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Abstract

The current work is devoted to the mathematical modelling of the development of fish
respiratory organs, called gills or branchiae. The model organism chosen for the task is the
Japanese rice fish (Oryzias latipes), more colloquially known as medaka. Their gills are
analysed in the attempt to answer three main developmental questions via mathematical
modelling, with possible applications beyond the scope of this thesis. Firstly, how many
stem cells are needed to build the organ? What kind of heterogeneities exist among these
stem cells? And, finally, what properties and relations with each-other do these stem cells
have, that give the organ its shape?

Relying on experimental data from our collaborators in the group of Prof. Lazaro Cen-
tanin, Centre for Organismal Studies, Heidelberg University, we use a variety of methods
to study the aforementioned aspects. These methods were selected, adapted and devel-
oped based on the goal of each project and on the available data. Thus, a combination
of stochastic and deterministic techniques are employed throughout the thesis, including
Gillespie-type simulations, Markov chains theory and compartmental models.

The study of stem cell numbers and heterogeneities is approached via stochastic simu-
lations extended from the algorithm of Gillespie, and further improved by Markov chains
methods. Results suggest that not only very few stem cells are sufficient to build and
maintain the organ but, more importantly, these stem cells are heterogeneous in their di-
vision behaviour. In particular, they rely on alternating activation and quiescence phases,
such that once a stem cell has divided, it becomes activated and divides multiple times
before allowing another one to take the lead.
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viii Abstract

For the study of growth and shape of gills, multiple deterministic models based on dif-
ferent assumptions and investigating various hypotheses have been developed. All these
models have a compartmental structure, with increasing number of compartments gov-
erned by indicator functions which, in turn, depend on explicit or implicit algebraic
equations. For each model, the existence, uniqueness and non-negativity of solutions are
proved, the analytical solutions are found and their regularity is discussed. The models
are compared based on their ability to reproduce part of the data, and the best one is se-
lected. The chosen model is then applied to further data and speculations on hypotheses
supporting the model are made. Results suggest that the main stem cell types, responsible
for growing the organ, slow down their proliferation in time, either due to ageing or to the
lack of sufficient nutrients.

The main results and strengths of this thesis consist of the high variety of models de-
veloped and methods employed, their capability to answer important biological questions
and, even more, to uncover new insights on mechanisms previously unknown.

Heidelberg, May 2019 Diana-Patricia Danciu



Zusammenfassung

Die vorliegende Arbeit befasst sich mit der mathematischen Modellierung der Entwick-
lung von Atmungsorganen der Fische, den sogenannten Kiemen. Der für die Aufgabe
gewählte Modellorganismus ist der japanische Reisfisch (Oryzias latipes), umgangssprach-
lich Medaka genannt. Mit dem Versuch, drei Hauptentwicklungsfragen mittels mathema-
tischer Modellierung zu beantworten, werden ihre Kiemen analysiert, wobei mögliche
Anwendungen über den Rahmen dieser Arbeit hinausgehen. Erstens, wie viele Stam-
mzellen werden zum Aufbau des Organs benötigt? Welche Art von Heterogenitäten
gibt es unter diesen? Und schlielich, welche Eigenschaften und Beziehungen zueinander
haben diese Stammzellen, die dem Organ seine Form geben?

Basierend auf experimentellen Daten unserer Mitarbeiter in der Gruppe von Prof.
Lazaro Centanin verwenden wir eine Vielzahl von Methoden, um die oben genannten
Aspekte zu studieren, Methoden auszuwählen, anzupassen und basierend auf dem Ziel
jedes Projekts und den verfügbaren Daten zu entwickeln. Daher wird in der gesamten
Arbeit eine Kombination aus stochastischen und deterministischen Techniken eingesetzt,
zu denen Gillespie-Simulationen, die Markov-Ketten-Theorie und Kompartimentmodelle
gehören.

Die Untersuchung von Stammzellzahlen und -heterogenitäten wird durch stochastis-
che Simulationen erreicht, die auf dem Algorithmus von Gillespie beruhen und durch
Markov-Kettenmethoden weiter verbessert werden. Die Ergebnisse deuten darauf hin,
dass nicht nur sehr wenige Stammzellen ausreichen, um das Organ aufzubauen und zu
erhalten. Wichtiger jedoch ist, dass diese Stammzellen in ihrem Teilungsverhalten het-
erogen sind. Sie sind insbesondere auf abwechselnde Aktivierungs- und Ruhephasen
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x Zusammenfassung

angewiesen, so dass eine Stammzelle, sobald sie sich geteilt hat, aktiviert wird und sich
mehrmals teilt, bevor eine andere die Führung übernehmen kann.

Für die Untersuchung des Wachstums und der Form von Kiemen wurden mehrere de-
terministische Modelle entwickelt, die auf unterschiedlichen Annahmen basieren und ver-
schiedene Hypothesen untersuchen. Alle diese Modelle haben eine Kompartimentstruktur
mit einer zunehmenden Anzahl von Kompartimenten, die durch Indikatorfunktionen ges-
teuert werden, die wiederum von expliziten oder impliziten algebraischen Gleichungen
abhängen. Für jedes Modell werden Existenz, Eindeutigkeit und Nicht-Negativität von
Lösungen nachgewiesen, die analytischen Lösungen werden gefunden und ihre Regu-
larität wird diskutiert. Die Modelle werden basierend auf ihrer Fähigkeit einen Teil der
Daten zu reproduzieren verglichen, und das beste wird entsprechend ausgewählt. Das
gewählte Modell wird auf weitere Daten angewendet und es werden Spekulationen zu
Hypothesen aufgestellt, die das Modell unterstützen. Die Ergebnisse legen nahe, dass
beide Hauptstammzelltypen, die für das Wachstum des Organs verantwortlich sind, ihre
Proliferation mit der Zeit verlangsamen, entweder aufgrund von Alterung oder Nahrungs-
mangel.

Die wichtigsten Ergebnisse und Stärken dieser Arbeit bestehen in der großen Vielfalt
der entwickelten Modelle und Methoden, ihrer Fähigkeit, wichtige biologische Fragen zu
beantworten und noch mehr neue Erkenntnisse über bisher unbekannte Mechanismen zu
gewinnen.

Heidelberg, Mai 2019 Diana-Patricia Danciu



Rezumat

Prezenta lucrare este dedicată modelării matematice a dezvoltării organelor respiratorii la
peşti, numite branhii. Organismul ales ca model pentru aceast studiu este peştele de orez
japonez (Oryzias latipes), cunoscut mai simplu sub numele de medaka. Acest studiu efec-
tuat pe branhiile peştelui medaka ı̂şi propune obţinerea prin intermediul modelării mate-
matice a unor răspunsuri pentru trei ntrebări de bazua din biologie, cu posibile aplicaţii
dincolo de scopul acestei teze. O primă ı̂ntrebare se referă la numărul celulelor stem nece-
sare pentru construirea organului. Apoi, ne interesează un răspuns privind tipul etero-
genităţilor existente ı̂ntre aceste celule stem. Şi, ı̂n cele din urmă, este important să aflăm
ce proprietăţi şi relaţii dintre aceste celule stem conduc la forma specială a acestui organ,
branhia.

Bazându-ne pe datele experimentale ale colaboratorilor noştri din cadrul grupului Prof.
Lazaro Centanin, folosim o serie de metode pentru a studia aspectele menţionate mai sus,
metode selectate, adaptate şi dezvoltate ı̂n funcţie de scopul fiecărui proiect şi de datele
disponibile. Astfel, pe parcursul studiului, şi al prezentei teze de doctorat, s-au combinat
o serie de tehnici stocastice şi deterministe, tehnici care includ simulări de tip Gillespie,
teoria lanţurilor Markov şi modele compartimentale.

Studiul numărului de celule stem şi al eterogenităţilor lor este abordat prin simulări
stocastice, extinse de la algoritmul lui Gillespie, şi ı̂mbunătăţite ulterior prin metodele
lanţurilor Markov. Rezultatele obţinute sugerează nu numai că, pentru construirea orga-
nului este suficient un număr mic de celule stem, ci şi mai important, că aceste celule stem
sunt eterogene ı̂n ceea ce priveşte comportamentul lor de divizare. Mai exact, s-a observat
că divizarea celulelor stem se bazează pe faze alternante de activare şi repaus, astfel ı̂ncât,
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xii Rezumat

odată ce o celulă s-a divizat, aceasta devine activ şi se divide de mai multe ori, ı̂nainte de
a permite altei celule să preia conducerea.

Pentru studiul dezvoltării şi formei branhiilor, au fost create mai multe modele deter-
ministe bazate pe reguli diferite şi investigând diverse ipoteze. Toate aceste modele au o
structură compartimentată, cu un număr de compartimente care creşte ı̂n timp, creştere
guvernată de funcţii indicator care, la rândul lor, depind de ecuaţii algebrice explicite sau
implicite. Pentru fiecare model, se demonstrează existenţa, unicitatea şi non-negativitatea
soluţiilor, se calculează soluţiile analitice şi se discută regularitatea lor. Modelele sunt
comparate pe baza capacităţii lor de a reproduce o parte din date, cel mai bun dintre
aceste modele fiind ı̂n final cel selectat. Modelul ales este evaluat pe date suplimentare şi
se fac apoi speculaţii privind ipotezele care susţin modelul. Rezultatele obţinute ı̂n studiu
sugerează că ambele tipuri principale de celule stem, responsabile de creşterea organului,
ı̂şi ı̂ncetinesc proliferarea ı̂n timp, fie din cauza ı̂mbătrânirii, fie a lipsei de factori nutritivi
suficienţi.

Principalele rezultate şi puncte forte ale acestei teze constau ı̂n diversitatea de modele
create şi de metode folosite, capacitatea lor de a răspunde la ı̂ntrebări cheie din biologie
şi, mai mult, de a descoperi noi mecanisme, necunoscute anterior.

Heidelberg, Mai 2019 Diana-Patricia Danciu
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Chapter 1

Introduction

“The imagination of nature is far, far greater
than the imagination of man.”

- Richard Feynman

Mathematical modelling has been playing an increasingly important role in the under-
standing of processes from many research fields, from natural sciences to engineering
and to social sciences. In particular, in biological and medical sciences, many mathemat-
ical models have been developed to study development [1, 2] and disease [3]. Not only
does mathematical modelling help in uncovering new insights on the biological systems
under study, but biology drives the development of new mathematical techniques needed
to understand such systems [4, 5, 6, 7, 8].

This work applies mathematical methods in the field of developmental biology, more
specifically in stem cell research, and studies the stem cell dynamics during post-embryonic
organ growth in fish. Developmental Biology belongs to the fundamental research cate-
gory, dealing with topics such as organogenesis or stem cell differentiation and studies
in this field make the basis for further applied investigations such as cancer, ageing or
other diseases. Mathematical models to study various aspects in developmental biology
are constructed, by applying mathematical methods to data from the respiratory organ of
fish, coming from experiments on the model organism Medaka (Oryzias latipes) [9]. As-
pects such as the properties of and relations between various stem cells are investigated,
and determining the numbers and functional heterogeneities among these stem cells is
aimed for. To our knowledge, there have been no previous mathematical models for the
study of gill development.

The thesis employs both stochastic and deterministic methods adapted to the specific
investigations of two related projects and to the data available. For the first project, a
stochastic algorithm is created and implemented to simulate the biological system, and
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2 1 Introduction

subsequently Markov chains theory is used to improve its efficiency. The second project
develops various compartmental models with growing domain, all consisting of a system
of ordinary differential equations coupled to indicator functions governing the addition of
new compartments, which depend on inputs from two algebraic equations. These models
are analysed and compared via model selection methods. Finally, conclusions are drawn
based on insights gained from the modelling, and suggestions regarding the plausibility
of different biological hypotheses are made.

1.1 Overview of methods and results

Medaka, also known as the Japanese rice fish, recommends itself as a suitable model or-
ganism to study aspects in developmental biology, due to its rapid development, body
transparency during juvenile stages, and isogenic property. The organ placed under the
microscope is the branchia (also known as gill) which, because of its modular struc-
ture, is perfectly suited for our studies. As can be seen in Fig. 1.1, the gills have a
stereotypic spatio-temporal organisation and are composed of four pairs of double-sided
branchial arches, which in turn consist of a sequence of filaments [10, 11, 12]. Branchial
arches grow along two orthogonal axes, longitudinally by the elongation of filaments, and
transversally by addition of new ones at each of the two extremes.

Fig. 1.1: Structure of a gill: one branchia (left) is composed of eight branchial arches
(middle), each of which is built from a sequence of filaments (right).



1.1 Overview of methods and results 3

1.1.1 Stem cell numbers and functional heterogeneities

By taking advantage of this organised growth “protocol”, stochastic modelling can shed
light on the numbers of stem cells needed for building these organs, as well as on the het-
erogeneities existing among them. Stochastic modelling, and in particular methods such
as Markov chains and Gillespie-type algorithms, have been often employed in mathe-
matical biology [8, 13, 14, 15, 16, 17, 18, 19] and prove highly useful in our studies, as
well. The clonal data used in this (first) project record the labelling status (labelled or
unlabelled) of filaments from multiple branchial arches from various fish [20, 21].

Hence, by developing an adapted Gillespie-type algorithm one can simulate the growth
process and produce an in silico data set similar to the experimental one. These two can
then be compared via an objective function describing the “distance” between data and
simulation results and the desired parameters can be estimated by minimising this func-
tion. The computational method presented is approximate, very time-consuming and de-
mands a high computational effort, but is quite easy to understand.

A further improvement of the previous modelling approach uses Markov chains theory.
A two-state Markov chain is defined for describing transitions between a labelled and an
unlabelled filament, transitions representing successions in the sequence of such filaments
within a branchial arch. By computing the entries of the specific transition probability
matrix, one can obtain exact probabilities of observing events of filament distributions
similar to those existing in the experimental data. Hence, this method is exact and very
efficient, but is quite abstract and thus more difficult to grasp and develop without certain
comprehension gained from the previous approach.

The main insight resulted from the mathematical modelling of the system is related
to the functional heterogeneities among the stem cells driving the growth of branchial
arches, fact which was previously unknown. The results of this project show that the divi-
sion process is not entirely random: we find that once a stem cell has divided to generate
a filament, it has a much higher chance to divide again in the detriment of another niche
resident. This behaviour corresponds to a scenario of activation and quiescence phases:
when a stem cell divides, it becomes active and subsequently divides multiple times be-
fore another one takes over the task of filament generation. The so-called probability of

division is found to have a surprisingly high value, of approximately 0.9. In addition, sim-



4 1 Introduction

ulation results suggest that only a small number of functionally heterogeneous active stem
cells is, in fact, sufficient for building and maintaining the organ: 2-3 stem cells per niche.

A more detailed description of the results related to the stem cell numbers and their
functional heterogeneities can be found in Chapter 7, which concludes the first part of the
thesis.

1.1.2 Modelling of growth and shape

Continuing the study of post-embryonic gill growth, a second project uses deterministic
modelling to describe the organ development, and looks at the shapes of branchial arches
in order to understand the behaviour of the stem cells driving their growth. Deterministic
modelling, in the form of ordinary and partial differential equations, have had a rich his-
tory within the field of mathematical biology, in the study of development [1, 22, 2, 23]
and disease [3, 24, 25, 26, 27]. For this project, data recording lengths of filaments have
been gathered from multiple branchial arches of various fish and ordinary differential
equations models have been employed.

Five different mathematical models have been developed, all having similar structures
but being based on different assumptions. The models are inspired by previously devel-
oped compartmental models [28, 29] and consist of a system of ordinary differential equa-
tions, each describing the behaviour within each compartment representing one filament.
Considering that not only do filaments elongate, but also new ones are added, a method to
increase the discrete number of compartments was needed. The solution came in the form
of indicator functions, their “choice” being governed by two algebraic equations describ-
ing the proliferation of branchial arch stem cells. The relative novelty of these models
comes from the method of approaching the discrete domain growth. Usually, the mod-
elling of systems with growing domain is approached via partial differential equations
[4, 30, 31] or individual-based models [8, 32, 33, 34], but the specificity of our biolog-
ical system is given by the interplay between continuous and discrete mechanisms. Few
instances of similar methods can be found [22, 35].

Each model is analysed mathematically, proving the existence, uniqueness and non-
negativity of the solutions, and their analytical solution is found. Subsequently, the models
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are compared by fitting to data from one representative branchial arch and the best one is
selected according to model selection criteria. The selected model is then applied to data
from various other branchial arches and its capability to reproduce the shape of each such
arch is established.

Based on the insights gained from the results of the model, we can state that filament
stem cells reduce their proliferation with their length, for example due to the increasing
time needed for sufficient nutrients to travel to their location. In addition, branchial arch
stem cells also increase their cell cycle duration but, in contrast, we can speculate that this
does not happen due to nutrients transport but, for example, due to ageing. The models
thus prove that the branchial arches slow down their growth along both orthogonal axes.

The detailed overview of the results related to the branchia growth and shape can be
found in Chapter 12, which concludes the second part of the thesis.

1.2 Outline of the Thesis

The thesis starts with an overview of the mathematical methods used for the investiga-
tions performed (Chapter 2), namely short descriptions of stochastic algorithms, Markov
chains theory and differential equations properties. In addition, parameter estimation tech-
niques and model comparison methods are discussed.

Chapter 3 follows with an introduction into the biological background used in this
work, in particular properties of fish model organisms and their post-embryonic growth,
as well as an in detail description of the organ under study - the branchia. Subsequently,
the thesis is divided into two parts, describing two separate but related projects, which
study various aspects of post-embryonic growth of medaka gills.

The first part (Chapters 4-7) presents the study of the number of stem cells needed
to build the respiratory organ of fish and their heterogeneities. The aim of this project is
to understand how many stem cells are necessary to grow the fish gill and to maintain it
throughout the life of the fish, and what kind of properties these stem cells possess.

In particular, Chapter 4 describes the clonal data used in this thesis, the experimen-
tal procedures and the transformations performed on these data, before the mathematical
modelling. Following lineage tracing experiments, recorded is the labelling status (la-
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belled or unlabelled) of certain filaments within the organ for four different fate-restricted
stem cell types.

Chapter 5 starts the modelling within this part of the thesis by considering two sim-
plified homogeneous models for two extreme scenarios. This analysis is performed in
order to study whether the specific cells under study are indeed stem cells and not pro-
genitor cells, instead, and the mathematical insights are able to support our hypothesis. In
addition, these investigations suggest that functional heterogeneities resulting from their
division behaviour exist among the stem cells. These properties come from the dynamics
of stem cells, which have activation and quiescence phases thus leading to a setting in
which cells take turns in being activated and continue dividing until another sibling be-
comes active and takes the lead in this task. The results of this chapter, together with a
thorough description of the biological procedures have been published [21].

Chapter 6 develops the model by incorporating the newly gain insights, through the
introduction of a new heterogeneity parameter in the form of a probability describing
the chances of a stem cell to divide again after it has just divided. Here two different
approaches are employed: the Stochastic Simulations approach (Section 6.2) and the
Markov Chains approach (Section 6.3). In the first case, an algorithm for stochastically
simulating large data sets of in silico branchial arches is developed and these are com-
pared to the experimental data in order to estimate the desired parameters: the number of
stem cells and their probability of division. The second method studies the same aspects
in a more abstract way, by making use of Markov chains theory to circumvent the need for
producing such big simulated data sets. This method is not only more efficient in terms of
computational time and effort, but is also exact. The two approaches provide agreeing re-
sults, as desired, and these are presented together with the parameter estimation procedure
in Section 6.4.

Finally, Chapter 7 summarises and concludes the first part, while also providing an
outlook on possible applications.

The second part (Chapters 8-12) of the thesis presents the study of organ growth and,
in particular, of properties and relations between different stem cell types, by analysing
the shapes of branchial arches. These gill structures grow on two orthogonal axes (lon-
gitudinal - driven by filament stem cells, and transversal - driven by branchial arch stem
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cells) and have a curved, asymmetric profile, the study of which can shed light onto the
dynamics of stem cells driving growth.

Chapter 8 begins the part with a description of the experimental procedure and the data
collected. These record lengths of filaments of various branchial arches from multiple fish.

Starting in Chapter 9, five models developed for our investigations are presented.
These models consist of a system of ordinary differential equations coupled to algebraic
equations via specific indicator functions. They are all based on the same structure, which
can thus be written in generalised form, but are outlined in the order of growing complex-
ity and their assumptions are summarized:

� The Linear Growth Model assumes constant proliferation of both stem cell types driv-
ing growth of branchial arches along the two orthogonal axes.
� The Elongation-Decay Model considers a gradual decrease in the proliferation of fil-

ament stem cells, from here on referred to as a decay in growth or proliferation. This
decay is governed by an exponential function with negative exponent, dependent on
the length of filaments. The branchial arch stem cells are still assumed to divide at
constant rates.
� The Elongation-Generation-Decay Model goes on step further and introduces a decay

in the proliferation of arch stem cells, as well, in addition to the previously considered
one. This second decay is time-dependent and is modelled via a negative feedback
function. Thus the growth decreases along both axes.
� The Alternative-Elongation-Generation-Decay Model represents a variant of the pre-

vious model, in which the exponential function describing the filament growth decay
is replaced by a negative feedback, similar to that for the arch stem cells, which is still
dependent on filament length. The arch stem cells behave as in the previous model.
� Finally, the Space-dependent (Alternative-) Elongation-Generation-Decay Model keeps

the assumptions on filament stem cells from the previous model, but switches from a
time-dependent to a space-dependent decay in the proliferation of arch stem cells.
Namely, this decay is also modelled by a negative feedback but it depends on the total
number of filaments (equivalently, on the “distance” between the two niches), instead
of time.
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In Chapter 10, the two most general models are analysed mathematically and proofs
for the existence, uniqueness and non-negativity of solutions are presented. In addition,
the analytical solution is determined for each model and its regularity is discussed.

Chapter 11 applies the models developed to the experimental data and compares them
via model selection methods to determine the best out of them. First, the transformations
made to the data and the numerics behind these are explained. The five models are then
compared by applying each to data from one representative branchial arch and by com-
puting their Akaike Information Criterion for model selection. The results of each model
are displayed and the Alternative-Elongation-Generation-Decay Model is selected as the
best one out of the five. To end the chapter, the selected model is further applied to data
from other branchial arches and its capabilities to reproduce any experimental shape are
shown. Here it is speculated that stem cells reduce their division due to age, and against
the nutrient consumption hypothesis.

Finally, Chapter 12 summarizes the results of the second part and presents possible
applications that go beyond the biological model.

To conclude, Chapter 13 presents a summary of the thesis, reviews the main findings
of the work and ends with an outline of further research envisioned for the near-future.



Chapter 2

Mathematical Background

“All models are wrong, but some are useful.”
- George E. P. Box

This chapter provides an overview of various mathematical methods needed for the
projects presented in the thesis.

Mathematical modelling is a powerful tool for describing biological systems, and once
the model is tested and able to reproduce the data at hand, after an iterative cycle of
refinement, it can be used for making predictions and drawing conclusions related to
the biological mechanisms under study [4, 32]. There exist many methods of describing a
system but it is important to take into account a series of aspects such as system dimension
and variability.

The two main complementary approaches to a biological system are stochastic and de-
terministic techniques [36]. One of the methods used in the case of a system with a small
population size, for example few cells interacting or few molecules reacting, is the Gille-
spie Algorithm. The algorithm relies on stochastic simulations which are able to take
into account the variability within the behaviour of its components. On the other hand,
deterministic modelling via systems of ordinary or partial differential equations, possi-
bly coupled with algebraic equations, is more appropriate when the population size in
the biological system is large, as it is the case, for example, of the hematopoetic system
(N = 108 [37]), because everything is modelled as a bulk and each cell or interaction is
not described individually. In this case, numerical simulations of the model are faster and
every time the result is the same for a certain set of parameters and initial conditions. In
general, if the same biological system can be described by both stochastic and determin-
istic models, the average of multiple stochastic simulations converges to the deterministic
solution but this is not always the case. A scenario in which the deterministic solution

9
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does not provide the average of multiple stochastic simulations, is when the system has
multiple stable equilibrium states, and the stochastic fluctuations can drive the solution
from one stable state to another.

2.1 Stochastic Simulations

Stochastic simulations record the evolution of variables which change randomly with cer-
tain probabilities. Initially, such stochastic simulations using the so-called Gillespie Al-
gorithm were first introduced by Daniel Gillespie for simulating chemical or biochemical
reaction systems [13, 38]. The general steps of such an algorithm for chemical reactions
may be outlined as follows:

1. Initialize the system: Number of molecules, reaction constants and random number
generator.

2. Select reaction: This is a Monte-Carlo step - based on randomly generated numbers
one can choose which reaction will occur next and the time interval before this hap-
pens.

3. Execute reaction and update data: Update the molecule count based on the reaction
that occurred and increase the time span by the time interval from point 2.

4. Iterate: Terminate the algorithm or repeat steps 2-3.

Over the years, several adaptations of the Gillespie Algorithm have been developed,
mainly in order to improve efficiency for large molecule numbers, or suitable for different
systems. A few of these methods are shortly described below.

� The Direct Method is the one originally introduced by Gillespie in 1976 [38]. This
method computes a reaction probability by multiplying the rate constant of each reac-
tion with the concentration of its substrates.Then two random numbers are generated:
one for choosing the reaction to occur based on the relative probabilities of all reac-
tions, and one for the execution time of the chosen reaction. Since the method uses
two random numbers the complexity is linear in time and storage with the number of
reaction types, hence making it computationally expensive for large systems.
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� The First Reaction Method was also introduced by Gillespie [38] and is a more intu-
itive way of implementing step 2 by computing a “tentative time” τi for each reaction
to occur and then selecting the reaction with the smallest τi. However this requires one
random variable generated per possible reaction thus making it very inefficient.

Other similar methods exist, some examples being the Next Reaction Method [39] or the
Random Substrate Selection [40]; they are, however, not discussed in this thesis.

2.2 Markov Chains

The following overview on Markov Chains theory [41, 42] is selected and adapted from
the lecture notes for the Markov Chains second-year course (2011), by Prof. Richard Web-
ber, Department of Pure Mathematics and Mathematical Statistics, University of Cam-
bridge.

Let I be a countable set, I = {i, j,k, ...}, where each i∈ I is a state and the set I is called
state-space. In addition, a probability space (Ω ,F ,P) is defined, where Ω is a set of
outcomes, F is a set of subsets of Ω and for A ∈F , P(A) is the probability of A. Further,
a row vector λ = (λi, i ∈ I) is called a measure if λi ≥ 0, for all i ∈ I. When Σi∈Iλi = 1, it
is called a distribution or a probability measure.

A transition probability matrix (or transition matrix) is defined by P = (pi j : i, j ∈ I)

with pi j ≥ 0. This is a stochastic matrix having the property that Σ j∈I pi j = 1, i.e. each
row of P is a distribution over I.

Definition 2.2.1 (Markov Chain) We call a sequence of random variables (Xn)n≥0 a

Markov chain with initial distribution λ and transition matrix P, Markov(λ ,P), if for

all n≥ 0 and i0, ..., in+1 ∈ I the following hold:

� P(X0 = i0) = λi0

� P(Xn+1 = in+1|X0 = i0, ...,Xn = in) = P(Xn+1 = in+1|Xn = in) = pinin+1

This means that the next event only depends on the current one, and not on the entire

history of events up to this point, i.e. the chain is memoryless. Another equivalent relation

states that

P(X0 = i0, ...,Xn = in) = λi0 pi0i1 pi1i2 · ... · pin−1in (2.1)
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Within each Markov Chain, a class is a set of states within which we can always return to
the state from which we start. So if we are in state i at some point, and transitions i↔ j

and j↔ k can happen, it also means that i↔ i, and thus i, j,k are part of the same class.
We call a closed class a set of states C ⊂ I such that

i ∈C, i→ j⇒ j ∈C,

i.e. a class from which there is no escape. Further, a state i is an absorbing state if {i} is a
closed class.

Definition 2.2.2 (Irreducibility) A Markov Chain in which I is a single class is called

irreducible. In other words, a Markov Chain is irreducible if it is possible to get to any

state from any state, i.e. i→ j for every i, j ∈ I.

Definition 2.2.3 (Hitting probabilities and mean hitting times) Let (Xn)n≥0 be a Markov

chain with transition matrix P. We define by hitting time of state i (or subset A ⊂ I) the

first instance when we move to i (or A). This is a random variable HA : Ω → N given by

HA(ω) = inf{n≥ 0 : Xn(ω) ∈ A}, ω ∈Ω . (2.2)

The probability that starting from i we hit A at some point, called hitting probability, is

hA
i = Pi(HA < ∞). (2.3)

In addition, the mean hitting time for (Xn)n≥0 to reach A is

kA
i = E(HA) = Σn<∞nPi(HA = n)+∞P(HA = ∞). (2.4)

Informally, we write

hA
i = Pi(hit A at some point), kA

i = Ei(time to hit A the first time),

which can be easily computed.

Markov Chains are a powerful tool to study systems in which an event only depends on
the previous one, with applications in Physics, Chemistry, Biology, Speech recognition
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or Social sciences. In biology, such examples include birth-death processes, substrate-
enzyme kinetics or changes in gene frequencies [43].

2.3 Deterministic Compartmental Modelling

In the case of deterministic modelling, one main method of describing a biological sys-
tem is by classifying the “populations” under study based on a finite number of properties,
and thus splitting them into different compartments. Examples of populations are different
species, different types of cells or molecules. Such a compartmental model is described
by a system of differential equations, for example ordinary differential equations (ODEs),
each of which explains the dynamics of one particular population from the biological sys-
tem (2.5). Possible actions within the system are interactions between compartments such
as transitions from one compartment to another, or inflow (e.g. birth or production) and
outflow (e.g. death or degradation) to and from the system. Some traditional examples of
compartmental models are predator-prey (e.g. Lotka-Volterra [44, 45]) and epidemiology
(e.g. SIR [46]) models.

du(t)
dt

= g(t,u(t); p), u : [0,∞)→ Rn, g : [0,∞)×Rn→ Rn, p ∈ Rm (2.5)

In the system (2.5), we have n compartments ui, each described by a function gi depend-
ing on time t, the compartments ui (or subset, thereof) and the m-dimensional parameter
vector p. Such a model is well-posed if the following are true:

� Global existence: there exists a solution u(t) for t ∈ [0,∞)

� Uniqueness: the solution of the problem is unique
� Non-negativity: the solution is non-negative for non-negative initial data, i.e [0,∞) is

an invariant set (or a subset thereof)

The first two conditions can be proven by applying the theorems of Peano and Picard-
Lindelöf [47], respectively. In addition, the local stability of the (hyperbolic) equilibrium
points (if any) can be investigated by the Hartmann-Grobman Theorem [47].
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2.4 Parameter Estimation

Parameter estimation deals with determining the parameters of a system based on data,
by minimising a so-called objective function, which describes the “distance” between the
model and the data [48, 49, 50, 51].

As an example we will present a short overview of parameter estimation approaches in
the case of a dynamical system with parameters p given by:

dx
dt

(t) = f (t,x(t), p) x(t0) = x0

where x : [t0, t f ]→ Rd, p ∈ Rnp, f ∈ C 1([t0, t f ]×Rd×Rnp)
(2.6)

We denote by Yi j the data of measurement i = 1, . . . ,n and observable j = 1, . . . ,m,
where n is the total amount of data and m the number of observables. The data Yi j satisfies

Yi j = g j(ti,x(ti), p)+ εi j, (2.7)

for some continuously differentiable observation function g, normally distributed mea-
surement errors εi j ∼ N (0,σ2

i j), and the sample points ti which are ordered such that
t0 ≤ t1 < · · ·< tn < t f .

The aim is to estimate the parameters p based on the measurements Yi j, by minimising
an appropriate objective function given by the principle of maximum-likelihood [52]:

min
x,p

h(p) =
n

∑
i=1

m

∑
j=1

(Yi j−g j(ti,x(ti), p))2

σ2
i j

(2.8)

Various methods for minimising such a function exist. In this thesis, the minimisation
was employed via specific routines implemented in the programming languages Mathe-

matica R©, version 10.2 (NMinimize) and MATLAB R©, release R2018b (lsqnonlin).
The methods used by each of these routines are described below.
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2.4.1 The Nelder-Mead Method

The algorithm of Nelder and Mead [53] for function minimisation is the most common
direct search method and is shortly described bellow. It is one of the methods available in
the NMinimize routine for numerical minimisation, of the Mathematica R© programming
language [54].

Let us first consider the minimization of a function h(p1, . . . , pn), n ∈ N, with p the
parameter vector. Further, at each iteration, let the points x0,x1, . . . ,xm define the corners
of a simplex. Each point xi is given by a sepcific set of parameters p. A simplex is defined
as a polytope with m+1 vertices in m dimensions and in the general case it does not have
to be regular. As an example, for m = 2 the regular simplex is a triangle, while for m = 3
it is a tetrahedron. For simplicity, let us order the points such that h(x0)≤ h(x1)≤ . . . ≤
h(xm). At each iteration, the worst point (according to the value of h evaluated at that
point) is replaced by a newly generated “better” point, so the first point to be replaced is
xm.

Let c be the centroid of the remaining points. In the case of regular polytopes, the
centroid has coordinates obtained by computing the averages of vertices coordinates. For
non-regular or even non-convex polytopes the formulae get more complicated. A new trial
point x∗ is generated by reflecting the worst point xm through the centroid:

x∗ = (1+α)c−αxm,

where α > 0 is a so-called reflection coefficient. Thus the trial point x∗ lies on the line
joining xm and c with a proportionality relation between the lengths of segments [x∗c] and
[xmc]: [x∗c] = α[xmc]. The choice of whether to keep this trial point depends on its relation
with the remaining points as follows.

� If h(x0)≤ h(x∗)≤ h(xm−1), then replace xm by x∗.
� If h(x∗) ≤ h(x0), it means that the search direction looks promising and a new trial

point is generated by expansion, i.e. by reflecting x∗ through the centroid:

x+ = βx∗+(1−β )c,
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with β > 1 the expansion coefficient. This time β sets a ratio between segments [x+c]

and [x∗c]: [x+c] = β [x∗c]. If h(x+)≤ h(x0) we replace xm by x+ and restart the process.
However, if h(x+) > h(x0) then the expansion has failed and we use x∗ for replacing
xm before restarting the algorithm.
� If upon the first reflection, h(x∗)> h(xm) and thus x∗ is worse, then we need to employ

a contraction instead. The new trial point x− upon contraction is generated by:

x− =

{
γxm +(1− γ)c, if h(x∗)≥ h(xm)

γx∗+(1− γ)c, if h(x∗)< h(xm)

The contraction coefficient γ ∈ (0,1) is the ratio between segments [x−c] and [xmc].
Next, if h(x−) ≤ min{h(xm),h(x∗)} we accept the point to replace xm and restart the
process. Otherwise, the contracted point is worse than the better of the points xm and
x∗. In the case of such a failed contraction, all points xi get replaced by

xi + x0

2
and the

process is restarted.

A failed expansion corresponds to advancing into a local minimum valley. A failed con-
traction, which occurs less often, can be encountered when the direction is promising for
some of the simplex vertices but is not favourable for others. In this case a further con-
traction would move these points away from the valley, contrary to what we need. The
proposed solution in the case of a failed contraction, contracts the simplex towards the
“best” vertex and thus gradually brings the points toward the valley bottom.

Possible stopping criteria implemented in Mathematica R© are based on maximum num-
ber of iterations or on comparison of a prescribed tolerance with either the distance be-
tween best function values in the new and old polytope or with distances between the new
best point and the old best point.

2.4.2 The Trust-Region Method for Nonlinear Minimization

The Trust-Region Method [55] is used by the MATLAB R© programming language routine
lsqnonlin for least-squares minimization and is described below [56].
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For simplicity, let us consider the case of an unconstrained minimization problem,
where a function h(x) with h : Rn → R should be minimized. Start at a point x ∈ Rn,
given by a specific set of parameters p, and try to improve h(x) by moving to a new point
y ∈ Rn with h(y) < h(x). The main idea of the method is to use a simpler function q

for approximating h, such that the behaviour of function h in a neighbourhood N (x) is
reasonably reflected by q. This neighbourhood is called the trust region and gives the al-
gorithm its name. A trial step s is computed by minimising (or approximately minimising)
over N (x), which provides us with the trust-region subproblem (2.9).

min
s
{q(s), s ∈N (x)} (2.9)

If h(x+ s)< h(x), then the current point x is updated to x+ s; otherwise, the current point
is kept, the trust region is shrunk and the search step is repeated. The following tasks of
the method are to decide how to choose the function q for approximating h, how to choose
and adapt the trust region N (x), and how accurately to solve the subproblem (2.9).

The choice of the quadratic approximation function q is done by selecting the first two
terms from the Taylor expansion of h around the point x, and the neighbourhood N (x) is
usually chosen to be spherical or ellipsoidal. The subproblem is rewritten as (2.10)

min
{

1
2

sT Hs+ sT k,s.t.‖Ds‖< ∆

}
(2.10)

where k is the gradient of h at the current point x, H is the Hessian matrix, D is a diagonal
scaling matrix, ∆ is a positive scalar, and ‖.‖ is the l2-norm.

Various algorithms for solving (2.10) exist [57], which rely on computing a full eigen-
system and a Newton process applied to the equation (2.11).

1
∆
− 1
‖s‖

= 0. (2.11)

Even though this type of algorithms are able to find an accurate solution to (2.11), they
require much computational time, proportional to several factorisations of H. Therefore,
in order to avoid this issue, the Optimization Toolbox solvers follow an approximation ap-
proach relying on restricting the trust-region subproblem to a two-dimensional subspace
S [58, 59], which then needs to be determined. For this purpose, a preconditioned con-
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jugate gradient process described below is used. The subspace S is defined as the linear
space spanned by s1 and s2, with s1 being in the direction of the gradient k and s2 either
an approximate Newton direction given by the solution of (2.12)

Hs2 =−k (2.12)

or a direction of negative curvature given by (2.13)

sT
2 Hs2 < 0. (2.13)

The main idea behind determining the subspace S is to force global convergence, via the
steepest descent or the negative curvature direction, and to achieve fast local convergence
via a Newton step. Once the subspace S has been chosen, equation (2.10) can easily be
solved. As a consequence, the unconstrained minimisation using the Trust-Region Method
can be summarised as follows:

1. Formulate the two-dimensional trust-region subproblem.
2. Solve (2.10) to determine the trial step s.
3. If h(x)> h(x+ s) replace x by x+ s.
4. Adjust ∆ .

These steps are repeated until convergence. The adjustment in ∆ is done according to
standard rules, and in particular, ∆ is decreased if h(x)≤ h(x+ s) [60, 61].

2.5 Model Comparison

In the process of deriving a model, one is always faced with the task of introducing as
much complexity as necessary for capturing most of the essential properties of the system
under study (biological in this case), but at the same time one needs to be cautious not
to include too many parameters, as this could lead to overfitting. In such cases, when
multiple models are at hand, a model comparison needs to be performed for selecting the
“best” model. The best model is not the true model, in the sense that no model will ever
explain the system in its entirety, but is the most accurate one out of the available ones.
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Probably the most mainstream method used for choosing the best model is that of infor-
mation criteria. Such criteria consist of a function which takes as arguments the parameter
vector θ , the data x and the model gi with i ∈M , the set of models, and return a value
used for comparison. Examples include Akaike’s (AIC), Bayes’ (BIC) and Takeuchi’s
(TIC) Information Criteria. In the following, the theory of the Akaike Information Crite-
rion and its variant, the Corrected Akaike Criterion (AICc) [62, 63] will be described.

Akaike’s seminal paper [64] proposed the use of the Kullback-Leiber (KL) information,
which is a measure of the distance between the model and the reality f , based on the
parameters θ . However, the KL cannot be computed, as the true f is unknown. The main
theory was developed for statistical models and everything relies on the idea that there
exists a unique value for θ which minimises the KL distance I( f ,g) (2.14), via Maximum
Likelihood (ML) estimation.

I( f ,g) =


∫

f (x) log
(

f (x)
g(x|θ)

)
dx≥ 0, for continuous distributions

k

∑
i=1

pi log
(

pi

πi

)
≥ 0, for discrete distributions

(2.14)

where f and pi represent the “true” distribution, while g and πi the approximate one of
the model. This result can be rewritten as (2.15).

I( f ,g) =C−E f [log(g(x|θ))], where C is a constant (2.15)

The unknown value of the parameter θ which minimises I( f ,g) depends on the true f ,
the model g, the parameter space and the nature and structure of the data x. Let us denote
by θ0 the “true” minimising value of the parameter. If one knew that g is the best model
approximating f , then the Maximum Likelihood Estimator (MLE) θ̂ would approximate
θ0. Since one cannot know the actual value of θ0 but does know the value of the MLE θ̂ ,
the focus of the model selection switches to minimising the expected KL distance instead
of minimising the known KL distance, over the set M of models considered. Akaike has
shown [64] that the issue of a KL criterion is that of minimising

EyEx[log(g(x|θ̂(y)))]
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where x and y are random samples from the same distribution and both expectations are
taken with respect to the truth f . Even though estimating (2.5) by the maximum log-
likelihood log(L (θ̂ |x)) of each model gi seems appropriate, there is a bias that appears,
bias which is approximately equal to the number Ki of estimable parameters in the model
gi. Then Akaike’s Information Criterion [65, 66] reads

AIC =−2log(L (θ̂ |y))+2K (2.16)

Thus, via the AIC (2.16), one has an estimate of the expected, relative distance between
the fitted model and the unknown reality which generated the data. The AIC value includes
indeed the trade-off between having a good fit (via the log-likelihood) and avoiding over-
fitting (via the term K). Thus, the best model is selected by choosing that with the lowest
AIC from the considered ones. In this sense, the actual value of the AIC does not matter,
but instead the differences ∆i = AICi−AICmin.

The general approach of likelihood theory which stays at the base of AIC computation,
needs to be adapted for the case of Least-Squares (LS) estimation, with normally dis-
tributed errors. In this case, if all models assume normally distributed errors with constant
variance, the AIC for LS derived from LS regression statistics [67] is

AIC = n log(σ̂2)+2K (2.17)

where

σ̂
2 =

∑ ε̂i
2

n
, with ε̂i the estimated residuals, and n the sample size.

Thus the AIC, as well as other information criteria not described here, are in agreement
with the principle of parsimony saying that a model with “. . . the smallest possible number
of parameters for adequate representation of the data” should be preferred. [68]

The corrected AIC (2.18), introduced by Sugiura [69], is a second-order variant of the
AIC that aims to correct the bias which appears if the sample size is small.

AICc = AIC+
2K(K +1)
n−K−1

(2.18)
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The use of AICc (2.18) is recommended unless the sample size is large with respect to the
number of estimated parameters (say when n/K < 40).The AICc will be used instead of
AIC throughout this thesis, for selecting the most appropriate model.





Chapter 3

Biological Background

“Look deep into nature, and then you will
understand everything better.”

- Albert Einstein

This chapter presents a short overview of the biology needed for understanding and easily
navigating the rest of this thesis.

3.1 Model organism

In recent years, the Oryzias latipes, also known as the Japanese rice fish or, in short,
medaka, has emerged as a model organism for studying organogenesis as well as other
species-specific features such as sex-determination or adaptation to different water salinity
[9, 70]. Medaka is a complementary model organism to other mainstream ones, such as
zebrafish.

Due to its rapid development and its transparent body during juvenile stages (Fig. 3.1)
[71], medaka is a convenient organism for investigating organogenesis and development.
Organs that have been studied so far include and are not limited to the retina [72, 73], the
brain [74] and the liver [75, 76].

In this thesis the post-embryonic growth of the respiratory organ of medaka fish is
placed under the microscope (Fig. 3.1c). Features such as the relation between growth
and homeostatic stem cells, or between different types of stem cells as well as their co-
ordination are investigated. These studies can help in understanding how organs adapt
to the permanent changing organismal size (Fig. 3.1a) [77], and could be extrapolated
to mammalian organisms and humans, either during early development or in the case of
diseases.
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(a) Organismal growth in medaka

(b) Transparent body

Fig. 3.1: (a) Size difference between a medaka hatchling (left) at 10 days post-fertilization
(dpf) and an adult (right) at 6 months post-fertilization (mpf) - image by Prof. Dr. Làzaro
Centanin, Centre for Organismal Studies, Heidelberg University. (b) Two medaka show-
ing the transparency of their body. One can easily see the spine and skeleton, the stomach
(dark colour) and the respiratory organs (shown by arrows) - image adapted from the
Birney group, EMBL-EBI, Hinxton.

3.2 Structure of the organ

The branchia (also known as gill) is the respiratory organ of the fish and is the biological
system under study throughout this thesis. Each branchia has a stereotypic modular organ-
isation, being composed of four pairs of branchial arches, each containing a sequence of
filaments which, in turn, are composed of multiple stacked lamellae (Fig. 3.2). Filaments
grow in size (number of lamellae), as well as in numbers throughout the fish life, thus
driving the organ growth along two orthogonal axes (transversal and longitudinal). Each
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branchial arch is, in fact, composed from two rows of intercalated filaments, denoted sides
A and B, thus obtaining a total of 16 arches per gill.

Lineage tracing consists in labelling a cell in such a way that the label is passed on
to the progeny, thus resulting in a conglomerate of labelled cells that share an origin - a
clone. Various labelling methods exist, but in this work a genetic Cre-Lox strategy is em-
ployed (further described in Chapter 4, Fig. 4.1). These experiments are therefore used for
identifying the progeny of a single cell, providing information about their number, loca-
tion and differentiation status. By employing such lineage tracing experiments, stem cell
niches were discovered at the periphery of each branchial arch, responsible for filament
generation, and also at the tip of each filament important for their elongation [20, 21]. In
the following we will refer to these as branchial arch or peripheral niches (containing arch
stem cells) and filament or tip niches (hosting filament stem cells), respectively.

Another method of labelling cells is through IdU (iodo-deoxyuridine) experiments. IdU
is incorporated in proliferating cells, those in the S-phase of the cell cycle (when DNA
duplication happens), the label is passed to the progeny and then diluted in time with
every division event. When incubating medaka with IdU, the gill filaments incorporate

Fig. 3.2: Structure of a gill: one branchia (left) is composed of eight branchial arches
(middle), each of which is built from a sequence of filaments (right). The branchial arches
on the left are annotated as L1-L4 from the longest to the smallest, and those on the right
by R1-R4, analogously. The A side of the branchial arch (middle) is shown, while the B
side cannot be seen in this figure, as it is found behind. Image by Julian Stolper, Centanin
group, Heidelberg University [20].
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the label along the entire filament. What is expected when the fish is then allowed to grow
after the incorporation, if stem cells are situated at the tip of the filament, is that the tip
and the newly produced lamellae would be IdU-negative, since the label would be lost
due to division events (Fig. 3.3). These results reinforce the previous assertions about the
existing stem cell niches [21].

3.3 Organ growth

The stem cell niches at the periphery of branchial arches are responsible for filament gen-
eration. Hence, following divisions of stem cells in this niche new filaments are inserted
in the arch. Focusing on one of the peripheries and keeping in mind that the other side de-
velops similarly, the simplest case to understand and to explain graphically is when a new
filament is produced by the division of one stem cell (Fig. 3.4): starting with a few em-
bryonic filaments, when one branchial arch stem cell A divides, its progeny A′ introduces
a new filament in the arch. In the following time step, two actions can take place: the stem
cell A that remained in the niche divides again and its daughter-cell A′′ generates a new
filament, or the filament stem cell A′ in the newest filament divides to elongate it. This
process continues throughout the life of the fish. To be noted is the fact that filaments are
believed to be independent of each other, and their growth only depends on the division
of stem cells in the niches. Furthermore, each of the two halves of the arch grows by the
same mechanism but independently of each other, being driven by the properties of the
two peripheral niches.

3.4 Filamental patterns

Each filament is composed of multiple cell types having various functions. Such examples
include pillar cells responsible for controlling the blood flow through lamellae and reduc-
ing the pressure drop during the flow of blood across the gill; pavement cells playing an
important role in gas transport and secretion of protons [78]; neuroepithelial cells impor-
tant as oxygen sensors and regulators of blood flow [20] - to name a few. Listing all gill
cells and their functions is not within the scope of this thesis, but important to remember
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Fig. 3.3: (A) Scheme of the experimental design and expected site of lamellae generation.
Putative highly proliferative tissue is labelled in dark green. Adult medaka treated with
33 mg/L IdU for 3 days (t0) were grown for 1 month (t1). (B) Proliferative cells in the
filament tissue at t0. (B’) Higher magnification of proliferative cells in the filament tissue
at t0. Nuclei were labelled with DAPI (blue). (C) Filaments of adult fish with unlabelled
tips and IdU positive cells in a transition zone at t1. (C’) Higher magnification of filament
tips and transition zone containing IdU positive cells. Nuclei were labelled with DAPI
(blue). Image by Julian Stolper, Centanin group, Heidelberg University [20].
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Fig. 3.4: Growth of a branchial arch

is that the generation of each filament requires the coordination of multiple fate-restricted
stem cells giving rise to the different specialized tissue types. In each peripheral niche
there exist at least four types of fate restricted stem cells [21]. Through lineage tracing ex-
periments four different filamental patterns produced by the four labelled stem cell types
have been observed. Since the aim of this study concerns determining the number of stem
cells of each type, we will not focus on the function of each such filamental tissue pattern
and we will simply refer to them as patterns 1-4 corresponding to cell types 1-4 (Fig. 3.5).

In addition to “clean” patterns in which the labelling corresponds to only one of the fate-
restricted stem cells in the branchial arch niche being labelled, mixed or partial patterns
were also observed. Mixed patterns appear when two or more labelled fate-restricted cells
are selected together for generating a new filament. Partial patterns appear if at some point,
one of the fate restricted stem cells is lost and is replaced by another one, which has a
different label than the lost one. Another case is when half of the filament (longitudinally)
presents one pattern and the other half another one. One could hypothesise that in fact,
each tip niche hosts two stem cells of the same fate, each giving rise to one half of the
filament (Fig. 3.6).
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Fig. 3.5: (A) Inter lamellar pattern (Pattern 1). The majority of cells are labelled on the
epithelium and between lamellae. (B) Intra lamellar pattern (Pattern 2). Clonal filaments
contain labelled nuclei inside of each lamellae and in the middle of the filament. (C)
Epithelial pattern (Pattern 3). Single nuclei are labelled in the filament epithelium and on
the lamellae epithelium. (D) Intra filamental pattern (Pattern 4). Labelled elongated cells,
located in the middle of the filament. Image by Julian Stolper [20].

Fig. 3.6: (A) Example of clonal filaments consisting of different patterns. Displayed fila-
ment contains the intra filamental and epithelial pattern. (B) Clonal filament labelled with
intra lamellar cells but one half is labelled with inter lamellar cells. (C) Clonal filament
with the apical part labelled with another pattern than the basal part of the filament. Image
by Julian Stolper [20].





Part I

Mathematical Modelling of Stem Cell Numbers
and Functional Heterogeneities



One interesting and important question in developmental biology concerns the relation
between growth and homeostatic stem cells. Are the same stem cells able to perform both
tasks, or are there two separate stem cells populations, each responsible for one of the
tasks? In particular, one approach for coming closer to understanding such an aspect is
to determine the number of stem cells necessary for building and maintaining an organ.
Such a study could further our understanding of cancer stem cell behaviour in higher ver-
tebrates and could have applications in wound healing and organ regeneration. By using
the medaka fish model organism we aim to determine the number of stem cells needed
to form the respiratory organ, which is of high importance in order to understand the co-
ordination of fate-restricted stem cells. The fish gill is a suitable system for qualitatively
investigating a stem cell niche hosting multiple coordinated fate-restricted stem cells, as
is described in the following. This question, although seemingly basic, is in fact very diffi-
cult to approach in many biological systems. The difficulty stems from the lack of specific
stem cell markers or from the lack of structure in the organ under study. By using meth-
ods such as stochastic simulations and Markov Chains theory, together with numerics and
parameter estimation, in this part we aim to answer various questions related to stem cell
behaviour during post-embryonic growth of the organ.



Chapter 4

Experimental Procedure and Data Acquisition

This chapter describes the experimental procedures used in acquiring the data and the
type of data adjustment performed for the further use in mathematical modelling. It is im-
portant to understand these aspects before going further into the mathematical approach.

In the study of branchiae in general, and in particular those of medaka, one can take
advantage of the organ spatio-temporal organization [21], which has been described in
Section 3.2 (Fig. 3.2). As explained in Section 3.3, filaments are generated by divisions
of stem cells in the niches at the basal extremities of the branchial arches (Fig. 3.4). The
lineage tracing experimental procedure labels few cells at juvenile stage and since the
label is passed on to the progeny, all filaments generated by a labelled stem cell will be
labelled, and correspondingly, the filaments produced by an unlabelled stem cell will be
unlabelled. The labelling is done by using the GaudiRSG (Red-Switch-Green) fish line
presented in [72]. This ubiquitously expresses a red fluorescent protein (RFP), which pre-
vents the expression of a nuclear green fluorescent protein (GFP). Upon heat-shock or
induction with Tamoxifen, the RFP is cut out allowing for the GFP to be expressed in
the nuclei, and also to be inherited by the progeny (Fig. 4.1). As this is an ubiquitous
expression, the labelling of the epithelium on top of branchial cells hinders live imaging
procedures. Therefore, the method chosen to study the recombined medaka gills is to have
the fish sacrificed, dissected and their gills extracted and split into the respective branchial
arches (R1-R4 and L1-L4).

Coming back to the study of post-embryonic growth of medaka gills, let us now focus
our attention on one stem cell niche and thus on one half-arch. A “half-arch” is defined
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Fig. 4.1: Experimental procedure: GaudiRSG fish line in which, upon heat shock, the Red-
Fluorescent-Protein (RFP) is cut allowing for the Green-Fluorescent-Protein (GFP) to be
expressed in the nuclei. As a consequence cells are labelled with GFP, which is then
transmitted to their progeny as the fish grows. Image by Julian Stolper, Centanin group,
Heidelberg University.

as the sequence of filaments next to one niche, which are generated by the stem cells in
that niche. Therefore, each branchial arch is composed of two half-arches, but they must
not necessarily be equal in the number of filaments, i.e. “half” here does not mean 50%
of the filaments.

The experimental images show branchial arches containing labelled (1) and unlabelled
(0) filaments (Fig. 4.2) and thus the data record the filamental label for each branchial
arch, in arrays of 1s and 0s. Thus, one can say that the data records the history of divisions
of the labelled and unlabelled stem cells from the niches at the extremes, not being able
however to distinguish between cells carrying the same label.

Considering the way in which branchial arches grow, there are certain insights that can
be drawn. For example, if the stem cell niche hosts only one stem cell, then the entire
half-arch will have the label of that particular stem cell. On the other hand, if more than
one stem cell reside in the niche, and they can be either labelled or unlabelled, one expects
to observe a mixture of labelled and unlabelled filaments in the half-arch. What is in fact
most often observed in the experimental images is an intermediate scenario displaying
long stretches of consecutive filaments having the same label close to the niche [21].
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Fig. 4.2: Experimental images. Left: Ventral view of a recombined adult medaka gill. One
can see the labelled filaments within branchial arches. Right: Two branchial arches which
display clonal filament stretches (either labelled or unlabelled). Red arrows point to the
GFP-labelled filaments or streaks. Image by Julian Stolper.

Since the goal of the project is to estimate the number of stem cells in each niche, we
focused on stretches of 8 filaments from each extreme, in order to exclude the embryonic
filaments from the study, as they were formed before the experimental procedure. In the
following we shall refer to these 8-filament long stretches as “mini-arches”. The choice
of number 8 was made after excluding branchial arches with less than 25 filaments in
total, and by considering the fact that in general there exist approximately 5-9 embryonic
filaments per branchial arch.

The data record the distribution of labelled and unlabelled filaments, the labelled case
having four different options corresponding to the four filamental patterns observed. Re-
call that one can occasionally observe a mixture of patterns within the same branchial
arch or even within the same filament, resulted from the coordination of multiple labelled
fate-restricted stem cells from the niche. What is important to keep in mind is that these
patterns are produced by different fate-restricted stem cells and by analysing each cell
type independently one avoids the issue of patterns mixing (Fig. 4.3).

Thus for each particular pattern, we obtain a data set containing as many rows as mini-
arches, each of them consisting of binary entries corresponding to labelled or unlabelled
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Fig. 4.3: Example data from toy mini-arch with mixtures of patterns within the arch and
within certain filaments (e.g. 13 - mixture of patterns 1 and 3 in the last filament on the
right). For analysing each pattern, shown by a different color in the scheme, one has to
edit the data such that it consists of 1 and 0 for whether the filament is labelled with that
particular pattern or not.

filaments. Those with mixed patterns ab with a,b ∈ {1, ...,4} are considered as labelled
both in the Pattern a and in the Pattern b data sets. In each row, columns are organised
such that the row starts with the value corresponding to the oldest filament and continues
towards the youngest one. In other words, the left mini-arches are reversed, while the right
ones remain in the initial order.



Chapter 5

Homogeneous Model for Stem Cell Numbers

This chapter presents the first simple model developed, which aids in the better under-
standing of the biological system and in the further development of hypotheses and asser-
tions.

In order to analyse the data, the notion of switches is introduced, allowing the study of
stem cell divisions history.

Definition 5.0.1 A switch is defined as the transition from a labelled to an unlabelled

filament or viceversa, within an arch.

Fig. 5.1: Toy mini-arch with three switches and four labelled filaments

Therefore switches give us an idea of the alternation of labels (i.e. 1 or 0) in a mini-

arch.

However, just counting the number of switches is not sufficient for the purpose of ob-
taining an overall information on stem cell divisions: for example, an entirely labelled
branchial arch has no switches, but the same is true for an entirely unlabelled branchial
arch. Therefore, the number of labelled filaments is counted, in addition. This number
of labelled filaments in each arch depends in turn on the labelling efficiency of the ex-
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periment. If the labelling efficiency was 100% then all stem cells in the niche would be
labelled, therefore producing a completely labelled branchial arch.

5.1 Labelling efficiency

In what concerns the goal of counting the number of stem cells in the peripheral niche, the
labelling efficiency (from hereon denoted probLab) reflects the ratio between the labelled
stem cells and the total number of stem cells in that niche. This depends on the experi-
mental procedure and the environmental effects and is unknown. Nevertheless it can be
approximated from the data as follows.

For each branchial arch, the first filament in the data, i.e. the oldest post-embryonic fil-
ament considered, indicates whether the first stem cell which divided post-embryonicaly
was labelled (and had a pattern 1-4) or unlabelled. In longer branchial arches this might
not be in fact the first stem cell which divided post-embryonicaly but the estimation is
sufficiently good for our purpose. Therefore, by counting the number of labelled first fila-
ments (for each pattern in particular) and dividing by the total number of arches (5.1), the
labelling efficiency for each pattern is estimated and reads as seen in Table 5.1.

probLab =
Number of labelled first filaments
Total number of branchial arches

(5.1)

Pattern Pattern 1 Pattern 2 Pattern 3 Pattern 4

probLab 0.13 0.06 0.04 0.01

Table 5.1: Labelling efficiency for each pattern.
The values of the labelling efficiency differ from one pattern to another and at first

sight this seems counter-intuitive. However, considering that these patterns are produced
by stem cells which are fate restricted to specific lineages, this is not surprising since
different cell types can assimilate tamoxifen in different quantities or can react differently
to the heat shock, tamoxifen and heat shock being the two methods used for inducing
the label. What is still relatively surprising is the big difference between these values: for
example between Pattern 1 and Pattern 4 there is a ten-fold difference in the labelling
efficiency. This aspect will be revisited later on, in Chapter 6.
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5.2 Derivation and application of the homogeneous model

To begin with, one question that arose was whether the generation of filaments is per-
formed by progenitor cells or by a self-renewing stem cell. Here, by progenitors, we mean
daughter-cells of one or more stem cells, which have been produced before the labelling
procedure. Then, upon induction, some of those progenitors will be labelled. If filaments
are produced by these progenitors, with each filament being generated by one such cell,
then depending on the labelling in the niche, one expects a random mixture of labelled and
unlabelled filaments arising in the mini-arch. On the other hand, if all filaments are pro-
duced by one bona fide self-renewing stem cell then the entire mini-arch would possess
the label of that stem cell.

Accordingly, two models describing the two extreme scenarios were considered:

� M1: the stem cell model - all filaments are produced by the same stem cell
� M2: the progenitor model - each filament is generated by a different progenitor cell

For this particular investigation, the notion of patterns was ignored, and we focused
primarily on whether a filament possesses any label or not. We used mini-arches of 6
filaments, instead of 8 as described before, and considered branchial arches with more
than 20 filaments in total, instead of 25. We chose this approach because we wanted to
analyse each gill separately in order to see what influence the labelling efficiency has on
the results. By excluding only arches with less than 20 filaments, a bigger dataset could
be used, with more arches per gill. Hence the labelling efficiency was computed sepa-
rately for each gill (Table 5.2) as previously described in Section 5.1, and 22 gills were
analysed. These 22 branchiae were selected out of a total of 36, and they represented the
cases which had at least 8 branchial arches with more than 20 filaments each.

Gill 1 2 3 4 5 6 7 8 9 10 11

probLab 0.077 0.088 0.09 0.194 0.2 0.209 0.211 0.241 0.243 0.287 0.289

Gill 12 13 14 15 16 17 18 19 20 21 22

probLab 0.298 0.305 0.32 0.33 0.332 0.357 0.364 0.39 0.419 0.472 0.488

Table 5.2: Labelling efficiency for separate gills. Here we ignore the patterns and we treat
as labelled filaments (1) any filament which possesses any label/pattern (1-4).
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We performed stochastic simulations for the above two models, starting with a set of
filament generating cells and empty arrays representing the developing mini-arches. Such
stochastic simulations simply “chose the cell to divide” thus filling a 6-entry-long array
corresponding to the mini-arch with binary values.

� M1: This case was straightforward as only one cell was considered which was labelled
with a probability probLab equal to the labelling efficiency for each particular gill.
Next, since this stem cell produces the entire mini-arch, all six filaments will possess
the label of that cell, therefore obtaining at the end of multiple trials a dataset for each
gill containing arrays of six 1s or six 0s with the ratio between those representing the
labelling efficiency probLab for that particular gill. For modelling this scenario, we
drew random numbers from a Bernoulli distribution where the probability parameter
equals the experimental labelling efficiency of our dataset: Bernoulli(probLab). Each
draw represents one arch, with a success corresponding to having the stem cell (and
the entire arch) labelled (1), and a failure to it being unlabelled (0). We performed
1000 trials.
� M2: In a similar manner we considered the case of having six progenitor cells in

the niche, each producing one filament. This time, we need six realisations of a
Bernoulli(probLab) process, for each branchial arch, to simulate how many progenitor
cells are labelled and in which order they divide. Again, 1000 trials of the six-outcome
Bernoulli process were performed.

Through plots as in Fig. 5.2 the results from each model were initially compared to
the data coming from pooling all the above 22 gills together. In the case of M1 only
zero-switches can be seen, while in M2 more variation is observed. To compare each
model to the experimental data for independent gills, we computed an objective function
in the form of a sum of square differences for each gill and each model. The smaller this
objective function is, the better the fit between experimental data and simulations. Both
the number of switches and of labelled filaments in each branchial arch were recorded.
There exist 19 possible pairs (s, f ) with s switches and f labelled filaments, ranging from
(0,0), (0,6) up to (5,3). We calculated for each pair i, of the form (s, f ), the frequency
of observing it in the data from each gill j, f D( j)

i , and in simulations of 5000 filament
stretches per gill j, f S( j)

i . The objective function f ( j) was computed for each gill as an
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M1: Stem Cell Model (LabEff = 0.242)
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(a) Stem cell model (M1)
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M2: Progenitor Model (LabEff = 0.242)
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(b) Progenitor model (M2)
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(c) Data

Fig. 5.2: Extreme scenarios: in each plot the x-axis shows the number of switches, while
the y-axis records the frequency of observing a certain number of switches. The colour
code represents the number of labelled filaments from light to dark blue corresponding
to 0-6 labelled filaments. (a) Stem cell model M1. (b) Progenitor model M2. (c) Data.
Simulations were run with an overall labelling efficiency of 0.242, as estimated from the
data. In these plots, all 22 branchiae were pooled together to first get an overview of the
comparison between each model and the dataset.

adjusted sum of square differences:

f ( j) =
∑

19
i=1

(
f D( j)

i − f S( j)
i

)2

19
·104 (5.2)

This was done for both the stem cell and the progenitors model. The factor 104 was
introduced for avoiding small numbers thus facilitating the comparison between results.
The procedure was repeated 1000 times, producing 1000 objective functions per gill and
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Fig. 5.3: The plots depict the objective function values (y-axis) with respective error bars
for each individual gill ordered by their labelling efficiency (x-axis). (a) Stem cell model
M1. (b) Progenitor model M2. (c) Plots (a) and (b) combined in one graph for comparison.
One can easily notice the better fit model M1 has to the data, given by the smaller values
of the objective functions for each of the 22 gills considered.
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per model, and therefore obtaining an average value and a standard deviation for each
gill for each model. These were plotted in Fig. 5.3, plot which suggests that M1 fits the
data much better than M2 for each gill. These methods together with further insights from
various biological experiments were described in [21].

We can thus conclude that filaments are generated by stem cells, but also that more than
one stem cell should reside in the niche since the data contain cases of branchial arches
with at least one switch. Accordingly, similar stochastic simulations for the cases with
two and three homogeneous stem cells in the niche were performed using the following
steps:

1. Initialize number of stem cells in the niche, n∈N, labelling efficiency, probLab∈
(0,1), and empty arch (array).

2. Decide how many stem cells are labelled (L ∈ N cells) and unlabelled (U ∈ N
cells):

L∼ Binomial(n, probLab), U = n−L.

3. Randomly select whether a labelled or unlabelled cell divides, to add a 1 or a 0
to the arch. The random selection is weighted by the values L and U , as all stem
cells have equal chance of being selected but the label of the next filament is, of
course, influenced by the relation between L and U .

4. Repeat step 3. until the arch has six filaments, i.e. array has six entries.

After performing 1000 trials, the results were compared to the data from the 22 pooled
gills (Fig. 5.4). As can be seen from the plots, the more stem cells included in the model
the worse the fit gets. This suggests that the niche hosts few active stem cells but some-
thing is still missing from our understanding of how stem cells divide to produce filaments
post-embryonically.
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(b) Model with 3 stem cells
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Fig. 5.4: Plots as in Fig. 5.2. (a) Simulation of the case with two stem cells in the niche.
(b) Simulation of situation with three stem cells. (c) Data from the 22 gills pooled. A
labelling efficiency of 0.242 was used, as before.



Chapter 6

Heterogeneous Model for Stem Cell Numbers Analysis

“Truth is much too complicated to allow
anything but approximations.”

- John von Neumann

This chapter extends the methods previously used to include heterogeneity among the
stem cells in the niche. Two different techniques for modelling and analysing the biolog-
ical system are presented, leading to agreeing insights and results.

After comparing the previous extreme scenarios and homogeneous models to the data,
the hypothesis that few heterogeneous stem cells should reside in the niche was reached.
Considering that filaments are independent, the heterogeneity is the missing aspect men-
tioned in the previous chapter and comes from the division behaviour of the niche stem
cells.

The heterogeneity parameter introduced in the model was the probability that the stem

cell which has just divided will divide again in the next time step, further called probabil-

ity of division and denoted by probDiv. This idea can be explained by phases of activation
and quiescence of the stem cells, i.e. when a stem cell of a certain fate divides it becomes
active, increasing its probability of division, and therefore dividing multiple times before
becoming quiescent and allowing another stem cell of the same fate to take over the task of
filament generation through coordination with the cells of other fates. For this model we
included the analysis of the four different patterns and considered 8-filaments long mini-
arches from branchial arches with at least 25 filaments in total. Branchial arches from all
gills were pooled together and only one average labelling efficiency was computed per
cell type (and hence per pattern). Assumptions 6.0.1 describe the insights gathered so far
before beginning the modelling task.

45
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Assumptions 6.0.1

� A filament is generated by the divisions of (at least) four fate-restricted stem cells

residing in the peripheral niche, thus when analysing each pattern separately we

can talk about one stem cell of each type per filament generated.

� One labelled stem cell (with respective pattern 1-4) in the peripheral niche pro-

duces a labelled filament.

� One unlabelled stem cell (0) in the niche gives rise to an unlabelled filament.

� The number of labelled stem cells in the niche, L ∈ N, depends on the labelling

efficiency probLab ∈ (0,1) and on the total number of stem cells in the niche

n ∈ N:

L∼ Binomial(n, probLab)

� The number of unlabelled stem cells, U = n−L, U ∈ N.

� The cell which has just divided will divide again in the next time step with proba-

bility probDiv ∈ [0.5,1) - see Section 6.1. Here time step refers to a division event

and not to a time point reached after a specific time interval. Since branchial

arches with their labelled filaments present to us a “history” of stem cell divisions

we do not need actual information on time points, but just on division events,

which for simplicity will be hereon referred to as time steps.

� Parameters n and probDiv will be further determined via parameter estimation

methods, by making use of the value for probLab and formulae for L and U.

Subsequently, as we aim to compute the frequency of observing each pair (s, f ) of
switches and labelled filaments, we need to compute conditional probabilities of a fila-
ment of label a to be followed by a filament of label b. Here a,b ∈ {0,1}, as we analyse
patterns separately. Table 6.1 summarises the notations used throughout this chapter.
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Parameter Domain Description
n N Number of stem cells in the niche

L N Number of labelled stem cells in the niche

U N Number of unlabelled stem cells in the niche

probLab (0,1)
Labelling efficiency - we choose open interval, as some
cells are labelled, but not all

p = probDiv [0.5,1)
Probability of division - probability that the stem cell
which has just divided will divide again in the next time
step

s {0,1, . . . ,7}Number of switches within a 8-filament long mini-arch

f {1,2, . . . ,8}Number of labelled filaments within a mini-arch

Table 6.1: Table summarising the meaning of each parameter used.

6.1 Probabilities computation

For simplicity, we rename p = probDiv ∈ [0.5,1) and we choose p ≥ 0.5 based on our
previous hypotheses. A probability of division of p = 0.5 corresponds to an entirely func-
tionally homogeneous system, in which the probability of the previously diving cell to
divide again is equal to that of another random cell of the same type to take over this task.
A probability of division p > 0.5 corresponds to our hypothesis of a functionally hetero-
geneous system with activation and quiescence phases. In addition, p < 1, since p = 1
would be equivalent to a case when the entire mini-arch is created by one stem cell, case
which we proved infeasible - see Fig. 5.2 in Chapter 5.

Recall the formula
P(A∩B) = P(A|B)P(B) (6.1)

for conditional probabilities and suppose i is the cell which has just divided and j the cell
about to divide. Further, denote by cL the event of choosing a labelled cell, and by cU

the event of choosing an unlabelled cell. Then one can compute the probability that j is
labelled or unlabelled, conditional on whether i was labelled or unlabelled, as in (6.2).
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Conditional probabilities of cell labellings:

For n≥ 2:

pLL := P( j labelled|i labelled) = P( j = i)+P( j 6= i)P(cL) = p+(1− p)
L−1
n−1

pUU := P( j unlabelled|i unlabelled) = P( j = i)+P( j 6= i)P(cU) = p+(1− p)
U−1
n−1

pLU := P( j labelled|i unlabelled) = P( j 6= i)P(cL) = (1− p)
L

n−1

pUL := P( j unlabelled|i labelled) = P( j 6= i)P(cU) = (1− p)
U

n−1
,

For n = 1:

pLL := P( j labelled|i labelled) = 1

pUU := P( j unlabelled|i unlabelled) = 1

pLU := P( j labelled|i unlabelled) = 0

pUL := P( j unlabelled|i labelled) = 0
(6.2)

Of course,

P( j labelled) = pLL
L
n
+ pLU

U
n
=

(
p+(1− p)

L−1
n−1

)
L
n
+(1− p)

L
n−1

U
n
=

L
n
,

P( j unlabelled) = pUU
U
n
+ pUL

L
n
=

(
p+(1− p)

U−1
n−1

)
U
n
+(1− p)

U
n−1

L
n
=

U
n
,

P( j labelled∪ j unlabelled) =
L
n
+

U
n
= 1

as expected.
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6.2 Stochastic simulations approach

One of the methods used for analysing the biological system was by performing stochas-
tic simulations that produce a large set of in silico mini-arches as in the data set, for
comparison.

In accordance with Assumptions 6.0.1 and based on the conditional probabilities com-
puted in (6.2), the algorithm shown in the flowchart from Fig. 6.1 was implemented. By
using this algorithm we produce simulated in silico data set to compare to the available
biological data, with the final goal of estimating the number of active stem cells needed
for organ growth and maintenance, n, and the probability that the fate-restricted stem cell
which has just divided will be the next one to divide again, p. The algorithm is outlined
below.

1. The algorithm starts by computing the labelling efficiency for each cell type (i.e. stem
cells of fates giving rise to each patter 1-4) according to the formula (5.1).

2. With these values at hand, the main part consisting of the stochastic simulations be-
gins, which is visualized through the big green rectangle in the flowchart.

a. For each mini-arch to be simulated, the program chooses random parameters n and
p based on which the mini-arch will be filled with filaments, i.e. the 8-cell-long
array will be filled with binary values.

b. Out of the n stem cells of a particular fate, the number of labelled ones, L, is
computed according to the Binomial distribution with parameters n and probLab,
with a success representing the event of having a cell labelled.

c. The remaining cells, U , are thus unlabelled. Having all the necessary information
about the contents of our virtual niche, the mini-arch can be simulated as follows.
i. One starts with an empty array representing the mini-arch before any filament

has been generated.
ii. The first stem cell to divide and generate a filament to be added to the mini-

arch is chosen according to the amount of labelled and unlabelled stem cells in
the niche. This means making a weighted random choice of whether to add a
1 or a 0 to the empty array, with weights given by probabilities of choosing a

labelled cell
L
n

, or an unlabelled cell
U
n

, respectively.
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iii. After the first entry in the array has been added, the following ones depend on
the previously inserted value.

iv. Thus, if the previously added filament was labelled, the new one will also be
labelled with a probability pLL, computed in (6.2). This happens either if the
same (labelled) stem cell divides again, or if another labelled stem cells does.

v. The procedure is similar for all other cases corresponding to conditional prob-
abilities pUL, pLU, pUU , and continues until the array is filled with 8 entries,
thus generating one virtual mini-arch.

d. This part of the algorithm (i-v) is repeated 104 times to generate a large table of
simulated mini-arches to compare with the available biological data set.

3. Once the simulated data set is obtained, the number of switches and the number of
labelled filaments is determined for each arch, as it was previously done for the bio-
logical data.

4. Subsequently, the frequency of observing a certain pair (s, f ) of switches and labelled
filaments, out of the total 33 possibilities in the case of 8-filament long mini-arches, is
calculated for both the simulation results and the biological data.

5. These frequencies are then used to construct an objective function similar to the one in
(5.2), but this time for 8-filament long mini-arches instead of 6, for comparison with
the frequencies obtained from the biological dataset (6.3).

f =
∑

33
i=1 ( f Di− f Si)

2

33
(6.3)

Here f Di and f Si are the frequencies in the data and the simulation results of observing
pair i ∈Π , with Π = {(0,0),(0,8), ...,(7,4)} the set of the 33 possible pairs (s, f ).

6. The algorithm concludes with the parameter estimation procedure for obtaining the
best parameters n and p that provide the most accurate fit between the simulation
results and the data, performed by minimizing the objective function. For this purpose
the Mathematica R© routine NMinimize was used with the Method “NelderMead”,
outlined in Section 2.4.
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Fig. 6.1: Flowchart of the stochastic algorithm.
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6.3 Markov Chains approach

The second approach employed Markov Chains theory to compute the exact probabili-
ties of observing a certain pair (s, f ), to be later used for comparison to the frequencies
obtained from the biological data, and is described below.

On a closer look, one notices that the transitions from one filament to the next, i.e. the
division of a cell based on the previous one, and depending on the respective label, can
in fact be modelled by a two-step Markov Chain as seen in Fig. 6.2. This is true since,
according to Assumptions 6.0.1, the outcome of the next cell division only depends on the
current cell division, in agreement with the Markov Chain property. A broader description
of Markov Chains theory has been outlined in Section 2.2.

Fig. 6.2: Markov Chain transitions diagram: transitioning from a labelled to an unlabelled
filament (with probability pUL) or viceversa (pLU) gives rise to a switch.

The Markov Chains approach can be used instead of the stochastic simulations ap-
proach for the purpose of determining the number of active stem cells of each fate resid-
ing in the niche. This time we compute the exact probabilities of observing a pair (s, f )

of switches and labelled filaments rather than approximate frequencies, which is more
reliable and much less computationally expensive, as it does not require long simulations
of multiple trials of large data sets of in silico branchial arches.
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Thus, the generation of filaments can be defined as a homogeneous stochastic Markov
process {Xt}, with t ∈T ⊂N the division step, N = {0,1} the state space corresponding
to the labelling status of the filament and P = (pi j) the probability transition matrix. Note
that the division step is equivalent to the filament index, where indexing ranges from the
oldest to the youngest filament.

Accordingly, the kth step transition matrix P(k) with entries as in (6.4) can be computed,

where the initial distribution is λ =

(
L
n
,
U
n

)
. The previous probabilities pLL, ..., pUU

will be renamed to p11, ..., p22 as entries of the probability transition matrix.

Probability transition matrix P(k) entries:

p(k)11 := pLL(k) =
L
n
+

(
p− p

L−1
n−1

− U
n(n−1)

)(
p− 1− p

n−1

)k−1

p(k)22 := pUU (k) =
U
n
+

(
p− p

U−1
n−1

− L
n(n−1)

)(
p− 1− p

n−1

)k−1

p(k)12 := pUL(k) =
U
n
−U

n

(
p− 1− p

n−1

)k

p(k)21 := pLU (k) =
L
n
− L

n

(
p− 1− p

n−1

)k

, for n≥ 2

(6.4)

Proposition 6.3.1 (Irreducibility)
Recall that p ∈ [0.5,1). The Markov Chain described by the transition matrix at the k-th
step

P(k) =

(
p(k)11 p(k)12

p(k)21 p(k)22

)
is irreducible for L≥ 1 and U ≥ 1 and has a closed class otherwise.

Proof. First of all, if n = 1 (i.e. only one cell) then either L = 1 and U = 0 or viceversa.

This means that our transition matrix P = P(k) = I2 the identity matrix (6.2), so one never

jumps out of the starting state, thus producing a stretch of filaments of one label.

Now let n≥ 2. Since a closed class implies no transitions out of the particular class, it

suffices to inspect whether any of the elements p(k)12 and p(k)21 is equal to 0.
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� If L = 0 and U ≥ 2,

p(k)12 = 1−
(

p− 1− p
n−1

)k

, p(k)21 = 0

but λ = (0,1) so we start in the unlabelled state and stay there.

� If U = 0 and L≥ 2,

p(k)12 = 0, p(k)21 = 1−
(

p− 1− p
n−1

)k

but λ = (1,0) so we start in the labelled state and stay there.

Next, set L≥ 1,U ≥ 1. Once again, one needs to investigate whether any of p(k)12 and p(k)21

is equal to 0. This is equivalent to

1−
(

p− 1− p
n−1

)k

= 0, k ≥ 1 ⇔ pn−1 = n−1 ⇔ p = 1

which is a contradiction with our problem setting. ut

As previously stated, the main idea of the Markov Chains approach is to calculate the
analytical probabilities of observing a certain pair (s, f ) ∈Π of s switches and f labelled
filaments in the 8-filament long mini-arch. Each such probability is computed as a sum
of probabilities of possible Markov Chain trajectories producing the required number of
switches and labelled filaments. For example the probabilities of producing an entirely
unlabelled mini-arch (with 0 switches and 0 labelled filaments) and an entirely alternating
mini-arch (with 7 switches and 4 labelled filaments) are computed below:

� P(s = 0, f = 0) = P(00000000) = P(X1 = 0,X2 = 0, . . . ,X8 = 0) = λ2 · p7
22 or

� P(s = 7, f = 4) = P(10101010)+P(01010101) = λ1 · p4
12 · p3

21 +λ2 · p3
12 · p4

21.

Similarly, this can be done for all the 33 possible pairs (s, f ) to obtain a list of probabilities
with entries corresponding to each such pair, depending on the number of stem cells in
the niche n, the probability of division p and the labelling efficiency probLab. These
analytical probabilities P(s, f ) replace the frequencies f Si of observing pair i ∈ Π in the
simulation results from the Stochastic simulations approach (Section 6.2). Therefore, not
only are these probabilities exact and computationally cheaper to obtain, but they can be
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used as in (6.3) to obtain an objective function that needs to be minimized for estimating
the parameters n and p.

The two methods (Stochastic simulations and Markov chains approaches) produce the
same results - see Section 6.4. Additionally, by using the Markov chains approach one can
compute the expected hitting times. In other words, if one starts in state i ∈ {1,2} (where
1 represents the labelled filaments state and 2 the unlabelled one), what is the expected
number of steps after which the other state is reached? By using the methods described in
Section 2.2 the following result was obtained.

Proposition 6.3.2 (Mean hitting times)
The expected time needed to hit the other state than the one in which the chain starts (i.e.
1→ 2 or 2→ 1) can be written as a function of the transition from the initial state to itself
(i.e. p11 or p22, respectively).

Proof. Let k j
i = E(time to hit j when starting in i). Then

{
k1

1 = 0

k1
2 = 1+ p22k1

2

and

{
k2

2 = 0

k2
1 = 1+ p11k2

1

⇒


k2

1 =
1

1− p11
=

n−1
(1− p)U

k1
2 =

1
1− p22

=
n−1

(1− p)L

(6.5)

ut

Let us consider some examples:

� For n = 2,L = 1,U = 1, p = 0.9: k2
1 = k1

2 = 10 steps. Keeping in mind that we consider
8-filament long mini-arches, this result suggests the emergence of completely labelled
or completely unlabelled mini-arches depending on the initial starting state.
� For n = 2,L = 2,U = 0, p = 0.9: k2

1 = ∞ as wanted, since when only labelled stem
cells reside in the niche the chain never transitions to an unlabelled state. On the other
hand, k1

2 = 5, but in fact one never starts in the unlabelled state so one can discard this
case.
� Similarly, for n = 2,L = 0,U = 2, p = 0.9: k1

2 = ∞ and the same reasoning as in the
previous point applies.

In conclusion one can easily compute the mean hitting times by inspecting the transition
matrix P or, equivalently, the values for parameters n, p and L.
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6.4 Parameter estimation and results of the heterogeneous model

For both the Stochastic Simulations (Section 6.2) and the Markov Chains (Section 6.3)
approaches, one wishes to find the parameters n - number of stem cells in the niche and
p-probability of division for which the model(s) provide the best fit to the data. In order to
do so, a formal parameter estimation method was employed, namely an l2-type objective
function was built

f =
∑

33
i=1 ( f Di− f Si)

2

33
(6.6)

where f Di are the frequencies in the data and f Si the probabilities/frequencies resulted
from the Markov Chains approach/Stochastic Simulations approach of observing pair i ∈
Π , with Π = {(0,0),(0,8),(1,1), . . . ,(7,4)} the set of the 33 possible pairs (s, f ).

To first get an overview of the best parameter sets for each pattern, a parametric sweep
as seen in Fig. 6.3 was performed. Here the logarithms of the objective functions are
plotted against the number of stem cells and the probability of divisions, with dark blue
corresponding to low values while bright orange to high ones. In these plots one can easily
notice the high importance of having a big probability of division in order to produce a
good fit to the experimental data, especially in the case of the first three patterns. Pattern
4 however shows a greater variation in the “best” value for the probability of division
suggesting parameter non-identifiability. To mention here and take into account is the fact
that this aspect is not necessarily the outcome of our approaches but instead, in part, as
a result of the data - practical non-identifiability. As previously mentioned, the labelling
efficiency in the case of Pattern 4 is extremely low (probLab = 0.01), which means that
irrespective of how many cells of fate 4 reside in the niche, the probability of having some
labelled one(s) is very low. And of course, when all the cells are unlabelled we can only
observe cases with no switches regardless of whether the probability of division is high or
not. As a further comment on the low labelling efficiency of Pattern 4, we need to point
out that in the cases of mixed overlapping patterns within the same filament, pattern 4 is
difficult to observe in combination with any of the other patterns (since all cells carry a
GFP label), so it can easily and unknowingly be overlooked, thus resulting in few cases
with a labelled Pattern 4.
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Fig. 6.3: Parametric sweep plots representing the logarithms of the objective functions
with respect to the number of cells n and probability of division p. The smaller the ob-
jective function, the better fit to the data. Hence, the coordinates in the (n, p) plane of
the darkest point represent the best parameter values. Subfigures (a)-(d) correspond to
patterns 1-4.
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Once the probabilities of division have been set to a big value (e.g. approximately 0.9
for Pattern 1), the number of stem cells can vary. Nevertheless, we are interested in the

number of stem cells needed for building the organ, which means we are looking for the
minimum number of stem cells n for each pattern. As seen in the parametric sweep plots,
these minima correspond to surprisingly low values: 2-3 cells depending on the cell-type
(1-4).

Now, in order to determine the best parameter sets for each pattern, for both approaches
the objective functions were minimized in Mathematica R© using the NMinimize routine,
by employing the “Nelder-Mead” method, previously described in Section 2.4. As one
would expect after having studied the sweep plots, the parameter sets contain low values
for the numbers of cells n and high values for the probabilities of division p, for each
pattern. This can be seen in Fig. 6.4 which depicts the fit for the estimated parameters,
for each pattern. The plots use the same parameter values for both the Markov Chains ap-
proach, which is based on exact probabilities of observing a pair (s, f ), and the Stochastic
Simulations approach which uses approximate frequencies of finding such a pair. Even
if the Stochastic Simulations approach is approximate, by producing a large number of
trials, the frequencies get very close to the exact probabilities (Table 6.2) and thus the fits
from subfigures 6.4(a) and (b) are almost indistinguishable.

In summary, the minimization results suggest that only few active stem cells which have
large probabilities of division are needed for building the respiratory organ of fish. This
enforces our hypothesis of functional heterogeneities among the stem cells. A step by step
summary of how the biological system behaves according to our hypothesis is outlined
below.

� When the post-embryonic development begins, and after (some of) the cells in the
niches have been labelled, a first post-embryonic filament needs to be generated and
hence a fate-restricted cell should be chosen for division from among its neighbours
of the same fate. The initial choice is random.
� Once a cell A has been chosen and has generated the first filament, it becomes active

and thus its probability to divide again next highly increases. It continues to produce
filaments as long as it is active, thanks to its high probability of division.
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� At some point, it may happen that a new cell B of that same type is selected for
division. Naturally, it gets activated and with its new high probability of division it
generates filaments until it gets “overthrown” from its duty, thus becoming quiescent.
If B possesses the same label as A, it simply continues the streak of filaments with that
label until it turns quiescent, otherwise it produces a switch.
� This process of subsequently activating cells continues throughout the fish life, keep-

ing in mind their permanent growth.

Markov Chains Probabilities - Pattern 1
s / f 0 1 2 3 4 5 6 7 8

0 0.8 - - - - - - - 0.085
1 - 0.013 0.025 0.015 0.003 0.004 0.014 0.011 -
2 - 0.006 0.002 0.002 0.004 0.002 0. 0.008 -
3 - - 0. 0. 0. 0.002 0. - -
4 - - 0. 0. 0. 0. 0. - -
5 - - - 0. 0. 0. - - -
6 - - - 0. 0. 0. - - -
7 - - - - 0. - - - -

Stochastic Simulations Frequencies - Pattern 1
s / f 0 1 2 3 4 5 6 7 8

0 0.811 - - - - - - - 0.076
1 - 0.014 0.024 0.013 0.013 0.012 0.012 0.012 -
2 - 0.003 0.003 0.003 0.002 0.002 0. 0.002 -
3 - - 0. 0. 0. 0.002 0. - -
4 - - 0. 0. 0. 0. 0. - -
5 - - - 0. 0. 0. - - -
6 - - - 0. 0. 0. - - -
7 - - - - 0. - - - -

Table 6.2: Probabilities of observing pair (s, f ) in the case of Pattern 1, computed with the
Markov Chains approach and Stochastic Simulations approach for the estimated parame-
ters n = 3, p = 0.915, for comparison. Note that for the later, from the pair (s, f ) = (3,2)
onwards the 0. values are rounded from values multiplied with 10−m, m≥ 4, going all the
way to m = 10 for pair (s, f ) = (7,4).
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Markov Chains Approach
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Stochastic Simulations Approach
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Fig. 6.4: (Caption next page)
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Fig. 6.4: (Figure previous page) Comparisons between data (D) and simulations (S) for the
Markov Chains Approach (a) and the Stochastic Simulations Approach (b) for each of the
four patterns. x-axis represents the number of switches and the colour code corresponds
to the number of labelled filaments (light blue - zero, dark blue - eight).

Returning to the notion of expected hitting times, it is interesting to observe what val-
ues these produce, now that we have our optimized parameters. Recall the previously
determined formulae:

{
k1

1 = 0

k1
2 = 1+ p22k1

2

and

{
k2

2 = 0

k2
1 = 1+ p11k2

1

⇒


k2

1 =
1

1− p11
=

n−1
(1− p)U

k1
2 =

1
1− p22

=
n−1

(1− p)L

where k j
i is the mean hitting time of state j if we started in state i, with 1 corresponding

to a labelled and 2 to an unlabelled state. Recall that in our case, time is discrete and
corresponds to division events. However, we must accept non-integer values for the mean
hitting times because, as the name suggests, they are averages of expected division steps.
Based on these equations and using the optimized parameter values we get the following
hitting times for each pattern.

Mean Hitting Times for each Pattern:

Pattern 1 L=1 L=2

1→ 2 11.76 23.53

2→ 1 23.53 11.76

Pattern 2 L=1 L=2

1→ 2 4.76 9.52

2→ 1 9.52 4.76

Pattern 3 L=1

1→ 2 20

2→ 1 20

Pattern 4 L=1 L=2

1→ 2 7.14 14.28

2→ 1 14.28 7.14

In inspecting these values, one should also keep in mind the values for the labelling
efficiencies for each pattern. For example, by forgetting about these one would at first
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be surprised by the fact that in case of Pattern 4, if we have one unlabelled cell out of
the total of three stem cells, the expected number of divisions between an unlabelled and
a labelled cell is 7 since our data barely has any case with switches. But if we account
for the labelling efficiency of 0.01, we immediately realise that the cases of having some
labelled cells in the niche are scarce. Thus, if then all cells are unlabelled we obviously
have an infinite hitting time for the transition 2→ 1. Note that these tables do not show
the cases when all cells in the niche are of the same label because a transition could never
happen. Further the transitions of type i→ i, i ∈ {1,2} are not presented because their
mean hitting times are always zero. These results further our understanding of why such
few cases with switches are observed.



Chapter 7

Conclusion and Discussion for the Stem Cell Numbers
Modelling

In this part we have been investigating the fascinating question of how many active stem
cells are needed to produce and maintain an organ. We have chosen to approach this ques-
tion in a fish model organism, namely the Oryzias latipes Japanese rice fish also known
as medaka. Fish, due to their permanent growth throughout life, possess adult stem cells
which not only maintain homeostasis but are also responsible for post-embryonic growth,
making them totally different from adult stem cells in mammals and higher vertebrates
and in fact more similar to embryonic stem cells in these organisms. Therefore, these fish
adult stem cells divide rapidly and often in order to keep up and scale the organ in accord
with the organism growth, thus being perfectly suited for studying post-embryonic organ
development.

We have chosen to study these aspects in the respiratory organ of the fish, known as
branchia or gill. This choice was made because of the modular spatio-temporal organisa-
tion of the organ which recommends it as nicely suited for such an investigation. Gills are
built from four pairs of double-sided branchial arches, which in turn consist of a sequence
of filaments. The data recorded the distribution of green fluorescent protein labelling in
filaments within a branchial arch, in 36 viable gills. This was recorded for each pattern
created by labelling of one of the four fate-restricted stem cell types from the niche.

The study has been approached via two stochastic methods which reassuringly pro-
duced agreeing results. First, the experimental data have been calibrated into a form fitted
for comparison with the models. In particular, the arches were split into 8-filament long
mini-arches, for each of which the frequencies of observing certain numbers of switches
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and labelled filaments were computed - one frequency per pair (s, f ) of s switches and f

labelled filaments, per pattern.
For the modelling part, on one hand, a stochastic algorithm adapted from that of D.

Gillespie has been developed in order to produce a large set of in silico virtual mini-
arches for which the respective analogue frequencies were computed. This algorithm has
been rerun with various values for the two parameters which had to be determined and, by
employing parameter estimation methods with the help of Mathematica R© routines, best
fit values for the number n of active stem cells in the niche and for the probability p of a
cell to divide again have been found.

On the other hand, Markov Chains theory has been used to compute the probabilities
of observing a certain pair (s, f ) for specific parameter values n and p. As opposed to the
stochastic simulations, the Markov Chains approach compute exact probabilities instead
of approximate frequencies. In addition, due to actual formulae for the said probabilities,
these computations are immediate in contrast to the previous case where much more time
is needed for determining the frequencies. As before, the probabilities had to be computed
for various values of parameters, within the parameter estimation algorithm, and finally
the tuple (n, p) that best fits the model to the data had been found for each pattern.

Even though the Markov Chains approach is much more advantageous in terms of com-
putational time and accuracy, a relative advantage of the Stochastic Simulations approach
is that, by actually simulating in silico mini-arches as in the dataset, it is more intuitive to
model and work with. It is a good starting point in planning how to approach the math-
ematical problem for understanding the biological system, before switching to a more
accurate method such as Markov Chains theory.

Indeed, the results produced by the two approaches lead to the same conclusion: for
the post-embryonic growth of a gill, only few active stem cells (of each fate) are needed
in the niche and, more importantly, these fate-restricted stem cells are functionally het-
erogeneous, in the sense that they take turns in getting activated. Once a stem cell divides
it becomes active and generates multiple filaments before it goes back to quiescence and
allows another cell of the same type to become active and take over its task.

For a stronger validation of the models, more data would be of highly use. In particular,
in the case of Pattern 4, we observe practical non-identifiability for the probability of
division. This is a result of the low labelling efficiency obtained for this pattern. The
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low labelling efficiency can also be a result of the difficulty of observing this pattern
in combination with other ones (i.e. mixed patterns), in which Pattern 4 can be hidden
beneath other more striking patterns such as 1 and 2. These issues could be avoided if,
for example, cell-type specific markers existed for each of the four stem cell types, or at
least for the fourth type. If this were the case, different colours could be used for different
patterns and the problems of not observing Pattern 4 would vanish.

The investigation on the number of active fate-restricted stem cells in the niche is the
first step in understanding the coordination of the four lineages during filament gener-
ation. How do these four different cell types get recruited together to a newly forming
filament, since this process should be quite robust considering that it takes place hundreds
of times during the life of a medaka fish? Further, how is their activity coordinated in
order to maintain the ratio of cell types in the filaments? Investigating such avenues could
extend our understanding of the activity of mammalian cancer stem cells which possess
similar properties to adult stem cells in fish, as they have the ability to both drive growth
and maintain homeostasis. Such an overall understanding of fish stem cells could also
have possible applications in wound healing and organ regeneration in higher vertebrates,
processes which are driven by stem cells directed back into active and rapid proliferation
due to injury and stress conditions.





Part II

Mathematical Modelling of Branchia Growth
and Shape



Recalling the curved shape of the branchial arches, one question which arises refers
to how and why this shape is attained. Investigating the development of branchial arches
into their curved shape helps uncover properties of and relations between the two types
of stem cells responsible for driving growth along the two orthogonal axes. This study is
further useful for understanding coordination between growth stem cells and homeostatic
stem cells during post-embryonic organ development. The study is done by employing
mathematical modelling methods such as ordinary differential equations describing the
development of each filament, coupled via indicator functions to an algebraic equation
determining the moments of filament generation. The mathematical and numerical results
of generated in silico branchial arches are then compared to the experimental data. The
results of the investigation suggest a decay in the proliferation of filament stem cells with
filament elongation, and also in the proliferation of branchial arch stem cells dependent
on the number of generated filaments.



Chapter 8

Experimental Procedure and Data Acquisition

This chapter describes the experimental procedures used in acquiring the data used for the
mathematical modelling.

For the purpose of studying the organ shape, the data personally gathered from the ex-
perimental images provided by the group of Prof. Dr. Lazaro Centanin (Centre for Or-
ganismal Studies, Heidelberg University) recorded lengths of filaments, at one time point,
of branchial arches from multiple gills of fish of similar lengths (Fig. 8.1). For obtain-
ing this data, gills from multiple fish were removed and stained with antibodies against
GFP and DAPI. Subsequently, the branchial arches from these gills were separated and
mounted on 96 circular well microplates with glycerol. Finally, they were imaged un-
der the microscope. A total of 12 fish were imaged, which resulted in data consisting of
12×8×2 = 192 sides of branchial arches.

Each branchial arch is composed of two rows of intercalated filaments growing from
the same base. These are referred to as sides A and B of the same branchial arch. The two
sides do not necessarily have the same number of filaments, and these filaments can have
different lengths. We quantified the filament lengths using the ImageJ software [79, 80],
and recorded those by carefully keeping track of distal/proximal extremes and A/B sides.
The proximal extreme is the one where the branchial arch is attached to the gill mid-axis,
while at the distal side the branchial arch is free, unattached. By inspecting the data, we
observed that in general for branchial arches R1, R2, L1 and L2 the A side has more and
longer filaments than side B, while for branchial arches R4 and L4 the opposite is true.
The two sides are more or less similar for branchial arches R3 and L3.
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(a) Gill structure

(b) Experimental image

(c) Data (d) A/B sides

Fig. 8.1: (a) Structure of a gill, revisited. (b) Confocal microscope image (by Julian
Stolper, Centanin group, Heidelberg University) of the A side of a branchial arch with in-
dexed filaments from proximal to distal extreme. Here, the green expression indicates that
the stem cells generating Pattern 4 are labelled in this branchial arch. The GFP labelling
is unnecessary when gathering the data, however the image serves as a good example.
(c) Filament lengths (in µm) extracted from the image above (b), counted from proximal
to distal extremes. One can observe that the distal half-arch is bigger (in number of fila-
ments) and more linear than the proximal half-arch. (d) Each branchial arch consists in
fact of two rows of filaments growing from the same base. These can have different num-
bers and lengths on each side (A and B). In the figure, the yellow line depicts the length
of one filament from the A side, but one can observe behind the corresponding longer
filament from side B. The orange curve approximately outlines the shape of side A, while
the red curve that of side B.
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Furthermore, under a closer inspection of the branchial arches, one can easily notice
the skewness of the arch. This asymmetry comes from having more and shorter filaments
in the distal half-arch compared to fewer and longer filaments in the proximal half-arch.
In other words, the distal part has a bigger curvature, while the proximal side is almost
linear. This is generally the case in bigger arches (R/L1-2), while the asymmetry is not as
visible in smaller arches (R/L3-4).





Chapter 9

Mathematical Model Derivation

“With four parameters I can fit an elephant,
with five I can make him wiggle his trunk.”

- John von Neumann

This chapter presents the various models developed for studying the behaviour of stem
cells during the development of branchial arches by analysing properties of the arch
shapes. The assumptions for each model are presented with various possible hypotheses
suggesting these assumptions.

9.1 General considerations

In order to study the postembryonic growth of branchial arches, various mathematical
models consisting of a system of ordinary differential equations were designed. Each
equation describes the growth of one filament according to the divisions of filament stem
cells (filSCs) found at the filament tips, but since the shape of the arch is to be analysed,
indicator functions were used to determine whether a new filament should be generated
at a certain time point. This addition of filaments via the indicator functions relies on
the proliferation of branchial arch stem cells (brSCs), found in the peripheral niches,
which can either be constant or time- or space-dependent, as will be presented below. The
peculiarity of the models comes from the indicator function approach used to deal with
the discrete growing domain.

Recall that the proximal extreme of the branchial arches are attached to the gill mid-
axis, thus having a fixed position. Therefore, when new filaments are added at each of
the proximal and/or distal sides, the distal niche is pushed away from the gill axis. For
simplicity reasons, in the following models the niches are assumed to move away from
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each other, being pushed away from the “centre” of the arch where the oldest filament
grows, instead of having one niche fixed and the other one pushed away approximately
twice as much (Figure 9.1).

(a) Distal niche is pushed

(b) Niches move away from each-other

Fig. 9.1: (a) Figure explaining how the distal niche (D) is pushed away from the prox-
imal one (P) as new filaments are added. (b) Image exemplifying some of the general
model assumptions. Niches start at point 0 at time t0 where the oldest and longest fil-
ament will grow, and move away from each-other with speeds q+ and q−, depositing
filament-generating stem cells on their trail. Filaments are indexed with positive integers
towards the distal niche (D) and with negative integers towards the proximal one (P). Each
filament i grows according to its ODE dui

dt , depending on the model.

9.2 General model

All the models presented in this chapter have the form of (9.2), with their assumptions
summarised below:
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General Model

Assumptions 9.2.1

� Filaments i ∈ Z grow independently of each-other, having lengths

ui : [0,∞)→ R, which change in time.

� Filaments are indexed with integers i < 0 for the proximal side and

i≥ 0 in the distal half (Figure 9.1b).

� Functions g± : [0,∞)→ R govern the proliferation rates q± of stem

cells in the proximal(-) and distal(+) niches. They can be viewed

as the velocities with which the niches move away from the origin,

where the oldest filament lies: q−(t)< 0,q+(t)≥ 0, ∀t ∈ [0,∞).

� Functions f±i (t) : [0,∞) → {0,1} indicate if filament i has been

added to the arch at time t. Note f+i (t) = 0, for i < 0,∀t ∈ [0,∞),

and f−i (t) = 0, for i≥ 0,∀t ∈ [0,∞). A filament i ∈ Z is added when

the respective niche gets to that specific position, i.e. q±(t)t = i. We

define by ti = i
q±(ti)

the time at which filament i is generated.

� Once a filament i ∈ Z has been added, i.e. f+i (t) + f−i (t) = 1, it

grows at a rate
dui(t)

dt
= g(t,ui(t)), with g : [0,∞)×R→ R. Note

ui(t) = 0, t < ti and ui starts growing with rate g(t,ui(t)) once t ≥ ti.

dui(t)
dt

= g(t,ui(t))
(

f+i (t)+ f−i (t)
)
, ui(ti) = 0

with

f+i (t) =

{
1, q+(t)t ≥ i≥ 0

0, else
,

f−i (t) =

{
1, q−(t)t ≤ i≤ 0

0, else

and q±(t) = g±(t),

(9.2)

where g± are constant or time-dependent (directly or indirectly), giving
the behaviour of velocities q±.
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The differences among the following models lie in the form of the functions g(t,ui(t))

and g±(t). Thy can be split into two categories, with p > 0, α,β± ≥ 0, r+ > 0,r− < 0:

� Exponential decay models: Sections 9.3-9.5 - here g(t,ui(t)) = pe−αui(t) and

g± =
r±

1+β±t
. These can be simplified by having α = β± = 0 (Section 9.3) or only

β± = 0,α > 0 (Section 9.4). They will be presented in the order of their growing
complexity.
� Negative-feedback models: Sections 9.6-9.7 - here g(t,ui(t)) =

p
1+αui(t)

and g±

time-dependent (directly, or indirectly via space dependence), as we shall see.

A challenge and relative limitation of the model comes from the combination of discrete
and continuous properties. We have a discrete number of filaments (compartments), each
of which is added at a specific time point and grows in a continuous manner. Thus, we are
dealing with a discrete growing domain, which means we cannot use partial differential
equations (as growing domains are usually approached) if we want to be able to study
independent filaments. So we use indicator functions for adding new compartments to
the system at certain time points. In some of the models we can analytically compute the
times at which new compartments are introduced in the system, but in some others the
times have to be determined numerically, which means that these particular time points
must lie on the grid used for differentiation.

9.3 Linear Growth Model

In this first model scenario, filaments are assumed to be generated according to the di-
visions of brSCs in the niches at the basal peripheries of the arches, which proliferate at
constant rates. Filaments elongate based on the constant proliferation rate of the filSCs

found at the tips of filaments.
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Linear Growth (LG) Model

Assumptions 9.3.1

� Filament i ∈ Z is generated at time ti = i/q± ≥ 0 and grows accord-

ing to the constant proliferation p > 0 of filSCs.

� The brSCs in the distal and proximal niches divide with constant

rates q+ > 0 and |q−| (q− < 0), respectively.

dui(t)
dt

= p
(

f+i (t)+ f−i (t)
)
, ui(ti) = 0

with

f+i (t) =

{
1, q+t ≥ i≥ 0

0, else
,

f−i (t) =

{
1, q−t ≤ i≤ 0

0, else

(9.3)

9.4 Elongation-Decay Model

In this second model a decay in the proliferation of the stem cells responsible for elon-
gating the filaments is introduced. This decay depends on the length of the filament in the
sense that the longer the filament is, the slower it grows. This decay is plausible in view
of the following hypotheses:

� Filament stem cells proliferation slows down with their ageing, and for simplicity this
can be formulated in terms of the filament length since older filSCs reside at the tips
of longer filaments.
� Filaments decrease their growth because of nutrient intake. Recall that blood vessels

transporting nutrients can be found along the filament axis [10, 81, 82], as seen in
Figure 9.2. In this scenario, the longer the filament is, the longer it takes for the stem
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cells at the tips to receive the needed amount of nutrients for them to divide. This is
the case because nutrients are consumed by all the other stem cells found along the
filament axis.
� Similarly, filaments can slow down their growth due to the transport of oxygen through

the filaments and lamellae.

Elongation-Decay (ED) Model

Assumptions 9.4.1

� Filament i ∈ Z is generated at time ti = i/q± ≥ 0 and grows accord-

ing to the proliferation p̂ = pe−αui(t) of filSCs, which decays with

the length of filaments.

� The brSCs in the distal and proximal niches divide with constant

rates q+ > 0 and |q−| (q− < 0), respectively.

dui(t)
dt

= pe−αui(t)
(

f+i (t)+ f−i (t)
)
, ui(ti) = 0

with

f+i (t) =

{
1, q+t ≥ i≥ 0

0, else
,

f−i (t) =

{
1, q−t ≤ i≤ 0

0, else

(9.4)

and q± constant, p,α > 0, ti = i
q± , based on the sign of index i.

9.5 Elongation-Generation-Decay Model

In this third model we further introduce decays in the proliferation of the brSCs respon-
sible for generating filaments. This decay depends on time such that the older the arch
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is, the slower it generates filaments, and is modelled via a negative feedback. This is of
course equivalent to saying that the more filaments the arch stem cells have produced, the
slower they generate new ones.

These assumptions take us a step further, by considering that, similarly to filament stem
cells, also branchial arch stem cells residing in the peripheral niches either age, or slow
down their proliferation due to slower nutrient uptake, or oxygen transport. Since filament
generation corresponds to discrete events, another plausible hypothesis is related to the
number of divisions that stem cells have performed so far. The concept of “stem cells
counting” is considered but disputed in the scientific community of stem cell research, but
it fits with our model assumptions since the older the stem cells are, the more filaments
they have produced and thus the slower they proliferate.

Fig. 9.2: Confocal microscope image of a branchial arch with filaments indexed from dis-
tal to proximal extreme. Blood vessels are depicted by red curves. A, B and C correspond
to brSCs found in the peripheral niches, filSCc residing at the tips of filaments, and home-
ostatic stem cells found along the filament mid-axis, respectively. The green expression
indicates that the stem cells generating Pattern 4 are labelled in this branchial arch.
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Elongation-Generation-Decay (EGD) Model

Assumptions 9.5.1

� Filament i∈Z is generated at time ti≥ 0 and grows according to the

proliferation p̂ = pe−αui(t) of filSCs, which decays with the length

of filament.

� The brSCs in the distal and proximal niches divide with rates

q+(t) = r+
1+β+t and |q−(t)|=

∣∣∣ r−
1+β−t

∣∣∣, respectively, both decreasing

as time elapses.

dui(t)
dt

= pe−αui(t)
(

f+i (t)+ f−i (t)
)
, ui(ti) = 0

with

f+i (t) =

{
1, q+(t)t ≥ i≥ 0

0, else
,

f−i (t) =

{
1, q−(t)t ≤ i≤ 0

0, else

(9.5)

and q+(t) =
r+

1+β+t
, q−(t) =

r−

1+β−t
, p,α,β±,r+ > 0, r− < 0,

ti =
i

q±(ti)
, based on the sign of the filament index i.

Remark 9.5.1 Note that the EGD model is the general formulation of LG model (α =

0,β± = 0,q± = r±) and ED model (β± = 0,q± = r±).

9.6 Alternative Elongation-Generation-Decay Model

As an alternative to the EGD model, the right hand side g(t,ui(t)) of the differential
equation can be replaced by a negative feedback.
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Alternative Elongation-Generation-Decay (AEGD) Model

Assumptions 9.6.1

� Filament i ∈ Z is generated at time ti ≥ 0 and grows according to

the proliferation p̂ =
p

1+αui(t)
of the filSCs.

� The brSCs in the distal and proximal niches divide with rates

q+(t) = r+
1+β+t and |q−(t)|=

∣∣∣ r−
1+β−t

∣∣∣, respectively.

dui(t)
dt

=
p

1+αui(t)

(
f+i (t)+ f−i (t)

)
, ui(ti) = 0

with

f+i (t) =

{
1, q+(t)t ≥ i≥ 0

0, else
,

f−i (t) =

{
1, q−(t)t ≤ i≤ 0

0, else

(9.6)

and q+(t) =
r+

1+β+t
, q−(t) =

r−

1+β−t
, p,α,β±,r+ > 0, r− < 0,

ti =
i

q±(ti)
, based on the sign of the filament index i. To avoid singu-

larities, we impose ui 6=−1/α , which holds - as we shall prove later.

This model can also be in agreement with ageing of stem cells or nutrient consumption,
but in addition, it could result from a hypothesis of signalling molecules (S(t)) being
produced (at a constant rate γ) and degraded (at a constant rate δ ) within the arches, as
well as being eliminated proportionally to the lengths of filaments (at a constant rate µ),
which is equivalent to the density of cells within a filament. This process can be described
[83, 28] by equation

dS
dt

(t) = γ−δS(t)−µSui(t),
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which following a quasi-state approximation resulting from the assumption that the pro-
cess is fast in comparison to filament elongation (i.e. stem cells cell cycle duration) leads
to:

s(t) =
1

1+αui(t)
,

where s(t) :=
µ

γ
S(t) and α :=

δ

µ
. The validity of the quasi-state approximation has been

rigorously proven [84].

9.7 Space-Dependent Elongation-Generation-Decay Model

Another variant of the AEGD model sets the velocities q±(t) as space-dependent instead
of time-dependent. This would mean that the more filaments there are between the two
niches, the slower the stem cells within proliferate. In particular, we set brSCs to increase
their cell cycle length, the more filaments there are. Even though this is an intuitively easy
concept, putting it into equations is slightly more complicated, especially because filament
numbers are discrete integers. Such a concept can be described through the equations in
(9.7).

The hypothesis behind this model is related to nutrient uptake. It is believed that nu-
trients travel from the distal towards the proximal extreme of the branchial arch through
the blood vessel found along the base of the arch (Figure 9.2). This means that the more
filaments exist between the two niches, the slower the stem cells residing in the proximal
niche receive the needed amount of nutrients for division. The other niche, in theory, is
found at the immediate entrance of the nutrients into the arch, thus in some sense, being
in direct contact with the source. This would suggest that the proliferation of the proximal
stem cells slows down with the number of filaments, while that of the distal stem cells
should remain constant. For the moment, for generality, we keep the model with both
velocities q±(t) depending on the total number of filaments.
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Space-Dependent Elongation-Generation-Decay (SAEGD) Model

Assumptions 9.7.1

� Filament i ∈ Z is generated at time ti ≥ 0 and grows according to

the proliferation p̂ =
p

1+αui(t)
of the filSCs.

� The brSCs in the distal and proximal niches divide with rates q±(t),

which decrease as more filaments are generated.

dui(t)
dt

=
p

1+αui(t)

(
f+i (t)+ f−i (t)

)
, ui(ti) = 0

with f+i (t) =

{
1, q+t ≥ i≥ 0

0, else
, f−i (t) =

{
1, q−(t)t ≤ i≤ 0

0, else

q+(t) =
r+

1+β+ (bq+(t)tc−dq−(t)te)

q−(t) =
r−

1+β− (bq+(t)tc−dq−(t)te)

and ti =
i

q±(ti)
, p,α,β±,r+ ≥ 0,r− < 0

(9.7)

The equations for q± come from the following reasoning: as filament i≥ 0 on the distal
side is generated when q+(t)t = i it means that at this particular moment there exist a total
of i filaments in the distal half. Similarly, on the proximal side, filament j < 0 is generated
when q−(t)t = j giving a total of j filaments in the proximal side at that time point. For
times t between two filament generations, there exist bq+(t)tc filaments in the distal half,
and b|q+(t)t|c=−dq−(t)te in the proximal half, resulting in a total of bq+(t)tc−dq−(t)te
filaments in the entire arch.

A complication in dealing with this model stems from the implicit equations for the
velocities q±(t) of the niches moving away from each-other. Not only are the equations
implicit, but they contain floor and ceiling terms which together make it very difficult,
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if not impossible, to analyse. Thus, the SAEGD model will only be approached through
numerics and is discussed in Chapter 11.



Chapter 10

Analysis of the Models for Branchia Growth and Shape

This chapter is devoted to the analysis of the two general models (EGD and AEGD)
presented in Chapter 9. The existence, uniqueness and non-negativity of the solutions is
proven, the analytical solutions are determined and their regularity is discussed.

10.1 Analysis of the Elongation-Generation-Decay Model

Let ui : [0,∞)→ R be the length of filament with index i ∈ Z and parameters α,β± ≥ 0,
p,r+ > 0,r− < 0. The EGD model, as described in Chapter 9, is recapitulated bellow.

Elongation-Generation-Decay Model

dui(t)
dt

= pe−αui(t)
(

f+i (t)+ f−i (t)
)
, ui(ti) = 0

with f+i (t) =

{
1, q+(t)t ≥ i≥ 0

0, else
, f−i (t) =

{
1, q−(t)t ≤ i≤ 0

0, else

and q+(t) =
r+

1+β+t
, q−(t) =

r−

1+β−t
with ti =

i
q±(ti)

(9.5)

Proposition 10.1.1 (Existence, uniqueness and non-negativity) The system of equations
described in (9.5) has a unique non-negative solution for each i ∈ Z.
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Proof. As previously mentioned, for each i ∈ Z, the sum f+i (t)+ f−i (t) = 0 for t < ti and

f+i (t)+ f−i (t) = 1 for t ≥ ti, where ti is the time at which filament i is generated. Thus,

our ordinary differential equation can be split into two:
dui(t)

dt
= 0, for t < ti

dui(t)
dt

= pe−αui(t), for t ≥ ti

with initial conditions ui(0) = 0, ui(ti) = 0, respectively, and parameters p > 0,α ≥ 0.

Let g(t,ui(t)) = g∗(ui) = pe−αui(t), g : [ti,∞)×R → R, g∗ : R → R. It holds that
d
dt

ui|ui=0 = p > 0 for all i ∈ Z, t ≥ ti. This implies non-negativity of solutions for non-

negative initial values. In addition, g is continuous and bounded, as |g(t,ui(t))| ≤ p, for

all i∈Z, t ≥ ti. To prove uniform Lipschitz-continuity in ui, we look for a uniform constant

L such that

|g(t,u1)−g(t,u2)|= |g∗(u1)−g∗(u2)|= |pe−αu1
− pe−αu2

| ≤ L|u1−u2|.

By the Mean Value Theorem, there exists a constant c ∈ [min{u1,u2},max{u1,u2}] ≥ 0
such that |g∗(u1)−g∗(u2)| ≤ |(g∗)′(c)| · |u1−u2|, i.e.∣∣∣pe−αu1

− pe−αu2
∣∣∣≤ p

∣∣−αe−αc∣∣ · |u1−u2| ≤ pα|e−αc| · |u1−u2| ≤ pα|u1−u2|

since |e−αc| ≤ 1 because −αc ≤ 0. Thus g is a globally Lipschitz-continuous function

with respect to ui, with Lipschitz constant L = pα . By Picard-Lindelöf Theorem [47], this

proves that a global integral solution of (9.4) for t ≥ ti exists and is unique. Finally, by

joining the unique solution ui for t ≥ ti with ui = 0 for t < ti we obtain a unique non-

negative solution to (9.4) for all t ≥ 0. ut

Proposition 10.1.2 (Analytical Solution) The unique analytical solution to the system
of equations described in (9.4) reads as follows

ui(t) =

0, for t < ti
1
α

ln(1+α p(t− ti)) , for t ≥ ti
(10.1)
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with ti = i
q+(ti)

= i
r+−iβ+ for i≥ 0 and ti = i

q−(ti)
= i

r−−iβ− for i < 0.

Proof. In order to find the general form of the solution, it is sufficient to look for it in the

interval t ∈ [ti,∞) for any particular i∈Z. Thus, for simplicity, we can rename u(t) = ui(t)

with t0 corresponding to the time ti at which the filament should be generated.

We thus wish to find the solution of the ordinary differential equation

du(t)
dt

= pe−αu(t), u(t0) = 0

By using the method of Separation of Variables, this is equivalent to∫ u

0
eα ūdū = p

∫ t

t0
dt̄ ⇔

[
1
α

eα ū
]u

0
= [pt̄]tt0 ⇔ eαu = 1+α p(t− t0)

Coming back to the original notations, the analytical solution for t ≥ ti reads

ui(t) =
1
α

ln(1+α p(t− ti)) =
1
α

ln
[

1+α p
(

t− i
r±− iβ±

)]
and ui(t) = 0 for t < ti. ut

Remark 10.1.1 (Regularity) Note that each function ui : R+ → R+ is continuous for

every i ∈ Z, but only u0 is differentiable on R+ with respect to time. For ui with i 6= 0, the

slope in ti on the left side u′i(t
−
i ) = 0 while on the right side u′i(t

+
i ) = p, since

u′i(t) =
p

1+α p(t− ti)
, for t ≥ ti

u′i(t) = 0, for t < ti

with t0 = 0 and ti > 0 for all i 6= 0. Thus ui is not differentiable in ti for i 6= 0. However, each

ui ∈ C ∞((ti,∞)), so the solutions are smooth functions on the corresponding restricted

domains on which they are positive (t > ti ≥ 0 for each i ∈ Z).

Remark 10.1.2 (Linear-Growth and Elongation-Decay Models) All the above results

also hold for both the LG and ED models, as they are simplified versions of the EGD

model, with α = β± = 0 (LG) and α > 0,β± = 0 (ED).
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10.2 Analysis of the Alternative Elongation-Generation-Decay Model

Let ui : [0,∞)→ R be the length of filament with index i ∈ Z and parameters α,β± ≥ 0,
p,r+ > 0, r− < 0. The AEGD model, as described in Chapter 9, is recapitulated bellow.

Alternative Elongation-Generation-Decay Model

dui(t)
dt

=
p

1+αui(t)

(
f+i (t)+ f−i (t)

)
, ui(ti) = 0

with f+i (t) =

{
1, q+(t)t ≥ i≥ 0

0, else
, f−i (t) =

{
1, q−(t)t ≤ i≤ 0

0, else

and q+(t) =
r+

1+β+t
, q−(t) =

r−

1+β−t
with ti =

i
q±(ti)

(9.6)

Proposition 10.2.1 (Existence, uniqueness and non-negativity) The system of equations
described in (9.6) has a unique non-negative solution for each i ∈ Z.

Proof. As previously mentioned, for each i ∈ Z, the sum f+i (t)+ f−i (t) = 0 for t < ti and

f+i (t)+ f−i (t) = 1 for t ≥ ti, where ti is the time at which filament i is generated. Thus,

our ordinary differential equation can be split into two:
dui(t)

dt
= 0, for t < ti

dui(t)
dt

=
p

1+αui(t)
, for t ≥ ti

with initial conditions ui(0) = 0, ui(ti) = 0, respectively, and parameters p > 0,α ≥ 0.

Let g(t,ui(t)) = g∗(ui) =
p

1+αui(t)
, g : [ti,∞)× R → R, g∗ : R → R. It holds that

d
dt

ui|ui=0 = p > 0 for all i ∈ Z, t ≥ ti. This implies non-negativity of solutions for non-

negative initial values. It also confirms that no singularity appears in the system, as

ui 6=− 1
α

for all i∈Z, t ≥ ti. In addition, g is continuous and bounded, as |g(t,ui(t))| ≤ p,

for all i ∈ Z, t ≥ ti. To prove uniform Lipschitz-continuity in ui, we look for a uniform

constant L such that
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|g(t,u1)−g(t,u2)|= |g∗(u1)−g∗(u2)|=
∣∣∣∣ p
1+αu1 −

p
1+αu2

∣∣∣∣≤ L|u1−u2|

By the Mean Value Theorem, there exists a constant c ∈ [min{u1,u2},max{u1,u2}] ≥ 0
such that |g∗(u1)−g∗(u2)| ≤ |(g∗)′(c)| · |u1−u2|, i.e.∣∣∣∣ p

1+αu1(t)
− p

1+αu2(t)

∣∣∣∣≤ pα

∣∣∣∣ 1
(1+αc)2

∣∣∣∣ · |u1−u2| ≤ pα|u1−u2|

since (1+αc)2 ≥ 1 because αc ≥ 0. Thus g is a globally Lipschitz-continuous function

with respect to ui with uniform Lipschitz constant L = pα . By Picard-Lindelöf Theorem

[47], this proves that a global integral solution of (9.6) for t ≥ ti exists and is unique.

Finally, by joining the unique solution ui for t ≥ ti with ui = 0 for t < ti we obtain a

unique non-negative solution to (9.6) for all t ≥ 0. ut

Proposition 10.2.2 (Analytical Solution) The unique analytical solution to the system
of equations described in (9.6) reads as follows

ui(t) =


0, for t < ti√

1+2α p(t− ti)−1
α

, for t ≥ ti
(10.2)

with ti = i
q+(ti)

= i
r+−iβ+ for i≥ 0 and ti = i

q−(ti)
= i

r−−iβ− for i < 0.

Proof. In order to find the general form of the solution, it is sufficient to look for it in

the interval t ∈ [ti,∞) for any particular i ∈ Z. Thus, for simplicity, we again rename

u(t) = ui(t) with t0 corresponding to the time ti at which the filament should be generated.

We thus wish to find the solution of the ordinary differential equation

du(t)
dt

=
p

1+αu(t)
, u(t0) = 0

By using the method of Separation of Variables, this is equivalent to∫ u

0
(1+α ū)dū = p

∫ t

t0
dt̄ ⇔

[
ū+

α ū2

2

]u

0
= [pt̄]tt0 ⇔ u+

αu2

2
= p(t− t0)



90 10 Analysis of the Models for Branchia Growth and Shape

This gives us a quadratic equation to solve. Thus by only keeping the positive root and

coming back to the original notations, the analytical solution for t ≥ ti reads

ui(t) =

√
1+2α p(t− ti)−1

α

and ui(t) = 0 for t < ti, with ti = i
r±−iβ± . This is real and non-negative since p > 0, α ≥ 0

and t ≥ ti. ut

Remark 10.2.1 (Regularity) Similarly to the EGD model, each function ui : R+→ R+

is continuous for every i ∈ Z, but only u0 is differentiable on R+ with respect to time. For

ui with i 6= 0, the slope in ti on the left side u′i(t
−
i ) = 0 while on the right side u′i(t

+
i ) = p,

since
u′i(t) =

p√
1+2α p(t− ti)

, for t ≥ ti

u′i(t) = 0, for t < ti

with t0 = 0 and ti > 0 for all i 6= 0. Thus ui is not differentiable in ti for i 6= 0. However, each

ui ∈ C ∞((ti,∞)), so the solutions are smooth functions on the corresponding restricted

domains on which they are positive (t > ti ≥ 0 for each i ∈ Z).

Remark 10.2.2 (Space-Dependent Elongation-Generation-Decay Model) The global

existence, uniqueness and non-negativity of solutions hold for the SAEGD model, as well,

as it is described by the same system of ordinary differential equations. Further, the ana-

lytical solution of the SAEGD model is as in (10.2), the difference appearing in the times

ti at which the filaments are added to the arch. As opposed to previous models, the times

ti of the SAEGD model (9.7) cannot be computed analytically since they depend on im-

plicit equations involving terms containing floor and ceiling, and these times will be found

numerically as explained in the next Chapter, Section 11.3.5.



Chapter 11

Numerical Considerations and Application of the Models for
Branchia Growth and Shape

This chapter starts with an overview of the numerical procedures used for data transforma-
tion and the parameter estimation methods employed. Subsequently, each of the models
presented and analysed in Chapters 9-10 is simulated and compared to data from mea-
surements of one R1 branchial arch. Model selection is subsequently performed using the
Akaike Information Criterium.

11.1 Numerical Aspects and Data Transformation

In order for the models to be properly applied to the available measurements, one needs
to first “center” these data such that for each branchial arch, the oldest filament lays at
position 0 on the x-axis with the rest of the filaments to the left (proximal half) and right
(distal half) being labeled by negative and positive integers, respectively.

However, a difficulty arises stemming from the variability in the lengths and numbers
of filaments per branchial arch. The smallest arches have up to 25 filaments of lengths
up to 500 µm, while in the case of bigger arches we have up to 45 filaments of up to
900 µm in length. Considering that branchial arches are known to have a curved concave
shape, one would expect that in the data of each arch the oldest filament is the longest one
which is supposed to split the two “half-arches” generated by the two different peripheral
niches (proximal and distal). Nevertheless, due to measurement errors this is not always
the case, so instead of just looking for the filament of maximum length out of a branchial
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arch, we need a different method of determining the oldest filament which we need to set
at position 0 so that the data are properly “centered” (see Figure 11.1).

(a) R1 Branchial arch with 40 filaments

(b) R4 Branchial arch with 26 filaments

Fig. 11.1: (a) Measurements of lengths of filaments from a R1 branchial arch. This arch
has 40 filaments with lengths of up to approximately 800 µm. We notice that the fila-
ments which we would expect to be the oldest (blue vertical line) are shorter than the
ones around. (b) Data from an R4 branchial arch with 26 filaments of lengths of up to ap-
proximately 500 µm. As in (a), the filaments expected to be the oldest seem to be shorter
than the surrounding ones, which is in contradiction with biological information.

We need to first fit a concave asymmetric curve to the measurements for each branchial
arch and then find the maximum of that curve, which would then be set at position 0.
It turns out that, although a seemingly basic process, fitting a concave asymmetric curve
to the data is not as straightforward using existing computational routines. Various is-
sues appear when trying to use implemented routines in MATLAB R©. In the case of the
lsqcurvefit function, the issue comes from the asymmetry of the arch, for example.
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The lsqcurvefit offers the possibility to input a specific formula for the function one
wants to fit to the data and then it estimates the best parameters for that particular func-
tion. For example, if one tries to fit a parabola given by a quadratic equation, then it will
be symmetric, which is not the case in our arches (see Fig. 11.2(a,c)). For other methods,
such as the ‘spline’ option in the fit function of MATLAB R©, other issues appear: ei-
ther the curve reproduces all the inflexions in the data (thus not being concave), or if one
decides to skip certain data points one might end up skipping the actual inflexion point
at which the maximum should be (see Fig. 11.2(b,d)). What one needs instead is a spline
curve-fitting method which has the possibility of specifying options such as the convexity
of the curve.

(a) R1 Branchial arch - curve fit with
parabola

(b) R1 Branchial arch - curve fit with
smoothing spline method

(c) R1 Branchial arch centered according to (a)

(d) R1 Branchial arch centered according to (b)

Fig. 11.2: (a) Fitted curve with a quadratic equation method by using the lsqcurvefit
function in MATLAB R©. Data fitted are the same as in 11.1(a). (b) Fitted curve with a
smoothing spline method by using the fit routine in MATLAB R©. Data fitted are the
same as in 11.1(a). (c) The R1 branchial arch data centered so that the maximum of the
curve from (a) is set to position 0. (d) The R1 branchial arch data centered so that the
maximum of the curve from (b) is set to position 0.
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The open-source SLM curve-fitting tool [85] for MATLAB R© gives the possi-
bility of passing prior knowledge about the expected shape as an option. This tool uses
least squares splines for the curve fit, which gives the method enough flexibility to fit al-
most any kind of data, but in addition it allows the possibility of inputting prior knowledge
about the model into the fitting process.

By using the SLM curve-fitting tool, a concave curve was fitted to each
branchial arch and the maximum of the curve was determined, subsequently aligning
the data accordingly.

(a) R1 Branchial arch - SLM curve fit

(b) R4 Branchial arch - SLM curve fit

(c) R1 Branchial arch centered

(d) R4 Branchial arch centered

Fig. 11.3: (a) Concave curve fit with the SLM tool to the R1 branchial arch data from
Fig. 11.1(a). (b) Concave curve fit with the SLM tool to the R4 branchial arch data from
Fig. 11.1(b). (c) The R1 branchial arch data centered so that the maximum of the curve
from (a) is set to position 0. (d) The R4 branchial arch data centered so that the maximum
of the curve from (b) is set to position 0.

Once the data have been “centered”, the models can be applied to individual branchial
arches. Another aspect to think about in order to run the models is the end time point.
When should the simulations stop?
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Remark 11.1.1 Since the models do not attain a stable state, in agreement with the fish

permanent growth throughout their life, it means that the time point at which to stop the

simulation is also a parameter. However, we don’t have any information on the age at

which fish were analysed since fish were selected based on their length and not on their

age. Thus a way of approximately determining the age of fish based on their length is

needed.

One can in fact model the length-at-age relation between the size of the fish and their
respective age, according to the von Bertalanffy growth equation (11.1) [86].

L(t) = L∞

(
1− e−K(t−t0)

)
(11.1)

where L is the length of the organism, K is the growth rate and L∞ the asymptotic length
at which the growth is zero. The “initial” time point t0 is defined as the time at which the
fish would have had zero length.

As studied in [87], the parameters for medaka model organism are as follows: L∞ =

49.5 T L (total length), K = 0.01 d ph−1 (days post hatch), t0 = 3.3 d ph. Accordingly, a
fish of approximately 30mm in length would have an age of circa 100d ph (Fig. 11.4).
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Fig. 11.4: Size-at-age relation of medaka fish based on the von Bertalanffy growth equa-
tion (11.1), with parameters taken from [86]. An 100d ph fish would have a size of ap-
proximately 30mm.
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Thus, in the simulations hereon, the end time point has been set to 100 (as our fish had a
length of approximately 30mm), but parameters for fish of other size and age can be easily
estimated following the same procedure described in the next section.

11.2 Parameter Estimation

In order to fit the models to the data one compares the simulated lengths of filaments at the
end time point to the experimental measurements of filament lengths. Note that this should
be done independently for each branchial arch since they differ in number and lengths
of filaments and hence in the proliferation rates of stem cells. In the following sections
(11.3.1-11.3.5), data from the same branchial arch is used to fit the various models. This
branchial arch consist of 40 filaments, with 17 found in the proximal half (negative axis),
and 22 in the distal half (positive axis), plus the oldest one centred at 0 - Fig. 11.5. It has
been measured n= 7 times, from which the mean and standard deviation for each filament
have been computed. Further by investigating the measurement errors for each filament
via Quantile-Quantile Plots, it was shown that these are normally distributed ∼N (0,1).

We thus need to find the best parameters such that the “distance” between data and
simulations is minimal. For this, an objective function to be minimised is developed,
whihc depends on the parameters to be estimated. This sum-of-squares-type function is
not difficult to construct since we have analytical formulae for each solution ui(t) and

Fig. 11.5: R1 branchial arch with 40 filaments (17 proximal, 22 distal) used for parameter
fitting and model comparison.
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(a) QQ Plot for filament -3
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(b) QQ Plot for filament 0
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(c) QQ Plot for filament 3

Fig. 11.6: Quantile-Quantile Plots for filaments with indices -3 (a), 0 (b) and 3 (c). If
the points can be fitted by a straight line it means that the measurement errors follow a
Normal Distribution.

times ti. In addition, the algorithm defining the objective function must internally first
compute the times ti at which filaments should be inserted in the branchial arch. So not
only do the solutions ui depend on the parameters and the times ti, but the times ti depend
on the parameters as well.

The parameter estimation itself is implemented in the MATLAB R© programming lan-
guage and is performed by using the lsqnonlin routine which takes as arguments the
objective function, the parameters to be estimated, and bounds of intervals in which to
search for the best parameters. The lsqnonlin routine solves non-linear least-squares
curve fitting problems of the form

min
x
‖h(x)‖2

2 = min
x

(
h1(x)2 +h2(x)2 + · · ·+hn(x)2)

where in our case, hi(x) is the difference between the solution of the model at the final
time point (for filament i) and the length of the filament i from the centred experimental
data, with x being the vector of parameters to be optimized. We chose the Trust-Region-
Reflective Least Squares Algorithm for lsqnonlin, which has been described in Chap-
ter 2. Having shown that the measurement errors are normally distributed, it is allowed to
fit the parameters by using Least-Squares algorithms.
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11.3 Model Comparison

In the following sections 11.3.1-11.3.5, data from the same branchial arch (shown in Fig.
11.5) is used to fit the various models. For model comparison, the Akaike Information
Criterion (AIC), also described in Chapter 2, was computed. This takes into account the
fit between the data and the model, but penalizes the model for the number of parameters
(11.2). In other words, it tries to avoid over-fitting by penalizing models with too many
parameters.

AIC = n log(σ̂2)+2K, with σ̂
2 =
‖ f (x)‖2

2
n

(11.2)

Here n represents the sample size, i.e. the number of repeated measurements for the same
branchial arch. The K corresponds to the number of parameters used in the model. A fur-
ther development of the AIC number, namely the corrected Akaike Information Criterion
AICc (11.3) introduces a correction term for small sample sizes.

AICc = AIC+
2K2 +2K
n−K−1

(11.3)

In the following sections, for comparing the various models developed, the AICc was used
since our sample size n = 7 is very small. The smaller the AICc is, the better the model.
The absolute value of the AICc is not important, but only the differences ∆i between the
AICci of each model and the minimum AICcmin resulting from one of the models is what
matters.

11.3.1 Results of the Linear-Growth Model

This scenario presents the case of filaments growing at constant rates so the solutions
are linear in time 11.7(a). Further, as the stem cells in the peripheral niches proliferate at
constant rates, the times ti of new filament generation are equally distributed in time.

ui(t) = p(t− ti), for t ≥ ti =
i

q±
and ui(t) = 0, for t < ti
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Thus the indicator functions f±i are either equal to zero, or has the form of a step function
with discontinuity at ti otherwise, as can be seen in Fig. 11.7(b). Further note that if
q+ = q−, the times ti = t−i.
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Fig. 11.7: (a) Plot of solutions u−1(t) (blue), u0(t) (red), u1(t) (orange), u2(t) (purple)
with respect to time, for the Linear Growth Model, with parameters estimated to best fit
the data from a branchial arch with 40 filaments (17 proximal and 22 distal) - as seen in
Fig. 11.8. (b) Indicator functions f−−1(t) (blue), f+0 (t) (red), f+1 (t) (orange), f+2 (t) (purple)
with respect to time.

As expected, the fit of the LG model to the data from the branchial arch is very poor,
as the model produces an in silico arch with a triangular shape which does not match the
curvature of the experimental data (Fig. 11.8).

11.3.2 Results of the Elongation-Decay Model

In contrast to the LG model, in the Elongation-Decay Model the solutions follow logarith-
mic curves as is deduced from (10.1), and observed in Fig. 11.9(a). Also for this model,
the times ti are situated at regular intervals on each of the half-axes (positive/negative),
but as the parameters q+ 6= q−, overlaps of the type ti = t−i are not observed for the first
few proximal/distal filaments (Fig. 11.9(b)).
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Fig. 11.8: Fit of Linear-Growth Model with optimized parameters.

ui(t) =
1
α

ln(1+α p(t− ti)) , for t ≥ ti =
i

q±
and ui(t) = 0 for t < ti
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(a) Time evolution of solutions ui(t)
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Fig. 11.9: (a) Plot of solutions u−1(t) (blue), u0(t) (red), u1(t) (orange), u2(t) (purple)
with respect to time, for the Elongation-Decay Model, with parameters estimated to best
fit the data from a branchial arch with 40 filaments (17 proximal and 22 distal) - as seen in
Fig. 11.8. (b) Indicator functions f−−1(t) (blue), f+0 (t) (red), f+1 (t) (orange), f+2 (t) (purple)
with respect to time.
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Due to its logarithmic filament growth curves, this model allows the final combination
of filaments in a single arch to produce a curved shape similar to what is observed in
experimental data (11.10).

In Figure 11.11, it can be seen that even if the fit is not too bad, certain issues appear.
First of all, on both sides more filaments than in the data are produced. One could of course
argue that, considering their length is so small, they correspond to filaments that have just
been generated and could not be observed in the experimental data, or that were even cut
when the branchial arches were separated. Secondly, the model produces approximately
the same shape for both the proximal and distal sides which is not in agreement with
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Fig. 11.10: Fit of Elongation-Decay Model with optimized parameters.
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(a) Fit of simulation results to data, for the proximal half
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(b) Fit of simulation results to data, for the distal half

Fig. 11.11: Fit of the Elongation-Decay Model (blue) to experimental data (red) for prox-
imal (a) and distal (b) halves.
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the data. The model can reproduce the proximal side relatively well, with many model
points situated within the error bars, however a higher curvature should be aimed for, i.e.
a more shallow descent among the older filaments followed by a much steeper one for the
younger filaments.

In conclusion, a simple logarithmic trend with a linearly decreasing argument, corre-
sponding to decay only in the growth of filaments is not sufficiently good to reproduce
the biological mechanism behind the experimental data collected.

11.3.3 Results of the Elongation-Generation-Decay Model

As in the ED model, the filament elongation curves in time follow logarithmic trends
(10.1) in the case of the Elongation-Generation-Decay (EDG) Model, as well (Fig.
11.12(a)). The difference between the two models comes from the times ti at which new
filaments are added to the arch. In the current model these moments are no longer dis-
tributed at equal intervals on the time axis, since the proliferation q±(t) of stem cells in
the peripheral niches depends on time.
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Fig. 11.12: (a) Plot of solutions u−1(t) (blue), u0(t) (red), u1(t) (orange), u2(t) (purple)
with respect to time, for the Elongation-Generation-Decay Model, with parameters esti-
mated to best fit the data from a branchial arch with 40 filaments (17 proximal and 22
distal) - as seen in Fig. 11.8. (b) Indicator functions f−−1(t) (blue), f+0 (t) (red), f+1 (t)
(orange), f+2 (t) (purple) with respect to time.
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ui(t) =
1
α

ln(1+α p(t− ti)) , for t ≥ ti =
i

r±− iβ±
and ui(t) = 0 for t < ti

The further away the niche (at filament i) is from the middle (zero) point, the slower its
stem cells proliferate thus the slower it advances to the next filament (i+1) and the longer
the following time interval [ti, ti+1] will be.

Once again, the combination of filaments in a single arch produces a curved shape, and
the fit for our test branchial arch can be seen in Fig. 11.13. It would seem that the fit is
better than for the previous model, fact also proven by the AICc value which is smaller
than before. The AICc values can be seen in the title of the fit figures, for each model.
Nevertheless, the difference is too small – with 5.38% smaller, not enough to state that
this is a much better model.
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Fig. 11.13: Fit of Elongation-Generation-Decay Model with optimized parameters.

The EGD model provides a much better overlap with data on the proximal side, but still
does not reproduce the distal side sufficiently well. As can be noted from the parameter
values (Fig. 11.13), the distal side actually has the same behaviour as in the previous
model, due to its decay parameter in the proliferation of arch stem cells being null: β+ =

0. In fact even the initial proliferation rate of the distal niche is the same as in the previous
model: r+ = 0.23. Thus, one could argue that since the distal side could not be reproduced
well enough by a logarithmic curve, the fitting process is governed by the proximal side
which chooses parameters for its benefit and then passes the common ones (p and α) to
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(a) Fit of simulation results to data, for the proximal half
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(b) Fit of simulation results to data, for the distal half

Fig. 11.14: Fit of the Elongation-Generation-Decay Model (blue) to experimental data
(red) for proximal (a) and distal (b) halves.

the distal side as well. Even though these have in fact been changed from their previous
values in the Elongation-Decay Model, the shape of the distal side was not profoundly
affected. Most of the model points on the proximal side indeed fall within the error bars
of the data points (apart from those for the youngest filaments), but a majority of those are
exactly at the borders of those error intervals. In addition, the issue of having one extra
filament at each side remains.

11.3.4 Results of the Alternative Elongation-Generation-Decay Model

The Alternative Elongation-Generation-Decay (AEGD) Model, as the name suggests, is
a variant of the EGD model, in which the function governing the evolution of solution is
changed from a logarithmic into an inverse-quadratic one as in (10.2) and recapitulated
below.

ui(t) =

√
1+2α p(t− ti)−1

α
, for t ≥ ti =

i
r±− iβ±

and ui(t) = 0 for t < ti

Its time evolution and the corresponding indicator functions for the fitted parameters of
the AEGD model can be seen in Fig. 11.15. One notices the important difference between
the solution of the AEGD model in comparison to the EGD model is the steepness of the
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curve at the initial time points. The curve first climbs relatively abruptly and then slows
down starting to resemble the shape of the entire EGD model curve.

Furthermore, Fig. 11.16 shows the fit to the data from the same branchial arch used
throughout this chapter, and displays the corresponding estimated values for the parame-
ters. As before, the two half-arches are linked through the proliferation p and decay α in
the filaments. To be noted is that both β± decay parameters are non-zero suggesting that
there is decay in the proliferation of both niches. Further, the r± are equal (in absolute
value) so the initial proliferation in both niches is the same, which is more biologically
plausible since both niches start in the same place at time t0 = 0. Striking is the value of
the proliferation p, which is one order of magnitude larger than in the previous models,
but this is a consequence of the correlation between parameters p and α , which will be
discussed in Section 11.3.6. Here the resulting fit looks extremely good, the AICc value
reinforcing this assertion by having a remarkably smaller value than in the EGD model,
with 74.87% smaller than before.

Probably the most striking outcome of this model is its capability to fit the data on the
distal side much better than all the previous models while at the same time recapitulating
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Fig. 11.15: (a) Plot of solutions u−1(t) (blue), u0(t) (red), u1(t) (orange), u2(t) (purple)
with respect to time, for the Alternative Elongation-Generation-Decay Model, with pa-
rameters estimated to best fit the data from a branchial arch with 40 filaments (17 proxi-
mal and 22 distal) - as seen in Fig. 11.8. (b) Indicator functions f−−1(t) (blue), f+0 (t) (red),
f+1 (t) (orange), f+2 (t) (purple) with respect to time.
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Fig. 11.16: Fit of Alternative Elongation-Generation-Decay Model with optimized pa-
rameters.
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(a) Fit of simulation results to data, for the proximal half
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(b) Fit of simulation results to data, for the distal half

Fig. 11.17: Fit of the Elongation-Decay Model (blue) to experimental data (red) for prox-
imal (a) and distal (b) halves.

the data on the proximal side very well. First of all, the abrupt ascent of the inverse-
quadratic function for young filaments ensures that no extra filaments are added at any
of two the extremes. Second, all model points fall within the error bars, with only a few
lying on the boundary (see Fig. 11.17). The estimated parameters are very well suited to
produce a relatively linear curve on the distal side, and a sufficiently curved one on the
proximal side. Indeed, the proximal side is not reproduced as well as in the case of the
EGD model, however there are only two “bad” points (those of the oldest two filaments),
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(a) Fit of EGD and AEGD models to data, for the proximal
half
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(b) Fit of EGD and AEGD models to data, for the distal half

Fig. 11.18: Comparison between the Elongation-Generation-Decay Model (blue) and the
Alternative Elongation-Generation-Decay Model (red). Data is presented by red asterisks.

which nevertheless are found on the upper borders of the error bars. Figure 11.18 presents
the comparison between the two models under consideration (EGD and AEGD).

11.3.5 Results of the Space-Dependent Elongation-Generation-Decay Model

As previously presented, let us review the Space-Dependent Elongation-Generation-
Decay (SAEGD) Model from (9.7). As mentioned before, this model corresponds to a
hypothesis stating that nutrients are transported from the distal to the proximal extreme.
For this reason, as the distal niche is placed at the source of nutrients, the proliferation
of distal brSCs q+ is kept constant (β+ = 0). The proliferation rate q−(t) depends on the
number of filaments existing at the time t, as the more filaments are created, the farther
away is the proximal niche from the source of nutrients.

dui(t)
dt

=
p

1+αui(t)

(
f+i (t)+ f−i (t)

)
, ui(ti) = 0

with f+i (t) =

{
1, q+t ≥ i≥ 0

0, else
, f−i (t) =

{
1, q−(t)t ≤ i≤ 0

0, else

and q−(t) = r−/(1+β
− (⌊q+t

⌋
−
⌈
q−(t)t

⌉)
) with ti =

i
q±(t)

(11.4)
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The complication in this model comes from the implicit equation for q−(t), which
in addition contains floor and ceiling terms. As this cannot be solved analytically, we
take advantage of MATLAB’s routine fzero. This routine is used to find the zeros of a
function, which in this case is z(x) = x− r−/(1+β

− (⌊q+t
⌋
−dxte

)
), at each time point

t. fzero relies on the algorithm created by T. Dekker [88], which uses a combination of
bisection, secant and inverse interpolation methods.

The fzero routine is used to find q−(t), which is needed to compute the times ti for
both sides. Once we have the times at which filaments are generated, we can compute
the solution. An issue in these simulations, apart from the long computational time, is
that generated by rounding to integer numbers. For finding the velocity q−(t) and times ti
one needs to apply the fzero routine at every time point. This is a problem as the time
points at which this computations are made depend on the size of our time step. Hence,
the simulation might skip certain ti’s due to a time step which is too large, thus resulting
in false conclusions. In order to simplify the simulations of the SAEGD model and to
avoid the aforementioned issue, one can perform one extra approximation, by removing
the floor and ceiling from the formula for q−(t). As a result, the implicit equation for the
proliferation of stem cells in the proximal niche reads

q−(t) = r−/
(
1+β

− (q+t−q−(t)t
))

,

and after further arithmetics this eventually gives
q−(t) =

1+β−q+t−
√

(1+β−q+t)2−4β−r−t
2β−t

ti =
i(iβ−−1)

iβ−q+− r−
, i < 0

(11.5)

This approximation thus simplifies the simulations, provides correct times ti by using
an analytical formula for their computation and speeds up the estimation of parameters.
The fit of this variant of the SAEGD model (from now on referred to as SAEGD2) can be
seen in Figure 11.19.
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Fig. 11.19: Fit of Space-Dependent Elongation-Generation-Decay Model without floor
and ceiling, for optimized parameters.

Fig. 11.20: Fit of Space-Dependent Elongation-Generation-Decay Model, for parameters
used in Fig. 11.19.
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11.3.6 Model Selection

By comparing the AICc values of the previous models (see Table 11.1), the best one out
of those considered can be chosen.

Model: LG ED EGD AEGD SAEGD SAEGD2

AICc: 364.09 231.54 219.07 164.02 245.13 238.11

Table 11.1: Overview of AICc values for the models considered

It can be easily read that the Alternative-Elongation-Generation-Decay Model repro-
duces the data the best, while at the same time not introducing too many parameters, and
thus respecting the Principle of Parsimony.

First, the “best” model suggests that filaments slow down their growth, the longer they
are. Second, the stem cells in the branchial arch niches reduce their proliferation with the
generation of filaments. In the following, we will focus on the “best” model AEGD, and
on the SAEGD model, which will be considered because of its different assumptions and
structure. The two models are based on the following two hypotheses:

� Each niche advances slower based on the amount of time that passed. This is equiva-
lent to saying that the proliferation of the stem cells in each niche is reduced with the
number of filaments it generated. This concept is suggested by the AEGD model and
is supported by the reasoning that stem cells proliferate less, the older they are or the
more divisions they have already had.
� The distal niche advances at a constant speed, while the proximal one decreases its

speed with the total number of filaments in the branchial arch. The SAEGD/SAEGD2
model presents this option and is based on the reasoning that the proliferation of stem
cells in the distal niche stays constant, while that of the stem cells in the proximal
niche slows down due to its increasing distance to the nutrient source (placed at the
distal niche).

A remark that holds for all of the decay models (EGD, AEGD, SAEGD, SAEGD2) is
that various pairs of parameter values (p,α) result in similar fits. This is understandable
as there is a tight correlation between these two parameters influencing the growth of
existing filaments. Fig. 11.21 shows the correlation between parameters p and α as a
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Fig. 11.21: Contour plot of the objective function with respect to parameters p and α .

contour plot of the objective function with respect to the two parameters, in the case of
the AEGD model. Nevertheless, for all different sets of parameters, with various pairs
(p,α), the ratio p/α stays relatively invariant. For example, for the same R1 branchial
arch (the one used for comparing the models), different pairs (p,α) give an approximate
ratio p/α ' 3200. This holds because the height of the oldest filament (centred at 0) is
approximately equal to 10

√
2
√

p/α . We accept the non-identifiability of parameters, as
each parameter has a biological interpretation, but take this into account when drawing
conclusions about the biological system.

11.4 Applications of the selected model

So far, the above models have been compared based on one R1 branchial arch for which
seven measurements were performed. A next step is to apply the selected model to further
data from various branchial arches. In this section we will use the Alternative-Elongation-
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Generation-Decay Model, which has proven to be the best one out of the models under
consideration, according to the AICc value.

In the following, we will focus on right branchial arches (R1-R4) and we will inspect
the parameters influencing properties of the stem cells by comparing their values for
arches of various sizes from different fish. In particular, we wish to get an idea about
the relation between the proliferation of stem cells in arch niches compared to those in
filament niches. In addition, we can investigate the reasons of why R4 arches, which have
less and smaller filaments than R1 arches, for example, look more symmetric.

Out of the 12 fish imaged, not all branchial arches could be measured. Table 11.2 below
shows measurements of which branchial arches are available from each fish.

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12

R1 × × - × × × × - - × × -

R2 × - - × × × × × - × × ×
R3 × - × - × × - × - - - -

R4 × × × × × × - - × - - ×

Table 11.2: Overview of the data available for each fish (F1-F12). “×” available, “-”
missing.

Thus for fish F1, F5 and F6 data from all four right-branchial arches are available.
Figure 11.22 shows the fit of the selected model to the four right branchial arches from
the same fish (F5).

A summary of the influence of different parameters on shapes is as follows:

� As previously stated, the ratios p/α are an indication of the approximate length of the
oldest filament.
� In addition,

r+

r−
1+β−

1+β+
is a measure of the symmetry around the oldest filament. The

closer its value is to 1, the more symmetric the arch is, where the two halves meet.
� Finally, the values of parameters β+ and β− give the curvatures of each half-arch. The

smaller the values are, the more linear the trend of the succession of filaments is.

In comparison, the SAEGD2 model provides a relatively good fit, as well, for the same
branchial arches from Fig. 11.22, as can be seen in Fig. 11.23. However in some cases the
curvatures cannot be captured well enough.
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(a) R1 arch of fish F5

(b) R3 arch of fish F5

(c) R2 arch of fish F5

(d) R4 arch of fish F5

Fig. 11.22: Fit of the AEGD model to branchial arches R1-R4 from fish F5.

(a) R1 arch of fish F5

(b) R3 arch of fish F5

(c) R2 arch of fish F5

(d) R4 arch of fish F5

Fig. 11.23: Fit of the SAEGD2 model to branchial arches R1-R4 from fish F5.
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There exist few branchial arches from other fish, where the skewness is not towards
the proximal side as before, but towards the distal one, instead. This could either result
from a technical problem or from some underlying biological reason. In these cases we
still expect the AEGD to be able to provide a good fit, while the SAEGD2 model to fail at
this task, as can be seen in Fig. 11.24. From the way the SAEGD2 model was defined and
implemented, it only allows for skewness to the proximal side, which prevents it from
providing a more curved aspect on the distal side due to its parameter β+ being set to
0. On the other hand, the AEGD model can easily adapt to any kind of shape, as more
variability in the parameters is allowed, supporting the hypothesis of ageing stem cells in
the detriment of that of nutrient transport

(a) Fit of AEGD model to arch R2 of fish F1

(b) Fit of AEGD model to arch R2 of fish F4

(c) Fit of AEGD model to arch R2 of fish F7

(d) Fit of SAEGD2 model to arch R2 of fish F1

(e) Fit of SAEGD2 model to arch R2 of fish F4

(f) Fit of SAEGD2 model to arch R2 of fish F7

Fig. 11.24: Comparison of the AEGD and SAEGD2 models on their ability to fit branchial
arches R2 from fish F1, F4 and F7.

Returning to the AEGD model, Fig. 11.25 presents “screen shots” at various time points
of a simulation of the R1 arch from fish F1 previously used for model selection, with
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Fig. 11.25: Bar plot of the branchial arch R1 from fish F1 simulated by the AEGD model
at multiple time points: 10, 50, 100, 200, 300 and 400.

the estimated parameters. As a previous remark stated, when the arch is small it is very
symmetric and relatively “triangular”. Subsequently, as it grows bigger in both number
of filaments and length of filaments it becomes more curved and asymmetric, such that at
t = 400 the distal side has almost twice as many filaments as the proximal side. This is a
consequence of the decays α and β±.

Further similar investigations can be performed on filaments on the B side of the arches,
as well as on the left branchial arches. Figures 11.26 and 11.27 show fits of the AEGD
model to left arch L1 (side A and B) and the arches of side B (R1-R4), all from fish F5.
One can easily observe that the AEGD model is able to nicely reproduce the shapes of all
the arches, which have similar profiles to those seen on the right part of side A.

(a) Arch L1, side A, from fish F5 (b) Arch L1, side B, from fish F5

Fig. 11.26: Application of the Alternative-Elongation-Generation-Decay Model to fit data
from L1 branchial arches on the A (a) and B (b) sides, from fish F5.
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(a) Arch R1, side B, from fish F5 (b) Arch R2, side B, from fish F5

(c) Arch R3, side B, from fish F5 (d) Arch R4, side B, from fish F5

Fig. 11.27: Application of the Alternative-Elongation-Generation-Decay Model to fit data
from branchial arches on the B side: R1 (a), R2 (b), R3 (c), R4 (d), all from fish F5.



Chapter 12

Conclusion and Discussion for the Organ Growth and Shape

This part of the thesis has dealt with the study of properties of various stem cells and
their relation to each-other, within the respiratory organs of Oryzias latipes Japanese rice
fish. The goal was to gather information about dynamics of filament stem cells (filSCs)
and branchial arch stem cells (brSCs) by observing and modelling the shapes of branchial
arches. In addition, models of various hypotheses were compared in order to speculate
which is more plausible. The data for this project recorded the lengths of filaments from
multiple branchial arches. A total of 12 fish were imaged, resulting in a total of 192
branchial arches, out of which we focused on the right (R1-R4) A-side ones (30 arches
measured). One particular R1 arch was measured multiple times, resulting in an average
value and a standard deviation per filament.

We started by developing various compartmental mathematical models, gradually in-
creasing in complexity, consisting of a system of ordinary differential equations coupled
to algebraic equations via indicator functions, in order to deal with the discrete growing
domain, i.e. the increasing number of compartments. Next, we fitted each model to the R1
branchial arch mentioned before, and compared the models via the Akaike Information
Criterion (AICc) for model selection.

� The Linear-Growth model, as the name suggests, assumed a constant proliferation in
both filSCs and in brSCs, and produced a triangular shape, thus resulting in a very
poor fit.
� The Elongation-Decay Model assumed a length-dependent decaying proliferation of

filSCs, while the brSCs have a constant division rate, as before. The decay was mod-
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elled via an exponential function with negative exponent. This model was able to
capture the curved aspect of the arches, but the fit was quite poor, nevertheless.
� The Elongation-Generation-Decay Model added one extra level of complexity, by in-

troducing a time-dependent decay in the proliferation of brSCs, in addition to the
aforementioned length-dependent decay in the filSCs growth rate. This new decay was
modelled by a time-dependent negative feedback. The EGD model produced a much
better fit, but could not reproduce the initial fast growth of small filaments.
� The Alternative-Elongation-Generation-Decay Model is an alternative to the previ-

ous model, which used a negative feedback function for the decay in proliferation of
filSCs. This decay depended on the length of filaments and was able to recapitulate the
initial rapid growth of young filaments, as desired. By choosing different values for
the parameters, one could not only reproduce the curved shape of the arch but also its
asymmetry and the skewness given by the aspect of each half-arch: relatively linear on
the distal side and highly curved on the proximal one. Such model corresponds to the
idea of stem cells ageing, thus affecting their proliferation in time. Another hypothe-
sis that could equally well be modelled by the AEGD model is that of decay of stem
cells proliferation due to signalling molecules produced and degraded in the arches
and consumed by the stem cells.
� The Space-dependent Elongation-Generation-Decay Model changed the formula for

the proliferation of brSCs from having a time-dependent decay to one dependent on
the total number of filaments existing at each time point. This model is inspired by
the hypothesis of nutrients transport through the blood vessel at the base of filaments,
from the distal towards the proximal side, meaning that the larger the branchial arch
is, the longer it is needed by the brSCs in the proximal niche to receive the required
amount of nutrients for their division, while the distal niche is located at the source of
nutrients, in some sense.

The results of the mathematical modelling indicate the AEGD model as the best out
of the models under consideration, suggesting that the aging hypothesis is more plausible
than the nutrients one. This is also supported by the variability in the sizes and shapes
of branchial arches, which could be nicely reproduced by the AEGD model, while the
SAEGD model fails to provide a good fit in some cases.
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Nevertheless, a further aspect that remains to be investigated is the difference in size
between the arches within the same fish, considering that they are all studied at the same
moment in the life of the fish. The difference in the asymmetry between R1 and R4 arches,
for example, can be understood via the models presented, as the decay in proliferation
influences less the branchial arches with few shorter filaments than those with more longer
filaments. However, why are the parameters controlling the proliferation of stem cells so
different between large and small arches, considering that they are analysed at the same
time point? What biological factors influence those parameters? A possible reason could
be that of space constraints, as branchial arches are hidden under the operculum, possibly
exerting higher pressure on the growth of more ventral branchial arches. In order to test
this hypothesis, our collaborators have grown fish which are not constrained on one side
of their gills, i.e. the “bone cover” on one side of the gills (the operculum) was removed.
This will allow the comparison between the size and shape of the two sides of the gills,
which might shed some light on these aspects.

Furthermore, a better validation of the models could be performed when time-series
data are available. With an appropriate gill cells marker, live imaging could be performed,
since branchial arches could be observed through the transparent operculum at juvenile
stages, but such a marker still needs to be discovered.

The study of stem cell behaviour during post-embryonic gill growth could aid in un-
derstanding mammalian embryonic development, as fish adult stem cells behave similarly
to higher vertebrates embryonic stem cells. Mammals, and in particular humans, possess
so-called pharyngeal arches (also known as branchial arches) during embryonic stages,
which are similar to those found in fish. They are organised in the same manner as in fish,
but are higher in number, specifically six pairs of arches, out of which the fifth regresses
rapidly. The remaining ones develop into important facial features: the first branchial arch
gives rise to the jaw, while the second one becomes the hyoid bone and jaw support, for
example. Dysfunction in the development of human pharingeal arches can result in dis-
eases such as the Pierre-Robin syndrome or the DiGeorge syndrome. These cause airway
obstruction or speech and language impairments, in addition to facial features abnormal-
ities, to name a few.
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Therefore, our studies can have further applications in stem cell systems driving
growth, in particular in early developmental stages or in pathological settings in which
growth is uncoordinated or disrupted.



Chapter 13

Summary of the Thesis

This thesis has been devoted to the study of stem cells behaviour governing the post-
embryonic growth of fish by developing mathematical models and applying them to ex-
perimental data provided by our collaborators. The focus has been on the respiratory
organ of medaka fish, which due to its structured organisation enables a smooth approach
via mathematical modelling. The thesis has been split into two parts corresponding to
two projects which investigated different but related properties of stem cells driving the
growth of medaka gills. A variety of mathematical methods has been used for the studies,
which were adapted to the aims of the projects and to the available data.

The aim of the first project was to determine how many stem cells are needed to build
an organ, specifically the gills of medaka fish. This basic question is, in fact, difficult
to approach biologically as specific stem cell markers are unknown. Mathematical mod-
elling comes to aid in this situation and two different methods have been developed and
applied to clonal data, leading to agreeing results. The two approaches, using Gillespie-
type stochastic simulations and Markov chains, provided agreeing results, which enforces
their validity. Our question of how many stem cells are needed to build the respiratory
organ of fish has a surprisingly simple answer: only few stem cells (2-3 depending on cell
type) are needed in each niche, but more importantly, the stem cells must have a very high
probability to divide again (∼ 0.9). The later indicates that stem cells possess long acti-
vation and quiescence phases, and that they take turns in becoming activated in order to
give rise to filaments, thus explaining the long stretches of consecutive filaments carrying
the same label, which are observed in the data.
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A relative issue appears in the case of the fourth type of stem cells, which due to their
small labelling efficiency result in a non-identifiable probability of division. This hap-
pens because the pattern produced by these stem cells can be concealed beneath other
patterns, when mixed patterns are observed. The non-identifiability could be avoided if
specific stem cell markers for each cell type existed, allowing to label each cell type
(hence pattern) with a different colour so that patterns are no longer missed, thus allowing
to compute the labelling efficiencies more accurately.

The second project studied properties of gill stem cells driving growth of the organ
along two orthogonal axes by inspecting the shape of branchial arches. Stem cells found
in niches at the basal peripheries of the arches generate filaments, extending the arches
horizontally, while stem cells located at the tips of filaments drive their elongation, thus
extending the arches vertically.

Mathematical modelling via ordinary differential equations (ODEs) was used to repro-
duce the shapes of branchial arches thus allowing to draw conclusions about the prop-
erties of stem cells and to speculate on hypotheses leading to those properties. Five dif-
ferent ODE models were developed and compared to data recording filament lengths of
branchial arches from various fish. The best out of these models were selected, by fitting to
one representative branchial arch and computing the resulting Akaike Information Crite-
rion for model comparison. All models are composed of a system of ODEs describing the
change of filament lengths in time, coupled to two indicator functions indicating whether
a certain filament exists at that time, and two algebraic equations governing the prolifera-
tion of branchial arch stem cells found in the peripheral niches. The differences between
models stem from changing the mathematical functions which describe the proliferation
of the two stem cell types. For all models, the existence, uniqueness and non-negativity
of solutions is proven and their analytical solution is computed. Subsequently, numerical
simulations are performed and parameters are estimated.

The insights gathered from all models presented indicate that both filament stem cells
and branchial arch stem cells slow down their proliferation in time, thus slowing the
growth along the two orthogonal axes. Various hypotheses about why this cell cycle
lengthening happens are formulated and the mathematical modelling was able to speculate
against one of them. It is believed that filament stem cells slow down their proliferation
due to “starvation” of nutrients, but the same hypothesis cannot hold for the branchial arch
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stem cells. Other plausible hypotheses are ageing of stem cells or signals from signalling
molecules.

Further more accurate investigations could be performed if time-series data were avail-
able. Unfortunately, in the absence of a specific gill stem cells marker such data cannot
be gathered as fish need to be sacrificed. Were such a marker to be available, fish could be
live-imaged as labelled branchial arches could be observed through the operculum under
a microscope. Our collaborators are currently searching for such a stem cell marker, and
once time-series data would be available, the mathematical models could be compared
not only to the final “snapshot” of the branchial arches, but at various time points, thus
being better validated and possibly adjusted based on new insights from such a type of
data.

In addition, a further question arises from the differences in shapes of large versus small
branchial arches. Large arches are highly asymmetric and curved compared to smaller
ones. The mathematical models do explain this by showing that in small arches the de-
cays do not act as strongly as in large ones, but this is accomplished by big differences in
parameters, which are needed for observing such different shapes at the same time point.
The question here is why do the small arches grow much slower? What influences their
parameters driving them to grow so slow in comparison to the other ones? One hypothesis
considered is based on constraints from the operculum covering the gills. To test whether
this is the case, our collaborators have been growing fish which had their operculum re-
moved on one side, in order to inspect whether the arches on that side grow much bigger
than the ones that are still covered. The fish have not yet been sacrificed and imaged but
if this is the case, new extended mathematical models including the constraints from the
operculum should be developed.
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14. T. Székely Jr and K. Burrage, “Stochastic simulation in systems biology,” Computa-

tional and structural biotechnology journal, vol. 12, no. 20-21, pp. 14–25, 2014.
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Acronyms

AIC Akaike’s Information Criterion - a criterion used for model comparison
BIC Bayes’ Information Criterion - a criterion used for model comparison
TIC Takeuchi’s Information Criterion - a criterion used for model comparison
AICc Corrected Akaike’s Information Criterion - an adjusted criterion used for model

comparison, for small data sample
KL Kullback-Leiber information - a measure of the distance between the model and

the reality
MLE Maximum Likelihood Estimator
LS Least Squares
dpf Days post-fertilization
mpf Months post-fertilization
dph Days post-hatch
IdU Iodo-deoxyuridine - a chemical used for labelling mitotic cells
GFP Green Fluorescent Protein
RFP Red Fluorescent Protein
probLab Labelling Efficiency - probability of labelling a cell in the niche
probDiv Probability of the cell which has just divided to be the next one to divide again
LG Linear-Growth Model
ED Elongation-Decay Model
EGD Elongation-Generation-Decay Model
AEGD Alternative Elongation-Generation-Decay Model
SAEGD Space-dependent Elongation-Generation-Decay Model
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134 Acronyms

filSCs Filament stem cells, located at filament tips
brSCs Branchial arch stem cells, located in niches at the basal peripheries of arches
ODE Ordinary Differential Equation
PDE Partial Differential Equation
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