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Phasenübergänge in Gittereichtheorien: Vom numerischen Vorzeichen-

problem zu maschinellem Lernen

Gittersimulationen der Quantenchromodynamik (QCD) sind ein wichtiges

Werkzeug der modernen Quantenfeldtheorie. Derartige Simulationen der grundle-

genden Theorie ergeben höchst präzise Ergebnisse und ermöglichen somit den

Vergleich von Theorie und Experiment. Bei endlicher baryonischer Dichte sind

solche Simulationen nicht mehr möglich. Dies liegt am sogenannten numerischen

Vorzeichenproblem, welches auftritt, wenn die Wirkung der Theorie komplexwer-

tig wird und somit zu Integralen über stark oszillierenden Funktionen führt. Wir

untersuchen zwei Ansätze dieses Problem zu lösen. Zunächst verwenden wir die

komplexe Langevin Methode, ein komplexi�zierter stochastischer Prozess, und

untersuchen ihre Eigenschaften. Wir wenden diese Methode auf QCD an und

simulieren eine Parameterregion in der andere Methoden unzuverlässig sind, wir

simulieren Parameter bis µ/Tc ≈ 5. Wir untersuchen schlussendlich die Anwend-

barkeit der Methode für SU(2) Realzeitsimulationen. Weiterhin untersuchen wir

die Methode der sogenannten Lefschetz Thimbles, welche das Vorzeichenproblem

durch eine Deformierung der Integrationsmannigfaltigkeit löst, sodass keine Oszil-

lationen mehr auftreten. Wir diskutieren Aspekte der Methode anhand einfacher

Modelle und entwickeln Algorithmen für höhere Dimensionen.

Zum Abschluss wenden wir neuronale Netze auf Daten aus Gittersimulationen

and und benutzen diese um den Ordnungsparameter des Phasenübergangs im

Ising Modell und in SU(2) Eichtheorie zu �nden. Wir entschlüsseln somit die

Grösse, die das neuronale Netz lernt.

Phase transitions in lattice gauge theories: From the numerical sign

problem to machine learning

Lattice simulations of Quantum chromodynamics (QCD) are an important tool

of modern quantum �eld theory. They provide high precision results from �rst

principle computations and as such allow for comparison between experiment and

theory. At �nite baryon density, such simulations are no longer possible due to

the numerical sign problem which occurs when the action of the theory becomes

complex, leading to integrals over highly oscillatory functions. We investigate two

approaches to solve this problem. We employ complex Langevin method, which

is a complexi�ed stochastic process and investigate its properties. We apply it to

QCD in a region where other methods are unreliable, we go up to µ/Tc ≈ 5. We

�nally investigate its applicability for SU(2) real-time simulations. We also inves-

tigate the Lefschetz Thimble method, which solves the sign problem by deforming

the manifold of integration, such that there is no more oscillatory behavior. We

discuss aspects of the method in simple models and develop algorithms for higher

dimensions.

Finally, we apply neural networks to lattice simulation data and use them to ex-

tract the order parameter for the phase transition in the Ising model and SU(2)

gauge theory. Thus, we uncover what the neural network learns.
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1 Introduction

Knowledge of the fundamental interactions between the constituents of matter is im-
perative to our understanding of how nature works. Those interactions are largely
described by the standard model of particle physics, which is a staggering success of
modern high energy physics. It describes the fundamental interactions of particles
via the electroweak and strong force and has been able to explain many phenom-
ena in very precise agreement to experimental results. The most prominent recent
success is the discovery of the Higgs boson [1, 2]. In this thesis, we are interested
in the strong sector of the standard model, which is described by quantum chro-
modynamics (QCD). While QCD at high energies is well described by perturbative
calculations, it is strongly coupled at low energies and thus requires non-perturbative
methods. QCD at T ≥ 0 can be simulated with high-performance lattice simulations
to yield high precision results, which are in very good agreement with experimental
data [3]. Hence, nowadays lattice QCD (LQCD) is the go-to method for precision
computations of QCD, it will be the method of choice in this thesis as well.

1.1 Motivation

QCD describes the dynamics of quarks which are interacting via gluons, both carry
a charge called �color�. Its vacuum physics is well understood in the high energy
regime via perturbative calculations and in the low energy regime via lattice QCD
simulations. In nature only color neutral objects exist, thus quarks and gluons
are strongly coupled and form bound states called hadrons. On the other hand,
we know that scattering processes of QCD at high energy collider experiments are
weakly coupled in the so-called quark-gluon plasma. It is thus described very well
by perturbation theory. This weak coupling tends to zero for high energies, which is
known as asymptotic freedom [4, 5]. Its discovery led to the physics Nobel prize in
2004. The transition from the quark-gluon plasma to hadronic matter is described
by two phenomena. In Yang-Mills theory this transition is a proper phase transition,
which goes from a decon�ned phase at high temperature into a con�ned phase at
low temperatures. Similarly, QCD with massless quarks exhibits chiral symmetry
breaking from high temperatures where quarks are massless to low temperatures
where the constituents of hadrons have acquired mass. In practice both of those
transitions turn into a crossover, i.e. the transition is continuous and smooth since
neither pure Yang-Mills theory nor massless quarks are realized in nature. This
crossover is known as the QCD crossover transition. It is generally accepted that
the transition is a crossover and that decon�nement and chiral symmetry breaking
happen simultaneously [6]. At vanishing chemical potential, the crossover is acces-
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sible to high precision from �rst principle lattice QCD simulations [6]. Alternative
�rst principle approaches are functional methods such as the functional renormal-
ization group (FRG) [7�10] and Dyson-Schwinger equations, for a review, see [11].
The situation changes for �nite baryon density or baryochemical potential µ1. Here
lattice simulations are no longer applicable due to the so-called sign problem [12] �
the Boltzmann factor is no longer real and positive and thus loses its interpretation
as a probability distribution. However, model computations show that there are
interesting phenomena at �nite µ. For instance models of QCD speci�cally focusing
on chiral symmetry and decon�nement show a critical endpoint of the transition
where the crossover turns into a �rst-order transition, see e.g. [13, 14]. The same is
seen in computations via the Dyson-Schwinger equations. Thus, it is important to
con�rm or dispute the existence of the critical endpoint of QCD from �rst principle
methods. Despite the sign problem for lattice simulations at �nite µ it is, possi-
ble to use expansion or extrapolation techniques to obtain results at small �nite
µ anyway. Hence, there is a strong focus of several collaborations on investigating
the phase diagram with large success at µ/T < 1, for recent works see [6, 15�19].
For an overview addressing the QCD phase diagram in general and other phases see
[20�22].
Experimentally the phase diagram can be probed via heavy-ion collisions, which
is done at the Large Hadron Collider (LHC) [23] and the Relativistic Heavy Ion
Collider (RHIC) [24]. Here the transition cannot be directly observed, instead so-
called chemical freeze-out � the region where hadron content no longer changes � is
investigated and the corresponding freeze-out temperature and chemical potential
are extracted, see [25] for a recent article.
Nowadays results from lattice computations and experiment agree well at µ/T < 1.
Hence, it is highly desirable to directly simulate at �nite chemical potential in order
to go to higher µ/T to determine the precise location critical endpoint. In this thesis
will investigate two of the approaches to the sign problem, the complex Langevin
method and the Lefschetz Thimble method with the goal of simulating �rst princi-
ple QCD at �nite T and µ. We are able to use the complex Langevin method to
simulate regions of the phase diagram which so far have been inaccessible in lattice
simulations.

Lattice simulations typically require large statistics to yield high precision results.
Hence it is natural to apply techniques designed for �big data�. Recently there has
been a lot of progress in applying machine learning and in particular neural net-
works to physics problems, see [26] for a review. Oftentimes these techniques are
treated as black boxes. I.e. there is no general understanding of what exactly they
learn. As such they are unsuitable for purely theoretical predictions. However, an
understanding of the learning process and structure of machine learning algorithms
could make them suitable for such tasks. An application could be the sign problem

1Chemical potential is the energy that is related to a change in particle number. Baryochemical
potential refers speci�cally to baryons.
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e.g. by �nding coordinate transformations or manifolds of integration where the sign
problem is weaker [27, 28]. We will take a di�erent approach here and apply neural
networks to data from Monte Carlo simulations in order to detect phase transitions
and understand what the neural network learns in the process � thus partly decoding
the black box.

1.2 Publications

While the compilation of this thesis was done solely by the author, the vast major-
ity of the work presented here was done together with my collaborators. The yet
unpublished parts of this work are based on collaborations with

• E. Seiler, D. Séxty and I.-O. Stamatescu for the improved method for boundary
terms in complex Langevin.

• D. Séxty and I.-O. Stamatescu for everything related to complex Langevin and
QCD.

• J.M. Pawlowski, C. Schmidt, I.-O. Stamatescu, F.P.G. Ziegler and F. Ziesché
for the local thimble algorithm.

All results from published works were obtained with the corresponding co-authors.
Results and �gures from these published works are not marked explicitly. The
corresponding publications are:

• [29] Complex Langevin and boundary terms
Manuel Scherzer, Erhard Seiler, Dénes Sexty and Ion-Olimpiu Stamatescu
Published in Phys.Rev. D99 (2019) no.1, 014512.
Eprint: arXiv:1808.05187
Comment: The contents of this work are contained in section 3.1.1.

• [30] Reweighting Lefschetz Thimbles
Stefan Bluecher, Jan M. Pawlowski, Manuel Scherzer, Mike Schlosser, Ion-
Olimpiu Stamatescu, Sebastian Syrkowski and Felix P.G. Ziegler
Published in SciPost Phys. 5 (2018) no.5, 044.
Eprint: arXiv:1803.08418
Comment: The contents of this work are contained in section 4.2.

• [31] Machine Learning of Explicit Order Parameters: From the Ising
Model to SU(2) Lattice Gauge Theory
Sebastian Johann Wetzel and Manuel Scherzer
Published in Phys.Rev. B96 (2017) no.18, 184410.
Eprint: arXiv:1705.05582
Comment: The contents of this work are contained in section 5.2.1.

There are also some proceedings from the annual lattice conference, which present
some of the results discussed in this thesis.

https://doi.org/10.1103/PhysRevD.99.014512
https://doi.org/10.1103/PhysRevD.99.014512
https://arxiv.org/abs/1808.05187
https://doi.org/10.21468/SciPostPhys.5.5.044
https://doi.org/10.21468/SciPostPhys.5.5.044
http://arxiv.org/abs/arXiv:1803.08418
https://doi.org/10.1103/PhysRevB.96.184410
https://doi.org/10.1103/PhysRevB.96.184410
https://doi.org/10.1103/PhysRevB.96.184410
http://arxiv.org/abs/arXiv:1705.05582
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• [32] Getting even with CLE
Gert Aarts, Kirill Boguslavski, Manuel Scherzer, Erhard Seiler, Dénes Sexty,
Ion-Olimpiu Stamatescu
Published in EPJ Web Conf. 175 (2018) 14007.
Eprint: arXiv:1710.05699
Comment: Parts of the contents of this work are contained in sections 3.2.1
and 3.3.

There is another proceeding from the 2018 lattice conference [33] which contains
parts of 3.2.3, however, the review process of those proceedings is not yet �nished,
hence the work is not o�cially published.
I am currently also working on a project within Prof. Dr. Jan M. Pawlowskis group
on the application of neural networks to extract spectral functions from propagator
data, which is an ill-posed inverse problem. The progress of this project is not
contained in this thesis.

1.3 Outline

This thesis is organized as follows. Chapter 2 introduces the basics of the phase
diagram of quantum chromodynamics (QCD), lattice QCD and the sign problem.
The purpose of this chapter is mainly to set the stage and establish notation, the
content does not contain new research and may thus be skipped by a reader familiar
with those topics.
In chapter 3 we introduce the complex Langevin method as an approach to the sign
problem, discuss its convergence properties and apply it to QCD and SU(2) lattice
gauge theory on a real-time contour.
Chapter 4 introduces another approach to the sign problem, namely Lefschetz thim-
bles. We investigate aspects of the method in simple models and discuss its appli-
cability in higher dimensional theories.
In Chapter 5 we brie�y introduce feed-forward neural networks and show how they
can be used to �nd order parameters from lattice con�gurations while also �nding
out what the neural network learns, thus decoding the black box for speci�c cases.
We summarize our �ndings and give an outlook in chapter 6.
Finally, the appendices A-C contain more technical information on chapters 3-5.

https://doi.org/10.1051/epjconf/201817514007
https://doi.org/10.1051/epjconf/201817514007
http://arxiv.org/abs/arXiv:1710.05699
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2 QCD, the lattice, and the sign problem

In this part, we brie�y introduce the relevant physics and basic methods that are
necessary throughout this thesis.

A brief reminder of continuum QCD

The QCD Lagrangian describes the coupling of quarks and gluons. With the inclu-
sion of �nite baryochemical potential it reads

LQCD =
1

4
F a
µνF

a
µν +

∑
α

ψ̄α (γµDµ +mα + iµγ0)ψα . (2.1)

We work in Euclidean space, hence the metric is just δµν . We also use c = kB = ~ = 1
throughout this thesis. In equation (2.1) as well as throughout this thesis the sub-
script Greek letters refer to space-time indices, i.e. µ ∈ 0 . . . d− 1 with d being the
number of dimensions, superscript Latin letters represent the adjoint color index
a = 1 . . . N2 − 1, where N refers to the gauge group SU(N). The superscript α
stands for �avors, i.e. α ∈ {u, d, s, c, b, t}. F a

µν = ∂µA
a
ν − ∂νA

a
µ + gfabcAbµA

c
ν is

the �eld strength tensor with fabc being the structure constants of SU(3). Dµ =(
∂µ + igAaµt

a
)
is the covariant derivative with ta being the generators of SU(3). For a

detailed derivation of those quantities we refer to standard textbooks such as [34, 35].
QCD in contrast to Quantum electrodynamics (QED), which describes the interac-
tion between particles with electric charge, is a nonabelian gauge theory, meaning
that the elements of the gauge group SU(3) do not commute. A consequence of this
is the term gfabcAbµA

c
ν in the �eld strength tensor. Since the action is quadratic in

the �eld strength there are self-interactions between the gluons. This is in contrast
to QED with the abelian gauge group U(1). There this term does not occur and
hence there is no interaction between photons. Possible interactions from the QCD
Lagrangian in equation (2.1) are between three gluons, four gluons, and two quarks
and a gluon. Those interactions are described by vertex terms and together with
the gluon and quark propagators they make up the essential quantities needed to
describe QCD in the continuum.

There is one property of QCD that is of particular importance for its lattice
discretization, namely the invariance under local gauge transformations

ψ → UψAµ → UAµU
† − i

g
U
(
∂µU

†) , (2.2)

where U(x) ∈ SU(3). There are many intricate details related to gauge symmetry
such as the need for gauge �xing in continuum calculations, see e.g. [34, 35]. On
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the lattice, gauge �xing is not necessary since lattice QCD is formulated inherently
gauge invariant, see section 2.3. Thus, we will not discuss gauge �xing.
In this thesis, we are interested in QCD at �nite chemical potential µ and �nite
temperature T . We will thus brie�y introduce the important phenomena occurring
in the corresponding phase diagram.

2.1 The phase diagram of QCD

One of the best-known property of QCD is asymptotic freedom [4, 5] whose discov-
ery lead to the physics Nobel prize in 2004. Asymptotic freedom is the property of
QCD that at large energies the coupling strength between particle becomes small,
such that they e�ectively behave like free particles. It is the reason that perturbative
calculations for QCD at arbitrarily high energies are possible. The state of QCD
matter at high energies is called the quark-gluon plasma. In contrast, at low ener-
gies the coupling strength becomes large. Hence, perturbation theory is no longer
applicable and particles are strongly interacting. Due to this strong interaction con-
�nement occurs. Con�nement is the phenomenon that at low energies quarks and
gluons can exist only in color-neutral bound states, such as protons and neutrons.
Hence, it is an interesting question to ask for the properties of the transition between
those regions.

The decon�nement transition

Con�nement is usually de�ned via the potential between a static quark-antiquark
pair. To be more precise, at large distances the potential rises linearly,

lim
r→∞

Vqq̄(r) = σr . (2.3)

Thus an in�nite amount of energy is required to separate two static quarks. In
nature another quark-antiquark pair will be created at su�ciently large energies
introducing a screening e�ect for the potential, this is referred to as string breaking.
In the decon�ned phase the potential is Coulomb-like

lim
r→0

V (r) =
a

r
. (2.4)

The behavior of the potential can be shown best in certain limits in the lattice
discretization of Yang-Mills theories, see e.g. [36, 37] for a derivation. Lattice simu-
lations have con�rmed that this behavior holds also outside those limits, see e.g. [38�
40] for some examples. The decon�nement transition is a phase transition only in
pure Yang-Mills theory since it relies on quarks being static. This is not the case in
nature such that the transition becomes a crossover. In pure Yang-Mills the order
parameter for the transition is the so-called Polyakov loop 〈L〉. Physically, it is
related to the free energy of a static quark-antiquark pair

e−βFqq̄(~n−~m) =
〈
L(~n)L†(~m)

〉
. (2.5)
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If the Polyakov loops decouple for large distances |~n− ~m| → ∞ we have〈
L(~n)L†(~m)

〉
= |〈L〉|2 . (2.6)

If 〈L〉 = 0 this means that Fqq̄ →∞ as the distance increases. On the other hand if
〈L〉 > 0, we have Fqq̄ = const < ∞, in which case the energy becomes constant for
in�nite distances. This can be interpreted as the decon�nement transition, since in
the con�ned phase it takes in�nitely much energy to separate a bound state, while
in the decon�ned phase a �nite amount of energy su�ces. To conclude

〈L〉 = 0⇒ con�nement

〈L〉 6= 0⇒ decon�nement .

In the strong coupling limit of lattice QCD one can compute the potential of a
quark antiquark pair directly and show that in what we called the con�ned phase it
rises linearly with distance, while it has a Coulomb like behavior in the decon�ned
phase, see e.g. [36]. With the inclusion of fermions the decon�nement transition
becomes a crossover, however the Polyakov loop can still be used to give a transition
temperature. Due to the inherent noisiness of the Polyakov loop it is often simpler
to look at its absolute value, i.e. 〈|L|〉.
There is a symmetry connected to the decon�nement transition, the so-called center
symmetry [41]. The center of a group is given by elements which commute with all
elements of the group. Pure Yang-Mills theory is invariant under center symmetry
transformations

U = zU , (2.7)

where U ∈ SU(N) is the exponential of the gluon �eld Aµ and z an element of
the center of SU(N) center. The Polyakov loop is not invariant under the same
transformation L → zL, such that center symmetry holds only when 〈L〉 = 0. In
that sense center symmetry breaking signals decon�nement.

Chiral symmetry breaking

Another transition related to the QCD crossover is the chiral phase transition. The
QCD Lagrangian from equation 2.1 in the limit of vanishing masses � the chiral
limit � exhibits chiral symmetry. The quark �eld can be decomposed as q = qR + qL
with projectors

qL/R = P±q =
1

2
(1± γ5) . (2.8)

Under this decomposition the Lagrangian is invariant under

qL → eiαqL

q̄L → q̄Le
−iα

qR → eiβqR

q̄R → q̄Re
−iβ , (2.9)
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where α, β ∈ R are constants. This symmetry is spontaneously broken at low temper-
atures, an order parameter is given by the chiral condensate 〈qq̄〉, which corresponds
to the mass term in equation (2.1) The symmetry breaking pattern is the following

U(Nf )L(Nf )R = SU(Nf )V × U(1)V × SU(Nf )A × U(1)A
anomalous−−−−−−→ U(Nf )V × U(1)V × SU(Nf )A
chiral−−−→ U(Nf )V × U(1)V . (2.10)

The anomalous breaking of U(1)A is related to the axial anomaly [42�45], which
leads to the mass splitting of the η and η′ mesons [46]. Chiral symmetry breaking
is described by the breaking of SU(Nf )A. In the chiral limit, it leads to massless
pions, the Goldstone bosons of chiral symmetry. In nature the mass of the up- and
down quarks are only approximately zero, hence the pions have a small mass as well.

The QCD phase transition and chemical freeze-out

The above transitions are very well studied in the limit of vanishing chemical po-
tential by means of lattice QCD and by now it is accepted that the transition
is a crossover [6] and that the decon�nement and chiral phase crossovers happen
at the same point. The transition temperature in full QCD with Nf = 2 + 1 is
Tc ≈ 155 MeV [16, 47] and about 25 MeV lower in the chiral limit [48].
The situation is di�erent at �nite chemical potential µ. Due to the sign problem,
which will be discussed below in section 2.4, lattice QCD is not easily applicable
at �nite µ. Standard lattice simulations are restricted to either extrapolation from
imaginary chemical potential, see e.g. [18, 19, 49] or Taylor expansion around µ = 0,
see e.g. [15, 16, 19]. The results from those suggest that the transition temperature
Tc(µ) is well described by a quadratic behavior with curvature κ2 ≈ 0.014. There
are many results from continuum computations from Dyson-Schwinger equations,
see [11] for a review or from model computations, see e.g. [13, 14]. The phase diagram
in those computations typically shows a critical endpoint. The critical endpoint of
QCD is the point where the crossover turns into a �rst order transition. Unfortu-
nately, the prediction of the position of the critical point between those methods
varies wildly. It remains to be seen whether standard lattice computations can prove
or disprove the existence of a critical point since extrapolations and expansions typ-
ically have a radius of convergence and thus may not be able to reach it, so far they
yield reliable results up to µ/T < 1. Hence, it is important to look for alternatives
which allow for direct simulation at �nite µ, such as the complex Langevin method
which we will discuss in chapter 3 or the Lefschetz thimble method which we discuss
in chapter 4.
Experimentally there is no way to directly probe the phase transition. Instead,
the so-called chemical freeze-out parameters can be measured. Chemical freeze-
out describes the region in the phase diagram at which the hadron content in a
heavy-ion collision no longer changes, a comparison for criteria of chemical freeze-
out can be found in [50]. It is clear that this transition has to be below the QCD
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phase transition since hadrons do not exist above the transition. Unfortunately in
heavy-ion collisions, one cannot just tune µ and T since the center-of-mass energy
of a nucleon-nucleon pair

√
sNN is the only adjustable parameter. What is typically

done to extract the transition parameters is a �t of the so-called hadron resonance
gas model to experimental quantities such as hadron yields [25]. The hadron reso-
nance model is motivated from statistical physics, it is a mixed gas of baryons and
mesons, i.e.

log Z(T, V, µB, µQ, µS) ≈
∑

i∈mesons

log Zmi(T, V, µQ, µS)

+
∑

i∈baryons

log Zmi(T, V, µB, µQ, µS) , (2.11)

where mi is the mass of the hadron. The sum over mesons and baryons incorporates
all stable particles and resonances listed in the Particle Data Booklet [51]. Those �ts
then yield µB and T . Note however that they can only be trusted below the phase
transition, where hadrons exist. The chemical freeze-out temperature at µB ≈ 0
agrees within errors with the phase transition temperature, suggesting that the
phenomenon occurs close to the QCD transition [25]. The freeze-out temperature
and chemical potential are usually described by rather simple parametrizations of
µB(
√
sNN) and T (

√
sNN), e.g. from [25]

TCF =
158.4 MeV

1 + e2.60 − log
√
sNN

0.45

(2.12)

µB =
1307.5 MeV

1 + 0.288
√
sNN

, (2.13)

which describes the experimental data remarkably well in the measured region down
to TCF ≈ 60 MeV and up to µB = 800 MeV. There are also recent e�orts to extract
the temperature by comparing lattice simulations to experiment [52].
Concerning the critical endpoint, so far there has been no experimental evidence for
its existence.

Nuclear liquid-gas transition

Another better-understood transition is the nuclear liquid-gas transition. At van-
ishing temperature T = 0, a baryon can only be created if there is enough energy,
i.e. when µB = mB. While this is physically intuitive, it is not simple to deduce
this from the Dirac operator. This phenomenon has been coined the Silver-Blaze
problem [53]. At T = 0 the sudden creation of a particle corresponds to a �rst order
phase transition, where the density is the order parameter. At su�ciently small
T > 0, the transition is still �rst order by continuity and shows a critical endpoint.
There is no �rst principle computation for the location of the critical endpoint of
this transition, however models and experiment largely agree, see e.g. [54, 55]. It is
found at T ≈ 10−20 MeV. It is also desirable to have a �rst principle determination
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of the equation of state at T = 0 as a function of µ, since this is an important input
e.g. for the mass-radius relation of neutron stars, for a review see [56].

There are other phases in the QCD phase diagram such as a color-superconducting
phase, see e.g. [20] for a review. Such exotic phases are not the topic of this thesis.

2.2 Equilibrium quantum �eld theory in real time

Since we are interested in doing lattice QCD simulations, we typically work in Eu-
clidean space, i.e. imaginary time, such that the Boltzmann factor is exp(−SE).
There are many quantities such as spectral functions or transport coe�cients, which
are inaccessible in imaginary time and require continuation to real time.
In the case of imaginary time, the time variable is traded for inverse temperature due
to the analogy to statistical physics. Bosonic (fermionic) �elds are (anti-)periodic
in inverse temperature, see e.g. [57, 58] for a derivation of the corresponding path
integral. Correlation functions can be taken along the imaginary time or tempera-
ture axis, i.e. along a path from 0 to − i/T . If real-time t comes into play, this path
has to be deformed. The common way to do this is the closed time path formalism,
i.e. the integration path along which the action is integrated is deformed according
to

∫ β

0

dτ

∫
d~xLE →

∫ −iβ
0

dt

∫
d~xLM →

∫
C
dt

∫
d~xLM (2.14)

where in the �rst step we rephrased the imaginary time action in terms of real time
to visualize that the contour of integration in the imaginary time formalism goes
along the negative imaginary axis. In the second step we changed the integration
path according to

∫
C

=

∫ ∞
−∞

dt+ +

∫ −∞
∞

dt− +

∫ −∞−iβ
−∞

. (2.15)

Physically the situation is the following: the �eld starts in its asymptotic past at
t = −∞, we measure correlation functions at some intermediate time t, let the �eld
evolve to the asymptotic future at ∞, The contour in equation (2.15) is called the
Schwinger-Keldysh contour. back to −∞ and �nally to −iβ. Thus we have included
all �nite time and �nite temperature e�ects. For the purpose of this thesis details
of the formalism are not important, see [58] for Greens functions and a proper path
integral de�nition along the path. It is important to note that deformations of the
path are also possible [59], which we will make use of in section 3.3 when setting up
real-time lattice simulations along such paths.
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2.3 Lattice discretization of QCD

Lattice gauge theory was originally introduced by Wegner [60] for Z2 gauge theory
and by Wilson [61] for SU(N). It quickly gained popularity and nowadays is the
go-to method for high precision computations in high energy physics and especially
QCD, where applicable. Due to this popularity, there exist many good textbooks on
the matter. Some of the more recent ones are [36, 37, 62�64]. Since our introduction
in this section will be rather brief, we refer to those textbooks for details.

We start the lattice discretization by introducing a four-dimensional lattice Λ with
index n = t, x, y, z and periodic boundary conditions. For now, we work without
chemical potential. On each lattice site there is a fermion, which we demand to
transform under local gauge transformations, which we now call Ω as

ψ(n)→ Ω(n)ψ(n) and ψ̄(n)→ ψ̄(n)Ω†(n) . (2.16)

There is an apparent problem when looking at the discretization of parts of the
derivative term

ψ̄∂µψ → ψ̄(n)
1

2a
(ψ(n+ µ̂)− ψ(n− µ̂))) , (2.17)

where µ̂ is the unit vector in direction µ, i.e. it refers to the neighboring point in
direction µ. This term is not invariant under gauge transformations

ψ̄(n)ψ(n+ µ̂)→ ψ̄(n)Ω†(n)Ω(n+ µ̂)ψ(n+ µ̂) , (2.18)

unless an additional �eld Uµ(n) which transforms as

Uµ(n)→ Ω(n)Uµ(n)Ω†(n+ µ̂) , (2.19)

is introduced to connect the fermions. The fermionic derivative term is replaced
according to

ψ̄(n)ψ(n+ µ̂)→ ψ̄(n)Uµ(n)ψ(n+ µ̂) , (2.20)

which again is gauge invariant. Note that the �eld Uµ(n), which is called the gauge
link has a direction. It points from n to n + µ̂, this will be important when going
back to the continuum. The naive fermion action on the lattice then reads

SF = a4
∑
n∈Λ

ψ̄(n)

(
4∑

µ=1

γµ
Uµ(n)ψ(n+ µ̂)− U−µ(n)ψ(n− µ̂)

2a
+mψ(n)

)
. (2.21)

To get the continuum action back, we de�ne

Uµ(n) = eiaAµ(n) = 1 + iaAµ(n) +O(a2) . (2.22)
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By plugging this into the fermionic lattice action it is straight forward to see that
up to O(a) this yields the continuum action.
The gauge part of the action is represented by

SG = −β
∑
Up

(
1

2Nc

(
Tr(Up) + Tr(U−1

p )
)
− 1

)
(2.23)

with the plaquette Up de�ned via

Up = Uµν(n) = Uµ(n)Uν(x+ µ̂)U−1
µ (n+ ν̂)U−1

ν (n) , (2.24)

which is the smallest possible closed loop on the lattice. This action is called the
Wilson gauge action. Without providing much detail, we note that one can regain
the continuum gauge action by inserting Uµ(n) = eiaAµ(n) as in the fermionic case,
see e.g. [37]. Note that in the standard lattice literature the link variables are in
SU(N) and hence further simpli�cations due to U−1 = U † can be made. Since in
a large part of this thesis we are interested in the group SL(N,C) we cannot make
those simpli�cations.

Fermion doubling and Wilson fermions

Unfortunately the naive fermion action in equation (2.21) has a problem. We start
by de�ning the lattice Dirac operator, which we will callM , to avoid confusion later

M(n,m)αβab
∑
µ

(γµ)αβ
Uµ(n)abδn+µ̂,m − U−µ(n)abδn−µ̂,m

2a
+mδabδ

αβδnm , (2.25)

with Dirac indices α, β, color indices a, b and space-time positions n,m. In Fourier
space it becomes

M̃(p, q) = δ(p− q)

(
m1 +

i

a

4∑
µ=1

γµsin(pµa)

)
. (2.26)

Its inverse can be shown to be

M̃(p)−1 =
m1− ia−1

∑
µ γµsin(pµa)

m2 + a−2
∑

µ sin(pµa)2
. (2.27)

When Fourier transforming back into real space, this is the lattice equivalent of
the quark propagator. Looking at the massless limit, we observe that we have
sin(pµa) = 0 for pµ = 0 as well as pµ = π/a and its periodic images. Hence, we do
not only get the physical mass pole at pµ = 0 but 15 additional poles 2. There are

2There are 16 poles in total since the momentum p is a four-vector and each of the entries can be
either π/a or zero.
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di�erent approaches to get rid of those so-called doublers. Here we discuss so-called
Wilson fermions since we will use them in our simulations. For Wilson fermions to
get rid of those doublers, one adds an extra term

M̃(p)→ M̃(p) + 1
1

a

4∑
µ=1

(1− cos (pµa)) , (2.28)

which vanishes in the case of p = 0 but is �nite for p = π/a. This term gives an
additional mass to the doublers, which now have mass m + 2l/a, with l being the
number of momentum components π/a. In the continuum limit, a→ 0 the doublers
become in�nitely heavy and hence decouple from any dynamics. The additional term
can be Fourier transformed back and upon insertion of link variables in appropriate
places yields an expression very similar to the naive fermion action on the lattice.
Both can be combined to yield the full Dirac operator for Wilson fermions

M(n,m)αβab =

(
m+

4

a

)
δαβδabδnm

− 1

2a

4∑
µ=1

(
(1− γµ)αβUµ(n)δn+µ̂,m + (1 + γµ)αβU−µ(n)δn+µ̂,m

)
. (2.29)

Finally, let us slightly reparametrize the Dirac operator by introducing the so called
hopping parameter

κ =
1

2(am+ 4)
, (2.30)

which allows us to rewrite the Dirac operator as

M = C(1− κH) , (2.31)

with C = m+ 4/a and

H(n,m)αβab =
4∑

µ=1

(
(1− γµ)αβUµ(n)δn+µ̂,m + (1 + γµ)αβU−µ(n)δn+µ̂,m

)
. (2.32)

Note that U−µ(n) = U−1
µ (n − µ̂), which we will use in some equations later. We

�nally rede�ne the quark �elds ψ →
√
Cψ such that we can forget about C. This

formulation is convenient since κ corresponds to inverse mass and becomes large for
small m. It can hence be used as an expansion parameter, a fact we will use in
section 3.2.1.

Introduction of chemical potential

So far the lattice formulation has been introduced without a chemical potential for
simplicity. It can be introduced by going from the canonical to the grand canonical
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ensemble. As seen in equation (2.1), only the temporal direction relates to chemical
potential. Then H in the Dirac operator from equation (2.32) is replaced by

H(n,m)αβab =
4∑

ν=1

(
eδν,4µ(1− γν)αβUν(n)δn+ν̂,m + e−δν,4µ(1 + γν)

αβU−ν(n)δn+ν̂,m

)
.

(2.33)

Introducing chemical potential µ in this way ensures that the correct continuum
limit is reached, see e.g. [37] for details.
Given a lattice con�guration from a simulation of QCD discretized as explained
above, we can compute physical observables on the con�guration.

Observables on the lattice

The fact that observables generally should be gauge invariant limits our freedom to
construct them. The simplest observables are traces of closed loops made up of link
variables.

Plaquettes
The simplest of those is the plaquette, which already occurred in the de�nition of
the Wilson gauge action. It is the trace of the smallest possible closed loop starting
on a given site, which is the product of four links. It is sometimes convenient to look
at the spatial and temporal plaquette separately. The temporal plaquette is de�ned
as the average over all plaquettes on a given lattice con�guration which contain a
temporal link. The spatial plaquette only consists of spatial links.

Polyakov loop
Another useful observable is the Polyakov loop, which we already introduced in 2.1.
On the lattice, it is the product of all temporal link variables at a spatial point

L =
1

Nc

Tr
Nt−1∏
t=0

U(t, ~n) . (2.34)

Similarly, one can de�ne the inverse Polyakov loop

L−1 =
1

Nc

Tr
0∏

t=Nt−1

U−1(t, ~n) . (2.35)

Chiral condensate
There are several fermionic observables that are useful. One of them is the chiral
condensate, which is given by〈

ψ̄ψ
〉

=
1

N3
sNt

∂lnZ
∂m

= −2κNf

N3
sNt

Tr(D−1(D − 1)) = −2κNf

N3
sNt

Tr(D−1) (2.36)
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in the last equality we dropped a constant, which we can do since the chiral conden-
sate renormalizes additively [65]. It is the order parameter for the chiral transition
in the limit of vanishing quark masses, which turns into a crossover at �nite quark
masses.

Quark number density
Derivatives of the quark number density

n =
1

N3
sNt

∂lnZ
∂µ

=
Nf

N3
sNt

〈
Tr

(
M−1 ∂

∂µ
M

)〉
, (2.37)

e.g. the susceptibility

χn =
1

N3
sNt

∂2lnZ
∂2
µ

=
N2
f

N3
sNt

〈
Tr

(
M−1∂M

∂µ

)2
〉

− Nf

N3
sNt

〈
Tr

(
M−1∂M

∂µ
M−1∂M

∂µ

)2
〉

+
Nf

N3
sNt

〈
Tr

(
M−1∂

2M

∂µ2
M−1

)〉
−N3

sNtn
2 . (2.38)

also signal the phase transition.

We will discuss the usefulness of those observables when we discuss the phase dia-
gram in the context of complex Langevin.

Representation of SU(2) and SU(3) matrices and their complex
generalizations

The Lie algebra su(n) which corresponds to the group SU(N) has N2− 1 generators
λa/2, with λa the Gell-Mann matrices. Thus, in principle, it is enough to store N2−1
real numbers per matrix. Since exponentiation is needed to get from the algebra
into the group this is expensive. Instead, we save the �rst two rows u and v of the
matrix, which allows us to reconstruct the third row via the cross product w = ū× v̄,
this is convenient on GPUs, where a memory operation is much more expensive than
a few �oating point operations, we will do this for QCD. CPU simulations typically
are not limited by memory bandwidth and we can just save the full matrix, i.e. 9
complex or 18 real numbers we will do this for HDQCD and the Polyakov chain.
Both representations are also useful since in the case of complexi�cation of the
manifold i.e. when we consider SL(3,C) � as we will do in chapter 3 � nothing needs
to be changed, even though the coe�cients of the generators become complex.
For SU(2) there is a real representation, it can be written in terms of Pauli matrices
σi as

U = x01 + i

3∑
i=1

xiσi , (2.39)
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with xi ∈ R and detU =
∑
x2
i = 1. After complexi�cation the coe�cient xi can be

a complex number, the rest stays the same.

From the lattice to physics

On the lattice, all quantities are formulated in a dimensionless way. To get back
to physical units one has to multiply by appropriate powers of the lattice spacing,
which has the dimension of length. E.g. temperature, which is given by the temporal
lattice extent as 1/Nt in physical units reads 1/(aNt). The appropriate power of a
can be obtained by dimensional analysis of the quantity at hand.
Getting to physical values also requires an actual value for the lattice spacing. This
can be done in several ways, e.g. by measuring some observables with good precision
and �xing them to the corresponding physical value. However, a particularly conve-
nient and cheap way is the gradient �ow [66]. The gradient �ow is a method which
smoothes a given lattice con�guration. If too much smoothing is applied, it drives
the lattice towards the classical theory. It is a way to get rid of strong UV �uctu-
ations, for an alternative way to do this see [67]. For the gradient �ow observables
typically monotonously tend towards their classical values as �ow time increases.
This is used for scale setting by monitoring the �ow of 1/4F µνF µν . When it reaches
a certain value which has to be predetermined by other scale �xing methods, the
corresponding �ow time can be used as a scale. The advantage of this approach is
that it is precise and cheap to do. We have used a high precision value from [68]
to measure the scale in our QCD simulations. Since this value is for Nf = 2 + 1
at physical pion masses, our physical values are just approximate, since we have
Nf = 2 �avors and heavy pions. The details of the procedure can be found in the
corresponding references, they are not the focus of this thesis.

Whether a lattice simulation is close to the physical point or not is typically deter-
mined by the pion rest-mass, since it is the lightest particle of the theory. Therefore,
we brie�y explain how hadron masses can be obtained from the lattice, see [37] for
more details. In this thesis we are mainly interested in the pion, hence we use it as
an example. The idea is to �nd an observable which has the same quantum numbers
as the pion. We then measure the correlation function of the creation operator and
annihilation operator between di�erent lattice points. Intuitively this means that
we create a pion at some lattice site, let it propagate to another point and annihilate
it there. The Euclidean correlator of such observables is given by〈
O(t)Ō(0)

〉
∼
〈
0|e−(T−t)HO(t)e−tHŌ(0)|0

〉 T→∞−−−→
∑
n

〈0|O|n〉
〈
n|Ō|0

〉
e−tEn , (2.40)

where we inserted 1 =
∑

n |n〉 〈n| and let the Hamiltonian act on the states. Thus
for large temporal lattice extent, we can extract the lowest lying energies, which are
given by the rest mass of the observable, via an exponential �t. For the pion, we
look at the pion interpolator given by

π = q̄1γ5q2 , (2.41)
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with q1 = u and q2 = d for the π+, vice versa for π− and we have a sum of two
terms with q1 = u, q2 = u and q1 = d, q2 = d for the π0. Note that for degenerate
quark masses � which we have since we do not take into account the U(1) charge
� the quarks and pions are not distinguishable. Therefore all three choices give the
same result. One can show that this interpolator transforms just like the pion under
parity and charge conjugation, see e.g. [37] for details. The correlator for a pion
created at position m and annihilated at n is given by〈

O(n)Ō(m)
〉

=
〈
d̄(n)γ5u(n)ū(m)γ4d(m)

〉
= −Tr

[
γ5M

−1
u (n,m)γ4M

−1
d (m,n)

]
,

(2.42)

where we contracted the quarks according to Wicks theorem. This correlator can
be measured on the lattice. As a �nal step, we project the correlators to zero
momentum. This is done by observing that the hadron interpolator can be Fourier
transformed with respect to spatial momentum

Õ(~p, nt) ∼
∑
~n

O(~n, nt)e
−ia~n·~p , (2.43)

such that for ~p = 0 we only need to sum over all points in a given time-slice.

Monte Carlo simulations and importance sampling

In statistical physics the partition function is given over a sum of all possible energy
states via

Z =
∑
i

e−
1
T
Ei . (2.44)

Many interesting quantities can be directly derived from it. If there is a small �nite
amount of states this sum can often be evaluated analytically. However, typically
those sums are too large and need to be computed by simulations. In lattice QCD
we deal with in�nite integrals instead of �nite sums, which have to be approximated
by a �nite simulation. This is done by setting up a simulation which produces �eld
con�gurations distributed according to the Boltzmann factor e−S. Observables can
be computed from a �nite number N of those con�gurations as

〈O〉 =
1

N

∑
i

Oi ≈
1

Z

∫
dφOe−S(φ) . (2.45)

This goes under the name of importance sampling. There are many di�erent al-
gorithms to produce such con�gurations, the simplest one being the Metropolis
algorithm [69]
Since we will need variations of the Metropolis algorithm in chapter 4, we brie�y
describe it here. Given the Euclidean action S in terms of �elds φ, the �elds are
updated sequentially � or in parallel if allowed by symmetry. The updating of a
single site goes as follows
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Figure 2.1: Illustration of the sign problem in a simple model from [71]. See text for
an explanation.

1. Propose a new value for the �eld φ. This is typically done by adding a small
random number from a symmetric probability distribution to the current value
of a �eld.

2. Compute the di�erence in the action ∆S = S(φnew)− S(φold).

3. Draw a uniform random number u from [0, 1]. If u ≤ e−∆S accept the update
and set the �eld to its new value. Otherwise, reject and keep the old value.

This algorithm is repeated for all �elds. The last step of the algorithm is called an
accept-reject step and we will make use of it in our algorithms in chapter 4.
We will use the Metropolis algorithm for simulations of the Ising model and the
heat bath algorithm [70] for SU(2) Yang-Mills simulations. For everything related
to complex actions, we will use a complexi�ed Langevin process, which will be
discussed in much more detail in section 3. In the case of Lefschetz thimbles, as will
be described in the corresponding section, we will use specialized algorithms to do
importance sampling.

2.4 The sign problem in QCD

Consider the simple integral [71]

Z(λ) =

∫ ∞
−∞

e−x
2+iλxdx =

√
πe−

λ2

4 , (2.46)

which is entirely real. Here Z has the form of a simple partition function. The real
part of the integrand is plotted in �gure 2.1, it is a smooth positive function for λ = 0
and the partition function takes the value

√
π while it wildly oscillates for λ = 50

and the partition function evaluates to Z(50) = 6.5 × 10−272. Hence, when Monte
Carlo sampling is applied contributions of the order O(1) have to be added up to
yield a �nal result of almost 300 orders of magnitude lower. Getting a reliable value
which can be distinguished from zero would require too many Monte Carlo samples.
The numerical sign problem, therefore, is the problem of the precise evaluation
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of highly oscillatory functions by sampling methods. In many theories � also in
QCD at �nite chemical potential, see equation (2.1) � oscillatory integrands are
complex, prohibiting the usual probability interpretation of the measure in which the
Boltzmann factor is positive. Thus the usual simulation algorithms no longer work.
Both problems, oscillations and complex integrands mathematically speaking are
not an issue since in principle one can shift parts of the measure into the observable
by taking averages only with respect to some smooth and real ρR(x) of the measure
according to

〈O(x)〉 =

∫
O(x)ρ(x)dx∫
ρ(x)dx

=

∫
O(x) ρ(x)

ρR(x)
ρR(x)dx∫ ρ(x)

ρR(x)
ρR(x)dx

=

〈
O(x) ρ(x)

ρR(x)

〉
R〈

ρ(x)
ρR(x)

〉
R

. (2.47)

This technique goes by the name of reweighting, see e.g. [37]. The denominator is
typically referred to as the average sign. The standard choice is ρR = |ρ|. Since we
are discussing a statistical physics system, we can rewrite the average sign according
to 〈

ρ(x)

ρR(x)

〉
R

=

∫
ρ(x)dx∫
ρR(x)dx

=
Z

ZR
= e−

V
T

∆f(T ) (2.48)

where we used that in statistical physics Z = e−V/Tf(T ) with the free energy density
f(T ). Thus the average sign approaches zero exponentially fast with increasing vol-
ume V for �xed temperature. This is a problem since we are usually interested in
the in�nite volume limit to get rid of �nite size e�ects. If the average sign is close
to zero the cancellation of large contributions is again an issue. Hence, to have a
constant numerical accuracy the computation cost grows exponentially with volume.

For speci�c instances the sign problem has been shown to be NP hard3 [72], it
is hence not to be taken lightly. There exist a variety of approaches to solving the
sign problem. Here we list just a few of those that are applicable to QCD or QCD
like theories.

• Reweighting (see above) and its variation multi-parameter reweighting [73].

• Dual formulations make use of the fact that the sign problem is representation
dependent. Hence, one can �nd model speci�c coordinate transformations
such that the action is real or at least such that the sign problem is weaker.
Recent examples include QCD in the strong coupling limit [74, 75] and several
other lattice �eld theories [76�79].

• The density of states method consists of �rst simulating the theory with (typ-
ically) the energy �xed and then numerically integrating over the resulting
distribution. This method relies on very precise simulations in the �rst step.
For a recent review see [80], for applications to gauge theories see [81, 82].

3NP hardness of an algorithm means that it does scale worse than polynomially with system size,
i.e. the complexity of the algorithm cannot be reduced to O(Np) with p ∈ N.
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• In the complex Langevin method a complex stochastic process is simulated.
The equilibrium distribution of this process mimics the Boltzmann factor e−S

under certain conditions. It has been successfully applied to di�erent param-
eter regions of QCD [83, 84]. It is, however, di�cult to quantify convergence
of the method. We will investigate complex Langevin in much more detail in
chapter 3.

• The Lefschetz Thimble method and its generalizations consist of deforming
the real manifold in such a way that the integrand of the path integral stays
real [85] or imaginary �uctuations are minimal [86, 87]. Due to its complexity
so far there has been no application to QCD. We will investigate this method
in more detail in chapter 4.

• Much progress exists for the Taylor expansion around µ = 0. This method
has brought forward many high precision calculations at the physical point for
recent examples see [15, 16, 19]. The Taylor expansion is limited by its radius
of convergence. It is expected to break down at the critical point. Currently,
it is not reliable beyond µ/T = 1.

• Analytic continuation from imaginary chemical potential also allows for high
precision computations at the physical point. With iµ ∈ R, the action once
again is real and simulations can be performed. One can then use analyticity
arguments at µ = 0 to extrapolate from µ2 ≤ 0 to µ2 > 0. For recent progress
see [18, 19, 49]. This method so far is also only reliable in the region µ/T < 1.

Despite this multitude of approaches, there is no general solution to �the sign
problem�. The general consensus amongst the community is that each sign problem
has its own solution. One can only hope to �nd solutions for classes of theories. The
aim of this thesis is to investigate di�erent aspects of the sign problem.
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3 Complex Langevin

One popular approach to the sign problem is the complex Langevin method. Histor-
ically, it was introduced by Klauder [88�90] and Parisi [91]. However, problems of
wrong convergence � as will be investigated further below � showed up rather soon
[92�95]. Despite some initial success (see e.g. [96]) and some analysis on the failure
of complex Langevin in speci�c situations [97�101] its popularity stayed limited for
a long time. The main issue was the lack of a criterion to identify convergence to
the wrong distribution. It has since regained popularity and has successfully been
applied to some real time problems [59, 102, 103], models of QCD at �nite chemi-
cal potential [83, 104�110], the complex Bose gas [111, 112], some fermionic theories
[113�117] and ultimately some parameter regions of QCD at �nite chemical potential
[84, 118, 119]. Simultaneously proofs of convergence and resulting criteria have been
developed [29, 120�123]. However, there are some cases in which complex Langevin
simply does not work. Popular cases are the 3d XY-model at small chemical poten-
tials [124] as well as QCD at low lattice couplings β [125�127]. While it is usually
clear if it does not work, there is no general recipe to make it work. The failure
of complex Langevin is related either to poles in the action or to insu�cient decay
of the distribution of observables, see section 3.1 for a thorough discussion. Some
methods circumventing those problems have been developed for QCD [105, 128] and
non-relativistic fermionic theories [115].

In this section, we will give a brief and simple introduction to complex Langevin.
In section 3.1 we discuss convergence properties of the Complex Langevin method.
Section 3.2 contains results and discussions for the application of Complex Langevin
to QCD. Finally, in section 3.3 we brie�y discuss the applicability of the method to
real-time simulations of SU(2) lattice �eld theory.

Stochastic quantization

The complex Langevin method is the complex generalization of stochastic quan-
tization which was introduced in [129], for an overview, see [130, 131]. The idea
behind stochastic quantization is to obtain the Euclidean Boltzmann factor as an
equilibrium distribution of a stochastic process. This will be brie�y introduced here.
First, a �fth coordinate t � called Langevin time � in addition to the four Euclidean
coordinates x = (x0, x1, x2, x3) is introduced. The quantum �eld then depends on
all �ve variables φ(x, t). One can de�ne a stochastic process in form of a Langevin
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equation as

∂φ(x, t)

∂t
= − δS

δφ(x, t)
+ η(x, t) = Kφ + η(x, t) , (3.1)

whereKφ is called a drift term, η is Gaussian noise with 〈η(x, t)〉 = 0 and 〈η(x, t)η(x′, t′)〉 =
2δ(x−x′)δ(t− t′). By stochastic calculus4 one can derive the corresponding Fokker-
Planck equation, which is a di�erential equation for the probability distribution
corresponding to a stochastic process. It is easy to see that in this case it has a
stationary solution of the form

lim
t→∞

P (φ, t) =
e−S(φ)∫
Dφe−S(φ)

, (3.2)

i.e. the Euclidean Boltzmann factor as long as the action is well behaved. Hence,
stochastic quantization is an alternative way of quantization. Here we focus on
lattice simulations of quantum �eld theory, a general discussion of stochastic quan-
tization/Langevin dynamics for lattice �eld theories can be found in [132, 133].
So far everything in this chapter has been discussed for the case of real variables, in
the remainder of this chapter, we will refer to this as real Langevin.

Complex Langevin dynamics

In contrast, complex Langevin is obtained by complexifying the �eld variable. We
will demonstrate this for a simple system with only one variable x. In the real case,
the integral

〈O〉 =
1

Z

∫
O(x)e−S(x)dx (3.3)

can be simulated using stochastic quantization as described above. The Langevin
equation simply reads

ẋ =
∂x(t)

∂t
= −∂S

∂x
+ η(t) = Kx + η(t) . (3.4)

This stochastic process gives an estimate of the integral in 3.3 after averaging the
observable O over the whole process after equilibration. Note that x ∈ R, hence this
process is not properly de�ned if the action S(x) can take complex values. When this
happens, the whole space needs to be complexi�ed, i.e. x ∈ R→ z ∈ C. The complex
Langevin equation is the same as (3.4) but with the replacement x → z = x + iy.
By splitting into real- and imaginary part it reads

ẋ =− Re
∂S

∂z
+ η = Kx + η

ẏ =− Im
∂S

∂z
= Ky , (3.5)

4In this work everything is formulated via Itô-calculus.
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where we chose a purely real noise, since complex noise usually introduces stability
issues [121]. This is a coupled system of stochastic di�erential equations, which has
an equilibrium distribution of P (x, y). The question that remains to be answered
is whether this leads to the same expectation values as the desired path integral
measure with the Euclidean action.

A note on discretization and step size

When discretizing the Langevin equation (3.5), a discretization parameter ε, which
represents the step size in t direction must be introduced. We will typically perform
the easiest discretization, i.e. Euler-Maruyama discretization. Only in full QCD
will we make use of an improved scheme, since it will speed up the simulations.
In principle, this parameter then needs to be extrapolated to ε = 0 by performing
simulations at di�erent values of ε and observing some converging behavior. Mostly
we will not be concerned with this limit since there are enough issues to be discussed
already before this extrapolation.
A pressing issue in complex Langevin are runaway trajectories. They occur in many
models no matter how simple or complex they are when the simulation escapes into
an unstable direction. The natural way to circumvent those is to make the step
size ε very small, however, this drastically increases simulation time and can lead to
ergodicity issues if bottleneck regions exist. A better way to tackle this problem is
adaptive step size [104, 134], which makes the step size small if a runaway trajectory
occurs and forbids the process to go large steps in such directions. We will make
use of adaptive step size when necessary, especially in the case of QCD.

3.1 Convergence requirements of Complex

Langevin

Let us �rst give a de�nition of what correct convergence of Complex Langevin means.
There are two probability distributions which are of importance. On the one hand
there is the complex path integral measure ρ(x, t)dx = e−S(x)dx with S ∈ C, which
gives rise to the correct evolution for the expectation value

〈O(t)〉ρ(t) =
1

Z

∫
O(x)ρ(x; t) dx . (3.6)

On the other hand there is the equilibrium distribution of the process after com-
plexi�cation P (x, y; t), which gives rise to

〈O(t)〉P (t) =
1

Z

∫
O(x+ iy)P (x, y; t) dx dy . (3.7)

Correctness now means that

〈O〉P (t) = 〈O〉ρ(t) ∀t , (3.8)
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i.e. the expectation value of any observable agrees under both distributions, provided
the initial conditions agree. We choose initial conditions according to equation (A.4).
More speci�cally we choose

P (x, y; 0) =
1

2π
δ(y) (3.9)

There are a few requirements which if not ful�lled can spoil this equivalence.
Those requirements can be split into two groups. The �rst group are requirements,
which if not ful�lled do not lead to a Langevin time independent equilibrium distri-
bution. While this can be a problem it is also easy to detect. In lattice simulations,
we want to simulate in thermal equilibrium and hence, if this is not ful�lled it is
clear that some condition was not met. In the real case, those requirements are
usually ful�lled and they are established by theorems, see e.g. [131]. In the complex
case, it is usually not clear. This has been discussed in [121, 135]. We will not be
concerned with those criteria here since it is easy to see a posteriori if the simulation
does not converge at all. The other group of requirements covers those, which if not
ful�lled lead to convergence to a wrong limit. It is not so easy to detect this and
hence will be discussed in more detail. Those requirements are

1. The process must be ergodic.

2. The distribution, observable, drift and action must be holomorphic. If instead,
they are meromorphic poles can spoil the convergence.

3. The distribution, observable and drift must decay fast enough far away from
the real manifold. We will see below what fast enough means.

The �rst point is a problem not only in complex Langevin but also for real
Langevin and similar simulation methods such as the more commonly used Hybrid
Monte Carlo algorithm [136]. See [100, 137�139] for some discussions on ergodicity
in real as well as complex Langevin simulations. We will not go into further detail
here.
The second point is one of the current issues still plaguing complex Langevin sim-
ulations. The occurrence of poles has received lots of attention in recent years
[106, 107, 110, 137, 140�143] and it has been suggested that the problem with poles
is similar to the problem of slow decay, i.e. if all quantities decay fast enough towards
the pole, they are no issues [144]. If such fast decay is not observed, poles typically
lead to separated regions in the manifold, spoiling ergodicity. Some possible solu-
tions such as the deformation technique [118, 145] have been proposed. However so
far there are not enough results to make a �nal judgment on a general procedure
for dealing with poles.
The approach we take here is to carefully monitor our simulations for the occurrence
of poles and avoid parameter sets where the poles a�ect the simulation. Hence, poles
will not be an issue for us, see section 3.2.3.
The third point has been discussed mainly in [120, 121]. There a criterion for cor-
rectness was based on so-called �consistency conditions�, which are a measure for
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convergence of complex Langevin. However, neither this condition nor the related
Schwinger-Dyson equations [120, 146], which are a slightly stronger condition [147]
are enough to guarantee convergence without further control. See [59] for a case
where the Schwinger-Dyson equations are ful�lled but the evolution converges to
the wrong measure. This can only happen if the solution of the Fokker-Plank equa-
tion is not unique.
Below we will take a more practical approach. Namely, we will focus on �nding a

criterion which can be measured without much additional e�ort in a realistic lattice
simulation.

3.1.1 Convergence of complex Langevin and boundary terms

We start by brie�y sketching the proof of convergence for the complex Langevin
method from [120, 121]. The idea of the proof is to introduce an interpolating quan-
tity FO(t, τ) between the two sides of equation (3.8) and to show that its derivative
vanishes, here τ ∈ [0, t]. To that end we de�ne

FO(t, τ) =

∫
P (x, y; t− τ)O(x+ iy; τ)dxdy , (3.10)

which gives 〈O〉P (t) at τ = 0 and 〈O〉ρ(t) at t = τ , see appendix A.1 for a proof.
Hence, if FO(t, τ) is constant for all t and τ equation (3.8) is clearly ful�lled. In
other words, we require that

∂

∂τ
FO(t, τ) =

∫
(∂τP (x, y; t− τ))O(x+ iy; τ)dxdy

+

∫
P (x, y; t− τ)∂τO(x+ iy; τ)dxdy = 0 . (3.11)

In appendix A.1 we show via integration by parts of equation (3.11) that this boils
down to the vanishing of a boundary term

∂

∂τ
FO(t, τ) = lim

Y→∞
BO(Y ; t, τ) , (3.12)

where

BO(Y ; t, τ) ≡∫
[Ky(x, Y )P (x, Y ; t− τ)O(x+ iY ; τ)−KyP (x,−Y ; t− τ)O(x− iY ; τ)]dx .

(3.13)

A simple model

In order to gain a deeper understanding of this boundary term we investigate the
model

ρ(x) =
1

Z
eiβ cos(x) , (3.14)
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Figure 3.1: Left: Comparison of the equilibrium distribution for the model in equa-
tion (3.14) with β = 1 from complex Langevin simulations (black) with
the known solution from equation (3.14) (red). Right: Marginal dis-
tribution Py(y; t) from solving the Fokker-Planck equation for di�erent
times t (solid lines) compared with the known solution from equation
(3.14) (dashed line).

with β ∈ R. This model has been studied with complex Langevin in [103, 148] and
does give wrong results under complex Langevin evolution. The correct expectation
values for exponential modes can be obtained in terms of Bessel functions of the
�rst kind∫

eikxρ(x)dx = (−i)kJk(β)

J0(β)
6= 0 . (3.15)

For this model the equilibrium distribution P (x, y) is known [149]

P (x, y) =
1

4π

1

cosh(y)2
. (3.16)

It is remarkable that this solution does neither depend on the coupling β nor on x.
By comparison to equation (3.15) it is immediately clear that P cannot give correct
results. Furthermore P decays like e−2|y| for large |y| and hence, the integral for all
modes with k > 1 is not absolutely convergent.
We study this model in two ways: By simulating the complex Langevin equation
and by solving the Fokker-Planck equation for P (x, y; t) on a grid. Details on the
latter can be found in appendix A.2. The drifts of the complex Langevin equation
for the measure (3.14) read

Kx =− β cos(x) sinh(y)

Ky =β sin(x) cosh(y) , (3.17)

the simulation is then done using Newton discretization for equation (3.5). In �gure
3.1 left we show that the equilibrium marginal distribution Py(y; t→∞) for β = 1.0
obtained by complex Langevin agrees with the exact distribution from equation
(3.14) over several orders of magnitude.
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O eix e−ix e2ix e−2ix

CL 0.004(3) 0.002(3) 1.027(22) 1.001(20)
correct -0.575081i -0.575081i -0.150162 -0.150162

Table 3.1: Complex Langevin (real part, imaginary part negligible) and correct re-
sults for the model in equation (3.14) with β = 1.

To show that the simulation gives wrong results, we list expectation values for the
�rst few modes in table 3.1. The expectation values are measured from 100 di�erent
runs with randomly chosen starting points and Langevin time up to t ≈ 2500 and
step size dt ≈ 5× 10−6. For |k| > 2 we �nd that expectation values are dominated
by noise, but already for |k| = 2 the result depends on how the averages are com-
puted, taking measurements only every 0.01 Langevin time also leads to a result
dominated by noise, while measuring every dt yields the results in table 3.1. This is
because the integral for the higher modes is not absolutely convergent as mentioned
above. Hence, in principle we would expect a correct result only from the �rst mode.
However we see that this is also wrong.

Investigation of boundary terms

Since the initial conditions in the complex Langevin and Fokker-Planck simulations
were chosen such that equation (3.8) is ful�lled (see (A.4) and equation (3.9)), the
question is where both evolutions start do deviate. The right plot in �gure 3.1 shows
the marginal distribution Py(y; t) of the real process for di�erent times for β = 0.1.
The distribution starts out as a δ-peak at t = 0, which is correct by de�nition. It
then broadens over time and �nally converges to the �wrong� distribution in equation
(3.14). Looking at the other marginal distribution Px(x; t) in �gure 3.2 we see that
P (x, y) does have a small x-dependence at intermediate times, which vanishes for
larger times.

In order to see at which time the correct distribution transitions to the wrong one
we need to see when the boundary term in equation (3.13) becomes non-negligible,
which in this simple model we can see by either looking at the time evolution of
〈exp(ix)〉 or at the boundary terms directly. Figure 3.3 left shows Fokker-Planck
evolution of the �rst mode 〈exp(ix)〉 (solid black line) compared to the correct evo-
lution (solid black line) 5 (dashed black line). The expectation values from correct-
and Fokker-Planck evolution agree up to t ≈ 20, which suggests that up to that
time the deviation of the probability distributions is minor. The boundary term is
hard to properly visualize since it depends on three variables already in this simple
model. Hence, we make the simpli�cation that we only look at τ = 0. We will

5See appendix A.3 for how the correct evolution is obtained.
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Figure 3.2: Marginal distribution Px(x; t) for β = 0.1 at di�erent times t. By choice
of the initial condition the distribution starts out constant. It then
develops a nontrivial structure and in the limit of large times t becomes
constant again.

justify this below. The boundary term at τ = 0 for the �rst mode is shown in the
right plot of �gure 3.3 for β = 0.1 and Y = 5. It starts to deviate from 0 at around
t ≈ 20 and hence con�rms the suspicion that up to this point the evolution seems to
agree. Note that the time at which the evolution starts to deviate depends on the
choice of coupling. A larger coupling seems to lead to an earlier deviation, see [29].
For the wrong equilibrium distribution in equation (3.14) the boundary term can
be evaluated explicitly. Using equations (3.14) and (3.17) we obtain the boundary
term from equation (3.12) at τ = 0 in the limit t→∞

Bk(Y ;∞, 0) = −2β

∫ π

−π
dx

sin(x) cosh(Y )eikx sinh(Y )

4π cosh2(Y )
. (3.18)

Which does converge only for |k| = 1

B∓1(Y ;∞, 0) = ∓iβ
2

tanh(Y ) , (3.19)

and is also plotted in �gure 3.3, where one can see that the Fokker-Planck evolution
again converges to the stationary solution.
In the end, the limit Y → ∞ has to be taken, see equation (3.12). To this end
we repeat the analysis of the boundary term for di�erent values of Y to look for
convergence. This is demonstrated in the left plot of �gure 3.4. We see that the
deviation between Y = 5 and Y = 6 is rather small, and hence our earlier choice of
Y = 5 can be regarded as already being in the limit Y →∞. This can also be seen
by looking at equation (3.19) which is very close to its asymptotic value for Y = 5.
The right plot of �gure 3.4 shows that the Langevin simulation actually yields the
boundary terms following equation (3.19). This can be obtained by looking at the
histogram of KyO, since the histogram already encodes the distribution.

To justify only looking at the boundary term for τ = 0, we need to look at FO(t, τ)
directly as shown in �gure 3.5. First of all, as expected FO(t, τ) is approximately
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Figure 3.3: Left: Comparison of Im [〈exp(ix)〉] using the Fokker-Planck evolution of
P (solid black line) equation (3.7) with the Lc evolution of the observ-
ables (dashed black line � equation (3.6) for β = 0.1. For small times
t < 20 both evolutions are practically indistinguishable. The red line
shows a regularized version of the action. Right: Boundary term for
β = 0.1 and Y = 5 directly computed from the Fokker-Planck evolution
(solid line) and the asymptotic value for t → ∞ from equation (3.19)
(dashed line).

constant for times t < 20. Secondly we see that its slope � i.e. the boundary term �
is always maximal at τ = 0. This observation is the reason why we are allowed to
choose τ = 0 in equations (3.18) and (3.19). Note that the evaluation of FO(t, τ) from
equation (3.10) requires knowledge of O(z; t) from the exact evolution as described
in appendix A.3. This evolution reaches it asymptotic limit 〈O〉c approximately at
τ > 7. Hence, for large τ it is just a constant that can be pulled out under the
integral and for large τ we arrive at

FO(t, τ) ≈ 〈O〉c
∫
P (x, y)dxdy = 〈O〉c , (3.20)

which is 〈O〉c = 0.500626i for the �rst mode at β = 0.1.

Relation to tails in the distribution

Some works stated that wrong convergence can be identi�ed by looking for large
tails in the distribution of the observable [120, 121]. This can be related to the
boundary terms in the following way: We can regard equation (3.18) in the limit of
large Y as the probability density of

v(Y ) ≡ Im
∫
dxKy(x, Y )O1(x− iY ) ∼ e2Y . (3.21)

Then the statement

lim
Y→∞

v(Y )Py(Y ) 6= 0 , (3.22)
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encodes the non-vanishing of the boundary term. By instead looking at the distri-
bution of v(Y ) itself

p(v) = Py(Y (v))
dY

dv
, (3.23)

we realize that

p(v) ∼ v−2 . (3.24)

Hence, vp(v) is not integrable. This means that a �skirt� in the distribution of
KyO which has power −2 or lower will have a non-vanishing boundary term. This
statement was only possible in the case of no x dependence, otherwise the whole
discussion becomes two dimensional.

We can also directly look at the distribution of the observable Im (exp(i(x+ iy)))
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Figure 3.6: Evolution of the distribution of the �rst mode σ(u) for di�erent times
t. Left: Linear scale. Right: Log-scale, the approach to the stationary
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for our model by looking at its histogram

σ(u; t) ≡
∫
dxdyP (x, y; t)δ(sin(x)e−y − u) , (3.25)

which can be evaluated for equation (3.16)

σ(u;∞) =
1

2(1 + u2)3/2
. (3.26)

It can also be computed from the Fokker-Planck evolution by introducing a binning
in the observable, i.e. we sum over all P (x, y) that correspond to a certain value
u = O(x, y). The result for the �rst mode is shown in �gure 3.6. Initially, the
observable has a double peak structure and decays exponentially, however for larger
t the double peak structure disappears and tails develop. Hence, we conclude that
the occurrence of boundary terms and tails in the distribution of observables are
intimately linked.

Comparison the drift distribution

Another criterion that has been derived directly in the discretized formulation in
[122] is concerned with the distribution of the drift term Ky. It states that the
distribution of the drift term has to decay at least exponentially strong. Since this
criterion is quite simple, we can easily check it from the Fokker-Planck evolution
as well as from complex Langevin simulations directly using the same methodology
that was used to compute the histogram of the observable. The result is shown in
�gure 3.7, where it is clear that the drift decays with a power law for all times t and
hence violates the criterion from [122]. It is interesting though that initially, the
drift decays with a large power � which corresponds to the small boundary terms
in that region. Hence, it seems that both criteria � the decay of the drift and the
boundary term � signal a lack of correct convergence in this model.
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Without regularization. Right: With regularization parameter sz = 0.1.

Restoring convergence in the simple model

It is known quite well that failure of convergence is usually related to large devi-
ations or runaways in the complex direction of complex Langevin simulations, see
e.g. [121]. Those deviations occur if there are repulsive direction close to the real
manifold. In some cases this can be resolved by using adaptive step size [104, 134],
such that the drift force adapts itself if a strong repulsion exists. In �gure 3.8 left we
visualize the trajectory the Langevin process takes. The blue �ow lines represent the
classical �ow without noise. There are no attractive �xed points near the real axis
but some repulsive directions. The �xed points (red dots) are also not attractive,
but circular. This means that the process has no incentive to stay near the real
manifold and will make excursions further from it. In this model the excursions can
be circumvented by adding a regularizing term to the action [29, 115], which is sim-
ilar in spirit to dynamical stabilization [128] � which will be discussed further in the
context of gauge theories below. One can regularize here in di�erent ways. Adding
KR
y = −syy to the drift in the imaginary direction introduces an attractive force
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Figure 3.9: Left: Comparison of the complex Langevin evolution of Im(exp(ix)) with
(purple) and without (orange) regularization (sz = 0.1) for β = 0.1 as a
function of time. The red line shows the Fokker-Planck solution without
regularization, the purple line shows the correct result for the regular-
ized model. Here the regularization leads to correct convergence. Right:
Longtime expectation value of Im(exp(ix)) for β = 0.1 for di�erent reg-
ularization strengths.

towards the real manifold. This term also leaves the periodicity of the real manifold
intact but cannot be expressed as part of a holomorphic action with −∂zS = K.
We did solve the Fokker-Planck equation with such regularization for β = 0.1 and
sy = 0.1, see the red curve in �gure 3.3 left. This regularization term makes the
dynamics stable but introduces a large deviation from the original theory. Another
way of regularizing is to add a term SR = −szz. This leaves the action holomorphic
but destroys the periodicity of the real manifold. We illustrate the e�ect of such
a term in the right plot of �gure 3.8. As one can see such regularization removes
the repulsive directions from the real manifold and makes the �xed points attractive
and as a result, the evolution is con�ned to a much thinner strip around the real
manifold. Depending on the choice of parameters this can make the expectation
values correct. In the left plot of �gure 3.9 we show the Langevin evolution of the
regularized and the unregularized model from many di�erent Langevin trajectories.
The evolution of the regularized model at β = 0.1 closely follows the correct expec-
tation value in the case of s = 0.1. However, at larger regularization parameters
this is no longer the case. The evolution still is stable, but the expectation values
deviate, see the right plot of �gure 3.9.
For larger couplings β, the plateau region in the unregularized model becomes much
smaller or vanishes at all. In this case, the regularization does also stabilize but the
expectation values of the regularized model no longer agree with the original model
for any choice of regularization parameter [29].

The comparison of the regularized and unregularized model is a good test-bed for
the boundary term and drift criterion. Figure 3.10 shows both criteria and compares
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the regularized case sz = 0.1 with the unregularized case sz = 0 for β = 0.1. In
both cases, the boundary term goes to a plateau and hence the limit Y → ∞
can be taken easily. It becomes clear that the regularization removes boundary
terms completely. Similarly, the drift term decays weaker than exponential for the
unregularized case suggesting the failure of complex Langevin. For t = 15 this is
not so clear, however comparing with the drift histogram from the Fokker-Planck
evolution (�gure 3.7) shows that the decay should be with a high power polynomial.
In case of regularization, the decay of the drift decays stronger than exponential
suggesting that complex Langevin works.
The conclusion here is that both criteria perform equally well.

3.1.2 A more practical way to compute boundary terms

Computing boundary terms according to equation (3.13) is practically impossible in
high dimensional models. This can, however, be simpli�ed. In a practical simulation,
we are always interested in expectation values after thermalization, essentially t→
∞. Hence, to compute the boundary terms according to equation (3.12) we have to
take an additional limit. However, one may wonder about the order, i.e. whether the
limit Y →∞ or t→∞ has to be taken �rst. The boundary term (equation (3.12)
with (3.11)) without the limit Y →∞ can be rewritten as (cf. equation (A.12))

∂

∂τ
FO(t, τ) =

−
∫ Y

−Y

(
∂

∂t
P (x, y; t− τ)

)
O(x+ iy; τ)dxdy

+

∫ Y

−Y
P (x, y; t− τ)LcO(x+ iy; τ)dxdy = 0 . (3.27)

Where as before we will take τ = 0, since there the boundary term, i.e. the slope in
�gure 3.5, is maximal. The �rst term vanishes if a stationary solution of the Fokker-
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Figure 3.11: Boundary term of the U(1) model computed via 〈Lceix〉.

Planck equation does exist. The second term is just the average of LcO constrained
to the interval [−Y, Y ] such that

BO(Y ; t→∞, τ = 0) = 〈LcO〉Y , (3.28)

with Lc de�ned in equation (A.7). In the limit Y →∞ this is just the �consistency
condition� from [120]. A careful look at the Y dependence shows that in the limit
the observable becomes very noisy to the extent that it is almost always consistent
to zero within large error bars. Figure 3.11 shows the boundary term for the U(1)
model and the observable eix for β = 0.1 without regularization. The equation of
the observable for the boundary term is

Lce
iz = (1 + iβ sin(z))eiz . (3.29)

The boundary term computed this way agrees with �gure 3.10. However, for large
Y the boundary term becomes very noisy such that it is approximately consistent
with zero. Hence, by the criterion from [120] one could conclude proper convergence
without further control. This shows that not only the limit Y → ∞ is important
but also how the limit is approached. From this simple case, we conclude that
the development of a plateau before large error bars kick in gives the value of the
boundary term. If this is nonzero complex Langevin does not converge to the correct
result.

Higher dimensions

So far everything was focused on a simple integral with one variable. Here we will
compute the boundary terms in an exactly solvable higher dimensional model, the
SU(3) Polyakov chain. The model consists of a chain of length Nt where points are
connected with SU(3) matrices. Its action reads [105]

−S = c+TrU1 . . . UNt + c−TrU
−1
Nt
. . . U−1

1 , (3.30)

with c± = β+κe±µ. When µ 6= 0 or any of the parameters are chosen to be complex,
this will not stay in SU(3), hence for complex Langevin simulations one complexi�es
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to SL(3,C), which are all 3 × 3 matrices with detU = 1. This model can be gauge
�xed such that only one link remains. This one link can then be diagonalized, and
only two variables remain6. In this case the remaining link has the form

U = diag
(
eiω1 , eiω2 , e−i(ω1+ω2)

)
, (3.31)

and the action reads

−S = c+

(
eiω1 + eiω2 + e−i(ω1+ω2)

)
+ c−

(
e−iω1 + e−iω2 + ei(ω1+ω2)

)
. (3.32)

Since this is a variable transformation from SL(3,C) → C2 one has to explicitly
compute the Haar-measure and include it in the action. The additional term is

−S → −S + ln

[
sin2

(
−2ω1 + ω2

2

)
sin2

(
ω1 − ω2

2

)
sin2

(
ω1 + 2ω2

2

)]
. (3.33)

Details on the Langevin simulation in both prescriptions can be found in appendix
A.4.
For the gauge-�xed, diagonalized model it is still possible to compute the boundary
terms in both ways. I.e. following equation (3.13) or (3.28). For the explicit com-
putation equation (3.13) needs to be generalized. Dropping t and τ dependence for
now the boundary term reads∫ ∫

~∇y

(
~KyP (~x, ~y)O(~x+ i~y)

)
d~xd~y , (3.34)

where ~x and ~y are vectors containing the real- and imaginary part of the variables
ωi. This can be further simpli�ed by using Gauss theorem∫ ∫ [(

~KyP (~x, ~y)O(~x+ i~y)
)
· ~ny
]
d~xdSy . (3.35)

We choose the surface Sy to be a square with side length 2Y around the origin with
Y = max(|y1|, |y2|). Hence, the boundary term becomes∫ ∫

Ky1PO|y1=+Y d~xdy2 −
∫ ∫

Ky1PO|y1=−Y d~xdy2

+

∫ ∫
Ky2PO|y2=+Y d~xdy1 −

∫ ∫
Ky2PO|y2=−Y d~xdy1 . (3.36)

In practice this is done by looking at the histogram of Y , which encodes P (Y ),
the x-dependence is dropped here. For a given interval [Y − dY/2, Y + dY/2] one
computes the probability of this interval, i.e. the ratio of the number of Y in this
interval compared to the total number Nbin/(NtotaldY ). Then one averages PKyO
over the bin, i.e.∫

KY PO =
1

Nbin

∑
bin

PbinKYO =
1

NtotaldY

∑
bin

KYO , (3.37)

6There are three diagonal entries, but the condition for U ∈ SU(3) that detU = 1 reduces the
number of variables such that two remain.
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The only subtlety is that there are terms with y1 and y2 in the boundary terms.
This is solved by choosing a surface, we always choose KO belonging to the current
Y = max(|y1|, |y2|). Having thus computed

∫
(KPO)(Y ) = F (Y ) the only thing

that remains is to compute F (Y )−F (−Y ) due to the di�erence in equation (3.36).
The computation according to equation (3.28) is much easier. Choosing O = TrU =
eiω1 + eiω2 + e−i(ω1+ω2) one has to average has to average

〈LcTrU〉 =
(
~∇+ ~K

)
~∇TrU

= −
(
eiω1 + 2e−i(ω1+ω2) + eiω2

)
+ iKω1

(
eiω1 − e−i(ω1+ω2)

)
+ iKω2

(
eiω2 − e−i(ω1+ω2)

)
, (3.38)

with the drifts Kωi given in appendix A.4. For this model one can easily check
if complex Langevin yields correct results, since the two-dimensional integral can
be done numerically. Choosing β = 2, κ = 0.1 and µ = 1.0 The correct result is
〈TrU〉 = 2.0957. The simulation yields 〈TrU〉 = 2.0955(13). Hence, for that set
of parameters complex Langevin yields correct results. Accordingly, the boundary
terms plateau to zero up to step size artifacts due to step size of 10−4.
If instead we choose β = i, κ = 0 = µ, the correct result is 〈TrU〉 = −0.664 + 0.793i
whereas the simulation yields 〈TrU〉 = −0.4809(6) + 0.5968(5)i. Here complex
Langevin clearly fails to converge properly. This is also re�ected in the boundary
terms in �gure 3.12. While the real part goes to zero, the imaginary part saturates
at a nonzero value. The comparison between both methods for computing boundary
terms shows that they agree, however, the computation via 〈LcO〉 becomes noisy
faster at larger Y .

Next, we generalize the boundary terms according to equation (3.28) to the full
Polyakov chain, which is a �rst test in a �eld theoretical setting and thus an im-
portant test in a more realistic case. Since the real manifold is SU(3) with the
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Figure 3.13: Boundary term for the full Polyakov-chain for β = 2, κ = 0.1 and µ = 1.
Left is without gauge cooling, where boundary terms are expected, right
is with gauge cooling, where they should vanish.

property that for U ∈ SU(3) U †U = 1 but we lose this property when complexifying
to SL(3,C), it makes sense to de�ne the distance via the so called unitarity norm,
which for SU(N) reads

dU = TrU †U −N , (3.39)

and becomes zero for SU(N) matrices. Choosing the unitary norm for Y we can
apply equation (3.28). As an observable we choose the Polyakov loop P , which is
just the trace of the product of all the links in order, yielding

LcTrP =
Nt−1∑
j=0

(
Dj
a +Kj

a

)
Dj
aTrP

= −2Nt
N2 − 1

N
TrP + i

Nt∑
j=1

Kj
aTr (U1 . . . λaUj . . . UNt) , (3.40)

Remember that for β = 2, κ = 0.1 and µ = 1.0 the correct result for the Polyakov
loop P is 〈TrP 〉 = 2.0957. The simulation at a constant step size ε = 10−5 yields
〈TrP 〉 = 6.09(2) − 0.04(1)i. During the simulation the unitarity norm took values
up to dU = 3e3, so this deviation is to be expected. The left plot of �gure 3.13
shows the resulting boundary terms which clearly signals wrong convergence.
For the Polyakov chain, it is hard to �nd a set of parameters which give correct
results unless they are chosen such that the simulation stays on the real manifold.
Hence, we resort to gauge cooling [105]. This procedure is described in A.7. The
idea of the method is to do gauge transformations in the opposite direction of the
gradient of the unitarity norm such that the rise of the unitarity norm is slowed
down or stopped. With gauge cooling and a step size of 10−6 the expectation value
of the Polyakov loop becomes 〈TrP 〉 = 2.0961(9) suggesting that convergence has
been restored. This is also re�ected in the boundary terms in the right plot of �gure
3.13, which is consistent with zero.
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Step size dependence of the boundary terms

In Langevin simulations of lattice �eld theories, in principle one has to extrapolate
the step size to zero. Here we are not interested in the ε → 0 limit since our
simulations have strong systematic errors due to a �nite volume. Hence we simply
use small step sizes. In the case of the boundary terms, this can be a problem, since
at least in the Polyakov chain they are really noisy and �uctuate around zero up to
O(102). This means that a deviation from a small step size artifact can be in�ated
considerably. We demonstrate this in �gure 3.14 for β = 2, κ = 0, µ = 0 where
we regularly reunitarize the SU(3) matrices. This case is a real Langevin simulation
and should not show boundary terms. The �gure only shows the average over the
full range, since Y is zero for all values, due to reunitarization. As one can see at
large step size the boundary term has a large deviation from zero which vanishes for
small enough step sizes. This needs to be taken into account when judging whether
a boundary term is there or not.

3.1.3 Conclusion on boundary terms

We have given a detailed explanation of what happens when complex Langevin
fails to converge due to the occurrence of boundary terms. To that end, we have
thoroughly investigated a simple model and computed its boundary terms using
complex Langevin as well as the Fokker-Planck formulation. We were also able to
formulate an observable which can be measured on the lattice and signals wrong
convergence, see equation (3.28). We related the boundary terms to skirts of the
distribution � which is typically used to check for convergence � and found that a
non-vanishing boundary term leads to skirts.

3.2 Application to QCD

Initially, lack of convergence prohibited the application of complex Langevin to QCD
at �nite chemical potential µ. However, since its revival, some methods to improve
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convergence have been introduced. Notable methods are the use of adaptive step
size [104, 134], gauge cooling [105] and dynamical stabilization7 [128], see appendix
A.7 for a brief explanation of the last two. In our simulations for QCD, we make use
of adaptive step size and gauge cooling, which respects gauge symmetry and does
not alter the theory. So far we have not used dynamical stabilization, which alters
the dynamics similar to regularization in the U(1) model in the previous section.
This section is split into two parts. The �rst one is the use of an expansion scheme,
which allows for fast simulations. The second part is concerned with the simulation
of full QCD with Nf = 2 degenerate fermion �avors.
Note that for our simulations of gauge theories using complex Langevin we always
monitor the unitarity norm given in equation (3.39) and discard all lattice con�gu-
rations after it grows too large, i.e. after dU = 0.1 is reached for the �rst time. We
will explain why this su�ces in the context of QCD in section 3.2.3.
For the simulations in this section in the expansion and full QCD, we used a GPU
code provided by Dénes Sexty for the production of the lattice con�gurations. For
the HDQCD simulations, we used a CPU code by the author.

3.2.1 HDQCD and hopping expansion

The simulation of full QCD is a numerically expensive endeavor. The bottleneck
of lattice simulations with fermions is the inversion of the fermion matrix. Sim-
ulations may be sped up by using the hopping parameter expansion (see e.g. [62]
for a textbook). There have been several works employing di�erent version of such
expansions with aim to study the phase diagram of QCD [83, 108, 150�156]. Here
we will further investigate the systematic approach brought forward in [108]. Given
the full action

S = SYM + Sferm = SYM − log detM , (3.41)

the fermion matrix M from equation (2.31) and below can be rewritten as

M = 1− κsS −R , (3.42)

with the spatial part

S(n,m) = 2
3∑
i=1

(
Γ−iUi(n)δm,n+î + Γ+iU

−1
i (m)δm,n−î

)
, (3.43)

and the temporal part

R(n,m) = 2κt
(
eµΓ−4U4(n)δm,n+4̂ + e−µΓ+4U

−1
4 (m)δm,n−4̂

)
, (3.44)

7Dynamical stabilization is a modi�cation of the Langevin process. A term is added to the drift,
which makes the SU(N) manifold attractive. The only issue with dynamical stabilization is
that the proof of convergence for complex Langevin no longer goes through since the drift is
modi�ed in a non-holomorphic fashion. However, �rst tests show a strong improvement in the
stability of the simulations upon the use of this method.
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where we introduced the projectors

Γ±ν = (1± γν) . (3.45)

A further rewriting

M = (1−R)

(
1− 1

1−R
κsS

)
(3.46)

allows for factorization of the determinant

detM = det(1−R)exp

(
∞∑
n=1

−κ
n
s

n
Tr

(
1

1−R
S

)n)
, (3.47)

where the spatial part was exponentiated, log det A = Tr logA was used and the log-
arithm was expanded. The �rst determinant can be computed analytically [104, 150].
Both, the fermionic part as well as the terms in the expansion of the spatial deter-
minant now only depends on Wilson lines and Wilson loops8 and no longer require
expensive matrix inversions. To zeroth order, this expansion is known as heavy dense
QCD (HDQCD) which is the limit of heavy mass such that fermions cannot move
in spatial directions on the lattice but temporal movement is allowed. In HDQCD
complex Langevin in combination with gauge cooling allows for simulation of the
full phase diagram [83].

Brief analysis of the failure of complex Langevin at low β

It is however known that at lattice coupling β < 5.7 complex Langevin no longer
gives correct results even in HDQCD as was determined [105] by comparing to
reweighting.
In �gure 3.15 we show the evolution of the spatial part of the plaquette, the simplest
observable on the lattice. Parameters are β = 5.4, κ = 0.12, µ = 0.85 on a 64 lattice
as in [105] where complex Langevin was shown to fail even with gauge cooling.
The �gure shows the long term complex Langevin average (green), the long term
reweighting average (blue line) � which is expected to be correct in this case � and
the evolution of the observable during the simulation. One can see that initially,
the simulation approaches the correct value. However, as soon as the correct value
is reached the process goes to another value and stays there. This behavior is very
similar to the left plot in �gure 3.3 for the simple U(1) model. Hence, in analogy,
we conclude that even with gauge cooling the real manifold is not attractive enough
and excursions in the complex direction lead to wrong convergence.
Note that in HDQCD this is generally not an issue since one can just simulate at

larger β, where correct convergence is observed. We will, however, take this lesson
to full QCD as well as higher orders in the expansion and stay at larger β.

8A Wilson line is the product of link variables that form a path. A Wilson loop is a closed Wilson
line.
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lattice for di�erent orders of the expansion. The onset of the transition
moves to the left for higher orders. Right: Density for same parameters
all at order N = 10 for di�erent inverse temperatures Nt. A non-
resolvable region occurs at lower temperatures (see text for details).

Higher orders

We aim to simulate at low temperature to resolve the nuclear transition. In [108] it
has been shown that the expansion for sensible parameters converges around order
N = 10, which we will assume to be the case in general and investigate further
below. To see the e�ect of the higher orders we simulate κs = 0.12 = κt, β = 6.0,
spatial volume N3

s = 103 and temporal extend Nt = 32 for orders N = 0, 4, 10. The
left plot of �gure 3.16 shows the resulting Polyakov loops. One can see that there is
a signi�cant di�erence in the onset of the phase transition depending on the order.
As a next step, we try to map out the phase diagram of κs expanded QCD at order
N = 10 by varying Nt for di�erent temperatures. Choosing the same parameters as
above, we show the resulting density in the right plot of 3.16. Unfortunately for µ
in the phase transition region, the simulation becomes very slow and it is practically
unfeasible to get any results for those points.
Hence, we conclude that the κs expansion is not a good way to investigate the
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phase diagram of QCD. To see why, we take a look at how well the expansion
converges. This is investigated in �gure 3.17. The left plot shows the dependence
of the plaquette on the order of the expansion. While for µ = 0 it is practically
converged for N = 10 in agreement to [108], for µ = 0.9 convergence has not been
reached at even N = 20. This suggests that one needs to go even higher or that
convergence is not possible at all. The right plot shows a comparison of full QCD
with 10th order κs expansion close to the non-resolvable region. One can see that
the expansion describes QCD less and less while approaching the border. We will
see later in the case of full QCD that the eigenvalues of the fermion matrix become
rather small and it even becomes di�cult to invert the fermion matrix in some
cases. The breakdown of the expansion seems to be a�ected by that as well, just
much earlier 9.

Complex Langevin at µ = 0

Before we turn to full QCD it is instructive to compare the complex Langevin
method at µ = 0 to the real Langevin method, where the only di�erence is reg-
ular reunitarization of the SU(3) matrices in the case of real Langevin. We make
this comparison due to repeated claims in the recent years, that complex Langevin
does not even yield correct results at µ = 0, where no complex values should occur
[119, 126, 157]. The reason why the process even starts to deviate from the real
manifold is numerical instability. In standard lattice simulations, regular reunita-
rization is a necessary feature to avoid this. In complex Langevin however, we are
not allowed to reunitarize but only to use gauge cooling, which has a similar but
weaker e�ect. As we have already established above, complex Langevin does not
perform well at lattice coupling β < 5.7 in the case of HDQCD. The reason for the
apparent failure of complex Langevin at µ = 0 in other works is the fact that the

9Here the full theory is not holomorphic, but the expansion is. If there is a pole in the full theory,
the convergence radius of the expansion is expected to not include that point. Hence, here the
breakdown of the expansion signals the occurrence of the pole in the full theory.
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κs = 0.12 = κt in the κs expansion to 10th order. The plot shows
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simulations have been done close to or below that boundary region10. Assuming
that one can generalize from HDQCD � which is suggested by [125], where complex
Langevin fails at low β in full QCD as well � this explains the failure and suggests
that larger β is necessary. Hence, to show that complex Langevin and real Langevin
agree for large enough coupling we simulate QCD in the κs expansion to 10th order
with the same parameters as above. The di�erence in the plaquette between the
simulations with and without reunitarization is shown in �gure 3.18, where one can
see that there is a good agreement with zero. Note that the range of the y-axis in
this plot is rather small, hence everything is consistent with zero11.

Since the κs expansion did not converge to full QCD, we now directly simulate
full QCD.

3.2.2 Full QCD at low temperature

First, we continue to pursue low-temperature simulations. This is achieved by mak-
ing Nt large, keeping β �xed and varying µ to �nd the nuclear liquid-gas transition.
So far this has not been achieved in lattice QCD due to the sign problem, however,
there are studies for gauge groups without a sign problem, see e.g. [158] for the
group G2. The transition should be at mN/3, the quark mass from the nucleon.
We start by simulating full QCD at the same parameters we used in the expan-
sion, i.e. spatial volume N3

s = 103, β = 6.0, κ = 0.12. For those parameters, the
simulation is well behaved and there are no issues for any value of µ. The density
for Nt = 10 (T ≈ 237MeV) and Nt = 16 (T ≈ 135MeV) is shown in �gure 3.19.
First we note that the temperature is still rather high, however at T ≈ 135 MeV
at least a signal of the transition should be visible. We do only see the lattice go

10Of course this value depends on the choice of discretization for fermions, so in this context, it is
to be taken as a rough guideline.

11At small Nt �uctuations are usually stronger, hence the larger errors.
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Figure 3.20: Density for full QCD for two di�erent parameter sets. The simulations
are at much lower masses than in �gure 3.19 and show an onset which
may be interpreted as the nuclear transition. Note that the onset is not
at the correct position, see text for details.

into saturation, but no distinct plateaus as in the case of G2 [158] occur. This
is to be expected here since the pion mass is12 mπ > 4.5GeV, see appendix A.6.
Hence, the quark mass for the onset from the nucleon mN/3 will be at least mπ/2 or
even larger. In lattice units, this means that the earliest point where we expect the
transition is at µ ≈ 0.9, which is already far into the rise to saturation. Hence, we
cannot see the transition even if it is there. Therefore we need to go to lower masses.

Figure 3.20 shows the resulting density at smaller masses. The left plot is for
β = 5.9 and κ = 0.148 on a 83×20 lattice. We list the lattice spacing and masses in
appendix A.6. The corresponding pion mass is amπ = 0.834(25) or mπ ≈ 3.1GeV.
We expect the onset of the transition to be at mN/3, which is above mπ/2. How-
ever, even mπ/2 is already on the plateau, this means that the onset happens to
early. In the right plot we zoom in on the plateau region. The data are for β = 6.0,
κ = 0.15 on a 83 × 24 lattice. Here amπ/2 = 0.370(9) (mπ/2 ≈ 1.3GeV) and again
the onset is already before that. A possible reason for this discrepancy is that the

12Here we only measured the pion mass on a rather large lattice. Finite size e�ects will make the
mass even larger.
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temperature in those simulations is already moderately high. In physical units, the
right plot of �gure 3.20 has temperature T ≈ 141MeV. In the left plot this value
similar T ≈ 140MeV. Physically the critical endpoint of this transition is found at
T ≈ 10MeV. Hence, at our high temperatures, this can only be a remnant of the
transition. We are however not in the continuum limit, where things might change.

The more pressing concern, however, is a problem in the simulation itself, which
we observe in phase quenched simulations.

Phase quenched simulations

Phase quenched QCD is full QCD but with the phase factor left out, it does not
agree with full QCD and we only use it for diagnostic purposes. Its partition function
reads

Zpq =

∫
DU

(
detM(µ)M †(µ) + λ2

)Nf/2 e−Sg (3.48)

and the determinant is real. Here λ acts as a regularization parameter to prevent
too small eigenvalues in the fermion matrix M and hence speeds up the simulation,
it has to be extrapolated to zero. Physically this is equivalent to the introduction
of isospin chemical potential, which parametrizes the di�erence in di�erent quark
species. For lattice studies of phase quenched QCD or QCD at �nite isospin chem-
ical potential see e.g. [159�161]. In phase quenched simulations the onset of the
transition is expected at mπ/2. The left plot of �gure 3.21 shows the onset transi-
tion in from a phase quenched simulation at �nite λ. Here the extrapolation λ→ 0
would move the onset of the plateau even further to the left. The onset should be
at half the pion mass amπ/2 = 0.371(9) (mπ/2 ≈ 1.31GeV), however it happens
too early again, just as in full QCD. Thus we conclude that this is not an issue of
complex Langevin. Instead, the reason is a problem with the thermalization of the
simulation. The right plot of the same �gure shows the HMC trajectory at µ = 0.31
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Figure 3.22: Pion mass at spatial volume 83 and 123. It was measured with Nt = 32.

for the smallest value of λ2. After a long simulation time, the density goes to a dif-
ferent value, which should not happen for purely real simulations unless the system
is not yet thermalized properly.

Assuming we have the same issue in complex Langevin simulations, this explains the
occurrence of the transition at wrong values. The need for long runs is in con�ict
with the fast rise of the unitarity norm. Dynamical stabilization [128] may make
long simulations and a proper investigation of this issue possible. Additionally for
continuum extrapolated simulations, one needs to go to a much lower temperature,
hence making lattices much larger. Such simulations are out of reach with our re-
sources for now.

Let us brie�y mention that in our simulations we see a clear di�erence between
phase quenched and full QCD simulations. This can be seen e.g. for the Polyakov
loop. In a phase quenched simulation the Polyakov loop and the inverse Polyakov
loop are equal. In our full QCD simulations only observe this at µ = 0, where phase
quenched and full QCD agree either way.

Volume dependence of the mass

In the previous section, the pion mass was always above 2GeV. We want to get far
below that, however, at small spatial volumes such as ours, the mass has a lower
bound [162]. We measured the mass at a volume of N3

s × 32 with Ns = 8, 12. The
result is shown in �gure 3.22. This con�rms that our simulations have been done
at approximately the lowest possible mass at this volume. Below we will perform
simulations at β = 5.9 and κ = 0.15. The pion mass for Ns = 8 is mπ > 2.1 GeV,
we did not measure mN . For Ns = 12 mπ ≈ 1.55 GeV and mN ≈ 2.8 GeV. See
appendix A.6. Hence, mπ/2 < mN/3 such that we are not in the limit of very heavy
quarks. Hence, we see nontrivial e�ects from the quarks and the dynamics are not
purely dominated by the Yang-Mills sector.
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3.2.3 Curvature of the transition line from full QCD

Instead, we turn to another interesting region of the QCD phase diagram, the de-
con�nement transition and the search for the critical endpoint. The transition has
been investigated to high precision in the Taylor expansion and continuation from
imaginary chemical potential approaches [15, 18, 19, 19, 49]. However, it is com-
monly accepted that so far those methods cannot reliably give results at µ/T > 1,
see e.g. [163]. In this section, we aim to demonstrate that the complex Langevin
method is able to do so and extract the curvature of the transition line.

Simulation setup

In order to scan the transition, we need to perform simulations at di�erent µ and
T . On the lattice typically T is varied by varying the lattice coupling β, as we have
argued e.g. in section 3.2.1. Here we take another approach: We �x parameters β
and κ and vary temperature by varying the temporal lattice size, since T ∼ 1/Nt.
This is di�erent to usual simulations where one keeps the aspect ratio Ns/Nt �xed
and we will see that this a�ects our simulations in one observable. Note also that
our simulations will mainly be performed at spatial volumes N3

s = 83 and N3
s = 123

which as we will see still is a�ected by �nite size artifacts.

We start by checking our region of interest for convergence of complex Langevin.

Boundaries and poles

As we have discussed in section 3.1, the two main issues plaguing complex Langevin
simulations are poles in the complex plane and boundary terms which manifest as
tails in the distribution of observables and the drift.
The only way poles can appear in QCD is via the fermion matrix M . Since the
fermionic part of the action is −log detM , any zero eigenvalues in the fermion ma-
trix will lead to a diverging logarithm. To look for poles, we compute the lowest lying
eigenvalues of the fermion matrix using the Krylov-Schur algorithm, see e.g. [164],
which is particularly useful for large sparse matrices. We do this for spatial volume
of 83 for β = 5.9 and κ = 0.15 for di�erent µ and T on 30 thermalized con�gurations
per point. We only investigate eigenvalues for con�gurations with unitarity norm
dU < 0.1. If the unitarity norm grows too large occasionally eigenvalues which are
much smaller than the rest occur, if we cut the unitarity norm appropriately this
becomes an extremely rare event. We show distributions of eigenvalues in �gure
3.23. For none of the data shown there, the eigenvalues are too close to zero. We
observe that they move closer to zero for decreasing temperature (increasing Nt).
Additionally, there is a trend of more smaller eigenvalues at increasing µ. However,
all eigenvalues are su�ciently far from zero, such that simulations in the parameter
regions shown are allowed from this point of view. Note that this changes, when
we go to even higher µ. When we did the simulations in section 3.2.2, we observed
that there is a region in which we can practically not simulate. For the parameters



54 3.2. Application to QCD

 0.0001

 0.001

 0.01

 0.1

 0.001  0.01  0.1  1

Nt=4
Nt=8

Nt=12
Nt=16
Nt=20

 0.0001

 0.001

 0.01

 0.1

 0.001  0.01  0.1  1

Nt=4
Nt=8

Nt=12
Nt=16
Nt=20

 0.0001

 0.001

 0.01

 0.1

 0.001  0.01  0.1  1

Nt=4
Nt=8

Nt=12
Nt=16
Nt=20

 0.0001

 0.001

 0.01

 0.1

 0.001  0.01  0.1  1

Nt=4
Nt=8

Nt=12
Nt=16
Nt=20

Figure 3.23: Normalized histogram of the absolute value of the lowest lying eigen-
values. The di�erent plots are at µ = 0.0, 0.3, 0.9, 1.2 from top left to
bottom right.

investigated here, we also observe that the simulation slows down signi�cantly when
approaching the region of µ = 1. This can be interpreted by an increasing number
of low lying eigenvalues, since the conjugate gradient � which we use to invert the
fermion matrix � is known to slow down signi�cantly for too low eigenvalues. For
now we stay away from too large µ and too low T , we have a maximal value of
µ/Tc(0) ≈ 5 and our simulations do not hit any poles.

We investigate the boundary terms by looking at histograms of observables and
check for tails in the distribution. If we observe exponential decay, we trust that
there are no signi�cant boundary terms. Figure 3.24 shows the histogram of Labs =√
LL−1 for two di�erent Nt at µ = 0.3. The histograms decay exponentially and no

change in behavior is seen when cutting the unitarity norm earlier than dU = 0.1.
We also show the expectation values of the Polyakov loop as we will use it, see
equation (3.49) in the next section. This is shown in table 3.2, where no trend of
more accuracy or deviations towards lower cuto� is visible. Here we focused on the
Polyakov loop, since for the location of the phase transition we are mainly interested
in this observable. Other observables such as the plaquette, the density, and the
chiral condensate are equally well behaved, but not shown here. We conclude, that
our simulations are not plagued by boundary terms.
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Figure 3.24: Normalized histogram of Labs for µ = 0.3 and Nt = 7 (left) and Nt = 15
(right). It is well behaved.

µ Nt Labs cut at 0.1 Labs cut at 0.01
0.0 7 0.081(1) 0.083(1)
0.0 15 0.0138(1) 0.0139(2)
0.3 7 0.0108(5) 0.1111(14)
0.3 15 0.0138(1) 0.0140(2)
0.5 7 0.1364(5) 0.1354(6)
0.5 15 0.0148(1) 0.0146(2)

Table 3.2: Comparing Labs expectation values for di�erent unitarity norm cuto�s.

A note on the drift criterion

For completeness, we also had a brief look at the criterion on the decay of the drift
from [122]. This criterion states that the drift term has to decay at least exponen-
tially fast for complex Langevin to be convergent. We show the drift histogram for
two di�erent µ and Nt

13 in �gure 3.25. One can see that according to this criterion,
complex Langevin results should not be trusted at much lower unitarity norm.
Since expectation values and histograms of the observables are well behaved as shown
in the previous section, we do not cut earlier despite the drift histogram decaying
polynomially in some cases. This can be viewed in analogy to the simple model, see
�gures 3.4, 3.7 and 3.3. There the drift histogram shows polynomial decay all the
time, but the boundary terms initially are small enough such that the expectation
values still are correct.

We conclude that we simulate in a region without boundary terms or poles. As
long as we cut the unitarity norm early enough complex Langevin can be trusted.

13Note that there is no particular reason why those µ and Nt values are di�erent from those in
the previous section, we just did not measure the histogram in all cases, so here we chose runs
which had large enough unitarity norm to show something. Many runs stay at low enough
unitarity norm to never develop issues.
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Figure 3.25: Histogram of the drift for µ = 0.15 and Nt = 10 (left) and µ = 0.05
and Nt = 20, see text for a discussion.

Observables for the transition

The typical observable that is chosen to probe the QCD crossover transition at phys-
ical pion mass is the susceptibility of the chiral condensate. Since our simulations
are at heavier pion masses, it can be hard to get a signal for the crossover transition,
see e.g. [165] for the mass dependence of the chiral susceptibility. The chiral conden-
sate also needs to be renormalized, which requires additional expensive simulations
at zero temperature. Hence, we discard the chiral condensate as an observable for
this work.
Instead, we turn to the Polyakov loop, which at our masses gives a much better sig-
nal for the crossover. However, the Polyakov loop needs to be renormalized as well.
Since it renormalizes purely multiplicatively [166], we can use ratios of Polyakov
loops and not renormalize at all. Also, since the Polyakov loop itself is very noisy,
we work with

Labs =
√
LL−1 (3.49)

instead. One could also use the sum of L and L−1, but we �nd that within our
setup the signal for the transition becomes much less clear in this case. We use the
following observables to determine the phase transition

C3(Labs) =
〈L3

abs〉
〈L2

abs〉
1.5 (3.50)

C3(Labs − 〈Labs〉) =

〈
(Labs − 〈Labs〉)3〉〈

(Labs − 〈Labs〉)2〉1.5 (3.51)

C4(Labs) =
〈L4

abs〉
〈L2

abs〉
2 . (3.52)

The quantity C3(Labs−〈Labs〉) measures the di�erence of �uctuations in both phases.
Commonly one extracts the phase transition temperature from such quantities as
their intersection point from di�erent volumes, see e.g. [167]. The Binder cumulant
C4(Labs−〈Labs〉) is a more common observable for that, however within our setup it
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Figure 3.26: Top left: Subtracted third order cumulant C3(Labs−〈Labs〉) as a function
of β. Top right: Unsubtracted fourth order cumulant C4(Labs). In both
cases κ = 0.15, Nt = 6. Bottom: Unsubtracted fourth order cumulant
as a function of Nt for di�erent volumes. Here β = 5.9 and κ = 0.15.
See text for a discussion.

does not show a strong enough signal, so we do not use it. Taking the same quanti-
ties but only with Labs instead of Labs− 〈Labs〉 also shows a crossover between both
phases. However, here it is not clear how to extract a phase transition temperature.
We will argue how to get a transition temperature using a di�erent method than for
C3(Labs − 〈Labs〉), see below.
Before going to chemical potential, we look at the behavior of the third order cumu-
lant from (3.51) at µ = 0 and when varying T via β instead of Nt. We only perform
this analysis to identify Tc, we will not use it further since complex Langevin does
not work for low β. The result is shown in �gure 3.26. One can see that the curves
for di�erent volumes meet at their zero crossing. Thus we de�ne the transition tem-
perature as the temperature at which C3(Labs − 〈Labs〉) = 0. Figure 3.26 also shows
the unsubtracted fourth order cumulant C4(Labs) which does not show any distinct
points which could be used to identify the phase transition, the same holds for the
unsubtracted third order cumulant. Finally, 3.26 also shows the volume dependence
of the unsubtracted fourth order cumulant. It shows strong �nite size e�ects in the
volumes we work with, hence strong e�ects in the results are expected.

The subtracted third order cumulant for β = 5.9, κ = 0.15 as a function of
Nt for di�erent µ is shown in �gure 3.27 (top). From this �gure, we see that larger
µ tend to be less noisy. We extract the transition temperatures for C3(Labs−〈Labs〉)



58 3.2. Application to QCD

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.05  0.1  0.15  0.2  0.25

3
rd

 o
rd

e
r 

cu
m

u
la

n
t 

su
b
tr

a
ct

e
d

1/Nt

mu=0.0
mu=0.1
mu=0.2
mu=0.3
mu=0.4
mu=0.5

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.05  0.1  0.15  0.2  0.25

3
rd

 o
rd

e
r 

cu
m

u
la

n
t 

su
b
tr

a
ct

e
d

1/Nt

mu=0.0
mu=0.1
mu=0.2
mu=0.3
mu=0.4
mu=0.5

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 0.05  0.1  0.15  0.2  0.25

3
rd

 o
rd

e
r 

cu
m

u
la

n
t 

u
n
su

b
tr

a
ct

e
d

1/Nt

mu=0.0
mu=0.1
mu=0.2
mu=0.3
mu=0.4
mu=0.5

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 0.05  0.1  0.15  0.2  0.25

3
rd

 o
rd

e
r 

cu
m

u
la

n
t 

u
n
su

b
tr

a
ct

e
d

1/Nt

mu=0.0
mu=0.1
mu=0.2
mu=0.3
mu=0.4
mu=0.5

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0.05  0.1  0.15  0.2  0.25

4
th

 o
rd

e
r 

cu
m

u
la

n
t 

u
n
su

b
tr

a
ct

e
d

1/Nt

mu=0.0
mu=0.1
mu=0.2
mu=0.3
mu=0.4
mu=0.5

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0.05  0.1  0.15  0.2  0.25

4
th

 o
rd

e
r 

cu
m

u
la

n
t 

u
n
su

b
tr

a
ct

e
d

1/Nt

mu=0.0
mu=0.1
mu=0.2
mu=0.3
mu=0.4
mu=0.5

Figure 3.27: Observables as a function of 1/Nt for di�erent µ. Parameters are β =
5.9, κ = 0.15 and N3

s = 83 (left) or N3
s = 123 (right). Top: Subtracted

third order cumulant C3(Labs − 〈Labs〉). Middle: Third order cumulant
C3(Labs). Bottom: Fourth order cumulant C4(Labs). See text for a
discussion.

from two di�erent �ts such that we can have an estimate for the systematic error.

1. A linear �t to the region close to the zero crossing.

2. A �t of

s− (s− b)e−kNt , (3.53)

which is performed with Nt and not 1/Nt on the x axis. This �t takes into
account all points with Nt larger than the �rst point where the cumulant is
larger than 0.15.

Errors are estimated using the statistical bootstrap. I.e. given the original data set
of size N , we draw N random samples from it, such that samples can occur multiple
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Figure 3.28: Density susceptibility. Left: From β-scan. Right: From Nt-scan. Their
behavior di�ers, see text.

times. We then perform the �t on this random set. Averaging over many of those
sets yields an estimate for the statistical error, see e.g. [37].

For the other two observables, there is no clear feature that can be used to identify
a transition temperature, see �gure 3.27. Instead, we use the method from [168],
which was also applied and shown to agree with other de�nitions in the continuum
in [19]. The idea is to obtain the transition temperature at �nite µ from the one at
µ = 0 by shifting the observables. To be more precise, given an observable Ons that
does not show any identi�able behaviors in the transition region, we take the value
of Tc(0) from another observable Os, which gives a clear signal. We then extract
the value of temperature at µ = 0 at which Ocrit

ns = Tc(0). Next, we look at Ons at
higher µ and check for the temperature Tc(µ) at which Ons = Ocrit

ns . This de�nes
the critical temperature at higher µ. This de�nes the critical temperature and does
not require any distinct features in the observable, as long as we have a good de-
termination at µ = 0. We use the µ = 0 value from the analysis of the subtracted
third-order cumulant. In our simulations, we use a smoothing cubic spline �t to get
a continuous function from our data before applying the shifting method. We tuned
the number of supports in the cubic spline �t such that a smooth behavior without
any bumps was observed in the transition region. Errors again are estimated using
bootstrap analysis.

Another observable that does not need to be renormalized is the density and its
derivatives. We show the density susceptibility � see equation (2.38) � from a β
scan and from our Nt scan in �gure 3.28. While for the β scan a transition is clearly
visible, this is not the case for the Nt scan. This is probably due to the fact that
the aspect ratio of the lattice is not held constant. The advantage of this observable
is that it does not depend on volume. Hence, we could use any value of N3

s and
extract a transition temperature. Since we are unable to extract a distinct feature
from our data and the di�erence between both plots in �gure 3.28 is so large we
discard this observable for now.
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Curvature of the transition line for µ/Tc(0) < 5.

Finally, we are interested in the curvature of the transition line, which is a commonly
measured quantity from lattice simulations, see e.g. [19, 49] for recent values. Using
µB = 3µ, the transition temperature is commonly parametrized as

Tc(µB) = Tc(0)− κ2
µ2
B

Tc(0)
+O(µ4

B) . (3.54)

We �t this function to our data and normalize afterwards to

Tc(µB)

Tc(0)
= 1− κ2

(
µB
Tc(0)

)2

+O(µ4
B) . (3.55)

We report the resulting parameters in table 3.3. Tc(0) is the �t parameter from
the above �t, errors are from a bootstrap analysis by performing the �t on di�erent
bootstrap samples and averaging over those. Hence, even though we used the same
Tc at µ = 0 from the subtracted third-order cumulant for all other observables as
well, the actual quoted value of Tc(0) di�ers from that, since it comes from the �t
and hence incorporates the e�ect of the other data points as well.

The resulting value for κ2 is consistent for all observables from the Polyakov loop
ratios we looked at.
Comparing to the values from [19, 49] which is approximately κ2 ≈ 0.014, the

curvature from our data is much smaller. This is not surprising since in HDQCD �
where quarks are heavy and cannot move in spatial directions � the transition line at
small temperatures is �at [83]. Hence, our results nicely interpolate between heavy
quarks and those with physical mass. Note, however, that there are a few other
systematic sources of error which may have an e�ect. This is also re�ected in the
transition temperature which for physical quark masses should be Tc ≈ 155 MeV,
while in pure Yang-Mills or in�nite masses it is at Tc ≈ 270 MeV. Our simulations
yield values above the Yang-Mills temperature due to �nite size e�ects. This is also
re�ected in the fact that the curvature slightly di�ers between volumes, see table
3.3. We are also not in the continuum limit, while curvature values given in [19, 49]
are properly continuum extrapolated.

3.2.4 Conclusion on complex Langevin for QCD

In this section, we found that complex Langevin seems to be applicable throughout
the most part of the phase diagram. We found that the hopping expansion does not
work well close to poles and thus should not be used to scan the phase diagram.
Using the hopping expansion in a region where it behaves nicely, we showed that
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Figure 3.29: Curvature of the transition line. Parameters are as in �gure 3.27.
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Method Ns κ2 Tc(0)× a Tc(0)/MeV
exp �t B3(Labs − 〈Labs〉) 12 0.0011(2) 0.100(1) 305(3)
lin �t B3(Labs − 〈Labs〉) 12 0.0011(1) 0.102(1) 311(3)
shift 1 B3(Labs) 12 0.00113(7) 0.103(6) 314(18)
shift 2 B3(Labs) 12 0.00118(7) 0.109(2) 332(6)
shift 1 B4(Labs) 12 0.00112(10) 0.103(7) 314(21)
shift 2 B4(Labs) 12 0.00118(5) 0.109(3) 332(9)

exp �t B3(Labs − 〈Labs〉) 8 0.00152(14) 0.1201(13) 367(3)
lin �t B3(Labs − 〈Labs〉) 8 0.00144(9) 0.1228(6) 374(2)
shift 1 B3(Labs) 8 0.00140(3) 0.1148(10) 350(3)
shift 2 B3(Labs) 8 0.00140(3) 0.1133(10) 346(3)
shift 1 B4(Labs) 8 0.00144(6) 0.115(1) 351(3)
shift 2 B4(Labs) 8 0.00135(5) 0.113(1) 345(3)

Table 3.3: Curvature and Tc(0) from di�erent methods. The curvature is given for
µB = 3µ. Shift 1 and shift 2 are shifts (see text) with the data point for
Tc(0) taken from B3(P − 〈P 〉).

complex Langevin simulations at µ = 0 yield correct results.
For full QCD we were able to simulate at low temperatures and �nd �rst signals of
the nuclear liquid-gas transition. While this transition was not at the correct posi-
tion, we were able to trace this failure back to long thermalization times which also
occur in phase quenched simulations. They are not a result of a failure of complex
Langevin.
We were able to compute the transition temperature for moderately heavy pion
masses of mπ ≈ 1.55 GeV using the complex Langevin method. This was done up
to µ/Tc(0) ≈ 5, which is much higher than the range of other methods. We carefully
monitored the observables and poles to check for the convergence of the method and
removed con�gurations after the �rst occurrence of boundary terms or poles.
Using ratios of Polyakov loops, see equations (3.50)-(3.52), we found that the tran-
sition line is well described by a quadratic behavior with curvature κ2 ≈ 0.0011
for our largest volumes, i.e. on a Ns = 12 lattice. We used two di�erent methods
to extract this value and both agreed. The curvature we found interpolates nicely
between the value in HDQCD, where there is practically no curvature [83] and the
value κ2 ≈ 0.014 at physical quark masses [19, 49]. Note that our simulations still
show �nite size e�ects, which is especially visible in the fact that the smallest pos-
sible masses are strongly restricted by the spatial volume.
To summarize, we found that complex Langevin does work for QCD if monitored
appropriately. We will discuss lessons for complex Langevin from our QCD and
SU(2) simulations at the end of the chapter.
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3.3 Applicability of complex Langevin in SU(2)

real-time simulations

Apart from simulations at �nite chemical potential, the sign problem also prohibits
simulations in Minkowski space directly, since there the Boltzmann factor is a pure
phase. The application of complex Langevin to real-time problems was investi-
gated in [59, 102, 103]. The focus there was put on real-time simulations at �nite
temperature. This is done by simulating on the Schwinger-Keldysh contour or on
deformations thereof. For SU(2) gauge theory, it turned out that Langevin dynam-
ics are very unstable and do not yield correct convergence unless rather unpractical
parameters were chosen.
We aim to investigate the applicability of the complex Langevin method to SU(2)
pure gauge theory by using gauge cooling [105] and dynamical stabilization [128]
and investigate di�erent choices of contours. For the simulations in this section, we
used a CPU code written by the author.

The Wilson gauge action on a contour

We wish to investigate di�erent contours, so a general expression for the lattice
action on a contour is needed. Since the contour does only change the temporal
part of the lattice gauge action, we have to split the action into two parts

S =− βγt
∑
n

∑
i

[
1

4

(
TrU0i(n) + TrU−1

0i (n)
)
− 1

]
+
β

γt

∑
n

∑
ij, i<j

[
1

4

(
TrUij(n) + TrU−1

ij (n)
)
− 1

]
, (3.56)

the �rst term contains loops containing temporal links, the second part contains
only spatial loops. The anisotropy parameter γt = as/at is the ratio of the spatial
and temporal lattice spacing. When speaking of at in this part of the thesis, we
will refer to the lattice spacing corresponding to the real-time formulation unless
speci�ed otherwise. It is necessary to yield the correct continuum limit. From
equation (3.56), one can regain the usual Euclidean action in the usual way

iSMinkowski(at,Minkowski = −iat,Euclidean) = −SEuclidean . (3.57)

In equation (3.56) this is done by replacing at → −iat in the anisotropy factor γt,
yielding the usual Euclidean Wilson gauge action. Additionally, one has to take
care when formulating Langevin dynamics, since in the Minkowski formulation the
prefactor of the action changes. Hence, the Langevin drift changes accordingly

Ka(n) = −Da(n)S → Ka(n) = iDa(n)S . (3.58)
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Figure 3.30: Left: Langevin evolution of the spatial plaquette and the unitarity
norm. Note that the deviation of the Euclidean result from the ap-
parent average of the complex Langevin trajectory is due to discretiza-
tion artifacts. Right: Histogram of the spatial plaquette. See text for
details.

Any given contour can be implemented via the anisotropy parameter. The contours
are de�ned using the parameters τ which is the extent of the contour in the Eu-
clidean direction and represents inverse temperature and t0 which is the extent in
Minkowski direction. All contours are deformations of the one described in section
2.2, they start at 0 and end at −iτ and both points are identi�ed with periodic
boundary conditions.
For a lattice with temporal extent Nt, in general, the anisotropy parameter is dif-
ferent for each pair of points. For example, given a lattice with Nt points in the
temporal direction and using the action of equation (3.56), one regains the usual
Euclidean simulation by putting γ = Nt/(−iτ) for all anisotropies.

Running the simulation

A good choice of the contour is a symmetric triangle [59, 103], we will investigate
other choices below. We begin by simulating on a 43 × 8 lattice on a symmetric
triangle with real-time extent t0 = 1 and Euclidean extent τ = 1. Following [103],
we simulate at lattice coupling β = 16.0. Note that this value is extraordinarily
large. The decon�nement transition in a standard Euclidean simulation happens
at around β ≈ 2.5 (for Nt around the values chosen in this part of the thesis).
Instead of gauge �xing as in [103], we employ gauge cooling [105] to stabilize the
simulation. We will compare di�erent stabilization methods below. We employ
adaptive step size [104, 134] for all simulations with a typical value for the time step
of ε ≈ 10−4 to 5× 10−4 or lower. For some of the simulations we use the improved
Langevin algorithm from [169].
As was discussed in section 3.1, in order for complex Langevin to converge, there

must be no boundary terms in the observables or drift. An easy way to quantify
this is to look at histograms of observables. Another way to check for correctness
within this simulation setup is to compare it to Euclidean simulations. Fortunately,
observables that depend only on spatial quantities do not have any dependence
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Figure 3.31: Visualization of discretization artifacts. We compare the spatial pla-
quette for the symmetric triangle contour with standard Euclidean sim-
ulations. Larger Nt means smaller steps. See text for details.

on the contour (except discretization artifacts) and can be used as a correctness
measure. One such observable is the spatial plaquette. In �gure 3.30 we show
the evolution of the spatial plaquette and the unitarity norm (see equation (3.39)),
which is a measure for the distance to SU(2). We also show the histogram of the
spatial plaquette. One can see that the evolution seems to stay close to the correct
value, however, occasionally there are spikes in the unitarity norm and plaquette
evolution. Looking at the full histogram one can clearly observe a weaker than
exponential decay when taking into account the full simulation, hinting at the failure
of complex Langevin. This is �xed by leaving out all data points that are above
dU = 0.07. In this case, the histogram decays nicely and expectation values become
correct. Typically instead of leaving out the parts of the simulation where the
unitarity norm is small one would only take the initial part of the simulation before
any spikes start to occur and do many of those simulations to average over. This
requires the simulation to thermalize before the spikes set in. In general, this must
be carefully monitored. In our case it is su�cient to compare to the spatial plaquette
from Euclidean simulations.

A brief note on discretization artifacts

In �gure 3.30 it looks like the spatial plaquette from complex Langevin and standard
Euclidean simulations do not agree. This is due to discretization artifacts from the
contour. In �gure 3.31 we compare both simulations on a 83 ×Nt for β = 3.0. The
triangle contour in this case has real time extent t0 = 3 and inverse temperature
τ = 16. This triangle is really �at and hence should yield results close to the
Euclidean ones. In the �gure, one can see that by increasing the number of points
on the contour in both triangle and Euclidean contour simulations leads to better
agreement.
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Comparison of contours

In principle, the interesting contour for real-time simulations is the Keldysh-Schwinger
contour. However, on this contour complex Langevin does not converge at all. In-
stead, we take variations of the Keldysh-Schwinger contour on which the anisotropy
parameter always has a real and imaginary part. In this case, one still has to do
numerical analytic continuation to the pure Minkowski case via Bayesian methods
[170�173]. These problems are typically numerically ill-posed due to statistical er-
rors in the data. The hope when choosing a contour which is in between the pure
Euclidean and Minkowski contour is that the problem becomes less ill-posed since
the distance to Minkowski space is lower.
The contours we will compare are

• a triangle (symmetric and asymmetric), which we parametrize by splitting the
inverse temperature into τ = τ+ + τ−. The + part lies above the edge of the
triangle and the − part below. We split the number of points in temporal
direction Nt equally between the upper and lower branch of the triangle. The
temporal lattice spacing at point n on the contour reads

at,up(n) = n
(t0 − iτ+)

Nt/2

at,lw(n) = n
(−t0 − iτ−)

Nt/2
. (3.59)

We assume periodic boundary conditions.

• an ellipse with points equidistant on the contour. This is parametrized by

at(n) = t0 sin

(
π

Nt

n

)
+ i

τ

2

(
−1 + cos

(
n
π

Nt

))
(3.60)

• an ellipse with points equidistant in Euclidean direction. Since the ellipse as in
the previous point does not have equidistant points and hence in the Euclidean
limit (t0 → 0) does not give the correct result unless Nt is really large. The
equation in this case reads

at(n) = ite(n) + 2t0

√
te(n)(te(n) + τ)

τ 2
, (3.61)

where te(n) = −nτ/N corresponds to an equidistant partitioning of the Eu-
clidean contour.

Triangles have already been investigated in [59, 103], and it has been found that in
the case of SU(2) the symmetric triangle performed best. To compare the contours
we perform simulations on 83 × 16 lattices with inverse temperature τ = 16. For
the asymmetric triangle we choose τ+ = 1 and τ− = 15. This choice is close to the
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Figure 3.32: Left: Comparison of di�erent contour choices for SU(2) real time sim-
ulations. Right: Investigation of the parameter range of the symmetric
triangle contour. See text for a discussion.

real-time contour and if feasible will yield results close to Minkowski space physics
as was shown for quantum mechanics in [59]. We vary β and t0 to see how far
in real time one can go. The criterion we choose for this is the following: The
simulations are typically well thermalized after a Langevin time t ≈ 10. To take
averages one has to have enough data after thermalization to take averages, in this
case, multiple runs can be done to produce higher statistics. We choose to say that
the simulation works if the histogram of the simulation looks �ne up to t ≈ 25. Note
that this is not an exact criterion since depending on the random numbers produced
by the computer, deviations can occur earlier or later. In this case, we only did one
run for each set of parameters and hence, the results for the possible range are a
guideline and might di�er slightly. Note also that while in �gure 3.30 the simulation
seems to be going on inde�nitely, for some parameters the step size becomes very
small and the simulation comes to a halt. The left plot in �gure 3.32 shows the
possible extent of the di�erent contours using gauge cooling. All contours except
the symmetric triangle seem to prohibit a larger real-time extent. In the case of
the symmetric triangle, the range seems to increase with increasing β. We conclude
that the symmetric triangle contour performs best.
Therefore we investigate the possible parameter range of this contour for the same
parameters as before, the result is shown in the right plot of �gure 3.32. There are
two observations to be made. (i) for smaller lattice coupling β the possible real-time
extent for given inverse temperature τ is rather limited. Especially in the interesting
region around the critical beta of β ≈ 2.5 barely any real time extent is possible.
(ii) smaller τ allows for larger ratios t0/τ . However, given that the ratio is plotted,
the actual value of t0 that is possible is larger for τ = 16. In this �gure, we also
compare stabilization methods, which will be discussed below.

Comparison of stabilization methods

In [103] it was found that it is necessary to employ some method to keep the evolution
close to the real manifold. The method that was chosen there was to use maximal
tree gauge, i.e. the maximum possible number of gauge links is �xed to one, and
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Figure 3.33: Comparison of di�erent stabilization methods for SU(2) real-time
simulations.

hence keeps the simulation somewhat close to the real manifold. Since then gauge
cooling [105] and dynamical stabilization [128] have been shown to help with QCD
simulations. Gauge cooling keeps the simulation close to the real manifold by gauge
transformations while dynamical stabilization adds an attractive drift force towards
the real manifold to the dynamics. For more details on both methods see appendix
A.7. Here we compare four di�erent methods

• maximal tree gauge �xing as in [103]

• gauge cooling where we found that a cooling parameter αgc = 1 with �ve
cooling sweeps is typically enough

• dynamical stabilization with αds = 10

• dynamical stabilization with one gauge cooling sweep.

Note that in the case of dynamical stabilization one usually compares di�erent values
of αds to �nd a region in which the additional drift does not change the physical
outcome. Since in our simulations we have the additional advantage that we know
the value of the spatial plaquette, we can �x a value for αds by simply choosing a
value which makes the real manifold attractive enough and simultaneously keeps the
spatial plaquette at its correct value. The comparison of those methods is shown
in �gure 3.33. We observe that in the investigated β region gauge �xing is not a
valid option. The parameters chosen in [103] are such that they require currently
unreachable lattice sizes to give a large enough physical lattice volume since larger
β correspond to a smaller lattice spacing. The use of gauge cooling and dynamical
stabilization opens up the possibility to simulate in a physically more interesting
region. We also observe that dynamical stabilization outperforms gauge cooling
though the di�erence is not too large.

3.3.1 Conclusion of SU(2) real-time simulations

We have shown that complex Langevin simulations employing gauge cooling and
dynamical stabilization vastly improve the stability of complex Langevin simulation
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compared to gauge �xing. We found that the best contour is a symmetric triangle.
Unfortunately, the symmetric triangle is far enough away from the real-time contour
that some kind of analytic continuation still has to be performed. The parameter
range of the contour is also limited to short real-time extents t0.

3.4 Summary, Outlook, and lessons for complex

Langevin

The complex Langevin method has proved to be a powerful tool to attack the
sign problem. Especially in SU(N) simulations and for QCD there has been much
progress. It enabled us to systematically investigate the phase transition of full
QCD for a large range of µ/T , which was not possible before. In particular, we were
able to compute the curvature of the transition line for up to µ/Tc(0) ≈ 5, which
is out of the reach of other approaches so far. We �nd values of the curvature of
κ2 ≈ 0.0011 to 0.0015 depending on volume and observable. Since our pion masses
are between 1 to 2 GeV this �ts nicely between the results of HDQCD [83], where
there appears to be no curvature and simulations at physical pion masses, where
κ2 ≈ 0.014 [19, 49]. We were also able to see �rst signals of the liquid-gas transition
at low temperature, though there were some systematic errors that prohibited a
precise evaluation of the data. This should be improvable by applying dynamical
stabilization. The next step should be simulations closer to the physical point to
see if complex Langevin still performs well or if poles start to appear.
For SU(2) Yang-Mills on a contour, we were able to improve upon previous simula-
tions and to simulate in physically more interesting regions than before. However,
simulations directly on a real-time contour were not possible as well and there still
are restrictions to the types of contours that are possible.

Lessons from QCD and SU(2): How to use complex Langevin

In addition to all systematics that have to be controlled in standard lattice simula-
tions, complex Langevin adds a few points that have to be taken care of. Here we
give a brief summary of those.

• Avoid regions of wrong convergence. They are rather simple to identify by
looking at histograms, boundary terms or the unitarity norm, or �in the case of
our SU(2) simulations� by comparing to the spatial plaquette. Many complex
Langevin simulations have been done in inaccessible parameter regions with
the conclusion that complex Langevin is not a valid method. In QCD we were
able to go below the phase transition anyway by varying Nt instead of β as
is usually done. Hence, unconventional ideas may be able to help in making
complex Langevin work better.
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• Avoid long runs. Even with gauge cooling, the unitarity norm tends to grow
large after some time due to the accumulation of numerical errors. It is best to
take measurements only as long as the unitarity norm stays small. Typically
runs are already rather long before the rise of the unitarity norm. Longer runs
may be possible using dynamical stabilization. It is best to �nd out at which
value the unitarity norm is too large, i.e. signals boundary terms, and discard
all con�gurations after that value was reached.

When those points are taken into account the complex Langevin method can be
applied. Unfortunately, in some cases the interesting regions are inaccessible and it
is not clear how to modify the simulation to make them accessible � such as QCD
before gauge cooling existed. Hence, there is no �set it and forget it� recipe to apply
complex Langevin to any theory. When complex Langevin works it is rather reliable
and can solve many interesting physical phenomena.
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4 Lefschetz Thimbles

An alternative approach to the sign problem is that of Lefschetz thimbles and gen-
eralized complex manifolds. It is related to the complex Langevin method since it
also starts with complexi�cation of the original integration space. The idea of the
Lefschetz thimble method is to �nd paths in the complexi�ed space on which there
is no sign problem such that Monte Carlo methods can be applied. The method was
introduced in a di�erent context in [174] and was �rst applied to lattice simulations
in [85]. It has since been applied to the complex Bose gas [175] and mainly to sim-
ple models [30, 176�183]. Some more algorithms also appeared in [184�187]. There
have also been some e�orts to combine the Lefschetz Thimble method with complex
Langevin [30, 188]. One of the problems with Lefschetz thimbles is that a theory
usually has many of them and that simulations are only possible on one at a time.
This is circumvented in the generalized Lefschetz Thimble method [87] or path opti-
mization method [189]. Both of these methods try to �nd manifolds which lie close
to Lefschetz thimbles but are continuous deformations of the original integration
domain such that they are homotopy equivalent to it. There are several approaches
to �nd those manifolds. The most straight forward one is to use the steepest as-
cent �ow which asymptotes towards the thimble. With this method models of QCD
[190], real time quantum mechanics [191, 192] and actual �eld theories in low vol-
umes [193�195] have been investigated. For algorithmic improvements see [196�198].
Another way to �nd such manifolds is a physical ansatz, which of course is model
dependent, see [86, 199] for an application in the Thirring model. Finally, there are
some works parametrizing such manifolds using neural networks [27, 28, 200�202]
by either directly �nding a manifold or by optimizing the parameters of a physical
ansatz. The problem with those generalized approaches to Lefschetz thimbles is
that they only ameliorate the sign problem such that reweighting (see section 2.4)
is still necessary, hence they are not easily scalable to high volumes. They are also
oftentimes rather expensive. Hence, so far simulations have been possible only in
low volumes.

In this chapter, we will focus on Lefschetz thimbles and not their generalizations.
We will brie�y introduce the method in section 4.1. We then discuss its issues and
give some ideas for solutions which we demonstrate in simple models in section 4.2.
We brie�y discuss the relation of complex Langevin and Lefschetz thimbles in section
4.3. Finally, we investigate the di�culties that arise when applying the method to
�eld theories in section 4.4.
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4.1 Introduction to Lefschetz Thimbles

The mathematics behind Lefschetz thimbles is described by Picard-Lefschetz theory,
a complexi�cation of Morse theory. We are interested in the application to oscillatory
integrals [203]. Here we only state the important equations and do not go into
mathematical details.
Consider an action S(x) ∈ C with x ∈ R. As in complex Langevin, our �rst step is
to complexify, i.e. S(z) ∈ C with z ∈ C. We then compute the stationary points zσ,
which are the solution to

∂S

∂z

∣∣∣∣
z=zσ

= 0 . (4.1)

Note that for the method to be applicable the zσ need to be non-degenerate. The
Lefschetz (anti-/unstable) thimbles are then the paths Dσ in the complex plain
which follow the steepest (ascent/)descent equation

∂z

∂τ
= ±∂S

∂z
. (4.2)

and end in the stationary points. The plus/minus sign is for the steepest as-
cent/descent equation. Integrals of the form of the partition function can then
be decomposed according to

Z =

∫
R
e−S =

∑
σ

nσ

∫
Dσ

e−S , (4.3)

where the sum goes over all stationary points. The number nσ is the oriented
intersection number of the corresponding anti-thimble with the original manifold.
One can see the advantage of this formulation by di�erentiating the imaginary part
of the action

2i
∂

∂τ
Im S(z) = ∂τ

(
S(z)− S̄(z)

)
=
S(z)

∂z

∂z

∂τ
− S(z)

∂z

∂z

∂τ

=
S(z)

∂z

S(z)

∂z
− S(z)

∂z

S(z)

∂z
= 0 , (4.4)

where we inserted equation (4.2). Thus the imaginary part of the action along the
thimbles and anti-thimbles is a constant and can be pulled out of the integral. The
partition function becomes

Z =
∑
σ

nσe
−iIm S(zσ)

∫
Dσ

e−Re S(z) ≡
∑
σ

nσe
−iIm S(zσ)Zσ , (4.5)

which de�nes the partition function Zσ on the thimble. The Boltzmann factor
along the thimble now has the nice property that it is no longer oscillatory since
it is purely real. Furthermore, it is maximal at the stationary point and decays
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exponentially. Thus we have a well-de�ned integral which we can sample using
Monte Carlo techniques. Observables on one thimble are computed via

〈O〉 =
1

Z

∑
σ

nσe
−iIm S(zσ)

∫
Dσ

dzOe−Re S(z) =
1

Z

∑
σ

nσe
−iIm S(zσ) 〈O〉σ

=

∑
σ nσe

−iIm S(zσ)Zσ 〈O〉σ∑
σ nσe

−iIm S(zσ)Zσ
. (4.6)

While this method leads to an integration over a well de�ned probability measure,
it has its own drawbacks

• There is a residual sign problem from the Jacobian for the transformation of
the integral.

• In a general �eld theory it can be hard to �nd all stationary points and deter-
mine which of the thimbles contribute.

• In the case of multiple thimbles we need to know the partition function on the
thimble, which cannot be computed via Monte Carlo methods.

For most applications the �rst point usually does not pose a problem, it seems
that the sign problem from the Jacobian is much weaker than the sign problem of
the original theory. The last two problems are challenging and there is no general
solution. Some ideas on how to �nd stationary points and thimbles are described
in appendix B.1. For now, we deal only with simple models, where �nding the
�xed points is simple and the partition functions can be computed by numerical
integration such that we can focus on conceptual problems.

4.2 Monte Carlo simulations on Lefschetz

Thimbles in simple models

We �nd the (anti-)thimble by starting arbitrarily close the the �xed point and nu-
merically solving the normalized steepest (descent/)ascent equation

∂z

∂τ
= ±∂S

∂z

/∣∣∣∣∂S∂z
∣∣∣∣ , (4.7)

where the normalization has been done for convenience. Having a parametrization
of the thimble in terms of the parameter τ the partition function on the thimble
becomes

Zσ =

∫
Dσ

dz e−ReS(z) =

∫ b

a

dτ e−ReSσ(τ)Jσ(z(τ)) , (4.8)
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where the Jacobian now introduces the residual sign problem mentioned above. We
perform standard Monte Carlo simulations on the thimble sampling from exp(−ReS(τ))
and deal with the Jacobian via reweighting, i.e.

〈O〉 =
〈O Jσ〉
〈Jσ〉

. (4.9)

For multiple thimbles this equation becomes

〈O〉 =

∑
σ nσe

−iImS(zσ)Zr
σ 〈O Jσ〉

r
σ∑

σ nσe
−iImS(zσ)Zr

σ 〈Jσ〉
r
σ

, (4.10)

with

〈O〉rσ =
1

Zr
σ

∫ b

a

dτ e−ReSσ(τ)O

Zr
σ =

∫ b

a

dτ e−ReSσ(τ) . (4.11)

The evaluation of the full partition function requires knowledge about the partition
functions on all contributing thimbles, which is a priori not known. In [177] it has
been solved by normalizing the partition functions at a point where simulations are
possible without a sign problem, which is not always possible. Instead we solve this
problem by rewriting the ratio of the partition functions of two di�erent thimbles

Zr
1

Zr
2

=

∫ b
a
dτ e−Re[S1(τ)]∫ b

a
dτ e−Re[S2(τ)]

=

∫ b
a
dτ e−Re[S1(τ)+S2(τ)−S2(τ)]∫ b

a
dτ e−Re[S2(τ)]

=

∫ b
a
dτ e−Re[S2(τ)]eRe[S2(τ)−S1(τ)]∫ b

a
dτ e−Re[S2(τ)]

=
〈
eRe[S2(τ)−S1(τ)]

〉r
2
. (4.12)

This means that we can compute the ratio of partition functions on thimbles by
computing a simple observable on one of the thimbles. There are some subtleties
that have to be taken care of here. First, we implicitly assumed that the parameters
τ on both thimbles can be identi�ed. In our case this is automatically ful�lled since
we normalized equation (4.7), otherwise, an additional Jacobian would occur. The
second is that there has to be su�cient overlap of the distributions on the thimble.
To some extent, this is ful�lled since in all cases the distribution on the thimble has
its maximum at the �xed point. If one thimble ends at some �nite value there may
be no overlap in some region such that the ratio from equation (4.12) cannot be
computed.
This can be solved by simply mapping the boundaries of all thimbles into the same
interval, e.g. τ ∈ [0, 1]. If the thimble originally is de�ned on a �nite interval
τ ∈ [a, b] this can be done by a linear transformation. If τ ∈ [−∞, a] a possible
transformation is

x→ x′ = 1 + tanh (ξ (x− a)) , (4.13)
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and accordingly for τ ∈ [a,∞]

x→ x′ = tanh (ξ (x− a)) , (4.14)

for τ ∈ [−∞,∞] the mapping becomes

x→ x′ =
1 + tanh (ξx)

2
, (4.15)

where ξ is a tunable parameter which can be used to maximize the overlap of the
distributions.

4.2.1 Applications

We test our procedure to compute equation (4.10) in three simple models

1. A quartic action with a symmetry breaking term such that there is no z → −z
symmetry

S(z) =
σ

2
z2 +

λ

4
z4 + hz , (4.16)

with σ = 1, λ = 1/3 and h = 1 + i, here only one thimble contributes.

2. The same action with σ = 1, λ = 1 and h = 1 + i, where two thimbles
contribute

3. A U(1) one link model, somewhat modeling the occurrence of a fermion de-
terminant via the logarithm

S(x) = −βcos(x)− log (1 + κcos(x− iµ)) , (4.17)

where κ = 2, β = 1 and µ = 2. This model is particularly interesting, since
complex Langevin fails to give correct results due to the occurrence of poles
[204].

Figure 4.1 shows the thimble structures of all models. The �ow lines in the back-
ground are the negative gradient of the action −∂zS. This is the �ow that describes
complex Langevin, we will discuss the connection further below. (Anti-)thimbles are
given by (dashed)solid lines. One can see that in the �rst model only one thimble
contributes since only one anti-thimble has an intersection with the real axis. In the
second model, two thimbles contribute. The third model is periodic in the real part
such that the green thimbles should be identi�ed. Here three thimbles contribute.
We apply our algorithm to those models. For the �rst model only one thimble con-
tributes. We show the result for the observable 〈z2〉 in table 4.1, everything agrees
nicely.
For the second model we map the distributions to the interval τ ∈ [0, 1] according to
equation (4.15) with ξ = 0.25, since both thimbles end at in�nity in both directions.
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Figure 4.1: Complex plane with thimble structure and drift of the three models in
order from left to right. See text for details.

We show the corresponding distributions in the left plot of �gure 4.2. They have
su�cient overlap and we can compute the ratio of partition functions. Results are
shown in table 4.1, where again all observables agree with the analytical solutions.
The third model is the most interesting case. Here the thimbles end in poles, such
that we need to apply equations (4.13), (4.14) with ξ = 1.5 for the outer thimbles
and a linear transformation for the middle thimble. The distributions resulting from
the mappings are shown in the right plot of �gure 4.2, the overlap is still su�cient
for simulations. Observables are zero dimensional versions of the Polyakov loop and
its inverse, the plaquette and the number density

〈U〉 =
〈
eix
〉
,〈

U−1
〉

=
〈
e−ix

〉
,

〈P 〉 = 〈cos(x)〉 ,

〈n〉 =

〈
iκsin(x− iµ)

1 + κcos(x− iµ)

〉
. (4.18)

The results are shown in table 4.1, again everything agrees. We conclude that our
algorithm for combining thimbles works, at least in simple models. In principle, this
is applicable also in higher dimensions as long as the variables of the parametrizations
overlap. A similar idea has appeared in [177, 178].

4.3 Thimbles and complex Langevin

Intuitively the Lefschetz Thimble and complex Langevin method are related. Both
start with the complexi�cation of the integration space and in both methods the
�xed points are important, in complex Langevin by driving the dynamics of the
simulation and for Lefschetz thimbles by being their anchors. It has been shown
[204] that the complex Langevin evolution typically clusters around contributing
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Figure 4.2: Boltzmann factor exp(−Re(S)) vs. �ow parameter τ on the contributing
thimbles. Left: Model 2, the thimble structure is shown in the middle of
�gure 4.1 p1 corresponds to the red thimble, p2 to the black one. Right:
Model3, corresponding to the rightmost plot in �gure 4.1. We call the
black thimble the �master�-thimble, T1 indicates the left red thimble and
T3 the right red thimble, they are connected by symmetry. The inlays
correspond to the transformation that were used to map the thimbles to
the interval [0, 1], see equations (4.13)-(4.15)

.

O numerical exact

z4�1 thimble
Rez2 0.73922(6) 0.73922
Imz2 0.63006(4) 0.630089

z4�2 thimbles
Rez2 0.509299(5) 0.509297
Imz2 0.305819(3) 0.305815

Z2/Z1|T1
0.2253778(4) 0.2253779

Z1/Z2|T2
4.436(12) 4.437

Re〈U〉 0.315217(3) 0.315219
Re〈U−1〉 1.800941(3) 1.800939
Re〈P 〉 1.058079(3) 1.058079
Re〈n〉 0.742861(1) 0.742860

Z2/Z1|T1
× 10−3 2.99378(3) 2.99382

Z1/Z2|T2
× 104 3.34032(4) 3.34022

Z2/Z3|T3
× 10−3 2.99377(3) 2.99382

Z3/Z2|T2
× 104 3.34026(9) 3.34022

Table 4.1: Numerical results and exact values of observables for the three models
with statistical errors. Imaginary parts of some observables agree with
zero and thus are not shown.
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thimbles. Hence, the natural question is if one can combine both methods. Com-
plex Langevin has been combined with the generalized Lefschetz thimble method in
[188] in a simple model.
We brie�y discuss our insights from trying to combine both methods, details can be
found in appendix B.2. It is well known that complex Langevin can be improved
by appropriate coordinate transformations [205], which is e.g. also the case for the
Polyakov chain from 3.1.2, where the gauge �xed and diagonalized version is much
more stable than the full- or only gauge �xed chain.
Hence we tried to use coordinate transformations to keep the complex Langevin
evolution close to thimbles. I.e. we introduce a transformation z → z(u, θ), where u
is the new variable and θ is a parameter which is updated every Langevin step such
that the transformation is always able to get close to thimbles.
In practice, this is done by introducing a constraint into the complex Langevin evolu-
tion. This constraint should be derived from some quantity which measures the dis-
tance of the complex Langevin evolution to the thimbles, which is not a well-de�ned
quantity. We found that some measures for the distance can signi�cantly destabilize
the evolution by introducing poles, which is a problem for complex Langevin as we
have seen in chapter 3. However, even without poles, it is hard to �nd a criterion
to measure the distance to all thimbles, which also allows jumps between thimbles.
While we found a way to push the distribution of the �elds close to the thimbles and
keep the simulation stable by trial and error � see appendix B.2 � we were unable to
get correct values for observables. Thus we conclude that much more mathematical
insight is needed to combine both methods, this is work in progress.

4.4 Towards higher dimensions

So far we simulated on the thimbles by explicitly �nding a parametrization. In
higher dimensions, this will become numerically unfeasible. Unfortunately, global
simulation algorithms are also expensive. Hence, we would like to �nd local updating
algorithms similar to the Metropolis algorithm to make simulations of interesting
theories possible. We do this by using the fact that the imaginary part of the action
does not change along the thimble, i.e.

∆SI = 0 . (4.19)

Instead of writing down a global algorithm, which requires �nding the thimble of
the whole lattice, we would like to �nd an algorithm which allows local updates. We
will explain this idea in more detail using an example.

4.4.1 U(1) gauge theory

Here we are interested in U(1) gauge theory on a 1 + 1d lattice with the action

S = −β
∑
Up

(
1

2

(
Up + U−1

p

)
− 1

)
, (4.20)
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where we chose β ∈ C to introduce a sign problem. Note that this is just the Wilson
gauge action from equation (2.23). In the thermodynamic limit, the expectation
value of the plaquette for this theory is known analytically, see e.g. [36], as

〈Up〉 =
I1(β)

I0(β)
, (4.21)

where In(β) are the modi�ed Bessel functions of the �rst kind.
In order to describe the full theory we now need to �nd all stationary points and
thimbles. For a lattice theory, the stationary points are given by whole lattice
con�gurations. For now, we will concentrate on the thimble corresponding to the
classical �xed point, where S = 0. Hence, we proceed to describe how to do updates
on a global thimble using local updates by keeping the imaginary part of the action
constant. By writing the action as

S = βΣ = (βRΣR − βIΣI) + i(βIΣR + βRΣI) , (4.22)

we see that this is equivalent to demanding

SI = βIΣR + βRΣI = const . (4.23)

The local action of a single link is given by

S(Uk(n))

β
= 2− 1

2

(
Uki(n) + U−1

kj (n− î) + Ukj(n− î) + U−1
ki (n)

)
= 2− 1

2

[
Uk(n)

(
Vi(n) + V −1

j (n− î)
)

+ U−1
k (n)

(
Vj(n− î) + V −1

i (n)
)]

≡ 2−
(
Uk(n)Vij(n) + U−1

k Vji(n− î)
)
, (4.24)

since each link appears in two di�erent plaquettes. We split the link from the so-
called staples Vi and Vj and introduced the sum of two staples Vij. We drop the
dependence on the site n from now on since it is unambiguously clear which to use
for Uk and U

−1
k . In case of an update U → U ′ the di�erence will be

S(U ′k(n))

β
− S(Uk(n))

β
= Vij(Uk − U ′k) + Vji(U

−1
k − U

′−1
k ) ≡ δ

β
. (4.25)

If we parametrize the link as Uk = eiφk this leads to U ′k = eiφkei∆φk = Uk∆Uk. With
Pij ≡ UkVij the di�erence thus becomes

δ

β
= Pij(1−∆Uk) + Pji

(
1−∆U−1

k

)
, (4.26)

if we now split ∆U = |∆U | ei∆φR , we see that

Im δ = Im (β(Pij+Pji))−|∆Uk|Im (βPije
i∆φRk )−|∆Uk|−1Im (βPjie

−i∆φRk ) , (4.27)
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which has to be zero such that the imaginary part of the action stays constant.
By multiplying through with |∆Uk| this becomes a simple quadratic equation with
solution

|∆Uk| =
Im(β(Pij + Pji))±

√
[Im(β(Pij + Pji))]2 − 4Im(βPijei∆φ

R
k )Im(βPjie−i∆φ

R
k )

2Im(βPijei∆φ
R
k )

.

(4.28)

The update is done by choosing a random number for ∆φRk , computing the cor-
responding |∆Uk| and by doing an accept reject step in the end. There are some
subtleties to be taken care of such as the regions where the square root is not de-
�ned, see appendix B.3 for the exact updating algorithm.
Note that by doing the updating in that way, we parametrize the partition function
on the thimble in terms of the algebra �elds

φ̃k(φ
R
k ) = φRk + iφIk(φ

R
k ) , (4.29)

in the following way

Zσ =
1

(2π)2|Λ|

∫ max(φ1)(φR)

min(φ1)(φR)

dφR1 · · ·
∫ max(φ2|Λ|)(φ

R)

min(φ2|Λ|)(φR)

dφR2|Λ|e
−S(φ̃(φR)) det

[
∂φ̃k
∂φRl

]
, (4.30)

where |Λ| is the lattice volume. The boundaries of the integral may be �nite due to
�elds only being de�ned in certain regions, see appendix B.3. The Jacobian is still
global, it reads

∂φ̃k
∂φRl

=
∂(φRk + iφIk(φ

R))

∂φRl
= δk,l + i

∂φIk(φ
R)

∂φRl
. (4.31)

We rewrite the last term according to

∂φI(φR)

∂φR
=
∂φI(φR + ∆φR)

∂φR

∣∣∣∣
∆φR=0

=
∂φI(φR + ∆φR)

∂∆φR

∣∣∣∣
∆φR=0

=

(
∂
(
φI(φR + ∆φR)− φI(φR)

)
∂∆φR

)∣∣∣∣∣
∆φR=0

=

(
∂∆φI

(
∆φR

)
∂∆φR

)∣∣∣∣∣
∆φR=0

. (4.32)

This is convenient, since we can just take the derivative of ∆φI = −log |∆U |, see
equation (4.28).
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Figure 4.3: Complex plane with thimble for the model in equation (4.33) for β =
1 + 0.1i, β = 1 + i and β = i from left to right. Full black lines are the
thimbles, red dashed lines the anti-thimbles. See text for a discussion.

Application to one link

We �rst test this procedure on one link, i.e. we set the staples to one. The action
then reads

S = β

(
1− 1

2

(
U + U−1

))
= β

(
1− 1

2

(
eiφ + e−iφ

))
= β(1− cos(φ)) , (4.33)

where the constant part will drop out in the simulation, thus we ignore it. Note that
for purely imaginary β this is the same action we used to investigate the boundary
terms in section 3.1.1, see equation (3.14). We show the thimbles structure for
di�erent β in �gure 4.3. For small imaginary part of β the thimble is close to the real
axis, ultimately becoming the real axis at Im β = 0. For Re β = 0 both thimbles
look the same just shifted by π. In this case, they both are equally important,
i.e. they contribute equally to the partition function. We tested our algorithm in
this model. Here the Jacobian is given by

J =1 + i
−dlog |∆U |
d∆φR

= 1 + i
Im iβU + Im iβU−1

Im βU − Im βU−1
, (4.34)

see equation (4.32). We can compute observables according to the reweighting pre-
scription in equation (4.9). On the main thimble the simulation yields

〈
eiφ
〉

=
0.840(5) + 0.060(15)i for β = 3 + i, while numerical integration along the thimble
yields

〈
eiφ
〉

= 0.839 + 0.064i. The algorithm yields correct results within error bars
in the simple model.
Before we apply the algorithm to higher dimensions, we look at the relative im-
portance of the thimbles in the one link model. Figure 4.4 shows the situation for
di�erent β. The left and center plot show that for �xed βI the thimble corresponding
to the stationary point at zero will yield the main contribution if βR is large enough,
i.e. when βR > βI . However, for small βR there is no convergence in βI . This means
that in the most interesting case β = i, which corresponds to a real-time simulation,
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Figure 4.4: Expectation value of the plaquette for �xed βI with βI = 0.5 (left) and
βI = 3 (center) as a function of βR. The same for �xed βR = 0.5 as a
function of βI (right). The relevance of the main thimble is discussed in
the text.

all thimbles contribute equally. This is interesting since here complex Langevin fails
to yield correct results, see section 3.1.1.

U(1) in 1+1 dimensions

The same algorithm can straightforwardly be applied to higher dimensions. Un-
fortunately, the algorithm no longer is stable in 1+1 dimensions. First of all, even
though initially the imaginary part stays constant, the simulation is driven away
from the unitary manifold very fast. This can be seen by monitoring the unitarity
norm, see equation (3.39). Since the imaginary part of the action stays constant,
this is a priori not a problem. For gauge theories, the simulation can stay on the
complexi�ed gauge orbit of the thimble and still yield correct results. In practice,
this introduces large di�erences in orders of magnitude of the variables thus desta-
bilizing the simulation. This problem can be dealt with by means of gauge cooling
[105] see appendix A.7, which slows down this rise of the unitarity norm consider-
ably.
Even then the simulation is unstable, especially at small Reβ. We found that af-
ter some time con�gurations with S = 0 can no longer be gauge transformed back
to the �xed point, suggesting that the simulation was able to jump on a di�erent
manifold with the same SI at some point during the simulation. However, for such
a complicated theory, we lack insight into the underlying structure of the manifold.
Hence, we look at a simpler lattice theory to �nd out how to improve our algorithm.
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4.4.2 Scalar theory on two lattice points

The action for a free scalar �eld on a lattice with two points and periodic boundary
conditions reads

S = −i
[
(φ1 − φ2)2 − m2

2
(φ2

1 + φ2
2)

]
, (4.35)

where the �elds φi live on the sites i with i = 1, 2 and the factor −i mimics a sign
problem from real time simulations. In this theory, one can show that the tangent
space at the critical point is identical to the thimble, which allows for a convenient
parametrization of the action. See appendix B.4 for a detailed computation. In the
end we �nd an analytical expression for an observable, namely〈

φ2
〉

=

〈
φ2

1 + φ2
2

2

〉
= − i

2

(
1

m2
+

1

m2 − 4

)
, (4.36)

which is useful to compare to results from our simulations

Application of our algorithm

We apply the same algorithm as for U(1), i.e. we demand that ∆SI = 0 and vary the
�elds along that constraint. We parametrize the �elds as φk = φRk + iφIk and propose
an update according to φRk → φRk +∆φRk . We use the condition Im[S(φ′)−S(φ)] = 0
to compute ∆φIk. In this theory this turns out much simpler than the algorithm
in the U(1) model14, which is described in appendix B.3. Here we only have one
stationary point, hence the corresponding thimble gives results for the full theory.
Since the action is quadratic, the equation for ∆φIk(∆φ

R
k ) still contains a square root

∆φIk =
−µφIk − 2φIj ±

√
µ2∆φRk +

(
µφIk + 2φIj

)2
+ 2µ∆φRk

(
µφRk + 2φRj

)
µ

(4.37)

where k 6= j and we introduced the abbreviation µ = (m2 − 2). This equation
still has unde�ned regions due to the square root. The boundaries can simply be
found by numerically �nding the root in ∆φRk for the term under the square root.
The algorithm is then similar to the U(1) case. Here we �nd that the solution with
a plus corresponds to the thimble when ∆φRk < 0 and the solution with a minus
corresponds to the thimble when ∆φRk > 0. Note, however, that the algorithm works
only for m > 2, see appendix B.4 for details. We update a single site according to

1. Draw a Gaussian random number with mean zero and standard deviation one.
If it is smaller than zero, choose the plus solution, otherwise choose the minus
solution in (4.37).

14The reasons are twofold: First, here we do not have an absolute value and thus do not get a
constraint from a quantity being positive. Second, the theory is not periodic and hence the
space of possible values extends to in�nity. Thus there are fewer constraints on the proposable
values for δφ.
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Figure 4.5: Left: Projection of the thimble structure with simulation data. Right:
Evolution of part of the Jacobian. See text for details.

2. Find the boundary where the square root becomes real.

3. Add the random number to the position of the boundary ∆φRk = boundary +
random number, this gives the proposal for the �eld.

4. Do a Metropolis accept-reject step.

We simulated this for m2 = 6. The left plot of �gure 4.5 shows a projection of
the thimble structure, the simulation lies on the thimble and is stable. To get
expectation values we also need the Jacobian, which is computed according to (4.31)
and below, i.e. it is just the derivative of equation (4.37) with respect to ∆φR. We
show the Monte Carlo evolution of one of the entries of the Jacobian in the right
plot of �gure 4.5. The equation for that entry of the Jacobian is

J12(φ) =
4φ2,R√

(4φ1,I − 4φ2,I + 2m2φ2,I)2
. (4.38)

The enormous spikes in �gure 4.5 occur when numerator and denominator have
largely di�erent orders of magnitude and often even lead to numerical divergences,
i.e. �NaN�.
Alternatively we can use the Takagi vectors vi � see appendix B.4 � as a basis. I.e. we
update a generic �eld con�guration as(

φ1

φ2

)
→
(
φ1 + ∆φ1

φ2 + ∆φ2

)
=

(
φ1

φ2

)
+ ξ1v1 + ξ2v2 (4.39)

where the ξi are just Gaussian random numbers. We �nalize the update with a
Metropolis accept-reject step. In this basis, the Jacobian is just a constant and thus
drops out of the reweighting, see equation (4.9). Results from this procedure are
shown in �gure 4.6. They agree with the analytical result.

Note that the scalar model is much simpler than U(1) theory in 1+1d. It is
just a free Gaussian theory, which is usually highly symmetric and easier to solve.
However, our original algorithm turned out to be unstable in both theories. In the
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Figure 4.6: Results from simulating in the space spanned by the Takagi vectors, they
agree with the analytical results.

scalar case, we were able to recover correct results by choosing the correct basis.
Hence, �nding a good basis for U(1) on the lattice may enable local updating in the
future.

4.5 Summary and conclusions on Lefschetz

thimbles

In this chapter, we have investigated so-called Lefschetz thimbles which are inte-
gration paths in the complexi�ed space of a given theory. Integrands which are
oscillatory in the original manifold are Gaussian-like along the thimbles and thus
enable normal Monte Carlo simulations. We have examined some simple integrals
and found a way to compute the ratio of the partition functions on di�erent thim-
bles, which trivially generalizes to higher dimensions. This is highly desirable since
so far there is no way to �nd the relative weights for contributing thimbles.
Finally, we have investigated higher dimensional theories and found a way to perform
local updates which sample the global thimble. While this algorithm does sample
the thimble in a simple scalar theory, it does not yield correct expectation values
due to numerical deviations. The same algorithm is not stable in a complexi�ed
U(1) gauge theory. In the scalar theory, we were able to �nd a better basis for the
simulation manifold, which yields correct results.

We conclude that except for simple models, a thorough understanding of the under-
lying manifolds is required to properly sample Lefschetz thimbles.
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5 Finding order parameters with Neural

Networks

In the last decade, there has been a huge increase in the use of machine learning.
This is mainly due to the increase in computing power, which enabled the now pop-
ular deep learning using neural networks.
The �rst instance where deep learning decidedly outperformed other methods was
AlexNet [206], a neural network which was entered into ImageNet Large Scale Vi-
sual Recognition Challenge [207], where the machine learning algorithm is tasked
to correctly classify pictures into hundreds of categories. By now most machine
learning applications use neural networks since they are the best machine learning
technique for hierarchical and nonlinear learning tasks. They are being used in im-
age classi�cation [206, 208], Language processing [209], beating humans in complex
games [210] and medical diagnosis [211, 212] to give just a few examples.
In high energy physics standard neural networks are used e.g. to �nd signals in
detector data [213�215]. By now there are many other applications of machine
learning in physics including quantum many-body systems [216�218], simulating
statistical physics systems [219, 220], solving inverse problems relevant to physics
[221�223], detecting and investigating phase transitions [31, 224�237], improving
Monte Carlo simulations [238�243] and more. There have even been attempts to
solve the sign problem using neural networks [244]. So far applications in lattice
QCD are [31, 245, 246] For a review on applications in physics see [26].
Despite their wide usage, there is no generic way to �nd out what neural networks
learn. In theoretical physics, however, it is crucial to understand the underlying
mechanisms of the tools at hand in order to gain a deeper understanding of physics.
In this chapter, we will set neural networks on physical grounds by explicitly show-
ing that they learn order parameters when they are trained on phase transitions.
We thus open the black box for a speci�c case.

We give a brief introduction to feed-forward neural networks in 5.1 show how to
�nd order parameters with neural networks in section 5.2.

5.1 Brief introduction to feed-forward neural

networks

By now there is a huge variety of many di�erent neural network architectures. Hence,
for a complete understanding of neural networks, we refer to books such as [247, 248].
Machine learning tasks are often classi�ed via the learning method.
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• Supervised learning relies on labeled data sets. A data point corresponds to a
certain class and the algorithm is tasked to correctly classify the data set.

• Unsupervised learning is used for unlabeled data sets. Here the algorithm is
tasked to �nd structures in a large data set without further input.

• Reinforcement learning is used to let an agent �nd a strategy to solve a task.
Typically the agent does not get any information a priori but is punished or
rewarded based on its actions.

Here we will focus on supervised learning and introduce a simple neural network
architecture known as a feed-forward network.
The use of neural networks is motivated by the architecture of the brain, where
many rather simple neurons work together to perform complex tasks. As the name
suggests, neural networks are formed by a network of neurons. A neuron is a function
f(x) which takes an input vector x and maps it to a an output z

f(~x) = a(~w · ~x+ b) . (5.1)

The weights ~w represent the relative importance of each input to the neuron, the
bias b introduces a minimum threshold the input has to reach and the activation
function a(x) produces the scalar output of the neuron depending on the input.
Popular activation functions include the sigmoid function

a(x) = σ(x) =
1

1 + e−x
(5.2)

and the recti�ed linear unit (ReLU)

a(x) = max(0, x) . (5.3)

Typically neural networks perform well with a whole range of activation functions.
A single neuron by itself is not very powerful. Thus they are typically grouped into
layers. A layer F (~x) consists of many neurons, which are not interconnected in a
feed-forward network. Those layers are then connected, i.e. the output of the neural
network is

y = FM(FM−1(. . . (F1(F0(~x))))) , (5.4)

where F0 is the input layer and FM is the output layer. In a binary classi�cation
task, for example, the input could be a picture � and the input layer would have as
many neurons as there are pixels � and the output layer would be a single neuron
outputting 0 or 1. This setup typically has several hundred to several millions of
parameters, i.e. the weights and biases. Given a data point as input, it is fed through
the network and produces an output. If the weights and biases are chosen correctly,
the data point will be classi�ed correctly. Since choosing millions of parameters by
hand is a near impossible task, this is done in an automatic way as described below.
It has been shown that such a simple network is able to approximate any continuous
function arbitrarily close [249, 250]. Thus a correctly trained neural network is a
powerful tool for regression and classi�cation tasks.
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Training the feed-forward network

In the case of supervised learning, we can use a so called loss-function to determine
how far the output of the network was from the correct classi�cation, we will use
the binary cross-entropy

C(Y, P ) = − 1

N

∑
i

(yi log pi + (1− yi) log(1− pi)) , (5.5)

where yi ∈ Y are the correct labels of the data point, and pi ∈ P are the predictions
of the network and the sum now goes over N data points. Note that the label here
can be only 0 or 1 such that log(pi) (or log(1 − pi)) is added to the sum if yi = 1
(or yi = 0). The logarithm is maximal if pi = 1, since pi ∈ [0, 1] is a probability.
A similar argument holds for the second term. The global minus sign then turns
maxima into minima such that the binary cross-entropy needs to be minimized.
This minimization is done by some variant of gradient descent, which is a simple
algorithm to �nd the minimum of a function. It does so by making small steps in
the direction of steepest descent. Thus it requires a step size, which in the context of
neural networks is referred to as the learning rate η. Each of those steps is then used
to adjust the parameters of the neural network using backpropagation. In gradient
descent, we take the derivative of the loss function with respect to the parameters of
the network. Since the network has a hierarchical structure, the derivative in earlier
layers depends on the parameters in later layers by the chain rule. The derivative
for the output layer can be computed directly. The derivative for the second to last
layer then depends on the derivative of the output layer via the chain rule, and so
on. Thus, the change in parameters is propagated back through the network. A
full description of the algorithm can be found in any standard textbook on neural
networks, see e.g. [247, 248]. State-of-the-art algorithms use adaptive learning rates,
compute the gradient just in a random subset of all directions (stochastic gradient
descent) in order to decrease the chance of ending up in bad local minima, and have
ways to not get stuck in shallow minima, e.g. momentum terms.
Training is then done by feeding the training set through the network multiple times,
each of which is called a training epoch. Usually, in order to avoid over-�tting, i.e. to
prevent the neural network from just memorizing the training data, regularization
is used. Popular regularization schemes include dropout, where only part of the
network is updated in each learning epoch or to add regularization terms to the
loss function. Widely used are L1 and L2 regularization, where the Ln norm of the
weights is added to the loss function in order to keep their values low. We now intro-
duced everything needed to train a simple neural network. We will not need much
more in the application to lattice con�gurations and thus will introduce additional
techniques when they are needed.
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5.2 Machine Learning of Explicit Order Parameters

Binary classi�cation tasks as introduced above can give very precise predictions.
Hence, they are a wonderful tool to look for phase transitions and are able to �nd
the position of the transition to high accuracy see [224]. A neural network in a
binary classi�cation task can be viewed as an approximation of the so-called decision
function D, which assigns a probability pi ∈ [0, 1] to each sample S to be in class
one. The decision boundary is a hyperplane in the hyperspace of con�gurations
with D(S) = 0.5, i.e. the boundary where the neural network is unsure about
its prediction. Thus, if the neural network learns a single function Q(S) which
distinguished between phases, we expect that ∇Q||∇D near the decision boundary.
In our networks we will use the sigmoid activation function � see equation (5.2) � to
map the latent prediction ξ(S) (the output of the last ReLU layer) to a probability15.
Hence, we can write D(S) = σ(ξ(S)) and ∇Q||∇ξ which allows us to write down
an approximate linear relation

ξ(S) = wQ(S) + b , (5.6)

in the vicinity of the decision boundary. In the following sections we will explicitly
determine ξ and hence D as functions of the lattice con�gurations S and thus ulti-
mately �nd the quantity Q, which turns out to be the order parameter or energy of
the theory.

5.2.1 The Correlation Probing Neural Network

Neural networks encode their decision function in highly elusive non-linear ways.
Since we are interested in applications to Monte Carlo samples, we would like to
�nd out if the leading contributions to the decision function can be expressed by
combining just a few lattice points. Typically many interesting observables in lattice
theories can be expressed by local combinations of variables. Motivated by this
observation, we construct a neural network which only gets to see a subset of the
full lattice. If we successively lower the number of variables the network gets to
see we can �nd the minimum amount of variable the neural network requires to still
correctly predict the phase transition. This is the idea behind the correlation probing
neural network which is depicted in �gure 5.1. The lattice con�guration is fed into
the localization network, which simply is a fully connected convolutional neural
network. A convolutional neural network consists of receptive �elds which can only
see a part of the con�guration. This is typically used in image recognition, where
a receptive �eld is only allowed to see parts of a picture, which is useful to extract
information in a hierarchical way. Many convolutional layers are used to successively

15We will use the ReLU activation function everywhere else, hence the output of the last ReLU
layer ξ(S), which in our case just consists of one neuron, is generally not in [0, 1] and thus
cannot be interpreted as a probability. The only reason for the use of σ(x) is this mapping to
[0, 1].
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Figure 5.1: Schematic depiction of the correlation probing neural network. It con-
sists of three di�erent neural networks stacked on top of each other. The
localization network is a fully connected convolutional neural network
which allows connections only in within the receptive �elds. The av-
eraging layer averages over all receptive �elds. Finally, the prediction
network transforms the output of the averaging layer into a prediction
probability.

combine the receptive �elds. In our case, We do not combine the receptive �elds
and keep them separate all the time. The output of the convolutional network is
fed into an averaging layer, which averages over all receptive �elds. Finally, a fully
connected prediction network is used to map the output of the averaging layer to a
prediction.
We train the network with di�erent receptive �eld sizes to �nd the minimum required
size such that the phase transition is still found. In the following, we will describe
the application of the correlation probing neural network to the Ising model and
SU(2) lattice gauge theory. Technical details on the network setup and training can
be found in appendix C.1.

Application to the Ising model

We �rst do this for the Ising model in two dimensions. The Ising model is given by
the Hamiltonian

H(S) = −
∑
〈i,j〉nn

sisj + h
∑
i

si . (5.7)

The spin si ∈ {−1, 1} variables are aligned on a regular lattice. The �rst sum runs
over nearest neighbors of spins. For simplicity we set h = 0 in the following. One spin
con�guration is given by S = (s1, . . . , sn). It is a simple model for ferromagnetism,
its partition function is

Z =
∑
i

e−βH(Si) , (5.8)



Chapter 5. Finding order parameters with Neural Networks 91

Receptive Field Size Train Loss Validation Loss
28×28 6.1588e-04 0.0232
1×2 1.2559e-04 1.2105e-07
1×1 0.2015 0.1886

baseline 0.6931 0.6931

Table 5.1: Ising model: Losses of neural networks with di�erent receptive �eld sizes
in the localization network. Smaller losses mean better performance. The
baseline classi�er corresponds to a prediction of p = 0.5 for each phase,
it is the worst possible loss.

where the sum runs over all possible spin con�gurations and β = 1/T is the inverse
temperature. The energy is given by

〈E〉 =
∂log Z
∂β

, (5.9)

and its derivative

CV =
∂ 〈E〉
∂β

=
∂2log Z
∂β2

, (5.10)

diverges at the critical temperature, signaling a second order phase transition by
the Ehrenfest classi�cation. Thus, the energy can be used to distinguish phases. By
Landau-Ginzburg theory phases are classi�ed via an order parameter, which for the
Ising model is the magnetization

〈M〉 = − 1

β

∂(log Z)

∂h
|h=0 , (5.11)

its derivative with respect to T also diverges at Tc. The critical temperature is
known analytically [251] Tc = 2/log(1 +

√
2)).

We apply the correlation probing neural network to a data set of 55000 spin con-
�gurations of size 28× 28 equally distributed over eleven equidistant temperatures
in the range T ∈ [0, 5]. The neural network is trained on all con�gurations below
T = 1.6 and above T = 2.9. It is tasked to predict the phase of a given con�gura-
tion. We train it by using the binary cross entropy loss-function, see equation (5.5).
After the network has been properly trained it is asked to predict the phase over
the full range of T . Results are shown in table 5.1. The network correctly classi�es
the con�gurations when the receptive �eld size is equal to the lattice size. Even
when the receptive �eld size is lowered to 1 × 2 it does not lose accuracy. For a
receptive �eld size of 1× 1 the prediction becomes less accurate. See �gure 5.2f for
a visualization of di�erent receptive �eld sizes in the Ising model. Figure 5.2e shows
the average classi�cation probability for the 1× 1 and 1× 2 net. We �nd the phase
transition temperature to be Tc = 2.5(5) for the 1 × 1 network and Tc = 2.25(25)
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Figure 5.2: Results of the correlation probing neural network for the Ising Model.
The latent prediction ξ is the argument of the sigmoid σ function, which
we use as the activation function for the last layer of the prediction
network. a: Correlation of the latent prediction with the absolute value
of the average spins, i.e. the magnetization in the 1×1 network. b: Same
as (a), but with the average product of neighboring spins, i.e. the energy
instead of the magnetization. c: Correlation of the latent prediction
with the magnetization for the 1 × 2 network. d: Same as (c), but
with the energy instead of the magnetization. e: Average classi�cation
probability as a function of temperature. f : Visualization of receptive
�elds 1×1, 1×2 and 28×28 of the localization network output neurons.
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for the 1 × 2 network. Both agree with the correct value within error bars which
su�ces for our task, see [224] for more accurate results for Tc from neural networks.
In our task to �nd an analytical expression for the decision function, we �rst turn
to the 1× 1 net. By construction its decision function can be expressed as

D(S) = F

(
1

N

∑
i

f(si)

)
= σ

(
ξ

(
1

N

∑
i

f(si)

))
, (5.12)

where f is the output of the localization network and F is the output of the predic-
tion network. Due to the small receptive �eld size, we can expand the function f in
terms of a single spin variable

f(si) = f0 + f1 si + f2 s2
i︸︷︷︸

1

+f3 s3
i︸︷︷︸
si

+... , (5.13)

where higher powers of spins can be absorbed into the lowest two orders due to s2
i =

1. The constants f0 and f1 can be absorbed into weights and biases of the prediction
network approximating F . This signi�cantly simpli�es the decision function to

D(S) = F

(
1

N

∑
i

si

)
. (5.14)

Now we need to �nd an expression for F , which we do by comparing the latent
prediction ξ with the argument of F . Figure 5.2a suggests a linear relation

ξ(S) ≈ w

∣∣∣∣∣1/N∑
i

si

∣∣∣∣∣+ b . (5.15)

Thus employing equation (5.12), the decision function becomes

D(S) ≈ σ

(
w

∣∣∣∣∣ 1

N

∑
i

si

∣∣∣∣∣+ b

)
, (5.16)

where w and b are weight and bias of the prediction neuron. Since we used no
physical information except Monte Carlo con�gurations, we can conclude that the
network learns the quantity

Q(S) =

∣∣∣∣∣ 1

N

∑
i

si

∣∣∣∣∣ , (5.17)

the magnetization.
We can give similar arguments for the 1× 2 network. Here, by construction

D(S) = F

(
1

N

∑
<i,j>T

f(si, sj)

)
, (5.18)
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where the sum goes only over transversal neighbors. The expansion of f

f(si, sj) =f0,0 + f1,0 si + f0,1 sj + f2,0 s
2
i + f1,1 si sj + f0,2 s

2
j + ... , (5.19)

contains only three notable terms, again since s2
i = 1. Terms linear in one spin si

represent the magnetization, which � according to the drop in performance seen in
table 5.1 � contain less information than what we are looking for. Hence, the leading
term must be f1,1sisj, reducing the decision function to

D(S) ≈ F

(
1

N

∑
<i,j>T

sisj

)
. (5.20)

Figure 5.2d shows a perfect correlation between the latent prediction ξ and the sum
over transversal nearest neighbors 1/N

∑
<i,j>T

sisj. Here, the �nal expression for
the decision function is

D(S) ≈ σ

(
w

(
1

N

∑
<i,j>T

sisj

)
+ b

)
. (5.21)

Note that the sum over transversal nearest neighbors was su�cient. It can be
generalized to all nearest neighbors by rotational and translational symmetry. Thus,
the neural network learns

Q(S) =
1

N

∑
<i,j>nn

sisj , (5.22)

which corresponds to the energy per site.
We �nd that the energy works better in our context, see table 5.1. Figure 5.2
also shows the correlation of the latent predictions of both the 1 × 1 and 1 × 2
network with the energy and magnetization respectively. No correlation is found
suggesting that the network really learns the order parameters that are dominant
for the corresponding �eld size.

Application to SU(2) lattice gauge theory

Motivated by the success of the method in the Ising model, we apply it to SU(2)
gauge theory on the lattice. We already introduced lattice gauge theory for SU(N)
in section 2.3, however here we will change notation slightly to be more clear. Given
a four dimensional lattice with Nτ × N3

s points, where in the following we choose
Ns = 8 and Nτ = 2, the gauge �elds are parametrized via the link variables, which
connect the lattice sites. For the site x = (τ, x, y, z) the SU(2) link pointing in
direction µ ∈ {t, x, y, z} reads

Ux
µ = axµ1 + i

(
bxµσ1 + cxµσ2 + dxµσ3

)
, (5.23)
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where the σi are the Pauli matrices and the coe�cients obey (axµ)2 + (bxµ)2 + (cxµ)2 +
(dxµ)2 = 1. Since the Pauli matrices are traceless. TrUx

µ = 2axµ. We write one lattice
con�guration as the collection of all link variables

S = ({Ux
µ |x ∈ Nτ ×Ns ×Ns ×Ns, µ ∈ {τ, x, y, z}}) . (5.24)

Since we hope that our neural network �nds the order parameter, the Polyakov loop,
we write it in the current notation as

L(~x) = tr

(
Nτ−1∏
x0=0

Ux
τ

)
Nτ=2

= tr
(
U0,~x
τ U1,~x

τ

)
= 2

(
a0,~x
τ a1,~x

τ − b0,~x
τ b1,~x

τ − c0,~x
τ c1,~x

τ − d0,~x
τ d1,~x

τ

)
. (5.25)

For the following analysis we produced a total of 15600 decorrelated con�gurations
using the Wilson gauge action (2.23). The con�gurations are equally distributed
over 26 values of β = 4/g2 ∈ [1, 3.5]. It is important that the con�gurations are
decorrelated, see e.g. [246] for a case where correlations between the samples con-
taminated the learning task.
Since our aim is to have a completely blind method, we do not assume any knowledge
except the gauge con�gurations themselves. I.e. we do not assume any knowledge
about where the phase transition is. Thus, as a �rst step, we employ an unsuper-
vised learning algorithm to �nd a rough approximation for the transition. Note
that due to the gauge freedom in lattice QCD, networks like autoencoders [230] are
not a good match for this task, since the reconstruction of the con�guration from
the latent variables is not unique if the latent variables represent a gauge invariant
quantity such as the Polyakov loop. Instead, we use principal component analysis,
which is an orthogonal linear transformation to a set of variables which are ordered
by their variance. The �rst few principal components contain the most information.
This algorithm is perfect in our case, since in the ordered phase there should not
be many �uctuations and hence much lower variance than in the disordered phase
if a phase transition exists. Note, however, that PCA is a linear transformation and
as such can only �nd linear approximations. In the Ising model PCA was able to
correctly predict the transition temperature [229]. Figure 5.3 shows that with two
principal components there is a signal for a phase transition around β ≈ 2.0. How-
ever, no clear correlation between the Polyakov loop and the principal components
is found, which was expected, since the Polyakov loop is a nonlinear function.
PCA suggest a phase transition at β ≈ 2. Hence, we train the correlation probing
neural network with di�erent receptive �eld sizes to predict the phase transition.
To that end we train the neural network at β ∈ [1, 1.2] and β ∈ [3.3, 3.5]. It is able
to predict the phase transition with the receptive �eld size incorporating the whole
lattice, i.e. 2× 8× 8× 8 and �nds a critical value of βc = 1.97(1). For a 2× 1× 1× 1
network we �nd βc = 1.99(1), this is depicted in �gure 5.4c. A direct lattice com-
putation of the critical temperature yields βc = 1.880(25). The small deviation is
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Figure 5.3: a: The average mean squared error reconstruction loss of PCA as a func-
tion of temperature signals a phase transition. It was calculated in 100
independent PCA runs with two principal components (PC), measured
in units of ×10−5 and shifted by the value at β = 3.5. The average norm
of the PC also indicates a phase transition. b: Correlation between the
Polyakov loop and the principal components.

most likely due to a systematic error. When producing the gauge con�gurations,
we always initialized at the same point, all links were set to one. In that case, it is
hard for the simulation to cross over to having all links equal to minus one. This
biases the network, hence the di�erence. We are however not interested in getting
an exact value for the critical coupling and are satis�ed with the given precision.
Since we want to �nd the order parameter, we look at di�erent receptive �eld sizes in
table 5.2. The minimal receptive �eld size is 2×1×1×1. Allowing only 1×1×1×1
is as bad as the network just guessing, i.e. the baseline classi�er. Thus, the decision

Receptive Field Size Train Loss Validation Loss
2×8× 8× 8 1.0004e-04 2.6266e-04
2×8× 8× 1 8.8104e-08 1.3486e-07
2×8× 1× 1 7.7671e-05 2.0394e-04
2×1× 1× 1 8.8104e-08 6.8276e-08
2× 1× 1× 1

no hidden layers
in prediction net

2.2292e-07 4.2958e-07

1×1× 1× 1 0.6620 0.9482
baseline 0.6931 0.6931

Table 5.2: SU(2): Losses of neural networks with di�erent receptive �elds of the
neurons in the localization network.
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Figure 5.4: Results from the correlation probing neural network for SU(2). a,b:
Correlation of the latent prediction with the Polyakov loop in both the
2 × 8 × 8 × 8 network and the 2 × 1 × 1 × 1 network. c: The average
prediction probability of the two networks.

function must be constructed from two lattice points with four links each

D(S) = F

(
2

N

∑
~x

f(U0,~x
τ , U0,~x

x , U0,~x
y , U0,~x

z , U1,~x
τ , U1,~x

x , U1,~x
y , U1,~x

z )

)
. (5.26)

Now f is a function of 32 variables, 2 lattice points times 4 links times 4 real variables
per link and F is a function of a single variable as before.
We see in table 5.2, that it is enough for the prediction network to contain a single
sigmoid neuron and no hidden layers, thus D(S) = σ(wQ(S) + b). We also split the
lattice con�gurations in patches of size 2 × 1 × 1 × 1. I.e. we view each of those
patches as a single con�guration, e�ectively enhancing our statistics by a factor of
512. Thus,

Q(S) =
2

N

∑
~x

f(U0,~x
τ , U0,~x

x , U0,~x
y , U0,~x

z , U1,~x
τ , U1,~x

x , U1,~x
y , U1,~x

z ) . (5.27)

In order to �nd an expression for f , we train a network only on the local patches.
We then perform a polynomial regression on the latent prediction of the localization
network on 1% of the data set, using another 1% for validation. To be more precise,
the �t-function is given by all possible combinations of the 32 variables per patch up
to the order of the polynomial. We �nd that a second-order polynomial �t su�ces,
it is a �t with 561 di�erent terms. The results are shown in table 5.3. We �nd the
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Order of Regression Train Score Validation Score
Polynomial Regression

1 0.00128 -0.00042
2 0.72025 0.72395
3 0.75675 0.69129

Table 5.3: Scores of di�erent regression algorithms. Higher is better.

coe�cients with the larges absolute value from the �t

f({Ux0
µ }) =f(U0

τ , U
0
x , U

0
y , U

0
z , U

1
τ , U

1
x , U

1
y , U

1
z )

=f((a0
τ , b

0
τ , ..., d

1
z))

≈+ 7.3816 a0
τa

1
τ + 0.2529 a1

τb
1
τ

+ ...

− 0.2869 d0
τc

1
τ − 7.2279 b0

τb
1
τ

− 7.3005 c0
τc

1
τ − 7.4642 d0

τd
1
τ , (5.28)

where the di�erences between the leading contributions are of the same order as the
size of the sub-leading coe�cient, and as such most likely originate from approxi-
mation errors in the network. Overall factors and constants can be absorbed into
weights and biases and we are allowed to rescale the �t result. We conclude that

f((a0
τ , b

0
τ , ..., d

1
z)) ≈ a0

τa
1
τ − b0

τb
1
τ − c0

τc
1
τ − d0

τd
1
τ

=
(
U0
τU

1
τ

)
. (5.29)

Which is just the Polyakov loop (5.25) on the 2 × 1 × 1 × 1 patch as suspected.
Due translation symmetry, we are allowed to generalize this to the whole lattice
f({Ux0

µ })→ f({Ux0,~x
µ }) . The decision function of the full network thus becomes

D(S) ≈ σ

(
w

(
2

N

∑
~x

f({Ux0,~x
µ })

)
+ b

)
. (5.30)

with the argument of σ begin Q(S) = 2
N

∑
~x f({Ux0,~x

µ }), i.e. the Polyakov loop on
the full lattice. This is con�rmed by the perfect correlation between the Polyakov
loop and the latent prediction in �gure 5.4a,b.

5.3 Conclusion on neural networks

We have applied neural networks to SU(2) gauge theory and the Ising model. By
showing that the neural network explicitly learns the order parameter, we decoded
the black box of neural networks, at least in this speci�c case. By doing so we also
found a method which allows �nding order parameters of systems of many variables.
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This is in principle applicable anywhere but limited by computational power. In our
case, all order parameters were local to some degree. While the Polyakov loop is a
global observable, we chose the lattice size such that it was e�ectively local. We tried
the same analysis on a 4 × 83 lattice and found that much higher statistics would
be required to get equally good results. Hence, if the order parameter is completely
global, as is the case e.g. for the chiral condensate, the amount of data required
for our method grows quickly. Note that in principle this is not a problem. Early
lattice simulations from the 70s and 80s have shown that qualitative features can be
captured very well on even small lattices. Thus, one should try to �nd the minimal
lattice size which shows the transition and perform the analysis on this lattice size.
In the case of SU(2) gauge theory and the Ising model, the generalization of the
order parameter to larger lattices is trivial. There would be no gain in performing
the analysis on larger lattices.
In principle, this method can be used to �nd any somewhat local structure from
lattice con�gurations, not only order parameters. Given any quantity we want to
predict, we can use the correlation probing neural network and �nd out which quan-
tity it learns.
Neural networks could also be useful for solving sign problems. A simple case has
been investigated in [244]. One has to be careful however not to rely on extrapola-
tions over phase transitions or similarly singular phenomena, since the structure may
change signi�cantly and if the network is not properly trained, the results will be
unphysical since the network never would have seen such structures during training.
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6 Summary and outlook

We have investigated the phase diagram of QCD by means of the complex Langevin
method, investigated various aspects of the Lefschetz thimble method and �nally
showed that neural networks learn the order parameter when trained on lattice
con�gurations.

Complex Langevin

Starting with the complex Langevin method, we gave a systematic way to check for
its convergence, namely by looking for e�ects of poles and boundary terms. We were
thus able to investigate several aspects of QCD with complex Langevin. We �rst
investigated QCD using a hopping expansion and found that it does not converge
properly in some interesting regions. In full QCD we found �rst signals of the nuclear
liquid-gas transition from lattice QCD, though thermalization issues prohibited us
from a thorough study of the transition. Finally, we focused on the QCD transition
between hadronic matter and the quark-gluon plasma by simulating in the transition
region up to µ/Tc(µ = 0) ≈ 5, which is a much larger region than other methods can
currently investigate. In our simulations transition temperature is a quadratic func-
tion of chemical potential µ in accordance with other simulations. Our simulations
were still plagued by large �nite size e�ects, which most prominently shows in our
moderately heavy pion mass, which in our largest volume had a minimum possible
value of mπ ≈ 1.55 GeV. We have found that a value of κ2 ≈ 0.0011 − 0.0015 for
the curvature of the transition line, see table 3.3. This value interpolates between
a curvature of κ2 ≈ 0.014 from [19, 49] and QCD with heavy static quarks where
there is basically no curvature [83]. All in all, we found that complex Langevin is
applicable to a large portion of the QCD phase diagram if all convergence criteria
are carefully monitored.
Finally, we investigated SU(2) gauge theory on a real-time contour and found that
with the inclusion of recent improvements to complex Langevin, i.e. gauge cooling
and dynamical stabilization, it is now applicable in a physically interesting region.
In terms of the QCD phase diagram, future research is straightforward. Simulations
at smaller quark masses and larger volumes, as well as continuum extrapolated re-
sults, are highly desirable, especially to locate the critical endpoint. Here one has to
be particularly careful with poles since low lying eigenvalues in the Dirac operator
tend to occur for simulations at small masses.
In SU(2) gauge theory, the next step should be to compute any physical quantity on
the contour, e.g. the shear viscosity, to see whether analytical continuation methods
really perform better, when starting from a real-time contour instead of in Euclidean
space.
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In terms of the complex Langevin method, it is highly desirable to �nd a simpler
way to look for poles, e.g. by computing boundary terms close to the poles.

Lefschetz Thimbles

We have thoroughly investigated the Lefschetz thimble method and discussed its
issues in the case of simple models. There we have found a way to compute the
relative weights of the separate thimbles, which is a crucial ingredient. This method
is also applicable in higher dimensional theories. We formulated an algorithm to
perform local updates in U(1) and scalar �eld theory. While being stable in simple
models, the algorithm showed issues in higher dimensions, which we were able to
trace back to a bad choice of basis. In a simpli�ed scalar �eld theory, this insight
allowed us to simulate the theory using Takagi vectors as a basis.
Current algorithms on Lefschetz thimbles become prohibitively expensive in higher
dimensions. A large portion of current research seems to be focused on �nding
alternative manifolds, however here most algorithms are also expensive and only
ameliorate the sign problem. Hence, there should be a focus to �nd better ways to
simulate on Lefschetz thimbles or similar manifolds, e.g. by making local updates
possible. Such algorithms are an important step towards solving the sign problem in
QCD since there an application of Lefschetz thimbles or related methods is currently
unfeasible.

Neural networks in Monte Carlo simulations

We applied a simple neural network architecture to lattice con�gurations from the
Ising model and SU(2) gauge theory. This allowed us to explicitly show, that the
neural network learns the order parameter of the theory. We thus also decoded the
neural network black box in this particular application and simultaneously gave a
way to �nd the order parameter from no prior knowledge except the Hamiltonian
or action.
Decoding the neural network black box is an important step towards the integration
of neural networks in the toolkit of lattice simulations. Theoretical predictions
rely on a thorough understanding of the underlying theory, i.e. the neural network
in this context. Applications of neural networks in the context of Monte Carlo
simulation should be applied to help improve current algorithms, such as in the path
optimization method [27], where they are used to �nd a better simulation manifold
close to Lefschetz thimbles. Applications like the one in this work, in particular,
prohibit the use of deep learning, since there is not much understanding of the
learned quantities deep networks, due to their multilayered nature and complexity.
Instead, the focus should be on simple neural networks for simple systems, where
they can be understood.
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A Complex Langevin simulation details

A.1 Detailed derivation of the convergence

criterion and boundary terms for complex

Langevin

Here we give a more detailed derivation of the criterion of correctness provided
in chapter 3.1.1. The proof with full mathematical rigor can be found in [120,
121]. Before we investigate the interpolating quantity FO(t, τ) as de�ned in equation
(3.10), we give some important de�nitions and equations, which follow from these
de�nitions by Itô calculus, see e.g. [252]. The evolution equation for the distribution
function ρ(x) corresponding to the Langevin equation (3.4) is the Fokker-Planck
equation

∂

∂t
ρ(x; t) = ∂x [∂x + S ′(x)] ρ(x; t) = LTc ρ(x; t) . (A.1)

We will refer to it as the complex Fokker-Planck equation in the case of a complex
action. Similarly, when splitting the Langevin equation into real- and imaginary
part (3.5) we get the real Fokker-Planck equation

∂

∂t
P (x, y; t) = (∂x [∂x + ReS ′(x+ iy)] + ∂yImS

′(x+ iy))P (x, y; t) = LTP (x, y; t) .

(A.2)

The operators LTc and LT are called the real and complex Fokker-Planck operators
respectively. As is stated in the main text in equation (3.8) we want to show that
both evolution agree, i.e.∫

dxO(x)ρ(x; t) =

∫
dxdyO(x+ iy)P (x, y; t) , (A.3)

provided

P (x, y; 0) = ρ(x; 0)δ(y) ≥ 0∫
ρ(x; 0)dx = 1 . (A.4)

For the complex Fokker-Planck equation we know that if it has a spectrum in the
left half plane with 0 a non-degenerate eigenvalue, see e.g. [131], that it has a unique
equilibrium distribution e−S(z). Hence, if we can prove (A.3) we immediately know



Appendix A. Complex Langevin simulation details 103

that complex Langevin simulates the right physics in equilibrium.
With those prerequisites, we can start the proof for convergence from the interpo-
lating quantity

FO(t, τ) =

∫
P (x, y; t− τ)O(x+ iy; τ)dxdy . (A.5)

This quantity interpolates between the real- and complex measures, which is trivial
to see for τ = 0

FO(t, 0) =

∫
P (x, y; t)O(x+ iy)dxdy = 〈O〉P (t) , (A.6)

For τ = t �rst note that an observable O follows the equation

∂tO(z; t) = (∂z − S ′(z)) ∂zO(z; t) = LcO(z) (A.7)

with formal solution

O(z; t) = etLO(z) , (A.8)

where the initial condition is O(z; 0) = O(z). In a slight abuse of notation we used
the same name for this operator as for the one in (A.2), since

(∂zS
′(z)) ∂zO(z) = ([∂x + ReS ′(x+ iy)] ∂x + ImS ′(x+ iy)∂y)O(x+ iy) , (A.9)

if O is holomorphic. Using the evolution of an observable (A.8) as well as the initial
condition (A.4), we obtain

FO(t, t) =

∫
P (x, y; 0)O(x+ iy; t)dxdy

=

∫
P (x, y; 0)

[
etLO

]
(x+ iy)dxdy

=

∫
ρ(x; 0)etLcO(x)dx

=

∫
O(x)etL

T
c ρ(x; 0)dx

= 〈O〉ρ(t) . (A.10)

Here we also made the assumption that integration by parts in x is possible. This is
correct if the action and observables are periodic in x, which is true for all theories
we investigate in this thesis. Otherwise, locality of the integral is another require-
ment.
From this interpolating quantity, we can formulate a criterion for convergence,
namely

∂

∂τ
FO(t, τ) = 0 . (A.11)
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complex Langevin

If this holds for all τ , then (A.3) is ful�lled and complex Langevin must converge to
the correct probability distribution, provided all assumptions made in this derivation
are correct. The derivative reads

∂

∂τ
FO(t, τ) =

−
∫ (

LTP (x, y; t− τ)
)
O(x+ iy; τ)dxdy

+

∫
P (x, y; t− τ)LcO(x+ iy; τ)dxdy = 0 (A.12)

and can be rewritten further by writing out the Fokker-Planck operators. All terms
containing only derivatives in x vanish via integration by parts since by assumption
there are no boundary terms for x. This leaves

∂

∂τ
FO(t, τ) =∫
O(x+ iy; τ)(∂xKx + ∂yKy)P (x, y; t− τ)dxdy

−
∫
P (x, y; t− τ)S ′(x+ iy)∂xO(x+ iy; τ)dxdy . (A.13)

Since the observable is holomorphic for any τ [121], we can rewrite −S ′∂x = Kx∂x+
Ky∂y and cancel the term with ∂x. The remaining terms

∂

∂τ
FO(t, τ) =∫
(∂yKyP (x, y; t− τ))O(x+ iy; τ)dxdy

+

∫
P (x, y; t− τ)Ky∂yO(x+ iy; τ)dxdy , (A.14)

can be interpreted as a total derivative in y, which by fundamental theorem of
calculus can be integrated as

∂

∂τ
FO(t, τ) = lim

Y→∞
BO(Y ; t, τ) (A.15)

with

BO(Y ; t, τ) ≡∫
[Ky(x, Y )P (x, Y ; t− τ)O(x+ iY ; τ)−KyP (x,−Y ; t− τ)O(x− iY ; τ)]dx ,

(A.16)

which is the boundary term that has to vanish for proper convergence of complex
Langevin.
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A.2 Details on the solution of the Fokker-Planck

equation

The real Fokker-Planck equation for the model in equation 3.14 is

∂P (x, y; t)

∂t
= [∂x (∂x −Kx)− ∂yKy]P (x, y; t)

=[∂2
x + β(−2 sinx sinh y + cosx sinh y∂x

− sinx cosh y∂y)]P (x, y; t) . (A.17)

By discretizing (A.17) in x and y with symmetric derivatives we obtain

P (x, y; t+ dt) =

1

dx2
(P (x+, y; t)− 2P (x, y; t) + P (x−, y; t))

−2β sinx sinh yP (x, y; t)

+
β

2dx
cosx sinh y (P (x+, y; t)− P (x−, y; t))

− β

2dy
sinx cosh y (P (x, y+; t)− P (x, y−; t)) , (A.18)

with x± = x± dx and y± = y ± dy.
With a regularization term in the y-drift Ky → Ky − syy, additional terms occur

P (x, y; t+ dt)→ P (x, y; t+ dt) + syP (x, y; t)

+ sy
y

2dy
(P (x, y+; t)− P (x, y−; t)) . (A.19)

We have solved the Fokker-Planck equation on an x-y-grid with parameters dt =
10−6, dx = 0.005 = dy. A value of Y = 5 is su�cient for the cuto� in y-direction
(see equation (3.18). In x-direction we cut o� at X = 3.14, which is due to the 2π
periodicity of the problem. Boundary conditions are periodic in both directions. Ini-
tial conditions are given by (A.4), with a smeared out δ-function to avoid numerical
issues,

P (x, y; 0) =
1

2π
√

2πσ2
y

e
− y2

2σ2
y , (A.20)

with σy = 0.1. In this discretization, it is di�cult to resolve higher modes. This is
easier in Fourier space, where the discretized evolution equation for P is given by

P (k, y; t+ dt) = −k2P (k, y; t)

− iβ

2
sinh(y) (k−P (k+, y; t) + k+P (k−, y; t))

+
iβ

4dy
cosh(y) (P (k+, y+; t)− P (k−, y+; t))

+
iβ

4dy
cosh(y) (−P (k+, y−; t) + P (k−, y−; t)) , (A.21)
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where k± = k ± 1 and similarly for y. Here we chose dt = 0.5 × 10−5, k ∈
{−19, . . . , 20}, dy =

√
dt, Y ≈ 2.8 with anti-periodic boundary conditions in k

for the imaginary part of P (k, y; t) and periodic boundary conditions for the real
part in k as well as for y. After a time of t ∼ 30 the result strongly depends on
the choice of discretization. We thus use the k-y discretization to resolve the higher
modes and the x-y-discretization for the rest.

A.3 The correct evolution

In order to compute the boundary term in equation (3.13) we require knowledge of
O(x + iy; τ) for τ > 0 as described by equation (A.7). This can be done by going
into Fourier space. For a general observable

O(x) =
∑
k

ak exp(ikx) , (A.22)

the Fokker-Planck operator acts like

(Lca)k = −k2ak −
iβ

2
(k − 1)ak−1 +

iβ

2
(k + 1)ak+1 , (A.23)

which gives the matrix form of the operator Lc

(Lc)kl = −k2δkl −
iβ

2
(k − 1)δk−1,l +

iβ

2
(k + 1)δk+1,l . (A.24)

One can compute the action of the exponential of the matrix as in equation (A.8)
numerically by cutting the modes of at large K = |k| which was chosen as K = 50.
This solution gives correct expectation values for all modes as expected.

A.4 Polyakov chain

The action for the Polyakov chain with SL(3,C) links reads

−S = c+TrU1 . . . UNt + c−TrU
−1
Nt
. . . U−1

1 , (A.25)

where c± = β + κe±µ. Using the derivative

Daf(U) =
∂

∂α
f(eiαU)|α=0 , (A.26)

the Langevin at position n for generator a becomes

Ka,n = −DaS =

ic+Tr (U1 . . . Un−1λaUn . . . UNt)− ic−Tr
(
U−1
Nt
. . . U−1

n λaU
−1
n−1 . . . U

−1
1

)
. (A.27)
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The prescription for making updates in the algebra at position n is then

U → exp

[
8∑

a=1

iλaεKa,n +
√
εη

]
U , (A.28)

where a �rst order discretization scheme was used for the Langevin equation, ε is
the step size and η is the usual Gaussian noise.

After gauge �xing and diagonalization the action depends on two complex variables
ω1 and ω2. The action including the Haar-measure reads

−S =c+

(
eiω1 + eiω2 + e−i(ω1+ω2)

)
+ c−

(
e−iω1 + e−iω2 + ei(ω1+ω2)

)
+ ln

[
sin2

(
−2ω1 + ω2

2

)
sin2

(
ω1 − ω2

2

)
sin2

(
ω1 + 2ω2

2

)]
. (A.29)

The drift is

Kω1 = −∂ω1S = ic+(eiω1 − e−i(ω1+ω2)) + ic−(−e−iω1 + ei(ω1+ω2))

+ tan

(
(
π

2
− (w1− w2)

2

)
+ 2tan

(π
2
− (ω1 +

ω2

2
)
)

+ tan
(π

2
− (

ω1

2
+ ω2)

)
Kω2 = −∂ω2S = ic+(eiω2 − e−i(ω1+ω2)) + ic−(−e−iω2 + ei(ω1+ω2))

− tan

(
(
π

2
− (w1− w2)

2

)
+ tan

(π
2
− (ω1 +

ω2

2
)
)

+ 2tan
(π

2
− (

ω1

2
+ ω2)

)
,

(A.30)

and the update prescription becomes

ωi → ωi + εKi +
√
εη , (A.31)

with ε and η the step size and Gaussian noise.

A.5 Updating prescription for SU(N) and QCD

In the case of SU(N) and its complexi�cations, the update prescription for a single
link following a Langevin process reads

U(n)→ eiλa(εKa,n,ν+
√
εη)U(n) , (A.32)

with the driftKa,n,ν = −Da,n,νS begin the derivative of the action with the derivative
de�ned as in equation (A.26). For the Wilson gauge action (see equation (2.23)),
the drift term reads

Kboson
a,n,ν = i

1

2Nc

∑
µ6=ν

Tr
[
λaUµ(n)Cµν(n)− C̄µν(n)U−1

µ (n)
]
, (A.33)
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with

Cµν(n) =Uν(n+ µ̂)U−1
µ (n+ ν̂)U−1

ν (n)

+U−1
ν (n+ µ̂− ν̂)U−1

µ (n− ν̂)Uν(n− ν̂)

C̄µν(n) =Uν(n)Uµ(n+ ν̂)U−1
ν (n+ µ̂)

+U−1
ν (n− ν̂)Uµ(n− ν̂)Uν(n+ µ̂− ν̂) . (A.34)

The fermionic part of the action is given by

Sf = −Tr logM , (A.35)

with the Dirac matrix M as de�ned in equation (2.31) and below. In the case
of HDQCD and the hopping expansion the fermionic part can be simpli�ed, see
[83, 104, 108] for the drift terms. In full QCD the fermionic part of the drift term
becomes

K fermion
a,n,ν = NfTr

(
M−1Da,n,νM

)
. (A.36)

An exact evaluation of the trace is numerically too expensive, since the inversion of
a matrix of size (volume × d × Nc × 4) is required16. Instead we use a stochastic
estimator as was used in [84]. We write the drift as

η†M−1Da,n,νMη = ψ†Da,n,νMη , (A.37)

with ψ† = η†M−1 is the solution of the linear equation M †ψ = η and η is a noise
vector with Gaussian noise with zero mean and variance one. If we have a way to
compute this solution, we can just use one noise vector per update, since we average
over long trajectories anyway. In the limit of Langevin step size ε→ 0 there will be
many noise vectors per time interval. The bottleneck of any lattice QCD simulation
is the inversion of the Dirac matrix. We do so by using the standard conjugate
gradient (CG) algorithm. It is particularly useful for sparse matrices, where it is
too expensive to save the full matrix. Thus we do not need to save the full fermion
matrix but only need to know how it multiplies a vector. The CG is de�ned for
hermitian matrices, hence we invert MM † to get ψ̃ = M−1

(
M †)−1

η. A simple
multiplication by M then yields ψ.
In practice we use the bilinear noise scheme from [132, 253] for the fermionic drift
force.

A.6 Lattice spacings and pion masses for QCD

simulations

The lattice spacings and pion masses for our simulation parameters are given in
table A.1. Everything was measured at µ = 0. The lattice spacings were measured
on 24348 lattices. The |Λ| columns refers to the lattice sizes on which the masses
were measured.
16The four comes from the Dirac gamma matrix per site.
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κ β a/fm |Λ| for am amπ mπ/GeV amN mN/GeV
0.12 6.0 0.09146(78) 163 × 16 1.869(39) 4.53(19) - -

0.148 5.9 0.0534(6) 83 × 32 0.834(25) 3.08(9) - -
0.15 6.0 0.0555(6) 83 × 32 0.741(16) 2.63(6) - -

0.15 5.9 0.0655(10) 123 × 32 0.5104(18) 1.537(5) 0.9345(58) 2.88(2)

Table A.1: Lattice spacings and pion mass for QCD simulations with CLE.

A.7 Gauge cooling and dynamical stabilization

A.7.1 Gauge cooling

Gauge cooling was introduced in [105], we will brie�y introduce it here. It is a
method to keep the Langevin evolution close to the real SU(N) manifold in SL(N,C)
simulations. This is done by using gauge symmetry to move the evolution towards
the unitary manifold. We use a more symmetric de�nition of the unitarity norm

dU =
∑
n

Tr
[
U †ν(n)Uν(n) +

(
U †ν(n)

)−1
(Uν(n))−1 − 21

]
. (A.38)

A gauge transformation in the opposite direction of the gradient of dU is

Uν(n)→e−
∑
a εαgcλaGa(n)Uν(n)

Uν(n− ν̂)→Uν(n− ν̂)e
∑
a εαgcλaGa(n) (A.39)

with the cooling strength αgc, the Langevin step size ε and

Ga(m) =2Tr λa
[
Uν(m)U †ν(m)− U †ν(m− ν̂)Uν(m− ν̂)]

+2Tr λa
[
−
(
U †ν(m)

)−1
(Uν(m))−1 −

(
U †ν(m− ν̂)

)−1
(Uν(m− ν̂))−1]

(A.40)

The particular value of αgc and the number of cooling sweeps depend on the theory
at hand. In QCD we typically use αgc ≈ 1 to 5 and between 10 and 20 sweeps. In
SU(2) real-time simulations αgc = 1 and just a few sweeps turned out to be su�cient.
There are also adaptive ways to use gauge cooling [254].

A.7.2 Dynamical stabilization

Dynamical stabilization was investigated in [128]. Here no symmetry is used, but
the drift is deformed to make the unitary manifold SU(N) attractive to the process.
This is done via the substitution

Ka
ν (n)→ Ka

ν (n) + iαdsib
a(n)

(∑
c

bc(n)bc(n)

)3

, (A.41)
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where b quanti�es the distance to the unitary manifold

ba(n) = Tr

[
λa
∑
ν

Uν(n)U †ν(n)

]
. (A.42)

This deformation was found heuristically. In principle, one has to be careful with
dynamical stabilization since a non-holomorphic term is added to the drift. This
deforms the original theory and in addition, the proof of convergence for complex
Langevin does not go through without modi�cation. In practice, it is useful to
stabilize the simulation and the added term seems to vanish towards the continuum
limit [128] thus restoring the applicability of the proof. The drawback of dynamical
stabilization is that one has to study many values of αDS and look for a stable region.
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B Appendix to Lefschetz Thimbles

B.1 Some simple ideas to �nd stationary points

and thimbles

Finding stationary points by scanning the real manifold

All contributing thimbles have a corresponding anti-thimble which intersects the
original manifold. Hence if we start on the anti-thimble and solve the steepest
ascent equation, we end up in the stationary point. One idea to �nd the �xed point
is hence to discretize the real axis and �ow from each point along the steepest ascent
path [255]. We can measure the distance to a stationary point by looking at the
derivative of the action, if it is very small we are close. We can then reach the �xed
point by continuing the evolution with

ż =


−∂S

∂z
FP attractive under − ∂zS

+∂S
∂z

FP repulsive under − ∂zS

±eiπ/2 ∂S
∂z

FP circular under − ∂zS

. (B.1)

This is visualized in the left plot of B.1.

Finding thimbles by random initialization in the whole space

Once we have found a �xed point we know the imaginary part of the action along
the whole thimble. Hence we can �nd the thimble (and corresponding anti-thimble)

0

-2 0 2

-2

0

0.75

-2 0 2

-2

0

0.75

Figure B.1: Left: Visualization of the �xed point search. Center and right: Visual-
ization of the Thimble search. See text for details.
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by drawing random points close to the thimble (e.g. by successively going farther
from the �xed point) or in the whole space and then minimizing the distance to the
thimble using Mσ(x, y) = |ImS(x + iy)− ImS(zσ)|2 as a metric. The minimization
is done using gradient descent

ẋ = −∂Mσ(x, y)

∂x
,

ẏ = −∂Mσ(x, y)

∂y
. (B.2)

We visualize the method for the z4 model with parameters σ = 1, λ = 1, h = 1 + i
in �gure B.1.

Note that both of those algorithms will become unfeasible in higher dimensions.
The �rst method, because scanning a full high dimensional manifold is numerically
unfeasible and the second one because typically thimbles are not the only manifolds
having this particular imaginary part of the action. There are other curves with the
same imaginary part, see �gure B.1 which are typically dense in higher dimensions.
The second algorithm can also be used to correct for numerical errors, i.e. drive
the numerical evolution back onto the thimble if it is driven away by numerical
uncertainties.

B.2 Combining Complex Langevin and Lefschetz

Thimbles

Here we will discuss our insights from trying to combine Thimbles and complex
Langevin [30].
We try to combine both methods by using coordinate transformations to restrict
the complex Langevin evolution in a region close to thimbles. We formulate the
complex Langevin equation in the transformed variables. We choose the transfor-
mation z(u) = exp(iθ)u, which will be used to rotate points onto the thimble. Here
θ depends on Langevin time, it will be updated during the simulation. More gen-
eral transformations are possible, but we found that more freedom leads to more
instabilities. The transformed action reads

Su := S(z(u))− log(z′(u)) . (B.3)

We are now free to formulate any condition which keeps us close to the thimble in
order to get an equation for θ. Since the imaginary part is constant along thimbles,
one possibility is to choose ImSu = const for the transformed action or ImS = const
for the original action. It turns out that both of those prescriptions lead to poles
and cuts in the complex plane such that the dynamics of the process is severely
restricted, see [30] for details.
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Instead we combine the complex Langevin and steepest descent equations

∂u

∂τ
= −∂Su

∂u
+ η

∂u

∂τ
= −∂Su

∂u
, (B.4)

by demanding that on average their di�erence is zero

0 =
∂Su
∂u
− ∂Su

∂u
⇒ ∂τ Im(u) = 0 , (B.5)

where we used the fact that the noise averages out. The idea is that complex
Langevin already samples all relevant �xed points and that steepest descent keeps
the evolution close to thimbles. Using equation (B.3), this leads to

∂τReu = −Re
∂Su
∂u

+ η

∂τ Imu = −Im ∂Su
∂u

= −Im

(
∂S

∂z
z′ − z′′

z′

)
= 0 , (B.6)

and we will use the second equation as a constraint to compute ∂τθ. In the Gaussian
model with S = σz2/2 one can immediately see why a rotation is a good choice for
the coordinate transformation, there z′ = ei θ, z′′ = 0 leads to the constraint

Im(σ z z′) = Im(σ e2iθu) = 0 . (B.7)

With u ∈ R and with σ = σr eiθσ this leads to the solution for equation (B.7)

θ∗ = −1

2
θσ . (B.8)

This is just a rotation of the thimble in the original theory onto the real axis in the
transformed theory. We take the derivative of the lower equation in (B.6), leading
to

θ̇ =

Im

(
∂2Su
∂u2

∂Su
∂u

)
Im

(
∂2Su
∂u ∂θ

) . (B.9)

Examining this in the Gaussian model, it turns out that this drives the evolution
towards the anti-thimble instead of the thimble. Motivated by this heuristic �nding
we switch the prefactor in the equation for θ̇, leading to

θ̇ = −
Im

(
∂2Su
∂u2

∂Su
∂u

)
Im

(
∂2Su
∂u ∂θ

) . (B.10)
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Figure B.2: Density plot of the evolution of the combination of complex Langevin
with Lefschetz thimbles. Left: z4 model. Right: U(1) model. A discus-
sion can be found in the text.

.

Due to its heuristic nature, there is no mathematical reason why this equation should
keep the evolution close to thimbles. However, simulations in the model from equa-
tion (4.16) with σ = 1, λ = 1 and h = 1 + i, i.e. the model 2 from section 4.2 show
that the numerical evolution stays close to the thimbles and respects their hierarchy,
i.e. it samples the thimble with the strongest contribution the most, see left plot
of �gure B.2. Unfortunately, observables come out wrong, also for di�erent models
[256]. Similarly, when applying the method to the U(1) model from equation (4.17),
the evolution gets caught on a non-contributing thimble, see right plot of �gure B.2.
The reason is that the thimble is a straight line and hence no rotation is necessary
once the process is caught on the thimble.

B.3 Local updating algorithm U(1)

Here we give the simulation algorithm for the U(1) part of section 4.4. We rewrite
equation (4.28) as

|∆Uk| =
−b±

√
b2 − 4ac

2a
, (B.11)

with a = Im βPije
i∆φRk , b = −Im β(Pij + Pji), c = Im βPije

−i∆φRk . Note that there
are two solutions, one with a plus sign and one with a minus sign in front of the square
root. If we start on the �xed point and go into positive ∆φR direction, we �nd that
the action becomes larger for the solution with the plus sign and thus corresponds
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Figure B.3: Real part of the action in the de�ned region (red dashed line), vertical
black lines are the boundaries of the range where |∆U | is de�ned, the
vertical green line gives the switching point.

to the thimble17. Similarly in negative ∆φR direction the minus sign corresponds to
the thimble. Both other combinations correspond to the anti-thimbles. In general,
we do not start on the �xed point since we �x the local theory to the thimble, not
the global one. Instead, we start at the switching angle which is the point where
the plus and minus solution from the quadratic formula cross, i.e. the position of
the minimum of the term under the square root, it can be written as

φRsw =
arg(Pj)− arg(Pi)

2
. (B.12)

In general the square root in equation (B.11) can be unde�ned, since |∆U | ∈ R.
Hence, we need to choose the update proposals from a region where the term under
the square root is larger or equal to zero. Additionally, |∆U | > 0, since it is an
absolute value. This gives us additional constraints depending on the values of a,b
and c. We will not explain this in detail here and instead give the algorithm to
�nd the boundaries for the region where the solutions are de�ned, the intervals are
[φ−L , φ

−
R] for the solution with the minus sign and [φ+

L , φ
+
R] for the solution with the

plus sign. Figure B.3 shows a typical situation. Here the real part of the action
is plotted in the region where |∆U | is de�ned and the boundaries, as well as the
switching angle, are shown.
Note that the problem is 2π periodic and re�ection symmetric about the switching

angle, i.e. if we �nd solutions in [φRsw, φ
R
sw + π] we can reconstruct everything else

from this. The algorithm for the boundaries reads

1. Find the switching angle φRsw (see (B.12)).

2. Find a zero φ+
L of (b2 − 4ac) in the interval [φRSw, φ

R
Sw + π/2]. If there is none,

set φ+
L = φRSw.

3. Set φ+
R = 2φRSw + π − φ+

L (this is the left boundary mirrored at φRSw + π/2).

17Remember that e−S has its maximum at the �xed point on the thimble, hence away from the
�xed point the action has to become larger.
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4. If b < 0:

a) Calculate

φa = arctan2(−Im(βPij),Re(βPij)),

and translate it into our interval by

φ̃a = φa − b
φa − φRSw

π
cπ.

b) If φ̃a ∈ [φ+
L , φ

+
R] then calculate

Im(βPije
i(φ̃a−π/2)).

If it is smaller than zero, set φ+
L = φ̃a, otherwise set φ

+
R = φ̃a.

5. If b > 0:

a) Calculate

φc = arctan 2(Im(βPji),Re(βPji)),

and translate it into our interval by

φ̃c = φc − b
φc − φRSw

π
cπ.

b) If φ̃c ∈ [φ+
L , φ

+
R] then calculate

Im(βPjie
−i(φ̃c−π/2)).

If it is smaller than zero, set φ+
R = φ̃c, otherwise set φ

+
L = φ̃c.

6. Mirror the boundaries on the right side of the switching angle to the left side
by

φ−L = 2φRSw − φ+
R

φ−R = 2φRSw − φ+
L

Having found the boundaries, the update prescription for a given link is rather
simple

1. Choose with equal probability whether the update shall be done for the plus
or minus solution of the quadratic equation (B.11).

2. Compute the boundaries [φmin, φmax] for the corresponding branch.

3. Draw a uniform random number from the interval [φmin, φmax] as a proposal
for ∆φR.

4. Do a Metropolis accept/reject step with the real part of the action.
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B.4 Tangent space and Takagi vector basis

In scalar theory on a two-point lattice given by equation (4.35), we can show that
the thimble is the tangent space around the �xed point, which is convenient for
choosing a good basis for the simulations and analytical integrals. Consider the
Hessian matrix

H = −iM = −i ∂S

∂φkφl
= −i

(
(2−m2) −2
−2 (2−m2)

)
. (B.13)

The tangent space at the critical point is spanned by the Takagi vectors v, de�ned
via

H̄v̄ = λv , (B.14)

where λ ∈ R and the bar stands for complex conjugation. λ > 0 corresponds to the
thimble and λ < 0 to the anti-thimble. We can bring this in the form of a normal
eigenproblem, by writing v = cṽ, where c is a complex phase,

H̄v̄ = ic̄M ¯̃v = ic̄αṽ = ic̄α
v

c
(B.15)

where we used thatM is a real symmetric matrix and thus ṽ are real vectors. Thus,
dividing both sides of equation (B.14) by ic̄ we have

Mṽ = αṽ , (B.16)

where α now are the eigenvalue of M . For the eigenvectors and eigenvalues we �nd

ṽ1 =

(
1
1

)
with α1 = −m2 and ṽ2 =

(
1
−1

)
with α2 = 4−m2 . (B.17)

We can regain the Takagi vectors by multiplying with ic. Since c is just a phase,
λ = ±α. Thus we �nd

c =
√
±sign(α)i , (B.18)

where again the positive sign corresponds to the thimble. We �nd

c1 = e−iπ/4 and c2 = eisign(4−m2)π/4 =

{
eiπ/4, m < 2

e−iπ/4, m > 2 .
(B.19)

Note that when the phases are not equal c12, i.e. for m<2, we cannot write down
our local algorithm around equation (4.37). This is because this algorithm updates
both lattice sites separately, i.e. the update is suggested according to(

∆φR1 + i∆φI1
0

)
and

(
0

∆φR2 + i∆φI2

)
, (B.20)
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which is not possible if the phases are unequal.
We can also use this parametrization and insert the �elds in tangent space(

φ1

φ2

)
= x1c1ṽ1 + x2c2ṽ2 , (B.21)

such that the action becomes

S =− i
(

(φ1 − φ2)2 − m2

2
(φ2

1 + φ2
2)

)
=− i

(
4sign(4−m2)ix2

2 −
m2

2
(−2ix2

1 + 2sign(4−m2)ix2
2)

)
=m2x2

1 + |4−m2|x2
2 , (B.22)

where the xi are real variables. This action is completely real and positive and
hence the tangent space and the thimble are equivalent. It is also simple enough to
compute observables analytically by writing the partition function in terms of the
xi instead of φi. Since the action is quadratic and the Jacobian is just a constant
matrix those are just simple Gaussian integrals. We �nd

〈
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〉

=

〈
φ2

1 + φ2
2

2

〉
= − i

2

(
1

m2
+

1

m2 − 4

)
, (B.23)
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C Appendix to neural networks

C.1 Network architecture and training

We used a combination of the keras [257] and scikit-learn [258] packages for python
to set up our machine learning pipeline.
The architecture of both networks is shown in tables C.1 and C.2. We chained

one-dimensional convolutional layers to produce the correct receptive �elds. For ex-
ample in the SU(2) case with the 2×1×1×1 network, the �rst layer outputs patches
of size 2 × 8 × 8 × 1. The second layer then outputs patches of 2 × 8 × 1 × 1 and
the third layer has has C = 1 and outputs 2× 1× 1× 1. Thus together they make
up the receptive �eld. The average pooling layer just averages over all receptive
�elds, thus outputting a single averaged 2 × 1 × 1 × 1 patch. The �attening layer
is just there for technical reasons and the dense layers correspond to the prediction
network. A,B,C and nA, nB, nC are the sizes and numbers of �lters respectively,
we always used nC = 1.
We used ReLU activation functions, see equation (5.3) everywhere except for the
last layer, where we used the sigmoid function, see equation (5.2). We chose the
binary cross-entropy as in equation (5.5) as our loss function and employed RM-
Sprop gradient descent as implemented in keras for the minimization of the loss and
training. The networks were trained with a maximum of 300 epochs. We used 20%
as a validation set in all cases.

Layer Output Shape Kernel Size
InputLayer (784, 1)

Convolution1D (784/(A), nA) A
Convolution1D (784/(A×B), nB) B
Convolution1D (784/(A×B × C), nC) C
Average Pooling (1, nC)

Flatten (nC)
Dense (nD)
Dense (1)

Table C.1: Architecture of the Ising model neural network, see text for details
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Layer Output Shape Kernel Size
InputLayer ( 1024, 16)

Convolution1D (1024/(A), nA) A
Convolution1D ( 1024/(A×B), nB) B
Convolution1D ( 1024/(A×B × C), nC) C
Average Pooling ( 1, nC)

Flatten ( nC)
Dense (nD)
Dense ( 1)

Table C.2: Architecture of SU(2) neural network, see text for details.
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