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Abstract

Biological signal transduction pathways evolved to reliably transmit information from input
signals inducing appropriate cellular responses in the process. Along signaling pathways,
information is often successively relayed to several types of transmitter molecules. In some
cases, particular transmitter molecules do not only receive one kind of information, but several.
To this end, information can for instance refer to the identity or quantity of first messengers. By
encoding particular bits of information into specific characteristics of such shared transmitters,
the information can be decoded downstream. Here, transmitter characteristics may refer to
the absolute level of transmitter molecules, the duration of transmitter activation or, in case of
activation pulses, the pulse frequency. In this thesis, I analyzed encoding and decoding in two
prime examples of signal transduction: calcium signaling in non-excitable cells and Escherichia
coli chemotaxis. For this purpose, I present several methods allowing for a quantitative
analysis of information transfer, whereas methods are partly based on measures from the field
of information theory.

With regards to calcium signaling, I focused on the frequency-decoding of calcium oscillations
by dependent proteins. Particularly, variations in the quantity of input signals can account
for modulations of the calcium oscillation frequency. Several proteins like NFAT, NF-κB,
CaMKII and calpain were found to be sensitive to such frequency-modulations. To this end,
most frequency-decoding proteins exhibit increased activities for fast calcium oscillations
and decreased activities for slow oscillations. I refer to this form of frequency-decoding as
high-pass activation. In contrast, the transcription factor NFAT was reported to exhibit an
optimal frequency for its activation, while slower or faster frequencies only result in a reduced
protein activity. In turn, I refer to this form of frequency-decoding as band-pass activation. On
the basis of kinetic models, I identified requirements for high-pass and band-pass activation.
In more detail, I employed optimization algorithms aiming at a maximization of the high-pass
or band-pass activation distinctness. Among other things, I found that antagonistic, oscillator-
dependent regulation of the decoder was essential for band-pass activation, whereas regulator
species had to be differently responsive to upstream calcium oscillations. Further, I defined
favorable parameter margins and confirmed reports on the importance of cooperative protein
activation for distinct frequency-decoding. Additionally, I employed channel capacity estimates
to quantify the discriminability of particular calcium oscillation frequencies in the presence of
realistic stochastic fluctuations. For the application of channel capacity estimations and the
interpretation of the resultant estimates, I discuss several possible pitfalls.

With regards to Escherichia coli chemotaxis, I focused on the encoding of attractant levels into
receptor methylation levels using an established kinetic model. On the basis of results by a
collaborateur, encoding was investigated by inferring expected attractant levels from present
receptor methylation levels. In addition, I used delayed mutual information estimates to quan-
tify the dynamic processes of memory formation and memory loss. Here, memory formation
and memory loss were characterized by targeted transient changes in receptor methylation
levels in response to changes in ambient attractant levels. In Escherichia coli chemotaxis, single
receptors can be methylated multiple times. By means of the aforementioned methods, I
found that, for extreme attractant levels, chemotactic behavior failed due to limitations in the
encoding of ambient attractant levels into receptor methylation levels, whereas a reduction
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of the maximal number of methylations per receptor resulted in severer limitations in the
encoding, thus, greater impairments in Escherichia coli chemotaxis.

For both examples of signal transduction, I examined information transmission through
molecular communication channels. To this end, the input was the variable to be encoded
or decoded and the output was the encoding or decoding variable. Changes in model
characteristics, such as the model parameterization or network structure, greatly impacted the
number of input signals that could be reliably encoded or decoded. Both example systems
distinguished themselves by a pronounced ultrasensitivity of the output variable to changes in
the input variable. I found that this ultrasensitivity helped in increasing the discriminability
between input signals.
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Zusammenfassung

Biologische Signaltransduktionswege entstanden, um die Information eines Eingangssignal
zuverlässig zu übertragen und eine passende Zellantwort auszulösen. Oftmals wird die
Eingangsinformation entlang des Signalwegs nacheinander an verschiedene Arten von Trans-
mittermolekülen weitergegeben. In einigen Fällen nehmen bestimmte Transmittermoleküle
nicht nur eine bestimmte Information entgegen, sondern mehrere, die etwa Aufschluss über
die Identität oder Dosis des Eingangssignals geben. Da diese Informationen in modulierbare
Eigenschaften des Transmitters enkodiert werden, können sie im Anschluss wieder dekodiert
werden. Solche Eigenschaften können sich zum Beispiel auf die absolute Menge an Transmit-
termolekülen, die Dauer der Transmitteraktivierung oder, im Falle von Aktivierungspulsen, die
Pulsfrequenz beziehen. In dieser Arbeit untersuchte ich Enkodierung und Dekodierung in zwei
bekannten Beispielen der Signaltransduktion: in der Calciumsignalkaskade in nichterregbaren
Zellen und in dem Chemotaxissignalweg von Escherichia coli. Hierzu wendete ich mehrere
Methoden an, die quantitative Analysen des Informationstransfers ermöglichten und teilweise
auf informationstheoretischen Größen beruhten.

Bei meiner Untersuchung der Calciumsignalkaskade konzentrierte ich mich auf die Frequenz-
dekodierung von Calciumoszillationen durch abhängige Proteine. Hierbei wird die Oszillations-
frequenz von Calcium durch die Dosis eines Eingangssignals moduliert. Es wurde berichtet,
mehrere Proteine, darunter NFAT, NF-κB, CaMKII und Calpain, seien sensitiv gegenüber
solchen Frequenzmodulationen. Genauer gesagt ist die Aktivität der meisten frequenz-
dekodierenden Proteinen bei schnellen Calciumoszillationen erhöht und bei langsamen Os-
zillationen erniedrigt. Diese Form der Frequenzdekodierung nenne ich Hochpassaktiverung.
Dagegen wurde berichtet, NFAT weise eine maximale Aktivität bei einer bestimmten Frequenz
auf und eine erniedrigte Aktivität bei langsameren oder schnelleren Frequenzen. Diese Form
der Frequenzdekodierung nenne ich wiederum Bandpassaktivierung. Mittels kinetischer
Modelle identifizierte ich Voraussetzungen für Hochpass- und Bandpassaktivierung. Hierzu
verwendete ich Optimierungsalgorithmen, die auf eine Maximierung der Ausgeprägtheit der
Hochpass- oder Bandpassaktivierung abzielten. Unter anderem fand ich heraus, dass eine
antagonistische, oszillatorabhängige Regulation des Dekodierers essentiell für die Erzeugung
einer Bandpassaktivierung war, wobei die Regulatoren des Dekodierers unterschiedlich reak-
tionsschnell sein mussten. Außerdem konnte ich besonders günstige Parametrisierungsbere-
iche für eine ausgeprägte Frequenzdekodierung bestimmen und bestätigte Berichte über eine
positive Korrelation zwischen der Ausgeprägtheit der Frequenzdekodierung und der Stärke
der kooperativen Proteinaktivierung. Des Weiteren setzte ich Kanalkapazitätsschätzungen ein,
um die Unterscheidbarkeit verschiedener Calciumoszillationsfrequenzen unter realistischen
stochastischen Bedingungen zu quantifizieren. Bezüglich des Einsatzes und der Interpretation
von Kanalkapazitätsschätzungen weise ich in dieser Arbeit auf mögliche Stolpersteine hin.

Bei meiner Untersuchung des Chemotaxissignalwegs von Escherichia coli konzentrierte ich
mich auf die Enkodierung der Lockstoffkonzentration in die Methylierungsstufen der Rezep-
torproteine. Hierzu verwendete ich ein etabliertes kinetisches Model. In Zusammenarbeit mit
einem Kooperationspartner untersuchte ich die Enkodierung, indem ich anhand von vorhan-
den Methylierungsstufen auf eine erwartete Lockstoffkonzentration zurückschloss. Außerdem
nutzte ich zeitversetzte Transinformationsschätzungen, um die dynamischen Prozesse der
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Gedächtnisbildung und des Gedächtnisverlusts zu vermessen. Dabei waren beide Prozesse
durch gezielte, transiente Veränderungen der Rezeptormethylierungsstufen in Folge einer
Änderung der Lockstoffkonzentration gekennzeichnet. In dem Chemotaxissignalweg von
Escherichia coli können einzelne Rezeptorproteine mehrfach methyliert werden. Mittels
der beschriebenen Methoden fand ich heraus, dass in Gegenwart von extremen Lockstof-
fkonzentrationen eine chemotaktische Reaktion scheiterte, weil bereits die Enkodierung der
Lockstoffkonzentration in die Rezeptormethylierungsstufen fehlschlug. Eine Verminderung
der maximal möglichen Zahl an Methylierungen pro Rezeptor führte hierbei zu stärkeren
Einschränkungen bei der Enkodierung und somit im chemotaktischen Verhalten des Bakteri-
ums.

In beiden Fallbeispielen untersuchte ich Informationstransfer durch molekulare Kommuni-
kationskanäle, wobei der Kanalinput die zu enkodierende oder dekodierende Variable und
der Kanaloutput die enkodierende oder dekodierende Variable darstellte. Änderungen der
Modeleigenschaften, wie zum Beispiel der Modelparametrisierung oder der Netzwerkstruktur,
beeinflussten maßgeblich die Anzahl an Inputsignalen, die eindeutig enkodiert oder dekodiert
werden konnten. Die beiden untersuchten Systeme zeichneten sich durch eine ausgeprägte
Ultrasensitivität der Outputvariable in Bezug auf Änderungen der Inputvariable aus. Meine
Ergebnisse zeigen, dass diese Ultrasensitivität maßgeblich die Unterscheidbarkeit einzelner
Inputsignale förderte.
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Main introduction





1Main introduction

1.1 Biological communication

1.1.1 Signal transduction

Similar to technological communication channels, biological signal transduction pathways
receive information from input signals and transmit this information to an output element. At
the end piece of a signal transduction pathway, an appropriate cellular response is initiated.
This could, for instance, refer to the expression of a particular set of genes. Since signaling
pathways developed under evolutionary pressure to be highly reliable, information transmis-
sion in cells is often characterized by a striking robustness against biochemical fluctuations [1,
2, 3]. The importance of reliable information transmission becomes evident in cells that
exhibit spurious signal transduction due to mutations. Such mutations are often linked to
severe malfunctions and diseases like cancer [4, 5].

With respect to a ligand-mediated stimulation, signal transduction is initiated upon the binding
of first messenger molecules to receptor proteins. In multicellular organisms, first messengers
often originate from other cells of the same organism. To this end, the transportation of
first messenger molecules between cells is facilitated by connecting architecture. Plant cells,
for instance, exhibit plasmodesmata, i.e., channel-like structures that link the cytosols of
neighboring cells and serve as passageways for small molecules [6], while, in animal cells,
gap junctions and tunneling nanotubes fulfill a similar purpose [7, 8]. In endocrine signaling,
first messengers travel over long distances to reach their target cells. Here, first messengers
are transmitted via the vascular system of an organism, i.e., the xylem and phloem in plants
or the blood and lymph in animals [9, 10]. Furthermore, external ligands may also act as first
messengers. For example, microorganisms that perform quorum sensing react to autoinducer
molecules that are secreted by other microorganisms [11].

Upon ligand binding, receptor molecules undergo conformational changes allowing them
to interact with downstream molecules [12]. Subsequently, a first messenger’s information
is often not just relayed to one type of transmitter molecule, but passed on to several dis-
criminable types of transmitter molecules in a sequential fashion. In such signaling cascades,
the involvement of mobile transmitter molecules enables the signal to spread within the cell,
whereas signal propagation is not left to chances. Forgacs et al. found that known transmitter
molecules and proteins that act as building blocks of the cytoskeleton share a particularly
strong connection. Thus, it was concluded that the cytoskeleton serves as tracks supporting
mobile transmitter molecules in reaching their destination in a reliable manner [13]. Also
localization sequences, i.e., amino acid motifs recognized by import facilitators to particular
cell compartments, grant spatial specificity in signal transduction [14].

3



The relaying of information in signal transduction may also benefit signal amplification. In case
the binding of a first messenger to a receptor leads to a change in the receptor’s conformation
enabling it to interact with downstream molecules, dependent on the persistence of the
conformational change and the availability of downstream interaction partners, a single
receptor may activate a much larger number of downstream transmitter molecules (see for
instance signal amplification via cGMP after photoreceptor excitation [15]). In theory, every
activated transmitter molecule can account for additional signal amplification by interacting
with a larger number of transmitter molecules next in line in the cascade [16]. In reality,
however, such a signal amplification mechanism is likely confined by the energetic costs for
the production of large amounts of transmitter molecules.

1.1.2 Signal encoding and decoding

In this study, I investigated signal transduction in two prominent example cases: calcium
signaling in non-excitable cells and Escherichia coli chemotaxis. In particular, I analyzed
the frequency-decoding of calcium oscillations by dependent proteins and the encoding of
attractant levels into methylation levels of chemoreceptors. For a detailed introduction to
calcium signaling, please refer to Section 1.2. For a detailed introduction to Escherichia coli
chemotaxis, please refer to Section 1.3. In the following, I provide a definition of encoding
and decoding in signal transduction.

Claude E. Shannon defined a universal model of communication that can also be applied
to describe biological signal transduction [17]. In the model, an input signal is encoded
and transmitted through a communication channel to a receiver. In turn, the receiver infers
the input signal by decoding the encoded message. In general terms, encoding relates to
the conversion of a message into a different form of code. Encoding might be necessary
to compress a signal, to allow for its transmission through a particular channel, to make it
readable for a receiving element or to make it unreadable for other elements. In contrast,
decoding relates to the process of interpreting an encoded message.

With respect to signal transduction pathways, often the "identity and quantity of a stimulus"
is encoded [18]. For example, the identities of epidermal growth factor (EGF) and nerve
growth factor (NGF) are encoded into the dynamics of extracellular signal-regulated kinases
(ERK), with EGF being associated with a transient activation and NGF being associated with a
sustained activation of ERK [19, 20, 21]. Similarly, tumor suppressor p53 exhibits different
patterns upon activation by γ-radiation and activation by UV-radiation; while γ-radiation leads
to transient pulses of p53, UV-radiation leads to a single, sustained pulse of p53. Moreover,
dynamics of p53 are also modulated by the radiation dose [22, 23] (examples taken from a
review by Purvis et al. [18]).

In both cases, information from different input signals is encoded into the dynamics of a
single transmitter. By choosing a single, versatile transmitter over multiple, less versatile
transmitters, biological systems can save energy that would be required for the production of
additional types of molecules. Further, the sharing of transmitter molecules may also allow for
crosstalk, as frequently observed in signal transduction. For instance, in a proteomics study,
Geva-Zatorsky et al. found that the combined administration of specific drugs was associated
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Fig. 1.1. Schematic: Encoding and decoding of biological signals. In some signal transduction networks,
information from different input signals is encoded into properties of a single transmitter, whereas
the encoded message is decoded by downstream pathway elements to induce input-specific cellular
responses. In the presented examples, different dynamics of ERK arise after cell stimulation with different
hormones. For p53, different dynamics arise upon cell stimulation with different types of radiation. To
this end, input-specific transmitter dynamics distinctly modulate the activities of downstream pathway
elements giving rise to particular cellular responses.

with distinct dynamical patterns of protein activation compared to single drug administrations
in human cells [24]. While crosstalk between signaling pathways is sometimes labeled as noise
impairing unambiguous information transmission, in recent studies, its upside was attested in
directing complex cellular responses involving multiple pathways [25, 26].

The encoding of input signals makes only sense in the light of downstream pathway elements
being able to interpret, i.e., decode, the encoded message. In response to EGF, ERK is
transiently activated. This leads to the initiation of proliferation in neuronal precursor cells.
In contrast, sustained ERK activation in response to NGF stimulation leads to the initiation
of differentiation [27]. Similarly, γ-radiation leads to p53 pulses that result in cell cycle
arrest, while UV-radiation leads to sustained p53 activity that results in apoptosis [28]. In
conclusion, decoding elements downstream of the shared transmitter molecules must be able
to discriminate between different transmitter dynamics. In particular, the activities of decoding
elements must be differently modulated in response to distinct patterns of a transmitter in
order to give rise to distinct cellular responses [18, 29, 30, 31]. The described signaling
pathways can be simplified as bow-tie structures. Bow-tie structures are recurring motifs in
biological pathways (Figure 1.1) [32].
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1.2 Calcium signaling

1.2.1 Calcium as a second messenger

Calcium is a ubiquitous second messenger controlling a plethora of diverse, sometimes even
opposing, cellular functions such as the fertilization of mammalian eggs, the regulation of
muscle contractions, cell differentiation, proliferation, but also apoptosis. More information
on calcium-controlled cellular functions can be found in [33] and [34].

In calcium signaling, calcium levels, either within an entire cellular compartment (e.g., the
ER, the cytosol or mitochondria) or in microdomains within compartments, are modulated in
response to an upstream stimulation. For instance, calcium signaling can be initiated upon the
binding of external ligands to G protein-coupled receptors (GPCRs) or tyrosine-kinase-coupled
receptors (RTKs). The binding of ligands to both types of receptors leads to the the activation
of phospholipase C (PLC), albeit different isoforms; PLC-β with respect to GPCRs and PLC-γ
with respect to RTKs [35]. Subsequently, active PLC catalyzes the hydrolysis of the membrane
lipid phosphatidylinositol 4,5-bisphosphate (PIP2) to membrane-bound diacylglycerol (DAG)
and diffusible inositol 1,4,5-trisphosphate (IP3).

Both hydrolysis products impact calcium signaling. DAG activates protein kinase C (PKC)
isoforms that are assumed to provide a negative feedback to calcium signaling by means
of receptor phosphorylations. Corresponding findings were reported for GPCR-type chole-
cystokinin 1 receptors (CCK1Rs) [36]. More prominently, IP3 binds to IP3-receptor calcium
channels (IP3R) at the ER. In consequence, IP3R’s sensitivity to cytosolic calcium is altered. In
the absence of IP3, IP3R is inhibited by low levels of cytosolic calcium. For elevated levels of
IP3, much higher levels of cytosolic calcium are required to cause an inhibition, while lower
levels actually activate the calcium channels [35, 37]. Once activated, calcium passes into
the cytosol powered by a steep concentration gradient. In addition, phosphorylations of IP3R,
partly due to the action of calcium-dependent proteins like conventional PKC isoforms or
Ca2+/calmodulin-dependent protein kinase II (CaMKII), regulate the channeling activity of
IP3R [38].

A different type of channel, the ryanodine receptor (RYR), also mediates the release of calcium
out of the ER. Similar to IP3R, its channeling activity is sensitive to the abundance of cytosolic
calcium, with low levels of cytosolic calcium causing enhanced channel activity and high levels
of cytosolic calcium having an inhibitory effect on the calcium channel. As for IP3R, calcium
interacts with RYR either directly or by means of calcium-dependent proteins [35, 39].

The described signaling cascade exemplifies how cytosolic calcium levels rise in response to
an upstream stimulation of a cell. However, in response to some agonists in non-excitable
cells, cytosolic calcium signals oscillate and are generally transient. Thus, calcium is actively
removed to prevent its accumulation in the cytosol. To this end, it is exported back into
storage compartments, for example by means of sarco/endoplasmic reticulum Ca2+-ATPases
(SERCA) into the ER or mitochondrial uniporters into mitochondria, or even outside of the
cell, for example by means of plasma membrane Ca2+ ATPases (PMCA) or sodium-calcium
exchangers (NCX) [35].
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Fig. 1.2. Schematic: Emergence of a calcium signal after a GPCR stimulation. (1) External agonist binds to
a GPCR-type receptor. (2) Conformational changes in the receptor lead to the activation of downstream
proteins (G proteins). (3) Activated PLC catalyzes the hydrolysis of the membrane lipid PIP2. (4) Hydrol-
ysis of PIP2 results in DAG and IP3. (5) ER-resident calcium ions enter the cytosol through IP3R and RYR
channels driven by IP3 and low levels of cytosolic Ca2+ or through mitochondrial channels. (6) Ca2+

is transported from the cytosol into the ER, into mitochondria or is removed from the cell. (7) Other
Ca2+ ions are bound by calcium-binding proteins (CBPs) that either act as buffers or mediate cellular
responses. Due to the restoration of low levels of freely available cytosolic Ca2+, ER channels can be
activated once again.

The removal of calcium along with its fine-tuned release from storage compartments and the
action of buffer proteins tightly regulate its availability in the cytosol. The importance of these
measures becomes apparent upon a disruption of the calcium regulation. Sustained, high
levels of calcium are linked to a wide array of ailments including heart disease [40], neuronal
diseases like Alzheimer’s disease [41] and cancer [42].

1.2.2 On the encoding of first messenger signals into calcium
oscillations

Calcium’s versatility in transmitting signals from various first messengers is accounted for by
the multitude of spatial and dynamic variations its own signal can exhibit after a stimula-
tion [43]. Thus, particular signals from first messengers are encoded into particular types of
calcium signals. In turn, calcium signals are decoded by specific downstream proteins in order
to initiate appropriate cellular responses.
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An especially high degree of diversity is recognizable in calcium signals that manifest as
oscillations over time. Dependent on the first messenger signal, oscillation dynamics vary
significantly. Oscillation frequency, duration, amplitude as well as the general oscillation shape
(for instance spiking oscillations exhibiting only one major peak in an oscillation cycle versus
bursting oscillations exhibiting a major primary peak succeeded by a variable number of minor
secondary peaks) can all be modulated by an upstream stimulation.

In several instances, it was reported that the quantity of a first messenger is encoded into the
calcium oscillation frequency, with increases in the quantity resulting in higher oscillation
frequencies [44]. This was found in salivary glands of the blowfly Calliphora erythrocepha
upon stimulation with the hormone serotonin [45] and in isolated rat hepatocytes upon
stimulation with the hormone vasopressin [46].

In contrast, in fish, in particular in hepatocytes of the rainbow trout Oncorhynchus mykiss and
in the fish cell line RTL-W1, the quantity of several first messenger molecules was found to be
encoded into the calcium oscillation amplitude, with larger first messenger levels leading to
larger amplitudes. These findings were reported after stimulation with phenylephrine, several
toxicants and the nucleotide ATP [47]. It is believed that, in poikilothermal animals like fish,
amplitude-encoding is preferred over frequency-encoding, since it is more robust to variations
in the temperature [48]. Further, modulations of the calcium oscillation amplitude were
also observed in B lymphocytes, whereas naïve cells generate calcium oscillations with larger
amplitudes compared to self-tolerant cells upon stimulation with the same amount of identical
antigen [44]. A coincidence of amplitude- and frequency-encoding was shown in guard
cells of wild-type Arabidopsis thaliana. To this end, the external administration of calcium
induced cytosolic calcium oscillations that varied in amplitude and frequency dependent on
the administration dosage [49].

Additionally, different calcium oscillation shapes were observed upon stimulating rat hep-
atocytes with different types of agonists. The hormone vasopressin resulted in spiking
oscillations [46], while ATP led to bursting oscillations [50].

It seems reasonable to assume that a modulation of the calcium oscillation frequency or
amplitude by the quantity of a first messenger is connected to the occupation of a larger
number of receptors for a longer duration of time. As a result, more calcium channels and
pumps could be activated leading to faster and/or larger oscillations in the cytosol. For entirely
different oscillation shapes relating to different types of first messenger molecules, as observed
in rat hepatocytes stimulated by either vasopressin or ATP, the recruitment of different receptor
types might be crucial. Receptors could directly determine specific oscillation shapes due to
their own kinetic properties or indirectly by interacting with different isoforms of pathway
proteins. For instance, various isoforms of G proteins or PLCs can play a role in calcium
signaling. For a summary of relevant molecular players involved in calcium signaling, please
refer to the "calcium-signaling toolkit" as described by Michael J. Berridge in [35].

The encoding of information from first messenger signals into parameters of calcium oscilla-
tions was also investigated in silico. To this end, calcium oscillator models were proposed that
can roughly be classified into two categories. Calcium oscillator models in which oscillations
arise due to oscillations of IP3 (see [51, 52, 53, 54]), and oscillator models in which oscillations
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Fig. 1.3. Schematic: Encoding of first messenger characteristics into calcium oscillation parameters.
(A) The abundance of first messengers is often encoded into the amplitude and/or frequency of calcium
oscillations. For larger first messenger quantities resulting in a larger number of bound receptors, more of
a downstream signaling protein could be activated leading to a stronger and more spread out activation
of calcium channels. As a result, more calcium is released from the ER. In case calcium removal out
of the cytosol and release from storage compartments into the cytosol are able to follow through on
small time scales, the oscillation frequency might rise. (B) Different stimulus types can lead to different
oscillation shapes, like spiking and bursting oscillations. This could be achieved by the recruitment of
different receptor species leading to distinguishable oscillation shapes by means of their receptor-specific
kinetic properties. Also, different receptors could interact with different isoforms of signaling proteins
or, more generally, entirely different signaling proteins. Blue shapes: first messengers; white shapes:
pathway proteins activated by stimulated receptors (in red); red spheres: calcium.

are independent of IP3 oscillations and instead based on calcium-induced calcium release
(see [55, 56]). In many calcium oscillator models, frequency-encoding could be reproduced
by changes in model parameters (for instance [55, 56, 53, 54, 57, 58]). In the calcium model
by Kummer et al., changes in a model parameter could also account for the experimentally
observed diversity in calcium oscillation shapes in response to different agonists (for instance
spiking versus bursting oscillations) [53]. For reviews on calcium oscillator models, please
refer to [59, 60, 61].

1.2.3 On the decoding of calcium oscillations

As characteristics of first messengers are encoded into parameters of calcium oscillations,
downstream pathway elements decode the calcium signal in order to mediate appropriate
cellular responses. Since a multitude of proteins are regulated by calcium controlling a wide
array of diverse cellular functions, calcium signals have to target dependent proteins in a
highly selective and reliable manner.
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Fig. 1.4. Selective activation of frequency-decoding proteins exhibiting high-pass or band-pass activation.
(A) The activities of two proteins are modulated by the calcium oscillation frequency, whereas both
proteins exhibit high-pass activation. For fast oscillations, both proteins are active, for slow oscillations,
only the blue protein is active. A similar phenomenon was observed for NFAT and NF-κB in [63].
(B) Further experiments in which a broader range of calcium oscillation frequencies was applied
resulted in the conclusion that NFAT exhibits maximal transcriptional activity for a particular optimal
frequency [62, 64]. It is imaginable that more proteins exhibit a corresponding decoding mechanism
allowing for a highly selective, isolatory activation dependent on the calcium oscillation frequency. Note
that, opposed to in (A), every single protein can be selectively activated.

Most prominently, the calcium oscillation frequency was identified as a parameter decoded
by multiple dependent proteins [62]. With respect to frequency-decoding, changes in the
calcium oscillation frequency go hand in hand with changes in a dependent protein’s activity.
A pronounced sensitivity to modulations of the calcium oscillation frequency was for instance
attested for the pro-inflammatory transcription factors NFAT, NF-κB and Oct/OAP in Jurkat
T cells. All transcription factors indicated high gene expression activities for fast calcium
oscillations and low activities for slower oscillations. However, while the activities of NFAT
and Oct/OAP declined entirely in response to particularly slow calcium oscillations (oscillation
period larger than 500 s), NF-κB still exhibited a clearly measurable transcriptional activity.
In conclusion, it is believed that different genetic programs are run in case only NF-κB is
active in response to slow calcium oscillations or in case all three transcription factors are
active in response to fast calcium oscillations [63]. In the following, I call frequency-decoding
that is characterized by a high protein activity for fast calcium oscillations and a low protein
activity for slow oscillations high-pass activation. In Figure 1.4 A, I show how two co-existing
high-pass activation proteins can be selectively activated dependent on the calcium oscillation
frequency.

Further experiments in RBL-2H3 cells in which the range of the applied calcium oscillation
frequencies was extended led to the conclusion that NFAT exhibits a maximal activity for a
particular oscillation frequency. Frequencies slower or faster than this optimal frequency only
resulted in a decreased transcriptional activity [64]. I call this form of frequency-decoding
band-pass activation. Opposed to high-pass activation, band-pass activation offers considerable
advantages in the selective activation of single proteins in a mix of multiple frequency-decoding
proteins (Figure 1.4 B).
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Another prominent decoder of the calcium oscillation frequency is the serine/threonine-specific
kinase CaMKII. For CaMKII, in an in vitro study as well as in a study in mouse neurons, it was
revealed that increases in the frequency of calcium oscillation spikes resulted in an increase in
the autonomous kinase activity [65, 66]. To gain autonomous activity, two neighboring sub-
units of the about twelve, circular-arranged sub-units of the holoenzyme have to be bound to
CaM/Ca2+. Subsequent phosphorylations between bound sub-units grant autonomous activity
that persists even after the dissociation of CaM/Ca2+. Since particularly neighboring sub-units
have to be bound to CaM/Ca2+, infrequent spikes only have a small chance of boosting the
autonomous kinase activity. This explains the experimentally observed reduced autonomous
activity for slower calcium oscillations [67]. In addition, it was found that different splice
variants of β-CaMKII show distinguishable frequency-decoding patterns. Differences were
traced back to variations in the initial rate of autophosphorylation and the CaM activation
constant that are presumably connected to differences in sub-unit positioning [68]. Later, in
in silico studies, Dupont et al. also identified an optimal frequency for the maximization of
autonomous CaMKII activity [69], while Li et al. concluded that the frequency of calcium spikes
could act as a switch determining whether CaMKII or its adversary, the calcium-dependent
phosphatase calcineurin, is dominant.

Other frequency-decoders of calcium oscillations, that were experimentally identified as such,
include PKC-γ [70], µ-calpain [71] as well as Ras and the connected MAPK pathway [72].
In plants, also the stomatal movement of guard cells appears to be sensitive to modulations
of the cytosolic calcium oscillation frequency [73]. For a review on proteins able to perform
frequency-decoding of calcium oscillations, please refer to Smedler and Uhlén [62].

As pointed out in Section 1.2.2, first messenger signals cannot only modulate the calcium oscil-
lation frequency, but also the amplitude, duration and general shape of calcium oscillations. In
conclusion, it is likely that some calcium-dependent proteins can also decode other parameters
of calcium oscillations. For instance, in an experimental study in B lymphocytes, it was found
that the differential calcium-dependent activation of the transcription factors NFAT, NF-κB and
JNK is not only accomplished by modulations of the calcium oscillation frequency [63], but
also by modulations of the calcium oscillation amplitude and duration [74].

While some computational studies focused on the decoding of calcium oscillations by particular
proteins (for example [69, 75]), in others, analyses were centered around generic protein mod-
els. In many generic models of calcium-dependent protein activation, researchers described
the decoding of information encoded in the frequency of calcium oscillation spikes [56, 76,
77]. In contrast, Larsen and Kummer as well as Larsen et al. and Rozi and Jia also investigated
the decoding of bursting oscillations [78, 79, 80]. To this end, Larsen and Kummer and
Larsen et al. reported that a generic protein model was able to discriminate between calcium
oscillation shapes, like spiking or bursting oscillations, based on its average activity [79]. In
addition, Schuster et al. and Knoke et al. found that bursting oscillations can also regulate
different proteins simultaneously [81, 82]. Further, Marhl et al. added yet another layer of
complexity to the analysis of frequency-decoding. In a generic protein model, they showed
that time-limited spiking oscillations can induce clear frequency-decoding, even band-pass
activation, opposed to much longer oscillations [83]. Since short calcium oscillations are a
common sight in cells [84, 85], Marhl et al. reasoned that short oscillations could be prevalent
not only due to energetic constraints but also due to advantages in information transmission.
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Lastly, Salazar et al. employed a generic protein model to identify requirements for frequency-
decoding as well as demonstrated the advantages of calcium oscillations compared to constant
calcium signals in the activation of target proteins [86, 87].
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1.3 Escherichia coli chemotaxis

1.3.1 The chemotaxis signaling pathway

In Escherichia coli chemotaxis, cell locomotion is directed by the perception of gradients in the
abundance of a chemical, whereas chemicals may act as attractants or repellents. Chemotaxis
was already described in the late 1800s in pioneering studies by Engelmann and Pfeffer [88,
89, 90].

While larger eukaryotic cells use temporal and spatial gradients for chemotaxis, it is believed
that, in most cases, smaller prokaryotic cells cannot extract meaningful information from the
concentration difference of a chemical between opposing cell ends [91]. An exception to
this rule was reported for marine bacteria that can utilize spatial information from unusually
steep oxygen gradients [92]. More commonly, bacterial chemotaxis was found to be based on
temporal gradients, as chemotactic behavior was detected after the administration of rapid
changes in the abundance level of attractants or repellents in well-mixed media [93, 94].

To this end, chemotactic behavior is often detected by measuring a change in the cell’s tumbling
frequency. While unguided bacterial locomotion resembles a random walk in which straight
runs are frequently interrupted by tumbles, chemotactic cues bias cell locomotion. For positive
attractant gradients or negative repellent gradients, the tumbling frequency decreases and,
in consequence, the duration of runs increases. In contrast, for positive repellent gradients
or negative attractant gradients, the tumbling frequency increases and the duration of runs
decreases [91].

A signaling pathway is responsible for the perception of changes in attractant or repellent
levels and the transmission of this information to downstream effector elements directing
cell locomotion. At the beginning of this pathway, methyl-accepting chemotaxis proteins
(MCPs) act as chemoreceptors for attractants or repellents. As the name suggests, several
glutamate residues of an MCP protein can be methylated by the constitutively active methyl-
transferase CheR [95]. Ambient attractant or repellent levels along with the number of
receptor methylations modulate the receptor activity with respect to the phosphorylation of
the histidine kinase CheA [96]. In response to a decline in ambient attractant levels, the
receptor activity temporarily increases. As a result, CheAp levels rise. To this end, CheAp
mediates the phosphorylation of the protein CheY forming CheYp. The diffusible CheY protein
was identified as a key player in chemotaxis signaling. In particular, CheYp is able to bind to
flagellar motors increasing the chances for a clockwise rotation of bound flagella which in
turn increases the cell’s tumbling frequency [97, 98, 99, 100, 101, 102]. Further, CheAp also
mediates the phosphorylation of the methylesterase CheB providing a negative feedback to
its own activation. To this end, the phosphorylation of CheB is slower than the phosphory-
lation of CheY. In consequence, while, in response to a decline in ambient attractant levels,
receptor activity increases, initially, it eventually returns to a default due to the action of the
methylesterase CheBp [103, 104]. Thus, CheAp and CheYp levels as well as the cell’s tumbling
frequency return to pre-stimulation default values, too. Conversely, if ambient attractant
levels rise, the receptor activity declines, initially. In consequence, CheAp and CheYp levels
decrease along with the cell’s tumbling frequency. Only with time, the receptor activity is
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Fig. 1.5. Schematic: The chemotaxis pathway of Escherichia coli. Top to right: A rise in ambient attractant
levels results in a decrease in receptor activity, thus, a decreased activation of CheA. Bottom to left: A
decline in ambient attractant levels results in an increase in receptor activity, thus, an increased activation
of CheA. Active, i.e., phosphorylated, CheAp is able to phosphorylate the motor regulator CheY. CheYp
modulates the rotation direction of flagellar motors increasing the tumbling frequency. CheAp also
initiates a negative feedback by activating the methylesterase CheB. CheBp demethylates receptors,
whereas receptors with a lesser number of methylations exhibit a decreased activity. A constitutively
active methyltransferase CheR counters CheBp-mediated demethylations. Within the dynamic range
of the system, after a change in attractant or repellent levels, CheAp and CheYp levels, thus, also the
cell’s tumbling frequency, return to pre-stimulation standard values (right to bottom and left to top).
This effect is controlled by the activities of CheR and CheBp as well as receptor desensitization. In order
to infer gradients of a chemical, information about ambient attractant or repellent levels is stored in
receptor methylation levels. In consequence, in response to changes in ambient attractant or repellent
levels, receptor methylation levels change as well. As long as receptor methylation levels are adjusting to
a new abundance level, a downstream pathway response is taking place. Soon after receptor methylation
levels have adjusted, effector proteins, such as CheAp and CheYp, complete adaptation.
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restored due to the action of the constitutively active methyltransferase CheR and a decrease
in active methylesterase CheBp. Once again, CheAp and CheYp levels as well as the cell’s
tumbling frequency return to default values. The described sensory adaptation mechanism is
crucial for the cell to maintain a sensitivity to new changes in attractant or repellent levels. In
case adaptation fails, chemotactic behavior is severely impaired and cells exhibit excessive
tumbling or running (Figure 1.5) [105, 106, 107].

Escherichia coli chemotaxis is not only characterized by precise sensory adaptation, but also
by a striking sensitivity to changes in attractant or repellent levels. In detail, changes as
small as 3.2 nM of the attractant L-aspartate were reported to elicit a measurable chemotactic
response [108]. In order to transmit such minor changes in attractant levels, the incoming
signal is amplified by means of cooperative interactions among receptors and cooperative
binding of CheYp to flagellar motors [97, 109, 110]. Additionally, due to the methylation-
based receptor desensitization and sensory adaptation, chemotaxis can exhibit a dynamic
range of up to five orders of magnitude for certain amino acid attractants [111, 112]. Receptor
desensitization is also linked to a decreased sensitivity for large attractant levels allowing for
the detection of relative gradients rather than absolute gradients [112].

Moreover, due to its pathway structure, Escherichia coli chemotaxis is particularly robust
against concerted variations in chemotaxis proteins. To this end, the negative feedback via
CheBp and the action of the phosphatase CheZ that dephosphorylates CheYp were shown
to be crucial. In contrast, chemotaxis is much more sensitive to uncorrelated variations
in chemotaxis proteins with regards to protein steady-state behavior and adaptation time.
The precision in adaptation, however, was found to be protected also against uncorrelated
variations in chemotaxis proteins [3, 113]. In order to maintain the ratio of chemotaxis
proteins, corresponding genes are comprised in the mocha and meche operons, both parts of a
single regulon [114].

Already in the early 1970s, first mathematical models were published describing the migration
of chemotactic cells in response to changes in attractant or repellent levels [115]. In particular,
the models by Keller and Segel paved the way for future studies in this direction [116,
117]. In my analysis, I focused on the transmission of information through the molecular
chemotaxis pathway in a single cell excluding a detailed description on cell movement and
population dynamics. In this regard, in the 1980s, first models of the adaptation process in
bacterial chemotaxis considered interactions between pathway proteins, i.e., methylations and
demethylations of receptor proteins by enzyme entities [118, 119, 120, 121]. In the following
decade, chemotaxis models were published that comprised receptor dynamics as well as parts
of the phosphorylation cascade [1, 122, 123, 124, 125, 126, 127].

In this thesis, I employed a chemotaxis pathway model by Kollmann et al. that includes
a two-state model of receptor dynamics and a description of the phosphorylation cascade
culminating in the phosphorylation of CheY [3]. In detail, receptor proteins can be existent
in an inactive and an active conformation in the model , whereas the chances of a receptor
to be active depend on the number of methylations it exhibits and the ambient attractant
level. The kinetics of the model by Kollmann et al. are based on another model by Rao et
al. [128]. Further pathway models with a similar or even broader scope include Vladimirow
et al. and Clausznitzer et al. [129, 130]. In more detail, the RapidCell model by Vladimirow
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et al. comprises a Monod-Wyman-Changeux (MWC) model of receptor coupling, a model
of the phosphorylation cascade as well as a model of cell tumbling, while Clausznitzer et al.
linked a MWC model to a cascade model, too, claiming that their model grants a more realistic
representation of adaptation dynamics. For a review on single-cell chemotaxis models, please
refer to [131].

1.3.2 Memory in Escherichia coli chemotaxis

In chemotaxis, memory can relate to different system properties. For one, after a cell expe-
riences a significant change in ligand levels, CheA levels temporarily increase or decrease
before returning to standard values. The time span between system stimulation and the end
of CheA recovery is sometimes referred to as the memory length [104]. It is in this time span
that a cell initiates directed changes in its locomotion. In experimental studies, it was found
that the memory length is variable, with stronger stimuli leading to longer memory lengths.
Further, the memory length is additive. When a cell experiences a large increase from an
attractant baseline level to a step level, the corresponding memory length is equal to the sum
of the memory lengths associated with incremental increases over the same range of attractant
levels [132, 133].

It is believed that the memory length was optimized in the course of evolution. If the memory
length was too long, cells were unable to react to a new stimulation in time overshooting
the target. If the memory length was too short, a cell’s chemotactic response accuracy was
severely affected [93, 104]. In extreme cases, a bacterium exhibiting a very short memory
length would have been non-chemotactic, since it would have been too slow to translate
temporal gradients of attractant levels into directed changes in its locomotion. In conclusion,
interspecies variations in the chemotaxis memory length are assumed to originate from
different living environments [104].

Secondly, memory can relate to receptor methylation levels storing information about ambient
attractant or repellent levels. Within seconds to minutes, increases in ambient attractant
levels result in a larger number of receptor methylations and vice versa. If there is no
change in ambient attractant or repellent levels, also receptor methylation levels do not vary
significantly [134]. In particular, in response to an increase in ambient attractant levels,
Escherichia coli responds by decreasing the tumbling frequency and increasing the duration of
runs. If there are no further changes in attractant levels, the cell exhibits sensory adaptation,
thus, CheAp and CheYp levels as well as the tumbling frequency return to standard values. Like
the effector proteins CheA and CheY, also receptor methylation levels respond to the rise in
attractant levels, but unlike them receptor methylation levels do not return to pre-stimulation
standard values. If cells, adapted to the same attractant level, are separated with different
cell aliquots being stimulated by differently large increases in attractant levels, the magnitude
of the chemotactic response is dependent on the step size in ambient attractant levels [93,
132, 133]. Upon blocking methylations and demethylations of receptor proteins, this effect
is disrupted [134] and abnormal chemotaxis is taking place [135, 136]. Thus, information
about previous and new attractant levels is encoded in receptor methylation levels and used
to infer gradients modulating the chemotactic response.
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Similarities between the sensory reception in bacterial cells and neurons were briefly discussed
in [104, 137]. In particular, while, in bacterial cells, levels of specific chemoreceptor ligands
are encoded into receptor methylation levels, in neurons, levels of neuronal stimulants are
encoded into the level of adenyl cyclase enzyme [138].
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1.4 Information theory in the biosciences

1.4.1 On the advancement of information theory in the
biosciences

The person most commonly linked to information theory is Claude Elwood Shannon. As
author of the seminal study "A Mathematical Theory of Communication" [17], he is widely
considered as the field’s founding father. In his work, Shannon defined measures to quantify
the information content in messages and presented ways for efficient message encoding in
noiseless as well as noisy communication channels. Today, information-theoretic principles are
indispensable for efficient communication systems. But, due to the universality of Shannon’s
research, his ideas are also in use in other fields, such as linguistics [140, 141], psychol-
ogy [142, 143] and of course molecular biology [144, 145], to characterize various forms
of communication. Throughout this thesis, I applied measures from the field of information
theory to quantify the flow of information in signaling pathways. To this end, I regarded
signaling pathways as biological communication channels.

In Figure 1.6, I present the per-year numbers of biomedical and life science publications that
contained relevant information-theoretic keywords. Evidently, information theory gained
popularity over the course of the last decades in the biosciences.

1.4.2 On mutual information

Mutual information is described as a measure of dependence between variables [146]. With
respect to an application of mutual information to molecular biology, variables could, for
instance, refer to time series data of different proteins. While, in this study, I only estimated
the mutual information between two variables, estimations between more than two variables
are possible, as for example shown in [147]. For the two-variable case at hand, mutual
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Fig. 1.6. Number of publications in the NCBI database PubMed that contain information-theoretic key-
words. The NCBI (National Center for Biotechnology Information) database PubMed encompasses
more than 28 million citations for biomedical and life science literature (as of October 2018) [139].
Here, I searched for citations containing particular keywords linked to the field of information theory:
(A) "information theory", (B) "mutual information" and (C) "channel capacity". For all keywords, a clear
rise in the number of publications per year was recognizable. I searched for "mutual information" and
"channel capacity", since I applied both information-theoretic measures in this thesis.
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information is defined as the reduction in uncertainty of one variable given knowledge of the
other variable. This is equivalent to the gain in information about one variable by knowledge
of the other [146]. The mutual information between the variables X and Y , I(X;Y ), is
computed based on the variables’ marginal and joint probabilities. In the discrete case,
I(X;Y ) is formulated as:

I(X;Y ) =
∑
y∈Y

∑
x∈X

p(x, y) · log2

(
p(x, y)

p(x) · p(y)

)
(1.1)

With respect to related information-theoretic measures, mutual information can be described
as the uncertainty in one variable, defined by its Shannon entropy H(X), minus the remaining
uncertainty in the same variable given the second variable defined by the conditional entropy
H(X|Y ) [17]. Importantly, mutual information is symmetric, thus:

I(X;Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X), (1.2)

with X ’s Shannon entropy equal to

H(X) = −
∑
x∈X

p(x) · log2 (p(x)) (1.3)

and X ’s conditional entropy given Y equal to

H(X|Y ) = −
∑
y∈Y

∑
x∈X

p(x, y) · log2

(
p(x, y)
p(y)

)
(1.4)

1.4.3 On channel capacity

Channel capacity C is defined as the "maximum amount of information that can possibly be
transmitted through a [memoryless communication] channel" [148]. It is the supremum of the
mutual information I between a channel input X and an output Y , whereas C is maximized
by optimizing the input distribution p(x) [17]:

C(X;Y ) = sup
p(x)

I(X;Y ) (1.5)

Originally designed for technological communication channels, channel capacity can also
be applied to assess maximal information transmission in biological signaling. In 2010,
Nakano and Liu applied the measure to characterize molecular communication via second
messengers in reference to calcium [149], in 2011, Cheong et al. analyzed information
transmission in tumor necrosis factor signaling by means of channel capacity [147], in 2013,
Hormoz quantified the channel capacity between transcription factor and gene expression
levels [150] and, only recently in 2018, Keshelava et al. estimated the channel capacity in
GPCR signaling [151].

In the following example case, I consider a signaling pathway in which two agonists induce
distinct cellular responses by causing a differently strong activation of the transcription
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factor TF. The agonist kind can be defined as the input of a communication channel and the
abundance of active transcription factor [TF∗] as the same channel’s output (Figure 1.7). Since
biological processes are affected by stochastic effects, not a single abundance level of active
transcription factor is linked to a particular agonist but rather a distribution of transcription
factor levels. Thus, upon repeating the stimulation with agonist an xi, an xi-specific output
distribution p(y|xi) is received, where y ∈ Y . By means of the output distribution data p(y|x1)
and p(y|x2), the channel capacity of the biological communication channel can be quantified
by optimizing the input distribution p(x) (see Section 2.6 for details).

Because only two kinds of inputs signals are considered in the example case, channel capacity
is limited to 1 bit. This can be inferred from Equation 1.2 in which mutual information is
defined as the Shannon entropy H(X) minus the corresponding conditional entropy H(X|Y ).
For two possible input signals, H(X) is equal to its maximum of 1 bit given a uniform input
distribution p(x) (x1 = 0.5; x2 = 0.5), while H(X|Y ) equals to 0 bits if there is absolutely
no uncertainty regarding the identity of an input signal xi given an output yj . In this case,
the logarithm in Equation 1.4 is equal to 0 bits. However, in Figure 1.7, input-specific output
distributions partially overlap. Therefore, channel capacity has to be smaller than 1 bit in this
example. In conclusion, channel capacity informs on the discriminability of input signals. The
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Fig. 1.7. Example case: discrimination of agonist types based on the abundance of active transcription
factor. In this theoretical example case, two agonists, x1 and x2, induce a differently strong activation
of the transcription factor TF in order to trigger distinct cellular responses. Due to stochastic effects,
the repeated administration of a particular agonist xi is linked to multiple possible abundance levels
of active transcription factor [TF∗]. Hence, an input-signal-specific output distribution p([TF∗]|xi) can
be inferred. To this end, input-specific output distributions may partially overlap. For [TF∗] levels
within the overlap, the applied agonist type cannot be clearly determined. Input-signal-specific output
distributions can also be used to estimate the channel capacity providing valuable information about the
discriminability of input signals.
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smaller the overlap between the input-specific output distributions is, the closer the channel
capacity is to 1 bit.

While, in the presented example case considering only two input signals, a conclusion about
the discriminability of input signals can be readily drawn from the input-specific output
distribution data, the same becomes increasingly more difficult upon considering more input
signals. It is here the measure of channel capacity truly starts to show its merits providing
valuable information otherwise not recognizable. For a better understanding of channel
capacity, please refer to Section 3.2. There, I present a theoretical analysis to exemplify the
measure’s informative value as well as to point out pitfalls for its application.
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1.5 Outline of the thesis

In this thesis, I analyzed encoding and decoding in two prime examples of signal transduction:
calcium signaling in non-excitable cells and Escherichia coli chemotaxis. For my analyses,
I employed kinetic models and introduced methods allowing for a quantitative analysis of
information transfer. To this end, methods were partly based on measures from the field of
information theory.

The thesis structure is as follows.

2 Materials and methods.
With respect to deterministic simulations, I frequently ran optimizations to assess a model’s
potential to fulfill certain objectives given set conditions. Information about the employed
deterministic simulation and optimization algorithms can be found in this chapter.

For my analyses of stochastic simulation data, I applied information-theoretic measures, in
particular mutual information and channel capacity. Information about the applied estimators
for both measures and about the stochastic simulation algorithm can be found in this chapter
as well.

3 Method development and investigation.
In this chapter, I showcase the OscillatorGenerator, a self-designed package for the R language.
The package enables the user to generate discrete time series of oscillations. In particular, the
user can select distinct basic shapes, for example, sinusoids, square-waves, spiking oscillations
or bursting oscillations, and customize the selected shapes by defining oscillation parameters,
for example, the oscillation period, duty cycle, baseline or peak levels. In the context of this
thesis, I used the OscillatorGenerator to mimic calcium oscillations applying the generated
time series as inputs to kinetic models of calcium-dependent protein activation. The Oscillator-
Generator package was published on the Comprehensive R Archive Network (CRAN) and is
available at https://cran.r-project.org/package=OscillatorGenerator.

Secondly, I present a theoretical analysis of the information-theoretic measure of channel
capacity using simple example cases. Since the application of channel capacity is fairly new to
the analysis of biological signal transduction, I aimed at shedding light on the meaning of the
measure and point out possible pitfalls.

4 Analyzing the frequency-decoding of calcium oscillations.
In my first case study, I analyzed the frequency-decoding of calcium oscillations by dependent
proteins. Most proteins were found to perform high-pass activation, a behavior characterized
by high protein activity for fast calcium oscillations and low protein activity for slow calcium
oscillations. In contrast, the transcription factor nuclear factor of activated T cells (NFAT)
was reported to perform band-pass activation exhibiting a maximal activity in response to
an optimal calcium oscillation frequency with slower or faster frequencies only leading to a
reduced protein activity [62, 64].
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In this chapter, I present minimal kinetic protein models able to recreate high-pass and band-
pass activation as well as a more specific model showing the calcium-dependent activation
of NFAT. By means of an optimization-based workflow, I identified requirements for distinct
frequency-decoding with regards to model parameterization and model network structure.

Further, I employed estimations of channel capacity to quantify a protein’s ability to discrimi-
nate between calcium frequencies in the presence of stochastic fluctuations. Again, I identified
model requirements for the clear discrimination of given frequencies.

Parts of this chapter were published in our publication "Requirements for band-pass activation
of Ca2+-sensitive proteins such as NFAT" [152].

5 Analyzing the encoding of attractant levels in the chemotaxis of E. coli.
In my second case study, I analyzed the encoding of ambient attractant levels into receptor
methylation levels in Escherichia coli chemotaxis. To this end, I employed an established
chemotaxis model by Kollmann et al. [3]. The process of receptor methylation governs the
adaptation of downstream chemotaxis proteins controlling cell locomotion and is essential for
the detection of temporal attractant or repellent gradients.

I performed a quantitative analysis of encoding by inferring expected attractant levels from
present receptor methylation levels comparing the expected attractant level to the true
attractant level. Further, I employed delayed mutual information estimations to monitor the
formation and loss of the methylation-based memory.

In Escherichia coli chemotaxis, chemoreceptors can be methylated multiple times. In my
analysis, I set a particular focus on analyzing the consequences of a reduction in the maximal
number of receptor methylations on the system’s encoding capabilities.
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Part II

Materials and methods





2Materials and methods

2.1 Used hardware

I ran computations on a Linux (CentOS 6.4 x86 64-bit Kernel 2.6.32) compute cluster with
Sun Fire AMD Opteron and IBM Quad Intel Xeon CPUs as well as on a MacBook computer.

2.2 Deterministic simulations

In Chapter 4, I ran deterministic simulations in R [153] while applying the deSolve package
(version 1.20) [154]. To this end, I sped up simulations by outsourcing expensive computations
to C-code that was dynamically loaded into R. In order to solve ODE equations, I applied the
LSODA algorithm [155]. A first template for fast ODE simulations using dynamic loading of
C-code into R was provided by Jonas Förster1. Template scripts can be found on the attached
data medium.

In Chapter 5, I ran deterministic simulations in Copasi (Complex Pathway Simulator) [156]
which I connected to R by means of CoRC (Copasi R Connector; version 0.4.0)2. CoRC is
a high-level API allowing for the combination of powerful biochemical modeling tools in
Copasi with superior scripting in R. Again, I applied the LSODA algorithm for deterministic
simulations.

2.3 Stochastic simulations

I applied Gillespie’s Direct Method to run stochastic simulations [157]. Again, I sped up
simulations by outsourcing expensive computations to C-code that I dynamically loaded into
R.

The standard Direct Method algorithm is defined by the following reaction probability density
function:

p (τ, µ|x, t) = aµ(x) · exp
(∑

1...M
aµ(x) · τ

)
(2.1)

1Jonas Förster: Biological Information Processing Group at the BioQuant Center, Heidelberg University
2The most recent version of the CoRC package for R by Jonas Förster and Jürgen Pahle (Biological In-

formation Processing Group at the BioQuant Center, Heidelberg University) can be downloaded from
https://jpahle.github.io/CoRC/.
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The function describes the probability density of the next reaction being of type Rµ (with
corresponding propensity aµ) and being executed at time t+ τ for a system that is currently
in state x at time t. The presented probability density function is a homogeneous Poisson
process.

In my analysis, I often used time series as model inputs in stochastic simulations. Therefore,
as a result of changes in the input time series, propensities could also vary during a time step.
This was accounted for by changing Equation 2.1 to an inhomogeneous Poisson process, as
reported in [158]. The altered probability density function reads:

p (τ, µ) = aµ(t+ τ) · exp
(
−
∫ t+τ

t

∑
1...M

aµ(t)dt

)
(2.2)

A first template for stochastic simulations using Gillespie’s Direct Method with an inhomo-
geneous Poisson process was provided by Jürgen Pahle3. The template can be found on the
attached data medium.

2.4 Optimizations

For optimizations, I used the default optim function in R. To this end, I employed the Nelder-
Mead algorithm [159]. Since the algorithm only detects local optima, I applied a multi-start
optimization scheme to approximate a global solution. Thus, I performed up to 50000
optimization runs per optimization problem. Optimization scripts differed from each other in
the initial values of optimizable parameters, whereas initial values were drawn out of uniform
or log-uniform distributions.

A first template for using R’s optim function to optimize models according to deSolve simula-
tion results was provided by Michael Gabel and Peter Kumberger4. The template can be found
on the attached data medium.

2.5 Estimations of mutual information

For estimations of mutual information (as defined in Section 1.4.2), I applied a Kraskov-
Stoegbauer-Grassberger estimator [160]. In contrast to other estimators, KSG estimators do
not employ a constant volume, but rather set the number of data points within a volume to
a constant value. Therefore, the volume size adjusts dynamically when scanning through a
data set. The superiority of KSG estimators in estimating mutual information was reported
in [161].

3Jürgen Pahle: Biological Information Processing Group at the BioQuant Center, Heidelberg University
4Michael Gabel and Peter Kumberger: Modelling Infection & Immunity Group at the BioQuant Center, Heidelberg

University.
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In this work, I set k, i.e., the fixed number of data points within a volume, to 5. Before
measuring the mutual information between variables, I normalized variables by z-scoring.
Z-scoring sets the mean of a variable distribution to 0 and its standard deviation to 1. Further,
I added minuscule amounts of normally-distributed noise to the z-scored data points (mean =
0, standard deviation = 10−10). The addition of noise ensured that data points could be
clearly ranked which is a requirement for the KSG estimation process.

A low number of data points may lead to spurious estimates of mutual information. Thus, for
every original estimate of mutual information, I performed between 100 and 1000 surrogate
estimations. Surrogate estimates were previously applied to validate the significance of mutual
information estimates [162] and of estimates of related information-theoretic measures [163].
The method follows the null hypothesis that a permutation of one variable’s distribution order
should disrupt dependencies to a second variable’s distribution. For validation, I compared
the mean of the surrogate estimate distribution to a corresponding original estimate.

For all presented estimations of mutual information, I employed a KSG estimator provided by
Irina Surovtsova and Martin Zauser5. To this end, estimations of mutual information were
initiated in R, while expensive computations were outsourced to C-code. The estimator accepts
vectors as well as matrices as input variables. It can be found on the attached data medium.

2.6 Estimations of channel capacity

For estimations of channel capacity (as defined in Section 1.4.3), I employed the Blahut-
Arimoto (BA) algorithm [164, 165].

For inferring channel capacity, i.e., the maximal mutual information of a channel for a given
set of inputs, the relative entropy between p(x) and p(x|y) was iteratively increased until
convergence, where X refers to the input variable and Y to the output variable. For calculating
p(x) and p(x|y), the following two equations were employed:

pn(x|y) = pn−1(x) · p(y|x)∑
x
pn−1(x) · p(y|x) (2.3)

and

pn(x) =
∏
y(pn(x|y))p(y|x)∑

x

∏
x(pn(x|y))p(y|x) (2.4)

For a detailed derivation of the equations, please refer to [146]. In this study, the cycle was
repeated until the Euclidean distance between the new input distribution pn(x) and the former
input distribution pn−1(x) was smaller than a set threshold of 1 · 10−50 signaling a stop of a
significant improvement. By convention, the algorithm was initiated by using a uniform input
distribution.

5Irina Surovtsova and Martin Zauser: Biological Information Processing Group at the BioQuant Center, Heidelberg
University.

2.6 Estimations of channel capacity 29



data		
processing	

BA	
algorithm	

x1	

x2	

x3	

x4	

p(y|x1)	

p(y|x2)	

p(y|x3)	

p(y|x4)	

p(x|y)	 p(x)	

Fig. 2.1. Workflow for acquiring input-signal-specific output probability distributions. First, I defined a set
of relevant input signals (x1, x2, . . . ). By means of stochastic simulations, the repeated application of a
particular input signal xi led to the acquisition of an input-signal-specific output distribution p(y|xi).
Before using the output distributions in the BA algorithm (as defined in Equations 2.3 and 2.4), the data
had to be discretized. In my analysis, I defined the output measure as the average number of particles of
a biochemical species. I obtained maximal resolution by using a bin width of one particle.

According to Equations 2.3 and 2.4, the output distribution p(y|x) was required. This distri-
bution represents the variation in the output variable Y in response to the input variable X.
In this thesis, I inferred p(y|x) from stochastic simulation results. In particular, I performed
the workflow sketched in Figure 2.1. First, I defined a set of relevant input signals. Then,
I applied these input signals to a communication channel, i.e., a biochemical model. For
every input signal xi, I ran 1000 stochastic simulations in order to obtain a corresponding
input-signal-specific output distribution p(y|xi). Since the BA algorithm only accepts discrete
data, I binned the obtained output distributions p(y|xi). As I defined the output measure as
the average number of particles of a biochemical species, I could obtain maximal resolution
by setting the bin width to one particle.

The applied BA algorithm script was initialized in R. Expensive computations were outsourced
to faster C-code. A first MATLAB template of the algorithm was provided by Aarón Vásquez-
Jiménez. This template was converted into R- and C-code by Jürgen Pahle, Arne Schoch and
Martin Zauser6.

6Aarón Vásquez-Jiménez: Centro de Investigación y de Estudios Avanzados del IPN (Cinvestav-IPN), Unidad
Monterrey, Mexico; others: Biological Information Processing Group at the BioQuant Center, Heidelberg University.
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2.7 Data presentation

For data visualization, I used default functions in R as well as additional functions provided in
the R packages ellipse and ggplot2 [166].
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Part III

Results





3Method development and
investigation

3.1 The OscillatorGenerator package for R

A large part of this thesis was about a model-based analysis of the frequency-decoding of
calcium oscillations by dependent proteins. For the protein models presented in Chapter 4, I
described the concentration of calcium over time by means of a predefined input, invariable
to any feedback. In most cases, I approximated calcium oscillations by a sine wave function
that allowed for an easy modulation of the oscillation amplitude, offset and period. In cells,
however, calcium oscillations often differ from sine waves. In particular, experimental time
series exhibit a duty cycle, i.e., a clear distinction between an active, above-baseline and an
inactive, baseline part within a single oscillation cycle. Further, calcium oscillations are often
asymmetric and sometimes possess several minor spikes after a larger primary spike within a
single oscillation cycle.

In order to generate more physiological calcium oscillation shapes that featured some of the
mentioned characteristics, I implemented several functions into R. In total, discrete time series
of seven basic oscillation shapes can be generated by means of seven functions. Parameters
defining the time series’ duration and resolution as well as overall appearance are set by
the user. To this end, due to the incorporation into R, a particular parameter can be readily
scanned to test for its impact on a connected protein model. I comprised all functions in
the OscillatorGenerator package, an official CRAN release (the Comprehensive R Archive
Network)1. The most recent version of the OscillatorGenerator package can be found at
https://cran.r-project.org/package=OscillatorGenerator.

The functions of the OscillatorGenerator package can be distinguished into two complexity
levels generating either signals resembling spiking or bursting oscillations. In terms of spiking-
like oscillations, four functions, i.e., basic shapes, are provided: a sinusoid, a square-wave,
a spike with linear increase and decrease dynamics and a spike with exponential increase
and decrease dynamics (Figure 3.1). All functions present the user with the option to set
baseline and peak levels as well as an oscillation period (Figure 3.1 A-C) and a duty cycle
(Figure 3.1 D-F). In addition, a trend parameter can be used to specify a linear growth
or decline in the peak level from one oscillation cycle to the next, with decline motions
automatically stopping at the set baseline level (Figure 3.1 G-I). The trend parameter can be
applied to simulate the depletion or influx of an upstream first messenger that is linked to a
change in the calcium oscillation amplitude over time (as observed in fish [47]). Furthermore,
for linear and exponential spiking shapes, the peak position in the active phase of an oscillation

1I generated all time series with package version 0.1.0.
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Fig. 3.1. Time series resembling spiking oscillations generated with the OscillatorGenerator package. The
OscillatorGenerator package provides four basic shapes resembling spiking oscillations: a sinusoid (A-C),
a square-wave (D-F) and a spike-shape with either linear (G-I) or exponential dynamics (J-L). The user
can specify the oscillation period, the duty cycle, baseline and peak levels as well as the evolution of
the oscillation amplitude: (A) period = 50, (B) period = 100, (C) period = 200. (D) duty cycle = 0.2,
(E) duty cycle = 0.4, (F) duty cycle = 0.6. (G) trend = 1 (peak level does not change), (H) trend =
1.1, (I) trend = 0.9. For spiking oscillations with linear or exponential dynamics, the peak position
in the active phase of an oscillation cycle is also customizable: (J) position = 0.1, (K) position = 0.5,
(L) position = 0.9. For the presented data, I applied the following standard parameters: baseline = 200,
peak = 1000, duration = 500, resolution = 0.1. If not explicitly mentioned: period = 100, duty cycle =
0.5, trend = 1, peak position = 0.3.

cycle is user-defined as well (Figure 3.1 J-L), whereas the active phase is the above-baseline
part of an oscillation cycle.

Dependent on the first messenger and the cell-line in question, bursting oscillations arise [50].
Bursting oscillations are characterized by the presence of a primary peak succeeded by minor
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Fig. 3.2. Time series resembling bursting oscillations generated with the OscillatorGenerator package. The
OscillatorGenerator package provides three basic shapes resembling bursting oscillations: a bursting-like
oscillation shape composed of two superimposed square-waves (A-C) or bursting-like shapes for which
baseline, peak and secondary peak levels are connected by either linear (D-F) or exponential dynamics
(G-I). In addition to the characteristics shown in Figure 3.1, the secondary duty cycle as well as the
secondary peak level can be modulated for bursting-like oscillation shapes as well. The trend parameter
now determines the evolution of peak and secondary peak levels: (A) secondary duty cycle = 0.2, (B)
secondary duty cycle = 0.4, (C) secondary duty cycle = 0.6. (D) trend = 1 (peak level unchanged),
(E) trend = 1.1, (F) trend = 0.65. (G) secondary peak level = 400, (H) secondary peak level = 700,
(I) secondary peak level = 1300. For the presented data, I applied the following standard parameters:
baseline = 200, peak = 1000, period = 100, duty cycle = 0.6, duration = 500, resolution = 0.1. If not
explicitly mentioned: secondary duty cycle = 0.8, secondary peak level = 700, trend = 1.

secondary peaks, within a single oscillation cycle. In the following, the presented artificial
oscillation shapes represent coarse outlines of these bursting dynamics. Bursting-like oscillation
shapes can be generated by means of three distinct functions in the OscillatorGenerator package,
the simplest being a bursting-like shape composed of two superimposed squares for which
primary and secondary peak levels are set by the user. For the other two functions, baseline,
primary peak and secondary peak levels are connected by either linear or exponential dynamics
(Figure 3.2). Again, a duty cycle parameter defines the ratio of the general active phase to
the total oscillation period. However, in contrast to the previously presented spiking-like
oscillations, a secondary duty cycle parameter is also customizable. This parameter determines
the ratio of the primary active phase to the total active phase (Figure 3.2 A-C), whereas the
primary active phase spans from the beginning of an oscillation cycle until the secondary peak
level is reached. The trend parameter now determines the change in peak and in secondary
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Tab. 3.1. Function calls in the OscillatorGenerator package.

Function call Output example

Sinusoid(baseline, peak, period, duty_cycle, trend,
duration, resolution)

SquareSpike(baseline, peak, period, duty_cycle, trend,
duration, resolution)

LinSpike(baseline, peak, period, duty_cycle, peak_pos,
trend, duration, resolution)

ExpSpike(baseline, peak, period, duty_cycle, peak_pos,
trend, duration, resolution)

SquareBurst(baseline, peak, period, duty_cycle,
sec_duty_cycle, sec_peak, trend, duration, resolution)

LinBurst(baseline, peak, period, duty_cycle,
sec_duty_cycle, sec_peak, trend, peak_pos, duration,
resolution)

ExpBurst(baseline, peak, period, duty_cycle,
sec_duty_cycle, sec_peak, trend, peak_pos, duration,
resolution)

The OscillatorGenerator package provides seven functions resembling seven basic oscillation shapes.
Each function exhibits multiple arguments for further customization.

peak levels from one oscillation cycle to the next (Figure 3.2 D-F). The initial secondary peak
level is also customizable (Figure 3.2 G-I).

A full list of function calls as well as detailed descriptions of function arguments are provided
in Tables 3.1 and 3.2.

38 Chapter 3 Method development and investigation



Tab. 3.2. Function arguments used in the OscillatorGenerator package for R.

Argument Description

duration duration of the generated time series

resolution resolution of the generated time series

baseline minimal value of the oscillator

peak maximal value of the oscillator

sec_peak
for bursting modes only: intermediary value targeted between
peak and return to baseline

period oscillation period (reciprocal of the frequency)

duty_cycle
ratio of the active phase (oscillator above baseline) to the total
oscillation period

sec_duty_cycle
for bursting modes only: ratio of the primary active phase (time
interval from cycle start until sec_peak) to the total active phase

peak_pos
for linear and exponential modes only: position of the peak in
the (primary) active phase of an oscillation cycle

trend
percental linear increase or decrease in peak and if available
sec_peak between oscillation cycles; for trend = 1, values
remain unchanged

Arguments listed above apply for the function calls presented in Table 3.1.
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3.2 A theoretical analysis of channel capacity
estimates

3.2.1 A measure for quantifying the discriminability of input
signals in the presence of fluctuations

In biological signal transduction, information transmission must be highly reliable, since the
spurious interpretation of input signals can lead to the emergence of severe malfunctions [5].
To this end, information transmission must be unambiguous, despite the presence of stochastic
effects adding uncertainty to a system’s response after a stimulation with a particular input.
In particular, due to stochastic effects, several distinct responses can be linked to a particular
input signal. In order to investigate the discrimination of input signals under realistic stochastic
conditions, I employed a stochastic simulation algorithm, i.e., Gillespie’s Direct Method [157]
in the second half of Chapter 4. By means of a repeated stimulation of a system with the same
input signal, I could infer input-signal-specific output distributions.

I then applied channel capacity estimations [17] to quantify the discriminability of the input-
signal-specific output distributions. Channel capacity C is defined as the maximal mutual
information I of a channel for a set of given input signals xi, whereas the analyzed channel is
assumed to be memoryless. It can be inferred by optimizing the input distribution p(x):

C(X;Y ) = sup
p(x)

I(X;Y ), (3.1)

where mutual information is defined as

I(X;Y ) =
∑
y∈Y

∑
x∈X

p(x, y) · log2

(
p(x, y)

p(x) · p(y)

)
= H(X)−H(X|Y ) = H(Y )−H(Y |X), (3.2)

and H(X) is the Shannon entropy of X and H(X|Y ) is the conditional entropy of X given Y .
For mathematical notations of H(X) and H(X|Y ), please refer to Equations 1.3 and 1.4 in
Section 1.4.2.

For estimations of channel capacity, i.e., for maximizations of the mutual information, I
applied the Blahut-Arimoto algorithm, as presented in Section 2.6. In previous studies,
channel capacity was already used to define an upper boundary to information transmission
in biological signal transduction pathways [147, 167, 150, 151].

Since the interpretation of channel capacity estimates can be challenging, in the following,
I discuss simple example cases to provide a better understanding on the meaning of the
measure, as it is applied here.
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3.2.2 Channel capacity is limited by the number of input
signals considered

For this section, I approximated input-signal-specific output distributions as normal distribu-
tions N

(
µ; σ2), with mean µ and variance σ2. In the first example case, I considered two

output distributions, p(y|x1) and p(y|x2), to arbitrary input signals x1 and x2.

Both distributions exhibited a variance of 1. While I set the mean of the first distribution to a
constant value, I incrementally increased the mean of the second distribution (Figure 3.3 A).
After every change in the second distribution’s mean, I performed an estimation of channel
capacity to study the effect of varying degrees of discriminability between output distributions
on the channel capacity estimate.

In case both distributions shared the same mean value, thus, were practically identical,
estimations yielded 0 bits. Hence, the 0-bits-mark can be associated with absolutely no
distinctness between output distributions. In more detail, 0 bits can be interpreted as 20 = 1
distinguishable input set. Therefore, an observer of the output could only tell, whether any of
the two input signals was applied, but was not able to specify which one. When iteratively
increasing the difference between the distributions’ mean values, channel capacity estimates
rose until a maximum of 1 bit was reached (Figure 3.3 B). The less overlap between the
output distributions, the more likely it became that an observer of the output could reliably
discriminate between the applied input signals. Only when the two output distributions were
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Fig. 3.3. Measuring the channel capacity between two output distributions with variable distinctness.
(A) Schematic depicting two output distributions to arbitrary input signals x1 and x2. I raised the
second distribution’s mean µ2 between channel capacity estimations to iteratively increase the distinct-
ness between output distributions. As a result, channel capacity increased as well (B). When output
distributions were identical, channel capacity estimations yielded 0 bits, i.e., an observer could recognize
20 = 1 input set, thus, was only able to tell whether any of the considered input signals was applied,
but could not specify which one. In contrast, if output distributions were completely distinct, 1 bit was
reached. In this case, an observer of the output could clearly discriminate between 21 = 2 input signals
based on the fact that distinct parts of the output range were clearly related to the action of either one
of the two input signals. Here, "input set" can refer to a batch of input signals or a single input signal.
With N1

(
µ1 = 0; σ1

2 = 1
)

and N2
(
µ2; σ2

2 = 1
)
, whereas µ2 was scanned from 10 to 20.
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Fig. 3.4. Measuring the channel capacity between three output distributions with variable distinctness.
(A) Schematic depicting three output distributions to three arbitrary input signals x1, x2 and x3. I
iteratively increased the second distribution’s mean µ2 between channel capacity estimations from 0
(which is equal to the first distribution’s mean µ1) to 15 (which is equal to the third distribution’s
mean µ3). (B) A sigmoidal increase in channel capacity followed up by a sigmoidal decrease was the
result. When two output distributions were identical to each other, channel capacity estimates yielded
1 bit, for the third distribution was always absolutely distinct to the other two. When distancing the
second output distribution from the first and the third output distribution, thus, creating three entirely
distinct distributions, channel capacity increased to 1.58 bits. This can be interpreted as 21.58 = 3
input sets that can be clearly discriminated based on the channel’s output. With N1

(
µ1 = 0; σ1

2 = 1
)
,

N2
(
µ2; σ2

2 = 1
)
, where µ2 was scanned from 0 to 15, and N3

(
µ3 = 15; σ3

2 = 1
)
.

entirely distinct, the 1-bit-mark was touched2. 1 bit can be interpreted as 21 = 2 input sets
that are distinguishable beyond any doubt based on the output measure. Now, entirely distinct
output states could be clearly related to either one of the two input signals.

In the second example, I considered three output distributions to three distinct input signals,
all exhibiting identical variances of 1. While the first and the third output distribution were
always entirely distinct to each other, the second output distribution was shifted from the first
to the third distribution in an iterative manner. Once again, after every change in the second
distribution’s mean, I performed estimations of channel capacity. The described experiment
resulted in a sigmoidal rise in channel capacity from 1 bit to 1.58 bits, followed by a sigmoidal
decline from 1.58 bits back to 1 bit (Figure 3.4). Only in case the second distribution’s mean µ2

was identical to the first distribution’s mean µ1 or the third distribution’s mean µ3, I received
1 bit pointing at two distinguishable input sets. This time the 1-bit-mark did not refer to two
single input signals being clearly distinguishable, but instead to a single input signal and a
combination of two input signals being clearly distinguishable; if µ1 was identical to µ2, the
range of output states could be divided into two distinct parts, one referring to the action of
input signal three, the other to the action of either input signal one or two. Thus, input signals
one and two were grouped into a shared category. In case all three output distributions were
entirely distinct to each other, I received 1.58 bits pointing at 21.58 = 3 clearly distinguishable
input sets. This time, the three distinguishable input sets were actually composed of single

2Exactly 1 bit was only reached, since there were no shared elements between the distributions that were composed
of a finite number of elements. When applying Gaussian distributions with an infinite number of elements, outliers
would always interfere with a perfect distinction, thus, capacity would never reach 1 bit but rather converge to
1 bit, when iteratively increasing the difference between the mean values of the output distributions.
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input signals x1, x2 and x3. In consequence, the range of output states could be divided into
three distinct parts, each part clearly linked to the action of one of the three input signals.

In conclusion, when considering a group of input signals x1, x2, . . . , xn, one can attest,
without knowledge of any input-specific output distribution, that the capacity has to lie
between 0 bits, meaning that all input-signal-specific output distributions are identical, and
log2(n) bits, meaning that every single output distribution is entirely distinct to the others,
thus, there are no overlaps between single output distributions. The upper boundary can
also be inferred from the mathematical notation of mutual information (see Equation 3.2).
I(X;Y ) is the difference between the Shannon entropy H(X) and the conditional entropy
H(X|Y ). H(X|Y ) refers to the uncertainty in the input X given the output Y . If there are no
overlaps between output distributions, this uncertainty, i.e., H(X|Y ), is equal to 0 bits. In this
case, I(X;Y ) is equal to H(X) and the maximum of H(X) is obtained with a uniform input
distribution p(x) resulting in log2(n) bits (see Equation 1.3 in Section 1.4.2).

3.2.3 Input recurrence in channel capacity estimates

For the example presented in Figure 3.4, the 1-bit-mark was associated with two distinct parts
of the output range being linked to the actions of entirely distinct input sets. However, when
considering an example case in which output distributions p(y|x1) and p(y|x3) were entirely
distinct to each other and the output distribution p(y|x2) covered all output values that were
already covered by p(y|x1) and p(y|x3), channel capacity still amounted to 1 bit despite the
lack of two entirely distinct input sets.

I sketched a corresponding set-up in Figure 3.5 A. Since the applied Blahut-Arimoto algorithm
requires discretized input-signal-specific output data, output states can be imagined as squares.
In case an output distribution p(y|xi) covered an output square, it was highlighted in red. If
the presented "overlap pattern" in Figure 3.5 A was applied, independent of the underlying
probability values for the occurrence of particular output state upon stimulation with a
particular input signal (for example p(y1|x1)), channel capacity always amounted to 1 bit. In
general terms, this means that an observer of the output could divide the range of output
states into 21 = 2 parts, both being clearly linked to the actions of a distinct input set. However,
while input sets might be distinguishable, not all elements of the input sets have to be distinct.
In case an observer received the outer left output square, input signal three could be dismissed,
while the observer could be certain that either input signal one or two was applied. In case an
observer received the outer right output square, input signal one could be dismissed, while
the observer could be certain that either input signal three or, once again, two was applied.
Therefore, an observer was able to distinguish between the actions of two input sets, whereas
input sets shared input signal two as a mutual, recurring component.

Similarly, for the set-up sketched in Figure 3.5 B, independent of the underlying, input-specific
output distributions within the red squares, channel capacity always amounted to 1.58 bits.
Thus, an observer could divide the range of output states into 21.58 = 3 parts, each part being
clearly linked to the action of a distinct input set. For the outer left square, input signals
three and four could be clearly dismissed, while it was certain that either input signal one
or two was applied. For the squares in the middle, input signals one and three could be
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clearly dismissed, while it was certain that either input signal two or four was applied. And
for the outer right square, input signals one or four could be clearly dismissed, while it was
certain that either input signal two or three was applied. In summary, three distinct input
sets could be recognized, with all input sets sharing input signal two as a mutual, recurring
component.

Hence, channel capacity estimates seem to provide an answer to the following question: Into
how many parts can a range of output states be divided, with every part clearly referring to
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Fig. 3.5. Channel capacity estimates refer to the number of distinct input sets characterized by at least one
set-exclusive element. For the applied Blahut-Arimoto algorithm, output values had to be discretized.
In the panels above, discretized output values are represented as squares. In case an input-signal-specific
output distribution covered a discretized output value, the corresponding square was highlighted in
red. (A): When employing the presented "overlap pattern" between three input-signal-specific output
distributions, channel capacity estimates always amounted to 1 bit, independent of the underlying
probabilities within the red squares. Thus, the output range could be divided into 21 = 2 parts, with each
part referring to different input sets. Here, input signal two was part of both input sets. (B): Similarly,
when employing this overlap pattern, channel capacity always amounted to 1.58 bits. Thus, the range
of output states could be divided into 21.58 = 3 parts, with each part referring to different input sets.
Again, input signal two was part of all input sets. (C): While distinct input sets can share single input
signals with each other, at least one input signal has to be set-exclusive. Here, the output range could
be divided into three parts, with each part referring to a different input set; set one composed of input
signals one and two, set two composed of input signals two and three and set three composed of input
signals one and three (from left to right). Nonetheless, channel capacity actually amounted to less than
1 bit. This was because none of the aforementioned input sets included a set-exclusive element. When
changing to overlap pattern (D), channel capacity amounted to at least 1 bit, while it never reached
1.58 bits. Now, the output range could be divided into two parts, with each part referring to input sets
that included at least one set-exclusive element. Correct input sets are marked by thick black outlines.
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the action of a distinct input set? However, also this interpretation is not entirely correct,
as demonstrated in Figure 3.5 C. In this example case, the range of output states could be
divided into three separate parts, with each part referring to the action of a distinct input
set; input set one composed of input signals one and two, input set two composed of input
signals two and three and input set three composed of input signals one and three (from left
to right in the sketch). According to the initial interpretation of channel capacity, independent
of the underlying, input-specific probability distributions within the red squares, channel
capacity should always amount to 1.58 bits. In reality, however, channel capacity was very
much dependent on these probabilities and did not even amount to 1 bit. To add to the
confusion, when changing the pattern in Figure 3.5 C to the one in Figure 3.5 D, channel
capacity estimates were larger than or equal to 1 bit but smaller than 1.58 bits, although the
range of output states could be divided into three parts referring to three distinct input sets
(input set one composed of input signals one and two, input set two composed of input signal
three and input set three composed of input signals one and three).

While for the overlap pattern in Figure 3.5 C, one cannot find two distinct input sets that
exhibit at least one element, i.e., one single input signal, that is set-exclusive, in Figure 3.5 D,
only two input sets can be identified, that include at least one set-exclusive input signal: input
set one composed of input signals one and two and input set two composed of input signals
one and three (marked by black outlines). Therefore, one has to add: Into how many parts
can a range of output states be divided, with every part clearly referring to the action of a
distinct input set that is characterized by at least one set-exclusive input signal?

3.2.4 Reducing overlaps between output distributions
increases channel capacity estimates

In Section 3.2.2, I stated that the channel capacity is inherently limited by the number of input
signals considered. If all n considered input signals lead to entirely distinct output distributions,
channel capacity amounts to log2(n) bits. In other words, the distinctness between a given
number of output distributions is maximized, if the overlaps between output distributions
is minimized. There are two ways this can be achieved: by either spreading out individual
output distributions, i.e., maintaining the distributions’ variances but distributing them over
a larger output range, or narrowing down single output distributions, i.e., maintaining the
output range but decreasing the distributions’ variances. In both cases, overlaps between
output distributions can be reduced.

In an artificial set-up, I added one new output distribution round by round, while keeping
all previously generated output distributions. After every round, I proceeded to estimate
the channel capacity between the growing number of output distributions. In particular,
I drew the mean of each new output distribution from a uniform distribution with finite
boundaries. When measuring the channel capacity after every iteration cycle, channel capacity
either increased or stayed constant until convergence to a cap value. The addition of more
input-signal-specific output distributions never led to a decrease in channel capacity due to
the phenomenon of input recurrence (see Section 3.2.3). As expected, increases in the output
range or decreases in the variance of output distributions led to larger channel capacity caps
(see Figure 3.6).
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Fig. 3.6. Effect of spreading out or narrowing down output distributions on channel capacity estimates.
To obtain the presented results, I ran multiple input addition assays varying either the variance σ2 of the
input-signal-specific output distributions (A) or the output range (B). In the input addition assays, per
round, a new output distribution was added to the mix of already present ones. In each round, I estimated
the channel capacity between the growing number of output distributions. In all instances, channel
capacity grew or remained constant when adding more output distributions. Eventually, channel capacity
converged to a cap value. The cap value was increased for larger output ranges or smaller variances,
with both variations leading to less overlaps between output distributions. (A): WithNi

(
µi; σi

2), where
µi was drawn out of uniform distributions ranging from 10 to 30 and σi

2 was set to either 0.5 (black
curve), 1 (blue curve) or 2 (red curve). (B): With Ni

(
µi; σi

2 = 1
)
, where µi was drawn out of uniform

distributions ranging from 10 to 50 (black curve), from 10 to 40 (blue curve) or from 10 to 30 (red
curve).

In the second half of Chapter 4, I used channel capacity estimations to quantify the dis-
criminability of calcium oscillation frequencies based on the average concentration of a
calcium-dependent protein. The presented example studies in this chapter were meant to
clarify the meaning of channel capacity and to point out the ambiguity of the measure.
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4Analyzing the frequency-decoding
of calcium oscillations

4.1 Chapter introduction

4.1.1 About this chapter

Several proteins, directly or indirectly regulated by calcium, are sensitive to modulations of
the calcium oscillation frequency. A list of examples is provided in Section 1.2.3. In most cases,
it was found that a dependent protein’s activity is positively correlated with the calcium oscil-
lation frequency, i.e., faster oscillations result in an increased protein activity [62]. Opposed
to this high-pass activation mechanism, for the transcription factor NFAT, experimental studies
suggest a more complex decoding behavior. NFAT was reported to exhibit an optimal fre-
quency for maximal activity. Thus, oscillations slower or faster than the optimal frequency only
result in a reduced activity [62, 64]. In the following, I call this kind of frequency-decoding
band-pass activation.

Here, I present a reproduction and analysis of high-pass (Section 4.2) and band-pass activa-
tion (Section 4.3) using simple kinetic protein models. To this end, I defined a molecular
communication channel in which the calcium oscillation frequency served as an input and the
average concentration of a dependent model species acted as the channel output. I attested
frequency-decoding in case significant changes in the output arose upon stimulating a protein
model with different input signals, i.e., in case the applied calcium frequencies could be clearly
discriminated by means of the output measure. Further, on the basis of the aforementioned
protein models, I constructed a more specific model for the calcium-dependent activation of
the transcription factor NFAT (Section 4.6). I used the NFAT model to probe for the possibility
of band-pass activation of the transcription factor, as reported in literature [62, 64].

In order to probe for high-pass or band-pass activation in a given protein model, I employed
optimization algorithms (Section 4.4). To this end, I optimized selected model parameters to
maximize the distinctness in high-pass or band-pass activation. In case optimizations did not
yield significant high-pass or band-pass activation, I concluded that a model was not able to
perform this kind of frequency-decoding.

Strikingly often, proteins bind calcium ions in a positive-cooperative manner (Table 4.1).
Positive-cooperative protein activation is characterized by ligands, here calcium ions, exhibiting
a higher affinity for a protein once other ligands have already bound. As a result, the fraction
of ligand-saturated protein as a function of the ligand’s concentration takes on a sigmoidal,
ultrasensitive shape that can be described by a Hill equation [168]. In order to represent
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Tab. 4.1. List of calcium-dependent proteins activated in a positive-cooperative manner.

Protein Coop. coefficient Experimental details

CaM
1.7; 1.1 for binding of Ca2+ to high-affinity and low-affinity

binding sites in vitro, respectively [169]

4 for binding of Ca2+ to unspecified sites in a mathemati-
cal model [69]

CaMKII 3; 1.8; 4

for binding of CaM-Ca2+ in C. elegans; phosphorylation
assays with respect to WT-enzyme and syntide substrate,
∆17-enzyme and autocamid substrate and ∆17-enzyme
and syntide substrate [170]

Cn 1.88 in an in vitro phosphatase assay with respect to CaM-
Ca2+ [171]

PKC-α 1.3 in an in vitro FRET assay using isolated C2-
domains; with respect to Ca2+ in the presence of
phosphatidylserine-containing vesicles [172]

PKC-β 1.8
PKC-γ 1.4

Several proteins bind calcium ions in a positive-cooperative manner. In Section 4.7, I examined the
relationship between cooperativity coefficient parameterization, i.e., the degree of ultrasensitivity, and
the frequency-decoding distinctness in kinetic models of calcium-dependent protein activation.

different levels of ultrasensitivity, a parameter in the Hill equation, the cooperativity coefficient,
can be modulated, with steeper more ultrasensitive shapes being linked to larger cooperativity
coefficients.

By maximizing a model’s frequency-decoding distinctness with regards to either high-pass
or band-pass activation, for a given, i.e., non-optimizable parameterization of cooperativ-
ity coefficients, I examined the influence of cooperativity strength on frequency-decoding
(Section 4.7). To this end, I used a multi-start optimization scheme. Thus, per optimization
problem, I obtained a multitude of parameter sets associated with distinct frequency-decoding.
Subsequently, I analyzed these optimized parameter sets for conserved characteristics that
allowed for highly efficient high-pass or band-pass activation given a particular parameter-
ization of cooperativity coefficients (Section 4.8). In addition, constrained optimizations,
i.e., optimizations in which single parameters could only be varied in confined intervals
revealed the consequences of an unfavorable model parameterization on frequency-decoding
(Section 4.9).

I also applied the optimization-based method to investigate the impact of the calcium oscilla-
tion amplitude on the optimal parameterization of binding constants for distinct frequency-
decoding (Section 4.10). Furthermore, I analyzed the effect of a higher degree of specificity in
band-pass activation on optimization results in Section 4.11.
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In the first part of this chapter, I examined frequency-decoding under deterministic conditions.
In particular, I was interested in the consequence of given conditions, for example a particular
parameterization of cooperativity coefficients, on the maximal distinctness of high-pass or
band-pass activation. In contrast, in the second part of this chapter, I changed my objective.
Now, I focused on a protein’s ability to discriminate between given frequencies in the presence
of more realistic stochastic conditions.

For the inclusion of stochastic effects, I employed Gillespie’s Direct Method for model simula-
tions [157]. While in deterministic simulations, even slight differences in the output can be
reliably mapped to particular input signals, fluctuations blur out links between input and out-
put signals. In order to quantify a protein’s ability to discriminate between given frequencies,
I applied the information-theoretic measure of channel capacity [17], whereas I estimated
channel capacity (as introduced in Sections 1.4.3 and 3.2) based on the Blahut-Arimoto
algorithm (as introduced in Section 2.6) [164, 165].

At first, in Section 4.13, I applied channel capacity to analyze the impact of system responsive-
ness on the discrimination of frequencies situated in a given bandwidth. Further, I discovered
a positive relationship between cooperativity strength and the maximal frequency-decoding
distinctness. I assumed that, in particularly distinct frequency-decoding, already minor varia-
tions in the oscillation frequency can be recognized based on the output measure despite the
presence of fluctuations. Therefore, in Section 4.14.2, I quantified the effect of increases in
the parameterization of cooperativity coefficients on a protein model’s ability to resolve given
oscillation frequencies.

In summary, I identified requirements in model parameterization and network structure for
frequency-decoding under deterministic and stochastic conditions. In the past, frequency-
decoding of calcium oscillations was investigated in several other in silico studies [56, 69,
75, 76, 77, 83, 86, 87]. In this regard, I would like to highlight the publications by Dupont
and Goldbeter as well as Salazar et al. who also described parametric requirements for
successful frequency-decoding [76, 87]. The presented analysis is unique in terms of its
methodology and its emphasis on band-pass activation that was not investigated in detail
before. Furthermore, there are a few studies comprising an information-theoretic analysis of
calcium signaling, for instance Nakano and Liu, Keshelava et al. and Pahle et al. [149, 151,
173]. The presented analysis distinguishes itself from these publication by focusing on the
application of information theory, i.e., channel capacity, for an analysis of frequency-decoding
of calcium oscillations. Parts of this chapter, in particular Sections 4.2 to 4.9, were published
in Schoch and Pahle (2019) [152].

4.1.2 Outside assistance

A first template for fast ODE simulations using dynamic loading of C-code into R was provided
by Jonas Förster1. A first template for using R’s optim function to optimize model parameters
was provided by Michael Gabel and Peter Kumberger2. The employed rate law for cooperative
protein activation was taken from [79].

1Biological Information Processing Group at the BioQuant Center, Heidelberg University.
2Modelling Infection & Immunity Group at the BioQuant Center, Heidelberg University.
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A first script for estimating channel capacity based on the Blahut-Arimoto algorithm [164,
165] was provided by Aarón Vásquez-Jiménez3. Conversion into C-code coupled to R as well
as an optimization of the algorithm’s performance were carried out by Jürgen Pahle, Martin
Zauser and myself 1. A first template for fast stochastic simulations by means of Gillespie’s
Direct Method was provided by Jürgen Pahle [157].

3Centro de Investigación y de Estudios Avanzados del IPN (Cinvestav-IPN), Unidad Monterrey, Mexico.
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4.2 The high-pass activation model

Previously, Goldbeter et al. presented a protein model capable of performing high-pass acti-
vation [56]. In the Goldbeter model, a frequency-decoding protein is regulated by a fixed
deactivating force and an activating force which in turn is directly stimulated by calcium oscil-
lations. For the following analysis of high-pass activation, I modified the model by Goldbeter et
al. In particular, I substituted kinetic rate laws to allow for a cooperative activation of the
activator by calcium as well as a cooperative conversion of the decoder by competent activator
and deactivator molecules. The underlying model network structure was kept. Reaction
rate laws are shown in Table 4.2. An overview of the model’s network structure is given in
Figure 4.1.

In order to analyze frequency-decoding, I defined a molecular communication channel,
whereas the calcium oscillation period T (the reciprocal of the oscillation frequency) served
as an input and the average concentration of the active decoder Pr served as an output. To
this end, the average concentration of the active decoder protein can be interpreted as a proxy
of its average activity. Its use is a common practice in the analysis of frequency-decoding (see
for instance [56, 79]).

Pr (T ) = 1
t
·
∫ t

0
Pr (T ) dt, (4.1)

in which Pr and Pr are functions of the calcium oscillation period T .

In simulations, Pr approached convergence upon increasing the observed time window {0; t}.
Thus, only after the passing of several calcium oscillation cycles, Pr ceased to alter significantly.
I paid close attention to t being large enough to retrieve a quasi-converged value of Pr.

Upon stimulating the high-pass model with various oscillation periods, it was revealed that the
model was able to perform high-pass activation. For very fast calcium oscillations, the decoder

Tab. 4.2. Overview of the high-pass model’s structure and kinetics.

Reactions Kinetics

Acti
Ca−−→ Act vH1 = kA1·Acti·Caa

KA
a+Caa

Act→ Acti vH2 = kA2 ·Act

Pri
Act−−→ Pr vH3 = kP 1·Pri·Actp1

KP 1p1 +Actp1

Pr Deact−−−→ Pri vH4 = kP 2·Pr·Deactp2

KP 2p2 +Deactp2

The cooperative binding of calcium ions Ca to the inactive activator Acti results in the formation of
competent activator Act. In turn, Act is able to activate the frequency-decoding protein Pr. A constant
deactivating force Deact counteracts Pr’s activation. By default, Deact is fixed to 5000 nM and Ca
is defined as a sine wave oscillating between 200 nM and 1000 nM. The index i refers to inactive
counterparts of molecular species. k-parameters refer to rate constants, while K-parameters refer to
binding constants. a, p1 and p2 represent cooperativity coefficients.
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Ca

Deact

Pri Pr

H1 / H2

H3 / H4

Fig. 4.1. Overview of the high-pass model’s network structure. Acti is activated by the binding of calcium
ions Ca. In turn, competent Act can then activate the inactive decoder protein Pri. A fixed deactivating
force Deact returns the active decoder Pr to its inactive conformation Pri. Round-shaped arrowheads
with dashed lines refer to activation events. Reaction names refer to the kinetic rate laws presented in
Table 4.2.
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Fig. 4.2. Frequency-decoding in the high-pass model. (A) A stimulation with very fast sine waves (T = 0.01 s)
resulted in an accumulation of Pr (red line). Slower input oscillations (T = 1000 s) led to oscillations in
Pr levels (blue line). (B) By computing Pr (Equation 4.1), high-pass activation of the decoder protein
became apparent. Color-coded points refer to the time courses shown in the left panel. Information
about the applied parameter set can be found in the appendix in Table A.3. I defined input sine waves
to oscillate between a baseline level of 200 nM and a peak level of 1000 nM. Prtot refers to the total
amount of decoder, i.e., the sum of Pri and Pr which I set to 5000 nM by default.

protein Pr could only integrate the upstream signal. In consequence, the concentration of Pr
increased to a plateau level (Figure 4.2 A, red line). In contrast, for slower calcium oscillations,
the average concentration of the active decoder decreased, since the decoder was now able
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to closely follow the upstream oscillation dynamics. Therefore, Pr fell below the previously
described plateau level for a large fraction of the observed time window (Figure 4.2 A, blue
line).

A computation of the output measure Pr according to Equation 4.1, confirmed distinct
frequency-decoding. The decoder’s average activity dropped from a maxmum at 87 % to a
minimum at 59 % upon increasing the calcium oscillation period T (Figure 4.2 B), whereas
percentage values refer to the average concentration of Pr in the observed time window to
the total concentration of decoder molecules (the sum of Pri and Pr).

Importantly, the high-pass model cannot perform high-pass activation for all possible combina-
tions of parameter values. The system has to be sensitive to changes in the calcium oscillation
frequency. Information on the applied parameter set can be found in the appendix in Table A.3.
More information on parameterization criteria for distinct high-pass activation can be found
in Sections 4.8 and 4.9.
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4.3 The band-pass activation model

Based on observations in Section 4.2, I concluded that band-pass activation can be achieved
in case the decoder protein is regulated by a calcium-dependent activator as well as a calcium-
dependent deactivator. Assuming the activator is less responsive and has a weaker control
on the decoder compared to the deactivator, I expected the following behavior: For fast
oscillations, neither one of the regulators are able to follow the rapid calcium oscillations.
In consequence, both active regulators rise to a plateau level, as previously observed in
Figure 4.2 A (red line). Since the deactivator has a stronger control on the decoder, the
decoder’s activity declines. When iteratively decreasing the oscillation period, the more
responsive deactivator is the first to oscillate, while the less responsive activator remains
close to its plateau level. Therefore, the activator is able to compensate for its lesser control
on the decoder, since it is on average more abundant than the deactivator. As a result, the
decoder’s activity increases for intermediate oscillations. However, for slower oscillations, both
of the regulators are expected to heavily oscillate and the previously observed concentration
advantage in favor of the activator is abolished. Due to the deactivator’s stronger control
on the decoder, the deactivator’s dominance is restored and, consequentially, the decoder’s
activity is decreased once again.

According to this blueprint, I extended the high-pass model to build the band-pass model,
as presented in Table 4.3 and in Figure 4.3. The deactivator Deact was now modeled as a
variable. Like the activator Act, Deact was activated by the cooperative binding of calcium
ions. Upon applying a standard parameter set in which Act was less responsive and weaker
in the control of Pr in comparison to Deact, I could recreate band-pass activation, as shown
in Figure 4.4 (information about the applied parameter set can be found in the appendix in

Tab. 4.3. Overview of the band-pass model’s structure and kinetics.

Reactions Kinetics

Acti
Ca−−→ Act vB1 = kA1·Acti·Caa

KA
a+Caa

Act→ Acti vB2 = kA2 ·Act

Deacti
Ca−−→ Deact vB3 = kD1·Deacti·Cad

KD
d+Cad

Deact→ Deacti vB4 = kD2 ·Deact

Pri
Act−−→ Pr vB5 = kP 1·Pri·Actp1

KP 1p1 +Actp1

Pr Deact−−−→ Pri vB6 = kP 2·Pr·Deactp2

KP 2p2 +Deactp2

The cooperative binding of calcium ions Ca to inactive activator Acti and inactive deactivator Deacti
leads to the formation of competent activator Act and competent deactivator Deact. The competent
regulators control the conversion of the decoder protein Pr. By default, Ca is defined as a sine wave
oscillating between 200 nM and 1000 nM. The index i refers to inactive counterparts of molecular
species. k-parameters refer to rate constants, while K-parameters refer to binding constants. a, d, p1
and p2 represent cooperativity coefficients.
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B1 / B2
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Deacti

Ca

B5 / B6

Fig. 4.3. Overview of the band-pass model’s network structure. Inactive activator Acti and inactive deactiva-
tor Deacti are activated by the binding of calcium ions Ca. Competent regulators Act and Deact can
activate and deactivate the decoder protein Pr. Round-shaped arrowheads with dashed lines refer to
activation events. Reaction names refer to the kinetics presented in Table 4.3.

Table A.5). For fast oscillation, Pr only integrated the upstream calcium dynamics and rose
to a low-leveled plateau (Figure 4.4 G). Pr was suppressed, since the deactivator Deact was
about as abundant as the activator Act, but Deact had a stronger control on Pr (Figure 4.4 A
and D). For slow calcium oscillations, Pr responded with dampened oscillations of its own. On
average, Pr was as abundant as in response to fast calcium oscillations (Figure 4.4 I). Again,
Act and Deact were available in similar abundances and Pr was suppressed due to Deact’s
stronger control (Figure 4.4 C and F). Only the application of intermediate oscillations caused
Pr to exhibit high-amplitude oscillations of its own (Figure 4.4 H) leading to a rise in Pr’s
average activity. As expected, this was induced by an on average more abundant Act compared
to Deact (Figure 4.4 B and E).

A model sharing the presented network structure, i.e., a decoder protein controlled by an
oscillator-dependent activator-deactivator couple that is able to perform band-pass activation,
was developed independently by Aguilera et al. [48]. The kinetics of the model presented
in Table 4.3 distinguish themselves from the model by Aguilera et al. only with regards to
the cooperative binding of activator and deactivator molecules to the decoder Pr. Further, I
employed the presented band-pass model for a different research question, i.e., an analysis of
the requirements for distinct band-pass activation.
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Fig. 4.4. Frequency-decoding in the band-pass model. To obtain the presented results, I stimulated the band-
pass model with fast (T = 0.1 s) (A, D, G), intermediately fast (T = 50 s) (B, E, H) and slow (T =
10000 s) calcium sine waves (C, F, I). Pr was maximal after a stimulation with intermediately fast
oscillations (L). This effect was accomplished by an on average higher abundance of Act compared to
Deact (J, K). Color-coded points in the bottom row refer to the calcium oscillation periods used in the
simulations in the panels above. All applied calcium sine waves exhibited baseline and peak levels of
200 nM and 1000 nM, respectively. The applied model parameters are listed in the appendix in Table A.5.
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4.4 A framework for maximizing frequency-decoding
efficiencies

In the following sections, I probed for high-pass and band-pass activation given particular
conditions in models of calcium-dependent protein activation. To this end, I ran optimizations
to maximize frequency-decoding efficiencies, i.e., the distinctness of either high-pass or band-
pass activation. In doing so, I could test whether certain conditions, i.e., particular model
network structures or a particular parameterization of non-optimizable parameters, benefited
the frequency-decoding distinctness in high-pass or band-pass activation.

First, I defined mathematical notations for high-pass and band-pass activation efficiencies. In
terms of high-pass activation, I described the corresponding high-pass activation efficiency
EffH as the difference between Pr in response to fast oscillations and Pr in response to slow
oscillations (Figure 4.5 A; definition of Pr according to Equation 4.1):

EffH := Pr (Tfast)− Pr (Tslow) (4.2)

By default, I set the calcium oscillation periods Tfast and Tslow to 0.1 s and 1000 s. Any deviation
from these default values are explicitly mentioned in the text.

By optimizing EffH over a subset of a model’s parameters ΘH , the high-pass activation potential
EH , i.e., the maximal high-pass activation efficiency, can be returned:

EH := max
ΘH

{EffH(ΘH)} (4.3)
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Fig. 4.5. Definition of decoding efficiencies in high-pass and band-pass activation. (A) For high-pass activa-
tion, I defined the decoding efficiency EffH to be equal to Pr given a fast oscillation input minus Pr
given a slow oscillation input. (B) For band-pass activation, I defined the efficiency EffB to be equal
to the difference in Pr at an intermediate oscillation period and the maximum of Pr at a fast and a
slow oscillation period (both being smaller than the former). Red dashed lines refer to the default
period lengths employed for the optimization algorithms (Tfast, Tmed and Tslow). Red points refer to
the corresponding Pr-values applicable for the quantification of high-pass and band-pass activation
efficiencies.
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In terms of band-pass activation, I defined the corresponding band-pass activation efficiency
EffB as the difference between Pr in response to an intermediate oscillation Pr (Tmed) and the
maximum of Pr (Tfast) and Pr (Tslow), both being smaller than Pr (Tmed) (Figure 4.5 B):

EffB := Pr (Tmed)−max
(

Pr (Tslow),Pr (Tfast)
)
, (4.4)

with Tmed being set to 1 s by default.

By maximizing EffB over a subset of a model’s parameters ΘB, the band-pass activation
potential EB can be returned:

EB := max
ΘB

{EffB(ΘB)} (4.5)

Therefore, when maximizing the band-pass activation efficiency, Pr is maximized at an
intermediate oscillation period Tmed, while it is minimized at faster and slower oscillation
periods Tfast and Tslow.

In contrast to rate and binding constants, I did not optimize cooperativity coefficients but
instead set them to fixed values. Further, I also set the total concentrations of model species,
i.e., the sum of active and inactive counterparts, to a constant value of 5000 nM by default.
To this end, I set initial concentration values of model species to the corresponding steady
state values for a constant calcium input of 600 nM that is the mean concentration of the
actually applied calcium sine waves oscillating between 200 nM and 1000 nM. By starting
off from these steady states, I observed a significant reduction in the transient phase. Since
the transient phase extends the time needed for Pr to reach convergence, its reduction was
wanted.

I calculated steady states according to the following equations:

ActSS = kA1 ·Acttot · Caa

kA2 ·KA
a + kA2 · Caa + kA1 · Caa (4.6)

PrSS = kP1 · Prtot ·Actp1

kP1 ·Actp1 + kP 2·Deactp2 ·(KP 1p1 +Actp1 )
KP 2p2 +Deactp2

(4.7)

In contrast to the high-pass model, in the band-pass model, also the deactivator Deact is a
variable. Deact’s steady state was computed according to:

DeactSS = kD1 ·Deacttot · Cad

kD2 ·KD
d + kD2 · Cad + kD1 · Cad

(4.8)
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4.5 Testing for basic frequency-decoding
functionalities

In this section, I employed maximizations of frequency-decoding efficiencies to probe for
the possibility of different forms of frequency-decoding in the simple kinetic protein models
presented in Sections 4.2 and 4.3. I already demonstrated that the high-pass model was able
to perform high-pass activation (see Figure 4.2) and that the band-pass model was able to
perform band-pass activation (see Figure 4.4). It remained open whether the models were also
able to perform other forms of frequency-decoding. In addition to high-pass and band-pass
activation, I also tested for low-pass activation, with the low-pass activation efficiency EffL
being defined as:

EffL := Pr (Tslow)− Pr (Tfast) (4.9)

and the corresponding low-pass activation potential EL being defined as:

EL := max
ΘL

{EffL(ΘL)}, (4.10)

where ΘL is the subset of a model’s parameters selected for optimization.

Any attempt to induce low-pass or band-pass activation in the high-pass model by means of
maximizations of the corresponding frequency-decoding efficiencies according to Equations 4.3
or 4.10 remained unsuccessful (Figure 4.6 A). In contrast, the band-pass model was capable
of recreating all three forms of frequency-decoding (Figure 4.6 B).

band

high

low

mode

Fig. 4.6. Recreation of different forms of frequency-decoding in the high-pass and band-pass model. I
optimized rate and binding constants of either the high-pass or band-pass model for a maximization of
EffH , EffB or EffL. Next, I used the optimized parameter sets to compute the presented results. To this
end, I scanned the calcium oscillation period T and measured Pr, the average activity of the decoder
protein. (A) The high-pass model was only capable of performing high-pass activation. Low- and
band-pass activation could not be recreated (overlapping lines at 0 %). (B) The band-pass model was
capable of recreating all three forms of frequency-decoding. I scaled the minimal concentration of each
curve to 0 % to allow for a better comparison. For the optimizations, I employed default values of Tfast,
Tmed and Tslow that are marked by red dashed lines. All optimized parameter sets are provided in the
appendix in Tables A.1 and A.2.
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4.6 Band-pass activation of the transcription factor
NFAT

4.6.1 The NFAT model

Previously, in Section 4.3, I presented a protein model that was capable of performing band-
pass activation. As suggested in [62], the ability to perform band-pass activation seemed to
be linked to an antagonistic, oscillator-dependent regulation of the decoder protein (see also
Section 4.5). Here, I extended the band-pass model to construct a model particularly for the
calcium-dependent activation of NFAT. Subsequently, I probed for the possibility of band-pass
activation in this NFAT model.

According to experimental data, the transcription factor NFAT exhibits a peak activity in
case cells are stimulated by calcium oscillations of a particular frequency, whereas calcium

Tab. 4.4. The NFAT model’s structure and kinetics.

Reaction Kinetics

CaMKII Ca−−→ CaMKII∗ vN1 = kN1·CaMKII·Cam

KN1m+Cam

CaMKII∗ → CaMKII vN2 = kN2 · CaMKII∗

Cn Ca−−→ Cn∗ vN3 = kN3·Cn·Can

KN2n+Can

Cn∗ → Cn vN4 = kN4 · Cn∗

Cn CaMKII∗

−−−−−−→ CnP vN5 = kN5 · CaMKII∗ · Cn

CnP→ Cn vN6 = kN6 · CnP

CnP Ca−−→ CnP∗ vN7 = kN3·CnP·Can

KN2n+Can

CnP∗ → CnP vN8 = kN4 · CnP∗

Cn∗ + NFAT→ NFAT : Cn∗ vN9 = kN7 · Cn∗ ·NFAT

NFAT : Cn∗ → Cn∗ + NFAT vN10 = kN8 ·NFAT : Cn∗

CnP∗ + NFAT→ NFAT : CnP∗ vN11 = kN7·CnP∗·NFAT
δ

NFAT : CnP∗ → CnP∗ + NFAT vN12 = kN8 ·NFAT : CnP∗

Calcineurin (Cn) is activated by the cooperative binding of calcium, Ca. Cn can also change to a phospho-
rylated form CnP. To this end, the phosphorylation is carried out by calcium-bound Ca2+/calmodulin-
dependent protein kinase II (CaMKII∗). After binding of Ca, CnP∗ as well as Cn∗ are able to form
active complexes with NFAT, however, CnP∗’s activity is reduced, as modeled by the introduction of δ.
δ is defined to be always larger than 1. k-parameters refer to rate constants, K-parameters to binding
constants. m and n represent cooperativity coefficients.
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Fig. 4.7. Overview of the NFAT model’s network structure. CaMKII and Cn are activated by Ca. Active
CaMKII∗ can convert inactive Cn to the phosphorylated form CnP. After binding of calcium ions, CnP∗

as well as Cn∗ are able to form active complexes with NFAT. The ability of CnP∗ to form an active NFAT
complex is reduced compared to Cn∗’s. Thus, CaMKII∗ inhibits the creation of active NFAT complexes
by fostering the production of less potent variants of calcineurin, CnP∗. Round-shaped arrowheads with
dashed lines refer to activation events. Reaction names refer to the kinetics presented in Table 4.4.

frequencies slower or faster than this optimal frequency only lead to a reduced activity. This
was observed in RBL-2H3 cells [64]. More commonly, a decline in NFAT activity was detected
for increasingly slow calcium oscillations (in Jurkat cells from 10 mHz downwards [63], in
BHK and again Jurkat cells from 11 mHz downwards [174] and in rat neonatal cardiomyocytes
from 83 mHz downwards [175]), while a decrease in activity was found in cardiac cells upon
stimulation with increasingly fast calcium oscillations (from 20 mHz upwards) [176] providing
additional evidence for a band-pass activation mechanism. For a review that comprises these
reports, please refer to [62].

NFAT exhibits the necessary premises for the previously described band-pass activation mech-
anism that appeared to be linked to an antagonistic, oscillator-dependent control (see Sec-
tions 4.3 and 4.5). In particular, NFAT’s transcriptional activity is positively regulated by the
calcium-dependent phosphatase calcineurin [177] and negatively regulated by the calcium-
dependent kinase CaMKII [178, 179]. To this end, NFAT is largely existent in its inactive,
phosphorylated form in the cytosol of a resting cell. In the presence of calcium oscillations,
the activity of the calcium-dependent phosphatase calcineurin is increased. Subsequent de-
phosphorylations of NFAT, that are mediated by active calcineurin, result in conformational
changes allowing for NFAT’s transportation into the nucleus by uncovering nuclear localization
sequences [180]. NFAT’s presence in the nucleus is countered by direct phosphorylations
causing the transcription factor’s export out of the nucleus, for instance by glycogen synthase
kinase 3 (GSK-3) [181], or by blocking its import into the nucleus in the first place, for instance
by c-Jun N-terminal kinases (JNKs) and extracellular signal–regulated kinases (ERK) [182].
As mentioned before, there is also a calcium-dependent inhibition of NFAT activity that is
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mediated by the calcium-dependent kinase CaMKII. CaMKII does not directly interact with
NFAT. Instead CaMKII phosphorylates calcineurin, the calcium-dependent activator of NFAT,
which in its phosphorylated form exhibits a decreased affinity for the transcription factor. As
a result, dephosphorylation and import of NFAT into the nucleus are impaired [178, 179].
After the binding of calcium to calcineurin, a phosphorylation of calcineurin is improbable
due to allosteric constraints. However, calcium binding to phosphorylated calcineurin remains
possible [179]. Based on these information, I designed a kinetic model that comprised a
calcium-dependent, antagonistic regulation of NFAT by calcineurin and CaMKII in the cytosol.
I assumed that the calcium oscillation frequency determines, whether calcium-dependent
kinases or phosphatases are dominant, as previously discussed in [62, 75]. Importantly,
the model was not built for a quantitative analysis, but first and foremost to probe for the
possibility of band-pass activation of the transcription factor NFAT.

In the model, calcium-dependent regulator proteins are cooperatively activated by calcium
ions Ca. Activated CaMKII∗ is able to induce the phosphorylation of inactive Cn which leads
to the production of the phosphorylated calcineurin form CnP. Calcium-bound CnP∗ as well
as Cn∗ can mediate a dephosphorylation of inactive NFAT forming active NFAT compounds
ready for a transportation into the nucleus. I modeled a decreased activity of CnP∗ compared
to Cn∗ by introducing the inhibition factor δ. For δ larger than 1, NFAT’s activation by means
of CnP∗ is slower compared to its activation by means of Cn∗. I considered both active NFAT
compounds, NFAT : CnP∗ and NFAT : Cn∗, as equally potent (Table 4.4 and Figure 4.7).
Thus, I defined the sum of the average activities NFAT : CnP∗ and NFAT : Cn∗ as the model
output NFAT∗:

NFAT∗ := NFAT : CnP∗ + NFAT : Cn∗ (4.11)

4.6.2 Definition of an objective function for an optimization of
the NFAT model

In the following, I optimized the NFAT model (Table 4.4) in order to recreate experimentally
observed frequency-decoding behavior. In particular, I aimed at recreating the band-pass
activation of NFAT, while, at the same time, fitting the model output to experimental data
by Dolmetsch et al.. Dolmetsch et al. quantified the frequency-dependent gene expression
mediated by NFAT [63]. With respect to the recreation of band-pass activation, I defined the
optimal frequency for maximal NFAT activity Tmed to be equal to 60 mHz, as reported in [62,
64].

Dolmetsch et al. employed Jurkat cells to measure the effect of modulations in the calcium
oscillation frequency on the expression of an NFAT/lacZ reporter gene. By rapidly washing
store-depleted cells with a high-concentration calcium solution and a calcium-free solution
in an alternating manner, they could induce cytosolic calcium oscillations with a "uniform
frequency" and an amplitude "that [was] relatively constant" [63]. Importantly, Dolmetsch et
al.’s data (presented in Figure 3b in [63]) refers to gene expression, while the model output
refers to the average active transcription factor concentration in the cytosol. Therefore, I only
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performed a qualitative fit assuming a simple linear relationship between both measures. In
consequence, I employed a scaling factor β as well as an offset factor γ:

ρ = (Adata − (ANFAT · β + γ))2 + (Bdata − (BNFAT · β + γ))2+

(Cdata − (CNFAT · β + γ))2 + (Ddata − (DNFAT · β + γ))2,
(4.12)

with Adata to Ddata referring to the experimental frequency-dependent measurements of NFAT-
mediated gene expression as presented in Figure 3b in [63] and ANFAT to DNFAT referring to
the model output in response to the same calcium oscillation frequencies (model output as
described in Equation 4.11).

In simulations, I defined calcium oscillations as square–waves, since these shapes closely
resembled the oscillations employed by Dolmetsch et al. To this end, I set baseline and peak
levels of the square-waves to 100 nM and 1000 nM. Upon changes in the square-wave oscilla-
tion period, only the duration of the inactive baseline phase was varied, while I maintained
the active peak phase duration of 10 s, as previously shown for a similar fit to the same
experimental dataset in Fisher et al. [183].

In order to achieve band-pass activation, I maximized the NFAT model’s band-pass activation
efficiency EffB according to Equation 4.4, with Tfast = 25 s, Tmed = 60 s and, by default, Tslow =
500 s. Again, I employed square-wave inputs for stimulating the model. This time I set
the active phase to 20 s. I chose Tmed as well as the active phase duration in reference to
information provided in [62, 64].

I generated all input time series of the square-wave oscillations by means of the Oscillator-
Generator package (see Section 3.1). Details about the parameterization of the employed
square-waves can be found in the appendix in Section A.2.1.

The objective function ΨNFAT links the least-squares function in Equation 4.12 to the maxi-
mization of EffB , as presented in Equation 4.5:

ΨNFAT = max
ΘNFAT

(
EffB(ΘNFAT) + 1

ρ
(ΘNFAT)

)
, (4.13)

with ΘNFAT = (kN1−8, KN1−2, m, n, β, γ, δ).

4.6.3 Antagonistic, oscillator-dependent regulation enables
band-pass activation of NFAT

In this section, I optimized the original NFAT model (Table 4.4) as well as two truncated
versions according to Equation 4.13. Truncated versions differed from the original model in
exhibiting either no CaMKII-mediated inhibition (only reactions N3 to N4 and N9 to N10
applied) or a constant, calcium-independent CaMKII-mediated inhibition (removal of reactions
N1 to N2). For the latter, I introduced a constant concentration value of CaMKII∗ that I
optimized as well.
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Fig. 4.8. Frequency-decoding in optimized versions of the NFAT model. I conducted optimizations of different
versions of the NFAT model according to ΨNFAT (Equation 4.13) in order to induce band-pass activation
as well as to perform a qualitative fit to gene expression data from Dolmetsch et al. [63]. In particular,
I optimized the original NFAT model (Table 4.4) as well as model versions lacking an antagonistic,
oscillator-dependent regulation of NFAT. (A) Only when employing the original model version with
antagonistic, oscillator-dependent regulation of the transcription factor, I could recreate band-pass
activation. Red points mark the model output NFAT∗ given period lengths used in the optimization
algorithm (Tfast = 25 s, Tmed = 60 s, Tslow = 500 s). I scaled each curve’s minimal value to 0 %. (B) By
means of optimizations, I also performed qualitative fits of the model output to gene expression data
presented in Figure 3b in [63]. Only the default model’s transformed output (i.e., data points times β
plus γ) showed a resemblance to the original dataset. Red points mark model output values in response
to calcium oscillations exhibiting period lengths used in the optimization algorithm. Corresponding
period lengths were identical to those employed in [63] (100 s, 400 s, 900 s and 1800 s). Black triangles
refer to the original gene expression data. All optimized parameters can be found in the appendix
(Section A.2.2, Tables A.21 to A.23).

When employing the original version of the NFAT model exhibiting antagonistic, oscillator-
dependent regulation, I could recreate band-pass activation over a physiological bandwidth.
Furthermore, with the same optimized parameter set, a resemblance to gene expression data
from Dolmetsch et al. was recognizable [63] (Figure 4.8, black lines). In contrast, the truncated
model versions without antagonistic, oscillator-dependent control failed in reproducing band-
pass activation as well as in showing a resemblance to experimental gene expression data.
In Figure 4.8, the simulation results of the truncated model versions were almost identical
(overlapping blue lines). In conclusion, the NFAT model was able to perform band-pass
activation over a physiological bandwidth in case NFAT was regulated in an antagonistic,
oscillator-dependent manner.

4.6.4 Effect of variations in Tslow on optimization results

In Section 4.6.3, I optimized different versions of the NFAT model with Tfast = 25 s, Tmed = 60 s
and Tslow = 500 s (parameters refer to Equations 4.4 and 4.5). While I chose Tmed, the optimal
oscillation period associated with a maximal NFAT activity, in reference to an experimental
report [64], there were only limited options for a parameterization of Tfast, since Tfast had to
be smaller than Tmed but larger than the constant active phase duration of 20 s. In contrast,
there was a wide range of possibilities for the parameterization of Tslow.

64 Chapter 4 Analyzing the frequency-decoding of calcium oscillations



scaled model 
output

raw data

Fig. 4.9. Frequency-decoding in the original NFAT model with alternative parameterizations of Tslow. Here,
I optimized the original NFAT model (Table 4.4) according to ΨNFAT (Equation 4.13) in order to generate
band-pass activation as well as to perform a qualitative fit to gene expression data from Dolmetsch et
al. [63]. In the optimizations, Tslow was either set to 200 s (A and B) or to 300 s (C and D). For both
tested parameterizations of Tslow, optimized models exhibited a reduced band-pass activation potential
EB compared to the model optimized with Tslow = 500 s (Figure 4.8). Further, calcium oscillations
exhibiting a period length of Tmed did no longer lead to maximal NFAT activity (A and C). Red points
mark NFAT∗ in response to calcium oscillations exhibiting period lengths used in the optimization
algorithm (Tfast, Tmed and Tslow). Optimizations also included a qualitative fit of the NFAT model to gene
expression data presented in Figure 3b in [63] (B). Here, a smaller parameterization of Tslow resulted
in a steeper decline in NFAT∗ for increasingly slow calcium oscillations. As a consequence, the model
output resembled the gene expression data from Dolmetsch et al. more closely. Red points mark model
output values in response to periods lengths used in the optimization algorithm. Corresponding period
lengths were identical to those employed in [63] (100 s, 400 s, 900 s and 1800 s). Black triangles refer to
the original gene expression data points. All optimized parameter sets can be found in the appendix
(Section A.2.2, Tables A.24 and A.25).

I found that a decrease in Tslow from its default parameterization of 500 s led to a closer
resemblance of the model output to gene expression data from Dolmetsch et al. However,
this effect came at the expense of a reduced band-pass activation potential EB . Further, Tmed

did not quite lead to maximal NFAT activity (for Tslow = 500 s, EB = 35 %; for Tslow = 300 s,
EB = 31 %; for Tslow = 200 s, EB = 27 %) (Figure 4.9).
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4.7 The importance of being cooperative in
frequency-decoding

Several proteins bind calcium ions in a positive-cooperative manner (see Table 4.1 for a list
of examples). Therefore, I implemented Hill kinetics in the high-pass and band-pass model
describing the activation of the regulator species as well as the conversion of the decoder
protein from its inactive to its active conformation and vice versa. The latter was motivated
by the observation that, after calcium ions bind to calmodulin in a cooperative manner, also
calmodulin-calcium complexes were found to cooperatively bind to substrate proteins [170,
171]. In this section, the aim was to analyze the relationship between cooperativity strength
and frequency-decoding distinctness. While a corresponding link was previously reported
(for instance in [76]), a quantitative analysis was still missing. By means of optimizations, I
quantified the frequency-decoding potential, i.e., the maximal frequency-decoding efficiency,
in protein models with a set parameterization of cooperativity coefficients. Upon changing
the parameterization of cooperativity coefficients between optimizations, I could assess the
resultant impact on the frequency-decoding potential.

For the high-pass activation model, I observed a clear rise in the high-pass activation potential
EH upon increases in the cooperativity coefficient a, as shown in Figures 4.10 A and 4.11 A
(red line). Similarly, for the band-pass activation model, simultaneous increases in the
cooperativity coefficients a and d resulted in a rise in the band-pass activation potential EB
(Figures 4.10 B and 4.11 B, black line). Also simultaneous increases in p1 and p2 led to a rise
in EB in the band-pass model (Figure 4.11 B, grey line). However, there was no increase in
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Fig. 4.10. Increases in cooperativity coefficients describing the binding of calcium to regulator species lead
to a rise in frequency-decoding potentials. I optimized binding and rate constants in order to compute
the high-pass activation potentialEH (Equation 4.3) in the high-pass model (Table 4.2) and the band-pass
activation potential EB (Equations 4.5) in the band-pass model (Table 4.3) given a set parameterization
of cooperativity coefficients. (A) For high-pass activation in the high-pass model, an increase in a
clearly increased the high-pass activation potential EH . (B) For band-pass activation in the band-pass
model, simultaneous increases in a and d led to a rise in the band-pass activation potential EB . I scaled
the minimal concentration of each curve to 0 % to allow for a better comparison. Red dashed lines
mark calcium oscillation periods used in the optimization algorithms (Tfast, Tmed and Tslow). Optimized
parameter sets are provided in the appendix in Tables A.3 and A.5.
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Fig. 4.11. High-pass and band-pass activation potentials for different parameterizations of cooperativity
coefficients. I optimized binding and rate constants to maximize EH (Equation 4.3) in the high-pass
model (Table 4.2) and EB (Equation 4.5) in the band-pass model (Table 4.3). (A) As already presented
in Figure 4.10 A, increases in a led to a rise in EH in the high-pass model (red line). EH was raised
even higher in case I simultaneously increased all of the high-pass model’s cooperativity coefficients (a,
p1 and p2) (blue line). (B) For band-pass activation in the band-pass model, simultaneous increases in
the cooperativity coefficients of the deactivating and of the activating model branch led to a rise in EB

(orange, black and grey lines). Again, a concatenation of cooperative events was most effective (orange
line, simultaneous increases in a, d, p1 and p2). When disrupting the balance between the activating and
deactivating model branch by increasing only the cooperativity coefficients in either one of them, EB

was not raised (red and blue lines). I scaled the minimal concentration of each line to 0 % to allow for a
better comparison. Optimized parameter sets are provided in the appendix in Tables A.3 to A.9.

EB in case only a or only d was raised (Figure 4.11 B, red and blue lines). Hence, band-pass
activation seemed to be the result of a balanced interplay between activating and deactivating
forces.

For both, high-pass and band-pass activation, a concatenation of cooperative events, i.e., a
cooperative activation succeeded by yet another cooperative activation, was found to be most
effective in increasing the high-pass and band-pass activation potential (Figure 4.11 A, blue
line and B, orange line).
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4.8 Detecting conserved parameter margins for
efficient frequency-decoding

4.8.1 Isolating the best parameter sets for particular
optimization problems

For the optimizations used in Section 4.7, I employed the local Nelder-Mead algorithm [159].
In order to approximate a global solution, I conducted hundreds to thousands of local
optimization runs for a particular optimization problem, with single runs differing from each
other in the initial parameterization of optimizable parameters. As a consequence, I regularly
found a multitude of parameter sets linked to objective values close to the overall best objective
value per optimization problem.

I isolated these parameter sets and analyzed them for conserved parameterization character-
istics that were crucial for inducing highly efficient high-pass or band-pass activation given
a set parameterization of cooperativity coefficients. In particular, I isolated all parameter
sets leading to objective values within a 2-nM-margin to an overall best objective value for a
maximization of EffH in the high-pass model given several parameterizations of a and for a
maximization of EffB in the band-pass model given several parameterizations of a and d. In
Figure 4.12, I show that all of the isolated parameter sets truly induced the intended decoding
behavior with very similar frequency-decoding efficiencies (in Figure 4.12 A a = 4 in the
high-pass model, in B a = d = 4 in the band-pass model).
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Fig. 4.12. Isolated parameter sets reliably induced efficient high-pass and band-pass activation. For the
identification of parametric requirements for efficient high-pass and band-pass activation, I isolated
optimized parameter sets associated with objective values within a 2-nM-margin to an overall best
objective value per optimization problem. In particular, the optimizations targeted a maximization of EffH
in the high-pass model or a maximization of EffB in the band-pass model given a set parameterization of
cooperativity coefficients. Here, I demonstrate that, for a parameterization of a = 4 in the high-pass
model (A) as well as of a = d = 4 in the band-pass model (B), all isolated parameter sets in the
2-nM-margin were clearly capable of efficient high-pass or band-pass activation. I scaled the minimal
concentration of each line to 0 % to allow for a better comparison. Red dashed lines mark calcium
oscillation periods used in the optimization algorithms (Tfast, Tmed and Tslow).
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All of the analyzed parameter sets in this section are provided on the attached data medium.
Further, all analyzed parameter sets were obtained by employing previously introduced
objective functions (Equations 4.3 and 4.5) while applying default period lengths in the
optimization algorithms (Tfast = 0.1 s, Tmed = 1 s and Tslow = 1000 s).

4.8.2 Single parameter analysis

In the following, I analyzed parameter sets that induced efficient high-pass activation for
different parameterizations of the cooperativity coefficient a in the high-pass model (Table 4.2)
as well as efficient band-pass activation for different parameterizations of the cooperativity
coefficients a and d in the band-pass model (Table 4.3).

By visualizing the high-pass model’s parameter distributions, common characteristics of
parameter sets capable of inducing efficient high-pass activation were revealed (Figure 4.13).
With respect to the model’s rate constants, kP2 was by far the most confined parameter,
mostly ranging between 0.1 s−1 and 10 s−1 for all tested values of a (Figure 4.13 D). Also the
activator’s degradation rate kA2 was strongly confined for larger values of a (Figure 4.13 B). In
contrast, the production rate constants kA1 and kP1 exhibited less confinements (Figure 4.13 A
and C). In terms of the model’s binding constants, most of them lay in a range spanning from
103 nM to 106 nM. Particularly, KA appeared to be strongly confined to this margin. Further,
KA’s parameterization margin decreased upon increases in a, with mean values shifting from
about 105.5 nM for a equal to 1 to about 103.75 nM for a equal to 6 (Figure 4.13 E). Also for
the remaining two binding constants KP1 and KP2, a minor drop in the mean values of the
distributions was recognizable (Figure 4.13 F and G).

Similarly, parameter sets capable of efficient band-pass activation in the band-pass model
exhibited some common characteristics (Figure 4.14). For one, the deactivation rate constants
of the regulator species, kA2 and kD2, both indicated severely confined margins for all tested
parameterizations of a and d (Figure 4.14 B and D). The corresponding production rate
constants kA1 and kD1 were found to exhibit much broader margins (Figure 4.14 A and C).
Also kP1’s and kP2’s distributions ranged over broader margins (Figure 4.14 E and F). In
terms of binding constants, once more a drop was recognizable upon increases in the model’s
cooperativity coefficients (Figure 4.14 G-J). Again, this drop was the most pronounced for
binding constants describing calcium-binding reactions, i.e., for KA and KD (Figure 4.14 G
and H). The majority of the isolated binding constants lay between 103 nM and 106 nM.
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Fig. 4.13. Parameter distributions of parameter sets capable of inducing efficient high-pass activation. For
this analysis, I isolated parameter sets leading to objective values within a 2-nM-margin of an overall best
objective value per optimization problem. The optimizations targeted a maximization of the high-pass
activation efficiency EffH for set parameterizations of the cooperativity coefficient a in the high-pass
model (Table 4.2). Circles refer to the mean, crosses to the median of parameter distributions. KA’s
distributions indicated a decrease upon increases in a (E). All of the optimized binding constants, KA,
KP 1 and KP 2, mostly resided between 103 nM and 106 nM (E to G). The degradation rate constants kP 2
and, for higher cooperativity values, also kA2 were the most confined parameters (B and D). Number
of isolated parameter sets for a = 1, 2, . . . , 6: 638, 982, 981, 483, 408, 344. Number of isolated fits
relative to the overall number of fits for a = 1, 2, . . . , 6: 13.13 %, 50.51 %, 52.43 %, 65.27 %, 29.96 %,
44.73 %. 2 nM relative to the leading objective value for a = 1, 2, . . . , 6: 1.02 %, 0.32 %, 0.19 %, 0.14 %,
0.12 %, 0.1 %.
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Fig. 4.14. Parameter distributions of parameter sets capable of inducing efficient band-pass activation. For
this analysis, I isolated parameter sets leading to objective values within a 2-nM-margin of an overall best
objective value per optimization problem. The optimizations targeted a maximization of the band-pass
activation efficiency EffB for set parameterizations of the cooperativity coefficients a and d in the band-
pass model. Circles refer to the mean, crosses to the median of parameter distributions. I found that
the degradation rate constants of the regulator species kA2 and kD2 were the most confined parameters
(B and D). With regards to the binding constants, a drop in the optimal parameterization margins was
recognizable upon increases in a and d. This was most apparent for the regulators’ binding constants
(KA and KD) (G - J). Number of isolated parameter sets for a = d = 1, 2, . . . , 6: 254, 431, 416, 152,
121, 79. Number of isolated fits relative to the overall number of fits for a = d = 1, 2, . . . , 6: 3.12 %,
5.88 %, 6.28 %, 1.88 %, 0.76 %, 0.28 %. 2 nM relative to the leading objective value for a = d = 1, 2,
. . . , 6: 1.04 %, 0.33 %, 0.19 %, 0.14 %, 0.12 %, 0.11 %.
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4.8.3 Analysis of parameter couples

Next, I used the optimized parameter sets to investigate the dependence among parameter
couples for inducing efficient frequency-decoding. To this end, I quantified linear dependencies
by means of correlation analyses and linear as well as nonlinear dependencies by means of
estimations of mutual information between parameter distributions. Both methods detected
relationships between parameters, many of which were highly sensitive to changes in the
parameterization of cooperativity coefficients. For instance, in the high-pass model, kA1 and
kA2 shared a recognizable dependence for a equal to 1. However, this dependence deteriorated
upon further increases in a. Also between kP2 and KP2 as well as between kA1 and KA both
methods identified close relationships in the high-pass model that were once again sensitive
to changes in a (Figure 4.15 A and B). Most strikingly, the degradation rate constant of the
decoder protein kP2 was found to be always smaller than the corresponding production rate
constant kP1. A visualization of the ratio distributions shows that the distributions’ mean

1 2 3 4 5 6 a 

kA1; kA2 

kA1; KA 

kP2; KP2 

A 

B C 

0.87 0.86 0.37 0.68 0.51 0.34 

0.69 0.80 0.77 0.66 0.76 0.72 

0.89 0.84 0.79 0.62 0.74 0.63 

Fig. 4.15. Noticeable relationships between parameters in parameter sets capable of inducing efficient high-
pass activation in the high-pass model. For this analysis, I isolated parameter sets leading to objective
values within a 2-nM-margin of an overall best objective value. The optimizations targeted a maximiza-
tion of EffH for several parameterizations of the cooperativity coefficient a in the high-pass model. (A):
Correlation coefficients were visualized by means of the plotcorr function of the ellipse package. (B):
Surrogate-corrected mutual information estimates as described in Section 2.5. kA1 and kA2 shared a
strong dependence for a equal to 1. The dependency deteriorated upon further increases in a. The
dependencies between kA1 and KA as well as between kP 2 and KP 2 seemed to be more robust to
changes in a, yet were also found to be sensitive to them. (C): In all isolated parameter sets, kP 2 was
smaller than kP 1. Additional correlation and mutual information results between parameter couples can
be found in the appendix in Section A.1.2.
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Fig. 4.16. Decreases in the fixed concentration of Deact led to visible increases in kP 2 and in the kP 2-to-kP 1
ratio in the high-pass model. I isolated parameter sets leading to objective values within a 2-nM-margin
of an overall best objective value per optimization problem. The optimizations targeted a maximization
of the high-pass activation efficiency EffH for several parameterizations of Deact’s fixed concentration
in the high-pass model. For all optimizations, a was set to 4. Circles refer to the mean, crosses to
the median of the parameter distributions. Decreases in the fixed concentration of Deact induced a
recognizable rise in kP 2 (A). As a consequence, kP 2 was occasionally larger than kP 1 (B). However,
even for the smallest applied parameterization of Deact, in most instances, kP 1 was still larger than
kP 2. Irrespective of the applied changes in Deact, I observed no significant changes in EH (not shown).
Number of isolated parameter sets for Deact = 10, 50, 500 and 5000 nM: 1155, 961, 158 and 483.
Number of isolated fits relative to the overall number of fits for Deact = 10, 50, 500 and 5000 nM:
27.04 %, 45.83 %, 5.85 %, 65.27 %. 2 nM relative to the leading objective value for Deact = 10, 50, 500
and 5000 nM: 0.14 %, 0.14 %, 0.14 %, 0.14 %.

value stayed on a relatively constant level for several parameterizations of a (Figure 4.15
C).

I assumed that the default setup of the high-pass model led to kP1 being always smaller than
kP2. In the high-pass model, the competent activator Act is defined as a variable and can
range between 0 nM and 5000 nM, whereas the competent deactivator Deact is fixed to a
concentration of 5000 nM. I expected that, in order to compensate for the strong deactivating
force, the activator-dependent rate constant governing decoder production kP1 was optimized
to be larger than its counterpart kP2. In accordance to this assumption, upon decreasing
Deact’s fixed concentration, kP2 distributions increased (Figure 4.16). However, even for very
small levels of Deact, only in rare instances kP1 was indeed smaller than kP2.

With regards to the band-pass model, correlation and mutual information analyses detected
relationships between parameter distributions that were highly sensitive to changes in the
cooperativity coefficients a and d. I discovered the strongest and most consistent relationships
between rate constants and corresponding binding constants, with the exception of kP1 and
KP1 ((Figure 4.17 A and B). Furthermore, I found that the degradation rate constant of
the activator kA2 was always smaller than the degradation rate constant of the deactivator
kD2 (Figure 4.17 C). This observation was in agreement with my initial hypothesis stated in
Section 4.3. In particular, I assumed that band-pass activation was only possible in case the
activator was less responsive than the deactivator.
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1 2 3 4 5 6 a and d 

kA1; KA 

kA1; kP1 

kD1; KD 

A 

kP2; KP2 

B C 

0.46 0.57 0.75 0.90 0.90 0.76 

-0.78 -0.48 -0.47 0.31 0.29 0.34 

0.45 0.68 0.50 0.72 0.68 0.66 

0.57 0.62 0.65 0.54 0.50 0.33 

a and d

Fig. 4.17. Noticeable relationships between parameters in parameter sets capable of inducing efficient
band-pass activation in the band-pass model. For this analysis, I isolated parameter sets leading
to objective values within a 2-nM-margin of an overall best objective value. The optimizations targeted
a maximization of EffB for several parameterizations of the cooperativity coefficients a and d in the
band-pass model. (A): Correlation coefficients were visualized by means of the plotcorr function of the
ellipse package. (B): Surrogate-corrected mutual information estimates as described in Section 2.5.
The correlation and mutual information results between parameter distributions indicated a high sensi-
tivity of parameter dependencies to changes in the model’s cooperativity coefficients. The dependencies
between rate constants and corresponding binding constants were most noticeable. Additionally, a
relationship between kA1 and kP 1 fully deteriorated upon increases in a and d. (C): For all isolated
parameter sets, kA2 was smaller than kD2. Further correlation and mutual information results can be
found in the appendix in Section A.1.2.
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4.9 Constraint optimizations reveal consequences
of unfavorable parameterization margins

According to results presented in Section 4.8.2, most parameters were constraint to particular
ranges of values in order to induce efficient high-pass or band-pass activation. Further,
interdependent constraints between parameter couples were found (Section 4.8.3). As a
follow-up to these results, I analyzed the effect of unfavorable parametrization margins on
the models’ frequency-decoding capabilities. Again, I performed optimizations targeting
a maximization of the high-pass activation efficiency EffH in the high-pass model and a
maximization of the band-pass activation efficiency EffB in the band-pass model given set
parameterizations of cooperativity coefficients (in the high-pass model a = 4, in the band-pass
model a = d = 4; I set all remaining cooperativity coefficients to 1). For all optimizations, I
applied default period lengths (Tfast = 0.1 s, Tmed = 10 s and Tslow = 1000 s).

In previous optimizations, I constrained rate constants to an interval of [0; 106] s−1 and
binding constants to an interval of [0; 106] nM. I chose these optimization intervals in
reference to Bar-Even et al. [184]. In particular, Bar-Even et al. scanned through enzyme
databases to analyze the distributions of kinetic parameters. In the following, I varied the
parameterization constraints by either raising the default lower boundary or lowering the
default upper boundary of either rate or binding constants.

Iterative increases in the lower rate constant boundary LR eventually resulted in systems being
too fast to perform frequency-decoding over the intended bandwidth as defined by Tfast, Tmed
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Fig. 4.18. Effect of an increased lower rate constant boundary LR on optimization results for high-pass
activation. Here, I optimized the high-pass activation efficiency EffH , with all rate constants in the
high-pass model being constrained to [LR; 105] s−1. Per optimization problem, I isolated the most
efficient parameter set associated with the best objective value and applied it to compute the presented
simulation results. (A) When forced to adapt to larger rate constant values, the system could no longer
set the optimum at the intended Tfast (left red dashed line). The optimum shifted towards smaller, thus
faster, calcium oscillation periods. Red dashed lines mark the input period lengths Tfast and Tslow that
I used in the optimization algorithm. In (B), I present the rate constants applied in (A). For strongly
raised values of LR, the degradation rates were close to the imposed lower limit as marked by dashed
lines (orange, red and blue). Colors match the fits presented in the left panel.
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Fig. 4.19. Effect of an increased lower rate constant boundary LR on optimization results for band-pass
activation. Here, I optimized the band-pass activation efficiency EffB in the band-pass model, with all
rate constants being constrained to [LR; 105] s−1. Per optimization problem, I isolated the most efficient
parameter set associated with the best objective value and applied it to compute the simulation results
presented in (A). When forced to adapt to larger rate constant values, the system’s frequency-decoding
shifted towards faster bandwidths, i.e., smaller period lengths. Red dashed lines mark the oscillation
period lengths used in the optimization algorithm (Tfast, Tmed and Tslow). In (B), I present the rate
constants applied in (A). For a strongly raised LR, the degradation rates were close to the imposed lower
limit as marked by dashed lines (orange, red and blue). Colors match the fits presented in the left panel.

and Tslow. The systems were forced to become faster and, in consequence, frequency-decoding
shifted towards faster bandwidths. With respect to the band-pass model, a decrease in the
band-pass activation potential EB could be observed upon increases in LR (Figures 4.18 A
and 4.19 A). After isolating the best parameter sets for particular optimization problems, it
was revealed that the degradation rate constants converged to the imposed LR in case it was
raised significantly. Thus, the optimization algorithm tried to slow down the system as much as
possible to induce efficient frequency-decoding over the intended bandwidth (Figures 4.18 B
and 4.19 B).

Vice versa, maintaining the default LR while decreasing the upper rate constant boundary
UR forced the high-pass and band-pass models to slow down. In both instances, frequency-
decoding shifted towards slower bandwidths, i.e., larger period lengths. This effect was
accompanied by reduced frequency-decoding potentials (Figures 4.20 A and C). When vi-
sualizing the rate constant parameterizations of the best fits, I found that the production
rate constants had converged to the imposed upper limit UR in case UR was particularly low
(Figures 4.20 B and D).

Decreases in the upper binding boundary UB induced a decline in the frequency-decoding
potentials for both, high-pass and band-pass activation (Figures 4.21 A and C). Restricting
the allowed margin to different orders of magnitude revealed, also a lower binding boundary
LB was crucial for establishing efficient frequency-decoding (Figures 4.21 B and D). If LB
was set too high, frequency-decoding potentials declined as well and, for LB larger than
105 nM, frequency-decoding collapsed entirely. In both instances, I detected an optimal
parameterization range of binding constants between 103 nM and 105 nM that is in agreement
with results presented in Section 4.8.2 (for a = d = 4). Upon modulations of LB or UB, I
could observe no shift of frequency-decoding shapes towards slower or faster bandwidths.
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Fig. 4.20. Effect of a decreased upper rate constant boundary UR on optimization results in high-pass and
band-pass activation. For this analysis, I optimized either EffH in the high-pass model or EffB in the
band-pass model, with all rate constants being constrained to [0; UR] s−1. In both instances, frequency-
decoding shifted towards slower oscillations, i.e., larger period lengths, for particularly low values of UR.
This was accompanied by a loss in the frequency-decoding potentials (A;C). Red dashed lines mark the
period lengths used in the optimization algorithms, Tfast, Tmed and Tslow. In (B) and (D), I present the
rate constants applied in (A) and (C). For particularly low values of UR, the production rate constants
converged to the imposed upper limit. Colors match the fits presented in the left panels.
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Fig. 4.21. Effect of constraint binding constant parameterizations on optimization results in high-pass and
band-pass activation. (A) and (C): A decreased upper binding boundary UB led to a clear decrease in
the high-pass and band-pass activation potential. (B) and (D): Confinements, introduced by lowering UB

as well as by raising the lower binding boundary LB , revealed an optimal margin for binding constants
that seemed to lie between 103 nM and 105 nM. The applied hanges in LB and UB did not lead to
significant shifts in the period spectrum.
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4.10 Dependence of the binding constant
parameterization on the calcium oscillation
amplitude

In Sections 4.8.2 and 4.9, I identified parameterization margins of binding constants in
which protein models could perform highly efficient frequency-decoding. To this end, the
parameterization margins of calcium-binding constants KA and KD appeared to be almost
identical for high-pass activation in the high-pass model and band-pass activation in the
band-pass model. In both instances, I defined the calcium input as a sine wave oscillating
between 200 nM and 1000 nM. Thus, I assumed that the amplitude of the calcium oscillations
likely impacted the parameterization margins of calcium-dependent binding constants.

To test this hypothesis, I considered multiple optimization problems aiming at a maximization
of EffB in the band-pass model. The optimization problems differed from each other in the
calcium sine wave’s peak level. The baseline level of the sine waves was always set to 200 nM.
Once again, I isolated parameter sets leading to objective values within a 2-nM-margin to an
overall best objective value per optimization problem. Upon increases in the peak level of the
calcium oscillations, thus, increases in the oscillation amplitude, I observed an increase in KA

and KD supporting my initial hypothesis. For a peak level of only 500 nM, a considerable
number of optimized binding constants lay between 103 nM and 103.5 nM. For a peak level of
1500 nM and larger, only a minority remained in this range of values (Figure 4.22). Also other
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Fig. 4.22. Increases in the calcium oscillation peak level led to increases in the optimal parameterization
margins of KA and KD for efficient band-pass activation. Here, I isolated parameter sets leading
to objective values within a 2-nM-margin of an overall best objective value per optimization problem.
The optimizations targeted a maximization of EffB in the band-pass model for several peak levels of
the sine wave calcium oscillations. While I scanned the peak level, I set the baseline level to 200 nM.
The cooperativity coefficients a and d were set to 4 in all optimizations (the remaining cooperativity
coefficients were set to 1). Both binding constants, KA and KD, describe the binding of calcium to
the regulator species. A clear increase in the binding constants’ optimal parameterization margins was
observed upon increases in the calcium oscillation peak level. Remaining parameter distributions can be
found in the appendix in Section A.1.3. Number of isolated parameter sets for peak = 500, 1000, . . . ,
3000 nM: 180, 96, 70, 98, 104, 120. Number of isolated fits relative to the overall number of fits for
peak = 500, 1000, . . . , 3000 nM: 4.18 %, 2.38 %, 2.12 %, 3.36 %, 4.08 %, 4.82 %. 2 nM relative to the
leading objective value for peak = 500, 1000, . . . , 3000 nM: 0.25 %, 0.14 %, 0.13 %, 0.12 %, 0.12 %,
0.12 %.
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Fig. 4.23. Increases in the calcium oscillation amplitude led to an increased EB. I maximized EffB in the
band-pass model for different amplitudes of the calcium sine wave. While I fixed the sine wave’s base
level to 200 nM, I varied the peak level between optimization problems. For all optimization problems,
I set a and d to 4 (the remaining cooperativity coefficients were set to 1). Increases in the oscillation
amplitude clearly led to increases in the band-pass activation potential EB . A saturation of this effect
became visible for larger peak values. Applied parameter sets can be found in appendix A in Table A.14.

parameters were sensitive to the applied changes, with kA1 indicating a minor decrease and
kA2 indicating a minor increase upon increases in the peak level (all parameter distributions
that are not presented here can be found in the appendix in Section A.1.3).

Further, I observed that increases in the calcium oscillation amplitude led to a rise in the
band-pass activation potential EB. However, increases in EB as a result of increases in the
calcium oscillation amplitude appeared to be restricted, as visible by the onset of a saturation
in Figure 4.23.
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4.11 Precision versus efficiency in
frequency-decoding

As a result of a maximization of EffB according to Equation 4.5, a decoder protein’s average
activity Pr is increased in the bandwidth between Tfast and Tslow (as visualized in Figure 4.10 B).
Since, in cellular pathways, precision is a crucial factor, I investigated the effect of changes in
the size of the filter bandwidth on band-pass activation.

In more detail, I assessed the effect of changes in Tfast and Tslow on the band-pass activation
potential EB . For each applied filter bandwidth, I ran optimizations targeting a maximization
of EffB for different parameterizations of the cooperativity coefficients a and d in the band-pass
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Fig. 4.24. Effect of modulating the filter bandwidth on the distinctness of band-pass activation. For the pre-
sented results, I optimized binding and rate constants in the band-pass model aiming at a maximization
of EB (according to Equation 4.5) for various parameterizations of the cooperativity coefficients a and
d. To this end, I performed optimizations of EffB for differently narrow band-pass filters, as defined by
Tfast and Tslow (see red dashed lines in the panels above or Table 4.5). With the optimized parameter
sets (presented in the appendix in Tables A.5, A.15 and A.16), I computed the results shown above. (A)
Tfast = 10−1 s and Tslow = 103 s. (B) Tfast = 10−0.5 s and Tslow = 102.5 s. (C) Tfast = 100 s and Tslow = 102 s.
(D) Upon decreasing the difference between Tfast and Tslow, the band-pass activation potential EB was
clearly reduced. The larger the cooperativity coefficients a and d were, the larger became the potential
gap between the installed band-pass filters.
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Tab. 4.5. Filter bandwidths applied in this section.

Setting Tfast [s] Tmed [s] Tslow [s]

A 10−1 101 103

B 10−0.5 101 102.5

C 100 101 102

In this section, I ran optimizations for differently narrow band-pass filters. Setting A is identical to
the default filter introduced in Section 4.4. I applied the period lengths in optimizations targeting a
maximization of the band-pass activation efficiency EffB in the band-pass model (see Equations 4.4 and
4.5).

model (Table 4.3). I set all of the remaining cooperativity coefficients to 1. For a full list of the
applied parameterizations of Tfast and Tslow, please refer to Table 4.5.

As shown in Figure 4.24, for each of the applied filter bandwidths, an increase in a and d

led to an increase in EB, as previously shown in Section 4.7. A direct comparison between
the resultant frequency-decoding potentials revealed a clear decrease in EB upon applying
narrower filter bandwidths for band-pass activation. The larger the cooperativity coefficients a
and d were, the larger became the potential gap between differently narrow band-pass filters
(Figure 4.24 D). Furthermore, while for the broader band-pass filters the decoder protein’s
average activity Pr was only increased in the defined filter bandwidth spanning between Tfast

and Tslow (Figure 4.24 A, B), for the narrowest of the applied band-pass filters Pr was also
slightly elevated outside of the intended filter bandwidth (Figure 4.24 C).
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4.12 Recreating high-pass activation under
stochastic conditions

In my analysis of frequency-decoding, I found pronounced high-pass activation shapes to
be particularly interesting. I assumed that, for calcium oscillation periods leading to output
responses in the quasi-linear part of the high-pass activation shape, already minor changes in
the calcium oscillation period would be linked to large changes in the output measure that
could be clearly discriminated even in the presence of stochastic fluctuations.

In order to test for this effect, first, I had to recreate high-pass activation under stochastic
conditions. To this end, I employed the Direct Method algorithm by Gillespie to run stochastic
simulations [157]. For the algorithm’s application, I defined time-dependent propensity
terms for every reaction of the deterministic high-pass model (Table 4.2). Reaction-specific
propensity terms were derived from the current abundances of substrate and modifier species
as well as the deterministic reaction rates. All propensity terms of the stochastic version of the
high-pass model are presented in Table 4.6.

I found that a deterministically optimized parameter set (optimizations targeting a maxi-
mization of EffH according to Equation 4.3) frequently resulted in a successful recreation of
high-pass activation also under stochastic conditions. However, in case rate constants were too
small, a recreation of high-pass activation failed. I assumed that, in these instances, fluctuation
dynamics overshadowed model dynamics. In addition, in case rate constants or the abun-
dances of substrate or modifier species were too large, an extensive number of reaction events
were fired throughout the course of the simulation leading to large computational expenses.
Therefore, I was only able to recreate high-pass activation under stochastic conditions in case
rate constants and particle numbers were kept on a moderate level.

Tab. 4.6. Propensity terms of the high-pass activation model.

Reaction Propensity term

Acti
Ca−−→ Act aH1 = kA1·N(Acti)·N(Ca)a

KA
a·ε+N(Ca)a

Act→ Acti aH2 = kA2 ·N(Act)

Pri
Act−−→ Pr aH3 = kP 1·N(Pri)·N(Act)p1

KP 1p1 ·ε+N(Act)p1

Pr Deact−−−→ Pri aH4 = kP 2·N(Pr)·N(Deact)p2

KP 2p2 ·ε+N(Deact)p2

I derived reaction-specific propensity terms from the corresponding reaction rates of the deterministic
high-pass model (Table 4.2) as well as from the current abundanes of substrates and modifiers. The
scaling factor ε is the product of the Avogadro constant NA and the system volume V that I set to
10−15 L by default. The application of ε allowed for the conversion of concentration values to particle
numbers.
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Fig. 4.25. Recreation of high-pass activation under stochastic conditions. First, I deterministically optimized
the high-pass activation efficiency EffH in the deterministic high-pass model (Table 4.2). To this end,
I applied default parameterizations of Tfast and Tslow, here marked by red dashed lines (A). With the
optimized parameter set, I could successfully transfer high-pass activation to a stochastic version of the
high-pass model (Table 4.6) (B). I found that the obtained high-pass activation shape of the stochastic
version of the high-pass model became noisier for larger values of T , since I measured Pr within a fixed
window of time. Thus, for slower calcium oscillations, simulations covered a lesser number of oscillation
cycles compared to faster oscillations. Importantly, the recreation of high-pass activation under stochastic
conditions failed, if parameter sets exhibited particularly small rate constants. In these cases, fluctuation
dynamics overshadowed model dynamics. Also in case rate constants or particle numbers were too large,
high computational expenses impaired stochastic simulations. The applied parameter set can be found
in the appendix in Table A.17.

In Figure 4.25, I present stochastic simulation results that I obtained by applying a parameter
set satisfying this condition. In detail, I set N(Acttot) and N(Prtot) to 602 particles each,
while I constrained rate constants to an interval of [1; 100] s−1 in deterministic optimizations.
The optimized parameter set can be found in the appendix in Table A.17.
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4.13 Impact of model responsiveness on
frequency-decoding under stochastic
conditions

As previously mentioned, for calcium oscillation periods leading to responses in the quasi-
linear part of the high-pass activation shape (see Figure 4.25), I assumed that already minor
changes in the oscillation period led to large changes in the average activity of the decoder
protein Pr that could be discriminated in the presence of stochastic fluctuations.

In this section, I investigated the effect of variations in the responsiveness of the decoder
protein on the discrimination of a fixed set of calcium oscillation periods. To this end,
I employed simple sine wave functions to mimic calcium oscillations and modulated the
responsiveness of the decoder protein Pr by introducing a new parameter ω. The propensity
terms aH3 and aH4 from Table 4.6 changed to

aH3
∗ =

(
kP1 ·N(Pri) ·N(Act)p1

KP1
p1 · ε+N(Act)p1

)
· 1
ω

(4.14)

A B C

D

1

5

10

ω 

Fig. 4.26. Effect of variations in the decoder protein’s responsiveness on high-pass activation under stochas-
tic conditions. For differently responsive versions of the high-pass model, I applied a parameter set
capable of inducing high-pass activation under stochastic conditions. The applied parameter set origi-
nated from an optimization of the determinstic high-pass model (Table 4.2) for ω = 1. Increases in ω
led to decreases in the decoder protein’s responsiveness. This caused a shift of the high-pass activation
shape towards slower oscillations, i.e., larger values of T (D). The width of the quasi-linear part of the
resultant high-pass activation shapes remained constant on a log-scale. Therefore, on a linear scale, the
quasi-linear part of the high-pass activation shape of the least responsive model version covered a larger
range of period lengths (C) compared to the quasi-linear parts of the more responsive model versions (A,
B). I measured the decoder’s average activity, i.e. the average number of active decoder particles N(Pr),
after a simulation time of 40000 s.
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and

aH4
∗ =

(
kP2 ·N(Pr) ·N(Deact)p2

KP2
p2 · ε+N(Deact)p2

)
· 1
ω

(4.15)

For ω-values larger than 1, Pr was slowed down, while, for ω-values smaller than 1, Pr was
accelerated compared to the original model version. As shown in Figure 4.26 D, increases in
ω led to a shift in the high-pass activation shape towards larger values of T without a loss in
the high-pass activation efficiency EffH . Interestingly, upon modulations of ω, the width of
the quasi-linear part of the high-pass activation shape did not vary on a log-scale. Thus, on
a linear scale, the quasi-linear part of the high-pass activation shape of the least responsive
model version (ω = 10) covered the largest range of period lengths (Figure 4.26 A-C). For
the other model parameters, I always applied the parameter set presented in the appendix in
Table A.17.

Since variations in Pr’s responsiveness resulted in a shift of the quasi-linear part of the high-
pass activation shape, I concluded that also the ability to discriminate between a set of period
lengths should be affected. In order to confirm this hypothesis, I performed estimations
of channel capacity, as introduced in Section 3.2, to quantify a protein model’s ability to
discriminate between a set of calcium oscillation period lengths. To this end, for every
parameterization of ω and every analyzed period length T , I ran 1000 simulations allowing
for the acquisition of T - and ω-specific distributions of N(Pr). Next, I estimated the channel
capacity in high-pass model versions differing in the responsiveness of Pr for an increasing
number of T ’s, iteratively adding slower T ’s to the set of already present ones (as previously
shown in Section 3.2.4). In this way, I could assess a model version’s ability to discriminate
fast oscillations only compared to its ability to to discriminate between a mix of fast and slow
oscillations. The maximal set of T ’s comprised a uniform sequence of 300 period lengths
spanning from 5 s to 1500 s ({T1 = 5 s; T2 = 10 s; . . . ; T300 = 1500 s}). Thus, for the first
estimation of channel capacity in each model version, I included only two inputs, {T1 = 5 s;
T2 = 10 s}, while, in the next round, I included three inputs, {T1 = 5 s; T2 = 10 s; T3 = 15 s},
until, in the 299th round, I included all 300 inputs.

The addition of more and more calcium oscillation period lengths led to a rise in channel
capacity until convergence to a cap value. To this end, the fast responsive model version (ω =
1) was inferior in discriminating between input period lengths, when incorporating fast as well
as slow period lengths into the channel capacity estimation (Figure 4.27 D). A visualization
of the T -specific distributions of N(Pr) in different model versions showed that, for the less
responsive model versions (ω = 5 and ω = 10), mean values were distributed over a larger
range of output values. Thus, for the less responsive model versions, output distributions were
more distinct to each other compared to the output distributions of the fast responsive model
version (ω = 1) (Figure 4.27 A to C). A comparison between Figure 4.26 and Figure 4.27
confirmed that, for T larger than 100 s and ω equal to 1, the average activity levels ceased
to vary in a significant manner. Therefore, it was impossible to discriminate between single
period lengths. In contrast, for the less responsive model versions, increases in T beyond 100 s
still continued to result in significantly different values of N(Pr) for a while. Considering all
300 inputs, the model version with ω = 10 could clearly discriminate between 12 input sets,
the model version with ω = 5 could discriminate between 9 input sets and the model version
with ω = 1 could discriminate between 5 input sets.
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As shown in Figure 4.27 D, upon only considering small T ’s, the fast responsive model version
(ω = 1) held a clear advantage over the other model versions. Only when adding a number
of larger T ’s, the less responsive model versions (ω = 5 and ω = 10) became superior in
discriminating between given input period lengths. This observation was also in agreement
with Figure 4.26 in which, for the model version with ω = 1, responses to the smallest of the
applied period lengths lay in the quasi-linear part of the high-pass shape, while this was not
the case with regards to responses in the less responsive model versions.
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Fig. 4.27. Channel capacity estimates for a growing number of input period lengths and various levels of
decoder responsiveness. For quantifying the ability of different versions of the stochastic high-pass
model (Table 4.6) to discriminate between a set of calcium oscillation period lengths, I employed
the information-theoretic measure of channel capacity. To this end, I ran stochastic simulations in
which I stimulated the model versions with calcium sine waves exhibiting different period lengths
T . In particular, for every model version and value of T , I ran 1000 stochastic simulations to collect
condition-specific distributions of the model output N(Pr). In total, I analyzed 300 different values
of T (Tall = {T1 = 5 s; T2 = 10 s; . . . ; T300 = 1500 s}). Model versions differed from each other
in the responsiveness of the decoder protein Pr, as modulated by variations in ω (Equations 4.14 and
4.15). In (A) to (C), I present the mean values and standard deviations of T -specific output distributions
for different model versions. For ω = 1 (A), the mean values of T -specific output distributions faster
converged to a minimum compared to the output distributions for ω = 5 and ω = 10 (B and C). Thus, I
expected that the model version with ω = 1 was the least capable of discriminating between all 300
period lengths. Next, I employed the T -specific output distributions for estimations of channel capacity,
iteratively adding output distributions referring to larger values of T to the set of already present ones.
After every iteration, I estimated the channel capacity for a growing number of input period lengths. As
a consequence of more distinct output distributions, the less responsive model versions exhibited larger
channel capacity values after almost all iterations. Only for a very low number of T -values, thus only
small values of T ’s, the fast responsive model version exhibited a larger channel capacity (D). Maximal
channel capacity values: for ω = 1, 2.42 bits, for ω = 5, 3.27 bits and, for ω = 10, 3.6 bits. The applied
parameter set can be found in the appendix Table A.17. N(Pr), i.e., the average number of active
decoder particles, was computed after 10 oscillation cycles.
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Fig. 4.28. Channel capacity estimates for a growing number of fast input period lengths and various levels
of decoder responsiveness. Once again, I stimulated three versions of the high-pass model exhibiting
different levels of decoder responsiveness with calcium sine waves of various period lengths. In particular,
I modulated the responsiveness of the decoder protein by variations in ω (Equations 4.14 and 4.15).
For every model version and value of T , I ran 1000 stochastic simulations to collect condition-specific
distributions of the model output N(Pr). In total, I employed 6 values of T : Tall = {T1 = 5 s; T2 =
10 s; . . . ;T6 = 30 s}. In (A) to (C), I present the mean values and standard deviations of T -specific
output distributions for different model versions. For ω = 1 (A), period-specific output distributions
appeared to be more distinct to each other compared to output distributions of model versions with
ω = 5 and ω = 10 (B and C). I employed these period-specific output distributions to compute channel
capacity estimates. As in Figure 4.27, I iteratively added slower input period lengths to the mix of
already present ones and estimated the channel capacity in different model versions after every iteration.
As expected, the channel capacity estimates were larger for the fast responsive model version in the
observed bandwidths (D). Maximal channel capacity values: for ω = 1, 1.65 bits, for ω = 5, 0.92 bits
and, for ω = 10, 0.38 bits The applied parameter set can be found in the appendix in Table A.17. N(Pr),
i.e., the average number of active decoder particles, was computed after 10 oscillation cycles.

To investigate this further, I repeated the described routine another time. However, this time
I analyzed period lengths that spanned a much smaller bandwidth and consisted of smaller
values of T ({T1 = 5 s; T2 = 10 s; . . . ; T6 = 30 s}). As presented in Figure 4.28 D, the fast
responsive model version (ω = 1) was by far the most capable in discriminating between the
applied period lengths. Many of the applied values of T were converted into distinct output
distributions, while, for the less responsive model versions (ω = 5 and ω = 10), less of the
output range was utilized and output distributions severely overlapped, thus, were less distinct
to each other (Figure 4.28 A to C). Considering all 6 input period lengths, the model versions
with ω = 5 and ω = 10 could discriminate between less than 2 input sets, while the model
version with ω = 1 could discriminate between 3 input sets.

In conclusion, the applied changes in the responsiveness of a model led to shifts in the optimal
bandwidth for the discrimination between given input period lengths. It was demonstrated
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that a model could be too fast (Figure 4.27 A) or too slow (Figure 4.28 B and C) to properly
discriminate between a set of given period lengths.
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4.14 Effect of cooperativity strength on
frequency-decoding under stochastic
conditions

4.14.1 Increases in the cooperativity strength lead to
increases in the frequency-decoding distinctness under
stochastic conditions

Previously, I demonstrated that, under deterministic conditions, increases in the high-pass
model’s cooperativity coefficients allowed for increases in the high-pass activation potential
EH . In particular, while the quasi-linear part of the high-pass activation shape covered the
same bandwidth of input period lengths, it extended over a much larger range of output values
upon increases in cooperativity coefficients (see Figure 4.10 A in Section 4.7). In conclusion, I
assumed that increases in cooperativity coefficients leading to more pronounced high-pass
activation shapes could allow for an improved discrimination between period lengths situated
in the quasi-linear part of the high-pass activation shape under stochastic conditions.

In Section 4.7, I used deterministic optimizations to demonstrate that increases in the parame-
terization of cooperativity coefficients fostered the maximal distinctness of frequency-decoding
in high-pass as well as band-pass activation. Upon applying such optimized parameter sets in
stochastic simulations, it became clear that the described effect could be transferred: Increases
in the cooperativity coefficient a could lead to increases in the high-pass activation efficiency
also under stochastic conditions (Figure 4.29).

−2 −1 0 1 2 3 4

T [10x s]

N
(P

r)
 / 

N
(P

r)
to

t [
%

]

0

10

20

30

A

−2 −1 0 1 2 3 4

T [10x s]

N
(P

r)
 / 

N
(P

r)
to

t [
%

]

0

10

20

30

B

−2 −1 0 1 2 3 4

T [10x s]

N
(P

r)
 / 

N
(P

r)
to

t [
%

]

0

10

20

30

C

Fig. 4.29. Increases in cooperativity coefficients allowed for more pronounced high-pass activation also
under stochastic conditions. For the presented results, I deterministically optimized rate and binding
constants in the high-pass model (Table 4.2) for a maximization of the high-pass activation efficiency
EffH given different parameterizations of the cooperativity coefficient a. Upon applying the optimized
parameter sets to the stochastic version of the high-pass model (Table 4.6), it became clear that the
positive correlation between cooperativity strength and high-pass activation distinctness was conserved.
(A): a = 1; (B): a = 2, (C): a = 4. In this section, I analyzed the effect of the cooperativity strength on
the discrimination between period lengths situated in quasi-linear part of the high-pass activation shapes.
Therefore, the bandwidth of interest spanned from 101 s to 102 s. The applied optimized parameter sets
can be found in the appendix in Tables A.17, A.18 and A.19.
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4.14.2 Increases in cooperativity coefficients foster the
robustness against noise

In this section, I quantified the ability of different versions of the high-pass model to dis-
criminate between calcium oscillation period lengths ranging from 101 s to 102 s, whereas
calcium oscillations exhibited different levels of distortion. In particular, model versions
differed from each other with respect to their high-pass activation efficiency, as determined by
variations in the cooperativity coefficient a (see Figure 4.29). For larger parameterizations of
a, the high-pass activation efficiency increased. Further, I modeled a distortion of the calcium
oscillation input by drawing numbers out of Gaussian distributions N (µ = 0; σ2) and adding
these numbers to the concentration values of discretized time series of calcium sine waves.
Variations in the distribution’s standard deviation σ readily allowed for a modulation of the
extrinsic noise magnitude. In case a transformed sine wave value was smaller than 0, the
corresponding value was discarded and the transformation was repeated.

For every model version, distortion level σ and calcium oscillation period length T , I acquired
distributions of the output measure N(Pr) by means of repeated stochastic simulations. To
get a first glance of the impact of increases in input distortion and cooperativity coefficients, I
conducted a- and σ-specific input addition assays (as introduced in Figure 3.6 in Section 3.2).
More information about the selected input period lengths can be found in the caption of
Figure 4.30. Clearly, larger degrees of input distortion, i.e., larger values of σ, led to a decline
in channel capacity in all model versions. Thus, larger levels of input distortion impaired
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Fig. 4.30. Impact of modulations of the extrinsic noise amplitude and the high-pass model’s cooperativity
strength on the discrimination of period lengths. For this analysis, I applied three versions of the
high-pass model and stimulated all three model versions with calcium sine waves exhibiting different
period lengths T and different levels of distortion (as modulated by the magnitude of the standard
deviation σ of the Gaussian distributions added to the discretized time series values of the calcium input).
The model versions differed from each other in the parameterization of the cooperativity coefficient a
that impacted the high-pass activation efficiency EH (see also Figure 4.29). (A) a = 1; (B) a = 2; (C)
a = 4. For every combination of σ and T , I ran 1000 stochastic simulations to collect condition-specific
distributions of the output measure N(P ) in each model version. I then employed these distribution
data to perform estimations of channel capacity for different model versions and levels of distortion,
iteratively adding larger values of T to the mix of already present ones. In total, I analyzed 91 values
of T : Tall = {T1 = 10 s; T2 = 11 s; . . . ;T91 = 100 s}. All of the selected input period lengths
led to model responses situated in the quasi-linear part of the high-pass activation shapes (as shown
in Figure 4.29). For all applied parameter sets, increases in the distortion of calcium oscillations, as
modulated by increases in σ, induced a clear decline in the channel capacity. Model versions exhibiting
larger cooperativity coefficients were more potent in discriminating between the selected input period
lengths for all levels of distortion. I computed N(P ) within a simulation time window of 104 s. The
applied parameter sets can be found in the appendix in Tables A.17, A.18 and A.19.
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Tab. 4.7. Overview of input period lengths applied in the resolution assay presented in Figure 4.31.

input periods [s] N ∆T [s]

T1 = 10; T2 = 100 2 90

T1 = 10; T2 = 55; T3 = 100 3 45

T1 = 10; T2 = 40; . . . ; T4 = 100 4 30

T1 = 10; T2 = 25; . . . ; T7 = 100 7 15

T1 = 10; T2 = 20; . . . ; T10 = 100 10 10

T1 = 10; T2 = 15; . . . ; T19 = 100 19 5

T1 = 10; T2 = 12.5; . . . ; T37 = 100 37 2.5

T1 = 10; T2 = 11; . . . ; T91 = 100 91 1

T1 = 10; T2 = 10.5; . . . ; T181 = 100 181 0.5

T1 = 10; T2 = 10.1; . . . ; T901 = 100 901 0.1

In order to determine a model’s resolution limit with regards to discriminating between period lengths
in the range from 10 s to 100 s, I estimated the channel capacity in this bandwidth using different
scanning resolution levels ∆T . Here, I provide information about the input period lengths that I applied
in estimations of channel capacity presented in Figure 4.31.

the discrimination between calcium period lengths (Figure 4.30). Model versions exhibiting
smaller parameterizations of the cooperativity coefficient a, thus, less pronounced high-pass
activation shapes, were less capable of discriminating between the applied calcium period
lengths for all analyzed levels of distortion (Figure 4.30 A).

Next, I examined whether an increase in the cooperativity coefficient a as well as a decrease
in the distortion level σ could lead to an improvement of the resolution limit with regards to
discriminating between period lengths in the range from 10 s to 100 s. For this, I scanned the
bandwidth of interest between 10 s and 100 s with various levels of resolution ∆T . Subse-
quently, I performed channel capacity estimations for every model version, input distortion
level σ and resolution level ∆T . In Table 4.7, I provide an overview of the applied input
period lengths in the resolution assay.

As shown in Figure 4.31, larger parameterizations of the cooperativity coefficient a led to
an improved discrimination between input period lengths for almost all tested values of ∆T
and σ. Only for a very low resolution level, for instance for ∆T = 90 s, model versions
performed equally well. In model versions exhibiting smaller parameterizations of a, the
gain in additional information upon iterative decreases in ∆T stopped earlier for the same
level of input distortion σ. Furthermore, for all model versions, larger levels of distortion
(i.e., larger values of σ) went hand in hand with smaller channel capacity estimates in most
cases. Only for particularly low scanning resolutions (i.e., large values of ∆T ), there was no
negative effect of large values of σ on a model’s ability to discriminate between input period
lengths. Also, when increasing the level of input distortion, models stopped earlier in gaining
additional information upon iterative decreases in ∆T . Therefore, decreases in the input
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Fig. 4.31. Increases in cooperativity coefficients leading to increases in the high-pass activation efficiency
allowed for an improvement of the resolution limit. By means of channel capacity estimations, I
quantified the ability of different versions of the high-pass model (Table 4.6) to discriminate between
input period lengths ranging from 10 s to 100 s. To this end, I scanned the bandwidth of interest with
different resolution levels performing channel capacity estimations for every model version, distortion
level σ and level of resolution ∆T (details on the applied input period lengths for each resolution
level are given in Table 4.7). The model versions differed from each other in the efficiency of high-
pass activation. In particular, model versions exhibiting larger parameterizations of the cooperativity
coefficient a displayed more pronounced high-pass activation shapes (see Figure 4.29). a = 1 in (A), a =
2 in (B) and a = 4 in (C). Parameterizations exhibiting larger values of a performed better for almost
all analyzed resolution levels (except for very large values of ∆T ). Additionally, models exhibiting a
larger parameterization of a stopped later in gaining additional information upon iteratively decreasing
∆T . Higher levels of input distortion reduced the model versions’ decoding capabilities. The higher the
level of distortion was, the sooner there was a stop to the additional gain in information upon iteratively
decreasing ∆T . In conclusion, decreases in the input distortion level σ and increases in the cooperativity
coefficient a allowed for a rise of the resolution limit in the high-pass model. The applied optimized
parameter sets can be found in the appendix in Tables A.17, A.18 and A.19.

distortion level as well as increases in the parameterization of the cooperativity coefficient a
clearly raised the resolution limit in the high-pass model.
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4.15 Chapter discussion

4.15.1 Summary and conclusions

In this chapter, I presented kinetic models capable of performing two distinct forms of
frequency-decoding, i.e., high-pass and band-pass activation. In high-pass activation, the activ-
ity of an oscillator-dependent protein is increased for fast frequencies, whereas it is decreased
for slower frequencies. In band-pass activation, an oscillator-dependent protein exhibits an
optimal frequency for maximal protein activity with frequencies slower or faster than the
optimal frequency leading to a reduced protein activity. Both forms of frequency-decoding
were described for calcium-dependent proteins in nature (see Section 1.2.3). Previously,
Goldbeter et al. also published a model for high-pass activation that was extended for this
work [56], while Aguilera et al. used a very similar kinetic model capable of performing
band-pass activation in [48].

In the high-pass model, a decoding protein is regulated by a calcium-dependent activator
and a constant calcium-independent deactivator. In contrast, in the band-pass model, the
deactivator is calcium-dependent as well (Sections 4.2 and 4.3). The true nature of the
protein modifications mediated by the regulators is left open, but several reversible protein
modifications are known that are delivered by opposing enzyme entities, most prominently
methylation-demethylation and phosphorylation-dephoshorylation modifications. Building
on this, examples of calcium-dependent kinases and phosphatases do exist, for instance,
conventional isoforms of PKC, CaMKII and calcineurin.

The transcription factor NFAT is targeted by both, a calcium-dependent kinase and a calcium-
dependent phosphatase. In experiments, it was shown that NFAT exhibits band-pass activa-
tion [62, 64]. To this end, I assumed that the antagonistic, oscillator-dependent regulation
was essential for the band-pass activation mechanism. And indeed, with the band-pass model,
band-pass activation could be successfully recreated, while the same was not possible for the
high-pass model that exhibited a calcium-dependent activator but lacked a calcium-dependent
deactivator (Section 4.5, Figure 4.6). I proceeded to construct a more complex model fea-
turing the calcium-dependent activation of NFAT to probe for band-pass activation of the
transcription factor (Section 4.6). The model could successfully reproduce band-pass activa-
tion over a physiological bandwidth [64], while, at the same time, qualitatively agreeing with
gene expression data [63]. Once again, band-pass activation was enabled by an antagonistic,
oscillator-dependent regulation, in this case delivered by calcineurin and CaMKII. When
removing this kind of regulation, the model failed in reproducing band-pass activation as well
as in resembling experimental gene expression data (Figure 4.8).

A literature search on further signaling pathways that are antagonistically regulated by
calcium-dependent kinase-phosphatase couples yielded several interesting results. For instance,
Runyan et al. showed that calcineurin and CaMKII modulate the working memory exhibiting
antagonistic roles to each other [185], while Wen et al. observed how calcineurin and CaMKII
switch growth cone guidance control in axons [186]. Also in skeletal muscle differentiation,
a conventional PKC isoform and calcineurin appear to work against each other [187]. This
does not necessarily mean that components involved in these pathways exhibit band-pass
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activation, yet it shows that antagonistic, calcium-dependent control is a recurring motif in
cells increasing the likelihood of further instances of band-pass activation. Further, it needs to
be mentioned that the decoding of calcium oscillation frequencies by dependent proteins was
often not studied as extensively as necessary to confidently exclude the possibility of band-pass
activation for known frequency-decoders currently categorized as high-pass decoders.

A large number of frequency-decoding, calcium-dependent proteins bind multiple calcium
ions in a cooperative manner to gain full activity (Section 4.1.1, Table 4.1). Therefore, I
implemented cooperative activation kinetics in the presented models. By means of opti-
mizations, I then assessed the effect of the parameterization of cooperativity coefficients on
the maximization of the high-pass and band-pass activation efficiency, EffH and EffB (Equa-
tions 4.2 and 4.4), i.e., the distinctness of high-pass and band-pass activation (Section 4.7). I
observed that increased cooperativity coefficients fostered distinct high-pass and band-pass
activation (Figures 4.10 and 4.11). However, in case of band-pass activation, increases in the
model’s cooperativity coefficients had to be balanced between the activating and deactivating
model branch for an improvement of the frequency-decoding distinctness. Together with the
finding that band-pass activation could not be recreated in the high-pass model that lacked a
calcium-dependent deactivator (Figure 4.6), this is yet another indication for the necessity of
a balanced, antagonistic and oscillator-dependent regulation for the generation of band-pass
activation. Additionally, I found that a concatenation of cooperative events was most efficient
in maximizing the frequency-decoding distinctness (Figures 4.10 and 4.11). Concatenative
effects could play a role in the activation of proteins via calmodulin. For example, in case of
calcineurin and CaMKII, two separate cooperative calcium binding events are needed for the
proteins to gain full activity; cooperative binding of calcium to calmodulin and, subsequently,
cooperative binding of calcium-calmodulin complexes to CaMKII or calcineurin [170, 171].
The overall conclusion that cooperativity was adopted by frequency-decoding proteins in the
course of evolution in order to improve their frequency-decoding distinctness seems plausible
with respect to the presented simulation data. Importantly, the relationship between coopera-
tivity strength and the distinctness of frequency-decoding was already discussed in two other
theoretical studies focusing on calcium signaling. In both, protein models were employed
that were capable of performing high-pass activation [76, 87]. To the best of my knowledge,
the presented results are unique in terms of the methodology that I used for analyzing the
quantitative relationship between cooperativity strength and frequency-decoding distinctness
as well as the fact that I included band-pass activation in my analysis.

Analyses of parameter sets capable of inducing distinct high-pass activation in the high-
pass model or band-pass activation in the band-pass model allowed for an identification
of conserved parameterization characteristics (Section 4.8). In case of high-pass activation
in the high-pass model, the parameterization of the rate constants kA2 and kP2 appeared
to be most important for the decoding distinctness at first glance (Figure 4.13 C and D).
In contrast to the other rate constants, both of them were confined to particularly narrow
parameterization margins. Moreover, for all analyzed parameterizations of the cooperativity
coefficient a, kP2 was smaller than kP1 (Figure 4.15 C). Further analyses, however, revealed
that kP2’s parameterization was in fact connected to the model’s default setup in which large,
constant concentrations of Deact had to be balanced by smaller concentrations of Act. Thus,
Deact’s influence on the decoder Pr was regulated by decreases in the rate constant kP2

(Figure 4.16).
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In case of band-pass activation in the band-pass model, the parameterization of the degradation
rate constants was most important for distinct frequency-decoding, with kA2 and kD2 being
the most confined parameters in the optimized parameter sets. Further, kA2 was always
smaller than kD2 for all analyzed parameterizations of the cooperativity coefficient a and
d (Figure 4.17 C). This observations was in line with my initial hypothesis in Section 4.3
that, for band-pass activation in the band-pass model, the activator had to be less responsive
compared to the deactivator (Section 4.3). In this way, for intermediate oscillations, the
activator only integrates the input oscillations staying on an elevated plateau, while the more
responsive deactivator closely follows the oscillation dynamics exhibiting a lower average
concentration. Therefore, the activator has a stronger impact on the decoder protein compared
to the deactivator for intermediate oscillations resulting in the decoder’s average concentration
to peak. The described concentration advantage is lost for very fast input oscillations at which
both regulators only integrate the upstream calcium dynamics or very slow oscillations at
which both regulators closely follow the calcium oscillation dynamics. The relationship
between the calcium oscillation frequency and the dynamics of regulator species is presented
in Figure 4.4 in Section 4.3.

I found that, in most optimized parameter sets capable of inducing efficient high-pass or
band-pass activation, binding constants lay between 103 nM and 106 nM (Section 4.13, Fig-
ures 4.13 E-G and 4.14 G-J). This margin is well in the reported norm for enzymes [184]. In
most simulations, the calcium input was defined as a sine wave function oscillating between
200 nM and 1000 nM. I concluded that, especially for the calcium-binding constants KA and
KD, the optimal parameterization margins were impacted by the calcium oscillation amplitude.
And indeed, upon changes in the calcium oscillation amplitude, the optimal parameterization
margins of KA and KD exhibited a significant sensitivity to the applied changes, with increases
in the peak level of the calcium sine wave leading to a rise in the optimal parameterization
margins of the dependent binding constants (Section 4.10, Figure 4.22).

Constrained optimizations, i.e., optimizations in which parameters were only allowed to vary
in particularly confined intervals, shed more light on the frequency-decoding mechanisms in
the presented models (Section 4.9). In order to perform high-pass or band-pass activation,
rate constants needed to be parameterized in a way that allowed a system to be susceptible to
changes in the bandwidth of interest (as defined by Tfast, Tmed and Tslow). In case a system was
forced to adapt to significantly smaller rate constants, frequency-decoding shifted towards
slower bandwidths (Figure 4.20). Vice versa, in case a systems was forced to adapt to
significantly larger rate constants, frequency-decoding shifted towards faster bandwidths
(Figures 4.18 and 4.19). While in simulations rate constants can grow infinitely small or large,
in reality there are clear limitations. On the one hand, biological systems need to react fast
enough to a stimulation, since information transmission has to occur on a reasonable time
scale and signaling components activated in response to a transient stimulation are degraded,
eventually. On the other hand, very fast systems are likely linked to large energetic costs,
for instance for kinase-catalyzed phosphorylations. Also with respect to binding constants,
I conducted constrained optimizations. Again, I could detect an optimal parameterization
margin for binding constants that was in line with results presented in Section 4.8.2. When
forcing the systems to adapt to increasingly unfavorable binding constant parameterizations,
first, I observed a reduction in the frequency-decoding distinctness and, eventually, a total
breakdown of frequency-decoding (Figures 4.21). In all optimizations, I allowed rate and
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binding constants to vary in physiologically relevant intervals. I chose corresponding intervals
in reference to Bar-Even et al. who scanned through enzyme databases to analyze the
distributions of kinetic enzyme parameters [184].

Furthermore, I identified a trade-off between the frequency-decoding precision and efficiency
in band-pass activation (Section 4.11). Here, the precision was defined as the bandwidth size
in which protein activity was intended to be increased, i.e., the bandwidth between Tfast and
Tslow. For very narrow bandwidths, the band-pass activation efficiency EB was clearly reduced
and the decoder’s average activity was slightly elevated for period lengths larger than Tslow or
smaller than Tfast (Figure 4.24).

Molecular signaling pathways have to function in environments impacted by stochastic fluctu-
ations. In particular, although the transmission of information from input signals is affected
by fluctuations, output elements at the end of a signaling pathway have to be able to correctly
infer the input signal. With respect to a frequency-decoding protein, the protein has to be able
to interpret calcium oscillation frequencies in a reliable manner. Spurious interpretations of
molecular signals can be detrimental affecting the survival of a cell and even of the whole
organism. Thus, in the last part of this chapter, I analyzed a protein model’s ability to dis-
criminate between given calcium oscillation frequencies in the face of fluctuations. While I
accounted for the inclusion of realistic fluctuation profiles by applying the Direct Method algo-
rithm by Gillespie [157], I employed the information-theoretic measure of channel capacity
to quantify the discriminability between given oscillation frequencies based on the average
concentration of active decoder protein [17].

First, I applied channel capacity to investigate the impact of protein responsiveness on the
decoding of a given set of frequencies (Section 4.13). For this, I employed the high-pass
activation model and created three differently responsive versions of it. Channel capacity
estimates showed that model versions performed best in terms of discriminating between
fine differences in input frequencies in particular bandwidths (Figures 4.27 and 4.28). Thus,
for a particular level of responsiveness there was a particular bandwidth best suited for the
discrimination between input frequencies. This effect could be traced back to output proteins
rising to plateau values in response to fast oscillations, while exhibiting almost identical
oscillation amplitudes in response to slow oscillations. Since the output was defined as the
average concentration of an active protein in a defined window of time, outputs to particularly
fast or slow oscillations became indiscriminable. The same conclusion could also be drawn
from visualizations of the model versions’ high-pass activation shapes in Figure 4.29. A
frequency-dependent, selective activation of proteins that is based on differences in protein
responsiveness is imaginable, since calcium-dependent proteins were in fact shown to differ in
their rate constants for calcium binding [85].

Further, I found that increases in the high-pass model’s cooperativity coefficient a were
linked to increases in the distinctness of high-pass activation under stochastic conditions.
In Section 4.14, I applied channel capacity to examine whether particularly distinct high-
pass activation shapes were more robust against fluctuations as well as could account for a
finer frequency-decoding resolution with respect to the discrimination between frequencies
in the quasi-linear part of the high-pass activation shape (Figure 4.31). To this end, my
assumptions were based on the fact that, in particularly distinct high-pass activation, minor
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changes in the calcium oscillation frequency resulted in large changes in the output measure.
I observed that an increase in the amplitude of stochastic fluctuations led to more overlaps
between input-signal-specific output distributions. Due to the more generous spacing between
input-signal-specific output distributions, model versions exhibiting particularly pronounced
high-pass activation were less affected. In conclusion, the cooperative activation of calcium-
dependent proteins does not only allow for a clear discrimination between fast and slow
frequencies, but also for an improved discrimination between fine differences in oscillation
frequencies in an intermediate bandwidth in the presence of fluctuations.

4.15.2 Pitfalls for the application of channel capacity

In this chapter, I applied channel capacity to analyze stochastic simulation data. In particular, I
defined a communication channel in which the calcium oscillation frequency served as an input
and the average concentration of a calcium-dependent protein served as an output. To this
end, I applied the information-theoretic measure for the following research questions: How
well can a calcium-dependent protein discriminate between applied oscillation frequencies
based on its average activity in the presence of stochastic fluctuations?

In order to estimate the channel capacity in a protein model, I used the Blahut-Arimoto
algorithm (see Section 2.6). For this purpose, I had to collect input-signal-specific output
distributions. Therefore, it had to be known which calcium oscillation frequencies were of
relevance. Instead of assessing the discrimination of oscillation frequencies in general, channel
capacity estimates can only shed light on the discriminability of selected oscillation frequencies.
The generation of fast calcium oscillations might require large energetic costs, while very slow
calcium oscillations might be impractical, since the transmission and decoding of the signal
might require a lot of time. Thus, while an incorporation of extreme frequencies into the
input alphabet could potentially lead to an increase in channel capacity, under physiological
conditions, they might still not be considered due to competing interests. Vice versa, the
application of channel capacity for the assessment of a system’s decoding performance might
lead to an underestimation, because the system might utilize input signals that were not
considered.

In this chapter, the application of channel capacity was facilitated by the fact that it was
applied to simulation data. In contrast, the application of channel capacity to experimental
data is coupled to larger efforts. After all, relevant inputs need to be reapplied several times
to the system of interest in order to allow for an assessment of stochastic effects on the output
measure [148].

4.15.3 Simplifications in the applied communication channel

As mentioned before, in order to analyze frequency-decoding, I defined a molecular commu-
nication channel. While I declared the calcium oscillation frequency as the channel’s input,
I used the average concentration of a calcium-dependent protein as the channel’s output.
For large parts of this chapter, I employed sine wave functions to mimic calcium oscillations.
In reality, however, calcium oscillations often exhibit more complex shapes. For instance,
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physiological oscillation dynamics frequently exhibit a duty cycle, i.e., a separation into an
active, above-baseline and an inactive, baseline part within a single oscillation cycle. Further,
oscillation amplitude and frequency slightly vary between oscillation cycles.

In Section 4.6, I also successfully recreated band-pass activation upon using a square-wave
function to resemble calcium oscillations. To this end, changes in the oscillation period T went
hand in hand with changes in the duty cycle. Thus, the absolute duration of the active phase
remained constant when changing the oscillation period. Additionally, band-pass activation
could also be recreated in the NFAT model upon employing square-waves for which frequency
modulations did not cause a change in the duty cycle (data not shown).

I measured the channel’s output by measuring the average concentration of active, calcium-
dependent protein in a defined window of time. Therefore, the output did not directly
arise out of the model. This is justified by the assumption that downstream processes
are slower than the model reactions, thus, dynamics of the output protein get integrated.
However, when employing a particularly large time window for the computation of the
output, a cellular integration mechanism becomes increasingly unrealistic, since proteins of
the signaling pathway would be degraded, eventually. In this work, I employed physiologically
plausible time spans for the computation of the output. In general, the usage of the average
concentration of an active protein as a proxy of its average activity is a common practice in
the analysis of calcium-dependent frequency-decoding (see for instance [79, 56]).

4.15.4 Simplifications in the NFAT model

In Section 4.6, I introduced an NFAT model to test whether the transcription factor could
perform band-pass activation, while agreeing with gene expression data presented in [63].
For the latter, I employed a qualitative fitting procedure since the model’s output, the average
concentration of NFAT compounds competent for the transfer into the nucleus, was not directly
comparable to the product of NFAT-mediated gene expression. Related to that, I assumed that
frequency-decoding was already established in the cytosol and maintained in the nucleus.
With this said, other decoding mechanisms are imaginable that, for instance, might introduce
distinct frequency-decoding only after the transportation of NFAT into the nucleus.

Besides the exclusion of a nuclear compartment, the model’s complexity was also reduced
in terms of the calcium-dependent activation of calcineurin and CaMKII. Both proteins are
activated via calmodulin. In case of CaMKII, around twelve sub-units form a super complex
in which all sub-units can be existent in various forms that are characterized by different
degrees of kinase activity [69]. Also in case of calcineurin, the protein can exist in different
conformations that vary in their phosphatase activity [188]. By using a strongly simplified
model structure, computational expenses were reduced.

In summary, the presented model was not intended to be an exact quantitative representation
of NFAT activation. It has to be understood as a simplification for the purpose of probing for a
possible band-pass activation mechanism of the transcription factor.
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4.15.5 On the efficiency of the applied optimization workflow

Many of the results presented in this chapter were based on optimizations. Since I employed
a local optimization algorithm, per optimization problem, a multitude of runs had to be
launched to approximate a global solution. Especially for large cooperativity coefficients, the
identification of the global optimum was associated with great computational efforts. In total,
I executed and analyzed several hundreds of thousands of local optimization runs for this
chapter alone leading to long queue times until final results could be obtained.

Initially, I tested faster local as well as global optimization algorithms in the intention of either
accelerating or slimming down the workflow. Ultimately, only the Nelder-Mead algorithm, as
implemented in R’s optim function, provided the necessary reliability, however, at the expense
of large computational expenses. Long computation times were countered by using multiple
nodes on a computation cluster to run a large number of local optimizations in parallel.
Further, I applied an automatic submission script to achieve a seamless transition from the
execution of one optimization script to the next. Example scripts are provided on the attached
data medium.

Despite its drawbacks, the applied workflow offered also unique advantages for the analysis
of frequency-decoding. Due to the detection of multiple, quasi-optimal parameter sets for
particular optimization problems, corresponding sets could be analyzed for shared traits
that enabled peak performance. I concluded that strongly conserved parameterization char-
acteristics or dependencies between parameters were crucial for the generation of distinct
frequency-decoding.
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5Analyzing the encoding of
attractant levels in the chemotaxis
of E. coli

5.1 Chapter introduction

5.1.1 About this chapter

In this chapter, I present an analysis of signal transduction in another prominent example
system: the chemotaxis pathway of Escherichia coli. Based on an established kinetic model
by Kollmann et al. [3] (model details provided in Section 5.2), I focused my analysis on
the encoding of ambient attractant levels into receptor methylation levels, as observed ex-
perimentally [134]. To this end, I identified requirements for the broad dynamic range in
chemotaxis [109, 112] as well as reasons behind failures in the chemotactic behavior for
attractant levels outside of the dynamic range.

In the chemotaxis pathway, information about absolute attractant levels is encoded into the
methylation levels of chemoreceptors, with smaller attractant levels leading to fewer receptor
methylations and vice versa [134]. Upon encountering a variation in attractant levels, a cell’s
receptor methylation status is changing. It is this transition that drives temporary responses
in connected effector proteins culminating in directed cell locomotion [134]. In more detail,
in case attractant levels are rising, the number of receptor methylations gradually increases.
In this period of change, the concentration of active motor effector CheYp is decreased and
the cell’s tumbling frequency is reduced, thus, longer stretches of straight runs occur. In case
attractant levels are declining, the number of receptor methylations gradually decreases. In
consequence, CheYp levels temporarily increase along with the cell’s tumbling frequency. Now,
the average duration of straight runs is shortened [97, 98, 99, 100, 101, 102].

The chemotaxis system of Escherichia coli is characterized by a high sensitivity to relative
changes in attractant levels for a broad dynamic range spanning several orders of magni-
tude [109, 112]. In response to variations in ambient attractant levels, effector proteins
such as CheY change, initially, but recover back to pre-stimulation standard values, even-
tually [93, 113, 189]. In case adaptation is impaired, cells exhibit excessive tumbling or
running that prevents a biased locomotion towards increasing attractant levels or away from
increasing repellent levels [105, 106, 107]. In terms of time scales for adaptation, it is believed
that pathway dynamics in chemotactic cells adapted to common living environments [93,
104, 190, 191]. In Section 5.3, I used the described hallmarks of chemotaxis to define the
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model’s dynamic range, i.e., the range of attractant levels, for which chemotaxis remained
functional.

Next, I investigated whether the limitations in the model’s dynamic range were already im-
posed by upstream limitations in the encoding of attractant levels into receptor methylation
levels. To this end, I employed novel methods for the characterization of encoding in the
chemotaxis system. For one, in Section 5.4, in cooperation with Jonas Förster1, I inferred
attractant levels from present receptor methylation levels to identify possible discrepancies
between actually present and perceived attractant levels. Secondly, in Section 5.5, I employed
delayed mutual information estimations to monitor the dynamical processes of memory for-
mation and memory loss, whereas both processes related to directed changes in receptor
methylation levels in response to changes in ambient attractant levels. While mutual infor-
mation had been previously applied for the analysis of chemotaxis, for example, to measure
information transmission between input ligand trajectories and output flagellar motor trajecto-
ries [192] or between input ligand trajectories and output motility directions [193], to the best
of my knowledge, this was the first time it was used for characterizing the methylation-based
chemotactic memory.

In Escherichia coli chemotaxis, receptor molecules can be methylated several times [194, 195].
Recently, experimentators attested a reduction in the dynamic range of the chemotaxis system
in mutants exhibiting a lesser number of methylation sites per receptor molecule [196]. The
same was suggested earlier on the basis of computational models by Tu et al. as well as Endres
and Wingreen [197, 198]. Based on the aforementioned methods, I provide additional insights
into the consequences of a reduced number of methylation sites on the system’s encoding
capabilities (see Section 5.6).

5.1.2 Outside assistance

I performed all estimations of mutual information by means of a KSG estimator provided by
Irina Surovtsova and Martin Zauser.

Some of the presented results are reproductions of my colleagues’, in particular of Jonas
Förster and Aarón Vásquez-Jiménez. Reproductions are clearly highlighted as such in the
captions of corresponding plots. Further, the idea of and the methodology for inferring
attractant levels from present receptor methylation levels is credited to Jonas Förster1.

1Aarón Vásquez-Jiménez: Centro de Investigación y de Estudios Avanzados del IPN (Cinvestav-IPN), Unidad
Monterrey, Mexico; others: Biological Information Processing Group at the BioQuant Center, Heidelberg University.
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5.2 The employed model for Escherichia coli
chemotaxis

For my analysis, I applied an Escherichia coli chemotaxis model from Kollmann et al. that is
partly based on another model by Rao et al. [3, 128]. The model describes the response in
the chemotaxis pathway upon changes in attractant levels. The authors of the model either
adopted parameter values from published measurements [199] or optimized parameters, as
described in the supplementary information in [3].

In Table 5.1, an overview of the model’s kinetics and standard parameterization is given. In
the model, the methyltransferase CheR leads to the emergence of methylated variants of
the receptor T. More precisely, CheR can methylate T up to four times, whereas methylated
receptor proteins are labeled as Ti. Here, the index denotes the number of methylations of
the receptor protein. Only methylated receptor proteins can become active. To this end, the
more methylations a receptor holds, the higher are the chances for its activation. In contrast,
increases in the attractant level L result in a reduction of a receptor’s activation probability.
Both points are accounted for in Equations 5.1 to 5.4 that specify the activation probabilities
of receptors exhibiting different numbers of methylations.

Active receptors Tact are able to cause the phosphorylation of the histidine kinase CheA that,
in its phosphorylated state, can induce the phosphorylation of the motor regulator CheY.
Phosphorylated CheYp is deactivated by means of an autodephosphorlyation reaction as well
as the constitutively active phosphatase CheZ. Since CheAp does not only phosphorylate CheY
but also the methylesterase CheB, the model exhibits a negative feedback loop that culminates
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Fig. 5.1. Adaptation in the chemotaxis model after changes in attractant levels. Deterministic simulation
results of the chemotaxis model from Kollmann et al. [3] showing the response in CheAp, CheBp
and CheYp to assigned changes in attractant L. Immediately after an increase in L, a decline in the
concentration levels of all three dependent variables can be observed. Subsequently, concentration levels
return to pre-stimulation standard values. Conversely, after a decrease in L, the concentration levels
of the three dependent variables briefly increase, before returning to their standard values. For model
details, please refer to Table 5.1.
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in the demethylation of active receptors via CheBp. Importantly, the phosphorylation of CheB
is slower than the phosphorylation of CheY.

Therefore, in case the model is stimulated by an increase in attractant L, CheYp temporarily
declines. In experiments, it was observed that a decrease in CheYp translates to longer
stretches of straight runs that are less frequently interrupted by tumbles [97, 200, 98]. In the
opposite case, after a decrease in L, CheYp temporarily increases. In experiments, this could
be linked to an increase in the tumbling frequency and shorter stretches of straight runs [201,
202].

For a large range of attractant levels, the concentration levels of species of the phosphorylation
cascade return to pre-stimulation standard values, as long as attractant levels stay constant.
This sensory adaptation is crucial for the bacterium to retain a high sensitivity to further
changes in attractant levels and to prevent the cell from prolonged running or tumbling
motions [105, 106, 107, 203, 204]. The dynamics of downstream model species in response
to variations in L are shown in Figure 5.1.
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Tab. 5.1. Overivew of the chemotaxis model’s structure and kinetics.

Reactions Kinetics Parameterization

T0
CheR; Ttot−−−−−−−→ T1 vC1 = kM1·CheR·T0

KM1+Ttot
kM1 = 0.39 s−1; KM1 = 99.9 nM

T1
CheBp; Tact; Tact1−−−−−−−−−−−−→ T0 vC2 = kD1·CheBp·Tact1

KD1+Tact
kD1 = 6.3 s−1; KD1 = 2500 nM

T1
CheR; Ttot−−−−−−−→ T2 vC3 = kM2·CheR·T1

KM2+Ttot
kM2 = 0.39 s−1; KM2 = 99.9 nM

T2
CheBp; Tact; Tact2−−−−−−−−−−−−→ T1 vC4 = kD2·CheBp·Tact2

KD2+Tact
kD2 = 6.3 s−1; KD2 = 2500 nM

T2
CheR; Ttot−−−−−−−→ T3 vC5 = kM3·CheR·T2

KM3+Ttot
kM3 = 0.39 s−1; KM3 = 99.9 nM

T3
CheBp; Tact; Tact3−−−−−−−−−−−−→ T2 vC6 = kD3·CheBp·Tact3

KD3+Tact
kD3 = 6.3 s−1; KD3 = 2500 nM

T3
CheR; Ttot−−−−−−−→ T4 vC7 = kM4·CheR·T3

KM4+Ttot
kM4 = 0.39 s−1; KM4 = 99.9 nM

T4
CheBp; Tact; Tact4−−−−−−−−−−−−→ T3 vC8 = kD4·CheBp·Tact4

KD4+Tact
kD4 = 6.3 s−1; KD4 = 2500 nM

CheA Tact−−−→ CheAp vC9 = kA · CheA · Tact kA1 = 0.05 1
nM·s

CheAp+CheB −→ CheA+CheBp vC10 = kB1 · CheAp · CheB kB1 = 0.003 1
nM·s

CheBp −→ CheB vC11 = kB2 · CheBp kB2 = 1 s−1

CheAp+CheY −→ CheA+CheYp vC12 = kY 1 · CheAp · CheY kY 1 = 0.1 1
nM·s

CheYp CheZ−−−→ CheY vC13 = kY 2 · CheYp · CheZ kY 2 = 0.03 1
nM·s

CheYp −→ CheY vC14 = kY 3 · CheYp kY 3 = 0.1 s−1

where concentrations of active receptor species are computed according to the following equations:

Tact1 = 0.25 ·
(

1− L1.2

L1.2 + 201.2

)
· T1 (5.1)

Tact2 = 0.5 ·
(

1− L1.2

L1.2 + 1501.2

)
· T2 (5.2)

Tact3 = 0.75 ·
(

1− L1.2

L1.2 + 15001.2

)
· T3 (5.3)

Tact4 = 1 ·
(

1− L1.2

L1.2 + 600001.2

)
· T4 (5.4)

Tact = Tact1 + Tact2 + Tact3 + Tact4 (5.5)

and Ttot refers to:

Ttot = T0 + T1 + T2 + T3 + T4 (5.6)

In the model by Kollmann et al. [3], CheR methylates the receptor T. Methylated versions of T can
acquire an active status, whereas increases in attractant L decrease the chances of T’s activation and a
higher number of methylations increases them (Equations 5.1 to 5.4). Thus, in response to changes in
L, the abundance of active receptors Tact temporarily deviates from standard values in adaptation. For
decreases in L, Tact is briefly increased and vice versa. Tact controls the phosphorylation of CheA to
CheAp which in turn phosphorylates CheY. Further, CheAp phosphorylates CheB setting off a negative
feedback that allows for adaptation. In consequence, after a change in the attractant level, CheA, CheB,
CheY, their active counterparts as well as Tact return to standard values eventually, as long as L remains
constant.
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5.3 Defining the chemotaxis model’s dynamic
range

In this section, I define the dynamic range of the chemotaxis model presented in Section 5.2,
whereas the dynamic range is the range of attractant levels for which the following criteria of
functional chemotaxis are fulfilled. For one, CheYp should be reasonably sensitive to relative
changes in the attractant level. Secondly, CheYp should be able to recover back to a standard
value range after a change in the attractant level. And thirdly, the recovery of CheYp should
take place in a moderate period of time.

In more detail, Kollmann et al. stated that CheYp can only vary one-third from its standard
value in fully adapted cells without exhibiting a chemotactic response. Outside of this range a
cell "mainly tumbles" for increased CheYp or "swims continuously" for decreased CheYp [3].
To identify the standard value of CheYp in adaptation, I computed steady state concentrations
for a range of attractant levels. As shown in Figure 5.2 A, steady state CheYp and Tact levels
converge to their respective default values upon decreases in the constant attractant level. To
this end, CheYp converges towards 0.89µM. and, for attractant levels larger than 105.6 µM,
steady state CheYp levels dropped more than one-third from this standard value of 0.89µM.
Thus, according to Kollmann et al., for attractant levels larger than 105.6 µM, the cell would
run indiscriminately. In Figure 5.2 A, I marked the corresponding threshold attractant level
with a red dashed line. In contrast, for variations in the attractant level below the threshold,
CheYp levels might temporarily rise or fall, as shown in Figure 5.1, but ultimately return to an
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Fig. 5.2. Steady state behavior of biochemical species in the chemotaxis pathway to a broad range of
constant attractant levels. Steady state results of the chemotaxis model from Kollmann et al. [3] in
response to constant attractant level spanning from 10−1 µM to 109 µM. For model details, please refer
to Table 5.1. (A) Steady state CheYp levels mimicked those of Tact. For a large range of L, CheYp’s
adaptation remained functional. Only for ligand levels larger than 105.6 µM, steady state CheYp dropped
more than 33 % from its standard value of 0.89 µM (boundary marked by a red dashed line). As a
conclusion, for attractant levels larger than 105.6 µM, constantly low CheYp levels would translate into
indiscriminable runs even in continuous environments or environments exhibiting negative attractant
gradients. (B) Ambient levels of L are encoded into the methylation levels of the receptor T. For very
small and very large levels of L, the ratio of methylation levels remained constant. Here, the system
could not discriminate between variations in L. Shown are reproductions of plots by Jonas Förster.
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adapted level allowing for a termination of the chemotactic response. In other words, sensory
adaptation would be functional.

While the sensory adaptation was functional up to attractant levels of 105.6 µM, it remained
open whether relative changes in L could lead to significant changes in CheYp levels that
allowed for a chemotactic response. To get an idea of the model’s sensitivity to variations in L,
I increased L up to 300 % from a range of baseline levels spanning from 10−1 µM to 109 µM.
To this end, before increasing L, the system was always adapted to the selected attractant
baseline level. In Figure 5.3 A, I captured the chemotactic response by measuring the absolute
decline in CheYp from its baseline-adapted level in response to an increase in L. For very large
attractant baseline levels, CheYp did not decline upon further increases in L. This result was
consistent with Figure 5.2 A in which, for levels of L larger than 107 µM, adapted CheYp was
already close to zero. Thus, upon an increase in L, a further decrease in CheYp was impossible.
Also for very small attractant baseline levels, no significant drop in CheYp was observed upon
percental increases in L of up to 300 %.

According to Vladimirow et al., a 20 % decrease in CheYp from its standard value of 0.89µM
results in a large 30 % increase in the CCW motor bias that should already drive a recognizable
chemotactic response [129]. In Figure 5.3 B, I present, by means of a binary heatmap, the
necessary magnitude of a percental increase in L to cause CheYp to temporarily fall below this
threshold for a range of attractant baseline levels. Again, for particularly large baseline levels,
even without further increases in L, CheYp was always below the 20 % threshold due to an
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Fig. 5.3. Decreases in CheYp in response to sudden increases in L. In deterministic simulations, the chemo-
taxis model was first adapted to a baseline level of L, prior to being confronted with a sudden increase in
L. Increases in L could result in a temporary drop in CheYp. In (A), I present the absolute magnitude of
the drop in CheYp from its baseline-adapted value. For very small baseline levels, the system was not
sensitive enough to react to the applied increases in L. Also for very large baseline levels, the system
could not react to increases in L, this time due to an incomplete adaptation (see Figure 5.2 A; for large
baseline levels, CheYp was already at a very low concentration and, thus, could not decrease any further).
In (B), I identified all heatmap cells for which CheYp dropped more than 20 % from its standard value of
0.89µM. According to Vladimirow et al., below the 20 % threshold of CheYp the CCW motor bias of
the flagella is changed significantly making a chemotactic response very likely [129]. In the baseline
level range spanning from 101 µM to 104.5 µM, the system exhibited a functional adaptation as well as a
reasonable sensitivity to percental increases in L. Here, increases in attractant levels as small as 36 %
would lead to a chemotactic response. The red dashed line marks the boundary at which adaptation
started to fail. Red continuous lines confine the area between 101 µM to 104.5 µM in which adaptation
was functional and system sensitivity reasonable. (A) is a reproduction of a plot by Jonas Förster.
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Fig. 5.4. Measurements of τadap after sudden increases in L. In deterministic simulations, the chemotaxis
model was first adapted to a baseline level of L, prior to being confronted with a sudden increase in
L. Increases in L could result in a drop in CheYp followed by its adaptation. Here, I measured the
adaptation time τadap that was defined as the time period spanning from the moment the increase in L
was applied to the moment CheYp rose to half of its new steady state value (that, for large parts of the
analyzed baseline range, was very close to the standard value of 0.89µM). Between the baseline levels of
101 µM and 104.5 µM (marked by red continuous lines), τadap was moderately large. For baseline levels
larger than 105.6 µM (marked by a red dashed line), adaptation was incomplete and partly required
much more time. For extremely large baseline levels, measurements of τadap failed, since no drops in
CheYp could be attested upon further increases in L. Shown is a reproduction of plots by Jonas Förster
and Aarón Vásquez-Jiménez.

incomplete adaptation (see Figure 5.2 A). For baseline levels slightly smaller than 105.6 µM,
adaptation barely worked, but even small increases in L could cause the system to surpass
the adaptation threshold possibly leading to long stretches of indiscriminate running. In
contrast, for a range of attractant levels spanning between 101 µM and 104.5 µM, adaptation
was functional, while the system was also sensitive enough to react to increases in attractant
levels as small as 36 % with a significant increase in the CCW motor bias.

In conclusion, the dynamic range of the chemotaxis model was confined by a lower boundary
due to a finite system sensitivity and by an upper boundary due to a finite adaptation capacity.
Limitations in the system’s sensitivity could be also inferred from Figure 5.2 B. As mentioned
in the chapter introduction, absolute attractant levels are encoded into receptor methylation
levels. A chemotactic response, i.e., a change in the tumbling frequency of the cell, is driven
by changes in attractant levels that cause a reorganization of these receptor methylation levels.
However, in the model, for attractant levels smaller than 10−1 µM or attractant levels larger
than 107 µM, receptor methylation levels barely changed upon variations in L. For instance, in
case L was increased from 10−1 µM to 10−0.5 µM, receptor methylation levels would remain
almost unchanged. Without a clear reorganization of receptor methylation levels, no signal is
transmitted to the downstream effector module encompassing CheYp.

Still it needed to be determined whether the process of adaptation occurred on a reasonable
time scale for changes in ambient attractant levels in the dynamic range. If adaptation was
completed too soon, the cell would not have enough time to translate changes in CheYp into
changes in cell locomotion. If adaptation was completed too late, the cell would not be flexible
enough to react to new changes in attractant levels in time [93, 104, 190, 191]. To investigate
the time scale for the adaptation process, I defined the measure τadap. To this end, τadap was
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equal to the time period spanning from the moment L was increased to the moment CheYp
reached half of its new steady state concentration.

As shown in Figure 5.4, τadap was very insensitive to the step size, but predominantly deter-
mined by the baseline level of L. For particularly large baseline levels of L, measurements of
τadap failed due to the fact that CheYp was already at zero and could no longer respond to
further increases in L. In the range of attractant baseline levels between 101 µM and 104.5 µM,
the adaptation process required a moderate amount of time with a minimal τadap of 7.1 s and
a maximal τadap of 26.9 s. In comparison, in experiments, Koshland quantified the persistence
time, i.e., the time period a bacterium spends going up or down a gradient, to lie between
1 s and 10 s for Salmonella [190], suggesting a similar time scale for a related measure in a
relative of Escherichia coli [205].

In conclusion, attractant levels between 101 µM and 104.5 µM can be viewed as the model’s
ideal dynamic range, since all three hallmarks of chemotaxis, functional adaptation, reasonable
sensitivity to relative changes in attractant levels and a moderate time scale for the adaptation
process, are in check. In the following sections, I investigated how the system’s dynamic range
is dependent on the encoding of attractant levels into receptor methylation levels.
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5.4 Inferring attractant levels from receptor
methylation levels

5.4.1 Inferring attractant levels in continuous environments

Ambient attractant levels are encoded into receptor methylation levels in the chemotaxis of
Escherichia coli. While downstream effector proteins such as CheAp and CheYp along with
the abundance of active receptors Tact return to standard values after initially responding
to changes in ambient attractant levels, receptor methylation levels do not (see Figure 5.2).
Instead, for a large range of attractant levels, particular combinations of receptor methylation
levels T0 to T4 arise.

In this section, based on the expected amount of active receptors Tact in adapted cells, that
I defined to be equal to 0.39µM as concluded from Figure 5.2 A, and present receptor
methylation levels, I inferred the perceived attractant level Lexp. To this end, Lexp represents
an approximation of the actually applied attractant level L. Lexp was computed according to
the following equation:

Tact1 (Lexp; T1) + Tact2 (Lexp; T2) + Tact3 (Lexp; T3) + Tact4 (Lexp; T4)− λ = 0, (5.7)
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Fig. 5.5. Inferring Lexp in continuous environments given deterministic and stochastic conditions. (A) (B)
I employed the steady state concentrations of the methylated receptor species T1 to T4 as inputs for
Equation 5.7 to infer Lexp, an approximation of the actually applied attractant level L. The approximation
was highly accurate for attractant levels between 10−1 µM and 106 µM. For larger levels of L, Lexp did
no longer resemble L. In conclusion, the system was unable to distinguish between levels of L that were
larger than roughly 106 µM. (C) To investigate the approximation of L under more realistic conditions, I
ran stochastic simulations. In detail, per attractant level L, I ran 1000 stochastic simulations in order to
compute 1000 Lexp values at a defined point in time. I used the obtained values to calculate L-specific
coefficients of variation of Lexp. The described procedure was repeated several times for different
system sizes. A decrease in the system size led to an increase in the relative fluctuation amplitude, thus,
enhanced the impact of stochastic fluctuations. For L smaller than 10µM, the uncertainty in inferring
the correct attractant level rapidly grew imposing a clear lower boundary for functional encoding in the
chemotaxis system. A decrease in the relative fluctuation amplitude led to an overall increase in the
coefficients of variation. Shown are reproductions of plots by Jonas Förster.
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where Tact1 to Tact4 refer to Equations 5.1 to 5.4, that are functions of the present receptor
methylation levels as well as Lexp, and λ is the standard value of active receptors in adapted
cells. The equation was solved by employing the root finder function uniroot() in R. According
to Equation 5.7, Lexp is synonymous to the attractant level for which Tact can return to its
standard value λ. The original idea of and first implementations for inferring perceived
attractant levels from the current state of the cell’s methylation-based working memory are
credited to Jonas Förster.

Upon using the steady state concentrations of the receptor species T1 to T4 as inputs for
Equation 5.7, it was observable that the inferred Lexp levels were close to identical to the
actually applied L levels for a large range of attractant levels spanning from 10−1 µM to about
106 µM (Figure 5.2 A and B). Therefore, in this range, an applied attractant level could be
correctly inferred from present receptor methylation levels given deterministic noise-free
conditions. For even larger attractant levels, however, L could no longer be correctly inferred.
Since particularly large levels of L were associated with the same combination of receptor
methylation levels, also Lexp did not vary. Therefore, for particularly large attractant levels,
it appears that, based on present receptor methylation levels, a cell would only be able to
recognize that an ambient attractant level is larger than roughly 106 µM, but could not narrow
down the actually applied attractant level more precisely.

To investigate the approximation of L under more realistic conditions, I employed stochastic
simulations. In particular, per applied attractant level L, I obtained 1000 concentration samples
of the receptor species T1 to T4 from 1000 stochastic simulations. These concentration values
were used to compute 1000 values of Lexp according to Equation 5.7. Then, I used L-specific
batches of Lexp values to calculate coefficients of variation of the Lexp estimates. I repeated
the described procedure for different relative fluctuation amplitudes that I modulated by
varying the system size. As shown in Figure 5.5 B, the coefficient of variation rose significantly
for L levels smaller than 10µM indicating a growth in the uncertainty of Lexp. In other
words, for particularly small attractant levels, fluctuations in receptor methylation levels
severely impaired a reliable inference of L imposing a clear lower boundary of encoding in the
chemotaxis system.

5.4.2 Inferring attractant levels in changing environments

Once a cell encounters a variation in ambient attractant levels, receptor methylation levels
start to reorganize. It is this reorganization that drives a chemotactic response. For the results
presented in Figure 5.6, I applied a rapid increase from 1µM to 105 µM. Shown are transient
responses in receptor methylation levels and the effector species Tact and CheYp. During
the time receptor methylation levels were in transition, the effector species were still in the
process of adaptation. The completion of the reorganization of receptor methylation levels
roughly coincided with the completion of the adaptation process.

Here, I investigated what attractant level can be inferred from receptor methylation levels
that are in transition. Thus, I applied an increase in L to a system that had been adapted to
a baseline level of L. For different time points during the reorganization process, I isolated
receptor methylation levels and used these concentrations as inputs for Equation 5.7 to infer
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Fig. 5.6. Model response to a sudden increase in the attractant level from 1µM to 105 µM. Deterministic
simulation results of the chemotaxis model from Kollmann et al. [3] showing the response to a sudden
increase in the attractant level from 1 µM to 105 µM. (A) The receptor methylation levels encode
information about the absolute attractant level. The employed change in the attractant level led to a
reorganization of receptor methylation levels. Thus, the previously encoded information was gradually
overwritten. (B) While the methylation module was in transition, the connected effector module was,
too. The full recovery of the effector module roughly coincided with the completion of the reorganization
of receptor methylation levels.

transient estimates of Lexp. In Figure 5.6 A, the transition in Lexp is shown for an increase
in L from 1µM to 105 µM. The rapid switch in L was interpreted as a gradual increase. Once
receptor methylation levels stopped to vary, also Lexp stopped to change.

I defined τLexp, that is marked in Figure 5.7 A, as a measure of the build-up time of Lexp

after an increase in L. τLexp is the time period spanning from the moment L was raised to its

40
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Fig. 5.7. Quantification of transient dynamics of Lexp build-up. (A) In a deterministic simulation, I stimulated
the chemotaxis model, that was adapted to an attractant level of 1µM, by suddenly increasing the
attractant level to 105 µM at time point 0 s. Due to the reorganization of receptor methylation levels,
also Lexp was changing. The sudden increase in L was interpreted as a gradual increase. Lexp was
computed according to Equation 5.7. (B) I defined τLexp as a measure of of the build-up time of Lexp. It
is the time period spanning from the moment L was increased to the moment Lexp reached half of its
new steady state. A strong resemblance between measurements of τLexp and τadap became apparent
(see Figure 5.4). Therefore, I concluded a close relationship between the process of reorganization of
receptor methylation levels and of adaptation of CheYp.
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step level to the moment Lexp reached half of its new steady state value. Again, I increased L
up to 300 % from a range of attractant baseline levels, this time measuring τLexp. As shown
in Figure 5.7 B, there was a very strong resemblance between measurements of τLexp and
τadap that I defined as a time measure for the adaptation process of CheYp (see Figure 5.4).
Both measures were very insensitive to the step size, but predominantly determined by the
baseline level of L. Further, in both figures, four stripes, i.e., confined margins of L, were
recognizable in which the measures exhibited particularly large values. Thus, the process of
CheYp adaptation appears to be closely controlled by the process of reorganization of receptor
methylation levels.
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5.5 Analyzing the methylation-based memory by
means of mutual information

Upon applying an increase in attractant levels, receptor methylation levels reorganize until
they are adjusted to the new attractant level (see Figure 5.6 B). Since receptor methylation
levels store information about ambient attractant levels, thus, function as a molecular memory
of sort, the process of reorganization can be viewed as memory formation with regards to
information about the new attractant level or memory loss with regards to information about
the old attractant level. In this section, I describe the size of the methylation-based memory as
well as time scales for memory formation and memory loss by means of estimations of mutual
information. The presented methodology was applied to characterize further limitations in
the encoding in the chemotaxis system. Since it can be used for the analysis of stochastic

original estimates

mean of surrogate 
estimates 

fit to original 
estimates

Fig. 5.8. Quantification of memory formation by means of estimates of mutual information between at-
tractant step levels and receptor methylation levels at a given point in time. Per attractant baseline
level (10−1 µM, 100 µM, 101 µM, . . . , 108 µM), I ran 1000 stochastic simulations in which the attractant
level was increased to a step level at τ = 0. Attractant step levels were drawn out of a uniform distribu-
tion spanning from the selected baseline level to the baseline level plus 200 %. Here, I present mutual
information estimates between the baseline-specific batch of attractant step levels and the corresponding
receptor methylation levels at a given point in time τ. Plots refer to the following attractant baseline
levels: (A) 10−1 µM, (B) 104 µM, (C) 105 µM, (D) 106 µM, (E) 108 µM. By changing τ, the process
of memory formation could be visualized. Information about attractant step levels increased until
convergence to a plateau level for intermediate attractant baseline levels (B, C, D). For very small or
large attractant baseline levels, no memory formation could be detected (A and E). I employed surrogate
estimations of mutual information to validate original estimates. For surrogate estimates, the Lstep
variable was permutated to disrupt original dependencies to Tτ, the matrix of receptor methylation
levels at a given time point τ. Per original estimate, I performed 100 surrogate estimates. Shown are the
mean values of such surrogate distributions in darkgrey. Further, in order to quantify the time period for
memory formation, I fitted the original estimate data (black) to Equation 5.8 if memory formation was
present. Fitted curves are presented in red. Applied system size: 1.4 · 10−15 L. All remaining curves can
be found in the appendix in Section B.1.

114 Chapter 5 Analyzing the encoding of attractant levels in the chemotaxis of E. coli



1.4*10-15

1.4*10-17
1.4*10-16

1.4*10-18

system size [L]

Fig. 5.9. System-size- and baseline-specific maximal estimates of mutual information and time scales for
memory formation. For various system sizes and attractant baseline levels, I quantified the process of
memory formation by means of estimations of mutual information. (A) For the largest system sizes, the
most information about attractant step levels could be stored in the receptor methylation levels at an
attractant baseline level of 105 µM. Decreases in the system size, thus, increases in the relative amplitude
of fluctuations, clearly led to a reduced memory size. (B) As shown in Figure 5.8, for intermediate
attractant baseline levels, information about applied attractant step levels built up gradually. I fitted
the obtained curves of mutual information estimates in dependence of τ to Equation 5.8. This allowed
for measurements of τstep that I defined as the time period spanning from the moment the attractant
level was raised until the moment the fitted function reached half of its maximum. For very small and
very large attractant baseline levels, no memory formation could be detected. Therefore, τstep could not
be measured for these baseline levels. For decreases in the system size, τstep seemed to increase with
regards to intermediate baseline levels. τstep peaked at the largest analyzed baseline level for which
memory could still be built up. All fits that I used for the presented results in (B) can be found in the
appendix in Section B.1.

simulation data, it grants particularly valuable insights. For a mathematical notation of mutual
information, please refer to Section 1.4.2.

For analyzing memory formation by means of mutual information, I stimulated the chemotaxis
model by increasing the attractant level from a defined baseline level. In particular, I selected
multiple baseline levels covering several orders of magnitude and, per baseline level, I
drew 1000 attractant step levels out of a uniform distribution spanning from the selected
baseline level to the baseline level plus 200 %. Per attractant baseline level, I applied the
1000 step attractant levels to the baseline-adapted system in 1000 stochastic simulations.
Then, I monitored the model response by taking time-conditioned cross-sections of the
receptor methylation levels T0 to T4. Thus, per baseline level and per observed time point, I
obtained 1000 concentration values of each receptor species in response to 1000 stimulations
characterized by increases in the attractant level to different plateaus. I proceeded to estimate
the mutual information between the applied batch of attractant step levels Lstep and the
corresponding receptor methylation levels at a given time point after model stimulation Tτ.
Therefore, the estimates provided information on the discriminability of different attractant
step levels based on receptor methylation levels at a given time point τ.

Increases in τ resulted in a rise in mutual information until convergence to a plateau level
for intermediate attractant baseline levels (Figure 5.8 B, C and D). In conclusion, it took
time until the maximal number of attractant step levels could be inferred from snapshots
of receptor methylation levels. When repeating the experiment with very small attractant
baseline levels (10−1 µM in Figure 5.8 A) or very large attractant baseline levels (108 µM in
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Figure 5.8 E), no attractant step level could be identified by means of snapshots of receptor
methylation levels and there was no measurable formation of memory. These results agree
with previous observations that receptor methylation levels barely reorganized in response to
a two-fold rise in attractant levels from very small or very large attractant baseline levels (see
Figure 5.5 A).

In order to validate mutual information estimates, I performed surrogate estimations of mutual
information by permutating Lstep, thus, disrupting original dependencies between Lstep and
Tτ. Per original estimate, I performed 100 surrogate estimates. In Figure 5.8, darkgrey lines
refer to the mean values of these surrogate estimate distributions. For more information about
the application of surrogate estimates of mutual information, please refer to Section 2.5.

As observable in Figure 5.8, not only the maximal mutual information varied between analyzed
attractant baseline levels, but also the time period required for memory formation. To obtain
baseline-specific time scales for memory formation, I fitted the mutual information curves to
the following function:

I (τ) = a ·
arctan

(
τ · b−1)
b

(5.8)
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Fig. 5.10. Quantification of memory loss by means of estimates of mutual information between attractant
step levels and receptor methylation levels at a given point in time. Per attractant baseline level
(10−1 µM, 100 µM, 101 µM, . . . , 108 µM), I ran 1000 stochastic simulations in which the attractant level
was decreased from a step level to the selected baseline level at τ = 0. Attractant step levels were drawn
out of a uniform distribution spanning from the selected baseline level to the baseline level plus 200 %.
Here, I present mutual information estimates between the baseline-specific batch of attractant step levels
and the corresponding receptor methylation levels at a given point in time τ. Plots refer to the following
attractant baseline levels: (A) 10−1 µM, (B) 101 µM, (C) 103 µM, (D) 105 µM, (E) 108 µM. By scanning
τ, the process of memory loss could be visualized. Information about attractant step levels gradually
decreased until it was completely lost for intermediate attractant baseline levels (B, C, D). For very small
or large attractant baseline levels, no memory loss could be detected, since there was no information
about attractant step levels at τ = 0 to begin with (A and E). I employed surrogate estimations of mutual
information to validate original estimates. For surrogate estimates, the Lstep variable was permutated to
disrupt original dependencies to Tτ, the matrix of receptor methylation levels at a given time point. Per
original estimate, I performed 100 surrogate estimates. Shown are the mean values of such surrogate
distributions in darkgrey. Applied system size: 1.4 · 10−15 L. All remaining curves can be found in the
appendix in Section B.1.
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Fig. 5.11. System-size- and baseline-specific time scales for memory loss. For various system sizes and at-
tractant baseline levels, I quantified the process of memory loss by means of estimations of mutual
information. Based on data sets representing time-dependent mutual information estimates, as presented
in Figure 5.10, I quantified τdrop. To this end, I defined τdrop as the time period spanning from the
moment attractant levels were decreased at τ = 0 to the moment time-dependent mutual information
estimates fell below half of their initial information content. For very small or large attractant baseline
levels, τdrop could not be measured, since there was no information about attractant step levels at τ = 0
to begin with. Generally, measurements of τdrop were smaller than corresponding measurements of τstep.
Thus, memory loss appeared to be faster than memory formation in the analyzed chemotaxis system. All
data sets that I used for the presented results can be found in the appendix in Section B.2.

in which I optimized parameters a and b to match the data at hand. I defined τstep as the
time period spanning from the moment the attractant level was raised (at τ = 0) until the
moment the fitted function reached half of its maximal value. Example fits can be found in
Figure 5.8 B, C and D (red lines). For a full list of fitted parameters and corresponding curves,
please refer to the appendix, Section B.1.

I repeated the described routine for several system sizes, thus, modulating the relative
amplitude of fluctuations. In Figure 5.9, I present volume- and baseline-specific maximal
estimates of mutual information Imax(Lstep; Tτ) and time scale measurements for memory
formation. When increasing the relative amplitude of fluctuations by decreasing the system
size, maximal mutual information clearly decreased. Therefore, less attractant step levels
could be discriminated by receptor methylation levels. For the largest employed system sizes,
the methylation-based memory stored most information about attractant step levels for an
attractant baseline level of 105 µM. With regards to time scale measurements, for intermediate
attractant baseline levels, decreases in the system size resulted in a slight increase in the
required time for memory formation. Further, memory formation failed for particularly small
or large attractant baseline levels, while τstep peaked at the largest baseline level for which
memory could still be built up. For smaller system sizes, the peak occurred at smaller attractant
baseline levels.

In order to quantify memory loss by means of estimations of mutual information, per selected
attractant baseline level, I ran 1000 stochastic simulations in which I decreased the attractant
level from a step level to the selected baseline level at time point τ = 0. Once again, I drew
1000 step levels from a uniform distribution spanning from the selected baseline level to
the baseline level plus 200 %. Subsequently, I estimated the mutual information between
the baseline-specific batch of step levels Lstep and the matrix Tτ storing the corresponding
receptor methylation levels T0 to T4 at a given point in time. As shown in Figure 5.10 B,
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C and D, when increasing τ, previously stored information about attractant step levels was
gradually lost for intermediate baseline levels. For particularly small or large baseline levels,
no information about step levels was stored in the methylation-based memory at τ = 0 (in
agreement to results presented in Figure 5.8). Therefore, no information could be lost after a
decrease in attractant levels given these extreme baseline levels (see Figure 5.10 A and E).

I repeated the described routine for several system sizes and attractant step levels. This time, I
defined a time measure for memory loss τdrop. To this end, τdrop is the time period starting
at τ = 0, the moment in which I decreased attractant levels, and ending in the moment
τ-dependent mutual information estimates fell below half of their initial information for τ = 0.
According to my measurements, the process of memory loss appeared to be faster than the
process of memory formation (Figure 5.11).
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5.6 Consequences of reducing the maximal number
of receptor methylations

5.6.1 Loss in the dimensions of the dynamic range

In Escherichia coli, chemoreceptors possess multiple methylation sites. While Tar receptors
can be methylated up to four times, Tsr and Tsg receptors exhibit even five methylation
sites [206, 207, 208, 209]. In experimental as well as computational studies, researchers
attested that, upon reducing the maximal number of receptor methylations, the dynamic
range of the chemotaxis system is reduced [196, 197, 198]. In this section, I apply the
previously introduced methodology (see Sections 5.3 to 5.5) to gain additional insights into
the consequences of a reduction in the maximal number of receptor methylations on the
system’s encoding capabilities.
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Fig. 5.12. Steady state behavior in the effector module for a range of attractant levels in model versions
differing in the maximal number of receptor methylations. Deterministic simulations results showing
the steady states of the effector species CheYp and Tact for a range of attractant levels in model versions
differing in the maximal number of receptor methylations: in (A) up to four, in (B) up to three, in (C)
up to two and in (D) up to one methylation(s) allowed per receptor. The standard value of CheYp
in adapted cells was highly robust to changes in the maximal number of receptor methylations. A
clear decline was only recognizable upon reducing the maximal methylation number to one. Standard
CheYp values for different model versions: in (A) 0.89µM, in (B) 0.89µM, in (C) 0.87µM and in (D)
0.75µM. In contrast, the range of attractant levels in which adaptation remained functional was very
much sensitive to the applied changes. The smallest attractant level at which CheYp dropped more than
33 % from version-specific standard values: in (A) 105.6 µM, in (B) 103.9 µM, in (C) 102.75 µM and in
(D) 101.69 µM. In environments with attractant levels larger than these thresholds, I assumed that cells
would exhibit indiscriminate runs, therefore failing in exhibiting functional chemotaxis. Version-specific
threshold attractant levels are marked by red dashed lines.
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Fig. 5.13. Decreases in CheYp as a response to increases in L in model versions differing in the maximal
number of receptor methylations. In deterministic simulations, several versions of the chemotaxis
model were first adapted to a baseline level of L before being confronted with a sudden increase
in the attractant level. Model versions differed from each other in the maximal number of receptor
methylations: in (A) four, in (B) three, in (C) two and in (D) one methylation(s) allowed per receptor.
Here, I present measurements of the absolute magnitude of the drop in CheYp from its baseline-adapted
value in response to an increase in L. Clearly, decreases in the maximal number of receptor methylations
caused a decrease in the upper boundary of attractant baseline levels at which CheYp responded with a
drop. In contrast, the lower boundary of the dynamic range seemed to be stable to the applied changes.
Overall, I could link a decrease in the maximal number of receptor methylations to a minor decrease in
the CheYp drop amplitude. Maximal decrease in CheYp: in (A) 0.58µM, in (B) 0.58µM, in (C) 0.54µM
and in (D) 0.44µM. Red dashed lines refer to the smallest baseline levels of L at which adaptation failed
(as shown in Figure 5.5).

First, I needed to verify that the chemotaxis model by Kollmann et al. could confirm published
reports, i.e., that a reduction in the maximal number of receptor methylations decreased the
model’s dynamic range. To this end, I generated three additional model versions that differed
from each other in the maximal number of receptor methylations. For a maximal methylation
number of three I deleted reactions vC7 and vC8 plus Equation 6.4, for a maximal methylation
number of two I deleted reactions vC5 to vC8 plus Equations 6.3 and 6.4 and for a maximal
methylation number of one I deleted reactions vC3 to vC8 plus Equations 6.2 to 6.4. I also
edited Equations 5.5 and 5.6 by deleting corresponding receptor methylation levels. A full list
of reactions and equations of the original model can be found in Table 5.1.

In a first analysis, I examined adaptation in the effector module given continuous environments.
In Figure 5.12, I present model-version-specific steady state concentrations of CheYp and Tact

for a range of constant attractant levels. The standard values of CheYp and Tact in adapted
cells, i.e., the steady state concentrations of the effector species for particularly low attractant
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Fig. 5.14. Measurements of τadap after sudden increases in L in model versions differing in the maximal
number of receptor methylations. In deterministic simulations, several versions of the chemotaxis
model were first adapted to a baseline level of L before being confronted with a sudden increase
in the attractant level. Model versions differed from each other in the maximal number of receptor
methylations: in (A) four, in (B) three, in (C) two and in (D) one methylation(s) allowed per receptor.
Here, I present measurements of the CheYp adaptation time τadap that I defined as the time period
spanning from the moment the increase in L was applied until the moment CheYp recovered to half of its
new steady state. As in Figure 5.13, the upper boundary of attractant baseline levels was highly sensitive
to the applied changes, while the lower boundary was not. In each panel, stripes were recognizable,
i.e., short confined margins of baseline levels in which τadap was particularly increased. The number of
stripes was equal to the maximal number of receptor methylations.

levels, turned out to be very robust to the applied changes. Only for a maximal methylation
number of one, standard values indicated a clear decrease. In contrast, the applied changes
had a much stronger impact on the range of attractant levels in which adaptation remained
functional. As mentioned in Section 5.3, for a 33 % decrease in CheYp from its standard value,
a cell was expected to exhibit indiscriminable runs (according to [3]). Upon reducing the
maximal receptor methylation number, the 33 % threshold was reached for increasingly lower
attractant levels (thresholds marked by red dashed lines in Figure 5.12). For this and the
following analyses, I assumed model-version-specific standard values of CheYp and Tact. Thus,
I considered a scenario in which the bacterium evolved given a particular maximal receptor
methylation number, rather than a scenario in which mutations caused a reduction in the
maximal methylation number in some cells.

Based on Figure 5.12, I could attest that decreases in the maximal number of receptor
methylations led to a clear reduction in the dynamic range. In particular, the applied changes
led to decreases in the upper boundary of the dynamic range. According to additional results
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presented in Figure 5.13, the lower boundary of the dynamic range was more robust to the
applied changes. All model versions seemed to be similarly sensitive to percental increases
from particularly low attractant baseline levels. Upon reducing the maximal number of
receptor methylations, I could only attest a minor overall decrease in the magnitude of the
CheYp response (quantitative information provided in the caption of Figure 5.13).

With regards to the CheYp adaptation time measure τadap (first defined in Section 5.3), all
model versions exhibited moderate values between attractant baseline levels of 101 µM and
the version-specific 33 % threshold (marked by red dashed lines in Figure 5.14). Within
the mentioned intervals, narrow margins of attractant baseline levels were recognizable in
which τadap was slightly increased. The number of these stripe-like margins was equal to the
maximal number of receptor methylations.

5.6.2 Loss in the dimensions of the encoding range

Previously, in Section 5.4, I found that limitations in the dynamic range of the original
chemotaxis model were imposed by limitations in the encoding of attractant levels into
receptor methylation levels. As decreases in the maximal number of receptor methylations
further affected the dimensions of the dynamic range (see Section 5.6.1), I assumed that this
was connected to stronger limitations in the encoding of attractant levels. And indeed, in
Figure 5.15 A-D, it became evident that the range in which attractant levels could be uniquely
mapped to specific combinations of receptor methylation levels was increasingly confined
upon reductions in the the maximal number of receptor methylations.

I could draw the same conclusions from model-version-specific computations of Lexp (as
introduced in Section 5.4.1). When computing Lexp based on steady state concentrations
of receptor methylation levels for a number of attractant levels (Figure 5.15 E), the upper
boundary of the range in which attractant levels were correctly inferred was gradually lowered
upon decreases in the maximal number of receptor methylations. I computed Lexp according
to version-specific variations of Equation 5.7. In particular, I deleted obsolete summands from
the equation and adapted the parameterization of λ to a version-specific value (model-version-
specific parameterizations of λ are provided in the caption of Figure 5.15).

In Section 5.4.1, I also investigated the robustness of estimations of Lexp in the presence of
stochastic fluctuations. In particular, per constant attractant level L, I ran 1000 stochastic
simulations to compute 1000 estimates of Lexp. Similarly, in Figure 5.16, I present the
coefficients of variations of baseline-specific Lexp distributions in each model version. All
model versions behaved very similar. Only for very large relative fluctuation amplitudes,
as modulated by reductions in the system size, differences between model versions became
apparent. The model version exhibiting a maximal receptor methylation number of only one
appeared to be slightly less affected by the applied fluctuations with respect to estimations of
Lexp for particularly low attractant levels (Figure 5.16 D).
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Fig. 5.15. Encoding of attractant levels into receptor methylation levels in model versions differing in the
maximal number of receptor methylations. Panels (A-D): Deterministic simulations results showing
the steady states of receptor species in response to a range of constant attractant levels in model versions
differing in the maximal number of receptor methylations: in (A) up to four, in (B) up to three, in (C) up
to two and in (D) up to one methylation(s) allowed per receptor. For E, I computed expected attractant
levels Lexp based on steady state receptor methylation levels shown in panels (A-D). In particular, for the
computation of Lexp, I employed Equation 5.7 which I adapted for specific model versions by deleting
obsolete summands and updating the parameterization of λ: for a maximal methylation number of
four or three (orange and red lines in (E)), λ was set equal to 0.39µM, for a maximal methylation
number of two (blue line), λ was set equal to 0.38µM and, for a maximal methylation number of one
(black line), λ was set equal to 0.33µM. λ is the standard value of Tact in adapted cells and can be
derived from Figure 5.12. The obtained results suggest that particularly large attractant levels could
not be distinguished based on receptor methylation levels. Reducing the maximal number of receptor
methylations led to an earlier onset of this failure.

5.6.3 Shifts in the optimal attractant baseline level for memory
formation

As changes in the maximal number of receptor methylations clearly impacted the encoding of
attractant levels (see Section 5.6.2), here, I analyzed the effect of these changes on memory
formation. To this end, I applied the methodology introduced in Section 5.5 using delayed
mutual information estimates.

More precisely, per model version exhibiting different maximal numbers of receptor methyla-
tion and per analyzed attractant baseline level, I ran 1000 stochastic simulations in which I
increased the attractant level to specific step levels at time point τ = 0. Again, step levels were
drawn from uniform distributions spanning between the selected baseline level to the baseline
level plus 200 %. I then measured the mutual information between the model-version- and
baseline-specific batch of step levels Lstep and corresponding receptor methylation levels which
were summarized in the matrix Tτ, whereas columns of Tτ contained receptor-methylation-
level-specific concentration values at a time point τ. Thus, for a model version with a maximal
receptor methylation number of two, Tτ comprised three columns for T0, T1 and T2. By
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Fig. 5.16. Robustness against fluctuations in inferring L in model versions differing in the maximal number
of receptor methylations. In stochastic simulations, I stimulated different versions of the chemotaxis
model with constant attractant levels L. Model versions differed from each other with respect to the
maximal number of receptor methylations: in (A) up to four, in (B) up to three, in (C) up to two
and in (D) up to one methylation(s) allowed per receptor. Per constant attractant level, I repeated
stochastic simulations 1000 times in order to be able to compute L-specific coefficients of variation of
Lexp distributions. In particular, I analyzed a range of attractant levels L spanning from 10−1 µM to the
version-specific threshold value, as presented in Figure 5.12. To this end, I computed Lexp according
to model-version-specific adaptations of Equation 5.7. For more details, please refer to the caption of
Figure 5.15. In turn, the described procedure was repeated for various relative fluctuation amplitudes, as
modulated by alterations in the system size. For L smaller than 10µM, the uncertainty in inferring L from
receptor methylation levels rapidly grew in all model versions. For particularly large relative fluctuation
amplitudes (small system sizes) and small attractant levels, the model version with a maximal receptor
methylation number of one appeared to be less affected by stochastic fluctuations (D).

scanning τ, I could visualize the process of memory formation, as shown in Figure 5.8. The
obtained mutual information estimates informed about the discriminability of step levels
based on snapshots of the methylation-based memory.

In Figure 5.17, I present the maximal memory size in different model versions, for various
attractant baseline levels and system sizes. To this end, decreases in the system size enhanced
the relative amplitude of stochastic fluctuations. Thus, it was to be expected that a decrease in
the system size impaired information transmission. Once again, I could determine a reduction
in the encoding range upon decreases in the maximal number of receptor methylations, i.e.,
for model versions exhibiting a smaller number of maximal receptor methylations, memory
formation failed for smaller attractant baseline levels. Further, the optimal attractant baseline
level associated with the maximal memory size shifted towards smaller baseline levels upon
decreases in the maximal number of receptor methylations. Interestingly, the maximal
memory size was highly robust against the applied changes in the maximal number of receptor
methylations. All model versions appeared to be similarly affected by increases in the relative
amplitude of fluctuations.
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Fig. 5.17. Maximal estimates of mutual information between batches of attractant step levels and snapshots
of receptor methylation levels in model versions differing in the maximal number of receptor
methylations. For various model versions, system sizes and attractant baseline levels, I quantified the
maximal mutual information in memory formation, as previously shown in Figure 5.8. Model versions
differed from each other in the maximal number of receptor methylations: in (A) four, in (B) three, in (C)
two and in (D) one methylation(s) allowed per receptor. Decreases in the maximal number of receptor
methylations clearly reduced the encoding range, i.e., model versions with a lower maximal number
of receptor methylations failed to build up a memory on attractant step levels for smaller attractant
baseline levels. The optimal baseline level related to the maximal memory size shifted towards smaller
baseline levels upon decreases in the maximal number of receptor methylations. All model versions were
similarly affected by increases in the relative amplitude of stochastic fluctuations.

For additional information about measurements of τstep and τdrop in the presented model
versions, please refer to the appendix, Section B.3.
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5.7 Chapter discussion

5.7.1 Summary and conclusions

In this chapter, I investigated the encoding of absolute attractant levels into receptor methyla-
tion levels by means of an established kinetic model by Kollmann et al. [3]. The model, that
is described in Section 5.2, allowed for an analysis of responses in the chemotaxis pathway
of Escherichia coli upon changes in ambient attractant levels. It is of note that the model
does not include cell movement. Thus, statements on cell locomotion had to be inferred from
levels of phosphorylated motor effector CheYp. In experiments, CheYp levels were found to
be sensitive to changes in attractant levels. In particular, increases in attractant levels led
to temporary decreases in CheYp, while decreases in attractant levels resulted in temporary
increases in CheYp. In turn, decreased CheYp levels reduced the tumbling frequency of cells,
while increased CheYp levels raised the tumbling frequency [97, 98, 99, 100, 101, 102].

After a change in ambient attractant levels within the dynamic range of the system, CheYp
levels return to pre-stimulation standard values, as long as the chemotaxis pathway is not
triggered again by another change in attractant levels. If this sensory adaptation mechanism
is impaired, cells exhibit excessive tumbling or running and cannot purposefully respond to
further changes in attractant levels [105, 106, 107]. In addition, adaptation retains sensitivity
to a broad range of attractant or repellent levels covering several orders of magnitude. For
example, gradient detection of aspartate was found to be successful with regards to relative
changes from nanomolar or millimolar abundances of the attractant [132, 210, 211].

In Section 5.3, I described the dynamic range of the analyzed chemotaxis model, i.e., the
range of attractant levels in which chemotaxis was functional. To this end, I defined the
dynamic range on the basis of the following criteria: a successful adaptation of the model
species CheYp, a high sensitivity to relative changes, as detected by temporary changes in
CheYp levels, and an appropriate time window for CheYp adaptation in response to a new
attractant level. I found that the dynamic range was confined by a lower boundary due to
a finite system sensitivity and by an upper boundary due to a finite adaptation capacity. In
particular, I attested unsuccessful adaptation, if CheYp levels deviated more than one-third
from a standard value in adapted cells, as Kollmann et al. proposed that this would lead
to cells being unable to "properly respond to stimuli" [3] (Figure 5.2 A). According to the
presented results, a cell would run indiscriminately, when encountering attractant levels larger
than 105.6 µM, and would not be able to detect gradients, if absolute attractant levels were
larger than the aforementioned threshold.

In my analysis, I assessed the sensitivity of the system by applying relative increases in
attractant levels, whereas I scanned the attractant baseline level as well as the percental
magnitude of the increase (Figure 5.3). Under natural conditions, most chemotactic bacteria
do not encounter large singular jumps in ambient attractant levels. It is more likely that, as a
bacterium follows an attractant gradient, ambient attractant levels rise incrementally. While
a single increase might only lead to a minor deviation in CheYp levels from the standard
value in adapted cells, the same increase soon followed up by yet another increase of identical
magnitude might result in a much larger drop in CheYp. Additive effects in the chemotaxis
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pathway were previously also reported with regards to the adaptation time of CheA [132,
133]. Furthermore, saturating effects might also have to be taken into account, as, based on
an in silico study, Vladimirow et al. reported that linear and Gaussian gradients of attractant
levels up to 100µM initially resulted in a stimulation of CheYp levels. However, with time,
CheYp levels started to recover despite the continued presence of the attractant gradient [129].
In conclusion, the dynamic range that I described is valid for a particular scenario in which I
used a single sudden increase in attractant levels for model stimulation. It might change for
other scenarios, particularly scenarios considering attractant gradients.

In the described dynamic range of the model, the adaptation of CheYp took place in a moderate
window of time upon increases in attractant levels of up to 300 % . In contrast, adaptation
required much more time for increases from attractant baseline levels between 105.6 µM and
108 µM (Figure 5.4). I quantified the adaptation time of CheYp by means of the measure τadap

that I defined as the time period spanning from the moment attractant levels were increased
until the moment CheYp recovered to half of its steady state level. Within the model’s dynamic
range, for increases of up to 300 %, τadap ranged between 7.1 s and 26.9 s. In experiments,
the adaptation time is mostly quantified by measuring the time period from cell stimulation
until the moment the cell returns to a pre-stimulation tumbling frequency. Therefore, a direct
comparison between measurements of τadap and experimental measurements is complicated.
Since τadap does not even cover the time period for full CheYp adaptation, it should, however,
be smaller than the adaptation time of the tumbling frequency. In experimental studies,
dependent on the applied stimulation, the tumbling frequency recovered within several
seconds or several minutes [132, 133]. Therefore, I assume that the obtained measurements
of τadap are plausible.

I traced back limitations in the dynamic range to limitations in the encoding of attractant
levels into receptor methylation levels. In the model, the number of active receptors Tact

is modulated by the absolute attractant level as well as receptor methylation levels (see
Equations 5.1 to 5.4). Upon changes in attractant levels, the effector module comprising
CheY is stimulated, since Tact is transiently changing in response to transient changes in
receptor methylation levels. Soon after receptor methylation levels have adjusted, Tact and
downstream species including CheYp complete adaptation (Figure 5.6). For a large range
of attractant levels, steady state Tact levels remain almost constant (Figure 5.2 A), since
larger attractant levels are matched by compensating adjustments in receptor methylation
levels. However, for particularly large attractant levels, steady state receptor methylation
levels do not vary (Figure 5.2 B). Therefore, receptor methylation levels cannot compensate
for particularly large attractant levels and the adaptation of Tact and of connected effector
species like CheYp is incomplete. Similarly, for particularly small attractant levels, steady
state receptor methylation levels do not vary. In this case, the effector module remains in a
unstimulated state upon changes in attractant levels (Figure 5.3), since neither variations in
receptor methlyation levels nor variations in absolute attractant levels are large enough to
result in significant temporary changes in Tact.

In Section 5.4, attractant levels were inferred from present receptor methylation levels. As
shown in Figure 5.5 B, particularly large attractant levels significantly differed from inferred
attractant levels. In conclusion, based on receptor methylation levels, the chemotaxis system
could not discriminate between large attractant levels and adaptation in the effector module
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began to fail for reasons discussed in the last paragraph. Further, it was found that the
encoding of particularly small attractant levels outside of the system’s dynamic range was
severely affected by stochastic fluctuations in receptor methylation levels (Figure 5.5 C).
Within the dynamic range of the system, receptor methylation levels were ultrasensitive to
changes in attractant levels. Therefore, fluctuations in receptor methylation levels only led
to small inaccuracies in inferring ambient attractant levels. Outside of the dynamic range,
however, fluctuations could lead to much larger inaccuracies (Figure 5.5 A).

Limitations in the encoding of attractant levels could also be detected, when using delayed
mutual information estimates to monitor memory formation and memory loss under stochastic
conditions in Section 5.5. In more detail, mutual information estimates provided information
about the discriminability of several attractant step levels based on snapshots of receptor
methylation levels. As sudden increases in attractant levels led to transient changes in receptor
methylation levels, information about the applied step levels was gained in a gradual manner
(Figure 5.8). Again, the system proved to be unable to distinctly respond to increases to
different attractant step level from particularly small or large attractant baseline levels. In
both instances, increases in attractant levels did not lead to significant changes in receptor
methylation levels, as observable in Figure 5.5 A.

Mutual information estimates could also be used to determine time scales for memory loss and
memory formation. In my analysis, I inferred time scales for memory formation from transient
changes in receptor methylation levels upon increases in attractant levels from a common
baseline level to different step levels. In contrast, I inferred time scales for memory loss from
transient changes in receptor methylation levels upon decreases in attractant levels from
different step levels to a common baseline level. I found that memory formation appeared
to require more time than memory loss (Figures 5.5 B and 5.11). It remains open, whether
the same is true for the inverse case, i.e., when memory formation relates to decreases in
attractant levels from a common step level to different baseline levels and memory loss relates
to increases in attractant levels from different baseline levels to a common step level.

In wild-type Escherichia coli, Tar receptors can be methylated up to four times, while Tsr
and Tsg receptors exhibit even five methylation sites [206, 207, 208, 209]. Previously, the
effects of a reduction in the number of chemoreceptor methylation sites was investigated in in
silico studies [197, 198] as well as experimentally [196]. It was reported that a reduction in
methylation sites decreased the dynamic range of the chemotaxis system. Based on simulation
results of model versions differing in the maximal number of receptor methylations, I could
confirm these reports, as shown in Section 5.6 in Figures 5.12 to 5.14. In particular, reducing
the maximal number of receptor methylations decreased the upper boundary of the dynamic
range by affecting the system’s adaptation mechanism. Interestingly, the lower boundary of
the dynamic range remained unaffected by the applied changes in the maximal number of
receptor methylations.

By inferring attractant levels from present methylation levels (Section 5.6.2) and by employing
delayed mutual information estimates for monitoring memory formation and memory loss
(Section 5.6.3), I could clearly link losses in the dimensions of the dynamic range to losses
in the dimensions of the encoding range. A reduction in the maximal number of receptor
methylations decreased the upper boundary of the range of attractant levels that were uniquely
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mapped to receptor methylation levels. In consequence, I found that the upper boundary of the
range of attractant levels that could be correctly inferred from present receptor methylation
levels was lowered (Figure 5.15) and that memory formation already failed for lower attractant
levels (Figure 5.17) upon decreases in the maximal number of receptor methylations.

To the best of my knowledge, this is the first time encoding in Escherichia coli chemotaxis was
analyzed by means of the introduced methods in Sections 5.4 and 5.5. While conventional
mutual information estimations were applied several times to measure statistical dependencies
between variables in chemotaxis (for example in [192, 193]), this is the first time delayed
mutual information estimations were applied to measure dynamic processes of information
flow in this system. Further, the presented results could explain reasons behind experimen-
tal observations describing a link between the number of receptor methylations and the
dimensions of the dynamic range in the chemotaxis system.

Recently, Clausznitzer et al. published a chemotaxis pathway model including a more detailed
adaptation mechanism as well as a Monod-Wyman-Changeux model to describe receptor-
receptor interactions [130]. Especially with regards to a quantitative analysis of time scales for
memory formation, memory loss or adaptation, the more recent model should be considered
to corroborate presented results, since the authors claim that their model features a more
realistic representation of adaptation dynamics.
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6Main discussion

6.1 Contributions to the analysis of information
transfer in signal transduction

In this thesis, I studied information transfer in two prime examples of signal transduction:
calcium signaling in non-excitable cells and Escherichia coli chemotaxis.

In calcium signaling, information from a first messenger is encoded into characteristics of
calcium oscillations [43]. For instance, in the salivary glands of the blowfly Calliphora
erythrocepha, the abundance level of the hormone serotonin is encoded into the calcium
oscillation frequency, whereas larger abundance levels are linked to faster oscillations [45]. It
was reported that changes in calcium oscillation parameters, such as the oscillation frequency,
modulate the activities of dependent proteins. In Chapter 4, I introduced methods to analyze
the frequency-decoding of calcium oscillations.

In particular, in Section 4.4, I presented an optimization-based method to identify requirements
for distinct frequency-decoding. By running different optimizations for different network
structures (see for instance Section 4.5) or different parameterizations of non-optimizable
parameters (see for instance Section 4.7), I could assess the impact of model conditions on
frequency-decoding. Further, due to the application of a local optimization algorithm [159], I
defined a multistart routine to identify suitable parameter sets for distinct frequency-decoding.
As a result, per optimization problem, I obtained plenty of optimized parameter sets that I
could rank according to their associated objective values. In turn, this allowed me to analyze
top-ranked parameter sets for conserved characteristics. I concluded that such conserved
characteristics were essential for distinct frequency-decoding in particular protein models.

Previous studies already focused on the identification of kinetic requirements for distinct
frequency-decoding [76, 87]. However, to the best of my knowledge, this is the first time,
optimizations were used to characterize frequency-decoding of calcium oscillations. As shown
throughout Chapter 4, the described optimization-based method yielded extensive information
about the analyzed systems, making it a valuable tool. While I applied the method to
analyze frequency-decoding, it can be easily adapted to investigate other forms of information
transmission.

In addition, I analyzed the frequency-decoding of calcium oscillations by means of channel
capacity estimations. To this end, channel capacity estimates informed about the discrimi-
nability between given oscillation frequencies under stochastic conditions (Sections 4.12 to
4.14.2). Previously, the impact of stochastic effects had been studied in calcium oscillator
models [212, 213]. However, to the best of my knowledge, a stochastic analysis of the
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decoding of calcium oscillations was still lacking. In Section 1.4.1, I already mentioned that
information theory can be used to investigate a wide array of research questions in numerous
research areas [140, 141, 142, 143, 144, 145]. In terms of an analysis of biological signal
transduction, however, the application of channel capacity is still fairly new (for other studies
analyzing signal transduction by means of channel capacity estimations, see [147, 167, 150,
151]). Thus, in order to provide an interpretation of channel capacity estimates and eradicate
misconceptions, I also presented simple example cases for the application of channel capacity
in Section 3.2.

In summary, with respect to the analysis of frequency-decoding of calcium oscillations, I
could apply the presented methods to corroborate published results, for example, about a
correlation between the strength of cooperative calcium-dependent protein activation and the
distinctness of frequency-decoding (see Section 4.7 and [76, 87]), while also shedding light
on novel aspects, such as the requirement of an antagonistic, oscillator-dependent regulation
for band-pass activation (see Section 4.5). In the past, the band-pass activation of calcium-
dependent proteins had been barely researched. While, in an experimental study, band-pass
activation had been attested for the transcription factor NFAT [63, 64], in an in silico study,
time-limited spikes of a given frequency had been found to induce maximal autonomous
activity of CaMKII [69]. In this thesis, I detected requirements in the model network structure
and model parameterization for the generation of band-pass activation adding further insights
to this particular form of frequency-decoding.

As a second example study, I analyzed information transfer in the chemotaxis of Escherichia
coli. In particular, I focused on the encoding of information about absolute ambient attractant
levels into the methylation levels of chemoreceptors [134], whereas single receptors exhibit
four to five methylation sites [206, 207, 208, 209]. Upon encountering changes in ambient
attractant levels, receptor methylation levels are changing, too. In consequence, changes in
methylation levels drive downstream responses in signaling proteins such as CheA and CheY
directing cell locomotion. For my analysis, I employed an established model of the Escherichia
coli chemotaxis pathway by Kollmann et al. [3].

Based on an idea and implementation of Jonas Förster1, I inferred expected attractant levels
from the methylation-based memory (Sections 5.4 and 5.6.2). Further, I employed delayed
estimates of mutual information to quantify the size of the methylation-based memory as well
as to measure time scales for the dynamic processes of memory formation and memory loss
(Sections 5.5 and 5.6.3). While regular estimations of mutual information had been applied
before to characterize information transfer in the chemotaxis system [192, 193], to the best
of my knowledge, this was the first time delayed mutual information estimates were used to
define the molecular memory in this pathway.

I found that boundaries in the dynamic range of the chemotaxis system [109, 112], i.e.,
the range of absolute attractant levels for which chemotactic behavior remained functional,
were predetermined by limitations in the upstream encoding of absolute attractant levels into
receptor methylation levels. This became particularly clear after analyzing model versions that
differed in the maximal number of receptor methylations (Section 5.6). To this end, decreases
in the maximal number of receptor methylations led to enhanced limitations in the encoding

1Biological Information Processing Group at the BioQuant Center, Heidelberg University.
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of absolute attractant levels. In turn, this was clearly linked to reductions in the dynamic
range. A link between the maximal number of receptor methylations and the dimensions
of the dynamic range had been observed experimentally [196] and in silico [197, 198]. By
means of the presented methods, I could shed light on the origins of this effect.

In both example studies of signal transduction, I defined molecular communication channels
for my analysis. To this end, I declared the variable to be encoded or decoded, i.e., the ambient
attractant level or the calcium oscillation frequency, as the channel input and the encoding or
decoding variable, i.e., the receptor methylation levels or the average activity of a calcium-
dependent protein, as the channel output. In both cases, the output variable was ultrasensitive
to changes in the input variable. This greatly benefited the discriminability between output
responses to different input signals, as already minor changes in the input could cause major
changes in the output variable (see Figures 4.10 and 5.2 B). While, in calcium signaling,
ultrasensitive behavior arises due to the cooperative binding of calcium ions to dependent
proteins [69, 169, 170, 171, 172], in Escherichia coli chemotaxis, attractant binding regulates
receptor kinase activity, whereas cooperative interactions between receptor proteins shape the
response curve [109, 214, 215]. It is imaginable that cooperative interactions emerged in the
course of evolution to enhance the versatility in encoding and decoding in the analyzed signal
transduction pathways. In conclusion, similarly complex signal transduction pathways might
rely on cooperative interactions as well.
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6.2 Outlook

In Chapter 4, I investigated the decoding of the calcium oscillation frequency by dependent
proteins. To this end, I used kinetic models to study different forms of frequency-decoding,
i.e., high-pass and band-pass activation, both of which were observed experimentally [62].
The presented models of calcium-dependent protein activation have to be understood as
simplifications of more complex molecular processes. For instance, with regards to CaMKII,
the holoenzyme is composed of several sub-units that can exhibit different degrees of kinase
activity dependent on their interactions with calcium-calmodulin complexes and neighboring
sub-units [69]. In a next step, it would be crucial to study frequency-decoding in more detailed
models that relate to particular calcium-dependent proteins. While I presented a model for the
calcium-dependent activation of NFAT (Section 4.6), the model could be extended to include
gene expression enabling a direct comparison to existing gene expression data (see [63]).

In my analysis, I identified requirements for distinct frequency-decoding, for instance, positive-
cooperative protein activation (see Section 4.7) or, with regards to band-pass activation,
antagonistic, oscillator-dependent regulation of the decoder protein (see Sections 4.5 and
4.6.3). However, as of now, experimental validations for these results are missing. While, in
experiments, the frequency of calcium oscillations had been artificially modulated to study the
effect on a dependent protein’s activity [63, 65, 70], with regards to my results, it would be
most informative to extend these protocols by additionally manipulating kinetic properties of
particular proteins or altering existing network structures. This would allow for a comparison
between frequency-decoding in manipulated and wild-type systems.

Further, the presented optimization-based workflow (see Section 4.4) could be applied to
perform additional analyses of the decoding of calcium oscillations in silico. For example, in
Section 4.11, I detected a tradeoff between the precision and the distinctness in band-pass
activation. It would be interesting to analyze the best parameters sets capable of inducing
distinct band-pass activation for various degrees of precision. This would allow for the
identification of conserved characteristics, possibly providing a better understanding on what
parametric changes are required for changes in precision in band-pass activation. Additionally,
most of my analysis in Chapter 4 was based on sine wave calcium oscillations. However,
experimental time series of calcium oscillations in non-excitable cells frequently exhibit a
duty cycle and appear asymmetric, unlike sine waves [53]. Therefore, it would be important
to confirm that the presented results can be reproduced with more biological oscillation
shapes. For the reproduction of different oscillation shapes, the presented OscillatorGenerator
package for R can be applied (see Section 3.1). Lastly, in fish, the abundance of several
agonists is encoded into the amplitude of calcium oscillations [47]. Thus, it seems likely that
calcium-dependent proteins perform amplitude-decoding downstream. Due to the versatility
of the presented workflow, it could be easily modified to detect requirements for distinct
amplitude-decoding in silico.

In Chapter 5, I analyzed the encoding of attractant levels into receptor methylation levels in the
chemotaxis pathway of Escherichia coli. To this end, I used an established model by Kollmann
et al. [3] and stimulated the system by increasing or decreasing ambient attractant levels. I
then proceeded to measure the model response. While the application of sudden changes in
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attractant levels might be a common practice in experiments [93, 94, 133, 202], it is more
likely that, under natural conditions, bacteria follow attractant gradients. In conclusion, a
chemotactic bacterium would frequently encounter multiple increases in attractant levels
in a short period of time, as it swims along an attractant gradient. In an in silico study,
Vladimirow et al. reported that the chemotaxis system becomes insensitive to prolonged
gradients, eventually [129]. By approximating spatial gradients by dynamic attractant inputs
in the the presented chemotaxis model, one could study this effect in more detail. As I could
trace back limitations in the dynamic range of the chemotaxis system to upstream limitations
in the encoding of absolute attractant levels for simple singular increases in attractant levels
(see Sections 5.3 and 5.4), I suspect that the encoding step might be also responsible for the
observations in Vladimirow et al. [129]. Once again, the methods presented in Sections 5.4
and 5.5 could be applied.

Finally, most of the presented methods are not limited to the analysis of the decoding of
calcium oscillations or the encoding of attractant levels in chemotaxis. Recently, more reports
on versatile encoding and decoding mechanisms in signal transduction pathways emerged [18,
216]. The methods presented in this thesis could be adapted to study these systems in more
detail.
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NGF nerve growth factor
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PKC protein kinase C

PLC phospholipase C

PMCA plasma membrane Ca2+ ATPase
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TF transcription factor
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Part V

Appendix





AAdditional material to Chapter 4:
Analyzing the frequency-decoding
of calcium oscillations

A.1 The high-pass and band-pass activation
models

A.1.1 List of optimized parameter sets

Throughout Chapter 4.1, I optimized rate and binding constants for a maximization of the
high-pass activation efficiency EffH (according to Equations 4.2 and 4.3) or the band-pass
activation efficiency EffB (according to Equations 4.4 and 4.5). In the following, I list all
optimized parameter sets. By default, I set cooperativity coefficients to 1 and the total
concentrations of Act, Deact and Pr to 5000 nM. During maximizations, rate constants were
allowed to vary between 0 s−1 and 106 s−1, binding constants between 0 nM and 106 nM. If
not explicitly mentioned otherwise, period lengths Tfast, Tmed and Tslow were equal to 0.1 s,
10 s and 1000 s, respectively. Corresponding period lengths were used for the calculation of
frequency-decoding efficiencies.

In Section 4.5, I tried to recreate different forms of frequency-decoding in the high-pass
(Table 4.2) and band-pass model (Table 4.3). In addition to a maximization of EffH and
EffB , I also performed maximizations of the low-pass activation efficiency EffL (according to
Equations 4.9 and 4.10). Optimized parameter sets can be found in Tables A.1 and A.2.

Parameter sets in Tables A.3 to A.9 relate to optimization results targeting either a maximiza-
tion of EffH in the high-pass model or a maximization of EffB in the band-pass model given
different parameterizations of cooperativity coefficients. I used corresponding parameter sets
mainly to compute results presented in Section 4.7.

Rate and binding constants were found to be confined to optimal margins in order to induce
efficient band-pass or high-pass activation. In conclusion, I ran constrained optimizations
to assess the effect of unfavorable model parameterizations on frequency-decoding. In
Tables A.12 to A.13, the resultant optimized parameter sets are shown. I used these parameter
sets to compute simulation results presented in Section 4.9.

I assumed a relationship between the optimal parameterization margins of calcium-binding
constants KA and KD and the calcium oscillation amplitude. Hence, I examined the effect
of modulations of the oscillation amplitude on optimized parameter sets. To this end, I
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maximized EffB in the band-pass model in Section 4.10. Optimized parameter sets can be
found in Table A.14.

In Section 4.24, I assessed the impact of narrower band-pass activation filters on the band-
pass activation potential EB (the maximized band-pass activation efficiency EffB). Hence,
I altered default values of Tfast and Tslow in maximizations of EffB in the band-pass model.
Corresponding optimized parameter sets are shown in Tables A.15 and A.16.
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high-pass
m

odel.

a
,
p

1
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p

2
k

A
1

K
A

k
A

2
k

P
1

K
P

1
k

P
2

K
P

2
Figu

res

2
7.886

21279.256
1742.279

6761.899
2.054

1.146
11375.355

4.11
A

3
48.525

5190.013
1947.89

4006.909
6.134

0.174
0.007

4.11
A

4
25.652

11240.698
802.565

1012.011
0.024

262.073
28850.578

4.11
A

5
1.629

3103.76
337.532

732.514
0.155

2.01
8620.044

4.11
A

6
3495.674

3241.618
358.024

680.004
63.797

1.417
7365.096

4.11
A

R
ate

constants
(k

i )
are

given
in

s −
1,binding

constants
(K

i )
in

nM
.

Tab.A
.5.

Param
eter

sets
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a
m

axim
ization
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EffB
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param
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d
d

in
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ban
d-pass

m
odel.

a
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d
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A
1

K
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k
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2
k

D
1

K
D

k
D

2
k

P
1

K
P

1
k

P
2

K
P

2
Figu

res

1
0.01

87551.629
0.074

0.057
89628.179

92.386
3617.695

7609.145
2469.961

9.271
4.10

B
;4.11

B

2
19.922

65280.964
0.092

110.86
91398.746

32.445
3067.717

93931.69
7959.079

603.866
4.10

B
;4.11

B

3
60.595

29208.176
0.112

8667.029
79351.866

24.273
9000.985

97637.004
8071.019

610.981
4.10

B
;4.11

B

4
0.1

500
0.1

1
500

1
0.1

1200
1

1200
4.4

4
0.333

5728.448
0.135

85.022
5335.715

21.38
958.343

1039.251
7725.553

2805.14
4.4;4.10

B
;4.11

B
;4.24

A
,D

5
0.127

2945.616
0.181

461.398
5042.912

21.898
4802.849

7229.097
7386.699

2827.689
4.10

B
;4.11

B

6
0.914

3461.619
0.246

145.713
5009.175

23.899
8564.056

9337.516
1753.228

36.273
4.10

B
;4.11

B

R
ate

constants
(k

i )
are

given
in

s −
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constants
(K

i )
in

nM
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7
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B

4
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5
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0.
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1
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1
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4
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B

5
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2
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.0
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1
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2
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9
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B

6
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5
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35
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66
.4
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4
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s
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i
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1
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s
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i
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Tab.A
.8.

Param
eter

sets
optim

ized
for

a
m

axim
ization

of
EffB

given
differen

t
param

eterization
s

of
the

cooperativity
coeffi

cien
t

a
in

the
ban

d-pass
m

odel.

a
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A
1

K
A

k
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2
k

D
1

K
D

k
D

2
k

P
1

K
P

1
k

P
2

K
P

2
Figu

res

2
1
·10
−

4
2279.938

0.01
0.089

9052.617
27.56

626.238
1032.94

5003.852
598.215

4.11
B

3
0.06

9499.622
0.006

0.708
9447.338

11.008
381.041

1706.316
1884.872

3144.254
4.11

B

4
0.014

1274.099
0.034

0.292
9168.139

10.559
185.344

9877.172
9038.629

9355.108
4.11

B

5
0.001

1602.904
0.019

0.062
9157.437

6.162
1364.517

1030.891
5019.353

577.505
4.11

B

6
1.607

2714.466
0.007

0.837
9573.026

4.785
51.511

8306.821
1375.833

8730.873
4.11

B

R
ate

constants
(k

i )
are

given
in

s −
1,binding

constants
(K

i )
in

nM
.
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.9.

Param
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8835.445

309.309
678.798
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786.922

646.092
4.11

B

3
0.001

5821.896
0.081

1524.41
3490.059

195.969
4265.335

2991.353
3012.494

9999.993
4.11

B

4
0.005

7465.33
0.086

3617.427
2452.237

73.36
741

3667.422
1104.04

9604.892
4.11

B

5
0.005

8596.787
0.088

212.709
715.86

131.998
828.05

4460.901
540.7

7367.289
4.11

B

6
0.069

6337.784
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569.756
473.884

10.56
88.42

8839.108
7.793
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4.11

B

R
ate

constants
(k

i )
are
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in

s −
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constants
(K

i )
in

nM
.
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Tab.A
.12.

Param
eter
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for

a
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axim
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of
EffH

given
differen

t
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din
g

con
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t
optim
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1
K

A
k

A
2
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P
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P

2
K
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2
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res

[0;5
·10
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0.001
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A

[0;7.5
·10
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3
·10
−

4
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2.815
12224.213

653.707
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374.006
4.21

A

[0;10
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999.997
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397.303
0.659

979.734
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9127.323
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92668.884
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2.395

8938.783
4.21

A
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48690.264
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86641.722
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15981.127

4.21
B
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4;10
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17725.936
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8.818

99465.649
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4.21
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R
ate

constants
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A.1.2 Additional analysis results of parameter couples

In Section 4.8, I analyzed parameter sets leading to pronounced high-pass activation in the
high-pass model (with a scanned from 1 to 6) and pronounced band-pass activation in the
band-pass model (with a and d scanned from 1 to 6). To this end, I also searched for pairwise
relationships between parameter distributions. In particular, I quantified linear dependencies
by means of correlation coefficients as well as linear and non-linear dependencies by means of
surrogate-corrected estimations of mutual information.

The application of both methods led to the conclusion that dependencies between parameter
distributions were majorly cooperativity-dependent. Changes in the parameterizations of
cooperativity coefficients led to the emergence or disappearance of clear relationships between
parameter distribution pairs. In case of high-pass activation in the high-pass model, both
methods detected the most persistent relationships between kA1 and KA as well as between
kP2 and KP2. For smaller parameterizations of a, I found also a noticeable relationship
between kA1 and kA2 (Figures A.1 and A.2).

In terms of band-pass activation in the band-pass model, both methods detected relationships
between kA1 and KA as well as between kD1 and KD. Estimations of mutual information
further identified a close relationship between kP2 and KP2 that was less pronounced in
correlation results (Figures A.3 to A.5).
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Fig. A.1. Correlation results between optimized parameter distributions leading to efficient high-pass acti-
vation in the high-pass model. I isolated optimized parameter sets leading to pronounced high-pass
activation in the high-pass model for different parameterizations of the cooperativity coefficient a. In
particular, I maximized the high-pass activation efficiency EffH and extracted parameter sets linked to
an objective value within a 2-nM-margin to the overall best objective value for a specific optimization
problem. Most correlation results were highly sensitive to variations in a. Only correlation results
between kA1 and KA, kP 2 and KP 2 as well as, for smaller values of a, between kA1 and kA2 were
particularly persistent. Plots were generated by means of the plotcorr function in the ellipse package
in R. Results for a = 1 are shown in (A), for a = 2 in (B), . . . , for a = 6 in (F).
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Fig. A.2. Mutual information estimates between optimized parameter distributions leading to efficient
high-pass activation in the high-pass model for different parameterizations of a. I isolated op-
timized parameter sets leading to efficient high-pass activation in the high-pass model for different
parameterizations of the cooperativity coefficient a. In particular, I maximized the high-pass activation
efficiency EffH and extracted parameter sets linked to an objective value within a 2-nM-margin to the
overall best objective value per optimization problem. Mutual information estimates between single
parameter distributions resembled correlation results (Figure A.1). I found the strongest relationships
between kA1 and KA, kP 2 and KP 2 as well as, for small parameterizations of a, between kA1 and kA2.
Presented estimates were bias-corrected by subtracting mean values of surrogate estimate distributions
from original estimates (as introduced in Section 2.5). Results for a = 1 are shown in (A), for a = 2 in
(B), . . . , for a = 6 in (F).
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Fig. A.3. Correlation results between optimized parameter distributions leading to efficient high-pass acti-
vation in the band-pass model. I isolated optimized parameter sets leading to pronounced band-pass
activation in the band-pass model for different parameterizations of a and d. In particular, I maximized
the band-pass activation efficiency EffB and extracted parameter sets linked to an objective value within
a 2-nM-margin to the overall best objective value per optimization problem. As in the high-pass model,
correlation results between parameter couples were highly sensitive to changes in the cooperativity
coefficients a and d. I found correlation results between kA1 and KA as well as between kD1 and KD to
be the most persistent upon changes in a and d. For cooperativity coefficients smaller than 4, a recurring
negative correlation between kA1 and kP 1 was found. Plots were generated by means of the plotcorr
function in the ellipse package in R. Results for a = d = 1 are presented in (A), for a = d = 2 in (B),
. . . , for a = d = 6 in (F).
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Fig. A.4. Mutual information estimates between optimized parameter distributions leading to pronounced
band-pass activation in the band-pass model for different parameterizations of a and d (part 1).
I isolated optimized parameter sets leading to pronounced band-pass activation in the band-pass model,
for different parameterizations of the cooperativity coefficients a and d. In particular, I maximized the
band-pass activation efficiency EffB and extracted parameter sets associated with an objective value
within a 2-nM-margin to the overall best objective value per optimization problem. Mutual information
estimates agree with correlation results presented in Figure A.3 with regards to a clear relationships
between kA1 and KA as well as between kD1 and KD. Presented estimates were bias-corrected by
subtracting mean values of surrogate estimate distributions from original mutual information estimates
(as introduced in Section 2.5).
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Fig. A.5. Mutual information estimates between optimized parameter distributions leading to pronounced
band-pass activation in the band-pass model for different parameterizations of a and d (part 2).
Remaining mutual information estimates can be found in Figure A.4.
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A.1.3 Dependence of the optimal parameterization of binding
constants on the calcium oscillation amplitude -
additional parameter distributions

In Section 4.10, I examined the dependence of optimal parameterization margins on the
calcium oscillation amplitude in maximizations of the band-pass activation efficiency EffB in
the band-pass model. While optimized values of the binding constants KA and KD indicated
a clear sensitivity to the applied changes in the calcium oscillation amplitude (see Figure 4.22
in Section 4.10), the remaining model parameters exhibited no or only a minor sensitivity
(Figure A.6). In particular, I could attest a minor sensitivity for kA2 and kD2.
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Fig. A.6. Parameter distributions of optimized parameter sets capable of pronounced band-pass activation
for different calcium oscillation amplitudes. I isolated optimized parameter sets leading to objective
values within a 2-nM-margin to an overall best value. Optimizations targeted a maximization of EffB in
the band-pass model for different calcium oscillation amplitudes. To this end, I altered the peak level
of the calcium oscillations, while setting the base level to a constant value of 200 nM. Further, I set
cooperativity coefficients a and d to 4. Rate constants kA2 (B) and kD2 (D) indicated a minor sensitivity
to the applied changes in the oscillation amplitude. Number of isolated parameter sets for peak = 500,
1000, . . . , 3000 nM: 180, 96, 70, 98, 104, 120. Number of isolated fits relative to the overall number of
fits for peak = 500, 1000, . . . , 3000 nM: 4.18 %, 2.38 %, 2.12 %, 3.36 %, 4.08 %, 4.82 %. 2 nM relative
to the leading objective value for peak = 500, 1000, . . . , 3000 nM: 0.25 %, 0.14 %, 0.13 %, 0.12 %,
0.12 %, 0.12 %.
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A.1.4 Applied parameterizations of the stochastic high-pass
model

In the second part of Chapter 4, I introduced a stochastic version of the high-pass model
(Table 4.6). The standard parameterization of this stochastic version of the high-pass model is
given in Table A.17.

In particular, I obtained the standard parameterization by performing optimizations of the
deterministic version of the high-pass model (Table 4.2) targeting a maximization of the
high-pass activation efficiency EffH . To this end, I set the cooperativity coefficient a to
4 and contained model species to a total concentration of 1000 nM each. Only rate and
binding constants were allowed to vary in the optimizations. Rate constants, however, were
confined to an interval spanning from 0 s−1 to 100 s−1 during optimizations, since larger
values were linked to high computational expenses. In the main text, I demonstrated that
the presented standard parameterization also enables distinct high-pass activation under
stochastic conditions in the stochastic high-pass model (see Section 4.12).

For Section 4.14, I derived additional parameter sets in a similar manner. First, I employed
deterministic optimizations of EffH in the high-pass model. Then, I checked whether I
could use the optimized parameter set to recreate high-pass activation also under stochastic
conditions. This time, however, I set the cooperativity coefficient a to either 1 or 2. The
resultant parameter sets are presented in Tables A.18 and A.19.

Tab. A.17. Standard parameterization of the stochastic version of the high-pass model for a = 4.

parameter value unit parameter value unit

kA1 12.604 s−1 KA 6687.801 nM

kA2 0.887 s−1 kP1 100 s−1

KP1 287.27 nM kP2 0.985 s−1

KP2 7549.400 nM a 4 /

p1 1 / p2 1 /

V 10−15 L Xtot 1000 nM

The presented parameter set was applied for stochastic simulations of the high-pass model in Sections 4.12
to 4.14. Xtot refers to the total concentrations of Act, Deact and Pr. Initial concentrations of Act and Pr were
computed according to the corresponding steady state equations (Equations 4.6 and 4.7). The presented
parameter set originated from a deterministic optimization targeting a maximization of the high-pass
activation efficiency EffH (Equation 4.3) with default values for Tfast and Tslow and a set cooperativity
coefficient a equal to 4.
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Tab. A.18. Standard parameterization of the stochastic version of the high-pass model for a = 1.

parameter value unit parameter value unit

kA1 0.019 s−1 KA 9997.111 nM

kA2 1.635 s−1 kP1 99.48 s−1

KP1 269.151 nM kP2 0.337 s−1

KP2 2448.887 nM a 1 /

p1 1 / p2 1 /

V 10−15 L Xtot 1000 nM

The presented parameter set was applied for stochastic simulations of the high-pass model in Section 4.14.
Xtot refers to the total concentrations of Act, Deact and Pr. Initial concentrations of Act and Pr were
computed according to the corresponding steady state equations (Equations 4.6 and 4.7). The presented
parameter set originated from a deterministic optimization targeting a maximization of the high-pass
activation efficiency EffH (Equation 4.3) with default values for Tfast and Tslow and a set cooperativity
coefficient a equal to 1.

Tab. A.19. Standard parameterization of the stochastic version of the high-pass model for a = 2.

parameter value unit parameter value unit

kA1 0.256 s−1 KA 9999.659 nM

kA2 0.694 s−1 kP1 93.109 s−1

KP1 306.725 nM kP2 0.942 s−1

KP2 5517.707 nM a 2 /

p1 1 / p2 1 /

V 10−15 L Xtot 1000 nM

The presented parameter set was applied for stochastic simulations of the high-pass model in Section 4.14.
Xtot refers to the total concentrations of Act, Deact and Pr. Initial concentrations of Act and Pr were
computed according to the corresponding steady state equations (Equations 4.6 and 4.7). The presented
parameter set originated from a deterministic optimization targeting a maximization of the high-pass
activation efficiency EffH (Equation 4.3) with default values for Tfast and Tslow and a set cooperativity
coefficient a equal to 2.
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A.2 The NFAT model

A.2.1 Parameterization of square-wave inputs in the NFAT
model

For simulations of the NFAT model, I employed square-wave calcium oscillations in Section 4.6.
In particular, I used square-waves for fitting the model to gene expression data by Dolmetsch
et al. [63] and for a maximization of the band-pass activation efficiency EffB. I generated
all square-wave time series by means of the SquareSpike function in the OscillatorGenerator
package for R (see Section 3.1). Details on the parameterization of the square waves can be
found in Table A.20.

Tab. A.20. Information on the applied square-wave inputs in Section 4.6.

Task Period T [s] Duty cycle [%] Active phase [s]

fitting 100 10 10

400 2.5 10

900 1.11 10

1800 0.56 10

band-pass 30 66.67 20

activation 60 33.33 20

500 4 20

I generated square-waves by means of the SquareSpike function of the OscillatorGenerator package for
R. For all square-waves, I set baseline and peak levels to 100 nM and 1000 nM, respectively, while I set
the trend argument to 1. Column "Task" refers to the purpose of the generated input in the optimization
process: either for fitting of the model to gene expression data [63] or for recreating band-pass activation.
The active phase is the absolute duration within an oscillation period T , in which the square-wave is on its
peak level. The duty cycle is defined as the ratio of the active phase to the total oscillation period.

A.2.2 Optimized parameter sets of the NFAT model

In Section 4.8, I optimized different versions of the NFAT model according to Equation 4.13.
Model version differed from each other in terms of the presence or absence of a calcium-
dependent deactivator. The optimized parameter sets for all applied model versions can be
found in Tables A.21 to A.23. I conducted optimizations of EffB with Tfast = 25 s, Tmed = 60 s
and Tslow = 500 s.

In Section 4.6.4, I assessed the effect of alternative parameterizations of Tslow. The optimized
parameter sets for Tslow = 200 s and Tslow = 300 s can be found in Tables A.24 and A.25.
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Tab. A.21. Optimized parameter values of the original NFAT model with antagonistic, oscillator-dependent
regulation.

parameter value unit parameter value unit

kN1 4471.256 s−1 kN2 0.259 s−1

kN3 2351.606 s−1 kN4 0.116 s−1

kN5 0.466 nM · s−1 kN6 0.141 s−1

kN7 8.668 nM · s−1 kN8 1623.81 s−1

KN1 51359.144 nM KN2 5963.169 nM

m 3.765 / n 3.769 /

δ 419.560 / β 1.164 /

γ -15.751 /

I ran optimizations according to the objective function ΨNFAT (Equation 4.13) in the original NFAT model
exhibiting antagonistic, oscillator-dependent regulation, as presented in Table 4.4.

Tab. A.22. Optimized parameter values of the NFAT model without CaMKII-mediated inhibition.

parameter value unit parameter value unit

kN3 31204.396 s−1 kN4 0.002 s−1

kN7 3576.947 nM · s−1 kN8 17.917 s−1

KN2 1012.038 nM n 2 /

β 1.131 / γ -100 /

I ran optimizations according to the objective function ΨNFAT (Equation 4.13) in a version of the NFAT
model exhibiting no inhibition by means of a phosphorylation of calcineurin by CaMKII. Thus, only
reactions N3 to N4 and N9 to N10 applied for this model version (model reactions are listed in
Table 4.4).
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Tab. A.23. Optimized parameter values of the NFAT model version with oscillator-independent deactivation.

parameter value unit parameter value unit

kN3 2409.954 s−1 kN4 0.033 s−1

kN5 0.048 nM · s−1 kN6 89.201 s−1

kN7 4810.580 nM · s−1 kN8 0.086 s−1

KN2 928.155 nM n 5.241 /

δ 1563.384 / CaMKII∗ 2479.653 nM

β 1.131 / γ -100 /

I ran optimizations according to the objective function ΨNFAT (Equation 4.13) in a version of the NFAT
model exhibiting a constant, oscillator-independent concentration of active CaMKII. Thus, I cut reactions
N1 to N2 with respect to the model’s original form (Table 4.4). Parameter CaMKII∗ is the constant
optimized concentration of active CaMKII.

Tab. A.24. Optimized parameter values of the NFAT model with Tslow = 200 s.

parameter value unit parameter value unit

kN1 93254.118 s−1 kN2 0.326 s−1

kN3 99997.864 s−1 kN4 0.262 s−1

kN5 282.822 nM · s−1 kN6 0.127 s−1

kN7 0.014 nM · s−1 kN8 2.209 s−1

KN1 78976.966 nM KN2 6974.387 nM

m 5.596 / n 4.692 /

δ 1571.038 / β 1.174 /

γ -7.315 /

I ran optimizations according to the objective function ΨNFAT (Equation 4.13) in the NFAT model, as
presented in Table 4.4. For the optimizations, I set Tfast to 25 s, Tmed to 60 s and Tslow to 200 s.

170



Tab. A.25. Optimized parameter values of the NFAT model with Tslow = 300 s.

parameter value unit parameter value unit

kN1 93254.116 s−1 kN2 0.356 s−1

kN3 99995.825 s−1 kN4 0.158 s−1

kN5 282.982 nM · s−1 kN6 0.163 s−1

kN7 0.018 nM · s−1 kN8 2.441 s−1

KN1 82207.69 nM KN2 6974.465 nM

m 5.430 / n 5.053 /

δ 1571.198 / β 0.931 /

γ -7.203 /

I ran optimizations according to the objective function ΨNFAT (Equation 4.13) in the NFAT model, as
presented in Table 4.4. For the optimizations, I set Tfast to 25 s, Tmed to 60 s and Tslow to 300 s.
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BAdditional material to Chapter 5:
Analyzing the encoding of
attractant levels in the chemotaxis
of E. coli

B.1 Additional estimates of mutual information
showing memory formation in the original
model

In Section 5.5, per system size and attractant baseline level, I performed 1000 stochastic
simulations in which I stimulated the chemotaxis model by Kollmann et al. by raising the
attractant concentration to different step levels. In particular, I drew 1000 attractant step
levels from a uniform distribution spanning between the selected attractant baseline level
and the attractant baseline level plus 200 %. For each of the 1000 simulations, I recorded the
reorganization of the receptor species T0 to T4 that changed in response to the rise in the
attractant level.

Then, I monitored the process of memory formation by measuring the mutual information
between the batch of attractant step levels Lstep and the corresponding receptor methylation
levels at a time point τ, Tτ. Thus, I estimated the mutual information between a vector of
attractant step levels and a five-column matrix of corresponding receptor methylation levels.
The process of memory formation could be visualized by performing several estimations of
mutual information scanning τ (see Figure 5.8 in Section 5.5). I fitted the obtained curves
describing the evolution of mutual information in dependence of τ to the following equation:

I (τ) = a ·
arctan

(
τ · b−1)
b

(B.1)

By means of the fitted functions, I could derive time measures for memory formation, as
presented in Figure 5.9 in Section 5.5. In this section, I present all system-size- and baseline-
specific fits to obtained mutual information data. Fitted parameters of Equation B.1 can be
found in Table B.1. In Figures B.1 to B.4, mutual information data (black) and corresponding
data fits (red) are provided. For more information about the applied workflow, please refer to
Section 5.5.
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original estimates

mean of surrogate 
estimates 

fit to original 
estimates

Fig. B.1. Mutual information estimates describing the formation of the methylation-based memory in
Escherichia coli chemotaxis for a system size of 1.4 · 10−15 L. Per attractant baseline level, I ran 1000
stochastic simulations in which the attractant level was increased from a baseline level to a step level at
τ = 0. To this end, I drew attractant step levels from a uniform distribution spanning from a selected
baseline level to the baseline level plus 200 %. Here, I present mutual information estimates between the
baseline-specific batch of attractant step levels and the corresponding receptor methylation levels at a
time point τ. Presented plots refer to the following attractant baseline levels: (A) 10−1 µM, (B) 100 µM,
(C) 101 µM, (D) 102 µM, (E) 103 µM, (F) 104 µM, (G) 105 µM, (H) 106 µM, (I) 107 µM, (J) 108 µM,. By
changing τ, I could visualize the process of memory formation. I employed surrogate mutual information
estimations to validate original estimates. For surrogate estimates, the Lstep variable was permutated to
disrupt original dependencies. Further, in order to quantify the time period for memory formation, I
fitted the original estimate curves (black) to Equation 5.8, in case memory formation was present. Data
fits are presented in red. Applied system size: 1.4 · 10−15 L.
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Fig. B.2. Mutual information estimates describing the formation of the methylation-based memory in
Escherichia coli chemotaxis for a system size of 1.4 · 10−16 L. Per attractant baseline level, I ran 1000
stochastic simulations in which the attractant level was increased from a baseline level to a step level at
τ = 0. To this end, I drew attractant step levels from a uniform distribution spanning from a selected
baseline level to the baseline level plus 200 %. Here, I present mutual information estimates between the
baseline-specific batch of attractant step levels and the corresponding receptor methylation levels at a
time point τ. Presented plots refer to the following attractant baseline levels: (A) 10−1 µM, (B) 100 µM,
(C) 101 µM, (D) 102 µM, (E) 103 µM, (F) 104 µM, (G) 105 µM, (H) 106 µM, (I) 107 µM, (J) 108 µM,. By
changing τ, I could visualize the process of memory formation. I employed surrogate mutual information
estimations to validate original estimates. For surrogate estimates, the Lstep variable was permutated to
disrupt original dependencies. Further, in order to quantify the time period for memory formation, I
fitted the original estimate curves (black) to Equation 5.8, in case memory formation was present. Data
fits are presented in red. Applied system size: 1.4 · 10−16 L.
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Fig. B.3. Mutual information estimates describing the formation of the methylation-based memory in
Escherichia coli chemotaxis for a system size of 1.4 · 10−17 L. Per attractant baseline level, I ran 1000
stochastic simulations in which the attractant level was increased from a baseline level to a step level at
τ = 0. To this end, I drew attractant step levels from a uniform distribution spanning from a selected
baseline level to the baseline level plus 200 %. Here, I present mutual information estimates between the
baseline-specific batch of attractant step levels and the corresponding receptor methylation levels at a
time point τ. Presented plots refer to the following attractant baseline levels: (A) 10−1 µM, (B) 100 µM,
(C) 101 µM, (D) 102 µM, (E) 103 µM, (F) 104 µM, (G) 105 µM, (H) 106 µM, (I) 107 µM, (J) 108 µM,. By
changing τ, I could visualize the process of memory formation. I employed surrogate mutual information
estimations to validate original estimates. For surrogate estimates, the Lstep variable was permutated to
disrupt original dependencies. Further, in order to quantify the time period for memory formation, I
fitted the original estimate curves (black) to Equation 5.8, in case memory formation was present. Data
fits are presented in red. Applied system size: 1.4 · 10−17 L.
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Fig. B.4. Mutual information estimates describing the formation of the methylation-based memory in
Escherichia coli chemotaxis for a system size of 1.4 · 10−18 L. Per attractant baseline level, I ran 1000
stochastic simulations in which the attractant level was increased from a baseline level to a step level at
τ = 0. To this end, I drew attractant step levels from a uniform distribution spanning from a selected
baseline level to the baseline level plus 200 %. Here, I present mutual information estimates between the
baseline-specific batch of attractant step levels and the corresponding receptor methylation levels at a
time point τ. Presented plots refer to the following attractant baseline levels: (A) 10−1 µM, (B) 100 µM,
(C) 101 µM, (D) 102 µM, (E) 103 µM, (F) 104 µM, (G) 105 µM, (H) 106 µM, (I) 107 µM, (J) 108 µM,. By
changing τ, I could visualize the process of memory formation. I employed surrogate mutual information
estimations to validate original estimates. For surrogate estimates, the Lstep variable was permutated to
disrupt original dependencies. Further, in order to quantify the time period for memory formation, I
fitted the original estimate curves (black) to Equation 5.8, in case memory formation was present. Data
fits are presented in red. Applied system size: 1.4 · 10−18 L.
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B.2 Additional estimates of mutual information
showing memory loss in the original model

In Section 5.5, I also employed estimates of mutual information to show the dynamical process
of memory loss. In particular, once a bacterial cell is stimulated by a change in ambient
attractant levels, information about the previous attractant level, stored in the receptor
methylation levels, is gradually lost.

Per attractant baseline level and system size, I drew 1000 attractant step levels from a uniform
distribution spanning from the selected attractant baseline level to the baseline level plus
200 %. Then, per attractant baseline level and system volume, I initialized 1000 stochastic
simulations. To this end, I started the simulations with biochemical species being set to
their steady state concentrations for the drawn attractant step levels. At time point τ = 0, I
decreased the attractant level to the selected baseline level.

Based on the received baseline- and system-size-specific data , I performed estimations of
mutual information. To this end, the first variable was composed of the drawn attractant step
levels Lstep and the second variable of the corresponding receptor methylation levels at a time
point τ, Tτ. Thus, the first variable was composed of a vector, while the second variable was a
five-column matrix.

For every original estimate of mutual information, I performed 100 surrogate estimations. In
particular, I permutated the attractant step level vector to disrupt dependencies to the receptor
methylation level matrix. In Tables B.5 to B.8, I present all obtained time courses of mutual
information showing memory loss for different system sizes and attractant baseline levels.
Original estimates are shown in black, the mean values of surrogate distributions are shown
in darkgrey.
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Fig. B.5. Mutual information estimates describing the loss of the methylation-based memory in Escherichia
coli chemotaxis for a system size of 1.4 · 10−15 L. Per attractant baseline level, I ran 1000 stochastic
simulations. To this end, attractant levels were initialized from a step level and decreased to a baseline
level at time point τ = 0. In particular, attractant step levels were drawn out of a uniform distribution
spanning from the selected baseline level to the baseline level plus 200 %. Thus, in the 1000 stochastic
simulations, attractant levels were initially set to 1000 different step levels and the decreased to the
same baseline level. Here, I present mutual information estimates between the baseline-specific batch of
attractant step levels and the corresponding receptor methylation levels at a time point τ. Plots refer to
the following attractant baseline levels: (A) 10−1 µM, (B) 100 µM, (C) 101 µM, (D) 102 µM, (E) 103 µM,
(F) 104 µM, (G) 105 µM, (H) 106 µM, (I) 107 µM, (J) 108 µM,. By changing τ, I could visualize the
process of memory loss. I employed surrogate estimations of mutual information to validate the original
estimates. For surrogate estimates, I permutated the Lstep variable to disrupt original dependencies to
the receptor methylation level matrix. Per original estimate at a time point τ, I performed 100 surrogate
estimates. Shown are the mean values of such τ-specific surrogate distributions in darkgrey. Applied
system size: 1.4 · 10−15 L.
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Fig. B.6. Mutual information estimates describing the loss of the methylation-based memory in Escherichia
coli chemotaxis for a system size of 1.4 · 10−16 L. Per attractant baseline level, I ran 1000 stochastic
simulations. To this end, attractant levels were initialized from a step level and decreased to a baseline
level at time point τ = 0. In particular, attractant step levels were drawn out of a uniform distribution
spanning from the selected baseline level to the baseline level plus 200 %. Thus, in the 1000 stochastic
simulations, attractant levels were initially set to 1000 different step levels and the decreased to the
same baseline level. Here, I present mutual information estimates between the baseline-specific batch of
attractant step levels and the corresponding receptor methylation levels at a time point τ. Plots refer to
the following attractant baseline levels: (A) 10−1 µM, (B) 100 µM, (C) 101 µM, (D) 102 µM, (E) 103 µM,
(F) 104 µM, (G) 105 µM, (H) 106 µM, (I) 107 µM, (J) 108 µM,. By changing τ, I could visualize the
process of memory loss. I employed surrogate estimations of mutual information to validate the original
estimates. For surrogate estimates, I permutated the Lstep variable to disrupt original dependencies to
the receptor methylation level matrix. Per original estimate at a time point τ, I performed 100 surrogate
estimates. Shown are the mean values of such τ-specific surrogate distributions in darkgrey. Applied
system size: 1.4 · 10−16 L.
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Fig. B.7. Mutual information estimates describing the loss of the methylation-based memory in Escherichia
coli chemotaxis for a system size of 1.4 · 10−17 L. Per attractant baseline level, I ran 1000 stochastic
simulations. To this end, attractant levels were initialized from a step level and decreased to a baseline
level at time point τ = 0. In particular, attractant step levels were drawn out of a uniform distribution
spanning from the selected baseline level to the baseline level plus 200 %. Thus, in the 1000 stochastic
simulations, attractant levels were initially set to 1000 different step levels and the decreased to the
same baseline level. Here, I present mutual information estimates between the baseline-specific batch of
attractant step levels and the corresponding receptor methylation levels at a time point τ. Plots refer to
the following attractant baseline levels: (A) 10−1 µM, (B) 100 µM, (C) 101 µM, (D) 102 µM, (E) 103 µM,
(F) 104 µM, (G) 105 µM, (H) 106 µM, (I) 107 µM, (J) 108 µM,. By changing τ, I could visualize the
process of memory loss. I employed surrogate estimations of mutual information to validate the original
estimates. For surrogate estimates, I permutated the Lstep variable to disrupt original dependencies to
the receptor methylation level matrix. Per original estimate at a time point τ, I performed 100 surrogate
estimates. Shown are the mean values of such τ-specific surrogate distributions in darkgrey. Applied
system size: 1.4 · 10−17 L.
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Fig. B.8. Mutual information estimates describing the loss of the methylation-based memory in Escherichia
coli chemotaxis for a system size of 1.4 · 10−18 L. Per attractant baseline level, I ran 1000 stochastic
simulations. To this end, attractant levels were initialized from a step level and decreased to a baseline
level at time point τ = 0. In particular, attractant step levels were drawn out of a uniform distribution
spanning from the selected baseline level to the baseline level plus 200 %. Thus, in the 1000 stochastic
simulations, attractant levels were initially set to 1000 different step levels and the decreased to the
same baseline level. Here, I present mutual information estimates between the baseline-specific batch of
attractant step levels and the corresponding receptor methylation levels at a time point τ. Plots refer to
the following attractant baseline levels: (A) 10−1 µM, (B) 100 µM, (C) 101 µM, (D) 102 µM, (E) 103 µM,
(F) 104 µM, (G) 105 µM, (H) 106 µM, (I) 107 µM, (J) 108 µM,. By changing τ, I could visualize the
process of memory loss. I employed surrogate estimations of mutual information to validate the original
estimates. For surrogate estimates, I permutated the Lstep variable to disrupt original dependencies to
the receptor methylation level matrix. Per original estimate at a time point τ, I performed 100 surrogate
estimates. Shown are the mean values of such τ-specific surrogate distributions in darkgrey. Applied
system size: 1.4 · 10−18 L.
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B.3 Time scales for memory formation and memory
loss in model versions differing in the maximal
number of receptor methylations

I derived time scales for memory formation and memory loss from delayed estimates of mutual
information measuring τstep and τdrop, as introduced in Section 5.5. In most cases, τstep and
τdrop were particularly large for the largest attractant baseline levels at which memory could
still be formed. In addition, the process of memory formation generally appeared to be slower
than the process of memory loss (Figures B.9 and B.10).

1.4*10-15

1.4*10-17
1.4*10-16

1.4*10-18

system size [L]

Fig. B.9. Time scales for memory formation in model versions differing in the maximal number of receptor
methylations. For various versions of the chemotaxis model by Kollmann et al., system sizes and
attractant baseline levels, I quantified the dynamical process of memory formation by means of delayed
estimates of mutual information, as previously shown in Figure 5.8. In case memory formation was
present, I quantified τstep, the time period starting in the moment the increase inthe attractant level was
applied until the moment half of the maximal mutual information between Lstep and Tτ was reached.
Model versions differed from each other with respect to the maximal number of receptor methylations:
in (A) four, in (B) three, in (C) two and in (D) one methylation(s) allowed per receptor.
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Fig. B.10. Time scales for memory loss in model versions differing in the maximal number of receptor
methylations. For various versions of the chemotaxis model by Kollmann et al., system sizes and
attractant baseline levels, I quantified the dynamical process of memory loss by means of delayed
estimates of mutual information, as previously shown in Figure 5.10. In case I could identify memory
loss, I quantified τdrop, the time period starting in the moment the decrease in the attractant level was
applied until the moment half of the initial mutual information between Lstep and Tτ was lost. Model
versions differed from each other with respect to the maximal number of receptor methylations: in (A)
four, in (B) three, in (C) two and in (D) one methylation(s) allowed per receptor.
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