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I 

Summary 

Genetic variation is a major cause of differences between individuals and it 

represents a powerful tool to study gene regulation. By interfering with cis- 

Regulatory Modules (CRMs), variants can unravel CRM function. On the other hand, 

predicting the effect of variants on phenotype by the DNA sequence has proven to be 

challenging. In this thesis, I use Drosophila embryonic development as a model 

system to study diversity in gene regulation at the transcriptional level. 

CRMs can be characterized using multiple genome-wide techniques such as DNase 

hypersensitivity. However, despite having comprehensive CRM maps, it is still 

difficult to predict what are the genes regulated by each CRM. Functional methods, 

such as mutagenesis, are effective but poorly scalable. To address this issue, I 

developed an eQTL method (called DHS-eQTL) that makes use of naturally 

occurring genetic variation, to associate CRMs with the genes they regulate. The 

results reveal 2,967 DHS-eQTLs and indicate a high extent of CRM sharing between 

genes. We validated the results with in silico and in vitro approaches and I discuss 

upcoming in vivo experiments. We observed long-range enhancer regulation 

suggesting that commonly used methods to associate genes and enhancers 

underestimate their distance. Also, the DHS-eQTLs show that promoter-proximal 

CRMs have widespread distal activity. 

The separation between populations causes an increase in genetic differences by 

drift and adaptation to different environments. We investigated gene expression 

differences between Drosophila populations from five continents by performing RNA-

Seq on 80 inbred fly lines. We performed multiple quality-control tests to ensure that 

the gene expression dataset is of high quality. Gene expression profiles show 

detectable diversity among the fly lines from different continents and confirm what 

has been observed at the genetic level. In particular, the African population is the 

most separated, while the American, European and Australian ones show less 

diversity. In addition, we identified 903 gene and 2,021 exon eQTLs. 

Genetic variants can interfere with Transcription Factor Binding Sites (TFBS) and this 

might, in turn, lead to changes in chromatin accessibility. We applied LS-GKM (an 

SVM method that uses gapped k-mers) to learn sequence features of tissue-specific 

accessible chromatin and predict the impact of natural sequence variation on 
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accessibility. We train LS-GKM on six tissue-specific training sets: neuroectodermal, 

mesodermal and double negative CRMs divided in promoter-proximal and promoter-

distal. The method unbiasedly recovers tissue-specific TFBS and shows good 

performance despite the small training sets. Finally, we score variants from groups of 

inbred Drosophila lines. Interestingly, rare variants have a higher impact on 

accessibility. 
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Zusammenfassung 

Genetische Variation ist eine der Hauptursachen für die Unterschiede, die zwischen 

Individuen bestehen, und stellt ein wirksames Mittel zur Untersuchung der 

Genregulation dar. Variationen, die cis-regulatorische Module (CRMs) beeinflussen, 

können helfen deren Funktion zu entschlüsseln. Allerdings ist die Prognose der 

Auswirkungen genetischer Variationen auf den Phänotypen anhand der DNA-

Sequenz immer noch schwierig. In der vorliegenden Arbeit nutze ich die 

Embryonalentwicklung der Fruchtfliege Drosophila als Modellsystem, um mithilfe der 

genetischen Diversität die Genregulation auf transkriptioneller Ebene zu 

untersuchen.  

CRMs können durch verschiedene genomweite Methoden, wie beispielsweise der 

„DNase hypersensitivity“, beschrieben werden. Obwohl so umfassende CRM-Karten 

erstellt werden konnten, ist die Zuordnung der Gene zu den CRMs, durch die sie 

reguliert werden, weiterhin schwierig. Funktionale Methoden, wie die Metagenese, 

sind effektiv, können aber nur unzureichend auf das gesamte Genom angewandt 

werden. Um auf dieses Problem einzugehen, habe ich eine eQTL Methodik 

entwickelt (genannt DHS-eQTL), welche sich der natürlich vorkommenden 

genetischen Variation bedient, um CRMs den von ihnen regulierten Genen 

zuzuordnen. 2.967 DHS-eQTLs wurden identifiziert und ich konnte zeigen, dass 

CRMs häufig mehrere Gene regulieren. Die Ergebnisse wurden mit in silico und in 

vitro Methoden validiert und ich diskutiere anstehende in vivo Experimente. Unsere 

Beobachtungen zeigen des Weiteren, dass Enhancer ihre Zielgene häufig über 

größere genomische Distanzen hinweg regulieren, und legen damit nahe, dass 

gemeinhin verwendete Methoden für die Zuordnung von Genen und Enhancern 

deren Distanz unterschätzen. Darüberhinaus zeigen die DHS-eQTLs, dass 

Promoter-proximale CRMs umfassende distale Aktivität aufweisen.  

Die räumliche Trennung von Populationen führt zu einer Zunahme der genetischen 

Unterschiede zwischen diesen, verursacht durch Drift und Adaption an die 

verschiedenen Umweltfaktoren. Wir haben die Genexpressionsunterschiede 

zwischen Drosophila Populationen von fünf Kontinenten untersucht. Dazu wurde 

RNA-seq an 80 Inzuchtfliegenlinien durchgeführt. Die hohe Qualität der 

resultierenden Datensätze wurde durch verschiedene Qualitätskontrollen 

sichergestellt. Die Genexpressionsprofile zeigen eine nachweisbare Diversität 

zwischen den Fliegenlinien der verschiedenen Kontinente und bestätigen damit was 
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bereits auf genetischer Ebene beobachtet wurde: Die afrikanische Population grenzt 

sich am stärksten ab, während die amerikanische, europäische und australische 

weniger Diversität aufweisen. Darüberhinaus konnten wir 903 Gen- und 2.021 Exon-

eQTLs identifizieren.  

Der genetischen Variation liegen Änderungen in der DNA-Sequenz zugrunde und 

diese Änderungen können Transkriptionsfaktorbindestellen (TFBS) stören. Diese 

wiederum können zu einer Veränderung des Chromatins führen (offen/geschlossen 

oder „accessible/inaccessible“). Wir haben LS-GKM angewendet (eine SVM 

Methode, die „gapped k-mers“ verwendet), um die Sequenzeigenschaften von 

gewebespezifischer „chromatin accessibility“ zu lernen und den Einfluss von 

natürlichen Sequenzvariationen auf diese Zugänglichkeit zu Chromatin 

vorherzusagen. Dafür haben wir LS-GKM mit sechs gewebespezifischen Datensets 

trainiert: neuroektodermale, mesodermale und doppelt-negative CRMs, jeweils 

unterteilt in Promoter-proximale und Promoter-distale Sequenzen. Trotz dieses 

kleinen Trainingssets erbringt die Methode gute Leistungen und findet in 

unvoreingenommener Weise gewebespezifische TFBS. Abschließend bewerten wir 

Varianten von verschieden Gruppen inzüchtiger Drosophila-Linien. 

Interessanterweise zeigt sich dabei, dass seltene Varianten einen größeren Einfluss 

auf die Chromatin Zugänglichkeit haben.  
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I - Introduction 
 

 

1 - Gene expression is regulated by a plethora of cis 
Regulatory Modules 

 

1.1 - Gene expression drives cell diversity 

In this section, I will discuss the importance of gene regulation to shape cell diversity 

during embryonic development. Precise spatio-temporal regulation of gene 

expression is fundamental for cell differentiation and the definition of anatomical 

structures. In addition, I will introduce Drosophila melanogaster as a model organism 

to study embryonic development.  

 

1.1.1 - All cells of each organism have the same genome but express different 
sets of genes 

Multicellular organisms are complex systems that can perform many functions. From 

tissue regeneration and food digestion to memory and movement, each process is 

carried out by specialized cell types. Cell types are different in both their structure 

and the purpose they fulfill. For example, neurons are very elongated cells with 

multiple branches that form connections with other neurons and transmit electrical 

signals. Hepatocytes, on the other hand, are much smaller and round in shape. Their 

main functions are linked to metabolism and protein synthesis. Despite huge diversity 

between cell types, all cells of multicellular organisms contain the same DNA (with a 

few exceptions, such as erythrocytes or lymphocytes). This means that every cell 

contains all the information necessary to generate a full organism and, consequently, 

any other cell type. Differences between cells arise because of the expression of a 

specific subset of genes in each cell. The messenger RNA (mRNA) is then translated 

into protein that characterizes cell-specific structure and function. For example, 
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human cells generally express between 30 and 60% of all genes encoded in the 

genome1.   

Gene expression is controlled at many stages. The regulation of transcription is the 

first and arguably the most important step. A gene can be switched “on” or “off” only 

at the transcriptional level, while the other steps of gene regulation determine the 

amount, stability and post-translational modifications of the protein product. In the 

next sections, I will focus on gene expression regulation at the transcriptional level. 

 

1.1.2 - Differential gene expression gives rise to cell type diversity and 
anatomical structures during development 

In order to understand how cell types arise through gene regulation, it is essential to 

study how development works. In fact, most animals start their life as one single 

undifferentiated cell. After several replication cycles, cells differentiate into more and 

more specific cell types. At the same time, the major body plan is defined. Cell 

modifications and the formation of anatomical structures are strictly associated with 

gene expression changes.  

Drosophila melanogaster has proven to be a powerful model organism to study 

embryonic development. Besides being cheap to raise and easy to mutagenize2, 

Drosophila has a compact genome3 and can produce large amounts of embryos in a 

short time. In addition, it often harbors a single copy of developmental genes 

(mammals often have multiple genes with overlapping functions), making it easier to 

hack developmental processes2.  

As for the majority of animals, the development of Drosophila starts from a fertilized 

cell that undergoes fast replication cycles. At 2 hours post fertilization (hpf), the 

embryo is made of multipotent cells that contain molecular signals, in form of 

Transcription Factors (TFs), that will determine their fate (Figure 1a,d). The gradients 

of molecules in the egg at this stage define the future axes of the embryo - this is the 

first step to delineate the body plan and it will later lead to the formation of the three 

main segments: head, thorax and abdomen. Gastrulation forms the three germ 

layers – ectoderm, mesoderm and endoderm – and is followed by specification of cell 

types within each germ layer (Figure 1b,e). Finally, after the major body plans have 
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been established, cells differentiate to their final state, giving rise to the variety of cell 

types that are found in the larval and adult body (Figure 1c,f). All chapters of this 

thesis will discuss experiments linked to Drosophila embryonic development and, in 

particular, to the following time intervals: 2-4 hpf (multipotent cells and gastrulation), 

6-8 hpf (cell specification) and 10-12 hpf (terminal differentiation). 

 

Figure 1 - Drosophila embryonic development is guided by precise spatio-temporal gene 
expression.  (A and D) Drosophila embryo at 2 hpf. The cells are still in a multipotent state but the 
major body plans have been already established. (B and E) Drosophila embryo at 6 to 8 hpf. 
Gastrulation has occurred and cells are undergoing specification within germ layers. (C and F) 
Drosophila embryo at 10 to 12 hpf. Terminal differentiation of cell fates is underway. (G) Patterns of Hox 
gene expression in an embryo at 6 to 8 hpf. These precise expression patterns will specify segment 
identity along the anterior-posterior axis. Adapted from Alberts et al.1, (D) and (E) from Turner et al.4, (F) 
from Petschek et al.5, (G) from Kosman et al.6 
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Specific gene expression is also crucial to define the anatomy of Drosophila.  Figure 

1g shows the overlap between gene expression and future anatomical structures in 

an embryo at 6-8 hpf. Colors correspond to the expression patterns of different 

homeotic genes. The precise spatio-temporal expression of these genes is crucial to 

define the body plan. For example, the expression of Antennapedia (Antp) and 

Ultrabithorax (Ubx) identifies the developing thorax, while abdominal A (abd-A) and 

Abdominal B (abd-B) define the developing abdomen. 

 

 

1.2 - Gene expression is controlled by the interplay of many 
cis Regulatory Modules 

Protein coding sequences only make up 15.9% of the Drosophila genome. This 

proportion goes down to 2% in most mammals, including humans. The remaining 

part of the genome - referred to as the non-coding genome - is disseminated of cis 

Regulatory Modules (CRMs): discrete genomic regions that regulate gene 

expression and exert their function by recruiting Transcription Factors to the DNA. 

There are four major classes of CRMs: promoters7, enhancers8, silencers9 and 

insulators10 each with different functions and sequence composition. In the following 

pages, I will briefly introduce them. 

 

1.2.1 - Promoters 

Promoters are short CRMs that regulate the initiation and intensity of gene 

expression and they integrate the cues from distal elements7. Coding and non-coding 

genes have at least one promoter sequence that ensures robust and preferential 

transcription in the direction of the gene. The first transcribed base on the DNA 

sequence is called Transcription Start Site (TSS) and it might vary between 

transcripts. The surrounding area (about ±50 base pairs) is called core promoter. The 

core promoter recruits RNA Polymerase II (Pol II) and the General Transcription 

Factors to assemble the Pre-Initiation Complex (PIC)11. Core promoters are not the 
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only sequences capable of assembling the PIC12, but the main difference with non-

promoter regions is that the latter generally show bi-directional transcription.  

Depending on the core promoter type, transcription initiation can be focused or 

broad13. Narrow (or focused) promoters have a specific TSS and produce transcripts 

that start from the same position. On the other hand, broad promoters have multiple 

TSS over the core-promoter region: the PIC can be assembled on multiple positions 

and they generate transcripts with variable starting positions. The sequence and 

transcriptional properties of core promoters are related to the function of the gene 

they regulate. Core promoters can be divided into three categories found in all 

metazoans that depend on the gene that they regulate:  

1. Adult tissue-specific genes. These core promoters tend to be associated 

with TATA-box and Initiator (Inr) motifs14 and tend to be narrow 

promoters. They are usually active in terminally differentiated cells. 

2. Housekeeping genes. Housekeeping genes are expressed in most cells 

and across developmental stages. In Drosophila they are enriched for 

Ohler 1, Ohler 6 and DNA replication-related element (DRE) motifs15. 

3. Developmental genes. These genes are mostly expressed during 

development and they are required to be efficiently activated and 

inactivated. To achieve fast regulation, they can be “poised” to be 

transcribed. They contain Inr and Downstream Promoter Element (DPE) 

motifs and have focused initiation16. 

Promoters can be characterized by measuring their capability to initiate transcription. 

Methods such as CAGE17,18 and PRO-Seq19 precisely identify the very first bases of 

mRNAs and have been used to map at single base pair resolution the TSS of many 

genes. In addition, these assays can characterize broad and narrow promoters. 

Another method to identify promoter activity genome-wide is SuRe20, a technique 

used to assess self-transcription capability of DNA sequences. 

 

1.2.2 - Enhancers 

Enhancers have been functionally described as sequences capable of increasing 

transcriptional output regardless of their orientation and distance from the gene21. In 
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general, enhancers are clusters of Transcription Factor Binding Sites (TFBS) and 

function by attracting multiple TFs to the chromatin22. Transcription factors 

cooperatively bind to enhancers and displace the nearby nucleosomes. The 

sequence composition of enhancers is more heterogeneous than that of promoters, 

making it more challenging to categorize them. Another difference between 

promoters and enhancers is that while the first tend to be broadly active, the second 

act in a tissue and time-specific manner. The diversity of TFBS composition found in 

enhancers also explains how they can drive such a variety of transcriptional patterns. 

Genes are generally regulated by multiple enhancers and the global expression 

pattern that we observe is the sum of the action of multiple specific enhancers. In 

addition, enhancers act redundantly to increase gene expression robustness. A well-

characterized example of combinatorial enhancer activity is the regulation of the 

Drosophila gene even skipped (eve). At 2 hpf eve is expressed in seven stripes that, 

together with the specific expression of other genes, will guide the segmentation of 

the embryo (Figure 2). This complex expression pattern is driven by multiple 

enhancers, each responsible for the expression of one or two stripes. Other 

enhancers are responsible for eve expression later during embryogenesis in the 

brain and muscle precursors.  

 

Figure 2 – eve expression pattern is guided by the interplay of many CRMs. The figure shows a 
schematic representation of the locus of the eve gene. The coding sequence is represented in red while 
the surrounding enhancers are shown in orange.  Arrows point to the expression patterns driven by 
each enhancer alone. The in situ hybridization images display the total expression of eve (orange) and 
the specific expression driven by each enhancer (dark blue). From Alberts et al.1, adapted from Fujioka 
et al.23 

The Modular Nature of Regulatory DNA Allows Genes to Have
Multiple Independently Controlled Functions

The elaborate patterning process just described depends on the long stretches
of noncoding DNA sequence that control the expression of each of the genes
involved. These regulatory regions bind multiple copies of the gene regulatory
proteins produced by the patterning genes expressed earlier. Like an input–out-
put logic device, an individual gene is thus turned on and off according to the
particular combination of proteins bound to its regulatory regions at each stage
of development. In Chapter 7 we describe one particular segmentation gene—
the pair-rule gene Even-skipped (Eve) —and discuss how the decision whether to
transcribe the gene is made on the basis of all these inputs (see Figure 7–55).
This example can be taken further to illustrate some important principles of
developmental patterning.

Individual stripes of Eve expression depend on separate regulatory modules
in the Eve regulatory DNA. Thus, one regulatory module is responsible for driv-
ing Eve expression in stripes 1 + 5, another for stripe 2, another for stripes 3 + 7 ,
and yet another for stripes 4 + 6 ( Figure 22–39 ). Each regulatory module defines
a different set of requirements for gene expression according to the concentra-
tions of the products of the egg-polarity and gap genes. In this way, the Eve reg-
ulatory DNA serves to translate the complex nonrepetitive pattern of egg-polar-
ity and gap proteins into the periodic pattern of expression of a pair-rule gene. 

The modular organization of the Eve regulatory DNA just described is typi-
cal of gene regulation in multicellular animals and plants, and it has profound
implications. By stringing together sequences of modules that respond to differ-
ent combinations of regulatory proteins, it is possible to generate almost any
pattern of gene expression on the basis of almost any other. Modularity, more-
over, allows the regulatory DNA to define patterns of gene expression that are
not merely complex, but whose parts are independently adjustable. A change in
one of the regulatory modules can alter one part of the expression pattern with-
out affecting the rest, and without requiring changes in regulatory proteins that
would have repercussions for the expression of other genes in the genome. As
described in Chapter 7, it is such regulatory DNA that contains the key to the
complex organization of multicellular plants and animals, and its properties
make possible the independent adaptability of each part of an organism’s body
structure in the course of evolution.

Most of the segmentation genes also have important functions at other
times and places in the development of Drosophila . The Eve gene, for example,
is expressed in subsets of neurons, in muscle precursor cells, and in various

DROSOPHILA AND THE MOLECULAR GENETICS OF PATTERN FORMATION 1339

coding

subset of neurons stripes 4 and 6 stripe 1 stripe 5

stripes 3 and 7

stripe 2

3000 nucleotide pairs

Eve  mRNA

muscle 
precursors

stripes 1 and 5

Figure 22–39 Modular organization of
the regulatory DNA of the Eve gene. In
the experiment shown, cloned fragments
of the regulatory DNA were linked to a
LacZ reporter (a bacterial gene).
Transgenic embryos containing these
constructs were then stained by in situ
hybridization to reveal the pattern of
expression of LacZ (blue/black), and
counterstained with an anti-Eve antibody
(orange) to show the positions of the
normal Eve expression stripes. Different
segments of the Eve regulatory DNA
(ochre) are thus found to drive gene
expression in regions corresponding to
different parts of the normal Eve
expression pattern. Two segments in
tandem drive expression in a pattern that
is the sum of the patterns generated by
each of them individually. Separate
regulatory modules are responsible for
different times of gene expression, as well
as different locations: the leftmost panel
shows the action of a module that comes
into play later than the others illustrated
and drives expression in a subset of
neurons. (From M. Fujioka et al.,
Development 126:2527–538, 1999. 
With permission from The Company 
of Biologists.)
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By displacing the nucleosomes, the binding of transcription factors on enhancers 

makes the chromatin more sensitive to cutting by endonucleases and insertion of 

transposases. This property is assessed respectively by DNase hypersensitivity24 

and ATAC-Seq25. In addition, ChIP-Seq26,27 can be used to characterize transcription 

factor binding and then identify putative enhancers. Furthermore, STARR-Seq28 is a 

method that can assay enhancer activity genome-wide. Finally, both promoter and 

enhancers are conserved during evolution. A phylogenetic strategy to identify them is 

to study sequence conservation across species29. The expression patterns driven by 

enhancers can be characterized by enhancer assays such as those shown in Figure 

2.  

 

1.2.3 - Silencers 

Silencers operational definition is similar to that of enhancers. In fact, silencers can 

suppress transcription independently of their orientation and distance from the target 

gene30. They are clusters of Transcription Factor Binding Sites and recruit repressor 

proteins to the chromatin. They can act by contacting the promoter (with the same 

mechanism as that of enhancers) or can induce epigenetic modifications that 

suppress transcription. Silencers can be identified with DNase hypersensitivity, 

ATAC-Seq and ChIP-Seq and display similar properties to enhancers making it 

difficult to distinguish the two using only molecular assays. 

 

1.2.4 - Insulators 

Enhancers can influence gene expression even if they are located hundreds of 

kilobases from the target gene. Because of this property, enhancers could engage in 

many unspecific interactions with surrounding genes. Insulators are a category of 

CRM that can stop the interaction between enhancers and promoters if they are 

placed in between the two on the linear genome31. Insulators do not influence 

promoter or enhancer intrinsic activity; they act by blocking the physical interaction 

between the two. In Drosophila, there are at least five classes of known insulators32 

each bound by different combinations of insulator proteins, such as CTCF, GAGA 

binding factor (GAF) and suppressor of hairy wing (Su[Hw]).  
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Insulators organize the genome in so called Topologically Associating Domains 

(TADs). TADs are self-interacting regions that usually share the same epigenetic 

marks and are delineated by insulators at their boundaries. Enhancers are unlikely to 

interact with genes outside of the TAD they are located in. The disruption of TAD 

borders can cause non-physiological enhancer-promoter interactions and ectopic 

gene expression that can lead to pathologies such as cancer33. Insulator regions can 

be characterized by ChIP-Seq and motif analysis since most insulator proteins have 

clear binding preferences. In addition, TADs can be studied with chromatin 

conformation capture techniques34 that reveal interaction frequencies between DNA 

fragments. 

 

1.2.5 - The signal from multiple cis Regulatory Modules is integrated at the 
promoter level 

As we have seen, gene expression is regulated by the interplay of many cis 

Regulatory Modules (Figure 3). CRMs recruit regulatory proteins to DNA and, by 

looping, they interact with the target gene promoter. This interaction occurs via the 

mediator complex. The activating and repressing signals from enhancers and 

silencers are then integrated at the promoter and determine the transcription rate. 

Each CRM is bound by a combination of TFs that regulate the effect on gene 

expression and the specificity of interaction with the target promoter. The Drosophila 

genome encodes for more than 1,000 transcription factors allowing for a variety of 

combinations at the CRM level. 

TADs generally include tens of genes and hundreds of CRMs but not all enhancers 

regulate all genes35. In fact, classic models of transcription regulation postulate that 

each CRM regulates only one gene1 and only a handful of CRM sharing examples 

are known36. It is still unclear how specificity in CRM-promoter interactions is 

achieved. Furthermore, developing high throughput assays to discover which CRM 

regulate which promoter has proven to be challenging. In chapter “II - Genetic 

variation as a tool to associate cis Regulatory Modules with their target genes” I will 

introduce a method to perform CRM to gene associations. This method identifies 

almost 3,000 CRM-promoter interactions and reveals a high rate of CRM sharing in 

Drosophila. 
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Figure 3 – Model of gene control region for eukaryotic genes. The figure gives a schematic 
representation of the elements that are involved in gene regulation. The gene X (light grey) is preceded 
by a promoter that recruits the general transcription factors and the PolII to assemble the PIC. Around 
the gene, many CRMs (light green) are bound by transcription factors. By looping, CRMs contact the 
promoter through the mediator complex and activate transcription. From Alberts et al.1 

 

 

 
  

Eucaryotic Gene Activator Proteins Promote the Assembly of RNA
Polymerase and the General Transcription Factors at the
Startpoint of Transcription

The DNA sites to which eucaryotic gene activator proteins bind were originally
called enhancers because their presence “enhanced” the rate of transcription
initiation. It came as a surprise when it was first discovered that these activator
proteins could be bound tens of thousands of nucleotide pairs away from the
promoter, but, as we have seen, DNA looping provides at least one explanation
for this initially puzzling observation.

The simplest gene activator proteins have a modular design consisting of
two distinct domains. One domain usually contains one of the structural motifs
discussed previously that recognizes a specific DNA sequence. The second
domain—sometimes called an activation domain —accelerates the rate of tran-
scription initiation. This type of modular design was first revealed by experi-
ments in which genetic engineering techniques were used to create a chimeric
protein containing the activation domain of one protein fused to the DNA-bind-
ing domain of a different protein ( Figure 7–45 ).

Once bound to DNA, how do eucaryotic gene activator proteins increase the
rate of transcription initiation? As we will see shortly, there are several mecha-
nisms by which this can occur, and, in many cases, these different mechanisms
work in concert at a single promoter. But, regardless of the precise biochemical
pathway, the ultimate function of activators is to attract, position, and modify
the general transcription factors, Mediator, and RNA polymerase II at the pro-
moter so that transcription can begin. They do this both by acting directly on
these components and, indirectly, by changing the chromatin structure around
the promoter. 

Some activator proteins bind directly to one or more of the general tran-
scription factors, accelerating their assembly on a promoter that is linked
through DNA to that activator. Others interact with Mediator and attract it to
DNA where it can then facilitate assembly of RNA polymerase and the general
transcription factors at the promoter (see Figure 7–44). In this sense, eucaryotic
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the gene control region for gene X

RNA transcript

TATA

TATA

promoter
spacer DNA

gene regulatory proteins

general
transcription

factors
RNA polymerase II

gene X

gene
regulatory

proteins

regulatory
sequence

gene X

Mediator

Figure 7–44 The gene control region for
a typical eucaryotic gene. The promoter
is the DNA sequence where the general
transcription factors and the polymerase
assemble (see Figure 6–16). The
regulatory sequences serve as binding
sites for gene regulatory proteins, whose
presence on the DNA affects the rate of
transcription initiation. These sequences
can be located adjacent to the promoter,
far upstream of it, or even within introns
or downstream of the gene. As shown in
the lower panel, DNA looping allows
gene regulatory proteins bound at any of
these positions to interact with the
proteins that assemble at the promoter.
Many gene regulatory proteins act
through Mediator, while others influence
the general transcription factors and RNA
polymerase directly. Although not shown
here, many gene regulatory proteins also
influence the chromatin structure of the
DNA control region thereby affecting
transcription initiation indirectly (see
Figure 4–45). As noted in the text, for
simplicity, “gene X” refers here to the
coding sequence within the gene.

Whereas Mediator and the general
transcription factors are the same for all
polymerase II transcribed genes, the
gene regulatory proteins and the
locations of their binding sites relative to
the promoter differ for each gene.
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2 - Genetic variation causes diversity between 
individuals of the same species 

 

 

2.1 - Population genetics studies differences between 
individuals 

Despite following the same developmental program, animals of the same species are 

not identical. Population genetics is the branch of genetics concerned with 

understanding diversity between individuals. In this section, I will introduce some 

basic concepts about naturally occurring genetic variation and the consequences on 

phenotype.  

 

2.1.1 - Differences between individuals of the same species are caused by 
genetic variation and interactions with the environment 

Two main factors shape phenotypic variability: the environment and genetic variation. 

Diversity between genomes is generated by, for example, DNA polymerase errors 

during DNA replication and is inherited from parents to the offspring37. Genetic 

variants are locations in the DNA sequence that are polymorphic (different across 

individuals). Alternative versions of a variant are called alleles and together, they 

make the genetic pool of a population. The other source of phenotypic variation is the 

environment. In fact, each individual needs to face different environmental 

challenges that, especially during development, can modify the phenotype. 

Depending on what phenotype is considered, the environmental or the genetic 

component might have a larger influence than the other. A simple way to estimate 

how much genetics alone explains variability in the phenotype is to measure a 

phenotype’s heritability38. For example, in human, height is highly controlled by 

genetics with an estimated heritability over 80%39. On the other hand, body weight is 

mostly dependent on the environment, especially at a young age40.  
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A disadvantage of studying phenotypic variation in natural populations is that it is 

very challenging to disentangle the genetic from the environmental contributions. In 

the example seen before, the heritability of human weight is inflated by common 

eating behaviors within families. This component is independent from genetics but 

increases the heritability estimates. Model organisms can solve this issue and 

represent an outstanding resource for population genetics. In fact, it is possible to 

raise them in controlled conditions that minimize the environmental contribution to 

phenotypic variation. 

 

2.1.2 - The majority of naturally occurring variants have no effect on fitness 

Genetic variants occur at different frequencies across populations. After arising due 

to replication errors, variants can be inherited by the offspring or disappear from the 

population. In fact, the allele frequency of variants can change over time because of 

drift (random changes) or selection (due to impact on fitness). Common alleles are 

generally favored in the population and have a lower chance of disappearing by drift. 

In addition, genetic variation is the raw material for evolution. Natural selection favors 

the reproduction of the fittest individuals and causes an increase in the frequency of 

variants with positive effects and a decrease in frequency of variants with negative 

effects. 

In 1968, Motoo Kimura estimated an exceedingly higher mutation rate in mammals 

than expected at the time41. His calculation from the mammalian hemoglobin 

sequences was that each mammalian zygote harbors four novel mutations. We now 

know that this was an underestimate and that non-coding regions have even higher 

mutation rates than coding sequences. However, this discovery was sufficient to 

propose that the majority of new mutations have no effect on fitness. This concept is 

now known as the neutral theory of molecular evolution42 and is generally used as 

the null model when studying selection on genetic variants. Confirmation of the 

neutral theory of evolution has been accumulating during the years. The most 

relevant is the observation that biological systems show a high degree of robustness: 

the majority of variation at the molecular level is compensated at the phenotypic 

level43 because of mechanisms such as redundancy44, non-linear responses and 

pleiotropy45. 
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In chapter “IV - Impact of natural sequence variation on Drosophila melanogaster 

chromatin accessibility”, I will discuss prioritization of genetic variants. It is still 

challenging to predict the effect of genetic variants on phenotype, despite the 

knowledge accumulated in the last years. To this end, I applied a machine learning 

technique to predict the impact of variants on chromatin accessibility. 

 

2.1.3 - Variants can be under positive or negative selection 

As discussed in the previous paragraph, the vast majority of genetic variation has 

little or no effect on fitness and it is therefore ignored by natural selection. On the 

other hand, variants with an effect on phenotype might confer a fitness advantage or 

a disadvantage. Depending on the effect, the variant will increase in frequency in the 

population over time (positive selection) or decrease (negative selection). In addition, 

variant frequencies can change because of drift. This phenomenon hits neutrally 

evolving variants and has a greater effect on small populations.  

Individuals from the same species tend to be separated in populations that are 

isolated by geographic barriers such as seas or mountains46. By occupying new 

territories, groups of individuals increase their physical distance, which is the major 

factor causing geographic isolation. Populations behave as independent groups of 

individuals, with separated genetic pools. In fact, in isolated populations variant 

frequencies can drift independently and different environments might pose different 

challenges. If the isolation lasts for long periods, individuals from the same species 

eventually accumulate genetic incompatibilities that make interbred offspring less 

and less fit47. 

In chapter “III - Gene expression variation among Drosophila melanogaster lines 

from five continents” I will introduce a novel gene expression dataset that sheds light 

on gene expression regulation differences between five independent populations of 

Drosophila. Differential expression among continents suggests some extent od 

adaptation to different environments. 
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2.2 - Genome Wide Association Studies 

Genome Wide Association Studies (GWAS) are a statistical method to identify 

genomic loci associated with a phenotype48. If a genetic marker (in present days 

genetic variants are used as markers) segregates with a phenotype, then the locus 

where the variant is located is in linkage with the phenotype. This is a correlative 

approach that requires thousands of cases and controls to achieve enough power. 

GWAS have identified many genes associated with multigenic phenotypes, such as 

autism49 and diabetes50. The majority of causal variants identified in GWAS are not 

located in the proximity of genes, making the interpretation of results challenging. 

 

2.2.1 - Quantitative Trait Loci  

Quantitative Trait Loci (QTLs) are genomic regions that are associated with a 

quantitative phenotype. Before the genome-sequencing era, QTLs have been 

identified in a variety of ways that did not require a fine mapping of markers. In 

present days, the approach to map QTLs is similar to GWAS and it is based on the 

correlation between the presence of a variant and the phenotype. This process is 

made easier by inbreeding since inbred fly lines exhibit homozygosity for the majority 

of loci.  

QTLs are commonly used to dissect gene regulation and the phenotypes are 

molecular ones (e.g. gene expression). Expression-QTLs (eQTLs) are mapped by 

correlating the expression of a given gene with the allelic status of the variants 

surrounding the gene. A schematic overview of the eQTL statistical process is shown 

in Figure 4. Other common molecular quantitative phenotypes are chromatin 

accessibility (caQTLs51) and histone binding (hQTLs52). By identifying genomic 

regions linked to molecular phenotypes, QTLs offer a way to understand gene 

regulation. In addition, they can be used to interpret GWAS results and shed light on 

how non-coding regions influence complex phenotypes. 

eQTL can be functionally mapped when a variant impacts gene regulation at some 

level. For example, Cannavò et al.53 describe an eQTL whose minor allele disrupts 

the binding site of Sloppy Paired 1 (Slp1) at the promoter of CG10396. Slp1 

predominantly functions as a transcriptional repressor, causing CG10396 expression 
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to be higher in the minor allele. As in this case, naturally occurring variants can hack 

gene regulation and reveal the function of CRMs. In chapter “II - Genetic variation as 

a tool to associate cis Regulatory Modules with their target genes” I will describe an 

eQTL method that makes use of natural variation to understand the function of 

CRMs. 

 

Figure 4 – Schematic representation of Quantitative Trait Loci analysis. The figure gives a 
simplified overview of the test for association between a genetic variant and the expression of a putative 
target gene. (a) Different inbred lines are genotyped. The black box indicates a variant with a G (Major) 
and C (minor) alleles. Here we assume homozygosity for the variant across all fly lines. (b) The 
individuals are separated into two groups depending on what allele they have. (c) A correlation test is 
performed between the gene expression values of the two groups. If the correlation is significant, the 
locus harboring the variant is considered an expression Quantitative Trait Locus of the tested gene. In 
the case of heterozygosity (C / G alleles), there would be a third group in between the major and minor 
alleles. 

 

2.2.2 - Inbreeding increases power in QTL studies 

Inbred lines can be generated by selecting a few individuals and by crossing them for 

multiple generations. As described before, genetic drift has a larger impact on small 

populations. After many generations (from 10 to 50) of replication between siblings, 
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the genetic pool decreases dramatically, leaving the majority of variant loci with only 

one allele. This, in turn, reduces heterozygosity and makes individuals almost 

genetically identical to each other. Inbred fly lines are generated by starting from a 

common natural population and by repeating the inbreeding procedure in parallel to 

generate multiple lines. If we consider a genetic variant with two alleles in the original 

outbred population, genetic drift will cause some inbred lines to only have the first 

allele and some others to only have the second. An example of inbred fly lines is the 

Drosophila Reference Genetic Panel54 (DGRP). The DGRP is a collection of more 

than 200 inbred fly lines that have been generated and genotyped for population 

genetics studies. 

Inbreeding gives a statistical advantage when mapping QTLs. Heterozygosity often 

masks extreme phenotypes that are present only in homozygosis. By studying lines 

homozygous for one or the other allele it is possible to assess the two extremes of 

the spectrum. Figure 5 shows how power for the discovery of QTL changes when 

using large and/or inbred populations. Inbreeding allows for powerful discovery of 

rare variants even by studying relatively small populations. 

 

Figure 5 – Estimated power to discover eQTL. The figure shows the estimated power to discover 
eQTLs for outbred (blue lines) and inbred (red lines) populations, and for large (dotted lines) and small 
(solid lines) sample sizes. The fixed values in this plot are the number of tests performed (10^8, which is 
a good estimate for cis-eQTL in Drosophila), the eQTL effect size (0.2) and the False Discovery Rate 
(0.05). The power increases as a function of the minor allele frequency (MAF). 
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2.2.3 - Drosophila is a powerful model organism to study population genetics 

Drosophila melanogaster has long been used as a model organism to study 

population genetics. The advantages of Drosophila include a compact genome, fast 

replication time and low cost to maintain. Regarding population genetics, isogenic 

inbred fly lines are easy to obtain and entire populations can be maintained at 

relatively low costs and with reasonable human labor54. Here is a brief list of the main 

advantages of using inbred Drosophila lines for population genetics studies:  

• Isogenic fly lines have homozygous states in the vast majority of variants. 

This results in larger power for association studies, as discussed in the 

paragraph above. 

• Isogenic fly lines yield the possibility to consider individuals belonging to the 

same line as clones. This allows to collect multiple individuals and to perform 

experiments at different times. By pooling individuals from isogenic lines, it is 

possible to increase the overall sample material. This is especially important 

when studying development, given that embryos generally offer little amounts 

of sample. 

• The short generation time of Drosophila and the rarity of chromatin refractory 

to recombination reduce the size of linkage disequilibrium blocks. This allows 

for precise identification of causal variants and increases the information 

content of variants in the same locus. 
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3 - Aim of the study 

In this thesis, I will describe three projects that I developed during the course of my 

Ph.D. The projects are all linked to genetic variation and its effects during Drosophila 

melanogaster embryonic development. Each project will be presented in a separate 

chapter: 

• Chapter II - Genetic variation as a tool to associate cis Regulatory Modules 

with their target genes”.  In this chapter, I will describe a novel application of 

the eQTL framework to map CRM to gene associations. The method 

identifies almost 3,000 CRM to gene associations and indicates widespread 

CRM sharing. 

 

• Chapter III - Gene expression variation among Drosophila melanogaster lines 

from five continents”. In this chapter, I will introduce a novel RNA-Seq 

dataset. We quantified gene and transcript expression of 80 Drosophila lines 

from five continents and identified differentially expressed genes and 

transcripts. In addition, we mapped gene-eQTLs and exon-eQTLs  

 

• Chapter IV - Impact of natural sequence variation on Drosophila 

melanogaster chromatin accessibility”. Here, I applied a machine learning 

approach to prioritize natural variants by their predicted effect on tissue-

specific chromatin accessibility. The method gives insight into CRM sequence 

composition and predicts tissue-specific variant effects. 
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II - Genetic variation as a tool to associate cis 
Regulatory Modules with their target genes 

 

 

1 - Introduction 

 

1.1 - Multiple techniques can be used to identify cis Regulatory Modules 

Gene expression is a tightly regulated process both in space and time, that begins 

with the regulation of gene transcription1. In order to be transcribed, genes need the 

activation of proximal and distal regulatory sequences known respectively as 

promoters and enhancers. In a simplified model: the enhancer is bound by 

transcription factors, contacts the promoter by chromatin looping, and signals to the 

Pre-Initiation Complex, bound at the promoter, to initiate transcription.  

Gene regulatory sequences, such as promoters and enhancers, are combinatorically 

bound by transcriptions factors and this property has been used to identify and 

analyze them. In the past decades, a plethora of techniques has emerged to 

characterize cis Regulatory Modules (CRMs) on a genome-wide scale. For example, 

CAGE17 and PRO-seq19 can shed light on the initiation of transcription, DNase 

hypersensitivity24 and ATAC-Seq25 identify regions of open chromatin and different 

versions of Chromatin Immunoprecipitation55 have been used to characterize 

chromatin states56 and transcription factors binding sites27. The Drosophila 

community has made major efforts in characterizing CRMs across tissues, 

developmental time points and sexes. These efforts provide a wealth of information 

about the CRMs used during embryogenesis and other stages of Drosophila 

melanogaster development. 
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1.2 - Functional and correlative methods to link CRMs and target genes 

Despite the amount of information that has been collected on CRMs, knowing which 

CRMs regulates which genes is far from trivial, but yet crucial to understanding gene 

regulation and its complexity. Databases such as REDfly57 collect evidence for 

enhancer to gene associations, but these annotations come from heterogeneous 

sources, experimental procedures, biological contexts and genetic backgrounds. 

These associations mostly rely on the measurement of putative target genes after 

deleting (or interfering with the function of) the CRM. Genomic alterations are 

complex to achieve in multicellular organisms. Nevertheless, in the last years, 

CRISPR-Cas9 technology58 was introduced as a precise genome editing tool and 

revolutionized the field of genome manipulation. After its introduction, genome 

manipulation has become quicker, easier and more affordable, but it is still far away 

from being applicable on a genome-wide scale for multicellular organisms. For these 

reasons, the information about the regulation of target genes by CRMs is sparse, 

derived from heterogeneous sources and is biased towards a few genes of large 

interest for the community. 

Genetic approaches are still not applicable at a large scale. In fact, many studies still 

rely on assigning CRMs to their closest gene, despite the existence of more 

sophisticated methods and the fact that several lines of evidence indicate that gene-

CRM proximity is not predictive. Scientists have developed correlative methods to 

link CRMs and their target genes genome-wide. Many of these methods look for an 

overlap between the tissues where the CRM is active and the neighboring genes are 

expressed (or the neighboring promoters are active). This approach has been 

applied to a wide range of data, from enhancer assays (e.g. Kvon et al.59) to single-

cell ATAC-Seq (Cicero60). The major shortcomings of correlative approaches are that 

they are very specific to the cellular context and underestimate CRM to gene 

distance (always preferring the closest gene that fits the requirements).  

 

1.3 - Quantitative Trait Loci as a functional method to associate CRMs to target 
genes on a genome-wide scale 

Quantitative Trait Loci analysis61 represents a functional strategy to link genomic 

regions to target genes. In particular, eQTLs62 can link genomic variants to variation 
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in gene expression. eQTL analysis is applied genome-wide and provides functional 

links between genomic loci and target genes. Advantages of the eQTL method are 

that eQTLs are unbiased toward genomic sequence function and “CRM-to-gene-

distance” (though often only elements within a fixed range are tested). Furthermore, 

they can uncover novel functional elements. On the other hand, eQTL results are 

often difficult to interpret because the majority of eQTLs fall outside regions with a 

known function. In addition, eQTLs require an extensive number of tests53, so that 

only the strongest associations are discovered. 

 

1.4 - Overview of the project 

In this project I build on existing eQTL methods to functionally associate CRMs and 

target genes, using DNase hypersensitivity regions as a proxy for CRMs. eQTL 

methods have largely been used in an unbiased way to ask generic questions. Here, 

I bias the test towards DHS and I compromise on search space and single variant 

resolution to increase power and reduce the number of tests. The goal is to maximize 

the number of DHS to gene associations. In this project I make use of the following 

datasets: 

• An extensive map of DNase hypersensitivity during Drosophila embryo 

development generated by James Reddington and David Garfield in the 

Furlong laboratory (unpublished). The data provide time and tissue 

resolution. 

• Full genotype information for 80 inbred Drosophila lines belonging to the 

Drosophila Genetic Reference Panel63 (DGRP). 

• Gene expression information for the corresponding 80 DGRP lines for 3 time 

points during embryo development (2-4 hpf, 6-8 hpf, 10-12 hpf) previously 

generated in the Furlong laboratory by Cannavò et al.53 

  

In the following pages, I will compare different methods, show in silico and in vitro 

validations of the DHS-eQTLs, and I will describe the results and their implications.  



II - Genetic variation as a tool to associate cis Regulatory Modules with their target genes 

 

 
22 

2 - Results 

 

 

2.1 - An eQTL method to associate cis Regulatory Modules to 
target genes 

In this work, I aim to functionally associate DHS to their target gene. To achieve this 

goal, I developed a new eQTL approach called DHS-eQTL. In this section, I will 

discuss the rationale behind building on existing eQTL methods with the specific 

purpose of performing DHS to gene associations. The method described here 

leverages the information of multiple variants overlapping the same DHS and 

reduces the number of tests to maximize the number of DHS to gene associations. I 

will examine the sources of gene expression variation in our dataset and describe 

how to control for non-cis components. I will finally compare three statistical methods 

to identify DHS to gene associations, their advantages and disadvantages.  

 

2.1.1 - DNase hypersensitivity as a proxy for cis Regulatory Modules 

In this project, I used a comprehensive DHS atlas with tissue and time resolution to 

identify CRMs during Drosophila embryogenesis. The dataset included 19 samples, 

all in duplicates: it spanned 5 tiling time points during Drosophila embryo 

development (2-4 hpf, 4-6 hpf, 6-8 hpf, 8-10 hpf, 10-12 hpf) and 3 FACS sorted 

tissues: neuroectoderm, mesoderm and non-neuroectoderm/non-mesoderm tissues 

(Figure 6). The full dataset was analyzed de novo and mapped to the latest 

Drosophila melanogaster genome assembly (BDGP6). A total of 63,157 DHS was 

identified.  

DHS were separated into two groups depending on their vicinity to a known 

Transcription Start Site (TSS):  

• Promoter-proximal DHS: are located within 500 base pairs of a known TSS. 

Since Drosophila TSS are highly enriched at Topologically Associating 

Domains (TAD) borders64,65, the promoter-proximal DHS represent a 

heterogeneous group. Promoter-proximal DHS include core promoters, 
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promoter-proximal insulators and enhancers. There are 23,268 promoter-

proximal DHS. 

• Enhancers: are more distal than 500 bases from any annotated TSS. TSS 

distal DHS are largely enhancers. There are 39,889 enhancers. Only a small 

proportion of enhancers is bound by insulator proteins. 

 

Figure 6 - DNase hypersensitivity assay. DNase profiles around the mesodermal gene Mef2. The 
tracks show DNA accessibility in different tissues and time points during Drosophila embryonic 
development. Blue: neuroectoderm, Red: mesoderm, Grey: double negative, black: whole embryo. 

 

2.1.2 - High variant density and small linkage disequilibrium blocks in 
Drosophila melanogaster support the use of an eQTL multivariate model 

The Drosophila Genetic Reference Panel (DGRP) lines are a panel of Drosophila 

melanogaster inbred lines that come from a uniform geographic location. They 

harbor more than 6,1 million variants that correspond to a density of one variant 

every 29 genomic bases. Furthermore, variants are slightly enriched in open 

chromatin by a factor of 1.18. Figure 7a shows the density of variants overlapping the 

DHS.  Although 16.1% of DHS do not overlap any variant (and are therefore ignored 

in our following analyses), the majority of DHS (>80%) contained one or more 

variants. Genetic variants located closely in the genome are partially redundant due 

to linkage disequilibrium (LD). While LD blocks generally span tens of kilobases in 

mammals, in the Drosophila genome they are on average smaller than 100 bp63. To 
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test for independence of variants overlapping the same DHS, I performed a Principal 

Component Analysis (PCA) and calculated how many Principal Components (PCs) 

were necessary to explain more than 99% of the variance for each DHS. In the 

extreme case of perfect LD between all variants overlapping the same DHS, one PC 

would explain all of the variance. Figure 7b shows that on average 3 or more PCs 

were necessary to explain the variance on each DHS, indicating high independence 

between variants. The high independence between variants is caused by the short 

reproductive cycles (15 days) of Drosophila melanogaster and the low proportion of 

compacted heterochromatin that is refractory to recombination. Independence of 

variants not only allows for single base resolution eQTL identification53 but it also 

represents a wealth of information that can be leveraged on. In this study, we 

included the variants overlapping the same DHS in one association test to reduce the 

total number of tests and to increase power (Figure 8). The rationale is that variants 

that impair or enhance the function of the same Regulatory Element will affect the 

same phenotype. 

 

Figure 7 - Genetic variants are dense over DHS and are highly independent. (a) Distribution of the 
number of variants overlapping each DHS. About 10,000 DHS do not overlap any variant and cannot be 
analyzed with any eQTL method. The majority of DHS overlaps multiple variants. (b) Number of 
Principal Components (PCs) necessary to explain >99% of the variants overlapping each DHS. If 
variants are in perfect linkage disequilibrium, one PC will explain them all. In the majority of cases >1 
PC is necessary to describe the variation overlapping each DHS showing high independence between 
variants. 

 

In order to further reduce the number of statistical tests, increase power in DHS to 
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• Variants that did not overlap any DHS were excluded from testing 

• If multiple variants overlapped the same DHS they were included in one 

multivariate test 

• All DHS-eQTL statistical tests were corrected for multiple testing in a joint 

FDR approach. This allowed the DHS-eQTL method to discover multiple DHS 

associated with the same gene and vice-versa. 

In our case, these adjustments led to a decrease from 17,234,822 to 483,064 tests.   

 

 

Figure 8 - Schematic representation and comparison of classic eQTL and DHS-eQTL methods. 
The top panel shows a schematic representation of the classic eQTL approach: we perform one test for 
each variant-to-gene association; all variants are tested for association independently of their genomic 
location; usually one association is identified for each gene (arrows). The bottom panel shows a 
schematic of the DHS-eQTL approach: I ignored variants that do not overlap any DHS; I performed one 
test for each DHS to gene association; if multiple variants overlap the same DHS they are pooled in a 
multivariate test; I could find multiple eQTLs for the same gene and for the same DHS. On the right, the 
total number of tests performed by the two methods. Blue: gene models; brown: DNase 
Hypersensitivity; purple dots: genetic variants; magenta and green boxes and arrows: eQTLs. 
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2.1.3 - Variance decomposition analysis shows that population structure is a 
major driver of gene expression variation 

Gene expression is a tightly regulated process but it is not immune to variation. 

Environment, genetic variation and noise are among the causes of gene expression 

variation61. To further investigate what are the main sources of variation in our gene 

expression dataset I performed a variance decomposition analysis66. This method 

quantifies the amount of variance of a dependent matrix that can be explained by 

many independent matrices. For each gene, expression variation was split into four 

components:  

1. Environment: represents expression changes during developmental 

times. This value captures differences among time points in the gene 

expression matrix and it includes batch effects.  

2. Population structure: identifies genetic similarities between individuals. 

The DGRP fly lines come from a uniform geographic location and share 

the same population history. For this reason, population structure and 

trans variation (whole genome variation) could not be distinguished. This 

feature encompassed both population structure and trans variation.  

3. cis variation: corresponds to genetic variation around the gene of interest 

(in this case ±50 kb from the gene).  

4. Noise: is the remaining component and it corresponds to unexplained 

variation.  

For each gene, the four components sum up to one.  

eQTL studies are focused on dissecting the role of genetic variants in changing gene 

expression. Removing confounding factors from the association tests is crucial to 

avoid false positive associations. The variance decomposition analysis is useful to 

estimate the amount of gene expression variation explained by components other 

than cis genetic variation. In this project, I focused on eQTLs in the vicinity of the 

target gene, making developmental stage, batch effects, population structure and 

trans variation potential sources of false positive associations.  

Figure 9 shows the amount of gene expression explained by the four components 

mentioned above. Environment (i.e. in our case developmental time) was the main 

driver of variation with a mean explanatory power of 36%. The Drosophila embryos 

are undergoing great anatomical modifications during the stages in this study making 

developmental time the largest predictor of gene expression changes. To remove 
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environment, together with batch effects, as a confounding factor in the DHS-eQTL 

test, I used PEER (see Methods). To confirm that PEER is actually removing the 

environment component I performed a variance decomposition of PEER residuals: 

the median amount of variance explained by the environment component was 0, 

proving that PEER effectively removes environmental sources of variation. 

Population structure and trans variation were also major drivers of gene expression 

variation with an average explanatory power of 33%. This corresponds to line-to-line 

similarity and it is removed by LIMIX and mtSet as I will discuss in the next sections. 

cis variation explained on average 13% of gene expression variation, with a very 

wide distribution: for 326 genes, this component explained more than 50% of gene 

expression variation. Finally, noise is completely orthogonal to the other three 

components and it does not represent a source of false positive eQTLs. It had an 

average explanatory power of 18%. These results show how cis variation could be 

confounded by other sources of gene expression variation (in particular population 

structure, environment and batch effects), calling for methods that can control them. 

 

Figure 9 – Variance decomposition of gene expression. The plot shows the amount of gene 
expression variation explained by three features: environment, population structure and cis variation. 
For each gene, gene expression is decomposed by these three components and residual noise (up to 
1). Each dot corresponds to an expressed gene. 
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2.1.4 - Testing three eQTL methods within the DHS-eQTL pipeline 

We assayed three QTL methods to identify DHS to gene associations: Linear Mixed 

Model (LIMIX67), Principal Component multiple Regression (PC-regression) and 

multiple Set test (mtSet68). The three QTL methods are different in many aspects. In 

particular, LIMIX performs a univariate test: it fits one test for every variant-to-gene 

association. On the other hand, PC-regression and mtSet are multivariate 

approaches that can integrate the information from multiple variants. The two 

multivariate approaches are different in some regards. In particular, mtSet can model 

multiple phenotypes (in our case we have gene expression values for three time 

points during development) as the sum of the variants in the genetic region, 

population structure and residual noise. mtSet performs a single test for each DHS to 

gene association and it can leverage the three gene expression measurements for 

each gene. Finally, PC-regression can estimate the effect size of genetic variation on 

gene expression but it cannot model multiple phenotypes requiring 3 tests for each 

DHS to gene association. In order to compare the performance of LIMIX, mtSet and 

PC-regression, I performed an eQTL call using the same inputs for the three 

methods. Figure 10 outlines the pipeline used to call DHS-eQTL (see also Methods). 

Briefly, I quantified gene expression from 3’-Tagged Sequencing reads published by 

Cannavò et al.53. This dataset reports gene expression for 80 inbred DGRP lines and 

spans three time points during development. I corrected for hidden batch effects with 

PEER69 and for mapping biases using WASP70. Finally, association tests were 

performed between corrected gene expression and sets of variants overlapping each 

DHS. I performed (i) one test for each variant-to-gene association using LIMIX, (ii) 

one test for each DHS-to-gene association using mtSet and (iii) three tests for each 

DHS-to-gene association using PC-regression. The three association methods were 

well calibrated as shown by their qqplot (Supplementary Figure 2). 
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Figure 10 - Schematic of the pipeline used to call DHS-eQTLs. The three eQTL methods (LIMIX, 
PC-regression and LIMIX) were applied to the same inputs. 3’-Tagged sequencing reads were 
processed to identify polyadenylation (pA) sites. pA sites were quantified using mappability filtered 
reads (WASP) and the sum of pA usage was used as a measure of gene expression. Hidden factors 
and batch effect were removed with PEER. We include in the test only variants that overlap DHS. The 
three eQTL methods use the same phenotypes. Regarding the genotypes, LIMIX uses single variants 
while PC-regression and mtSet all the variants that lay on the same DHS. 

 

2.1.4 - mtSet is the only multivariate eQTL method that controls for population 
structure 

After correcting for residual linkage disequilibrium, PC-regression identified 5,478 

DHS-eQTLs while mtSet finds 2,967. Both multivariate approaches discovered more 

DHS-eQTLs than the univariate approach LIMIX: 1,449 (Figure 11a). The larger 

power of multivariate models and the reduced number of tests explains this 

difference.  

PC-regression might identify more DHS-eQTLs than mtSet because it does not 

correct for variation in gene expression caused by population structure. On average, 

population structure explained 32% of gene expression variation (Figure 9). To 

assess if population structure could drive false DHS-eQTLs, we tested if DHS-eQTLs 

identified only by one statistical method have a larger proportion of variance 
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explained by population structure. Figure 11b shows that DHS-eQTLs discovered by 

both mtSet and PC-regression have a lower proportion of variance explained by 

population structure than DHS-eQTLs found exclusively by mtSet (p < 5.57e-06) and 

PC-regression (p < 0.036). This indicates that DHS-eQTLs discovered by PC-

regression and not by mtSet have higher chances to be driven by population 

structure. On the other hand, even if DHS-eQTLs found only by mtSet have a higher 

proportion of variance explained by population structure, this component is removed 

from the association test. These observations justify the use of a multivariate 

approach that corrects for population structure. We then chose to use mtSet results 

as our set of DHS-eQTLs.  

 

Figure 11 - Comparison of results between eQTL methods. (a) The UpSet plot shows the 
intersection between the DHS-eQTLs identified by the 3 methods. PC-regression discovers more DHS-
eQTL than any other methods, most of which are unique. LIMIX, the univariate method tested, is the 
least powerful. (b) Proportion of variance explained by population structure for genes involved in DHS-
eQTLs discovered by both mtSet and PC-regression (Common), only mtSet, only PC-regression and 
genes not involved in any DHS-eQTL (Not Significant). 
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2.1.5 - DHS-eQTLs discovered by the univariate model are a subset of those 
discovered by the multivariate model 

Figure 11 shows that LIMIX identified 543 unique eQTLs. This is unexpected given 

the higher power and similarity to mtSet: both implement a population structure 

correction, but mtSet leverages on multiple variants and requires fewer tests. To 

investigate this, I plotted the uncorrected p-values for the significant associations 

from mtSet (Figure 12a) and LIMIX (Figure 12b). LIMIX did not reproduce well the 

results from mtSet. The distribution of LIMIX p-values from DHS-eQTLs discovered 

by mtSet (Figure 12c) showed that sub-threshold p-values from LIMIX are semi-

randomly distributed. In contrast, mtSet reproduced to a higher extent the significant 

results from LIMIX (Pearson correlation: 0.662). The DHS-eQTLs unique to LIMIX 

had p-values from mtSet close to the FDR cutoff (Figure 12d).  

Changes in gene expression can be driven by a single variant or by multiple variants 

acting in a cooperative or antagonistic manner. mtSet, by testing the effect of multiple 

variants at the same time, can capture complex scenarios while LIMIX tests are 

confined to the effect of single variants. We can then expect simple scenarios to be 

captured by both methods (LIMIX is more powerful here with some tests just below 

the FDR cutoff for mtSet) but the complex scenarios are captured by mtSet alone 

(shown by low correlation between the two methods when looking at mtSet 

significant DHS-eQTLs). It is worth noting that this reasoning is confined to causal 

variants only. In fact, there were on average more variants on DHS-eQTLs found 

only by LIMIX than on those found only by mtSet (Supplementary Figure 3). This 

counterintuitive observation may be explained by the fact that a high number of 

neighboring variants might dilute the effect of a single causal variant and decrease 

the power of mtSet. In conclusion, these observations confirm that LIMIX results are 

always captured by mtSet (even if under the FDR cutoff), while the reverse is not 

always true. 
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Figure 12 – LIMIX unique eQTLs are subthreshold eQTLs in mtSet. The scatterplots show the p-
values for significant eQTLs for either mtSet or LIMIX. (a) The scatterplot shows the uncorrected -log10 
p-values from mtSet (x-axis) and LIMIX (y-axis) for DHS-eQTLs discovered by mtSet. The vertical 
dashed line indicates the FDR cutoff for mtSet, while the horizontal dashed line indicates the FDR cutoff 
for LIMIX. The p-values have a Person correlation of 0.432 (b) The scatterplot shows the uncorrected -
log10 p-values from mtSet (x-axis) and LIMIX (y-axis) for DHS-eQTLs discovered by LIMIX running on 
DHS only. The vertical dashed line indicates the FDR cutoff for LIMIX while the horizontal dashed line 
indicates the FDR cutoff for mtSet. The p-values have a Person correlation of 0.662. (c) The violin plot 
represents the -log10 p-value distribution for mtSet and LIMIX of DHS-eQTL discovered by mtSet. The 
horizontal solid line indicates the FDR cutoff for LIMIX. The dotted line corresponds to a p-value of 0.05. 
(d) The violin plot represents the -log10 p-value distribution for mtSet and LIMIX of DHS-eQTL 
discovered by LIMIX. The horizontal solid line indicates the FDR cutoff for mtSet. The dotted line 
corresponds to a p-value of 0.05. 

 

 

2.2 - Overview of the DHS-eQTL results 

mtSet discovered a total of 2,967 DHS-eQTL. The nature of the method allowed for 

the discovery of multiple DHS associated to the same gene and multiple genes 

linked to the same DHS, in particular, the 2,967 DHS-eQTL involve 1,673 genes and 

2,693 DHS. Depending on the type of DHS involved in the eQTL, we can split the 

results in promoter-proximal-eQTLs and distal, putative enhancer-eQTLs. 1,805 
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promoter-proximal-DHS (7.8% of all promoter-proximal DHS) were involved in 2,005 

promoter-proximal-eQTLs. 888 distal-DHS, which I refer to as enhancers from now 

on (representing 2.4% of all enhancers) were involved in 962 enhancer-eQTLs. 

Figure 13a shows the number of DHS associated to each gene. While the majority of 

genes were involved in one DHS-eQTL, 635 (38%) of them were linked to two or 

more DHS, up to 19 DHS. The majority of eQTL studies have focused on the best 

association for each gene. By including all DHS to gene associations in the multiple 

testing correction, the DHS-eQTL approach represents a step forward in capturing 

the complexity of gene regulation. 

Figure 13b displays the number of genes associated to each DHS. The ground 

assumption is that every CRM regulates only one target gene, because only a 

handful of examples of enhancers that regulate multiple genes are reported in the 

literature71. Our results showed that 231 DHS (8.6% of DHS involved in DHS-eQTLs) 

were associated to 2 genes and 21 (0.8%) are associated to 3 or 4 genes. Of those, 

173 were promoter-proximal-eQTLs and 58 were enhancer-eQTLs. This result gives 

functional evidence that CRM sharing is more widespread than previously anticipated 

and gives new functional insights into the complexity of a gene’s regulatory 

landscape. One could argue that DHS that are involved in multiple DHS-eQTLs 

represent trans interactions. Unfortunately, it is impossible to separate cis from trans 

interactions within populations of inbred individuals so we cannot directly estimate 

the amount of trans-eQTL within these results. On the other hand, testing cis window 

of ±50 kb around each gene makes it unlikely to discover trans associations. I will 

expand more on the estimation of trans-eQTLs in “2.6.1 - Different types of activity 

from promoter-proximal DHS”. 
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Figure 13 – Number of genes associated to each DHS and vice versa. (a) Number of DHS 
associated to each gene. (b) The plot shows the number of genes associated to the same DHS. DHS 
are divided in promoter-proximal DHS and enhancers. Enhancer-eQTL are shown in red, promoter-
proximal-eQTL are shown in blue. 

 

2.2.1 - Distal enhancer-eQTLs 

A current key challenge in our understanding of genome regulation is how to link 

regulatory elements (CRMs) to their target genes.  This is particularly difficult for 

distal enhancers, which can be separated by tens or hundreds of kb from their target 

gene, with many non-target genes in between. Given the increased statistical power 

of our approach, mtSet identified 962 enhancer-eQTL, one enhancer of which is 

shown in Figure 14. An enhancer, open only in the neural tissue, is associated with 

the gene aret (also called bruno 1), an RNA binding protein involved in splicing. The 

DHS is overlapping an enhancer genomic fragment tested by Kvon et al. The 

fragment has an enhancer activity specific to the ventral nerve cord (Figure 14). In 

addition, the expression patterns of the gene aret have been characterized and 

available on BDGP72. The gene is expressed in the ventral nerve cord and other 

tissues. The DHS-eQTL approach is completely unbiased towards this orthogonal 

information that in turn validates this association. We can conclude that the DHS-

eQTL method identifies a novel distal enhancer for aret located 31 kb away, with 7 

genes in between.  
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Figure 14 – Example of DHS-eQTL. (a) Screenshot displaying an example of a DHS-eQTL. A 
neuroectoderm specific enhancer is associated to aret. The tracks on top represent the DNase assay in 
neuroectoderm, mesoderm and double negative tissues at 10-12 hpf. The DHS overlaps a known 
enhancer (the region represented by the orange track was tested in an enhancer assay59). (b) 
Expression pattern induced by the region in orange when tested in an enhancer assay. (c) Gene 
expression pattern of gene aret. The gene expression induced by the enhancer region overlapped the 
expression pattern of aret. (d) Gene expression difference between major and minor alleles of the 
causal variant. The minor allele has consistently higher expression in all three time points. 

 

 

2.3 - Validations of the results 

The DHS-eQTL approach is intentionally focused on regulatory regions, to achieve 

more power in DHS to gene associations. In this section, I will compare the results 

from the DHS-eQTL with a Tiling Window eQTL method that takes the entire cis 

window into account. In addition, I will present two in silico validations of the results 

(overlap of DHS and gene tissue-specificity and Hi-C signal enrichment between 

DHS-eQTL), one in vitro validation (qPCR confirmation of major/minor allele 

expression) and one in vivo (validation by CRISPR mutagenesis). 

 

2.3.1 - DHS are enriched for eQTL signal 

By focusing on DHS, we exclude a substantial portion of the genome. The 

advantages of this approach are a 6-fold reduction in the number of tests and a 

definition of genomic windows that correspond to biologically functional units. To 

assess the impact of these two features, I tiled the genome in 300 bp large windows 
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(equal to the median DHS size) and tested all Tiling Windows within 50 kb of each 

gene for association, using mtSet (Figure 15). This approach considered the entire 

cis genomic region and is completely agnostic to DHS information, making it a 

traditional multivariate eQTL approach. The pipeline used to test for association is 

identical to the DHS-eQTL one. Tiling Windows have a similar variant frequency to 

DHS, but variants were less independent, indicating that DHS had smaller linkage 

disequilibrium blocks than the rest of the genome (Supplementary Figure 4). In total, 

I identified 9,855 Tiling Windows eQTLs. 1,237 TW-eQTL overlapped a DHS and 

reassuringly, 1,005 (81.2%) of them were associated to the same gene as in the 

DHS-eQTL (Figure 16).  

 

Figure 15 – Schematic representation of the Tiling Window-eQTL (TW-eQTL) approach. The entire 
genome is divided into Tiling Windows of 300 bp each. I perform one association test for each window. 
This method is similar to the DHS-eQTL method; the only difference is on the definition of the tested 
regions. 

 

Considering the entirety of the genome identified many more eQTLs (9,855 TW-

eQTLs vs 2,957 DHS-eQTLs). On the other hand, the DHS-eQTL discovered a 

higher number of DHS to gene associations (1,237 TW-eQTLs overlap a DHS vs 

2,957 DHS-eQTLs): this comparison was the most relevant given the goal of this 

project. In addition, despite increasing the number of tests by six times (2,892,787 vs 

483,064), the TW-eQTL only provided 3.3 times more associations than the DHS-

eQTL. By comparing DHS-eQTL and TW-QTL performance directly with a joint test, I 

observed a 1.46-fold enrichment of DHS-eQTL, demonstrating that p-values from the 

DHS-eQTL tests are globally lower. 

 Number of tests:  2,892,787TW-eQTL

...
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Figure 16 – Venn diagram comparing the results from TW-eQTL and DHS-eQTL. The TW-eQTL 
approach identifies more than three times more associations than the DHS-eQTL. However, by focusing 
on DHS only, the DHS-eQTL method is the best to associate CRMs to target genes. 

 

TW-eQTL are unbiased toward what genomic region is tested. This allowed us to 

identify genomic features that were enriched or depleted for eQTLs. Figure 17 shows 

how frequently TW-eQTLs overlap different genomic features, compared to the 

background. TW-eQTLs were enriched at promoter-proximal DHS and exons. 

Genetic variants that overlap promoters are known to have larger effects on gene 

expression compared to enhancers53 thus making promoter-proximal DHS more 

likely to harbor an eQTL.  Exons are also known to be enriched in eQTLs53: 42% of 

the TW-eQTLs overlapped exons. On the other hand, exons are depleted in DHS 

and had little relevance within the scope of this project. TW-eQTLs were depleted in 

introns and intergenic regions; they were also slightly depleted in enhancers. While 

introns and intergenic regions are known to be depleted for eQTLs (because they are 

depleted for regulatory elements), we expected enhancers to be enriched for eQTLs. 

A possible explanation for depletion of eQTLs on enhancers is that genes are 

generally regulated by multiple enhancers with overlapping activities44. Mutations on 

enhancers can be buffered more effectively than on promoters, making it less likely 

to cause measurable changes on gene expression. 
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Figure 17 – Enrichment of TW-eQTL on genomic features. The dark green bars show the observed 
frequency of TW-eQTLs on each genomic feature. The light green bars show a randomized background 
of frequencies. All frequencies sum up to 100%. 

 

2.3.2 - DHS-eQTL method is sensitive to precise DHS identification 

Tiling Windows are defined as consecutive windows on the genome and create 

breaks that do not take into account genomic function. On the other hand, DHS are 

biologically meaningful and correspond to separate CRMs. To test if pooling variants 

in a biologically meaningful way leads to a difference in test significance, I performed 

a pairwise comparison between p-values from the DHS-eQTLs and the TW that 

overlaps most bases. The DHS-eQTL p-values were globally significantly lower (one 

tailed Wilcoxon test: p<0.0034) than those from the TW-eQTL that overlaps most 

bases. This result indicates that a precise definition of window borders leads to 

stronger associations.  

In conclusion, focusing on biologically defined genomic regions and decreasing the 

number of tests enabled the DHS-eQTL approach to identify more than twice DHS to 

gene associations than the TW-eQTL approach. The TW-eQTL approach is perfectly 

valid and it gave insights into how multivariate approaches work, but it identifies less 

DHS to gene associations compared to the DHS-eQTL method.  
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2.3.3 - Enhancer and gene tissues of activity overlap more than at random 

To validate our DHS to gene associations we tested for a correspondence between 

the tissues where the DHS is active and the target gene is expressed. Since the 

DHS-eQTL method does not incorporate information about tissue-specific activity of 

DHS and gene expression, we can use this important feature to test if our DHS-

eQTLs are enriched for concordant DHS and gene tissues of activity. As many genes 

are annotated as having ubiquitous expression at early developmental stages, we 

focused on the latest time point of the DNase hypersensitivity data. We 

complemented our DHS data with gene expression information from the Berkeley 

Drosophila Genome Project72 (BDGP). This resource provides annotated expression 

patterns for more than 8,000 genes. Figure 18a shows an example of a coherent 

tissue match between a DHS and gene pair in a DHS-eQTL. The gene Mp20 is 

expressed in the visceral muscle at stage 16 (Figure 18b) and was associated to a 

mesoderm specific DHS about a kilobase away from its Transcription Start Site. On 

the other hand, Figure 18d shows an example of an incoherent association: 

CG10602 is a gene expressed in the crystal cells at stage 16 but was associated to a 

neuroectoderm specific enhancer by mtSet (Figure 18e).  

There are multiple reasons why we might find incoherent associations. First, in situ 

hybridization may not target all gene isoforms and it might not capture some tissues 

where the gene is expressed. Second, BDGP annotation is based on manual 

annotation of in situ hybridization images and it is prone to human errors. The BDGP 

dataset provides invaluable insight and it is powerful enough for a global validation, 

but the very nature of the assay does not enable assumptions about every single 

case. Third, DHS data, despite being tissue-specific, might miss rare cell types (for 

example, crystal cells represent only a small proportion of the Double Negative 

tissue). Fourth, the TSS distal DHS might be a silencer and therefore it could be 

active in tissues where the gene is not expressed and should be inversely associated 

with the gene’s expression. 

I globally tested if DHS-eQTLs are enriched for coherent associations. I defined 

tissue-specific enhancers at 10-12 hpf as those having a summit only in one time 

point and having a significantly different coverage using DESeq273. Gene expression 

annotation was downloaded from BDGP and we mapped the anatomical tissue terms 

at stages from 13 to 16 (that correspond to 10-12 hpf) to the 3 tissues in the DHS 

study. I focused on DHS-eQTL that link tissue-specific enhancers to tissue 
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specifically expressed genes. Among these DHS-eQTLs there were 38 coherent and 

24 incoherent associations. To test for significance, I performed 10,000 permutations 

of random DHS to gene associations and obtained a background distribution of 

coherent and incoherent associations (Figure 18c,f). Coherent associations were 

enriched in our results while incoherent ones were depleted. Incoherent associations 

might point to false discoveries but they do not display lower quality signatures. In 

fact, they have the same DHS to gene distance and p-value distributions as coherent 

associations. These results show an enrichment of coherent tissue of activity 

between DHS and target gene among the DHS-eQTLs. 

 

Figure 18 – Enhancer and gene tissues of activity overlap more than at random. (a) The gene 
Mp20 is associated to a mesoderm specific enhancer. (b) Expression pattern of Mp20 at stage 16 
(corresponding to 10-12 hpf). (c) The vertical bar shows the proportion of observed coherent 
associations. The transparent distribution represents the permutation background. (d) The gene 
CG10602 is associated to a neuro specific enhancer. (e) Expression pattern of CG10602 at stage 16 
(corresponding to 10-12 hpf). (f) The vertical bar shows the proportion of observed incoherent 
associations. The transparent distribution represents the permutation background. 

 

2.3.4 - DHS involved in DHS-eQTL are enriched for Hi-C contacts 

Distal regulatory elements – such as enhancers – can be located hundreds of 

kilobases away from their target promoter, but they are known to function by coming 

in physical proximity with the target gene’s promoter. In physiological contexts, 

enhancers known to regulate a gene are closer in the 3D space to the target gene 

promoter than those that do not regulate it, independently of the linear distance35. In 

the past years, many chromosome conformation capture techniques have been 
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developed to investigate the genome spatial arrangement. Among them, Hi-C34 

quantifies all pairwise contact frequencies between genomic regions, providing a 

measure that can be interpreted as spatial distance.  With the help from Aleksander 

Jankowski, a post-doc in the Furlong laboratory, we analyzed Hi-C in wild type 

embryos staged at 6-8 hpf to quantify chromosome contact frequency. DHS to gene 

associations are expected to be closer in space than random associations. We 

globally observed that DHS involved in a DHS-eQTL contact their target promoter 

more frequently than random DHS at the same linear distance from the promoter 

(Wilcoxon p<10^-188) (Figure 19). This indicates that the DHS are regulating the 

gene there are associated with, by the DHS-eQTL method. 

 

Figure 19 – DHS-eQTL have stronger Hi-C signal than random DHS to gene associations. The plot 
shows the Hi-C signal intensity distribution between DHS and target gene TSS. The top violin plot 
represents the distribution of shuffled DHS-eQTL (DHS are shuffled while genes are kept constant, DHS 
to gene distance is matched). The bottom violin plot represents DHS-eQTLs intensity signal distribution 
between DHS and target gene TSS. Hi-C signal correlates with proximity. 

 

2.3.5 - qPCR validates gene expression differences between major and minor 
alleles 

Gene expression differences between genotypes are essential to identify eQTLs. But 

since the test is correlation based, differences might be subtle and challenging to 

reproduce. In this study, we used mtSet, a statistical method that can take multiple 

variants into account. By performing a multivariate test, mtSet cannot identify a 

putative causal variant among the ones that are tested. To achieve this, I defined the 

variant with the lowest p-value in the univariate (LIMIX) test, as the putative causal 

variant. This allowed for splitting gene expression between alleles and estimating the 
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effect size of the variant on gene expression (Supplementary Figure 5). To confirm 

both the direction of the causal variant effect on gene expression and the fold change 

in gene expression, we used Real Time quantitative PCR (RT-qPCR). The 

experiments were performed by Rebecca Rodriguez Viales, a technician in the 

Furlong laboratory. We selected 5 promoter-proximal-eQTLs and 5 enhancer-eQTLs 

in which the target gene TSS is at least 10 kb away from the DHS (Supplementary 

Figure 5a-b). For each DHS-eQTL, we chose two DGRP lines harboring different 

alleles of the causal variant. The median fold change in gene expression between 

the two genotypes is lower than 2, indicating that the causal variants had minor 

effects on gene expression. We could reliably confirm mtSets associated expression 

differences for 9 out of 10 genes (eIF3f1 gave discordant results in different 

replicates and with different primers) and we confirmed our fold change estimates by 

quantifying expression in the two genotypes with RT-qPCR. All genes were 

differentially expressed between the two genotypes and in 8 out of 9 cases the 

direction of expression was the same as measured with 3’-Tagged Sequencing 

(Supplementary Figure 5c,d). RT-qPCR and 3’-Tagged Sequencing fold changes in 

gene expression between major and minor alleles are highly correlated (Pearson 

correlation: 0.85) (Figure 20). RT-qPCR validates the gene expression 

measurements from 3’-Tagged Sequencing, the direction of the eQTL effect and the 

fold-change in gene expression between lines harboring the Major and minor alleles.  

  

Figure 20 – qPCR maj/min fold change correlates with 3’-Tagged Sequencing measurement. The 
plot shows the correlation between log2 fold changes in gene expression between major and minor 
allele as measured by 3’-Tagged sequencing and quantitative Real Time PCR (qPCR). The orange dots 
represent enhancer-eQTLs while the blue dots represent promoter-eQTLs. The correlation between 
qPCR and 3’ Tagged-Sequencing log2 fold changes is: 0.858. The grey dot represents the fold change 
in expression of RpS5b, for this sample the fold change in gene expression does not agree and it is 
excluded from the correlation. 
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2.4 - The DHS-eQTL approach indicates that correlative 
methods underestimate the distance between enhancers and 
target genes 

 

Direct methods to associate enhancers to target genes (such as enhancer deletion) 

tend to be poorly scalable and time consuming: it is currently impossible to apply 

them at a genome-wide scale to a developing organism. For these reasons, 

molecular biologists have relied on correlative methods or on cell-culture based in 

vitro proxies of development to associate enhancers and target genes genome-wide. 

The most trivial approach is to associate enhancers to their closest gene. This 

simplistic method represents the best guess when nothing is known about the 

biology of the enhancer or of the gene, but it is poorly accurate. Another approach is 

to link enhancers and target genes based on the patterns of enhancer activity and 

gene expression. In a seminal study, Kvon et al.59 tested more than 10% of the 

Drosophila genome in an enhancer assay that reveals what tissues the enhancer is 

capable of driving expression in. They assigned enhancers to the closest gene with a 

compatible expression pattern. The major drawback of the method is that it relies on 

sparse data: tissues of expression is annotated for only a fraction of genes. This 

method is more accurate than linking enhancers to their closest gene, but it is still 

biased towards short distance. 

On the other hand, the DHS-eQTL approach is completely agnostic about the 

distance between the enhancer and the target gene (within our tested +/- 50 kb cis-

window). Figure 21 shows an example of long-distance enhancer-eQTL. A 

mesoderm specific enhancer was associated to PH4alphaSG1, about 30 kb away. 

The enhancer was associated to its 11th closest gene. In this section, I will compare 

the distribution of enhancer-to-gene distances obtained from different association 

methods. 
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Figure 21 - Mesoderm specific enhancer skips 6 genes to reach its target. (a) Browser shot of a 
mesoderm specific enhancer associated to the gene PH4alphaSG1. The enhancer (red box) is located 
30 kb away from the gene promoter and skips 6 genes to reach it. (b) Gene expression pattern of 
PH4alphaSG1: the gene is expressed in the circular visceral mesoderm and in the salivary gland at 10-
12 hpf. 

 

2.4.1 - Enhancers act over longer distances than promoter-proximal DHS 

The eukaryotic genome is highly compacted in the nucleus making linear distance a 

poor estimate of 3D-space distance. Chromatin Conformation Capture technologies 

show that long distance interactions are frequent35. These observations suggest that 

the idea of enhancers regulating the closest gene in linear distance might not 

represent a general rule. When looking at the distribution of distances between the 

DHS and the associated target gene TSS among the DHS-eQTL, we see that they 

are skewed toward short distances (Figure 22a). On the other hand, the same figure 

shows that the majority of DHS to gene interactions span more than 10 kb indicating 

that long distance (within the compact Drosophila genome) DHS to gene interactions 

are very common. The same result can be observed in Figure 22b: the figure shows 

the number of genes that a DHS skips to reach its target. 74.2% of DHS were not 

associated to their closest gene, with 14.4% of the DHS skipping more than 10 

genes. Virtually all eQTL studies showed the same distributions in  Figure 2253 and 

this is consistent with the idea that DHS are still more likely to regulate genes in their 

proximity. It is important to stress again that DHS to gene distance is not a parameter 

in the eQTL model, making the distributions in Figure 22a a completely unbiased 

result. If we separate enhancers from promoter-proximal DHS we observe distinct 

behavior for the two classes. In particular, enhancers act more distally than 

promoters. To summarize, Figure 22 indicates that: (1) Both enhancers and 

promoter-proximal DHS are more likely to regulate a gene in their proximity than a 

distal one. (2) Enhancers often span long distances to reach their target genes. (3) 

Enhancers act over longer distances than promoter-proximal DHS. (4) There is 

widespread distal activity from promoter-proximal DHS. 
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One caveat of the results presented here is that the eQTL approach does not make it 

possible to distinguish cis from trans associations. For example, a variant might 

marginally affect the expression of a transcription factor in its vicinity, which in turn 

might have larger effects on the regulation of a gene many kilobases away. The 

proximal effect would not be detected while the distal would: this association would 

show as a long distance eQTL. A second caveat is that eQTLs are just capturing a 

small proportion of DHS to gene interactions. In particular, eQTLs can be found when 

a variant (or a combination of variants) changes the property of a regulatory region 

that in turn influences gene expression. Variant density is not uniform across the 

genome making some regions more likely to harbor an eQTL. The variant also has to 

affect expression in a consistent manner in order to detect a significant association. 

eQTLs in general (including DHS-eQTL) are enriched for metabolic genes whose 

changes in expression have a smaller effect on fitness. Considering these limitations, 

the results of the DHS-eQTL approach are not necessarily representative of the 

entire regulatory landscape.  

 

Figure 22 – Distribution of distances between DHS and target genes for enhancer-eQTLs and 
promoter-proximal-eQTLs. (a) Distribution of DHS to target gene TSS distance split by enhancer-
eQTLs and promoter-proximal-eQTLs. (b) Genes around each DHS-eQTL are ranked from the closest 
to the farthest (based on their TSS position). The plot shows the rank of the target gene for each DHS-
eQTL. 751 DHS are associated to their closest gene, 525 to the second closest and so on.  

 

2.4.2 - Annotation methods based on expression patterns underestimate 
enhancer to gene distance 

Enhancer activity can be tested in an ectopic context via an enhancer-reporter assay. 

This assay works by cloning a genomic region with unknown enhancer activity in 
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front (or downstream) of a reporter gene with a minimal promoter. Without enhancer 

activity from the assayed region, the reporter gene will not be expressed.  When 

integrated into the genome, an enhancer assay also reveals the tissues and times 

where the enhancer is active. This is achieved by visualizing the reporter gene 

expression. Kvon et al.59 have used such transgenic enhancer assays to study 

enhancer activity for thousands of elements during embryogenesis. They tested 

more than 10% of the Drosophila non-coding genome by dividing it in more than 

7,000 Tiles (so called Vienna Tiles) each one tested in an enhancer assay. In their 

work, the researchers associated enhancers to the closest gene with a known 

expression pattern (from BDGP72) that overlapped the enhancer assay expression. 

This gene assignment approach has a few shortcomings: (1) The Tiles span a few 

kilobases, while known enhancers are generally smaller, in the range of 300-500 bp. 

Tiles might include multiple enhancers with different activity patterns and each of 

them might regulate different genes. (2) The method relies on sparse gene 

expression data from BDGP. Less than half of Drosophila melanogaster genes had 

entries in the database at the time of the study. (3) Genes are not randomly 

dispersed in the genome; this is especially relevant for the compact Drosophila 

genome. In fact, neighboring genes tend to have similar expression patterns, 

meaning that around each enhancer there can be many genes with expression 

patterns that overlap the enhancer activity.  

Figure 23 shows the distance distribution between enhancers and target genes 

assigned by 3 methods: closest gene, the Vienna Tiles approach from Kvon et al. 

and the enhancer-eQTLs identified here. Both Kvon et al. approach and enhancer-

eQTLs show that associating enhancers to their closest genes largely 

underestimates enhancer to gene distance (Figure 23a). The main difference 

between the Vienna Tiles and the enhancer-eQTL results is in the number of genes 

skipped by each enhancer (Figure 23b). Kvon et al. associate 47.8% of enhancers to 

their closest gene while this correlation could only be found for 19.2% of enhancer-

eQTLs. This difference might be explained by the fact that the search stops at the 

first gene whose expression overlaps the enhancer activity. The DHS-eQTL 

approach shows that enhancers act over longer distances than suggested by 

correlative methods. 
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Figure 23 - Distribution of distances between enhancers and target genes from three association 
methods. (a) Distribution of enhancer to target gene TSS distance split by the method of enhancer to 
gene association: closest gene, Vienna Tiles and enhancer-eQTLs. Enhancers-eQTLs span longer 
distances than the other methods. (b) Genes around each enhancer are ranked from the closest to the 
farthest (based on their TSS position). The plot shows the rank of the target gene for each enhancer to 
gene association method. Enhancers associated to their target the “closest gene” method fall in the first 
bar by definition.  

 

 

2.5 - Enhancers and promoter-proximal DHS can regulate 
multiple genes 

In the textbook view of gene regulation, CRMs control only one target gene1. In fact, 

biological systems need to regulate gene expression in a very specific way, 

especially during embryonic development74. The assumption is that to achieve this 

accuracy, each gene has a set of unique regulators. This view is challenged by many 

observations coming from topological studies and co-expression. In fact, breaking 

insulator elements brings enhancers in contact with new target genes75, suggesting 

that some enhancers are rather promiscuous if they are given the chance to interact 

with new genes. In addition, genes that are close in the linear genome tend to be co-

expressed76, suggesting regulatory elements sharing among genes77. Despite these 

global evidences, there are only a few known examples of enhancers that regulate 

two genes71. The DHS-eQTL method tests, on a genome-wide scale, associations 

between DHS and target genes. The results provide hundreds of examples of CRM 

sharing and estimate that at least 8% of CRMs are shared by genes during 

Drosophila embryonic development.  
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2.5.1 - Example of enhancer sharing 

Figure 24 shows an example of enhancer sharing. An enhancer, open only in the 

Double Negative (non-neuro non-meso) tissue, is associated to both Caf1 and 

mRpS10 genes. BDGP reports the expression patterns of the two target genes and 

they are both expressed in the midgut, an endoderm derived tissue that is included in 

the Double Negative tissue from the FACS sorting. The DHS-eQTL model is 

unbiased towards the tissues of expression of the genes, making this an independent 

validation of the results. 

 

Figure 24 – A Double Negative specific enhancer is associated with two distal genes both 
expressed in the midgut. The figure shows an enhancer open only in the Double Negative tissue at 
10-12 hpf, associated to two distal genes: Caf1 and mRpS10. The expression patterns at stage 11-12 
(corresponding to 8-10 hpf) are displayed on the right. Both genes are expressed in the midgut. 

 

2.5.2 - The expression of genes linked to the same DHS is highly correlated 

The DHS-eQTL approach discovered hundreds of promoters and enhancers 

associated to two genes i.e. cis Regulatory Modules sharing. Variants that modify the 

function of a DHS that regulates two genes should have an impact on both genes, 

leading to co-expression across DGRP lines. To test this hypothesis, I performed a 

Pearson correlation between expression (here I used gaussianized PEER residuals) 

of genes associated to the same DHS. The qqplot in Figure 25a shows the 

correlation p-values in red. 100 (43.5%) genes associated to the same DHS were 

indeed correlated in gene expression and the p-values were lower than expected by 

chance. Genes regulated by the same DHS are not randomly located in the genome 

but tend to be in proximity of each other (Figure 25b). This result was unbiased since 

the model does not take into account the distance between genes and indicated that 

genes in the same neighborhood are more likely to be coregulated. To assess the 

significance of this result I added two controls. Firstly, the light grey dots (Figure 25a) 

show correlation p-values of random pairs of genes across the whole genome. The 
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p-values from this correlation follow closely the distribution expected for random 

correlations. Secondly, since genes located in the same neighborhood tend to be co-

expressed76, I tested if the correlation between genes that share a CRM could be 

explained by vicinity alone. I selected random pairs of genes whose distance 

matches the distribution in Figure 25b and plotted the p-values in dark gray in Figure 

25a. Genes located closely in the genome were correlated to a higher extent than 

random pairs of genes, but to a lower extent than genes that share a DHS. This 

shows that genes that share a DHS had a high degree of co-expression that cannot 

be explained by vicinity alone. 

The correlation of expression between genes associated to the same DHS can lead 

to a circular argument. In fact, the DHS-eQTL is a correlation-based test and the 

three elements (two genes and one DHS) all correlate with each other. On one hand, 

one could argue that since the eQTL tests are based on correlation, if the dependent 

variables are correlated, then they will be associated to the same independent 

variables. This would mean that only one of the genes is truly regulated by the DHS, 

while the other gene’s expression is correlated to the first. But on the other hand, 

gene expression does not correlate across the whole genome (Figure 25a) indicating 

that co-expression is caused by cis regulation. In addition, this argument is of 

concern only if the correlation of expression is caused by a factor other than cis 

regulation, such as batch effects, population structure or trans effects. The pipeline 

adopted here removed these confounding effects to the best of our knowledge, 

leaving only cis regulation as an explanation for co-expression. Other than logical 

arguments, the best way to understand causality in such an interconnected system is 

to interfere with one element and observe what happens to the others. Therefore, we 

are performing CRISPR deletion of 11 DHS associated to two genes and we will 

quantify the changes in gene expression for both targets (see “3.1 - Validation of 

complex DHS-eQTLs by in vivo CRISPR-Cas9 mutagenesis”). 
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Figure 25 – Genes associated to the same DHS are close and have highly correlated gene 
expression. (a) qqplot of Pearson correlation p-values of expression from gene pairs. The correlation is 
measured among DGRP lines. The p-value reported here is the lowest among the three time points. 
The red dots represent correlation between genes associated to the same DHS in the DHS-eQTL 
results. The light grey dots represent the correlation between random pairs of genes. The dark grey dots 
represent the correlation between random pairs of genes with a distance distribution matched to the 
genes pairs in the DHS-eQTL results. The solid line shows the expected p-value distribution for non-
significant tests, the dashed lines show 95% confidence interval. (b) Distance distribution between pairs 
of genes associated to the same DHS. The gene pairs are divided into two categories depending on if 
they are associated to an enhancer (red) or a promoter-proximal DHS (blue). Cumulative curves are 
shown on top. 

 

2.5.3 - Promoters and enhancers that regulate multiple genes show different 
relationships with target genes 

Promoter-proximal-DHS and enhancers that are associated to two genes, can have 

different physical relationships with the target genes. To better understand their 

behaviour, I separated the DHS associated to two genes in four categories 

depending on where the DHS and the target genes are located: 

• Overlapping both genes: the DHS is located in proximity (< 500 bp distance 

or overlaps) of both genes. 

• Overlapping one gene: the DHS is located in proximity (< 500 bp distance or 

overlaps) of one gene but it is distal to the other. 

• Between genes: the DHS is distal to both genes and is located in between 

them. 

• External: the DHS is distal to both genes and is located externally to them. 

Figure 26a shows a schematic of these four categories and Figure 26b displays the 

counts for promoter-proximal DHS and enhancers. While promoter-proximal DHS 
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were frequently located close to at least one of the two targets, enhancers generally 

did not overlap any of the target genes and are more often external. The promoter-

proximal DHS that overlap one gene might point to trans-eQTLs. In fact, the DHS 

could have a cis effect on the expression of the proximal gene that in turn has a trans 

effect on the second distal gene. I will further discuss this observation in the next 

section.  

 

Figure 26 – Position of DHS associated to two genes relative to the targets. (a) A schematic 
representation of four possible relationships between the DHS and the two target genes. Yellow arrows 
represent short (< 500 bp) distance between the DHS and the target gene and red arrows represent 
long distance. I classified the relationships in four categories: the DHS can overlap both genes, overlap 
one gene and be distal to the second, be distal to both genes and be located either in between the two 
genes or externally. (b) The bar plot shows the counts of  DHS belonging to the four categories. DHS 
are divided in enhancers and promoter-proximal DHS. 
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2.6 - Promoter-proximal DHS have widespread distal activity 

In this project, I divided DHS in two groups depending on their proximity to known 

TSS: enhancers are TSS distal and promoter-proximal DHS are TSS proximal. The 

promoter-proximal group included a broad range of genomic elements other than 

core promoters that are challenging to separate from each other. For example, 

promoter-proximal DHS were highly enriched for insulators (59.7% of them have an 

insulator binding site), compared to enhancers (15.2%). Within the DHS-eQTL 

results, we unexpectedly observed a high proportion of distal activity from promoter-

proximal DHS. Distal activity could come from non-core promoter elements such as 

insulators or promoter-proximal enhancers. In this section, I will expand more on the 

observation that promoter-proximal DHS are often associated with distal genes. 

 

2.6.1 - Different types of activity from promoter-proximal DHS 

Promoter-proximal DHS can have different modalities of activity depending on the 

distance to the target gene. I divided promoter-proximal DHS activity into four 

categories: local, distal, local and distal, and multiple distal. Figure 27 shows a 

schematic representation of these types of activity and an example for each.  

Assuming that promoter-proximal DHS behave as core promoters, we expect them to 

regulate genes in their vicinity. Figure 27 shows an example of promoter-proximal 

DHS with local activity: the gene Tfb4 was linked to a DHS that overlaps its TSS. 

Promoter-proximal DHS have a 3,68 odds-ratio enrichment for local activity 

compared to any other distal activity. In fact, 615 DHS-eQTLs described an 

association between a promoter-proximal DHS and a gene with a TSS within 500 bp 

from the DHS. This result is not novel, but it is very reassuring. 

1,004 DHS-eQTL describe distal activity from promoter-proximal DHS. Figure 27 

shows an example of promoter-proximal DHS with distal activity: the promoter of 

gene CG8378 was linked to the distal gene Hen1. This was an unexpected behavior 

for a core promoter, but promoter-proximal DHS also include enhancers and 

insulators that can have distal activity. One could argue that these DHS-eQTLs 

represent trans-eQTLs. In fact, a variant on a promoter might have a mild effect on 

the expression of the gene regulated by the promoter itself, that in turn leads to 
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larger effects on the gene’s targets. For example, returning to the example in Figure 

27, CG8378 is a transcription factor belonging to the Smyd gene family. If we 

suppose that CG8378 regulates Hen1, the variant causing the DHS-eQTL between 

the promoter of CG8378 and Hen1 might cause an undetectable expression change 

to CG8378 itself (mtSet uncorrected p-value > 0.1); that in turn would cause larger 

differences in the expression of Hen1. Then we will discover only the association 

between the promoter of CG8378 and Hen1. To assess if trans effects could globally 

explain distal regulation from promoter-proximal DHS, I tested if this category of 

promoter-proximal DHS is enriched to be in the vicinity of a transcription factor’s 

TSS. Compared to all the expressed genes, promoter-proximal DHS with distal 

activity were not enriched for being located at the 5’ of Transcription Factors (3.60% 

were at a transcription factor TSS, within 500 bp, compared to 3.62% of all 

expressed genes that are annotated as transcription factors). On the other hand, 

promoter-proximal DHS with local activity were depleted for being close to a 

Transcription Factors TSS (1.26%). The proportion of promoter-proximal DHS with 

distal activity in the vicinity of a transcription factor is marginal, suggesting that this 

mechanism cannot be explained by trans effects alone. 

Out of the 173 promoter-proximal DHS associated to two genes, 96 were linked to a 

gene in their vicinity together with a distal gene, while 77 were linked to two distal 

genes. Figure 27 shows an example of a promoter-proximal DHS associated to a 

local and a distal gene: the promoter of e(y)2b was associated both to itself and the 

distal gene CG1091. It also shows an example of promoter-proximal DHS associated 

to two distal genes: the promoter of gammaTub23C was associated to CG9641 and 

CG3165. Again, there was no evidence for enrichment of transcription factors TSS 

close to these DHS (4.40% of promoter-proximal DHS with local and distal activity 

were promoters of transcription factors, as were 2.74% of promoter-proximal DHS 

linked to two distal genes). 
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Figure 27 – Four types of activity from promoter-proximal DHS. Promoter-proximal-eQTLs can be 
divided into four categories. PROXIMAL: 615 promoter-proximal DHS are associated to a gene that has 
a TSS within 500 bp. On the right, a DHS-eQTL between the promoter of Tfb4 and the gene Tfb4 itself. 
DISTAL: 1004 promoter-proximal DHS are associated to a gene that does not have a TSS within 500 
bp. On the right, a DHS-eQTL between the promoter of CG8378 and the distal gene Hen1. PROXIMAL 
AND/OR DISTAL: 96 promoter-proximal DHS are associated to two genes, at least one of which has a 
TSS within 500 bp. On the right, the promoter of e(y)2b is associated to e(y)2b itself and the distal gene 
CG1091. TWO DISTAL: 77 promoter-proximal DHS are associated to two genes whose TSS are further 
than 500 bp. On the right, the promoter of gammaTub23C is linked to the two distal genes CG9641 and 
CG3165. The two genes are divergently transcribed from the same promoter and their expression is 
highly correlated. 
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2.6.2 - Promoters of convergently transcribed genes are associated to each 
other 

Within our DHS-eQTL dataset, we observed 3 cases of convergently transcribed 

genes whose promoters are associated to both genes. These may be special cases 

of promoter-proximal DHS that have both proximal and distal activity (Figure 27). 

Figure 28 shows an example: Sec61gamma and Arp10 were short genes transcribed 

in a convergent direction. Their 3’-UTR did not overlap because they use 

independent polyadenylation sites. Expression of the two genes was positively 

correlated (Pearson correlation = 0.49), indicating strong coregulation. The DHS-

eQTL results imply that both genes were linked to each other’s promoters (the 

promoter of Sec61gamma was associated to itself and Arp10 and the promoter of 

Arp10 was associated to itself and Sec61gamma). In addition, both promoters were 

bound by BEAF and CP190, two insulator proteins. These independent lines of 

evidence suggest that the promoters might loop together and regulate each other’s 

expression. These features are common to the other two promoter couples (dnk and 

snRNP-U1-C, Cdc2rk and mRpL42) indicating that this might be a rather common 

mechanism of gene regulation. We will test these three cases performing six 

independent deletions of the promoters (as discussed in “3.1 - Validation of complex 

DHS-eQTLs by in vivo CRISPR-Cas9 mutagenesis”). 

 

Figure 28 – Sec61gamma and Arp10 promoters are associated to both genes. The genes 
Sec61gamma and Arp10 are transcribed in convergent direction, but their polyadenylation sites do not 
overlap. Both promoter-proximal DHS (in red boxes) are associated to both genes, suggesting 
coregulation from promoter-proximal elements. The expression of the two genes is highly and positively 
correlated across DGRP lines. 

 

2.6.3 - Promoter-proximal DHS with distal activity show weak evidence of 
enhancer behavior 

Promoter-proximal DHS are a heterogeneous group of CRMs that encompasses 

core promoters, enhancers and insulators. We observe widespread distal activity 
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Another possible explanation is that promoter-proximal DHS with distal activity 

behave as enhancers. To assess this, I performed three tests to measure if 

promoter-proximal DHS with distal activity are in some ways different from those with 

local activity.  

Firstly, recent work from the Furlong laboratory shows that the textbook definition of 

promoters and enhancers just represents two extremes of a continuum where most 

CRMs are placed. Mikhaylichenko et al.78 showed that transcriptional Orientation 

Index (OI) is an indication of enhancer/promoter activity. Classically defined 

enhancers have bidirectional transcription while promoters are transcribed in one 

direction only. In their study, Mikhaylichenko et al. observe a continuum between 

these two extremes reflected both at the OI and the activity level. For this analysis I 

used the OI data from Mikhaylichenko et al., obtained genome-wide at 6-8 hpf, and I 

assigned an OI to each DHS in our study. Promoter-proximal DHS with strong distal 

activity (skipping at least 10 genes) showed more bidirectional transcription than 

promoter-proximal DHS with only local activity (Figure 29). The difference, despite 

being significant, is minor and it is lost when considering all promoter-proximal DHS 

with distal activity.   

Secondly, STARR-Seq79 is an in vitro technique that assesses in a direct and 

systematic way, the whole genome for enhancer function in cell culture based 

assays. STARR-Seq tests genomic fragments for enhancer function by placing them 

in a construct downstream of a core promoter. If the fragment has enhancer activity, 

it will activate the core promoter and self-transcribe. I downloaded the STARR-Seq 

data from Arnold et al.28 which was conducted in S2 cells and compared differences 

in STARR-Seq signal between promoter-proximal DHS with local and distal activity. I 

could not find any difference between the two groups, both by using the continuous 

signal from the assay or counts of STARR-Seq peaks. Enhancers act in a tissue-

specific way and the cellular context in which they are tested can bias the results. In 

particular, the STARR-Seq experiments were performed in S2 cells making it difficult 

to interpret the results in an embryonal context.  

Thirdly, I tested if the promoter-proximal DHS with proximal or distal activity show 

differences in their Transcription Factors Binding Sites (TFBS) motifs. I used a de 

novo motif discovery approach (DREME80: using the promoter-proximal DHS with 

distal activity as tested sequences and the ones with local activity as background) as 
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well as a motif enrichment approach (AME80: with the same setup). Both analyses do 

not show any noticeable difference in motif composition between the two groups. 

These results show that promoter-proximal DHS with distal activity have only weak 

enhancer signatures. Distal activity from promoter-proximal DHS does not globally 

come from elements that have enhancer-like behavior, although a portion of them 

might still be enhancers. One caveat is that DHS-eQTL described only a small 

proportion of all CRM interactions, meaning that some promoter-proximal DHS with 

local activity might have undetected distal activity as well, this would make our 

comparisons less powerful. Another explanation is that most promoter-proximal DHS 

are bound by insulator proteins, suggesting that distal activity might come from 

alterations of chromatin looping (despite we do not observe insulator binding 

enrichment in promoter-proximal DHS with distal activity). 

In conclusion, distal activity from promoter-proximal DHS probably arises from a 

combination of factors: modifications of chromatin 3D structure, enhancer activity 

from promoter-proximal DHS and trans regulation from proximal genes. 

 

Figure 29 – Promoter-proximal DHS with strong distal activity have significantly higher 
bidirectional transcription than promoters with proximal only activity. Promoter-proximal DHS are 
divided in two groups: distal activity, if they are associated to a gene that is the tenth closest or more 
distal to the DHS; proximal only if they are only associated to one of the two closest genes. The y-axis 
reports the distribution of transcription Orientation Index from PRO-Cap of the promoter-proximal DHS 
at 6-8h. 
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3 - Perspectives 

We are currently performing in vivo experiments to further validate the DHS-eQTL 

results. In particular, 12 DHS involved in complex interactions are being deleted with 

CRISPR-Cas9 mutagenesis and expression changes will be measured in the target 

genes. Furthermore, we will perform double in situ hybridization to observe the 

expression patterns of genes regulated by the same DHS. 

 

3.1 - Validation of complex DHS-eQTLs by in vivo CRISPR-Cas9 mutagenesis 

In order to validate the DHS-to-gene associations from the DHS-eQTL results, we 

are currently performing 12 DHS deletions using CRISPR technology in collaboration 

with Katharina Bender from the Furlong laboratory. The elements that will be deleted 

represent a collection of interesting results from the DHS-eQTLs and focus especially 

on CRM sharing. We plan to remove the DHS and measure gene expression of the 

genes linked by the DHS-eQTL, to further validate our discoveries. Among the 12 

CRISPR deletions there are: 

• One enhancer associated to a distal gene as discussed in “2.2.1 - Distal 

enhancer-eQTL”. We will perform one CRISPR deletion of the enhancer. 

• Two cases of enhancers associated to two distal genes (further discussed in 

“2.5.1 - Example of enhancer sharing”). We will perform 2 CRISPR deletion of 

the enhancers. 

• One case of genes whose promoters-proximal DHS are associated with each 

other but the genes are distal (further discussed in “2.6.1 - Different types of 

activity from promoter-proximal DHS”). We will perform a total of 2 

independent CRISPR deletions of the promoters. 

• Two promoter-proximal DHS associated to two distal genes (further 

discussed in “2.6.1 - Different types of activity from promoter-proximal DHS”). 

We will perform a CRISPR deletion of the promoter-proximal DHS. 

• Three cases of convergently transcribed genes, in which both promoter-

proximal DHS are associated to both genes (further discussed in “2.6.2 - 

Promoters of convergently transcribed genes are associated to each other”). 

A total of 6 independent CRISPR deletions of the promoters will be 

performed. 
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3.2 - Double in situ hybridization to validate CRM sharing 

To further validate CRM sharing, Katharina Bender, a technician from the Furlong 

laboratory, is performing double in situ hybridizations for 6 pairs of genes associated 

to the same promoter-proximal DHS and 6 pairs of genes associated to the same 

enhancer. The rationale of this experiment is that genes that are regulated by the 

same elements should be co-expressed in similar tissues and time points. We also 

know the activity patterns of the DHS, so we can expect the two targets to be co-

expressed in the same tissues where the DHS is active. For each of the 12 

experiments, the setup is similar to Figure 24 but the expression patterns will be 

observed from the same embryos. 
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4 - Discussion 

DHS-eQTLs is an effective method to associate CRMs to their target genes. By 

making use of a multivariate eQTL framework and focusing on specific genomic 

regions, it increases power and reduces the number of tests necessary in a 

traditional eQTL approach. I identified 2,973 DHS-eQTLs that describe functional 

CRM to gene associations: 2,005 are promoter-proximal DHS to gene associations 

and 962 are enhancer to gene associations. Both enhancers and promoters 

appeared to act over longer distances than suggested by other methods and I 

discussed how the field tends to underestimate long range interactions. In addition, 

the results showed hundreds of examples of promoter and enhancer sharing among 

genes, indicating that co-expression might come from sharing the same regulatory 

elements. The results also indicated that promoter-proximal DHS have widespread 

distal activity, though it is not clear through what mechanism. I described different 

modalities of regulation from enhancers and promoter-proximal DHS associated to 

multiple genes. In addition, I in silico validated the results by (1) overlap of tissue 

activity for enhancers and target genes, (2) enrichment of eQTL signal on DHS, and 

(3) Hi-C contacts enrichment, and experimentally by (4) qPCR and (5) in situ 

hybridization. Finally, I discussed 12 upcoming CRISPR deletions of DHS that will 

serve as further validations of complex DHS-eQTLs. 

The DHS-eQTL method compromised on search space and unbiased testing to 

maximize the number of DHS to gene associations. It is not an alternative to 

traditional eQTL testing but it represents a functional strategy to address a specific 

issue. This method could be successfully applied to other model organisms, including 

mammals. The genome of mammals has different properties than the Drosophila 

melanogaster one and it will present different challenges including larger linkage 

disequilibrium blocks, heterozygosity and increased genome size. Larger linkage 

disequilibrium blocks might reduce power and single CRM resolution, while the total 

number of tests will be much higher than in Drosophila. On the other hand, reducing 

the search space to DHS will have a greater impact on mammalian systems (since a 

smaller proportion of mammalian genomes is functional compared to Drosophila). In 

conclusion, the DHS-eQTL method can associate regulatory elements to target 

genes and shed light on gene expression regulation. 
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5 - Methods 

 

 

5.1 - Identification and quantification of polyadenylation sites 
and gene expression 

Gene expression is measured through Tagged Sequencing of polyadenylated RNA. 

The technique was used to redefine polyadenylation (pA) sites in Cannavò et al.53. It 

can also be used to quantify gene expression by summing the expression of all pA of 

each gene with a correlation of 0.90 to RNA-Seq53. For the best performance, it is 

necessary to refine the existing annotation of pA sites. The work from Cannavò et 

al.53 was performed by mapping reads to the Drosophila assembly BDGP5, so I 

repeated the analysis refining the methods used by Nils Koelling in Ewan Birney 

laboratory, using the more recent Dm6 (BDGP6) assembly.  

 

5.1.1 Polyadenylation sites definition 

In this work I used the Tagged sequencing data published in Cannavò et al. This is a 

collection of 3’ Tagged sequencing across 80 DGRP (Drosophila Genetic Reference 

Panel) lines and 3 developmental time points. To identify the pA sites, I pulled all 

reads across lines and time points. Since 14 samples were re-sequenced there are a 

total of 254 samples. 

3’-Tagged-Sequencing reads were trimmed to remove adapters to a uniform length 

of 44 bp using Trimmomatic81 (version 0.33). pA sites were identified with two rounds 

of mapping. In the first round, I mapped the reads to the Drosophila reference 

genome (version BDGP6) using bwa mem82 (version 0.6.1) and options “-n 5 -e 10 -q 

20”. I then excluded the reads that were mapping at this stage, as they were likely to 

be 5’ of the termination site. I selected the unmapped reads that contained at least 5 

terminal A nucleotides. In the second round, I remapped these unmapped reads in 

the same way as before after removing the terminal As. Reads that were mapped at 

this stage were defined as polyadenylation reads (pA reads). We produced a strand 

specific coverage of pA reads and defined polyadenylation sites (pA sites) as regions 
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with coverage ³ 15.  

We then applied a combination of filters to exclude low quality pA sites. Due to a 

partial failure of strand specificity in generating the sequencing libraries, highly 

expressed pA sites showed a corresponding antisense site. To remove these 

artifacts, I excluded pA sites that were perfectly included in an antisense site. In 

addition, to remove noisy and genotype specific pA sites, they are required to have 

non-zero expression (check “Quantification of pA sites and gene expression”) in at 

least 50% of the DGRP lines in at least one of the time points. 

Finally, the pA sites were expanded 200 bases upstream or until the next pA site, 

whichever is the shortest. 

 

5.1.2 - Association of pA sites to genes 

I downloaded the genome annotation from Flybase83, version 6.13. I then selected all 

annotated polyadenylated transcripts (mRNAs and ncRNAs) and produced a series 

of strand-specific genomic intervals from this subset of Flybase annotation. In 

particular, I defined: 

• mRNA pA sites: as regions 500 bases upstream and downstream from the 

last base of annotated mRNA. 

• ncRNA pA sites: as regions 500 bases upstream and downstream from the 

last base of annotated ncRNA. 

• exon: as annotated exons plus 500 bases downstream. 

• introns: as annotated introns plus 500 bases downstream. 

• distal mRNA pA sites: as regions 500 bases upstream and 10,000 bases 

downstream from the last base of annotated mRNA. 

Each of these intervals was associated to their corresponding gene according to 

Flybase 6.13 annotation from which they were derived. The pA sites identified as in 

the previous sections were intersected with these intervals. If a single pA site multiple 

features it was assigned to the highest priority feature. The priority order corresponds 

to the list above, with mRNA pA sites having the highest priority and annotated distal 

mRNA pA sites having the lowest. In the rare cases when a single pA site was 
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assigned to multiple features of the same priority but belonging to different genes, 

the pA site was left without association. 

Through this approach, a total of 24,169 (93%) pA sites were uniquely associated to 

a gene. 1,884 (7%) could not be associated to a single gene. 

 

5.1.3 - Quantification of pA site usage and gene expression 

To quantify pA site usage, I utilized the reads mapped in the first round of alignments 

described in the section in “5.1.1 Polyadenylation sites definition”. These are reads 

that map to the genome without requiring to be trimmed of terminal A nucleotides.  

Reads are then filtered for mappability issues. This step ensures comparability of 

gene expression across DGRP lines. Since all reads are mapped to the same 

reference, variants across lines might favor mapping of reads harboring the 

reference allele. These bias in quantification caused by mapping to a common 

reference are globally called mappability issues. To address this issue I used 

WASP70 (downloaded from GitHub on 2 November 2015) pipeline for mappability 

bias filtering. All reads are tested for mapping as if they were harboring any 

combination of variants across all 80 DGRP lines. Firstly, I use 

find_intersecting_snps.py to identify all variants across the DGRP lines that intersect 

any mapped read. Reads that do not overlap variants are kept. Reads that overlap 

variants are changed to all haplotype combinations across the population and 

remapped as in “5.1.1 Polyadenylation sites definition”. I then run 

filter_remapped_reads.py. The script checks that all version of each read mapped 

with a MQ>20, if so, the read is kept. I then merge all reads that passed WASP 

filtering and obtain WASP filtered bam. 

I assigned the reads to the corresponding expanded pA sites using htseq-count84 

(version 0.7.2) with options “-m intersection-nonempty -s yes –q”. I proceeded in a 

sample specific manner: I quantified pA sites usage and gene expression for our 254 

samples separately. I reasoned that gene expression could be computed by 

summing all isoforms expression following Cannavò et al. In fact, each mRNA 

molecule can generate a single unique read from its pA tail. I then summed the 

counts of all pA sites assigned to each gene to compute gene expression. Finally, I 
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library-size normalized the counts by scaling the counts by the ninetieth percentile 

(equivalent to DESeq2 library size normalization, Pearson r = 0.98). I consider 

expressed those genes that have non-zero expression for half of the DGRP lines in 

at least one time point. There is a total of 9,054 expressed genes. 

 

5.1.4 - Removal of hidden factors within the expression matrix 

I used PEER69 to correct for batch effects and hidden factors within the gene 

expression data. PEER discovers hidden factors within a matrix, fits them and can 

subtract them from the original matrix by outputting residuals. It is a useful tool to 

remove batch effects and increase power in eQTL discovery. First, I gaussianized 

the gene expression data by gene and time point (I substituted gene expression with 

the rank and fit the ranks on a gaussian distribution). I then ran PEER on 

gaussianized expression full matrix (75 lines, by 9,054 expressed genes and 3 time 

points). I used PEER with 10 hidden factors to obtain the residuals. Finally, I 

gaussianized the residuals. 

 

 

5.2 - DNase Hypersensitivity Sites analysis 

In this work I used the DNase Hypersensitivity dataset from Reddington et al. The 

data was obtained from staged Drosophila melanogaster embryos at tiling intervals 

from 2-4 hpf to 10-12 hpf. Embryos were fixed and FACS sorted for different 

markers: Mef2 was used as mesodermal marker; Wormiu at 4-6 hpf and elav from 6-

8 hpf to 10-12 hpf were used as neuroectoderm markers; cells that were not sorted 

for either mesodermal or neuroectodermal marker belong to the Double Negative 

tissue. All time points were also complemented by whole embryo (not FACS sorted) 

data. 2-4 hpf time only has whole embryo data. 6-8 hpf time mesodermal tissue was 

further sorted for bin positive and bin negative cells. This leads to a total of 19 

samples all in duplicates. 
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5.2.1 - DHS identification 

In a DNase Hypersensitivity assay, an endonuclease (DNase) digests nucleosome 

free DNA, cleaving DNA regions that are not protected by the binding of TFs. By 

analyzing sequence reads, cleaved and uncleaved sites can be identified, thus 

revealing which sites bind a lot of transcription factors (e.g. an enhancer) and which 

do not. Sites that are protected from cleavage are called hypersensitive sites. 

Although typically referred to as open chromatin regions, DNase Hypersensitive Sites 

(DHS) are by definition TF-bound regions throughout the genome.  

 

I reanalyzed the DHS data to move the annotation from the old genome assembly 

Dm3 (BDGP5) to the newer Dm6 (BDGP6) assembly that is used throughout this 

project. I followed the same analysis pipeline in Reddington et al. with the help of 

Charles Girardot from the Genome Biology Computational Support and Sascha 

Meiers from the Korbel laboratory at EMBL. We mapped the reads to Dm6 assembly 

using bwa mem keeping duplicates separate, sorted and removed duplicates and 

unmapped reads.  

 

5.2.2 - Peak calling, IDR, summit merge across samples. 

DHS peaks and summits were identified for each of the 19 biological conditions 

separately using the Irreproducible Discovery Rate (IDR) workflow described in Landt 

et al.85 and implemented with the following details. Reads in the form of BAMPE files 

devoid of duplicates were used (two biological replicates were available for each 

condition) as workflow input. MACS286 version 2.1.1.20160309 was used as the peak 

caller with parameters “-g 1.2e8 -p 0.5 --keep-dup all --call-summits”; and a 

maximum of 100,000 peaks were passed to subsequent IDR analysis. The IDR 

analysis was executed using summits reported by MACS2 “slopped” by 30 bp 

(resulting in 60 pb regions centered on MACS2 reported summits). Merging and read 

shuffling operations were performed with SAMTools87 1.3.1 (merge & bamshuf). This 

procedure resulted in 19 DHS peak sets defined as the peaks passing an IDR 

threshold of 0.05 from the IDR analysis executed on the pooled pseudo-replicates. 

This peak set is often referred to as the “optimal” peak set.  
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We then merged these 19 DHS optimal sets into the final set of DHS peaks using the 

following custom procedure. The 1 bp summits from the optimal DHS sets were 

pooled together in a coordinate-sorted BAM file using BEDTools’s bedtobam88 

2.24.0. A smoothed coverage bedgraph (representing the summit density) was then 

generated using bamCoverage from deepTools89 version 2.5.1 with parameters “--

outFileFormat bedgraph --fragmentLength 1 --binSize 1 –smoothLength 80 --

missingDataAsZero yes”. Continuous stretches of bases with non-zero scores were 

extracted as the final DHS peaks. In each final DHS peak, the summit is defined as 

the base with the highest coverage. Visual inspection of the resulting DHS peaks 

revealed that larger DHS peaks were sometimes made of two or more sub-regions. 

DHS peaks larger than 300 bp were therefore post-processed and split into different 

DHS peaks provided that each resulting peak contains at least 2 DHS summits (from 

the 19 DHS optimal sets) and is located at least 80 bp apart from another DHS peak.  

After identifying summits across conditions, I expanded them ±150 bases to define 

DHS peaks.  If two summits were closer than 300 bases, the boundary between 

them was set at the midpoint, so that the DHS peaks would not overlap. In the text, I 

always refer to DHS as the here defined DHS peaks. The final set contains 63,157 

DHS peaks.     

 

5.2.3 - Tissue-specific DHS 

I defined tissue-specific DHS in a time point specific manner. For each time point, I 

tested if a DHS is open only in one of the three tissues (Neuroectoderm, Mesoderm, 

Double Negative). In order to be called tissue-specific, a DHS is required to have a 

summit only in one tissue and to be differentially accessible in the same tissue. 

Summits are defined for each condition as described in the previous section. I 

calculated differential accessibility with DeSeq273. For each peak and condition (time 

point and tissue), I obtained a coverage track from the mapped bam files. I then 

quantified the coverage for each condition with Rsubread90 package and performed 

all pairwise comparisons between tissues at the same time point with DeSeq2. A 

DHS was considered to be differentially accessible if it had significantly higher 

accessibility in both comparisons. 
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5.2.4 - Intersection with variants 

For the DHS-eQTL tests, I tested for association only variants that were overlapping 

DHS. Firstly, I moved the DGRP vcf (Freeze 2) coordinates to the Dm6 assembly 

using GATK91. During this process, 99.7% of the variants were successfully moved to 

Dm6. Then I subset the vcf to the 75 DGRP lines included in this work. Finally, I 

filtered the vcf using vcftools92 with the following options: “--maf 0.05 --max-maf 0.95 

--min-alleles 2 --max-alleles 2 --max-missing 0.2” to include only biallelic variants 

with a minor allele frequency greater than 5% and a maximum of 20% unknown 

genotypes. The filtered vcf was then intersected with the DHS using bedtools. 

 

 

5.3 - Comparison of alternative methods to perform DHS-eQTL 

In “2.1.4 - Testing three eQTL methods within the DHS-eQTL pipeline” I tested three 

eQTL association methods to get the best performance and reliability in discovering 

DHS to gene associations. The three methods used the same input gene expression 

matrix (gaussianized PEER residuals as discussed in the section above) and 

genotype matrix. LIMIX tests for association all variants within 50 kb of the gene 

body, while mtSet and PC-regression tested for association all DHS within 50 kb of 

the gene body. In the following tests, I only included the 75 DGRP lines with 

complete gene expression data across the three time points to avoid the imputation 

of phenotypes. 

 

5.3.1 - Linear mixed model (LIMIX) 

LIMIX67 was the only univariate method tested here. It is based on a linear mixed 

model that explains a matrix (samples by conditions) of gene expression as a sum of 

a fixed effect (F) and random effects (U).  

𝑌 = 	$𝐹&

'

&()

+	$𝑈,

-

,()
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The phenotype matrix is a 75 (DGRP lines) x 3 (time points) matrix. I used a simple 

genotype vector as fixed effect and a Kinship relatedness matrix as random effect. 

The relatedness matrix is obtained from neutrally evolving variants only. I defined 

neutrally evolving variants as those that only overlap short introns (>65 bp) following 

Grenier et al.93 and I filtered them with the same criteria as in “5.2.4 - Intersection 

with variants”. The neutrally evolving variants are then used to obtain a Kinship 75 X 

75 (sample by sample) matrix that describes the similarity between each DGRP line 

couple. 

LIMIX is used with the “any effect test” to test for any association (time-point specific 

or not) between the variant and the gene expression. I performed a total of 

17,234,822 variant-to-gene association tests. For each gene, I selected the lowest p-

value variant and corrected the p-value with Bonferroni correction (I multiplied the p-

value by the number of variants tested for association with that gene). Then, I 

corrected the best p-values for each gene with Benjamini-Hochberg FDR approach94. 

I considered FDR corrected p-values lower than 0.05 as significant. Finally, variants 

significantly associated with a gene were mapped to the DHS they overlap using 

bedtools88 to identify DHS-to-gene associations. 

 

5.3.2 - PC-regression 

I used Principal Component Regression (PC-regression) as a simple implementation 

of multiple regression. This method directly tested for association between DHS and 

the target gene. Since the number of variants overlapping the same DHS is variable 

and goes up to 90, I used Principal Components to reduce the number of 

independent variables in the regression and avoid overfitting. In particular, for each 

DHS I obtained a N x V (where N is the number DGRP lines in this study and V the 

number of variants overlapping the DHS) matrix of variants and perform principal 

components on this matrix. I then sorted the PCs by the amount of variance 

explained and defined an N x P matrix, where p is the number of principal 

components. I considered as many PC as necessary to explain 99% of the variance 

up to a maximum of 7, to avoid overfitting. The PCs are then used as independent 

variables in a multiple regression with a number of regressors from 1 to 7, depending 

on the DHS. 
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𝑦 = 	𝛽0 	+	$𝛽,𝑃𝐶,

3

,()

	+ 	𝜖		 

The phenotype matrix was the same used for LIMIX. In this case, I did not use any 

fixed effect. The genotype matrix corresponded to a N x V matrix where N is the 

number of samples and V the number of variants overlapping a DHS. mtSet is based 

on set test that does not incur into overfitting. For this reason, I could enter the full 

genotype matrix. The relatedness matrix was the same used for LIMIX. mtSet 

provided a p-value for each DHS-to-gene association and performed a total of 

483,064 tests. All p-values were then corrected with Benjamini-Hochberg FDR 

correction and I considered FDR corrected p-values lower than 0.05 as significant.  

 

5.3.3 - mtSet 

mtSet68 is a mixed model approach that allows for the association between multiple 

variants and multiple phenotypes while accounting for population structure. mtSet 

models a matrix of gene expression (in our case N x 3) as the sum of fixed effects 

(𝐹𝐵), the genotype matrix (𝑈6), the relatedness matrix (𝑈7) and residual noise (𝜓). 

𝑌 = 𝐹𝐵 +	𝑈6 +	𝑈7 + 	𝜓 

The phenotype matrix is the same used for LIMIX. In this case, I did not use any 

fixed effect. The genotype matrix corresponds to a N x V matrix where N is the 

number of samples and V the number of variants overlapping a DHS. mtSet is based 

on set test that does not incur into overfitting. For this reason, I can input the full 

genotype matrix. The relatedness matrix is the same used for LIMIX. mtSet provides 

a p-value for each DHS-to-gene association and performs a total of 483,064 tests. All 

p-values are then corrected with Benjamini-Hochberg FDR correction and I consider 

as significant associations those with FDR corrected p-values lower than 0.05.  
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5.3.4 - Removal of associations in linkage disequilibrium  

Despite the small LD blocks in Drosophila, neighboring DHS can still be in linkage. In 

order to avoid spurious associations caused by LD, I removed any DHS-eQTL whose 

DHS was in LD with another DHS-eQTL with strong association. In fact, both mtSet 

and PC-regression reported multiple associations for the same gene. To remove 

associations in LD I applied a stringent approach. I performed all variant to variant 

correlation and considered as in LD all correlation with a Pearson coefficient greater 

than 0.8. Any couple of DHS was considered to be in LD, if at least one variant on 

the first DHS was in LD with a variant on the second DHS. I then ranked all DHS-

eQTL from the lowest to the highest p-value and I discarded any DHS-eQTL in LD 

with another having a lower p-value. Following this procedure, 28% of DHS-eQTL 

from mtSet and 31% from PC-regression were discarded. 

 

 

5.4 - Validations of results 

 

5.4.1 - Tiling-windows-eQTL 

Tiling Windows were defined as consecutive windows of 300 bp. Each chromosome 

was split into 300 bp tiling windows and all windows within 50 kb of a gene’s body 

were tested for association with that gene. The association pipeline was identical to 

“5.3.3 - mtSet”.  

The enrichment of eQTL signal on DHS was obtained by merging the uncorrected p-

values from the 483,064 DHS-eQTL tests and the 2,892,787 TW-eQTLs tests. The 

raw p-values were corrected for multiple testing using Benjamini-Hochberg FDR and 

the enrichment was obtained by odds ratio. 

Enrichment of TW-eQTLs on genomic features was obtained by overlapping TW-

eQTLs with the BDGP6 genome annotation from FlyBase 6.13. The number of bases 

between the TW-eQTL and the feature was counted for every TW-eQTL and divided 

by the total number of TW-eQTL bases. Enrichments were obtained by using 10 

random sets of TWs. 
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5.4.2 - DHS and genes tissue overlap  

I downloaded the BDGP annotation72 on the 24 of July 2017.  The annotation 

reported a fixed term tissues of expression annotation by stage of development. I 

focused on stages from 13 to 16 that overlap the 10-12 hpf time point. All BDGP 

specific terms were mapped to more general terms, that were in turn assigned to the 

3 tissues from the DHS FACS sorting to have matching terms between datasets. In 

particular, Table 4 showed the correspondence between general BDGP terms and 

the 3 FACS sorted tissues. I ignored terms mapped to “none” annotation. For each 

gene, I took the union of all annotations it was mapped to. I excluded genes that are 

expressed in “ambiguous” tissues (these tissues cannot clearly be assigned to only 

one of the three FACS sorted tissues). Finally, I defined as tissue-specific, those 

genes that are expressed in only one of the three FACS sorted tissues. 

I identified tissue-specific enhancers as described in “5.2.3 - Tissue-specific DHS” 

and considered only enhancer eQTLs where both the gene and the DHS are tissue-

specific. I excluded promoters from this analysis because the majority of them are 

ubiquitously open and in close proximity to the target gene. I then divided the tissue-

specific enhancer-eQTL into two categories:  

• coherent enhancer-eQTLs were associations between a tissue-specific 

enhancer and a tissue-specific gene active in the same tissue. 

• incoherent enhancer-eQTLs were associations between a tissue-specific 

enhancer and a tissue-specific gene active in different tissues. 

The enrichment of coherent enhancer-eQTLs was assessed by performing 10,000 

random enhancers to gene associations. In particular, I selected 2,973 random DHS 

to gene associations among all those tested in the DHS-eQTL. I then proceeded as 

for the enhancer-eQTLs and obtained the proportion of coherent versus incoherent 

enhancer-eQTLs. Finally, I obtained an empirical p-value by comparing the coherent 

versus incoherent ratios from the permutations to that observed from the enhancer-

eQTLs. 

 

5.4.3 - CRISPR deletions 

The entire CRISPR deletion protocol was performed together with Katharina Bender 

and Songjie Feng. The deletions were performed in the vasa-Cas9 Drosophila 
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melanogaster line95 (Bloomington ID: 51324). The guide RNAs were designed using 

Target Finder website (http://targetfinder.flycrispr.neuro.brown.edu) using the fully 

sequenced vasaCas9 personalized genome to identify potential off-target sites. We 

always deleted the entire DHS involved in the DHS-eQTL and designed the guides 

so that the entire peak signal in all tissues would be deleted. The deletions sizes 

range from 450 to 2,000 bases. The guide RNAs are 20 nucleotides long. In order to 

minimize the chance of off-target cuts, we always preferred guide RNAs identified 

with “maximum” stringency setting. In case this was not possible, we used guide 

RNAs with “high” stringency and 0 predicted off-targets. The guide RNAs were 

cloned in the bacterial plasmid #1823 pBs-U6-gRNA-BbsI. 

In order to have an efficient deletion of the target sites after CRISPR cuts the 

genome, we designed homology arms flanking the deleted region. The homology 

arms were PCR amplified from the vasa-Cas9 genomic DNA using oligos with a 

melting temperature of approximately 60°C and a GC content ranging from 40 to 

60%. The homology arms are approximately 1 kb long. The homology arms were 

cloned into the bacterial vector pHD-dsRed-attP #1473. To insert the homology arms 

into the vector, we used AarI restriction enzyme for the left and SapI for the right 

homology arms. If the restriction site was not present, restriction cloning was used. 

Finally, if there were internal cut sites, we either switched to InFusion cloning or 

changed the order of homology arms insertion.  

After bacterial amplification of the homology arms, they were injected, together with 

the guide RNAs, into approximately 100 embryos of the vasa-Cas9 line. The injection 

mixes contained 150ng/µL donor plasmid for recombination and 75ng/µL of each 

gRNA in 20µL injection buffer. 

The vasa-Cas9 line expresses the Cas9 protein in the ovary giving rise to chimeric 

progeny. The first cross of F0 will be crossed with yellow-white flies to amplify the 

transgenic flies. The offspring will be crossed with the respective balancer lines, 

depending on what chromosome harbors the deletion. Finally, the third cross will be 

performed between siblings to obtain a homozygous stock if it is viable. 
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5.5 - Comparison with external databases 

The enhancer to gene associations from Kvon et al.59 were obtained from 

Supplementary Table 4 at: https://doi.org/10.1038/nature13395. The coordinates 

were moved to BDGP6 genome assembly. The Tile to gene distance was measured 

from the center of the Tile to the major gene TSS. The “closest gene” associations 

were obtained by assigning all enhancers involved in an enhancer-eQTL to their 

closest gene. Enhancer to gene distances were measured from the center of the 

enhancer to the major TSS of the gene both for the DHS-eQTL associations and the 

“closest gene” associations. 
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III - Gene expression variation among Drosophila 
melanogaster lines from five continents 

 

 

1 - Introduction 

 

1.1 - Geographic isolation causes population structure 

Individuals from the same species often cannot intermix as they are restricted by 

geographic limitations. Geographic isolation leads to the formation of populations, 

that behave as semi-independent groups of individuals. In fact, geographic isolation 

of populations causes an accumulation of differences that lead to population 

structure. If individuals from two populations remain isolated and therefore cannot 

mate, their variant pool will accumulate differences through two mechanisms. Firstly, 

variants that appear after the separation of the two populations will not be shared 

among them. Secondly, the allele frequency of the variants they shared before the 

separation will change due to drift or selection. Therefore, geographic isolation 

causes uneven allele frequency among populations, which can be assessed by 

statistical tests such as the fixation index (𝐹9: ). The accumulation of differences 

among populations may be under selective pressure, which could ultimately lead to 

phenotypic differences between populations. Measuring differences between 

populations is crucial to retrieve the migration history of a species and understand 

the mechanism through which species adapt to new environments. 

 

1.2 - The Global Diversity Lines are a panel of Drosophila lines from five 
continents 

Drosophila melanogaster has long been used as a model organism to study 

population genetics. The majority of population genetics studies on D. melanogaster 

have focused on inbred lines from a defined geographic location63. This setup 

increases power in association studies by removing population structure and allows 
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for the application of models that assume random mating. However, a few studies 

have focused on capturing differences between D. melanogaster populations. In 

particular, the laboratory of Andrew Clark has generated a panel of D. melanogaster 

inbred lines from five continents called the Global Diversity Lines93 (GDL) to further 

investigate population structure and infer D. melanogaster migration history. The 

GDL include a panel of 85 populations from 5 defined geographic locations: 

Netherlands, Tasmania, Ithaca, Beijing and Zimbabwe. The GDL were obtained by 

collecting multiple individuals from the same locations, which were allowed to inter-

breed to create a stable genetic pool. Subsequently, a few individuals from the pool 

were selected and went through ten cycles of inbreeding, giving rise to each line. 

To infer population structure among the GDL, Grenier et al.93 performed a Principal 

Component analysis on neutrally evolving variants. Variants evolving neutrally arise 

and drift at a constant speed because they are not under positive or negative 

selective pressure. Figure 30 shows the results of the PCA. The first PC separates 

the Zimbabwe lines from the non-African populations, indicating that it is the most 

different from the others. The second PC separates the Beijing population. 

European, Australian and North American populations cluster together, reflecting 

their more recent separation from a common population. 

 

Figure 30 – Population structure among the Global Diversity Lines (from Grenier et al.93). The 
plots show the first three PCs from the neutrally evolving variants of the GDL.  

 

1.3 - Migration history of Drosophila melanogaster 

Drosophila melanogaster is a human commensal and its migrations history is closely 

related to that of our species96. This fly species originated in the sub-Saharan 
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region97 and colonized all continents in recent times. It is estimated that D. 

melanogaster left Africa for the first time after the end of the last ice age and quickly 

spread in Europe and Asia98. Following human migration, D. melanogaster recently 

colonized the Americas and Oceania99. Similarly to human, the African populations 

represent the most ancient and diverse population from the genetic variation 

standpoint. Moreover, they are the most subdivided populations from the other 

continents93. Different populations are not completely isolated from each other. 

Arguello et al.99 estimated the extent of admixture between D. melanogaster 

populations finding a high correlation with commercial routes. In particular, the 

European, American and Australian populations have inter-mixed to a high extent, 

while the African and Asian populations have remained more isolated. 

The population genetics studies presented so far are based on genetic variation. As 

discussed in chapter “IV - Impact of natural sequence variation on Drosophila 

melanogaster chromatin accessibility”, the majority of genetic variants do not have 

any obvious impact on phenotype. In this chapter, I will present a newly generated 

gene expression database of the Global Diversity Lines. The goal is to assess the 

impact of genetic variation on gene expression during embryonic development within 

this diverse genetic populations. 

 

1.4 - Overview of the project 

In this project, we aim to measure and analyze gene expression patterns across the 

Global Diversity Lines during embryonic development. We performed RNA-Seq on 

83 GDL whole embryos staged at 10-12 hpf. The goal of the project is to gain insight 

into the transcriptome differences between D. melanogaster inbred lines from five 

continents. In addition, we used the newly generated gene expression dataset to call 

expression QTLs.  

The project has been developed in collaboration with the laboratory of Andrew Clark 

at Cornell University, USA. They performed the staged embryo collections and 

shipped the samples. The RNA extraction and library preparation were performed by 

Lucia Ciglar, a technician from the Furlong laboratory. I have performed the analysis 

of the RNA-Seq data with the collaboration of Federica Mantica, a visiting scientist in 

the Furlong laboratory.  
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2 - Results 

We performed RNA-Seq on whole embryos from the GDL lines staged at 10-12 

hours post fertilization and performed multiple quality control steps to ensure high 

data quality. We identified genes that were differentially expressed among 

populations and characterized them. In addition, gene expression-QTL and exon 

expression-QTL were called to dissect the regulatory landscape of D. melanogaster. 

 

 

2.1 - A panel of Drosophila gene expression from 5 continents 

The Global Diversity Lines constitute a panel of fully genotyped D. melanogaster 

lines from five continents93. To complement the genotype information and gain 

insight into developmental patterns across continents, we performed RNA-Seq on 

whole embryos staged at 10-12 hpf. The RNA-Seq dataset includes (Figure 31): 

• 18 lines from Tasmania (Oceania) 

• 14 lines from Ithaca (North America) 

• 18 lines from the Netherlands (Europe) 

• 16 lines from Beijing (East Asia) 

• 17 lines from Zimbabwe (Africa) 

 

 

Figure 31 – Schematic representation of the Global Diversity Lines RNA-Seq dataset. We 
performed RNA-Seq on 83 Global Diversity Lines coming from five continents. The figure indicates the 
geographic location of origin of the lines and the number of sequenced lines belonging to that region. 
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In addition, to gain insight into the dynamical expression changes during 

development, we performed RNA-Seq on 6 lines (two lines from Ithaca and one line 

of the other populations) staged at 2-4 hpf and 5 lines (one per population) staged at 

6-8 hpf. Finally, two lines were sequenced in duplicates for a total of 96 RNA-Seq 

samples. In the following pages, I will discuss the quality control pipeline and the 

filtering steps that were adopted to remove problematic samples. In particular, we 

controlled for: 

• RNA-Seq mapping quality by analyzing multiple metrics from Samtools87 and 

Picard100;  

• RNA-Seq protocol reproducibility by correlation of technical duplicates; 

• Sample staging by comparing each sample with the corresponding 

modENCODE RNA-Seq data101; 

• Potential batch effects caused by sample transportation, RNA extraction, 

mRNA isolation and sequencing. 

 

2.1.1 - RNA-Seq mapping and quality control 

The raw reads files were mapped to the BDGP6 assembly using STAR102. Gene 

expression was quantified with RSEM103 (See “5 - Methods” for a complete 

discussion of the mapping pipeline). We assessed the mapping quality using multiple 

metrics from Samtools87 and Picard100 and we summarized and compared them 

using MultiQC104.  All samples showed high quality in all metrics except for one 

sample from Tasmania (T36B) that showed evidence of RNA degradation. The 

sample was removed from the subsequent analysis. 

 

2.1.2 - Batch effect quality control and correction  

Samples from different populations were processed and sequenced in a randomized 

manner to better dissect potential sources of batch effects. In particular, we 

controlled for four batch effects by Principal Component Analysis: 
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• Transportation box (the embryos staged at 10-12 hpf were shipped in 10 

separate boxes) 

• RNA extraction batch (the RNA extraction was performed in 10 separate 

days) 

• mRNA isolation batch (the mRNA isolation was performed in 10 separate 

days, randomizing the batches for the RNA extraction) 

• Sequencing set (the samples were sequenced on 4 independent Illumina 

lanes) 

Supplementary Figure 8 displays the RNA-Seq data separated by the first three PCs 

and colored by the four potential batch effects. The samples showed no structure 

when divided by mRNA isolation date and sequencing sets. On the other hand, the 

first principal component clearly separated the samples shipped in box 9 and whose 

RNA was extracted on the 18/01/2017 (Box 9 was processed on day 18/01/2017, so 

it was impossible to disentangle the two effects). We concluded that the RNA 

samples shipped in box 9 were corrupted and removed them from the following 

analysis. Further analysis showed that these same samples have high rRNA 

percentage despite mRNA isolation by polyA enrichment. Following this observation, 

we excluded all samples that had a rRNA content higher than 35% of total RNA. This 

step removed all visible batch effects from our data. 

 

2.1.3 - RNA-Seq provides a reliable measure of gene expression 

Two RNA-Seq samples were sequenced in duplicates to assess technical variability. 

The RNA extractions and sample preparations were performed independently from 

the same embryo collections ensuring a control of the entire RNA-Seq protocol. 

Figure 32 shows the correlation between ZS29 and ZW190 technical duplicates. The 

correlations exceed 0.98 showing high reproducibility of the RNA-Seq 

measurements. 
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Figure 32 – Biological replicates show high correlation. The scatterplot shows the correlation 
between two biological replicates for the Zimbabwe lines ZS29 and ZW190. The Spearman correlation 
coefficient is shown under the line’s names. 

 

2.1.4 - Staging of samples by comparison with modENCODE gene expression 

In order to confirm that the staging of the embryo collections was at the expected 

time point during development, we performed an in silico staging analysis, as we’ve 

performed previously53. In particular, we correlated the gene expression 

measurements from our GDL samples with a two-hour time-course done in reference 

strain (modENCODE105). The modENCODE gene expression data were generated at 

time points ranging from 2-4 hpf to 22-24 hpf. We downloaded and processed the 

modENCODE RNA-Seq samples in the same way as the GDL samples (see “5 - 

Methods”) and performed a Spearman correlation between gene expression values. 

Figure 33 shows the correlation of GDL samples staged at 10-12 hpf with 

modENCODE samples from 2-4 hpf to 12-14 hpf. The GDL samples were highly 

correlated with the corresponding modENCODE samples and showed a slight shift 

towards the later time window (12-14 hpf). This is consistent with the results from 

Cannavò et al.53 (Supplementary Figure 1) confirming that the samples are tightly 

staged. All GDL samples displayed the same trend except for one sample that was 

removed from subsequent analysis (the unstaged sample is also visible in Figure 34 

as clustering with samples at 6-8 hpf). We repeated the same analysis for the GDL 

samples staged at 2-4 hpf and 6-8 hpf obtaining the highest correlations at the 



III - Gene expression variation among Drosophila melanogaster lines from five continents 

 

 
82 

expected time point for all samples. These results confirm that the collections have 

been performed ensuring precise staging of the embryos. 

 

Figure 33 – Staging of samples at 10-12 hpf. The plot shows the correlation between GDL whole 
embryo samples staged at 10-12 hpf and modENCODE whole embryo samples staged from 0-2 hpf to 
12-14 hpf. 

 

2.1.5 - Samples separate by stage 

As a final quality control, we assessed if all GDL samples separated by stage. We 

included all sample from 2-4 hpf to 10-12 hpf and performed a PCA. Figure 34 shows 

the results of the PCA. The samples are clearly separated by developmental stage 

by the first PC. The first PC explains a high proportion (38.2%) of gene expression 

variation. This is a comforting result that confirms the high quality of the final dataset. 
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Figure 34 – PCA separates samples by stage. Principal Component Analysis of all sequenced 
samples. The samples are colored by stage. The first PC explains 38.2% of gene expression variation 
and clearly separates samples by stage. 

 

 

2.2 - Transcriptome differences among continents 

We performed a differential expression analysis across populations to identify 

patterns of expression that are population specific. Through differentially expressed 

genes, we quantify the differences across transcriptomes. Below, I discuss the 

strategy to identify and classify differentially expressed genes.  

 

2.2.1 - Differential expression is more accentuated at the transcript level 

The GDL populations have accumulated genetic differences during thousands of 

reproductive cycles. The larger dissimilarities at the genetic level can be seen 

between the African lines and the other populations. In addition, the African and 

Asian lines have experienced little admixture, meaning that their genetic pool is more 

isolated99. On the other hand, the European, American and Australian lines were 

separated recently and are less differentiated. We investigated if the population to 
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population distances visible at the genetic level is also present at the transcriptomic 

level.  

Firstly, we performed a PCA on gene expression levels and were surprised to obtain 

no clear separation between populations. This indicates that there is no global 

structure at the transcriptome level. Performing the PCA on specific gene groups that 

are more likely to be under selective pressure (such as metabolic or olfactory genes) 

also gave no clear population structure. 

Secondly, we implemented a differential expression analysis both at the gene and 

transcript level. Gene and transcript expression was quantified using RSEM103 and 

differential expression was computed with DESeq273. We compared each population 

against all the others taken together to identify population specific patterns of 

expression. Figure 35 a and c respectively show the number of differentially 

expressed genes and transcripts per population. In both cases, the Zimbabwe 

population has the most differentially expressed elements compared to the others, 

consistent with the findings at the genetic level. Surprisingly, the Beijing line, despite 

being more recent, has a similar number of differentially expressed genes. This could 

be explained by the relative isolation that this population has experienced99. On the 

other hand, the most recently separated populations (Ithaca and Tasmania) only 

have a handful of differentially expressed genes and transcripts. Another interesting 

observation is that differences are more accentuated at the transcript level compared 

to the whole gene level. 

A technical caveat of the “1 vs all” setup is that it might underestimate differential 

expression for the populations of European descendance (Netherlands, Ithaca and 

Tasmania). In fact, these three populations are similar to each other and by having 

two lines with similar expression patterns in the background group, DESeq2 is less 

likely to find differentially expressed elements. To address this issue, we performed a 

“1 vs 1” differential expression analysis between all population pairs (Figure 35b,d). 

When comparing populations of European descendance with the African or Asian 

populations directly, we identify a comparable number of differentially expressed 

gene except for the Tasmania lines, that show more differentially expressed genes 

than in the global analysis. The strongest effect is seen in the “Zimbabwe vs 

Tasmania” comparison. In addition, the pairwise comparisons between populations 

of European descendance show that the “1 vs all” test underestimates the number of 
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differentially expressed genes in these populations. In conclusion, the “1 vs 1” setup 

shows a higher extent of differential expression for the Tasmania lines than 

estimated “1 vs all” setup, but it confirms that Ithaca and Netherlands populations 

have less transcriptional differences from the other lines. 

 

Figure 35 – Number of differentially expressed genes and transcripts. (a) The bar plot shows the 
number of differentially expressed genes for each population within the GDL. (b) The bar plot shows the 
number of differentially expressed genes for each one to one contrast between populations. (c) The bar 
plot shows the number of differentially expressed transcripts for each population within the GDL. (d) The 
bar plot shows the number of differentially expressed transcripts for each one to one contrast between 
populations. Differential gene and transcript expression were obtained by comparing one line with all the 
others. 
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2.2.2 - Genes enrichment among differentially expressed genes 

To characterize the differentially expressed genes among populations we performed 

a Gene Ontology enrichment analysis. In all the population except for the Netherland 

and the Tasmania, we did not identify significantly enriched groups of genes among 

the differentially expressed ones. This suggests that a large portion of differential 

expression is caused by drift and is not necessarily functional, though further 

analyses are required to corroborate this statement.  

On the other hand, the differentially expressed genes in the Netherland lines are 

more than 20-fold enriched in genes linked to cuticle development. This is observed 

both in the global and pairwise tests. The cuticle is secreted from embryonic stage 

16106 (corresponding to 13 hpf to 16 hpf) until later larval stages and it confers the 

embryo a protection from water and external stresses. The cuticle production genes 

are overexpressed in the Netherland population at 10-12 hpf indicating an anticipated 

or more abundant secretion of cuticular proteins in the European lines. The 

overexpression of cuticle genes might confer resistance to environmental conditions 

specific to the Netherlands, such as the colder weather.  

In addition, a Gene Ontology analysis of the differentially expressed genes in the 

Tasmania lines shows that they are enriched for translation, mitochondrial functions 

and energy metabolism in general. These results are seen only when contrasting the 

Tasmania line against the African and Asian populations (Figure 35b,d) and indicate 

metabolic differences between the Australian lines and the others. 

Taken together these results support the hypothesis that a large proportion of 

differential gene expression might be caused by drift. Nevertheless, the Netherlands 

and Tasmania lines show evidence of adaptation by having differentially expressed 

genes associated respectively to cuticle secretion and energy metabolism. 

 

 

2.3 - Identification of gene and exon eQTLs 

The GDL expression dataset represents a wealth of information that can be used for 

association studies. In contrast to our previous eQTL study on the DGRP lines, which 
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used 3’-Tagged-Sequencing as a measure for gene expression53, here we can use 

the full length RNA-seq data described above.  This has the advantage of reducing 

the impact of mapping biases, due to the extensive RNA-seq coverage over the body 

of the gene.  However, the major challenge of this dataset is its inherent high degree 

of population structure. To address this, we used LIMIX, a linear mixed model that 

accounts for population structure in the association test to identify eQTLs. As input 

we used the filtered set of RNA-seq data for 65 lines that were fully genotyped  

(Grenier et al.93) and passed all quality control steps, and then corrected for hidden 

batch effects with PEER69 and for mapping biases using WASP70 (see “5 - 

Methods”). In total, we quantified the expression for 11,382 genes and 63,607 exons. 

We separately tested for eQTLs that are linked to gene expression (gene-eQTLs) 

and exon coverage (exon-eQTLs). In total, we discovered 903 gene-eQTLs and 

2,021 exon-eQTLs. The gene-eQTLs and exon-eQTLs show a similar distribution of 

distances from the target gene TSS (Figure 36a). The distribution is consistent with 

previous eQTL studies in D. melanogaster53 and in vertebrates107 (see also “II - 

Genetic variation as a tool to associate cis Regulatory Modules with their target 

genes”). Exon-eQTLs are more concentrated on the target gene body than gene-

eQTLs (Figure 36b).  Although expected, this is very reassuring and suggests a 

direct regulation of exon usage at splice junction sites. On the other hand, gene-

eQTLs are found more often at the TSS and in the target gene surroundings.  

 

Figure 36 – Distribution of gene-eQTL and exon-QTL distance from TSS and around target gene. 
(a) Distribution of eQTL distance from target gene TSS. gene-eQTL are shown in blue, exon-eQTL in 
red. (b) Distribution of eQTLs around target gene. TSS: Transcription Start Site; TES: Transcription End 
Site 
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2.3.1 - gene-eQTL 

64.7% of genes with a gene-eQTL also have an exon-eQTL. If the total level of gene 

expression changes, this should be reflected at the exon level as well. On the other 

hand, the exon-eQTL require a 6-fold higher number of statistical tests and exons are 

covered by fewer reads than genes, making the exon-eQTL analysis less powerful. 

As seen in other studies53, eQTL genes are weakly enriched for metabolic processes. 

Figure 37 shows an example of gene-eQTL where the coverage is uniformly higher 

for all exons in the minor allele flies. 

 

Figure 37 – A gene-eQTL in the second intron of Sas-6 increases the gene expression. The 
heatmap shows in blue the forward RNA-Seq coverage for all GDL lines divided by Major and minor 
allele. The average coverage for the Major and minor alleles is shown in red. The star indicates the 
position of the causal variant. 

 

2.3.2 - exon-eQTL 

45.6% of genes with an exon-eQTL also have a gene-eQTL. The tests are performed 

independently from each other making it likely for exon-eQTLs to be discovered for 

genes with a gene-eQTL. The remaining 54.4% of exon-eQTLs point to specific exon 

usage changes that do not globally affect gene expression. This fraction of exon-

eQTLs has an effect on alternative splicing alone because it is not associated with 

changes in total gene expression large enough to lead to a gene-eQTL. Genes 

involved in exon-eQTLs are weakly enriched for RNA binding and catalytic activities. 
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An example of exon-eQTL is shown in Figure 38, where the 10th exon of the gene 

FANCI has 2.3 times higher coverage in the minor allele compared to the major.  

Coverage differences supporting differential inclusion are visible exclusively at the 

level of this exon. The exon coverage change is associated with a variant in a 

neighboring exon that might cause differences in splicing preferences between the 

two alleles. 

 

Figure 38 – An exon-eQTL in the 12th exon of the gene FANCI decreases the usage of its 10th 
exon. The heatmap shows in blue the reverse RNA-Seq coverage for all GDL lines divided by Major 
and minor allele. The average coverage for the Major and minor alleles is shown in red. The star 
indicates the position of the causal variant. The black box indicates the exon with differential coverage 
between Major and minor alleles. 
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3 - Perspectives 
 
 
 
 

3.1 - RNA sequencing of whole embryo samples at 2-4 hpf and 6-8 hpf 

The gene expression dataset presented in this section is staged during cell 

differentiation (10-12 hpf). To complement the dataset with additional time points 

during development, we plan to obtain samples stage at 2-4 hpf (during multipotent 

stage) and at 6-8 hpf (during cell specification) for the same GDL lines. This will 

increase our time resolution and allow us to make gene expression comparisons 

during development. In particular, since development is a canalized process, we aim 

to assess if gene expression diversity increases during development. To better 

achieve this goal and control for batch effects, we already sequenced one line per 

population at 2-4 hpf and 6-8 hpf. This will allow us to disentangle clustering by hours 

post fertilization from sequencing batch. 

 

3.2 - Identification of selective pressure on gene expression 

In addition, in collaboration with other groups, we plan to expand on the evolutionary 

insights that can be acquired by analyzing this dataset. The differential expression 

analysis confirms the population separation observed at the genetic level. On the 

other hand, except for the cuticle gene overexpression in the Netherlands population 

and the energy metabolism genes in the Tasmania population, the genetic signatures 

of differentially expressed genes are difficult to interpret. We aim to identify genes 

under selective pressure to find patterns of adaptation among the five populations. 
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4 - Discussion 

 

In this chapter, I have discussed the generation of an RNA-Seq dataset of D. 

melanogaster staged whole embryos from the Global Diversity Lines. The dataset 

included a few problematic samples that were carefully identified and excluded from 

the analysis. The other samples displayed high quality scores on multiple metrics 

and are at the expected stage of embryogenesis (comparison to modENCODE data).  

In contrast to the DNA variants, Principal Component Analysis of gene expression 

does not show any visible population structure. The same is true when sub-setting 

for genes in functional categories, suggesting that the majority of gene expression 

variation is not under selection. Differential expression analysis confirmed that the 

African population is the most separated from the other populations, with the 

difference being stronger at the transcript compared to the gene level. In addition, the 

differential expression analysis revealed an overexpression of cuticle related genes 

in the Netherlands population at 10-12 hpf and differential expression of genes linked 

to energy metabolism in the Tasmania population. Finally, we identified 903 gene-

eQTLs and 2,021 exon-eQTLs. By using a linear mixed model, the high degree of 

population structure was controlled for. Variants with an effect on exon usage tended 

to be spread along the gene body.  

The gene expression dataset presented here represents a wealth of information for 

the Drosophila population genetics community interested in migration and evolution 

of the melanogaster species. 

 

 

 

 
  



III - Gene expression variation among Drosophila melanogaster lines from five continents 

 

 
92 

5 - Methods 

 

 

5.1 - RNA-Sequencing and mapping  

 

5.1.1 - Generation of staged, high quality RNA-Seq libraries 

The samples were collected by the laboratory of Andrew Clark at Cornell University. 

The embryos were fixed in formaldehyde, frozen and shipped with dry ice to the 

Furlong laboratory. RNA was extracted and prepared for sequencing using NEBNext 

ultra directional RNA library prep kit for Illumina sequencing (NEB). The NEBNext 

protocol performs mRNA isolation by poly-A enrichment. The RNA was directionally 

reverse transcribed to cDNA. The cDNA was amplified with 11 PCR cycles. The 

samples were multiplexed and sequenced in 4 batches on Illumina NextSeq 500 HI. 

Reads were 75 bp long and paired-end. We achieved a median of 10 million unique 

mapping reads per sample. 

 

5.1.2 - Mapping and gene expression quantification 

We built the gene expression quantification pipeline around RSEM103. RSEM uses 

STAR102 to map directly on the transcriptome. It can also model the likelihood of a 

read coming from different isoforms if the read does not clearly belong to any. We 

merged the fastq of technical duplicates to increase coverage. Reads were mapped 

using STAR (version 2.5.2a) with default parameters and the quantification of both 

genes and isoforms was performed using RSEM (rsem-calculate-expression). The 

transcript assembly was based on BDGP6 genome assembly and Flybase 6.13 

genome annotation. RSEM provides Transcript Per Million (TPM) as a measurement 

of transcript and gene expression. 
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5.2 - RNA-Seq quality control 

 

5.2.1 - FastQC and Picard quality control statistics 

We collected a wealth of quality control statistics from unmapped (fastq files) and 

mapped (bam files) reads. In particular, we used fastqc to collect metrics about the 

sequencing. In addition, we run Picard100 MarkDuplicates, CollectRnaSeqMetrics, 

CollectAlignmentSummaryMetrics and CollectMultipleMetrics on the mapped files 

from STAR. The statistics were collected with MultiQC104 for easier visualization. 

 

5.2.2 - Principal component analysis to control for batch effects 

We performed principal component analysis on TPM gene expression measurement 

from RSEM. We included samples staged at 10-12 hpf and colored them by: 

transportation box, RNA extraction day, mRNA isolation day and sequence set. After 

removing all samples with high rRNA content, mRNA degradation and incorrect 

staging, we were left with 72 high quality RNA-Seq samples. 

 

5.2.3 - Staging comparison with modENCODE data 

We downloaded the RNA-Seq data from modENCODE (Celniker et al.101) as a 

reference for staging. Gene expression was quantified using RSEM as in “5.1.2 - 

Mapping and gene expression quantification”. We performed Spearman correlation 

between gene expression for each GDL sample with each modENCODE sample to 

check if samples had the expected gene expression signature associated with their 

time point. To this end, we ascertained that the GDL samples had the best 

correlation scores with the corresponding modENCODE sample. 
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5.3 - Differential gene expression between continents and 
gene enrichments 

 

5.3.1 - Retrieving population structure from gene expression  

We performed a Principal Component analysis on gene expression values to 

separate the lines by population. No visible structure was present. We then 

performed the same analysis on gene groups that could potentially be under 

selective pressure. We performed a PCA on genes annotated as belonging to the 

following Gene Ontologies: “Metabolic Process”, “Heat-Related”, “Olfact-related”,  

 

5.3.2 - Differential gene and transcript expression 

We quantified gene expression using RSEM (as described above) for the 72 lines 

staged at 10-12 hpf that passed all quality control steps. The “expected counts” from 

RSEM were rounded to the next unit and used as a measure for gene expression. 

Differentially expressed genes and transcripts were identified with DESeq273. We 

compared each population against all others (e.g. Ithaca vs Netherlands, Tasmania, 

Zimbabwe and Beijing) performing 5 tests in total. In this way population specific 

patterns of gene expression could be identified. On the other hand, Ithaca, 

Netherland and Tasmania populations are very similar to each other: to assess the 

impact of this setup, we performed all 10 pairwise comparisons.  

 

5.3.3 - GO enrichment of differentially expressed genes 

We performed Gene Ontology enrichments using R package GOstats108. The 

enrichments were performed separately for the 3 major GO categories: “Molecular 

Function”, “Cellular Component” and “Biological Process”. The enrichments were 

calculated using Fisher exact tests and the p-values were corrected using the 

Benjamini-Yekutieli procedure.  
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5.4 - QTL call 

We built an eQTL pipeline to discover gene expression-QTL (gene-eQTL) and exon 

usage-QTL (exon-eQTL). We mapped reads to the reference genome and removed 

controlled mappability biases using WASP70. The major challenge for association 

studies represented by the Global Diversity Lines is the high degree of population 

structure. Relationships between samples create spurious associations between both 

variants and gene expression. To this end, we used a linear mixed model approach 

that includes the population structure and excludes associations that arise from the 

population structure alone. We used LIMIX67, a python implementation of linear 

mixed models. 

 

5.4.1 - Mapping and WASP filtering  

We mapped the reads using STAR102 (version 2.5.2a) with options: “--alignIntronMax 

100000 --outFilterIntronMotifs RemoveNoncanonical --outFilterType BySJout --

outSAMunmapped Within --readFilesCommand zcat”. We filtered reads with 

mapping biases using WASP70. We then removed duplicates reads with Picard tool. 

This pipeline didn’t allow us to use RSEM for quantification since WASP requires two 

rounds of mapping to the genome.  

 

5.4.2 - Gene and exon expression 

To quantify gene and transcript expression we used htseq-count84 both on genes and 

exons from Flybase 6.13 genome annotation. Gene and exon expression were 

library size normalized using DESeq273. The following pipeline was the same for 

gene and exon expression measurement. We filtered expressed genes and exons as 

those with expression greater than 0 in at least half of the GDL. Gene expression 

values were gaussianized to increase power in QTL discovery. To remove batch 

effects and hidden factors in the data and increase power we used PEER69 with 10 

hidden factors. PEER is a Bayesian method that discovers hidden factors in the gene 

expression data matrix and outputs residuals that are free of those effects. Finally, 

we gaussianized the residuals and used them as inputs in the eQTL call. 
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5.4.3 - Variants filtering and population structure 

We used the variant calls from Grenier et al.93 and subsetted it to the lines we had 

gene expression data for. We used GATK109 LiftOverVcf to move the vcf coordinates 

from BDGP5 to BDGP6 assembly. We removed variants with minor allele frequency 

smaller than 5% and more than 20% missing values. Multiallelic loci were excluded. 

For each gene we defined a cis window as ±50 kb from both gene’s ends and tested 

the variants within this window for association. To better identify population structure 

we replicated the work in Grenier et al.93. Starting from the filtered vcf, as described 

above, we annotated variants based on the genomic features they overlap using 

SnpEff110. We defined neutrally evolving variants as those overlapping introns shorter 

than 65 bp. The data recapitulated the population structure seen in Grenier et al.93. 

The neutrally evolving variants were used to obtain the Kinship matrix to control for 

population structure in LIMIX. 

 

5.4.4 - gene-eQTL and exon-eQTL call with LIMIX 

To perform the eQTL call we used LIMIX67. LIMIX implements the following linear 

mixed model: 	

𝑌 = 	$𝐹&

'

&()

+	$𝑈,

-

,()

 

Where Y is the gene expression vector, F is a NxN kinship (Fixed Effect) matrix 

representing sample by sample relationship and U is the genotype vector (Unknown 

Effect). The kinship matrix is obtained by calculating the sample by sample similarity 

from neutrally evolving variants. We computed empirical p-values by permuting 

10,000 times the Y vector and obtaining a background p-value distribution. The test 

p-value was then ranked among the background p-value. The empirical p-value was 

obtained with the formula: 

𝑝<=>,6,?@A = 	
𝑅>CD@AE<

𝑁><6=EG@G,HIJ + 1
 

Where 𝑅>CD@AE<  is the rank of the test p-value when compared the permuted p-

values. 
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We considered only the lowest raw p-value association for each gene (one gene-

eQTL and one exon-eQTL per gene) and we correct the empirical p-values with 

Benjamini-Hochberg FDR using a 0.1 cutoff. If multiple variants were in linkage 

disequilibrium by showing an uncorrected p-value within one order of magnitude from 

the lowest, we consider them as belonging to an eQTL cloud. 
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IV - Impact of natural sequence variation on 
Drosophila melanogaster chromatin 

accessibility 
 

 

1 - Introduction 

 

1.1 - Non-coding variants are a major source of phenotypic variation 

Individuals from the same species share genes and follow the same developmental 

plan, but have different phenotypes. Phenotypic diversity is caused by the interaction 

of the environment (especially during development) and genetic variation. While the 

environmental cues can be measured and controlled to a certain extent, the genetic 

variants constitute an innate and hidden pool of variation.  

Although genetic variants that impact coding sequences can be interpreted based on 

the changes that they cause on protein sequence, non-coding variants provide a 

greater challenge. GWAS111,112 and QTL53,113 studies consistently reveal that the 

majority of functional variants are located in the non-coding genome. This 

phenomenon is conserved across organisms, from humans to Drosophila.  

The mechanisms through which non-coding variants lead to variation in the 

phenotype are still poorly understood. The main hypothesis is that non-coding 

variants influence the phenotype by modifying gene regulation. An example is the 

human rs11708067 variant, located in an enhancer of the gene ADCY5. The variant 

has a common G allele and a rare A allele: the A allele disrupts the enhancer 

function and causes lower expression of the gene ADCY5, that in turn leads to higher 

diabetes risk114. In addition to altering enhancer function, variants can influence gene 

expression by causing changes in chromatin topology115 and epigenetic marks52. In 

general, functional non-coding variants modify gene regulation by interfering with cis 

Regulatory Module (CRM) function. 
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1.2 - Specific activation of CRMs drives tissue development 

The non-coding genome harbors a plethora of CRMs that perform a variety of 

functions related to gene expression regulation (see “I - Introduction”). CRMs 

function by recruiting Transcription Factors to the DNA, this leads to higher chromatin 

accessibility that can be measured with many techniques, including DNAse 

hypersensitivity assay24. Recent single-cell studies116 show that the majority of CRMs 

are active only in a subset of tissues. In fact, tissue-specific features emerge 

because of precise gene regulation117 and, as a result, every cell type expresses a 

unique set of genes. Spatial gene expression specificity is achieved by the precise 

activation of CRMs. Consistent with the observation that a high proportion of CRMs 

are activated in a tissue-specific manner, the effect of many functional variants differs 

among tissues118, and is, therefore, context dependent. 

 

1.3 - Methods to predict the effect of variants on regulatory regions 

Each individual harbors millions of variants, but the vast majority of them has little to 

no effect on gene expression42. Since the regulatory code is still poorly understood, it 

is difficult to predict which variants have an effect on gene expression based solely 

on DNA sequence. In recent years, many machine learning methods have been 

developed to summarize the features of regulatory modules and have been 

successfully applied to estimate the impact of variants on chromatin accessibility. 

These methods scan the DNA sequences of CRMs and look for enrichment of 

features that distinguish them from the rest of the genome. This knowledge can then 

be used to prioritize variants for their predicted effect on CRM function. 

Machine learning approaches look either for k-mer or Position Weight Matrix (PWM) 

enrichment within regulatory sequences. For example, gkm-SVM119 is a support 

vector machine method based on k-mer enrichment while PRIME120 is a random 

forest method based on PWMs enrichment. Methods based on k-mers outperform 

those based on PWMs because they describe Transcription Factors Binding Sites 

(TFBS) in a more flexible way119. Recently, Neural network approaches have gained 

popularity because they achieve better performances than other methods on very 

large datasets. Basset121 is a neural network approach based on PWMs enrichments, 

which was successfully applied to ENCODE human data showing better performance 
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than k-mer based approaches. The main disadvantage of neural networks is that 

they require large training sets and their results are challenging to interpret. 

 

1.4 - Overview of the project 

In this project, I apply LS-GKM122, an enhanced version of gkm-SVM, to prioritize 

genetic variants for their effect on Drosophila melanogaster chromatin accessibility 

during embryogenesis. I applied a gapped k-mer support vector machine method 

(LS-GKM) developed in Michael Beer’s laboratory on a set of tissue-specific DNase 

Hypersensitive Sites (DHS). The small genome size of Drosophila proves to be a 

challenge for machine learning methods, but LS-GKM shows good performance on 

small training sets. The DHS dataset has been introduced in “II - Genetic variation as 

a tool to associate cis Regulatory Modules with their target genes”. The SVM model 

is then used to score variants for their tissue-specific effect on chromatin 

accessibility. The genetic variants analyzed here come from two different 

populations: 

• The Drosophila Genetic Reference Panel (DGRP63) is a panel of more than 

200 Drosophila melanogaster lines coming from a unique geographic 

location. The population has 6,131,648 mapped variants. 

• The Global Diversity Lines (GDL93) are a group of 80 Drosophila 

melanogaster lines from 5 continents (see also chapter “III - Gene expression 

variation among Drosophila melanogaster lines from five continents”). They 

capture genetic variation caused by geographic isolation and adaptation to 

different environments. The population has 6,752,029 mapped variants.  

The variant sets for the two populations have 2,828,011 (28%) variants in common. 

The goal of this project is to gain insights into the tissue-specific effects of variants 

and to provide a resource to the Drosophila population genetics community for 

prioritizing causal variants. 
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2 - Results 

 

 

2.1 - A machine learning approach to uncover tissue-specific 
features of chromatin accessibility 

In this work we aim to prioritize genetic variants for their predicted effect on 

chromatin accessibility to produce a resource database for the Drosophila 

community. Genetic variation can affect phenotype by altering gene regulation. In 

particular, genetic variation can alter the function of CRMs by modifying Transcription 

Factor Binding Sites (TFBS). Here we apply a gapped k-mer support vector machine 

method developed by Beer, Gandhi, Lee et al.119,123, to discover tissue-specific open 

chromatin features. These features are then used to score genetic variants for their 

predicted effect on chromatin accessibility. The entire project was developed in 

collaboration with Federica Mantica, a visiting scientist in the Furlong laboratory. 

 

2.1.1 - Identification of tissue-specific DHS 

The LS-GKM model learns features that distinguish a positive from a negative set of 

sequences. In this project, we aimed at distinguishing open from closed chromatin in 

order to score variants for their ability to increase or decrease accessibility. To 

dissect the regulatory landscape of the developing Drosophila embryo, we used the 

DNase hypersensitivity dataset generated in the Furlong laboratory by James 

Reddington and David Garfield (described in “II - Genetic variation as a tool to 

associate cis Regulatory Modules with their target genes”). The dataset offers both 

time and tissue resolution for a total of 19 samples, all in duplicates. Since the 

majority of non-coding variants has an effect only on a subset of tissues, we trained 

LS-GKM on tissue-specific DHS. This allowed us to score variants for their tissue-

specific effect on accessibility. We obtained a collection of DHS that were exclusively 

open in one of the three FACS sorted tissues in at least one of the 5 time points. 

DHS were further separated into promoter-proximal DHS (closer than 500 bp to a 
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known TSS) and promoter-distal, putative enhancers (distant more than 500 bp to a 

known TSS). In total we identify: 

• 1,466 promoter-proximal DHS and 9,658 (putative) enhancers that are 

accessible exclusively in the neuroectoderm tissue. 

• 436 promoter-proximal DHS and 2,937 (putative) enhancers that are 

accessible exclusively in the mesoderm tissue. 

• 1,105 promoter-proximal DHS and 4,811 (putative) enhancers that are 

accessible exclusively in the Double Negative (non-neuro, non-meso) tissue. 

Figure 39 shows an example of DNase hypersensitivity coverage tracks and depicts 

tissue-specific DHS. 

 

Figure 39 – Identification of tissue-specific DHS. The figure shows DNA Hypersensitivity tracks in 3 
tissues across 4 time points (from 4-6 hpf to 10-12 hpf). Colors correspond to different FACS sorted 
tissues. Blue: neuroectoderm; Red: mesoderm; Green: Double Negative. The boxes identify tissue-
specific DHS (DHS open exclusively in one tissue at least at one time points). The box color indicates in 
what tissue the DHS is exclusively accessible. Blue: neuroectoderm, red: mesoderm, green: double 
negative tissue. 

 

2.1.2 - A machine learning approach to distinguish open from closed chromatin 

In this project, we used large-scale gkm-SVM (LS-GKM122) following the pipeline 

shown in Figure 40. LS-GKM was trained using our set of tissue-specific DHS and a 

mono- and di-nucleotide matched background. LS-GKM fits an SVM model to 

separate the positive and negative sets, which can then be used to score all possible 

10mers and learn the vocabulary of the regulatory sequences, in our case, tissue-

specific motifs (as discussed in “2.3 - Enrichment of tissue-specific Transcription 
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Factors motifs”). Finally, the regulatory vocabulary can be used to score DNA 

sequences for their likelihood to belonging to DHS or inaccessible chromatin. By 

scoring sequences that incorporate the different alleles of a variant, and computing 

the difference between the two, LS-GKM outputs a deltaSVM: a score that 

summarizes the impact of the non-reference allele on chromatin accessibility. 

 

Figure 40 – gkm-SVM pipeline to train the gapped k-mer SVM model and score variants for their 
predicted effect on open chromatin (from Lee et al., Nature Genetics, 2015).  The figure shows the 
pipeline implemented in gkm-SVM. Firstly, the model is trained on a positive and a negative training set 
of sequences. The gapped k-mer weights are used to score all possible 10-mers. These scores are then 
used to assess the impact of variants on the local genomic sequence. Finally, the model provides a 
deltaSVM for each variant. If a variant has positive deltaSVM, it means that the sequence with the 
variant is more similar to the positive training set, while a negative deltaSVM means that the sequence 
with the variant is more similar to the negative training set. 

 

LS-GKM was trained on our six sets of tissue-specific DHS. For each positive set, we 

selected a background that matched the same nucleotide and di-nucleotide 

composition. The training was repeated five times with different backgrounds to 

increase the stability of the results. The background is composed of intergenic 

sequences selected to match the nucleotide and di-nucleotide composition of the 

positive set. Figure 41 shows the ROC curves from ten cross-validations of the six 

trainings. Only the ROC from the first training are shown but the results are very 
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similar across the five trainings. The Area Under the Curve (AUC) are higher for 

enhancers than for promoter-proximal DHS, probably because the enhancer sets 

include more sequences. After training the models on tissue-specific DHS, all 

variants can be scored for their tissue-specific effect on chromatin accessibility. The 

10-mers scores were averaged across the five trainings and the deltaSVM were 

computed from the averaged 10-mers scores. 

 

Figure 41 – ROC curves from 10 cross-validations of LS-GKM training. The figure shows the ROC 
curves from LS-GKM training on tissue-specific DHS divided in promoter-proximal DHS and enhancer. 
Only the results from the first training out of five performed are shown here. n: number of positive (and 
negative) sequences in the training set. AUC: Area Under the Curve. 

 

 

2.2 - Prediction of chromatin accessibility QTLs 
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good training performance shown by the AUC (Figure 41), we tested the predictive 

power of the deltaSVM scores. Therefore, we assessed how well the deltaSVM could 

predict the direction of the effect of chromatin accessibility QTLs (caQTLs). caQTLs 

describe the associations between a genetic variant and changes in chromatin 

accessibility. Specifically, we used LS-GKM to predict the caQTLs in the eye-

antennal imaginal discs of adult Drosophila published by Jacobs et al.124. We 

identified eye-antennal imaginal discs specific DHS and trained LS-GKM on three 

sets of tissue-specific DHS: promoter-proximal DHS (1,863 sequences), enhancers 

(12,819) and all DHS (14,682). The deltaSVM scores could predict the direction of 

the caQTLs in the enhancer and all DHS, but not in the promoter-proximal DHS 

(Figure 42). The predictive power of LS-GKM is lower than for human caQTLs123. In 

addition, by analyzing the results of Lee et al.123 we observed that LS-GKM predicts 

caQTL effect on promoter-proximal DHS as well as on enhancers in human. These 

observations could be caused by the smaller amount of sequences used in training 

because of the smaller Drosophila genome size.   

We repeated the analysis by training LS-GKM on all (tissue and non-tissue-specific) 

ATAC-Seq peaks (9,049 promoter-proximal, 21,725 enhancer and 30,774 all DHS) 

obtaining very comparable results to the eye-antennal imaginal disc specific set. This 

confirmed that it is possible to train LS-GKM on a subset of sequences and use the 

model to score variants not included in the training set. 

 

Figure 42 – Prediction of caQTL direction of effect. The plot shows the correlation between caQTL 
Pearson r and deltaSVM for the causal variant. The ATAC-Seq peaks from Jacobs et al.124 were divided 
in promoter-proximal and distal. Only the ATAC-Seq peaks that did not overlap any embryonic DHS or 
coding region were used in the training set. The “ALL” category includes both promoter-proximal and 
enhancer peaks.  
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2.3 - Enrichment of tissue-specific Transcription Factors 
motifs 

LS-GKM learns the regulatory motifs enriched in CRMs by scoring gapped k-mers for 

their likelihood of belonging to CRMs or not. After training the model, we can retrieve 

SVM weights for all ungapped 10-mers. This set is composed of short sequences 

that distinguish CRMs from background DNA. LS-GKM was trained on 6 sets of 

sequences belonging to: neuroectoderm, mesoderm and Double Negative tissue 

divided in promoter-proximal and enhancer DHS. To retrieve the regulatory features 

of each set of sequence, we looked for PWMs enrichments within the scored 10-

mers.  

Figure 43 shows enrichment scores for many regulatory TFs across the training sets. 

Erect wings (Ewg) is a transcription factor involved in synaptic growth125 whose motif 

was strongly enriched within the top k-mers of the neural tissue. The mesoderm 

shows strong enrichment of many known regulators of muscle development. Mef2 is 

an essential regulator of muscle differentiation, being required for all muscle types126 

and its motif is strongly enriched in both promoter-proximal DHS and enhancers 

exclusive to the mesodermal tissue. In the same way, motifs for the transcription 

factors Biniou (necessary for visceral mesoderm development) and Tinman (required 

for dorsal somatic muscles and heart formation) are both strongly enriched in the 

mesoderm. Finally, the Double Negative tissue represents a pool of tissues 

dominated by ectoderm and endoderm. The motif for GATAe (a TF required for 

endoderm development127) is enriched in the Double Negative tissue together with 

grainy head, a regulator of epithelial development128. 

The majority of PWMs had similar enrichment patterns in promoter-proximal DHS 

and enhancers, with some exceptions. For example, Ewg enrichment was stronger in 

promoter-proximal DHS, suggesting a direct regulation of transcription at the 

promoter level. On the other hand, Hairy and Tinman motifs showed a stronger 

enrichment in enhancers, suggesting that they mainly function by binding to promoter 

distal elements. In fact, Tinman regulates heart formation by specifically binding to 

enhancer regions129. In addition, almost all TFs are specifically enriched in one 

tissue. One exception is Sloppy paired 1 (Slp1) that is weakly enriched in all 

promoter-proximal tissues. Slp1 is expressed across tissues during development and 

it mainly represses gene expression by binding at the promoter of target genes as a 
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cofactor of Hox proteins130. Taken together these results speak for the high quality of 

our DHS dataset and prove that LS-GKM can unbiasedly learn tissue-specific motif 

features. 

 

Figure 43 – Motif enrichment within the k-mers from the 6 conditions. The plot shows the median 
score of k-mers matching Transcription Factors PWMs. Positive values indicate that k-mers that match 
the PWM are associated with the positive training set. For example, the top k-mers in the mesoderm 
tissue match the Mef2 PWM well, but the same PWM is not found in the top k-mers of neuroectoderm 
and Double Negative tissue. The enrichment scores correspond to the median LS-GKM score of the top 
10-mers matching each PWM, scaled by the range of the distribution. Enrichment score can range 
between -1 and 1. P: promoter-proximal DHS; E: enhancer. Ewg: Erect wing; Mef2: Myocyte enhancer 
factor 2; Bin: Binou; Fd64A: Forkhead box L1; Slp1: Sloppy paired 1; Tin: Tinman; Grh: Grainy head; H: 
Hairy; Ttk: Tramtrack; Twi: Twist. 
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2.4 - deltaSVM scores give insight into the impact of variants 
on chromatin accessibility 

LS-GKM provides deltaSVM scores that correspond to the likelihood of the non-

reference allele to increase or decrease chromatin accessibility. These scores 

represent a useful resource to prioritize variants that are more likely to have an 

impact on accessibility and to predict the direction of the effect. In this section, I will 

discuss how deltaSVM scores can provide global information about the impact of 

variants on accessibility.  

 

2.4.1 - Variants in enhancers have a larger impact compared to promoter-
proximal DHS 

The deltaSVM scores follow a normal distribution: variants with high absolute 

deltaSVM values are more likely to have an effect on chromatin accessibility 

(Supplementary Figure 6). The distribution of deltaSVM is shifted towards negative 

values indicating that non-reference variants are more likely to reduce accessibility. 

In addition, promoter-proximal DHS and enhancers have very different deltaSVM 

ranges, with the distribution on enhancers being two times broader than on promoter-

proximal DHS. This observation suggests that enhancer variants have a larger effect 

on accessibility, while promoter-proximal DHS are more robust to variation. 

 

2.4.2 - Rare variants have a larger impact on chromatin accessibility 

By combining the allele frequency and deltaSVM information, we observe that rare 

variants have larger absolute deltaSVM values. Figure 44 shows the comparison of 

deltaSVM scores between rare and common variants. Rare variants, within the 

DGRP population, were identified as having a non-reference frequency smaller than 

0.01; common variants had a non-reference allele frequency greater than 0.5. In all 

cases, rare variants had higher deltaSVM than common variants, except for the 

mesodermal promoter-proximal DHS (the training condition with the smallest positive 

set and lowest AUC). Rare variants were previously observed to have larger 
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effects131, and therefore it was suggested that they are more likely to be under 

negative selection. In conclusion, the deltaSVM scores indicate that enhancer 

variants generally have larger effects compared to variants in promoter-proximal 

DHS, with rare variants have larger impact on chromatin accessibility compared to 

common variants. 

 

Figure 44 – Rare variants have a larger impact on chromatin accessibility. The plot compares the 
distribution of absolute deltaSVM between rare and common variants. The absolute deltaSVM scores 
are divided by tissue and promoter-proximal DHS and enhancer. The number comparing the 
distributions corresponds to the Wilcoxon p-value. Rare variants have a non-reference allele frequency 
smaller than 0.01 while common variants have a non-reference allele frequency greater than 0.5. 

 

2.4.3 - Many variants have tissue-specific effects 

deltaSVM scores can be visualized and compared across tissues (Figure 45). The 

heatmap shows the deltaSVM across tissues for the 1,000 variants with the highest 

scores, each row represents a variant. Promoter-proximal DHS show variable scores 

across tissues, with many variants having tissue-specific effects: a high score is 
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observed in one tissue and a near zero score in other tissues. There are a few 

examples of discordant scores at the top and at the bottom of the heatmap. 

Enhancers show more uniform behavior with roughly 60% (top of the heatmap) of the 

variants behaving in the same way across tissues. The remaining 40% (bottom of the 

heatmap) have discordant behaviors across tissues. The latter cases are especially 

interesting to examine because they provide examples of variants increasing 

accessibility in one tissue and decreasing it in another.  

The high variability of deltaSVM scores between tissues for the promoter-proximal 

DHS is unexpected given that promoters tend to function in a constitutive way. It is 

important to notice that the heatmap only shows the 1,000 variants with the highest 

deltaSVM scores out of 342,760 scored variants within enhancers and 193,554 

variants within promoter-proximal DHS. At the global level, deltaSVM scores have 

higher correlation across tissues in promoter-proximal DHS (Person correlation 

between deltaSVM scores of the three tissues range between 0.83 and 0.93) than in 

enhancers (Pearson correlation between deltaSVM scores of the three tissues range 

between 0.08 and 0.29). This indicates that globally variants on enhancers tend to 

act more often in a tissue-specific way than on promoter-proximal DHS. 

 

Figure 45 – Heatmap of tissue-specific variant scores divided by promoter-proximal DHS and 
enhancers. The heatmaps report the top 1,000 variants with highest deltaSVM scores for promoter-
proximal DHS and enhancers (the variants are not the same across the two heatmaps). Heatmap colors 
correspond to deltaSVM values.   
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2.5 - Merging of variant calls from different populations 

To provide a unified set of variant scores, we merged the variant calls (vcf files92) for 

the DGRP and GDL. When considering both variant files, 72% of variants are 

uniquely called in one of the vcf files, while the remaining 28% are common between 

the two panels. Specifically, the DGRP vcf includes 6,131,648 variants and the GDL 

vcf includes 6,752,029 variants, 2,828,011 of which are in common. The vcf files 

were merged using two strategies: 

• All variants from the two files were merged. If a variant was genotyped only in 

one file, we assumed that all lines in the other file were harboring the 

reference allele. 

• Only the variants genotyped in both vcf files were joined. 

The first strategy does not cause any loss of data but it assumes the genotype for 

72% of the variants. The assumption would hold true only if the vcf files were 

including all true positive variants. The second strategy is more conservative and 

does not require any assumption, but it causes a significant loss of data. 

To assess the quality of the two merged vcf files, we retrieved the population 

structure of the lines from them. Following the protocol in Grenier et al.93, we 

performed a PCA on neutrally evolving variants selected from the two merged vcf 

files. The expected clustering of the 5 populations within the GDL is shown in Figure 

30 from Grenier et al.93. In addition, the DGRP population should cluster with the 

Ithaca population, given their common origin in the same geographic location.  

I then performed a PCA using the merged vcf file containing all variants and 

assuming reference genotypes (Figure 46, top) and the merged vcf file including only 

variants genotyped in both original vcf files (Figure 46, bottom). The top plots show a 

strong separation between the DGRP and the GDL lines, only the second PC 

separates the Zimbabwe lines from the others. This indicates that the assumption 

that ungenotyped variants are similar to the reference allele biases the results by 

including an incorrect structure in the data, meaning that both vcf files are missing 

variants within the populations. The bottom plots show the expected separation 

between populations: the first PC splits the Zimbabwe lines and the second one the 

Beijing lines. The DGRP lines cluster with the Ithaca as expected. 
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Taken together these results show that it is not possible to merge all variants from 

two separate vcf files without performing a de novo genotyping. Following this result, 

we provided separate deltaSVM scored for the DGRP and GDL vcf files. 

 

Figure 46 – Merging vcf files from two different populations. Principal Component Analysis of 
variants from two independent vcf files. The two populations are the GDL and DGRP. (a) The plots 
show the results of merging all variants from the two vcf files. When a variant is genotyped only in one 
file, it is assumed that the other file has a reference allele. The first PC separates the DGRP lines from 
the GDL showing strong batch effects. (b) The plots show the results of merging only the variants 
genotyped in both vcf files. The first PC clearly separates the Zimbabwe lines as in Grenier et al.93, the 
third separates the Beijing lines. The DGRP lines cluster with the Ithaca lines that come from the same 
geographic location.  
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3 - Perspectives 

LS-GKM is able to learn tissue-specific features and can predict the effect of variants 

on chromatin accessibility. We are currently performing two experiments to validate 

the predictions of LS-GKM. In addition, we hope to set meaningful cutoffs for the 

deltaSVM scores, that correspond to a high chance of differential accessibility. In 

particular, we are performing tissue-specific ATAC-Seq to measure accessibility and 

SuRe to quantify promoter and enhancer function. 

 

3.1 Tissue-specific ATAC-Seq 

ATAC-Seq will be performed for two DGRP lines (DGRP-57 and DGRP-714) to 

validate the deltaSVM scores in vivo. This experiment is currently being performed in 

collaboration with Rebecca Rodrigues Viales from the Furlong laboratory. We 

collected DGRP-57 and DGRP-714 embryos staged at 10-12h and FACS-sorted the 

cells with the same procedure as for the DNase hypersensitivity assay (see “II - 

Genetic variation as a tool to associate cis Regulatory Modules with their target 

genes: 5.2.1 - DHS identification”). ATAC-seq is currently being performed on sorted 

populations of muscle and neuronal cells in both genetic backgrounds. After 

identifying differentially accessible peaks, I will compare the differential accessibility 

between the two lines with the deltaSVM scores predicted by LS-GKM. 

 

3.2 SuRe to measure variants impact on CRM function 

CRMs exert their function by recruiting Transcription Factors to the DNA. In this 

project, we used chromatin accessibility as a proxy for TF binding. By measuring TF 

binding, chromatin accessibility also correlates with CRM activity. A more direct way 

to assess promoter and enhancer activity78 is by quantifying self-transcription. SuRe 

is an in vitro technique capable of measuring self-transcription genome-wide in the 

chosen cell line20. We are currently performing SuRe in Drosophila Kc cells on 

genomic fragments from 6 DGRP and 6 GDL lines to measure differential activity of 

promoters and enhancers genome wide. This experiment is currently being 

performed in collaboration with Matteo Perino from the Furlong laboratory and Ludo 

Pagie and Marcel De Haas from the laboratory of Bas van Steensel. We plan to 
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measure differential activity across the genomic DNA for the two lines and identify 

the causal variants. We will then compare differential activity with the deltaSVM 

scores.  
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4 - Discussion 

 

LS-GKM is an effective method to capture the predictive regulatory motifs of 

Drosophila melanogaster’s cis-regulatory elements. We identified tissue-specific 

DHS and separated them into promoter-proximal and promoter-distal (putative 

enhancer elements) for a total of six training sets. LS-GKM shows good performance 

on the small training sets provided in this study. After training the model on tissue-

specific DHS, we could retrieve the expected motifs for transcription factors that are 

important regulators in the relevant tissues. deltaSVM scores also provide insights 

into functional effect of variants on accessibility. We observed that variants have 

larger predicted effects on enhancers compared to promoter-proximal accessibility. 

In addition, rare variants have a larger effect on accessibility compared to common 

variants. 

In order to increase the relevance and usefulness of this resource, we will further 

validate the deltaSVM scores. We are currently performing tissue-specific ATAC-Seq 

on two DGRP lines to directly correlate deltaSVM scores with accessibility measures. 

We hope to identify a cutoff for deltaSVM scores over which the variants are very 

likely to have an effect on accessibility. The caQTL validation suggests that this is 

possible. In fact, Figure 42 shows that all deltaSVM scores with an absolute value 

larger than 6 correctly predict the direction of the caQTL. We will also try to assess 

the specificity and sensitivity of the deltaSVM scores. Finally, we will test if deltaSVM 

scores can predict promoter and enhancer activity measured by SuRe-seq. 

Predicting enhancer and promoter function will represent a greater challenge than 

predicting accessibility. In fact, deltaSVM scores are poor predictors of gene 

expression. Previous observation estimate that in roughly 30% of the cases 

accessibility and gene expression are negatively correlated123 suggesting that about 

30% of CRMs have a negative effect on transcription and might represent silencers. 
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5 - Methods 

 

5.1 - LS-GKM training 

LS-GKM is a machine learning approach that can classify DNA sequences. The 

training is a crucial step that requires a careful selection of positive and negative 

(background) sequences. In this section, I will discuss the steps that were taken to 

train and assess the model. The pipeline is summarized in  Figure 40. 

 

5.1.1 - Identification of tissue-specific DHS  

The tissue-specific DHS were identified following the pipeline in “II - Genetic variation 

as a tool to associate cis Regulatory Modules with their target genes: 5.2.3 - Tissue-

specific DHS” independently for all time points (4-6 hpf, 6-8 hpf, 8-10 hpf, 10-12 hpf). 

If a DHS was defined as tissue-specific in one time point, then it was considered as 

being tissue-specific. DHS were then separated in promoter-proximal DHS and 

enhancers based on vicinity to TSS annotated in Flybase 6.13. If a DHS was closer 

than 500 bp to a known TSS it was annotated as promoter-proximal, otherwise, it 

was annotated as an enhancer. 

 

5.1.2 - Positive set  

We obtained the DHS sequences from BDGP6 genome assembly using bedtools88 

getfasta. We excluded the DHS that contained missing nucleotides (Ns) because 

they are not handled by LS-GKM. The DHS were divided into six sets corresponding 

to neuroectoderm promoter-proximal, neuroectoderm enhancer, mesoderm 

promoter-proximal, mesoderm enhancer, Double Negative promoter-proximal and 

Double Negative enhancer. 
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5.1.3 - Negative set selection 

For each positive set, we selected five negative sets, each including the same 

number of sequences as the positive set. We removed known exon sequences and 

DHS from the BDGP6 Drosophila genome assembly and tiled the remaining genome 

in sequences of 300 bp. To match the sequence composition and increase the 

complexity of the most discriminative k-mers, we used the R package MatchIt132. 

MatchIt was employed so that the background sequence would match the nucleotide 

and di-nucleotide composition of the positive set. For each positive set, we selected 

five times more sequences from the non-exon non-DHS tiles that best matched the 

positive set. The matched sequences were then randomly divided in five batches to 

form five independent negative sets.  

 

5.1.4 - LS-GKM training 

We downloaded LS-GKM122 from GitHub (https://github.com/Dongwon-Lee/lsgkm/). 

Five independent replicate trainings were performed for each of the six DHS set 

using different background sequences. We ran LS-GKM with the options “-t 2 -l 10 -k 

6” to use gapped k-mers of total length 10 with 4 gaps. LS-GKM can be set to give 

more relevance to the k-mers in the center of the sequence. While this feature is 

valuable for ChIP-Seq data, we noticed a reduction of performance when using it 

with DHS data. Our pipeline was then run without this option (corresponding to “-t 2”). 

We performed 10 cross-validations for each independent training. LS-GKM performs 

cross-validations by excluding a random 10% of the positive and negative sequences 

form the training.  

All unique 10-mers were generated using nrkmers.py script provided with LS-GKM. 

We assigned SVM weights to k-mers using gkmpredic. We obtained final k-mer 

scores by averaging the scores across the 5 replicates. 
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5.2 - Variants scoring 

We analyzed variants from two independent populations: the Global Diversity Lines93 

(GDL) and Drosophila Genetic Reference Panel63 (DGRP). The variants overlapping 

a DHS were divided into two groups, depending if the DHS was promoter-proximal or 

enhancer. deltaSVM scores were computed using deltasvm.pl from LS-GKM 

package for the six trainings. Each variant overlapping a DHS was then associated to 

three deltaSVM scores corresponding to the tissue-specific effect on chromatin 

accessibility.  

We also computed DHS level scores for each line by summing the deltaSVM at the 

variant level. Delta SVM scores are computed by comparing the alternative allele to 

the reference allele: variants that have the reference allele have a deltaSVM of 0. 

Unknown genotypes were imputed by averaging the deltaSVM at the population 

level. For heterozygous variants, we averaged the deltaSVM of the parental alleles. 

The DHS level scores have proven to be less predictive than using the top score 

variant for the caQTL validation (“2.2 - Prediction of chromatin accessibility QTLs”). 

We will further test this approach to predict the tissue-specific ATAC-Seq and SuRe-

Seq data.  

 

 

5.3 - Validation of caQTLs 

We received the ATAC-Seq peaks and caQTL files described in Jacobs et al.124 from 

the laboratory of Stein Aerts. The coordinates were moved from BDGP5 to BDGP6 

using liftOver. The ATAC-Seq peaks overlapping embryonic DHS or exons were 

excluded. A total of 14,682 eye-antennal imaginal disc specific ATAC-Seq peaks 

were used in the training. We then obtained the three positive sets: all peaks, 

promoter-proximal peaks and enhancers (following as in “5.1.2 - Positive set”). The 

background sequences were selected following “5.1.3 - Negative set selection” with 

tiles of length 455 bp, corresponding to the median length of the ATAC-seq peaks. 

The training was performed for the three training sets separately following the same 

procedure as in “5.1.4 - LS-GKM training”. Finally, we scored the DGRP variants 
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using the three LS-GKM model trained on the eye-antennal imaginal disc specific 

ATAC-Seq peaks. Each variant was assigned two scores corresponding: either 

promoter-proximal or enhancer and all DHS. 

Jacobs et al.124 identify 4,288 caQTLs on 2,048 unique ATAC peaks and report the 

GLM fit statistics. We repeated the caQTL fit with a simple linear regression and 

used the Pearson r as a measure of direction and size of the QTL effect. If more 

caQTLs were overlapping the same peak they were excluded, since it was not 

possible to discriminate the causal variant. caQTLs with low effect size were 

excluded from the correlation (p-value > 0.01 or Pearson r < 0.5). We then performed 

three correlations between the three training sets scores and the corresponding 

caQTL Pearson r. 

 

 

5.4 - Identification of TF motifs enrichment from k-mers 

The enrichment plots in Figure 45 were obtained by comparing the distribution of the 

top matching k-mers best matching to the PWM to the global k-mers distribution. We 

collected a total of 1,796 high quality motifs for Drosophila from the following 

sources: 

• CIS-BP database133 (downloaded on 20 June 2018) 

• Fly Factor Survey (downloaded on 20 June 2018) 

• Jaspar Core134 Insecta (downloaded on 20 June 2018) 

• On the Fly135 (downloaded on 20 June 2018) 

• de novo motif call performed by Olga Sigalova in the Furlong laboratory from 

ModERN ChIP-Seq database136. 

• High quality mesodermal Transcription Factor motifs from ChIP-chip 

experiments (Zinzen et al.27) 

• Grainy head motif from Yao et al.137 

We matched each motif with all 10-mers (obtained in “5.1.4 - LS-GKM training”) 

using R Biostrings package138. Each motif was associated with the top 100 k-mers 

having a match score of at least 0.8. The k-mer enrichment score was obtained by 
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subtracting the median SVM weight of all the k-mer from the median SVM weight of 

matched k-mers, scaled by half of the range of the k-mer SVM weight: 

 

𝑚𝑒𝑑𝑖𝑎𝑛(𝑆𝑉𝑀=@G?V<W) 	− 	𝑚𝑒𝑑𝑖𝑎𝑛(𝑆𝑉𝑀@AA)
𝑚𝑎𝑥(𝑆𝑉𝑀@AA) 	− 	𝑚𝑖𝑛(𝑆𝑉𝑀@AA)

	× 2 
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 V - Conclusions 
 

In this thesis, I have presented three projects developed during my Ph.D. They are 

complementary since they each explore the relationship between the effects of 

natural sequence variation on the regulation of gene expression during Drosophila 

melanogaster embryonic development. 

In the first project, we built on the eQTL framework to specifically associate CRMs 

(using DNase hypersensitivity as a proxy) with their target genes. I identified 2,967 

DHS-eQTLs and in particular 2,005 promoter-proximal DHS to gene associations 

and 962 enhancers to gene associations. This represents, to my knowledge, the 

largest functional CRM-to-gene map in Drosophila. We validated the results in silico 

by enrichment of eQTL signal on DHS, enrichment of tissue concordance between 

DHS and target genes and Hi-C contact enrichment, and experimentally by RT-

qPCR. The results show extensive CRM sharing between genes. We also observe 

frequent long range gene regulation from both enhancers and promoter-proximal 

DHS. It will be crucial to assess if the promoter-proximal distal activity is classic cis 

regulation or if it can be attributed to trans effects. The predicted function of the 

regulated genes does not suggest that genes close to promoter-proximal DHS with 

distal activity are enriched for transcription factors. The ongoing CRISPR deletions of 

a number of selected promoter-proximal DHS-QTLs should shed light on this issue, 

especially if analyzed in an F1 context. 

In the second project, we performed RNA-Seq on 80 samples from the Global 

Diversity Lines, which were collected at 10-12 hpf of embryogenesis. We performed 

multiple quality-control tests to ensure that the gene expression dataset is of high 

quality. The GDL come from five continents and show transcriptional diversity. In 

particular, the African population is the most separated, confirming the observations 

at the genetic level while the lines of European descent have similar transcriptomes. 

The Netherlands lines overexpress genes involved in the cuticle formation at 10-12 

hpf, indicating an adaptation to the environment. I used this data to perform and 

eQTL analysis, which identified 903 gene and 2,021 exon eQTLs. This is, to my 

knowledge, the first map of splicing related eQTLs in Drosophila development. 
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In the third project, we applied LS-GKM (an SVM approach based on gapped k-

mers) to score variants for their predicted impact on chromatin accessibility. We 

trained LS-GKM on six tissue-specific training sets: neuroectodermal, mesodermal 

and double negative DHS divided in promoter-proximal and promoter-distal. The 

method shows very good performance despite the small training sets. We could 

retrieve tissue-specific TFBS from the scored k-mers validating the training. We then 

scored the genetic variants from the DGRP and GDL populations to provide the 

population genetics community with a resource for variant prioritization. Rare variants 

generally show higher absolute deltaSVM scores indicating a larger impact on 

chromatin accessibility. To confirm these results, and thereby increase the usability 

of this resource, we are performing tissue-specific ATAC-Seq on two DGRP lines. 

This will enable us to assess LS-GKM predictions and associate the deltaSVM 

scores with a measure of statistical confidence.  The resulting resource will then 

provide predictions for the functional impact of genetic variants on open chromatin 

(i.e. on enhancer and promoter occupancy).   

In summary, my Ph.D. has used population genetics as a tool to assign a function to 

regulatory elements at different levels.  First, by dissecting the functional impact of 

genetic variants on open-chromatin at enhancers and promoters (Chapter IV), by 

analyzing transcriptional diversity among flies from five continents (Chapter III), and 

then by functionally linking enhancers and promoter-proximal elements to their target 

genes (Chapter II), while uncovering an unexpected level of complexity and distal 

regulation, and potential enhancer sharing.  

  



1 - Supplementary Figures 

   
125 

VI - Appendix 
 

 

1 - Supplementary Figures 

 

 

 

Supplementary Figure 1 – eQTL distribution around target genes. The plot shows the distribution of 
different types of eQTLs around their target genes. From top to bottom and from left to right: LIMIX 
eQTLs on the entire cis window; LIMIX eQTLs on DHS; TW-eQTLs; DHS-eQTLs. TSS: Transcription 
Start Site, TES: Transcription End Site. 
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Supplementary Figure 2 - qqplots for different eQTL methods and tests. The quantile-quantile plots 
are shown by black points. The expected p-value distributions are shown as a solid black line with ±95% 
confidence intervals as dashed lines. 
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Supplementary Figure 3 -  Number of variants on DHS-eQTLs significant for mtSet and LIMIX. 

 

 

 

 

Supplementary Figure 4 – Number of variants and PCs necessary to explain them on DHS and 
Tiling Windows. (a) Number of variants (b) Number of Principal Components. DHS are shown in green 
while TW in yellow. 
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Supplementary Figure 5 – qPCR setup. (a) The plots show the distribution of gene expression values 
for promoter-proximal-eQTLs target genes divided by Maj and min alleles (based on the lowest p-value 
variant in the DHS). Two lines (one with the Maj, the other with the min allele) have been selected for 
RT-qPCR testing. The selected lines are indicated with an arrow. (b) Same as in (a) but for enhancer-
eQTLs. (c) Gene expression measured with RT-qPCR for the lines and the genes involved in promoter-
proximal-eQTLs indicated in (a). (d) Gene expression measured with RT-qPCR for the lines and the 
genes involved in enhancer-eQTLs indicated in (b). 
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Supplementary Figure 6 – Distribution of deltaSVM scores in 6 conditions. The figure shows the 
distribution of deltaSVM scores across the six training sets. 
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Supplementary Figure 7 – GDL gene-eQTL and exon-eQTL qqplots. (a) qqplot for gene-eQTLs 
called on the Global Diversity Lines. (b) qqplot for the exon-eQTLs. 

a b
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Supplementary Figure 8 – PCA for batch effects on the Global Diversity Lines RNA-Seq. PCA of 
GDL samples. All plots show the first three Principal Components. The points represent samples and 
are colored to distinguish potential sources of batch effects. 
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2 - Supplementary Tables 
 

 

Table 1 – Tissue-specific numbers for enhancer-eQTLs. 

enhancer-eQTLs DHS-
eQTL 

Number 
of DHS 

Characterized 
enhancers 

Number 
of target 
genes 

Same gene 
/ assigned 

 6-8h 

Neuro 55 44 10 50 0 / 2 

Mesoderm 4 4 2 4 0 / 1 

Double 
Negative 23 21 2 23 1 / 4 

Multiple / 
all tissues 880 819 123 625 13 / 52 

10-12h 

Neuro 157 142 33 135 2 / 8 

Mesoderm 40 38 5 37 1 / 3 

Double 
Negative 78 68 5 70 0 / 4 

Multiple / 
all tissues 687 640 94 514 12 / 45 
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Table 2 – Enhancers associated to two genes.  

enhancers associated to 2 
genes 

Gene expression 
correlation 

BDGP concordance  
perfect / overlap / all 

58 34 2 / 4 / 4 

 

 

 

Table 3 – Promoter-proximal DHS and relationship with the target gene TSS. 

Number of 
targets for 
promoter-

proximal DHS 

Closest 
TSS Distal TSS 1 Distal TSS 2 

Gene 
expression 
correlation 

BDGP 
concordance 

perfect / 
overlap / all 

1 615     

1  1004    

2 96  56 8 / 19 / 19 

2  77 57 2 / 11 / 11 
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Table 4 – BDGP expression tissue to FACS sorted tissue 

BDGP general tissue term FACS sorted tissues 

Maternal none 

Ubiquitous Neuro / Meso / Double Negative 

Gonad pole cells Double Negative 

Blastoderm Double Negative 

Mesoderm derivatives Meso 

Gut Double Negative 

Ectoderm Double Negative 

Nervous System Neuro 

Malphyngian tubule Double Negative 

Tracheal system Double Negative 

No staining none 

Sense organs ambiguous 

Amnioserosa Double Negative 

Hemolymph Double Negative 

Fat body Double Negative 

Mesectoderm ambiguous 
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3 - List of abbreviations 

 

 

ATAC-Seq  Assay for Transposase Accessible Chromatin Sequencing 

AUC   Area Under the Curve 

BAM   Binary Alignment Map 

BDGP   Berkeley Drosophila Genome Project 

BED   Browser Extensible Data 

CAGE   Cap Analysis Gene Expression 

ChIP-Seq  Chromatin immunoprecipitation and sequencing 

CRISPR  Clustered Regularly Interspaced Short Palindromic Repeats 

CRM   cis Regulatory Module 

DGRP   Drosophila Genetic Reference Panel 

DNA   Deoxyribonucleic Acid 

DNase I  Deoxyribonuclease I 

DHS  DNase Hypersensitive Site 

DPE   Downstream Promoter Element 

DRE   DNA Recognition Motif 

FACS   Fluorescence-Activated Cell Sorting 
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FDR   False Discovery Rate 

GDL   Global Diversity Lines 

GO    Gene Ontology 

GWAS   Genome Wide Association Studies 

Hi-C   High-throughput chromosome conformation capture 

hpf   hours post fertilization 

IDR   Irreproducible Discovery Rate 

LD   Linkage Disequilibrium 

LIMIX   Linear mixed model 

LS-GKM  Large Sample gapped k-mer support vector machine 

mtSet   multi trait Set test 

MQ    Mapping Quality 

pA   polyadenylation 

PCA   Principal Component Analysis 

PEER   Probabilistic Estimation of Expression Residuals 

PIC   Pre-Initiation Complex 

PRO-Seq  Precision nuclear Run-On Sequencing 

PWM   Position Weight Matrix 

QTL   Quantitative Trait Locus 
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eQTL  expression QTL 

caQTL  chromatin accessibility QTL 

hQTL  histone QTL 

DHS-eQTL DNase Hypersensitivity expression QTL 

TW-eQTL Tiling Window expression QTL 

RNA   Ribonucleic Acid 

mRNA  messenger RNA 

rRNA  ribosomal RNA 

RNA-Seq  RNA Sequencing 

RT-qPCR  Real Time quantitative Polymerase Chain Reaction  

SAM   Sequence Alignment Map 

STAR    Spliced Transcripts Alignment to a Reference  

STARR-Seq  Self-transcribing active regulatory region sequencing 

SuRe   Survey of Regulatory Elements 

TAD   Topologically Associating Domain 

TF   Transcription Factor 

 TFBS  Transcription Factor Binding Site 

TSS   Transcription Start Site 

VCF   Variance Call File 
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