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Abstract

In this master thesis we analyze the construction of quintessence models by flux com-
pactification of type IIB string theory. We focus on Kähler moduli as candidates for
the quintessence field and briefly comment on other approaches. The large hierarchies
required for simultaneously describing quintessence and the standard model pose a major
challenge to model building and depend upon parametric control over the scalar potential,
which is gained in the limit of large compactification volume. Further suppression of the
quintessence scale can be achieved by an anisotropic compactification. However, by low-
ering the quintessence mass we also lower the masses of several other fields. As has been
noticed before, the volume modulus becomes too light to avoid fifth-force constraints. We
call this the “light volume problem”. Furthermore, the masses of the SUSY partners of
standard-model fields turn out too light as well, so we need a further source of SUSY
breaking. Introducing an appropriate SUSY-breaking hidden sector on the standard-
model brane then leads to a large positive F -term contribution to the scalar potential
that cannot be canceled by the known negative terms and thus significantly raises the
vacuum energy. To cancel the F -term, it would take an equally large negative contribu-
tion, which is currently unknown.
In the context of the de Sitter swampland conjecture, this “F -term problem” raises yet
another question. If we manage to cancel the F -term with some large additional con-
tribution, a tiny change of parameters in the SUSY-breaking sector could de-tune this
cancellation and uplift the potential to de Sitter. Since the conjecture does not allow for
such potentials, there has to be some mechanism preventing the uplift.



Zusammenfassung

In dieser Masterarbeit untersuchen wir die Konstruktion von Quintessenzmodellen durch
Kompaktifizierung von Typ IIB Stringtheorie. Wir fokussieren uns auf Kählermoduli als
Kandidaten für das Quintessenzfeld und kommentieren andere Ansätze kurz. Die großen
Hierarchien, die die gleichzeitige Beschreibung von Quintessenz und Standardmodell benö-
tigt, stellen eine besondere Herausforderung für die Modellbildung dar. Man benötigt für
ihre Umsetzung parametrische Kontrolle über die Potenzialterme, die im Grenzwert großer
Kompaktifizierungsvolumina gewährleistet ist. Eine weitere Unterdrückung der Quintes-
senzskala lässt sich durch anisotrope Kompaktifizierung erreichen. Allerdings verringern
sich durch das Absenken der Quintessenzmasse auch die Massen anderer Felder. Bereits
bekannt ist, dass der Volumenmodulus zu leicht wird, um den Beschränkungen an fünfte
Kräfte zu entgehen. Wir nennen dies das “leichte Volumen Problem”. Außerdem werden
die Massen der Superpartner des Standardmodells zu leicht, sodass eine weitere Quelle
für Brechung der Supersymmetrie benötigt wird. Das Einführen eines angemessen SUSY-
brechenden verborgenen Sektors auf der Standardmodellbrane führt zu einem großen po-
sitiven F -term-Beitrag zum Skalarpotential, der nicht durch die bekannten negativen
Beiträge aufgehoben werden kann und so die Vakuumenergie beträchtlich hebt. Es be-
darf eines ebenso großen negativen Beitrages, um diesen F -term aufzuheben. Ein solcher
Beitrag ist bislang unbekannt.
Im Kontext der de Sitter-Sumpfland-Vermutung führt dieses “F -term Problem” zu ei-
ner weiteren Frage. Wenn eine Aufhebung des F -terms durch einen zusätzlichen großen
Beitrag möglich ist, könnte eine kleine Veränderung der SUSY-brechenden Parameter zu
einer Missabstimmung dieser Aufhebung führen und das Potential auf de Sitter-Niveau
anheben. Da die Vermutung solche Potentiale nicht zulässt, muss es einen Mechanismus
geben, der das Anheben des Potentials verhindert.
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1 Introduction

Since the development of General Relativity (GR) and Quantum Field Theory (QFT) in the
last century the most prominent question in theoretical physics has been whether and how a
unification of both could be achieved. One promising contender for this unification is string
theory, which consists of a quantum theory on a two-dimensional worldsheet embedded in an
ambient spacetime. The coordinates in said spacetime are fields on the worldsheet. The theory
has to fulfill certain self-consistency conditions, one of which is the vanishing of the beta-
functions of the worldsheet theory. Computation of these beta-functions to first order yields
the Einstein field equations in the ambient spacetime, bridging the gap between GR and QFT.
This is promising from a conceptual point of view but from a “theory of everything” we expect
more. We also want a successful description and prediction of experimental results, which is
the task string phenomenology tries to solve.
The most surprising consistency condition of (super-)string theory is the need for ten spacetime
dimensions.1 Since we only experience four, the remaining six dimensions are assumed to
be curled up into a small manifold, which has yet escaped our observations. We call this a
compactification of six dimensions. The compactification manifold is not unique, in fact there
is a plethora of choices, which opens up a whole landscape of string-theory solutions. Successful
phenomenology now involves choosing a solution that fits best to the experiments.
Experiments in particle physics and cosmology test the highest and lowest energy scales that
we are capable of measuring. The Standard Model (SM) of particle physics is believed to
be realizable through specific combinations of geometrical objects called branes (see [4] for a
review). On the other hand, the possibilities for implementing the standard model of cosmology
(ΛCDM) into string theory are under lively discussion and will be the starting point of this
thesis.
Since the discovery of the accelerated expansion of the universe [5, 6], cosmologists have been
searching for an explanation [7–10]. The simplest model involves a cosmological constant Λ in
the field equations, which corresponds to a non-vanishing vacuum energy density and drives
the expansion. This constant can be calculated from cosmological data and takes the value
7.15 × 10−121 in reduced Planck units [11].2 Although many other models were proposed in
the last decades, leading to more or less agreement with data (see [9] for an extensive review),
the cosmological constant still serves as the “null hypothesis” of cosmology, canonized in the
ΛCDM model.

1Although there has also been research into non-critical string theory with other dimensionalities [2, 3], we
will only work with the critical superstring.

2In this thesis, we will mainly work in (reduced) Planck units, where in addition to ~ = c = 1 the reduced
Planck massMP = 1/

√
8πG is set to unity as well. These are 4D units and we have to be careful when discussing

10D string theory. Any intrinsic geometry is measured in string units, which scale as M2
s = M2

P/V, where V is
the compactification volume introduced later. Sometimes, we may reintroduceMP for clarity and for conversion
to experimentally more accessible energy units, such as electronvolts (eV). The Planck scale is approximately
MP ≈ 2.4 × 1027eV.
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Because the cosmological constant is so small, we run into a problem when we try to compare it
with the vacuum energy density of QFT. In a quantum field theory, the vacuum state receives
closed-loop corrections such that the resulting vacuum energy is formally infinite. We therefore
have to regularize the theory, introducing a cut-off at high energies. Since the modern point
of view on any field theory is that of an effective field theory at a certain energy scale, the
introduction of a cut-off scale is conceptually sound. When we approach a quantum theory
of gravity, however, the natural cut-off scale is the Planck scale. We would thus expect a
vacuum energy of order 1, which is O(10−121) far from the measured value. This is called the
cosmological constant problem and requires an explanation or a fine-tuning mechanism. One
approach is to introduce matter in pairs of bosons and fermions whose positive and negative
loop contributions to the vacuum energy cancel exactly. However, collider experiments of the
past decades have ruled out such supersymmetric (SUSY) models up to the TeV-scale [12,13].
If SUSY is restored at higher energies, we still face a hierarchy problem between the SUSY scale
and the cosmological constant of at least O(10−61). String theory can realize SUSY-breaking at
appropriate scales by warped geometries, which redshift phenomena at one point in comparison
to another point in the compactification [14]. The remaining hierarchy problem, however, has
to be solved by some kind of cancellation, which is highly tuned and thus difficult to realize in
explicit models.
Fortunately, string theory also allows for a huge number of solutions and if we assume their
respective cosmological constants to be randomly distributed in the interval [−1, 1], there might
even exist a solution with cosmological constant sufficiently close to the observed one. More
refined statistical arguments have been made in [15–17]. Furthermore, specific string-theory
models of de Sitter spacetime (dS), i.e. spacetime with constant positive Λ, have been proposed
[18,19]. Although these models were discussed a lot (see [20–41]), the decision on their validity is
still pending. On the critical side, the de Sitter swampland conjecture has been put forth, which
roughly states that no quantum gravity allows for a positive cosmological constant [42–44].
More precisely:

Conjecture. A potential V (φ) for scalar fields in a low energy effective theory of any consistent
quantum gravity must satisfy either,

|∇V | ≥ cV (1)

or
min {∇i∇jV } ≤ −c′V (2)

for some universal O(1) constants c, c′ > 0 in Planck units, where min {∇i∇jV } is the minimal
eigenvalue of the Hessian in an orthonormal frame [44].

If this conjecture proves to be true,3 the cosmological constant has to be substituted by an-
3After the proposal of the conjecture, the discussion of dS models has been revitalized and criticism has

been raised as to whether these constructions are consistent. See [45–49] for progress in refuting some of the
criticism based on 10D considerations.
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other cosmological model. In this thesis we will assume that the conjecture holds and take
the simplest alternative to Λ, namely quintessence, as has been proposed already in [42, 50].
Quintessence models explain the accelerated expansion by a scalar field which slowly rolls
down a potential and currently provides a vacuum energy comparable to the cosmological con-
stant [51–53]. Realizing quintessence in string theory, however, is not easy to accomplish (see
e.g. [31, 54–61] for discussions). The most promising candidates for stringy quintessence are
moduli (see e.g. [62–64]) and axions (see e.g. [31,55,65–69]), which are both ubiquitous in string
compactifications.
The question we ask ourselves now is whether building quintessence models in string theory is
possible at all and if it is any easier than building dS spacetime. The quintessence scalar has
an equation of state parameter

ω =
1
2 φ̇

2 − V (φ)
1
2 φ̇

2 + V (φ)
, (3)

which has to be negative and sufficiently large to source the acceleration of the universe. This
requires φ̇2 to be small. We further need ω to remain stable for a long period of time to match
the history of the universe. These slow-roll conditions lead to bounds on the potential V (φ) as
well as on its first and second derivatives (as we will explain in section 3.1). From the measured
expansion rate H of the universe, the mass of the quintessence field can be restricted to be
lower than order O(10−60).
As for the cosmological constant it is not easy to achieve such low scales even in string theory,
so we focus on a scenario where the scalar potential is naturally small and can be controlled
parametrically. The scenario in question is the Large Volume Scenario (LVS) [70], which uses the
framework of type-IIB flux compactification and the resulting no-scale supergravity (SUGRA)
model. In this case the scalar potential is only generated by higher-order corrections, which are
suppressed by powers of the compactification volume V . Taking V to be large, we have control
over the different contributions and may hope to achieve a sufficiently low scale. However,
since a too large compactification volume would be observable by experiments, the possible
suppression by large volume is limited, so we have to rely on further model-building ideas. A
promising candidate is the suggestion of an anisotropic compactification presented in [62,71].
Lowering the quintessence scale comes at the expense of simultaneously lowering various other
masses in the theory. As has been observed already by the authors of [62, 71], the volume
modulus becomes dangerously light and violates fifth-force constraints, which we shall call the
“light volume problem”. Another problem, which we pointed out in our paper [1], arises if
we want SUSY to be broken at sufficiently high scale to match experimental constraints. The
geometrical SUSY-breaking scale turns out much too low, which forces us to introduce another
SUSY-breaking hidden sector by hand. The additional SUSY-breaking sector contributes a
very large positive F -term to the potential, which is not canceled by no-scale or any known
corrections and thus requires another very large but negative contribution to cancel. This new
term δVnew may even stabilize the volume modulus at sufficiently high mass scale, solving the
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light volume problem. However, we would need some explanation for its appearance and why
it cancels the F -term to great accuracy. If the cancellation were not precise, we would be able
to uplift the quintessence potential by slightly changing the SUSY-breaking sector and thus
to violate the dS swampland conjecture. We have suggested the name “F -term problem” for
this issue. Coming back to the initial question, it seems that our current knowledge of stringy
quintessence models lacks a major component. Whether finding this element or improving the
dS constructions is more challenging remains to be shown.
We will begin our discussion in the second part by reviewing type IIB flux compactifications.
Since it will be important for the following discussion, we will focus especially on the no-scale
structure and the inclusion of higher-order corrections therein. In the third part, we will present
phenomenological restrictions of string-theoretic quintessence models and rule out the volume
modulus as a “natural” candidate for quintessence. Turning to the most promising models
of [62,71], we will present the “light volume problem” and the “F -term problem” in the fourth
part, expanding on the discussion in our paper [1]. In the fifth part, we shall discuss apparent
loopholes and review other proposed stringy quintessence or dark energy models. We will
see that similar issues to our F -term problem arise there as well. Finally, we will conclude
our discussion by looking back at the argument in summary as well as pointing out possible
directions for future developments.
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2 Preliminaries on String Theory and no-scale SUGRA

The theoretical background of superstring theory consists of a superconformal field theory on
a two-dimensional worldsheet. The bosonic fields correspond to coordinates of an embedding
of the worldsheet into the ambient spacetime. During the quantization procedure, the inner
consistency of the theory has to be maintained, resulting in the critical dimension 10 as well
as in a specific choice of spectra. It turns out that there are five consistent string theories,
namely types I, IIA and IIB as well as two heterotic string theories. Since dualities relate
the five string theories to each other and to a hypothetical M-theory, of which we only know
the classical 11D SUGRA limit, it is assumed that these sectors are only limits of one uni-
versal theory, which in an abuse of naming is often called M-theory as well. For our goal of
building phenomenologically successful models, we may thus choose the “corner” of this net of
theories which is most suitable for constructing quintessence. Since type IIB string theory has
the advantage of a particularly simple no-scale structure after flux compactification, most dS
constructions and several approaches to quintessence model-building have used this framework.
We will thus rely on type IIB for our discussion as well. Let us briefly review the main steps
in the compactification procedure before we take a closer look at the resulting scalar potential.
The following summary is based on [72,73] and we refer to these works for further details.

2.1 Compactification of type IIB string theory

String theory only depends on one continuous free parameter: the length scale ls of the strings,
which corresponds to a mass scaleMs. Since we have not observed strings in our worlds yet, the
string scale Ms is assumed to be larger than our currently available energies. Ms also sets the
scale for excitations of the string, so we can restrict our attention to the low energy limit by only
considering its first-order excitations, which are massless. Computing the massless spectrum of
type IIB string theory, one ends up with type IIB SUGRA, which is the unique chiral N = 2
SUGRA in 10 dimensions. Although higher-order corrections will become important later, the
stringy nature of the theory will contribute only indirectly from this point on.
The field content of the 10D type IIB SUGRA is completely determined by supersymmetry. The
bosonic sector comprises the graviton gµν , an anti-symmetric Kalb-Ramond field Bµν , a dilaton
ϕ and differential forms C0, C2 and C4. The field-strength of C4 has to fulfill a self-duality
condition, which is a constraint not visible in the Lagrangian and enforced by hand. The
fermionic sector comprises two left-handed Majorana-Weyl gravitinos and two right-handed
Majorana-Weyl dilatinos. For completeness we shall give the low-energy 10D action, which
consists of four parts

S = Sbosons + SChern-Simons + Sfermions + Slocal (4)
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with

Sbosons = 1
2κ

∫
d10x
√
−ge−2ϕ

(
R+ ∂µϕ∂

µϕ− 1
2 |H3|2 −

1
2
∣∣∣F̃1

∣∣∣2 − 1
2
∣∣∣F̃3

∣∣∣2 − 1
2
∣∣∣F̃5

∣∣∣2) (5)

SChern-Simons = − 1
4κ

∫
C4 ∧H3 ∧ F3 , (6)

where the field strength of the Kalb-Ramond field is denoted by H3 and the field strength of
Ci is denoted by Fi+1. In addition, the combinations

F̃1 = eϕF1 , F̃3 = eϕ(F3 − C0H3) , F̃5 = eϕ
(
F5 −

1
2C2 ∧H3 + 1

2B2 ∧ F3

)
(7)

are used. Since we search for classical solutions of the theory, the fermion fields will not be
excited, so we do not need to explain their action Sfermions any further. Finally the term Slocal

introduces local objects like Dp-branes. Dp-branes are p + 1-dimensional extended dynamical
objects, to which the ends open strings are attached. They are similar to solitons in field theory.
In type IIB string theory the only stable Dp-branes are those that have odd p, as they can be
shown to be BPS states.4

As mentioned in the introduction, a description of real-world phenomena requires a compactifi-
cation to our familiar four dimensions. This procedure is called Kaluza-Klein compactification
and was originally an attempt to unify gravity and electrodynamics via compactification of a
five-dimensional spacetime on a circle. In this scenario, the metric has to be split into a 4D
metric, one scalar and one vector field. The scalar then parameterizes the radius R of the circle
while the vector field was thought to be the electromagnetic four-potential. Additionally, the
momentum in circle-direction is quantized due to single-valuedness of the wave function, similar
to standing waves in a box. Thus, a tower of so-called Kaluza-Klein (KK) states can be excited,
whose masses are given by n/R for any natural number n. In string theory another tower of
states arises due to closed strings winding around the compact dimension. These towers play a
crucial role in string-theory dualities, as they are exchanged during T -dualization but since we
will remain in the IIB picture, we will not go into these details. Instead, let us further specify
the compactification we want to perform.
To get to a homogeneous, isotropic 4D theory, the 10D spacetime should split like R1,3 × X ,
where X is a 6D manifold, such that the metric decomposes into

ds2 = gµνdxµdxν + gmndymdyn . (8)

In principle, we could choose any compact manifold X , but the calculations get extremely
difficult if we do not carry over some degree of symmetry from ten dimensions. The usual way

4Bogomol’nyi–Prasad–Sommerfield (BPS) states preserve some of the SUSY of the theory as they form a
short representation of the SUSY algebra. One can connect this property to saturation of a “BPS bound” on
their mass, yielding an alternative definition.
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to achieve this is to look at the decomposition of the 10D Lorentz group

SO(1, 9)→ SO(1, 3) × SO(6) ∼= SO(1, 3) × SU(4) . (9)

If we choose X with SU(3) holonomy, there exists a Killing spinor on X and thus 8 of the
initial 32 real supercharges are conserved. This will result in an N = 2 SUGRA in 4D. We will
therefore restrict our attention to Calabi-Yau (CY) 3-folds, which are complex Kähler manifolds
with SU(3) holonomy.5 These are also characterized by Ricci-flatness, i.e. the vanishing of
the Ricci form, which is the complex analogue of the Ricci tensor. Thus our CY 3-fold and
therefore also our overall 10D space satisfies the vacuum Einstein field-equations. The Dolbeault
cohomology H i,j of CY 3-folds is determined by two Hodge numbers h1,1 = h2,2 and h1,2 = h2,1,
while h0,0 = h3,0 = h0,3 = h3,3 = 1 and all other Hodge numbers vanish. Since these numbers
determine all nontrivial form-field configurations on X , we can decompose the form-fields B2

and Ci accordingly. The dilaton remains unchanged, while the graviton has to be split up to
match the split in R1,3 × X . A graviton survives in the R1,3 part, while from the 4D point of
view the degrees of freedom of the metric in X are scalar fields, called moduli. Since these will
become our main playground, let us further analyze their field space.
The moduli are the dynamical degrees of freedom of the metric on X . Since X is a CY 3-
fold, the metric is fixed to Kähler form and only has entries gmn̄, where we use holomorphic
and anti-holomorphic indices familiar from complex geometry. Looking at perturbations of the
metric, we can either change the non-zero entries gmn̄ → gmn̄ + δgmn̄ or add δgmn to former
zeros. In the first case this only changes the values of the metric itself and thus the Kähler
form J = −igmn̄dym ∧ dyn̄ of the manifold. These perturbations are called Kähler moduli,
accordingly. In the second case, the resulting metric is not Kähler anymore, so we need to
deform the complex structure to get back to a Kähler metric. Therefore, these perturbations
are called complex-structure moduli. If we also preserve the required Ricci-flatness, one can
show that the metric perturbations are associated to closed forms and thus can be counted by
the Hodge numbers. The Kähler moduli ti are related to real (1,1)-forms decomposed in the
H1,1 cohomology, while the (2,0)-forms associated to the complex-structure moduli Ua can be
related to H1,2 by contraction with the unique (3,0)-form Ω in H3,0.
Since H1,1 also encloses wrapped form fields, we can complexify the Kähler moduli by matching
them with form-field scalars. Finally, we end up with a fully characterized moduli space

M =MK
h1,1 ×Mcs

h1,2 (10)

which is a subset of Ch1,1+h1,2 . One can show that both MK
h1,1 and Mcs

h1,2 are special Kähler
5Although it may seem arbitrary to look at complex manifolds, Bergers classification of holonomies showed

that all 2N-dimensional, simply-connected, Riemannian manifolds of holonomy SU(N) which are irreducible and
nonsymmetric are Calabi-Yau N-folds. In the present context, all these requirements can either be motivated
or dropped without further difficulties.
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manifolds, endowed with a metric derived from the respective Kähler potential

KK = − ln
(
kijkt

itjtk
)

or Kcs = − ln
(
−i
∫
X

Ω ∧ Ω̄
)

(11)

with triple intersection-numbers kijk depending on the specific CY 3-fold. Since the real Kähler
moduli ti parameterize the size of different 2-cycles of the compactification, the combination
kijkt

itjtk is proportional to the volume V of X . One can also perform a coordinate change to
4-cycle volumes τ i, which are dual to the ti. Similar to the ti they can be complexified by
adding imaginary parts ρi which parameterize the wrapped form fields.
We have managed to compactify our 10D theory to 4D N = 2 SUGRA in a controlled way.
However, for successful model building, we have actually preserved too much supersymmetry,
which restricts our theory quite strongly. A well-studied alternative is the compactification
on a Calabi-Yau orientifold, which follows the same line of development, but mods out a Z2-
symmetry to break down the theory to 4D N = 1 SUGRA. This requires a careful analysis
of all fields and their behavior under orientifolding, such that all anti-symmetric components
are modded out. Since the procedure is rather technical and the specifics are irrelevant to our
discussion, we will refer to [73,74] for a detailed description. Suffice it to say that in the end we
can use the methods of 4D N = 1 SUGRA [75] and that there are new extended objects called
O-planes. There is some arbitrariness in choosing the type of Z2-action, and we focus on CY
orientifolds with O3/O7 planes, which are particularly well-studied (see e.g. [14, 18,19,76]).6

In 4D N = 1 SUGRA, the potential for the scalars φi consists of an F -term potential and a
D-term potential

VF (φ, φ̄) = eK
(
Ki̄DiWD̄W̄ − 3|W |2

)
and VD(φ, φ̄) = 1

2(Ref)−1,abDaDb , (12)

where all terms derive from the real-valued Kähler potential K(φ, φ̄), the holomorphic super-
potential W (φ) and the gauge-kinetic functions fa(φ, φ̄) via

Ki = ∂iK , Ki̄ = ∂i∂̄K , Ki̄ = (Ki̄)−1 , DiW = KiW + ∂iW , Da = DiW

W
(Ta)ijφj .

Here (Ta)ij denotes the generators of the gauge group counted by the gauge index a. From our
discussion of moduli space, we already know the form of the Kähler potential for the moduli.
Fortunately, a suitable choice of orientifold mods out all other scalars except for the axio-dilaton
S = e−ϕ − iC0, so we can write down the full Kähler potential as

K = −2 ln
(
V(T + T̄ )

)
− ln

(
S + S̄

)
− ln

(
−i
∫
X

Ω ∧ Ω̄
)
, (13)

6The alternative orientifold action, which introduces O5 and O9 planes, is more involved. While for O3/O7
planes the influence of fluxes on the scalar potential can be written as a contribution to the superpotential, the
O5/O9 case also introduces a D-term as well as an additional mass term for a linear multiplet [74]. We further
expect difficulties in realizing chiral matter.
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where T stands for the complexified 4-cycle Kähler moduli T i = τ i + iρi and where we have
introduced the volume function V corresponding to the volume of the compactification manifold.
This function is homogeneous of degree 3/2 in its arguments and encodes the cycle structure
of the CY manifold.
In the simple case of CY compactification of type IIB string theory, the superpotential W
vanishes and no D-term is induced, so the scalar potential vanishes as well. This has two
direct implications. Firstly, the vacuum energy vanishes and thus we get a Minkowski vacuum.
Secondly, the moduli are all massless scalars, which is the physical definition of “moduli” and
thus a justification for calling them so in the first place.7 Since such scalars are not found in
nature, we have to stabilize them by turning on a potential that induces a mass and maybe
a vacuum energy. We can do so by not only giving the graviton a non-trivial background,
but also the other fields in the 10D action. This is referred to as “turning on flux” and the
resulting compactification scheme is called flux compactification, which we will outline in the
next section, following the influential analysis of [14].

2.2 Flux compactification and moduli stabilization

We hold on to our idea of compactifying to a flat 4D Minkowski space, however, we relax our
condition of metric separation and allow for so-called “warped” compactification with

ds2 = e2A(y)gµνdxµdxν + e−2A(y)gmndymdyn , (14)

where the warp factor A(y) only depends on the location in the inner manifold X , which
is now only conformally Calabi-Yau. In contrast to the Ricci-flat vacuum solution of the
last subsection, we can now introduce energy densities which are due to non-trivial form-field
configurations and localized objects.
Since the 4D sector should remain flat, we can only turn on field strengths on non-trivial cycles
of X or on the entirety of the 4D space. For the first case, the available cycle dimensions 2,
3 and 4 can be read off the Hodge structure, while the only form fields in type IIB SUGRA
whose field strengths match these dimensions are B2 and C2. The flux on any 3-cycle γ3, which
is Poincaré dual to an element of H1,2 or H2,1, is restricted by a Dirac quantization condition

∫
γ3
F3 = m ∈ Z ,

∫
γ3
H3 = n ∈ Z (15)

and thus the number of possible flux configurations is countable. For field strengths on all of
4D space, the only viable candidate is F̃5 = (1 + ?)(dξ ∧ d4x) with ξ being a function on X .

7The term “modulus” derives from modus, the latin word for measure. It is used in mathematics in the sense
of “parameter”, especially for parameterizing different geometries. In QFT, different vacua are characterized by
the vacuum expectation values of scalar fields. If a scalar has flat potential, its vacuum expectation value can
be shifted continuously, much like a parameter of the theory, thus coining the expression “modulus” for massless
scalar fields. Our moduli can actually be interpreted as mathematical and as physical moduli simultaneously.
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Solving the equations of motion and the Bianchi identities for the fluxes (as is presented in [14]),
two restrictions arise on the possible flux configurations.8 The first one is imaginary self-duality
of the specific combination G3 = F3 − iSH3 and the second one is the tadpole-cancellation
condition

1
(2π)4α′2

∫
X
H3 ∧ F3 +Qloc.

3 = 0 . (16)

Here we have used the Regge-slope parameter α′ = l2s/2 and Qloc.
3 , which is the C4 charge from

all localized sources. Upon solving these constraints, the warp factor is related to the 5-form
field strength via e4A = ξ.
From (16), we can infer the possible number of D-branes for a given field configuration. Together
with the quantization condition, the solution space appears to be countable. Furthermore, it
has been shown [77] that in the absence of localized sources no non-trivial flux configuration
can be achieved.
Now assuming a solution has been found, what are the implications for moduli space? After
dimensional reduction to 4D, the fluxes contribute a superpotential of the Gukov-Vafa-Witten
form [78]

W (S, U) =
∫
X
G3 ∧ Ω . (17)

Since this potential only depends on 3-cycles, it is independent of the Kähler moduli T i. Re-
turning to the F -term potential of (12) (while no D-term is induced), we can decompose it
into

V = eK
(
KSS̄DSWDS̄W̄ +KUŪDUWDŪW̄ + (KT T̄KTKT̄ − 3)|W |2

)
. (18)

With our knowledge of K = −2 lnV(T + T̄ ) for the last term and the homogeneity of V we can
apply Euler’s homogeneous function theorem to derive

(T i + T̄ ı̄)KT i = −3 (19)

and its derivative w.r.t. T̄ ̄

(T i + T̄ ı̄)KT iT̄ ̄ +KT̄ ̄ = 0 . (20)

Combining these equations leads to the no-scale property KT iT̄ ̄
KT iKT̄ ̄ = 3, which exactly

cancels the gravitational contribution −3eK |W |2 in (18).
The remaining potential only consists of the positive semi-definite F -terms of S and U and we
can find a supersymmetric minimum by solving the equations

DUaW = 0 and DSW = 0 . (21)

These equations stabilize the complex-structure moduli and the axio-dilaton. We have not
introduced higher-order corrections to the potential yet but if we assume perturbative control

8To be precise, a BPS-like condition on the extended objects is assumed, as discussed in [14]. We only use
O3/O7-planes as well as D3/D7-branes, so this condition is satisfied.
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over these, the behavior of S and U is mainly determined by the classical potential with only
minor changes from correction terms. However, due to the no-scale structure, the Kähler
moduli are still unfixed and have to be stabilized by higher-order corrections alone. Thus for
the discussion of Kähler moduli, we can integrate out S and U and set the superpotential to
the constant

W0 ∼
〈∫
X
G3 ∧ Ω

〉
, (22)

where we absorb all arising contributions to the Kähler potential into the constant of propor-
tionality. We have arrived at the no-scale model which was the motivation for our choice of
type IIB. Let us collect our results.
The moduli space of the n complex valued Kähler moduli is itself a Kähler manifold. The
potential is given by

VF (T, T̄ ) = eK
(
Ki̄DiWD̄W̄ − 3|W |2

)
(23)

with K = −2 lnV(T + T̄ ), where V is the real homogeneous volume-function of degree 3/2. At
classical level, the superpotential W = W0 is constant and the scalar potential vanishes. To
stabilize the Kähler moduli, we have to include higher-order corrections.
The perturbation theory of string theory is an expansion in two parameters, the Regge slope α′

and the string coupling constant gs = 〈eϕ〉. Let us describe their origins and effects individually:

• α′ corrections

The α′-expansion is often described as an expansion in “stringiness”. It parallels the
expansion in MP in quantum gravity and includes the effects of higher-derivative terms
into the theory. The leading contribution arises from an α′3R4 term in the 10D action.
As shown in [79], the correction to the 4D theory can be captured by

K → K = −2 ln(V + ξ) where ξ = χ(X )ζ(3)
2(2π)3 , (24)

depending on the Euler characteristic χ(X ) of the compactification manifold and the
Riemann zeta function ζ.

• String-loop corrections

The gs expansion is an expansion in string loops and includes effects of higher-genus
worldsheet topologies, which is parallel to a loop expansion in QFT, only for higher-
dimensional objects. They are notoriously difficult to compute and have been explicitly
derived only for simple toroidal compactifications [80]. For other compactifications, it
has been estimated that loop corrections generally contribute a term δKloop to the Kähler
potential that looks like

δKloop ∼
h1,1∑
i=1

[
CKKi (U, Ū)aiktk

Re(S)V + C
W
i (U, Ū)
biktk(S)V

]
, (25)
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where the two contributions arise from KK and winding modes. aiktk and biktk are linear
combinations of 2-cycle Kähler moduli. Although these corrections would naively be the
leading contribution to the scalar potential, it has been shown that, under reasonable
assumptions, the first-order terms in the loop expansion cancel [80–83]. This extended
no-scale structure renders them sub-leading.

• Non-perturbative corrections

Next to these perturbative effects, there are also non-perturbative ones that arise due to
instantons, which are Euclidean ED3-branes wrapped on 4-cycles, or due to condensation
of gauginos on D7-branes. Usually, their effect is subleading to the perturbative correc-
tions. However, SUSY protects the superpotential against perturbative corrections, which
is a famous non-renormalization theorem [84, 85]. Thus, the non-perturbative effects are
the only ones that can correct the superpotential:

W → W = W0 + Aie−aiT
i

, (26)

where ai is 2π for ED3-instantons and 2π/N for gaugino condensation of an SU(N) gauge
group.

The two most prominent constructions of dS solutions of string theory use different combina-
tions of these corrections to stabilize the Kähler moduli.
The KKLT scenario [18], named after the authors, only uses non-perturbative corrections. In
the simplest model with one Kähler modulus T and volume function V = (T + T̄ )3/2, T gets
stabilized by gaugino condensation of a large gauge group at a supersymmetric AdS-minimum.
This requires tuning of W0 to small values.
The Large Volume scenario (LVS) [19] uses a combination of α′ corrections and non-perturbative
corrections on a small cycle. This involves two Kähler moduli, a big one, which is essentially the
volume modulus, and a small one, which carries the non-perturbative corrections. The authors
have shown that a non-supersymmetric AdS-minimum exists at very large volume. Since all
correction terms are inversely proportional to some power of the volume (as we will see in the
next section) the resulting potential is very shallow and flat. This makes the LVS scenario a
promising starting point for quintessence.
Both scenarios stabilize the moduli at negative values of the potential. To get to a dS vacuum,
they need a positive energy density which “uplifts” the potential to positive values. In [18],
anti-D3-brane tension in a highly warped region was proposed as a possible uplift contribution.
Since then, this aspect has been vividly discussed and is now attacked by the dS swampland
conjecture (1).
We have not introduced D-branes yet. These are necessary to satisfy the tadpole-cancellation
condition (16) as well as to introduce the SM, which can be realized on fractional D3-branes
located at a singularity or on D7-branes wrapped on a blow-up cycle [70]. Since we chose the
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orientifold action with O3/O7-planes, further D-branes of these dimensionalities D3/D7 can
be introduced without further SUSY-breaking, while D5/D9-branes would break down SUSY
entirely. Thus, we will only look at D3 and D7 branes. Both cases introduce new scalars X,
which contribute to the superpotential as well as to the Kähler potential. The way they enter
in the Kähler potential is fairly specific:

• D3-branes

The D-brane moduli enter the Kähler sector of the Kähler potential via rewriting

T i → T i + i
2π (ωi)kl̄TrXk

(
X̄ l̄ − i

2 Ū
ā(χ̄ā)l̄mXm

)
, (27)

where ωi and χa are bases of H1,1 and H2,1, respectively. For our discussion, we simplify
this expression by introducing appropriate real functions ki(X, X̄), such that

T i + T̄ ı̄ → T i + T̄ ı̄ + ki(Xa, X̄ ā) . (28)

• D7-branes

The D-brane moduli enter the dilaton sector of the Kähler potential via rewriting

S + S̄ → S + S̄ + 2iLab̄XaX̄ b̄ , (29)

where Lab̄ are certain geometrical quantities. Here again we abbreviate by introducing a
function k(X, X̄), such that

S + S̄ → S + S̄ + k(Xa, X̄ ā) . (30)

In the next section we will take a closer look at the mathematical structure of the no-scale
model and of the higher-order corrections. The goal is to review the general behavior and
to introduce techniques and approximations that will be useful in the subsequent analysis of
quintessence models.

2.3 No-scale model with higher-order corrections and branes

Although the complexification of the Kähler moduli is useful for a consistent treatment of
complex manifolds and SUSY, we observe that the volume function V(T i + T̄ ı̄) only depends
on the real part τ i of the T i-moduli. Furthermore, we can decompose the kinetic term given by

L ⊃ −Ki̄∂µT
i∂µT̄ ̄ (31)

into a kinetic term for the real moduli τ i and a kinetic term for imaginary parts ρi, which are
axions. In the following, we can thus focus on the real Kähler sector, postponing comments
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on axions to part 5. As all derivatives of V and K act on the combination 2τ i = T i + T̄ ı̄, the
distinction between holomorphic and antiholomorphic indices can be dropped.
We are faced with a “real Kähler geometry” determined by the Kähler potential K = −2V(τ i),
kinetic term −Kij∂µτ

i∂µτ j and scalar potential

V = eK
(
KijDiW DjW − 3|W |2

)
. (32)

2.3.1 Volume-modulus separation and no-scale structure

We first note that due to the homogeneity of the volume function, there is one scaling degree
of freedom that decouples from the others at the level of the Kähler structure and causes the
no-scale structure. Let us perform a change of coordinates that isolates this modulus explicitly.
The first step is to introduce a scale Ω and homogeneous coordinates χi = τ i/Ω, such that
V(τ i) = V(χi)Ω3/2. Now we can perform a coordinate transformation from {τ i} to {χk,Ω} by
fixing χn through the constraint

V(χi) = V(χk, χn(χk)) = 1 , (33)

where here and from now on we understand i,j ∈ [1, ..., n] and k,l ∈ [1, ..., n−1]. This coordinate
change is only possible if ∂nV = Vn 6= 0, but we can always choose an appropriate χn locally
and build an atlas from these local charts. This resembles the choice of spherical coordinates,
where Ω is a global coordinate for Rn/{0}, corresponding to the radius. Since Ω gives the scale
of the overall volume of X , we will call it the volume modulus.
Now the Kähler metric Kij can be calculated explicitly:

Kij(τ) = 2
V2(τ) [Vi(τ)Vj(τ)− Vij(τ)V(τ)] = 2

Ω2 [Vi(χ)Vj(χ)− Vij(χ)] . (34)

Here a subscript i denotes a partial derivative with respect to the i-th argument of the function,
be it a τ or a χ. With this we can express the kinetic term solely in the new coordinates:

L ⊃ −Kij(τ)∂µτ i∂µτ j = − 2
Ω2 [Vi(χ)Vj(χ)− Vij(χ)] ∂µ(Ωχi)∂µ(Ωχj) . (35)

Now we need to apply the product rule to isolate the kinetic terms of the new coordinates and
also resolve derivatives of χn via ∂µχn = (∂χn/∂χk)∂µχk. For notational convenience we will
denote (∂χn/∂χk) by Γk. This results in the fully expanded expression

L ⊃ −Akl∂µχk∂µχl −
2Bk

Ω ∂µχ
k∂µΩ− C

Ω2∂µΩ∂µΩ , (36)
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where Akl, Bk and C are functions of the χk, independent of Ω and given by

Akl = 2 [VkVl − Vkl + VkVnΓl − VknΓl + VnVlΓk − VnlΓk + VnVnΓkΓl − VnnΓkΓl]

Bk = 2
[
VkVlχl − Vklχl + VkVnχn − Vknχn + VnVlΓkχl − VnlΓkχl + VnVnΓkχn − VnnΓkχn

]
C = 2 [ViVj − Vij]χiχj.

To simplify these expressions, we can use the fact that the constraint (33) has to hold for all
χk. Thus we can take total differentials on both sides to get

d
dχkV(χl, χn(χl)) = 0 ⇒ Vk + ΓkVn = 0. (37)

Another simplification arises from the homogeneity of V(χ) and Euler’s homogeneous function
theorem, which in this case states that

Viχi = 3
2V = 3

2 . (38)

This again has to hold for every choice of χk. Thus we can again take the total derivative,
leading to

d
dχk (Viχi) = 0 ⇒ Vklχl + Vknχn + VnlΓkχl + VnnΓkχn + Vk + VnΓk = 0 (39)

or with (37) simply
Vklχl + Vknχn + VnlΓkχl + VnnΓkχn = 0 . (40)

Due to (37), (40), their second derivatives and homogeneity, the coefficients Akl, Bk and C boil
down to

Akl = − 2
V2
n

[
VklV2

n − VknVlVn − VnlVkVn + VnnVkVl
]

= 2Vn∂k∂lχn

Bk = 0

C = 3 .

(41)

This shows that we can always isolate the volume modulus Ω from the residual moduli χk and
get a diagonal metric and kinetic term, whose volume scaling can be read off the powers of Ω
in

L ⊃ −Akl∂µχk∂µχl −
3

Ω2∂µΩ∂µΩ . (42)

As an aside, the no-scale property now follows directly. We can invert the matrix identity

Kij =
Akl 0

0 3Ω−2

 ∂(χk,Ω)
∂τ i

∂(χl,Ω)
∂τ j

(43)
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and split the expression
KijKiKj → AklK̃kK̃l + Ω2

3 K̃ΩK̃Ω . (44)

Here we define
K̃k = ∂τ i

∂χk
Ki = ∂kK̃ K̃Ω = ∂τ i

∂ΩKi = ∂ΩK̃ (45)

and re-express the Kähler potential in the new coordinates:

K(τ) = K̃(χ,Ω) = −2 ln
(
V(χi)Ω3/2

) V(χi)=1−−−−→ −3 ln Ω . (46)

Thus K̃k = 0 and K̃Ω = −3/Ω and

KijKiKj = AklK̃kK̃l + Ω2

3 K̃ΩK̃Ω = 0 + Ω2

3 ·
(
− 3

Ω

)
·
(
− 3

Ω

)
= 3 . (47)

We see that in these coordinates, the scaling direction in moduli space decouples from the other
degrees of freedom, which are restricted to a submanifold of constant volume-function. The
only contribution to the scalar potential thus derives from the volume modulus Ω, making the
no-scale property explicitly one-dimensional.
Next we will take a look at various deviations from this no-scale structure. First, we will analyze
the effect of α′ corrections and non-perturbative corrections on small cycles, since these are the
leading contributions and are used for stabilizing the volume modulus in LVS. Second, because
loop corrections are difficult to compute, we will provide an estimate of their order of magnitude.
Finally, we will study the contributions of D-branes to the scalar potential.

2.3.2 Corrections to the volume function

As we have seen in the previous discussion, we can choose coordinates such that only one
modulus Ω gives a non-zero contribution to the scalar potential, while the others are restricted
to a submanifold of the moduli space where the volume V and by that also the Kähler potential
K̃ is constant. Now we can analyze corrections that only influence the overall scaling of the
moduli and do not disturb their relative proportions. Such corrections enter the Kähler potential
via V → V + A. Since the n − 1 residual moduli χk enter in the same specific combination
V(χk, χn(χk)) as before, the derivatives K̃l still vanish and the residual moduli decouple from
the volume modulus. We can therefore generally treat such contributions in the same way as
in the one-modulus case K = −2 ln

(
Ω3/2 + A

)
.

The contribution we get from α′ corrections is a constant A = ξ. Here we can directly compute
the first-order no-scale-breaking contribution

KΩΩKΩKΩ = 3
1− ξ

2V
= 3 + 3

2
ξ

V
+O

( ξ
V

)2
 (48)
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and the resulting scalar potential

δVα′ = eK
[

3
2
ξ

V
+O

(
ξ2

V2

)]
|W |2 = 3

2
ξ

V3 |W |
2 +O

(
ξ2

V4 |W |
2
)
. (49)

On the contrary, non-perturbative corrections have been discussed to predominantly arise in
the superpotential. How is that connected to A? Since the contribution δWnp = Aie−aiT

i is
exponentially suppressed by the size of the 4-cycle involved, the largest effects come from small
cycles. This has been used in LVS [19] to generate a potential from non-perturbative corrections
on a small cycle τs that enters the volume function like V = τb

3/2 − τs
3/2. The big cycle τb is

effectively the volume modulus. Therefore we will analyze the scalar potential contribution that
arises from A = −τ 3/2

s when τs has non-perturbative corrections to W depending on it. The
discussion can easily be expanded to any homogeneous contribution V+f3/2(τm) of small moduli
that preserve the no-scale structure of the Kähler potential but violate it in the superpotential.
Since the combination V − τ 3/2

s is itself homogeneous, the only no-scale breaking arises from
the terms

δVnp = 2eK(KsΩKΩ +KssKs)Re(W∂TsδW ) + eKKss|∂TsδW |
2 . (50)

If τs is assumed to be small, we can simplify the terms to yield

δVnp ∼ −6|WAs|as
τs

V2 e
−asτs + |As|2a2

s

√
τs

V
e−2asτs . (51)

We see that the non-perturbative correction to τs stabilizes the small modulus and contributes
to the volume modulus potential. As shown in [19], e−asτs is stabilized at order V−1, such that
the non-perturbative corrections scale as

δVnp ∼
√

lnV
V3 − lnV

V3 . (52)

This places α′ and non-perturbative correction terms at equal scaling V−3 and their combined
potential fixes the volume modulus Ω.
Obviously, the other moduli hidden in V are unaffected by α′ and non-perturbative corrections.
Generalizations to several small cycles with non-perturbative contributions are straight-forward.
More intricate geometries will require more involved calculations, but the general picture is
that every non-perturbative correction fixes a direction in moduli space and together with α′

corrections also the volume modulus. The remaining moduli have to be stabilized by other
effects but will generally receive a contribution from string-loop corrections, which we will
discuss briefly in the next subsection.
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2.3.3 Estimate on loop corrections

The string-loop corrections estimated in [80] to follow the structure of (25) consist of two con-
tributions: δKKK from KK modes, which is homogeneous of degree −1 in 4-cycle volumes, and
δKW from winding modes, which is homogeneous of degree −2. Naively, one would expect the
leading contribution to the scalar potential (from terms like eKKijKiδK

KK
j ) to be homogeneous

of degree −4, which corresponds to a scaling with V−8/3. However, by treating the loop correc-
tions as perturbations to the uncorrected Kähler potential K0 and expanding the inverse Kähler
metric in a Neumann series, the authors of [73,83] have shown that the first-order terms cancel,
which is called an “extended no-scale structure”. They further presented the first non-vanishing
contribution to be

δVloop =
h1,1∑
i=1

[
(CKKi )2

Re(S)2K
0
ii − 2δKW

i

]
|W |2

V2 , (53)

which now scales like V−10/3. This peculiar scaling renders the loop-corrections subdominant in
the large volume limit. In [71,73] an interpretation in the language of QFT loop potentials has
been proposed, which will become useful in our discussion of quintessence model-building. In the
4D picture, it seems natural to interpret the string loops as loops in the resulting field theory.
These are described by the Coleman-Weinberg-potential [86], which has been generalized to
SUSY theories [87]:

V = Vtree + 1
64π2STrM

0 · Λ4 log Λ2

µ2 + 1
32π2STrM

2 · Λ2 + 1
64π2STrM

4 logM
2

Λ2 + ... . (54)

where Λ is the cut-off of the theory,M is the mass matrix and STr denotes the supertrace. Due
to the equal number of bosons and fermions in SUSY, the second term disappears. This has
been interpreted as the field theoretic reason for the extended no-scale structure. The third term
involves the supertrace STrM2 of all fields running in the loops. In general 4D N = 1 SUGRA,
this supertrace is given by STrM2 = 2Qm2

3/2, where Q is a model dependent O(1) coefficient,
while m3/2 is the gravitino mass given by |W |/V . The cut-off of the theory is assumed to be at
the lowest KK scale, where the theory becomes effectively higher-dimensional.9 This allows us
to estimate the lowest-order loop corrections by

δVloop ∼ Am2
KKm

2
3/2 +Bm4

3/2 ∼ Am2
KK
W 2

0
V2 +B

W 4
0
V4 (55)

with O(1) coefficients A and B. The mass of the lowest KK-mode in a compactification on S1

is given by the inverse radius R−1. This, however, is measured in string units and to go to 4D
Planck units, we have to multiply by Ms = V−1/2. In a compactification of six dimensions we

9This is a non-trivial assumption since loop corrections may, of course, also arise in higher-dimensional field
theory or directly at the string level. In fact, one probably has to assume that the restoration of a sufficiently
high level of SUSY above the KK scale cuts off the loop integrals. However, in the present case SUSY is broken
by fluxes, and these penetrate not just the large-radius but all extra dimensions. So further scrutiny may in
fact be required to justify the use of the lowest KK scale as a cutoff.
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would expect to find six a priori different extended radii Ri and presumably a number of small
radii from localized cycles inside the manifold. Due to their smallness, the associated KK-modes
to these small cycles are heavy and since we are searching for the lightest KK-mode, we can
drop them. The compactification volume is then simply V = R1R2...R6. Naively, each radius
scales as V1/6. However, depending on the geometry, the volume scaling might be anisotropic,
generally allowing different scaling exponents Vpi as long as the pi add up to 1. In the most
drastic case, all radii but one could remain at string scale, while one carries all volume scaling
V1 alone. W.l.o.g. let R1 be the largest radius (or one of several largest radii) such that its KK
modes set the cut-off in (54). Its volume scaling shall be parameterized by V1/l with l ∈ [1, 6].
This is motivated by the simple case of l equally large dimensions and 6− l dimensions at string
scale. In case of intermediate scales R1 > Ri > Rj, also non-integer values of l are possible.
The KK-scale is then given by

mKK = Ms

V1/l = V−1/l−1/2 (56)

and the loop corrections scale as

δVloop ∼ A
W 2

0
V3+2/l +B

W 4
0
V4 . (57)

In the case of isotropic compactification l = 6 the first term gives precisely the familiar volume
scaling V10/3 from (53). For anisotropic compactifications, however, the loop corrections might
even be further volume suppressed. We see that for l < 2, the second term dominates and thus
l = 2 is a “best-case” scenario. The only possibility to get even smaller loop corrections is by
tuning W0 hierarchically small.
This heuristic approximation has not taken into account the special structure of string theory
compactifications yet. We note that the only available cycles in Calabi-Yau 3-folds are two-
and four-cycles. It is thus questionable if we can manipulate the 6 dimensions individually or if
we have to restrict our attention to models of the type V = R2

1R
2
2R

2
3. In this case, the best-case

scenario l = 2 would also be the maximally anisotropic scenario.

2.3.4 Contributions from D-branes

Finally, we shall take a look at the F -term potential induced by D-branes. We will start with
D3-branes.
As we mentioned in (28), the brane moduli Xa only appear in the Kählerpotential K through
real valued functions ki(Xa, X̄a) which are added to the original moduli like

τ i → τ ′i = τ i + ki(Xa, X̄a) . (58)

Also the superpotential W gets a generic Xa-dependent holomorphic contribution

W → W ′ = W0 + g(Xa) . (59)
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The derivatives of K with respect to the τ i have precisely the same algebraic form as before,
only substituting the new variables τ i → τ ′i , so in this sector, we still get KijKiKj = 3,
where derivatives are now taken with respect to τ ′i. We have dropped holomorphic and anti-
holomorphic indices for the τ i moduli, but they could become important for the Xa, so we will
keep them in this sector. The derivatives of K with respect to Xa are given by:

Ka = Ki∂ak
i Kā = Ki∂āk

i Kaj = Kij∂ak
i Kib̄ = Kij∂b̄k

j Kab̄ = Kij∂ak
i∂b̄k

j +Ki∂a∂b̄k
i .

(60)
In this section, indices i, j, k, l,m always denote the τ sector, while a, b, c, d are indices of the
X sector. We will write I, J for the combination I = (i, a), J = (j, b) with bars acting only on
a, b. Now the Kähler metric has the form

KIJ̄ =
 Kij Kil∂b̄k

l

Kkj∂ak
k Kkl∂ak

k∂b̄k
l +Km∂a∂b̄k

m

 . (61)

This can be inverted by the block-matrix rule
A B

C D

−1

=
A−1 + A−1BS−1CA−1 −A−1BS−1

−S−1CA−1 S−1

 (62)

with S = D − CA−1B, which in our case is

Sab̄ = Kkl∂ak
k∂b̄k

l +Km∂a∂b̄k
m −Kkj∂ak

kKijKil∂b̄k
l = Km∂a∂b̄k

m (63)

where we have used the fact that Kij is the inverse of Kij. The inverse Kähler metric is then
given by

K ĪJ =
Kij + S c̄d∂c̄k

i∂dk
j −S c̄b∂c̄ki

−S ād∂dkj S āb

 . (64)

Now we can determine the scalar potential from

V =eK(K ĪJDĪW̄DJW − 3|W |2)

=eK(K ĪJ(KĪW̄ + ∂ĪW̄ )(KJW + ∂JW )− 3|W |2)

=eK
[
S c̄d∂c̄k

i∂dk
j(KiW̄ )(KjW )− S c̄b∂c̄ki(KiW̄ )(KbW + ∂bW )

− S ād∂dkj(KāW̄ + ∂āW̄ )(KjW ) + S āb(KāW̄ + ∂āW̄ )(KbW + ∂bW )
]

=eKS āb∂āW̄∂bW ,

(65)

where the explicit forms of X-sector derivatives led to cancellations of the cross terms in the
last line. This surprising simplicity arises because we only really perform a coordinate trans-
formation in moduli space and couple this transformation to a nontrivial contribution to the
superpotential.
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The structure of this F -term is similar to the generic form eKK ābDāW̄DbW . This similarity
is an identity, when ∂aki = ∂āk

i = 0, which is the case for ki of O(X2) and Xa stabilized at
Xa = 0. Since linear terms in ki can be absorbed into the definition of T i the only relevant
condition for this identity is the stabilization of X at 0.
We found that the insertion of D3-brane moduli does not disturb the no-scale cancellation of the
Kähler-moduli sector. However, a non-trivial contribution to the superpotential will generate a
positive F -term of the brane moduli in the scalar potential, which also depends on the Kähler
moduli through Km. Stabilization of the X moduli will generally arise already at this level.
However, there is a possibility of flat directions in the X sector, which will be stabilized via
interactions with other moduli and higher-order corrections.
In our discussion of quintessence models, we rely on D3-brane contributions to break SUSY at
sufficiently high scale. A specific example will be computed in appendix B.
The D7-brane case is similar, although here we cannot invoke no-scale, but may use DSW = 0.
The computation of the Kähler metric is parallel to the D3-case, only the terms arising in
the potential are slightly different. Still, if the X-sector contributes to W we again get an
additional F -term potential, that takes the classic form eKK ābDāW̄DbW for k of O(X2) and
X stabilized at 0. It depends on the dilaton (which has been integrated out and can be treated
as a constant) only through the Kähler metric, and again has no cross terms between DaW

and DSW .
This concludes our discussion of corrections and also our review of type IIB flux compactifica-
tion. Having collected all necessary preliminaries and techniques, we can now turn our attention
to quintessence model-building. What do we expect of a valid quintessence model? In the next
section we shall present the phenomenological requirements that we want to fulfill.
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3 Phenomenological Restrictions on Stringy Quintessence

The main challenge for quintessence models is the creation of sufficiently large hierarchies.
If these can be achieved, further questions about decoupling from the SM and the correct
evolution history arise. Although we will not go deep into these further issues, the coupling to
the SM already eliminates one natural candidate for a quintessence field - the volume modulus.
To understand this logic and to specify the challenge we face, we will start this section with
a short summary of quintessence-model requirements and move on to eliminate the volume
modulus. After that, we can break down the phenomenological restrictions to explicit bounds
on four mass scales that have to be implemented in a viable model.

3.1 Quintessence and its requirements

The cosmological constant Λ as the driving force behind cosmic acceleration can describe cos-
mological observations quite well. However, its origin is unknown and the mere possibility of
it arising has not been a convincing reason for its actual existence to everyone so the term
“dark energy” was coined. Since the cosmological constant enters the Friedmann equations in
linear combination with matter and radiation energy densities, the interpretation of Λ as an
actual energy density ρΛ with negative pressure PΛ = −ρΛ and thus equation of state parameter
ω = PΛ/ρΛ = −1 is only a matter of rewriting.
A different approach to dark energy has been promoted in the 80s [51–53] under the names
of dynamical dark energy and later quintessence (see [88] for a review). The main idea is to
introduce a scalar field with negative equation of state parameter, which is perhaps the next
simplest explanation after introducing a constant by hand. The name either derives from the
scalar field being a fifth fundamental force of nature or from it being the fifth component of
energy beside baryonic matter, dark matter, neutrinos and radiation. A scalar field driving
cosmic expansion has also been suggested to explain inflation at the early universe. The tech-
niques are fairly similar, but the energy scales are very different. Indeed, the required low mass
of the quintessence field will prove to be a major problem in model building. Let us explain
this requirement by introducing a classical scalar field φ with Lagrangian

Lφ = −1
2∂µφ∂

µφ− V (φ) . (66)

The stress-energy tensor is then given by

Tµν = −2√
−g

δ(√−gLφ)
δgµν

= −2δ(Lφ)
δgµν

+ gµνLφ . (67)

Since we still remain in a homogeneous and isotropic scenario, we can set the spatial derivatives
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of φ to zero and diagonalize the stress-energy tensor. The entries are

T00 = ρ = 1
2 φ̇

2 + V (φ) and Tii = P = 1
2 φ̇

2 − V (φ) (68)

resulting in the equation of state

ω =
1
2 φ̇

2 − V (φ)
1
2 φ̇

2 + V (φ)
. (69)

If φ̇2 is smaller than V (φ), Ω is smaller than −1/3, as is needed to realize the late-time cosmic
acceleration. If we were to add matter and radiation, we would need an even more negative
ω and if we want to match the observed acceleration over long enough timescales, we have to
make certain that ω does not change to quickly. This can be rephrased as the conditions

φ̇2 � V and d
dt(φ̇

2)� dV
dt ⇒ φ̈� V ′ . (70)

Using the Friedmann equations, one can translate these requirements to the scalar potential

ε ≡ 1
3

(
V ′

V

)2

� 1 and |η| ≡
∣∣∣∣∣V ′′V

∣∣∣∣∣� 1 , (71)

where we have introduced the “slow-roll parameters” ε and η. Furthermore, from the first
Friedmann equation, we can infer that at dark energy domination V ∼ 3H2, where H is the
Hubble constant. This leads to a bound on the scalar mass, which we shall define in the
following as mφ ≡

√
V ′′ < H. With the measured value of today’s Hubble constant of order

O(10−60) the arising picture is one of very small energy scales: A quintessence model needs
an ultralight scalar field of mass mφ < O(10−60) with a potential of order O(10−121)
and even smaller slope.

Since the quintessence scalar is so light, we also have to keep in mind yet another difficulty. In
string theory, the various degrees of freedom are generally intertwined with each other and in
the end have to be separated into physical fields. This usually leads to coupling terms of all
fields with each other. Even if we do not start with string theory, a field theory involving the
SM and quintessence has a priori no reason to forbid vertices of quintessence and SM fields.
However, if these operators appear, we would on the one hand expect SM-loop corrections to
raise the quintessence mass to SM scales and on the other hand expect the quintessence scalar
to convey a long-range interaction between matter fields. The former issue is a re-iteration
of the cosmological constant problem and requires a fine-tuning mechanism to explain.10 The
latter issue is usually summarized as a collection of “fifth-force constraints”. Let us specify this
last point.

10Probably an even higher amount of fine-tuning than for the cosmological constant is needed, since we have
to make sure that the quintessence potential as well as its first and second derivative all remain small. A
discussion of fine-tuning for some stringy quintessence models can be found in [59].
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A scalar field of mass m coupled to other particles with coupling constant λ conveys a force
leading to the classical Yukawa potential

V (r) = λ2 e
−mr

r
. (72)

For sufficiently massive scalars, the exponential function suppresses the interaction such that
no long-range forces are measurable. However, if the mass becomes too light, we expect the
interaction to become accessible by experiments. Especially below the threshold of meV, cor-
responding to length scales of 100 µm, the scalar “fifth force” would become detectable by
high-precision torsion-balance measurements of gravity [89]. The only way out would be to
either stay above the meV threshold or suppress the interaction, making λ significantly smaller
than the gravitational coupling. Since quintessence is much lighter then meV, only the second
option is available (although we may fall back to the first option for other scalars appearing
in our models). The required smallness of the coupling constants has been analyzed for sev-
eral stringy quintessence models in [58] building on the partially related discussion of dilaton
models in [90]. There are several ways in which a fifth force could become detectable and since
experiments have not found signs of it yet, each one provides a bound on the coupling constants.

• Post-Newtonian parameters

If the scalar couples universally to all fields, a small deviation from the gravitational
potential may be observable. In standard GR, the perturbative expansion of the Einstein
field equations leads to corrections to Newtons law of gravity. In this post-Newtonian
expansion the coupling to rest mass can be parameterized (according to [91]) by the
experimentally confirmed Eddington parameter γ = 1. If any other forces contribute, the
resulting deviation γ−1 is related to the coupling λ and the experimental evidence yields
approx. λ2 < 10−5.

• Violation of the equivalence principle

If the scalar couples differently (i.e. with different λi) depending on the matter field
involved, its interaction violates the equivalence principle. This violation may even arise
if the coupling λ′ is universal on a UV scale but the operators involved run differently
during renormalization to lower scales. Calculating the contributions of particle masses
and binding energy to the overall energy of different atoms, violations of the equivalence
principle can be estimated and compared with data. This restricts several ratios and
differences of λi-s even stronger. In [58] a bound on the universal UV coupling is given
by λ′2 < 10−13, where the UV scale is assumed to be the Planck scale. This has to be
slightly weakened for lower UV-scales, so in the case of a TeV string scale for example,
we would only get 10−11. Still, violation of the equivalence principle turns out to be the
most critical effect.
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• Varying fundamental constants

A time-dependent scalar field varies the fundamental constants, e.g. the strength of cou-
plings in the SM part, which would be observable on cosmological time scales [92]. How-
ever, this effect turns out to be less constraining than the equivalence principle violations
in [58].

For the specific stringy models given in [58], the authors have translated these restrictions to
lower bounds on the volume of the compactification manifold. However, it will turn out in our
discussion that in order to reliably achieve the required mass hierarchies in stringy models, we
already need to go to very large compactification volume. Still, the fifth-force constraints will
serve the purpose of eliminating the volume modulus as quintessence field in the next section.

3.2 Volume-modulus quintessence?

As we have seen in section 2.3.1, the volume modulus plays a special role in string compacti-
fications. Even the minimal models have at least one volume modulus in the Kähler sector as
for example in the simplest KKLT scenario. It is thus only natural to take it into considera-
tion during our search for a viable quintessence scalar. However, the volume modulus acquires
strong universal couplings to all fields when going to the Einstein frame. Let us illustrate this
point with a simple toy model.
Suppose we have compactified a 10 dimensional gravity theory to four dimensions, where a scalar
field Ω parameterizes the compactification volume V = Ω3/2. Let us furthermore add a SM
sector Lagrangian Lm, which in string theory lives on localized branes and is thus independent
from the bulk action. The only connecting component is the metric, which also measures the
geometry on the branes. Thus, our 4D effective action takes the schematic form

S =
∫

d4x
√
−g V2κ2

0

[
R− k(Ω)(∂Ω)2 − V (Ω)

]
+
√
−gLm(gµν) , (73)

where R is the 4D Ricci scalar and the factor V arises by integrating out 6 of 10 dimensions.
Now if we want to rewrite this action in a form with canonical Einstein-Hilbert term, we can
expand Ω around its vacuum expectation value Ω0, absorb V0 = Ω3/2

0 into κ = κ0/
√
V0 and

finally rescale the metric to get

S =
∫

d4x
√
−g

[
1

2κ2

[
R− k′(Ω′)(∂Ω′)2 − V ′(Ω′)

]
+ V

2
0
V2Lm

( V
V0
gµν

)]
. (74)

The next step is the canonical normalization of Ω′ such that we end up with the actual physical
field with canonical kinetic term −∂µφ∂µφ/2. To this end we remember from our discussion of
the volume modulus separation (42) that the volume modulus has kinetic term

L ⊃ − 3
(Ω0 + Ω′)2∂µΩ′∂µΩ′ . (75)
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The physical field φ is thus the logarithm of Ω and properly treating the expectation value Ω0

we get the relation
Ω′ = Ω0

(
eφ/
√

6 − 1
)

(76)

which leads to
V
V0

= e
√

3
8φ . (77)

A Taylor expansion of the last term in (78) now yields the coupling of φ to the SM-fields:

e−
√

3
2φLm

(
e
√

3
8φgµν

)
= Lm −

√
6

8 φ · T µµ +O
(
φ2
)
, (78)

so φ couples to the trace of the energy-momentum tensor with coupling constant λ =
√

6/8 ≈
0.3. Although φ couples universally to all matter fields and does not violate the equivalence prin-
ciple, the coupling would be observable through the deviations from GR in the post-Newtonian
expansion. We see that the volume modulus violates a fifth-force constraint and thus has to
avoid them altogether. Therefore the volume modulus has to be sufficiently heavy
(above meV) and is ruled out as a candidate for quintessence.
The process of rescaling the metric in this toy model is known as transition to the Einstein
frame and is necessary in every string compactification. We thus expect this argument to rule
out the volume modulus also in more elaborate models. Note that then also further couplings
between volume modulus and SM fields might arise, for example through the gauge-kinetic
function. In this case, the equivalence principle may be violated and even stronger constraints
apply, as is discussed in [58].

3.3 Phenomenological restrictions enlisted

In the previous two subsections we have highlighted two phenomenological necessities: a light
quintessence field and a heavy volume modulus. There are (at least) two further restrictions
arising in string-theory model building.
Firstly, superstring theory is intrinsically supersymmetric and the string theory vacua that can
be controlled reasonably well at least exhibit broken SUSY. Since collider experiments like the
LHC have not found any SUSY partners in their energy range, the SUSY-breaking scale has
to be sufficiently high so that the SUSY partners are heavier than the TeV scale currently
achievable at the LHC. A particularly easy to compute SUSY-partner mass term is the gaugino
mass which can be read of the 4D N = 1 Lagrangian in [75] as

m1/2 = 1
2
∂if

Ref F
i , (79)
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where the gauge index of the gauge-kinetic function f has been dropped and F i is given by

F i = eK/2Ki̄D̄W̄ , (80)

so that the F -term potential can actually be written as an “F -term”

VF -term = eKKi̄DiWD̄W̄ = F iKi̄F̄
̄ . (81)

Due to the simple form of its mass term, we will use the gaugino as representative of the SUSY
partners but in the end they all have to be sufficiently heavy.
Secondly, as has been mentioned in the discussion of fifth-force constraints, 4D gravity has
been tested with torsion balance experiments to hold below 0.2 meV ∼ 1 mm−1 [89]. This also
implies that compactifications have to be of the order of 100 µm or smaller. Accordingly, the
corresponding KK modes have to be heavier then meV. For isotropic compactifications, this
also introduces a bound on the compactification volume but as we have discussed in section
2.3.3, anisotropic compactifications may become useful for suppressing loop corrections. In
that case, the largest compact dimension has to be small and the associated KK-mode heavy
enough. As this is the KK-mode setting the loop-correction cut-off in (54), the interplay of
anisotropy, loop-correction suppression and KK-mass bound is highly restraining.
With this final requirements we can list all phenomenological restrictions we want to pose:

1. Light quintessence modulus φ with mφ . 10−60MP .

2. Heavy volume modulus with mV & 10−30MP .

3. Heavy superpartners with mS & 10−15MP .

4. Heavy KK scale with mKK & 10−30MP .

Of course, there are further conditions that have to be met for a truly realistic model, like
the implementation of the SM, fifth-force considerations, a viable quintessence potential etc..
However, we will find that these four restrictions already lead to serious challenges for string-
theoretic model building, so we will remain ignorant of these further complications.
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4 Challenges of Stringy Quintessence

If we want to construct quintessence from string theory, we have to find a scalar degree of free-
dom with very low mass and flat potential. In the framework of type IIB flux compactification,
we find axions and Kähler moduli as candidates for this role. Axions are naturally very light,
but naive attempts of implementing slow-roll on their potential run into contradictions with
another swampland conjecture, the (axionic) weak gravity conjecture (WGC). Therefore, we
will turn our attention to Kähler moduli here, postponing comments on axion quintessence to
part 5.
In section 2.3 we analyzed the scalar potential of the Kähler moduli, which has no-scale structure
classically and only generates masses by higher-order corrections. We now have to find a
sufficiently flat direction in this potential to serve as quintessence modulus. Since the volume
modulus has been ruled out in the last section, we need at least a second modulus to play this
role.

4.1 The light volume problem

For the huge hierarchies of quintessence, we need parametric control over the potential. As
mentioned before, a large volume accomplishes just that, so we will rely on the LVS in this
context. Let us recall the volume scaling of the various scalar-potential contributions. The
no-scale cancellation occurs at the level of Vno-scale ∼ W 2

0 /V2. The higher-order corrections
then scale as

δVnp ∼
√
τse−2asτs

V
+ W0τse−asτs

V2 → W 2
0
V3 log3/2(W0/V) , δVα′ ∼ W 2

0
V3 , δVloop ∼

W 2
0

V10/3 .

(82)
Here we have integrated out the small cycle τs, which is stabilized by the non-perturbative
corrections at mass scale ms ∼ W0/V . As we will see, this is heavier then the volume modulus
and thus τs is no candidate for quintessence. Although LVS only requires one small modulus,
we allow for any number of small moduli that are all fixed by non-perturbative corrections at
high mass. We integrate them out and retain a volume dependent correction. As shown in
section 2.3.2, α′ and non-perturbative corrections only fix these small moduli and the volume
modulus at order

VLVS ∼ δVnp + δVα′ ∼ W 2
0
V3 . (83)

This potential can have an AdS minimum at exponentially large V0 with the exponent being
∼ χ2/3/gs [19, 70,73].
Due to the scaling of VLVS the volume modulus is stabilized at mass mV ∼ W0/V3/2, which
can be inferred from the known Kähler metric of section 2.3.1. In appendix A we will argue
more generally that the moduli masses can be approximated by their contribution to the scalar
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potential δV via
m2 = m2M2

P & δV . (84)

Since the volume modulus mass is bounded by requirement 2, our quintessence modulus has
to be stabilized by even further suppressed contributions. In the stabilization hierarchy given
by (82), all remaining large moduli (large enough to make e−aiτ

i negligibly small) are fixed by
loop corrections. By process of elimination, one of these moduli is the quintessence modulus τφ
and thus receives a mass

mφ ∼
√
δVloop ∼

W0

V5/3 (85)

or heavier. Combining (85) with the required scales listed in the previous section, one finds

O
(
1030

)
.
mV
mφ

∼ V1/6 ⇒ V & O
(
10180

)
. (86)

This is a very large volume and will result in very small KK scales given by

mKK = Ms

R
∼ MP

V1/2+1/6 . O
(
10−120

)
MP , (87)

which is in conflict with requirement 4. Here we have used (56) in the least restricting isotropic
l = 6 case.
The loop corrections involving the quintessence modulus thus have to be suppressed more
strongly than by V−10/3. As suggested in [62, 71], anisotropic compactifications may provide
the required suppression. The proposed model contains 3 Kähler moduli with a volume function
of the form

V =
√
τ 1τ 2 − (τ 3)3/2 . (88)

τ 3 corresponds to τs in the standard LVS construction, but the bulk of the compactification is
now a fibration over two large dimensions governed by the 2-cycle dual of τ 1 and a 4-cycle fiber,
as for example a T 4 or K3 manifold. During canonical normalization, the volume modulus will
decouple and a specific ratio of fiber and base modulus will be left unstabilized by VLVS. This
ratio is then supposed to be the quintessence scalar. The authors move on to constructing a
suitable quintessence potential from poly-instanton corrections, which are very small corrections
that can generate a flat potential suitable for quintessence. However, these only dominate if the
loop corrections are even smaller. We recall from the heuristic argument in section 2.3.3 that
loop corrections may be described by 4D field theory loops in form of the Coleman-Weinberg
potential (54) and effective scaling (57)

δVloop ∼ A
W 2

0
V3+2/l +B

W 4
0
V4 . (89)

Thus, in this anisotropic scenario with l = 2, the quintessence scalar gets loop corrections only
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at order V−4 which in contrast to (85) induces a quintessence mass11

mφ ∼
√
δVloop ∼

W0

V2 . (90)

Since requirement 4 bounds the volume to V . O(1030) we can marginally source the right
quintessence mass. However, using mV ∼ W0/V3/2 and mφ from (90) together with our phe-
nomenological requirements 1 and 2, we conclude

O
(
10−30

)
&
mφ

mV
∼ V−1/2 ∼ m

1/2
KK ⇒ O

(
10−60

)
& mKK , (91)

where in the last step, we see a contradiction with requirement 4 arising as the KK scale
becomes too low. So even in the anisotropic case the required hierarchy cannot be achieved
through the standard LVS approach.12

We will refer to this problem, which has already been noted in [62, 71], as the “light volume
problem”. To resolve it, one needs an extra contribution to the scalar potential, which gives the
volume modulus a higher mass. This is already critical. However, as we will see momentarily,
things get even more challenging if we take into account SUSY breaking according to require-
ment 3. This will provide an independent argument for a new scalar-potential term, fixing also
its sign and prescribing a significant overall magnitude.

4.2 The F -term problem

It is necessary to ensure that the SM superpartners are sufficiently heavy (requirement 3).
This will prove to be very challenging. We will turn to the gaugino mass m1/2 given in (79)
as a representative of this issue. If the SM gauge group is realized on D7-branes, m1/2 scales
as |W |/V . For D3 realizations, the soft scale is suppressed more strongly [70] – so this does
not help. Due to the aforementioned phenomenological requirements 1 and 3, the hierarchy
between the quintessence field and the gaugino must fulfill

mφ

m1/2
. O(10−45). (92)

We can furthermore use the first term in (89) to conclude that mφ & mKKm3/2 and observe
that m3/2 ∼ m1/2 in the present setting. This implies

mKK .
mφ

m1/2
. O(10−45) , (93)

11We again refer to appendix A for a justification of the formula mφ ∼
√
δVloop.

12As mentioned in subsection 2.3.3, we can further suppress Vloop by choosing l < 2 and tuning W0 small.
The obvious possibility is l = 1 corresponding to one large and five small dimensions, but more complicated
geometries can lead to values 1 ≤ l ≤ 2 in the crucial formula (56) for mKK. Either way, repeating the analysis
which led to (91) one arrives at mKK ≤ O(10−30−15l) for general l. Thus, requirement 4 is always violated and
the light volume problem cannot be resolved by going to l ≤ 2.

30



in conflict with requirement 4. We conclude that the gaugino mass cannot be generated by the
SUSY breaking of the Kähler moduli alone.
Instead, to obtain large enough gaugino masses, we need a further source of SUSY breaking.
One can realize this on the SM brane through mediation from a hidden sector where SUSY
is broken spontaneously by the non-vanishing F -term of a spurion field X. Without loss of
generality, we will use the language of spontaneous SUSY breaking even in the case that this
breaking is realized locally (at the same Calabi-Yau singularity) and directly at the string
scale.13

According to our discussion of D-brane contributions in section 2.3.4, SM-brane SUSY breaking
gives a positive contribution to the scalar potential, which is added on top of the zero potential
resulting from the Kähler-moduli no-scale structure. Now consider a simple toy model with
a single spurion field X and F -term F . Let SUSY breaking be mediated through higher-
dimension operators suppressed by M , which we define to be the mediation scale of the flat
SUSY limit. After canonical normalization of X and its F -term,14 one has m1/2 ∼ F/M (and
similarly for the other soft terms), which implies

δVX ∼ F 2 ∼M2m2
1/2 . (94)

Soft masses are phenomenologically constrained (requirement 3) to be at least ∼ O(10−15)MP.
Moreover, M should be high enough to hide the SUSY-breaking sector. It is then natural to
assume M & O(10−15)MP and we will more carefully exclude lower values in the next subsec-
tion. This implies δVX ∼ M2m2

1/2 & O(10−60)M4
P , which is of the same order of magnitude

as the cancellation in the standard no-scale scenario, i.e. far larger than the first-order LVS
corrections.15 Thus δVX raises the height of the scalar potential to very large positive values
which cannot be canceled by the terms in VLVS of (83).

4.2.1 Limits on δVX

Since δVX has emerged as a key issue for the most popular stringy quintessence models, we want
to evaluate more carefully whether this hidden-sector contribution to the scalar potential can
be consistently tuned to smaller values. Recall from (94) that it scales as δVX ∼ m2

1/2M
2. Since

the gaugino mass should not be smaller than O(10−15)MP, the only option is to reduce M and
F at the same time, which implies a reduction of the gravitino mass. In the past, there have
been many investigations that aimed at constraining the latter using data from electroweak
colliders [94–101] like LEP or hadronic ones [13, 102–105] like the Tevatron. These bounds on

13In this case one may speak of non-linearly realized SUSY (see [93] for recent progress in this context). One
may, however, also continue to use the language of e.g. F -term SUSY breaking in SUGRA, sending the masses
of the fields in the SUSY-breaking sector to infinity.

14We carried out this procedure for an explicit example in appendix B.
15Indeed, as noted earlier mφ & mKKm3/2 so that the canceling terms in the no-scale potential are of order

Vno−scale ∼ m2
3/2 . m2

φ/m
2
KK . 10−60M4

P , where we enforce requirements 1 and 4.
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m3/2 translate into lower limits of the SUSY-breaking scale, which typically constrain
√
F to

be larger than a few 100GeV.
The most recent and stringent bounds result from missing-momentum signatures in pp collisions
at the LHC. To understand the emergence of such bounds, let us consider an exemplary toy
model where SUSY is spontaneously broken in a hidden sector through a non-vanishing F -term
in the vacuum and mediated to the SM sector via the interaction terms

Lint = a

M2

∫
d4θX†XΦ†Φ + b

M

∫
d2θXWαWα + h.c. , (95)

where Φ is a chiral superfield representing quarks q and squarks q̃ whereas Wα is the super-
symmetric field-strength tensor of a vector superfield V representing gluons g and gluinos g̃.
A non-zero F in the vacuum will generate soft masses for the squarks and gluinos, which are
given by m2

q̃ = aF 2/M2 and mg̃ ∼ bF/M , respectively. The hidden-sector field X contains the
goldstino G̃, which gets eaten by the gravitino due to the super-Higgs mechanism. In the limit
√
s/m3/2 � 1, the helicity-1/2 modes dominate over the helicity-3/2 modes and, according to

the gravitino-goldstino equivalence theorem [106,107], yield the same S-matrix elements as the
goldstinos. Hence, in this simple discussion, we identify the gravitino with the goldstino. We
are now interested in processes which turn two hadrons into a hadronic shower plus gravitinos,
where the latter induce a missing-momentum signature. For instance, we can consider the pro-
cess of two quarks in the initial state and two gravitinos in the final state with a gluon being
eradiated from one of the initial quarks, resulting in a hadronic shower. The gluon radiation
costs a factor √αS. Several beyond-SM processes contribute to the crucial qq-G̃G̃-amplitude.
One of them is the direct 4-particle coupling from (95):

∼ a

M2
¯̃GG̃q̄q ⊂ a

M2

∫
d4θX†XΦ†Φ . (96)

Due to the prefactor a/M2, this vertex contributes a factor 1/F 2 to the amplitude so that the
cross section will be proportional to αS/F 4. This F−4-dependence of the cross section is typical
for such processes and therefore the upper limits on them, provided by measurements at hadron
colliders, translate into lower bounds on F .
In a recent experimental analysis of the ATLAS collaboration [13], the process pp → G̃ + q̃/g̃

is considered, whereupon the squark or gluino decays into a gravitino and a quark or gluon,
respectively. Depending on the squark and gluino masses, as well as on their ratios, the authors
derive lower bounds on the gravitino mass around m3/2 ≈ (1 − 5) × 10−4 eV corresponding to
SUSY-breaking scales

√
F ≈ (650− 1460)GeV.

In [108], not only the process pp→ G̃+q̃/g̃ → 2G̃+q/g but also direct gravitino-pair production
with a quark or gluon emitted from the initial proton as well as squark or gluino pair production
with a following decay into gravitinos and quarks or gluons are considered. Taking into account
all three processes, the authors of [108] use the model-independent 95% confidence-level upper
limits by ATLAS [12] on the cross section for gravitino + squark/gluino production to constrain
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√
F > 850GeV. This is done for the case when the squark and gluino masses are much larger

than those of the SM particles so that they can effectively be integrated out (in the paper,
the value mq̃/g̃ = 20TeV is used). In other scenarios, where one or both of these two types of
superpartners have lower masses, the bound becomes even higher.
We conclude that, in accordance with the current experimental status, the mass scale of SUSY
breaking

√
F cannot be lowered significantly below 100GeV−1TeV so that δVX can be at most

a few orders of magnitude below O(10−60)M4
P. Such a contribution cannot be canceled by any

known term in our scenario as has been discussed already.

4.2.2 Need for a new contribution

We have seen that requirement 3 of heavy superpartners implies the presence of a large positive
contribution δVX to the scalar potential. This would raise the potential far above the observed
energy density O(10−120)M4

P, rendering this whole scenario unviable. Since we do not know how
to avoid this effect, it appears logical to assume the presence of a further negative contribution
of equal magnitude, which fine-tunes V to a level consistent with observations. In the preferred
case of l = 2 and for W0 ∼ O(1), the required magnitude is δVnew ∼ V−2. Such a contribution
may also solve the light volume problem (91). Indeed, if its volume dependence is generic, one
expects an induced volume-modulus mass mV ∼ V−1. This is just enough to build all required
hierarchies.
We emphasize that this contribution is substantially hypothetical and that the nature of its
generation and form is not understood. Possible effects suggested in [62,71] are loop corrections
from open strings on the SM brane and the back-reaction of the bulk to the brane tension
along the lines of the SLED models [109]. Open string loops may induce a Coleman-Weinberg
potential with cutoff at the string scale Ms ∼ MP/

√
V , such that the leading term scales as

M4
s ∼M4

P/V2. Although this is the correct order of magnitude for δVnew, the volume dependence
appears to be too simple to allow for volume-modulus stabilization. Moreover, being a higher-
order correction to the brane sector, we would assume it to already be part of the low-energy
effective Kähler potential for X and the SM fields which we used to derive F -terms and induce
superpartner masses. As such it could not contribute the required negative energy to cancel
the critical F -term.
As mentioned above, a counteracting contribution could also be found in the bulk back-reaction.
Since the SM-brane tension is the origin of the large F -term, a back-reaction to this tension
from the bulk appears to be promising. Still, as our analysis shows, it remains a challenge to
include this in the 4D effective theory, specifically in the 4D effective SUGRA, which we expect
to arise at low energies in the string theoretic settings we consider (see also [62,71,110–112] for
related discussions).
Finally, in the context of the de Sitter swampland conjecture (1), our F -term implies yet another
difficulty. Even if the new term δVnew cancels the F -term to leave a sufficiently small potential,
a small change in the SM or SUSY-breaking parameters can raise the F -term and with it the

33



residual scalar potential to violate the conjecture. This is also problematic in other models and
we will come back to this issue in the following sections.
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5 Loopholes and alternative Approaches

There are several potential loopholes in our analysis. The first one is the possibility that the
quintessence modulus is extremely light (i.e. the loop-induced potential is extremely flat) by
fine-tuning.16 However, this seems implausible for the following reason: The flatness must hold
on a time scale of order H−1

0 . In quintessence models which respect the de Sitter conjecture
(1), the scalar field has to run sufficiently far during such a period. Indeed, from the Klein-
Gordon equation in Friedmann-Robertson-Walker background together with |V ′|/V . 1 as
required by (71) it follows that ∆φ ∼ O(1) in one Hubble time. In a Taylor expansion of δVloop,
we therefore have to take into account all orders of ∆φ. It is thus not enough to fine-tune
δVloop at one point but we must tune an infinite number of derivatives to small values. This
cannot be coincidental but has to be based on some mechanism or symmetry. Although in our
specific model such a perfect decoupling of one Kähler modulus from the loop corrections seems
implausible, there might of course be other constructions where the required sequestering can
be achieved (see [58,113] for discussions).
Another possibly critical point is the approximation of loop corrections through the Coleman-
Weinberg potential (54) with mKK as a cutoff. Here, one has to be concerned that no other,
stronger corrections arise. This seems possible, for example, since the KK scale is far below
the weak scale. Thus, when applying the formula, one has to do so in a setting where the
SM brane (with SUSY broken at a higher scale) has already been integrated out. This needs
further scrutiny. Another concern is that even in the bulk SUSY may not be fully restored
above mKK due to the effect of bulk fluxes. Still, we trust the formula to at least give a lower
bound on loop corrections that cannot be neglected and thus makes our conclusions inevitable.

A number of alternative approaches to quintessence building from string theory have been
proposed. Let us first comment on the possibility of axion quintessence. Based on the SUGRA
scalar potential, one generically expects an axion potential

V = Λ4 cos
(
φ

f

)
+ a , Λ4 ∼M2

Pm
2
3/2e−Sinst. , (97)

where Sinst. is the instanton action inducing the potential. This could provide the required
dark energy if φ is at the “hilltop” and, at the same time, satisfy the de Sitter conjecture (2)
(assuming reasonably small c′). For simplicity, let us start the discussion taking a = 0. Then
the slow-roll conditions (71), which we need phenomenologically, require a trans-Planckian
axion decay constant f [67]. But this is in conflict with quantum-gravity expectations or, more

16For example, one could imagine a model where the two terms in (57) cancel to a very small residue.
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concretely, the weak gravity conjecture for axions [114,115]:

f ≤ O(1)MP or Sinst. ≤ α
MP

f
. (98)

The conflict is strengthened if one recalls that the potential must be tiny, i.e. M2
Pm

2
3/2e−αMP/f .

10−120M4
P. For α ∼ O(1), this implies f ∼ O(10−2)MP, which is in conflict with slow-roll. As

suggested in [31], one might hope to ease the tension by employing the constant contribution a
to the potential (97).17 If a is negative, the slow-roll condition is violated even more strongly.
Positive a greater than Λ4 leads to a violation of the de Sitter conjecture at the minimum. The
best option is then a = Λ4 which, however, does not help much: The slow-roll requirements on
f change only by a factor

√
2, so f still needs to be at the Planck scale.

With this naive approach we would have to violate the weak gravity conjecture by assuming
an unacceptably large Sinst.. However, the weak gravity conjecture is presumably on stronger
footing than the de Sitter conjecture, so this is against the spirit of the swampland discussion.
Instead, alternative elements of model building may be invoked to save axion quintessence.
An option is the use of axion monodromy [67]. Another idea developed and discussed in
[65, 69, 116–118] is a further suppression of the prefactor of the axion potential. A specific
model with a highly suppressed axion potential for an electroweak axion has been developed
in [65,69]. We note that the most obvious suppression effects are related to high-quality global
symmetries in the fermion sector, suggesting a relation between the weak gravity conjecture
and global-symmetry censorship [118,119].
If such models succeed in providing a sufficiently flat potential, we still have to account for large
enough SUSY breaking in the full model to generate heavy SM superpartners. The large F -term
required has to be canceled to allow for the flat axion potential to dominate. Assuming this
cancellation to be implemented, we can again slightly change the SUSY-breaking contributions
to shift the axion potential to positive values and violate the de Sitter conjecture at the minima.
The full model would need to balance out these changes by some intricate mechanism.
An alternative approach to building a quintessence potential from KKLT-like ingredients has
been taken in [64] where the quintessence field is given by the real part of a complexified Kähler
modulus. This Kähler modulus runs down a valley of local axionic minima in the real direction.
Since the universe is assumed to be in a non-supersymmetric non-equilibrium state today, it can
evolve at positive potential energies. However, since the potential has to be sufficiently small
to constitute a quintessence model, the superpotential has to be tuned to very small values,
which results in a small gravitino mass. It appears that one needs further SUSY breaking and
the F -term problem re-emerges.
An interesting alternative to quintessence has been introduced in [120]: The zero-temperature
scalar potential is assumed to satisfy the de Sitter conjecture, but a thermally excited hidden

17Another idea to resolve the conflict would be to move away from the hilltop to a point in field space where
both slow-roll conditions are as weak as possible. This turns out not to work.
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sector stabilizes a scalar field at a positive-energy hilltop. The authors illustrate this idea
using a simple Higgs-like potential V = −m2

φφ
2/2 + λφ4 + C. Since the hidden sector must

not introduce too much dark radiation, the temperature and hence also mφ are bounded from
above by today’s CMB temperature, which is roughly 0.24 meV. This model does not need an
approximate no-scale structure to ensure an extremely flat potential at large V , so our F -term
problem does not immediately arise.
However, it makes an indirect appearance as follows: Both the present toy model potential as
well as more general models of this type are expected to have a minimum somewhere. In the
present case, its depth is m4

φ/16λ, which is very small unless λ is truly tiny. Now, since some
F -term effect δVX must be present somewhere in the complete model, a small de-tuning of this
δVX will be sufficient to lift the model into the swampland. Thus, some form of conspiracy
must again be at work for this model to describe our world and the de Sitter conjecture to hold
simultaneously.
A way out is provided by assuming that λ ∼ O(10−64) and available δVX are bounded at
∼TeV. Then the minimum is too deep to be lifted to de Sitter by de-tuning. Even then, one
has to be careful to ensure that |V ′′|/V does not become too small as one uplifts the model by
de-tuning the SUSY-breaking effect. We approximate the possible de-tuning by the order of
magnitude of the F -term itself: ∆(δVX) ∼ δVX ∼ F 2. As a result |V ′′|/∆(δVX) ∼ m2

φ/F
2 ∼

O((10−31)2/10−60) ∼ O(10−2), which is critical in view of the de Sitter conjecture. Thus,
even in this rather extreme case, a version of the F -term problem can at best be avoided only
marginally.
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6 Conclusion

We reviewed the type IIB flux-compactification procedure with the goal of constructing a
quintessence model from string theory. Following the need of huge hierarchies we identified the
quintessence field as a Kähler modulus independent of the overall volume, which is unfixed by
the leading-order corrections to the scalar potential. Further suppression of the quintessence
scale then required the suppression of the next-to-leading order corrections, which involve string-
loop corrections, and led to the proposal of anisotropic compactifications described in [62].
However, phenomenology restricts not only quintessence, but at least three further mass scales:
volume modulus, SUSY breaking and KK scale. The hierarchies between those scales are
restricted by experiments and we identified the difficulties they cause in model building. At
first, we re-derived the “light volume problem” which manifests itself in a volume-modulus mass
which is too light to avoid fifth-force constraints. This issue was already known to the authors
of [62] and a possible resolution was hinted on in [71].
Moving on to SUSY breaking, we found that due to the low scales required by quintessence,
the amount of SUSY breaking from the Kähler sector is much too small to allow for sufficiently
high superpartner masses. This could be resolved by introducing an additional SUSY breaking
sector on the SM brane. However, it turns out that this induces a positive F -term contribution
to the scalar potential which is much bigger than the Kähler-sector contribution and lifts the
potential far into the dS regime. Since neither phenomenology nor swampland conjectures allow
for such potentials, we need a further contribution δVnew to the potential, which is negative and
scales like V−2 to cancel the F -term. Although on one hand this term could also resolve the
“light volume problem” by fixing the volume-modulus mass at order V−1, its inclusion could
on the other hand upset the stabilization hierarchy of LVS, since it is of the same order as the
no-scale canceling terms. We thus have to make sure that the new term only raises the mass
of the volume modulus.
Although this is the essence of the “F -term problem” which we introduced in our paper, a
further aspect of it arose in the context of the swampland conjecture. The required cancellation
between F -term and δVnew has to be fine-tuned to yield a quintessence potential of the order
of the cosmological constant, which is the old cosmological constant problem in disguise. If
such a tuned situation could be found in the string landscape, a similar model with slightly
altered SM or SUSY-breaking parameters should be possible as well. However, this can increase
the F -term and lift the potential into dS, where it violates the dS swampland conjecture (1).
The same argument is also applicable to the other models discussed in part 5. The canceling
term δVnew thus has to be coupled to the F -term itself such that it counterbalances any change
in parameters exactly. Some kind of back-reaction as proposed in [71] seems to be the most
promising solution but has not been fully described in 4D yet.
Of course alternative approaches to quintessence could completely evade the effective 4D
SUGRA logic that we used or study entirely different string-theoretic settings like type IIA
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or heterotic string theory. Also other control parameters like large complex-structure or small
string coupling could lead to very different scenarios. However, due to the various dualities link-
ing the different corners of the string-theory landscape, these alternative approaches are limited
and might turn out to be similar to our type IIB large-volume setup. Large complex-structure
for example is the mirror-symmetry dual to large volume and thus not intrinsically different.
Overall, we expect problems similar to the F -term problem to appear in any quintessence model
from string theory. The hierarchy between SUSY breaking and quintessence is necessarily big
and the required fine-tuning mechanism has to explain why a small de-tuning is impossible as
suggested by the dS conjecture.
At this point, we have to raise the question whether quintessence is really a good way out
of the dS conjecture. If it is always possible to turn a quintessence model into a dS model
by tiny changes in the SM parameters, nothing would be gained by considering quintessence.
Furthermore, the construction involves considerably more fine-tuning [59] and more involved
constructions than dS models [31]. Only by resolving or bypassing the F -term problem we can
make progress in understanding the advantage of quintessence over dS models and continue
searching for a string vacuum in simultaneous agreement with experiments and the dS swamp-
land conjecture. That is, if we are not taking these difficulties as a counterargument against
the latter and return to dS constructions.
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Appendix

A Estimating moduli masses from the potential

We will argue that under reasonable assumptions the mass scale of a physical modulus is usually
set by the highest order term δV in the scalar potential that involves the respective modulus:

m2 & δV . (99)

This is easy to see for the volume modulus but requires justification for the other moduli.
Although heavier masses can easily arise for ‘small-cycle’ moduli which correspond to small
terms in V , much lighter masses require some kind of cancellation, which will generally involve
tuning.
To illustrate the idea, consider the toy-model Lagrangian

L = −∂µX∂
µX

2X2 − V (X) , where V ′′(X) ∼ V (X)
X2 . (100)

The canonical field is introduced through X = exp(φ). Then the physical mass squared is
the second derivative of the potential w.r.t. φ. Given our assumption about V ′′(X), this is of
the same order of magnitude as the potential itself. Thus, suppressing O(1) coefficients, the
approximation m2 ∼ δV is justified.
For the volume modulus Ω the argument is basically as in the toy model above. In (42) we
observed a prefactor 3/Ω2, so the physical volume modulus is given by φV =

√
6 ln Ω, as we

have argued in our discussion of volume modulus quintessence in section 3.2.
For the other moduli, a closer examination of (41) reveals that in general Akl scales as

Akl ∼ Vkl ∼
V
χkχl

∼ O
(
χ−1
k χ−1

l

)
. (101)

Thus, it is natural to transform χk ∼ exp(φk) as we did for the volume modulus. The result is
a kinetic term of the form

−Kij(τ)∂µτi∂µτj = −A′kl(χ)∂µφk∂µφl − ∂µφV∂µφV (102)

with
A′kl = 2χkχlVn∂k∂lχn . (103)

The entries of A′kl now generally scale as O(1) coefficients, but hierarchies between the residual
moduli and cancellations of different terms in V(χi) might spoil this approximation. On the one
hand, small moduli as for example τs in the LVS scenario, will have small entries in A′kl, so the
canonical normalization will rescale these fields and increase their mass. On the other hand,
we may end up with big entries in A′kl whenever two terms in V(χi) are of higher order then

40



O(1) but cancel against each other. Since this is nothing else than tuning, we will assume in
the following that such cancellations do not occur, so that canonical normalization only mixes
the residual moduli with O(1) coefficients and raises the masses of small moduli.
To extract mass scalings, we turn to the potential. The potential V (τi) expressed through
V (φk, φV) can be expanded in p powers of exp(φV), which is parallel to an expansion in V . The
mass of each modulus φk is fixed by some contribution

δV = f(eφk)epφV , (104)

where f is usually some function homogeneous in its argument (at least at leading order and
especially for string loop corrections according to (25)), which may also depend on other moduli
except the volume modulus. Now due to f being homogeneous and the stabilizing contribution
the mass term

m2
k = e2φkf ′′(eφk)epφV ∼ f(eφk)epφV (105)

scales as m2
k ∼ δV . Especially the volume scaling, which has been made explicit through

exp
(

2
3
√

6φV
)

= V , can be read of directly. A similar procedure works out for the volume
modulus itself, generally linking its mass to the highest appearing power of V in V . We find
that assuming homogeneous potential contributions and no major cancellations, the estimation
(99) holds at least with respect to volume scaling. We further note that the requirements are
met in many simple cases, for example the models of [62,71]. (99) is a lower bound due to the
possible mass enhancement from A′kl. Since the challenge in the main text was finding smallest
possible quintessence modulus masses, this lower bound can be used as the best case scenario.

In our paper, we have not gone through the separation procedure that led to the decoupling
of Ω, so we have argued this point more directly. Let us also give the direct argument for
completeness:
We restrict our attention to the submanifold of constant V in the space of real moduli τ 1, ..., τn.
We choose an arbitrary trajectory on this submanifold and parameterize it as

(τ 1(φ), ..., τn(φ)) = (τ 1(0)eξ1(φ)φ, ..., τn(0)eξn(φ)φ) . (106)

We normalize our parameter φ so that it takes the value 0 at the point of interest τ i ≡ τ i(0).
The coefficient vector ξi ≡ ξi(0) is chosen to be O(1) valued. Now the Lagrangian for motion
along the trajectory contains the kinetic term

L ⊃ Lkin =
∑
ij

Kijτ
iτ jξiξj∂µφ∂

µφ . (107)

We can compute the Kähler metric from the Kähler potential K = −2 ln(V(τ i)) and since we
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are moving along the submanifold of constant volume we can use

∑
i

Viτ iξi = 0 such that Lkin = −2
∑
ij

Vij
V
τ iτ jξiξj∂µφ∂

µφ . (108)

Unless there is significant cancellation between terms in V we can assume

Vij .
V
τ iτ j

(109)

and since ξi was chosen O(1), the whole prefactor of ∂µφ∂µφ can be assumed to be O(1) or
smaller. A small prefactor can arise from a small contribution in V(τ i) as for example in the
standard LVS example of V = τb

3/2−τs
3/2 where τs is a small modulus and gets a small prefactor

in the kinetic term. The canonical normalization will thus either not change or even increase
the order of magnitude of the modulus mass.
Turning to the potential, we see that, since we move along the submanifold, any contribution
only involving the volume does not contribute to the mass, as for example VLVS in (83). Turning
to the leading-order contribution δV involving the other moduli (in our case string-loop cor-
rections) we will rewrite the potential in the coordinates (V , τ 1, ...τn−1) where we have solved
the constraint of staying on the submanifold for a suitable τn. We introduce indices k and l

which only run over {1, ..., n− 1} in contrast to i and j. The mass squared of our modulus is
now determined by the Hessian of the potential contracted with the vector δτ k corresponding
to an infinitesimal shift in φ :

m2 ∼ δVkl
δτ k

δφ

δτ l

δφ
=
∑
kl

δVklτ
kτ lξkξl ∼ O(δV ) . (110)

Here we have to assume that after rewriting the potential in terms of (V , τ 1, ...τn−1) it is still
sufficiently well behaved to allow for an order of magnitude estimate δVkl ∼ δV/τ kτ l, resembling
(109). Due to the homgeneous form of the loop corrections in (25) which is also required for the
extended no-scale structure explained in [80–83], this condition is usually satisfied. Since the
choice of trajectory was arbitrary, we assume a similar scaling for all moduli involved except
for the volume modulus. Bearing in mind the possible mass enhancement from the canonical
normalization, we estimate

m2 & δV . (111)

B A simple F -term breaking model

In the main text, the necessity of a SUSY-breaking D-brane contribution arose. In section 2.3.4
we analyzed the F -term contribution of scalars from D3-branes to the scalar potential. Here
we will give an explicit example with enough SUSY breaking to raise the gaugino mass (79)
which is directly proportional to the F -term.
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We motivate our model from flat 4D N = 1 SUSY, where a SUSY-breaking sector X is coupled
to the field strength W of the vector multiplets via a mediation scale M . The Lagrangian is
given by

L ⊃(YθȲθ − c1(YθȲθ)2)|θ2θ̄2 + c2Yθ|θ2 + c3(ab)

M
W (a)W (b)Yθ|θ2 + h.c.+ Lc (112)

⊃− ∂µȲ ∂µY − 2c1FY F̄Ȳ Y Ȳ −
c3(ab)

2M F (a)µνF (b)
µν Y (113)

where Lc includes all further couplings to chiral fields and the superfield formalism has been
used in the first equation with Yθ = Y +

√
2θψY +θθFY . We now need to find a SUGRA model,

whose flat SUSY limit will lead back to this Lagrangian. To this end we introduce a D3-brane
scalar X via the real functions

ki(X, X̄) = −ai|X|2 + bi|X|4 (114)

in (28) and add a term linear in X to the superpotential and to the gauge-kinetic function:

W ′ =W + cX (115)

f ′(ab) =f(ab) + d(ab)

M ′ X + h.c. , (116)

which by application of (65) leads to the scalar potential

V =eK |c|2

Ki(−ai + 2bi|X|2)
(117)

=− eK |c|
2

Kiai
+ eK

|c|2

(Kiai)2

[
(Kiai)2 −Kijaiaj − 2Kibi

]
|X|2 +O

(
|X|4

)
. (118)

If we now use K = −2 lnV , we get

V = |c|2

2VViai
+ |c|2

V(Viai)2

[ 1
2V (Viai)2 + 1

2Vijaiaj + Vibi
]
|X|2 +O

(
|X|4

)
. (119)

With positive ai, bi we can stabilize X at value 0 with mass fully controllable by the bi param-
eters. After this stabilization, we get a positive F -term potential from the first term alone.
Identifying this term with the standard form V = FXKXX̄F

X̄ where by prescription of (63)
the Kähler metric amounts to

KXX̄ = 2Viai
V

, (120)

the resulting F -term is simply
FX = c̄

2Viai
. (121)
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Now the gaugino receives the mass

m1/2,(a) = 1
2Ref(a)

FX d(a)

M ′ = 1
2Ref(a)

c̄d(a)

2M ′Viai
, (122)

where we have diagonalized the gauge-kinetic function and canonically normalized the gauge
fields. The mediation scale M ′ does not correspond to M from (113), because the X field
has yet to be canonically normalized. Fortunately, the Kählermetric is already block-diagonal,
since the off-diagonal terms KiX̄ are linear in X, which has been stabilized at value 0. So we
only need to make the transition

− det(e)KXX̄∂mX∂
mX̄ → −∂µX∂µX̄ , (123)

where we, by hand, constrain the metric to be Minkowski.
The relevant factor is Xnormalized = X ·

√
KXX̄ .

Matching (113) with the corresponding coupling in the SUGRA Lagrangian (taken from [75])

−
c3(ab)

2M F (a)µνF (b)
µν Xnormalized=̂− 1

4 det(e)d(ab)

M ′ F
(a)mnF (b)

mnX , (124)

we get the relation M = M ′ ·
√
KXX̄ , which translates to a gaugino mass in SUSY terms of

m1/2,(a) = 1
2Ref(a)

c̄d(a)

M
√

2VViai
∼ O

(
c

M
√
VViai

)
. (125)

The F-term potential is therefore directly proportional to

VF -term ∼ (m1/2M)2 . (126)

Although this has been computed in a specific model, we want to emphasize that this model is a
good representative of F -term breaking models in general. Even if other theories might involve a
multitude of fields, couplings and an intricate brane-dynamical background, the SUSY-breaking
effects have to be mediated to the SM-sector by some mechanism and raise the gaugino mass
to sufficiently high scales. Thus, we believe that the scaling of the F -term potential (126) with
mediation scale and gaugino mass is quite generic. Furthermore, since experimental bounds on
both are known and discussed in section 4.2.1, the SUSY breaking F -term potential is bounded
by phenomenology.
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