neutrophil numbers. 

Furthermore, CXCL12 is not only important for maintaining neutrophil homeostasis but has 

also been shown to attract Tregs [418], MDSCs [418], endothelial progenitors [432] and most 

strikingly CXCR4+ tumor cells [433, 434]. Although, Cxcr4 expression by EO771.LMB breast 

cancer cells has not been verified, CXCL12 may potentially have facilitated metastasis in a 

more direct manner. More recently, Ahirwar and colleagues demonstrated, that CXCL12 

mediates vascular leakiness thereby promoting tumor intravasation and metastasis [432]. This 

function of CXCL12 can, however, be excluded in this project, as no changes in vascular 

permeability were determined upon Junb loss. Finally, enhanced Cxcl12 expression upon Junb 

KO may also have been the result of increased JUN activity as mode of compensation, as 

Cxcl12 has been shown to be a direct JUN target [246].  
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In addition to classical neutrophil chemoattractants, several other cytokines and factors have 

been previously published to act as neutrophil attractants. Mice deficient for CCL2 exhibited 

reduced bacterial clearance after bacterial infection concomitant with attenuated neutrophil 

influx [304, 435]. Platelet-derived CCL5 mediated neutrophil recruitment in an experimental 

model of acute colitis [305]. Osteopontin KO mice showed an impaired intraperitoneal 

neutrophil recruitment after injection of sodium periodate [306]. Expression of Il-1α correlated 

well with neutrophil infiltration in the initial phase of sterile inflammation [300]. In EO771.LMB 

primary tumors and pre-metastatic lungs, Il-1α, Spp1, Ccl2 and Ccl5 were not found to be 

consistently altered upon JUNB ablation indicating that these factors do not play a role in 

JUNB-dependent neutrophil accumulation.  

Furthermore, G-CSF is essential for maintaining the balance of neutrophil levels in 

homeostasis and under stress, both systemic and local [297, 298, 436, 437]. Lipocalin-2 was 

implicated in neutrophil infiltration by inducing G-CSF and CXCL1 in alveolar macrophages 

after infection with M. tuberculosis [438]. Both, G-CSF and lipocalin-2 have been identified as 

JUNB targets in fibroblasts during cutaneous wound healing [246]. In the current project, no 

consistent regulation of Csf3 and Lcn-2 by JUNB could be determined. Although alterations of 

Csf3 and Lcn-2 did reach significance in EO771.LMB primary tumors, these changes were 

very inconsistent for Csf3 and were not detected in pre-metastatic lungs. In contrast, 

Lcn-2- was strongly upregulated upon JUNB loss in primary tumors, which was also 

determined in pre-metastatic lungs. Nevertheless, Lcn-2 expression was highest in 

EO771.LMB cells, indicating that Lcn-2 is not predominantly derived from the 

microenvironment. A contribution of lipocalin-2 to JUNB-dependent neutrophil recruitment can, 

however, not be excluded completely.  

IL-1 has initially been associated with neutrophil recruitment by transcriptionally activating IL-8 

expression (the human orthologue of Cxcl1, Cxcl2 and Cxcl5) [439]. In line with IL-1, also TNFα 

has been described to induce IL-8 in human hepatocytes [440]. Further research did moreover 

support the notion, that both IL-1β [441-443] and TNFα indeed mediate neutrophil recruitment 

[442, 444]. Assessment of Il-1β and Tnfα expression in this project did reveal their absence in 

EO771.LMB cells but also their strong induction in the tumor bulk isolated from Junb KO mice. 

This finding indicates that Il-1β and Tnfα are specifically induced in cells of the tumor 

microenvironment upon JUNB deletion. Remarkably, these changes in expression were similar 

in pre-metastatic lungs: whereas no difference was observed in unchallenged mice, both 

cytokines were upregulated in pre-metastatic lungs of KO animals. Therefore, the expression 

patterns of Tnfα and even more strikingly Il-1β, correlate very well with the observed neutrophil 

levels. Nevertheless, it has to be mentioned that both TNFα and IL-1β can also be produced 

by neutrophils themselves, so that, in line with Cxcl12 mentioned earlier, enhanced expression 

may only reflect higher neutrophil abundance [445]. TNFα and IL-1β have furthermore been 

described to induce upregulation of endothelial adhesion molecules in the lung, such as 

VCAM-1, thus, enabling leukocyte adhesion and diapedesis [446]. As no prominent 

upregulation of classical neutrophil chemoattractants was determined in pre-metastatic lungs, 

induction of VCAM-1 by TNFα and IL-1β derived from the tumor microenvironment upon Junb 

deletion may provide another explanation for the elevated neutrophil recruitment.  
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5.8. Bone marrow transplantations point towards JUNB in the stromal 

rather than in the hematopoietic compartment being essential for 

neutrophil recruitment 

So far, it had been established in this dissertation, that loss of stromal Junb promoted breast 

cancer metastasis which was accompanied by the accumulation of neutrophils in the pre-

metastatic lungs and in primary tumors. Concomitantly, the upregulation of neutrophil-

attracting cytokines Il-1β and Tnfα was observed in these tissues. The cellular source of these 

cytokines was, however, still unclear. Thus, in order to identify, whether the metastatic 

phenotype was due to a neutrophil-intrinsic mechanism or regulated by neutrophil recruiting 

factors expressed by the stroma, bone marrow transplantations were performed.  

After lethal irradiation of the mice, bone marrow chimeric mice were successfully generated as 

indicated by the high reconstitution efficiencies exceeding 87% at end point. In agreement with 

previous experiments, tumor growth of EO771.LMB primary tumors was unchanged by JUNB 

loss in either compartment. In slight distinction, primary tumor growth was, however, delayed 

by approximately 3 days in all experimental groups. Examination of lung metastasis revealed 

a massively elevated metastatic burden in all experimental groups in comparison to animals 

which had not undergone bone marrow transplantations. Unexpectedly and in contrast to the 

initial metastasis experiment, no difference was observed between the experimental groups. 

As, it has been reported that whole body irradiation renders mice immunosuppressed up to 

several weeks after irradiation [308, 447, 448], this may potentially have aided metastatic 

spread in the bone marrow transplantation experiment. After BMT, blood counts typically return 

to normal within 4-6 weeks but the immune system is generally considered to be fully 

reconstituted only after approximately 10 weeks [449, 450]. Yet, different immune cell 

populations do exhibit tremendous differences in recovery times. In several publications, 

experiments are performed earliest 6-8 weeks after BMT in order to ensure that all immune 

cell populations have been re-established and have re-gained their respective functions [451-

453]. Nevertheless, I implanted tumor cells already 32 days after BMT due to several reasons: 

(I) neutrophils are the first cell type to recover already 2 weeks after BMT [450] and (II) Junb 

KO mice present with age-related defects. Beyond approximately 20-25 weeks, Junb KO mice 

exhibit reddened skin and itching corresponding to the development of inflammation 

resembling psoriasis [230]. In order to circumvent these issues, animals could not be allowed 

to recover for more than 4 weeks considering an age of 8 weeks when irradiated and 5-6 weeks 

for the spontaneous metastasis assay. Despite general immunosuppression, primary tumor 

growth was only slightly delayed in these mice indicating that the immune system did not play 

a decisive role in primary tumor growth. This notion is further supported by the fact, that 

although an increased infiltration of immune cells had been observed in the initial experiment 

without BMT, primary tumor growth was indifferent. The delay in primary tumor development 

may, however, have promoted dissemination of tumor cells due to the prolonged time until 

primary tumor resection, which may eventually have led to enhanced metastasis independently 

of JUNB. An alternative explanation is provided by the fact, that irradiation frequently induces 

fibrosis [454]. Fibrosis has moreover been linked to elevated metastasis in an experimental 

model of breast cancer [455].  

Although the metastatic phenotype upon Junb loss could not be reproduced in this setting, 

mice with deletion of Junb in the stromal compartment still showed higher levels of circulating 

neutrophils. This result points towards an indirect mechanism of neutrophil recruitment 

mediated by the stroma rather than a neutrophil-intrinsic effect. Nevertheless, higher systemic 
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neutrophil levels were also already detected by flow cytometry in unchallenged mice, a finding 

which was not confirmed by absolute cell counting. Due to the fact that flow cytometry relies 

on the expression of specific markers rather than morphological features, flow cytometry data 

were regarded as more accurate. Hence, higher neutrophil levels in the circulation and 

consequently recruitment to the tissue may simply be a result of the expansion of the myeloid 

compartment in Junb KO mice. In earlier studies, ectopic expression of Junb in long-term 

hematopoietic stem cells (LT-HSC) led to a reduction of LT-HSC frequencies, whereas ablation 

of Junb resulted in a myeloproliferative disorder with specific expansion of LT-HSC and GMP 

[209]. Remarkably, this myeloproliferative disorder was only observed when Junb was absent 

from LT-HSC but not in later steps of myelopoiesis [209]. In the present experiment, elevated 

systemic neutrophil levels were, however, only observed in mice with stromal Junb KO but not 

in mice with Junb deletion in the hematopoietic compartment, i.e. in mice which had been 

reconstituted with KO bone marrow. Furthermore, neutrophil levels were particularly enhanced 

upon tumor growth and also infiltration into the tissue was only increased in the presence of a 

primary tumor but not in unchallenged animals. Taken together, this implies that neutrophil 

numbers are specifically upregulated in tumor-bearing mice with stromal deletion of Junb and 

is not caused by defected myelopoiesis.  

Despite these elevated neutrophil levels in the circulation, no increased recruitment into 

primary EO771.LMB tumors was visible, though. This indicates that stromal cell types or 

signals derived from these cells were absent after BMT. For example, tissue-resident 

macrophages, prominent producers of IL-1β, require approximately 10 weeks after BMT to 

recover [450]. Thus, it can be speculated, that the absence of these cells may have prevented 

neutrophil accumulation in the tissue of KO mice thereby abolishing JUNB-dependent 

metastasis. As JUNB has, however, been shown to differentially control Il-1β in different cell 

types [233, 456], this regulation has to be investigated in more detail in this setting. Moreover, 

it is possible, that neutrophil infiltration into the primary tumors is irrelevant for metastasis. As 

neutrophil infiltration into pre-metastatic lungs after BMT was not assessed, this theory cannot 

be confirmed. Furthermore, whole body irradiation has been reported to induce IL-1β 

production, which could consequently have facilitated neutrophil recruitment [457]. Yet, 

neutrophil infiltration into the primary tumors was alleviated after BMT compared to mice which 

had not undergone irradiation, making this explanation less likely.  

5.9. Pharmacological neutrophil depletion is very inefficient 

After the bone marrow transplantation experiments had pointed towards a role of stromal JUNB 

in neutrophil recruitment, neutrophil accumulation and metastasis had still not been linked 

functionally. Research over the recent years has frequently associated neutrophils with 

metastasis and several reports pointed towards a function of neutrophils in preparing the pre-

metastatic niche [458-461]. In this context, neutrophils have, however, been shown to both 

stimulate and impair metastatic spread. In agreement with findings in this dissertation, Granot 

et al. demonstrated neutrophil accumulation in pre-conditioned lungs by 4T1 and MMTV-PyMT 

tumors [92]. Yet, the authors found these neutrophils to inhibit metastatic seeding in the lung. 

Other reports confirmed neutrophil accumulation in the pre-metastatic lungs in experimental 

breast cancer models, but revealed metastasis-promoting effects of neutrophils. Coffelt and 

colleagues identified neutrophils to stimulate metastasis via suppression of CD8+ T cells [91], 

whereas Wculek and Malanchi demonstrated that neutrophil-derived leukotrienes promoted 
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the selection of tumor subpopulations with high tumorigenic potential [96]. Recently, another 

study revealed that neutrophils in the pre-metastatic niche facilitate colonization by actively 

capturing tumor cells by forming neutrophil extracellular traps (NET) [407]. NETosis was 

thereby stimulated by tumor-derived factors, such as IL-8, G-CSF, CXCL1, or CXCL2.  

In order to investigate, whether neutrophils indeed facilitated metastasis in this project, 

neutrophils were ablated pharmacologically using the neutrophil-specific antibody anti-LY6G 

1A8. In order to assess the efficiency of neutrophil depletion, neutrophil levels were analyzed 

in whole blood. Due to the fact that the antibody anti-LY6G 1A8 was already used for in vivo 

injection, flow cytometry analysis was performed using anti-GR1 to exclude false negative 

results. Anti-GR1 RB6-8C5 and anti-LY6G 1A8 do, however, both recognize an epitope on 

LY6G and have been reported to compete with each other [314], likely explaining the observed 

left shift in GR1 mean fluorescence intensity. Administration of anti-LY6G led to a reduction of 

circulating neutrophil levels in Junb KO mice by day 10 after tumor cell inoculation as assessed 

by flow cytometry. Antibody injection had no effect on other immune cell populations confirming 

its specificity. Flow cytometric analysis of KO mice showed, that depletion efficiency was, 

however, already markedly reduced on day 17 and completely abolished at end point, which 

was confirmed by automated cell counting. These results indicate that anti-LY6G specifically 

targeted neutrophils and also efficiently bound to LY6G up to day 10. Beyond day 10, binding 

efficiency decreased potentially owing to the vast abundance of neutrophils in KO animals. 

Interestingly, Granot and colleagues reported similar findings. The authors reported effective 

depletion in Balb/c mice until day 14 after tumor cell implantation, but no significant difference 

thereafter [92]. To date, the mechanism of action for anti-Ly6G antibody 1A8 has not been 

resolved conclusively. Several researchers have pointed out, that the efficiency of neutrophil 

depletion using antibody 1A8 varies tremendously depending on the examined tissue [314, 

462, 463]. Hence, in order to assure that neutrophils are indeed absent in the tissue, gene 

expression analysis and immunohistochemistry for LY6B.2 was performed. My results clearly 

confirmed the upregulation of markers of immune cell infiltration in EO771.LMB primary tumors 

and pre-metastatic lungs derived from KO animals, but results also proved that anti-LY6G 

treatment had no effect on neutrophil recruitment into the tissues. Taken together, antibody 

treatment was not sufficient to efficiently ablate neutrophils in tumor-bearing KO mice. This 

failure may either be the result of the tremendous numbers of neutrophils in the circulation of 

KO animals or may actually be a biological effect. As pointed out by Moses and colleagues, 

treatment with anti-LY6G led to cells being more resistant towards apoptosis and enhanced 

extramedullary granulopoiesis [463]. Very recently, Faget and colleagues demonstrated 

ineffectiveness of anti-LY6G in C57BL/6J mice in contrast to other investigated mice strains 

[464]. The authors explained this finding by the elevation of self-renewal of neutrophils in the 

circulation as indicated by increased abundance of immature neutrophils and the absence of 

mature neutrophils in the bone marrow.  

Considering the low depletion efficiency, it was, thus, not surprising, that anti-LY6G treatment 

did not result in a reduction of metastasis as originally expected. Yet, this experiment clearly 

confirmed the higher metastatic load in the lungs of mice with a stromal deletion of Junb.  

5.10. Conclusion, future perspectives and clinical relevance 

Herein, for the first time, I present direct functional evidence, that stromal JUNB indeed 

promotes metastatic spread in a murine model of breast cancer. As tumor cell extravasation 
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was not facilitated in the absence of a primary tumor, it is likely to assume that JUNB influences 

the initial steps of the metastatic cascade, such as intravasation. Considering, however, that 

no major defects in the vasculature of the primary tumor were observed and changes in 

immune cell infiltration, in particular of neutrophils, were much more pronounced in the pre-

metastatic lungs, JUNB is more likely to promote distant metastasis by facilitating the 

establishment of a pre-metastatic niche. Bone marrow transplantation experiments further 

supported the notion that the accumulation of neutrophils in the pre-metastatic lungs is 

mediated by loss of JUNB in stromal cells rather than in the hematopoietic compartment. These 

findings argue for an indirect mechanism rather than a neutrophil-intrinsic effect, which is 

further supported by JUNB-dependent regulation of several neutrophil recruiting factors, in 

particular Il-1β. Yet, injection of LY6G-specific antibody did not result in an efficient 

pharmacological ablation of neutrophils, so that direct functional proof to support this 

hypothesis is still missing. Nevertheless, the neutrophil depletion experiment clearly confirmed 

the original data, that loss of Junb in the stroma facilitates distant metastasis to the lungs.  

The results of this dissertation clearly point towards JUNB controlling metastasis via regulation 

of neutrophil recruitment into the pre-metastatic niche. Due to the inefficient pharmacological 

neutrophil depletion, neutrophils should be ablated genetically in order to directly proof this 

hypothesis. Recently, a new mouse model was generated which allows the specific ablation 

of neutrophils upon injection of diphtheria toxin [465]. Mice expressing Cre recombinase under 

the control of the Mrp8 promoter were crossed with ROSA-iDTRKI mice which carry the Cre-

inducible simian diphtheria toxin receptor [466]. The necessity to generate mice which are 

additionally deleted for Junb in the stroma on this background, does, however, require an 

elaborate breeding scheme. Less technical challenging albeit less specific is the 

pharmacological depletion of neutrophils with anti-GR1. Although GR1 also targets monocytes 

and MDSCs, this depletion strategy has just very recently proven to be more effective than 

anti-LY6G [464].  

Bone marrow transplantation experiments further indicated that loss of JUNB in the stromal 

compartment and not in the hematopoietic compartment is required for neutrophil 

accumulation in pre-metastatic lungs. In order to directly proof this notion and establish the link 

to metastasis, the spontaneous metastasis assay should be performed in mice with cell type-

specific Junb ablation. In order to exclude a neutrophil-intrinsic mechanism, Junb can be 

deleted specifically in neutrophils using Mrp8-Cre mentioned above [231] or utilizing a Lyz2-

driven Cre to ablate Junb in the myeloid lineage [467-469]. Due to the fact, that neutrophil 

accumulation was increased upon stromal deletion of Junb in this project and ablation in 

fibroblasts led to an induction of Il-1β, it may be speculated that in fact JUNB in fibroblasts is 

decisive for the metastatic phenotype [456]. For this purpose, metastasis can be studied in the 

spontaneous assay using Cre recombinase driven by a Sm22 promoter. This promoter has 

been described to be specific for myofibroblasts but has also been shown to be active in 

myeloid cells, thus, reducing its utility for this study [470]. More specifically, loss of JUNB in 

fibroblasts can be achieved using a Col1α2-CreER(T) line [471] which is currently established.  
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Figure 5-1: Graphical summary of the results of this work. 

EO771.LMB primary tumors and the cells of the tumor microenvironment secrete neutrophil-recruiting factors which 

attract neutrophils to pre-metastatic lungs, which in turn mediate lung metastasis. Upon loss of JUNB in the stroma, 

higher levels of neutrophil-recruiting factors are released, which potentiate neutrophil accumulation to the pre-

metastatic lungs consequently facilitating distant metastasis.  
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In order to directly assess, whether JUNB enhances metastatic seeding by preparing a pre-

metastatic niche, it would be feasible to combine the spontaneous and experimental 

metastasis assay. Metastasis should be analyzed after tail vein injection in tumor-bearing mice. 

To investigate, whether specifically extravasation and seeding are facilitated, these 

experiments should be analyzed at early time points after intravenous injection or in an ex vivo 

pulmonary metastasis assay [472].  

The results obtained in this thesis have direct implications in the treatment of breast cancer. 

Due to the frequent overexpression of AP-1 in breast cancer specimens and its association 

with tumor progression and invasion, several strategies to inhibit AP-1 activity have been 

developed [150-155]. On the basis of the findings in this dissertation, it can, however, be 

speculated that targeting of AP-1/JUNB may in fact even be detrimental to the patient by 

increasing the risk for the development of distant metastasis. Any potential therapy based on 

decreasing AP-1/JUNB activity would have to be carefully designed to exclusively target tumor 

cells but leave cells of the microenvironment unaffected.  
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