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ABSTRACT 

Brain tumors are the second most common malignancy diagnosed in children, with low-grade gliomas 

(LGG) being the most common childhood brain tumor, and pilocytic astrocytoma (PA) the most common 

LGG. LGGs are typically driven by aberrant MAPK pathway activation commonly induced by BRAF fusions 

or mutations. These genetic alterations activate the tumor-suppressive mechanism oncogene-induced 

senescence (OIS), resulting in growth arrest of transformed cells. OIS has been shown to be regulated by 

a complex network of inflammatory molecules, referred to as the senescence-associated secretory 

phenotype (SASP). Single markers of OIS have been detected in primary PAs, but its functional role in PA 

remains unknown to date.   

A patient-derived PA cell line with a BRAF fusion was generated via lentiviral transduction with a 

doxycycline-inducible construct coding for the SV40 Large T antigen (SV40-TAg). This novel PA model, 

DKFZ-BT66, enabled the analysis of the growth-arrested OIS state of PA cells as well as the proliferating 

state during SV40-TAg expression. Both conditions were characterized and analyzed by means of gene 

expression profiling (GEP), western blot, ELISA and cell viability testing via automated trypan blue 

exclusion staining. Primary PA material was analyzed by GEP as well as a multiplex assay. 

The SASP was upregulated in the OIS state of the human PA cell line DKFZ-BT66 as well as in primary 

human and murine PAs. Conditioned medium of senescent cells was shown to arrest growth and induce 

the senescence-characteristic enlarged cellular phenotype in proliferating PA cells. The SASP factors IL1B 

and IL6 were both upregulated and secreted by senescent PA cells and their respective pathways were 

shown to be regulated during OIS. Treatment of proliferating DKFZ-BT66 cells with recombinant IL1B 

(rIL1B), but not rIL6, reduced cell growth of proliferating PA cells. Both SASP expression as well as 

changes in cell morphology, reminiscent of the enlarged senescent phenotype, were induced by rIL1B 

treatment. However, neither pharmacological nor shRNA-mediated inhibition of the IL1 or IL6 pathway 

led to a bypass of the OIS state in the DKFZ-BT66 cell line. Treatment with the anti-inflammatory drug 

dexamethasone induced regrowth of senescent DKFZ-BT66 cells and suppressed SASP gene expression. 

The clinical relevance of the SASP in PA was confirmed by the identification of two patient cohorts with 

differing clinical outcome related to SASP expression. Elevated expression of the SASP as well as of IL1B 

alone was predictive for favorable progression-free survival (PFS) in PA patients independent of tumor 

resection status. To exploit OIS therapeutically, DKFZ-BT66 cells were treated with senolytic BCL2 family 

member inhibitors, specifically targeting senescent cells. Senescent PA cells were more sensitive to 

senolytics in comparison to proliferating DKFZ-BT66 cells or normal human astrocytes. 



 

In summary, the SASP was shown to regulate OIS in pediatric PA, with IL1B as an important mediator. 

Elevated SASP expression was prognostic for a favorable PFS in the analyzed cohort and will have to be 

validated as a prognostic marker in prospective clinical trials. The combination of senolytic agents, 

targeting senescent PA cells, together with chemotherapy, targeting cycling PA cells, may be a novel 

therapeutic approach and will have to be evaluated in further preclinical studies.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

ZUSAMMENFASSUNG  

Niedriggradige Gliome (low-grade gliomas, LGG) sind die häufigsten Hirntumore im Kindesalter, und 

pilozytische Astrozytome (PA) die häufigsten LGGs. Die Tumorentität zeichnet sich durch anhaltend 

gesteigerte Aktivität des MAPK Signalwegs aus. Induziert durch genetische Veränderungen einzelner 

Faktoren des Signalwegs, wird ein Schutzmechanismus namens Onkogen-induzierter Seneszenz (OIS) 

aktiviert, der das Wachstum der genetisch veränderten Zellen stoppt. In früheren Studien wurde bereits 

gezeigt, dass die OIS durch ein Netzwerk von Entzündungsmediatoren, dem sogenannten Seneszenz-

assoziierten sekretorischen Phänotyp (SASP), reguliert werden kann. Welche Rolle die OIS in Bezug auf 

das Wachstumsverhalten von PAs spielt ist bis heute ungeklärt. 

Mit Hilfe des ersten, aus Patientenmaterial gewonnen Zellmodells eines PAs mit einer BRAF-Fusion, 

DKFZ-BT66, konnte die Expression von SASP Faktoren in PA-Zellen nachgewiesen werden und der Einfluss 

des SASP auf das Wachstum von PA-Tumorzellen untersucht werden. Durch eine reversible Doxycyclin-

induzierbare Aktivierung des Zellwachstum mittels SV40 Large T Antigen Expression ermöglicht das DKFZ-

BT66 Modell die Untersuchung von PA-Zellen im Wachstum sowie im Wachstums-Stopp unter dem 

Einfluss der OIS. Beide Stadien wurden anhand von Genexpressionsprofilen (GEPs), Westernblots, ELISAs 

und Zellviabilitätstests verglichen. Primäre PA Tumoren wurden zudem mit GEPs und einem Multiplex 

Assay untersucht.  

Die untersuchten SASP Faktoren wurden sowohl in primären humanen und murinen PA Tumoren, als 

auch im seneszenten Zustand der DKFZ-BT66 Zelllinie, erhöht exprimiert. Konditioniertes Medium von 

seneszenten DKFZ-BT66 Zellen löste einen Wachstumsarrest in proliferierenden PA-Zellen aus. Die zwei 

SASP Faktoren IL1B und IL6 wurden von seneszenten PA-Zellen sekretiert und beide Signalwege waren 

im seneszenten Zustand der DKFZ-BT66 Zelllinie reguliert. Die Stimulation von proliferierenden Zellen mit 

dem rekombinanten (r) Zytokin rIL1B, nicht aber mit rIL6, führte zu reduziertem Wachstum der PA-Zellen 

und induzierte die Expression der SASP Faktoren. Die Behandlung von seneszenten Zellen mit 

entzündungshemmenden Medikamenten wie Dexamethason führte zur Wiederaufnahme des 

Wachstums von seneszenten PA-Zellen und hemmte die Expression von SASP Faktoren. Eine hohe IL1B 

sowie SASP Expression in primären PA Tumoren konnte mit einem guten Progressions-freien Überleben 

der PA Patienten assoziiert werden. Behandlungen mit senolytischen Medikamenten zeigte ein 

Ansprechen bei niedrigen Konzentrationen in seneszenten im Vergleich zu proliferierenden DKFZ-BT66 

Zellen. 



 

Die hier präsentierten Daten liefern damit erste Beweise für eine Regulation der OIS und dem damit 

verbundenen Tumorzellwachstum durch die SASP Faktoren, mit IL1B als einem wichtigen Mediator, im 

kindlichen PA. Die Messung der SASP Genexpression könnte zukünftig eine Vorhersage des Progressions-

freien Überlebens von PA Patienten ermöglichen. Ein therapeutischer Ansatzpunkt könnte die 

Behandlung mit senolytischen Medikamenten bieten, welche durch eine Kombination mit 

Chemotherapie sowohl die teilenden als auch die ruhenden, seneszenten Tumorzellen angreifen könnte.  

  



 

Abbreviations 

AST Aspartate aminotransferase 

BCL2 B-cell lymphoma-2 

BRAF v-raf murine sarcoma viral oncogene homolog B 

CDKN1A Cyclin dependent kinase inhibitor 1A 

CDKN1B Cyclin dependent kinase inhibitor 1B 

CDKN2A Cyclin dependent kinase inhibitor 2A 

CDKN2B Cyclin dependent kinase inhibitor 2B 

CEBPB CAAT/enhancer-binding protein beta 

CNS Central nervous system 

CPK Creatine phosphokinase 

DAPI 4',6-Diamidino-2-Phenylindole 

DDR DNA-damage response 

DMSO Dimethylsulfoxide 

EFS Event-free survival 

FGFR1 Fibroblast growth factor receptor 1 

FU Follow-up 

GEP Gene-expression profile 

GFP Green fluorescent protein 

GTR Gross-total resection 

HGG High-grade glioma 

HRAS Harvey rat sarcoma viral oncogene homolog   



 

hTERT Human telomerase reverse transcriptase 

HUVEC Human umbilical vein endothelial cells 

IF Immunofluorescence 

IL1B Interleukin 1B 

IL6 Interleukin 6 

IL1R1 Interleukin 1 receptor 1 

IL1Ra IL1 receptor antagonist 

IL1RAcP IL1 receptor accessory protein  

IL6Ra Interleukin 6 receptor alpha 

IL6ST Interleukin 6 signal transducer 

IPA Ingenuity pathway analysis 

IRAK1 Interleukin 1 receptor-associated kinase 1 

IVIS In vivo imaging system 

JAK Janus kinase  

KRAS Kirsten rat sarcoma viral oncogene homolog 

LCA Leukocyte common antigen 

LGG Low-grade glioma 

MAPK Mitogen-activated protein kinase 

NF1 Neurofibromatosis type 1 

NFκB Nuclear factor kappa B 

NSC Neuronal stem cells 

NSCLC Non-small cell lung cancer 



 

OIS Oncogene-induced senescence 

OS Overall survival 

PA Pilocytic astrocytoma 

PDX Patient-derived xenograft 

PIN Prostatic intraepithelial neoplasia 

PFS Progression-free survival 

PI3K Phosphatidyl-inositol-3-kinase 

RB Retinoblastoma 

RELA REL-associated protein 

RFP Red fluorescent protein 

RT Room temperature 

SAHF Senescence-associated heterochromatin foci 

SASP Senescence-associated secretory phenotype 

SOCS1 Suppressor of cytokine signaling 1 

SH2 Src Homology 2 

SSA Sessile serrated adenoma 

STAT3 Signal transducer and activator of transcription 3 

STR Sub-total resection 

TNFRSF1B Tumor necrosis factor receptor superfamily member 1B 

t-SNE t-distributed stochastic neighbor embedding  

WB Western blot 

WHO World health organization 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

TABLE OF CONTENTS 

 

1. INTRODUCTION ..................................................................................................................................... 1 

1.1 Pediatric oncology ............................................................................................................................... 1 

1.1.1 Pediatric neuro-oncology ............................................................................................................. 2 

1.1.2 Low-grade gliomas ....................................................................................................................... 4 

1.1.3. Pilocytic astrocytoma .................................................................................................................. 5 

1.2. Oncogene-induced senescence ........................................................................................................ 11 

1.2.1 Markers of OIS ............................................................................................................................ 12 

1.2.2 Regulation of OIS ........................................................................................................................ 14 

1.2.3 OIS in PA ..................................................................................................................................... 19 

1.3 Aim..................................................................................................................................................... 21 

2. MATERIALS AND METHODS ................................................................................................................ 23 

2.1 Materials ............................................................................................................................................ 23 

2.1.1 Cell lines and cell culture ............................................................................................................ 23 

2.1.2 Treatment reagents and drugs ................................................................................................... 25 

2.1.3 Bacteria ....................................................................................................................................... 26 

2.1.4 Antibodies................................................................................................................................... 27 

2.1.5 Primers ....................................................................................................................................... 29 

2.1.6 Plasmids ...................................................................................................................................... 30 

2.1.7 Biochemicals and Reagents ........................................................................................................ 31 

2.1.8 Buffers and solutions .................................................................................................................. 34 

2.1.9 Consumables .............................................................................................................................. 37 

2.1.10 Kits ............................................................................................................................................ 38 

2.1.11 Software ................................................................................................................................... 39 

2.1.12 Instruments and machines ....................................................................................................... 40 



 

2.2 Methods ............................................................................................................................................ 45 

2.2.1 Cell culture and methods used to generate an in vitro LGG model ............................................... 45 

2.2.1.1 Thawing of cells ....................................................................................................................... 45 

2.2.1.2 Culture of different cell lines ................................................................................................... 46 

2.2.1.3. Harvesting of cells .................................................................................................................. 47 

2.2.1.4 Determination of viability and cell numbers ........................................................................... 47 

2.2.1.5 Cryopreservation ..................................................................................................................... 47 

2.2.1.6 Microscopy .............................................................................................................................. 48 

2.2.1.7 Conditioned medium (CM) ...................................................................................................... 48 

2.2.1.8 Drug and cytokine treatments ................................................................................................ 48 

2.2.1.9 Lenti- and retroviral production for transduction of primary tumor cell cultures .................. 49 

2.2.1.10 Dissociation and viral transduction of primary tumor material to generate an in vitro LGG 

model ................................................................................................................................................... 50 

2.2.2 Nucleic acids ................................................................................................................................... 53 

2.2.2.1 Plasmid DNA amplification and isolation ................................................................................ 53 

2.2.2.2 RNA extraction ........................................................................................................................ 54 

2.2.2.3 Complementary DNA (cDNA) synthesis .................................................................................. 55 

2.2.2.4 Quantitative reverse transcription real-time polymerase chain reaction (RT-qPCR) ............. 55 

2.2.2.5 mRNA gene expression profiles (GEPs) ................................................................................... 56 

2.2.3 Protein ............................................................................................................................................ 57 

2.2.3.1 Protein isolation ...................................................................................................................... 57 

2.2.3.2 Protein quantification ............................................................................................................. 57 

2.2.3.3 Western Blot ............................................................................................................................ 58 

2.2.3.4 Enzyme linked immuno-sorbent assay (ELISA) ........................................................................ 61 

2.2.3.5 Cytokine measurement in primary tumors by multiplex assay ("Luminex") .......................... 61 

2.2.3.6 Immunohistochemistry (IHC) .................................................................................................. 62 

2.2.3.7 Immunofluorescence (IF) staining ........................................................................................... 63 



 

2.2.4 Functional assays ............................................................................................................................ 64 

2.2.4.1 Metabolic activity assay .......................................................................................................... 64 

2.2.4.2 Senescence-associated ß-galactosidase (SA-ß-Gal) staining ................................................... 64 

2.2.4.3 Flow cytometry ........................................................................................................................ 65 

2.2.5 In vivo techniques and methods involving primary human and murine tumors ........................... 67 

2.2.5.1 In vivo imaging system (IVIS) ................................................................................................... 67 

2.2.5.2 Transplantation of DKFZ-BT66 cells in vivo ............................................................................. 67 

2.2.5.3 BRAFV600E-expressing PA mouse model ................................................................................... 68 

2.2.5.4 DNA-methylation array of murine and human PA tumor samples ......................................... 69 

2.2.6 Statistical analysis ........................................................................................................................... 69 

2.2.6.1 Identification of OIS-controlling candidate genes specific for PA ........................................... 69 

2.2.6.2 Gene set enrichment analysis (GSEA) ..................................................................................... 70 

2.2.6.3 Correlation of progression-free survival (PFS) and SASP factor expression ............................ 71 

2.2.6.4 Experimental settings .............................................................................................................. 71 

3. RESULTS ............................................................................................................................................... 73 

3.1 Establishment of an in vitro and in vivo model of LGG ..................................................................... 73 

3.1.1 The DKFZ-BT66 PA model ........................................................................................................... 73 

3.1.2 Optimization of conditions for the future establishment of further in vitro models................. 77 

3.1.3 Characterization of orthotopically injected DKFZ-BT66 cells ..................................................... 80 

3.2 Proof and characterization of OIS in PA ............................................................................................ 85 

3.2.1 Detection of common OIS markers in DKFZ-BT66 cells .............................................................. 85 

3.2.2 Expression of the SASP in DKFZ-BT66 cells and primary PA ....................................................... 87 

3.3 Identification of SASP candidate genes controlling OIS in PA ........................................................... 89 

3.3.1 Identifying OIS-controlling putative SASP candidate genes in PA .............................................. 89 

3.3.2 Verifying SASP candidate genes in DKFZ-BT66 cells ................................................................... 91 

3.3.3 Protein expression of SASP candidate genes in primary PA....................................................... 92 



 

3.3.4 Validation of SASP candidate pathway activity .......................................................................... 94 

3.4 Examination of the regulation of OIS by SASP factors ...................................................................... 96 

3.4.1 The role of the SASP candidate genes in OIS induction ............................................................. 96 

3.4.2 The role of the SASP candidates for OIS maintenance ............................................................... 99 

3.5 Translational relevance of the SASP in PA ....................................................................................... 105 

3.5.1 Influence of anti-inflammatory treatment on DKFZ-BT66 cell growth .................................... 105 

3.5.2 Correlation of SASP factor expression and clinical outcome ................................................... 106 

3.5.3 Therapeutical exploitation of OIS in PA .................................................................................... 109 

4. DISCUSSION ....................................................................................................................................... 113 

4.1 LGG model development ................................................................................................................. 114 

4.2 The influence of the SASP on the tumor and its microenvironment .............................................. 117 

4.3 Glucocorticoid use in LGG patients ................................................................................................. 123 

4.4 The potential of senolytic agents for LGG patients ......................................................................... 125 

4.5 Clinical implementations of the SASP in LGG patients .................................................................... 127 

4.6 The interplay between MAPK inhibitors and the SASP ................................................................... 128 

5. CONCLUSION AND PERSPECTIVES ..................................................................................................... 131 

APPENDIX .................................................................................................................................................. 133 

REFERENCES .............................................................................................................................................. 151 

ACKNOWLEDGMENTS ............................................................................................................................... 169 

 

 

 



 

FIGURES 

Figure 1: Relative frequency of childhood cancer diagnoses in Germany. ................................................... 1 

Figure 2: Survival rate of childhood cancer patients in Germany and Austria. ............................................. 2 

Figure 3: DNA methylation-based clustering of CNS tumor subgroups. ....................................................... 3 

Figure 4: Distribution of brain tumor entities by histology (age: 0-14 years, CBTRUS 2007-11). ................. 4 

Figure 5: Overall (OS) and progression-free survival (PFS) after diagnosis for low-grade glioma patients 

(n=361). ......................................................................................................................................................... 5 

Figure 6: MAPK pathway alterations in pilocytic astrocytoma. .................................................................... 6 

Figure 7: MAPK pathway signaling cascade. ................................................................................................. 8 

Figure 8: Senescence phenotype over time. ............................................................................................... 14 

Figure 9: IL1 signaling pathway. .................................................................................................................. 17 

Figure 10: IL6 signaling pathway. ................................................................................................................ 19 

Figure 11: Exemplary histogram of a cell cycle analysis. ............................................................................. 66 

Figure 12: Characterization of the doxycycline-inducible expression of SV40-TAg in the DKFZ-BT66 cell 

line. .............................................................................................................................................................. 74 

Figure 13: Characterization of the DKFZ-BT66 cell line. .............................................................................. 76 

Figure 14: Exemplary images of culture attempts of primary material of LGGs. ........................................ 78 

Figure 15: Organotypic brain slice co-cultures with DKFZ-BT66 and MED8A cells. .................................... 79 

Figure 16: In vivo modelling with DKFZ-BT66 cells. ..................................................................................... 81 

Figure 17: DKFZ-BT66 hTERT cell characterization. ..................................................................................... 82 

Figure 18: In vivo modelling with DKFZ-BT66 hTERT cells. .......................................................................... 84 

Figure 19: Markers of OIS can be detected in DKFZ-BT66 cells................................................................... 86 

Figure 20: Further markers for OIS in DKFZ-BT66 cells. .............................................................................. 87 

Figure 21: SASP factors are upregulated in pilocytic astrocytoma cells. .................................................... 88 

Figure 22: Secreted factors of senescent DKFZ-BT66 cells induce growth arrest. ...................................... 89 

Figure 23: Identification of OIS-controlling putative SASP candidate genes in pediatric pilocytic 

astrocytoma. ................................................................................................................................................ 91 

Figure 24: Identification of IL1B and IL6 as OIS-controlling SASP candidate genes in pediatric pilocytic 

astrocytoma. ................................................................................................................................................ 92 

Figure 25: SASP factors are detectable on protein level in primary pediatric PA. ...................................... 93 

Figure 26: Functional validation of the IL1 and IL6 signaling pathway during OIS. ..................................... 95 

Figure 27: IL1B signaling contributes to reduced PA cell proliferation. ...................................................... 97 

Figure 28: IL1B signaling induces expression of SASP factors and other markers of OIS............................ 99 



 

Figure 29: Inhibition of IL1 signaling during OIS does not bypass OIS. ..................................................... 101 

Figure 30: Inhibition of IL6 signaling during OIS does not bypass OIS. ..................................................... 101 

Figure 31: DKFZ-BT66 hTERT cell count upon doxycycline withdrawal. ................................................... 102 

Figure 32: Attempt of a stable knock-down of IL1B and IL6. .................................................................... 102 

Figure 33: Attempt of a stable knock-down of IL1R1 and IL6Ra. .............................................................. 104 

Figure 34: Inhibition of inflammatory signaling during OIS suppresses the SASP and leads to regrowth of 

senescent PA cells. .................................................................................................................................... 106 

Figure 35: SASP factor expression predicts PFS independent of resection status implying a crucial role of 

inflammatory signaling for PA tumor growth behavior. ........................................................................... 108 

Figure 36: Senescent DKFZ-BT66 cells respond to senolytic agents. ........................................................ 111 

Figure 37: Dexamethasone induces growth of PA short-term cultures without SV40 large T antigen 

expression. ................................................................................................................................................ 133 















INTRODUCTION 

7 

sample. Aberrations are mutually exclusive besides for FGFR1 and PTPN11. Orange box = FGFR1-ITD, yellow box = BRAF 

p.Glu451Asp alteration, blue/black box = one germline and one somatic NF1 alteration. 

 

In approximately 70% of all PA cases, a KIAA1549:BRAF fusion caused by tandem duplication is the 

driving MAPK alteration (14). This gene fusion is a defining feature of PAs, occurring only very rarely in 

other pediatric brain tumors such as e.g. gangliogliomas (13). The fused BRAF does not contain the N-

terminal regulatory domain which results in constitutive activity of the kinase. The tandem duplication is 

detectable by a gain in copy number at 7q34. There are three mRNA breakpoints observed. The most 

common version is a fusion between KIAA1549 exon 16 and BRAF exon 9 (KEx16BEx9), followed by 

KEx15BEx9and KEx16BEx11 , respectively. NIH3T3 cells transduced with a truncated version of the fusion gene 

showed accelerated growth in soft agarose, demonstrating the transforming potential of the fusion (22). 

Further proof of the oncogenic potential of the fusion was provided by Kaul et al. (23), who could show 

increased proliferation as well as colony formation in a soft agarose assay of neural stem cells expressing 

the KIAA1549:BRAF fusion. In mice, activation of a truncated version of BRAFV600E alone was sufficient to 

induce PA-like tumors (24). This proves that the single-pathway activation is sufficient for tumor 

formation. 

The oncogenic stimulus from e.g. the BRAF fusion results in a downstream activation of the MAPK 

pathway (Fig. 7). The increased phosphorylation of MEK1/2 and ERK1/2 initially leads to elevated tumor 

growth by activating cell proliferation. Over the long term however, this aberrant signal is thought to 

activate a tumor-suppressive mechanism called oncogene-induced senescence (OIS), resulting in growth 

cessation (18).  
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vinblastine monotherapy. In a phase II study treatment of pediatric LGG patients, including NF1 patients 

(24% of all treated patients), with vinblastine resulted in a 5-year PFS of 53% and a 5-year OS of 94% 

(26), comparable to the outcome of patients treated with VC.  

In the era of targeted therapy and in light of the increasing knowledge regarding the genetic drivers of 

PAs, the standard of care has to be reassessed. Early clinical trials with MEK inhibitors are ongoing and 

only few results are available to date (27). A recent phase II study reported partial response in 32% of 

n=25 patients treated with selumetinib, a MEK inhibitor, in recurrent or refractory LGG patients (28). The 

2-year PFS was 66% +/- 11% in non-NF1 patients, while the outcome was better for NF1 patients with a 

2-year PFS of 96% +/- 4%. Currently, Novartis is recruiting patients with BRAFV600E mutations in either 

LGGs or relapsed high-grade gliomas (HGGs) for a phase II study to investigate the efficacy of trametinib, 

a MEK inhibitor, in combination with dabrafenib, an inhibitor of mutated BRAF, versus standard of care 

chemotherapy (NCT02684058). In 2019, the European LOGGIC trial will start recruitment, and compare 

trametinib versus standard of care VC versus vinblastine monotherapy in pediatric patients with BRAF-

fusion positive PAs. 

In this benign tumor entity, future therapies cannot only be judged by the short-term outcome, but their 

effects on the developing brain have to be considered. Hopefully, side effects can be reduced with the 

application of targeted therapy. The most common toxicities under treatment with selumetinib were 

reported to be CTCAE (common terminology criteria for adverse events) grade I and II creatine 

phosphokinase (CPK), skin and gastrointestinal side effects as well as hypoalbuminemia and elevated 

aspartate aminotransferase (AST). Of course, the long-term effects of these new treatments will have to 

be monitored closely. One important question that remains to be answered is the duration of treatment. 

In the initial trials with selumetinib, patients with responding or stable disease could choose to stop 

treatment after 1 to 2 years and resume treatment in case of tumor progression (13). The upcoming 

LOGGIC trial will treat patients for 18 months with the MEK inhibitor trametinib. 

Unraveling the mechanism of growth regulation will facilitate informed treatment decisions of either 

adjuvant treatment versus a ‘watch & wait’ approach. Therefore models of the disease are urgently 

needed. 
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1.1.3.4 Models of PAs 

The variety of LGG models is very limited. Primary cells quickly go into oncogene-induced (OIS) or 

replicative senescence after only a few passages. This has greatly impeded the study of the biology of 

this tumor entity. Due to the lack of faithful models, a clinical study using the multikinase inhibitor 

sorafenib was conducted in children without preclinical testing (29). This resulted in unexpected tumor 

growth under treatment (29,30). Retrospectively, it could indeed be shown in vitro that sorafenib leads 

to paradoxical MAPK activation (30,31).  

The first in vitro PA model was established in 2011 by Raabe and colleagues (32). Transduction of the 

BRAFV600E mutation into human neurospheres promoted colony formation in soft agarose. After an initial 

phase of slow proliferation, cell growth stopped completely and markers of OIS were detectable, which 

have been detected in primary PA samples as well (see chapter 1.2.3 OIS in PA). The transduced cells 

stained positive for the senescence-associated ß-galactosidase (SA-ß-Gal) and expressed elevated 

protein levels of CDKN2A. At the same time, Jacob et al. overexpressed BRAFV600E in human immortalized 

astrocytes and fetal astrocytes. This resulted in elevated oncogene-induced morphologic changes typical 

for OIS such as enlarged, flat cellular bodies and SA-ß-Gal expression (19). CDKN2A protein levels 

increased under expression of the oncogene and the cell cycle was arrested (19), just as Raabe and 

colleagues had observed (32). A murine in vitro LGG model was established by Sun and colleagues. The 

group transduced either BRAFV600E or the KIAA1549:BRAF fusion in TP53 null murine neural progenitor 

cells (33). Usually, TP53 is intact in LGG tumors, but the authors argued that its ablation was necessary to 

ensure proliferation of the cultures (33,34). Additionally, they developed an organotypic assay culturing 

fresh brain tumor material from surgery on brain slices from neonatal (E14) mice to test drug response in 

presence of microenvironment (33,35). Finally, our group has generated the first patient-derived PA in 

vitro model, DKFZ-BT66, with the advantage of endogenous expression of the KIAA1549:BRAF fusion 

(31). The cell line was established by transducing primary tumor material with the Simian Vacuolating 

Virus 40 large T antigen (SV40-TAg). The expression of SV40-TAg is doxycycline-inducible with its 

activation leading to inhibition of two OIS-relevant pathways, the TP53/CDKN1A and CDKN2A/RB1 

pathway (36,37), thereby interfering with induction and maintenance of OIS.  

The number of in vivo models of PAs is even more limited than the cell culture models. Generation of 

patient-derived xenografts has been proven impossible due to growth arrest resulting from OIS as well as 

replicative senescence. The first model of a NF1-optic pathway glioma was developed by Gutman et al. 

via an inducible knock-out deleting the residual copy of NF1 in astrocytes of NF1+/- mice (38). A PA-like 
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mouse model was generated by Gronych et al. via injection of virus-producing cells, containing a 

BRAFV600E-coding plasmid, into the hemispheres or the brainstem of neonatal mice (24). The construct 

codes for the activated kinase domain of BRAFV600E and only infects nestin-expressing neural progenitor 

cells in Ntv-a mice. BRAFV600E expression led to the development of PAs, as determined by 

histopathologic evaluation. The model also recapitulated the benign behavior of PAs, as mice did not 

succumb to their tumors and rather died of old age (18). Kaul and colleagues had observed elevated 

proliferation and soft agar colony formation of fusion-transduced neuronal stem cells (NSCs) in vitro as 

well as development of glioma-like lesions after injection of these cells into the cerebellum of 3-week old 

mice (23). In a following study using Cre driver lines, the scientists generated another in vivo model by 

specifically expressing the KIAA:BRAF fusion in either NSCs, astrocytes or NG2 progenitor cells in mice. 

Increased glial cell proliferation was detected only in the cerebellum originating from NSCs, indicating 

brain region- and cell type-specific effects of BRAF-fusion activity (23,39). No changes in survival were 

observed for mice injected with BRAF-fusion expressing NSCs compared to control mice injected with an 

empty vector (23). Again, this reflects the benign, slow growth behavior observed in PA patients which is 

thought to result from activation of oncogene-induced senescence. 

 

1.2. Oncogene-induced senescence  

Senescence was first discovered in normal human fibroblasts that stopped dividing after reaching their 

proliferative capacity by Hayflick and Moorhead, now referred to as the ‘Hayflick limit’ (40). In contrast, 

cells derived from malignant tumors proliferate and divide indefinitely. Senescence was therefore 

defined as a protective mechanism leading to growth arrest of premalignant, damaged cells without 

inducing cell death. Senescence can be activated by several stimuli, including DNA damage through 

chemotherapeutic agents or radiation, telomere erosion resulting from old age, known as replicative 

senescence, and cellular stress induced by aberrant signaling of oncogenes, termed oncogene-induced 

senescence (OIS). All stimuli lead to cell cycle arrest and thereby prevent proliferation and spread of 

damaged, potentially transformed cells (41,42). However, it has been shown that cancer cells can evade 

this tumor suppression via different mechanisms (43-47). 

OIS was first described in 1997 by Serrano and colleagues. The scientists observed that transformation of 

human or murine primary cells with the activated Harvey rat sarcoma viral oncogene homolog (HRASV12
) 

resulted in G1 cell cycle arrest (48). Markers of OIS have been detected in a variety of pre-malignant 

human lesions. The best-known examples for OIS in healthy humans are benign nevi carrying a BRAFV600E 
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mutation. After an initial growth phase, the BRAF-mutated melanocytes are arrested in growth via 

activation of OIS, stopping them from developing into malignant melanoma (49). Other examples of pre-

cancerous lesions displaying markers of OIS are serrated sessile adenomas (SSA) of the colon driven by 

BRAF mutations (46,50), dermal neurofibromas in NF1 patients (51) and prostate intraepithelial 

neoplasia (PIN) mostly associated with loss of one allele or mutation of PTEN (52). In all of these pre-

neoplastic lesions OIS provides a barrier to cancer progression.  

As senescent cells are resistant to apoptosis they are cleared by immune cells, another tumor-

suppressive mechanism initiated by OIS. Immune cells are attracted by the secretome of senescent cells 

comprising several cytokines, chemokines and many other inflammatory factors (53-56). Senescence was 

further shown to be involved in wound healing (54,57) and embryonal development (58-60).  

However, OIS does not only have beneficial effect, but is also associated with age-related pathologies as 

well as tumor progression. Many age-related diseases may results from insufficient clearing of senescent 

cells by the immune system resulting in chronic inflammation at the site of accumulated senescent cells 

(61,62). Dependent on the biological context, senescence can paradoxically enhance tumor proliferation 

and invasiveness. The secretion of factors associated with inflammation were shown to stimulate 

angiogenesis in neighboring cells (63) and thereby induce tumor growth and invasion (64-66). Co-

injection of senescent normal human cells enhances tumor development of cancer cells in vivo (67,68). 

For this reason, OIS is often described as a double-edged sword. The biological progress is beneficial in 

young organisms, e.g. embryonal development, in wound healing and tumor suppression, but with 

increasing age, it can be detrimental in age-related pathologies, or cancer progression for instance (69).  

1.2.1 Markers of OIS 

The lack of specific markers for OIS has hampered research on this multifaceted mechanism (70). The 

first marker used to identify senescent cells was elevated activity of the SA-ß-Gal (71). However, this 

marker is not specific for OIS and should only be used to identify OIS together with other markers (72). 

Finding a single marker for senescence remains a challenge until today as hallmarks of senescence can 

differ depending on the tissue type or inducing stimulus. Therefore the research community has agreed 

on verifying senescence by combining several markers (72).  

Senescent cells are characterized by enlarged, flat cellular bodies, increased metabolism, formation of 

senescence-associated heterochromatin foci (SAHF), absence of proliferative markers, as well as 

secretion of the senescence-associated secretory phenotype (SASP) (42). Even though it is known that 
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pathways inducing senescence vary in different cell types, the main signaling cascades which are 

activated in senescence are the TP53 and the retinoblastoma (RB) pathway (48,53,73-75). Both TP53 and 

RB are regulated by cyclin-dependent kinase inhibitors (CDKi) such as CDKN1A, CDKN1B, CDKN2A, and 

CDKN2B, with their activation resulting in growth arrest (61).  

Markers of OIS Examples Detection References 

Enlarged cell morphology Flat cell shape Microscopy (40,48) 

Absence of proliferative 

markers  

Cell cycle arrest Cell counts, 

immunohistochemistry (IHC) for 

Ki67, detection of reduced 

bromodeoxyuridine incorporation 

(76) 

Upregulation of cyclin-

dependent kinase 

inhibitors 

p16, p21, p14, 

p15, p53 

qPCR, Western blot, IHC (48,77-79) 

SASP IL1, IL6, IL8 qPCR, enzyme-linked 

immunosorbent assay (ELISA), 

cytokine arrays 

(46,47,80) 

 

Chromatin restructuring SAHF 4′,6-diamidino-2-phenylindole 

(DAPI) staining followed by 

microscopy 

(81) 

Increased lysosome 

content 

Detection of SA-

ß-Gal at 

suboptimal pH 

Staining followed by microscopy (71,82) 

 

 

Potentially, the variety of markers could also result from the fact that senescence develops over time 

and the different markers are present at different stages during induction of senescence (Fig. 8) (83).  
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of senescence which coincided with TP53 mutations (41). As a tool for the study presented here, OIS was 

circumvented by inhibition of RB and TP53 by transducing cells with the SV40-TAg (36,37). 

ii. The SASP 

As described above, one of the hallmarks of OIS is the SASP (66,86-88). When first fully characterized in 

2008, Coppé and colleagues observed the phenomenon of increased secretion of factors associated with 

inflammation by fibroblasts transduced with oncogenic RAS (66). The observed elevated secretion 

occurred gradually over the course of several days after senescence was induced. The secreted 

components included cytokines, chemokines, growth factors, proteases and several other inflammation-

related molecules. However, each cell line displayed a unique composition of the secreted factors. After 

verifying their findings by RT-qPCR, the researchers observed that most factors were upregulated on 

mRNA level, concluding that they were regulated on transcription level (66). The SASP was later found to 

be mediated by the transcription factors nuclear factor kappa B (NFκB) and CCAAT/enhancer-binding 

protein beta (CEBPB) (46,47,89). 

The SASP was described to reinforce the growth arrest under OIS in an autocrine as well as paracrine 

signaling mode (46,47,50). The relevance of the SASP in inducing growth arrest of neighboring cells was 

elegantly demonstrated by Acosta and colleagues (50). Co-cultures of senescent with cycling fibroblasts 

led to stable growth arrest and expression of OIS markers of the previously proliferating cell fraction. 

This effect was also observed in transwell systems as well as conditioned medium experiments, 

indicating that the effect was mediated by secreted factors (90). The role of the secreted factors on the 

microenvironment was shown to vary depending on cell type, location, stimuli and many other factors. 

However, certain factors are highly conserved and play an important role in maintaining senescence 

(46,47).  

The SASP is responsible for the tumor-protective as well as pro-tumorigenic effects of senescent cells. 

The beneficial effects of the SASP include stabilization of the growth arrest of senescent cells as well as 

the activation of an immune response that leads to clearance of the damaged cells. But the SASP can also 

fuel growth and invasiveness of neighboring cells in a paracrine manner (46,50,63,64,66). 

In a screen aimed at the suppression of the SASP in senescent fibroblasts, Laberge and colleagues 

identified two glucocorticoids, corticosterone and cortisol, as potential candidates (91). The group could 

show that treatment with glucocorticoids was sufficient to reduce the secretion of several SASP factors, 

including IL1A and IL6 both mediated by NFκB signaling. In their experiments glucocorticoid treatment of 



INTRODUCTION 

16 

senescent cells did not lead to bypass of senescence. However, through the reduced secretion of 

inflammatory molecules under treatment, the capacity to drive invasiveness of neighboring cells was 

reduced (91). In 2018, Ge and colleagues observed that the glucocorticoid dexamethasone reduced the 

sensitivity of non-small cell lung cancer (NSCLC) cells to chemotherapy (92). The combination treatment 

led to increased growth of NSCLC cells in vitro and in vivo in comparison to chemotherapy treatment 

alone. The DNA-damage resulting from chemotherapy induced senescence in NSCLC cells, as observed by 

elevated SA-ß-Gal activity, upregulated SASP secretion and altered cell morphology. Co-treatment with 

dexamethasone reduced secretion of SASP factors, including IL1B and IL6, and induced tumor sphere 

formation. Ge and colleagues concluded that dexamethasone inhibited the SASP and thereby weakened 

the senescence-induced growth arrest of chemotherapy (92). The fact that glucocorticoids inhibit IL1 

production as well as other cytokines was already described two centuries ago (93) and the effect was 

shown to be mediated by NFκB (94,95). The IL1 pathway, which activates NFκB, is known to be an 

important regulator of the SASP (50). 

iii. IL1 signaling pathway 

IL1 is one of the major cytokines regulating the SASP. There are two forms of the cytokine IL1, the alpha 

and the beta version (96), both involved in inflammation and regulation of immune response (97). IL1A 

as well as IL1B signal through the IL1R1, a receptor belonging to the immunoglobulin supergene family 

(98). Both forms are synthesized as precursors (31kDa). While pro-IL1A is immediately active, pro-IL1B 

has to be activated by Caspase 1 cleavage into its mature form (17kDa) (99,100). The active version of 

IL1B is secreted into the extracellular space upon pathway activation, while IL1A mainly stays and acts 

intracellular. IL1 is involved in gene expression, cell growth, senescence and differentiation (80,97,101). 

After binding of IL1 to the IL1R1, a second chain, the IL1 receptor accessory protein (IL1RAcP), is 

recruited (102) and the complex leads to activation of the downstream target IL1 receptor-associated 

kinase 1 (IRAK1) (97,103). IRAK1 is phosphorylated after activation and quickly degraded (104). This 

ultimately leads to the activation of NFκB (105) and the transcription of many inflammatory signaling 

molecules, including IL1 itself (106) (Fig. 9). Through an autocrine mechanism IL1 initiates its own 

transcription through a positive feedback via activation of NFκB (107). The signaling pathway is tightly 

regulated by several mechanisms. The IL1 receptor antagonist (IL1Ra) is a physiological inhibitor of the 

IL1 pathway and binds the IL1R1 without activating the downstream pathway (97). In addition to the 

IL1RI (80 kDa), there are soluble IL1 receptors as well as the IL1RII (68 kDa), which binds the cytokines 

and can thereby limit responsiveness (108) (Fig. 9).  
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expressing NRAS. The IL1R antagonist seemed to prevent clearance of the senescent cells by the immune 

system, inhibit senescence and led to proliferation of previously senescent cells (50). All these results 

suggest that IL1 signaling does play a major role in regulating the SASP. 

iv. IL6 signaling pathway  

IL6 was one of the first discovered SASP factors, just like IL1 (46,86). Kuilman specifically detected and 

analyzed the role of the cytokine when comparing the gene expression profile of fibroblasts in OIS to 

cells that bypassed OIS. IL6 is involved in immune response, inflammation, proliferation, and 

tumorigenesis (110,111). The IL6 pathway is activated by binding of the cytokine to a receptor composed 

of two subunits. The IL6Ra (80 kDa) contains the cytokine binding domain, while the second subunit IL6 

signal transducer (IL6ST, 130 kDa) transfers the signal further downstream (112). Additionally, there is a 

soluble IL6 receptor that can also bind to IL6ST and activate signaling (112). IL6ST associates with Janus 

kinase (JAK) tyrosine kinase family members, mainly JAK1, which phosphorylate themselves as well as 

IL6ST (113,114). This leads to downstream activation of signal transducer and activator of transcription 3 

(STAT3) as well as STAT1 by phosphorylation (115,116). The activated STATs then dimerize, transfer to 

the nucleus and initiate transcription. In addition, through JAK activation and phosphorylation of IL6ST, a 

docking site for Src homology 2 (SH2) is created, which can stimulate the MAPK and phosphatidyl-

inositol-3-kinase (PI3K) cascade (117-119). Long-term activation of the IL6 pathway activates a negative 

feedback mechanism, which induced internalization and degradation of IL6Ra (120), as well as 

downregulation of p-STAT3 via the suppressors of cytokine signaling 3 (SOCS3) (Fig. 10) (121).  
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transduction of neuronal precursor cells with BRAFV600E led to grow arrest of cells, which were positive 

for SA-ß-Gal and CDKN2A (32). Additionally, Jacob and colleagues detected a low mitotic index in n=52 

analyzed PA tumor samples as well as an overexpression of senescence-associated genes on mRNA level 

such as CDKN1A, CDKN2A, CEBPB and IGFBP7. The upregulation of senescence- and inflammation-

associated genes in PA was later confirmed by Jones and colleagues (124). Looking at miRNA and gene 

expression in n=14 PA samples, the authors detected elevated expression of miRNAs regulating the NFκB 

pathway and upregulation of factors of the SASP such as IGFBP7, TIMP1, IL6, IL8 and IL1B, as well as 

CDKN1A, CDKN2A. The mechanism of OIS is thought to induce growth arrest in PA cells, which could be 

the main reason for the slow and benign growth behavior typically observed in PA patients. 
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1.3 Aim 

The aim of this thesis was the development of LGG models to improve the understanding of the 

molecular mechanisms governing tumor growth behavior of LGGs and to identify novel treatment 

options. 

The first aim of this thesis was to support the establishment of a primary in vitro and in vivo model of a 

LGG. As described above, the lack of in vitro and in vivo models hampers research in LGGs. Models are 

urgently needed to better study and understand the biology of this tumor entity and subsequently 

develop new therapies. 

The second aim of the thesis was to utilize the established LGG models to prove presence and 

characterize OIS as well as the concurrent inflammatory signaling. The benign growth behavior of LGG is 

considered to result from OIS (19), which in turn has been reported to be regulated by the inflammatory 

network for the SASP (87), but the role of the SASP in PA is unknown. 

The third and fourth aim was the identification of specific markers for OIS in PA and the investigation of 

their regulation during OIS. LGG tumor growth is unpredictable to date, making it vital to understand the 

regulation of tumor recurrence or induction of growth arrest. Stimulation or inhibition of the identified 

OIS-regulating signaling networks could modulate tumor growth and represent putative targets. 

The final aim of the project was to implement the findings into a clinical context, by identifying novel 

targets or biomarkers, which would enable prediction of clinical outcome. As prediction of recurrence or 

progression remains poor to date, prognostic markers identifying patient populations at low or high risk 

of relapse or recurrence could improve clinical decision-making. 
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2. MATERIALS AND METHODS 

2.1 Materials 

2.1.1 Cell lines and cell culture 

Cell lines 

Cell line Origin Cat. no. Supplier 

BT-40 Human pediatric low-

grade glioma (125) 

- A kind gift from Dr. P. 

Houghton, University of Texas 

Health Science Center at San 

Antonio, TX, USA 

DKFZ-BT66 Human pediatric pilocytic 

astrocytoma 

- Generated in the CCU Pediatric 

Oncology, Heidelberg, 

Germany (31). 

HEK293T Human embryonic 

kidney 

HCL4517 GE Healthcare Dharmacon, 

Lafayette, CO, USA 

MED8A Human 

medulloblastoma, group 

3 (126) 

- A kind gift from Dr. R. 

Gilbertson, St. Jude, Memphis, 

TN, USA 

NHA Normal human 

astrocytes 

CC-2565 LONZA, Basel, Switzerland 

Platinum GP cells Based on HEK293T 

human embryonic kidney 

cells 

RV-103 Cell Biolabs, San Diego, CA, 

USA 
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Cell culture reagents  

Article Cat. no. Supplier 

ABM basal medium CC-3187 LONZA, Basel, Switzerland 

Acetylcystein (100 

µg/mL) 

BG0012 BIOTREND Chemikalien, Cologne, Germany 

AGM SingleQuot Kit 

Supplements & Growth 

Factors 

CC-4123 LONZA, Basel, Switzerland 

B-27 Supplement (50x) 17504044 Thermo Fisher Scientific, Waltham, MA, USA 

Basic-FGF (20 µg/mL) AF-100-18B Peprotech Rocky Hill, NJ, USA 

Blasticidin S HCl (10 

mg/mL) 

A1113903 Thermo Fisher Scientific, Waltham, MA, USA 

DMEM BE12-604F/U1 LONZA, Basel, Switzerland  

DMSO (Dimethyl 

sulfoxide), cell culture 

grade 

M6323.0100 Genaxxon bioscience, Ulm, Germany 

Doxycycline sc-337691 Santa Cruz, Dallas, TX, USA 

EGF (20 µg/mL) AF-100-15 Peprotech Rocky Hill, NJ, USA 

FBS (fetal bovine serum) F7524 Sigma-Aldrich, St. Louis, MO, USA 

Glucose solution (200 

g/L) 

A2494001 Thermo Fisher Scientific, Waltham, MA, USA 

GlutaMAX-I supplement 

(100x) 

35050038 Thermo Fisher Scientific, Waltham, MA, USA 

heat-inactivated horse 

serum 

10368902 Thermo Fisher Scientific, Waltham, MA, USA 

HEPES buffer solution 

(1M) 

15630049 Thermo Fisher Scientific, Waltham, MA, USA 

Hygromycin-B (50 

mg/mL in PBS) 

sc-29067 Santa Cruz, Dallas, TX, USA 

Insulin human I3536 Sigma-Aldrich, St. Louis, MO, USA 
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Leukemia Inhibitory 

Factor human (LIF) (10 

µg/mL) 

L5283 Sigma-Aldrich, St. Louis, MO, USA 

MEM  11095080 Thermo Fisher Scientific, Waltham, MA, USA 

N2 17502048 Thermo Fisher Scientific, Waltham, MA, USA 

Neurobasal A 

NeuroCult™ NS-A Basal 

Medium (human) 

05750 Stemcell Technologies, Vancouver, Canada 

Neural Survival Factor-1 

(NSF-1) 

CC-4323 LONZA, Basel, Switzerland 

Phosphate Buffered 

Saline (PBS) 

D8537 Sigma-Aldrich, St. Louis, MO, USA 

Puromycin 13884 Cayman Chemicals, Ann Arbor, MI, US 

RPMI 1640 21875034 Thermo Fisher Scientific, Waltham, MA, USA 

0.05% Trypsin-EDTA 25300054 Thermo Fisher Scientific, Waltham, MA, USA 

X-VIVO medium 04-418Q LONZA, Basel, Switzerland 

 

2.1.2 Treatment reagents and drugs 

Article Cat. no. Supplier 

ABT-737 ab141336 Abcam, Cambridge, UK 

Anakinra (Kineret 150 

mg/mL) 

2426499 Sobi, Stockholm, Sweden 

Anti-human IL1B 

neutralizing antibody 

MAB201-100 R&D Systems, Minneapolis, MN, USA 

Bepanthen 01578847 Bayer, Leverkusen, Germany 

Betaisadona solution 04923204 Mundipharma, Limburg, Germany 

Bupivacaine (0.25%) 07703489 Jenapharm, Jena, Germany 



MATERIALS AND METHODS 

26 

Caprofen Rimadyl - Pfizer, New York, NY, USA 

Carboplatin S1215 Selleckchem, Houston, TX, USA 

Dasatinib S1021 Selleckchem, Houston, TX, USA 

Dexamethasone (water 

soluble) 

D2915 Sigma-Aldrich, St. Louis, MO, USA 

IsoFlo® (100% w/w) - Zoetis, Kalamazoo, MI, USA 

Navitoclax (ABT-263) 11500 Cayman chemical, Ann Arbor, MI, USA 

Quercetin S2391 Selleckchem, Houston, TX, USA 

rIL1B 201-LB-005 R&D Systems, Minneapolis, MN, USA 

rIL6 206-IL-010 R&D Systems, Minneapolis, MN, USA 

Tocilizumab (RoActemra 

20 mg/mL) 

7286809 Hoffmann-LaRoche, Basel, Switzerland 

Trametinib A3018 ApexBio, Houston, TX, USA 

Vincristine sulfat S1241 Selleckchem, Houston, TX, USA 

 

2.1.3 Bacteria 

Article Cat. no. Supplier 

One Shot™ TOP10 
chemically competent 

E.coli 

C4040-03 Invitrogen, Carlsbad, CA, USA 

 

Antibiotics for bacterial selection  

Article Cat. no. Dilution Supplier 

Ampicillin sodium salt 

dissolved in sterile water 

(100 mg/mL) 

sc-202951 1:1000 Santa Cruz, Dallas, TX, USA 
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Kanamycin sulfate min. 

750 I.U./mg dissolved in 

sterile water (10 mg/mL) 

T832.1 1:100 Carl Roth, Karlsruhe, Germany 

 

2.1.4 Antibodies 

Primary antibodies for western blot (WB)/immunofluorescence (IF) 

Article Cat. no. Dilution (1:x) Supplier 

monoclonal mouse anti-

β-actin  

A5441 1000 Sigma-Aldrich, St. Louis, MO, USA 

monoclonal rabbit anti-

CDKN2A 

108349 1000 Abcam, Cambridge, UK  

monoclonal mouse anti-

CDKN1A  

sc-6246 200 Santa Cruz, Dallas, TX, USA 

monoclonal rabbit anti-

ERK (1/2) 

4695 1000 Cell Signaling, Danvers, MA, USA 

monoclonal rabbit anti-

pERK (1/2) (Thr202/ 

Tyr204) 

4377 1000 Cell Signaling, Danvers, MA, USA 

monoclonal rabbit anti-

human IL1B  

ab9722 1000 Abcam, Cambridge, UK 

polyclonal rabbit anti-

human IL1R1 

sc-688 100 Santa Cruz, Dallas, TX, USA 

polyclonal rabbit anti-

human IL6Ra  

sc-661 200 Santa Cruz, Dallas, TX, USA 

monoclonal mouse anti-

human IRAK1  
sc-5288 200 Santa Cruz, Dallas, TX, USA 

monoclonal rabbit anti-

MEK (1/2) 

9122 1000 Cell Signaling, Danvers, MA, USA 

monoclonal rabbit anti-

pMEK (1/2) (Ser217/ 

Ser221) 

9154 1000 Cell Signaling, Danvers, MA, USA 

monoclonal rabbit anti-

NFκB p65/RELA Clone 

C22B4  

4764S 1000 Cell Signaling, Danvers, MA, USA 
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monoclonal rabbit anti-

Phospho-NFκB p65/RELA 

(Ser536) Clone 93H1  

3033S 1000 Cell Signaling, Danvers, MA, USA 

monoclonal mouse anti-

human phosho-STAT3 

(Tyr705) 

9138 1000 Cell Signaling, Danvers, MA, USA 

monoclonal mouse anti-

human STAT3  

9139 1000 Cell Signaling, Danvers, MA, USA 

monoclonal mouse anti-

SV40 large T antigen  
ab80564 1000 (WB) 

250 (IF) 

Abcam, Cambridge, UK 

monoclonal mouse anti-

TP53 

sc-126 200 Santa Cruz, Dallas, TX, USA 

 

Primary antibodies for immunohistochemistry 

Article Cat. no. Dilution  Pretreatment Supplier 

monoclonal mouse anti-

CDKN2A clone GI75-405 

551153 1:200 64 min with 

CC1+OptiVew 

BD Pharmingen, San Jose, 

CA, USA 

polyclonal rabbit clone 

anti-pERK (1/2) 

9101S 1:100 4 min with 

protease 

Cell Signaling, Danvers, MA, 

USA 

polyclonal rabbit anti-

GFAP 

Z0334 1:1000 None Dako, Stanta Clara, CA, USA 

polyclonal rabbit clone 

C-20 anti-IL6Ra 

sc-661 1:100 64 min with 

CC2 

Santa Cruz, Dallas, TX, USA 

monoclonal rabbit clone 

30-9 anti-Ki67 

REF790-4286 3:4 64 min with 

CC1 

Ventana, Tucson, AZ, USA 

monoclonal mouse anti-

LCA clone 2B11+PD7/26 

M0701 1:200 52 min with 

CC1 

Dako, Stanta Clara, CA, USA 

 

Secondary antibodies 

Article Cat. no. Dilution (1:x) Supplier 

polyclonal donkey-anti-

rabbit IgG HRP 

V795A 10000 Promega, Madison, WI, USA 
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polyclonal goat-anti-

mouse IgG HRP 

115-035-003 10000 Dianova, Hamburg, Germany 

goat anti-mouse- Alexa 

Fluor® 488 
A28175 500 Cell Signaling, Danvers, MA, USA 

 

2.1.5 Primers 

Gene name Cat. no./sequence Supplier 

ACTB forward ctggaacggtgaaggtgaca Invitrogen, Carlsbad, CA, USA 

ACTB reverse aagggacttcctgtaacaatgca Invitrogen, Carlsbad, CA, USA 

CDKN1A QT00062090 Qiagen, Hilden, Germany 

CDKN2A QT00089964 Qiagen, Hilden, Germany 

hTERT QT00073409 Qiagen, Hilden, Germany 

IL1B QT00021385 Qiagen, Hilden, Germany 

IL6  QT00083720 Qiagen, Hilden, Germany 

IL1R1 QT00081263 Qiagen, Hilden, Germany 

IL6R  QT00023660 Qiagen, Hilden, Germany 

KIAA1549:BRAF forward gtccttctacagcccagccca Invitrogen, Carlsbad, CA, USA 

KAA1549:BRAF reverse tggagatttctgtaaggctttcacgt Invitrogen, Carlsbad, CA, USA 

SV40 large T antigen 

forward 

gatgatgatgatgaagacagccagg Invitrogen, Carlsbad, CA, USA 

SV40 large T antigen 

reverse 

tgatcatgaacagactgtgaggact Invitrogen, Carlsbad, CA, USA 

TBP forward agaacaacagcctgccac Invitrogen, Carlsbad, CA, USA 

TBP reverse gttgctcttccaaaatagacagac Invitrogen, Carlsbad, CA, USA 

TNFRSF1B  QT00029232 Qiagen, Hilden, Germany 
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2.1.6 Plasmids 

Article Cat. no. Supplier 

GIPZ IL1B shRNA RHS4531-EG3553 

glycerol set: 

#1: RHS4430-

200270175 - 

V3LHS_321412 

#2: RHS4430-
200270935 - 

V3LHS_321414 

#3: RHS4430-

200266465 - 

V3LHS_321415 

GE Healthcare Dharmacon, Lafayette, CO, USA 

GIPZ IL6 shRNA RHS4531-EG3569 

glycerol set: 

#1: RHS4430-

200211138 - 

V2LHS_111640 

#2: RHS4430-

200240808 - 

V3LHS_390095 

#3: RHS4430-

200236401 - 

V3LHS_390097 

GE Healthcare Dharmacon, Lafayette, CO, USA 

GIPZ IL1R1 shRNA RHS4531-EG3554 

glycerol set: 

#1: RHS4430-        

200179369 - 

V2LHS_131081 

#2: RHS4430-

200207931 - 
V2LHS_131083 

#3: RHS4430-

200282217 - 

V3LHS_403370 

#4: RHS4430-

200280062 - 

V3LHS_403365 

#5: RHS4430-

200281507 - 

V3LHS_403366 
#6: RHS4430-

200283912 - 

GE Healthcare Dharmacon, Lafayette, CO, USA 
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V3LHS_403367 

GIPZ IL6R shRNA RHS4531-EG3570 

glycerol set: 

#1: RHS4430-

200179323 - 

V2LHS_93695 
#2: RHS4430-

200252062 - 

V3LHS_387501 

#3: RHS4430-

200251326 - 

V3LHS_387502 

GE Healthcare Dharmacon, Lafayette, CO, USA 

pBABE-hygro-hTERT 

plasmid  

1773 (Addgene) A kind gift from Dr. B. Weinberg, MIT, Cambridge, 

MA, USA 

pCMV-VSV-G VPK-302 Cell Biolabs, San Diego, CA, USA 

pFRIPZ SV40-TAg - Generated from the pTRIPZ plasmid (Open 

Biosystems), by Dr. F. Selt, CCU Pediatric oncology, 

Heidelberg, Germany (31) 

pGreenFire reporter 

vector 
TR011PA/VA-1 System Biosciences, Palo Alto, CA, USA 

Thermo Scientific™ 
GIPZ™ Non-silencing 

Control 

RHS4346 GE Healthcare Dharmacon, Lafayette, CO, USA 

 

2.1.7 Biochemicals and Reagents 

Article Cat. no. Supplier 

Acrylamide/Bis Solution, 

37.5:1 (40 % w/v) 

10681.01 SERVA, Heidelberg, Germany 

Agar S210.3 Carl Roth, Karlsruhe, Germany 

Agarose, low gelling 

temperature 

A9414 Sigma-Aldrich, St. Louis, MO, USA 

Albumin Standard         

(2 mg/mL) 

23209 Thermo Fisher Scientific, Waltham, MA, USA 

Ammonium persulfate A3678 Sigma-Aldrich, St. Louis, MO, USA 
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(APS) 

ß-mercaptoethanol 39563 SERVA, Heidelberg, Germany 

Brilliant Blue G 27815 Sigma-Aldrich, St. Louis, MO, USA 

Bromophenol blue  A2331,0005 AppliChem, Darmstadt, Germany 

BSA  A4612 Sigma-Aldrich, St. Louis, MO, USA 

CellTiter-Glo One 

Solution   

G8461 Promega, Madison, WI, USA 

CellTracker™ CM-DiI Dye  C7001 Thermo Fisher Scientific, Waltham, MA, USA 

DAPI (4',6-Diamidino-2-

phenylindol) (0.25 

µg/mL dissolved in PBS) 

A1001 AppliChem, Darmstadt, Germany 

Dimethylformamide 

(DMF) 

20270 SERVA, Heidelberg, Germany 

Dithiothreitol (DTT) A1101 AppliChem, Darmstadt, Germany 

ECL Prime Amersham RPN2232 GE Healthcare Dharmacon, Lafayette, CO, USA 

Ethylene diamine 

tetraacetate (EDTA)  

1034 GERBU Biotechnik GmbH, Heidelberg, Germany 

Ethanol, absolute 20821.321 VWR chemials, Radnor, PA, USA 

Glycerol 15523 Honeywell Riedel-de-Haën, Seelze, Germany 

Glycine 100% 33226 Sigma-Aldrich, St. Louis, MO, USA 

HEPES 9105.2 Carl Roth, Karlsruhe, Germany 

Hydrochlorid acid (HCl) 

(12.1 M)  

13-1683 Sigma-Aldrich, St. Louis, MO, USA 

Incidin™ Foam 110566 Ecolab, Monheim am Rhein, Germany 

Lemon fresh AF - L.C. PLIWA, Malsfeld-Ostheim, Germany 

Methanol M/4000/PC17 Thermo Fisher Scientific, Waltham, MA, USA 
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Milk powder T145.2 Carl Roth, Karlsruhe, Germany 

Normal goat serum  5-000-121 Dianova, Hamburg, Germany 

Paraformaldehyde (PFA) 

16% MeOH free  

43368 Alfa Aesar, Karlsruhe, Germany 

Peptone 8986 Carl Roth, Karlsruhe, Germany 

PhosSTOP 4906845001 Sigma-Aldrich, St. Louis, MO, USA 

Polybrene sc-134220 Santa Cruz, Dallas, TX, USA  

Poly-L-Lysine 102691 MP Biomedicals, Santa Ana, CA, USA 

Ponceau S solution A2935,0500 AppliChem, Darmstadt, Germany 

Potassium chloride (KCl) 6781.1 Carl Roth, Karlsruhe, Germany 

Precision Plus Protein™ 

Kaleidoscope™  

1610375 Bio-Rad, Hercules, CA, USA 

2- Propanol 20842.330 VWR chemials, Radnor, PA, USA 

Soldium Chloride (NaCl) BP358-1 Thermo Fisher Scientific, Waltham, MA, USA 

Sodium dodecyl sulfate 

(SDS) pellets 

2326.1 Carl Roth, Karlsruhe, Germany 

Sodium hydroxide 

(NaOH) pellets  

30620 Sigma-Aldrich, St. Louis, MO, USA 

StayBrite D-Luciferin  7903 BioVision, Milpitas, CA, USA 

Sterile water for 

injection purposes 

Ampuwa® 

06605508 Fresenius Kabi, Bad Homburg, Germany 

SYBR™ Green Platinum™ 
qPCR SuperMix-UDG 

11733046  Thermo Fisher Scientific, Waltham, MA, USA 

N, N, N, N-Tetramethyl-

Ethylenediamine 

(TEMED)  

2367.3 Th.Geyer, Renningen, Germany 

Tris (Trisma Base) T1503 Sigma-Aldrich, St. Louis, MO, USA 
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Triton-X 100 A4975,0500 AppliChem, Darmstadt, Germany 

Tween 20 
(polyoxyethylene 

sorbitan monolaureate) 

500-018-3 MP Biomedicals, Santa Ana, CA, USA 

Vi-Cell XR Cell Viability 

Analyzer™ solutions   

 Beckmann Coulter, Brea, CA, USA 

Yeast extract 70161 Sigma-Aldrich, St. Louis, MO, USA 

 

2.1.8 Buffers and solutions 

Article Ingredients 

Agar in LB medium 15 g agar mixed with 1 L LB medium: 10 g sodium chloride, 10 g 

peptone, 5 g yeast extract dissolved in 1 L of de-ionized water, 

autoclaved and supplemented with appropriate antibiotic. 

10% APS 5 g APS dissolved in 50 mL autoclaved de-ionized water, aliquoted 

to 1 mL and stored at -20°C. 

Block milk 100% (WB) Dissolve 200 g milk powder and 30 g BSA in 500 mL PBS. Dissolve 

goat serum powder in 10 mL sterile water. Add 10 mL of the 

dissolved goat serum, 2 mL of Tween 20 and 200 mL of FBS (not 

inactivated) to milk powder and BSA and fill-up with PBS to 1 L 

volume in total. Aliquot in 50 mL Falcons and store at -20°C.  

Blocking solution (IF) 3% BSA plus 0.05% TritonX 100 in PBS, store at 4°C 

2.5M CaCl2  27.7 g CaCl2 in 100 mL de-ionized water, sterile filter, aliquot to 2 

mL and store at -20°C. 

Coomassie Brilliant Blue staining 

solution 

0.05% Brilliant Blue G, 25% isopropanol, 10% acetic acid in de-

ionized water. Filtered and stored at RT protected from light. 

DAPI/TritonX 100 solution 0.1% TritonX 100 and 1 µg/mL DAPI both dissolved in PBS. 

10x Doxycycline for cell culture 100 mg doxycycline (4°C) are dissolved in 10 mL sterile water, 
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aliquoted to 1 mL and stored at -20°C. 

1x Doxycycline (1 mg/mL) for cell 

culture 

Under sterile conditions dilute 2 mL doxycycline (10 mg/mL) in 18 

mL autoclaved de-ionized water, aliquot to 1 mL and store at -20°C. 

Doxycycline for mice 2.5 cubes of sugar and 0.7 g doxycycline are dissolved in 50 mL 

sterile water. 

DTT 1 M 1.54 g DTT are dissolved in 10 mL autoclaved de-ionized water, 

aliquoted to 1 mL and stored at -20°C. 

FBS for cell culture FBS is thawed, heat-inactivated in a water bath at 56°C for 30 

minutes and aliquoted to 50 mL. Storage at -20°C. 

2x HBS pH 7.12 Dissolve 8.2 g sodium chloride, 11.9 g HEPES and 0.1 g NA2HPO4 in 

500 mL de-ionized water, adjust pH and sterile filter. Aliquot to 10 

mL and store at -20°C. 

LB Medium 10 g sodium chloride, 10 g peptone, 5 g yeast extract are dissolved 

in 1 L of de-ionized water, autoclaved and stored at 4°C. 

3% Low-melting agarose Mix 0.9 g low-melting agarose in 31 mL of PBS and dissolve under 

heat using the microwave. 

Mastermix SYBR Green Per sample: 10 µL 2x SYBR Green, 2 µL primer mix (forward + 

reverse), 3µL de-ionized water 

2% Milk in TBS-T Dissolve 4 g milk powder in 200 mL of TBS-T, store at 4°C. 

Permeabilization solution (IF) 0.2% TritonX 100 in PBS 

PhosSTOP Dissolve one tablet of PhosSTOP in 1 mL SDS lysis buffer, vortex, 

aliquot to 100 µL, store at -20°C. 

Poly-L-Lysine solution (100 µg/mL) Dissolve 1 mg PLL in 10 mL sterile water and store at -20°C. 

Ponceau S solution 5 mL Ponceau S are diluted in 45 mL de-ionized water and stored at 

RT. 
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Resolving gel buffer pH 8.8 (1.5 M) 36.34 g Tris are dissolved in 150 mL de-ionized water, the pH is 

adjusted to 8.8 and filled-up with water to 200 mL. Store at RT. 

20% SDS 20 g of SDS pellets are dissolved in 100 mL of de-ionized water and 

stored at RT. 

10x SDS running buffer 30.3 g Tris, 144.1 g glycine and 10 g SDS pellets are dissolved in 700 

mL of de-ionized water, pH is adjusted to 8.3 and filled-up to result 

in 1 L final volume with de-ionized water. Store at RT. 

1x SDS running buffer 100 mL of 10x SDS running buffer are diluted in 900 mL of de-

ionized water. 

SDS lysis buffer  12.4 mL of stacking gel buffer, 10 mL of 20% SDS, 10 mL of 100% 

glycerol are filled-up to 100 mL with de-ionized water. To 1 mL 

aliquots (stored at -20°C), 1 µL DTT (1M) and 100 µL dissolved 

PhosSTOP are added fresh. 

Stacking gel buffer pH 6.8 (0.5 M) 12.12 g Tris are dissolved in 150 mL of de-ionized water, the pH is 

adjusted to 6.8 and filled-up with water to 200 mL. Store at RT. 

10x TBS  Dissolve 60 g Tris and 440 g sodium chloride in 4 L of de-ionized 

water, adjust pH to 7.6 and fill-up with de-ionized water to 5 L 

total. Store at RT. 

1x TBS-T 100 mL of 10x TBS are diluted in 900 mL of de-ionized water and 2 

mL of Tween 20 are added. Store at RT. 

1x TE puffer pH 8.0 Dissolve 0.121 g Tris (10 mM), 0.0292g EDTA (1 mM) in 100 mL 

water, adjust pH and sterile filter, store at 4°C. 

0.1x TE puffer pH 8.0 Dilute 1x TE puffer 1:10 in de-ionized water and sterile filter. 

0.1x TE with dH2O (1:2) Dilute 5 mL of 0.1xTE with 10 mL of sterile water. 

10x Transfer buffer  58 g Tris and 29.3 g glycine are dissolved in 1 L of de-ionized water. 

Store at RT. 



MATERIALS AND METHODS 

37 

1x Transfer buffer Mix 100 mL of 10x transfer buffer, 200 mL of 100% methanol and 

700 mL de-ionized water. Store at RT. 

 

2.1.9 Consumables 

Article Supplier 

Anti-A2B5 MicroBeads, human, mouse, rat (130-

093-392) 

Miltenyi Biotec, Bergisch Gladbach Germany 

Chromatography Paper "Whatman CHR 3mm" GE Healthcare Dharmacon, Lafayette, CO, USA 

Conical tubes, 15 mL and 50 mL Thermo Fisher Scientific, Waltham, MA, USA 

Cryovial Carl Roth, Karlsruhe, Germany 

Falcon® 5 mL Round Bottom Polystyrene Test Tube  Thermo Fisher Scientific, Waltham, MA, USA 

Glassware SCHOTT AG, Mainz, Germany 

Ibidi 8-well µ-slides Ibidi GmbH, Martinsried, Germany 

Microplates, 96 well, clear Greiner Bio-One, Frickenhausen, Germany 

Microplates, 96 well, white Greiner Bio-One, Frickenhausen, Germany 

Millicell® CM 0.4 µm (co-culture inserts) Merck Millipore, Burlington, MA, USA 

Needle 27G 0.4 x 20 mm Terumo, Leuven, Belgium 

Nitrocellulose (NC) membrane Whatman® 

Protran® 

Sigma-Aldrich, St. Louis, MO, USA 

Parafilm® M Benis, Braine-l'Alleud, Belgium 

PCR tube strips and domed caps Thermo Fisher Scientific, Waltham, MA, USA 

Pipette filter tips, 10 µL, 20 µL, 100 µL, 200 µL and 

1000 µL 

Nerbe plus, Winsen/Luhe, Germany 

Polystyrene Round-Bottom Tube with Cell-Strainer 

Cap 

Corning, Kaiserslautern, Germany 
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Polyvinylidene difluoride (PVDF) membrane Bio-Rad, Hercules, CA, USA 

PROLENE® Polypropylene Suture, C1, 13 mm Ethicon, Somerville, NJ, USA 

Reaction tubes "Safe-Lock Tubes", 0.5 mL, 1.5 mL 

and 2.0 mL 

Eppendorf, Hamburg, Germany 

Serological pipettes, 5 mL, 10 mL and 20 mL Sigma-Aldrich, St. Louis, MO, USA 

Sterile filter 0.22 µm  Merck Millipore, Burlington, MA, USA 

Syringe 1 mL Megro™ Luer Luck tuberkulin softject Thermo Fisher Scientific, Waltham, MA, USA 

Syringe 10 mL Terumo, Tokyo, Japan 

Tissue culture dishes, 100 x 20 mm Thermo Fisher Scientific, Waltham, MA, USA 

Tissue culture flasks "Cellstar" 25 cm2, 75 cm2, 175 

cm2 

Greiner Bio-One, Frickenhausen, Germany 

Tissue culture plates, 6 well and 96 well Corning, Kaiserslautern, Germany 

Tissue culture plates 96 well round bottom (U-

base) TPP® 

Sigma-Aldrich, St. Louis, MO, USA 

Tissue culture 96-well flat bottom black opaque 

wall plates  

Corning, Kaiserslautern, Germany 

ViCell 4 mL tube Beckmann Coulter, Brea, CA, USA 

 

2.1.10 Kits 

Article Cat. no. Supplier 

Amersham ECL Prime 

Western Blotting 

Detection Reagent 

RPN2232 GE Healthcare Dharmacon, Lafayette, CO, USA 

Bio-Plex® Cell Lysis Kit  171304011 Bio-Rad, Hercules, CA, USA 

Bio-Plex Pro™ Human 
Cytokine 27-plex Assay 

m500kcaf0y Bio-Rad, Hercules, CA, USA 
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Brain Tumor 

Dissociation Kit 

130-095-942 Miltenyi Biotec, Bergisch Gladbach Germany 

ELISA Kit for IL1B  DLB50 R&D Systems, Minneapolis, MN, USA 

ELISA Kit for IL6 D6050 R&D Systems, Minneapolis, MN, USA 

Pierce™ BCA Protein 
Assay Kit 

23227 Thermo Fisher Scientific, Waltham, MA, USA 

PlasmoTest™ 
Mycoplasma Detection 

Kit  

Rep_ptrk InvivoGen, Toulouse, France 

QIAGEN Plasmid Maxi 

Kit 

 12145 Quiagen, Hilden, Germany 

RevertAid First Strand 

cDNA Synthesis Kit  

K1622 Thermo Fisher Scientific, Waltham, MA, USA 

RNeasy Mini Kit 74104 Quiagen, Hilden, Germany 

qPCR Mastermix for 

SYBR® Green I 

4309155 Thermo Fisher Scientific, Waltham, MA, USA 

Senescence ß-

galactosidase staining kit  

9860 Cell Signaling, Danvers, MA, USA 

Thermo Scientific™ 
Trans-Lentiviral™ 
Packaging System 

TLP5912 GE Healthcare Dharmacon, Lafayette, CO, USA 

Venor® GenM Classic 

Mycoplasma Detection 

Kit 

11-1250 Minerva Biolabs, Berlin, Germany 

 

2.1.11 Software 

Software Company 

ABI 7500 Software v2.3 Applied Biosystems, Thermo Fisher Scientific, 

Waltham, MA, USA 

CellB 2.3 Soft imaging software Olympus Biosystem GmbH, Shinjuku, Tokyo, Japan 

Chemi-Capt 5000 Vilber Lourmat, Eberhardzell, Germany 
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EndNote X8 Clarivate Analytics, Philadelphia, PA, USA 

FlowJo v10  FlowJo, LLC, Ashland, OR, USA 

GraphPad Prism v5.01 GraphPad Software Inc., San Diego, CA, USA 

Microsoft office 2007/2010 Microsoft, Redmond, WA, USA 

OPTIMA Microplate Reader Software v2.20R2  BMC Labtech, Ortenberg, Germany 

R 3.4 The R Foundation, Vienna, Austria 

R2 R2 Academic Medical Center (AMC), Amsterdam, 

Netherlands 

Vi-CELL™ XR 2.03 software Beckmann Coulter, Brea, CA, USA 

 

2.1.12 Instruments and machines 

Machine Company 

ABI 7500 Real Time PCR cycler Applied Biosystems, Foster City, CA, USA 

Analytical Balance "BP 121S" Sartorius, Göttingen, Germany 

Barnstead™ GenPure™ xCAD Plus Ultrapure Water 
Purification System 

Thermo Fisher Scientific, Waltham, MA, USA 

BD FACS Canto II flow cytometer Becton, Dickinson and Company, Heidelberg, 

Germany 

Benchtop centrifuge Allegra X-12R Beckmann Coulter, Brea, CA, USA  

Biometra T3000 Thermocycler LabRepCo, Horsham, PA, USA 

Blotting chamber "TransBlot® SD Semi-Dry Transfer 

Cell" 

Bio-Rad, Hercules, CA, USA 

CellMate® II Serological Pipette Matrix Technologies Corporation, Thermo Fisher 

Scientific, Waltham, MA, USA 

Cell culture incubator "C200" Labotect, Rosdorf, Germany 
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Cell culture sterile bench "Safe 2020" Thermo Fisher Scientific, Waltham, MA, USA 

Chemi-Smart 5000 Technology, 

Chemiluminescence imaging system 
Vilber Lourmat, Eberhardzell, Germany 

Cryo Freezing container Nalgene® Cryo 1°C “Mr. 
Frosty”  

Thermo Fisher Scientific, Waltham, MA, USA 

Electrophoresis chamber "Mini-Protean® Tetra 

System" 

Bio-Rad, Hercules, CA, USA 

Epson perfection V700 Photo scanner EPSON, Nagano, Japan 

FLUOstar OPTIMA automated plate reader  BMC Labtech, Ortenberg, Germany 

Hamilton Microliter™ #701 Hamilton, Reno, NV, USA 

Heating block "Thermomixer® comfort" Eppendorf, Hamburg, Germany 

Heat sealer "Folio" Severin Elektro, Sundern, Germany 

Incubator Heraeus B6420 Heraeus, Leverkusen, Germany 

Innova 4230 refrigerated benchtop incubator New Brunswick Scientific, Nürtingen, Germany 

Instruments for surgery FST fine science, Foster City, CA, USA 

Isoflurane Vapor 19.3 Dräger, Lübeck, Germany 

Light microscope "CKX31" Olympus, Hamburg, Germany 

Light microscope "CKX41" with reflected 

fluorescence system 

Olympus, Hamburg, Germany 

Light microscope Leica M205 FA Leica, Wetzlar, Germany 

Light microscope "Zeiss LSM710" confocal 

microscope for fluorescence imaging 

Carl Zeiss, Oberkochen, Germany 

LS Column Miltenyi Biotec, Bergisch Gladbach Germany 

Magnetic stirrer with heating "MR-3001" Heidolph Instruments, Schwabach, Germany 

Micro 4™ Micro Syringe Pump Controller World precision instruments, Sarasota, FL, USA 
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Microcentrifuge "5417 R"; rotor: "F 45-24-11" Eppendorf, Hamburg, Germany 

Micropipette “PIPETMAN Neo® P2N”, P10N”, 
P20N”, P200N”, P1000N” 

Gilson, Limburg-Offheim, Germany 

Micropipette "Eppendorf Research® 10-100 µL", 

0.5-10 µL" 

Eppendorf, Hamburg, Germany 

Microplate fluorescence reader "FLUOstar 

OPTIMA" 

BMG Labtech, Ortenberg, Germany 

Microwave Severin MW 7869 Severin Elektro, Sundern, Germany 

MidiMACS™ Separator Miltenyi Biotec, Bergisch Gladbach Germany 

Multi-axle rotating mixer "TRM 56" IDL GmbH, Nidderau, Germany 

Multichannel pipette "Finnipipette® Digital 40-200 

µL" 
Thermo Fisher Scientific, Waltham, MA, USA 

Nano-Drop ND-1000 Spectrophotometer PEQLab, Erlangen, Germany 

pH meter "SevenEasy" Mettler-Toledo, Gießen, Germany 

Pipette controller "accu-jet® pro" BRAND, Wertheim, Germany 

Power supply "EV231"  PEQLab, Erlangen, Germany 

Power supply "PowerPac™ Basic Power Supply" Bio-Rad, Hercules, CA, USA 

Precision balance "440-47N" KERN & SOHN, Balingen, Germany 

Refrigerator with freezer Liebherr, Biberach an der Riß, Germany 

Rocking platform "WT 16" Biometra, Göttingen, Germany 

Test tube shaker "Reax top" Heidolph Instruments, Schwabach, Germany 

Ultra-low temperature freezer Thermo Fisher Scientific, Waltham, MA, USA 

UMP3 UltraMicroPump World precision instruments, Sarasota, FL, USA 

Universal 320R tabletop centrifuge (for plates) Hettich Lab Technology, Tuttlingen, Germany 

Vi-CELL XR automated cell counter Beckmann Coulter, Brea, CA, USA 
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Vortexer "IKA VF2" IKA Janke & Kunkel, Staufen im Breisgau, Germany 

Water bath  Memmert, Schwabach, Germany 
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2.2 Methods 

2.2.1 Cell culture and methods used to generate an in vitro LGG model 

All cells were cultured at 37°C in humidified atmosphere containing 5% CO2.  

Cell stocks were tested for contamination with the Multiplex cell Contamination Test (McCT) (127) as 

well as for identity via single nucleotide polymorphism profiling in the Multiplex Cell Line Authentication 

test (MCA) (127) prior to use for experiments. Only tested stocks were used for all experiments. The 

analyzed cell lines were free of virus and Mycoplasma contamination, no contamination with other 

species and no cross-contamination with other cell lines was detected. Cells in culture were tested for 

Mycoplasma contamination every week with the PlasmoTest™ Mycoplasma Detection Kit (InvivoGen) 

and every month via PCR with the Venor®GeM kit (Minerva Biolabs) and for fungal or bacterial 

contamination by visual control by microscopy every two days. No Mycoplasma contamination was 

detected throughout the experiments. 

Cell culture was performed under the laminar flow cell culture hood under sterile conditions. Cell culture 

medium and supplements were kept sterile, stored in the fridge or freezer and allowed to reach room 

temperature (RT) before being added to the cells. 

2.2.1.1 Thawing of cells  

Cryostocks were preserved in liquid nitrogen for long-term storage or in the -80°C freezer for short-term 

storage. Before thawing, a 15 mL Falcon tube was prepared with 10 mL of the appropriate cell culture 

medium and adjusted to RT. As the cryopreservation medium contains 10% of dimethylsulfoxide 

(DMSO), rapid defrosting, to remove the cytotoxic agent, reduces stress on the cells. Frozen cells were 

thawed in a pre-warmed 37°C water bath for two minutes, transferred to the prepared 15 mL Falcon 

tube and centrifuged at 230 x g for 5 minutes at RT. The supernatant was removed and the cell pellet 

resuspended in 3-5 mL of fresh medium. Cells were seeded in T25 culture flasks or in one well of a six-

well plate.  

To facilitate attachment of cells after long-term storage, six-well plates were coated with poly-L-lysine 

(PLL, see 2.1.7) before seeding. PLL is a naturally occurring polyamino acid, which is positively charged 

and facilitates attachment of negatively charged proteins on the cell surface (128). For this purpose, PLL 

(1 mg/mL, stored at -20°C) was diluted 1:10 in sterile PBS and 200 µL of the dilution were spread per 

well. The coated plate was incubated at 37°C for 1 hour followed by two washing steps with PBS before 

cells were seeded.  
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2.2.1.2 Culture of different cell lines 

The patient-derived cell line DKFZ-BT66 was established from a pilocytic astrocytoma with a KIAA:BRAF 

fusion (31). DKFZ-BT66 cells (passages 8-17) and DKFZ-BT66 hTERT cells (passages 16-36) were cultured 

as monolayer in ABM basal medium supplemented with the AGM Kit from LONZA (see table 2.1.1). 

Doxycycline (1 µg/mL) from Santa Cruz (see table 2.1.1) was added together with fresh cell culture 

medium to activate transcription of the doxycycline-inducible SV40-TAg for expansion purposes (for 

details on the generation of the cell culture model see 3.1.1). Medium was changed on Monday, 

Wednesday and Friday to achieve consistent levels of doxycycline in proliferating DKFZ-BT66 cells. The 

senescent state of the cell line was obtained by seeding the cells in culture medium without the addition 

of doxycycline and subsequent culture for five days. After five days, the cell state was considered to be 

senescent (see Fig. 19) and experiments in the senescent condition were initiated. Cell medium (without 

doxycycline) was changed in the same intervals as for DKFZ-BT66 cells in proliferation (with doxycycline) 

to ensure that differences in both conditions did not result from addition of fresh medium supplemented 

with growth factors in different time intervals. In contrast to other cell lines, proliferating DKFZ-BT66 

cells were cultivated to a confluency of up to 90% before passaging, as the fastest growth rate was 

observed during dense seeding conditions. On average, cells were passaged after seven to fourteen days 

using 0.05% trypsin-EDTA from Thermofisher (see 2.1.1) (3-5 min incubation at 37°C). Incubation times 

with trypsin were longer (up to 10 min) for senescent DKFZ-BT66 cells, to account for the increased 

attachment of the cells to the cell culture flasks, most likely due to the enlarged cellular phenotpye.   

The patient-derived BT-40 cell line is representative for a WHO grade II/III glioma with a BRAFV600E 

mutation and a homozygous CDKN2A loss (125). BT-40 (passage 3-22) cells were cultured as monolayer 

in RPMI1640 medium supplemented with 10% FBS and 2 mM L-glutamine (see table 2.1.1). Cells were 

cultivated until 60% confluent, when they start to form honeycomb shaped clusters, and passaged at 

least every seven days using 0.05% trypsin-EDTA. Cell culture medium was changed twice a week. 

Normal human astrocytes (NHA) cells (passage 2-3) were cultured as monolayer in ABM basal medium 

supplemented with the AGM Kit from LONZA (see table 2.1.1). Cells were cultivated until 70% confluent 

and passaged after seven to fourteen days using 0.05% trypsin-EDTA from Thermofisher (see table 

2.1.1). Cell culture medium was changed twice a week. 

Human embryonic kidney (HEK)293T from GE Healthcare (passage 2-15), Platinum GP cells from Cell 

Biolabs (passage 2-15) and the medulloblastoma cell line MED8A a kind gift from Dr. R. Gilbertson, St. 

Jude, Memphis, TN, US. (passage 22-25) were cultured as monolayer in DMEM supplemented with 10% 
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FBS and 2 mM L-glutamine (see table 2.1.1). For Platinum GP cells blasticidin (c= 1 µL/mL) was added to 

the cell culture medium. Cells were cultivated until 70% confluent and passaged at least once or twice a 

week using 0.05% trypsin-EDTA. Cell culture medium was changed twice a week. 

2.2.1.3. Harvesting of cells 

All cell lines grew adherent to cell culture plastic. Before harvesting, medium was removed and cells 

were washed with sterile PBS to remove dead cells or residual protein of e.g. FBS. To detach cells 0.05% 

trypsin-EDTA (0.5 mL/well for six-well plates, 1 mL for T25 flasks, 2 mL for T75 flasks or 10 cm dishes, 4 

mL for T175 flasks) was added, evenly spread on the attached cells and incubated at 37°C for 3-5 

minutes. The enzymatic cleavage was arrested by addition of fresh medium (3-4 x the volume of trypsin). 

The cell culture flask was rinsed with fresh medium repeatedly and a single cell suspension was 

generated by pipetting up and down. The suspension was either used to determine cell numbers 

(2.2.1.4) for seeding or cells were split for continued culture. For this purpose a fraction of the 

suspension (1:10 or 1:20) was reseeded in a new culture flask and fresh medium was added (final 

volume: 3 mL/well for six-well plates, 5 mL for T25 flasks, 8 mL for T75 flasks or 10 cm dishes, 15 mL for 

T175 flasks). 

2.2.1.4 Determination of viability and cell numbers  

To assess cell viability as well as cell numbers, 1 mL of the generated single cell suspension (2.2.1.3) was 

stained with trypan blue in an automated fashion. Trypan blue can penetrate dead cells due to their 

reduced membrane integrity. The Vi-CELL XR automated cell counter was used for the automated trypan 

blue exclusion staining. Cell numbers were determined per milliliter of cell suspension. For seeding of 

specific cell numbers for an experiment, the appropriate volume of cell suspension was centrifuged in a 

15 mL Falcon tube at 230 x g for 5 minutes, the supernatant was removed, the cell pellet was 

resuspended with the appropriate amount of cell medium and seeded in a new culture flask.  

In case cell counts were used as readout, after e.g. drug treatments, the generated single cell suspension 

after trypsinization was combined with the original cell culture medium to include floating dead cells for 

the determination of cell viability.  

2.2.1.5 Cryopreservation 

For long-term storage of cell lines, n= 1-2 x 106 viable cells of a single cell suspension (2.2.1.3) were 

resuspended in 1 mL of cryopreservation medium. Cryopreservation medium contained 10% DMSO, 
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which prevents the formation of ice crystals during the freezing process. DMSO was added to the 

appropriate cell culture medium for each cell line. To ensure a gradual freezing process (-1°C/min), which 

reduces damage of cell membranes due to formation of crystals, the vial was then transferred to a 

container surrounded by isopropanol (Mr. Frosty™ Freezing container) and stored at -80°C. After the cell 

line was proven to be free of Mycoplasma contamination, the cells were transferred to the liquid 

nitrogen tank for long-term storage.  

2.2.1.6 Microscopy 

Bright field pictures were captured using the Olympus CXK41 microscope and images of fluorescent cells 

or cell staining were captured using the same microscope in combination with the Olympus U-RFL-T 

reflected fluorescence system. Images were captured with the CellB 2.3 software with 25 ms of exposure 

time for bright field images and 500 ms for fluorescence images. 

2.2.1.7 Conditioned medium (CM) 

In order to generate medium enriched with secreted factors and proteins from senescent or proliferating 

DKFZ-BT66 cells, cells were seeded in six-well plates at different densities with (n= 1 x 106 cells/well) or 

without (n= 7 x 106 cells/well) doxycycline, in order to end up at n= 2 x 106 cells after five days in culture. 

The different cell numbers account for the doubling time of 44 hours of proliferating DKFZ-BT66 cells as 

well as for the drop in cell numbers observed upon withdrawal of doxycycline (see Fig. 12). The final cell 

number (n= 2 x 106) was shown to result in an estimated secretion of 100 pg/mL IL1B at day five, as 

determined by ELISA (see Fig. 24). After seeding, medium change (3 mL) was conducted at day three, and 

medium was collected at day five, resulting in two days of conditioning. The freshly collected medium 

was centrifuged (230 x g, RT, 5 Min), filtered (0.2 µm filter) and added to n= 1.5 x 105 proliferating DKFZ-

BT66 cells/well (seeded one day prior to CM treatment) together with doxycycline in six-well plates. CM 

was added to the proliferating DKFZ-BT66 cells every second day. Therefore, both cultures (cells for 

conditioning and treated cells) have to be conducted simultaneously, to ensure continuous supply with 

fresh CM.  

2.2.1.8 Drug and cytokine treatments 

Recombinant IL1B and IL6 were dissolved in sterile PBS containing 0.1% BSA, aliquoted and stored at -

80°C. Anakinra and tocilizumab, both pre-dissolved in sterile water, were stored in aliquots at 4°C. 

Human IL1B antibody was dissolved in sterile PBS, aliquoted and stored at -20°C. Dexamethasone was 

dissolved in sterile water, aliquoted and stored at -20°C. Navitoclax, ABT-737, dabrafenib, quercetin, 
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vincristine and trametinib were dissolved in DMSO, aliquoted and stored at -80°C. Carboplatin was 

dissolved in sterile water, aliquoted and stored at -80°C. Drugs and cytokines were added together with 

fresh cell culture medium every second day for the durations and concentrations indicated for each 

experiment. See table 2.1.2 for information on suppliers. 

2.2.1.9 Lenti- and retroviral production for transduction of primary tumor cell cultures 

Retro- and lentiviral transduction of mammalian cells enables stable expression of a gene of interest, as 

the gene is integrated into the genomic DNA of the host cell. The lentiviral transduction has the 

advantage that non-dividing cells can be infected, which is especially relevant in the primary cultures of 

mostly senescent LGG tumor cells. 

To achieve stable expression of a gene of interest, such as the SV40-TAg, in primary LGG cultures, the 

encoding plasmid was packaged in a lentivirus. In addition, lentiviral transduction was used to transduce 

the generated DKFZ-BT66 cell line with a construct coding for luciferase as well as the shRNA constructs 

coding for IL1B, IL6, IL1R1 and IL6Ra (see 2.1.6, see appendix B for plasmid maps). 

Lentivirus production and transduction was conducted in a biosafety level 2 (S2) laboratory. In brief, 

HEK293T cells (n= 5 x 106) were seeded in 10 cm dishes, cultured for 24 hours (see 2.2.1.2) and co-

transfected with the plasmid of interest using the Trans-Lentiviral Packaging system from Invitrogen by 

means of calcium phosphate transfection. The Trans-Lentiviral Packaging system includes five plasmids 

encoding for: 1. gag-pro, the viral capsid and protease (pTLA1-PAK), 2. vpr-RT-IN (pol), the viral protein r, 

the viral reverse transcriptase and integrase (pTLA1-ENZ). The vpr-RT-IN fusion protein is controlled by 

HIV-2-LRT and transactivated by the Tat protein. 3. tat-IRES-rev, gene regulatory proteins controlling 

5’LTR transactivation, nuclear export and protein expression (pTLA1-TAT/REV), 4. env (VSV-G), the viral 

envelope (pTLA1-ENV) and 5. Tet-Off, the tetracycline-controlled transactivator (pTLA1-TOFF), controlling 

the expression of gag-pro and tat-rev (see appendix B). For optimal virus production, a young passage (< 

passage 15) of HEK293T cells should be used and cells should be actively proliferating (40-60% confluent) 

before seeding. The prepared DNA plasmid mix, including the plasmid of interest (4 µg) and the 5 

plasmids of the lentiviral packaging system (2 µg per packaging plasmid), was mixed with 0.1xTE/dH2O 

(1:2) (see table 2.1.8) to result in a final volume of 450 µL and incubated for 2 hours at RT. In the 

meantime, medium was changed on HEK293T cells 2 hours before transfection. 50 µL of 2.5 M CaCl2 (see 

table 2.1.8) were added to the DNA mix and incubated for 5 minutes at RT. To form precipitates, 500 µL 

2xHBS (see table 2.1.8) were added dropwise to the DNA/calcium mix, while vortexing under the laminar 

flow hood. The precipitates were added dropwise to the prepared HEK293T cells. The transfected 
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HEK293T cells were incubated with the mix overnight in the incubator at 37°C. HEK293T cell culture 

medium was changed 16-20 hours after transfection. 24 hours after medium change, the virus-enriched 

medium was collected with a 10 mL syringe, filtered (0.45 µm), aliquoted in 3 mL/Falcon tube and stored 

at -80°C until use. Before transduction, the viral supernatant was supplemented with polybrene to a final 

concentration of 8 µg/mL. Cells to be transduced (n= 5 x 105) were seeded in 10 cm dishes, allowed to 

attach for 24 hours and infected with 3 mL of virus supernatant plus polybrene. Medium was filled-up to 

10 mL total volume after six hours and completely changed one day later. For transduction with the 

doxycycline-inducible SV40-TAg construct, doxycycline (c= 1 µg/mL) was added to the cell culture 

medium together with the top-up. Successful transduction was determined by red or green fluorescent 

protein (RFP or GFP) expression, co-expressed from the transduced plasmid. Fluorescence was visible 3-7 

days after transduction using luminescence microscopy. Transduced cells were selected either with 

antibiotic treatment such as puromycin (c= 1 µg/mL) for 10 days (for SV40-TAg), pac from Streptomyces 

alboniger co-expressed from the transduced plasmid, or by FACS sorting according to RFP/GFP 

expression (for shRNA constructs). In case transduction was not successful the process was repeated 

once every week for up to four weeks.  

The construct coding for hTERT was transduced into DKFZ-BT66 cells via retroviral transduction. 

Packaging was performed using the pantropic Platinum-GP Retrovirus Expression System from Cell 

Biolabs. Platinum-GP cells (n= 5 x 106) were seeded in 10cm dishes and cultured for 24 hours before 

transfection. A transfection mix was prepared with 5 µg of the pBABE-hygro-hTERT plasmid and 2.5 µg of 

the packaging pCMV-VSV-G plasmid using the described method of calcium phosphate transfection. 

Successfully transduced cells were selected by treatment with hygromycin-B (c=250 µg/mL) for 10 days. 

2.2.1.10 Dissociation and viral transduction of primary tumor material to generate an in vitro LGG 

model 

For the generation of in vitro LGG models, fresh primary tumor material was received from the 

Departments of Neurosurgery from Tübingen, Freiburg, Berlin, and Heidelberg. The investigation was 

approved by the institutional review board of the University of Heidelberg (S-304/2014). The 

establishment of in vitro LGG models was conducted in collaboration with Florian Selt and Daniela Kuhn 

from the CCU Pediatric Oncology, DKFZ, Heidelberg in Germany. 

In a first step, tumor material was processed to result in a single cell suspension. The material was 

transferred to a 10 cm dish and kept covered with a few drops of PBS. Using scalpels, blood vessels and 

necrotic tissue was removed. A small piece of tumor was transferred to a 15 mL Falcon tube, frozen in 
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liquid nitrogen and stored at -80°C for further molecular analysis.  

Three different cell culture methods were used to culture primary LGG material: first generation of a 

single cell suspension, second explant cultures and finally co-cultures on murine brain slices. 

For culture of a single cell suspension: The fresh tumor tissue was kept in a few drops of PBS and minced 

with two scalpels for several minutes. After thorough mincing, the material was transferred to a 15 mL 

Falcon tube with 5 mL of PBS and further disintegrated using different size pipet tips. The single cell 

suspension was centrifuged (5 min, 230 x g) and resuspended in cell culture medium. Cells were cultured 

as monolayer in ABM basal medium supplemented with the AGM Kit in six-well plates.  

For tumor explant culture: To generated tumor explants, small pieces (1-2 mm) of the fresh tumor 

material were cut using scalpels. The explants were transferred to six-well plates, allowed to attach for 

15 minutes at 37°C and carefully covered with cell culture medium. Explants were cultured in X-VIVO 

medium supplemented with LIF (final c= 10 ng/mL), EGF (final c= 20 ng/mL), bFGF (final c= 20 ng/mL), 

acetylcysteine (final c= 60 ng/µL) and neuronal survival factor 1 (NSF-1) (final conc. 2% of the solution 

purchased from LONZA, 200 µL/10 mL medium) as well as Neurobasal A medium supplemented with EGF 

(final c= 20 ng/mL) and bFGF (final c= 20 ng/mL).  

Organotypic brain slice co-culture: Another method tested to culture primary LGG cells was a co-culture 

system on healthy murine brain tissue according to the protocol published by Chadwick et al. (35). For 

this purpose, brain slices were generated from healthy P6 C57BL/6 mice (internal DKFZ proposal for 

organ collection: DKFZ348). All instruments were sterilized with 70% ethanol. Pups were decapitated 

using sharp scissors. Skin and skull were removed with scissors and forceps by cutting from the posterior 

towards the front of the brain on both sides of the head as well as one cut along the midline of the skull. 

While cutting the skull, the scissors should remain as close to the skull as possible to avoid damage of the 

brain. Forceps were used to peel off the skin and the two halves of the skull. Once the brain was 

revealed, it was isolated by carefully inserting a flat-faced spatula between the base of the skull and the 

bottom of the brain. The isolated brain was transferred to ice-cold PBS in a 10 cm dish. The brain was 

transferred into liquid 3% low-melting agarose in 35 mm2 dishes and allowed to set for 5-10 minutes. 

Embedding the soft brain tissue in agarose keeps the brain structure intact during the cutting process in 

the vibratome. The agarose was trimmed with a razor blade to result in a straight agarose cube 

surrounding the brain. Superglue was used to fix the agarose cube to the plate inserted into the 

vibratome and allowed to set for 10 minutes. Before cutting, six-well plates with cell culture inserts were 

prepared and covered with 3 mL cell culture medium. Sagittal brain slices of 200-300 µm thickness were 
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generated in PBS in the cutting reservoir of the vibratome, which was kept on ice. Using a brush and a 

slotted spoon, brain slices were transferred to the cell culture medium on top of the prepared cell 

culture inserts. Different cell culture media were tested (Fig. 15). 1 mL of medium was withdrawn from 

the top of the insert and added to the bottom of the well. Excess media was removed until the agarose 

surrounding the brain was visible. Excess agarose was carefully removed with forceps. Slices were kept at 

37°C in humid atmosphere in 5% CO2. To test the co-culture system DKFZ-BT66 cells were used. After 24 

hours DKFZ-BT66 cells (n = 2 x 104 as single cell suspension in 2 µL, n = 5 x 103 as sphere) were seeded on 

top of the slices. For the control cell line MED8A, cells were stained with red-fluorescent CellTracker™ 

CM-DiI Dye before seeding. For this purpose n= 1 x 106 cells in 1 mL medium were incubated with 5 µL of 

CM-DiI at 37°C for 30 minutes, centrifuged (230 x g, RT, 5 min), washed with medium twice and the cell 

pellet was resuspended in 2 µL of medium. Medium on the bottom of the six-well plate was changes 

every second day and drops of medium, containing doxycycline for culture of DKFZ-BT66 cells, were 

added on top of the seeded cells. Bright field and fluorescent images were captured using the Leica 

M205 FA light microscope. 

Finally, the cultured tumor cells were transduced with a lentiviral construct coding for the SV40-TAg (see 

2.2.1.9) in either condition. The SV40-TAg construct co-expresses turboRFP as well as puromycin for 

selection purposes. The expression of the SV40-TAg as well as RFP, separated by an IRES site, are both 

doxycycline inducible. Doxycycline was added to the cell culture medium after transduction (c= 1 µg/mL). 

Once RFP expression was detectable by fluorescence microscopy, puromycin selection (c= 1 µg/mL) was 

initiated for 10 days. Cells were then expanded and analyzed for expression of the KIAA:BRAF fusion by 

RT-qPCR (2.2.2.4) or the BRAFV600E mutation by western blot (2.2.3.3).  
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2.2.2 Nucleic acids 

2.2.2.1 Plasmid DNA amplification and isolation  

Bacterial cells can integrate plasmid DNA into their own genome, in a process called transformation, 

which can be used for amplification of a plasmid of interest. In order for exogenous DNA to be 

successfully replicated in bacteria, it needs to contain a sequence recognized by the bacterial 

polymerase, called origin of replication (ori C). In addition, the plasmid needs to include a sequence 

coding for an antibiotic resistance, which is later used for selection of successfully transfected cells. The 

transformation efficiency can be enhanced by chemical pre-treatment of bacterial cells, followed by 

induction of a heat-shock (chemical transformation) or by electric impulses (electroporation) to facilitate 

plasmid DNA uptake through increased permeability of the cell membrane. 

Here, chemical transformation was used to amplify plasmid DNA (see appendix B for plasmid maps). The 

procedure was performed under aseptic conditions (below the flame of a Bunsen burner) to avoid 

contamination. First, 25 µL of One Shot™ TOP10 chemically competent E.coli were thawed on ice, 1-10 

ng of the plasmid of interest were added to the bacterial cells and carefully mixed by flicking the tube. 

The bacterial cells were incubated on ice for 20 minutes. Heat-shock was induced in a preheated water 

bath set to 42°C for 90 seconds followed by transfer of the bacteria cells on ice for 2 minutes. 250 µL of 

S.O.C. medium were added and bacteria growth was induced for 1 hour at 37°C, while kept on a shaking-

block set to 220 rpm. Agar plates (see table 2.1.8) were prepared in advance, supplemented with the 

antibiotic matching to the resistance encoded on the plasmid of interest. 30 µL of the bacteria mix were 

plated onto the prepared pre-warmed agar plates and incubated at 37°C overnight, kept upside-down to 

avoid condensation. Single bacteria colonies were picked the next day with a sterile pipet tip and grown 

in 3 mL LB medium (see table 2.1.8) supplemented with the appropriate antibiotic (see table 2.1.3). The 

suspension was cultured overnight at 37°C in an incubator on a shaking-block set to 220 rpm. 500 µL of 

the bacteria mix were transferred to 400 mL of LB medium containing the appropriate antibiotic and 

incubated at 37°C overnight while shaking at 220 rpm in an orbital shaker. Before the plasmid was 

isolated, a glycerol stock was prepared by mixing 500 µL of bacteria culture with 500 µL of 50% glycerol. 

The mix was stored in cryopreservation vials at -80°C.   

The plasmid DNA was isolated from bacteria using the QIAGEN Plasmid Maxi Kit according to 

manufacturer’s instructions. Using this protocol, DNA is extracted from bacteria cells after an alkaline 

lysis step followed by binding of DNA is to a QIAGEN resin column, followed by washing steps and elution 

of DNA in a high-salt buffer. In brief, the bacteria cell suspension was centrifuged at 4°C for 15 minutes at 
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6000 x g. The pellet was resuspended in P1 buffer containing RNase. P2 buffer was added, containing the 

lysis reagent sodium hydroxide - sodium dodecyl sulfate (NaOH-SDS), mixed thoroughly and incubated 

for 5 minutes at RT. SDS induces lysis of bacteria cells by solubilizing components of the cell membrane, 

while NaOH leads to denaturation of proteins and genomic DNA. The addition of pre-chilled, acidic 

potassium acetate P3 buffer (4°C) neutralizes the alkaline lysis process and induces formation of 

potassium dodecyl sulfate precipitates. The precipitates contain the denaturated genomic DNA, proteins 

and cell debris in a salt-detergent complex. The P3 buffer was added, mixed and incubated on ice for 20 

minutes. In comparison to the genomic DNA, the small plasmid DNA renaturates quickly and remains in 

solution. After two centrifugation steps of the supernatant (1. 30 min, 4°C, 20 000 x g; 2. 15 min, 4°C, 20 

000 x g), the clear solution was transferred to an equilibrated QIAGEN DNA-binding column and allowed 

to enter the resin by gravity flow. The following two washing steps with QC buffer remove remaining 

contaminations. Finally, DNA was eluted from the column with QF buffer, followed by DNA precipitation 

induced by addition of isopropanol and centrifugation for 30 minutes at 4° and 15 000 x g. The DNA 

pellet was washed with 70% ethanol, centrifuged at 15 000 x g for 10 minutes and the remaining DNA 

pellet was air-dried for 5 to 10 minutes. The dried pellet was dissolved in TE buffer at pH 8.0. 

Plasmid DNA concentration was determined by measuring absorbance of nucleic acid at 260 nm using 

the Nanodrop™ UV spectrophotometer. DNA was considered as pure, when the ratio of absorbance at 

260 nm versus 280 nm was at around 1.8 to 2.0. The purified plasmid DNA was stored at -20°C. 

2.2.2.2 RNA extraction  

RNA was isolated from mammalian cells after guanidine-isothiocyanate lysis followed by a silica-

membrane purification step using the QUIAGEN RNeasy® Mini Kit. At least n= 2-4 x 106 DKFZ-BT66 cells 

were used to isolate sufficient amounts of RNA. After centrifugation of the trypsinized cells (230 x g, 5 

min, RT), cell pellets were lysed in 350 µL RLT buffer (or 700 µL for large pellets), containing guanidine-

thiocyanate as well as 1% ß-mercaptoethanol, which inactivates RNases. RNA was isolated using the 

QUIAGEN RNeasy® Mini Kit according to manufacturer’s instructions. In brief, the same volume of 70% 

ethanol was added to the lysed sample and mixed thoroughly to improve column-binding conditions. The 

lysate was transferred to an RNeasy Mini spin column, containing an RNA-binding silica-membrane, by 

vacuum suction. The column was washed with RW1 buffer first and twice with RPE buffer under vacuum 

followed by a 1 min centrifugation step to remove all remaining contaminations. RNA was eluted into a 

fresh tube by adding 50 µL RNase-free water, followed by centrifugation (8 000 x g, 1 min, RT). RNA 

concentration was determined using the NanoDrop™ UV spectrophotometer measuring absorbance at 
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260 nm. RNA was considered as pure, when the ratio of absorbance at 260 nm versus 280 nm was at 

around 1.8 to 2.0. The purified RNA was stored at -80°C. 

2.2.2.3 Complementary DNA (cDNA) synthesis 

From the isolated RNA (2.2.2.2), a cDNA strand can be synthesized by reverse transcription. Reverse 

transcriptases can generate a DNA strand using RNA as a template. 

Synthesis of cDNA was performed from 1 µg RNA using the RevertAid First Strand cDNA Synthesis Kit 

from ThermoFisher according to manufacturer’s instructions. First strand cDNA was generated from total 

RNA using reverse transcriptase M-MuLV. Components of the kit were thawed on ice. Template RNA was 

mixed with oligo (dT) primer (1 µL) and filled-up to 10 µL total volume with nuclease-free water in a PCR 

tube. After an incubation for 5 minutes at 70°C and cooling on ice, 7µL of a mix of: 4 µL 5 x reaction 

buffer, 1 µL of RiboLock RNase Inhibitor (20 U/µL) and 2 µL of 10 mM dNTP mix were added. The mix was 

incubated at 25°C for 10 minutes. Finally, 2 µL of M-MuLV reverse transcriptase (200 U/µL) were added 

and mixed gently. After brief centrifugation, the mix was incubated for 10 minutes at 25°C and for 60 

minutes at 37°C. The reaction was terminated by heating to 70°C for 10 minutes. The resulting cDNA was 

stored at -80°C for long-term or used for RT-qPCR amplification immediately.  

2.2.2.4 Quantitative reverse transcription real-time polymerase chain reaction (RT-qPCR) 

RT-qPCR allows for amplification of a gene of interest from a cDNA template by DNA polymerase in a PCR 

reaction in a first step. In a second step, the product is quantified by detection of the DNA-intercalating 

agent SYBR Green, a fluorescent dye emitting fluorescence upon DNA binding. The proportional increase 

in fluorescence signal correlates to the amount of PCR product of the gene of interest. Several PCR cycles 

result in an increase in fluorescence signal until it reaches a pre-defined threshold (Cycle of Threshold 

(CT) value). The fluorescence signal of the gene of interest at this cycle can be compared to the level of 

constitutively expressed house-keeping genes in the same sample, enabling the calculation of the 

relative amount of template present in the original sample. 

RT-qPCR was conducted in a 96-well PCR plate using the mastermix for Platium SYBR Green including 

forward/reverse primer together with the respective cDNA. In brief, the cDNA (2.2.2.3) was diluted in 

water (1:10), 5 µL of the dilution were mixed with 15 µL of a mastermix containing: 1 µL of the respective 

forward and 1 µL of the respective reverse primer (10x) for the gene of interest or house-keeping gene, 

10 µL of 2X SYBR Green qPCR SuperMix-UDG containing Taq DNA polymerase and 3 µL of distilled water. 

The 96-well was covered with an adhesive film and centrifuged at 230 x g at RT for 5 minutes. 
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The PCR was run using the ABI 7500 Real-Time PCR cycler from Applied Biosystems by life technologies in 

standard mode in the advanced setup with the ABI 7500 Software v2.3. The PCR reaction was initiated at 

50°C (2 min), followed by at 95°C (10 min), and 40 cycles of each 95°C (15 s) for denaturation of the 

double-strand DNA structure and 60°C (1 min) for annealing of the primers to the DNA and elongation by 

the DNA polymerase, followed by a dissociation state including 1 cycle at 95°C (15 s), 60°C (1 min), 95°C 

(30 s) and 60°C (15 s). Data was analyzed with the ΔΔCt method to assess relative quantities by 

comparing the expression of the gene of interest to housekeeping genes (in this study TBP and ACTB) as 

control genes first, followed by calculation of the fold change to a control samples e.g. untreated cells 

(129).  

2.2.2.5 mRNA gene expression profiles (GEPs)  

GEPs measure the transcription of thousands of genes, which can be used to e.g. predict the activation 

status of cellular functions. Comparing the GEP of different cell types or different treatment conditions 

can give insights into differences on gene expression level and differing underlying signaling mechanisms. 

GEP of patient samples as well as the DKFZ-BT66 cell line were performed using the Affymetrix U133 Plus 

2.0 expression array according to manufacturer’s instructions at the Genomics and Proteomics Core 

Facility of the German Cancer Research Center, Heidelberg, Germany. The GEP of the murine PA model 

was conducted using the Affymetrix Mouse Genome 430 2.0 array. Values for patient samples were 

MAS5 normalized, while murine and cell line expression values were RMA normalized and log2- 

transformed. The probe-set with the highest expression value was chosen in case there were multiple 

probe-sets per gene. Calculations were performed in collaboration with Thomas Hielscher from the 

Division of Biostatistics at the DKFZ Heidelberg in Germany. All GEP datasets generated in the study 

presented here are publicly available on the R2 platform. 

The publicly available datasets used to generate a list of OIS-controlling genes (see 2.2.6.1) were E-

NCMF-12 (human fibroblasts/BRAFV600E, n=20) (46), E-NCMF-13 (human fibroblasts/BRAFV600E, n=16) 

(46), GSE54402 (human fibroblasts/HRASG12V, n=10) (130), GSE46801 (primary human 

melanocytes/BRAFV600E, n=9) (131), GSE41318 (human fibroblasts/RAS, n=6) (Acosta et al., 

unpublished), and GSE60652 (human fibroblasts/RAS, n=4) (132).  
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2.2.3 Protein 

2.2.3.1 Protein isolation 

To isolate proteins from mammalian cells their membranes are disrupted with ionic detergents. This was 

achieved by using a lysis buffer with sodium dodecyl sulfate (SDS) and dithiothreitol (DTT). SDS binds to 

proteins of the cell membrane and together with the reducing agent DTT, leads to the destruction of 

tertiary protein structures by disrupting non-covalent bonds and disulfide bridges. To avoid secondary 

protein modifications, phosSTOP™ was added to the lysis buffer, which prevents dephosphorylation of 

proteins by phosphatases. 

Proliferating DKFZ-BT66 cells (n= 1 x 106) were seeded one day in advance of treatment and lysate were 

generated after treatments at the indicated times. To generate lysates from senescent DKFZ-BT66 cells, 

n= 3-5 x 106 cells were seeded in T75 flasks. Cells were cultured without doxycycline for five days. Drug 

treatments were added at day five for the indicated times. For long-term treatments, drugs were added 

every second day. Cells were harvested by trypsination (see 2.2.1.3., exception: centrifugation for 5 

minutes at 4°C, 8600 x g) and the resulting cell pellet was resuspended in 150 µL to 300 µL SDS lysis 

buffer plus DTT plus phosSTOP™, depending on cell pellet size, followed by 95°C heat denaturation for 10 

minutes. After centrifugation (5 min, 15°C, 11 000 x g), the supernatant of the lysates was transferred to 

a new, pre-cooled tube and kept at -80°C for long-term storage or was used for western blotting (2.2.3.3) 

immediately. 

2.2.3.2 Protein quantification 

Protein concentrations were determined with the Pierce™ BCA Protein Assay Kit according to 

manufacturer’s instructions together with a BSA standard in defined concentrations, using the FLUOstar 

OPTIMA plate reader for readout (absorbance at 570 nm). The BCA assay is based on a colorimetric 

reaction correlated to the amount of protein. In a first step, the protein reduces Cu2+ to Cu+ in an alkaline 

environment, resulting from addition of sodium potassium tartrate to the reaction. In a second step, Cu+ 

forms a purple-colored chelate complex with two bicinchoninic acid (BCA) molecules, a chromogenic 

reagent. The colored complex exhibits linear absorbance at 562 nm correlating directly to protein 

concentrations.  

For detection of protein concentrations, the cell lysates (2.2.3.1) were diluted 1:5 with SDS lysis buffer. 

Per sample 5 µL of the dilution were added to two wells of a 96-well plate, to conduct the measurement 

in duplicates. To enable quantification of the protein concentration in the lysates, a standard was 
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generated by diluting bovine serum albumin (BSA) in known concentration steps. 200 µL of the BCA 

Protein Assay reagent mix were added to each well and the plate was incubated at 37°C for 30 minutes 

before absorbance was determined in the FLUOstar OPTIMA plate reader. A standard curve (range: 0 – 

2000 µg/mL) was calculated from the known BSA concentration steps. The mean of the measured 

absorbance values of each sample was calculated. The protein concentration of each sample was 

calculated in relation to the standard curve. 

2.2.3.3 Western Blot 

The western blot technique enables the identification and semi-quantification of a protein of interest. 

The principle relies on three steps: First, all proteins of a cell lysate (2.2.3.1) are separated by molecular 

weight through electrophoresis in an acrylamide gel with varying pore sizes. The proteins move towards 

the anode, as they are negatively charged from the treatment with the anionic SDS detergent. Small 

proteins are able to migrate through the pores of the acrylamide gel much faster in comparison to large 

proteins. In a second step, the proteins are transferred to a membrane by electrotransfer. Finally, a 

specific protein of interest can be detected by staining the membrane with a matching primary antibody 

and visualized with a secondary antibody, which binds the primary antibody and is linked to a reporter 

enzyme. One example for such a reporter is the horseradish peroxidase (HRP), which can cleave a 

chemiluminescent substrate leading to emission of light. The chemiluminescent signal can be correlated 

to the amount of HRP-conjugated antibody, which correlates to the amount of protein. The amount of 

protein in the sample can be calculated semi-quantitatively by comparing the expression of the protein 

of interest to the expression of a stably expressed house-keeping protein such as ß-actin. 

The first step for the preparation of a western blot was the casting of the acrylamide gel. The acrylamide 

gel was prepared with two different buffers. The top layer of the gel, called stacking gel (see table 1), is 

slightly more acidic, has a lower acrylamide concentration and therefore bigger pores. It enables 

collection of all proteins in sharp bands on the same height. The lower layer of the acrylamide gel, called 

resolving gel (see table 2), separates the proteins by size. The gel has a higher pH and can be prepared 

with different acrylamide concentrations (10-15%) depending on the size of the protein of interest. Small 

proteins are best separated in gels with a smaller pore size resulting from a higher acrylamide 

concentration. The acrylamide gels were prepared as described in Fehler! Verweisquelle konnte nicht 

efunden werden. and Table  using the buffers for the resolving and stacking gel described in 2.1.8. First 

the resolving gel was prepared, poured into the gel casting form and covered with isopropanol to receive 

a smooth boarder, get rid of air bubbles and avoid drying-out. 
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Table 1: Reagents for preparation of 12% resolving gel (4 gels) 

Reagent Amount 

De-ionized water 10.2 mL 

1.5 M Tris-HCl, pH 8.8 7.5 mL 

20% SDS 0.15 mL 

Acrylamide/Bis-acrylamide (30%/0.8% 

w/v) 
12 mL 

10% (w/v) ammonium persulfate (APS) 0.15 mL 

TEMED 0.02 mL 

 

After the resolving gel solidified (30 min), isopropanol was removed and the stacking gel was poured on 

top. A comb was inserted into the liquid gel to form wells that later enable loading of the samples. 

Table 2: Reagents for preparation of stacking gel (2 gels) 

Reagent Amount 

De-ionized water 3.075 mL 

0.5 M Tris-HCl, pH 6.8 1.25 mL 

20% SDS 0.025 mL 

Acrylamide/Bis-acrylamide (30%/0.8% 

w/v) 

0.67 mL 

10% (w/v) ammonium persulfate (APS) 0.025 mL 

Tetramethylethylenediamine (TEMED) 0.005 mL 

 

For each western blot all samples were prepared with the same protein concentration, determined by 

BCA assay (2.2.3.2). Usually 30 µg of total protein were loaded per lane, but if the total amount of 

protein from the cell lysates was low, 10 µg of protein were used. The total volume per sample was 20 µL 

for 15-well combs or 25 µL for 10-well combs. The appropriate amount of protein lysate was diluted in 

SDS lysis buffer and mixed with 1 µL of diluted bromophenol blue (1:10). Bromophenol blue enables the 

visualization of the separation process. The samples were heated after dilution to 95°C for five minutes 

to denaturate tertiary protein structures.  
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The electrophoresis chamber was filled with 1x running buffer (see table 2.1.8), the acrylamide gel was 

placed into the chamber and the prepared protein lysates were added to the wells. A protein standard (5 

µL) was added to the first well, to later estimate protein size according to the known sizes of the 

standard marker bands. The voltage of the electrophoresis chamber was set to 80 V until the proteins, 

visualized by bromophenol blue, were assembled at the boarder of the stacking to the resolving gel. 

Then the voltage was set to 120 V until sufficient separation was achieved, visible by the pre-stained 

protein standard (usually after 1-2 hours). Transfer of proteins from the resolving gel to the methanol-

activated (5 min) PVDF membrane was conducted in presence of 1x transfer buffer (see table 2.1.8) in a 

‘sandwich’ between soaked Whatman chromatography paper in the blotting chamber for 2 hours and 15 

minutes at 35 mA/gel. After blotting the gel was stained with Coomassie solution (see table 2.1.8) for 30 

minutes and the methanol-activated PVDF membrane was stained with Ponceau S solution (see table 

2.1.8) for 5 minutes to control for uniform protein loading and transfer. Both, the Coomassie and the 

Ponceau S dyes are negatively charged and reversibly bind to the positively charged amino groups of the 

protein. An image of the stained membrane and gel was captured with the Epson perfection V700 Photo 

scanner. Afterwards the membrane was washed with distilled water and blocked for unspecific antibody 

binding with blocking milk (see table 2.1.8) for 1 hour at RT. The primary antibody was diluted (see 2.1.4 

for dilutions) in 5 mL 2% milk in TBS-T (see table 2.1.8) and the membrane was incubated with primary 

antibody in 2% milk in TBS-T in a 50 mL Falcon tube overnight at 4°C while rolling on a roller mixer. All 

antibodies were used with PVDF membranes, besides anti-IL1R1 which was used with a nitrocellulose 

membrane.  

After washing the membrane with 10 mL of TBS-T three times for 10 minutes each, secondary antibody 

diluted in 5 mL 2% milk in TBS-T was added for 1 hour at RT while rolling on a roller mixer. After washing 

the membrane three times for 10 minutes with 10 mL TBS-T, detection of chemiluminescence was 

performed with ECL Prime Western Blotting Detection System according to manufacturer’s instructions 

using the Chemi-Smart 5000 imaging system. The Amersham™ ECL Prime is a chemiluminescent 

detection reagent with stable signal emission. 2 mL of the ECL Prime solution were pipetted onto one 

membrane, allowed to incubate for 2 minutes and placed into the Chemi-Smart imaging system. Pictures 

of the membrane were captured at different exposure times and contrast was enhanced using the 

Chemi-Capt 5000 software. Afterwards the membrane was shrink-wrapped in autoclave bags and stored 

at -20°C.  
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2.2.3.4 Enzyme linked immuno-sorbent assay (ELISA) 

Quantitative detection of cytokines in cell culture supernatant was investigated using an ELISA. In 

principle, the protein of interest is captured in a two-sided antibody sandwich. A 96-well microplate is 

pre-coated with a capture antibody specific to the protein of interest. The microplate is incubated with 

the experimental samples, controls and a standard made from different known dilutions of the 

recombinant protein of interest. After aspirating the samples, the microplate is washed repeatedly. Next, 

a HRP-conjugated detection antibody is added to each well and binds the protein of interest at a 

different epitope, making the sandwich complete. A HRP substrate is added to the wells and absorbance 

is detected in the FLUOstar OPTIMA plate reader at 450 nm. A standard curve can be generated from the 

known concentrations of the protein standard and the protein concentration of the experimental 

samples is calculated in correlation. 

DKFZ-BT66 cells (n= 1 x 106 cells/well) were seeded on day -1 in six-well plates with doxycycline. To 

detect the cytokine release upon withdrawal of doxycycline, the medium was replaced after 24 hours 

(day 0) without the addition of doxycycline and collected at the indicated time points (see Fig. 24). Upon 

collection, the supernatant was centrifuged and stored at -80°C and cells in the respective well were 

counted. Protein cytokine concentrations were determined in duplicates per experimental sample using 

the ELISA Kits for IL1B and IL6 according to manufacturer’s instructions (see table 2.1.10). For detection 

of IL6 the collected medium had to be diluted 1:100 in medium to achieve concentrations in the 

detectable range of the rIL6 standard curve. Absorbance was detected using the FLUOstar OPTIMA plate 

reader at 450 nm. After calculation of the cytokine concentrations (pg/mL) in correlation to the standard 

curve, the values were normalized to cell counts for each well (cell number/mL) to result with cytokine 

concentrations secreted per cell (pg/cell).  

2.2.3.5 Cytokine measurement in primary tumors by multiplex assay ("Luminex") 

For simultaneous detection of several cytokines in lysates from fresh frozen primary tumor samples a 

multiplex assay, called Luminex was utilized. The Bio-Plex Pro™ Human Cytokine 27-plex assay enables 

the detection of protein concentrations of 27 cytokines via an antibody-coated magnetic bead system. 

The principle is very similar to an ELISA (2.2.3.4) relying on a two-side antibody sandwich for detection, 

with the exception that the capture antibody is linked to a magnetic bead. For the Luminex assay, the 

detection antibody is labeled with a fluorescent reporter dye. In order to differentiate the 27 cytokines 

within one sample, the beads for each analyte have distinct colors created by mixing two fluorescent 

dyes in a specific ratio. With a dual detection flow cytometer the color of the bead (635 nm laser) as well 
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as the concentration of the analyte correlating to the intensity of the fluorescence signal emitted by the 

reporter dye (525 nm laser) can be detected in two channels. The concentration of the experimental 

samples is correlated to values of a standard curve generated from known concentrations of the 

recombinant cytokines. 

The measurement of the multiplex assay was conducted in collaboration with the Immune Monitoring 

Unit (Dennis Riehl), at the DKFZ/NCT in Heidelberg, Germany. Lysates of 1-3 mm3 sized fresh frozen PA 

tumor samples (n=22) and normal fetal brain (n=1) were prepared using the Bio-Plex® Cell lysis Kit 

according to manufacturer’s instructions (see table 2.1.10). The Pierce™ BCA assay was used to 

determine total protein concentrations and samples were normalized to 1 mg/mL. The Bio-Plex Pro™ 

Human Cytokine 27-plex assay was used according to manufacturer’s protocol to determined 27 

cytokines and chemokines of which 14 are SASP factors. The clinical annotations of all samples are in 

appendix C. 

2.2.3.6 Immunohistochemistry (IHC) 

Immunohistochemistry enables the detection of a protein of interest in tissue sections. The method is 

based on binding of a reporter-conjugated antibody to the protein of interest. Common reporters are 

enzymes catalyzing color-inducing reactions such as HRP. A chromogenic substrate for HRP such as 3,3’-

diaminobenzidine (DAB) is added and the colored precipitates are visible in bright field microscopy. 

To preserve the cellular protein as well as the architecture of the tissue, the tissue sample has to be fixed 

in formaldehyde, which crosslinks proteins in a semi-reversible manner. After fixation, the tissue is 

embedded in paraffin wax to maintain the natural structure of the tissue and enable sectioning into 4-5 

µm thin slices in the microtome. The sections of tissue are mounted onto glass slides. To retrieve the 

epitope and enable antibody binding, the paraffin has to be removed by treatment of the slides with 

xylene, an organic solvent and formaldehyde is removed through heat-induced epitope retrieval by 

boiling the sections in buffers with different pH values. Finally, non-specific binding sites are blocked 

with e.g. bovine serum albumin. 

IHC analysis was performed on paraffin sections of n=14 primary human pilocytic astrocytoma samples. 

Clinical parameters are summarized in the appendix D. Staining was performed in collaboration with 

Felix Sahm at the Department of Neuropathology of the Heidelberg University Hospital, Germany, using 

the Ventana machine and antibodies for Ki67, IL-6Ra, LCA and CDKN2A (see table 2.1.4). All antibody 

staining were previously established in the laboratory, but the dilution of the IL-6Ra antibody was first 
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tested on control tissue expressing the receptor from normal human spleen, thyroid carcinoma or breast 

cancer provided by the National Center for Tumor Diseases (NCT) in Heidelberg, in accordance with the 

regulations of the tissue bank and the approval of the ethics committee of Heidelberg University. 

Paraffin sections of the tumor isolated from the DKFZ-BT66 hTERT mouse model (n=1) were stained with 

antibodies for p-ERK, GFAP, as well as Ki67. Incubation time was 32 minutes for all antibodies, except for 

the MIB1 antibody (for Ki67) which had an incubation time of 60 minutes. Dilutions and pretreatments 

are listed in the material section (see 2.1.4). Images were captured with the Olympus CXK41 microscope 

using the CellB 2.3 software. 

2.2.3.7 Immunofluorescence (IF) staining  

A protein of interest can be visualized in fixed cells or tissue by means of IF. The method relies on 

antigen-binding of either a fluorophore-conjugated primary antibody or a primary antibody which is later 

bound by a fluorophore-conjugated secondary antibody. After excitation of the fluorophore, the protein 

of interest can be detected by fluorescence microscopy. Information on location, activation status and 

relative expression of the target protein in the cells or tissue can be obtained. 

For the detection of SV40-TAg in DKFZ-BT66 cells, the cells were seeded in ibidi 8-well µ-slides in cell 

culture medium supplemented with doxycycline (n= 3 x 104 cells/well) or without doxycycline (n= 1.5 x 

105 cells/well). After five days in culture, cells were washed with PBS (200 µL/well) twice, fixed with 160 

µL/well 4% PFA for 20 minutes at RT (protected from light) and washed with PBS afterwards. Fixed cells 

were permeabilized with TritonX 100 0.2% in PBS (150 µL/well) (see table 2.1.8) for 30 minutes at RT, 

followed by incubation with blocking buffer (3% BSA plus 0.05% TritonX 100 in PBS see table 2.1.8) for 1 

hour at RT. The primary SV40-TAg antibody diluted 1:250 in blocking puffer (200 µL/well), was added to 

the cells and incubated overnight at 4°C covered in Parafilm®. The next day, cells were washed with PBS 

twice and incubated with secondary antibody (1:500 anti-mouse Alexa Fluor 488, 200 µL/well) at RT for 2 

hours protected from light. Cells were washed with PBS twice, followed by counterstaining with DAPI 

(0.25 µg/mL in PBS) for 10 minutes at RT. The slide was washed with PBS and imaged using the Zeiss 

LSM710 confocal microscope in collaboration with Johannes Ridinger from the CCU Pediatric Oncology, 

DKFZ, Heidelberg in Germany. To control for autofluorescence and unspecific binding, one well of each 

condition, senescent or proliferating DKFZ-BT66 cells, was incubated with the secondary antibody only. 
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2.2.4 Functional assays 

2.2.4.1 Metabolic activity assay 

The metabolic assay as measured by the CellTiter-Glo kit is a fast assay, suitable to determine drug 

response by ATP production of healthy cells. The number of healthy cells correlates to levels of ATP, 

which in turn correlates to a luminescence signal produced by an enzymatic reaction using luciferase. In 

the presence of ATP and molecular oxygen, beetle luciferin is oxygenated by luciferase to oxyluciferin 

and the resulting excited state intermediate emits light. The number of viable cells directly correlates to 

the luminescence output determined in the FLUOstar OPTIMA plate reader.  

Drug treatments with senolytic agents were conducted in collaboration with Juan Pedro Martinez-

Barbera from the Developmental Biology and Cancer Programme, Birth Defects Research Centre, Great 

Ormond Street Institute of Child Health, University College London in England. Five days prior to 

treatment of DKFZ-BT66 cells, technical triplicates of n= 5 x 102 cells/well were seeded with doxycycline 

and n= 8 x 103 cells/well were seeded for cells treated without doxycycline in a 96-well plate, accounting 

for proliferating and senescent cells. For normal human astrocytes, technical triplicates of n= 4 x 103 

cells/well were seeded in a 96-well plate one day prior to treatment. 100 µL of the different drug 

dilutions in cell culture medium were added per well. Three wells containing no cells, but medium only, 

served as control for luminescence background signal. After 72 hours of incubation with the drugs at 

37°C, metabolic activity was determined with the CellTiter-Glo assay following manufacturer’s 

instructions (2.1.7). The prepared 96-well plate was equilibrated to room temperature for 30 minutes. 

100 µL of CellTiter-Glo Reagent were added to each well. The CellTiter-Glo Reagent is a master mix which 

induces cell lysis and contains all reagents to generate the luminescent signal. The solution was mixed 

with the cell culture medium for two minutes on an orbital shaker and incubated at RT for 10 minutes. 

Luminescence was detected using the FLUOstar OPTIMA plate reader. The mean of the control sample 

(medium only) was subtracted from all values. Dose-response curves and IC50 concentrations were 

calculated relative to solvent-treated cells and depicted using GraphPad Prism v5.01.  

2.2.4.2 Senescence-associated ß-galactosidase (SA-ß-Gal) staining 

A commonly used biomarker for senescence is increased activity of the senescence-associated ß-

galactosidase. Normal cycling cells produce ß-galactosidase, which is located in the lysosome and can be 

detected at pH 4.0. In senescent cells lysosomal ß-galactosidase activity is increased and the enzyme 

accumulates, which is why its activity can be determined at a suboptimal pH of 6.0. The enzymatic 
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activity is determined by staining with the chromogenic substrate 5-bromo-4-chloro-3-indolyl ß D-

galactopyranoside (X-gal). Cleavage of X-gal by ß-galactosidase results in a blue precipitate, which can be 

observed in bright field microscopy. 

DKFZ-BT66 cells (n= 2 x 104 cells/well) were cultured in six-well plates for five days with or without 

addition of doxycycline. SA-ß-Gal staining was performed following manufacturer’s instructions (Cell 

Signaling see table 2.1.10) and pictures were captured using the Olympus CXK41 microscope. In brief, 20 

mg X-gal were dissolved in 1 mL dimethylformamide (DMF). The ß-galactosidase staining solution was 

prepared fresh by mixing the supplied reagents from the manufacturer: 930 µL 1x staining solution, 10 

µL 100x solution A, 10 µL solution B and 50 µL X-gal solution per well and the pH was adjusted to 6.0. 

Before staining, the medium was removed, the plate was washed with PBS and 1 mL 1x fixative solution 

(supplied by manufacturer) was added to each well. After fixation for 15 minutes at RT, the plate was 

washed with PBS once more. 1 mL of the prepared ß-galactosidase staining solution was added to each 

well, the plate was sealed with Parafilm® and incubated overnight at 37°C in a dry incubator. The next 

day bright field images of the stained cells were captured using the Olympus CXK41 microscope. 

2.2.4.3 Flow cytometry 

Flow cytometry is a laser-based technology that enables the quantitative detection of light emitted from 

fluorescence-labeled antibodies binding proteins in single cells, which run through a stream of fluid. In 

addition, the technique can be used to sort single cells according to a fluorescent signal.  

Here, flow cytometry was used for the analysis of the cell cycle. During proliferation cells pass through 

different stages of the cell cycle. The DNA content within a cell is reflective of its cell cycle phase. During 

the G0/G1 phase, cells have one copy of DNA. During the S phase, DNA is synthesized and finally results 

in two copies of DNA in the following G2/M phase. To determine the DNA content, cells are stained with 

a DNA intercalating agent, such as 4',6-Diamidino-2-Phenylindole (DAPI). DAPI is a blue-fluorescent stain 

that can pass through intact cell membranes and can be detected after excitation at 405 nm and 

quantified by flow cytometry. The intensity of fluorescence directly correlates to the amount of DNA per 

cell. Depicting cell counts in a histogram relative to DAPI fluorescence intensity, shows the three phases 

of the cell cycle: the first peak equals the G0/G1 phase with one set of DNA, the following valley, 

represents the S-phase and the second peak are the cells in G2/M phase, with two copies of DNA (see 

Fig. 11). 
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conditions at the Imaging and Cytometry Core Facility of the German Cancer Research Center, 

Heidelberg, Germany.  

2.2.5 In vivo techniques and methods involving primary human and murine tumors 

2.2.5.1 In vivo imaging system (IVIS)  

IVIS is a tool to visualize tumor formation and growth in small animals by detection of bioluminescence 

emitted after injection of luciferin in animals transplanted with luciferase-transduced cells. The firefly 

luciferase catalyzes luciferin oxidization in presence of oxygen and ATP, which leads to the emission of 

light. The enzyme is encoded on a lentiviral construct and stably transduced into the injected tumor cells 

(2.2.1.9). As D-luciferin is not a substrate for any other mammalian enzyme, the detected signal is very 

specific and highly sensitive, as it has a very low background signal.  

To image the tumor growth of mice injected with luciferase-expressing tumor cells, the animals were 

narcotized with isoflurane (1.5-2.5 Vol.%). After assessing the level of anesthesia by pedal reflex, their 

eyes were protected with Bepanthen® lotion, the mice were weighted and D-luciferin was injected 

intraperitoneally (0.01 mL/g, c=15 mg/mL in sterile PBS). After five minutes, mice were transferred to the 

IVIS Lumina III machine with their nose facing the nose cones, which were attached to the anesthetic 

system. IVIS measurement (exposure times: 5 minutes and 30 seconds) was conducted. After the 

measurement, the mice were transferred back to their cage and observed until the anesthesia had worn 

off. 

2.2.5.2 Transplantation of DKFZ-BT66 cells in vivo 

To generate an in vivo model of the established DKFZ-BT66 cell line, the patient-derived cells were 

orthotopically injected into the cerebellum of immunodeficient mice in collaboration with Florian Selt 

and Daniela Kuhn from the CCU Pediatric Oncology, DKFZ, Heidelberg in Germany. Before injection, 

DKFZ-BT66 cells were stably transduced with a construct coding for luciferase (see 2.2.1.9/10, see 

appendix B for plasmid maps) to enable visualization via IVIS.  

A single cell suspension of n= 1 x 106 DKFZ-BT66 LUC +/- hTERT cells in 4 µL sterile medium were 

intracranially injected in 6-week old NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ mice (NOD-SCID gamma-mice 

[NSG]). Before surgery, the mice were injected with Caprofen (5 mg/kg) subcutaneously. After 20 

minutes, the mice were narcotized with isoflurane (1.5-2.5 Vol.%), kept on a heating pad, the head was 

fixed in a stereotaxtic instrument and eyes protected with Bepanthen® lotion. The mice were kept under 
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isoflurane-induced anesthesia through a hose attached to the nose. Bupivacaine (0.25%) was applied to 

the site of injection before surgery. After assessing the level of anesthesia by pedal reflex, a scalpel was 

used to cut a 2-3 mm long incision on top of the skull. The site of cell injection was located 7 mm behind 

the bregma, 1.5 mm to the left and 2 mm deep. A hole was drilled into the scull with a sterile cannula at 

the described site. Tumor cells were injected with a Hamilton syringe, adjusted at the correct height for 

injection (2 mm deep). The injection rate was regulated by a microinjection pump with a rate of 400 nL 

per minute (4 µL injected in 10 minutes). To avoid leakage after injection, the syringe was removed 5 

minutes after the end of the injection. The site was disinfected with betaisadona solution, closed with 2-

3 stiches and the mouse was observed after the surgery to ensure well-being. Caprofen (5 mg/kg) was 

given for the following two days in 12 hour intervals.  

After injection of DKFZ-BT66 cells, mice received doxycycline (1,4 mg/mL) in their drinking water to 

induce SV40-TAg expression. Tumor growth was monitored via bioluminescence (IVIS see 2.2.5.1) every 

month. If mice showed signs of disease or discomfort (e.g. signs of pain, hunching, slow movement, 

hyperactivity, problems with balance) they were anesthetized with CO2 and decapitated.  

In case of tumor development, as discovered by symptoms of disease such as hunched posture, head 

dome or tilting and abnormal gaits, the brain was isolated by opening the scull with sharp scissors and 

forceps (for more detail see 2.2.1.10). The brain was carefully transferred to PBS in a 10 cm dish and a 

sagittal cut was performed to detect the tumor location. Tumors from DKFZ-BT66 cells were visible by 

eye via strong RFP expression, which is co-expressed on the SV40-TAg construct. The tumor was isolated 

from normal brain and cut into two pieces using scalpels. One piece was preserved in 4% formaldehyde 

for IHC analysis. The second piece was mechanically dissociated into a single cell suspension with 

different size pipet tips. The tumor cell suspension was counted and n= 2-5 x 106 cells were frozen in 

liquid nitrogen for DNA or RNA isolation and n= 2 x 106 cells/cryovial were frozen in 10% DMSO-

containing cell culture medium for retransplantation. The animal procedure was approved by the 

German authorities (Regierungspräsidium Karlsruhe; G64/14).  

2.2.5.3 BRAF
V600E

-expressing PA mouse model 

The murine PA in vivo model was generated by Alexander Sommerkamp and Britta Ismer from the 

Pediatric Glioma Research, DKFZ, Heidelberg in Germany. In brief, the tumors were generated by 

injecting RCAS BRAFV600E-expressing DF-1 cells into the cerebral hemisphere of neonatal Nestin Tv-a (Ntv-

a) mice as described by Gronych and colleagues (24). Five to six weeks after injection, mice were 

sacrificed and PA tumors were isolated. Non-injected Ntv-a mice of the same age were used as controls. 
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Protocols of all animal procedures were approved by the German authorities (Regierungspräsidium 

Karlsruhe; G-69/13, DKFZ342). 

2.2.5.4 DNA-methylation array of murine and human PA tumor samples 

As methylation patterns are preserved and therefore specific for each tumor entity, analysis of 

methylation profiles can be used as a tool to classify tumors. Epigenetic changes regulate the 

accessibility of chromatin and can thereby alter gene transcription without inducing changes to the DNA 

sequence. One common mechanism of epigenetic regulation is the methylation of cytosine at the 5´- 

carbon in a CpG dinucleotide. Hypermethylation leads to reduced accessibility of the DNA strand and 

therefore results in reduced transcription. In tumors, hypermethylation of promoter regions is a 

common mechanism to inactivate e.g. tumor suppressor genes. As these alterations are preserved from 

the cell of origin throughout tumor development, analysis of the methylation status of CpG dinucleotides 

in a tumor sample on a genome-wide level can be used for classification purposes by differential 

comparison of the identified pattern to the signatures of other tumor entities.  

The Illumina Infinium HumanMethylation450 Beadchip (450K) array was used for all human tumor 

samples as well as the DKFZ-BT66 cell line and the Illumina Infinium HumanMethylationEPIC (850K) 

Beadchip was used for the DKFZ-BT66 hTERT mouse model both performed according to manufacturer’s 

instructions at the Genomics and Proteomics Core Facility of the German Cancer Research Center, 

Heidelberg, Germany. Methylation-DNA array data was used for molecular subgrouping and copy 

number profiling as described before by Hovestadt et al. (5) and Capper et al. (4). t-Distributed 

Stochastic Neighbor Embedding (t-SNE) analysis was performed as described before by Sturm et al. (8) 

and Capper et al. (4). The analysis was performed in cooperation with David Jones from the Pediatric 

Glioma Research, DKFZ, Heidelberg in Germany.  

2.2.6 Statistical analysis 

2.2.6.1 Identification of OIS-controlling candidate genes specific for PA 

Step 1: OIS-controlling candidate genes were identified in a first approach by comparing publicly 

available gene expression datasets from several human OIS models, generated in fibroblasts or 

melanocytes. The goal was to identify genes that were upregulated in multiple OIS models in comparison 

to their matching proliferating counterparts and to generate an OIS candidate gene list. Six publicly 

available gene expression datasets were compared to each other (GEO: GSE54402, GSE46801, GSE60652, 

GSE41318, ArrayExpress: E- NCMF12, E-NCMF13, also see 2.2.2.5). First, upregulated genes during the 
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OIS condition were ranked for every dataset separately according to their moderated t-statistic based on 

the empirical Bayes approach (133) as implemented in the Bioconductor package limma (134). If a gene 

was represented by multiple probes, the probe with the strongest effect was chosen. Genes which were 

consistently upregulated in all datasets (n=332) were identified with the rank-product approach (135). 

The rank-product is the geometrical mean of ranks. The analysis was based on the overlap of genes 

determined in each data set. Significance of rank-product was tested according to Eisinga et al. (136) and 

p-values were adjusted to control the false discovery rate using Benjamini-Hochberg correction. The 

statistical analysis was conducted in collaboration with Thomas Hielscher from the Division of 

Biostatistics at the DKFZ Heidelberg in Germany.  

To account for pathways that are altered during OIS, ingenuity pathway analysis (IPA) was conducted for 

the n=332 identified OIS-related genes. A list was generated from all genes that appeared in the top-

upregulated pathways predicted by IPA (n=36 genes in total).  

Finally, the most common SASP factors have been summarized by Coppé et al. (87) and a list with the 

SASP factors was included in the analysis. 

Step 2: The expression level of the OIS-related genes selected from public GEPs, the IPA pathway genes 

and the SASP genes were analyzed in pediatric and adult PA patient samples (n=182) (appendix E, GEO: 

GSE16011 (137), GSE5675(138)) and compared to the corresponding expression level in unmatched 

normal fetal cerebellum samples (n=5) from non-patients (GEO: GSE44971 (139)) using the R2 web-

based genomics analysis and visualization platform (http://r2.amc.nl). Genes which were significantly 

upregulated in PA were considered for further analysis. 

Step 3: Finally, only genes were considered, which overlapped in all three candidate gene lists and could 

be targeted by a small molecule inhibitor or antibody.  

2.2.6.2 Gene set enrichment analysis (GSEA) 

GSEA is a computational method that enables testing for differential expression of a defined gene set 

between two biological states (140). 

To test for differential gene expression of the SASP factors (87) in different biological samples or 

experimental settings, the limma approach (134) was used. GSEA was performed using the camera test 

(141). The most specific probe set per gene was selected using the jetset algorithm (142). All analyses 

http://r2.amc.nl/
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were performed with statistical software R 3.4 in collaboration with Thomas Hielscher from the Division 

of Biostatistics at the DKFZ Heidelberg in Germany.  

2.2.6.3 Correlation of progression-free survival (PFS) and SASP factor expression 

The patient data utilized to look for correlations between gene expression and clinical outcome were 

part of the ICGC PedBrain cohort (14). PFS was defined as time from diagnosis to recurrence or death, 

whichever occurred first. The distribution of PFS was depicted using the method of Kaplan and Meier and 

compared between groups using the log-rank test. Univariate and multivariate Cox Regression models 

were used to estimate the hazard ratio and corresponding 95% confidence interval of prognostic factors 

(appendix G-L). IL1B log2-expression and SASP sum score were standardized to give the hazard ratio per 

one standard deviation increase. Groups were based on median cut-off for IL1B or tertiles for the SASP 

score. The calculations were conducted in collaboration with Thomas Hielscher from the Division of 

Biostatistics at the DKFZ Heidelberg in Germany.  

2.2.6.4 Experimental settings 

In vitro experiments were performed in a minimum of three biological replicates, as indicated, besides 

the senolytic drug screen which was conducted in three technical replicates. All data is presented as 

mean ± SD. Testing for statistical significance of differences between two groups was done by unpaired 

Student´s t-Test with Welch´s correction. P-values below 0.05 were considered as significant. Graphs 

were generated using GraphPad Prism version 5.01, R 3.4 and Microsoft Powerpoint 2010 for Windows. 
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3. RESULTS 

3.1 Establishment of an in vitro and in vivo model of LGG 

3.1.1 The DKFZ-BT66 PA model 

An in vitro LGG model, DKFZ-BT66, was successfully generated from a patient tumor sample of a two 

year old, male patient with a PA (31). The diagnosis was confirmed by the local neuropathology in 

Tübingen and by the central German reference pathology board in Bonn. The tumor was located in the 

cerebellum and presented with a KIAA:BRAF (KEX16BEX9) fusion.  

Due to fast onset of growth arrest, most likely resulting from OIS, primary LGG tumor cells cannot be 

cultured over the long-term (19,32). To overcome OIS-induced growth arrest, the primary material was 

stably transduced with inducible SV40-TAg, which interferes with the OIS-relevant TP53/CDKN1A and 

CDKN2A/RB1 pathways. The tumor was processed by mechanical dissociation into a single cell 

suspension and transduced at with a lentiviral construct coding for SV40-TAg as well as RFP at passage 2, 

both regulated by a doxycycline-inducible promoter (see 2.2.1.10). Successful transduction as well as 

active transcription of the SV40-TAg coding plasmid could be determined by assessment of RFP 

expression via fluorescence microscopy (Fig. 12A). After antibiotic selection the transduced cells 

uniformly expressed RFP, as detected by flow cytometry (Fig. 12B). To induce SV40-TAg expression and 

proliferation of the LGG cells, the medium was supplemented with doxycycline. Upon withdrawal of 

doxycycline from the cell culture medium, SV40-TAg mRNA expression decreased substantially within 

two days (Fig. 12C). Protein expression of SV40-TAg was reduced after two days and could no longer be 

detected at day five after doxycycline withdrawal (Fig. 12D). Withdrawal of doxycycline from the cell 

culture resulted in growth arrest of DKFZ-BT66 cells. In a cell count, comparing doxycycline-treated, 

proliferating DKFZ-BT66 cells (+DOX) to cells under doxycycline withdrawal (-DOX), a significant 

difference in growth could be determined at day five (Fig. 12E). Withdrawing doxycycline from the 

medium was accompanied by an initial drop in cell number, likely resulting from sudden activation of 

p53. The doubling time of doxycycline-treated, proliferating DKFZ-BT66 cells was calculated to be 44 

hours (passage 11-13). In summary, addition of doxycycline induced SV40-TAg expression and 

subsequent steady proliferation, while withdrawal of doxycycline resulted in reduction of SV40-TAg 

levels within five days and subsequent growth arrest of DKFZ-BT66 cells. 
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To verify the origin of the DKFZ-BT66 cell line from the PA patient sample, a genome-wide methylation 

analysis, RT-qPCR for the KIAA:BRAF fusion and a western blot for MAPK pathway activity was 

conducted. Patterns derived from DNA methylation analysis are highly conserved for each tumor entity 

and allow for identification and classification of tumor samples via unsupervised clustering (4,5). The t-

SNE plot generated from methylation array data showed a clustering of the original PA patient sample 

close to the established DKFZ-BT66 cell line. In addition, the original tumor sample clustered in the same 

methylation group as other infratentorial PAs compared to other pediatric high- and low-grade tumors 

(Fig. 13A). Furthermore, the KIAA-BRAF fusion, expressed in the original PA tumor, resulting in a 

duplication on chromosome 7q34, could be detected in the copy number plot derived from the 

methylation array of the DKFZ-BT66 cell line (Fig. 13B). Presence of the fusion in the cell line was 

additionally confirmed by RT-qPCR using primers designed around the different break points of the 

KIAA:BRAF fusion. The original tumor presented with a KEX16
B

EX9
 fusion, which could be detected in the 

DKFZ-BT66 cell line as well (Fig. 13C). Aberrant MAPK pathway activity was evident from elevated 

phosphorylation of MEK and ERK in comparison to BRAF wild-type expressing HEK293T cells, as 

determined by western blot. ERK activation in the BRAF fusion expressing DKFZ-BT66 cell line was 

comparable to the BRAFV600E expressing BT-40 cell line (Fig. 13D). 

In summary, the patient-derived DKFZ-BT66 cell line shows a preserved methylation profile compared to 

primary infratentorial PAs, expresses the original KIAA-BRAF fusion and exhibits elevated MAPK activity. 

Therefore, it is a representative in vitro model of a LGG. 
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3.1.2 Optimization of conditions for the future establishment of further in vitro models 

To generate further LGG in vitro models different tumor dissociation and cell culture conditions were 

explored in a total of n=117 LGG samples.  

Several parameters of cell isolation, dissociation, culture conditions, medium and viral production and 

transduction were varied for optimization. 

Handling of primary material and dissociation technique: The tumor tissue was initially dissociated using 

the Brain Tumor Dissociation Kit from Miltenyi Biotec, which included an enzymatic digestion step as well 

as filtering steps, but the resulting yield in cell number was very low. When comparing the approach to 

simple mechanical dissociation (2.2.1.10), a single cell suspension could be established with both 

methods, while the number of vital cells was much higher after mechanical dissociation. Therefore 

mechanical dissociation was chosen to generate single cell suspensions from primary LGG material (Fig. 

14A,B I).  

In addition to cultures of single cells, explant cultures were tested (2.2.1.10). Small pieces of the tumor, 

not containing blood vessels or necrotic tissue, were directly transferred to six-well plates. They were 

allowed to attach, before medium was carefully added. The explant cultures did successfully attach 

showing outgrowth of cells, especially in serum-free medium (Fig. 14A,B II). However, these neuron-like 

cells could never be successfully transduced with the SV40-TAg lentivirus. In addition, the cells could not 

be detached from their original culture flask without irreversibly damaging the cells (Fig. 14B, right image 

after detachment). 

Cell culture plastic coating: To increase attachment of freshly dissociated LGG cells, six-well plates were 

pre-coated with poly-L-lysine (PLL) for 1 hour prior to seeding (2.2.1.1). However, this coating step did 

not lead to significant increase in cell numbers and was therefore discontinued.  

Positive selection of primary tumor cells: In another attempt to increase the attachment of tumor cells 

and reduce the contamination with stroma cells, the tumor cell suspension was positively selected with 

anti-A2B5 beads using the MACS technology from Miltenyi Biotec. A2B5 is a surface marker of glial 

progenitor cells (143), which are putative cells of origin of PAs (138). Selection of the established DKFZ-

BT66 cell line as positive control however, resulted in a very small yield of isolated cells. In addition, after 

five attempts of filtering primary LGG material for A2B5, the success rate in transduction of tumor 

material could not be increased, and this step was therefore also discontinued.  
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HEPES, 1mM L-glutamine, 5 mg/mL glucose), III Neurobasal-A medium (+ 2% B-27, 1% N2, 1% Glutamax, 1,5 mg/mL glucose 

from Chadwick et al. protocol). The first picture was taken on day 0 and the second picture on day 8. Doxycycline was added 

every second day together with fresh medium to induce SV40-TAg expression. B) DKFZ-BT66 cells (n= 5 x 10
3
) were allowed to 

form spheres in u-bottom plates and were injected into the brain slices. Cells were cultured in I full ABM medium or II MEM plus 

supplements. The first picture was taken on day 0 and the second picture on day 4. Doxycycline was added every second day 

together with fresh cell culture medium. C) MED8A cells (n= 6 x 10
3
) were seeded in MEM medium plus supplements using the 

same experimental setup as in A. 

 

Viral production and transduction: Even though, in some cases primary material was successfully 

transduced as evident from RFP expression, the analysis of the isolated cells after antibiotic selection 

was negative for the two markers of LGG tumors, the BRAFV600E mutation and the KIAA:BRAF fusion. To 

further increase the yield of transduced cells, the lentivirus production procedure was optimized. First, 

different transduction methods were compared such as polyethylenimine (PEI), Lipofectamine and 

calcium phosphate. The calcium phosphate transduction showed the best efficiency and was therefore 

used for all further experiments. Here the protocol was optimized as well by e.g. testing different pH 

values of 2x HBS. The best transduction efficiency was detected at pH 7.12, which was used for all 

following experiments. An attempt to increase viral transduction efficiency was to increase viral titers by 

ultracentrifugation of the virus supernatant. However, this did not result in higher transduction 

efficiency and was therefore not utilized in further experiments.  

In summary, establishing an in vitro model from LGG tumor samples remains difficult due to their benign 

growth behavior. Further systematic efforts will be necessary to improve the very low success rate. 

3.1.3 Characterization of orthotopically injected DKFZ-BT66 cells 

To exploit the full potential of the established DKFZ-BT66 cell line, the cells were utilized for the 

generation of an in vivo model. First, the DKFZ-BT66 cell line was stably transduced with a construct 

coding for luciferase as well as green fluorescent protein (GFP) (2.2.1.9), to enable detection of tumor 

engraftment and growth in mice (2.2.5.1). Successfully transduced cells were selected for high GFP 

expression and isolated by fluorescence activated cell sorting (2.2.4.3). The luciferase expressing DKFZ-

BT66 cells were injected into the cerebellum of n=12 6-week old NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ mice 

(NOD-SCID gamma-mice [NSG]). All mice continuously received doxycycline (1,4 mg/mL) in their drinking 

water to induce SV40-TAg expression and subsequent tumor cell proliferation. Tumor growth was 

monitored via bioluminescence using IVIS (2.2.5.1). In the time frame of nine months no tumor 

formation was observed and the experiment was terminated (Fig. 16).  
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characterize the murine model, a copy number plot derived from DNA methylation array data was 

generated from one of the DKFZ-BT66 hTERT tumors. The tumor still showed presence of the typical 

tandem duplication leading to the KIAA:BRAF fusion (chromosome 7q), but the copy number plot 

revealed numerous atypical chromosomal aberrations for a PA (Fig. 18C). In addition, the methylation 

profile did not cluster with the established methylation reference class of PAs (4). When one of the DKFZ-

BT66 hTERT tumors was re-transplanted into NSG mice, tumors grew so fast that all mice had to be 

sacrificed within one month (Fig. 18A, green line). In conclusion, the DKFZ-BT66 cell line alone can not 

induce PA tumors, most likely due to early onset of replicative senescence, and the DKFZ-BT66 hTERT cell 

line induces tumors which do not resemble a PA, but higher-grade, more malignant tumors. 
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(n=6) (green). B) Immunohistochemistry of a first generation DKFZ-BT66 hTERT mouse tumor stained for H&E, GFAP, Ki67 and 

pERK. C) Copy number plot from DNA-methylation array data of a first generation murine DKFZ-BT66 hTERT tumor. 

 

3.2 Proof and characterization of OIS in PA  

Due to the inducible nature of SV40-TAg expression and the resulting switch from growth arrest to 

proliferation, the DKFZ-BT66 cell line is a suitable model to study OIS. To prove that the growth arrested 

condition of the DKFZ-BT66 cell line is indeed representative of OIS, DKFZ-BT66 cells cultured in the 

absence of doxycycline were characterized by RT-qPCR, western blot, immunofluorescence and flow 

cytometry. Common markers of OIS such as expression of CDKN1A, CDKN2A and senescence-associated 

ß-galactosidase (SA-ß-Gal), cell cycle arrest and senescence-associated heterochromatin foci (SAHFs) 

were analyzed. For all experiments in the OIS state, DKFZ-BT66 cells were cultured in proliferation in the 

presence of doxycycline until seeded. After seeding cells for the respective experiment, cells were 

cultured without doxycycline. 

3.2.1 Detection of common OIS markers in DKFZ-BT66 cells 

The first observation after withdrawal of doxycycline was a change in cell morphology to the senescence-

characteristic enlarged, flat phenotype (Fig. 19A) (48). The OIS marker CDKN2A was expressed on mRNA 

and protein level, but not differentially regulated during withdrawal of doxycycline (Fig. 19B,D). As the 

SV40-TAg interferes with the CDKN2A/RB1 pathway further downstream of CDKN2A, its levels are not 

altered by withdrawal of doxycycline und subsequent activation status of SV40-TAg. Upon withdrawal of 

doxycycline the mRNA expression of the OIS marker CDKN1A was significantly upregulated (Fig. 19C). 

However, CDKN1A expression is regulated by p53 (145), which is inhibited during expression of SV40-TAg 

(Fig. 19D). SV40-TAg inhibits p53 signaling, including the autoregulatory feedback loop leading to its 

degradation by MDM2 (146), therefore p53 protein levels accumulate (147) (Fig. 19D). Again, this is 

reflected in the protein level of CDKN1A, which is absent while SV40-TAg is expressed and only 

transcribed once doxycycline is withdrawn and p53 signaling is activated. Cell cycle analysis of DKFZ-BT66 

cells during doxycycline withdrawal revealed a GO/G1 cell cycle arrest, as indicated by a significant 

reduction of the S-phase after two days of doxycycline withdrawal and an increase in G0/G1-phase (Fig. 

19E). Representative images of the analyzed histograms at day ten after doxycycline withdrawal show 

the reduction of the S phase and increase of the G0/G1 phase (Fig. 19F).  
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generated from publicly available gene expression datasets (n=6) by comparing gene expression from 

experiments conducted in human OIS models to their cycling counterparts. The analyzed OIS models 

were generated by overexpression of either mutated BRAF or RAS in fibroblasts or melanocytes. 

Therefore, the gene list represents OIS-specific genes detected in independent OIS models. By comparing 

the six analyzed datasets via rank product analysis, a list of n=332 genes specifically upregulated during 

OIS was generated. The third OIS-specific dataset (“Top IPA pathway genes”, Fig. 23A) was generated by 

analyzing the dataset “Published OIS genes” using the software “Ingenuity Pathway Analysis” (IPA) for 

the top upregulated pathways. The upregulated pathways in the “Published OIS genes” were all related 

to inflammation. In total, the overlap of all genes relevant to the single pathways, resulted in a list of 

n=36 genes (Fig. 23A). This list additionally adds all genes related to pathways upregulated in OIS, which 

may not have been included in the single gene analysis. To identify which OIS genes are specifically 

relevant in PA, the three OIS-specific datasets (“SASP genes”, “Published OIS genes”, “Top IPA pathway 

genes”) were screened for elevated expression in primary PA samples (n=182) versus normal fetal brain 

samples (n=5) in step 2 (Fig. 23A). In the final step 3, the consensus genes of all three lists were filtered 

for targetability with a small molecule inhibitor or antibody (Fig. 23A). This enabled to filter for 

therapeutically relevant targets.  

The three final OIS-controlling candidate genes identified with this approach were IL1B, IL6 and 

TNFRSF1B (Fig. 23A,B). The expression of the three candidate genes was also significantly upregulated in 

the murine PA model (24) in comparison to healthy brain of mice of the same age (Fig. 23C). In addition, 

the gene expression of all candidates was significantly upregulated during the senescent condition of the 

DKFZ-BT66 cell line compared to its proliferating state (Fig. 23D).  

In summary, three SASP candidate genes were identified which are upregulated on mRNA level in murine 

as well as human PA cells. 
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SASP factors on protein level in every PA sample. VEGFA is not expressed to a detectable level in the fetal brain sample. 

Depicted is mean +/- SD. Dots indicate values of individual samples. B) Protein expression of IL6R, Ki67, LCA and CDKN2A 

determined by immunohistochemistry (brown staining) in a PA sample of a 4-year old, male patient. The tumor was located in 

the cerebellum and positive for the KIAA:BRAF fusion. Scale bar size 500 µm upper panel, 100 µm lower panel. 

 

3.3.4 Validation of SASP candidate pathway activity 

Presence of the cytokine receptors as well as activity the IL1B and IL6 signaling pathways was further 

investigated in the DKFZ-BT66 cell line. The IL1R1 was detectable on mRNA as well as protein level in 

DKFZ-BT66 cells, but was not regulated during induction of OIS (Fig. 26A,B). As described in 1.2.2.iii the 

IL1 signaling pathway is regulated by several mechanisms, but the IL1R1 receptor is rarely regulated in 

disease models (104,153). Downstream signaling of IL1B was investigated by detection of IRAK1 protein 

and phosphorylation of RELA. IRAK1 is degraded upon activation of the IL1 pathway (104). IRAK1 levels 

were gradually decreasing upon induction of OIS in DKFZ-BT66 cells (Fig. 26B). Phosphorylation of RELA, 

which is a known downstream target of IL1 and an important regulator of the SASP (89,107,154), 

increased during induction of OIS in DKFZ-BT66 cells (Fig. 26B). Overall, the IL1 pathway was found to be 

activated during the OIS state of the PA model DKFZ-BT66. 

For the IL6 signaling pathway expression of the IL6Ra was determined by RT-qPCR as well as western 

blot. While the IL6Ra was expressed, but not regulated on mRNA level, its protein levels decreased once 

DKFZ-BT66 cells were driven into OIS (Fig. 26C,D). As described in 1.2.2 iv, the IL6Ra is internalized and 

degraded upon continuous activation of the IL6 pathway as a negative feedback regulation (120). A 

further indication for activation of the negative feedback mechanism was the decreasing level of 

phosphorylated STAT3 (Fig. 26D). While the downstream target STAT3 is phosphorylated within minutes 

after IL6 signal activation (115), long-term activation of the pathway results in downregulation of pSTAT3 

(121). As observed in the ELISA (Fig. 24B), IL6 was secreted over a course of several days. In summary, 

downregulation of the IL6 pathway was observed during OIS induction of DKFZ-BT66 cells, in line with a 

negative feedback loop during long-term stimulation with IL6.  

Taken together, the data indicates that both pathways, IL1B and IL6, are regulated during OIS in DKFZ-

BT66 cells. The IL1 pathway, which induces its own activation via a positive feedback loop (107), stays 

active during IL1B secretion in senescent DKFZ-BT66 cells, while the IL6 pathway is regulated by a 

negative feedback mechanism. 
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3.4 Examination of the regulation of OIS by SASP factors  

3.4.1 The role of the SASP candidate genes in OIS induction 

Up to now, presence of the two cytokines IL1B and IL6 was detected in primary PA, the cytokines were 

shown to be secreted by senescent PA cells and their respective pathways were regulated during 

induction of OIS in DKFZ-BT66 cells. As observed in the CM experiments, the secreted SASP factors were 

able to induce growth arrest of proliferating PA cells. The role of both cytokines for induction of growth 

arrest, and subsequent OIS, was now determined by recombinant cytokine treatments. The IL1 pathway 

was actively stimulated by addition of increasing concentrations of rIL1B to proliferating DKFZ-BT66 cells 

(Fig. 27A,B). A concentration dependent reduction in cell growth was observed after 20 days of rIL1B 

treatment (Fig. 27A). A significant reduction of growth was observed starting from concentrations of 100 

pg/mL rIL1B. At the same concentration, the IL1 pathway was activated, as evident by a considerable 

decrease in IRAK1 levels and an increase in the precursor version of IL1B, pro-IL1B (Fig. 27B). The latter 

results from positive feedback activation, by which IL1B initiates its own transcription and expression 

(155). The direct correlation between cell growth and IL1 pathway activation can be deduced from the 

maximum effects being observed at the same concentration of rIL1B (100 pg/mL).  

However, when proliferating DKFZ-BT66 cells were treated with rIL6 instead of rIL1B, no effect on cell 

growth was observed (Fig. 27C). Short-term treatment with rIL6 actively stimulated the IL6 pathway, 

evident by increased phosphorylation of STAT3 in a concentration dependent manner (Fig. 27D). In an 

attempt to recapitulate the effects of the SASP, which is a complex mixture of multiple inflammatory 

factors, a combination treatment of both cytokines was conducted. However, no additional effect on cell 

counts by the treatment with a combination of rIL1B plus increasing rIL6 concentrations could be 

observed (Fig. 27E). Therefore, only IL1B significantly reduced cell growth in contrast to rIL6.  
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The effect of rIL1B on PA cells was further characterized and analyzed for markers of OIS, such as cell 

morphology and SASP factor expression. 

In order to exclude confounding factors responsible for the reduction in cell numbers upon rIL1B 

treatment, such as cell death or SV40-TAg downregulation, viability and protein expression was 

determined. Measurement of cell viability indicated that the reduction of cell growth did not result from 

cell death under treatment (Fig. 28A). Neither did the reduction in cell proliferation originate from 

reduced levels of SV40-TAg protein expression, as shown by steady protein levels of SV40-TAg (Fig. 28B). 

SV40-TAg signaling remained active, as proven by continuous absence of CDKN1A protein (Fig. 28B). The 

IL1 pathway was activated by rIL1B treatment for the entire duration of the 20 day treatment, as evident 

by IRAK1 degradation (Fig. 28B). IL1, part of the described SASP factors (87), has been described as a 

major regulator of the SASP itself previously (50), in a positive feedback manner. In line with this, 

treatment of proliferating DKFZ-BT66 cells with rIL1B significantly induced gene expression of the SASP 

factors in comparison to untreated cells (Fig. 28C). Finally, rIL1B treatment altered the shape of 

proliferating DKFZ-BT66 cells to an enlarged, flat morphology characteristic for senescence (Fig. 28D).  

In summary, this data indicates that IL1B reduces growth of proliferating PA cells, induces expression of 

the SASP as well as changes in morphology typical for OIS. Concluding from this, the SASP factor IL1 plays 

a major role in inducing OIS in PA. 
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with scramble (scr.) shRNA. Depicted are mean +/- SD of three independent experiments. C) Cell count of senescent DKFZ-BT66 

hTERT cells transduced with the depicted shRNAs for 20 days. Shown is one experiment. 

 

As the know-down of the cytokines was not successful, a stable knock-down of the two cytokine 

receptors was attempted. For this purpose, the DKFZ-BT66 hTERT cell line was transduced with three 

shRNA constructs per receptor and sorted for GFP expression, encoded on the shRNA constructs. The 

mRNA level of the receptor was significantly decreased for one of the shRNAs (#2) targeting IL1R1 (Fig. 

33A). For shIL1R1 #2, protein levels of the receptor were still detectable by western blot, but IRAK1 

levels were slightly increased, indicating reduced IL1 signaling (Fig. 33B). For the IL6Ra, two shRNAs (#2 

and #3) induced a significant reduction of IL6Ra mRNA levels (Fig. 33C). IL6Ra protein levels were 

reduced for shRNA #1 and #3, but not for constructs #2 (Fig. 33D), indicating a discrepancy between 

mRNA and protein expression. In a cell count conducted with the transduced DKFZ-BT66 hTERT cells in 

OIS, the cell line with shIL1R1 #2 showed increased growth after 20 days, but none of the other 

constructs induced a similar effect (Fig. 33E). To rule out off-target effects, the knock-down of IL1R1 was 

repeated with three additional shRNA constructs (Fig. 33F-H). A significant decrease in IL1R1 levels was 

achieved with constructs #1,2,4,5,6 (Fig. 33F). All shRNA constructs reduced the protein levels of IL1R1, 

but only #3-5 fully rescued IRAK1 degradation (Fig. 33G), again indicating a discrepancy between mRNA 

and protein expression. In a cell count conducted with the transduced, senescent DKFZ-BT66 hTERT cells 

for 30 days, none of the senescent cells started to regrow (Fig. 33H). Concluding from this, the observed 

effect in cells transduced with shRNA #2 targeting IL1R1 most likely was an off-target effect, however it 

would be interesting to analyze the transduced cell line for additional mutations (e.g. by integration 

effects) to identify the OIS escape mechanism. 

Knock-down of the cytokine receptors was partially successful, as evident from reduced mRNA and 

protein levels (with a discrepancy between mRNA and protein expression), but did not lead to bypass of 

OIS-induced growth arrest in DKFZ-BT66 cells, and the results remain inconclusive. 
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3.5 Translational relevance of the SASP in PA 

3.5.1 Influence of anti-inflammatory treatment on DKFZ-BT66 cell growth   

As the inhibition of single SASP factors did not allow bypass of growth arrest of senescent DKFZ-BT66 

cells, treatment with the glucocorticoid dexamethasone, a broad anti-inflammatory drug, was tested. 

Glucocorticoids have previously been shown to inhibit multiple SASP factors (91,92,156). Senescent 

DKFZ-BT66 cells were treated with dexamethasone for 20 days. After five days, a significant increase in 

growth was detected in comparison to solvent-treated senescent cells (Fig. 34A). Exemplary for SASP 

signaling, the IL1 and IL6 pathway were both inhibited. IRAK1 levels were rescued under treatment with 

dexamethasone, indicative of IL1 pathway inhibition (Fig. 34B). In addition, increased levels of the IL6Ra 

and pSTAT3 were detectable under anti-inflammatory treatment (Fig. 34B). As the IL6Ra is degraded 

upon long-term IL6 secretion, presence of the receptor as well as pSTAT3 indicates inhibition of IL6 

secretion and signaling. When comparing the gene expression of the SASP signature in senescent cells 

treated with dexamethasone for five days to untreated senescent cells, the SASP was significantly 

downregulated (Fig. 34C), confirming the previous description of glucocorticoids suppressing the SASP 

(91,92). Finally, on the basis of changes in gene expression under dexamethasone treatment versus 

untreated senescent DKFZ-BT66 cells, ingenuity pathway analysis predicted the inhibition of IL1B as the 

top upstream regulator of the shift in gene expression (Fig. 34D). Of note, IPA prediction of the top 

upstream regulators under dexamethasone treatment of senescent cells overlapped in 4/5 with the 

upstream regulators predicted under rIL1B treatment of proliferating DKFZ-BT66 cells, with regulation 

occurring in the opposite manner (Fig. 34D): four of the five top upstream regulators (IL1B, TREM1, TNF, 

NFκB complex) were identical, being inhibited by dexamethasone and activated under rIL1B treatment 

(appendix F). In conclusion, the growth reduction induced by rIL1B treatment seems to activate the same 

pathways that are inhibited under dexamethasone treatment during bypass of the OIS-related growth 

arrest. 

In summary, treatment with dexamethasone induced regrowth of senescent cells, inhibited the SASP on 

gene expression level as well as the exemplary SASP signaling pathways, IL1 and IL6, on protein level. 

IL1B is indicated to be an important mediator of the gene expression changes observed under induction 

or bypass of growth arrest. 
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data and annotations from the ICGC PedBrain PA cohort were utilized (n=112 patients, survival data 

available for 110/112 patients, annotations appendix E) (14).  

First, the effect of IL1B was investigated by dividing the patient cohort in a “high IL1B” and “low IL1B” 

expression group according to median cut-off. A significant advantage in progression-free survival (PFS) 

could be observed for the “high IL1B” cohort (log-rank test) (Fig. 35A). 5-year PFS was significantly better 

in the “high IL1B” cohort with 85% compared to the “low IL1B” group with 46%. Patients with elevated 

IL1B expression had significantly better PFS, which was also true when examining IL1B expression as a 

continuous variable (HR=0.4, 95%Cl 0.24-0.69, p=0.0008; n=110 patients, appendix G). IL1B remained a 

factor for favorable prognosis after multivariate analysis accounting for other relevant prognostic factors 

such as extend of tumor resection (HR=0.37, 95%Cl 0.18-0.75, p=0.0056; n=90 patients, appendix H) or 

radiotherapy (HR=0.35, 95%Cl 0.15-0.77, p=0.0079; n=75 patients, appendix I). As IL1B is not a specific 

factor for OIS and could be upregulated in pediatric patients for several reasons e.g. fever or infections, 

the expression of all SASP genes was analyzed in the same cohort. 

To examine the relevance of the SASP on PFS, a score was calculated by summing up the expression 

values of all SASP genes per patient (SASP score). Patients with a higher SASP score (continuous variable, 

HR=0.56, 95%CI 0.34-0.93, p=0.026, n=110 patients, appendix G) had significantly better PFS. The SASP 

score remained a prognostic factor for favorable PFS when accounting for extend of tumor resection 

(HR=0.36, 95%CI 0.16-0.82, p=0.01; n=90, appendix J) as well as radiation therapy ((HR=0.19, 95%CI 0.06-

0.52, p=0.0006; n=75 patients, appendix K) or the combination of both (HR=0.19, 95%CI 0.03-0.72, 

p=0.0100; n=58 patients, appendix L) in a multivariate analysis. When grouping PA patients according to 

SASP score tertiles, PFS was significantly different (log-rank test) with the 5-year PFS being 48% in the 

"SASP low" group, 61% for the "SASP intermediate" group and 90% for the "SASP high" group (Fig. 35B). 

To account for the highly influential prognostic factor of extent of resection, the ICGC cohort was 

separated in patients with gross-total resection (GTR) or sub-total resection (STR). Analysis of SASP 

expression in the GTR subgroup revealed a cohort of PA patients with a 100% 5-year PFS in the “SASP 

high” as well as the “SASP intermediate” group. The “SASP low group” had a worse PFS, with a 5-year PFS 

of 63.3%. Survival was significantly different between the patient cohorts (log-rank test) (Fig. 35C). In 

comparison, PFS in the STR subgroup was very poor in general, as expected. However, by separating the 

patient cohort according to SASP tertiles, a group with particularly poor outcome was identified. The 2-

year PFS in the “SASP low” cohort was 52% and at 0% at 3 years (Fig. 35D). In addition, all patients of the 

“SASP intermediate” cohort presented with a progression within six year years (5-year PFS 27.8%, 6-year 
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3.5.3 Therapeutical exploitation of OIS in PA 

Considering that the SASP can influence the growth of PA cells makes senescent cells a relevant 

therapeutical target. Most of the PA tumor cells seem to be arrested in a dormant, OIS state and only a 

small proportion of cells are actively cycling (19,144). Standard of care chemotherapy is highly 

dependent on cell division and effects observed in LGG patients in comparison to HGG patients only 

occur after extended treatment durations (clinical observation). Targeting the dormant, senescent PA 

cells may help to avoid the phenomenon of sudden progression or recurrence at a later time point (18). 

By combining chemotherapeutics together with agents targeting the non-cycling cells an improved 

response may be achieve in LGG patients, representing a novel treatment approach. 

Preliminary results were generated to implement the novel findings in a treatment approach, by 

targeting senescent PA cells in a small drug screen with a class of drugs called senolytics. Single as well as 

combination treatments were conducted by screening the senolytic agents together with standard of 

care chemotherapeutics as well as novel targeted treatment approaches, MEK inhibitors, for reduction in 

metabolic activity in DKFZ-BT66 cells. 

Senolytic agents are known to overcome resistance to apoptosis in senescent cells. Two inhibitors of 

anti-apoptotic BCL2 family members were analyzed, navitoclax targeting BCL2/-W/-XL and ABT-737 

inhibiting BCL-W/-XL (157-159). Survival of senescent cells was shown to depend on BCL-XL and BCL-W 

(159,160). Reduction of metabolic activity was observed for both of the BCL2 family member inhibitors 

selective for senescent DKFZ-BT66 cells compared to proliferating DKFZ-BT66 cells (Fig. 36A,B). For 

navitoclax the IC50 values were 0,04 µM in senescent versus 0,28 µM in proliferating DKFZ-BT66 cells. 

The IC50 values of ABT-737 were 0,14 µM in senescent and 0,6 µM in proliferating PA cells. In addition, 

the well-known senolytic combination of dasatinib and quercetin (161) was used for treatments. 

Dasatinib is a tyrosine kinase inhibitor targeting multiple kinases involved in regulation of proliferation 

and apoptosis (162). Quercetin is a flavonoid targeting BCL2, BCL-X and the PI3K/AKT, p53 and p21 

signaling pathway (163). The combination of dasatinib and quercetin was shown to target different 

senescent cell types (160). When tested in the senescent and proliferating DKFZ-BT66 cell state, no 

specific effect for senescent DKFZ-BT66 cells could be detected (Fig. 36C), as others have also described 

before (164).  

As the standard of care for pediatric pilocytic astrocytoma is treatment with carboplatin or vincristine 

(25,165), these compounds were tested, to later explore possible combination treatments. Single 

treatments with standard of care chemotherapeutic did not show an effect on the non-cycling senescent 
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DKFZ-BT66 cells, as expected (Fig. 36D,E). For carboplatin, no effect was observed on the proliferating 

condition either, as expression of SV40-TAg in proliferating cells inhibits TP53-dependent apoptosis. To 

represent a targeted treatment approach, the MEK inhibitor trametinib was included in the screen. 

Trametinib led to increased metabolic activity (Fig. 36F), as observed previously without increase of cell 

numbers (31).  

Finally, combination treatment of navitoclax, the most effective drug in senescent DKFZ-BT66 cells, with 

chemotherapy or targeted therapy resulted in slight additive effects compared to single treatments in 

senescent cells and no antagonistic effects, which would prevent their application in the clinic (Fig. 36G-

I). Similar effects were observed for combination treatments with ABT-737 (Fig. 36J-L).  

Current clinical trials on navitoclax show dose-dependent thrombocytopenia as the major adverse event, 

but evaluate the drug as well tolerated besides that (166). In accordance, response of control cells to 

navitoclax, normal human astrocytes, was observed at high concentrations only (Fig. 36M). This was also 

true for the other senolytic agents (Fig. 36N,O). 

In summary, senolytic agents may be a novel treatment approach for PA patients and could enable 

eradication of senescent tumor cells. A combination treatment of chemotherapy, targeting the 

proliferating tumor cells, with senolytics, targeting senescent tumor cells, could improve treatment 

response in PA patients. 
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(A), ABT-737 (B), dasatinib plus quercetin (C), carboplatin (D), vincristine (E) and trametinib (F) in the indicated concentrations. 

Shown are mean +/- SD of three technical replicates. IC50 concentrations are depicted for DKFZ-BT66 cells in OIS (red) and in 

proliferation (blue). NA = not available. G – I) Assessment of metabolic activity by CellTiter-Glo of senescent (red) or proliferating 

(blue) DKFZ-BT66 cells treated for 72 hours with navitoclax in combination with carboplatin (G), vincristine (H), or trametinib (I) 

in the indicated concentrations. Shown are mean +/- SD of three technical replicates. J - L) Assessment of metabolic activity by 

CellTiter-Glo of senescent (red) or proliferating (blue) DKFZ-BT66 cells treated for 72 hours with ABT-737 in combination with 

carboplatin (J), vincristine (K) and trametinib (L) in the indicated concentrations. Shown are mean +/- SD of three technical 

replicates. M – O) Assessment of metabolic activity by CellTiter-Glo of senescent (red) or proliferating (blue) DKFZ-BT66 cells and 

primary human astrocytes (black) treated for 72 hours with navitoclax (M), ABT-737 (N), dasatinib plus quercetin (O) in the 

indicated concentrations. Depicted are mean +/- SD of three technical replicates. IC50 concentrations are depicted for DKFZ-

BT66 cells in OIS (red) and in proliferation (blue) and human astrocytes (black). 
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4. DISCUSSION 

With the 2018 Nobel Prize in Physiology and Medicine being awarded to James Allison and Tasuku Honjo 

(167), two scientists pioneering cancer immunotherapy, the focus of cancer research has long shifted 

from analyzing the biology of the tumor cells alone, to the additional consideration of the effects and 

interactions of the tumor cells with the surrounding microenvironment. The tumor mass has to be 

considered as a whole, including infiltrating immune cells, stroma cells as well as secreted factors and 

their paracrine signaling. All of these factors play a role in tumor progression as well as response to 

therapy, and have to be studied in relation to each other.  

The secretion of senescence-associated secretory phenotype (SASP) factors by senescent cells is part of 

this bigger picture (46,47,66). Depending on the biological context, the SASP can have deleterious or 

beneficial effects on tumor development in an autocrine as well as paracrine fashion (46). The pilocytic 

astrocytoma (PA) is characterized by a slow, benign growth behavior. However, recurrences and 

unpredictable tumor progression have been observed, even after years of stable disease (18). Markers of 

oncogene-induced senescence (OIS) have been detected in primary PA tissue, raising the question if the 

variable growth behavior is linked to alterations in the SASP signature and the OIS state (19). To further 

investigate the role of OIS and the SASP in PA, representative in vitro and in vivo models of this tumor 

entity are urgently needed.  

In this study, the first patient-derived cell culture model of a PA, DKFZ-BT66, was generated and utilized 

to study OIS. The SASP signature was detected to be upregulated, not only in the senescent state of the 

in vitro PA model, but also in primary murine and human PA tumors. Stimulating proliferating PA cells 

with conditioned medium from senescent PA cells induced growth arrest, while inhibition of the SASP by 

anti-inflammatory treatment led to regrowth of previously senescent PA cells. A single SASP factor, IL1B, 

was found to be upregulated in the senescent state of the DKFZ-BT66 model as well as in primary PA. 

Stimulation of proliferating PA cells with the single SASP factor induced reduction of growth and led to 

increased SASP factor expression. Elevated mRNA expression of IL1B as well as the SASP was observed to 

be prognostic for favorable progression-free survival. Concluding from the presented results, the SASP 

does play a role in regulating tumor growth of PA cells, but the findings will have to be validated in 

further models, which are unfortunately limited to date.  
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4.1 LGG model development  

The limited availability of representative LGG in vitro and in vivo models remains a challenge for LGG 

research until today. Novel treatment approaches could not be tested in suitable models until recently, 

but were rather tested in clinical trials directly, which led to unanticipated side effects in patients in the 

past (29). Primary cultures are difficult to handle over the long-term due to a fast onset of OIS-related 

growth arrest (19,32). In vivo models have been impossible to establish from patient tumors, as a 

consequence of the slow tumor growth in combination with replicative senescence, and most likely OIS 

as well (unpublished data from the CCU Pediatric Oncology).  

Ever since Jones and colleagues discovered the main driver of PAs to be an activating fusion of BRAF in 

2008, attempts to generate representative in vitro and in vivo models have been ongoing (22). Jones et 

al. provided proof of the transforming potential of the BRAF fusion by reporting independent growth of 

fusion-transduced murine fibroblasts in a soft agarose assay (22). A more representative model was later 

developed by Raabe and colleagues transducing the BRAFV600E mutation, the second most common 

MAPK alteration (14,168), into human neurospheres generated from fetal cortex (32). During their 

experiments, Raabe and colleagues, observed transformation of the transduced neurospheres, but in 

addition reported reduced proliferation over time, as well as positivity for markers of OIS (32). By 

transducing normal human cells with an oncogene, such as BRAFV600E, Raabe et al. had generated a 

model of OIS. However, they were able to present evidence that the observed phenomenon plays a role 

in primary PA tumors by identifying markers of OIS, such as elevated levels of CDKN2A and positivity of 

SA-ß-Gal staining, in primary PA material. These findings were later confirmed by Jacob and colleagues 

(19). In addition, Jacob et al. detected elevated mRNA expression of OIS-associated genes in primary PAs 

(19). Jacob generated a similar PA in vitro model by overexpressing BRAFV600E in human immortalized 

astrocytes or fetal astrocytes and detected markers of OIS just like Raabe (19,32). Sievert and colleagues 

generated a model with the most common MAPK aberration, the BRAF fusion, however in a murine 

background using fibroblasts or cortical neurosphere cell lines (30). One further murine in vitro LGG 

model was generated by Sun et al. by transduction of the BRAF mutation as well as the BRAF fusion in 

TP53 null murine progenitor cells (33). The authors had to knock-out TP53 in their culture model to 

enable cell proliferation. However, LGG tumors do not harbor TP53 aberrations, therefore the model is 

not representative of the benign genetic background of LGGs. All of the described PA in vitro models 

were generated by overexpression of the most common MAPK alterations and struggled with onset of 

growth arrest due to OIS. Sun et al. overcame this hurdle by ablation of TP53, which enabled cell 

proliferation, but is no longer representative of a PA. In addition, none of the models account for 
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endogenous expression of the MAPK alterations in PA tumor cells and several of them are generated in a 

murine (as opposed to human) background. 

The first human patient-derived PA cell line, DKFZ-BT66, presented in this study, represents a human 

model of a WHO I LGG with endogenous expression of the KIAA:BRAF fusion (31). Controlled regulation 

of the OIS-restricted cell growth via reversible expression of SV40-TAg, enables cell expansion as well as 

analysis of the natural, senescent phenotype of LGG cells. The model is suitable for drug testing as well 

as detailed investigation of the tumor biology. Upon withdrawal of doxycycline and subsequent 

downregulation of SV40-TAg, markers of OIS such as growth arrest, enlarged cell morphology and 

expression of the SASP can be observed and studied. While the senescent state of the DKFZ-BT66 cell 

line is not affected by SV40-TAg expression and genetically representative of a LGG background, the 

proliferating condition is limited due to interference of SV40-TAg with the TP53 and RB1 pathway. As 

observed in Fig. 36, carboplatin treatment does not induce apoptosis in proliferating DKFZ-BT66 cells, as 

its apoptosis-mechanism depends on TP53 function (169). Inhibition of TP53-dependent apoptosis has 

proven to be a drawback of the established cell line, also for drug testing of targeted therapy, such as 

MAPK inhibitors (31). 

Another aspect that is hampered by the doxycycline-inducible nature of the SV40-TAg is the 

establishment of a co-culture system of senescent and proliferating DKFZ-BT66 cells. Either all cells are in 

proliferation after addition of doxycycline or alternatively in OIS upon withdrawal of doxycycline. To 

mimic the growth pattern of PA tumors, characterized by a low proliferation index (144), a co-culture 

system of few proliferating cells together with senescent cells would be optimal. Especially to test 

combination treatment of senolytic agents, targeting cells in OIS, with standard of care 

chemotherapeutics, targeting cycling cells, a co-culture system would have been the best model. There is 

no possibility to combine both conditions in one cell culture flask. One possible option to combine the 

effects of both conditions is the treatment of both states, OIS and proliferation, in experiments side-by-

side followed by a combined calculation of surviving cells. However, this is not truly representative of the 

interactions and cross-communication the two cell populations will impose on each other. 

As described in chapter 3.1.2 further attempts of establishing additional LGG cell lines have failed. 

Optimization of culture techniques, media composition, coating strategies, filtering for surface markers 

and lentiviral production were conducted. These efforts did result in successful transduction of few 

primary samples with SV40-TAg. However, the success rate varies greatly in dependence on the quality 

of the virus. All successfully transduced and selected cells did not express markers of PA. Although the 
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analysis was restricted to the two PA markers, the KIAA:BRAF fusion, accounting for 70% of all PAs, and 

the BRAFV600E mutation, accounting for 5% of all PAs (14), and thus tumor cells with other alterations may 

have been missed. However, it is more likely that non-tumor cells overgrew the tumor cells. By 

transducing stroma cells with SV40-TAg, inhibition of the TP53 pathway may have given these cells an 

additional growth advantage. No surface marker or other measure of positive selection (such as e.g. 

magnetic bead-based sorting) for PA cells is available to date, which would allow separation of tumor 

from non-tumor cells in the primary cultures. 

One further attempt to establish a PA model was the use of organotypic brain slice co-cultures, tested 

with the established DKFZ-BT66 cell line and the published protocol from Chadwick et al. (35). Sun and 

colleagues had reported successful culture of LGG cells using this co-culture system (33), however DKFZ-

BT66 cells as well as the positive control medulloblastoma cells did not proliferate on the brain slices. A 

possible explanation is the addiction of the established cell lines to serum. Brain slices were preserved 

best in cell culture medium without serum. Finding a culture medium that enables proliferation of tumor 

cells on the one hand, and maintains the brain slices on the other hand, will be important to establish 

this system. In addition, fresh primary material could be used to establish the co-culture, as it is not 

dependent on serum. However, a possible caveat is that the secretion of inflammatory factors similar to 

the SASP from the freshly resected and cut brain slices could induce senescence in primary LGG cells and 

thus may inhibit proliferation. One further option to optimize the protocol is the use of neonatal E14 

mice, used by Sun et al. (33) for their cultures of LGG cells in comparison to the original protocol by 

Chadwick et al. using P6 mice for the brain slices (35). The microenvironment of neonatal mice could be 

beneficial for the growth of primary pediatric LGG tumor samples. 

One option to extend proliferation of senescent primary LGG cultures, deduced from results of this 

study, would be treatment of the cultures with dexamethasone. As glucocorticoids were shown to 

suppress the SASP (91,92) by others as well as in this study, treatment with dexamethasone could enable 

bypass of OIS-related growth arrest. This approach was tested in a preliminary experiment for four fresh, 

non-characterized, tumor samples (appendix A, Fig. 37) and showed increased cell proliferation for all 

samples. However, the approach will have to be tested in more tumor samples and the cultures have to 

be characterized to ensure the proliferating cells are indeed tumor cells. Finally, it will be crucial to show 

that the effect is indeed mediated by suppression of OIS and not an off-target effect. 

Establishment of in vivo PA models has been hampered by OIS and replicative senescence. One murine 

PA-like model was generated by Gronych and colleagues (24) by overexpression of a truncated version of 
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BRAFV600E via RCAS-mediated gene delivery in cells of the cerebral hemisphere of neonatal Ntv-a mice. 

The developing tumors did resemble human PAs according to histopathological analysis and were 

characterized by a benign, non-lethal growth behavior. The same phenomenon was observed by Kaul et 

al. after injecting BRAF-fusion expressing NSCs in the cerebellum of 3-week old mice (23,39), mice did 

develop glioma-like lesions, but did not succumb to disease.  

In the presented study, the established DKFZ-BT66 cell line was intracranially injected into 6-week old 

NSG mice and did not result in tumor formation (observation for 9 month). Only after transducing the 

cell line with a construct coding for hTERT, 2 out of 12 injected mice developed tumors. However, 

despite retaining the BRAF fusion, the tumors were not representative of a PA anymore, as shown by 

elevated proliferation index, atypical chromosomal aberrations observed in the copy number plot 

derived from methylation data and aggressive growth behavior after retransplantation. As a conclusion 

from this data, establishment of an LGG in vivo model remains difficult due to limitations resulting from 

replicative senescence and overcoming this obstacle by suppression of replicative senescence results in 

formation of tumors with aggressive features. 

Due to the lack of comparable LGG models, the findings of this study could not be reproduced in other 

cell lines. This does represent a limitation of the presented work and further highlights the need for 

additional models. However, the key findings of this study could be validated in primary human and 

murine PA samples.  

 

4.2 The influence of the SASP on the tumor and its microenvironment 

OIS is a tumor-suppressive regulatory mechanism arresting premalignant cells in growth. As others have 

shown, OIS is regulated by a complex inflammatory network termed the SASP (46,47,87). Markers of OIS, 

including secretion of the SASP, have been detected in several preneoplastic lesions such as prostate 

intraepithelial neoplasia, papillomas, melanocytic naevi and dermal neurofibromas (47,49,51). The SASP 

is known to induce and maintain growth arrest in the described benign neoplasms, thereby limiting 

tumorigenesis (46). Additionally, the secreted SASP factors, including cytokines and chemokines were 

shown to attract immune cells which clear the senescent, genetically altered cells (53). However, the 

resulting shift in tissue microenvironment can also have deleterious effects. Some of the secreted 

cytokines have proangiogenic functions and thereby enhance growth of neighboring tumor as well as 
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non-tumor cells (63,64). Thus, the SASP can have both cancer protective as well as cancer promoting 

effects depending on the biological context. 

One example for the promotion of tumor growth of the SASP has been reported in a mouse model of 

pediatric craniopharyngioma (170). By overexpressing oncogenic ß-catenin in SOX2+ pituitary stem cells 

or Hesx1+ embryonic pituitary precursors in young mice, Gonzalez-Meljem et al. observed induction of 

senescence in the targeted cells. The resulting SASP secretion induced cell growth and finally tumor 

formation in a paracrine manner with a latency of several weeks in surrounding cells (170). A perfect 

example for the tissue specific context of the SASP is the tumor suppression or formation described by 

Eggert et al. in senescent hepatocytes (171). The authors reported that NRASG12V-induced OIS in vivo in 

murine hepatocytes activated immune cells to clear the premalignant, senescent cells and may thereby 

prevent initiation of liver cancer. However, in case of established hepatocellular carcinoma (HCC), the 

tumor cells prevent maturation of myeloid cells into macrophages through secretion of cytokines, 

therefore the senescent hepatocytes are not cleared and can fuel HCC tumor growth (171). 

In pilocytic astrocytoma, markers of OIS such as upregulation of CDKN2A, positive staining for SA-ß-Gal 

and elevated expression of several OIS-associated genes, have been described previously (19,32). The 

proliferative index, determined by Ki67 staining, is 1-2% in PAs on average (144). The entity is defined as 

a benign, WHO grade I glioma, exhibits slow tumor growth and has a fairly good prognosis of 94% 10-

year overall survival (18,20). All of these factors indicate a tumor-protective role of OIS in PA. The 

functional role of the SASP in PA has not been studied to date. Although PA patients may have stable 

disease over a long period of time, PA tumors can resume growth at any time (18,20). Possibly 

alterations in OIS regulation e.g. by changes in SASP secretion, are related to this phenomenon.   

In this study, further proof for the presence of OIS in primary PA tumor cells was provided. Markers of 

OIS, such as expression of CDKN2A, positivity for SA-ß-Gal and SAHF were observed in the established PA 

model, DKFZ-BT66. In addition, growth arrest of the primary PA cells was circumvented by transduction 

with SV40-TAg, which inhibits the OIS-relevant TP53/CDKN1A and CDKN2A/RB1 pathways. The OIS state 

of the established PA cell line was further characterized by elevated mRNA expression of SASP factors 

and elevated protein secretion of the exemplary SASP factors IL1B and IL6 (Fig. 21 and 24). Conditioned 

medium of senescent PA cells induced growth arrest of proliferating PA cells (Fig. 22), proving the 

secretory nature of the phenotype. Elevated SASP factor mRNA expression was additionally observed in 

primary human and murine PA (Fig. 21). The presented results provide proof for the presence of the 
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SASP in PA cells both in vitro and in human and murine PA tumors in vivo, and confirm the autocrine 

feedback signaling of the SASP in PA cells.  

One mechanism of autocrine feedback signaling of the SASP has been described to be executed by IL1, a 

major regulator of the SASP (50,80). As shown in this study, the SASP factor IL1B reduced growth of 

proliferating PA cells and induced SASP factor expression (Fig. 27 and 28). As others have reported 

previously, IL1 signaling activated NFκB signaling (Fig. 26)(105) and thereby induced its own transcription 

and translation (106), as determined by elevated pro-IL1B levels (Fig. 27). IL1 is known to be an 

important regulator of the SASP, as demonstrated by its regulatory effect on the SASP factors IL6 and IL8, 

both involved in OIS induction and maintenance (46,47,50,80). IL1 was further shown to induce markers 

of OIS, such as growth arrest, SA-ß-Gal activity and CDKN1A expression (50,80,89). These findings were 

confirmed by the results presented in this study, showing reduced PA cell growth, enlarged cell 

morphology and elevated SASP expression under rIL1B treatment (Fig. 28). IL1B was shown to play a role 

in induction of OIS in the PA cell culture model, but it did not replicate the effect of the full SASP, which 

induced complete growth arrest in PA cells (Fig. 22). Furthermore, inhibition of IL1 signaling did not lead 

to bypass of OIS. Both, pharmacological as well as shRNA-mediated knock-down of the cytokine pathway 

did not result in regrowth of senescent PA cells, even though the IL1 pathway was repressed, as shown 

by rescued levels of IRAK1 (Fig. 29 and 33). While Orjalo and colleagues reported reduced proliferation 

under rIL1A treatment, they did not comment on any effects on growth of senescent cells treated with 

IL1 neutralizing antibodies or shRNAs targeting the IL1 pathway (80). Acosta et al. reported onset of 

senescence upon ectopic expression of IL1A in a human IMR90 fibroblast model (50). In addition, shRNA 

mediated knock-down of the IL1 receptor was shown to partially prevent OIS in a RAS-induced OIS 

fibroblast model (50). Furthermore, treatment of a murine model of NRASG12V-mediated OIS in 

hepatocytes with an IL1R inhibitor led to reduced levels of OIS markers, such as CDKN2A and CDKN1A, 

increased levels of NRAS-positive cells in proliferation and reduced clearance of senescent cells by the 

immune system (50). The precautious formulation by Acosta and colleagues of a ‘partial prevention’ of 

OIS after IL1 inhibition and no mention of effects on growth by Orjalo and colleagues indicate that the 

effects of IL1 inhibition on growth of senescent cells were not pronounced, but may be observed in vivo 

especially due to reduced clearance of senescent tumor cells (50,80). The in vitro data from Orjalo and 

Acosta are in line with the observations of this study, showing no effect of interference with IL1 signaling 

on cell growth during OIS. Thus, it can be concluded that IL1B is sufficient to partially induce OIS, but not 

necessary to maintain it. 



DISCUSSION 

120 

Another regulator of autocrine SASP signaling is IL6 (46). In the study presented here, an increase of IL6 

secretion of senescent PA cells was observed (Fig. 23 and 24). However, treatment of proliferating PA 

cells with the recombinant cytokine did not result in reduction of cell growth. Furthermore, inhibition of 

the IL6 pathway by pharmacological or shRNA-mediated interference, did not affect growth of senescent 

PA cells (Fig. 30 and 33). This stands in contrast to published data showing an induction of senescence 

upon IL6 signaling activation. Induction of markers of senescence, SA-ß-Gal activity and upregulated 

CDKN1A, CDKN2A expression, have been reported by Paola Ortiz-Montero et al. under treatment of the 

breast cancer cell line MCF with rIL6 (0.5 or 50 ng/mL) over the course of 5 to 10 days (172). Concerning 

interference with IL6 signaling, Kuilman et al. report no effects on growth of senescent fibroblasts under 

treatment with IL6 neutralizing antibodies, but the group showed bypass of OIS-induced growth arrest 

after shRNA-mediated inhibition of the IL6 pathway in BRAFV600E-transduced fibroblasts (46). A similar 

phenomenon of regrowth of senescent cells under shRNA-mediated knock-down of the SASP factor, IL8 

as well as its receptor CXCR2, was demonstrated by Acosta et al. and confirmed by Kuilman (46,47). Both 

authors demonstrated the effects of inhibition of single SASP factor pathways in OIS models, generated 

by overexpression of oncogenes in fibroblasts (46,47). This is in contrast to the DKFZ-BT66 cell line, 

representing a patient-derived model of OIS with endogenous expression of the oncogene. Therefore, 

the differences in the observed effects under knock-down of single SASP factors may be influenced by 

the artificial genetic aberrations introduced into the described OIS fibroblast models (46,47) versus the 

endogenous expression of the oncogene in the PA model used in the presented study. An alternative 

explanation could be that specific SASP factors play a different role in various biological environments. As 

the SASP is different for every cell type, for every oncogene etc., the single SASP factors may play 

different roles in each of the analyzed OIS models (66). Alternatively, inhibition of single SASP factors 

does not suffice to overcome OIS in the PA model, or another SASP factor not analyzed in this study may 

lead to bypass of OIS in DKFZ-BT66 cells. 

However, bypass of OIS-related growth arrest was achieved in senescent DKFZ-BT66 cells by treatment 

with the anti-inflammatory drug dexamethasone (Fig. 34). In addition, dexamethasone treatment 

significantly reduced SASP factor mRNA expression (Fig. 34). SASP factor inhibition under glucocorticoid 

treatment has been reported previously (91,92), corroborating the presented results. Inhibition of 

several SASP factors may suffice to overcome OIS-induced growth arrest in the PA model. However, 

dexamethasone is a “dirty drug” influencing several biological mechanisms including metabolism 

(reviewed in (173)) and other glucocorticoids such as e.g. hydrocortisone have been shown to improve 

clonal growth of human endothelial cells due to sensitization to EGF stimulation (174). However, 
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treatment with glucocorticoids has been shown to induce both proliferation as well as inhibition in 

different cell types. Treatment of human cervical, lung, hepatocellular and breast carcinoma cell lines 

with 100 nM dexamethasone reduced growth of several tested cell lines (175). The human fibrosarcoma 

cell line HT-1080 was inhibited in growth in vitro by treatment with 100 nM dexamethasone. Mice s.c. 

injected with the HT-1080 cell line showed inhibition of tumor growth at high dexamethasone doses (200 

µg/mouse), but increasing tumor sizes when treated with lower doses (5 µg/mouse) (176). Bose et al. 

even reported an induction of a senescence-like phenotype in rat embryonic neural stem cells treated 

with 1 µM dexamethasone, showing reduced proliferation and upregulation of CDKN1A and CDKN2A 

(177). On the other hand, Li et al. demonstrated increased proliferation of human fibroblasts and 

reduced levels of CDKN1A under dexamethasone (140 nM) treatment (178). Early studies conducted by 

Cristofalo and colleagues report increased proliferation and delayed onset of senescence in human 

fibroblast-like cells treated with hydrocortisone (14 µM), but the authors also observed growth inhibition 

of certain vertebrate cell lines grown under the same treatment conditions (179,180). It can be 

concluded that the effect of glucocorticoids is cell type specific and depends on the biological context 

such as e.g. senescence. The presented data suggests that in senescent DKFZ-BT66 cells the increase in 

proliferation upon dexamethasone treatment is at least partially caused by the inhibition of the SASP, as 

observed on the mRNA level and for the exemplary SASP factor pathways IL1 and IL6 on the protein 

level. 

One drawback of the study presented here is the fact that all of the data was generated from pure 

cultures of the PA cell line, only accounting for the autocrine signaling mechanism of the senescent cells. 

The PA tumor mass does of course include other cell types, such as immune or stroma cells. Only few 

studies have been conducted to investigate the extent and role of immune infiltration in PA tumors. Yang 

et al. compared the infiltrating immune cells of high-grade glioblastoma to low-grade PAs in a total of 

n=91 samples via IHC (181). Glioblastoma samples showed increased perivascular infiltration with CD(8) 

T-cells (62%) in comparison to PAs (29%), as expected. But the infiltration with CD(8) T-cells in PAs was 

similar in the intratumoral space in comparison to the perivascular space. 86% of PA samples exhibited 

infiltration with CD68-positive macrophages in the perivascular as well as the intratumoral space. PAs did 

not show any intratumoral infiltration with CD56-positive natural killer cells. Gutman and colleagues 

observed CD68-positive cell infiltration by IHC in 35-55% in n=3 NF1-mutated PA patient samples (182). 

Similar results were reported by Klein et al. (183): the authors identified 32% of all cycling cell to be 

microglia in PA via IHC staining for Ki67 and CD68. However, only a small fraction of the tumor cells 

proliferate in PA, therefore this result is difficult to interpret in comparison to other tumor entities. 
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Further studies on immune infiltration of pediatric brain tumors were conducted by Griesinger et al. 

using FACS (184). A total of n=7 PAs were included in their pediatric brain tumor cohort, showing an 

increased infiltration with myeloid cells (31.6%), a 72-fold increase in comparison to normal pediatric 

brain (NB) (obtained from epilepsy patients). Markers for activated myeloid cells such as HLA-DR and 

CD64 were upregulated in PA in comparison to NB (3.5- and 2.5-fold, respectively). In addition, 

infiltration with T-cells, determined by combined expression of CD45, CD3 and CD8, was 3.28% on 

average in PA samples. Concluding from all these studies, PAs are infiltrated by myeloid and lymphoid 

cells, which should be considered when examining cytokine signaling, such as the SASP, in this tumor 

entity. This becomes especially relevant, when comparing gene expression data from bulk tumor 

samples, including immune cells. In an analysis of gene expression microarray data from gliomas, Huang 

et al. observed an immune system-related gene expression pattern in PA patients in comparison to 

normal cerebellum and grade II astrocytomas or oligodendrogliomas (185). It can therefore not be 

excluded that the identified SASP signature, containing several inflammatory genes, is also dependent on 

the extent of immune infiltration. In the study presented here, it was shown that an increased 

expression of the SASP signature correlates with favorable PFS, and it is likely that this is influenced by 

the extent of immune infiltration. It has been described that senescent cells attract and activate immune 

cells and thereby induce clearance of the senescent cells (53-55). Therefore, elevated SASP secretion 

may be correlated to favorable clinical outcome due to clearance of tumor cells by immune cell 

activation.  

State-of-the-art techniques such as single cell RNA sequencing or mass cytometry will enable a detailed 

analysis of the PA tumor mass and help to identify most, if not all, subsets of infiltrating immune and 

stroma cells. Single cell RNA sequencing enables identification of cell subsets by unsupervised clustering 

of gene expression patterns and correlation of detected marker genes or pathway signatures to specific 

cell populations (186). Mass cytometry enables the detection of up to 40 antigens, including intracellular 

markers, using antibodies coupled to stable, elemental isotopes. Individual cells are analyzed via mass 

spectrometry distinguishing antigens by the distinct mass of the different elemental isotope (187,188). 

Both techniques will enable the detection of tumor and non-tumor cell populations in PA, give insights 

on the regulation of inflammatory pathways via gene expression data or activation status of intracellular 

markers and show potential interactions of immune and tumor cells. 

Identified populations of immune cells could then be used in co-culture systems together with PA cells, 

such as DKFZ-BT66, to mimic the tumor in its microenvironment and investigate the effects of paracrine 

SASP signaling. A similar experimental setup was also considered for the study presented here. As the 
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DKFZ-BT66 model is a patient-derived cell line, an appropriate co-culture model would be the use of 

human microglia, the orthotopic immune cells of the brain. Human microglia can be cultured only for a 

limited time period, as the complex composition of microglia, astrocytes and fibroblasts quickly changes 

towards an increase of fibroblast-like cells (189). Primary cultures of microglia from pediatric patients are 

of course extremely difficult to obtain, which is why finally this type of experiment was not conducted. 

Another option would have been a co-culture system with murine microglia. However, major differences 

have been described between murine and human microglia and their expressed proteins (reviewed in 

(190)). For example, the baseline levels of cytokines and chemokines were shown to differ significantly 

between the two species and cytokine regulation is very different in response to stress stimuli (191). As 

the interaction between the secreted SASP, comprised of chemokines and cytokines, from human PA 

cells would be analyzed in a co-culture with murine microglia, these cross-species differences would 

greatly hinder interpretation of the results.   

In summary, the effects of autocrine SASP signaling of senescent PA cells were investigated in the study 

presented here, however the effects of paracrine signaling especially in co-culture systems with 

microglia should be considered for further investigation. 

 

4.3 Glucocorticoid use in LGG patients  

Dexamethasone is a drug commonly used in neuro-surgery and -oncology (192). As shown in this study, 

treatment of senescent DKFZ-BT66 cells with dexamethasone induced proliferation, suppressed the 

SASP, as observed on the mRNA level and for the exemplary SASP factor pathways, IL1 and IL6 on the 

protein level. These findings are in concordance with previously published results, showing that 

glucocorticoids suppress the SASP (91,92,156). Shah et al. demonstrated inhibition of rIL1B-induced 

transcription of several inflammatory genes under dexamethasone treatment in human pulmonary 

epithelial A549 cells (156). Laberge and colleagues specifically set out to identify SASP-suppressing 

agents in a drug screen on radiation-induced senescent human fibroblasts and identified glucocorticoids 

as the most effective compounds (91). Glucocorticoids were shown to suppress SASP production and 

secretion, including IL1A, in RAS-induced OIS fibroblast models. However, growth arrest of irradiated 

senescent cells could not be reverted by glucocorticoid treatment (91). Conditioned medium of 

senescent fibroblasts stimulated a non-aggressive human breast cancer cell line (T47D) to invade a 

basement membrane of a Boyden chamber, while treatment with glucocorticoids suppressed this SASP-

induced pro-tumorigenic effect (91). This proves that paracrine signaling of the SASP is interrupted by 
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glucocorticoid treatment. In addition, Ge et al. tested dexamethasone in vitro on non-small cell lung 

cancer (NSCLC) cells and observed reduced onset of senescence in response to DNA-damaging agents 

(92). The authors demonstrated that dexamethasone reduced the secretion of several SASP factors, 

including IL1B, on protein level, in line with the results presented in this study. In NSCLC, A549 and 

H1650 cell line-induced xenografts, treatment with the chemotherapeutic agent pemetrexed inhibited 

tumor growth and increased survival of mice, while co-treatment with dexamethasone blunted the 

tumor-suppressing effect of the chemotherapeutic (92). In summary, several scientists have reported on 

the potential of glucocorticoids to suppress the SASP, including their potential to prevent the effects of 

paracrine SASP signaling. Both Shah and Laberge (91,156) reported that the inhibitory effect of 

glucocorticoids on the SASP is related to repression of IL1 signaling. This is in accordance with the 

observed effects of this study, showing rescued IRAK1 levels under dexamethasone treatment and the 

IPA prediction of IL1B as top upstream regulator of the observed gene expression changes. 

From a clinical perspective, these findings suggest that anti-inflammatory therapy for PA patients using 

dexamethasone should be carefully re-evaluated, as dexamethasone treatment may inhibit the SASP and 

thereby interfere with induction and maintenance of OIS, ultimately leading to tumor cell growth. In 

addition, treatment with chemotherapy may enforce SASP secretion by inducing DNA damage, as shown 

by Ge and colleagues (92), and this effect may be reduced under glucocorticoid treatment. 

On the other hand, the observed phenomenon of tumor cell regrowth under dexamethasone therapy 

could be therapeutically exploited. Sensitization of tumor cells to either conventional chemotherapy or 

targeted therapy by SASP inhibition through dexamethasone treatment could be a novel therapeutic 

approach. As only 1-2% of PA tumor cells are actively dividing (144), dexamethasone could augment the 

amount of proliferating cells and thereby sensitizes PA cells to chemotherapeutic agents, which depend 

on proliferation for their effect. The downside of this approach is the high potential of triggering or 

increasing the speed of tumor progression, hence maximum caution should be exercised when 

considering this approach. The effect of a combination treatment of dexamethasone and standard of 

care chemotherapy first will have to be analyzed in appropriate PA models, such as the DKFZ-BT66 cell 

line.  
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4.4 The potential of senolytic agents for LGG patients 

One aspect, just briefly touched upon in this study, is the possible benefit of senolytic agents for the 

treatment of PA patients. As mentioned, primary PA tissue is characterized by elevated expression of 

CDKN2A and low expression of the proliferation marker Ki67, indicating that most PA tumor cells are 

arrested in growth (19,144). Targeting the remaining senescent PA cells in patients may enable actual 

shrinkage of the tumor mass. This approach would be especially beneficial in patients with sub-total or 

partial tumor resection known to be prone to recurrence (20). Senolytic agents, such as the BCL2 family 

inhibitors, were recently shown to induce apoptosis specifically in senescent cells (159).   

Chang et al. demonstrated induction of apoptosis under treatment with navitoclax in senescent human 

fibroblasts (WI-38) in irradiation-(IR), replicative-(RS) and oncogene-induced senescence (OIS) in vitro 

models (158). In addition, the authors were able to show that senescent cells in irradiated or naturally 

aged transgenic mice carrying a CKDN2A-dependent luciferase reporter were cleared by navitoclax 

treatment (158). Zhu et al. reported senolytic activity of navitoclax, inducing apoptosis in radiation-

induced senescence models of human fibroblast as well as HUVECs, but showing no effects on cycling 

cells (157). The second senolytic compound tested in this study, ABT-737, was investigated in different 

human OIS, replicative and DNA-damage-induced senescence fibroblast models in vitro as well as in vivo 

by Yosef et al. (159). The group observed induction of apoptosis in response to ABT-737 in vitro 

specifically in senescent cells as well as reduction of SA-ß-Gal positive cells in irradiated mice and in 

transgenic mice with inducible CDKN2A expression (159). However, the compound ABT-737 was also 

reported to induce senescence and SASP expression in apoptosis-resistant renal, lung and prostate 

cancer cell lines (193). The effect of the senolytic agents therefore seems to be dependent on the 

biological context. One further novel approach to target senescent cells in preclinical development, is the 

use of FOXO4 peptides disrupting the interaction of FOXO4 with p53 and thereby inducing apoptosis 

through nuclear exclusion of p53 (164). The peptide was shown to be effective in vitro in radiation-

induced senescent human fibroblasts and in vivo in aged mice or in DNA-damage induced senescence, 

using the transgenic mouse model with a CDKN2A promoter linked to a luciferase expression (164).  

In the study presented here, enhanced sensitivity of senescent PA cells to senolytic agents, especially to 

navitoclax, in comparison to proliferating DKZF-BT66 cells as well as to normal human astrocytes was 

observed. No antagonistic effects were detected in combination treatments with standard of care 

chemotherapeutics or targeted therapy with a MEK inhibitor. On the basis of these preliminary results, 

the CCU Pediatric Oncology is currently investigating the potential of senolytic agents in combination 
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with chemotherapeutics and MEK inhibitors in further preclinical analyses. This is especially fascinating 

due to the potential synergism of the BCL2 family inhibitor navitoclax with chemotherapy, as shown in 

multiple cancer cell lines in combination with standard chemotherapeutics, including vincristine and 

carboplatin (194). In addition, treatment with targeted agents, such as MEK inhibitors, has been shown 

to elevate levels of the pro-apoptotic BCL2 family member BIM (BCL2L11). The turnover of BIM is 

regulated by ERK-dependent phosphorylation followed by proteasomal degradation, which is inhibited 

under MEK inhibitor treatment (195). Therefore, the combination of MEK inhibitors (increasing levels of 

pro-apoptotic BCL2 family members) with navitoclax (suppressing anti-apoptotic members of the BCL2 

family) may be synergistic. On-target activity, such as reduction of BCL2 family member protein levels 

and onset of apoptosis under treatment with senolytic agents, as well as in vivo efficacy will have to be 

proven, before the drugs can be considered for a clinical trial.  

One obstacle concerning the use of navitoclax for LGG patient treatment, are the reported side effects 

(196). In the phase I dose-escalation study of navitoclax, thrombocytopenia and neutropenia were 

observed as the most common higher-grade toxicities in a dose-dependent manner (197). In the 

following phase II study, navitoclax induced thrombocytopenia grade III-IV in 41% of n=39 patients with 

recurrent small cell lung cancer, a tumor entity characterized by overexpression of BCL2 (196). However, 

the side effects occurred in a dose-dependent manner and were shown to be reversible (198), therefore 

navitoclax may still be considered for a combination treatment strategy in LGG patients. Currently, a 

combination treatment of navitoclax and trametinib is evaluated in adult patients with N-RAS or K-RAS 

positive solid tumors in a clinical phase Ib/II trial (NCT02079740). Another phase I/II study is investigating 

the combination of trametinib, dabrafenib and navitoclax in BRAF-mutant melanoma or solid tumors 

that cannot be resected (NCT01989585). The outcome of these studies may give further indications of 

the feasibility of potential combination treatments by providing information on potential additive or 

synergistic effects as well as observed adverse events. The combination treatment strategy of senolytics 

and chemotherapeutics or targeted agents may be a novel approach to additionally target dormant, 

senescent PA cells which are not amenable to conventional chemotherapy. 
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4.5 Clinical implementations of the SASP in LGG patients 

An intriguing aspect is the prospect of exploiting the growth suppressive effect of the SASP 

therapeutically. Drugs entertaining the SASP could be used to maintain tumor cells in OIS, either as a 

consolidation or a therapy upon progression. The SASP is a complex mixture of inflammatory molecules 

(87), which would be difficult to replicate in a therapeutical application. However, IL1 signaling was 

shown to regulate SASP expression by others (50,80) as well as in the study presented here.  

From 1980 to 1990 approximately 20 phase I and II studies were conducted to test the antitumor activity 

of the cytokines IL1A/B (199). Treatment with IL-1 was investigated in melanoma, renal cell carcinoma, 

ovarian carcinoma and other malignancies due to its previously reported anti-angiogenic, anti-

proliferative and immune stimulatory potential (199). While little antitumor activity was observed in the 

studied entities, toxicities such as fever, flu-like symptoms and dose-limiting hypotension were reported. 

Due to the toxicities and the lack of evidence for robust anticancer efficacy, IL-1 studies were 

discontinued early on (199). One example for a non-SASP factor (87), but a successful example for 

cytokines treatment, is the agonist of the IL-2 pathway, aldesleukin. Aldesleukin has been approved by 

the FDA and was shown to induce complete and durable response in patients with metastatic melanoma 

and renal cell carcinoma. However, similar severe toxicities, as observed with IL1, are common under 

aldesleukin treatment, allowing only for inpatient treatment and administration of the drug with 

intensive supportive care (199,200). The obstacles for the use of inflammatory cytokines, such as IL1B, in 

the treatment of malignancies therefore remain high. 

In the study presented here, elevated SASP factor expression was shown to correlate with favorable 

progression-free survival (PFS). The calculated SASP score remained a factor for favorable PFS when 

accounting for extent of resection and/or radiation therapy in a multivariate analysis. The analysis of the 

ICGC PA patient cohort (14) revealed two patient populations who may benefit from the presented 

findings. First, none of the patients with complete tumor resection and high or intermediated SASP score 

expression had a progression over the course of the follow-up (FU) time analyzed. Monitoring of this 

patient cohort could be reduced, e.g. by longer FU intervals or a shorter period of FU overall. In contrast, 

all of the patients with sub-total tumor resection and low SASP factor expression had a progression 

within three years. This patient cohort could benefit from adjuvant therapy, as well as re-resection of the 

remaining tumor to improve PFS, and shorter FU intervals to improve early detection of progression. 

After validation of the SASP score in a prospective study, the score may serve as the first available 

biomarker with the potential to predict the variable growth behavior observed in PA patients. One 
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example for a similar gene expression-based predictive score is the “Oncotype DX Breast Recurrence 

Score®”, predictive for distant recurrence in breast cancer patients (201). The expression of n=21 genes 

is the basis for the calculation of a recurrence score, which predicts the risk of distant recurrence of 

breast cancer at 10 years, when patients are treated with tamoxifen only (201). This score has been 

implemented into the clinic and has been shown to have an impact on clinical decision making regarding 

adjuvant treatment administration (202). Potentially, the SASP score could play a similar role in the 

clinical management of LGG patients in the future. 

 

4.6 The interplay between MAPK inhibitors and the SASP 

After discovering the influence of the SASP on PA tumor cell growth, one concern is the possibility of 

interfering with the SASP by therapeutic agents used in LGG therapy. As standard chemotherapy is 

known to induce the SASP due to DNA damage-induced senescence (92), this treatment approach is not 

of concern and rather enforcing senescence. A novel treatment strategy, currently evaluated in LGG 

patients, is the use of targeted therapy, which has shown first promising results (28). However, there are 

unpublished clinical observations of tumor progression (i.e. a “rebound”) after discontinuation of e.g. 

MEK inhibitor treatment in LGG patients. In the light of the results presented in this study, the interplay 

between the PA oncogene (MAPK activation) and OIS induction could be impacted by MEK inhibitors, 

and an analysis of the interactions between the MAPK pathway and inflammatory signaling is of high 

interest.  

The major players of the MAPK pathway are p38, JNK as well as MEK-ERK signaling. Several authors have 

reported on repression of inflammatory signaling under treatment with MAPK inhibitors targeting p38 

and JNK (reviewed in (203)). However, treatment with p38 and JNK inhibitor did not show any effects on 

metabolic activity of the PA cell line DKFZ-BT66 in comparison to MEK inhibitor treatment (unpublished 

data from the CCU Pediatric oncology, (31)). As MEK inhibitors are currently tested in clinical trials (28), 

the focus should lie on the interaction between the SASP and the MEK-ERK signaling pathway. 

Shah et al. reported MAPK pathway activation, as determined by phosphorylation of ERK, under 

treatment with rIL1B in human pulmonary epithelial cells (156). Recombinant IL1B additionally was 

shown to induce the transcription of inflammatory genes, which could at least be partially reversed 

under treatment with a MEK inhibitor at the same time (156). Inhibition of MAPK signaling was shown to 

partially inhibit inflammatory gene transcription, regulated by IL1, and may thereby interfere with the 
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SASP (50). In addition, Sumimoto et al. demonstrated decreased expression of the inflammatory genes 

IL6, IL10 and VEGFA in BRAFV600E-positive melanoma cell lines under inhibition of MEK signaling by U0126 

treatment (204). Both studies indicate that there may be a repressive effect of MEK inhibitors on 

inflammatory signaling. Furthermore, Wang et al. demonstrated that MEK-ERK activation was necessary 

for the induction of senescence in an OIS model generated by transducing the human fibroblast cell line 

BJ with HRASG12V. Inhibition of MEK signaling using U0126 rescued transduced BJ cells from premature 

senescence (205). MEK-ERK activation does also play a role in OIS of LGG patients, being induced by 

BRAF alterations (19). However, the relevance of the described mechanism of rescue from onset of 

senescence by MEK inhibition may not be relevant in PA patients with fully established OIS. 

On the contrary, MEK inhibitors may even be effective in senescent cells, as demonstrated by 

Kochetkova et al. (206). Induction of apoptosis under MEK inhibitor treatment (PD0325901) was 

demonstrated in senescent RAS-mutated A549 human lung adenocarcinoma cells (206). The authors 

observed that autophagy, a common mechanism of resistance to MEK inhibition in proliferating A549 

cells, could not be activated in the senescent cells. Spatial separation of lysosomes and autophagosomes 

prevented their fusion and led to accumulation of damaged mitochondria, ROS and finally cell death 

(206). Furthermore, Ruscetti and colleagues showed that combination treatment with the MEK inhibitor 

trametinib and the CDK4/6 inhibitor palbociclib induced RB1-mediated senescence, including SASP 

secretion, in a human KRAS-mutant lung cancer cell line as well as a PDX lung cancer model and thereby 

led to clearance of senescent cells by NK cells (207). These studies demonstrate that induction of 

senescence and secretion of the SASP is still possible in presence of the MEK inhibitor trametinib, which 

will be tested in the upcoming LOGGIC trial in LGG patients. The induction of apoptosis by MEK inhibition 

may even be facilitated in senescent cells, due to disruption of the resistance mechanism autophagy. The 

DKFZ-BT66 cell line is the perfect model to test effects of the clinically applied MEK inhibitors on SASP 

secretion.  
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5. CONCLUSION AND PERSPECTIVES 

The aim of this study was to develop representative models of LGG and to utilize these models to 

investigate molecular mechanisms governing tumor cell growth as well as implement the findings into a 

translational context. Evidence for the presence of OIS and the SASP in the established patient-derived 

PA cell line DKFZ-BT66 could be provided, and was further validated in primary human and murine PAs. 

The results presented show the regulatory effect of the SASP on PA tumor cell growth and the prognostic 

value of the SASP for PA patient outcome. The identified mechanism regulating PA tumor cell growth 

could be therapeutically exploited using anti-inflammatory and senolytic agents. 

Aim 1: Establishing in vitro and in vivo LGG models 

The goal to establish representative in vitro and in vivo LGG models remains an ongoing challenge for the 

LGG research community. The presented patient-derived DKFZ-BT66 cell line was generated by 

overcoming OIS-relevant pathways via inducible expression of the SV40-TAg. This may present an 

approach to establish further LGG models in the future, however optimization of the method is urgently 

needed. Intracranial injection of the established PA cell line into immunodeficient mice did not result in 

tumor formation, while transduction of the cell line with hTERT resulted in formation of tumors without 

LGG features. Establishing in vivo models of PAs, either as PDX models or genetically engineered mouse 

models (GEMMs), may simply not be possible due to growth arrest resulting from OIS as well as 

replicative senescence.  

Aim 2: Characterization of OIS as well as the concurrent inflammatory signaling in LGG 

In this study, identification of the SASP as a regulator of PA tumor cell growth was described for the first 

time. OIS was shown to be a mechanism governing PA cell growth inducing growth arrest via secretion of 

SASP factors. This may explain the benign tumor growth behavior and fairly good overall survival 

observed in PA patients. 

Aim 3 and 4: Identification of specific markers for OIS in LGG and examination of their regulation during 

OIS 

The SASP factors IL1B and IL6 were identified as candidate OIS-controlling genes in PA and found to be 

upregulated in primary PA. The cytokines were both secreted in the senescent state of the DKFZ-BT66 

cell line and both pathways were regulated during OIS. Treatment with the recombinant cytokine IL1B, 

but not IL6, reduced growth of proliferating PA cells and induced SASP expression. Interference with the 

single cytokine pathways in senescent cells did not lead to bypass of OIS. Concluding from these results, 
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IL1B significantly contributes to OIS induction, but acts in concert with other SASP factors to induce and 

maintain OIS. Treatment with the broad anti-inflammatory drug dexamethasone resulted in regrowth of 

senescent PA cells and suppression of SASP expression. Care should be taken when considering anti-

inflammatory treatment in pediatric PA patients due to the potential interference with the OIS-

maintaining SASP signaling. 

Aim 5: Implementation of the findings into a clinical context by the identification of novel targets or 

prognostic markers 

The clinical relevance of the SASP was demonstrated by defining PA patient cohorts with significantly 

differing clinical outcome dependent on SASP factor expression. PA patients with high SASP factor 

expression had a favorable PFS independent of tumor resection status. The SASP score will have to be 

validated in prospective studies, but may serve as a prognostic marker to identify PA patients with a high 

or low chance of recurrence in the future. Finally, the mechanism of OIS could be therapeutically 

exploited in a treatment with senolytic BCL2 family member inhibitors, specifically targeting senescent 

PA cells. This novel approach will have to be evaluated in further pre-clinical studies. The combination of 

senolytic agents, targeting senescent PA cells, together with chemotherapy, targeting cycling PA cells, 

may enable reduction of tumor mass in patients with incomplete resection, which are prone to 

recurrence. 
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B) Plasmid maps 

1. Doxycycline-inducible pFRIPZ-IRES-EV plasmid (backbone of SV40-TAg plasmid): 

 

2. Full pFRIPZ-SV40-TAg: 
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3. Exemplary lentiviral packaging plasmid: pTLA1-Enz 

 

4. pCMV-VSV-G retroviral packaging plasmid: 
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5. pGIPZ backbone of all shRNA constructs: 

 

6. pBABE-hygro-hTERT: 
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7. pGreenFire-CMV: 
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C) Clinical annotations of the multiplex PA cohort and normal brain 

variable n % of total 

samples 22 100 

  
 

  

age (range: 1-16y, median: 4y) 

 

  

pediatric (<18y) 22 100 

  

 

  

gender 

 

  

   male 9 40.9 

   female 13 59.1 

  

 

  

location 

 

  

   infratentorial 9 40.9 

   - cerebellum 5 22.7 

   - 4th ventricle 1 4.5 

   - fossa posterior 1 4.5 

   - brain stem 2 9.1 

   supratentorial 10 45.5 

   - optic pathway 2 9.1 

   - diencephalon 3 13.6 

   - cerebral hemisphere 2 9.1 

   - 3rd ventricle 1 4.5 

   - parietooccipital 1 4.5 

   - suprasellar 1 4.5 

   NA 3 13.6 

  

 

  

MAPK alteration 

 

  

   KIAA-BRAF fusion 17 77.3 

   BRAF mutation 4 18.2 

   NF1 1 4.5 

  

 

  

resection status 

 

  

   sub-total 22 100 

Normal brain samples  1 100 

  
  

age  fetal   

  

  

gender 

 

  

   female 1 100 

  

  

location 
 

  

   supratentorial 1 100 

   - cortex 1 100 
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D) Clinical annotations of IHC patient samples 

variable n % of total 

samples 14 100 

  

 

  

age (range: 1-23y; median: 9y)   

   pediatric (<18y) 10 71.4 

   adult (≥ 18y) 4 28.6 

  

 

  

gender 

 

  

   male 10 71.4 

   female 4 28.6 

  

 

  

location 

 

  

   infratentorial 7 50.0 

   - cerebellum 6 42.9 

   - brain stem 1 7.1 

   supratentorial 7 50.0 

   - fronal lobe 2 14.3 

   - temporal lobe 2 14.3 

   - occipital lobe 1 7.1 

   - 3rd ventricle 1 7.1 

   - 4th ventricle 1 7.1 

  

 

  

MAPK alteration 

 

  

   KIAA-BRAF fusion 3 21.4 

   unknown 11 78.6 
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