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Abstract: Understanding the development of tissues and organs at a single
cell level remains a challenge. In this thesis I present a novel barcoding system
Polylox, recently developed by Hans-Reimer Rodewald and colleagues. Based on
the loxP-Cre recombination system, Polylox allows endogenous barcoding of sin-
gle cells in vivo. Using a Markov chain model for the recombination process, I find
that 𝑛𝐵 = 1, 866, 890 individual barcodes can be generated. Due to the struc-
ture of Polylox, barcodes have different generation probabilities. The mathemat-
ical model presented in this thesis, calibrated against experimental Polylox data,
allows the assignment of generation probabilities to each observed barcode and
the selection of informative barcodes based on their generation probabilities for
clonal analyses. Experimental collaborators induced barcodes in hematopoietic
stem cells (HSC) and I analysed the clone size distributions, finding large clone
sizes of up to 3.8% in young mice (< 1 year old) and 21.5% in old mice (2 years old)
of HSC in the adult bone marrow. I show that the appearance of large HSC clones
in older mice is explained by a neutral drift model.
Sampling from mature populations of the hematopoietic system revealed that a
very large proportion of HSC contributes to adult hematopoiesis (85.7%). Addi-
tionally, many HSC realize multipotency in vivo, yet clustering analysis of barcode
frequency distributions revealed a fundamental split between myelo- erythroid
and common lymphoid lineage development. These findings support the long-
held, but currently contested, view of a tree-like hematopoietic structure with few
major branches.
The description of the potential of common myeloid progenitors (CMP) as myelo-
erythroid restricted is largely dependent on transplantation and colony assays.
Analysis of Polylox data places the CMP compartment downstream of the split in-
side themyelo-erythroid branch and shows themyelo-erythroid potential of CMP.
By building a mathematical framework that allows the computing of the time
evolution of the moments of barcode clone sizes, I show that Polylox data is con-
sistent with previous work by Busch et al. further supporting the tree model of
hematopoiesis.
In addition to the analyses of single barcodes, I use network analysis techniques
on observed barcode sets. The connectivity of barcode sets reflects the prolifera-
tive state of the system during labelling. I found evidence for a strong proliferative
burst of at least three divisions a day in HSC progenitor cells at the time point of
fetal liver formation at embryonic day 9.5 in the mouse embryo.
Polylox proves to be a valuable technique for fate mapping that is not only appli-
cable to hematopoiesis but a multitude of systems.





Zusammenfassung: Das Verständnis der Entwicklung von Gewebe und Or-
ganen auf Einzelzellebene bleibt eine Herausforderung. In dieser Dissertation
stelle ich ein neuartiges Barcode System Polylox vor, das kürzlich vonHans-Reimer
Rodewald und Kollegen entwickelt wurde. Basierend auf dem loxP-Cre Rekom-
binationssystem erlaubt Polylox das endogene Markieren von einzelnen Zellen in
vivo. Mit Hilfe einer Markov-Kette, die den Rekombinationsprozess beschreibt,
finde ich, dass 𝑛𝐵 = 1, 866, 890 individuelle Barcodes erzeugt werden können.
Aufgrundder Struktur vonPolyloxhaben einzelneBarcodes unterschiedliche Erzeu-
gungswahrscheinlichkeiten. DasmathematischeModel, das in dieserDissertation
vorgestellt wird, erlaubt das Zuweisen von Erzeugungswahrscheinlichkeiten und
somit die Auswahl von informativen Barcodes basierend auf ihrer Erzeugungs-
wahrscheinlichkeiten zur klonalenAnalyse. Experimentelle Kollaborateure erzeug-
tenBarcodes in hämatopoetischen Stammzellen (HSC) und ich analysierte dieKlon-
größenverteilung und fand große Klongrößen von bis zu 3.8% (in jungen Mäusen;
< 1 Jahr alt) und 21.5% (in altenMäusen; 2 Jahre alt) aller HSC im adulten Knochen-
mark. Ich zeige, dass das Auftauchen von großen Klonen in älteren Mäusen mit
einem neutralen Drift erklärbar ist.
Stichproben aus vollentwickeltenZellpopulationendes hämatopoetischen Systems
zeigten, dass ein sehr großer Anteil der HSC zur adulten Hämatopoese beitra-
gen (85.7%). Zusätzlich realisierten viele HSC Multipotenz in vivo, eine Clustering
Analyse zeigte jedoch eine fundamentale Aufspaltung zwischenmyelo-erythroider
und gemeiner lymphoider Entwicklung. Diese Ergebnisse unterstützen die lange
vertretene, aber kürzlich angefochtene Ansicht einer baumartigen Struktur der
Hämatopoese mit einigen wenigen Ästen.
Die Beschreibung des Potential von gemeinen myeloiden Vorläufern (CMP) als
myelo-erythroid beschränkt basiertweitestgehend auf TransplantationenundKo-
lonie Assays. Die Analyse von Polylox Daten platziert CMP der Aufspaltung nach-
geschaltet im myelo-erthroiden Ast und zeigt das myelo-erythroide Potential von
CMP.
Durch das Aufstellen eines mathematischen Frameworks, das die Berechnung
der Zeitevolution der Momente der Barcode Verteilungen ermöglicht, konnte ich
zeigen, dass Polylox Daten kompatibel mit vorhergehender Arbeiten von Busch et
al. sind. Diese Übereinstimmung unterstützt das Baum Model der Hämatopoese
weiter.
Zusätzlich zur Analyse von einzelnen Barcodes habe ich Netzwerk Analyse Tech-
niken auf beobachtete Barcode Gruppen angewendet. Der Verbindungsgrad in
Barcode Gruppen reflektiert den proliferativen Status des System zum Zeitpunkt
der Markierung. Ich konnte Hinweise für einen starken proliferativen Schub von
etwa drei Zellteilungen pro Tag in HSC Vorläufern zum Zeitpunkt der Formation
der fötalen Leber am Tag 9.5 nach Befruchtung im Maus Embryo finden.
Polylox erweist sich als wertvolle Technik zur Kartierung von Zellgenealogien, die
nicht nur am hämatopoietischen sonder auch an einer Vielzahl an anderen Syste-
men anwendbar ist.
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1| Introduction

With a multitude of different cell types that are serving vastly varying functions,
the hematopoietic system remains a topic of intense research. While traditional
fate mapping techniques provided valuable insight, the deconvolution of the
hematopoietic system at single cell resolution in vivo remains a challenge. In this
thesis we present a novel fate mapping technique called Polylox , which is based
on the Cre-Lox recombination system. This barcoding technique offers not only
the tissue-specific induction of genetic barcodes, but also control over the time
point of induction. The experimental basis of Polylox barcoding has been estab-
lished in the laboratory of Hans-Reimer Rodewald at the DKFZ. Here, we develop
the mathematical analysis of Polylox barcodes.

1.1| The hematopoietic system

Hematopoiesis, from Greek 𝛼 ́𝜄𝜇𝛼 "blood" and 𝜋𝑜𝜄 ́𝜖𝜔 "bringing something into be-
ing" is the creation of the cellular contents of blood. At the top of this hematopoi-
etic system are the hematopoietic stem cells (HSC), which have self-renewing ca-
pabilities. HSChave beendiscovered in the early 1960s andhave since then sparked
the interest of many researchers [1]. Residing in the bone marrow in adult mam-
mals, HSC are characterized by their multipotency, as they give rise to the multi-
tude of different cell types within the hematopoietic system [2].
In the last decades vigorous research has identified numerous multipotent and
lineage restricted cell populations downstream of HSC. These mainly in vitro and
transplantation experiments are the basis of the hierarchical hematopoietic dif-
ferentiation tree. It is characterized by progressively specialized progenitor pop-
ulations, that over the course of differentiation lose self-renewal and multipo-
tency [3, 4].
Depending on their function, we distinguish three major lineages, thought to cor-
respond to branches in the hematopoietic tree.
Red blood cells: Or erythrocytes, which transport oxygen. As they are matured
they lose their nucleus. Since the proposed fate mapping technique uses a genetic
barcode, fully matured erythrocytes also lose their barcode tag. To still be able to
study their place in the tree, we sampled erythrocyte progenitors.
Lymphocytes: These are cells in the adaptive immune system that specifically rec-
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Figure 1.1: Hematopoietic system at different stages of development. Arrows denote dif-
ferentiation steps, dashed arrows are hypothesized. Tie2 expressing cells are shown with
a red outline. Location of development is color coded. This figure is adapted from [3]

ognize antigens. They are derived from common lymphoid progenitor cells (CLP),
which are a lineage restricted population in the classical tree model. In this thesis
we are studying B, CD4+ and CD8+ T cells.
Myeloid lineage: This lineage includes granulocytes,monocytes andmacrophages.
In this thesis we are mainly interested in the first two populations, since tissue
macrophages can have a different origin than HSC [5]. These cells serve mainly in
immune defense and tissue homeostasis by removing dead or damaged cells.
In figure 1.1 the treemodel is pictured fromembryonic stages into adulthood [3]. At
the early phases of embryonic development, a preliminary hematopoietic system
originates from the yolk sac (during embryonic days E7.5-E9.5). With the forma-
tion of the fetal liver at E9.5 the HSC production kicks off andmoves from the yolk
sac over the aorta-gonad-mesonephros (AGM) into the fetal liver [6, 7].

The structure of this model relies heavily on the identification of common lym-
phoid as well as common myeloid progenitor populations [8, 9]. Following the
identification of CMP, multiple studies have shown that CMP have the potential
to give rise to myeloid and erythroid fates [10, 11]. However, with the development
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of novel experimental techniques this long held view has become subject to con-
troversy [12--14]. To find the backbone of the system and to answer these contro-
versies many groups are now using single cell transcriptome data, with varying
results. While some find evidence for fate restricted cell clusters within the CMP
compartment [15], others argue that there are no lineage restricted progenitor
populations that retain bipotency or oligopotency [14]. Perié et al. find, in single
cell transplantation experiments, evidence for CMP as a step in the differentiation
pathway towards myeloid and erythroid fates [16]. This controversy underscores
the fact, that even though the hematopoietic system is well understood, some key
elements remain unsolved.

Functions of transplanted multi- or bipotent progenitor populations might vary
from unperturbed physiology, and transience of gene expression might lead to
falsely classified connections [17]. We therefore need a method, that allows the
analysis of progenitor-offspring relationships under an unperturbed physiology.
Polylox barcoding enables the tagging of individual stem cells in a non-invasive
manner and the tracing of their progeny.

1.2| Cre-Lox recombination system

Polyloxmakes use of a site-specific recombination system introduced into eukary-
otic cells by Sauer et al. in the late 1980s [18, 19], the Cre-Lox recombination. It
consists of the Cre recombinase and its respective LoxP target sequences, that
are derived from the bacteriophage P1. With proper alignment of the target se-
quences, Cre-Lox enables the deletions and inversions of enclosedDNA sequences.
This property is widely used to create knockout animals for in vivo studies of gene

loxP loxP loxP loxP

Excision Inversion
a b

Figure 1.2: Cre-Lox recombination system: a, Cre-mediated excisions occur between two
loxP -sites with the same orientation. The excised segment (red) is lost. b, Cre-mediated
inversions occur between two loxP -sites with opposing orientation [21]. The blue and red
line indicate DNA, the black triangles indicate loxP site with their respective orientation.
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Figure 1.3: Polylox and nomenclature of barcodes: a, Unrecombined Polylox. Unique DNA-
Elements are encoded by numbers 1-9, their inversions by letters A-I, loxP sites are shown
as black triangles. b, Polylox after an inversion of elements 4,5 and 6 yielding the barcode
'123FED789'. c, Polylox after another recombination event where elements 8 and 9 are cut
out yields the final barcode '123FED7'

functions [20].
Specifically the binding of Cre to two loxP sites with the same orientation leads to
an excision of the enclosed DNA sequence (fig. 1.2 a). Contrary, binding of Cre to
two loxP site with different orientation leads to an inversion (fig. 1.2 b) [21].

1.2.1| Polylox

As the name suggest, Polylox consist of 10 loxP sites with alternating orienta-
tion [22]. Between each neighboring loxP pair is a unique DNA sequence of 178
base pairs (bp), which are based on the AT2G21770 gene from Arabidopsis thaliana.
These 9 unique DNA blocks are labelled 1-9, their inversions are denoted by the
letters A-I respectively (fig. 1.3 a, b).
The basic idea behind this DNA cassette is that a random recombination based on
the Cre-Lox rules described in the previous section yields a high diversity of pos-
sible barcodes (fig. 1.3 c). As the Cre recombinase is inducible in certain tissues,
recombination of Polylox is controllable in a temporal and tissue-specific manner.
After recombination took place the genetic barcode is stable and heritable, allow-
ing the tracing of output of stem cells. The key premise is that during a limited
time window, Cre will not interact with all the loxP sites but only with a random
selection of them.
To be able to study the hematopoietic systems under unperturbed conditions the
locus in which Polylox is inserted needs to be chosen carefully. Here, a widely used
locus with no known impact on physiology and function has been picked, Rosa26.
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1.3| Overview

Since there are multiple ways of creating the same barcode, as well as endpoints
of recombination such as '1' or '9', we need a way to identify rare i.e. barcodes
that have been created only once. In the first chapter we will discuss a probability
model for barcode creation based upon the established rules of Cre-Lox recombi-
nation. It will allow us to accurately describe Polylox barcode creation and will lay
the foundation for the analysis presented in this thesis.

Next, we will quickly go over a computational framework that has been imple-
mented and is easy to use for any group wanting to employ Polylox barcoding.
The framework enables the assignment of probabilities for every found barcode
and purges 'impossible' barcodes.

In the following chapter the experimental setup, that was used to create the data
in this thesis is discussed.

Single cell and bulk data will be analyzed in the following chapter. Here we will
take at a look at clone size distributions of HSC and their respective output into
the adult hematopoiesis. We will also try to answer the question of progenitor-
offspring relationships in the CMP and GMP populations, by employing hierar-
chical clustering strategies.

Further we will try to shed more light into barcode propagation and the expected
correlation pattern between populations. For this, we build several toy models to
understand the influence of kinetics and topological motifs on the measured bar-
code distributions.

Previous fate mapping studies have been able to deduce kinetics and topology in
the hematopoietic system [23]. Using the findings of the previous chapter, wewant
to see whether the findings of Polylox barcoding is explained by the long standing
tree model.

In the last chapter we will take a look at the information we get from whole bar-
code sets retrieved experimentally. For this wewill discuss network analysis tech-
niques and implement them for Polylox barcoding. This allows us to gain informa-
tion in the state of the system at the time point of barcode creation.





2| Barcode probability model

In this chapter we will take a look at the theoretical barcode complexity of the
Polylox cassette, with the aim to calculate a probability of generation 𝑃gen for each
possible barcode. Since some barcodes will be generated multiple times in vivo,
we use 𝑃gen to filter out highly abundant barcodes in order to gain single cell res-
olution of barcoding.
First, we will deduce a formula which describes the barcode complexity based on
the simple rules discussed in chapter 1.2.1. To make this formula applicable in
practice a library of all possible barcodes is created in silico. This library is then
linked by possible recombination steps in an adjacency matrix, which is then used
to form a transition matrix.
This simple Markov model allows us to accurately describe the process of bar-
code recombination and to assign to each barcode found in any given experiment
the corresponding 𝑃gen value. The model described in this chapter and the corre-
sponding Matlab scripts have been made publicly available [22].

2.1| Barcode complexity

To label single cells with unique barcodes a high enough complexity in barcode
creation is needed. We therefore ask howmany barcodes that can be created with
𝑚 unique DNA-segments. For that we create a formula for barcode complexity.
The way Polylox is constructed, combined with the rules of the Cre-Lox recombi-
nation system, leads to the following observations:

• To avoid complete excision, Polylox must consist of an odd number of seg-
ments

• Suppose Polylox has a length of 𝑚 segments then

1. (𝑚+1)
2 are at an odd location (1/𝐴, 3/𝐶, …)

2. (𝑚−1)
2 are at an even location (2/𝐵, 4/𝐷, …)

• Inversions have an odd length, excisions an even length

⇒ As a consequence after any number of recombinations, odd segments

7
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end up at odd numbered locations, even segments end up at even numbered
locations.

This gives (𝑚+1)
2 ! possibilities for the odd numbered segments and (𝑚−1)

2 ! for the
even numbered segments. At every location there are again two possibilities: in-
verted and non-inverted. The number of barcodes for an uncut Polylox of length
𝑚 is then given by:

𝑁inv(𝑚) = ((𝑚 + 1)
2 ) ! ((𝑚 − 1)

2 ) ! 2𝑚 (2.1)

Now suppose our Polylox substrate of length 𝑚 is originally cut down from a sub-
strate of length 𝑙. There are now:

• (𝑙+1)
2 different odd segments and (𝑚+1)

2 odd numbered locations

• (𝑙−1)
2 different even segments for (𝑚−1)

2 even numbered locations.

To account for these permutations, we note that each one has the number of pos-
sible inversions given by eq. 2.1. The number of all possible Polylox barcodes of
length 𝑚 cut down from length 𝑙 is then given by:

𝑁(𝑙, 𝑚) = (
(𝑙+1)

2(𝑚+1)
2

)(
(𝑙−1)

2
(𝑚−1)

2
) ((𝑚 + 1)

2 ) ! ((𝑚 − 1)
2 ) ! 2𝑚 (2.2)

Summation over all possible lengths for a substrate of length 𝑙 gives the total num-
ber of unique barcodes.

𝑁(𝑙) =
(𝑙+1)

2

∑
𝑚=1,3,…

(
(𝑙+1)

2(𝑚+1)
2

)(
(𝑙−1)

2
(𝑚−1)

2
) ((𝑚 + 1)

2 ) ! ((𝑚 − 1)
2 ) ! 2𝑚

(2.3)

For 𝑙 = 9 this yields 𝑛𝑏 = 1, 866, 890 unique barcodes (fig. 2.1 a). For barcod-
ing the HSC compartment that consist of roughly 18,000 cells [23], the theoretical
complexity of a length 9 Polylox cassette is clearly sufficient.

2.2| Library creation

To create a working probability model for barcode creation and to identify real
barcodes from sequencing or PCR errors, we generated the complete library of all
𝑛𝑏 = 1, 866, 890 Polylox barcodes. This is done in silico by applying all possible in-
versions and excisions exactly once to the unrecombined barcode. From that we
get a list of all barcodes that are reachable within one recombination step. This
step is then iterated on the so obtained barcodes until all 𝑛𝑏 = 1, 866, 890 bar-
codes are created. After 10 recombination steps the list is complete.



2.3. ADJACENCY MATRIX 9

1 3 5 7 9 11
100

102

104

106

108

1010

 

 

0 1 2 3 4 5 6 7 8 9 10
100

102

104

106

108

Number of cassettes Number of recombinations

B
ar

co
de

s 
re

ac
h

ed

B
ar

co
de

 c
om

pl
ex

it
y

a b

Figure 2.1: Combinatorial diversity: a, Barcode complexity rises faster than exponential
with increasing cassette number. b Cumulative amount of barcodes of a Polylox substrate
with 9 cassettes reached after a certain number of recombination steps. After 10 recom-
binations all 𝑛𝑏 = 1, 866, 890 barcodes can be reached. In general, 𝑙 + 1 recombination
steps are needed to reach every barcode, where 𝑙 is the number of cassettes.

2.3| Adjacency matrix

We now link the barcodes by their possible excisions and inversions in an adja-
cency matrix 𝐴. The elements of 𝐴 correspond to connections, in this case possi-
ble recombinations, between barcodes. 𝐴 is therefore a square matrix of dimen-
sion 𝑛𝑏 = 1, 866, 890. The element 𝐴𝑖𝑗 = 0, if there is no possible recombination
from barcode 𝑖 to 𝑗, and 𝐴𝑖𝑗 = 1, if there is a possible recombination. Since in-
versions are reversible, all 𝑖, 𝑗 for which 𝐴𝑖𝑗 = 𝐴𝑗𝑖 = 1 are encoding inversions
between barcode 𝑖 to barcode 𝑗. Similarly all 𝑖, 𝑗 for which 𝐴𝑖𝑗 = 1 and 𝐴𝑗𝑖 = 0
are then excisions from barcode 𝑖 to barcode 𝑗. Thematrix product𝐴𝑛 at 𝑖, 𝑗 gives
the number of walks of length 𝑛 between vertex 𝑖 and 𝑗. For the smallest integer
𝑛 for which (𝐴𝑛)𝑖𝑗 > 0 holds true, 𝑛 gives the minimal recombination distance
between barcode 𝑖 and barcode 𝑗. For 𝑖 = 1 (unrecombined barcode) this gives
the minimal recombination distance between the unrecombined Polylox cassette
to the recombined product. This property is then used in chapter 2.6 to estimate
Cre activity.

2.4| Length dependence of chromatin looping

Due to stiffness in the chromatin fiber, looping, which is needed for successful re-
combination events, depends on the distance between the two loxP sites involved
in the recombination [24]. We therefore calculate the distance between two loxP
sites from the 5′ end of the 5′ loxP site to the 5′ end of the 3′ loxP site in base
pairs. Ringrose et al. (1999) showed that the looping probability 𝑃 scales with the
distance as follows [24]:

𝑃(𝐿) ∝ 125, 000
𝑙3 [ 4𝑙

104𝐿]
3/2

exp ( − 510𝑙2
6.25𝐿 + 50𝑙2 ) (2.4)
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Figure 2.2: Example of combinatorics: Scheme for the combinatorics of a reduced Polylox
of length 3. Red arrows denote excisions, blue arrows inversion. Shades of green encode
the minimal number of recombinations needed to create a given barcode.

where 𝐿 describes the genomic distance between to loxP sites and 𝑙 = 27 nm is
an in vivo value of the persistence length of chromatin. Since our length 9 Poly-
lox cassette has a total of 10 loxP sites, there are 9 possible lengths of chromatin
looping. When an excision occurs the number of possible recombination lengths
scales with the number of segments remaining. In the next chapters the looping
probability is denoted by 𝑃𝑘(𝑁), where 𝑁 denotes the total remaining length of
Polylox in segments, and 𝑘 the distances associated with that length.

2.5| Transition matrix

In the next step of themodel creationweweigh the entries of the adjacencymatrix
𝐴 by probabilities for each possible recombination to obtain a transition matrix
𝑇 . By using the following relationship between 𝑃gen and 𝑇 we calculate the prob-
ability of generation given the number of recombination events 𝑡.

𝑃gen,𝑡 = 𝑇 𝑡𝑃gen,0 (2.5)

where

𝑃gen,0 = (1, 0, 0, …)⊺ (2.6)

encodes the unrecombined Polylox cassette. In chapter 2.3 we described a dis-
tinction between inversions and excisions, which we are going to use to differ
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between inversions and excisions in our model. To satisfy normalization, the in-
version (𝑃inv) and excision probability (𝑃exc) must sum to one:

𝑃inv + 𝑃exc = 1 (2.7)

Entries encoding inversions are then given by:

𝑇𝑖𝑗 = 𝑃inv

∑𝑗′ 𝐴𝑖𝑗′
(2.8)

In the next step chromatin looping probabilities𝑃𝑘𝑗
(𝑁𝑖) are added to the formula.

Again, 𝑁𝑖 denotes the total length of barcode 𝑖, 𝑘𝑗 the genomic distance to from
barcode 𝑖 to barcode 𝑗. The final entries of 𝑇 of an inversion are then given by:

𝑇𝑖𝑗 =
𝑃inv𝑃𝑘𝑗

(𝑁𝑖)
∑𝑗′ 𝑃𝑘′

𝑗
(𝑁𝑖)𝐴𝑖𝑗′

(2.9)

We treat excisions accordingly to inversions and get:

𝑇𝑖𝑗 = 𝑃exc

∑𝑗′ 𝐴𝑖𝑗′
and 𝑇𝑖𝑗 =

𝑃exc𝑃𝑘𝑗
(𝑁𝑖)

∑𝑗′ 𝑃𝑘′
𝑗
(𝑁𝑖)𝐴𝑖𝑗′

(2.10)

for the entries of 𝑇 encoding excisions without and with length dependence, re-
spectively,

2.6| Estimation of Cre activity

Equation 2.5 allows the calculation of 𝑃gen of all barcodes given an exact number
of recombinations 𝑡. However, in an experiment different cells may experience
different numbers of recombination steps. To estimate 𝑃gen the distribution 𝜔(𝑡)
of the number of recombination events is needed to weigh each 𝑃gen,𝑡 (see eq. 2.11
below). In the experiment however the number of recombinations is dependent
on the activity of Cre. Therefore an a priori estimate of 𝜔(𝑡) is not feasible. Due to
the reversibility of inversions it also impossible to calculate the number of recom-
bination steps for each barcode directly.
To solve this problem theminimumnumber of recombination steps for each given
experimentally retrieved barcode is used as an estimate for the real number. Since,
generally speaking, the probability of generation declines with rising 𝑡 for the rel-
evant barcodes of length 3 or greater, this estimate is appropriate.
The minimal number of recombinations needed to generate a certain barcode 𝑖
is given by the minimal 𝑡, 𝑡min, for which 𝑃gen,𝑡𝑚𝑖𝑛

(𝑖) > 0. For an experimentally
retrieved set of barcodes, we compute the distribution of recombination events
𝜔(𝑡) from these minimal numbers for each barcode. With these assumptions, we
obtained narrow distributions of recombination events for all experimental data,
with mean numbers between 2 and 3 and maximal numbers of 7 (fig. 2.3 c).
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Figure 2.3: Distribution of minimal recombinations: a,b, 𝑃gen for a certain number of
recombinations for exemplary barcodes: a, Relevant, highly recombined barcodes. The
minimal number needed to create the barcode shows the highest probability. b, Terminal
barcodes show increased 𝑃gen with more recombinations. c, Distribution of minimal re-
combination numbers. Dots denote the mean value, error bars show standard deviation
(𝑛 = 7 mice).

2.7| Calculation of probability of generation

By using all of the abovewe then find the probability of generation for all barcodes,
given an experimentally determined distribution of recombinations 𝜔(𝑡), as

𝑃gen =
𝑡max

∑
𝑡=1

𝜔(𝑡)𝑃gen,t (2.11)

2.7.1| Adjusting the model parameters

The final estimation of 𝑃gen is dependent on further parameters, mainly:

• the ratio of 𝑃inv/𝑃exc

• the length dependence of chromatin looping

Length dependence of chromatin looping plays minor role

We therefore checked the difference between calculated 𝑃gen with and without
length dependence according to eq. 2.4. The 𝑃gen distributions are highly cor-
related indicating very little influence of chromatin looping on the probability of
generation for each barcode (fig. 2.4 a,b). For correctness throughout this thesis,
length dependence is always taken into account.
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Figure 2.4: Testing the model parameters:a, Looping probability of chromatin from eq.
2.4 in a.u. [24]. Red dots denote possible loxP sites distances in Polylox. b, Difference of
𝑃gen of the same barcodes with and without consideration of the looping probability of
a. c, Testing of influence of the ratio of 𝑃inv to 𝑃exc on the calculated 𝑃gen. The black
line denotes 𝑃inv/𝑃exc = 1, red and blue denote a ratio of 2 and 0.5. d-f, Best fit with
𝑃inv/𝑃exc = 1 d, Frequency of segments compared between simulated and experimentally
retrieved barcodes. 𝑃inv/𝑃exc = 1 e, Comparison of the frequency of segment pairs (e.g
1-2,1-B,…) simulation in red and data in blue. f, Abundance of barcodes of different lengths
1,3 and 5 in simulation vs actual data. Due to known sequencing bias length 7 and 9 are
omitted. b, Data from mouse #1, c-f, Data from mouse #6.

Inversion and excision have similar probability

To probe for the ratio of 𝑃inv/𝑃exc we calculated 𝑃gen of all barcodes for three dif-
ferent ratios: 0.5, 1 and 2. Again the influence on 𝑃gen is minimal, indicating a very
robust model against those model parameters (fig. 2.4 c). To further test this, we
fitted simulated barcodes according to the 𝜔(𝑡) of experimentally retrieved set of
barcodes to that set of barcodes. To increase the pressure on the model we com-
pared segment frequency (e.g 1/A, 2/B, …), segment pair frequency (e.g (12,1B,…)
and the length distribution.
In the fit, the parameters were not identifiable in the range between 𝑃inv = 0.35
and 𝑃inv = 0.6. The fact that 𝑃inv does not strongly deviate from 0.5 indicates that
inversion and excision are similarly likely.
Because of simplicity we do not put a bias towards either 𝑃inv or 𝑃exc into our
model and set the ratio of 𝑃inv/𝑃exc to 1 (fig. 2.4 d-f).
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Figure 2.5: Barcodes found according to 𝑃gen: a, Number of barcodes with the predicted
50 highest 𝑃gen values found within different mice. b, Same as a but with 100 highest
𝑃gen values. c, Summary of a,b in blue and simulated sets of barcodes according to the
predicted 𝑃gen in orange. Mean and standard deviation are shown.

Model predicts barcode outcome

Finally, we compared the number of barcodes with the predicted highest 𝑃gen to
actually found barcodes. From the 50 barcodes with the highest 𝑃gen we found
44.8 ± 1.8 (mean and standard deviation of 5 mice), from the top 100 we found
83.2 ± 5.5 in experimental data. The values of individual mice are found in fig. 2.5
a,b. In chapter 4.3 wewill estimate the number of labelled cells in our experiments
to be in the order of 1000 cells. Under the assumption that our model is indeed
correct, we have therefore sampled sets of 1000 barcodes according to their 𝑃gen

and compared the emergence of barcodes with our experimental data. We found a
strong concordance betweenmodel prediction and data, indicating that themodel
reliable predicts the generation of barcodes (fig. 2.5 c).



3| Computational framework

Due to the complexity of Polylox with 𝑛𝑏 = 1, 866, 890 possible barcodes, cal-
culating the power of the transition matrix 𝑇 𝑡 is computationally quite heavy.
Therefore we calculated and stored each 𝑇 𝑡 for 𝑡 = 0, 1, 2, … , 10 together with
the minimal recombination steps for each barcode. The pipeline then executes
the following steps:

• Purging of impossible or incomplete barcodes: due to incomplete PCR or
errors during sequencing, it is possible to obtain incomplete and impossi-
ble barcodes. While barcodes with the missing 5' or 3' ends are discarded
beforehand, there may still be non identifiable segments left. The pipeline
checks every experimentally retrieved barcode against the library of possi-
ble barcodes and purges those that are not found.

• Findingminimal recombinations: For the remaining barcodes the minimal
number of recombination steps is looked up in a pre-calculated list. From
the result a frequency distribution 𝜔(𝑡) of numbers of recombination events
for the given experiment is calculated.

• Calculationof𝑃gen : The frequency distribution𝜔(𝑡) is then used to calculate
the probability of generation for each barcode according to eq. 2.11

• Calculation of frequencies: In the last step, read counts are used to calculate
barcode frequencies to make different cell populations more comparable.

The pipeline generates the following outputs for further analysis:

• Purged barcodes: A list of all possible and identifiable barcodes that are
found

• Purged reads: The read counts for each respective barcode for every popu-
lation

• Purged frequency: The barcode frequency for each barcode

• Minimal recombinations: A list of the minimal number of recombination
events to generate each barcode in the purged barcodes list

15
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• Frequency distribution: The frequency distribution 𝜔(𝑡) of minimal num-
bers of recombination

• 𝑃gen : The probability of generation for every barcode in the purged barcodes
list

• Annotation: The names of the analyzed population.

The computational pipeline is available and has been published in [25]. It is being
used by other laboratories that are currently establishing Polylox barcoding (e.g.,
Shosei Yosheida, personal communication)



4| Experimental setup

The group of Hans-Reimer Rodewald developed an experimental protocol to in-
duce Polylox barcodes in HSC. This protocol, along with several crucial control
experiments, is discussed here briefly. A more thorough description and a step
by step guide is found in Nature Protocol [26]. The experimental setup described
in this chapter is used in the whole thesis with the exception of the single cell
sequencing data discussed in chapter 5.1. All experiments have been performed
by Weike Pei, Thorsten Feyerabend, Kay Klapproth, Daniel Postrach and Thorsten
Benz (Hans-ReimerRodewald Lab, DKFZ). Sequence alignment has beenperformed
by Xi Wang (Thomas Höfer Lab, DKFZ), and single molecule real time (SMRT) bulk
sequencing was provided by Claudia Quedenau (MDC Berlin).

4.1| Barcode induction in vivo

Crossing of Rosa26Polylox

For barcode induction in vivo the Rosa26Polylox allele was crossed into two mice
with different inducible Cre variants:
First, mice with CreERT2, an ubiquitously expressed but tamoxifen-dependend
Cre to produce Rosa26Polylox /CreERT2 mice. Tamoxifen application generates bar-
codes in all cells, and hence this mouse model has been mainly used in control
experiments.
Second, mice with MerCreMer in the Tie2 locus to create Rosa26Polylox Tie2MCM

mice. Tie2MerCreMer has been shown to have selective high expression in fetal and
adult HSC and is therefore used in HSC fate mapping experiments [3].
In both mouse models, the treatment with tamoxifen causes the drug to act on
the inducible Cre, making it active (fig. 4.1 a). Cre then recombines the Polylox
construct randomly. Since the inducible Cre is not active itself and needs activa-
tion, the absence of tamoxifen due to degradation or stops Polylox recombination.

Experimental design

During this thesis twomajor experimental designs are used: embryonic and adult
labelling. In the case of embryonic labelling a single dose of 2.5 mg tamoxifen is

17
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Figure 4.1: Experimental setup: a, Inducible Cre (iCre) in the Tie2 locus. iCre is expressed
in fetal and adult HSC. Tamoxifen translocates iCre to the cell nucleus producing active
Cre that recombines the Polylox cassette. b,c, Scheme of the experimental design: Ta-
moxifen (blue area) is given to the mice at various stages; b, embryonic labelling, c, adult
labelling. After some waiting time the cells are harvested. d, After cell harvesting, DNA is
isolated and Polylox is amplified. Next, the Polylox cassettes are being sequenced by SMRT
sequencing and CCS are generated. In the last step, invalid barcodes are filtered out.

administered by oral gavage to the mother during various time points in midges-
tation (E7.5 - E10.5) (fig. 4.1 b). The mothers were also treated with 1.25 mg pro-
gesterone to sustain the pregnancy.
For the experiments with adult labelling, mice were injected with 1 mg tamoxifen
once per day on five consecutive days (fig. 4.1 c) 6-8 weeks after birth. Next, 9-24
months after birth, the mice in both designs were sacrificed and the cells of inter-
est harvested.
For the experiments with Rosa26Polylox /CreERT2 a single injection of 1 mg tamoxifen
was given intraperitoneally. In this case, only B cells were harvested a few days
after induction.

Barcode retrieval

After the cells were harvested, they were sorted by FACS into different cell types
(FACS gating is found in the Appendix). Then the DNA is isolated and the Polylox
locus is amplified by PCR. For all bulk experiments, SMRby Pacific Bioscienceswas
used. This methods allows sequencing of up to 30 kb length, which is sufficient
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to sequence the complete Polylox locus. First the amplified barcodes are linked
with SMRTbell adapters to prepare the library. Next, multiple passes of sequenc-
ing are done. From the raw reads, the SMRTbell adapters are removed to obtain
processed reads. Those are cut into single-molecule fragments. The fragments
are then aligned, and a circular consensus sequence (CCS) is created. The usage of
CCS andmultiple passes of sequencing allows a high accuracy when sequencing a
single molecule. In the last step, the individual segments are aligned with the CCS
and labelled according to the nomenclature discussed in chapter 1.2.1. Due to the
large difference in sequence between each DNA segment of the Polylox cassette,
we map 99% of all intact reads to barcodes [22].
However, we still need to apply a number of filtering criteria to make the so ob-
tained barcodes usable. Barcodes with missing 3' or 5' end are discarded, as only
complete barcodes are properly identified and processed further. Sometimes sin-
gle segments are not identifiable due to sequencing errors. Since we are not able
to reconstruct the original barcode, those are also filtered out. Finally, we ob-
serve impossible barcodes. Those barcodes, for example, contain the same seg-
ment multiple times, or be longer than the original Polylox cassette. We also filter
those out (fig. 4.1 d). This filtering process leaves us with only proper barcodes,
that are used for analysis (see also chapter 3).
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Figure 4.2: Control experiments: a, Venn diagrams of barcode overlap of sample repli-
cates of different mature populations. The high overlap indicates a good sample depth.
b, Recombined vs. unrecombined barcodes (read counts) in three different setups. a
Rosa26Polylox Tie2MCM mouse without tamoxifen treatment (top row), a Rosa26Polylox mouse
with tamoxifen (middle row), and a Rosa26Polylox Tie2MCM mouse with tamoxifen treatment
(bottom row). Only the last experiment showed recombination on a large scale. c, Log bar-
code frequency of two sequencing repeats of DN2 and DN3 cells frommouse #3. Each dot
represents a single unique barcode

4.2| Control experiments

A number of control experiments have been conducted.

Incomplete recombination is possible

First, Polylox was recombined by Cre in vitro to see whether incomplete recombi-
nation is possible. Indeed, in the gel electrophoresis five bandswere clearly visible,
corresponding to the five possible fragment lengths expected from largely incom-
plete and random recombination.

Recombined products are stable

Another crucial stepwas to check how stable the recombined Polylox cassettes are.
Here Polylox was targeted in the Rosa26 locus of embryonic stem (ES) cells and
transfected with MerCreMer. Treatment with 4-hydroxy-tamoxifen (4-OH-TAM),
the active form of tamoxifen, yielded again the five fragments. In those pulse-
chase experiments the distribution of recombined fragments remained constant.
This indicates that once Cre is inactive, the recombination stops, yielding stable
barcodes.

No recombination in the absence of Cre and TAM

In the next step, we studied the leakiness of the system. If we find recombined
barcodes in mice without Tie2MCM or tamoxifen, this would mean that already re-
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combined barcodes could slowly change over time, making fate mapping difficult.
We conducted three experiments for this: first, mice with the complete construct
(Rosa26Polylox Tie2MCM) andwithout tamoxifen treatment; second, micewithout the
inducible Cre but with tamoxifen treatment; last, the complete construct with ta-
moxifen treatment. Only in the last experimentwe found recombination of Polylox
on a large scale, indicating that the Rosa26Polylox Tie2MCM) mouse model has no dis-
cernible rate of background recombination of Polylox (fig. 4.2 b).

Sample replicates show high overlap

Another key aspect is sampling depth. As the absence of barcodes in one popula-
tion could have implication on fate restriction and the topology of the system, one
needs to make sure to sample enough cells to be able to exclude sampling issues
as explanation for the absence. Sample replicates were taken for four populations
(granulocytes, spleenic B2, CD4+ T cells and CD8+ T cells) with 30,000 cells each.
In general the overlap of found barcodes was between 60%-67%, indicating a good
sampling depth of barcodes (fig. 4.2 a). Nevertheless, the possibility that a barcode
is not found due to incomplete sampling must always be considered.

Sequencing repeats are concordant

In the last control experiment, a single sample of DN2 and DN3 cells were se-
quenced twice and compared. We found a high concordance between both sets of
sequencing repeats (fig 4.2 c). Both sets had a correlation coefficient of 0.96-0.98.
This indicates that the barcode frequency obtained from read counts is robust and
is therefore used as a measure of barcode abundance in the analysis.

4.3| Threshold setting for 𝑃gen

Since some barcodes have a very high probability of generation, we use the esti-
mated 𝑃gen (chapter 2) to filter out those barcodes that are generated more than
once. However the threshold for 𝑃gen depends on the number of cells that are ini-
tially barcoded. It might be hard to estimate this number accurately (e.g. HSC
expand during fetal labelling).
We therefore used data from twomice to set the threshold for 𝑃gen specifically for
the experiments that were conducted. We induced barcodes as described above.
After 9-11 months, to allow for equilibration, the barcodes were then sequenced
and binned according to their probability (fig. 4.3). Since highly likely barcodes
were generated more than once, their frequency is expected to be higher than the
frequency of unlikely barcodes. At one point, the 𝑃gen threshold, the correlation
between frequency and 𝑃gen vanishes. This indicates the point below which every
barcode was created in the smallest possible unit, a single cell. We performed a
two sample Kolmogorov-Smirnoff test to see whether the binned frequency dis-
tribution for different 𝑃gen ranges differ from each other in embryonic labelling
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Figure 4.3: Barcode frequencies versus 𝑃gen for threshold setting. The red bar indicates
the median, the box ends the 25th and 75th percentile. Black bars indicate the most ex-
treme value not considered outlier, whereas outliers are marked with red dots. As ex-
pected the frequency drops with decreasing probability of barcode generation.
After 𝑃gen = 10−4 the correlation vanishes, indicating that below that, the smallest pos-
sible unit, a single cell has been labelled.

experiments. Up to 𝑃gen = 10−4 we found significant differences between the
binned frequency distributions, below 𝑃gen = 10−4 no differences could be found.
We therefore set the threshold for all experiments to 𝑃gen = 10−4.
This indicates that the original cell number labelled has to be in the order of 1,000
cells, as barcodes with 𝑃gen = 10−4 are most likely generated only once in such a
pool of cells.
In adult barcoding experiments, sampling played a major role in barcode detec-
tion. Even though the number of cells that are barcoded is much higher, we also
chose𝑃gen = 10−4 as a threshold. This value is a trade off between high confidence
of single cells barcodes and finding enough barcodes for analysis.



5| Data analysis and clustering

In this chapter we analyse data obtained by inducing Polylox barcodes in HSC in
either embryonic mice or adult mice.
From these experiments we will get information about the clone size distribution
and examine aging effects in the HSC compartment in the adult bonemarrow. We
also analyse the output of HSC into progenitor and mature cell populations, gain-
ing inside into the topology of the hematopoietic system. By using hierarchical
clustering of barcode frequencies we find a strong dichotomy between a myelo-
erthyroid and a common lymphoid differentiation branch.
Several results discussed in this chapter are published in [22].

5.1| Embryonic labelling

In themouse embryo, theHSC that drive definitive hematopoiesis begin to form at
around embryonic day (E)9.5 in the fetal liver andmigrate into the bonemarrow at
birth (fig. 1.1). Because this process is not fully understood, we labelled embryonic
mice in the time range of E7.5 - E12.5, where the earliest labelling time-point coin-
cides with the appearance of HSC progenitors (HSCp) in the yolk sac [3]. Labeling
was done by administering a single dose of tamoxifen orally to the mother. After
9-24months the mice were sacrificed and analysed. For five mice (#1, #2, #10, #12,
#14) in addition to bulk sequencing, single cell sorting and sequencing of HSCwas
performed. First we will look at the barcode clone distributions of labelled HSC
and possible aging effects in older mice. Then, we will study the overall output of
labelled HSC and investigate evidence of fate/lineage restriction. Finally, we will
take a look at the relationships of mature populations in the context of shared bar-
codes and their respective frequencies.

5.1.1| Clone size distributions of HSC

Large fetal HSC clones play a major role in adult bone marrow

To determine HSC clone size distributions in the adult bone marrow, barcodes of
approximately 500 sorted single HSC were analysed 9-11 months after induction.
Since in both mice (#1, #2) at least 95% of all cells had recombined barcodes, the

23
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Figure 5.1: Clone size distributions of HSC in adult bone marrow: a,b, measured clone
size distribution of mouse #1 and #2 at 9 and 11 months of age. Some barcodes show large
clone sizes, while the majority of barcodes was found in 10 or less HSC (a, n=54; b, n=56
barcodes) [22]. c, measured clone sizes extrapolated to 1000 cells of mice younger than
1 year (young, n=2) and 2 years of age (old, n=2). Simulation (blue dots) of neutral drift
explains the data (black dots) qualitatively. The red bar indicates the mean. d, scheme of
themodel to explain the drift to larger clone sizes. e, exemplary scheme of the partitioning
of cells with the same barcode into different clones. Here 10 cells are divided into 5 clones
(I-V). Different possibilities are taken into account (a-e) to correct the measured clone size
distribution.

Tie2-driven induction labels almost all cells during midgestation that later form
the adult HSC compartment. Bothmice show awide variety of barcode clone sizes
(fig. 5.1 a,b), where the largest clones made up almost 10% of all HSC. However,
since this also includes highly abundant barcodes, this does not properly reflect
real clone size distribution in the adult bone marrow. We therefore focused on
rare barcodes with 𝑃gen < 10−4 and found 14 barcodes that were created most
likely only once. Here the clone sizes ranged between 0.2 and 3.8%. We found rel-
atively large clones (> 1.5%) in both mice, corresponding to at least 150 adult HSC.
Large clones therefore seem to play a major role in the clonal makeup of HSC in
adult bone marrow [22].

Neutral drift explains clone size spread

In order to study the effects of agingwe also analysed the barcode clone size distri-
bution of mice of 2 years of age (#10, #12) in the same manner as described above.
In both older mice we found enlarged HSC clones in comparison with the younger
mice. The largest clone labelled with a rare barcode made up 21.5% of the adult
bone marrow. In all experiments a different number of cells were analysed, mak-
ing it difficult to directly compare measured barcode clone sizes. The clone sizes
were therefore extrapolated to number per 1000 cells.
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We asked whether the appearance of large HSC clones in older mice could by ex-
plained by neutral drift. To this end, we build a model (fig. 5.1 d) where HSC pro-
liferate with rate 𝑙 and leave the HSC compartment by either differentiating or
cell death with combined rate 𝑑. To initialize the model, we sampled from the dis-
tribution of the young mice and simulated the individual clones with Gillespie's
algorithm [27]. The rate parameters for the model where taken from [23] and set
to 𝑙 = 𝑑 = 1

110
1
day . With this simple model the spread of barcode clone sizes is

qualitatively described (fig. 5.1). This result is remarkable in the face of the slow
HSC turnover.

Corrected clone size distribution gives inside into aging

Due to highly abundant barcodes the measured clone size distribution does not
properly reflect the true make up of HSC clones in the adult bone marrow. While
focusing on rare barcodeswith𝑃gen < 10−4 corrects this, the sample size becomes
very small by this filtering (< 10 rare barcodes per single cell sequencing experi-
ment). We reassured that a good estimate of the clone size distribution is obtained
by considering all barcodes and factoring in their generation probabilities. First,
we estimated the number of expected clones for a given barcodewith𝑃gen by using
the following formula:

𝐸 [𝑘] =
∞
∑
𝑘=0

𝑘(𝑛
𝑘)𝑃 𝑘

gen,𝑖(1 − 𝑃gen,𝑖)𝑛−𝑘 (5.1)

= 𝑛𝑃gen,𝑖 (5.2)

Here 𝐸 [𝑘] is the expected number of times barcode 𝑖 is generated in a sample
of 𝑛 cells and hence the number of clones that share barcode 𝑖. The assumption
is independent barcode creation, so that the number of expected times barcode
𝑖 is created is therefore described by a binomial distribution. We then partition
the uncorrected, measured clone size into 𝐸 [𝑘] parts. Here we also allow a clone
to have a size of zero to take the death of a clone into account (fig. 5.1 e). Since
the number of possibilities rises very quickly with rising cell numbers, we sample
10,000 times from all possibilities of a single barcode clone. Doing this for all the
barcode clones allows us to compute the summary statistics of the corrected clone
size distributions to get more insights into the aging process seen in fig. 5.1 c.
Due to HSC expansion during midgestation clone size distributions at birth are
not known. To see whether the simple neutral drift model (fig. 5.1 d) explains the
changing of the moments of the clone size distributions we therefore use the cor-
rected clone size distributions of the youngest mouse as initial values. One has to
keep in mind that the chosen initial values might not reflect the expected distri-
bution perfectly.
Mean, variance, skewness and kurtosis are explained well by the simple neutral
drift model, where we have a rising mean number of cells per clone and variance,
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Figure 5.2: Neutral drift model on corrected distributions a-d, Corrected mean, variance,
skewness and kurtosis values with standard deviations (black dots), and the neutral drift
model (blue line). The blue shaded area indicates the 95% confidence interval. e, Time
snapshots of the simulated clone size distribution (blue line) over corrected distributions
(black dots). The model is in good agreement with the data.

but declining skewness and kurtosis (fig. 5.2 a-d). In the oldest mouse we found
a very large rare clone that is overrepresented. Due to the still relatively small
number of clones this leads to a huge deviation in the skewness and kurtosis, ex-
plaining the outliers there (fig. 5.2 c-d).
In addition to the moments, the simulated and measured, corrected clone size
distributions match well (fig. 5.2 e), indicating that clone size distributions age by
neutral drift. During aging this leads to a smaller number of clones that make up
more of the HSC compartment [28--33].
However, the small sample size (few hundreds cells from 5 mice) makes it difficult
to get quantitative information. Especially earlier time points could shed more
light on the dynamics of clonal aging in the HSC compartment.

5.1.2| Output of HSC into mature compartments

In addition to single cell sequencing of sorted HSC, peripheral population were
also analysed in bulk. Here we focused on the output of HSC and possible lineage
restriction that might occur.
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Figure 5.3: Output of single cell HSC: a-e Shows the output of rare barcodes found in
HSC by single cell sequencing into different compartments (#1,#2,#10,#12, and #14 re-
spectively), white areas depict populations that were not sampled. Black arrows indicate
HSC with no output into mature populations.

A large proportion of HSC is active

First, we analysed the output of HSC labelled with barcodes with 𝑃gen < 10−4

(fig. 5.3 a-e). Out of the 35 rare barcodes we found in the HSC compartment of 5
mice of varying age (9-24months) 85.7%were found in the peripheral populations.
However those HSC that show no output into mature populations tend to have a
relatively small clone size (fig. 5.3 a-e, black arrows). This leads to a small expected
output, which could be due to undersampling. In addition to sampling, barcodes
also leave the system via cell death, which is much more probable for small clone
sizes. In line with BrdU studies, which showed that in a span of 6 months 99%
of HSC divided at least once [33, 34], this indicates that a very large proportion of
HSC contribute to adult hematopoiesis over the time span of these experiments.

Indications of multilineage potential

To analyse possible lineage restrictions of HSC, we focused again on rare bar-
codes with 𝑃gen < 10−4, to make sure that barcode clones represent HSC clones.
63.6% of the analysed barcodes were found in bothmajor lineage branches (myelo-
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Figure 5.4: Output of HSC: a,b, All Barcodes found by performing single cell sequencing
of HSC and their respective output into mature cell populations in two experiments

erythroid and lymphoid). Still, sincewe can only track cloneswe cannot saywhether
individual cells also have multilineage potential or not. In addition to that, we also
found lineage restricted clones (26.4% of analysed barcodes). This fate restriction
indicates that at least some proportion of HSC clones show a coherent fate poten-
tial. Importantly, one should keep in mind that due to sampling, some barcodes
might be missed leading to an underestimation of the observed fates.

Barcode usage differs across different fates

Releasing the 𝑃gen filter, one notices the difference in barcode usage across dif-
ferent fates. While generally speaking, a large barcode clone in the HSC compart-
ment leads to a large output into the peripheral populations, there are some excep-
tions. There are less abundant barcodes in HSC that are found at high frequency
in mature cells and vice versa (fig. 5.4). This lack of strict correlation is explained,
at least in part, by the slow differentiation of HSC into the downstream popula-
tions. Downstream of HSC massive expansion takes place. This causes stochas-
ticity that decorrelates barcode usage between HSC and peripheral populations
(more on this in chapter 6). However, there is a coherent barcode usage in both
major branches visible (fig. 5.4: myelo-ertythroid: CMP, GMP, EryP, Gr; lymphoid:
B2, CD4, CD8), while B1 cells and especially B1a cells differ from both. In the next
section we will analyse this different barcode usage in more depth.
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5.1.3| Cluster Analysis

Besides information regarding potential fate restrictions, barcode usage may also
provide inside into the topology of differentiation pathways. The general assump-
tion here is that if two populations share a high number of barcodes aswell as their
respective frequencies, the two lineages belong likely to a common developmen-
tal pathway. Conversely, if they share fewer barcodes at dissimilar frequencies the
two examined lineages emerged more independently from each other.

Barcodes sharing provides insight into lineage topology

We analysed the shared barcodes and frequencies of mature populations. We fo-
cused on rare barcodes again (𝑃gen < 10−4), and in additionwe also filtered for reli-
ably sampled barcodes. Barcodes are considered reliably sampled if they are found
in both sample repeats of at least one population. This additional filter guards
against considering undersampled barcodes.
When comparing lymphoid populations (B2 cells, CD4+ T and CD8+ T cells) with
myeloid and erythroid populations (EryP, Gr), the percentage of shared barcodes
is around 40-50%. Further, the frequencies of the shared barcodes appear to be
uncorrelated (fig. 5.5 a-c). Taken together, these findings point to substantially
distinct lymphoid and myelo-erythroid pathways. By contrast the percentage of
shared barcodes betweenEryP andGr, andB2, CD4+T cells andCD8+, respectively,
varies between 73-82%. Here we also see a strong correlation between observed
barcode frequencies (fig. 5.5 d-e), indicating a strong developmental link between
B and T cells as well as between EryP and Gr. This general pattern was observed
in all examined mice.

Cluster analysis reveals dichotomy

We further examined the relationships between different populations by hierar-
chical clustering. Since the correlation of barcode frequencies also contains in-
formation on the overlap, we use correlation as measure of barcode concordance.
As measured barcode frequencies are not necessarily quantifiable by a linear rela-
tionshipmodel and vary over orders of magnitude, we use Spearman's rank corre-
lation 𝜌. Spearman's 𝜌 allows us to asses monotonic and non-linear relationships
and is more robust against outliers [35].
To assess relationships between populations we calculated 𝜌𝑖,𝑗 for every combi-
nation of populations 𝑖,𝑗. Nextwe used as a distancemeasure 𝑑𝑖,𝑗 = 1−𝜌𝑖,𝑗. Thus
the distance between populations gets higher the lower the correlation is. The dis-
tance 𝑑𝑖,𝑗 quantifies the observations made in the previous section (fig. 5.5). We
used 𝑑𝑖,𝑗 to cluster all measured populations hierarchically. Again, we focused on
rare and reliably sampled barcodes.
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Figure 5.5: Scatterplots of retrieved barcodes in mature populations: Barcode frequen-
cies of a, Erythrocyte progenitors (EryP) versus B2 lymphocytes b, B2 lymphocytes versus
granulocytes c, CD4+ T cells versus granulocytes d, EryP versus granulocytes and e B2
lymphocytes versus CD8+ T cells. Data retrieved from mouse #1, each dot represents a
single barcode

We observed a major split between myelo-erythroid and common lymphoid lin-
eages (fig. 5.6 a). Populations inside one of the branches showed very high corre-
lations (0.61 - 0.93; min.-max. values), correlations between the two branches tend
to be much lower (0.18-0.53). This pattern was found in all measured mice.

Localization plays no role in barcode usage

Both from granulocytes and B2 lymphocytes samples where taken from different
localizations (bone marrow and spleen versus spleen and peritoneal cavity). How-
ever there is no apparent difference in barcode usage between the different local-
izations, indicating that the origin of cells from the same population in different
localizations is the same (fig. 5.6). Most likely mature cells in different locations
are created from common pools of progenitors and then migrate to the different
tissues.

B1 cells form a distinct lineage

In the next step we also included B1a and B1b cells into the clustering. B1 cells are
a distinct subset of B lymphocytes that, unlike the more conventional B2 cells, do
not develop into memory cells during an immune response. In both experiments
B1a and B1b sublineages cluster together and form a distinct B1 lineage inside the
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Figure 5.6: Hierarchical clusteringofmaturepopulations: appliedwith distancemeasure
𝑑𝑖,𝑗 = 1 − 𝜌𝑖,𝑗: a, Various erythrocyte stages (Ery I-IV), granulocytes, B2 lymphocytes
and T cells (CD4,CD8). Only rare and reliable sampled barcodes are taken into account. A
major split between myelo-erythroid and lymphoid populations is visible. b, Analysis as
in a, including all lymphoid populations, B1a and B1b cells.

common lymphoid branch (fig. 5.6 b). This indicates that B1 cells arise from a dif-
ferent developmental path compared to B2 lymphocytes.
We found a slightly lower percentage of recombined reads in B1 (~85%) in compar-
ison to both common lymphoid (~96%) and myelo-erythroid (~96%) branches. In
steady state one would expect the percentage of labelled cells to adjust to the la-
belling frequency of their origin, namely HSC. Since in embryonic labelling steady
state is reached after 2 weeks [23], a deviation from the HSC labelling frequency
may indicate the existence of another origin . During development of the embryo
several waves of B1 generation have been observed, where the first wave emerges
before E9.0 [36]. While later waves are HSC derived, the first wave seems to have
restricted progenitors [36] or occur before labelling takes place. Since B1 popu-
lations show almost self-renewing capabilities [37], this first wave of B1 cells is
still visible in the adult hematopoiesis and explains the lower percentage in re-
combined reads. Of all barcodes retrieved, we found an overlap of 40% in both
the common lymphoid and B1 branch. In summary, the number of shared bar-
codes and the overall low correlation suggest that most B1 cells arise from HSC
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but split early from the common lymphoid branch. This is in line with transplan-
tation studies showing an early split in development of B1 cells [38--41].

5.1.4| Robustness against filtering criteria

In the previous section only rare (𝑃gen < 10−4) and reliably sampled barcodeswere
taken into account. This ensures that only barcodes that were generated exactly
once are considered and guards against undersampling. To analyse the robust-
ness of the barcode usage patterns we found, we applied modified filtering crite-
ria. Cluster analysiswas performedwith three alternative criteria on two different
experiments (mouse #1 and #2):

1. all retrieved peripheral barcodes (no filter);

2. rare barcodes that are found in at least three different populations, hence
restricting the analysis to multilineage barcodes;

3. codes found in adult HSC as retrieved by single cell sequencing.

All three cases showed the same correlation pattern (fig. 5.7) as the clustering of
rare barcodes, with a strong dichotomy between common lymphoid and myelo-
erythroid development. In particular multilineage barcodes showing the same
pattern indicate that the correlation is a stronger indicator than the overlap itself,
as almost all barcodes were shared between all the examined populations. The
mechanistic implications of this will be explored in chapter 6.

5.1.5| Progenitor data

In the next step of the data analysis we focused on stem and progenitor cell pop-
ulations. Here we also analysed: long-term HSC (abbreviated LT or LT-HSC in the
figures), short-term HSC (ST-HSC, ST), multipotent progenitors (MPP), common
myeloid progenitors (CMP), granulocyte-macrophage progenitors (GMP), pro B
(pooled from Fr.B/C and Fr.D cells) and pre T cells (double negative thymocytes,
pooled from DN2 and DN3).

Slow differentiation kinetics lead to lower correlation

Due to low labelling efficiency (~50%) in respective experiment, we included all
barcodes in the analysis. As shown in chapter 5.1.4 this increases the overall cor-
relation, but has only minor effects on the clustering pattern.
While long term (LT) stem cells are known to directly feed into the ST compart-
ment, the overall correlation we found was rather low (0.65) (fig. 5.8 a,k). This
is explained by the very slow differentiation of the LT compartment into the ST-
HSC [23]. A cell rarely differentiates into the ST compartment, where prolifera-
tion is much faster. Therefore the barcode clones in both compartments develop
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Figure 5.7: Robustness of correlation patterns: Hierarchical clustering with a distance
measure of 𝑑 = 1 − 𝜌𝑖𝑗 applied to a, All peripheral codes; b, Rare barcodes found in at
least three different populations; c All HSC barcodes found in the periphery. The major
split between myeloid-erythroid and lymphoid branch is robust and reproducible.

rather independently of each other. For the differentiation from ST to MPP we
already have larger clone sizes, reducing stochasticity and increasing correlation
(0.73) (fig. 5.8 b,k). This indicates that in addition to the topology of the system, the
kinetics play a substantial role in the observed correlation patterns.

MPP feed into CMP and CLP

MPP are thought to be the last multipotent lineage before the split in the topology
into myelo-erythroid and lymphoid branch happens, although they may already
contain lineage-restricted progenitors (as seen in in transplantation [16, 42]). To
investigate this, we also analysed MPP the downstream compartments CMP and
CLP. Indeed MPP showed a high correlation with both populations (0.79 vs CMP,
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Figure 5.8: Hierarchical clustering of progenitor populations: a-f, Scatter plots of bar-
code usage of indicated populations. Each dot represents a unique barcode. Percentages
show proportion of shared/individual barcodes. g, Hierarchical clustering of indicated
populations with 1-𝜌𝑖𝑗 as distance measure. h Spearman's rank correlation of different
mature populations vs MPP. Errors are obtained by non-parametric bootstrapping and
indicate 95% confidence interval

0.82 vs CLP), indicating that MPP are closely related to those lineages (fig. 5.8 c-d).
Further, while there is a clear split between myelo-erythroid and lymphoid lin-
eages, there was no apparent difference in barcode usage between MPP and both
branches (fig. 5.8 h). Correlations found were high with all analysed mature pop-
ulations independent of their branch, indicating that MPP do harbor multilineage
potential and are placed before the split.

Progenitor are closely related with offspring

In our assertion that a close lineage relationship shows up in the correlation holds
true, we would expect barcode usage in pro B and pre T cells to be highly cor-
related with B2 lymphocytes and T cells respectively. Indeed we found a high
concordance in barcode usage between progenitor and offspring (fig. 5.8 e,f). In
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Figure 5.9: CMP and GMP correlations: a-e, Scatter plots of barcode usage of indicated
populations. Each dot represents a single rare barcode. Percentages show proportion of
shared/individual barcodes. Spearman's rank correlation 𝜌 of c, CMP and f, GMP versus
the indicated populations. Barcodes are extracted from mouse #2. Mean and 95 % confi-
dence interval calculated by non-parametric bootstrapping are shown.

the cluster analysis pro B and pre T cells clustered clearly in the lymphoid branch
(fig. 5.8 g). While they did not form subcluster with their respective offspring, pro
B had the highest correlation with B2 lymphocytes (0.86). DN showed a lower
correlation with T cells of 0.8, which could be explained by selection processes
occurring during T cell development [43]. Both DN and pro B cells are strongly
correlated with CLP (0.76 versus DN cells, 0.79 versus pro B cells), indicating that
CLP may feed both populations in unperturbed hematopoiesis.

CMP and GMP act as myeloid progenitors

In the experiment described above, sampling proved to be an issue. We therefore
included all barcodes found in the analysis. However, to study CMP and GMP in
more depth, another experiment with fewer cell populations was done. Here we
again found a very high efficiency of recombination (98% of reads are recombined).
A better efficiency leads to a higher number of barcodes created. This allows us to
use the 𝑃gen =10−4 filter as well as focusing on reliably sampled barcodes to gain
single cell resolution.
While the potential of CMP as myelo-erythroid lineage restricted has been de-
scribed largely by transplantation and colony assays [16], Polylox allows us to fol-
low the fate of this lineage directly in vivo. Since both populations are expected to
give rise to granulocytes a high correlation would indicate this.
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Indeed we found a high concordance in barcode usage and frequency with granu-
locytes and erythrocytes (fig. 5.9 a-e), suggesting that CMP are in vivo progenitors
of both lineages. The high correlation of EryP and GMP implies a close devel-
opmental relationship between the two, placing GMP into the myelo-erythroid
branch. In this case, all barcodes that were retrieved from the progenitor popula-
tions have also been found in the mature populations (fig. 5.9 a-e). However in dif-
ferent experiments we also found CMP and GMP barcodes that were not present
in neither EryP nor Gr, which is easily explained by barcode propagation and is
explored in the next chapter.
As expected, the correlation between CMP/GMP and populations from the com-
mon lymphoid branch are very low (fig. 5.9 c,f). This places CMP and GMP down-
stream of the split of the two branches into the myelo-erythroid branch.
Another interesting feature of the data is that about 1/3 of Gr and EryP barcodes
were not retrieved in CMP, although the CMP compartment was more compre-
hensively sampled. This finding could indicate the existence of differentiation
pathways to these mature populations that bypass phenotypic CMP.



5.2. ADULT LABELLING 37

5.2| Adult labelling

In the final part of this chapter we explore output of adult HSC into mature pop-
ulations. Three mice (#3, #4, #5) were treated by injecting tamoxifen intraperi-
toneally at around 8 weeks of age. Barcodes were retrieved 11-13 months after in-
duction. Because Tie2 is expressed in ST-HSC, MPP and CMP in the adult mouse,
barcodes were also induced in these populations and was not only in HSC. How-
ever recombination in ST-HSC, MPP and CMP was much lower than in HSC [22],
so that the vast majority of barcodes were generated in HSC.

5.2.1| Cluster Analysis and progenitor data

We repeated the analysis steps as described above for the data retrieved from em-
bryonic labelled mice.

Smaller HSC barcode clone sizes lead to less sample overlap

In embryonic labelledmice, we obtain large barcodedHSC clones in the adult. This
is due to the emergence of HSC at the time of barcode induction and the following
rapid expansion of the compartment [7]. In the case of adult labelling, the starting
pool of HSC is much larger. In combination with a slow differentiation and prolif-
eration this creates smaller barcode clones in adult labelling.
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and CD4+ T-cells c. Each dot represents a single rare barcode. d, spearman's rank corre-
lation 𝜌 of pooled CMP/GMP rare barcodes versus mature populations.

This effect should be visible when comparing sample repeats. We therefore looked
at the overlap of rare barcodes in sample repeats, analyzing two samples of granu-
locytes and CD4+ T-cells. As expected, themeasured overlap ismuch lower than in
embryonic labelling (fig. 5.10). Consequently, measured correlations are expected
to be lower and observed clustering patterns not as clear-cut as in embryonic la-
belled mice.
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Figure 5.11: Hierarchical clustering of barcodes from adult labelled mice: clustering ap-
plied to a, Codes from mouse #5 with increased sample size and b, Mouse #3. A clear
dichotomy betweenmyelo-erythroid and common lymphoid branch is visible for both ex-
periments. Progenitor barcodes cluster with their respective mature population in b.

CMP/GMP are related to the myelo-erythroid branch

To see whether the observations in chapter 5.1.5 regarding the potential of CMP
and GMP as myeloid progenitors hold true in adult labelled , we analyzed the data
in the same manner as described before. Due to smaller clone size and the at-
tached sampling issues CMP and GMP barcode reads were pooled.
As before the number of shared barcodes was higher in the case of EryP than with
CD4+ T-cells. Here only 3% of the retrieved rare barcodes were shared in both
populations, where 31% of barcodes were shared with erythrocyte progenitors
(fig. 5.10 b,c). The almost complete absence of shared barcodes between CMP/GMP
and CD4+ T-cells indicates a high distance in the developmental path.
We then compared correlations and the 95% confidence interval obtained by non-
parametric bootstrapping of CMP/GMP versus mature populations. In addition
to the populations in chapter 5.1.5 we also sampled monocytes. While the corre-
lations with populations from the common lymphoid branch (B2, CD4, CD8) was
practically zero, populations from the myelo-erythroid branch (EryP, Gr, Mono)
showed much higher correlation. Again, this places CMP and GMP populations
downstreamof the split betweenmyelo-erythroid and common lymphoid branches
and as progenitors of the myelo-erythroid populations.
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Figure 5.12: Barcode enrichment analysis: a, Unique barcodes found over number of
drawn samples. Mean and standard deviation are shown. The curve flattens out in the
end, suggesting that themajority of barcodes have been found. b,c, Proportion of uni- and
bilineage barcodes. Data in blue, assumption of ubiquitous barcodes in red. Mean and
standard deviation.

Cluster analysis reveals same correlation patterns as in embryonic labelledmice

Cluster analysis as described in chapter 5.1.3 was performed. Additionally we in-
cluded pro B cells and pre T cells as progenitor populations in the experiment. To
address the known undersampling issue caused by smaller barcode clone sizes,
we increased the sampling depth 3-4 times in one experiment.
The overall correlation pattern was again strongly visible, splitting the popula-
tions into the two branches (fig. 5.11). Next, we compared all mature populations
to their respective progenitors. Despite undersampling, the dichotomy between
myelo-erythroid and common lymphoid pathways appears. To minimize the in-
fluence of undersampling, CD4+ and CD8+ T cells are pooled, as well as DN and DP
cells as T cell progenitors and Fr. A, Fr. B and Fr. C B cell progenitors as pro B cells.
Further, pro B and B2 lymphocytes and pre T and T-cells are clustering together
in their respective lineage. This suggest that they are indeed downstream of the
split. Again GMP and CMP clustered inside the myelo-erythroid branch, showing
that those populations are more closely related to myelo-erythroid than lymphoid
lineages.

5.2.2| Multilineage fates

In the case of adult labelling the pool of cells in which barcodes are generated
is much larger than in the case of embryonic labelling. We therefore expect more
but smaller barcode clones in the adult system. To circumvent the sampling issues
that arise with smaller barcode clone sizes, we analysed multiple sample repeats.
In addition to a better sampling depth used in the previous section for hierar-
chical clustering, this allows for a barcode enrichment analysis to check whether



40 CHAPTER 5. DATA ANALYSIS AND CLUSTERING

unilineage barcodes are truly unilineage or due to undersampling.

Sampling reveals unilineage clones

To check whether undersampling plays a role in assigning a barcode as unilin-
eage, or if there are true unilineage fates we used a "null" model. We assumed
barcodes are found in all lineages with the mean frequency obtained in the exper-
iment (EryP/Gr and B2/CD4 respectively). Next we sampled 30,000 times from
this frequency distribution to obtain a total of 4 samples (each experimental sam-
ple contains 30,000 cells). We then analysed the proportion of unilineage to bilin-
eage barcodes as more samples are added. The data deviate from the null model
substantially. While in the model the proportion of bilineage barcodes tends to
1, it stagnates in the data at around 0.4 (EryP/Gr) and 0.2 (B2/CD4) fig. 5.12 b,c).
This indicates that indeed unilineage clones exist even inside a major branch. The
occurrence of unilineage clones does not necessarily mean fate restriction as it
might also be possibly explainable by stochasticity in the system, which we will
study in the next chapter.



6| Theoretical studyofbarcodeprop-
agation

Basic correlation analysis of barcode distributions in different populations revealed
a major split between the myeloid-/erythroid and the common lymphoid branch.
To gain a deeper inside how these observed correlation patterns arise it is crucial
to understand the underlying mechanics. With Polylox we are able to label single
stems cells. Therefore, stochastic effects need to be taken into account when in-
vestigating the dynamics of their proliferation and differentiation. In this chapter,
we introduce the theoretical framework and study in general terms the implica-
tions of topology, kinetics and clone sizes on observable correlation patterns.

6.1| Moment equations for proliferation and differentiation

We are interested in finding the time evolution of the moments of barcode clone
sizes. To this end, we formulate a master equation of a standard Markov model
[44]. We will then translate the master equation (as infinite-dimensional system
of ordinary differential equations, ODE) into a partial differential equation (PDE)
for the probability generating function 𝐹 (PGF). 𝐹 is given, in general, by

𝐹(𝑧1, … , 𝑧𝑗, 𝑡) = ∑
𝑛1,…,𝑛𝑗

𝑧𝑛1
1 ⋅ … ⋅ 𝑧𝑛𝑗

𝑗 𝑃(𝑛1, … , 𝑛𝑗, 𝑡) (6.1)

for a system with 𝑗 state variables 𝑛1, … , 𝑛𝑗. By sequentially differentiating 𝐹
with respect to 𝑧𝑖 and setting 𝑧𝑖 = 1 we obtain a set of ODE for the moments of
𝑃 . The numerical solution of ODE is usually faster than stochastic simulations.
In this chapter several toy models are studied. Because of their linearity, we treat
differentiation and proliferation separately and rebuild the probability generating
function from these building blocks:
Differentiation:
The master equation of a simple differentiation process from 𝐴 to 𝐵 with 𝑛𝐴 and
𝑛𝐵 cells respectively and rate 𝑑 is obtained by balancing influx and efflux of a given
state:

̇𝑃 (𝑛𝐴, 𝑛𝐵) = 𝑑[(𝑛𝐴 + 1)𝑃(𝑛𝐴 + 1, 𝑛𝐵 − 1) − 𝑛𝐴𝑃(𝑛𝐴, 𝑛𝐵)] (6.2)

41
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Using the definition of the PFG from eq. 6.1 we rewrite the master equation as a
PDE for 𝐹 . By multiplying 𝑧𝑛𝐴

𝐴 𝑧𝑛𝐵
𝐵 and summing over 𝑛𝐴 and 𝑛𝐵, we express the

master equation in means of 𝐹 , term by term:

∞
∑

𝑛𝐴=0

∞
∑

𝑛𝐵=0
𝑧𝑛𝐴

𝐴 𝑧𝑛𝐵
𝐵 ̇𝑃 (𝑛𝐴, 𝑛𝐵) = ̇𝐹 (𝑧𝐴, 𝑧𝐵) (6.3)

∞
∑

𝑛𝐴=0

∞
∑

𝑛𝐵=0
𝑧𝑛𝐴

𝐴 𝑧𝑛𝐵
𝐵 (𝑛𝐴 + 1)𝑃 (𝑛𝐴, 𝑛𝐵) = 𝑧𝐵

𝑧𝐴

∞
∑

𝑛′
𝐴=0

∞
∑

𝑛′
𝐵=0

𝑧𝑛′
𝐴

𝐴 𝑧𝑛′
𝐵

𝐵 𝑛′
𝐴𝑃(𝑛′

𝐴, 𝑛′
𝐵)

= 𝑧𝐵
𝑧𝐴

𝑧𝐴

∞
∑

𝑛′
𝐴=0

∞
∑

𝑛′
𝐵=0

𝑧𝑛′
𝐴−1

𝐴 𝑧𝑛′
𝐵

𝐵 𝑛′
𝐴𝑃

= 𝑧𝐵
𝑧𝐴

𝑧𝐴𝜕𝑧𝐴
𝐹(𝑧𝐴)

= 𝑧𝐵𝜕𝑧𝐴
𝐹(𝑧𝐴) (6.4)

and finally

∞
∑

𝑛𝐴=0

∞
∑

𝑛𝐵=0
𝑧𝑛𝐴

𝐴 𝑧𝑛𝐵
𝐵 (𝑛𝐴)𝑃 (𝑛𝐴, 𝑛𝐵) = 𝑧𝐴

∞
∑

𝑛𝐴=0

∞
∑

𝑛𝐵=0
𝑧𝑛𝐴−1

𝐴 𝑧𝑛𝐵
𝐵 𝑛𝐴𝑃(𝑛𝐴, 𝑛𝐵)

= 𝑧𝐴𝜕𝑧𝐴
𝐹(𝑧𝐴) (6.5)

Combining eq. 6.3 - 6.5 we the following PDE for cell differentiation:

𝜕𝑡𝐹(𝑧𝐴, 𝑧𝐵) = 𝑑(𝑧𝐵 − 𝑧𝐴)𝜕𝑧𝐴
𝐹(𝑧𝐴, 𝑍𝐵) (6.6)

Proliferation:
Using the same approach we find

̇𝐹 (𝑧𝐴) = 𝑙(𝑧2
𝐴 − 𝑧𝐴)𝜕𝑧𝐴

𝐹(𝑧𝐴) (6.7)

for symmetric cell division with rate 𝑙.
In a similar manner, we write down equations governing 𝐹 for asymmetric cell
division and symmetric differentiating division. For simplicity, we assume that
symmetric self-renewing division and differentiation independent of division are
the dominant processes [45]. Themoments of𝑃 be expressed as the partial deriva-
tives of 𝐹|𝑧𝑖=1. Up to the first two partial derivatives we get:

𝜕𝑧𝑖
𝐹|1 = ⟨𝑛𝑖⟩

𝜕2
𝑧𝑖

𝐹|1 = ⟨𝑛𝑖(𝑛𝑖 − 1)⟩
𝜕𝑧𝑖

𝜕𝑧𝑗
𝐹|1 = ⟨𝑛𝑖𝑛𝑗⟩

(6.8)
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For themean values 𝜇𝑖, the variances 𝑣𝑎𝑟(𝑛𝑖), the coefficient of variation𝐶𝑉𝑖 and
the pairwise correlations 𝑟𝑖𝑗 we find:

𝜇𝑖 = 𝜕𝑧𝑖
𝐹|1

𝑣𝑎𝑟(𝑛𝑖) = 𝜕2
𝑧𝑖

𝐹|1 + 𝜕𝑧𝑖
𝐹|1 − (𝜕𝑧𝑖

𝐹|1)2

𝐶𝑉𝑖 = √𝑣𝑎𝑟(𝑛𝑖)
𝜇𝑖

𝑟𝑖𝑗 =
𝜕𝑧𝑖

𝜕𝑧𝑗
𝐹|1 − 𝜕𝑧𝑖

𝐹|1𝜕𝑧𝑗
𝐹|1

√𝑣𝑎𝑟(𝑛𝑖)√𝑣𝑎𝑟(𝑛𝑗)
for 𝑖 ≠ 𝑗 (6.9)

This framework allows us to compute observable quantities such as mean clone
sizes, CVs and correlation coefficients by solving a set of ordinary differential equa-
tions (ODE). Other properties of interest, such as barcode concordance, Spear-
man's 𝜌 and the influence of sampling cannot be calculated this way. To study
these, we will resort to stochastic simulations.
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6.2| Topological motifs

To study the effect of topology on themeasured correlation pattern we use simpli-
fied "toy" models. We will focus on how different topological motifs affect barcode
correlations.

6.2.1| Branch points

Consider the three toymodels shown in fig. 6.1. Within the framework of the previ-
ous section, we compute the ODE system that allows us to calculate the moments
of 𝑃 .

I II III

A

B

C

D

Figure 6.1: Toy models to study branching points: The effects of branching points are
studied by three toy models: every population A-D has a net proliferation rate l (indicated
by self-pointing arrows) and a differentiation with rate d (straight arrows). Onemay think
of population A as the stem cell, populations B and C as progenitor cell and populations
D1 and D2 as two different types mature cell compartments.

For the mean values we get for toy model I, where 𝑙 denotes net proliferation and
𝑑 differentiation.

̇⟨𝑛𝐴⟩ = (𝑙𝐴 − 𝑑𝐴)⟨𝑛𝐴⟩
̇⟨𝑛𝐵⟩ = (𝑙𝐵 − 𝑑𝐵)⟨𝑛𝐵⟩ + 𝑑𝐴⟨𝑛𝐴⟩
̇⟨𝑛𝐶⟩ = (𝑙𝐶 − 𝑑𝐶 − 𝑑𝐷1

)⟨𝑛𝐶⟩ + 𝑑𝐵⟨𝑛𝐵⟩
̇⟨𝑛𝐷1

⟩ = 𝑙𝐷1
⟨𝑛𝐷1

⟩ + 𝑑𝐶⟨𝑛𝐶⟩
̇⟨𝑛𝐷2

⟩ = 𝑙𝐷2
⟨𝑛𝐷2

⟩ + 𝑑𝐷1
⟨𝑛𝐶⟩

(6.10)

The second derivatives at 𝑧𝑖 = 1 yield the following set of ODEs:

̇𝐹𝐴,𝐴 = 2𝑙𝐴⟨𝑛𝐴⟩ − 2(𝑑𝐴 − 𝑙𝐴)𝐹𝐴,𝐴
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̇𝐹𝐴,𝐵 = (𝑙𝐴 + 𝑙𝐵 − 𝑑𝐴 − 𝑑𝐵)𝐹𝐴,𝐵 + 𝑑𝐴𝐹𝐴,𝐴
̇𝐹𝐴,𝐶 = (𝑙𝐴 + 𝑙𝐶 − 𝑑𝐴 − 𝑑𝐶 − 𝑑𝐷1

)𝐹𝐴,𝐶 + 𝐹𝐴,𝐵
̇𝐹𝐴,𝐷1

= (𝑙𝐴 + 𝑙𝐷1
− 𝑑𝐴)𝐹𝐴,𝐷1

+ 𝑑𝐶𝐹𝐴,𝐶
̇𝐹𝐴,𝐷2

= (𝑙𝐴 + 𝑙𝐷2
− 𝑑𝐴)𝐹𝐴,𝐷2

+ 𝑑𝐷1
𝐹𝐴,𝐶

̇𝐹𝐵,𝐵 = 2(𝑑𝐴𝐹𝐴,𝐵 − 𝑑𝐵𝐹𝐵,𝐵 + 𝑙𝐵(⟨𝑛𝐵⟩ + 𝐹𝐵,𝐵))
̇𝐹𝐵,𝐶 = (𝑙𝐵 + 𝑙𝐶 − 𝑑𝐵 − 𝑑𝐶 − 𝑑𝐷1

)𝐹𝐵,𝐶 + 𝑑𝐵𝐹𝐵,𝐵 + 𝑑𝐴𝐹𝐴,𝐶
̇𝐹𝐵,𝐷1

= (𝑙𝐵 + 𝑙𝐷1 − 𝑑𝐵)𝐹𝐵,𝐷1
+ 𝑑𝐶𝐹𝐵,𝐶 + 𝑑𝐴𝐹𝐴,𝐷1

̇𝐹𝐵,𝐷2
= (𝑙𝐵 + 𝑙𝐷2 − 𝑑𝐵)𝐹𝐵,𝐷2

+ 𝑑𝐷1
𝐹𝐵,𝐶 + 𝑑𝐴𝐹𝐴,𝐷2

̇𝐹𝐶,𝐶 = 2(𝑑𝐵𝐹𝐵,𝐶 − (𝑑𝐶 + 𝑑𝐷1
)𝐹𝐶,𝐶 + 𝑙𝐶(⟨𝑛𝑐⟩ + 𝐹𝐶,𝐶))

̇𝐹𝐶,𝐷1
= (𝑙𝐶 + 𝑙𝐷1

− 𝑑𝐶 − 𝑑𝐷1
)𝐹𝐶,𝐷1

+ 𝑑𝐶𝐹𝐶,𝐶 + 𝑑𝐵𝐹𝐵,𝐷1

̇𝐹𝐶,𝐷2
= (𝑙𝐶 + 𝑙𝐷2

− 𝑑𝐶 − 𝑑𝐷1
)𝐹𝐶,𝐷2

+ 𝑑𝐷1
𝐹𝐶,𝐶 + 𝑑𝐵𝐹𝐵,𝐷2

̇𝐹𝐷1,𝐷1
= 2(𝑙𝐷1

⟨𝑛𝐷𝐴
⟩ + 𝑙𝐷1

𝐹𝐷1,𝐷1
+ 𝑑𝐶𝐹𝐶,𝐷1

)
̇𝐹𝐷1,𝐷2

= (𝑙𝐷1
+ 𝑙𝐷2

)𝐹𝐷1,𝐷2
+ 𝑑𝐶𝐹𝐶,𝐷2

+ 𝑑𝐷1
𝐹𝐶,𝐷1

̇𝐹𝐷2,𝐷2
= 2(𝑙𝐷2

⟨𝑛𝐷𝐵
⟩ + 𝑙𝐷2

𝐹𝐷2,𝐷2
+ 𝑑𝐷1

𝐹𝐶,𝐷2
)

(6.11)

The equivalent ODS systems for toy models II and III are found in the appendix.
To minimize the influence of kinetics, parameters are restricted as follows:

• the differentiation rates at a branch point (e.g., A → B1/B2) are half of that of
unbranched differentiation (e.g A, → B).

• proliferation rate is the same in all compartments

These parameter settings ensure, that the mean values are the same in all three
models:

⟨𝑛𝐴,I⟩ = ⟨𝑛𝐴,II⟩ = ⟨𝑛𝐴,III⟩
⟨𝑛𝐵,I⟩ = ⟨𝑛𝐵,II⟩ = ⟨𝑛𝐵1,III⟩ + ⟨𝑛𝐵2,III⟩
⟨𝑛𝐶,I⟩ = ⟨𝑛𝐶1,II⟩ + ⟨𝑛𝐶2,II⟩ = ⟨𝑛𝐶1,III⟩ + ⟨𝑛𝐶2,III⟩
⟨𝑛𝐷1,I⟩ + ⟨𝑛𝐷2,I⟩ = ⟨𝑛𝐷1,II⟩ + ⟨𝑛𝐷2,II⟩ = ⟨𝑛𝐷1,III⟩ + ⟨𝑛𝐷2,III⟩

Todetermine the effect of parameter values on the behaviour of the systemweper-
formed latin hypercube sampling (100 times to obtain 100 parameter sets in the
interval of [0,1]). Latin hypercube sampling allows to generate near-random sam-
ples fromamultidimensional distribution as follows: Instead of randomly drawing
parameter sets from [0,1], the interval is divided into 𝑁 equal portions. Suppose
you have 𝑁 samples in the interval [0,1] in 𝑘 dimensions. First, for every dimen-
sion, we draw a random variable in the interval [0,1/N]. In the next step we draw a
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Figure 6.2: Latin hypercube sampling and effects of branching points: a, Scheme for pa-
rameter sampling in 2 dimensions. First each parameter is divided into equally likely
parts. One value is drawn from every interval at random. In the last step the parameter
pairs are randomized to reduce correlation. b-e, Exemplary time evolution of the correla-
tion for the three different toy models. Blue denotes the latest split, magenta the earliest.
The red line shows the model with the split in between. In the whole parameter space we
found rI(𝐷1, 𝐷2) > rII(𝐷1, 𝐷2) > rIII(𝐷1, 𝐷2). Parameters for the shown examples
can be found in the appendix

random variable from the next interval, namely [1/N,2/N]. This process is repeated
until all 𝑁 samples have been drawn. We then randomly reassign the drawn vari-
ables to length 𝑘 vectors. This ensures sampling from the complete space with
relatively small samples [46].

Topology has major influence on barcode correlations

In the complete parameter space we found that the correlations between D1 and
D2 obey rI(𝐷1, 𝐷2) > rII(𝐷1, 𝐷2) > rIII(𝐷1, 𝐷2). This finding implies that the
point of branching has a big impact on observed correlation patterns. The correla-
tion distinguishes between early or late divergence in the development. Addition-
ally the correlation also encodes information on fate restriction. For example, if
a lineage that is considered bipotent actually consists of two distinct populations
that are restricted to one respective fate, one would expect a lower correlation be-
tween both offspring populations than if there were no fate restriction.
Additionally, the time evolution of the correlation depends on the pathway topol-
ogy. This finding implies that multiple measured time points contain meaningful
information on the topology and could be used in constraining models of differ-
entiation pathways.
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Figure 6.3: Effects of barcode clone size on the measured correlation: a, Time evolution
of correlation between D1 and D2 for the three toy models. The full lines show an initial
value of 1 cell, the dotted lines an initial value of 100 cells. b,c, Simulated clone size concor-
dance for models I, II and III. Each dot corresponds to a single clone. Percentage indicates
overlap. Initial vaules: b, 1 cell, c, 100 cells.

Clone size affects correlation patterns

To study the effects of clone sizes, we used clones with size 1 and with size 100 as
initial values in all threemodels. While the change in clone size had only a small ef-
fect, it overall slightly reduced barcode correlations (fig. 6.3 a) between themature
population D1 and D2. This is in line with the observations made in chapter 5.1.4,
where an increase in clone size decreased the correlation inside a major branch.
In addition to the moment based approach, we also performed a stochastic sim-
ulation with the same parameters to see the effects of clone size on barcode con-
cordance. For smaller clone sizes, the overlap seems to be a good indication of
close developmental relationship. Even though increasing the number of starting
cells leads to 100 percent shared codes, this has little impact on the correlations,
with model III still leading to negative correlations (fig. 6.3 b,c). This indicates that
the correlation is a better measure of developmental proximity than the overlap
itself. Nevertheless, the expected percentage of shared barcodes might provide
some inside into clone sizes. The high overlap for larger clone sizes is also in line
with the observation that large clones in our data set tend to show multilineage
potential.

6.2.2| Influence of kinetics on correlations

From our observations of correlations in chapter 5, we assumed that high corre-
lations are not necessarily only due to close relationships of lineages but are also
influenced by the kinetics of cell proliferation and differentiation. We are particu-
larly interested in the interplay of kinetics and topology. In this section we study
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Figure 6.4: Implications of kinetics in a simple motif: a, Topological motif with two pop-
ulations and indicated parameters. b, Correlation heatmap for different parameter com-
binations of 𝑑1 and 𝑑2. c, Line profile of b at 𝑑2 = 10−3 for different expansion ratios.
d, Clonesize distribution used as initial values for stochastic simulation of the indicated
model. e, Simulated barcode frequencies at steady state with different parameters as in-
dicated in b (white markings). Each dot indicates a single barcode clone.

two distinct topologicalmotifs found in the full tree: a simple linear differentiation
and split into two offspring populations.

Slow kinetics cause low correlations

First we take a look at a simple differentiation process depicted in fig. 6.4 a. Here
population A proliferates with rate 𝑙1 and differentiate into Bwith rate 𝑑1. B again
proliferates and differentiates "out of the system" with rates 𝑙2 and 𝑑2 respec-
tively. To reduce the number of parameters we set 𝑑1 = l1 and therefore A is
self-renewing. Since LT-HSC have been observed to be self-renewing [47], the as-
sumption is appropriate. We then set 𝑙2 in such a way that the expansion ratio
⟨𝑛B⟩
⟨𝑛A⟩ is fixed. From the steady state solution we get:

⟨𝑛B⟩
⟨𝑛A⟩ = d1

d2 − l2
(6.12)

We then systematically calculated the steady state correlation for all parameter
combinations of 𝑑1 and 𝑙2 for different expansion ratios. The differentiation rate
from A to B has the largest impact on the correlation (fig. 6.4 b). In the range of



6.2. TOPOLOGICAL MOTIFS 49

10−4 to 10−2 for 𝑑1 there is little impact on the correlation. This is followed by
a steep increase as d1 is raised further. A fast proliferation of B causes the cor-
relation between A and B to approach zero. In particular, to keep the expansion
ratio constant a rise in the 𝑑2 also means a rise in 𝑙2. Due to low residence times
of cells in population B caused by high 𝑑2 this then leads to a correlation of zero.
If however the differentiation from A to B is also fast enough, the individual clone
sizes reflect the distribution in A more closely, leading to an increase in correla-
tion again (fig. 6.4 b, right side).
The expansion ratio itself has only a minor influence in the correlation between
A and B (fig. 6.4 c). In general, a high correlation is strongly dependent on fast
differentiation. Indeed, in the hematopoiesis data, we saw low barcode correla-
tions between LT-HSC and ST-HSC, where LT-HSC differentiate very slowly, but
a higher correlation between ST-HSC and MPP, where ST-HSC differentiate more
rapidly ( [23], see section 5.1.5).
For three parameter pairs (fig. 6.4,b; white markings) a stochastic simulation was
run. To resemble the experiment more closely, the initial clone size distribution
for A was drawn from an exponential distribution and is depicted in fig. 6.4 d. The
simulation ran until steady state was reached. As in the ODE model, a slow dif-
ferentiation from A to B had a major impact on the observed rank correlations,
leading to uncorrelated barcode distributions in A and B. In contrast a fast differ-
entiation from A to B lead to a high rank correlation largely independent on the
differentiation rate 𝑑2.

Effect of differentiation rate on downstream compartments

Wenowadd another populationC emerging fromB to study the effects of different
combinations of differentiation rates. Again we set 𝑑1 = l1 and chose the param-
eters 𝑙2 and 𝑙3 such, that a steady state solution is possible. To better control the
systemwe introduced again expansion ratios for the different populations instead
of systematically calculating the correlations in 4 dimensions. The expansion ra-
tios directly constrain the net proliferation rates of B and C. Since we found little
to no influence of the expansion ratios on the correlation patterns we set them to
1. As in the previous section, the main driver of the correlation between A and B
is the differentiation rate 𝑑1. The same holds true for the correlation between A
and C, where 𝑑1 has a stronger impact than 𝑑2. Generally speaking rA,C is slightly
lower than rA,B (fig. 6.5 c). The correlation between B and C then again depends
on both differentiation rates 𝑑1 and 𝑑2. Faster differentiation leads to stronger
correlations.
In the last step we further increased the number of populations to 4. Here each
subsequent population has a lower correlation with A than the previous popula-
tions. For slower rates the correlation tends to zero (fig. 6.5 e-h).
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Figure 6.5: Linear progression model: a, Scheme of a linear progression model. b-d, Ef-
fects on the correlation for different parameter combinations. e-h, Same plot as above
with an expanded linear model

Proliferation and differentiation kinetics influence progenitor-offspring correla-
tions

In the next step we study the influence of kinetics on the relationship between
offspring and progenitor populations, focusing on toy model I. We systematically
changed the proportion of the differentiation rates to the two different types of
offspring D1 and D2,

𝑑D1
𝑑D2

, thus allowing a kinetic bias in the two branches.
First, parameter sets discussed in the previous section were studied. In line with
the observations made in the previous section fast differentiation drives high cor-
relations. A heavy bias towards one of the branches lowers the expected correla-
tion between both offspring populations drastically (fig. 6.6 b,c red line). Indeed,
the highest possible offspring correlation occurs when there is no bias and differ-
entiation is equally fast. Moreover a bias decreases the correlation between off-
spring and progenitor in the slower branch (fig. 6.6 b,c black and blue lines). This
is to be expected, since it slows down the differentiation in one branch, which
we could see in the previous section has a major impact on the correlation. In-
terestingly, there exist parameter combinations where offspring pairs are higher
correlated than progenitor/offspring pairs and vice versa. This has also been ob-
served in our experiments, where EryP showed a slightly higher correlation with
GMP than Gr (fig. 5.9 f). In the conventional tree like model EryP and GMP would
be offspring pairs (both arising fromCMP), where GMP andGr are in a progenitor-
offspring relationship.
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g,h, Simulated barcode frequencies at marked parameter values at steady state. Each dot
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To investigate more general parameter choices , we focused on populations C, D1
and D2 (highlighted part of themodel shown in fig. 6.6 a). To achieve a steady state
solution some constraints on the parameters are applied.

• Proliferation rate 𝑙C = 𝑑D1 + 𝑑D2, preventing C on average from dying out;

• D1 and D2 leave the system with rates dD1 and dD2 respectively (since we
found little influence of an expansion ratio we set it to 1 here)

This leaves us with two major parameters dD1 and dD2. As in the previous section
we calculated the pairwise correlations between the three populations for every
parameter combination. As expected, an increase in the differentiation rate also
increased the correlation between progenitor and offspring (fig. 6.6 d,e). Due to the
steady state restriction increasing dD2 leads also to an increase in 𝑙C, which in turn
also increases the correlation between C and D1 (fig. 6.6 d lower right quadrant).
The correlation between D1 and D2 appears to be a convolution of the correlation
between C and D1 and C and D2. Keeping both parameters the same, increasing
the rates also increases the correlation (fig. 6.6 f). Decreasing one of the rateswhile
increasing the other leads to a decrease in correlations.
Further, we chose two parameter pairs for 𝑑D1 and 𝑑D2 (fig. 6.6 d-f; markings) and
run a stochastic simulation using the clone size distribution from fig. 6.4 d as the
initial distribution for C. At steady-state a kinetic bias in differentiation rates to-
wards D2 leads to a high rank correlation between C and D2 but a lower rank
correlation between C and D1 as well as between D1 and D2 (fig. 6.6 g). If both dif-
ferentiation steps are equally fast, rank correlations between all three populations
are equal (fig. 6.6 h).

6.2.3| Barcode correlations reflect developmental relationship

In chapter 5 we analysed the data under the assumption that high correlation in
barcode usage could be interpreted as a close developmental relationship. The
theoretical exploration of correlation patterns in various scenarios presented in
this chapter, the general assumption, that high correlations reflect a close devel-
opmental relationship, holds true. A high correlation between two populations
not only indicates a close relationship in a topological but also in a kinetic sense.
Therefore, measured correlations patternsmay provide insight into both pathway
topology and differentiation kinetics. Indeed topology is a "limiting case" of kinet-
ics characterized by some differentiation rates being zeros. For rigorous inference
of differentiation rates and hence lineage topology, correlations alone will not be
sufficient [48].



7| Modeling differentiation
dynamics in the hematopoietic
system

The fate mapping of HSC populations previously allowed the inference of key pa-
rameters of hematopoietic stemandprogenitor cells during physiological hematopoiesis
[23]. In this chapter, we extend this modeling framework to include not only mean
values of the cell population numbers but also quantities derived from the second
moments (coefficient of variation, CV, and correlation coefficients), following the
framework outlined in the previous chapter. We ask whether data obtained with
Polylox barcoding are consistent with previous work [23].

DN

DP

CD8+ CD4+ 

HSC

ST-HSC

CLP

proB

B

CMP

GMPMEP

Mk

MPP

MonoEry Gr

Figure 7.1: The hematopoietic system: Classical model of adult hematopoiesis. Black ar-
rows denote differentiation steps.

7.1| Parameters of steady state hematopoiesis

As in Busch et al. [23], we focus on adult steady state hematopoiesis and use the
topology described in fig. 7.1. Balancing influx and efflux leads to the following

53
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steady state equations for the mean barcode clone sizes ⟨𝑛𝑖⟩:

⟨𝑛ST⟩ = 𝑑LT,ST
𝑑ST,MPP − 𝑙ST

⟨𝑛LT⟩

⟨𝑛MPP⟩ = 𝑑ST,MPP

𝑑MPP,CMP + 𝑑MPP,CLP − 𝑙MPP
⟨𝑛ST⟩ (7.1)

⟨𝑛CMP⟩ = 𝑑MPP,CMP

𝑑CMP,MEP + 𝑑CMP,GMP − 𝑙CMP
⟨𝑛MPP⟩

⟨𝑛GMP⟩ = 𝑑CMP,GMP

𝑑GMP,Gr − 𝑙𝑑GMP
⟨𝑛CMP⟩

⟨𝑛Gr⟩ = − 𝑑GMP,Gr

𝑙Gr
⟨𝑛GMP⟩ (7.2)

⟨𝑛CLP⟩ = 𝑑MPP,CLP

𝑑CLP,proB + 𝑑CLP,DN − 𝑙CLP
⟨𝑛MPP⟩

⟨𝑛proB⟩ = 𝑑CLP,proB
𝑑proB,B2 − 𝑙proB

⟨𝑛CLP⟩

⟨𝑛B2⟩ = − 𝑑proB,B2
𝑙B2

⟨𝑛proB⟩

⟨𝑛DN⟩ = 𝑑CLP, DN
𝑑DN,DP − 𝑙DN

⟨𝑛CLP⟩

⟨𝑛DP⟩ = 𝑑DN,DP
𝑑DP, CD4 + 𝑑DP,CD8 − 𝑙DP

⟨𝑛DN⟩

⟨𝑛CD4⟩ = − 𝑑DP, CD4
𝑙CD4

⟨𝑛DP⟩

⟨𝑛CD8⟩ = − 𝑑DP,CD8
𝑙CD8

⟨𝑛DP⟩,

(7.3)

where 𝑙𝑖 denote the net proliferation rates of population 𝑖 (proliferation minus
death rates), 𝑑𝑖,𝑗 is the differentiation rate from population 𝑖 to 𝑗. Note that the
net proliferation of mature populations that do not divide (e.g. granulocytes) is
less than zero.

Estimating barcode clone sizes

Due to potentially skewed PCR amplification from a single genomic Polylox locus
per cell, read counts are not easily converted into clone size distributions. How-
ever, due to sufficiently large sample sizes (e.g. 10,000-120,000 cells) the central
limit theorem allows us to estimate the population mean frequency by the sample
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mean frequency. The size of the HSC compartment to ~16,000 cells [23]. In addi-
tion to net proliferation and differentiation rates, Busch et al. also estimated the
population sizes of the adult hematopoietic system [23].

LT ST MPP
1.6 4.7 14.7
CMP MEP GMP Gr
62.7 160 86.9 261
CLP proB B2 DN DP CD4 CD8
206 2450 1900 2780 8360 759 245

Table 7.1: Population sizes adapted from [23]: Estimated population sizes for different cell
types [x104]

The number of cells with barcode 𝑗 in population 𝑖 is then given by:

𝑠𝑖,𝑗 = 𝑓𝑖,𝑗𝑆(𝑖)

where 𝑓𝑖,𝑗 the frequency of barcode 𝑗 in population 𝑖 and 𝑆(𝑖) the population size
of population 𝑖.
The standard error of the mean (SEM) was estimated by non-parametric boot-
strapping of the mean and calculating the standard deviation of the mean distri-
bution.

Mean values are explained by refined parameters

Weused the parameters estimated byBusch et al. [23] and a standard𝜒2-minimization
for the objective function to refine parameters for the given Polylox data:

𝜒2 =
𝑘

∑
𝑖=1

(⟨𝑛𝑖⟩ − �̄�𝑖
𝜎�̄�𝑖

) (7.4)

The resulting best fit is depicted in fig. 7.2, showing that the tree model repro-
duces the observed barcodemean clone sizes. The prediction band was calculated
by bootstrapping the measured mean values 10,000 times and fitting the model
to each value. We then calculated the 2.5% and 97.5% quantiles of the parameters,
which is found in table 7.2.
Due to the linear dependency of differentiation and net proliferation rates, rates
inferred from steady state are not identifiable. Since we aim to show consistency
between Polylox data and previous work, we used the rates estimated by Busch et
al. as initial values [23] and looked for a local minimum of 𝜒2 eq. 7.4.
To further test the model we calculated the moments for the tree model as de-
scribed in chapter 6, namely the coefficient of variation (CV) and the correlation.
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Figure 7.2: Steady-state solution: The calculated mean barcode clonesizes and the CV
explains the data from embryonic Polylox mice. Arrows show differentiation steps along
the tree. Blue line indicates the mean, light blue area indicates 95% confidence interval
calculated by bootstrapping experimental values and calculating the 95% intervals of the
respective best-fit parameters
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Parameter: net proliferation 𝑙𝑖 [𝑑−1] Best fit 95% CI

LT 0.0088 [0.0083;0.0090]
ST 0.045 [0.044;0.045]
MPP 4 [3.99;4]
CMP 3.97 [3.84;3.99]
GMP 1.34 [1.1;1.5]
Gr -1.33 [-1.59;-1.07]
CLP 2.64 [2.63;2.64]
proB 0.02 [0.019;0.021]
B2 -0.045 [-0.046;-0.044]
DN 3.95 [3.95;3.95]
DP 0.0024 [0.0011;0.0036]
CD4 -1.43 [-1.44;-1.43]
CD8 -0.073 [-0.073;0.072]
Parameter: differentiation 𝑑𝑖[𝑑−1] Best fit 95% CI

LT → ST 0.0088 [0.0083;0.0090]
ST → MPP 0.048 [0.048,0.049]
MPP → CMP 3.99 [3.99,3.99]
MPP → CLP 0.022 [0.02,0.024]
CMP → MEP 0.81 [0.74,0.88]
CMP → GMP 4 [3.89,4]
GMP → Gr 3.98 [3.74,4]
CLP → proB 2.02 [2.02,2.02]
CLP → DN 0.64 [0.63,0.64]
proB → B2 0.035 [0.034,0.036]
DN → DP 4 [4,4]
DP → CD4 0.13 [0.012,0.013]
DP → CD8 0.0021 [0.0019,0.0024]
Parameter: clone size [cells] Best fit 95% CI

LT clone size 30.35 [23.53;39.41]
LT clone size (rare) 1.28 [0.87;1.81]

Table 7.2: Best fit parameters for differentiation and LT clone sizes. Parameters where
obtained by fitting the steady state solution to the barcode clone sizes. 95% intervals
are calculated by fitting to bootstrapped mean values and calculating the 2.5% and 97.5%
quantiles of the resulting distributions.
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Figure 7.3: Proportion of lineages derived from progenitor populations at different time
points at steady state. a, Gr, b, B2 cells, c, T cells. Yellow shaded area indicates experi-
mental time frame. Barcodes retrieved experimentally are mainly LT-HSC derived and to
a lesser extent also stem from ST-HSC or MPP.

7.2| Moment based modeling

We now expand the steady state model as described in chapter 6 (eq. 6.9) to calcu-
late the coefficient of variation and the pairwise correlation. If the parameters es-
timated by Busch et. al and refined in the previous section explains the measured
CV and pairwise correlation, this would provide further support to the differenti-
ation model from fig. 7.1.
For the sake of brevity and readability the full ODE model of the moment based
approach is cut from the main text and is found in the appendix.

Solving the initial conditions

A full covariance matrix is required as part of the initial conditions to properly
calculate the steady state solutions of CVs and correlations. Since we do not have
data on every population some initial values are not available.
In the first two weeks after birth the hematopoietic system rapidly equilibrates
to approximately steady state [23]. Due to labelling occurring during midgesta-
tion, barcodes in mature populations in adult mice may have been subject to this
fast equilibration and therefor not reflect the physiological differentiation and net
proliferation rates. Given the parameters estimated previously, most of these pe-
ripheral "early" barcodes have already left the system at the time of experimental
measurement. Barcodes obtained in the periphery are mainly derived from LT-
HSC, ST-HSC and MPP at steady state kinetics (fig. 7.3). We therefore calculated
the covariance matrix only from these populations (LT-HSC, ST-HSC and MPP)
from the data. The ODE-model was then initialized for a non-steady state at birth.
At the experiments time point, the system is in steady state.
The tree model is not only able to reproduce the mean but observed CV values as
shown in fig. 7.2.
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Attenuation of correlation

Since sampling introduces errors in the measured barcode frequency distribu-
tions, the expected correlation from the model overestimates the observed corre-
lation [35,49]. In this section we will introduce a way to correct for an attenuation
of correlation due to sampling and sequencing.
Let 𝑓′ and 𝑔′ be sampled barcode frequency distributions from 𝑓 and 𝑔. 𝜖𝑓 and 𝜖𝑔
are then the associated measurement errors due to sampling.

𝑓′ = 𝑓 + 𝜖𝑓 and 𝑔′ = 𝑔 + 𝜖𝑔 (7.5)

The measured correlation of the sample is then transformed into the population
correlation by the following steps:

corr(𝑓′, 𝑔′) = cov(𝑓′, 𝑔′)
√var(𝑓′)var(𝑔′)

= cov(𝑓 + 𝜖𝑓, 𝑔 + 𝜖𝑔)
√var(𝑓 + 𝜖𝑓)var(𝑔 + 𝜖𝑔)

= cov(𝑓, 𝑔)
√var(𝑓)var(𝑔)

var(𝑓)var(𝑔)
√var(𝑓 + 𝜖𝑓)var(𝑔 + 𝜖𝑔)

= corr(𝑓, 𝑔)√𝑅𝑓𝑅𝑔 ,

(7.6)

where 𝑅𝑓 and 𝑅𝑔 are called reliability coefficients under the assumption of un-
correlated 𝜖 and is calculated from eq. 7.6 as follows:

𝑅𝑓 = var(𝑓)
var(𝑓) + var(𝜖𝑓) and 𝑅𝑔 = var(𝑔)

var(𝑔) + var(𝜖𝑔) (7.7)

Since only 𝑓′ and 𝑔′ is known experimentally, it is not possible to calculate the
reliability coefficients directly. Instead, to obtain population frequency distribu-
tions, a stochastic simulation is used [27]. By using the parameters from table 7.2
we obtain population barcode distributions. By sampling from those distributions
the reliability coefficients are estimated in silico, given a mean sample depth for
each population. Where the sample depth of population i is given by:

𝑠𝑖 =
#sampled cells𝑖
population size𝑖

, (7.8)

where the number of sampled cells is between 10,000 and 50,000 cells.
While we already showed in fig. 4.2 that sequencing repeats are robust, sequenc-
ing introduces noise contributing to an attenuation of correlation. Repeating the
steps from eq. 7.6 for two distributions 𝑘1 and 𝑘2 obtained through repeated se-
quencing of the same sample and using corr(𝑘1, 𝑘2) = 1 we find:

corr(𝑘′
1, 𝑘′

2) = corr(𝑘1, 𝑘2)√𝑅𝑠𝑅𝑠
= 𝑅𝑠

(7.9)
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Estimated reliability coefficients from sequencing repeats and simulations are
found in table 7.3.

reliability coefficient mean 95% CI mean (rare) 95% CI (rare)

𝑅𝑠 0.918 [0.758;0.982]
𝑅𝐿𝑇 0.991 [0.954;1] 0.931 [0.686;1]
𝑅𝑆𝑇 0.966 [0.951;0.978] 0.781 [0.709;0.835]
𝑅𝑀𝑃𝑃 0.971 [0.950;0.995] 0.939 [0.875;0.974]
𝑅𝐶𝑀𝑃 0.982 [0.957;0.996] 0.962 [0.898;0.991]
𝑅𝐺𝑀𝑃 0.983 [0.958;0.995] 0.961 [0.876;0.991]
𝑅𝐺𝑟 0.993 [0.987;0.997] 0.985 [0.971;0.994]
𝑅𝐶𝐿𝑃 N.D.
𝑅𝑝𝑟𝑜𝐵 N.D.
𝑅𝐵2

0.983 [0.972;0.993] 0.965 [0.926;0.9862]
𝑅𝐷𝑁 0.886 [0.834;0.924] 0.799 [0.665;0.868]
𝑅𝐷𝑃 N.D.
𝑅𝐶𝐷4 0.976 [0.952;0.987] 0.950 [0.898;0.979]
𝑅𝐶𝐷8 0.982 [0.968;0.991] 0.962 [0.985;0.985]

Table 7.3: Reliability coefficients estimated from sequencing repeats with eq. 7.9 (𝑅𝑠), or
by sampling from a simulated data-sets using eq. 7.6
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Figure 7.4: Pairwise correlation of mature populations: Data of different mice compared
withmodel prediction of the shownpopulations. Data is indicated in light blue bars, model
prediction in yellow. Model prediction bands are shown as yellow shaded area. Mean
values and standard deviation obtained by non-parametric bootstrapping are shown for
data; mean and prediction bands for the model. Top row shows all barcodes, bottom row
rare barcodes with 𝑃gen < 10−4.

7.2.1| Emerging correlation patterns

Themoment based approach allows us to calculate the pairwise correlation. Using
the reliability coefficients estimated in the previous section we correct for atten-
uation effects introduced by the experimental setup.

Model predicts correlations of mature populations

We focused on the mature populations (Gr, B2, CD4 and CD8) first. The estimated
parameters (table 7.2) allow a good prediction of the expected pairwise correlation
values (fig. 7.4). With a few exceptions all experimental values are in the predic-
tion bands of the model, for both all and rare barcodes with 𝑃gen < 10−4, further
supporting the tree model.

CMP/GMP correlations are predicted correctly

As one of the conclusions of chapter 5.1.5 was the potential of CMP/GMP as pro-
genitors ofmyelo-erythroid branch, we also comparedmeasured correlationswith
model predictions. In the model CMP/GMP are fate restricted into the myelo-
erythroid branch. We compared data from CMP and GMP with the mature popu-
lations in the previous section. We considered all barcodes and rare barcodes with
𝑃gen < 10−4. The model accurately predicts the lower correlation between CM-
P/GMP and the lymphoid lineages, as well as the correlation values itself (fig. 7.5).
The accurate model prediction of the pairwise correlation of CMP/GMP with the
mature populations is a strong indicator that CMP/GMP indeed possess myelo-
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Figure 7.5: Pairwise correlation of progenitor populations: Data of different mice com-
pared with model prediction of the shown populations. Data is indicated in light blue
bars, model prediction in yellow. Model prediction bands are shown as yellow shaded
area. Mean values and standard deviation obtained by non-parametric bootstrapping are
shown for data; mean and prediction bands for the model. Top row shows all barcodes,
bottom row rare barcodes with 𝑃gen < 10−4.

erythroid potential in vivo and act as direct progenitor for granulocytes.

7.3| Stochastic simulations

In the last section of this chapter, we will use stochastic simulations to calculate
Spearman's rank correlation 𝜌 and comparemodel predictions with observed cor-
relations. While the model predicts pairwise correlations, Spearman's 𝜌 is a more
robust measure of correlation. In this section we used Gillespie's algorithm to
simulate barcode propagation through the hematopoietic system. The refined pa-
rameters from the previous section were used (table 7.2).

Rank correlations are explained by model

We focused on the mature populations first and rare barcodes with 𝑃gen < 10−4.
Here, we ask whether the model reproduces the observed Spearman's rank cor-
relation. The simulation has been initialized by drawing from the rare barcode
clone sizes from the data for LT, ST and MPP populations and ran for 400 days in
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order to allow for equilibration. We then sampled from the resulting distributions
according to sampling depths used in the experiment and compared barcode fre-
quencies as done in chapter 5.1.3.
We found that the barcode usage in unrelated populations was lower and less con-
cordant, reflecting in a lower 𝜌, than in closely related populations. The simulation
of the tree like system with the refined parameters accurately describes the data
from variousmice (fig. 7.6). In the simulation of themodel as well as in the data we
find a strong barcode concordance between lymphoid lineages (𝜌model = 0.89-0.97,
𝜌data = 0.78-0.88, min/max values). Granulocytes showed a significantly lower cor-
relation with the common lymphoid lineages (𝜌model = 0.51-0.61, 𝜌data = 0.39-0.56).
We found that the model is in good agreement with the experimental data. In
total, the correlations predicted by the model were systematically slightly higher
than the correlations observed in the data. Sincewe do not take sequencing errors
into account in the simulations, this is to be expected.

CMP/GMP progenitor explained by model

From the same simulation we also extracted CMP and GMP data and compared
barcode usage with different mature populations (fig. 7.7). We found a strong con-
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Figure 7.6: Comparison of barcode usage: Every dot indicates a single rare barcode. Yel-
low dots indicate unique barcodes of a single simulation run, black dots indicate data.
Underlying heatmap is a summary of all experiments. 𝜌 of model and data on top of each
scatter plot, 95% confidence interval in brackets.
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Figure 7.7: Comparison of barcode usage in progenitor populations: Every dot indicates
a unique rare barcode. Yellow dots indicate a single simulation run, black dots indicate
data. Underlying heatmap is a summary of all experiments. 𝜌 of model and data on top of
each scatter plot, 95% confidence interval in brackets. Top row: indicated populations vs.
CMP, bottom row vs. GMP

cordance in barcode usage in CMP and GMP with Gr (𝜌model = 0.95/0.96 vs CMP
and GMP respectively, 𝜌data = 0.79/0.83). CMP and GMP shared a significantly
lower number of barcodeswith lymphoid lineages (B2, CD4, CD8) in both the simu-
lation and the data (𝜌model = 0.39-0.48, 𝜌data = 0.24-0.54). As in the previous section,
the tree model of hematopoiesis explains emerging correlation patterns, as well
as frequency distributions of barcode clones in the measured lineages. This con-
cordance of model and data provides further support for the classical tree model
of hematopoiesis (fig. 7.1).

Hierarchical clustering compares to data

In the next step we performed the same hierarchical clustering analysis as de-
scribed in section 5.1.3 on the simulated barcode distributions. We found a corre-
lation pattern that closely resembles the data (fig. 7.8). Two distinct clusters are
observed: one with myeloid progenitors as well as granulocytes resembling the
myelo-erythroid branch and one cluster containing all the lymphoid populations,
the common lymphoid branch. Due to the slow differentiation from LT to ST, LT
are far removed from the other populations. This has also been observed in our
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Figure 7.8: Cluster of simulation data: a, Hierarchical clustering of simulated rare bar-
codes of indicated populations. Distance measure used is 𝑑𝑖,𝑗 = 1 − 𝜌𝑖,𝑗. b, A single
barcode simulation over time of indicated populations in steady state.

data (see fig. 5.8). Since a strong bias of MPP towards CMP in terms of differenti-
ation has been observed [23], MPP cluster inside the myelo-erythroid branch. We
see the diminishing correlations downstream from MPP (e.g. 𝜌MPP;CMP > 𝜌MPP;GMP

> 𝜌MPP;Gr) as explored in chapter 6.





8| Barcode network analysis

In the previous chapters we focused on single barcodes. While the identity of each
barcode allows us to assign a generation probability 𝑃gen to it, the correlated gen-
eration of closely related barcodes has been ignored. In this chapter we want to
analyse the total barcode composition of different experiments and the resulting
implications on barcode creation. Since Polylox barcodes are created in distinct
steps, the presence of intermediate products reveal information on the creation
process itself.

8.1| Connected Barcodes

In this section we explore what relationships between barcodes tell us about the
creation process and the state of the system at time of creation. We call two bar-
codes related if one excision or inversion event transform one into the other.

b c

1D5HGF9

5HGF9

E4AHGF9
a d

(1,1)

(1,3)

(2,1)

(2,2)

(1,0)

Figure 8.1: Connection of barcodes: a, Barcodes relation can be one-sided by excision
and two-sided by inversion events. b, Scheme of barcode creation with strong prolifera-
tion. Recombination timeframe is indicated as shaded yellow area. Different barcodes are
coded by different color. c, same as b but without proliferation. d, Exemplary network of
barcodes. In brackets are in-degree and out-degree of each barcode respectively.

This relationship can be one-sided in case of an excision event (e.g. 1D5HGF9
→5HGF9) or two-sided for an inversion event (e.g. 1D5HGF9↔E4AHGF9) (fig. 8.1).
Now, suppose the system consists of a single unlabelled cell. During tamoxifen
treatment and therefore recombination, the cell proliferates while Polylox is re-
combined (fig. 8.1 b). The barcode composition will be different than that of a
system where no proliferation occurs in the time frame of recombination (fig. 8.1
c). The two systems will not only differ in clone sizes for each barcode, but the

67
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Embyronic labeling
a

Adult labeling
b

Simulation
c

Figure 8.2: Comparison of subcluster sizes of barcodes sets: Each dot represents a unique
rare barcode, black line denotes relationship. Light blue indicates the largest subcluster.
For readability there is no distinction between two-sided and one-sided relationships.
Sets of rare barcodes retrieved from a, An embyronic labelled mouse, b, Adult labelled
mouse. c, Random barcodes according to 𝑃gen

barcodes in fig. 8.1 b will generally be more related than in fig. 8.1 c.

Proliferation is visible in barcode composition

To see whether concurrent proliferation and recombination has an influence on
the barcode composition we analysed barcodes from three different experimental
setups. First, mice labelled at the embryonic stage: here we expect a strong pro-
liferation as the HSC compartment massively expands during midgestation [6, 7].
Second, mice labelled at the adult stage: from the steady state solution from the
previous chapter we expect the proliferation to be very slow in comparison to re-
combination. Third, drawing random barcodes according to 𝑃gen estimated from
experiments: here no proliferation is taken into account.
Since all setups generate the unrecombined barcode as well as barcodes of length
1 (e.g. fully recombined barcodes), we focused on rare barcodes only. The barcodes
in the embryonic labelling experiment where highly related, wheremost barcodes
formed one big cluster of more than ~70% of all rare barcodes (fig. 8.2 a). In the
case of adult labelling, we found much smaller and fewer subclusters of barcodes.
Here the biggest cluster contain only about 8% of all barcodes (fig. 8.2 b). For the
simulation without proliferation we found that the vast majority of barcodes had
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no relationships at all (fig. 8.2 c).
This shows that the connectivity of the subset of retrieved barcodes reflects the
proliferative state of the system during labelling.

8.2| Degree distributions

To properly quantify such properties as relationships we introduce twomeasures:
in-degree and out-degree. The in-degree gives the number of total barcodes that
are recombined in one step to the barcode in question, while the out-degree gives
the number of total barcodes reachable within one step by recombination from
the given barcode (fig. 8.1 c). From the adjacency matrix 𝐴 from section 2.3 we
calculate the degrees, by summing over the subset of found barcodes.

𝑑+
𝑖 = ∑

𝑗 ∈ sample

𝐴𝑖𝑗 and 𝑑−
𝑖 = ∑

𝑗 ∈ sample

𝐴𝑗𝑖 (8.1)

where 𝑑+
𝑖 is the out-degree of barcode i, 𝑑−

𝑖 the in-degree.

Proliferation is visible in degree distributions

In order to assess the influence of proliferation on the observed degree distribu-
tions we compare data from embryonic labelled mice with a random sampling
of 1000 barcode sets. Each set contains similar barcode numbers than retrieved
from the experiment. Tomake the distributions more comparable we sample bar-
codes according to their 𝑃gen we estimated from the embryonic labelled mice (see.
chapter 2). In fig.8.3 degree distributions for embryonic labelled mice are shown
together with a random sampling of barcodes. In the top row the degree distribu-
tions for all sampled barcodes are shown, while in the bottom row we filtered for
rare barcodes. There is a significant difference in both, the in- and out-degree
distribution, indicating that concurrent proliferation and recombination is de-
tectable in the experiment.

Minimal recombination distributions reveal recombination rate

In the next step, we want to see whether one can estimate the proliferation rate
at the time point of labelling with the help of those distributions. Before we esti-
mate the proliferation rate from the degree distribution we also need to estimate
the rate and timeframe of Polylox recombination. As discussed in chapter 2, due
to inversions being reversible, it is not possible to directly estimate the number
of recombination events every experimentally retrieved barcode has undergone.
Under the assumption that individual recombination events occur independently
of each other, the probability for m events is described by a Poisson distribution

𝑝(𝑚 events | 𝜆) = 𝑒−𝜆 𝜆𝑚

𝑚! (8.2)
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Figure 8.3: Degree distribution of barcodes induced in the embryo: Comparison of de-
gree distributions of all barcodes (top row) and barcodes with 𝑃gen < 10−4 (bottom row)
of different experiments and simulation. In the simulation no proliferation was taken
into account when creating the barcode sets analyzed. The data comes from embryonic
labelled mice, where a strong proliferative behaviour is expected during recombination.
Simulated and experimentally derived distribution diverge significantly.

with rate parameter 𝜆, which is directly connected to the recombination rate r by
𝜆 = 𝑟𝑡. 𝜆 is the average number of recombination events per labelling. We use this
probability distribution asweights𝜔(𝑚) to calculate𝑃gen for different parameters
𝜆. 𝑃gen is then given by:

𝑃gen,𝜆 =
𝑚max

∑
𝑚=1

𝑝(𝜆, 𝑚)𝑇 𝑚𝑃gen,0 and 𝑃gen,0 = (1, 0, 0, …)⊺, (8.3)

where 𝑇 is the transitionmatrix from eq. 2.5 ff. For different values of 𝜆we draw a
set of barcodes according to 𝑃gen,𝜆. We then calculate the distribution of minimal
numbers of recombinations for every barcode, as described in section 2.6. This
allows us to compare the simulated frequency distributions with the experimen-
tally retrieved sets of barcodes.
In fig. 8.4 a, the frequency of minimal number of recombinations of experimen-
tally retrieved barcodes is shown as a bar plot. Different rates 𝜆 are overlaid. A
recombination rate parameter of 𝜆 = 3 (fig. 8.4 a, yellow line) produces a fitting
distribution. As expected, a low recombination parameter results in a distribu-
tion that is shifted to the left, while increasing the recombination rate parameter
broadens the distribution and shifts to the right.
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Figure 8.4: Recombination distribution of barcodes induced in the embryo: a, Frequency
distribution of minimal numbers of recombination for different experimental setups. Teal
bars show tamoxifen treatedmice, green bars show4-OH-Tam treatedmice. Colored lines
show simulation with different recombination parameters 𝜆. Mean and standard devia-
tions of 100 simulated barcode sets are shown, as well as mean and standard deviation of
the data. b,c, Profile likelihood curves for different 𝜆 parameters and both experimental
setups. The yellow line indicates 𝜒2

95% = 3.8 and therefore the 95% confidence interval on
the parameter.

In addition to mice treated with tamoxifen, we repeated the analysis on data from
mice directly treated with the active component of tamoxifen, 4-OH-Tam. In con-
trast to tamoxifen which has a depot effect [50], 4-OH-Tam is believed to degrade
much faster. Since in both experiments 4-OH-Tam is the active component, it is
reasonable to assume the same recombination rate 𝑟. However, since the 4-OH-
Tam degrades more quickly, we expect a lower 𝜆, as 𝜆 = 𝑟𝑡, where 𝑡 is the length
of the time interval with present 4-OH-Tam.
Data from mice treated only with 4-OH-Tam has been plotted as bars in green in
fig. 8.4 a. Indeed we see that the distribution is much narrower and shifted to the
left, as expected for a lower 𝜆. Here, among the used values of 𝜆, 𝜆 = 1 reproduces
the experimentally observed distributions the best.
To further quantify 𝜆 we scanned the relevant 𝜆-range for both experimental se-
tups and calculated 𝜒2 for every 𝑃𝑔𝑒𝑛,𝜆.

𝜒2 = ∑ (𝑥𝑖 − 𝜇𝑖
𝜎𝑖

)
2

(8.4)

where 𝑥𝑖 is the mean fraction of barcodes that are reachable within 𝑖 recombina-
tion events of the simulation, 𝜇𝑖 denotes the mean of the data, 𝜎𝑖 the standard de-
viation of the data. In order to reduce stochastic effects introduced by simulating,
for every value of 𝜆, 1000 sets of barcodes were simulated. Parameter estimates
and their uncertainties were calculated by means of calculating the profile like-
lihood [51]. Here the best fit parameter is 𝜆 for which 𝜒2 is minimal, denoted as
𝜒2
min. The 95% confidence region is then defined as containing every 𝜆 for which

𝜒2(𝜆) − 𝜒2
min ≤ 𝜒2

95% (8.5)
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Figure 8.5: Degree distribution with proliferative behaviour: In- (a) and out-degree (b) of
experimental data (teal, middle bar showsmean, top and bottom indicates 95% confidence
interval) compared to different expansion rates during the time interval of recombination.
Only a high expansion rate explains the experimental data. The proliferation rate is kept
constant over the time frame of recombination.

holds true. Fig. 8.4 b and c show the Δ𝜒2(𝜆) of tamoxifen and 4-OH-TAM treated
mice respectively. With 𝜒2

95% = 3.8, we obtain 𝜆TAM = 2.91 (2.23;3.63) and 𝜆4-OH-TAM

= 1.68 (0.94;2.32). This indicates that tamoxifen is active for about 1.7 times as long
as 4-OH-TAM.
Pharmacokinetic experiments have shown that 4-OH-Tamdegrades rapidlywithin
24 hours in mice at a dose of 0.04mg [52]. A higher dose in the case of the ex-
periments described in this thesis (2.5mg) will also mean a longer residence time
of 4-OH-TAM [53]. This scenario is in line with the observation made here. At
E8.25 macrophage progenitors arise (see fig. 1.1), which are Tie2 positive, and are
therefore labelled. Later, at E9.5 HSC progenitor arise in the AGM (Aorta-gonad-
mesonephros). In the case of labelling mice at E7.5 with 4-OH-Tam we found
recombined barcodes in macrophage progenitor-derived populations, but not in
HSC. In the case of regular tamoxifen treatment, recombination could be seen in
both populations. This result puts a limit on the active time frame of 4-OH-Tam
and we estimate the time interval in which 4-OH-Tam is active to be between 24
and 48 hours. Tamoxifen is therefore active for approximately 48-96 hours after
treatment.
With 𝜆TAM = 𝑟𝑡TAM and 𝜆4-OH-TAM = 𝑟𝑡4-OH-TAM we estimate the recombination
rate during the time interval of treatment to be about 𝑟 = 1.00 (0.89;1.11) 1

day

Fast proliferation in embryo

The estimate of the recombination rate 𝑟 then allows us to simulate the gener-
ation of barcodes with different proliferation rates using a stochastic simulation
approach. We then calculated the in- and out-degree distributions of the set of
rare barcodes and compared it to the distributions obtained from experimental
data. In this simulations we found that a higher proliferation rate leads to a highly



8.3. QUALITATIVE DESCRIPTION OF EMBRYONIC DEVELOPMENT 73

connected network of barcodes, where a low proliferation rate produces more in-
dependent barcodes.
These simulations allow us to estimate the proliferation rate of Tie2+ HSCp in the
embryo to be around 𝑝 = 3 1

day (fig. 8.5). The indirect nature of this measurement
makes it difficult to obtain a more exact number on the proliferation rate. Rapidly
proliferating Tie2+ HSCp during labelling are needed to explain the experimen-
tally observed barcode sets.

8.3| Qualitative description of embryonic development

Taking into account everything discussed in this chapter so far, our aim in this
section is to formulate a qualitative description of embryonic development. Us-
ing the experimentally observed barcode sets we will estimate the proliferation
rate during the time interval of recombination. Further, the barcode complexity
will allow us to estimate a lower bound of cell numbers at the time point when
recombination stopped.

Estimating barcode complexity

The absolute lowest cell number needed to explain a given barcode complexity i.e.
the total number of unique barcodes, is the barcode complexity itself. However
this does not apply to highly abundant barcodes, which are most probably gen-
erated more than once (e.g. fully recombined barcodes), but counted only once.
Therefore for abundant barcodes theminimal required cell number is likely higher
then than the barcode complexity. For a better estimate of cell numbers, we there-
fore sample barcodes according to their generation probability 𝑃gen. This allows
us find the number of total barcodes needed to explain a given number of unique
barcodes.
Due to possible undersampling and barcode clones leaving the system via cell
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Figure 8.6: Barcode complexity given cell number: Random sampling of a given number
of barcodes and the retrieved number of unique barcodes (barcode complexity).
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Figure 8.7: Qualitative description of embryonic development: Orange bands indicate
Tamoxifen treatment. Lower bound is obtained from the barcode complexity. Data points
are extrapolated cell numbers based on barcode complexity. On top are barcode networks
from indicated time points showing increased connectivity. Each node is a unique rare
barcode with 𝑃gen < 10−4

death, this estimated cell number still only provides a lower bound.

Tie2+ HSCp arise around E9.5

For different experiments we find different barcode complexities. In experiments
where the mouse is labelled at E7.5 with 4-OH-Tam, only 0-5 barcodes with low
read counts are found. In this case, 99.98% of read counts are from the unrecom-
bined barcode. This finding suggests that at the end point of labelling at around
~E9 only 0-5 Tie2+ HSCp/HSC are found, and the majority of HSCp arise at a later
time point.
By contrast labelling at E7.5 with tamoxifen, which is active for approximately 3
days, already produces ~350 unique barcodes, which corresponds to about 550
cells (fig. 8.6). Here, the unrecombined barcode only accounts for less than 5% of
total read counts. Importantly, this strongly suggests that all Tie2+ HSCp/HSC
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Figure 8.8: Effect of concurrent influx, proliferation and recombination: a, Barcode net-
works obtained by simulation of barcode creationwith proliferation rate𝑝 = 0.5 1

day , influx
rate 𝑖 = 100 1

day . b, 𝑝 = 2.5 1
day ; 𝑖 = 50 1

day . c, 𝑝 = 4.5 1
day ; 𝑖 = 0 1

day .d, Experimental data

from E9.5 labelling with Tamoxifen. Each node is a unique rare barcode with 𝑃gen < 10−4

arise between E9 and E10.5.
The delayed emergence of Tie2+ HSCp/HSC in the case of labelling at E7.5 is also
reflected in the recombination distribution. Mice labelled at E7.5 with Tamoxifen
show a mean minimal recombination number of 𝜇E7.5;TAM = 2.64 ± 0.1, where
as mice labelled at E9.5 have a higher mean minimal recombination number of
𝜇E9.5;TAM = 2.85 ± 0.01. This suggest a shorter time interval of recombination for
E7.5 labelling.
In line with this observation mice labelled at E9.5 and E10.5 show rising barcode
complexity. At E12.5, the end point of E9.5 treatment, the barcode complexity
reaches around 500 unique barcodes, indicating that around 800 cells have been
labelled (fig. 8.6). One day later we find 550 unique barcodes, which puts the ex-
pected cell number for E13.5 at around 1000 cells (fig. 8.6). In both experimen-
tal setups the unrecombined barcode only accounts for less than 5% of total read
counts, further supporting the notion that all Tie2+ HSCp/HSC arise early. The
findings here are visualized in fig. 8.7.

Proliferative burst at E9.5

Combining the barcode complexity and the cell number estimation with the ob-
served barcode networks, we also infer some information about the proliferative
state of Tie2+ HSCp/HSC at various time points. At all three labelling time points
(E7.5, E9.5, E10.5) a highly connected barcode set was retrieved. Since we found
only a small number of barcodes at E9 and already 350 unique barcodes at E10.5,
there has to be either a strong proliferative burst, a high influx of progenitor cells,
or both, starting around E9.5.
In order to assess whether a high influx of progenitor cells, a high proliferation or
a combination of both can explain the observed connectivity, we build a stochastic
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model. The model allows unlabelled progenitor cells to become Tie2+ with a con-
stant influx rate 𝑖. Recombination occurs only in Tie2+ cells, which also proliferate
with rate 𝑝. The results of the simulation with different proliferation and influx
rates are shown in fig. 8.8 a-c. Since a high influx rate cannot explain the observed
connectivity of barcodes in the experimental data (fig. 8.8 d), we exclude influx as
a potential explanation.
As the proliferative burst occurs at around E9.5, labelling at E7.5 catches the burst
only at the end of the recombination time interval. This leads to slightly less com-
bined barcode sets (largest cluster: ~27% of rare barcodes) . Labelling at E9.5
coincides strongly with the burst, and we observe that almost all rare barcodes
share a common cluster (largest cluster: ~70% of rare barcodes). After this initial
burst, the proliferation slows down, as cell numbers rise slower at the later time
points. This is also reflected again in smaller cluster sizes at E10.5 labelling (clus-
ter shown in fig 8.7 top row).
The strong proliferative burst observed here is compatible with different studies
reporting rapid expansion of HSCp in the mouse embryo during mid-gestation at
around E9.5 [6,7,54,55]. This time point coincides with the population of the fetal
liver. Future Polylox experiments could help pin down the exact timing of pro-
liferation during midgestation. Additional labelling time points with 4-OH-Tam
will narrow down developmental steps much more closely, than what was pos-
sible during the writing of this thesis, as the main focus of this project was the
understanding of the adult hematopoietic system.
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8.4| Barcode clusters

In the previous section we have established that related barcodes are generated
through simultaneous proliferation and recombination. Since the absence of pro-
liferation leads to very few random connections, most observed barcode relation-
ships are a direct measurement of intermediate recombination products. We are
interested if related barcodes share a similar fate in adult hematopoiesis. If one
could find such fate restriction, this would imply that fate and specialization are
determined at a very early stage.

8.4.1| Fate of barcode clusters

Here we focus on finding barcode clusters using the adjacency matrix of barcode
subsets via a Dulmage-Mendelsohn decomposition. We then check for output of
these clusters generated in adult hematopoiesis in both the myelo-erythroid and
common lymphoid branch.

Finding barcode clusters

To find barcode cluster in the measured subset 𝑀 of barcodes, the adjacency ma-
trix 𝐴′ is calculated from the complete matrix 𝐴 containing all codes. This is
done by finding all rows and columns in 𝐴 corresponding to barcodes in subset
𝑀 (fig. 8.9 a and b).
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Figure 8.9: Barcode cluster using Dulmage-Mendelsohn decomposition: a, From the
complete adjacency matrix 𝐴, a subset is taken (red squares) corresponding to all rows
and columns in 𝑀 , b, The reduced adjacency matrix 𝐴′ is formed. c, A reordering of the
entries is performed such that block entries are created. Those blocks correspond to the
subgraphs.

In the next step a Dulmage-Mendelsohn decomposition is carried out [56]. This
reorders the entries of 𝐴′ in such a way that block matrices are formed. These
unique block entries then correspond to the subgraphs of 𝐴′ (fig. 8.9 b and c) and
therefore barcode clusters.
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Figure 8.10: Output of barcode cluster: Blocks correspond to a single barcode cluster.
Row inside the blocks show the output of a unique barcode. Columns correspond to the
denoted populations on top. Log frequency of read counts is color coded.

No fate restriction evident

After finding the related barcode clusters, we now take a look at the output of
these clusters in the adult hematopoiesis. If there is fate restriction already at the
time point of labelling, barcodes in the same cluster should share a similar fate.
Here we find only a few small clusters that only contribute to a particular branch
or single lineage, which could be due to sampling. The vast majority of clusters
however show no sign of similar lineage output (fig. 8.10). While one cannot con-
clude that fate restriction occurs in some cells, the majority of barcode clones in
the same cluster do not share the same fate. It is therefore highly unlikely, that fate
restriction occurs during the timeframe of labelling, if at all. In the next section
we further elaborate this observation by reconstructing possible recombination
pathways of rare barcodes with 𝑃gen < 10−4.



8.4. BARCODE CLUSTERS 79

a b c d

Figure 8.11: Finding possible recombination pathways: a, Connecting all experimentally
found barcodes based on their relation. b, Starting from a single rare barcode (teal) a
breadth-first search is done until the unrecombined barcode (dark blue) is found. If there
is no available path to the unrecombined barcode, the starting barcode is discarded. c,
Using only the connected barcodes from b, the search is repeated starting from the unre-
combined barcode. To avoid looping due to inversions, only connections to barcodes with
increasing number of minimal recombinations needed are taken into account. d, Multiple
linear pathways are created and connected in trees. b-d Is repeated for every rare barcode.
Orange nodes are unique barcodes, the blue node symbolizes the unrecombined barcode.

8.4.2| Fate evolution in recombination pathways

In this next step, we will find possible recombination pathways of rare barcodes
that are still traceable in the data set and examine their fate output evolution dur-
ing labelling.

Finding possible recombination pathways

In the previous sections of this chapter we have already established that the high
proliferation during labelling allows intermediate barcodes to still be found after
recombination stopped. Here we will use this property to build an algorithm to
trace back recombination pathways. In order to find these pathways, a list of all
rare barcodes is created. As in the previous chapters the cutoff has been set to
𝑃gen < 10−4. From each of those rare barcodes a backwards breadth-first search
is done until the unrecombined barcode '123456789' is reached (fig. 8.11 a). In the
breadth-first search, a list of all barcodes reachable within one step of recombi-
nation is created. This step is repeated recursively on each barcode in this, until
a given depth has been reached. Since we know the minimal number of recom-
binations needed for each barcode, we use this as a depth cutoff for the search
algorithm. Since we required to reconstruct the complete pathway, rare barcodes
that cannot be connected to the unrecombined barcode are discarded, as at least
one of their required intermediate barcodes is missing from the data (fig. 8.11 b).
These first steps allow us not only to filter for barcodes with a complete pathway,
but also discard barcodes that are not part of any given pathway. All barcodes in
all possible pathways from barcode 𝑖 to the unrecombined barcode form a subnet-
work 𝑁𝑖 (fig. 8.11 c).
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Building trees from unrecombined barcodes

In the next step, only barcodes within a path to a given rare barcode 𝑖 are taken
into account (fig. 8.11 c). Again, the search is repeated on the subnetwork 𝑁𝑖, but
with an additional restriction: the unrecombined barcode is the starting node for
the search, the end node is the rare barcode 𝑖. Also connections with decreasing
numbers of minimal recombinations are cut from the network. This allows us to
avoid looping of the algorithm due to reversible inversions.
This search then leaves us with multiple linear pathways to barcode 𝑖. This is
repeated for every subnetwork𝑁𝑖 found in the previous section. From these linear
pathways trees are created by building the adjacencymatrix and visualizing it. For
mouse #2 we found 24 such trees which are shown in figure 8.12.
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Figure 8.12: Recombination pathway trees: Each nodes denotes a barcode, color coded is
the output into adult hematopoiesis. Top nodes of each tree are barcodes reachable within
one recombination step, each consequent layer is a new recombination step.
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Figure 8.13: Fate restriction analysis: a, From the original tree, several iterations with
shuffled fates are created. b, Fate transitions are counted and compared. Shuffled data is
shown in blue, actual data in red. c, Same as above only taking rare barcodes into account.

No development of streamlined HSC

Since a connection of two individual barcodes hints at a possible relatedness of the
cells, we are interested in the output in the adult hematopoiesis. If HSC subtypes
with pre-determined fates are present at the embryonic state, more precisely at
the time point of labelling, we should see a clear bias for cells with similar output
to also have related barcodes (i.e. two connected barcodes are likely to come from
the same progenitor cell, and should therefore have the same fate, if there are fate
restricted subtypes of HSC). We therefore analyzed the fates of barcode 𝑖 and bar-
code 𝑗, if 𝑖 and 𝑗 are connected (fig. 8.13 b). Next we repeated the same analysis,
but with fates of each barcode shuffled randomly (fig. 8.13 a). Indeed there are
significant differences between random fates and the measured data (fig. 8.13 b).
However, the general trend of the data can be described.
As the top layers of each tree are most likely generated more than once, the nodes
in those layers tend to show a multipotent output. This is expected to happen,
with or without fate restriction. In addition, multiple possible pathways for each
barcode can be found, as a result of the general connectedness of all barcodes. Both
points create a bias in the observed fate changes. This bias leads to an underesti-
mation of fate transitions towards multilineage barcodes and an overestimation
of fate transitions coming frommultilineage barcodes in the case of random shuf-
fling.
To circumvent both issues, we restricted the shuffling procedure to rare barcodes
and repeated the analysis. In this case, there is no evident deviation between ran-
domly shuffled fate and the data (fig. 8.13 c). This finding suggests that there is no
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apparent hardwired fate in early HSC during midgestation. However, one cannot
conclude that there is no fate restriction at all, as information of later time points
of embryonic development or even adulthood cannot be conveyed in this kind of
analysis.



9| Discussion

In this thesis, I have discussed a novel technique to mark single progenitor cells
with a unique genetic barcode. Polylox barcoding allows us to achieve single cell
resolution, while retaining advantages of bulk analysis like speed andhigh through-
put. Single cell resolutionmakes it possible to gain valuable insight into the devel-
opmental relationships of cell types within the hematopoietic system. The main
finding was that a dichotomy seems to exist between two major branches. In ad-
dition to the application of Polylox for fatemapping, I have studied different angles
of this barcoding system, which provided new insights into clonal dynamics in the
hematopoietic system of the embryo and adult mouse.

9.1| Results

Probability Model

One major advantage of the Polylox system is, that while it offers a high diversity
with 𝑛𝑏 = 1, 866, 890 possible barcodes, its simple rules of recombination make
the creation process of barcodes predictable. This allowed us to create a complete
library of possible barcodes, such that we can easily discriminate sequencing er-
rors from real barcodes. Calculation of recombination events enabled the creation
of an adjacency matrix containing the connections of all barcodes. Using this ma-
trix, we can weigh connections between any two barcodes and build a simple but
accurate Markov model of barcode creation. The calculation of the generation
probability 𝑃gen from this model is crucial in order to identify highly abundant
versus rare barcodes, which is the only way to achieve single cell resolution. The
model proposed in this thesis is very robust against variation of model parame-
ters and is able to explain the barcode statistics found in several experiments. This
probability model is the groundwork for all analyses that followed.

Theoretical Implications

In order to be able to interpret the measured barcode distributions, an under-
standing of barcode propagation is needed. In this thesis a moment based model-
ing approach was used to gain insight into barcode usage correlations. Here we
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found that the interpretation that first comes to mind is indeed correct. We sus-
pected that populations that share not only the same barcodes but also show simi-
lar barcode frequencies are developmentally close. However, not only the topology
of the system but also the dynamics play a major role in the observed correlation
values. Directly related populations show a higher correlation if the differentia-
tion from one population to the other is sufficiently fast. Early divergence of two
populations result in a generally lower correlation.

Dichotomy in hematopoiesis

With the theoretical implications of barcode propagation inmind we analyzed the
measured cell populations and calculated the pairwise correlations. The resulting
correlation matrix was then used to cluster the populations hierarchically.
We found a major dichotomy splitting lineages into a myeloid-erythroid and a
common lymphoid branch, while not ruling out additional routes. This finding is
in line with the idea of a tree model proposed in multiple studies [23,64]. Of note,
B1 cell types did not share many barcodes with the other cell types, indicating a
separate origin of these cells, as has been reported before in several experimental
studies [36, 38--40].
Another major finding is the relationship of common myeloid progenitor cells
(CMP) and fullymatured cells. Where CMP shared a high number of barcodeswith
myeloid and erythroid cell types, the proportion of shared barcodes is much lower
with lymphoid populations. Further, the measured correlations between myelo-
erythroid populations andCMPwhere significantly higher than betweenCMP and
lymphoid cells. Former correlations scattered around zero, indicating a distant re-
lationship between CMP and the common lymphoid branch. The high correlation
betweenCMP and populations from themyelo-erythroid branch places CMP as di-
rect progenitors of granulocytes and erythrocytes. Refining progenitor-offspring
relationships will require different Cre-drivers, active in progenitor stages such
as CMP.
In the last years the proposed existence of such a dichotomy sparkedmuch contro-
versy in the field [12--14]. However, Polylox allows us to study progenitor-offspring
connections very closely in great detail in an unperturbed system in vivo. These
are important characteristic traits other experiments cannot yet provide.
The data presented here is supported by different studies, who agree on a major
dichotomy in hematopoiesis [4, 23, 64, 65].

Fate restriction

One major question we addressed with Polylox next to developmental relation-
ships is fate restriction. Namely we asked whether subpopulations within the
HSC compartment exist, which produce output only in certain branches or popu-
lations.
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While undersampling and different time scales of propagation for different cell
populations make it difficult to answers this question definitely, we observed sev-
eral single HSC with rare barcodes that showed a multilineage potential.
In addition to multilineage barcodes, several barcodes only had output in one
of the two major branches. While we cannot rule out stochastic effects in bar-
code propagation as the cause of this observation, finding lineage restricted bar-
codes suggests that at least some fraction of HSC is limited in fate potential. The
observed multipotency in Polylox data is supported, among others, by a study
of Rodriguez-Fraticelli et al., who found evidence of multipotent as well as fate-
restricted HSC with a different barcoding strategy [65,66].
We used the high proliferation rate of embryonicHSC at aroundE9.5 to create bar-
code lineage trees, which allowed us to study the process of barcode creation in
more detail. As concurrent fast proliferation and recombination leaves interme-
diate barcodes behind, we can reconstruct recombination pathways for barcodes.
Comparing fates along recombination pathways under the assumption that all
barcodes in these pathways are likely to belong to the same HSC clone, we found
no evidence of fate restriction. Noteworthy, the deduction from pathway analysis
is restricted to the timeframe of active recombination.
This observation does not contradict the existence of lineage-restricted fates, as
this clone-intrinsic fate restriction may arise at a later time point than the time of
labelling E9.5. A study from Yu et al. suggests that realized fates are controlled by
DNAmethylation, as they have observed color-coded HSC clones realizing stereo-
typic fate behaviour in situ, after transplantation and tissue injury [67].

Markov based modeling of hematopoiesis

With data from fate mapping experiments using a Tie2+YFP mouse model, Busch
et al. inferred net proliferation and differentiation kinetics in the hematopoietic
tree model [23]. Since in this thesis, barcode distributions are measured at steady
state, it is not possible to infer the same kind of information from the data pre-
sented here, or to discriminate between different topological models. Instead, we
asked whether the net proliferation and differentiation rates inferred by Busch
et al. can explain the correlation structures we observed. To this end, we built a
Markovmodel that allowed us to compute the first twomoments of barcode distri-
butions directly using a probability generating function. A significant advantage
of this moment-based approach is that it can reduce the computational load sig-
nificantly, compared to stochastic simulations of this system, in particular when
cell number become very large. Furthermore, it allows us to refine the inferred
parameters of Busch et al. inside their computed confidence intervals.
After refining the parameters for net proliferation and differentiation rates using
the mean barcode clone size only, we found that the tree model (fig. 7.1) and pa-
rameters indeed predict the found correlation measures very well. This finding
further supports the tree model of hematopoiesis [22, 23, 65].
The moment-based ODE model approach allows the calculation of Pearson's cor-
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relation coefficient as well as themoments of the distribution. To assess the actual
barcode distributions we resorted to stochastic simulations instead. Again, using
the refined parameters we found a good agreement of data and model.

HSC dynamics

Single cell analysis of Polylox directly allows us to study HSC clone size distri-
butions. Due to the high workload for such experiments and the fact that only
barcodes created once yield a direct insight into HSC clone size distributions, the
data gained per experiment is limited (3-10 rare barcodes per experiment). By
using information on the expected number of occurrence of all barcodes, we dis-
sected common barcode clones into cell numbers. We analyzed data from several
mice at different ages; we found that the clone size distribution broadenswith age.
Assuming net proliferation and differentiation rates estimated by Busch et al., a
stochastic simulation of these distributions indicates that a stochasticity-induced
neutral drift of clone sizes is sufficient to explain this effect [23]. The drift leads to
a reduced number of clones making up more of the compartment [28--33].
While HSC dynamics in the adult murine hematopoiesis is characterized by slow
proliferation and differentiation kinetics, the role of HSC during midgestation is
still not fully understood. We argued in this thesis that the proliferative behaviour
of labelled cells during recombination is preserved in the identity of the measured
set of barcodes. By analyzing the connectivity of barcode sets and estimating
cell numbers at different time points, we found evidence of a reported prolifer-
ative burst at around E9.5-E10.5, where HSCp/HSC proliferate roughly 3 times a
day [6, 7, 54, 55].
From this burst we can estimate the cell numbers populating the fetal liver at E9.5
to around 100. Literature puts this number between 1 and 1000, which elucidates
the lack of precise quantitative data in this area of research [7, 55, 68].
Polyloxbarcoding canhelp shedmore light on the development of embryonic hemato-
poiesis. As of writing this thesis more experiments with 4-OH-TAM are planned
and underway. These experiments offer amuch higher temporal resolution which
is needed to pin down time windows of proliferation and to enable mathematical
modeling with increased precision.
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9.2| Polylox barcoding and other fate mapping tools

With a plethora of fate mapping tools widely available, the question is raised why
Polylox deserves a spot in the fate mapping toolkit. Polylox offers a number of
advantages but also some disadvantages over traditional and novel techniques.
These will be discussed in this section.

Transplantation experiments

In transplantation experiments, marked cells are transplanted in recipient organ-
isms. The differentiated output of these donor cells can then be traced and ana-
lyzed. These experiments require some kind of perturbation of the studied system
in order to be successful [2]. One major advantage of Polylox compared to trans-
plantation is that it allows a vast number of possible genetic barcodes to be used
in vivo in an unperturbed system.

Fluorescent markers

Fate mapping experiments using inducible fluorescent markers such as Brainbow
or Tie2+YFP [23, 57, 58] enable the study of dynamics of a system even at steady
state. However, they lack the high diversity of labels necessary for single cell reso-
lution. While Polylox can in theory be used to study dynamic properties of a given
system, the high complexity of barcodes makes it very difficult to compare bar-
code distributions at different timepoints. In addition to that, the experimental
workload for Polylox is also much higher, making it generally unappealing for dy-
namical measurements.

Transposon integration sites

Another proposed barcoding technique is themethod of hyperactive SleepingBeauty
(HSB) mediated transposon integration sites (TIS) [59]. In this technique HSB ex-
pression is controlled by Doxycycline and causes the transposon to be integrated
at a random point in the genome. These integration sites offer a practically in-
finite number of markers, however the barcodes are induced ubiquitous and are
not specific to a certain tissue or cell type, making it difficult to study progenitor-
offspring relationships. In addition, studies have shown that depending on the
affected region in the genome the cellular functions can be impaired [60, 61]. The
transposon insertion may target regulatory genes potentially leading to cellular
selection. Additionally, transpositions occurs preferentially in G1 phase and is
known to slowdown the cell cycle [60,61]. In contrast, the locus of Polylox is known,
widely used and there is no known impact on cell physiology.
An additional advantage of Polylox compared to TIS is the absence of background
noise (induced barcodes without active Cre or Doxycycline). In the case of Polylox
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barcoding, the absence of noise is cell type independent (< 0.1% barcode induction
in non targeted cells; fig. 4.2). For TIS the background noise can reach up to 4%
and is depending on the cell type [59].
A comparison between TIS as a sample for other barcoding techniques and Polylox
is shown in table 9.1 a.

TIS [59] Polylox

Number of markers practically infinite 1,866,890
Specificity ubiquitous Cre-driven targeting
Marker neutrality TIS might be neutral, but

can cause gains or losses
of cellular function de-
pending on affected re-
gion [60,61]

Rosa26 reporter locus
is widely used, with
no known impact on
physiology

Possible applications avaibility of Doxycycline
regulated systems limits
application

different tissue specific
Cre-driver are available

Background noise up to 4% depending on
cell type

< 0.1% cell type indepen-
dent

Frequency of labelled
cells

~30% up to 99% of HSC progen-
itors

Measured diversity
per mouse

~300 ~550 of which roughly
230 are rare

Table 9.1: Comparison between transposon integration site [59] and Polylox This table
has been adapted from [22]

CRISPR/Cas9 barcoding

New genome editing techniques like CRIPSR/Cas9 also bring new barcoding pos-
sibilities for developmental studies [62, 63]. One of these approaches is genome
editing of synthetic target arrays for lineage tracing (GESTALT) [62]. Here a ge-
netic barcode is mutated with random deletions and insertions over the develop-
ment of the organism. Mutations shared in a large fraction of cells indicate an
early event and a common progenitor. This enables the construction of huge lin-
eage trees.
While this slow mutation over several proliferation and differentiation events of-
fers time resolved data even with a single measured time point, this technique has
some disadvantages over Polylox barcoding. First, there is the chance of already
mutated sequences to be mutated again in a subsequent step, which results in the
loss of progenitor information [62]. In contrast, the high stability of Polylox bar-
codes allows to trace back the output of single cells reliably.
The simple rules of Polylox barcoding makes the whole system calculable, and we
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can distinguish common from rare barcodes. In GESTALT however, there have
been reports of mutations biases towards certain locations in the genetic bar-
code [62]. The randomness of these events makes it hard to predict these biases.
Common mutations may strongly influence the obtained lineage tree.
On the other hand, building lineage trees (as show in fig. 8.12) from Polylox is
possible. However since the induction is limited to a short timeframe and the
recombination events are not entirely random but have to satisfy certain rules,
drawing clear conclusions from these lineages proves difficult. In contrast to the
one time labelling and subsequent propagation of Polylox barcodes, GESTALT of-
fers time resolved data in a single experiment as mutations are accumulated over
the whole timeframe of the experiment.

General remarks

While the high complexity of Polylox barcodes affords single cell resolution, clone
size information can be lost due to PCRand sequencing bias towards certain lengths
or identities of barcodes. The lost information can be regained however with sin-
gle cell sequencing, trading in the advantage of high throughput.
One strong advantage ofPolylox is that it allows fate restriction aswell as progenitor-
offspring connections to be studied. Here the single cell resolution enables track-
ing of the output of a single HSC into mature cell populations. One limitation is
that undersampling and different time scales of propagation through the system
can hinder a clear statement regarding fate restriction, while multipotency can
be assessed easily.
For all techniques that can achieve single cell resolution by barcoding, undersam-
pling can be a limitation, because it restricts assessment of fate restriction and
progenitor-offspring connections.
Nonetheless, Polylox provides a highly complex, yet calculable barcoding system.
Its major strength is single cell resolution in an unperturbed system in vivo that
is not only restricted to hematopoiesis, but can be used in a multitude of systems.
The main limitation is

9.3| Outlook

The Polylox system is being used in an increasing number of groups world-wide.
In the following we highlight two ongoing research projects that illustrate the
great potential of Polylox barcoding. In addition to this two highlighted projects
there are currently efforts of understanding the early stages of hematopoiesis us-
ing 4-OH-Tam. The lower timewindowof recombination in comparison to regular
tamoxifen treatment allows a higher temporal resolution. Yoshida et al. are, as of
writing of this thesis, employing Polylox as a fate mapping technique to under-
stand spermatogenesis [69].
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Macrophage origin

While most hematopoeitic populations are dependent on influx from upstream
compartments and ultimately HSC, macrophages can self-maintain without HSC
[5]. The origin and possible contributions of HSC in these macrophage cell popu-
lations remains unclear. Previous studies have shown that tissue macrophages in
the brain (microglia/MG), liver (Kupffer Cells/KC) as well as in the lung (alveolar
macrophages/AM) are created by erythro-myeloid progenitor cells (EMP) [5] dur-
ing midgestation.
By labelling Tie2+ EMP at different time points, preliminary Polylox experiments
suggest that differentiation occurs over a few days between E7.5 and E10.5 in a
wave-likemanner. Polylox barcoding allowed the tracing of individual clones, mak-
ing it possible to observe this wave-like differentiation into the different compart-
ments for the first time.

E7.5 E8.5 E10.5

EMP

MG KC AM

a b

MG
MG + KC
KC
KC + AM
AM
MG + KC + AM

Time

Figure 9.1: Preliminary macrophage data: a, Proposed model of differentiation. As the
different organs are developed, differentiation from EMP into the respective tissues is
favored. b, Time resolved output of Tie2+ EMP into tissue-resident macrophages using
Polylox barcodes. Shown is the fraction of unique rare barcodes with indicated output.

PolyExpress

Another research topic revolving around Polylox barcoding is PolyExpress. Here
the goal is to complement Polylox barcode information with single cell expression
data. The aim of this project is to express the Polylox Barcode ubiquitously as RNA
barcode. Subsequent single cell RNA sequencing then allows to combine barcode
fatemappingwith single cell expression. While there are some challenges to over-
come, this project has the potential to resolve the long standing question if and at
which developmental time point fate restriction occurs, and what role expression
and certain regulatory genes play in this process.
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A| Appendix

A.1| Mouse List

Mouse Strain Treatment Analysis internal
(time after treatment) mouse ID

#1 𝑅𝑜𝑠𝑎26Polylox𝑇 𝑖𝑒2MCM 1 x TAM (E9.5) 39 weeks #20
#2 𝑅𝑜𝑠𝑎26Polylox𝑇 𝑖𝑒2MCM 1 x TAM (E9.5) 47 weeks #18
#3 𝑅𝑜𝑠𝑎26Polylox𝑇 𝑖𝑒2MCM 5 x TAM i.p. 49 weeks #35577
#4 𝑅𝑜𝑠𝑎26Polylox𝑇 𝑖𝑒2MCM 5 x TAM i.p. 51 weeks #35587
#5 𝑅𝑜𝑠𝑎26Polylox𝑇 𝑖𝑒2MCM 5 x TAM i.p. 18 hours #36384
#6 𝑅𝑜𝑠𝑎26Polylox/CreERT2 1 x TAM i.p. 18 hours #36409
#7 𝑅𝑜𝑠𝑎26Polylox/CreERT2 1 x TAM i.p. 18 hours #36410
#8 𝑅𝑜𝑠𝑎26Polylox/CreERT2 1 x TAM i.p. 18 hours #36411
#9 𝑅𝑜𝑠𝑎26Polylox𝑇 𝑖𝑒2MCM 1 x TAM (E10.5) 45 weeks #8
#10 𝑅𝑜𝑠𝑎26Polylox𝑇 𝑖𝑒2MCM 1 x TAM (E7.5) 104 weeks #21
#11 𝑅𝑜𝑠𝑎26Polylox𝑇 𝑖𝑒2MCM 1 x TAM (E7.5) 72 weeks #46
#12 𝑅𝑜𝑠𝑎26Polylox𝑇 𝑖𝑒2MCM 1 x TAM (E7.5) 54 weeks #47
#13 𝑅𝑜𝑠𝑎26Polylox𝑇 𝑖𝑒2MCM 1 x TAM (E10.5) 43 weeks #62
#14 𝑅𝑜𝑠𝑎26Polylox𝑇 𝑖𝑒2MCM 1 x TAM (E10.5) 86 weeks #49
#15 𝑅𝑜𝑠𝑎26Polylox𝑇 𝑖𝑒2MCM 1 x 4-OHT (E7.5) 21 days #K3
#16 𝑅𝑜𝑠𝑎26Polylox𝑇 𝑖𝑒2MCM 1 x 4-OHT (E7.5) 21 days #K5
#17 𝑅𝑜𝑠𝑎26Polylox𝑇 𝑖𝑒2MCM 1 x 4-OHT (E7.5) 11 weeks #K9
#18 𝑅𝑜𝑠𝑎26Polylox𝑇 𝑖𝑒2MCM 1 x TAM (E7.5) 87 weeks #34

Table A.1: "In-utero labelling for embryonic treatment (E9.5, E10.5) was done by oral gav-
age to themother. Labeling of adult mice was done by intraperitoneal tamoxifen injection
(i.p.). Time after treatment is given as the time span between first treatment and the day
of analysis [22]."
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A.2| FACS-Gating

Population FACS-Gates

HSC Lin– Sca+ Kit+ CD48– CD150+
ST-HSC Lin– Sca+ Kit+ CD48– CD150–
MPP Lin– Sca+ Kit+ CD48+ CD150–
CMP Lin– Sca– Kit+ CD16/32lo CD34lo
GMP Lin– Sca– Kit+ CD16/32+ CD34+
EryPI Lin– Ter119low CD71+ CD44hi FSChi
EryPII Lin– Ter119+ CD71+ CD44+ FSC+
EryPIII Lin– Ter119+ CD71+ CD44med FSCmed
EryPIV Lin– Ter119+ CD71+ CD44low FSClow
Gr CD4– CD8– CD19– CD11b+ Gr-1+
Mono CD4– CD8– CD19– Ter119– CD45+

Ly6G– CD11b+ CD115+ MHCII–
CLP Lin– Kitlo CD127+ CD135+ B220lo
pre B cells Lin– CD43+ B220+ CD24+ BP1− and BP1+
B cells CD4– CD8– CD19+ CD11b– Gr-1–
B2 PEC CD5– CD11b– CD19+ CD21– CD23+ CD93– IgM+
pre T cells CD11b-, CD19-, NK1.1-, Gr1-, Ter119-, CD3-, CD4-, CD8
DN2 CD44+, CD25+
DN3 CD44-, CD25+

CD4+ T cells CD4+ CD8– CD19– CD11b– Gr-1–
CD8+ T cells CD4– CD8+ CD19– CD11b– Gr-1–
B1a PEC CD5+ CD11b+ CD19+ CD21– CD23– CD93– IgM+
B1b PEC CD5– CD11b+ CD19+ CD21– CD23– CD93– IgM+

Table A.2: FACS-Gating for populations [22]
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A.3| ODE-Systems

A.3.1| Examplary parameters for toy models

Parameter fig. 6.2 b fig. 6.2 c fig. 6.2 d fig. 6.2 e

𝑙𝐴 0.41 0.79 0.30 0.27
𝑙𝐶 0.63 0.49 0.19 0.34
𝑙𝐵 0.41 0.68 0.19 0.05
𝑙𝐷 0.93 0.41 0.86 0.32
𝑑𝐴𝐵 0.19 0.94 0.59 0.58
𝑑𝐵𝐶 0.49 0.77 0.71 0.45
𝑑𝐶𝐷 0.76 0.84 0.29 0.38

Table A.3: Exemplary parameters of toy models used in chapter 6

A.3.2| Toy Model II

𝑑𝑛 =(𝑙1 − 𝑑1)⟨𝑛1⟩
⟨ ̇𝑛2⟩ =(𝑙2 − 𝑑2 − 𝑑3)⟨𝑛2⟩ + 𝑑1⟨𝑛1⟩
⟨ ̇𝑛3⟩ =(𝑙3 − 𝑑4)⟨𝑛3⟩ + 𝑑2⟨𝑛2⟩
⟨ ̇𝑛4⟩ =(𝑙3 − 𝑑5)⟨𝑛3⟩ + 𝑑3⟨𝑛2⟩
⟨ ̇𝑛5⟩ =𝑙5⟨𝑛5⟩ + 𝑑4⟨𝑛3⟩
⟨ ̇𝑛6⟩ =𝑙6⟨𝑛6⟩ + 𝑑5⟨𝑛4⟩

̇𝐹1,1 =2𝑙1⟨𝑛1⟩ + 2(𝑙1 − 𝑑1)𝐹1,1
̇𝐹1,2 = − (𝑑1 + 𝑑2 + 𝑑3 − 𝑙1 − 𝑙2)𝐹1,2 + 𝑑1𝐹1,1
̇𝐹1,3 =(−𝑑1 − 𝑑4 + 𝑙1 + 𝑙3)𝐹1,3 + 𝑑2𝐹1,2
̇𝐹1,4 =(−𝑑1 − 𝑑5 + 𝑙1 + 𝑙4)𝐹1,4 + 𝑑3𝐹1,2
̇𝐹1,5 =(−𝑑1 + 𝑙1 + 𝑙5)𝐹1,5 + 𝑑4𝐹1,3
̇𝐹1,6 =(−𝑑1 + 𝑙1 + 𝑙6)𝐹1,6 + 𝑑5𝐹1,4
̇𝐹2,2 =2(−(𝑑2 + 𝑑3)𝐹2,2 + 𝑙2(⟨𝑛2⟩ + 𝐹2,2) + 𝑑1𝐹1,2)
̇𝐹2,3 = − (𝑑2 + 𝑑3 + 𝑑4 − 𝑙2 − 𝑙3)𝐹2,3 + 𝑑2𝐹2,2 + 𝑑1𝐹1,3
̇𝐹2,4 = − (𝑑2 + 𝑑3 + 𝑑5 − 𝑙2 − 𝑙4)𝐹2,4 + 𝑑3𝐹2,2 + 𝑑1𝐹1,4
̇𝐹2,5 =(−𝑑2 − 𝑑3 + 𝑙2 + 𝑙5)𝐹2,5 + 𝑑4𝐹2,3 + 𝑑1𝐹1,5
̇𝐹2,6 =(−𝑑2 − 𝑑3 + 𝑙2 + 𝑙6)𝐹2,6 + 𝑑5𝐹2,4 + 𝑑1𝐹1,6
̇𝐹3,3 =2(−𝑑4𝐹3,3 + 𝑙3(⟨𝑛3⟩ + 𝐹3,3) + 𝑑2𝐹2,3)
̇𝐹3,4 =(−𝑑4 − 𝑑5 + 𝑙3 + 𝑙4)𝐹3,4 + 𝑑2𝐹2,4 + 𝑑3𝐹2,3
̇𝐹3,5 =(−𝑑4 + 𝑙3 + 𝑙5)𝐹3,5 + 𝑑4𝐹3,3 + 𝑑2𝐹2,5
̇𝐹3,6 =(−𝑑4 + 𝑙3 + 𝑙6)𝐹3,6 + 𝑑5𝐹3,4 + 𝑑2𝐹2,6
̇𝐹4,4 =2(−𝑑5𝐹4,4 + 𝑙4(⟨𝑛4⟩ + 𝐹4,4) + 𝑑3𝐹2,4)
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̇𝐹4,5 =(−𝑑5 + 𝑙4 + 𝑙5)𝐹4,5 + 𝑑4𝐹3,4 + 𝑑3𝐹2,5
̇𝐹4,6 =(−𝑑5 + 𝑙4 + 𝑙6)𝐹4,6 + 𝑑5𝐹4,4 + 𝑑3𝐹2,6
̇𝐹5,5 =2(𝑙5(⟨𝑛5⟩ + 𝐹5,5) + 𝑑4𝐹3,5)
̇𝐹5,6 =(𝑙5 + 𝑙6)𝐹5,6 + 𝑑5𝐹4,5 + 𝑑4𝐹3,6
̇𝐹6,6 =2(𝑙6(⟨𝑛6⟩ + 𝐹6,6) + 𝑑5𝐹4,6)

(A.1)

A.3.3| Toy Model III

⟨ ̇𝑛1⟩ = − (𝑑1 + 𝑑2 − 𝑙1)⟨𝑛1⟩
⟨ ̇𝑛2⟩ =(−𝑑3 + 𝑙2)⟨𝑛2⟩ + 𝑑1⟨𝑛1⟩
⟨ ̇𝑛3⟩ =(−𝑑4 + 𝑙3)⟨𝑛3⟩ + 𝑑2⟨𝑛1⟩
⟨ ̇𝑛4⟩ =(−𝑑5 + 𝑙4)⟨𝑛4⟩ + 𝑑3⟨𝑛2⟩
⟨ ̇𝑛5⟩ =(−𝑑5 + 𝑙5)⟨𝑛5⟩ + 𝑑4⟨𝑛3⟩
⟨ ̇𝑛6⟩ =𝑙6⟨𝑛6⟩ + 𝑑5⟨𝑛4⟩
⟨ ̇𝑛7⟩ =𝑙7⟨𝑛7⟩ + 𝑑6⟨𝑛5⟩

̇𝐹1,1 =2𝑙1⟨𝑛1⟩ − 2(𝑑1 + 𝑑2 − 𝑙1)𝐹11
̇𝐹1,2 = − (𝑑1 + 𝑑2 + 𝑑3 − 𝑙1 − 𝑙2)𝐹1,2 + 𝑑1𝐹1,1
̇𝐹1,3 = − (𝑑1 + 𝑑2 + 𝑑4 − 𝑙1 − 𝑙3)𝐹1,3 + 𝑑2𝐹1,1
̇𝐹1,4 = − (𝑑1 + 𝑑2 + 𝑑5 − 𝑙1 − 𝑙4)𝐹1,4 + 𝑑3𝐹1,2
̇𝐹1,5 = − (𝑑1 + 𝑑2 + 𝑑6 − 𝑙1 − 𝑙5)𝐹1,5 + 𝑑4𝐹1,3
̇𝐹1,6 =(−𝑑1 − 𝑑2 + 𝑙1 + 𝑙6)𝐹1,6 + 𝑑5𝐹1,4
̇𝐹1,7 =(−𝑑1 − 𝑑2 + 𝑙1 + 𝑙7)𝐹1,7 + 𝑑6𝐹1,5
̇𝐹2,2 =2(−𝑑3𝐹2,2 + 𝑙2(⟨𝑛2⟩ + 𝐹2,2) + 𝑑1𝐹1,2)
̇𝐹2,3 =(−𝑑3 − 𝑑4 + 𝑙2 + 𝑙3)𝐹2,3 + 𝑑1𝐹1,3 + 𝑑2𝐹1,2
̇𝐹2,4 =(−𝑑3 − 𝑑5 + 𝑙2 + 𝑙4)𝐹2,4 + 𝑑3𝐹2,2 + 𝑑1𝐹1,4
̇𝐹2,5 =(−𝑑3 − 𝑑6 + 𝑙2 + 𝑙5)𝐹2,5 + 𝑑4𝐹2,3 + 𝑑1𝐹1,5
̇𝐹2,6 =(−𝑑3 + 𝑙2 + 𝑙6)𝐹2,6 + 𝑑5𝐹2,4 + 𝑑1𝐹1,6
̇𝐹2,7 =(−𝑑3 + 𝑙2 + 𝑙7)𝐹2,7 + 𝑑6𝐹2,5 + 𝑑1𝐹1,7
̇𝐹3,3 =2(−𝑑4𝐹3,3 + 𝑙3(⟨𝑛3⟩ + 𝐹3,3) + 𝑑2𝐹1,3)
̇𝐹3,4 =(−𝑑4 − 𝑑5 + 𝑙3 + 𝑙4)𝐹3,4 + 𝑑3𝐹2,3 + 𝑑2𝐹1,4
̇𝐹3,5 =(−𝑑4 − 𝑑6 + 𝑙3 + 𝑙5)𝐹3,5 + 𝑑4𝐹3,3 + 𝑑2𝐹1,5
̇𝐹3,6 =(−𝑑4 + 𝑙3 + 𝑙6)𝐹3,6 + 𝑑5𝐹3,4 + 𝑑2𝐹1,6
̇𝐹3,7 =(−𝑑4 + 𝑙3 + 𝑙7)𝐹3,7 + 𝑑6𝐹3,5 + 𝑑2𝐹1,7
̇𝐹4,4 =2(−𝑑5𝐹4,4 + 𝑙4(⟨𝑛4⟩ + 𝐹4,4) + 𝑑3𝐹2,4)
̇𝐹4,5 =(−𝑑5 − 𝑑6 + 𝑙4 + 𝑙5)𝐹4,5 + 𝑑4𝐹3,4 + 𝑑3𝐹2,5
̇𝐹4,6 =(−𝑑5 + 𝑙4 + 𝑙6)𝐹4,6 + 𝑑5𝐹4,4 + 𝑑3𝐹2,6
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̇𝐹4,7 =(−𝑑5 + 𝑙4 + 𝑙7)𝐹4,7 + 𝑑6𝐹4,5 + 𝑑3𝐹2,7
̇𝐹5,5 =2(−𝑑6𝐹5,5 + 𝑙5(⟨𝑛5⟩ + 𝐹5,5) + 𝑑4𝐹3,5)
̇𝐹5,6 =(−𝑑6 + 𝑙5 + 𝑙6)𝐹5,6 + 𝑑5𝐹4,5 + 𝑑4𝐹3,6
̇𝐹5,7 =(−𝑑6 + 𝑙5 + 𝑙7)𝐹5,7 + 𝑑6𝐹5,5 + 𝑑4𝐹3,7
̇𝐹6,6 =2(𝑙6(⟨𝑛6⟩ + 𝐹6,6) + 𝑑5𝐹4,6)
̇𝐹6,7 =(𝑙6 + 𝑙7)𝐹6,7 + 𝑑6𝐹5,6 + 𝑑5𝐹4,7
̇𝐹7,7 =2(𝑙7(⟨𝑛7⟩ + 𝐹7,7) + 𝑑6𝐹5,7)

(A.2)

A.3.4| Full Tree Model

⟨ ̇𝑛1⟩ = − (𝑑1 − 𝑙1)⟨𝑛1⟩
⟨ ̇𝑛2⟩ = − (𝑑2 − 𝑙2)⟨𝑛2⟩ + 𝑑1⟨𝑛1⟩
⟨ ̇𝑛3⟩ = − (𝑑3,4 + 𝑑3,5 − 𝑙3)⟨𝑛3⟩ + 𝑑2⟨𝑛2⟩
⟨ ̇𝑛4⟩ = − (𝑑4,6 + 𝑑4,8 − 𝑙4)⟨𝑛4⟩ + 𝑑3,4⟨𝑛3⟩
⟨ ̇𝑛5⟩ = − (𝑑5,10 + 𝑑5,12 − 𝑙5)⟨𝑛5⟩ + 𝑑3,5⟨𝑛3⟩
⟨ ̇𝑛6⟩ = − (𝑑6,7 − 𝑙6)⟨𝑛6⟩ + 𝑑4,6⟨𝑛4⟩
⟨ ̇𝑛7⟩ =𝑙7⟨𝑛7⟩ + 𝑑6,7⟨𝑛6⟩
⟨ ̇𝑛8⟩ = − (𝑑8,9 − 𝑙8)⟨𝑛8⟩ + 𝑑4,8⟨𝑛4⟩
⟨ ̇𝑛9⟩ =𝑙9⟨𝑛9⟩ + 𝑑8,9⟨𝑛8⟩

⟨ ̇𝑛10⟩ = − (𝑑10,11 − 𝑙10)⟨𝑛10⟩ + 𝑑5,10⟨𝑛5⟩
⟨ ̇𝑛11⟩ =𝑙11⟨𝑛11⟩ + 𝑑10,11⟨𝑛10⟩
⟨ ̇𝑛12⟩ = − (𝑑12,13 − 𝑙12)⟨𝑛12⟩ + 𝑑5,12⟨𝑛5⟩
⟨ ̇𝑛13⟩ = − (𝑑13,14 + 𝑑13,15 − 𝑙13)⟨𝑛13⟩ + 𝑑12,13⟨𝑛12⟩
⟨ ̇𝑛14⟩ =𝑙14⟨𝑛14⟩ + 𝑑13,14⟨𝑛13⟩
⟨ ̇𝑛15⟩ =𝑙15⟨𝑛15⟩ + 𝑑13,15⟨𝑛13⟩

̇𝐹1,1 =2𝑙1⟨𝑛1⟩ −2 (𝑑1 − 𝑙1)𝐹1,1
̇𝐹1,2 = − (𝑑1 + 𝑑2 − 𝑙1 − 𝑙2)𝐹1,2 + 𝑑1𝐹1,1
̇𝐹1,3 = − (𝑑1 + 𝑑3,4 + 𝑑3,5 − 𝑙1 − 𝑙3)𝐹1,3 + 𝑑2𝐹1,2
̇𝐹1,4 = − (𝑑1 + 𝑑4,6 + 𝑑4,8 − 𝑙1 − 𝑙4)𝐹1,4 + 𝑑3,4𝐹1,3
̇𝐹1,5 = − (𝑑1 + 𝑑5,10 + 𝑑5,12 − 𝑙1 − 𝑙5)𝐹1,5 + 𝑑3,5𝐹1,3
̇𝐹1,6 = − (𝑑1 + 𝑑6,7 − 𝑙1 − 𝑙6)𝐹1,6 + 𝑑4,6𝐹1,4
̇𝐹1,7 = − (𝑑1 − 𝑙1 − 𝑙7)𝐹1,7 + 𝑑6,7𝐹1,6
̇𝐹1,8 = − (𝑑1 + 𝑑8,9 − 𝑙1 − 𝑙8)𝐹1,8 + 𝑑4,8𝐹1,4
̇𝐹1,9 = − (𝑑1 − 𝑙1 − 𝑙9)𝐹1,9 + 𝑑8,9𝐹1,8
̇𝐹1,10 = − (𝑑1 + 𝑑10,11 − 𝑙1 − 𝑙10)𝐹1,10 + 𝑑5,10𝐹1,5
̇𝐹1,11 = − (𝑑1 − 𝑙1 − 𝑙11)𝐹1,11 + 𝑑10,11𝐹1,10
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̇𝐹1,12 = − (𝑑1 + 𝑑12,13 − 𝑙1 − 𝑙12)𝐹1,12 + 𝑑5,12𝐹1,5
̇𝐹1,13 = − (𝑑1 + 𝑑13,14 + 𝑑13,15 − 𝑙1 − 𝑙13)𝐹1,13 + 𝑑12,13𝐹1,12
̇𝐹1,14 = − (𝑑1 − 𝑙1 − 𝑙14)𝐹1,14 + 𝑑13,14𝐹1,13
̇𝐹1,15 = − (𝑑1 − 𝑙1 − 𝑙15)𝐹1,15 + 𝑑13,15𝐹1,13

̇𝐹2,2 =2(−(𝑑2)𝐹2,2 + 𝑙2(⟨𝑛2⟩ + 𝐹2,2) + 𝑑1𝐹1,2)
̇𝐹2,3 = − (𝑑2 + 𝑑3,4 + 𝑑3,5 − 𝑙2 − 𝑙3)𝐹2,3 + 𝑑2𝐹2,2 + 𝑑1𝐹1,3
̇𝐹2,4 = − (𝑑2 + 𝑑4,6 + 𝑑4,8 − 𝑙2 − 𝑙4)𝐹2,4 + 𝑑3,4𝐹2,3 + 𝑑1𝐹1,4
̇𝐹2,5 = − (𝑑2 + 𝑑5,10 + 𝑑5,12 − 𝑙2 − 𝑙5)𝐹2,5 + 𝑑3,5𝐹2,3 + 𝑑1𝐹1,5
̇𝐹2,6 = − (𝑑2 + 𝑑6,7 − 𝑙2 − 𝑙6)𝐹2,6 + 𝑑4,6𝐹2,4 + 𝑑1𝐹1,6
̇𝐹2,7 = − (𝑑2 − 𝑙2 − 𝑙7)𝐹2,7 + 𝑑6,7𝐹2,6 + 𝑑1𝐹1,7
̇𝐹2,8 = − (𝑑2 + 𝑑8,9 − 𝑙2 − 𝑙8)𝐹2,8 + 𝑑4,8𝐹2,4 + 𝑑1𝐹1,8
̇𝐹2,9 = − (𝑑2 − 𝑙2 − 𝑙9)𝐹2,9 + 𝑑8,9𝐹2,8 + 𝑑1𝐹1,9
̇𝐹2,10 = − (𝑑10,11 + 𝑑2 − 𝑙10 − 𝑙2)𝐹2,10 + 𝑑5,10𝐹2,5 + 𝑑1𝐹1,10
̇𝐹2,11 = − (𝑑2 − 𝑙11 − 𝑙2)𝐹2,11 + 𝑑10,11𝐹2,10 + 𝑑1𝐹1,11
̇𝐹2,12 = − (𝑑12,13 + 𝑑2 − 𝑙12 − 𝑙2)𝐹2,12 + 𝑑5,12𝐹2,5 + 𝑑1𝐹1,12
̇𝐹2,13 = − (𝑑13,14 + 𝑑13,15 + 𝑑2 − 𝑙13 − 𝑙2)𝐹2,13 + 𝑑12,13𝐹2,12 + 𝑑1𝐹1,13
̇𝐹2,14 = − (𝑑2 − 𝑙14 − 𝑙2)𝐹2,14 + 𝑑13,14𝐹2,13 + 𝑑1𝐹1,14
̇𝐹2,15 = − (𝑑2 − 𝑙15 − 𝑙2)𝐹2,15 + 𝑑13,15𝐹2,13 + 𝑑1𝐹1,15

̇𝐹3,3 =2(−(𝑑3,4 + 𝑑3,5)𝐹3,3 + 𝑙3(⟨𝑛3⟩ + 𝐹3,3) + 𝑑2𝐹2,3)
̇𝐹3,4 = − (𝑑3,4 + 𝑑3,5 + 𝑑4,6 + 𝑑4,8 − 𝑙3 − 𝑙4)𝐹3,4 + 𝑑3,4𝐹3,3 + 𝑑2𝐹2,4
̇𝐹3,5 = − (𝑑3,4 + 𝑑3,5 + 𝑑5,10 + 𝑑5,12 − 𝑙3 − 𝑙5)𝐹3,5 + 𝑑3,5𝐹3,3 + 𝑑2𝐹2,5
̇𝐹3,6 = − (𝑑3,4 + 𝑑3,5 + 𝑑6,7 − 𝑙3 − 𝑙6)𝐹3,6 + 𝑑4,6𝐹3,4 + 𝑑2𝐹2,6
̇𝐹3,7 = − (𝑑3,4 + 𝑑3,5 − 𝑙3 − 𝑙7)𝐹3,7 + 𝑑6,7𝐹3,6 + 𝑑2𝐹2,7
̇𝐹3,8 = − (𝑑3,4 + 𝑑3,5 + 𝑑8,9 − 𝑙3 − 𝑙8)𝐹3,8 + 𝑑4,8𝐹3,4 + 𝑑2𝐹2,8
̇𝐹3,9 = − (𝑑3,4 + 𝑑3,5 − 𝑙3 − 𝑙9)𝐹3,9 + 𝑑8,9𝐹3,8 + 𝑑2𝐹2,9
̇𝐹3,10 = − (𝑑10,11 + 𝑑3,4 + 𝑑3,5 − 𝑙10 − 𝑙3)𝐹3,10 + 𝑑5,10𝐹3,5 + 𝑑2𝐹2,10
̇𝐹3,11 = − (𝑑3,4 + 𝑑3,5 − 𝑙11 − 𝑙3)𝐹3,11 + 𝑑10,11𝐹3,10 + 𝑑2𝐹2,11
̇𝐹3,12 = − (𝑑12,13 + 𝑑3,4 + 𝑑3,5 − 𝑙12 − 𝑙3)𝐹3,12 + 𝑑5,12𝐹3,5 + 𝑑2𝐹2,12
̇𝐹3,13 = − (𝑑13,14 + 𝑑13,15 + 𝑑3,4 + 𝑑3,5 − 𝑙13 − 𝑙3)𝐹3,13 + 𝑑12,13𝐹3,12 + 𝑑2𝐹2,13
̇𝐹3,14 = − (𝑑3,4 + 𝑑3,5 − 𝑙14 − 𝑙3)𝐹3,14 + 𝑑13,14𝐹3,13 + 𝑑2𝐹2,14
̇𝐹3,15 = − (𝑑3,4 + 𝑑3,5 − 𝑙15 − 𝑙3)𝐹3,15 + 𝑑13,15𝐹3,13 + 𝑑2𝐹2,15

̇𝐹4,4 =2(−(𝑑4,6 + 𝑑4,8)𝐹4,4 + 𝑙4(⟨𝑛4⟩ + 𝐹4,4) + 𝑑3,4𝐹3,4)
̇𝐹4,5 = − (𝑑4,6 + 𝑑4,8 + 𝑑5,10 + 𝑑5,12 − 𝑙4 − 𝑙5)𝐹4,5 + 𝑑3,4𝐹3,5 + 𝑑3,5𝐹3,4
̇𝐹4,6 = − (𝑑4,6 + 𝑑4,8 + 𝑑6,7 − 𝑙4 − 𝑙6)𝐹4,6 + 𝑑4,6𝐹4,4 + 𝑑3,4𝐹3,6
̇𝐹4,7 = − (𝑑4,6 + 𝑑4,8 − 𝑙4 − 𝑙7)𝐹4,7 + 𝑑6,7𝐹4,6 + 𝑑3,4𝐹3,7
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̇𝐹4,8 = − (𝑑4,6 + 𝑑4,8 + 𝑑8,9 − 𝑙4 − 𝑙8)𝐹4,8 + 𝑑4,8𝐹4,4 + 𝑑3,4𝐹3,8
̇𝐹4,9 = − (𝑑4,6 + 𝑑4,8 − 𝑙4 − 𝑙9)𝐹4,9 + 𝑑8,9𝐹4,8 + 𝑑3,4𝐹3,9
̇𝐹4,10 = − (𝑑10,11 + 𝑑4,6 + 𝑑4,8 − 𝑙10 − 𝑙4)𝐹4,10 + 𝑑5,10𝐹4,5 + 𝑑3,4𝐹3,10
̇𝐹4,11 = − (𝑑4,6 + 𝑑4,8 − 𝑙11 − 𝑙4)𝐹4,11 + 𝑑10,11𝐹4,10 + 𝑑3,4𝐹3,11
̇𝐹4,12 = − (𝑑12,13 + 𝑑4,6 + 𝑑4,8 − 𝑙12 − 𝑙4)𝐹4,12 + 𝑑5,12𝐹4,5 + 𝑑3,4𝐹3,12
̇𝐹4,13 = − (𝑑13,14 + 𝑑13,15 + 𝑑4,6 + 𝑑4,8 − 𝑙13 − 𝑙4)𝐹4,13 + 𝑑12,13𝐹4,12 + 𝑑3,4𝐹3,13
̇𝐹4,14 = − (𝑑4,6 + 𝑑4,8 − 𝑙14 − 𝑙4)𝐹4,14 + 𝑑13,14𝐹4,13 + 𝑑3,4𝐹3,14
̇𝐹4,15 = − (𝑑4,6 + 𝑑4,8 − 𝑙15 − 𝑙4)𝐹4,15 + 𝑑13,15𝐹4,13 + 𝑑3,4𝐹3,15

̇𝐹5,5 =2(−(𝑑5,10 + 𝑑5,12)𝐹5,5 + 𝑙5(⟨𝑛5⟩ + 𝐹5,5) + 𝑑3,5𝐹3,5)
̇𝐹5,6 = − (𝑑5,10 + 𝑑5,12 + 𝑑6,7 − 𝑙5 − 𝑙6)𝐹5,6 + 𝑑4,6𝐹4,5 + 𝑑3,5𝐹3,6
̇𝐹5,7 = − (𝑑5,10 + 𝑑5,12 − 𝑙5 − 𝑙7)𝐹5,7 + 𝑑6,7𝐹5,6 + 𝑑3,5𝐹3,7
̇𝐹5,8 = − (𝑑5,10 + 𝑑5,12 + 𝑑8,9 − 𝑙5 − 𝑙8)𝐹5,8 + 𝑑4,8𝐹4,5 + 𝑑3,5𝐹3,8
̇𝐹5,9 = − (𝑑5,10 + 𝑑5,12 − 𝑙5 − 𝑙9)𝐹5,9 + 𝑑8,9𝐹5,8 + 𝑑3,5𝐹3,9
̇𝐹5,10 = − (𝑑10,11 + 𝑑5,10 + 𝑑5,12 − 𝑙10 − 𝑙5)𝐹5,10 + 𝑑5,10𝐹5,5 + 𝑑3,5𝐹3,10
̇𝐹5,11 = − (𝑑5,10 + 𝑑5,12 − 𝑙11 − 𝑙5)𝐹5,11 + 𝑑10,11𝐹5,10 + 𝑑3,5𝐹3,11
̇𝐹5,12 = − (𝑑12,13 + 𝑑5,10 + 𝑑5,12 − 𝑙12 − 𝑙5)𝐹5,12 + 𝑑5,12𝐹5,5 + 𝑑3,5𝐹3,12
̇𝐹5,13 = − (𝑑13,14 + 𝑑13,15 + 𝑑5,10 + 𝑑5,12 − 𝑙13 − 𝑙5)𝐹5,13 + 𝑑12,13𝐹5,12 + 𝑑3,5𝐹3,13
̇𝐹5,14 = − (𝑑5,10 + 𝑑5,12 − 𝑙14 − 𝑙5)𝐹5,14 + 𝑑13,14𝐹5,13 + 𝑑3,5𝐹3,14
̇𝐹5,15 = − (𝑑5,10 + 𝑑5,12 − 𝑙15 − 𝑙5)𝐹5,15 + 𝑑13,15𝐹5,13 + 𝑑3,5𝐹3,15
̇𝐹6,6 =2(−(𝑑6,7)𝐹6,6 + 𝑙6(⟨𝑛6⟩ + 𝐹6,6) + 𝑑4,6𝐹4,6)

̇𝐹6,7 = − (𝑑6,7 − 𝑙6 − 𝑙7)𝐹6,7 + 𝑑6,7𝐹6,6 + 𝑑4,6𝐹4,7
̇𝐹6,8 = − (𝑑6,7 + 𝑑8,9 − 𝑙6 − 𝑙8)𝐹6,8 + 𝑑4,6𝐹4,8 + 𝑑4,8𝐹4,6
̇𝐹6,9 = − (𝑑6,7 − 𝑙6 − 𝑙9)𝐹6,9 + 𝑑8,9𝐹6,8 + 𝑑4,6𝐹4,9
̇𝐹6,10 = − (𝑑10,11 + 𝑑6,7 − 𝑙10 − 𝑙6)𝐹6,10 + 𝑑5,10𝐹5,6 + 𝑑4,6𝐹4,10
̇𝐹6,11 = − (𝑑6,7 − 𝑙11 − 𝑙6)𝐹6,11 + 𝑑10,11𝐹6,10 + 𝑑4,6𝐹4,11
̇𝐹6,12 = − (𝑑12,13 + 𝑑6,7 − 𝑙12 − 𝑙6)𝐹6,12 + 𝑑5,12𝐹5,6 + 𝑑4,6𝐹4,12
̇𝐹6,13 = − (𝑑13,14 + 𝑑13,15 + 𝑑6,7 − 𝑙13 − 𝑙6)𝐹6,13 + 𝑑12,13𝐹6,12 + 𝑑4,6𝐹4,13
̇𝐹6,14 = − (𝑑6,7 − 𝑙14 − 𝑙6)𝐹6,14 + 𝑑13,14𝐹6,13 + 𝑑4,6𝐹4,14
̇𝐹6,15 = − (𝑑6,7 − 𝑙15 − 𝑙6)𝐹6,15 + 𝑑13,15𝐹6,13 + 𝑑4,6𝐹4,15
̇𝐹7,7 =2(𝑙7⟨𝑛7⟩ + 𝑙7𝐹7,7 + 𝑑6,7𝐹6,7)

̇𝐹7,8 = − (𝑑8,9 − 𝑙7 − 𝑙8)𝐹7,8 + 𝑑6,7𝐹6,8 + 𝑑4,8𝐹4,7
̇𝐹7,9 =(𝑙7 + 𝑙9)𝐹7,9 + 𝑑8,9𝐹7,8 + 𝑑6,7𝐹6,9
̇𝐹7,10 = − (𝑑10,11 − 𝑙10 − 𝑙7)𝐹7,10 + 𝑑6,7𝐹6,10 + 𝑑5,10𝐹5,7
̇𝐹7,11 =(𝑙11 + 𝑙7)𝐹7,11 + 𝑑10,11𝐹7,10 + 𝑑6,7𝐹6,11
̇𝐹7,12 = − (𝑑12,13 − 𝑙12 − 𝑙7)𝐹7,12 + 𝑑6,7𝐹6,12 + 𝑑5,12𝐹5,7
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̇𝐹7,13 = − (𝑑13,14 + 𝑑13,15 − 𝑙13 − 𝑙7)𝐹7,13 + 𝑑12,13𝐹7,12 + 𝑑6,7𝐹6,13
̇𝐹7,14 =(𝑙14 + 𝑙7)𝐹7,14 + 𝑑13,14𝐹7,13 + 𝑑6,7𝐹6,14
̇𝐹7,15 =(𝑙15 + 𝑙7)𝐹7,15 + 𝑑13,15𝐹7,13 + 𝑑6,7𝐹6,15

̇𝐹8,8 =2(−(𝑑8,9)𝐹8,8 + 𝑙8(⟨𝑛8⟩ + 𝐹8,8) + 𝑑4,8𝐹4,8)
̇𝐹8,9 = − (𝑑8,9 − 𝑙8 − 𝑙9)𝐹8,9 + 𝑑8,9𝐹8,8 + 𝑑4,8𝐹4,9
̇𝐹8,10 = − (𝑑10,11 + 𝑑8,9 − 𝑙10 − 𝑙8)𝐹8,10 + 𝑑5,10𝐹5,8 + 𝑑4,8𝐹4,10
̇𝐹8,11 = − (𝑑8,9 − 𝑙11 − 𝑙8)𝐹8,11 + 𝑑10,11𝐹8,10 + 𝑑4,8𝐹4,11
̇𝐹8,12 = − (𝑑12,13 + 𝑑8,9 − 𝑙12 − 𝑙8)𝐹8,12 + 𝑑5,12𝐹5,8 + 𝑑4,8𝐹4,12
̇𝐹8,13 = − (𝑑13,14 + 𝑑13,15 + 𝑑8,9 − 𝑙13 − 𝑙8)𝐹8,13 + 𝑑12,13𝐹8,12 + 𝑑4,8𝐹4,13
̇𝐹8,14 = − (𝑑8,9 − 𝑙14 − 𝑙8)𝐹8,14 + 𝑑13,14𝐹8,13 + 𝑑4,8𝐹4,14
̇𝐹8,15 = − (𝑑8,9 − 𝑙15 − 𝑙8)𝐹8,15 + 𝑑13,15𝐹8,13 + 𝑑4,8𝐹4,15

̇𝐹9,9 =2(𝑙9⟨𝑛9⟩ + (𝑙9)𝐹9,9 + 𝑑8,9𝐹8,9)
̇𝐹9,10 = − (𝑑10,11 − 𝑙10 − 𝑙9)𝐹9,10 + 𝑑8,9𝐹8,10 + 𝑑5,10𝐹5,9
̇𝐹9,11 =(𝑙11 + 𝑙9)𝐹9,11 + 𝑑10,11𝐹9,10 + 𝑑8,9𝐹8,11
̇𝐹9,12 = − (𝑑12,13 − 𝑙12 − 𝑙9)𝐹9,12 + 𝑑8,9𝐹8,12 + 𝑑5,12𝐹5,9
̇𝐹9,13 = − (𝑑13,14 + 𝑑13,15 − 𝑙13 − 𝑙9)𝐹9,13 + 𝑑12,13𝐹9,12 + 𝑑8,9𝐹8,13
̇𝐹9,14 =(𝑙14 + 𝑙9)𝐹9,14 + 𝑑13,14𝐹9,13 + 𝑑8,9𝐹8,14
̇𝐹9,15 =(𝑙15 + 𝑙9)𝐹9,15 + 𝑑13,15𝐹9,13 + 𝑑8,9𝐹8,15

̇𝐹10,10 =2(−(𝑑10,11)𝐹10,10 + 𝑙10(⟨𝑛10⟩ + 𝐹10,10) + 𝑑5,10𝐹5,10)
̇𝐹10,11 = − (𝑑10,11 − 𝑙10 − 𝑙11)𝐹10,11 + 𝑑10,11𝐹10,10 + 𝑑5,10𝐹5,11
̇𝐹10,12 = − (𝑑10,11 + 𝑑12,13 − 𝑙10 − 𝑙12)𝐹10,12 + 𝑑5,10𝐹5,12 + 𝑑5,12𝐹5,10
̇𝐹10,13 = − (𝑑10,11 + 𝑑13,14 + 𝑑13,15 − 𝑙10 − 𝑙13)𝐹10,13 + 𝑑12,13𝐹10,12 + 𝑑5,10𝐹5,13
̇𝐹10,14 = − (𝑑10,11 − 𝑙10 − 𝑙14)𝐹10,14 + 𝑑13,14𝐹10,13 + 𝑑5,10𝐹5,14
̇𝐹10,15 = − (𝑑10,11 − 𝑙10 − 𝑙15)𝐹10,15 + 𝑑13,15𝐹10,13 + 𝑑5,10𝐹5,15

̇𝐹11,11 =2(𝑙11⟨𝑛11⟩ + (𝑙11)𝐹11,11 + 𝑑10,11𝐹10,11)
̇𝐹11,12 = − (𝑑12,13 − 𝑙11 − 𝑙12)𝐹11,12 + 𝑑10,11𝐹10,12 + 𝑑5,12𝐹5,11
̇𝐹11,13 = − (𝑑13,14 + 𝑑13,15 − 𝑙11 − 𝑙13)𝐹11,13 + 𝑑12,13𝐹11,12 + 𝑑10,11𝐹10,13
̇𝐹11,14 =(𝑙11 + 𝑙14)𝐹11,14 + 𝑑13,14𝐹11,13 + 𝑑10,11𝐹10,14
̇𝐹11,15 =(𝑙11 + 𝑙15)𝐹11,15 + 𝑑13,15𝐹11,13 + 𝑑10,11𝐹10,15

̇𝐹12,12 =2(−(𝑑12,13)𝐹12,12 + 𝑙12(⟨𝑛12⟩ + 𝐹12,12) + 𝑑5,12𝐹5,12)
̇𝐹12,13 = − (𝑑12,13 + 𝑑13,14 + 𝑑13,15 − 𝑙12 − 𝑙13)𝐹12,13 + 𝑑12,13𝐹12,12 + 𝑑5,12𝐹5,13
̇𝐹12,14 = − (𝑑12,13 − 𝑙12 − 𝑙14)𝐹12,14 + 𝑑13,14𝐹12,13 + 𝑑5,12𝐹5,14
̇𝐹12,15 = − (𝑑12,13 − 𝑙12 − 𝑙15)𝐹12,15 + 𝑑13,15𝐹12,13 + 𝑑5,12𝐹5,15
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̇𝐹13,13 =2(−(𝑑13,14 + 𝑑13,15)𝐹13,13 + 𝑙13(⟨𝑛13⟩ + 𝐹13,13) + 𝑑12,13𝐹12,13)
̇𝐹13,14 = − (𝑑13,14 + 𝑑13,15 − 𝑙13 − 𝑙14)𝐹13,14 + 𝑑13,14𝐹13,13 + 𝑑12,13𝐹12,14
̇𝐹13,15 = − (𝑑13,14 + 𝑑13,15 − 𝑙13 − 𝑙15)𝐹13,15 + 𝑑13,15𝐹13,13 + 𝑑12,13𝐹12,15

̇𝐹14,14 =2(𝑙14⟨𝑛14⟩ + (𝑙14)𝐹14,14 + 𝑑13,14𝐹13,14)
̇𝐹14,15 =(𝑙14 + 𝑙15)𝐹14,15 + 𝑑13,14𝐹13,15 + 𝑑13,15𝐹13,14

̇𝐹15,15 =2(𝑙15⟨𝑛15⟩ + (𝑙15)𝐹15,15 + 𝑑13,15𝐹13,15)
(A.3)

A.4| Barcode Cluster

Barcodes forming cluster as described in chapter 8, exemplary barcodes from
mouse #2 as seen in fig. 8.10.

• '1FC' 'GF3' '561' '1234987' '12ED7' 'EDCBA6987' 'G45' 'ED7' 'AFED7' '1458G69'
'987' '145HG' 'IHGF3' '561D7' '12GF3' '34987' '12ED367' '16987' '1458G' 'GF349'
'GF345' 'CBA6987' 'C6987' 'AF7' '56987' '56149' '5612G89' '56129' '3456A' '34561'
'1FCB7' '1F3' '14987' '145HGF3' '145FC' '1456987' '12C456987'

• '78965' '3HG' '5416789' '56789DC' '16547' '965' '541' '12965' '1278965' '789DC'
'16789DC' '1478965' '145678C' 'CBA8965' '5678C' '3HGFE' '18965' '125678C'
'G8965' 'C65' '9DC' '54789' '547' '54169' '541678C' '54167' '5412IHG' '189DC'
'16945' '1654CB9' '165' '12365' '123478965'

• '72189' '721' '723' '729' '725' '72369' '72569' '7214E' '3472189'

• '1HGDC' '7892A' 'G892A' '38IBA' '38A' '3892A' '3478A' '347892A'

• '1DE2369' '1DE29' '1DE23' '1DE2367' • '7D9' '7D92A' '167D9' 'C67D9'

• 'C678I' '36I' 'EDC678I' 'C6I' • '125HG' '78EBA' • '9FE' '129FE'

• 'I61' 'I6147' • '123FG' '3FG' • '1458329' '14583' • 'GHA69' 'GHA'

• '129D5' '9D5' • '56GBA89' '56GBA' • 'IDG' '38IDG' • '145BC69' '145B9'

• '34IFE' '34IFGHE' • '1278369' '127834569' • 'EB9' 'EBA69'

• '12I4567' '12I45'
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A.5| Abbreviations

HSC hematopoietic stem cell
LT Long-term hematopoietic stem cell
ST Short-term hematopoietic stem cell
MPP Multipotent progenitor
CMP Common myeloid progenitor
CLP Common lymphoid progenitor
GMP Granulocyte/macrophage progenitors
MEP Megakaryocyte/erythrocyte progenitors
Mono Monocytes
Gr Granulocytes
EryP Erythrocyte progenitors
eq. equation
𝑃𝑔𝑒𝑛 Probability of generation
FACS Fluorescence-activated cell sorting
pacBio Pacific Biosciences
fig. figure
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Barcode statistics

While this section does not provide any scientific insight, some barcode statistics
are fun and interesting. Those will be highlighted here:
The total number of unique possible barcodes are 1.866.890, however due to the
treatment methods used only a subset of 931.427 barcodes can practically be
reached. This is due to the fact, that the highly complex barcodes need more re-
combination events than the number occuring in our experiments. Taking allmice
into account, that have been studied in this thesis, we found a total number of 2146
unique barcodes. This is merely 0.23% of all reachable barcodes. This raises the
question how many mice are needed to find all reachable barcodes with a 95%
chance. And the answer to that is an astounding number of 2.6 x 1012 mice, where
as the number of total mice in the world are estimated to around ~109. It is there-
for safe to say, that we will never run out of unique barcodes to find using Polylox
barcodes.
Hurray!

Total number of possible barcodes 1.866.890
Possible barcodes given treatment 931.427
Of which we have found 2.146 (0.23%)
Mice needed to find all possible barcodes 2.6 x 1012

(95% chance, given treatment)
Number of mice in the world ~109
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