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Chapter 1

Introduction

1.1 Background

In recent years, interest in targeted therapies has increased greatly. Knowledge of the

molecular basis of a disease and the treatment's mode of action often allows to specify

a subset of patients based on genetic or molecular biomarkers who are expected to have

an increased bene�t from the treatment. Especially, in oncology, targeted therapies are

developed more and more frequently (see, e.g., Pérez-Herrero and Fernández-Medarde,

2015). An example is the treatment of breast cancer with trastuzumab, for which e�cacy

was only shown for patients with HER2-positive tumors. An overexpression of the human

epidermal growth factor receptor-2 (HER2) is known to play an important role in the

development of breast cancer. Trastuzumab binds to the HER2 receptor and inhibits

the growth of HER2-overexpressing breast cancer cells (Baselga, 2001). Another example

from the �eld of pneumonology, which is considered later in this thesis, is the treatment

of lebrikizumab for patients with asthma that is more e�cient in speci�c subgroups

(Corren et al., 2011).

If the bene�t of a treatment depends on individual characteristics of a patient, study

designs allowing to demonstrate e�cacy in particular subgroups of the overall patient

population become more important. In case of conjecturing a higher treatment e�ect

in a speci�c subgroup, the traditional approach consists of two separate clinical trials.

In a phase II study, patients from the total population are enrolled, and estimated

treatment e�ects in both the subgroup and the total population are used to select the

target population with the most promising bene�t. In a subsequent phase III trial, only

patients from the selected target population are recruited and its treatment e�ect is

assessed based on the data obtained from the phase III study. However, this approach is

very time consuming and resource intensive since selection of the target population and

assessment of e�cacy is divided into two separate trials.

1



CHAPTER 1. INTRODUCTION 2

As a less time consuming and more e�cient approach, so-called adaptive enrichment

designs have been proposed combining both selection of the patient population and

con�rmatory assessment of the treatment e�ect in one trial (see, e.g., Wang et al., 2007;

Jenkins et al., 2011). Thereby, patients from the total population are enrolled in the �rst

stage of the study. Then, an interim analysis is conducted to select the target population

with the most promising treatment bene�t. Depending on the selected target population,

patients from the total population are enrolled in the second stage, or recruitment in the

second stage is restricted to patients from the subgroup only. In the �nal analysis, data

from both stages are combined for the investigation of e�cacy.

1.2 Aim and Structure of the Thesis

In recent years, various statistical methods for adaptive enrichment designs have been

developed and proposed in the literature, e.g., di�erent rules for the selection of the

target population and several methodologies related to the control of the type I error

rate (see, e.g., Wang et al., 2007; Brannath et al., 2009; Jenkins et al., 2011; Friede

et al., 2012). However, the choice of the interim analysis timing has not been very well

investigated yet. One possible ad hoc strategy would be to conduct the interim analysis

after half of the patients are enrolled. However, this is rather a rule of thumb and is not

based on any statistical considerations. Moreover, the timing of the interim analysis in

an adaptive enrichment design has a substantial impact on the composition of the study

populations if the subgroup is chosen in the interim analysis. If the subgroup is selected

as target population in an early interim analysis, the study contains overall substantially

more patients from the subgroup as compared to the case when the subgroup is selected

in a late interim analysis. A schematic representation of an early and a late interim

analysis (or, in other words, a small and, respectively, a large sample size in the �rst

stage) is shown in Figure 1.1.

Based on heuristic considerations, it is clear that a very early conduct of the interim

analysis might be inappropriate since selection of the target population is then based

on a small data set and the probability of selecting the wrong population is rather high

which may have severe consequences. For example, if the subgroup is selected as target

population but there is also a relevant treatment e�ect in the complementary group, the

treatment may be denied to this patient group. Also, if the total population is erroneously

selected but there is only a relevant e�ect in the subgroup, the study might fail to prove

e�cacy, which is especially likely if the prevalence of the subgroup is small. On the

other hand, a very late interim analysis does not seem to be sensible either. In case the

subgroup is selected at a late interim analysis, it is no longer possible to substantially
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Select G0 

Select G+ 

Stage I Stage II 

G0 

G0 

G+ 

G+ 

(a) early interim analysis

Select G0 

Select G+ 

Stage I Stage II 

G0 

G0 

G+ 

G+ 

(b) late interim analysis

Figure 1.1: Schematic illustration of an early and a late interim analysis using an
adaptive enrichment design with �xed overall sample size. The total patient population
is denoted by G0 and the subgroup by G+.

enrich the study population with patients from the subgroup. Nevertheless, it is not

clear if the interim analysis timing after the enrollment of half the patients is uniformly

the best choice.

The aim of this thesis is to investigate the choice of the interim analysis timing in

adaptive enrichment designs for the situation of a normally distributed outcome. In the

�rst part, a design with �xed overall sample size speci�ed at the beginning of the trial

is considered. Here, the impact of the timing on the power of the study is investigated

for various e�ect sizes, prevalences of the subgroup, and di�erent selection rules. The

aim of these investigations is to assess to what extent the timing in�uences the power of

the study in general, and which timings are favorable or unfavorable with regard to the

power of the trial.

In the second part of the thesis, scenarios are considered in which the overall sample

size is not �xed. Instead, the sample size of the second stage is recalculated based on

the treatment e�ect observed in the interim analysis. In this case, characteristics of

sample size distribution are compared for di�erent interim analysis timings. Here, it is

investigated to what extent the timing in�uences the distribution of the sample size and

which timing is appropriate regarding the average sample size for scenarios with di�erent

e�ect sizes, prevalences of the subgroup, and selection rules.

Overall, the thesis is structured as follows: In Chapter 2, the theoretical framework on

adaptive enrichment designs is given. Chapter 3 gives the basic notation and describes

the considered design together with the two di�erent classes of selection rules for se-

lecting the target population. In Chapter 4, the choice of the interim analysis timing

is investigated if the overall sample size is �xed. As an alternative, in Chapter 5, the
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impact of the interim analysis timing is examined for an adaptive enrichment design with

sample size reassessment. Chapter 6 concludes with a discussion, and a summary of the

thesis is given in Chapter 7.

Results concerning the adaptive enrichment design with �xed overall sample size were

already published in Benner and Kieser (2018). All simulations were performed using R,

version 3.5.0 (R Core Team, 2018), and corresponding program code is provided in the

Appendix.



Chapter 2

Theoretical Framework

Beside the use of adaptive enrichment designs, adaptive designs in general are very

popular as they allow �exible modi�cations of the design in an ongoing study under

control of the type I error rate.

An overview of the development of methodologies for adaptive designs is given by Bauer

et al. (2016). After the �rst seminal publications of Bauer (1989) and Bauer and Köhne

(1994), various methods were developed. For example, strategies were proposed to assure

control of the type I error rate within an adaptive design. In general, two di�erent ap-

proaches exist. The �rst strategy is based on the combination of p-values or test statistics

obtained from the two stages of the study. Commonly used combination methods are

Fisher's combination test (Bauer, 1989; Bauer and Köhne, 1994), where the product of

both p-values is compared to a critical value, or the weighted inverse normal combination

function (Lehmacher and Wassmer, 1999), where statistics from both stages (p-values or

test statistics) are weighted and combined. The latter method is used in this work and

is described in detail in the subsequent chapter. The second commonly used strategy to

assure control of the type I error rate was proposed by Proschan and Hunsberger (1995)

and is based on the conditional error function.

One important application of adaptive designs is the reassessment of sample size in the

interim analysis. Since assumed treatment e�ects and standard deviations are often

vague in the planning phase for calculating the sample size, the data observed in the

�rst stage can be used to adjust the sample size of the subsequent stage. For example,

the sample size can be adjusted upwards if the observed e�ect size in the interim anal-

ysis is smaller than expected, and downwards if the e�ect size is higher than expected.

A commonly used method for sample size reassessment is based on conditional power

arguments (Proschan and Hunsberger, 1995), and is applied in this work for sample size

recalculation using an adaptive enrichment design.

However, not only the sample size can be modi�ed using an adaptive design. The

5
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�exibility of adaptive designs �nd a variety of applications. For example, EMA and

FDA mention in their guidelines (European Medicines Agency, 2007; Food and Drug

Administration, 2018) the adaptation of sample size, the allocation ratio, change of

endpoints, selection of the most promising treatments, and selection of subgroups. Also

a stop for futility or e�cacy is possible if observed e�ects in the interim analysis provide

already su�cient information. In this case, the trial is stopped early after the interim

analysis either with acceptance or rejection of the null hypothesis, and the sample size

can be reduced.

One useful application in the �eld of strati�ed medicine is the adaptive enrichment design,

which o�ers the possibility to select the target population in the interim analysis and

accordingly, adapt the population from which patients in the second stage are enrolled.

While in general it would be possible to consider multiple subgroups (see, e.g., Wassmer

and Dragalin, 2015), this work solely considers the situation of a single subgroup G+ in

which a higher treatment e�ect is assumed compared to the total population G0.

The basic process of a study using an adaptive enrichment design is as follows: Patients

from the total population G0 are enrolled in the �rst stage of the study. After completion

of the �rst stage, based on the data observed so far, an interim analysis is conducted,

where the target population (G+ or G0) with the most promising treatment e�ect is

selected. Depending on the selected target population in the interim analysis, patients

from the total population are enrolled in the second stage, or recruitment is restricted to

patients from the subgroup only, which is referred to as enrichment. In the �nal analysis,

data from both stages are combined for the investigation of e�cacy. In this way, the

selection of the target population and the test for e�cacy is combined in a single trial

consisting of two stages, which is less resource intensive and less time consuming than

conducting two separate trials.

In recent years, several approaches and methodologies for applying adaptive enrichment

designs were proposed. To control the type I error rate, most approaches make use of

combination tests as, for example, described in Wang et al. (2007), Wang et al. (2009) or

Jenkins et al. (2011) but also applying the conditional error function approach is possible

as implemented by Friede et al. (2012). The adjustment for multiplicity arising from the

two considered populations can be handled using commonly methods such as Bonferroni

correction or the closure principle.

Especially, there are various ways to de�ne the rule for selecting the target population.

Besides Bayesian decision tools, as described in Brannath et al. (2009), several simple

selection rules were proposed based on the di�erence between e�ect sizes or comparing

e�ect sizes to a pre-speci�ed threshold value. In this thesis, two di�erent classes are

considered, which are both based on the estimated treatment e�ects in G0 and G+
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calculated with data observed in the �rst stage. The �rst selection rule is based on the

di�erence between standardized e�ect estimates and is a variant of the ε-selection rule

proposed by Kelly et al. (2005) and Friede and Stallard (2008) in the context of treatment

selection. If the estimated e�ect in the subgroup is larger than the e�ect in the total

population by a pre-speci�ed amount, only the subgroup is selected; otherwise, patients

from the total population are enrolled in the second stage of the trial. The second

selection rule, that is considered in this thesis, is based on absolute e�ect estimates and

was originally proposed by Jenkins et al. (2011) for time-to-event endpoints. Using this

selection rule, the estimated e�ect sizes in both populations are compared to pre-speci�ed

threshold values. Using this selection rule, either a single population is selected, both

populations are selected, or the trial is stopped early for futility.

It should be noted that most adaptive enrichment designs are based on the assumption

of an increased treatment bene�t in an already pre-de�ned subgroup. This is usually the

case if the biomarker de�ning the subgroup has already been validated in prior trials.

If there is a high uncertainty regarding the actual tailoring of the subgroup, designs

which allow to de�ne the subgroup based on data from the current trial might be more

advisable. Two examples are the design by Renfro et al. (2014), where a biomarker cuto�

is determined at interim, and the design by Chen et al. (2016), where part of the trial

data is used to potentially modify design elements such as the investigated subgroup. In

this thesis, however, the situation of a pre-de�ned subgroup which will not be subject to

any data-driven alterations is considered.



Chapter 3

Methods

3.1 Design and Notation

In this thesis, a parallel-group clinical trial with an adaptive two-stage enrichment design

is considered, where a higher treatment bene�t is expected in a prespeci�ed subpopula-

tion. The total population is denoted by G0 and the subgroup with the higher expected

bene�t by G+ ⊂ G0. The complement is indicated by G−, and the prevalence of G+

is given by p. It is assumed that the prevalence in the total patient population and

the study population is equal, and that the prevalence in the study population is �xed

and not variable. Furthermore, in both populations, equal allocation to both treatment

groups is assumed. The overall sample size per treatment group is denoted by n, the

sample size in stage I is given by nI and in stage II by nII . The number of patients per

group from the subgroup in the �rst stage is given by nI+ = pnI . In the second stage,

the number of patients from the subgroup is

nII+ =

nII if G+ is selected

pnII if G0 is selected.

Throughout this thesis, a normally distributed outcome is considered. Therefore, the

independent random samples for treatment and control group

XT+i ∼ N (µT+, σ+), i = 1, ..., nI+ + nII+

XC+j ∼ N (µC+, σ+), j = 1, ..., nI+ + nII+

are assumed for the biomarker positive subgroup, where µT+ and µC+ are the means in

the treatment and control group in G+, and σ+ is the common known standard deviation.

8
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Similarly, the independent random samples

XT−k ∼ N (µT−, σ−), k = 1, ..., n− nI+ − nII+
XC−l ∼ N (µC−, σ−), l = 1, ..., n− nI+ − nII+

are assumed for the biomarker negative subgroup, where µT− and µC− are the means

in the treatment and control group in G−, and σ− is the common known standard

deviation. The standardized treatment e�ects are de�ned as ∆+ = (µT+ − µC+)/σ+ in

G+ and ∆− = (µT− − µC−)/σ− in G−. Thereby, the treatment e�ect in G0 is given

by ∆0 = p∆+ + (1 − p)∆−. Estimated treatment e�ects from the �rst-stage data in

population G0 and G+ are denoted by ∆̂0 and ∆̂+, respectively, and are calculated by

∆̂+ =
1

σ+nI+

 nI
+∑

i=1

XT+i −
nI
+∑

j=1

XC+j


∆̂0 = p∆̂+ +

1

σ−nI

(1−p)nI∑
k=1

XT−k −
(1−p)nI∑
l=1

XC−l


using the maximum likelihood estimator. In the second stage, estimated treatment e�ects

are denoted by ∆̂II
0 for G0 and ∆̂II

+ for G+, and are calculated analogously:

∆̂II
+ =

1

σ+nII+

nI
++nII

+∑
i=nI

++1

XT+i −
nI
++nII

+∑
j=nI

++1

XC+j


∆̂II

0 = p∆̂II
+ +

1

σ−nII

 n−nI
+−nII

+∑
k=(1−p)nI+1

XT−k −
n−nI

+−nII
+∑

l=(1−p)nI+1

XC−l

 .

However, ∆̂II
0 only exists if G0 is selected as target population.

Furthermore, for the two considered populations, di�erent hypotheses are formulated.

For convenience, it is assumed that higher values for the outcome are related to favourable

results. Hence, the following one-sided hypotheses are considered:

H
(0)
0 : ∆0 ≤ 0 versus H

(0)
1 : ∆0 > 0

for the e�ect in the total population, and

H
(+)
0 : ∆+ ≤ 0 versus H

(+)
1 : ∆+ > 0

for the e�ect in the subgroup. To cover the aim of rejecting at least one of the hypotheses
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H
(0)
0 or H

(+)
0 , the following hypotheses are considered:

H
(0+)
0 : ∆0 ≤ 0 ∩ ∆+ ≤ 0 versus H

(0+)
1 : ∆0 > 0 ∪ ∆+ > 0.

The timing of the interim analysis t is de�ned by the ratio of number of patients in

the �rst stage and the overall sample size, i.e. t = nI/n, yielding possible values for t

between 0 and 1.

3.2 Selection Rules

In the following, two di�erent classes of selection rules are described, that are considered

in this thesis. For a detailed assessment of the statistical properties of the two classes

of rules and their performance in trials with subgroup selection, see, e.g. Krisam and

Kieser (2014).

3.2.1 Selection Rule Based on Estimated E�ect Di�erences

The �rst selection rule is a variant of the ε-selection rule proposed by Kelly et al. (2005)

and Friede and Stallard (2008) in the context of treatment selection. In the originally

proposed approach, the most promising treatments are selected from a pool of several

di�erent treatments, and the prede�ned di�erence is related to the treatment showing

the largest e�ect in the interim analysis.

This selection rule is transferred to the situation of an adaptive enrichment design which

is based on the design described by Wang et al. (2007), where a higher treatment bene�t

is expected in a prespeci�ed subpopulation. In the interim analysis it is decided if the

total population or the subpopulation is considered as the target population de�ning

which patients are recruited in the second stage of the trial and which hypothesis is

tested in the �nal analysis.

The selection rule for selecting the target population considered in this thesis is based

on the di�erence between estimated e�ect sizes from the interim analysis in the total

patient population and the subgroup, i.e. ∆̂+ − ∆̂0. This di�erence is compared to a

prede�ned constant c. If ∆̂+− ∆̂0 ≤ c, patients from G0 are enrolled in the second stage

and H
(0)
0 is tested at the end of the trial. If ∆̂+ − ∆̂0 > c, patients from the subgroup

only are enrolled in the second stage and the null hypothesis H
(+)
0 is tested in the �nal

analysis. A schematic illustration of the application of this selection rule is shown in

Figure 3.1.
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Stage I

Interim Analysis

Stage II

Final Analysis

Enroll patients from G0

Calculate ∆̂+, ∆̂0

Is ∆̂+ − ∆̂0 ≤ c?

Select G0 as tar-

get population

Select G+ as tar-

get population

Enroll patients from G0

Test H
(0)
0

Enroll patients from G+

Test H
(+)
0

yes no

Figure 3.1: Flow chart of an adaptive enrichment design using the selection rule based
on estimated e�ect di�erences

It should be noted that it also would be possible to test both hypotheses in the �nal

analysis. If G0 is selected and H
(0)
0 is tested, data from both stages can be used to

test also H
(+)
0 . If G+ is selected, only data from the �rst stage can be used to test H

(0)
0 .

However, investigations in this thesis are restricted to the case where only the hypothesis

related to the selected population is tested since this hypothesis should be of primary

interest. Nevertheless, although only one hypothesis is tested in the �nal analysis, the

α-level has to be adjusted.

In general, this simple class of selection rules has the disadvantage that the absolute

e�ect sizes within the two target populations are irrelevant. Exactly one hypothesis is

tested in the �nal analysis, thus ignoring whether the observed e�ects in the interim

analysis are both very high (thus justifying to test both hypotheses in the �nal analysis)

or both very small (thus indicating that there is no treatment e�ect in either of the pop-

ulations, justifying an early stop for futility). A selection rule overcoming this drawback

is presented in the following subsection where the absolute e�ect sizes are considered.
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3.2.2 Selection Rule Based on Absolute E�ect Estimates

The second class of selection rules is based on absolute e�ect estimates. Using this

selection rule, two threshold values c0 and c+ have to be speci�ed for the continuation or

termination of the total population and the subgroup, respectively. This approach was

originally proposed by Jenkins et al. (2011) for time-to-event data, where the hazard

ratio estimates were compared to prede�ned target values. In contrast to the selection

rule based on the estimated e�ect di�erences where either H
(0)
0 or H

(+)
0 is tested, the

selection rule proposed by Jenkins et al. (2011) additionally includes the option to stop

for futility as well as the option to test both hypotheses H
(0)
0 and H

(+)
0 at the end of the

trial. The latter is also referred to as the co-primary option.

Stage I

Interim Analysis

Stage II

Final Analysis

Enroll patients from G0

Calculate ∆̂+, ∆̂0

Is ∆̂0 > c0?

Is ∆̂+ > c+? Is ∆̂+ > c+?

Select G0 and G+

as target population
Select G0 as tar-
get population

Select G+ as tar-
get population

Enroll patients
from G0

Enroll patients
from G0

Enroll patients
from G+

Stop for
futility

Test H
(0)
0 and H

(+)
0 Test H

(0)
0 Test H

(+)
0

yes no

yes no yes

no

Figure 3.2: Flow chart of an adaptive enrichment design using the selection rule based
on absolute e�ect estimates
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The overall procedure that is here merely adapted to normally distributed outcomes is

shown in Figure 3.2. Basically, estimated treatment e�ects ∆̂0 and ∆̂+ are calculated

in the interim analysis and are compared to the prede�ned threshold values c0 and

c+, respectively. If only one e�ect exceeds the threshold, the respective population is

selected as target population and the associated hypothesis is tested in the �nal analysis.

If both estimated e�ects are larger than the respective threshold values, i.e. ∆̂0 > c0

and ∆̂+ > c+ and hence, the treatment is promising for both populations, patients from

G0 are enrolled in the second stage and both hypotheses H
(0)
0 and H

(+)
0 are tested in the

�nal analysis. If both e�ect estimates are below the chosen threshold values, i.e. ∆̂0 ≤ c0

and ∆̂+ ≤ c+, no second stage is performed and the study is stopped with prematurely

accepting both null hypotheses. This option has the advantage that it prevents further

patients receiving an ine�ective therapy and moreover, resources are saved.

Furthermore, it should be noted that it would also be possible to base the selection of the

target population in the interim analysis on a di�erent endpoint than the endpoint used in

the �nal analysis. In the originally proposed decision framework by Jenkins et al. (2011)

for time-to-event endpoints, a surrogate endpoint for selecting the target population was

used, and the actual primary endpoint was considered in the �nal analysis. This might

especially be useful for time-to-event endpoints where the observation period is long until

an event occurs. In this thesis, where a normally distributed endpoint is considered, the

endpoint used for subgroup selection is also the endpoint used for hypothesis testing at

the end of the trial.

3.3 Testing Procedures

In the following, the testing procedure is presented for the previously described adaptive

enrichment design for both selection rules. Di�erent methods exist to handle the multi-

stage structure of an adaptive design under control of the type I error rate. In this

work, the inverse normal combination method (Lehmacher and Wassmer, 1999) is used.

Within this approach, single z-test statistics are calculated for each stage separately and

are combined to one statistic in the �nal analysis. It should be noted that the inverse

normal combination method can also be used if z-tests are not appropriate, for example,

if the standard deviation is not known, which is usually the case in clinical trials. In this

case, the fact is utilized that the transformation Φ−1(1−p) of any uniformly distributed

p-value p is standard normal. Here, Φ−1 denotes the inverse of the cumulative standard

normal distribution function. However, for sake of simplicity, in this thesis, known

standard deviations are assumed and the use of a z-test is considered. In this case, the
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single test statistics in the �rst stage are given by

ZI
0 = ∆̂0

√
nI

2
(3.3.1)

for G0 and by

ZI
+ = ∆̂+

√
nI+
2

(3.3.2)

for G+. In the second stage, the test statistics depend on the selected population. The

test statistic for testing H
(0)
0 , which is only available if G0 is selected, is given by

ZII
0 = ∆̂II

0

√
nII

2
. (3.3.3)

The test statistic for G+ is given by

ZII
+ = ∆̂II

+

√
nII+
2
. (3.3.4)

Using the inverse normal combination method, test statistics from both stages are com-

bined. Weights w1 and w2 have to be pre-speci�ed so that the sum of squared weights is

equal to 1 (w2
1 + w2

2 = 1). One reasonable approach is to choose the weights so that the

resulting test statistic is equal to the statistic when no interim analysis were performed.

This is achieved for weights chosen according to the information time, which leads to

the overall test statistic

Z0 =
√
tZI

0 +
√

1− tZII
0 (3.3.5)

for testing H
(0)
0 (only if the total population is selected). The weights w1 and w2 in the

statistic for testing H
(+)
0

Z+ = w1Z
I
+ + w2Z

II
+ , (3.3.6)

depend on the selected population. If G0 is selected, the weights are selected as above

using w1 =
√
t and w2 =

√
1− t. When selecting the subgroup only, the sample size in

the second stage for G+ is increased, which is also represented by the weights given by

w1 =
√

tp
tp+1−t and w2 =

√
1−t

tp+1−t .

Furthermore, an adjustment for multiplicity has to be conducted since two hypotheses

are considered. Even if only one hypothesis is tested in the �nal analysis, the tested

hypothesis was not selected in the planning phase and a multiplicity adjustment is nec-
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essary to control the familywise error rate.

Bonferroni correction

A simple method to adjust for multiplicity is the Bonferroni correction, where each

hypothesis is tested at level α/2 to assure that the familywise error rate does not exceed

α. If a one-sided signi�cance level of α/2 is used, H
(+)
0 is rejected if Z+ > z1−α/4 for the

case G+ is selected, where z1−α/4 gives the (1− α/4)-quantile of the standard normal

distribution. In case G0 is selected, H
(0)
0 is rejected if Z0 > z1−α/4. If both populations

are selected as target population, which is possible using the selection rule based on

absolute e�ect estimates, both hypotheses are independently tested at level α/4.

However, this easily applicable adjustment method has the disadvantage of being very

conservative, especially for positively correlated test statistics.

Closure Principle

A less conservative approach is to make use of the closure principle (Marcus et al., 1976),

which was also applied in the design proposed by Jenkins et al. (2011). Following this

method, the single hypothesis (H
(+)
0 orH

(0)
0 ) can be rejected if the intersection hypothesis

H
(0+)
0 and the respective single hypothesis is rejected at level α (or α/2 for a one-sided

signi�cance level). The intersection hypothesis itself can be tested applying the Simes'

procedure (Simes, 1986), which controls the familywise error rate for positively correlated

bivariate normally distributed test statistics (Sarkar and Chang, 1997).

If only one hypothesis is tested in the �nal analysis, which is always the case using the

selection rule based on estimated e�ect di�erences as described above, Simes' procedure

is applied only on the data of the �rst stage. Thereafter, for testing H
(0+)
0 , the test

statistic resulting from the Simes' procedure in the �rst stage is combined with the test

statistic of the selected population from the second stage.

For testing H
(0+)
0 , Simes' procedure controlling the familiy wise error rate α/2 for one-

sided hypotheses is as follows: P-values related to the test of H
(0)
0 and H

(+)
0 are sorted

according to size, and H
(0+)
0 can be rejected if the smaller p-value is less than α/4 or the

larger p-value is less than α/2. Since a test statistic is needed that is combined with the

test statistic from the second stage using the inverse normal combination test, Simes'

procedure is expressed as

ZI
0+ = Φ−1

(
1−min[ 2− 2Φ(max(ZI

0 , Z
I
+)), 1− Φ(min(ZI

0 , Z
I
+)) ]

)
, (3.3.7)

for stage I, where Φ denotes the standard normal distribution function. The combination

of stage I and II applied to test the intersection hypothesis using the inverse normal
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method is then given by

Z
(0)
0+ =

√
tZI

0+ +
√

1− tZII
0

if G0 is selected and

Z
(+)
0+ =

√
tZI

0+ +
√

1− tZII
+

in case G+ is selected. Finally, H
(0+)
0 is rejected if Z

(0)
0+ > z1−α/2 or Z

(0)
0+ > z1−α/2

depending on whether G0 or G+ is selected as target population.

In case that both populations are selected in the interim analysis, which is an option

using the selection rule based on absolute e�ect estimates, both hypotheses H
(+)
0 and

H
(0)
0 are to be tested. The procedure using the closure principle for this case is described

in the following: The intersection hypothesis can be tested using

Z ′0+ =
√
tZI

0+ +
√

1− tZII
0+,

where ZI
0+ is de�ned in formula (3.3.7) and ZII

0+ is given by

ZII
0+ = Φ−1

(
1−min[ 2− 2Φ(max(ZII

0 , Z
II
+ )), 1− Φ(min(ZII

0 , Z
II
+ )) ]

)
.

Thus, H
(0+)
0 is rejected if Z ′0+ > z1−α/2.

To summarize, when applying the closure principle with the use of Simes' procedure for

testing the intersection hypothesis H
(0+)
0 , the testing procedure is as follows:

Case 1: G0 is selected as target population:

� Reject H
(0)
0 if Z0 > z1−α/2 and Z

(0)
0+ > z1−α/2

Case 2: G+ is selected as target population:

� Reject H
(+)
0 if Z+ > z1−α/2 and Z

(+)
0+ > z1−α/2

Case 3: G0 and G+ are selected as target population:

� Reject H
(0)
0 if Z0 > z1−α/2 and Z

′
0+ > z1−α/2

� Reject H
(+)
0 if Z+ > z1−α/2 and Z

′
0+ > z1−α/2

It should be noted that the third case is only possible using the selection rule based on

absolute e�ect estimates. Moreover, using this selection rule, a further case is possible,

namely the stop for futility, where all null hypotheses are prematurely accepted.



Chapter 4

Design with Fixed Sample Size

In this chapter, the timing of the interim analysis is investigated using an adaptive

enrichment design with �xed overall sample size speci�ed in the planning phase of the

study. This means that the decision in the interim analysis only determines whether

patients enrolled in the second stage originate from the total population or the subgroup,

but the overall sample size is not adjusted. For this design, power characteristics are

investigated for di�erent interim analysis timings. The power considered here is de�ned

as the probability to reject either H
(0)
0 or H

(+)
0 .

In Section 4.1, the power function is presented as a mathematical expression for the

selection rule based on estimated e�ect di�erences. Since this could not be converted

into a closed form, simulation studies were used to investigate power characteristics.

Results of simulation studies are presented in Section 4.2 for the two di�erent classes of

selection rules (based on estimated e�ect di�erences, and respectively, based on absolute

e�ect estimates). The main results of the simulation studies presented in this section are

taken from Benner and Kieser (2018). In Section 4.3, the impact of the interim analysis

on power is investigated for parameters obtained from a real clinical trial examining a

therapy for patients with asthma. The chapter closes with a summary in Section 4.4.

4.1 Analytical Derivation of Power Function

In the following, the power function is derived for the selection rule based on estimated

e�ect di�erences. Due to matters of simplicity, the Bonferroni correction is applied. For

solving integrals in the expression of the power function, Mathematica 11.3 (Wolfram

Reseach, Inc., 2018) was used.

The aim is to specify the power as a function of the e�ect sizes ∆0 and ∆+, t, p and n.

Hence, the sample sizes for di�erent groups and stages are expressed as a function of n,

t and p in the following way: nI = tn and nI+ = tnp for the sample sizes in stage I, and

17
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nII = (1−t)n for the sample size in stage II. Without loss of generality, it is assumed that

σ+ = σ− = 1. Theoretically, the derivative with respect to t of this power function could

deliver the timing with the maximal power. However, the integral cannot be solved using

elementary functions. Some integrals can be expressed with the help of the error function

Erf(x) = 1√
π

∫ x
−x e

−t2 and the imaginary error function Erfi(x) = −iErf(ix), for other

integrals, no results could be found in terms of standard mathematical functions. Hence,

a power maximum cannot be given analytically. Nevertheless, an analytical derivation

of the power function is provided in the following. Results were con�rmed comparing

the last transformed expression calculated using numerical integration with results from

simulation studies.

For calculating the power function, the joint probability density function of ∆̂0 and ∆̂+

is used (see Krisam and Kieser (2014) for derivation), which is given by

(∆̂0, ∆̂+) ∼ N

(
(∆0,∆+),

(
2/(tn) 2/(tn)

2/(tn) 2/(ptn)

))

as well as the distribution of the e�ect in the second stage, that is

∆̂II
0 ∼ N

(
∆0,

2

(1− t)n

)
if G0 is selected, and

∆̂II
+ ∼ N

(
∆+,

2

(1− t)n

)

if G+ is selected. It can easily be seen that the correlation between ∆̂0 and ∆̂+ is

Corr(∆̂0, ∆̂+) =
√
p. The joint density function of ∆̂0 and ∆̂+ is denoted by f∆̂0,∆̂+

,

and the densities for the e�ects in the second stage are denoted by f∆̂II
0
and f∆̂II

+
.

The probability to reject either H
(0)
0 or H

(+)
0 is given by the sum of the two probabilities

Pr(select G0 ∩ reject H
(0)
0 ) + Pr(select G+ ∩ reject H

(+)
0 ).

The �rst probability referring to the rejection of H
(0)
0 at the end of the trial is given by

Pr(reject H
(0)
0 ∩ select G0) (4.1.1)

= Pr(Z0 > z1−α/4 ∩ ∆̂0 ≥ ∆̂+ − c)

=

√
n(1− t)
8
√
π

(
1 + Erf

{
1

2

√
ntp

1− p
(c+ ∆0 −∆+)

})
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·
∞∫

δII0 =−∞

exp
{n

4
(t− 1)

(
∆0 − δII0

)2
}

·

(
1− Erf

{
1

2

√
nt

((
z1−α/4 − (1− t)δII0

√
n

2

) √
2

t
√
n
−∆0

)})
dδII0

For the last integral, no solution could be found with Mathematica. The detailed calcu-

lation of the probability given in (4.1.1) can be found in Appendix A.

The probability for rejecting the hypothesis H
(+)
0 can be derived in a similar way (see

Appendix A for detailed derivation):

Pr(Z+ > z1−α/4 ∩ ∆̂0 < ∆̂+ − c) (4.1.2)

=

∞∫
δ+=−∞

1

8

√
npt

π
· exp

{
−npt

4
(∆+ − δ+)2

}

·
(

1 + Erf

{ √
nt

2
√

1− p
(−∆0 + p(∆+ − δ+) + δ+ − c)

})
·

(
1 + Erf

{
−
√
n(1− t)

2

(
−∆+ +

(
z1−α/4

√
2(tp+ 1− t)

n
− tpδ+

)
1

1− t

)})
dδ+

As already seen for the calculation of the �rst probability, no solution for the last integral

could be found. In addition to the presented approach, other strategies were explored,

namely using the density of ∆̂− and ∆̂+ instead of f∆̂0,∆̂+
or using a di�erent integration

order. In any case, the term could not be transformed into a closed form.

For the selection rule based on absolute e�ect estimates, the power function can be

formulated in a similar way. Here, the overall power is the sum of the probabilities

Pr(Z+ > z1−α/4 ∩ ∆̂0 ≤ c0 ∩ ∆̂+ > c+)

+Pr(Z0 > z1−α/4 ∩ ∆̂0 > c0 ∩ ∆̂+ ≤ c+)

+Pr
(

(Z+ > z1−α/4 ∪ Z0 > z1−α/4) ∩ ∆̂0 > c0 ∩ ∆̂+ > c+

)
.

However, also in this case, no solution for the integral can be found and calculations are

not presented.
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4.2 Simulation Study

4.2.1 Simulation Setup

The power is simulated for di�erent interim analysis timings between 0.05 and 0.95 in in-

crements of 0.025. Furthermore, di�erent scenarios with varying e�ect sizes, prevalences

and selection rules are considered. The standardized e�ect in the subgroup is �xed to

0.5 and the power for various ∆− is determined. Values between 0 and 0.5 for ∆− are

considered in steps of 0.05. The in�uence of the prevalence is investigated for p = 0.2, 0.4

and 0.7, and the one-sided signi�cance level α/2 = 0.025 is used. For both classes of

selection rules, di�erent choices of the threshold values are considered. Applying the

selection rule based on estimated e�ect di�erences, scenarios are investigated for c = 0

and c = 0.2, and for the selection rule based on absolute e�ect estimates, scenarios with

c+ = 0.1, 0.3 are considered while c0 remains constant at 0.1. To adjust for multiplicity,

Bonferroni method as well as the closure principle with Simes' procedure for testing the

intersection hypothesis was applied. Since results are very similar for both adjustment

methods, only output for the latter method is shown. In every scenario, the total sam-

ple size is determined such that a power of 80% is achieved at t = 0.5. Hence, it is

investigated whether the power for t 6= 0.5 is higher or smaller than 80% using the same

sample size. For every scenario, 1, 000, 000 study results are simulated (standard error

for a power of 50% equals 5 · 10−4).

In practice, it is not sensible to do the interim analysis extremely early or extremely

late. When conducting the interim analysis very early, the interim decision is based on

few data resulting in a high probability to select the wrong population. If the interim

analysis is performed towards the end of the trial, the probability to select the correct

population is increased but it is not possible anymore to relevantly a�ect the composition

of the study population. For this reason, the focus is on timings between 0.3 and 0.7

and the power range in this interval is considered to specify the variability in power for

di�erent timings.

In addition to power considerations, the type I error rate is investigated for three di�er-

ent types of null distributions: the global null hypothesis is true (∆0 = 0 and ∆+ = 0),

only H
(0)
0 is true and only H

(+)
0 is true. For each null scenario, a sample size of n = 200

is chosen.

4.2.2 Selection Rule Based on Estimated E�ect Di�erences

In this section, results are presented for the selection rule based on estimated e�ect

di�erences, where G+ is selected if ∆̂+ − ∆̂0 > c, and patients from G0 are enrolled in



CHAPTER 4. DESIGN WITH FIXED SAMPLE SIZE 21

stage II otherwise.

Power

Figure 4.1 shows the power, de�ned as the probability to reject H
(0)
0 or H

(+)
0 , for di�er-

ent interim analysis timings. Shades of color represent the amount of power; dark red

indicates a power higher than 87% and the brightest yellow characterizes a power smaller

than 73%. In Figure 4.2, the individual power curves are depicted for the rejection of

H
(0)
0 and H

(+)
0 as well as the probability to select G0 or G+ in the interim analysis as

a function of the interim analysis timing. In addition, Table 4.1 shows timings yielding

the minimal and maximal power within the interval t ∈ [0.3, 0.7].

In every scenario, the power is 80% for t = 0.5 since the sample size is determined for this

particular timing. For most of the considered simulation scenarios, the general tendency

is a power advantage for early timings. Table 4.1 reveals that the maximal power is in

most scenarios at t = 0.3 when considering timings between 0.3 and 0.7. However, the

power gain is not substantially higher compared to a timing of 0.5 as the power only

increases approximately between 1% and 3% for the considered scenarios. In contrast,

the power can get considerably smaller than 80% for late interim analysis timings in

some scenarios. This is also represented by the range of power (shown in Figure 4.1 and

Table 4.1), which is especially high for scenarios with a small prevalence (p = 0.2) and

c = 0 (see Figure 4.1a). In this case, for ∆− > 0.25, the power is highest for an interim

analysis performed at the beginning of the study and decreases for later timings. This

was to be expected since in case of high e�ects in both populations it is rather irrelevant

in terms of power which one is selected at the beginning of the trial. However, the later

the conduct of an enrichment, the smaller sample size of the subgroup is resulting in a

smaller power. This is also apparent in Figure 4.2a for the scenario with p = 0.2 and

∆− = 0.5. The probability to select the subgroup or the total population is 0.5 and

constant for varying t. Also the probability to reject H
(0)
0 is relatively constant since

this selection has no impact on the sample size of the total population. However, if G+

is selected, the power decreases with increasing t due to the decreasing sample size of

the subgroup. For smaller ∆−, the power maximum is approximately achieved between

t = 0.3 and 0.4. In this case, selection of the subgroup is crucial to achieve a high power

as selection of the total population would decrease the power of the study due to the

small e�ect size. Obviously, a correct interim decision (selection of the subgroup) with

a high probability is not possible at the beginning of the study. Instead, a su�cient

amount of data has to be available for the interim analysis. However, when conducting

the interim analysis much later where the probability for selecting the subgroup is higher,

it is no longer possible to increase the sample size of the subgroup to a substantial extent
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what is in contrast feasible when starting enrichment early. For this reason, the power

decreases clearly for later timings. For t ∈ [0.3, 0.7] the power range is given for the

considered scenarios in the column right to the graphs in Figure 4.1. For the di�erent

scenarios with p = 0.2 and c = 0, this power range lies between 6.8% for ∆− = 0.5 and

12.7% for ∆− = 0.

In contrast, corresponding scenarios with p = 0.4 (Figure 4.1c) and p = 0.7 (Figure

4.1e) show smaller power ranges in the time interval [0.3, 0.7]: For p = 0.4 power ranges

lie between 3.1% and 7.5% and between 1.3% and 2.8% for p = 0.7. Thus, one main

di�erence to scenarios with p = 0.2 is that power only slightly decreases for late interim

analysis timings. The relatively small power for late interim analysis timings in case

p = 0.2 can be explained as follows: If the subgroup is selected relatively late, the

sample size in the second stage is rather small and only 20% of the data from the �rst

stage can be used. In case p = 0.7, a late selection of the subgroup does not lead to

a considerably smaller sample size since 70% of the data from the �rst stage can be

included in the analysis. This characteristic is also highlighted in Figure 4.2, where

the deviation between the probability to reject H
(+)
0 and the probability to select G+ is

higher, the smaller the prevalence when considering late interim analysis timings.

In case c = 0.2 (Figure 4.1b, d and f), power ranges are smaller than for the corresponding

scenarios with c = 0. In general, use of a higher c leads to a smaller probability to

select G+, which can be seen in Figure 4.2. Hence, the power related to H
(0)
0 has

a greater contribution to the overall power which is more stable for di�erent interim

analysis timings. The smaller power range for higher c applies both for small and high

prevalences. For example, for p = 0.7, power is relatively constant for di�erent interim

analysis timings as the maximum power range is only 1.4% in the considered scenarios.

For p = 0.2, the power range lies between 1.2% and 5.2%. For rather high ∆−, the

power is highest for an interim analysis at the beginning of the study and decreases with

increasing t as displayed in the case of c = 0. In contrast, the power maximum is shifted

to later interim analysis timings for small ∆−. For example, in case ∆− = 0.1, the power

is maximal for t ≈ 0.575 using c = 0.2, and in case using c = 0 the power is maximal for

t ≈ 0.35 (see Table 4.1). One reason for the later power maximum in comparison to the

corresponding scenario with c = 0 is the higher sample size in this situation (n = 232

for c = 0.2 compared to n = 157 for c = 0.2). As a consequence, a later selection of

the subgroup still leads to a su�ciently large sample size to reject H
(+)
0 with a high

probability.
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(a) p = 0.2, c = 0 (b) p = 0.2, c = 0.2

(c) p = 0.4, c = 0 (d) p = 0.4, c = 0.2

(e) p = 0.7, c = 0 (f) p = 0.7, c = 0.2

Figure 4.1: Probability to rejectH
(0)
0 orH

(+)
0 using the selection rule based on estimated

e�ect di�erences; ∆+ = 0.5; total sample size determined to assure a power of 80% at
t = 0.5.
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(a) c = 0

(b) c = 0.2

Figure 4.2: Probability to select G+ or G0, respectively, and probability to reject
di�erent hypotheses using the selection rule based on estimated e�ect di�erences; ∆+ =
0.5; total sample size determined to assure a power of 80% at t = 0.5.
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Table 4.1: Minimal, maximal and range of power (probability to reject H
(0)
0 or H

(+)
0 )

for t ∈ [0.3, 0.7] applying selection rule based on estimated e�ect di�erences; ∆+ = 0.5;
total sample size (n) determined to assure a power of 80% at t = 0.5.

minimal power maximal power
c p ∆− ∆0 n t power t power power range
0 0.2 0.1 0.18 157 0.7 0.72 0.35 0.815 0.095

0.3 0.34 120 0.7 0.742 0.3 0.833 0.091
0.5 0.50 81 0.7 0.766 0.3 0.834 0.068

0.4 0.1 0.26 115 0.7 0.753 0.3 0.816 0.063
0.3 0.38 98 0.7 0.771 0.3 0.822 0.052
0.5 0.50 74 0.7 0.785 0.3 0.817 0.031

0.7 0.1 0.38 86 0.7 0.788 0.3 0.813 0.025
0.3 0.44 79 0.7 0.793 0.3 0.813 0.02
0.5 0.50 70 0.7 0.799 0.3 0.812 0.013

0.2 0.2 0.1 0.18 232 0.3 0.788 0.575 0.8 0.012
0.3 0.34 129 0.7 0.772 0.3 0.824 0.052
0.5 0.50 77 0.7 0.79 0.3 0.823 0.033

0.4 0.1 0.26 153 0.7 0.794 0.35 0.802 0.008
0.3 0.38 106 0.7 0.789 0.3 0.815 0.026
0.5 0.50 72 0.7 0.8 0.3 0.814 0.014

0.7 0.1 0.38 101 0.7 0.795 0.3 0.808 0.012
0.3 0.44 84 0.7 0.797 0.3 0.81 0.013
0.5 0.50 69 0.675 0.796 0.3 0.809 0.013
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Type I Error Rate

The type I error rate depending on di�erent interim analysis timings is investigated for

three di�erent types of null distributions:

� ∆0 = 0, ∆+ = 0.3 (only H
(0)
0 is true)

� ∆0 = 0.3, ∆+ = 0 (only H
(+)
0 is true)

� ∆0 = 0, ∆+ = 0 (H
(0)
0 and H

(+)
0 are true).

The size of ∆− depends on the prevalence of the subgroup in the speci�c scenario. For

the �rst case with ∆0 = 0 and ∆+ = 0.3, ∆− is equal to −0.075 for p = 0.2, ∆− = −0.2

for p = 0.4 and ∆− = −0.7 for p = 0.7. For the second null scenario with ∆0 = 0.3 and

∆+ = 0, ∆− = 0.375 for p = 0.2, ∆− = 0.5 for p = 0.4 and ∆− = 1 for p = 0.7. If both

null hypotheses are true, ∆− = 0 for each prevalence. A sample size of n = 200 is used

in each scenario. The global one-sided signi�cance level was set to 0.025. To control the

familywise error rate in the strong sense, the closure principle including Simes' correction

to test the intersection hypothesis is applied. Figure 4.3 shows the type I error rate for

the di�erent null scenarios. In agreement with theory, the probability to reject one null

hypothesis is smaller than the chosen α-level of 0.025. Obviously, the probability to

reject the null hypothesis which is not true is larger than 0.025 and is not shown in the

diagrams.

If only H
(0)
0 is true and ∆+ = 0.3, the probability to reject H

(0)
0 is smaller than 0.01

in every considered scenario and decreases with increasing interim analysis timing. Fur-

thermore, the type I error rate is slightly higher for higher c since in this case the total

population is selected with a higher probability. In case H
(+)
0 is true and ∆0 = 0.3, the

type I error rate decreases with increasing t for most of the scenarios. However, for c = 0

and p = 0.2 the probability to reject H
(+)
0 increases for late interim analysis timings. In

case both null hypotheses are true, the probability to reject either H
(+)
0 or H

(0)
0 has kind

of a slightly u-shaped form for most scenarios. Since only one hypothesis is tested at

the end of the trial when using the selection rule based on estimated e�ect di�erences,

this probability is the sum of the probability to reject H
(+)
0 and the probability to reject

H
(0)
0 . While the familywise error rate lies slightly below 0.025 for very early and very late

timings, an interim analysis in between leads to rather conservative decisions. Only for

the scenario with c = 0.2 and p = 0.7, the familywise error rate decreases with increasing

t.
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(a) c = 0

(b) c = 0.2

Figure 4.3: Type I error rate for di�erent interim analysis timings in caseH
(0)
0 , H

(+)
0 and

both hypotheses are true using the selection rule based on estimated e�ect di�erences;
n = 200.
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4.2.3 Selection Rule Based on Absolute E�ect Estimates

In this section, results are presented using the selection rule based on absolute treatment

e�ect estimates. Threshold values are set to c0 = 0.1 and c+ = 0.1, 0.3.

Power

Using the selection rule based on absolute e�ect estimates, selection of a co-primary

analysis where H
(+)
0 and H

(0)
0 is tested in the �nal analysis is also possible. Thus, the

power de�ned as the probability to reject either H
(+)
0 , H

(0)
0 or both is considered. Again,

the sample size in each scenario is calculated to assure a power of 80% for an interim

analysis timing of 0.5. Power characteristics are presented in Table 4.2 and Figure 4.4 for

di�erent scenarios. In addition, probabilities for the di�erent interim decisions and the

respective rejection probabilities are displayed in Figure 4.5 for c+ = 0.1 and in Figure

4.6 for c+ = 0.3.

In contrast to the selection rule based on estimated e�ect di�erences, the power is small

for early interim analysis timings. Considering the power only for timings in the interval

of t ∈ [0.3, 0.7], the power is smallest for t = 0.3 (see Table 4.2) in every scenario. The

small power for early timings using the selection rule based on absolute e�ect estimates

results from the additional possibility to stop for futility. This is more likely at the

beginning of the trial due to the lower precision of the e�ect estimates for small sample

sizes, which is depicted by the orange dotted line in Figure 4.5 and Figure 4.6.

In Figure 4.4a, showing results for p = 0.2 and c+ = 0.1, the power is more or less con-

stant for t > 0.4 and ∆− > 0.25. Furthermore, the power ranges for t ∈ [0.3, 0.7] amount

to about 1% only, implying that the timing of the interim analysis in the considered

interval has no substantial e�ect on the power of the study. However, the timing of the

interim analysis has an impact on the selection probabilities (see Figure 4.5, p = 0.2,

∆− = 0.5): While the probability to select both populations increases with increasing

t, the probability to select only a single population decreases with increasing interim

analysis timing. In contrast, for ∆− = 0.1 (and p = 0.2), the overall power decreases for

later timings. In this case, the probability to select only the subgroup is higher compared

to scenarios with higher ∆−. If only G+ is selected, the power decreases with increasing

interim analysis timings. While for early interim analysis timings, H
(+)
0 is rejected with

a high probability if G+ is selected, the probability to reject H
(+)
0 in case the subgroup

is selected declines for timings after around t = 0.5. This results from a rather small

sample size of G+ if the subgroup is selected as target population towards the end of the

study. This small conditional probability of rejecting H
(+)
0 given that the subgroup is

selected for late timings is especially striking for small prevalence.
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In case of a higher prevalence (see Figure 4.4 c and e), the decline of the power for small

∆− is less pronounced or not present since the probability to select only the subgroup

is smaller for scenarios with a higher prevalence due to the higher e�ect in the overall

population.

In case the threshold for selecting the subgroup is higher, the probability to select the

subgroup is obviously smaller. Figure 4.4 b, d and f as well as Figure 4.6 show the power

characteristics for c+ = 0.3. In comparison to the scenarios with c+ = 0.1, the power

increases also for later timings in many scenarios. For example, the maximal power

di�erence is 10.0% for ∆− = 0 and p = 0.2.

This can be explained by the fact that the power loss for later timings in case only the

subgroup is selected is not present in this case. Firstly, the probability to select G+ only

is much smaller, and secondly, if G+ is selected, the estimated e�ect size from the �rst

stage must be larger than 0.3 and thus, a rejection of H
(+)
0 is more likely as compared

to the selection rule using c+ = 0.1. Moreover, the overall sample size needed to achieve

a power of 80% at t = 0.5 is higher using the stricter selection rule especially for the

scenario p = 0.2 and ∆− = 0.1 where sample size is around 25% higher (see Table 4.2).

Overall, the power is smallest for t = 0.3 in each considered scenario and maximal for

timings between 0.5 and 0.7. However, the power range within the interval [0.3, 0.7] is

not very high in most situations, and the power of 80% at a timing of t = 0.5 is not much

improved for later timings. The highest power gain is achieved for c+ = 0.3, p = 0.2 and

a small ∆−. For example, for ∆− = 0.1 the overall power of 82.7% is reached for t = 0.7,

which cannot be regarded as a considerably high gain though.
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Table 4.2: Minimal, maximal and range of power (probability to reject H
(0)
0 , H

(+)
0

or both) for t ∈ [0.3, 0.7] applying selection rule based on absolute e�ect estimates;
∆+ = 0.5; c0 = 0.1; total sample size (n) determined to assure a power of 80% at
t = 0.5.

minimal power maximal power
c+ p ∆− ∆0 n t power t power power range
0.1 0.2 0.1 0.18 262 0.3 0.772 0.575 0.804 0.032

0.3 0.34 149 0.3 0.795 0.5 0.803 0.008
0.5 0.50 78 0.3 0.793 0.7 0.803 0.010

0.4 0.1 0.26 157 0.3 0.784 0.525 0.801 0.017
0.3 0.38 116 0.3 0.791 0.525 0.803 0.012
0.5 0.50 77 0.3 0.79 0.7 0.804 0.014

0.7 0.1 0.38 100 0.3 0.783 0.7 0.804 0.02
0.3 0.44 88 0.3 0.783 0.675 0.806 0.023
0.5 0.50 75 0.3 0.783 0.675 0.806 0.022

0.3 0.2 0.1 0.18 329 0.3 0.76 0.7 0.827 0.067
0.3 0.34 151 0.3 0.783 0.675 0.804 0.021
0.5 0.50 77 0.3 0.787 0.7 0.803 0.016

0.4 0.1 0.26 182 0.3 0.763 0.7 0.823 0.06
0.3 0.38 118 0.3 0.776 0.675 0.809 0.033
0.5 0.50 76 0.3 0.783 0.675 0.806 0.023

0.7 0.1 0.38 106 0.3 0.762 0.7 0.818 0.056
0.3 0.44 89 0.3 0.768 0.7 0.812 0.044
0.5 0.50 75 0.3 0.778 0.7 0.812 0.033
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(a) p = 0.2, c+ = 0.1 (b) p = 0.2, c+ = 0.3

(c) p = 0.4, c+ = 0.1 (d) p = 0.4, c+ = 0.3

(e) p = 0.7, c+ = 0.1 (f) p = 0.7, c+ = 0.3

Figure 4.4: Probability to reject H
(0)
0 , H

(+)
0 or both using the selection rules based on

absolute e�ect estimates; ∆+ = 0.5; c0 = 0.1; total sample size determined to assure a
power of 80% at t = 0.5.
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Figure 4.5: Probability for di�erent interim decisions, and probability to reject di�erent
hypotheses using the selection rule based on absolute e�ect estimates; ∆+ = 0.5; c0 = 0.1;
c+ = 0.1; total sample size determined to assure a power of 80% at t = 0.5.
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Figure 4.6: Probability for di�erent interim decisions, and probability to reject di�erent
hypotheses using the selection rule based on absolute e�ect estimates; ∆+ = 0.5; c0 = 0.1;
c+ = 0.3; total sample size determined to assure a power of 80% at t = 0.5.
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Type I Error Rate

Figure 4.7 depicts the type I error rate for the three null scenarios considered previously:

only H
(0)
0 is true (∆0 = 0,∆+ = 0.3), only H

(+)
0 is true (∆0 = 0.3,∆+ = 0) and both null

hypotheses are true (∆0 = 0,∆+ = 0). In contrast to the type I error rate investigations

for the selection rule based on estimated e�ect di�erences, where the rejection probabil-

ities are presented separately for each interim decision, in this section the probabilities

to reject H
(+)
0 (in case ∆0 = 0,∆+ = 0.3), H

(0)
0 (in case ∆0 = 0.3,∆+ = 0) and at least

one of the hypotheses (in case ∆0 = 0,∆+ = 0) are considered irrespective of the interim

decision.

In the considered scenarios, the type I error rate never exceeds the alpha level of 0.025.

In most cases, early interim timings are rather conservative, and the probability to reject

a true null hypothesis increases with increasing t. For late interim analysis timings, the

type I error reaches almost 0.025 for most of the scenarios. One exception is the scenario

∆0 = 0.3,∆+ = 0, p = 0.7 and c+ = 0.3 shown in 4.7b, where the type I error rate

decreases with increasing t.
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(a) c+ = 0.1

(b) c+ = 0.3

Figure 4.7: Type I error rate for di�erent interim analysis timings in case H
(0)
0 , H

(+)
0

and both hypotheses are true using the selection rule based on absolute e�ect estimates;
n = 200.
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4.3 Clinical Trial Example

In this section, the impact of the interim analysis timing on the power of the study is

investigated for a clinical trial example from the �eld of pneumonology. The MILLY

trial is a randomized, double-blind, placebo-controlled clinical trial investigating the

e�cacy of lebrikizumab for patients with uncontrolled asthma (Corren et al., 2011). The

primary endpoint was the relative change in prebronchodilator forced expiratory volume

in 1 second from baseline to week 12. It was supposed that the treatment e�ect was

higher for patients with a high serum periostin level as well as for patients with high

type 2 helper T-cell (Th2) status. The MILLY trial was conducted as a single-stage

study. Subgroup analyses were performed for prespeci�ed subgroups de�ned by high

and low periostin levels as well as high and low Th2 levels. For illustrative purposes,

it is assumed that the trial was planned as a two-stage adaptive enrichment design. It

is assumed that the observed treatment e�ects in the MILLY trial are the true e�ects

and the standard deviation equals 19%, which was used for sample size calculation. This

leads to the e�ect sizes ∆per+ = 0.43 and ∆per− = 0.08 for subgroups de�ned by high and

low periostin levels, and ∆Th2+ = 0.34 and ∆Th2− = 0.25 for subgroups de�ned by high

and low Th2 levels. A prevalence of 0.5 is assumed for each biomarker, respectively. As

for the selection rules described in the previous sections, thresholds of c = 0 and c = 0.2

are considered when using the selection rule based on estimated e�ect di�erences, and

c0 = 0.1 together with c+ = 0.1 and c+ = 0.3 when using the selection rule based on

absolute e�ect estimates. The sample size is calculated for each biomarker and the used

threshold values to assure a power of 80% for an interim analysis timing at t = 0.5 in

the speci�c scenario.

Figure 4.8 shows the power and selection probabilities for the selection rule based on

estimated e�ect di�erences. When considering periostin level to de�ne the subgroup

(see Figure 4.8a), e�ect sizes di�er considerably between both populations. For c = 0,

this leads to a power maximum at around t = 0.3. With an overall sample size of 140,

the timing of 0.3 corresponds to a sample size of 42 in the �rst stage and 98 in the second

stage. If the subgroup with high periostin levels is selected, the number of patients to

test the e�ect in the subgroup is 119. In case the total population is selected, all enrolled

patients are included in the �nal analysis testing the e�ect in the total population. For

late interim analyses, the probability is high to select the population with high periostin

values but the probability to reject the null hypothesis related to this subgroup decreases

as the sample size in this subgroup decreases with increasing interim analysis timing.

For example, an interim analysis performed at t = 0.7 leads to a sample size of only 91

in case the subgroup is selected.



CHAPTER 4. DESIGN WITH FIXED SAMPLE SIZE 37

For c = 0.2, the power decreases very slightly with increasing t. In this case, the

probability is higher to select the total population. The e�ect size of the total population

is 0.255 and hence, the di�erence to ∆per+ is with 0.175 slightly smaller than c = 0.2.

Furthermore, the conditional rejection probabilities for both interim decisions seems to

be relatively constant. The higher sample size for c = 0.2 and the higher e�ect estimate

from the �rst stage in G+ are probably the main reasons that power does not decline

considerably if the subgroup is selected. Thus, the impact of the choice of the interim

analysis timing on the overall power of the study is negligible in this scenario.

In the setting using Th2 level as biomarker, the e�ect sizes are similar between both

populations, and therefore, it is advantageous in terms of power to conduct an early

interim analysis.

Figure 4.9 shows the selection and rejection probabilities for the di�erent populations

and hypotheses when using the selection rule based on absolute e�ect estimates. In each

scenario, both populations are selected in the with a relatively high probability, which is

the correct decision in every considered setting. Due to the option to stop for futility, the

overall probability to reject at least one hypothesis is smaller for early interim analysis

timings as already described in Subsection 4.2.3. For c+ = 0.1, the power is more or

less constant after around t = 0.4 for both considered biomarker settings. For c+ = 0.3,

the power also slightly increases for later timings, which suggests that later timings are

more favourable when using the stricter c+. However, the power gain is not substantial.
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(a) Subgroups de�ned by periostin level, ∆per+ = 0.43 and ∆per− = 0.08,
n = 140 for c = 0, n = 190 for c = 0.2

(b) Subgroups de�ned by Th2 level, ∆Th2+ = 0.34 and ∆Th2− = 0.25,
n = 182 for c = 0, n = 192 for c = 0.2

Figure 4.8: Probability to select G+ and G0, and probability to reject di�erent hypothe-
ses using the selection rule based on estimated e�ect di�erences for e�ects observed in
the MILLY trial.
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(a) Subgroups de�ned by periostin level, ∆per+ = 0.43 and ∆per− = 0.08, n = 179
for c+ = 0.1, n = 214 for c+ = 0.3

(b) Subgroups de�ned by Th2 level, ∆Th2+ = 0.34 and ∆Th2− = 0.25, n = 205 for
c+ = 0.1, n = 209 for c+ = 0.3

Figure 4.9: Probability for di�erent interim decisions, and probability to reject di�erent
hypotheses using the selection rule based on absolute e�ect estimates for e�ects observed
in the MILLY trial; c0 = 0.1.
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4.4 Chapter Summary

In this chapter, the impact of di�erent interim analysis timings was investigated using

an adaptive enrichment design with a prespeci�ed �xed overall sample size. Results were

obtained using simulation studies since an analytical derivation of the power function was

not possible. In addition to the investigation of simulation studies for various scenarios,

�ndings were demonstrated by a clinical trial example.

Results of simulation studies show that there are indeed situations in which the timing

of the interim analysis has an impact on power. In particular, di�erent selection rules

lead to di�erent power characteristics for varying interim analysis timings.

Using the selection rule based on di�erences of e�ect estimates, where a test for e�cacy

is conducted either in the subgroup or the total population at the end of the trial, early

timings are in general more favorable in terms of power. Power ranges are especially

high and thus, the timing should be selected with special care if the prevalence and the

threshold value c is small. In this case, the power is small for late timings since if the

subgroup is selected, only a small fraction of the �rst-stage data can be used, which leads

to a small overall sample size of the subgroup. Therefore, late interim analyses should

be avoided in case the prevalence is small and c is not too strict. Furthermore, power is

maximal at extremely early timings and decreases for increasing interim analysis time

if both the e�ect in the subgroup and the total population are high. In this case, it is

irrelevant in terms of power which population is selected in an early interim analysis,

but the sample size in the subgroup is smaller for later interim analysis timings. On

the contrary, the probability to select the correct population is not very high for early

interim analyses. When using a higher threshold value c it is less likely to select only

the subgroup, which is more useful in practice to prevent such a restrictive selection.

Furthermore, the power is more stable over di�erent interim analysis timings for a higher

c. Moreover, power is relatively constant for di�erent interim analysis timings if the

prevalence is high irrespective of the choice of c.

Using the selection rule based on absolute e�ect estimates that additionally includes

the option to stop the trial for futility as well as selection of both populations, the

power is small for early interim analysis timings. Whether power decreases, increases,

or stays relatively constant after t = 0.5 depends on the chosen threshold values, the

prevalence, and the treatment e�ects. A reason for the small power when conducting

early interim analyses is the probability to stop for futility that decreases with increasing

interim timing. Therefore, applying this selection rule at the end of the trial is pointless.

However, simulation results illustrate that in many scenarios, power is approximately

constant or increases only slightly after t ≈ 0.5 which makes an interim analysis around
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t = 0.5 meaningful in these cases.

Besides, the type I error rate was investigated for three di�erent null scenarios. In each

considered scenario, type I error rate or rather familywise error rate was controlled. The

size of the actual type I error rate depends on the considered parameters.

In summary, using the selection rule based on estimated e�ect di�erences, in general,

early interim analysis timings lead to a power advantage. In particular, scenarios with

small prevalence and small c showed a considerable small power for later interim analysis

timings. In these settings, late interim analysis timings should be avoided. In contrast,

for large prevalence and large c, the timing of the interim analysis does not have a major

impact on the power of the study. On the contrary, using the selection rule based on

absolute e�ect estimates, early timings should be avoided since the option to stop for

futility leads to a small power for interim analyses conducted at the beginning of the

study.

To conclude, the power of a study can di�er considerably for di�erent interim analy-

sis timings in many scenarios. Power characteristics depend on the selection rule, the

prevalence, and e�ect sizes. However, in many situations, there were no large power

gains for timings before or after a timing of 0.5. Nevertheless, no general rules could

be established and no speci�c timing of the interim analysis can be recommended that

uniformly �ts to all scenarios.

Eventually, when choosing the interim analysis timing in the planning phase of a study,

not only the power should be taken into account but also the probability to stop for

futility and other selection probabilities. This is especially true if the highest power

occurs for an interim analysis at the beginning or at the end of a study.



Chapter 5

Design with Sample Size Reassessment

In this chapter, an adaptive enrichment design with sample size reassessment is consid-

ered where not only the population is selected in the interim analysis but also the sample

size of the second stage is recalculated. For this design, di�erent interim analysis timings

are compared regarding the distribution of the recalculated sample size. For this issue,

the de�nition of the timing of the interim analysis has to be modi�ed. If the overall

sample size is not �xed, the de�nition of the interim analysis timing as a ratio of the

number of patients in the �rst stage (nI) and the total sample size (n) as used in the

previous chapter is not appropriate. Instead, the ratio of nI and the sample size required

in a �xed design without interim analysis (nfix) is considered, that is t = nI/nfix, where

the sample size for the �xed design is given by

nfix =
2(z1−α/4 + z1−β)2

∆2
0,A

, (5.0.1)

and ∆0,A is the assumed e�ect in G0 under the alternative hypothesis. Since the pop-

ulation to be tested is not speci�ed in the planning phase, the sample size formula

incorporates the Bonferroni adjustment using z1−α/4.

This chapter has the following structure. In Section 5.1, the general methodology of

sample size reassessment is described. Simulation studies were conducted to investigate

characteristics of di�erent interim analysis timings. Results are presented in Section 5.2

for the two selection rules: based on estimated e�ect di�erences and based on absolute

e�ect estimates. Thereafter, in Section 5.3, the sample size distribution for di�erent

interim analysis timings is investigated for the clinical trial example that was already

described in the previous chapter. At the end of the chapter, results are summarized in

Section 5.4.

42
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5.1 Methods for Sample Size Reassessment

In the previous chapter, the overall sample size was �xed in advance, and only the

composition of the population in the second stage (G0 or G+) was adapted. However,

an adaptive design o�ers also the possibility to recalculate the sample size based on the

e�ects observed in the interim analysis. This option is especially useful if there is a

considerable uncertainty with regard to the treatment e�ects assumed in the planning

stage. The basic idea is to adjust the sample size upwards if the observed e�ect in the

interim analysis is smaller than expected, and downwards if the observed e�ect is higher

than expected. In the setting of adaptive enrichment designs, the sample size for the

selected population is reassessed to assure the sample size is su�cient to reject H
(+)
0 or

H
(0)
0 , depending on which of these two hypotheses is selected, with a certain probability.

For the design incorporating sample size reassessment, test statistics for the single stages

(ZI
0 , Z

I
+, Z

II
0 , ZII

+ ) given in formulas (3.3.1), (3.3.2), (3.3.3), (3.3.4) remain valid. How-

ever, the weights to combine the single test statistics from the �rst and the second stage

using the inverse normal combination method have to be modi�ed. In the �xed sample

size setting, the weights were chosen so that they re�ect the sample sizes in both stages.

However, if sample size recalculation is applied, the ratio of the �rst and second-stage

sample size is not known in the planning phase where weights have to be speci�ed. There-

fore, weights are chosen as
√
t and

√
1− t for the �rst- and second-stage test statistics,

respectively, with t = nI/nfix irrespective of whether G0 or G+ is selected. Thus, in each

formula addressing the combination using the inverse normal method, the rede�ned t is

used, and formula (3.3.6) changes to

Z+ =
√
tZI

+ +
√

1− tZII
+ . (5.1.1)

Even if these weights do not correspond to the actual sample size allocation in both

stages, the loss in power is relatively small (Lehmacher and Wassmer, 1999).

The most commonly used method to recalculate the sample size in the interim analysis is

based on conditional power arguments (Proschan and Hunsberger, 1995). The idea of this

approach is to calculate the sample size in the second stage so that a speci�c probability

to reject a given null hypothesis conditional on the observed test statistic in the �rst

stage is assured for a certain assumed e�ect size. When using the described adaptive

enrichment design, the second-stage sample size nII+ or nII0 is recalculated depending on

the interim decision. The assumed e�ects under the alternative hypotheses used in the

interim analysis for sample size recalculation are denoted by ∆0,Ã for G0 and ∆+,Ã for

the e�ect in G+. There are di�erent approaches for specifying the assumed e�ects. One

possible method is to adhere to the assumed e�ect from the planning phase (∆0,A for
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the e�ect in G0 and ∆+,A for the e�ect in G+). Another approach is to use the e�ect

estimate observed in the interim analysis for sample size recalculation, i.e. ∆0,Ã = ∆̂0

and ∆+,Ã = ∆̂+. A combination of both approaches can be achieved using the Bayesian

posterior mean, that is a weighted sum of the prior density mean and the observed e�ect

size in the interim analysis (Wassmer and Brannath, 2016, page 180). As a special case,

for example, the mean value ∆+,Ã = (∆+,A + ∆̂+)/2 or ∆0,Ã = (∆0,A + ∆̂0)/2 for the

e�ect in G+ and G0, respectively, can be used.

In the situation that G+ is selected at interim, the conditional power for the rejection of

H
(+)
0 is given by

CP = Pr∆+,Ã

(
Z+ ≥ z1−α/4

∣∣ ZI
+

)
= Pr∆+,Ã

(√
tZI

+ +
√

1− tZII
+ ≥ z1−α/4

∣∣ ZI
+

)
= Pr∆+,Ã

(
ZII

+ ≥
z1−α/4√

1− t
−
√

t

1− t
ZI

+

∣∣∣∣ ZI
+

)

= Pr∆+,Ã

((
∆̂II

+ −∆+,Ã

)√nII+
2
≥

z1−α/4√
1− t

−
√

t

1− t
ZI

+ −∆+,Ã

√
nII+
2

∣∣∣∣ ZI
+

)

= 1− Φ

(
z1−α/4√

1− t
−
√

t

1− t
ZI

+ −∆+,Ã

√
nII+
2

)
,

where the Bonferroni correction was incorporated to adjust for multiple testing. From

this equation it follows the required sample size nII+ for the conditional power CP and

the assumed e�ect size ∆+,Ã:

z1−CP =
z1−α/4√

1− t
−
√

t

1− t
ZI

+ −∆+,Ã

√
nII+
2

⇒ nII+ =
2

∆2
+,Ã

(
z1−α/4√

1− t
−
√

t

1− t
ZI

+ − z1−CP

)2

.

The term in brackets can become negative if ZI
+ > z1−α/4/

√
t− z1−CP

√
(1− t)/t. Since

this corresponds to extremely large test statistics, negative values are set to zero. Fur-

thermore, ∆+,Ã can become negative if the observed interim e�ect is included in ∆+,Ã. In

this case, ∆+,Ã is set to 0. Moreover, the recalculated sample size can get impracticably

high if small e�ects are observed in the interim analysis. Therefore, it may be advisable

to restrict the sample size in the second stage to nIImax. In particular, the sample size is

nIImax if the assumed e�ect in the interim analysis is negative. However, this situation

does not occur when using the selection rule based on absolute e�ect estimates. Here,

the study is stopped for futility if negative e�ects are observed, and sample size recalcu-
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lation is not conducted at all. In order to apply the inverse normal combination method,

where data in stage II is necessary, also a minimal second-stage sample size nIImin should

be chosen. With the restrictions described above, the sample size formula is modi�ed to

nII+ = max

nIImin,min

nIImax, 2

(∆+,Ã)2
+

(
z1−α/4√

1− t
−
√

t

1− t
ZI

+ − z1−CP

)2

+


 (5.1.2)

where (x)+ := max(x, 0).

The conditional power in case the total population is selected, can be derived in the

same way, and is given by

CP = 1− Φ

(
z1−α/4√

1− t
−
√

t

1− t
ZI

0 −∆0,Ã

√
nII0
2

)
.

With the same restrictions as described for recalculating the sample size of the subgroup,

this leads to the sample size formula for the second stage in case G0 is selected:

nII0 = max

nIImin,min

nIImax, 2

(∆0,Ã)2
+

(
z1−α/4√

1− t
−
√

t

1− t
ZI

0 − z1−CP

)2

+


 . (5.1.3)

It should be noted that the limits of sample size nIImin and nIImax do not necessarily have

to agree in the calculation of nII+ and nII0 . However, for practical reasons, limits are

assumed to be equal for each interim decision.

In summary, the following approach is considered in this thesis. When using the selec-

tion rule based on estimated e�ect di�erences, the sample size for the second stage is

calculated using formula (5.1.2) if G+ is selected as target population and formula (5.1.3)

if G0 is selected. When using the selection rule based on absolute e�ect estimates, the

same procedure is applied if only one population is selected. If the co-primary analy-

sis is chosen, which means patients from G0 are enrolled in the second stage and both

hypotheses are tested in the �nal analysis, nII0 and nII+ is calculated with the described

formulas and �nally, the maximum sample size of nII0 and nII+ /p is used overall in the

second stage to assure the conditional power for both hypotheses. If the observed e�ects

suggest a futility stop, nII = 0.

Moreover, it should be noted that Bonferroni adjustment is applied when using the design

including sample size recalculation for the sake of simplicity. Sample size calculation

when applying Simes' method for testing the intersection hypothesis within the closed

testing procedure is more challenging since it is not clear in the interim analysis which

hypothesis is tested at which local signi�cance level.
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5.2 Simulation Study

In this section, results of simulation studies are presented for an adaptive enrichment

design with sample size reassessment in the interim analysis using conditional power

arguments as described in the previous section. Here, the impact of the interim analysis

timing on overall sample size distribution is investigated.

5.2.1 Simulation Setup

In the conducted simulation studies, sample sizes are calculated using formulas (5.1.2)

and (5.1.3) with a minimum second-stage sample size of nIImin = 10 (if the trial is not

stopped for futility) and a maximum sample size in the second stage of nIImax = 2nfix−nI .
Hence, the total sample size is never higher than twice the sample size calculated in a

�xed design without interim analysis. Moreover, two di�erent methods are considered

for choosing the assumed e�ect size in the interim analysis that is used for sample size

recalculation. The �rst one is to adhere to the assumed e�ect size from the planning

phase, i.e. ∆+,Ã = ∆+,A and ∆0,Ã = ∆0,A, while the second considered approach is to

use the mean of the e�ect size from the planning phase and the observed e�ect in the

interim analysis, that is ∆+,Ã = (∆+,A+∆̂+)/2 and ∆0,Ã = (∆0,A+∆̂0)/2. Furthermore,

in the simulations, the assumed e�ect size used in the planning phase is equal to the true

e�ect size, i.e. ∆+,A = ∆+ and ∆0,A = ∆0. The Bonferroni method is used to handle

the underlying multiple testing problem.

Characteristics of the sample size distribution are investigated for interim analysis tim-

ings of t = 0.2, 0.35, 0.5, 0.65, 0.8. In order to make the distributions comparable for

di�erent interim analysis timings, the conditional power is adapted in each scenario to

reach an overall power of 80%. The corresponding conditional power is determined using

simulations.

Furthermore, results for di�erent e�ect sizes, prevalences and selection rules are pre-

sented. The e�ect in G+ is equal to ∆+ = 0.5 in each scenario, the e�ect in G− varies

with ∆− = 0, 0.25, 0.5, and di�erent prevalences are investigated using p = 0.2, 0.7. As in

the previous chapter, di�erent parameters for the selection rules are considered. For the

selection rule based on estimated e�ect di�erences, results for c = 0 and c = 0.2 are pre-

sented. When using the selection rule based on absolute e�ect estimates, c0 = 0 in every

scenario and c+ = 0.1, 0.3. For each scenario, 1, 000, 000 study results are simulated.

In the following, results are presented for the selection rule based on estimated e�ect

di�erences and the selection rule based on absolute e�ect estimates. For both selection

rules, �rstly, results using the e�ect size from the planning phase for sample size reassess-

ment and secondly, using the mean of the assumed e�ect from the planning phase and
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the observed e�ect in the interim analysis are shown.

5.2.2 Selection Rule Based on Estimated E�ect Di�erences

In this section, characteristics of the sample size distribution are investigated for the

selection rule based on estimated e�ect di�erences. Distribution of sample size is depicted

by stacked histograms for both interim decisions, where the total sample size is shown

in red color if G+ is selected, and in blue color if G0 is selected. It should be noted that

histograms are used to demonstrate the distribution of the sample size and frequencies

cannot be compared directly for di�erent interim analysis timings since the y-axis scaling

is not consistent for di�erent timings. Additionally, the distribution of the sample size

irrespective of the interim decision is summarized by boxplots showing median, �rst and

third quartile and mean (marked by a dot). Further characteristics are given in the

tables to the right of the �gures. Here, the average sample size ± standard deviation

(ASS ± SD), the probability for selection of G+, the adjusted conditional power to reach

an overall power of 80%, and the probability for n > nfix is given.

5.2.2.1 Using the E�ect Size from the Planning Phase for Sample Size Re-

assessment

In the �rst part of this subsection, characteristics of the sample size distribution are

investigated using the assumed e�ect size from the planning phase to recalculate the

sample size in the interim analysis. Results for c = 0 are presented in Figure 5.1 and

Figure 5.2 for p = 0.2 and p = 0.7, respectively.

If the overall treatment e�ect ∆0 is small, which is the case in the considered settings if

p and ∆− are small, the originally planned sample size nfix is high (see Figure 5.1a with

p = 0.2, ∆− = 0, ∆0 = 0.1, nfix = 1902). In this case, an early interim analysis clearly

leads to the smallest average sample size. The reason is that an early interim analysis

of t = 0.2 results in a relatively high sample size in the �rst stage (nI = 380) due to the

large nfix. The high sample size and the large di�erence between ∆0 and ∆+ lead to a

high probability (99.7%) to select G+. Due to the high e�ect in the subgroup, only a

small sample size is required for the second stage. This is also re�ected by the conditional

power of 0 for t ≥ 0.35 in the described scenario. In this case, the sample size in the

�rst stage is su�cient to detect an e�ect with a probability of at least 80%. Therefore,

only 10 patients per group are included in the second stage, and the power can be higher

than 80%. In this scenario, the power is 85.8% for t = 0.35, 97.7% for t = 0.5, 99.8%

for t = 0.65, and > 99.9% for t = 0.8. It should be noted that a conditional power of

0 for sample size recalculation means that the minimal sample size of nIImin is used and
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that this sample size is su�cient to reach an overall power of at least 80%. However, the

actual conditional power might be larger.

For scenarios with higher ∆−, median and mean values of the sample size are more

similar when comparing di�erent interim analysis timings. For ∆− = 0.25 (Figure 5.1b),

the average sample size is still increasing for increasing t and the standard deviation

decreases. However, the probability for n > nfix is smallest for t = 0.5. A further

advantage of using t ≈ 0.5 as compared to earlier interim analysis timings is the higher

probability to select G+, which is the correct decision in this scenario. For later interim

analysis timings, the sample size in the second stage is the minimum sample size with a

probability near 1, which shows that late interim analyses are meaningless.

If the e�ects in G− and G+ are equal (Figure 5.1c), the average sample size is still slightly

increasing for increasing t but median sample sizes as well as the probability for n > nfix

are very similar for di�erent timings of the interim analysis. In this case, the main

di�erence lies in the distribution of the sample size. While the distribution of the sample

size for early interim analysis timings is rather symmetric around the mean, for later

interim analysis timings, it becomes more likely that the second stage is conducted with

the minimal sample size. This means that if the interim analysis is performed relatively

late, it is not possible to get a small overall sample size due to the large �rst-stage sample

size. Furthermore, in this scenario, it is unlikely that a very large sample size is required

for the second stage of the trial. When doing the interim analysis early, both options

(small and large overall sample size) are possible.

If the prevalence of the subgroup is higher (Figure 5.2), ∆0 is higher (except for ∆− = 0.5)

and thereby, nfix is smaller. For ∆− = 0, p = 0.7 (Figure 5.2a), the average sample size

is more similar across di�erent timings than in the scenario with p = 0.2. Although

the smallest average sample size occurs for t = 0.2, an early interim analysis has some

disadvantages: the probability to select G0, is rather high with 18%, and if G0 is selected

the recalculated sample size is also rather high due to the smaller e�ect size.

For higher e�ects, the smallest average sample size occurs for later interim analysis

timings compared to the respective scenarios with p = 0.2. While for p = 0.2, the smallest

average sample size is observed for a timing of t = 0.2 irrespective of ∆−, the timing

with the smallest average sample size is present for t = 0.2, 0.35, 0.5 for ∆− = 0, 0.25, 0.5

in case p = 0.7. This means, if the prevalence is higher, the smallest average sample size

is reached for later interim analysis timings. This is reasonable since more data from

the �rst stage can be used if the subgroup is selected in case the prevalence is higher.

Thus, a late interim analysis does not lead to a large loss of information as compared to

scenarios with a smaller prevalence.
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t ASS± SD G+ sel. CP n > nfix

0.2 412± 84 0.997 0.8 0.001

0.35 676± 0 > 0.999 0 0

0.5 961± 0 > 0.999 0 0

0.65 1246± 0 > 0.999 0 0

0.8 1532± 0 > 0.999 0 0

(a) p = 0.2,∆− = 0,∆0 = 0.1, c = 0, nfix = 1902

t ASS± SD G+ sel. CP n > nfix

0.2 134± 63 0.678 0.81 0.142

0.35 142± 56 0.728 0.8 0.104

0.5 157± 49 0.767 0.79 0.087

0.65 174± 42 0.797 0.75 0.112

0.8 197± 37 0.822 0.65 0.18

(b) p = 0.2,∆− = 0.25,∆0 = 0.3, c = 0, nfix = 212

t ASS± SD G+ sel. CP n > nfix

0.2 75± 19 0.501 0.81 0.43

0.35 76± 24 0.499 0.8 0.447

0.5 79± 26 0.5 0.79 0.462

0.65 82± 26 0.5 0.75 0.429

0.8 89± 26 0.501 0.69 0.414

(c) p = 0.2,∆− = 0.5,∆0 = 0.5, c = 0, nfix = 77

Figure 5.1: Distribution of sample size using the selection rule based on estimated
e�ect di�erences with c = 0; p = 0.2. Sample size recalculation is based on the e�ect
size from the planning phase.
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t ASS± SD G+ sel. CP n > nfix

0.2 95± 38 0.817 0.81 0.08

0.35 96± 33 0.885 0.8 0.052

0.5 101± 24 0.924 0.72 0.033

0.65 111± 1 0.948 0.01 0

0.8 135± 0 0.965 0 0

(a) p = 0.7,∆− = 0,∆0 = 0.35, c = 0, nfix = 156

t ASS± SD G+ sel. CP n > nfix

0.2 85± 27 0.645 0.81 0.188

0.35 84± 30 0.69 0.8 0.188

0.5 85± 28 0.722 0.77 0.174

0.65 88± 21 0.749 0.63 0.117

0.8 95± 0 0.772 0 0

(b) p = 0.7,∆− = 0.25,∆0 = 0.425, c = 0, nfix = 106

t ASS± SD G+ sel. CP n > nfix

0.2 73± 20 0.5 0.81 0.37

0.35 71± 25 0.5 0.8 0.34

0.5 69± 25 0.501 0.77 0.292

0.65 71± 20 0.501 0.67 0.207

0.8 75± 13 0.499 0.31 0.101

(c) p = 0.7,∆− = 0.5,∆0 = 0.5, c = 0, nfix = 77

Figure 5.2: Distribution of sample size using the selection rule based on estimated
e�ect di�erences with c = 0; p = 0.7. Sample size recalculation is based on the e�ect
size from the planning phase.
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For c = 0.2 (see Figure 5.3 for p = 0.2 and Figure 5.4 for p = 0.7), properties of the

sample size distribution when comparing di�erent interim analysis timings are similar

as compared to the respective scenarios with c = 0. However, when using a higher

c, the probability to select G0 in the interim analysis is higher. While the sample size

distributions for G0 and G+ are very similar when using a higher c compared to scenarios

with a smaller c, the sample size distribution for G0 has a greater contribution to the

overall sample size. This behavior leads to an altered overall sample size distribution

especially for scenarios where distributions are very di�erent for both interim decisions,

namely scenarios with ∆− < 0.5, i.e. ∆− < ∆+. In these cases, the average sample

size is higher for the situation that the total population is selected as compared to the

situation that the subgroup is selected due to the smaller e�ect size ∆−. For early interim

analyses, this leads to a larger overall average sample size in scenarios with ∆− < 0.5

when using a higher c. In addition, the probability Pr(n > nfix) is increased. For late

interim analysis timings, the sample size increase for a higher c is not as pronounced since

the second-stage sample size is in many cases the minimal sample size of 10. Thus, the

smallest average sample size is achieved for later interim analyses when using a higher c.

For example, in the scenario p = 0.7,∆− = 0 (see Figure 5.4a), the average sample size is

121 for t = 0.2 and therefore, considerably larger than 95, which was the value observed

in the respective scenario with c = 0. Simultaneously, the increase of the average sample

size for t = 0.8 from 135 to 140 is much smaller.

For ∆− = 0.5 (see Figure 5.3c and Figure 5.4c), sample size distributions for G0 and G+

are similar, and a higher value of c, which leads to a larger contribution of the sample

size distribution of G0 to the overall sample size, does not lead to considerable di�erences

between the overall sample size distributions for di�erent c. For example, in the scenario

p = 0.7,∆− = 0.5 (see Figure 5.4c), the average sample size for t = 0.2 is 71 using

c = 0.2, and 73 for c = 0.

To summarize, especially for the case that the e�ect in the subgroup is larger than in

the total population, a larger c tends to shift the minimum average sample size to later

timings.
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t ASS± SD G+ sel. CP n > nfix

0.2 527± 428 0.916 0.8 0.035

0.35 676± 0 0.966 0 0

0.5 961± 0 0.985 0 0

0.65 1246± 0 0.993 0 0

0.8 1532± 0 0.997 0 0

(a) p = 0.2,∆− = 0,∆0 = 0.1, c = 0.2, nfix = 1902

t ASS± SD G+ sel. CP n > nfix

0.2 151± 72 0.5 0.81 0.22

0.35 156± 70 0.499 0.8 0.192

0.5 166± 66 0.5 0.79 0.173

0.65 175± 55 0.5 0.72 0.134

0.8 189± 36 0.5 0.4 0.073

(b) p = 0.2,∆− = 0.25,∆0 = 0.3, c = 0.2, nfix = 212

t ASS± SD G+ sel. CP n > nfix

0.2 72± 19 0.39 0.8 0.351

0.35 73± 24 0.357 0.8 0.375

0.5 72± 25 0.331 0.78 0.349

0.65 74± 22 0.308 0.72 0.283

0.8 79± 17 0.289 0.52 0.192

(c) p = 0.2,∆− = 0.5,∆0 = 0.5, c = 0.2, nfix = 77

Figure 5.3: Distribution of sample size using the selection rule based on estimated
e�ect di�erences with c = 0.2; p = 0.2. Sample size recalculation is based on the e�ect
size from the planning phase.
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t ASS± SD G+ sel. CP n > nfix

0.2 121± 52 0.382 0.8 0.252

0.35 125± 56 0.345 0.8 0.253

0.5 124± 51 0.317 0.75 0.203

0.65 129± 40 0.293 0.62 0.142

0.8 140± 21 0.273 0.17 0.056

(a) p = 0.7,∆− = 0,∆0 = 0.35, c = 0.2, nfix = 156

t ASS± SD G+ sel. CP n > nfix

0.2 94± 32 0.267 0.81 0.321

0.35 93± 37 0.205 0.8 0.307

0.5 93± 36 0.163 0.77 0.27

0.65 95± 30 0.131 0.67 0.201

0.8 101± 20 0.107 0.35 0.112

(b) p = 0.7,∆− = 0.25,∆0 = 0.425, c = 0.2, nfix = 106

t ASS± SD G+ sel. CP n > nfix

0.2 71± 21 0.198 0.8 0.346

0.35 71± 26 0.131 0.8 0.344

0.5 70± 26 0.09 0.77 0.296

0.65 71± 21 0.063 0.66 0.207

0.8 76± 13 0.045 0.3 0.106

(c) p = 0.7,∆− = 0.5,∆0 = 0.5, c = 0.2, nfix = 77

Figure 5.4: Distribution of sample size using the selection rule based on estimated
e�ect di�erences with c = 0.2; p = 0.7. Sample size recalculation is based on the e�ect
size from the planning phase.
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5.2.2.2 Using the Mean of the E�ect Size from the Planning Phase and the

Interim E�ect Estimate for Sample Size Reassessment

In this section, results are considered when the mean of the assumed e�ect from the

planning phase and the observed e�ect in the interim analysis is used for sample size

recalculation. Results are presented in Figure 5.5 and Figure 5.6 for c = 0 and in

the Appendix in Figure B.1 and Figure B.2 for c = 0.2, for a prevalence of p = 0.2

and p = 0.7, respectively. Comparing di�erent scenarios regarding the timing with

the smallest average sample size show similar behavior as compared to the strategy

where the recalculation is only based on the treatment e�ect assumed in the planning

stage. For larger prevalence, larger ∆−, or larger c, the average sample size occurs for

later interim analysis timings. However, in comparison to the strategy where only the

assumed e�ect from the planning stage is used for recalculation, the average sample

size and the standard deviation are higher when incorporating the observed e�ect of

the interim analysis to recalculate the sample size. This is the case in particular for

early interim analysis timings, where the recalculated sample size is often the maximum

possible sample size if G0 is selected. For example, for p = 0.2,∆− = 0.25 (see Figure

5.5b), and a timing of 0.2, the average sample size and standard deviation is 164± 117

if the observed e�ect from the interim analysis is incorporated, and 134± 63 if only the

assumed e�ect from the planning phase is used for sample size recalculation. Moreover,

in the same scenario, the probability for n > nfix is increased from 0.142 (when using

only the e�ect from the planning phase) to 0.242 (when incorporating the observed

e�ect). For later interim analyses, the di�erence between sample size distributions of the

two recalculation methods become more similar. A reason for the increased standard

deviation is that the e�ect size used for sample size calculation is a random variable and

not �xed.

Therefore, early interim analysis timings should especially be avoided when incorporating

the observed e�ect from the interim analysis to recalculate the sample size. Apart from

the situation where ∆0 is very small (see Figure 5.5a) and an early interim analysis is

favorable due to the high nfix, the average sample size and the standard deviation are

smallest for later interim analysis timings. Furthermore, the probability Pr(n > nfix) is

also smaller for later interim analysis timings. However, a very late interim analysis is

also not advantageous since it is very likely that the minimal sample size is chosen for

the second stage due to the small required conditional power.

Results for using a higher c (see Figure B.1 and Figure B.2 for c = 0.2 in the Appendix)

show similar characteristics as described previously when increasing c from 0 to 0.2:

Obviously, the probability to select G0 increases and moreover, the average sample size
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is especially in�ated for early timings. This means the smallest average sample size is

shifted to later timings.

To summarize, an interim analysis timing around t = 0.5 is suitable in most situations,

although di�erent prevalences and e�ect sizes in�uence the sample size distributions and

should be taken into account when determining the timing of the interim analysis.
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t ASS± SD G+ sel. CP n > nfix

0.2 417± 113 0.997 0.76 0.001

0.35 676± 0 > 0.999 0 0

0.5 961± 0 > 0.999 0 0

0.65 1246± 0 > 0.999 0 0

0.8 1532± 0 > 0.999 0 0

(a) p = 0.2,∆− = 0,∆0 = 0.1, c = 0, nfix = 1902

t ASS± SD G+ sel. CP n > nfix

0.2 164± 117 0.677 0.89 0.242

0.35 160± 92 0.729 0.83 0.184

0.5 168± 75 0.766 0.78 0.166

0.65 180± 59 0.797 0.68 0.156

0.8 200± 49 0.821 0.52 0.171

(b) p = 0.2,∆− = 0.25,∆0 = 0.3, c = 0, nfix = 212

t ASS± SD G+ sel. CP n > nfix

0.2 89± 47 0.499 0.95 0.504

0.35 85± 41 0.5 0.9 0.458

0.5 83± 37 0.5 0.85 0.426

0.65 85± 32 0.501 0.79 0.396

0.8 90± 29 0.501 0.72 0.393

(c) p = 0.2,∆− = 0.5,∆0 = 0.5, c = 0, nfix = 77

Figure 5.5: Distribution of sample size using the selection rule based on estimated
e�ect di�erences with c = 0; p = 0.2. Sample size recalculation is based on the mean of
the e�ect size from the planning phase and the interim e�ect estimate.
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t ASS± SD G+ sel. CP n > nfix

0.2 115± 79 0.817 0.82 0.211

0.35 105± 58 0.884 0.75 0.132

0.5 104± 38 0.924 0.6 0.07

0.65 111± 0 0.949 0 0

0.8 135± 0 0.965 0 0

(a) p = 0.7,∆− = 0,∆0 = 0.35, c = 0, nfix = 156

t ASS± SD G+ sel. CP n > nfix

0.2 102± 62 0.647 0.85 0.36

0.35 93± 52 0.689 0.79 0.282

0.5 89± 42 0.722 0.7 0.207

0.65 90± 28 0.749 0.48 0.118

0.8 95± 0 0.772 0 0

(b) p = 0.7,∆− = 0.25,∆0 = 0.425, c = 0, nfix = 106

t ASS± SD G+ sel. CP n > nfix

0.2 85± 46 0.5 0.87 0.458

0.35 78± 41 0.501 0.81 0.382

0.5 73± 35 0.501 0.72 0.293

0.65 72± 26 0.499 0.55 0.192

0.8 76± 15 0.5 0.15 0.08

(c) p = 0.7,∆− = 0.5,∆0 = 0.5, c = 0, nfix = 77

Figure 5.6: Distribution of sample size using the selection rule based on estimated
e�ect di�erences with c = 0; p = 0.7. Sample size recalculation is based on the mean of
the e�ect size from the planning phase and the interim e�ect estimate.
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5.2.3 Selection Rule Based on Absolute E�ect Estimates

In this section, results using the selection rule based on absolute e�ect estimates are

presented. This selection rule additionally includes the option to stop for futility (shown

in yellow color) and the option to continue with both populations (shown in green color).

The tables to the right of the �gures contain the same statistics as in the previous

subsection showing results for the selection rule based on estimated e�ect di�erences,

however, the probability is given for a correct selection instead of the probability to

select G+.

5.2.3.1 Using the E�ect Size from the Planning Phase for Sample Size Re-

assessment

Firstly, results are considered in case the e�ect size from the planning phase is used for

sample size reassessment. Figure 5.7 (p = 0.2) and Figure 5.8 (p = 0.7) depict results

for c+ = 0.1. In the scenario showing distributions for ∆0 = 0.1 and p = 0.2 (Figure

5.7a), the subgroup is selected with a probability > 99%, while with a probability of

50% the total population is selected as well, and the co-primary analysis is conducted.

As observed for the selection rule based on estimated e�ect di�erences, the smallest

average sample size occurs for early interim timings if the di�erence between ∆+ and

∆0 is high. However, the sample size is clearly increased if both populations are selected

at t = 0.2. For later interim analyses (t > 0.35) the sample size in the second stage

is always the minimal sample size since the conditional power is 0. Practically, the

scenarios with late interim analyses are hardly comparable since the power is larger than

80% (86.5%, 97.8%, 99.8%, > 99.9% for t = 0.35, 0.5, 0.65, 0.8).

For higher ∆− (Figure 5.7 b and c), interim analysis timings around t = 0.5 lead to the

smallest average sample size. Moreover, if both populations are selected, the sample size

is greatly increased for early interim analysis timings in settings with a small prevalence.

The reason is that the maximum of the sample size calculated for the total population

and the sample size calculated for the subgroup divided by the prevalence is used, of

which the latter can become relatively large for small prevalences. Consequently, also

Pr(n > nfix) is high, especially if the selection of both populations is likely, as is the

case for ∆− = 0.5. In this situation, the maximum possible sample size is used with a

high probability for early timings, and for later timings, the sample size in the second

stage is always the smallest possible sample size.

In scenarios with a higher prevalence (Figure 5.8), the sample size's standard deviation

is smaller since the sample size distributions are more similar for di�erent decisions. The

timing with the smallest average sample size is still around 0.5 for scenarios with ∆− > 0.
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For ∆− = 0, the smallest average sample size is observed for t = 0.35. Hence, for small

and high prevalence, the smallest average sample size is achieved by later timings for

higher ∆−.

In each scenario, the correct interim decision is to select both populations, while only

in the scenario with p = 0.2 and ∆0 = 0.1, only the subgroup should be selected.

As expected, the probability for making a correct decision increases with increasing t.

However, in the considered scenarios, a relatively high probability is already achieved for

a timing around 0.5 and increases only slightly for higher t.

Overall, early interim analyses lead to a large standard deviation of the sample size

and the probability to require a sample size that is larger than the sample size in the

�xed design is relatively high in most scenarios. Late interim analyses can be deemed

meaningless since the sample size of the �rst stage is already su�cient in many cases and

the conditional power required to achieve an overall power of at least 80% is 0. Hence,

an interim analysis after approximately half of the sample size that was calculated for

a �xed setting seems reasonable in most situations. Only if the e�ect in the overall

population is very small, early interim analyses in relation to the sample size in the �xed

design, which is relatively large in this setting, are advantageous.

Results for a higher threshold c+ are presented in Figure 5.9 for p = 0.2 and Figure

5.10 for p = 0.7. In this case, the probability to stop for futility and to select only

G0 is higher. Due to the higher probability for a futility stop, the conditional power is

generally increased which leads to a higher average sample size compared to scenarios

with a smaller c+. This is especially pronounced for early interim analyses making early

timings even less advisable. However, an exception is the scenario shown in Figure 5.9c,

where the e�ects are equal in both populations and the prevalence is small. In this case,

the average sample size is sometimes smaller compared to the scenario with c+ = 0.1. In

this scenario, both populations are selected with a high probability which often leads to

the maximum possible sample size. Nevertheless, comparisons of the characteristics of

the sample size distributions for di�erent interim timings are very similar to distributions

with a smaller c+.
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t ASS± SD corr. sel. CP n > nfix

0.2 668± 300 0.494 0.59 0

0.35 696± 20 0.5 0 0

0.5 981± 20 0.5 0 0

0.65 1266± 20 0.5 0 0

0.8 1552± 20 0.5 0 0

(a) p = 0.2,∆− = 0,∆0 = 0.1, c+ = 0.1, nfix = 1902

t ASS± SD corr. sel. CP n > nfix

0.2 204± 88 0.692 0.67 0.472

0.35 193± 74 0.791 0.56 0.349

0.5 188± 57 0.852 0.4 0.24

0.65 188± 19 0.895 0.08 0.058

0.8 217± 21 0.926 0 0.926

(b) p = 0.2,∆− = 0.25,∆0 = 0.3, c+ = 0.1, nfix = 212

t ASS± SD corr. sel. CP n > nfix

0.2 111± 52 0.636 0.61 0.629

0.35 102± 46 0.715 0.4 0.579

0.5 87± 27 0.767 0.12 0.767

0.65 92± 16 0.805 0 0.805

0.8 105± 15 0.834 0 0.834

(c) p = 0.2,∆− = 0.5,∆0 = 0.5, c+ = 0.1, nfix = 77

Figure 5.7: Distribution of sample size using the selection rule based on absolute e�ect
estimates with c+ = 0.1; p = 0.2. Sample size recalculation is based on the e�ect size
from the planning phase.
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t ASS± SD corr. sel. CP n > nfix

0.2 108± 34 0.818 0.72 0.065

0.35 104± 30 0.895 0.63 0.067

0.5 105± 21 0.937 0.47 0.04

0.65 115± 1 0.961 0 0

0.8 139± 1 0.975 0 0

(a) p = 0.7,∆− = 0,∆0 = 0.35, c+ = 0.1, nfix = 156

t ASS± SD corr. sel. CP n > nfix

0.2 93± 30 0.808 0.8 0.365

0.35 88± 27 0.89 0.72 0.269

0.5 85± 23 0.934 0.6 0.197

0.65 88± 13 0.96 0.34 0.102

0.8 99± 1 0.975 0 0

(b) p = 0.7,∆− = 0.25,∆0 = 0.425, c+ = 0.1, nfix = 106

t ASS± SD corr. sel. CP n > nfix

0.2 78± 30 0.788 0.76 0.591

0.35 72± 25 0.87 0.66 0.408

0.5 69± 21 0.918 0.53 0.296

0.65 70± 13 0.946 0.28 0.163

0.8 76± 2 0.964 0 0

(c) p = 0.7,∆− = 0.5,∆0 = 0.5, c+ = 0.1, nfix = 77

Figure 5.8: Distribution of sample size using the selection rule based on absolute e�ect
estimates with c+ = 0.1; p = 0.7. Sample size recalculation is based on the e�ect size
from the planning phase.



CHAPTER 5. DESIGN WITH SAMPLE SIZE REASSESSMENT 62

t ASS± SD corr. sel. CP n > nfix

0.2 823± 455 0.413 0.74 0

0.35 695± 21 0.457 0 0

0.5 981± 20 0.478 0 0

0.65 1266± 20 0.489 0 0

0.8 1552± 20 0.494 0 0

(a) p = 0.2,∆− = 0,∆0 = 0.1, c+ = 0.3, nfix = 1902

t ASS± SD corr. sel. CP n > nfix

0.2 223± 98 0.589 0.77 0.2

0.35 198± 72 0.663 0.67 0.064

0.5 191± 55 0.713 0.57 0.019

0.65 192± 31 0.75 0.37 0

0.8 211± 17 0.781 0 0

(b) p = 0.2,∆− = 0.25,∆0 = 0.3, c+ = 0.3, nfix = 212

t ASS± SD corr. sel. CP n > nfix

0.2 108± 52 0.558 0.71 0.6

0.35 105± 48 0.609 0.58 0.597

0.5 99± 41 0.642 0.41 0.666

0.65 87± 19 0.667 0 0.667

0.8 99± 19 0.688 0 0.688

(c) p = 0.2,∆− = 0.5,∆0 = 0.5, c+ = 0.3, nfix = 77

Figure 5.9: Distribution of sample size using the selection rule based on absolute e�ect
estimates with c+ = 0.3; p = 0.2. Sample size recalculation is based on the e�ect size
from the planning phase.
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t ASS± SD corr. sel. CP n > nfix

0.2 126± 48 0.717 0.82 0.304

0.35 113± 37 0.793 0.71 0.151

0.5 110± 27 0.843 0.57 0.092

0.65 115± 3 0.877 0.08 0

0.8 138± 2 0.903 0 0

(a) p = 0.7,∆− = 0,∆0 = 0.35, c+ = 0.3, nfix = 156

t ASS± SD corr. sel. CP n > nfix

0.2 103± 38 0.69 0.87 0.582

0.35 90± 28 0.757 0.77 0.306

0.5 87± 24 0.802 0.68 0.211

0.65 89± 15 0.835 0.47 0.103

0.8 98± 2 0.861 0 0

(b) p = 0.7,∆− = 0.25,∆0 = 0.425, c+ = 0.3, nfix = 106

t ASS± SD corr. sel. CP n > nfix

0.2 83± 31 0.668 0.83 0.708

0.35 72± 22 0.726 0.73 0.448

0.5 69± 18 0.767 0.64 0.328

0.65 70± 12 0.799 0.47 0.195

0.8 75± 2 0.823 0 0

(c) p = 0.7,∆− = 0.5,∆0 = 0.5, c+ = 0.3, nfix = 77

Figure 5.10: Distribution of sample size using the selection rule based on absolute
e�ect estimates with c+ = 0.3; p = 0.7. Sample size recalculation is based on the e�ect
size from the planning phase.
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5.2.3.2 Using the Mean of the E�ect Size from the Planning Phase and the

Interim E�ect Estimate for Sample Size Reassessment

In this section, the mean of the assumed e�ect size from the planning phase and the

interim e�ect estimate is used for sample size reassessment. Results are presented in

Figure 5.11 and Figure 5.12 for c+ = 0.1 and in the Appendix in Figure B.3 and Figure

B.4 for c+ = 0.3, for a prevalence of p = 0.2 and p = 0.7, respectively. As already

observed for the other selection rule, when incorporating the observed interim e�ect for

sample size reassessment, the standard deviation of the sample size is increased in many

scenarios in comparison to a sample size recalculation which is only based on the e�ect

size assumed in the planning stage. Furthermore, the maximum possible sample size

is reached more often. This is especially pronounced for early interim analyses where

the variability of the observed e�ect is higher due to the smaller sample size in the �rst

stage. An exception is the scenario shown in Figure 5.11c. Here, the standard deviation

is similar in comparison to the situation where only the e�ect assumed in the planning

phase is used. In this case, the maximum sample size was also reached quite frequently

when only using the e�ect from the planning phase.

The incorporation of the observed interim e�ect leads to the smallest or largest possible

sample size in many cases. Despite the increased variance for early interim analysis

timings, the timing with the smallest sample size is still around 0.5 for most of the

considered scenarios. Only for the scenario with p = 0.2 and ∆− = 0 (Figure 5.11a), in

which the sample size in the �xed design is very high, the sample size of the �rst stage is

already su�cient for early timings in many cases and the reassessed sample size is mostly

very small. Hence, the sample size increases with increasing interim analysis timing in

this case. When using a higher c+ (see Figure B.3 and Figure B.4 in the Appendix),

characteristics are very similar. However, the probability to select G+ is smaller and

therefore, the probability to stop for futility and the probability to only select G0 is

higher. For early timings, the average sample size is increased when using a larger c+ in

scenarios with ∆+ < 0.5. Here, the maximum sample size is often reached in case only

G0 is selected. Therefore, when using a higher c+, the smallest average sample size tends

to be present for later interim analysis timings.
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t ASS± SD corr. sel. CP n > nfix

0.2 568± 217 0.494 0.55 0

0.35 696± 20 0.499 0 0

0.5 981± 20 0.5 0 0

0.65 1266± 20 0.499 0 0

0.8 1552± 20 0.5 0 0

(a) p = 0.2,∆− = 0,∆0 = 0.1, c+ = 0.1, nfix = 1902

t ASS± SD corr. sel. CP n > nfix

0.2 224± 127 0.693 0.71 0.462

0.35 204± 105 0.789 0.49 0.351

0.5 194± 80 0.854 0.28 0.235

0.65 188± 24 0.896 0.03 0.05

0.8 217± 11 0.925 0 0.925

(b) p = 0.2,∆− = 0.25,∆0 = 0.3, c+ = 0.1, nfix = 212

t ASS± SD corr. sel. CP n > nfix

0.2 98± 49 0.636 0.64 0.576

0.35 94± 41 0.715 0.35 0.457

0.5 87± 29 0.767 0.07 0.768

0.65 92± 16 0.805 0 0.805

0.8 105± 15 0.834 0 0.834

(c) p = 0.2,∆− = 0.5,∆0 = 0.5, c+ = 0.1, nfix = 77

Figure 5.11: Distribution of sample size using the selection rule based on absolute
e�ect estimates with c+ = 0.1; p = 0.2. Sample size recalculation is based on the mean
of the e�ect size from the planning phase and the interim e�ect estimate.
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t ASS± SD corr. sel. CP n > nfix

0.2 127± 75 0.818 0.72 0.295

0.35 113± 55 0.895 0.55 0.19

0.5 107± 31 0.936 0.33 0.089

0.65 115± 1 0.961 0 0

0.8 139± 1 0.975 0 0

(a) p = 0.7,∆− = 0,∆0 = 0.35, c+ = 0.1, nfix = 156

t ASS± SD corr. sel. CP n > nfix

0.2 111± 64 0.808 0.8 0.464

0.35 97± 52 0.89 0.63 0.335

0.5 90± 38 0.934 0.44 0.216

0.65 90± 19 0.96 0.17 0.097

0.8 99± 1 0.976 0 0

(b) p = 0.7,∆− = 0.25,∆0 = 0.425, c+ = 0.1, nfix = 106

t ASS± SD corr. sel. CP n > nfix

0.2 90± 49 0.788 0.8 0.54

0.35 78± 41 0.87 0.59 0.402

0.5 72± 32 0.917 0.39 0.279

0.65 71± 19 0.946 0.14 0.143

0.8 76± 2 0.964 0 0

(c) p = 0.7,∆− = 0.5,∆0 = 0.5, c+ = 0.1, nfix = 77

Figure 5.12: Distribution of sample size using the selection rule based on absolute
e�ect estimates with c+ = 0.1; p = 0.7. Sample size recalculation is based on the mean
of the e�ect size from the planning phase and the interim e�ect estimate.
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5.3 Clinical Trial Example

In this section, the choice of the interim analysis timing is investigated for parameters

observed in the MILLY trial, which was introduced in Section 4.3. In Figure 5.13 and

5.14, sample size distributions are depicted for the selection rule based on estimated

e�ect di�erences with c = 0.2. In Figure 5.13, the subgroup is de�ned by high and

low periostin levels yielding the e�ect sizes ∆per+ = 0.43 and ∆per− = 0.08. With a

prevalence of p = 0.5, the e�ect size in the total patient population results in ∆0 =

0.255. Therefore, using c = 0.2, the correct decision is to select the total population

as target population. When using the e�ect size from the planning phase for sample

size reassessment (see Figure 5.13a), the average sample size is slightly increasing with

increasing interim analysis timing. Regarding the smallest average sample size, an early

interim analysis would be sensible. In contrast, the standard deviation of the sample

size decreases for later timings. Especially for early timings, the sample size can be very

high if G0 is selected, and the probability Pr(n > nfix) is largest.

When recalculating the sample size using the mean of the e�ect size from the planning

phase and the interim e�ect estimate (see Figure 5.13b), the standard deviation for early

interim analyses is clearly increased and also Pr(n > nfix) is higher. In this case, the

sample size reaches often the maximum possible sample size if G0 is selected suggesting

that a later interim analysis might be more advantageous. In addition, the average

sample size is smallest for a timing around t = 0.5.

A similar picture is found for the subgroup de�ned by high and low Th2 level with e�ect

sizes ∆Th2+ = 0.34 and ∆Th2− = 0.25 (see Figure 5.14). However, the total population

is selected with a higher probability, and when using the e�ect size from the planning

phase for sample size reassessment, the average sample size is more similar for di�erent

interim analysis timings. When including the interim e�ect estimate for sample size

recalculation, later timings are more advantageous in terms of a smaller average sample

size, smaller standard deviation, larger probability to select the correct population G0

and smaller probability Pr(n > nfix).

Sample size distributions for the selection rule based on absolute e�ect estimates with

c0 = 0.1 and c+ = 0.3 are presented in Figure 5.15 and Figure 5.16. For subgroups

de�ned by periostin level (∆per+ = 0.43, ∆per− = 0.08), median and mean of the sample

size are smallest for a timing around t = 0.5 irrespective of whether or not the observed

e�ect from the interim analysis is incorporated in sample size recalculation. Moreover,

the standard deviation at t = 0.5 is only approximately half the standard deviation for

a timing at 0.2, and Pr(n > nfix) is considerably reduced, which implies that a timing

around 0.5 is appropriate in this situation. If the e�ects in both subgroups are more simi-



CHAPTER 5. DESIGN WITH SAMPLE SIZE REASSESSMENT 68

lar, as is the case when subgroups are de�ned by Th2 level (∆Th2+ = 0.34, ∆Th2− = 0.25),

an interim analysis conducted at around t = 0.65 yields the smallest average sample size.

t ASS± SD G+ sel. CP n > nfix

0.2 208± 105 0.447 0.80 0.231

0.35 217± 107 0.429 0.80 0.222

0.5 220± 94 0.415 0.75 0.176

0.65 230± 70 0.404 0.59 0.112

0.8 244± 0 0.394 0 0

(a) Using the e�ect size from the planning phase for sample size reassessment

t ASS± SD G+ sel. CP n > nfix

0.2 250± 180 0.447 0.86 0.306

0.35 239± 156 0.429 0.8 0.255

0.5 231± 127 0.415 0.7 0.193

0.65 234± 89 0.404 0.47 0.114

0.8 244± 0 0.394 0 0

(b) Using the mean of the e�ect size from the planning phase and the interim e�ect

estimate for sample size reassessment

Figure 5.13: Distribution of sample size using the selection rule based on estimated
e�ect di�erences with c = 0.2. Subgroups de�ned by periostin level (∆per+ = 0.43,
∆per− = 0.08); nfix = 293.
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t ASS± SD G+ sel. CP n > nfix

0.2 195± 64 0.234 0.8 0.321

0.35 196± 77 0.169 0.8 0.326

0.5 197± 80 0.126 0.79 0.307

0.65 199± 73 0.096 0.73 0.247

0.8 208± 57 0.074 0.53 0.168

(a) Using the e�ect size from the planning phase for sample size reassessment

t ASS± SD G+ sel. CP n > nfix

0.2 235± 136 0.234 0.87 0.443

0.35 220± 123 0.169 0.81 0.384

0.5 210± 109 0.126 0.75 0.322

0.65 204± 89 0.096 0.64 0.242

0.8 210± 65 0.074 0.39 0.154

(b) Using the mean of the e�ect size from the planning phase and the interim e�ect

estimate for sample size reassessment

Figure 5.14: Distribution of sample size using the selection rule based on estimated
e�ect di�erences with c = 0.2. Subgroups de�ned by Th2 level (∆Th2+ = 0.34, ∆Th2− =
0.25); nfix = 219.
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t ASS± SD corr. sel. CP n > nfix

0.2 250± 101 0.638 0.86 0.406

0.35 216± 72 0.709 0.75 0.171

0.5 207± 54 0.760 0.63 0.102

0.65 214± 18 0.798 0.29 0.007

0.8 252± 5 0.828 0 0

(a) Using the e�ect size from the planning phase for sample size reassessment

t ASS± SD corr. sel. CP n > nfix

0.2 282± 167 0.638 0.90 0.414

0.35 234± 121 0.709 0.73 0.245

0.5 216± 82 0.760 0.56 0.151

0.65 215± 23 0.798 0.2 0.029

0.8 252± 5 0.828 0 0

(b) Using the mean of the e�ect size from the planning phase and the interim e�ect

estimate for sample size reassessment

Figure 5.15: Distribution of sample size using the selection rule based on absolute
e�ect estimates with c+ = 0.3. Subgroups de�ned by periostin level (∆per+ = 0.43,
∆per− = 0.08); nfix = 293.
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t ASS± SD corr. sel. CP n > nfix

0.2 267± 111 0.531 0.9 0.781

0.35 216± 70 0.560 0.81 0.535

0.5 199± 57 0.578 0.75 0.379

0.65 194± 46 0.592 0.67 0.250

0.8 202± 31 0.603 0.43 0.115

(a) Using the e�ect size from the planning phase for sample size re- assessment

t ASS± SD corr. sel. CP n > nfix

0.2 277± 141 0.531 0.95 0.651

0.35 222± 105 0.560 0.80 0.455

0.5 204± 86 0.578 0.70 0.337

0.65 196± 67 0.592 0.57 0.203

0.8 204± 41 0.603 0.28 0.101

(b) Using the mean of the e�ect size from the planning phase and the interim e�ect

estimate for sample size reassessment

Figure 5.16: Distribution of sample size using the selection rule based on absolute e�ect
estimates with c+ = 0.3. Subgroups de�ned by Th2 level (∆Th2+ = 0.34, ∆Th2− = 0.25);
nfix = 219.



CHAPTER 5. DESIGN WITH SAMPLE SIZE REASSESSMENT 72

5.4 Chapter Summary

In this chapter, the impact of the interim analysis timing was investigated for an adaptive

enrichment design with sample size recalculation based on conditional power arguments.

Sample size distributions were simulated for di�erent interim analysis timings and char-

acteristics were compared for di�erent prevalences, e�ect sizes and selection rules (based

on the di�erence between e�ect estimates, and based on absolute e�ect estimates). Fur-

thermore, two di�erent methods to recalculate the sample size were considered (choosing

either the assumed e�ect from the planning phase, or the mean of the e�ect from the

planning phase and the observed interim e�ect).

In many situations, an interim analysis at t = 0.5 shows good properties as the average

sample size is small and the standard deviation of the sample size is reduced in compar-

ison to earlier timings. The probability to make a correct interim decision is obviously

higher than for earlier timings. Furthermore, for later interim analysis timings, the re-

quired sample size in the �rst stage is very small, since an overall power of 80% is almost

or already reached with the observations from the �rst stage. Only in case of very small

∆0 (equivalent to small ∆− and small prevalence), early timings are more advantageous.

In this case, nfix is very large and an early interim analysis already includes many ob-

servations, which leads to the selection of the subgroup with a high probability. Since

the e�ect in the subgroup is substantially higher than in the total population for which

nfix was calculated, a much smaller sample size is needed.

The two di�erent classes of selection rules (selection rule based on estimated e�ect dif-

ferences and selection rule based on absolute e�ect estimates) do not lead to substantial

di�erences as observed for the setting with a �xed sample size investigated in the preced-

ing chapter. However, when using the selection rule based on absolute e�ect estimates,

especially early timings lead to a larger average sample size, where a high sample size is

mainly used if the co-primary analysis is selected. Therefore, when using the selection

rule based on absolute e�ect estimates, an interim analysis timing around t = 0.5 is sen-

sible in most of the scenarios. When using the selection rule based on estimated e�ect

di�erences, earlier timings might lead to a smaller average sample size, especially if the

e�ect in G0 is smaller than in G+. However, due to an often higher standard deviation

and higher probability for n > nfix, the bene�t of conducting an early interim analysis

is questionable.

Moreover, two di�erent methods to specify the assumed e�ect were considered which

also led to di�erences between sample size distributions. In comparison to the procedure

using the e�ect size from the planning phase, the method that also incorporates the

observed e�ect from the interim analysis tends to lead to a higher average sample size
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and standard deviation, especially for early interim analysis timings. This means, if the

observed interim e�ect is used for sample size reassessment, particularly early timings

should be avoided due to the higher uncertainty of e�ect estimation for a smaller sample

size.

It should be noted that in the simulation studies, the assumed e�ect in the planning

phase was considered to be equal to the true e�ect. Results might be di�erent if the

assumed e�ect in the planning phase is not the true e�ect and a better estimation can be

achieved when incorporating the observed interim e�ect. Furthermore, the sample size

of the �xed design depends on the assumed e�ect in the planning phase and therefore,

also the timing of the interim analysis. If a di�erent e�ect in the planning phase is

assumed, the calculated sample size of the �xed design and thus also the timing of the

interim analysis would be di�erent. This means that if the assumed e�ect is too high,

nfix is smaller and, thereby, the sample size in the �rst stage is smaller for the same t.

Assuming a too small e�ect will result in a higher nfix and a larger �rst-stage sample

size for the same t.



Chapter 6

Discussion

Adaptive enrichment designs have become more popular in recent years due to an in-

creased interest in targeted therapies. The methodology o�ers a useful tool for selecting

the patient population with the most promising treatment e�ect and testing for e�cacy

in a single trial. However, to pro�t from the advantages of this design, a careful choice

of the interim analysis timing is crucial as this thesis shows.

In this thesis, the impact of the interim analysis timings was investigated for di�erent

settings and for two di�erent classes of selection rules using simulation studies. In the

�rst part, a �xed overall sample size is considered where the impact of di�erent timings

on the power was investigated. Although the initially proposed adaptive enrichment

design assumed a �xed, prespeci�ed sample size of the second stage (see, e.g., Wang

et al., 2007; Brannath et al., 2009; Jenkins et al., 2011), adaptive designs in general

o�er the possibility to reassess the sample size. This might be very useful since, in

general, assumptions in the planning phase are uncertain. For example, speci�cation of

the treatment e�ects in di�erent populations might be vague, and in the planning phase

it is not known for which population the con�rmatory proof of e�cacy will be conducted

at the end of the trial. Therefore, adaptive enrichment designs including a sample size

reassessment for the second stage are considered in the second part of the thesis. In

this case, the overall sample size distribution is compared for di�erent interim analysis

timings.

When the overall sample size is �xed, results showed that the timing of the interim

analysis has indeed an impact on the power of the study. Of course, the degree of

in�uence depends on the speci�c scenario as di�erent selection rules, the e�ect sizes, and

the prevalences lead to di�erent power characteristics.

In case the power maximum occurs at a medium timing and not at an extreme timing, it

is sensible to use the power maximum to de�ne the interim analysis timing. In this case,

the sample size in the �rst stage is not too small and the correct target population can
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be selected with a reasonable certainty, and on the other hand, the remaining number

of patients for the second stage is large enough to have a decisive in�uence on the �nal

test statistic and hence, on the power of the study.

When using the selection rule based on estimated e�ect di�erences, where either the sub-

group or the total population is selected, the power maximum is achieved at extremely

early timings if treatment e�ects are similar for the subgroup and the total population.

If one is solely interested in achieving a high power, a very early conduct of the in-

terim analysis would be advantageous. However, in this case, the choice of the target

population is more or less random which is not the intention when using an adaptive

enrichment design. This characteristic also indicates that the use of the selection rule

based on the di�erence between the e�ect in the subgroup and the total population may

be inappropriate under certain conditions. If the treatment e�ect in the total population

is smaller than the treatment e�ect in the subgroup by a certain amount but the e�ect

is still relevant, it would be desirable to select both populations.

The selection rule based on absolute e�ect estimates that was considered includes two

further options, namely the possibility to test for e�cacy in the subgroup and the total

population in the �nal analysis in case both treatment e�ects are promising, and to stop

for futility in case the interim analysis shows futile e�ect sizes. The latter option leads

to a power loss if the interim analysis is conducted early. This means, early interim

analyses cannot be recommended in general using this selection rule. Nevertheless, the

futility stop is a useful option to prevent further patients from receiving a potentially

ine�cient treatment. Whether later timings show a higher or smaller power depends

on the scenario. However, in many cases, power is relatively constant after half of the

patients are enrolled, which means that a timing of t = 0.5 has in general no considerable

disadvantages in comparison to later timings.

Overall, for a prespeci�ed, �xed sample size, the selection rule, e�ect sizes, and also

the prevalence have an impact on the power characteristics for di�erent interim analysis

timings. However, not only the power should be considered, especially, if the power is

maximal for extremely early or late timings. For example, it should be taken into account

that the probability for a false decision is increased for an early interim analysis timing.

On the other hand, for late timings, it is not possible anymore to in�uence the conduct

of the study to a meaningful extent. Furthermore, if the subgroup is selected, the �rst

stage should not be too large since the number of patients from the complementary group

should be as small as possible due to ethical and �nancial reasons.

If not only the target population is selected in the interim analysis but also the sample

size for the second stage is reassessed based on the observed interim results, di�erent

selection rules and e�ect sizes do not lead to substantial di�erences when comparing the
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sample size distribution for di�erent interim analysis timings. In many scenarios, the

average sample size is smallest for early to medium timings. However, also the standard

deviation of the second-stage sample size is in general high for early timings. For late

timings, it was observed that the sample size in the �rst stage was already su�cient in

many cases and hence, the number of patients in the second stage is the smallest possible

sample size which indicates that a late interim analysis is not sensible.

Nevertheless, the sample size distribution depends on the scenario, i.e. the e�ect sizes,

prevalence and the applied selection rule, and therefore, the interim analysis timing

should be selected individually for each situation.

Furthermore, it makes a di�erence how the assumed e�ect for sample size recalculation

is chosen. In this thesis, two di�erent approaches were considered: using the assumed

e�ect from the planning phase, and using the mean of the assumed e�ect from the

planning phase and the observed interim e�ect. The comparison of both approaches

has shown, particularly for early interim analyses, that the average sample size and

especially the standard deviation of the sample size is increased if the observed e�ect

from the interim analysis is included. The large variability for early interim analyses in

case the observed interim e�ect is incorporated was also shown by Bauer and Koenig

(2006) who investigated the impact of the interim analysis timing for common adaptive

designs without subgroup selection. Furthermore, the high standard deviation relates in

many cases to a high probability that the maximum possible sample size is used, which

implies that the upper limit for sample size should be chosen carefully.

The described �ndings also suggest that it might be advantageous to use the assumed

e�ect from the planning phase for sample size recalculation to prevent extremely large

sample sizes. However, it has to be noted that in the conducted simulation studies the

used e�ect from the planning phase was assumed to be the true e�ect, and results might

be di�erent if this assumption is not true, especially if the assumed e�ect in the planning

phase di�ers considerably from the true e�ect. If there is high uncertainty about the

treatment e�ect and the observed e�ect from the planning phase shall be used for sample

size recalculation in addition to conditioning on the observed test statistic, early interim

analyses should be avoided to obtain more precise treatment e�ect estimates.

Anyhow, there are some further limitations. At �rst, simulations were used to investigate

characteristics for di�erent interim analysis timings, and no analytical formula could be

derived to specify, for example, the power maximum depending on the e�ect size, the

prevalence and the selection rule. Even if the simulated scenarios give a comprehensive

insight to the impact of di�erent interim analysis timings, no general rules could be

established.

Moreover, only normally distributed endpoints were considered, and, for example, time-
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to-event endpoints, which are often considered in oncological trials, were not investigated.

However, it is reasonable to assume that results do not considerably di�er.

For sake of simplicity, some further assumptions were made. For example, it is assumed

that the classi�cation of a patient to the subgroup or the complementary group is correct

with a probability of 100%. In practice, this perfection might not be given and incorrect

assignment might occur which leads to biased e�ect estimates for the di�erent popula-

tions. In addition, the prevalence of the subgroup was assumed to be �x. Furthermore,

known standard deviation was assumed and the z-test was used, which is not practical.

However, results should be similar when using, for example, a t-test in case the standard

deviation is not known.

To conclude, �ndings of this thesis show that regardless of whether the overall sample

size is �xed in advance, or the sample size of the second stage is recalculated, the interim

analysis timing has to be chosen carefully for the speci�c design features and param-

eter assumptions at hand since no general rules could be established and no speci�c

timing of the interim analysis can be recommended that uniformly �ts to all scenarios.

Instead, sensitivity analyses taking the speci�c design features into account should be

conducted in the planning stage of a trial to determine the appropriate timings of an

interim analysis.



Chapter 7

Summary

English

This thesis deals with adaptive enrichment designs, which are especially applied in the

development of targeted therapies. These designs are devised for the situation in which

a higher treatment e�ect is assumed in a speci�c subgroup but e�cacy cannot be ruled

out in the total population. The idea of this two-stage study design is to decide in an

interim analysis based on observed treatment e�ects whether the subgroup or the total

population is selected for enrichment in the second stage of the trial, and for which

population a test for e�cacy is conducted in the �nal analysis.

The aim of this thesis is to investigate the impact of the interim analysis timing on the

power of the study for a normally distributed endpoint. Di�erent e�ect sizes and preva-

lences of the subgroup, as well as two di�erent classes of selection rules were considered.

The �rst selection rule is based on the comparison of the estimated e�ect di�erence be-

tween the subgroup and the total population with a prespeci�ed threshold value, and the

subgroup or the total population is selected, respectively. The second selection rule that

is considered is based on the absolute e�ect estimates from the subgroup and the total

population, each compared to a prespeci�ed threshold value. Possible options of this

selection rule are to select either the subgroup, the total population, both populations,

or no population. The latter option leads to termination of the study (stop for futility)

without rejecting any hypothesis.

In the �rst part, the impact of the interim timing on the power of the study is investigated

for a �xed overall sample size. Analytical derivation of the power was not possible, and,

as a consequence, power was determined using simulation studies. Results showed that

the interim timing in�uences the power of the study to a varying degree for di�erent

scenarios. In particular, the chosen selection rule leads to di�erent power characteristics

as a function of interim analysis timing. For example, the power is rather small in case
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the second selection rule, that is based on absolute e�ect estimates, is used, which can be

explained by the incorporated option to stop for futility. In contrast, for the �rst selection

rule, which is based on the di�erence between the e�ect estimates, the smallest power

was achieved for early timings in many scenarios. Additionally, the power maximum

depends on the e�ect sizes and the prevalence of the subgroup. This shows that there is

no particular interim timing which is optimal with regard to the power in every scenario.

When choosing the interim analysis timing, the assumed e�ect sizes, the prevalence, and

the chosen selection rule should be taken into account.

In the second part, an adaptive enrichment design including sample size recalculation is

considered. Sample size was recalculated using conditional power arguments, where both

the assumed e�ect from the planning phase and the mean of this e�ect and the observed

e�ect in the interim analysis was used. The timing of the interim analysis was de�ned as

the ratio of the sample size in the �rst stage and the sample size that would be required in

a corresponding study design for demonstrating e�cacy in the total population without

interim analysis. In simulation studies, di�erent interim timings were compared based

on the distribution of the overall sample size. In particular, the average sample size and

its standard deviation as well as the probability to achieve a sample size that is larger

than the sample size for the respective design without interim analysis was considered.

Results showed that di�erent selection rules, e�ect sizes and prevalences have a smaller

impact, and an interim analysis after half the patients have been enrolled leads to the

smallest average sample size in many cases.

For both situations (�xed and adapted sample size), the choice of the interim analysis

timing was investigated for a clinical trial example.

In summary, this thesis shows that the choice of the interim analysis timing in adaptive

enrichment designs has, in many cases, a substantial e�ect on the power of the study or

the average sample size. However, the most appropriate timing depends on the e�ect

sizes, the prevalence of the subgroup and the chosen selection rule, and should be selected

carefully in the planning phase for the speci�c scenario at hand.



CHAPTER 7. SUMMARY 80

Deutsch

Diese Arbeit beschäftigt sich mit adaptiven Enrichment-Designs, die insbesondere in

der Entwicklung von zielgerichteten Therapien verwendet werden. Diese sind für die

Situation konzipiert, in der ein höherer Therapiee�ekt in einer bestimmten Subgruppe

vermutet wird, gleichzeitig aber auch eine Wirksamkeit für die Gesamtpopulation nicht

ausgeschlossen werden kann. Die Idee dieses zweistu�gen Studiendesigns besteht darin,

basierend auf den beobachteten E�ekten in einer Interimanalyse zu entscheiden, ob die

Rekrutierung in der zweiten Stufe aus der Subgruppe oder der Gesamtpopulation er-

folgt und für welcher Population in der �nalen Auswertung der Wirksamkeitsnachweis

durchgeführt werden soll.

In dieser Arbeit wurde der Ein�uss des Interimzeitpunktes auf die Power einer Studie für

einen normalverteilten Endpunkt untersucht. Dabei wurden verschiedene E�ektgröÿen

und Prävalenzen der Subgruppe sowie zwei verschiedene Entscheidungsregeln betrachtet.

Bei der ersten Entscheidungsregel wird die Di�erenz zwischen den E�ektschätzern aus

der Subgruppe und der Gesamtpopulation mit einem zuvor spezi�zierten Schwellenwert

verglichen und entsprechend die Subgruppe oder die gesamte Patientenpopulation aus-

gewählt. Die zweite Entscheidungsregel, die betrachtet wurde, vergleicht die E�ekt-

schätzer aus der Subgruppe und der Gesamtpopulation mit jeweils einem Schwellenwert.

Bei dieser Entscheidungsregel können entweder nur die Subgruppe, nur die Gesamtpop-

ulation, beide Populationen, oder auch keine Population ausgewählt werden. Letztere

Option führt zu einem frühzeitigen Abbruch der Studie ohne Ablehnung einer Hypothese.

Im ersten Teil wurde der Ein�uss des Interimzeitpunktes auf die Power der Studie für

eine feste Gesamtfallzahl untersucht. Die analytische Berechnung der Power war nicht

möglich, sodass die Power mit Hilfe von Simulationsstudien bestimmt wurde. Dabei

zeigte sich, dass die Power der Studie je nach Szenario unterschiedlich stark durch den

Interimzeitpunkt beein�usst werden kann. Insbesondere führte die gewählte Entschei-

dungsregel zu verschiedenen Powercharakteristika in Abhängigkeit von der Zeit. Zum

Beispiel, ist die Power bei Verwendung der zweiten Entscheidungsregel, die auf den abso-

luten E�ektschätzern basiert, für frühe Interimanalysen eher gering, was durch die Op-

tion des frühzeitigen Abbruchs der Studie erklärt werden kann. Bei der ersten Entschei-

dungsregel, die auf der Di�erenz zwischen den E�ektschätzern basiert, gab es dagegen

einige Szenarien für die eine frühe Zwischenauswertung optimal bezüglich der Power war.

Zudem wurde das Powermaximum durch die E�ektgröÿen und die Prävalenz der Sub-

gruppe beein�usst. Dies macht deutlich, dass es nicht einen einzigen Interimzeitpunkt

gibt, der in jeder Situation optimal ist. Bei der Wahl des Zwischenauswertungszeit-

punktes sollten stattdessen die angenommenen E�ektgröÿen und die Prävalenz sowie die
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gewählte Entscheidungsregel berücksichtigt werden.

Im zweiten Teil wurde ein adaptives Enrichment-Design mit Fallzahlrekalkulation be-

trachtet. Die Fallzahl wurde dabei mit Hilfe der conditional Power rekalkuliert, sowohl

basierend auf dem E�ekt aus der Planungsphase als auch basierend auf dem Mittel-

wert aus diesem Wert und dem beobachteten E�ekt in der Zwischenauswertung. Der

Zeitpunkt der Interimanalyse wurde hier als Verhältnis der Fallzahl in der ersten Stufe

und der Fallzahl, die man in einem entsprechenden Studiendesign für den Nachweis

eines E�ektes in der Gesamtpopulation ohne Interimanalyse benötigen würde, de�niert.

Verschiedene Interimzeitpunkte wurden anhand der Verteilung der Gesamtfallzahl ver-

glichen, die mit Hilfe von Simulationen bestimmt wurden. Insbesondere wurde die er-

wartete Fallzahl und deren Standardabweichung als auch die Wahrscheinlichkeit eine

Fallzahl zu erhalten, die gröÿer ist als im entsprechenden Design ohne Interimanalyse,

untersucht. Hier zeigten verschiedene Entscheidungsregeln, E�ektgröÿen und Prävalen-

zen einen weniger groÿen Ein�uss, und eine Interimanalyse nach der Hälfte der Patienten,

die man im entsprechenden Design ohne Zwischenauswertung benötigt hätte, weist in

vielen Fällen eine geringe erwartete Fallzahl auf.

In beiden Teilen (feste Fallzahl und Fallzahlrekalkulation) wurde die Wahl des Inter-

imzeitpunktes auch für ein konkretes klinisches Beispiel untersucht.

Zusammengefasst zeigt die Arbeit, dass die Wahl des Interimzeitpunktes in adaptiven

Enrichment-Designs die Power der Studie oder die erwartete Fallzahl in vielen Fällen

wesentlich beein�usst. Der optimale Zeitpunkt hängt dabei von den E�ektgröÿen, der

Prävelenz der Subgruppe und der gewählten Entscheidungsregel ab, und sollte daher in

der Planungsphase in Abhängigkeit der vorliegenden Parameter mit Bedacht gewählt

werden.
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Appendix A

Derivation of Power Function

In the following, detailed derivation of the probability shown in formula (4.1.1) is pre-

sented referring to the rejection of H
(0)
0 :
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The probability for rejecting the hypothesis H
(+)
0 shown in formula (4.1.2) can be derived

in a similar way:
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t ASS± SD G+ sel. CP n > nfix

0.2 548± 573 0.916 0.78 0.038

0.35 676± 0 0.966 0 0

0.5 961± 0 0.986 0 0

0.65 1246± 0 0.994 0 0

0.8 1532± 0 0.997 0 0

(a) p = 0.2,∆− = 0,∆0 = 0.1, c = 0.2, nfix = 1902

t ASS± SD G+ sel. CP n > nfix

0.2 182± 130 0.5 0.9 0.306

0.35 177± 110 0.5 0.85 0.255

0.5 176± 91 0.501 0.79 0.205

0.65 180± 70 0.501 0.66 0.146

0.8 191± 43 0.5 0.27 0.069

(b) p = 0.2,∆− = 0.25,∆0 = 0.3, c = 0.2, nfix = 212

t ASS± SD G+ sel. CP n > nfix

0.2 89± 47 0.391 0.95 0.499

0.35 82± 42 0.357 0.89 0.422

0.5 78± 36 0.331 0.82 0.347

0.65 76± 28 0.309 0.7 0.256

0.8 79± 20 0.289 0.42 0.16

(c) p = 0.2,∆− = 0.5,∆0 = 0.5, c = 0.2, nfix = 77

Figure B.1: Distribution of sample size using the selection rule based on estimated
e�ect di�erences with c = 0.2; p = 0.2. Sample size recalculation is based on the mean
of the e�ect size from the planning phase and the interim e�ect estimate.
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t ASS± SD G+ sel. CP n > nfix

0.2 144± 95 0.382 0.84 0.342

0.35 136± 83 0.345 0.78 0.287

0.5 131± 69 0.317 0.69 0.221

0.65 132± 50 0.294 0.48 0.138

0.8 140± 25 0.273 0.06 0.045

(a) p = 0.7,∆− = 0,∆0 = 0.35, c = 0.2, nfix = 156

t ASS± SD G+ sel. CP n > nfix

0.2 111± 65 0.268 0.85 0.42

0.35 103± 58 0.205 0.79 0.357

0.5 98± 49 0.163 0.7 0.277

0.65 97± 37 0.132 0.54 0.191

0.8 102± 24 0.107 0.19 0.096

(b) p = 0.7,∆− = 0.25,∆0 = 0.425, c = 0.2, nfix = 106

t ASS± SD G+ sel. CP n > nfix

0.2 84± 47 0.198 0.85 0.456

0.35 78± 42 0.131 0.78 0.378

0.5 73± 35 0.09 0.69 0.294

0.65 72± 26 0.063 0.5 0.187

0.8 76± 15 0.045 0.13 0.084

(c) p = 0.7,∆− = 0.5,∆0 = 0.5, c = 0.2, nfix = 77

Figure B.2: Distribution of sample size using the selection rule based on estimated
e�ect di�erences with c = 0.2; p = 0.7. Sample size recalculation is based on the mean
of the e�ect size from the planning phase and the interim e�ect estimate.
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t ASS± SD corr. sel. CP n > nfix

0.2 686± 354 0.412 0.73 0

0.35 695± 21 0.457 0 0

0.5 981± 20 0.478 0 0

0.65 1266± 20 0.488 0 0

0.8 1552± 20 0.493 0 0

(a) p = 0.2,∆− = 0,∆0 = 0.1, c+ = 0.1, nfix = 1902

t ASS± SD corr. sel. CP n > nfix

0.2 235± 130 0.589 0.83 0.518

0.35 208± 101 0.661 0.65 0.403

0.5 195± 71 0.713 0.49 0.297

0.65 192± 35 0.751 0.26 0.155

0.8 211± 17 0.781 0 0.781

(b) p = 0.2,∆− = 0.25,∆0 = 0.3, c+ = 0.1, nfix = 212

t ASS± SD corr. sel. CP n > nfix

0.2 98± 49 0.557 0.75 0.598

0.35 93± 43 0.608 0.51 0.495

0.5 91± 36 0.643 0.3 0.695

0.65 87± 19 0.667 0 0.667

0.8 99± 19 0.686 0 0.686

(c) p = 0.2,∆− = 0.5,∆0 = 0.5, c+ = 0.1, nfix = 77

Figure B.3: Distribution of sample size using the selection rule based on absolute e�ect
estimates with c+ = 0.3; p = 0.2. Sample size recalculation is based on the mean of the
e�ect size from the planning phase and the interim e�ect estimate.
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t ASS± SD corr. sel. CP n > nfix

0.2 150± 90 0.717 0.87 0.404

0.35 126± 68 0.793 0.68 0.243

0.5 144± 44 0.842 0.46 0.132

0.65 115± 4 0.877 0.04 0

0.8 138± 2 0.904 0 0

(a) p = 0.7,∆− = 0,∆0 = 0.35, c+ = 0.1, nfix = 156

t ASS± SD corr. sel. CP n > nfix

0.2 119± 65 0.69 0.9 0.538

0.35 98± 50 0.757 0.72 0.353

0.5 91± 38 0.802 0.56 0.225

0.65 90± 23 0.836 0.31 0.102

0.8 98± 2 0.861 0 0

(b) p = 0.7,∆− = 0.25,∆0 = 0.425, c+ = 0.1, nfix = 106

t ASS± SD corr. sel. CP n > nfix

0.2 91± 48 0.667 0.87 0.572

0.35 76± 37 0.726 0.68 0.414

0.5 70± 27 0.767 0.52 0.29

0.65 70± 17 0.798 0.31 0.154

0.8 75± 2 0.823 0 0

(c) p = 0.7,∆− = 0.5,∆0 = 0.5, c+ = 0.1, nfix = 77

Figure B.4: Distribution of sample size using the selection rule based on absolute e�ect
estimates with c+ = 0.3; p = 0.7. Sample size recalculation is based on the mean of the
e�ect size from the planning phase and the interim e�ect estimate.
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Selected R Program Code

C.1 Code for Design with Fixed Sample Size

l i b r a r y ( MASS )
l i b r a r y ( xlsx )
l i b r a r y ( matrixcalc )
l i b r a r y ( RColorBrewer )
l i b r a r y ( ggplot2 )
l i b r a r y ( tidyr )

##############################################################
# Function to c a l c u l a t e s e l e c t i o n and r e j e c t i o n p r o b a b i l i t i e s
# f o r s e l e c t i o n ru l e based on est imated e f f e c t d i f f e r e n c e s
##############################################################

##############################################################
# Parameters to s p e c i f y :
# p = preva l ence o f subgroup
# n = ov e r a l l sample s i z e per treatment group
# de l ta1 = standard i zed e f f e c t in subgroup
# de l ta2 = standard i zed e f f e c t in complement
# tv = vecto r o f in te r im ana l y s i s t imings
# m = number o f s imulated s t ud i e s
# c = thre sho ld o f s e l e c t i o n ru l e
# adj = method to con t r o l f o r mu l t i p l i c i t y , e i t h e r "ClosedTest ing " or
# "Bonfer ron i "
# alpha = s i g n i f i c a n c e l e v e l
# seed = seed value
##############################################################

##############################################################
# Returned va lue s ( v e c t o r s f o r d i f f e r e n t t )
# prSub = probab i l i t y to s e l e c t subgroup
# powerSub = probab i l i t y to r e j e c t nu l l hypothes i s o f subgroup
# powerTot = p r obab i l i t y to r e j e c t nu l l hypothes i s o f t o t a l populat ion
# powerOveral l = o v e r a l l power
##############################################################

Power_Sel1 <− f unc t i on (p , n , delta1 , delta2 , tv , m , c , adj , alpha , seed ) {
s e t . seed ( seed )
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delta0 <− p*delta1 + (1−p ) *delta2

prSub <− as . numeric ( )
powerSub <− as . numeric ( )
powerTot <− as . numeric ( )
powerOverall <− as . numeric ( )
i <− 0

f o r ( t in tv ) {

i <− i+1

n1 <− t *n # sample s i z e s tage I
n2 <− n − n1 # sample s i z e s tage I I

i f ( i s . positive . definite ( matrix ( c (2 /n1 , 2/n1 , 2/n1 , 2/ (n1*p ) ) , 2 , 2) ,
tol = 1e−8) ) {

# −−−−−−−−−−−−−−−−−−−−−−
# Stage I
# −−−−−−−−−−−−−−−−−−−−−−

Delta_1 <− mvrnorm (n=m , mu=c ( delta0 , delta1 ) , Sigma = matrix ( c (2 /n1 ,
2/n1 , 2/n1 , 2/ (n1*p ) ) , 2 , 2) )

# subgroup
Z1_1 <− Delta_1 [ , 2 ] * s q r t (n1*p/ 2)
p1_1 <− 1 − pnorm(Z1_1)

# t o t a l populat ion
Z0_1 <− Delta_1 [ , 1 ] * s q r t (n1/ 2)
p0_1 <− 1 − pnorm(Z0_1)

# combination o f p−va lue s ( Closed Test ing Procedure )
p01_1 <− apply ( rbind (2 * apply ( rbind (p1_1 , p0_1) , 2 , min ) ,

apply ( rbind (p1_1 , p0_1) , 2 , max) ) , 2 , min )

selSub <− i f e l s e ( Delta_1 [ , 1 ] + c < Delta_1 [ , 2 ] , 1 , 0)

# −−−−−−−−−−−−−−−−−−−−−−
# Stage I I
# −−−−−−−−−−−−−−−−−−−−−−

# i f subgroup i s s e l e c t e d
delta1_2 <− rnorm (n = m , mean = delta1 , sd = sq r t (2 /n2 ) )

Z1_2_sub <− delta1_2 * s q r t (n2/ 2)
U1_sub <− s q r t (p*n1/ (p*n1+n2 ) ) * Z1_1 + sq r t (n2/ (p*n1+n2 ) ) * Z1_2_

sub
p1_sub <− 1 − pnorm(U1_sub )

# combination o f p−va lue s ( Closed Test ing Procedure )
U01_sub <− s q r t (n1/n ) * qnorm(1−p01_1) + sq r t (n2/n ) * Z1_2_sub
p01_sub <− 1 − pnorm( U01_sub )

# i f t o t a l populat ion i s s e l e c t e d
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i f ( i s . positive . definite ( matrix ( c (2 /n2 , 2/n2 , 2/n2 , 2/ (n2*p ) ) , 2 , 2 ) ,
tol=1e−8) ) {

Delta_2 <− mvrnorm (n = m , mu = c ( delta0 , delta1 ) , Sigma = matrix ( c
(2 /n2 , 2/n2 , 2/n2 , 2/ (n2*p ) ) , 2 , 2) )

Z0_2_tot <− Delta_2 [ , 1 ] * s q r t (n2/ 2)
U0_tot <− s q r t (n1/n ) * Z0_1 + sq r t (n2/n ) * Z0_2_tot
p0_tot <− 1 − pnorm(U0_tot )

# combination o f p−va lue s ( Closed Test ing Procedure )
U01_tot <− s q r t (n1/n ) * qnorm(1−p01_1) + sq r t (n2/n ) * Z0_2_tot
p01_tot <− 1 − pnorm( U01_tot )

}
}

p_s i n g l e <− i f e l s e ( selSub == 1 , p1_sub , p0_tot )
p_closed <− i f e l s e ( selSub == 1 , p01_sub , p01_tot )

prSub [ i ] <− sum( selSub )

i f ( adj == "Bonfe r ron i " ) {
powerSub [ i ] <− sum(p_s i n g l e [ selSub == 1 ] < alpha/ 4) /m
powerTot [ i ] <− sum(p_s i n g l e [ selSub == 0 ] < alpha/ 4) /m

}

i f ( adj == "ClosedTest ing " ) {
powerSub [ i ] <− sum(p_closed [ selSub == 1 ] < alpha/2 & p_s i n g l e [ selSub

== 1 ] < alpha/ 2) /m
powerTot [ i ] <− sum(p_closed [ selSub == 0 ] < alpha/2 & p_s i n g l e [ selSub

== 0 ] < alpha/ 2) /m
}

}
powerOverall <− powerSub + powerTot

re turn ( l i s t ( prSub = prSub , powerSub = powerSub , powerTot = powerTot ,
powerOverall = powerOverall , n = n ) )

}

##############################################################
# Function to c a l c u l a t e sample s i z e to a s sure a power o f 80%
# at a s p e c i f i c t iming t
##############################################################

##############################################################
# Parameters to s p e c i f y :
# p = preva l ence o f subgroup
# de l ta1 = standard i zed e f f e c t in subgroup
# de l ta2 = standard i zed e f f e c t in complement
# m = number o f s imulated s t ud i e s
# c = thre sho ld f o r s e l e c t i o n ru l e
# t = inte r im ana l y s i s t iming
# adj = method to con t r o l f o r mu l t i p l i c i t y , e i t h e r "ClosedTest ing " or
# "Bonfer ron i "
# alpha = s i g n i f i c a n c e l e v e l
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# seed = seed value
##############################################################

##############################################################
# Returned value :
# n = sample s i z e per group
##############################################################

calculate_n_Sel1 <− f unc t i on (p , delta1 , delta2 , m , c , t , adj , alpha , seed )
{

n_s t a r t <− 5
powerOverall <− 0

whi l e ( powerOverall < 0 . 8 ) {
n_s t a r t <− n_s t a r t + 50
res <− Power_Sel1 (p , n_sta r t , delta1 , delta2 , t , m , c , adj , alpha ,

seed )
powerOverall <− res$powerOverall

}

n_start2 <− n_s t a r t − 50
powerOverall <− 0

whi l e ( powerOverall < 0 . 8 ) {
n_start2 <− n_start2 + 1
res <− Power_Sel1 (p , n_start2 , delta1 , delta2 , t , m , c , adj , alpha ,

seed )
powerOverall <− res$powerOverall

}
n <− n_start2
re turn (n )

}

##############################################################
# Function to c a l c u l a t e s e l e c t i o n and r e j e c t i o n p r o b a b i l i t i e s
# f o r s e l e c t i o n ru l e based on abso lu t e e f f e c t e s t imate s
##############################################################

##############################################################
# Parameters to s p e c i f y :
# p = preva l ence o f subgroup
# n = ov e r a l l sample s i z e per treatment group
# de l ta1 = standard i zed e f f e c t in subgroup
# de l ta2 = standard i zed e f f e c t in complement
# tv = vecto r o f in te r im ana l y s i s t imings
# m = number o f s imulated s t ud i e s
# c1 , c0 = thre sho ld va lue s f o r s e l e c t i o n ru l e
# adj = method to con t r o l f o r mu l t i p l i c i t y , e i t h e r "ClosedTest ing " or
# "Bonfer ron i "
# alpha = s i g n i f i c a n c e l e v e l
# seed = seed value
##############################################################

##############################################################
# Returned va lue s ( v e c t o r s f o r d i f f e r e n t t ) :
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# prSub , prTot , prCop , prFut = p r obab i l i t y to s e l e c t subgroup ,
# t o t a l populat ion , co−primary ana ly s i s , f u t i l i t y stop
# powerSub = probab i l i t y to r e j e c t nu l l hypothes i s o f subgroup
# powerTot = p r obab i l i t y to r e j e c t nu l l hypothes i s o f t o t a l populat ion
# powerOveral l = o v e r a l l power
# powerBoth_cp = probab i l i t y to r e j e c t both hypotheses
# powerSub_cp = probab i l i t y to r e j e c t the nu l l hypothes i s o f subgroup and
# co−primary ana l y s i s i s s e l e c t e d
# powerTot_cp = probab i l i t y to r e j e c t the nu l l hypothes i s o f t o t a l pop .
# and co−primary ana l y s i s i s s e l e c t e d
# powerOveral l_cp = p robab i l i t y to r e j e c t at l e a s t one hypothes i s and
# co−primary ana l y s i s i s s e l e c t e d
# powerSub_Sub = probab i l i t y to r e j e c t the nu l l hypothes i s o f subgroup
# and subgroup only i s s e l e c t e d
# powerTot_Tot = p r obab i l i t y to r e j e c t the nu l l hypothes i s o f t o t a l pop .
# and t o t a l pop . i s s e l e c t e d
# n = sample s i z e
##############################################################

Power_Sel2 <− f unc t i on (p , n , delta1 , delta2 , tv , m , c1 , c0 , adj , alpha ,
seed ) {

s e t . seed ( seed )
z_alpha <− qnorm(1−alpha/ 2)
delta0 <− p*delta1 + (1−p ) *delta2

prSub <− as . numeric ( )
prTot <− as . numeric ( )
prCop <− as . numeric ( )
prFut <− as . numeric ( )
powerSub <− as . numeric ( )
powerTot <− as . numeric ( )
powerOverall <− as . numeric ( )
powerSub_cp <− as . numeric ( )
powerTot_cp <− as . numeric ( )
powerBoth_cp <− as . numeric ( )
powerOverall_cp <− as . numeric ( )
powerSub_Sub <− as . numeric ( )
powerTot_Tot <− as . numeric ( )

i <− 0

f o r ( t in tv ) {
i <− i + 1

n1 <− t * n # sample s i z e per group in s tage I
n2 <− n − n1 # sample s i z e per group in s tage I I

# −−−−−−−−−−−−−−−−−−−−−−
# Stage I
# −−−−−−−−−−−−−−−−−−−−−−

Delta_1 = mvrnorm (n=m , mu=c ( delta0 , delta1 ) , Sigma = matrix ( c (2 /n1 , 2/
n1 , 2/n1 , 2/ (n1*p ) ) , 2 , 2) )

# subgroup
Z1_1 = Delta_1 [ , 2 ] * s q r t (n1*p/ 2)
p1_1 = 1 − pnorm(Z1_1)
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# to t a l populat ion
Z0_1 = Delta_1 [ , 1 ] * s q r t (n1/ 2)
p0_1 = 1 − pnorm(Z0_1)

# combination o f p−va lue s ( Closed Test ing Procedure )
p01_1 = apply ( cbind (2 * apply ( cbind (p0_1 , p1_1) , 1 , min ) , apply ( cbind (

p0_1 , p1_1) , 1 , max) ) , 1 , min )

# −−−−−−−−−−−−−−−−−−−−−−
# Stage I I
# −−−−−−−−−−−−−−−−−−−−−−

# inte r im de c i s i o n :
selSub <− i f e l s e ( Delta_1 [ , 2 ] > c1 & Delta_1 [ , 1 ] <= c0 , 1 , 0)
selTot <− i f e l s e ( Delta_1 [ , 2 ] <= c1 & Delta_1 [ , 1 ] > c0 , 1 , 0)
selCop <− i f e l s e ( Delta_1 [ , 2 ] > c1 & Delta_1 [ , 1 ] > c0 , 1 , 0)
selFut <− i f e l s e ( Delta_1 [ , 2 ] <= c1 & Delta_1 [ , 1 ] <= c0 , 1 , 0)

# i f subgroup i s s e l e c t e d
delta1_2 <− rnorm (n = m , mean = delta1 , sd = sq r t (2 /n2 ) )

Z1_2 <− delta1_2 * s q r t (n2/ 2)
p1_2 <− 1 − pnorm(Z1_2)

U1 <− s q r t (p*n1/ (p*n1+n2 ) ) *qnorm(1−p1_1) + sq r t (n2/ (n1*p+n2 ) ) *qnorm(1−
p1_2)

U01 <− s q r t (n1/n ) * qnorm(1−p01_1) + sq r t (n2/n ) * qnorm(1−p1_2) #
c l o s ed t e s t i n g

i f ( adj == "ClosedTest ing " ) {
sigSub <− U01 > z_alpha & U1 > z_alpha

}

i f ( adj == "Bonfe r ron i " ) {
sigSub <− 1 − pnorm(U1 ) < alpha/4

}

# i f t o t a l populat ion i s s e l e c t e d
Delta_2 <− mvrnorm (n = m , mu = c ( delta0 , delta1 ) , Sigma = matrix ( c (2 /

n2 , 2/n2 , 2/n2 , 2/ (n2*p ) ) , 2 , 2) )

Z0_2 <− Delta_2 [ , 1 ] * s q r t (n2/ 2)
p0_2 <− 1 − pnorm(Z0_2)

U0 <− s q r t (n1/n ) * Z0_1 + sqr t (n2/n ) * Z0_2
U01 <− s q r t (n1/n ) * qnorm(1−p01_1) + sq r t (n2/n ) * Z0_2

i f ( adj == "ClosedTest ing " ) {
sigTot <− U01 > z_alpha & U0 > z_alpha

}

i f ( adj == "Bonfe r ron i " ) {
sigTot <− 1 − pnorm(U0 ) < alpha/4

}
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# i f co−primary ana l y s i s i s s e l e c t e d
# subgroup
Z1_2 <− Delta_2 [ , 2 ] * s q r t (n2*p/ 2)
p1_2 <− 1 − pnorm(Z1_2)

# combination o f p−va lue s ( Closed Test ing Procedure )
p01_2 <− apply ( cbind (2 * apply ( cbind (p0_2 , p1_2) , 1 , min ) , apply ( cbind

(p0_2 , p1_2) , 1 , max) ) , 1 , min )

U0 <− s q r t (n1/n ) * Z0_1 + sqr t (n2/n ) * Z0_2
U1 <− s q r t (n1/n ) * Z1_1 + sqr t (n2/n ) * Z1_2
U01 <− s q r t (n1/n ) * qnorm(1−p01_1) + sq r t (n2/n ) * qnorm(1−p01_2)

i f ( adj == "ClosedTest ing " ) {
sigTot_cp <− U01 > z_alpha & U0 > z_alpha
sigSub_cp <− U01 > z_alpha & U1 > z_alpha

}

i f ( adj == "Bonfe r ron i " ) {
sigTot_cp <− 1 − pnorm(U0 ) < alpha/4
sigSub_cp <− 1 − pnorm(U1 ) < alpha/4

}

# Se l e c t i o n P r o b a b i l i t i e s
prSub [ i ] <− sum( selSub , na . rm = TRUE ) / m

prTot [ i ] <− sum( selTot , na . rm = TRUE ) / m

prCop [ i ] <− sum( selCop , na . rm = TRUE ) / m

prFut [ i ] <− sum( selFut , na . rm =TRUE ) / m

# Power
# uncond i t i ona l l y
powerSub [ i ] <− sum( sigSub * selSub | sigSub_cp * selCop , na . rm = TRUE )

/ m

powerTot [ i ] <− sum( sigTot * selTot | sigTot_cp * selCop , na . rm=TRUE ) /
m

powerOverall [ i ] <− sum( sigTot * selTot | sigSub * selSub | sigSub_cp *

selCop |
sigTot_cp * selCop , na . rm = TRUE ) / m

# i f co−primary ana l y s i s i s s e l e c t e d
powerBoth_cp [ i ] = sum( selCop * sigSub_cp * sigTot_cp , na . rm = TRUE ) /

m

powerSub_cp [ i ] = sum( selCop * sigSub_cp , na . rm = TRUE ) / m

powerTot_cp [ i ] = sum( selCop * sigTot_cp , na . rm = TRUE ) / m

powerOverall_cp [ i ] = sum( selCop * ( sigTot_cp | sigSub_cp ) , na . rm =
TRUE ) / m

# i f subgroup only i s s e l e c t e d
powerSub_Sub [ i ] = sum( sigSub * selSub , na . rm = TRUE ) / m

# i f t o t a l populat ion i s s e l e c t e d
powerTot_Tot [ i ] = sum( sigTot * selTot , na . rm=TRUE ) / m

}
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re turn ( l i s t ( prSub = prSub , prTot = prTot , prCop = prCop , prFut = prFut ,
powerSub = powerSub , powerTot = powerTot , powerOverall =

powerOverall ,
powerBoth_cp = powerBoth_cp , powerSub_cp = powerSub_cp ,

powerTot_cp = powerTot_cp , powerOverall_cp = powerOverall

_cp ,
powerSub_Sub = powerSub_Sub , powerTot_Tot = powerTot_Tot , n

= n ) )
}

##############################################################
# Function to c a l c u l a t e sample s i z e to a s sure a s p e c i f i c power
# at a s p e c i f i c t iming t
##############################################################

##############################################################
# Parameters to s p e c i f y :
# p = preva l ence o f subgroup
# de l ta1 = standard i zed e f f e c t in subgroup
# de l ta2 = standard i zed e f f e c t in complement
# m = number o f s imulated s t ud i e s
# c1 , c0 = thre sho ld va lue s f o r s e l e c t i o n ru l e
# t = inte r im ana l y s i s t iming
# adj = method to con t r o l f o r mu l t i p l i c i t y , e i t h e r "ClosedTest ing " or
# "Bonfer ron i "
# alpha = s i g n i f i c a n c e l e v e l
# seed = seed value
##############################################################

##############################################################
# Returned value :
# n = sample s i z e per group
##############################################################

calculate_n_Sel2 <− f unc t i on (p , delta1 , delta2 , m , c1 , c0 , t , adj , alpha ,
seed ) {

s e t . seed ( seed )

n_s t a r t <− 0
powerOverall <− 0

whi l e ( powerOverall < 0 . 8 ) {
n_s t a r t <− n_s t a r t + 50
res <− Power_Sel2 (p , n_sta r t , delta1 , delta2 , t , m , c1 , c0 , adj , alpha

, seed )
powerOverall <− res$powerOverall

}

n_start2 <− n_s t a r t − 50
powerOverall <− 0

whi l e ( powerOverall < 0 . 8 ) {
n_start2 <− n_start2 + 1
res <− Power_Sel2 (p , n_start2 , delta1 , delta2 , t , m , c1 , c0 , adj ,

alpha , seed )
powerOverall <− res$powerOverall
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}
n <− n_start2
re turn (n )

}

##############################################################
# Function to p l o t graph ic showing power f o r d i f f e r e n t in te r im ana l y s i s
# t imings and e f f e c t s i z e s in the complementary group
##############################################################

##############################################################
# Parameters to s p e c i f y :
# p = preva l ence o f subgroup
# de l ta1 = standard i zed e f f e c t in subgroup
# de l ta2v = vecto r o f s tandard ized e f f e c t s in complement
# tv = vecto r o f in te r im ana l y s i s t imings
# m = number o f s imulated s t ud i e s
# c = thre sho ld o f s e l e c t i o n ru l e ( vec to r ( c1 , c0 ) i f s e l_ru l e = 2)
# adj = method to con t r o l f o r mu l t i p l i c i t y , e i t h e r "ClosedTest ing " or
# "Bonfer ron i "
# alpha = s i g n i f i c a n c e l e v e l
# seed = seed value
# s e l_ru l e = 1 f o r s e l e c t i o n ru l e based on est imated e f f e c t d i f f e r e n c e s ,
# = 2 f o r s e l e c t i o n ru l e based on abso lu t e e f f e c t e s t imate s
##############################################################

Plot_Power <− f unc t i on (p , delta1 , delta2v , tv , m , c , adj , alpha , seed , sel

_rule ) {

power_m <− matrix ( rep (NA , l ength (tv ) * l ength ( delta2v ) ) , l ength ( delta2v )
, l ength (tv ) )

d i f f_03_07 <− rep (NA , l ength ( delta2v ) )
ma_vec <− rep (NA , l ength ( delta2v ) )
mi_vec <− rep (NA , l ength ( delta2v ) )
s <− 0

f o r ( delta2 in delta2v ) {

s <− s+1
delta0 <− p*delta1 + (1−p ) *delta2

i f ( sel_rule == 1) {
n <− calculate_n_Sel1 (p , delta1 , delta2 , m , c , t , adj , alpha , seed )
res <− Power_Sel1 (p , n , delta1 , delta2 , tv , m , c , adj , alpha , seed )

}

i f ( sel_rule == 2) {
n <− calculate_n_Sel2 (p , delta1 , delta2 , m , c [ 1 ] , c [ 2 ] , t , adj ,

alpha , seed )
res <− Power_Sel2 (p , n , delta1 , delta2 , tv , m , c [ 1 ] , c [ 2 ] , adj ,

alpha , seed )
}

i30 <− which (tv == 0 . 3 )
i70 <− which (tv == 0 . 7 )
t30_70 <− tv [ i30 : i70 ]
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mi <− min( res$powerOverall [ i30 : i70 ] )
ma <− max( res$powerOverall [ i30 : i70 ] )
mi_vec [ s ] <− min( res$powerOverall [ i30 : i70 ] ) −0.8
ma_vec [ s ] <− max( res$powerOverall [ i30 : i70 ] ) −0.8
t_mi <− t30_70 [ which ( res$powerOverall [ i30 : i70 ] == min ( res$powerOverall

[ i30 : i70 ] ) ) ]
t_ma <− t30_70 [ which ( res$powerOverall [ i30 : i70 ] == max( res$powerOverall

[ i30 : i70 ] ) ) ]
d i f f_03_07 [ s ] <− round (ma−mi , 4 )
power_m [ s , ] <− res$powerOverall

}

co l <− c ( " red4 " , " red3 " , " red " , rgb ( 1 , 0 . 4 , 0 , 1 ) , rgb ( 1 , 0 . 6 , 0 ,1) , rgb
( 1 , 0 . 8 , 0 ,1) ,

rgb (1 , 0 . 9 , 0 ,1) , rgb ( 1 , 1 , 0 , 0 . 4 ) , rgb ( 1 , 1 , 0 , 0 . 1 ) )

power_co l_1 <− i f e l s e ( power_m < 0.73 , c o l [ 9 ] , 0)
power_co l_2 <− i f e l s e ( power_m < 0.75 & power_m >= 0.73 , c o l [ 8 ] , power_

co l_1)
power_co l_3 <− i f e l s e ( power_m < 0.77 & power_m >= 0.75 , c o l [ 7 ] , power_

co l_2)
power_co l_4 <− i f e l s e ( power_m < 0.79 & power_m >= 0.77 , c o l [ 6 ] , power_

co l_3)
power_co l_5 <− i f e l s e ( power_m < 0.81 & power_m >= 0.79 , c o l [ 5 ] , power_

co l_4)
power_co l_6 <− i f e l s e ( power_m < 0.83 & power_m >= 0.81 , c o l [ 4 ] , power_

co l_5)
power_co l_7 <− i f e l s e ( power_m < 0.85 & power_m >= 0.83 , c o l [ 3 ] , power_

co l_6)
power_co l_8 <− i f e l s e ( power_m < 0.87 & power_m >= 0.85 , c o l [ 2 ] , power_

co l_7)
power_co l_9 <− i f e l s e ( power_m >= 0.87 , c o l [ 1 ] , power_co l_8)

op <− par ( mar = c (5 , 6 , 0 , 2 ) + 0 . 1 )
p l o t ( 0 . 5 , 1 , xlim = c ( 0 , 1 . 3 ) , ylim = c ( 0 . 3 , l ength ( delta2v ) +1.6) ,

xlab = " t              " , ylab = "" , yaxt = "n" , xaxt = "n" , las =
1 ,

cex . lab = 2 , cex . main = 2)
t i t l e ( ylab = bquote ( Delta [ "−" ] ) , cex . lab = 2 , line = 4 . 5 )
ax i s (2 , at = 1 : l ength ( delta2v ) , l a b e l s = delta2v , las = 1 , cex . a x i s =

1 . 5 )
ax i s (1 , at = c (0 , 0 . 2 , 0 . 4 , 0 . 6 , 0 . 8 , 1) , l a b e l s = c ( " 0 .0 " , " 0 . 2 " , " 0 . 4 "

, " 0 . 6 " , " 0 . 8 " , " 1 .0 " ) , las = 1 , cex . a x i s = 1 . 5 )
f o r (j in 1 : l ength ( delta2v ) ) {

f o r (i in 1 : l ength (tv ) ) {
l i n e s ( c (tv [ i ] − 0 .0125 , tv [ i ] + 0 .0125) , c (j , j ) , c o l = power_co l_9 [ j

, i ] ,
lwd = 20 , lend = "butt " )

}
}
text ( rep ( 1 . 2 , l ength ( delta2v ) ) , 1 : l ength ( delta2v ) , paste ( format ( round (

d i f f_03_07* 100 ,1) , nsmall = 1) , "%" ) , pos = 2 , cex = 1 . 5 )
t ex t ( 0 . 9 5 , l ength ( delta2v ) + 1 . 6 , "power range " , pos = 4 , cex = 1 . 4 )
t ex t ( 0 . 9 5 , l ength ( delta2v ) + 0 . 8 , exp r e s s i on ( paste ( " f o r  " , t %in% " [ 0 . 3 ,

 0 . 7 ] " ) ) , pos = 4 , cex = 1 . 4 )
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}

##############################################################
# Function to p l o t graph ic showing s e l e c t i o n and r e j e c t i o n p r o b a b i l i t i e s
# f o r d i f f e r e n t in te r im ana l y s i s t imings
##############################################################

##############################################################
# Parameters to s p e c i f y :
# p = preva l ence o f subgroup
# de l ta1 = standard i zed e f f e c t in subgroup
# de l ta2v = vecto r o f s tandard ized e f f e c t s in complement
# tv = vecto r o f in te r im ana l y s i s t imings
# m = number o f s imulated s t ud i e s
# c = thre sho ld o f s e l e c t i o n ru l e ( vec to r ( c1 , c0 ) i f s e l_ru l e = 2)
# adj = method to con t r o l f o r mu l t i p l i c i t y , e i t h e r "ClosedTest ing " or
# "Bonfer ron i "
# alpha = s i g n i f i c a n c e l e v e l
# seed = seed value
# s e l_ru l e = 1 f o r s e l e c t i o n ru l e based on est imated e f f e c t d i f f e r e n c e s ,
# = 2 f o r s e l e c t i o n ru l e based on abso lu t e e f f e c t e s t imate s
##############################################################

Plot_SelProb <− f unc t i on (pv , delta1 , delta2v , tv , m , c , adj , alpha , seed ,
sel_rule ) {

p_long <− as . numeric ( )
delta2_long <− as . numeric ( )
tv_long <− as . numeric ( )

prSub <− as . numeric ( )
prTot <− as . numeric ( )
prCop <− as . numeric ( )
prFut <− as . numeric ( )
powerSub <− as . numeric ( )
powerTot <− as . numeric ( )
powerOverall <− as . numeric ( )
powerSub_Sub <− as . numeric ( )
powerTot_Tot <− as . numeric ( )
powerOverall <− as . numeric ( )
powerOverall_cp <− as . numeric ( )

i f ( sel_rule == 1) {

f o r (p in pv ) {
f o r ( delta2 in delta2v ) {

p_long <− c (p_long , rep (p , l ength (tv ) ) )
delta2_long <− c ( delta2_long , rep ( delta2 , l ength (tv ) ) )
tv_long <− c (tv_long , tv )

n <− calculate_n_Sel1 (p , delta1 , delta2 , m , c , 0 . 5 , adj , alpha ,
seed )

res <− Power_Sel1 (p , n , delta1 , delta2 , tv , m , c , adj , alpha , seed

)
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prSub <− c ( prSub , res$prSub )
powerSub <− c ( powerSub , res$powerSub )
powerTot <− c ( powerTot , res$powerTot )
powerOverall <− c ( powerOverall , res$powerOverall )

}
}

res_tab <− data . frame ( prSub = prSub/m , prTot = 1 − prSub/m , powerSub =
powerSub , powerTot = powerTot ,

powerOverall = powerOverall , p_long = p_long ,
delta2_long = delta2_long , tv_long = tv_long )

res_long <− gather ( res_tab , var , prob , prSub : powerOverall , f a c t o r_key
= TRUE )

coltyp <− brewer . pal (5 , " Set1 " )
coltyp <− coltyp [ c (1 , 2 , 1 , 2 , 3) ]
ltyp <− c (2 , 2 , 1 , 1 , 1)

}

i f ( sel_rule == 2) {

f o r (p in pv ) {
f o r ( delta2 in delta2v ) {

p_long <− c (p_long , rep (p , l ength (tv ) ) )
delta2_long <− c ( delta2_long , rep ( delta2 , l ength (tv ) ) )
tv_long <− c (tv_long , tv )

n <− calculate_n_Sel2 (p , delta1 , delta2 , m , c [ 1 ] , c [ 2 ] , 0 . 5 , adj ,
alpha , seed )

res <− Power_Sel2 (p , n , delta1 , delta2 , tv , m , c [ 1 ] , c [ 2 ] , adj ,
alpha , seed )

prSub <− c ( prSub , res$prSub )
prTot <− c ( prTot , res$prTot )
prCop <− c ( prCop , res$prCop )
prFut <− c ( prFut , res$prFut )
powerSub_Sub <− c ( powerSub_Sub , res$powerSub_Sub )
powerTot_Tot <− c ( powerTot_Tot , res$powerTot_Tot )
powerOverall_cp <− c ( powerOverall_cp , res$powerOverall_cp )
powerOverall <− c ( powerOverall , res$powerOverall )

}
}

res_tab <− data . frame ( prSub = prSub , prTot = prTot , prCop = prCop ,
prFut = prFut ,
powerSub_Sub = powerSub_Sub , powerTot_Tot = powerTot_Tot ,

powerOverall_cp = powerOverall_cp , powerOverall = powerOverall ,
p_long = p_long , delta2_long = delta2_long , tv_long = tv_long )

res_long <− gather ( res_tab , var , prob , prSub : powerOverall , f a c t o r_key
= TRUE )

coltyp <− brewer . pal (5 , " Set1 " )
coltyp <− coltyp [ c (1 , 2 , 4 , 5 , 1 , 2 , 4 , 3) ]
ltyp <− c (2 , 2 , 2 , 2 , 1 , 1 , 1 , 1)

}
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p . labs <− paste ( "p = " , pv , sep = "" )
names (p . labs ) <− pv

delta2 . labs <− as . cha rac t e r ( )
f o r (i in 1 : l ength ( delta2v ) ) {

delta2 . labs <− c ( delta2 . labs , bquote ( Delta [ "−" ] *plain ( " = " ) * . ( delta2v
[ i ] ) ) )

}
names ( delta2 . labs ) <− delta2v

res_long %>%
ggplot ( aes (x = tv_long , y = prob , colour = var , linetype = var , group

= var ) ) +
geom_line ( size=0.6) +
facet_gr id (p_long ~ delta2_long , labeller = label_bquote ( cols = Delta [

"−" ] ~ "=" ~ . ( delta2_long ) , rows = p~"="~ . ( p_long ) ) ) +
s c a l e_linetype_manual ( values = ltyp ) +
s c a l e_colour_manual ( values = coltyp ) +
xlab ( " t " ) +
ylab ( " Probab i l i t y " ) +
ylim ( c (0 , 1) ) +
theme_bw ( ) +
theme ( l egend . position = "none" , ax i s . t ex t = element_text ( size = 11) ,

ax i s . t i t l e = element_text ( size = 13) ,
strip . t ex t . x = element_text ( size = 11) , strip . t ex t . y = element_

text ( size = 11) )

}

C.2 Code for Design with Sample Size Reassessment

l i b r a r y ( MASS )
l i b r a r y ( ggplot2 )
l i b r a r y ( RColorBrewer )

##############################################################
# Function to c a l c u l a t e sample s i z e d i s t r i b u t i o n
# f o r s e l e c t i o n ru l e based on est imated e f f e c t d i f f e r e n c e s
##############################################################

##############################################################
# Parameters to s p e c i f y :
# p = preva l ence o f subgroup
# t = inte r im ana l y s i s t iming
# de l ta1 = standard i zed e f f e c t in subgroup
# de l ta2 = standard i zed e f f e c t in complement
# m = number o f s imulated s t ud i e s
# c = thre sho ld f o r s e l e c t i o n ru l e
# beta = type I I e r r o r ra t e
# alpha = s i g n i f i c a n c e l e v e l
# CP = cond i t i o na l power f o r e f f e c t s i z e from planning phase (="pp")
# or mean between e f f e c t s i z e from planning phase and observed e f f e c t
# from inte r im ana l y s i s (="ppia ")
# adj = method to con t r o l f o r mu l t i p l i c i t y , e i t h e r "ClosedTest ing "



APPENDIX C. SELECTED R PROGRAM CODE 106

# or "Bonfer ron i "
# seed = seed value
# H0 = TRUE i f e f f e c t s in both popu la t i ons are 0 ( de l t a1 and de l t a2 have
# to be s p e c i f i e d then as the assumed e f f e c t s in the planning phase
# to c a l c u l a t e n_f i x
##############################################################

##############################################################
# Returned va lue s :
# 1 . data frame : f o r each s imulated study :
## se lSub = 1 i f subgroup i s s e l e c t ed , 0 otherwi se
## s i g_a l l = 1 i f s i g n i f i c a n t r e su l t , 0 o therwi se
## n2 = sample s i z e in second s tage
## n = ov e r a l l sample s i z e
# 2 . data frame : input parameters p lus
# n_f i x = sample s i z e in f i x ed des ign
# conP = adjusted c ond i t i o na l power to reach an o v e r a l l power o f 80%
# s e l_ru l e = 1 ( s e l e c t i o n ru l e )
##############################################################

Samplesize_Sel1 <− f unc t i on (p , t , delta1 , delta2 , m , c , beta , alpha , CP ,
adj , seed , H0 = FALSE ) {

s e t . seed ( seed )

delta0 <− p*delta1 + (1−p ) *delta2
n_f i x <− c e i l i n g (2 * ( qnorm(1−alpha/ 4) + qnorm(1−beta ) )^2 / delta0^2) #

sample s i z e per group in a f i x ed des ign

i f (H0 == TRUE ) {
delta1 <− 0
delta2 <− 0
delta0 <− 0

}

n1 <− t *n_f i x # sample s i z e s tage I

# −−−−−−−−−−−−−−−−−−−−−−
# Stage I
# −−−−−−−−−−−−−−−−−−−−−−

Delta_1 <− mvrnorm (n = m , mu = c ( delta0 , delta1 ) , Sigma = matrix ( c (2 /n1 ,
2/n1 , 2/n1 , 2/ (n1*p ) ) , 2 , 2 ) )

# subgroup
Z1_1 <− Delta_1 [ , 2 ] * s q r t (n1*p/ 2)
p1_1 <− 1 − pnorm(Z1_1)

# t o t a l populat ion
Z0_1 <− Delta_1 [ , 1 ] * s q r t (n1/ 2)
p0_1 <− 1 − pnorm(Z0_1)

# combination o f p−va lue s ( Closed Test ing Procedure )
p01_1 <− apply ( rbind (2 * apply ( rbind (p1_1 , p0_1) , 2 , min ) ,

apply ( rbind (p1_1 , p0_1) , 2 , max) ) , 2 , min )

selSub <− i f e l s e ( Delta_1 [ , 1 ] + c < Delta_1 [ , 2 ] , 1 , 0)
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# −−−−−−−−−−−−−−−−−−−−−−
# Stage I I
# −−−−−−−−−−−−−−−−−−−−−−

i f (CP == "pp" ) { # cond i t i o na l power us ing the e f f e c t s i z e from the
planning s tage

mu0 <− rep ( delta0 , m )
mu1 <− rep ( delta1 , m )

}

i f (CP == "ppia " ) { # cond i t i o na l power us ing the mean o f the e f f e c t s i z e
from the planning s tage and the observed inte r im e f f e c t

mu0 <− ( rep ( delta0 , m ) + Delta_1 [ , 1 ] ) / 2
mu1 <− ( rep ( delta1 , m ) + Delta_1 [ , 2 ] ) / 2

}

poweri <− 0
beta_CP_v <− ( 1 00 : 1 ) /100

i f (H0 == TRUE ) {
beta_CP_v <− beta

}

f o r ( beta_CP in beta_CP_v ) {

# i f subgroup i s s e l e c t e d
# sample s i z e f o r s tage I I
br <− (qnorm(1−alpha/ 4) / sq r t (1− t ) − qnorm( beta_CP ) − s q r t ( t /(1− t ) ) *

Z1_1)
br <− i f e l s e (br < 0 , 0 , br )
fz <− cbind (br^2 * 2 / mu1^2 , 2*n_f i x − n1 )
n2_sub <− apply (fz , 1 , min )
n2_sub <− i f e l s e (n2_sub < 10 , 10 , n2_sub )

# t e s t s in s tage I I
delta1_2 <− rnorm (n = m , mean = delta1 , sd = sq r t (2 /n2_sub ) )
Z1_2_sub <− delta1_2 * s q r t (n2_sub/2)
U1_sub <− s q r t ( t ) *Z1_1 + sq r t (1− t ) *Z1_2_sub

# combination o f p−va lue s ( Closed Test ing Procedure )
U01_sub <− s q r t ( t ) * qnorm(1−p01_1) + sq r t (1− t ) *Z1_2_sub
p01_sub <− 1 − pnorm( U01_sub )

i f ( adj == "ClosedTest ing " ) {
sig_sub <− i f e l s e ( p01_sub < alpha/2 & 1 − pnorm(U1_sub ) < alpha/ 2 ,

1 , 0)
}
i f ( adj == "Bonfe r ron i " ) {

sig_sub <− i f e l s e (1 − pnorm(U1_sub ) < alpha/ 4 , 1 , 0)
}

# i f t o t a l populat ion i s s e l e c t e d

# sample s i z e f o r s tage I I
br <− (qnorm(1−alpha/ 4) / sq r t (1− t ) − qnorm( beta_CP ) − s q r t ( t /(1− t ) ) *

Z0_1)
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br <− i f e l s e (br < 0 , 0 , br )
fz <− cbind (br^2 * 2 / mu0^2 , 2*n_f i x − n1 )
n2_tot <− apply (fz , 1 , min )
n2_tot <− i f e l s e (n2_tot < 10 , 10 , n2_tot )

# t e s t s in s tage I I
delta0_2 <− rnorm (n = m , mean = delta0 , sd = sq r t (2 /n2_tot ) )
Z0_2_tot <− delta0_2 * s q r t (n2_tot/ 2)
U0_tot <− s q r t ( t ) *Z0_1 + sq r t (1− t ) *Z0_2_tot

# combination o f p−va lue s ( Closed Test ing Procedure )
U01_tot <− s q r t ( t ) *qnorm(1−p01_1) + sq r t (1− t ) *Z0_2_tot
p01_tot <− 1 − pnorm( U01_tot )

i f ( adj == "ClosedTest ing " ) {
sig_tot = i f e l s e ( p01_tot < alpha/2 & 1 − pnorm(U0_tot ) < alpha/ 2 , 1 ,

0)
}
i f ( adj == "Bonfe r ron i " ) {

sig_tot = i f e l s e (1 − pnorm(U0_tot ) < alpha/ 4 , 1 , 0)
}

# sample s i z e
n2_v <− round ( i f e l s e ( selSub == 1 , n2_sub , n2_tot ) )
n_v <− round (n1 + n2_v )

# power
sig_a l l <− i f e l s e ( selSub == 1 , sig_sub , sig_tot )
poweri <− mean( sig_a l l )
i f ( poweri >= 0 . 8 ) break

}

return ( l i s t ( data . frame ( selSub = selSub , sig_a l l = sig_a l l , n2 = n2_v , n

= n_v ) ,
data . frame (p = p , t = t , delta1 = delta1 , delta2 = delta2 , m = m , c =

c ,
beta = beta , alpha = alpha , CP = CP , n_f i x = n_f ix , conP = 1−beta_CP ,

sel_rule = 1) ) )

}

##############################################################
# Function to c a l c u l a t e sample s i z e d i s t r i b u t i o n
# f o r s e l e c t i o n ru l e based on abso lu t e e f f e c t e s t imate s
##############################################################

##############################################################
# Parameters to s p e c i f y :
# p = preva l ence o f subgroup
# t = inte r im ana l y s i s t iming
# de l ta1 = standard i zed e f f e c t in subgroup
# de l ta2 = standard i zed e f f e c t in complement
# m = number o f s imulated s t ud i e s
# c = thre sho ld f o r s e l e c t i o n ru l e
# beta = type I I e r r o r to c a l c u l a t e sample s i z e o f f i x ed des ign
# alpha = s i g n i f i c a n c e l e v e l
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# CP = cond i t i o na l power f o r e f f e c t s i z e from planning phase (="pp")
# or mean between e f f e c t s i z e from planning phase and observed
# e f f e c t from inte r im ana l y s i s (="ppia ")
# adj = method to con t r o l f o r mu l t i p l i c i t y , e i t h e r "ClosedTest ing "
# or "Bonfer ron i "
# seed = seed value
# H0 = TRUE i f e f f e c t s in both popu la t i ons are 0 ( de l t a1 and de l t a2 have
# to be s p e c i f i e d then as the assumed e f f e c t s in the planning phase
# to c a l c u l a t e n_f i x
##############################################################

##############################################################
# Returned va lue s :
# 1 . data frame : f o r each s imulated study :
## se lSub = 1 i f subgroup i s s e l e c t ed , 0 otherwi se
## s i g_a l l = 1 i f s i g n i f i c a n t r e su l t , 0 o therwi se
## n2 = sample s i z e in second s tage
## n = ov e r a l l sample s i z e
# 2 . data frame : input parameters p lus
# n_f i x = sample s i z e in f i x ed des ign
# conP = adjusted c ond i t i o na l power to reach an o v e r a l l power o f 80%
# s e l_ru l e = 2 ( s e l e c t i o n ru l e )
##############################################################

Samplesize_Sel2 <− f unc t i on (p , t , delta1 , delta2 , m , c0 , c1 , beta , alpha ,
CP , adj , seed , H0 = FALSE ) {

s e t . seed ( seed )

delta0 <− p*delta1 + (1−p ) *delta2
n_f i x <− c e i l i n g (2 * (qnorm(1−alpha/ 4) + qnorm(1−beta ) )^2 / delta0^2)

i f (H0 == TRUE ) {
delta1 <− 0
delta2 <− 0
delta0 <− 0

}

n1 <− t * n_f i x

# −−−−−−−−−−−−−−−−−−−−−−
# Stage I
# −−−−−−−−−−−−−−−−−−−−−−

Delta_1 <− mvrnorm (n = m , mu = c ( delta0 , delta1 ) , Sigma = matrix ( c (2 /n1 ,
2/n1 , 2/n1 , 2/ (n1*p ) ) , 2 , 2) )

# subgroup
Z1_1 <− Delta_1 [ , 2 ] * s q r t (n1*p/ 2)
p1_1 <− 1 − pnorm(Z1_1)

# t o t a l populat ion
Z0_1 <− Delta_1 [ , 1 ] * s q r t (n1/ 2)
p0_1 <− 1 − pnorm(Z0_1)

# combination o f p−va lue s ( Closed Test ing Procedure )
p01_1 <− apply ( rbind (2 *apply ( rbind (p1_1 , p0_1) , 2 , min ) ,

apply ( rbind (p1_1 , p0_1) , 2 , max) ) , 2 , min )
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# −−−−−−−−−−−−−−−−−−−−−−
# Stage I I
# −−−−−−−−−−−−−−−−−−−−−−

# inte r im de c i s i o n :
selSub <− i f e l s e ( Delta_1 [ , 2 ] > c1 & Delta_1 [ , 1 ] <= c0 , 1 , 0)
selTot <− i f e l s e ( Delta_1 [ , 2 ] <= c1 & Delta_1 [ , 1 ] > c0 , 1 , 0)
selCop <− i f e l s e ( Delta_1 [ , 2 ] > c1 & Delta_1 [ , 1 ] > c0 , 1 , 0)
selFut <− i f e l s e ( Delta_1 [ , 2 ] <= c1 & Delta_1 [ , 1 ] <= c0 , 1 , 0)

i f (CP == "pp" ) {
mu0 <− rep ( delta0 , m )
mu1 <− rep ( delta1 , m )

}

i f (CP == "ppia " ) {
mu0 <− ( rep ( delta0 , m ) + Delta_1 [ , 1 ] ) /2
mu1 <− ( rep ( delta1 , m ) + Delta_1 [ , 2 ] ) /2

}

poweri = 0
beta_CP_v = (100 : 1 ) /100

i f (H0 == TRUE ) {
beta_CP_v <− beta

}

f o r ( beta_CP in beta_CP_v ) {

# i f subgroup i s s e l e c t e d
# sample s i z e f o r s tage I I
br <− (qnorm(1−alpha/ 4) / sq r t (1− t ) − qnorm( beta_CP ) − s q r t ( t /(1− t ) ) *

Z1_1)
br <− i f e l s e (br < 0 , 0 , br )
fz <− cbind (br^2 * 2/mu1^2 , 2*n_f i x − n1 )
n2_sub <− apply (fz , 1 , min )
n2_sub <− i f e l s e (n2_sub < 10 , 10 , n2_sub )

# t e s t s in s tage I I
delta1_2 <− rnorm (n = m , mean = delta1 , sd = sq r t (2 /n2_sub ) )
Z1_2_sub <− delta1_2 * s q r t (n2_sub/2)
U1_sub <− s q r t ( t ) *Z1_1 + sq r t (1− t ) *Z1_2_sub

# combination o f p−va lue s ( Closed Test ing Procedure )
U01_sub <− s q r t ( t ) *qnorm(1−p01_1) + sq r t (1− t ) *Z1_2_sub
p01_sub <− 1 − pnorm( U01_sub )

i f ( adj == "ClosedTest ing " ) {
sig_sub <− i f e l s e ( p01_sub < alpha/2 & 1 − pnorm(U1_sub ) < alpha/ 2 ,

1 , 0)
}

i f ( adj == "Bonfe r ron i " ) {
sig_sub <− i f e l s e (1 − pnorm(U1_sub ) < alpha/ 4 , 1 , 0)

}



APPENDIX C. SELECTED R PROGRAM CODE 111

# i f t o t a l populat ion i s s e l e c t e d

# sample s i z e in s tage I I
br <− (qnorm(1 − alpha/ 4) / sq r t (1− t ) − qnorm( beta_CP ) − s q r t ( t /(1− t ) )

* Z0_1)
br <− i f e l s e (br < 0 , 0 , br )
fz_tot <− cbind (br^2 * 2/mu0^2 , 2*n_f i x − n1 )
n2_tot <− apply (fz_tot , 1 , min )
n2_tot <− i f e l s e (n2_tot < 10 , 10 , n2_tot )

# t e s t s in s tage I I
delta0_2 <− rnorm (n = m , mean = delta0 , sd = sq r t (2 /n2_tot ) )
Z0_2_tot <− delta0_2 * s q r t (n2_tot/ 2)
U0_tot <− s q r t ( t ) *Z0_1 + sq r t (1− t ) *Z0_2_tot

# combination o f p−va lue s ( Closed Test ing Procedure )
U01_tot <− s q r t ( t ) *qnorm(1−p01_1) + sq r t (1− t ) *Z0_2_tot
p01_tot <− 1 − pnorm( U01_tot )

i f ( adj == "ClosedTest ing " ) {
sig_tot <− i f e l s e ( p01_tot < alpha/2 & 1 − pnorm(U0_tot ) < alpha/ 2 ,

1 , 0)
}

i f ( adj == "Bonfe r ron i " ) {
sig_tot <− i f e l s e (1 − pnorm(U0_tot ) < alpha/ 4 , 1 , 0)

}

# i f co−primary ana l y s i s i s s e l e c t e d

# sample s i z e in s tage I I
n2_cop <− cbind ( i f e l s e (n2_tot*p > n2_sub , n2_tot , n2_sub/p ) , 2*n_f i x −

n1 )
n2_cop <− apply (n2_cop , 1 , min )

# t e s t s in s tage I I
Delta_2 <− matrix ( rep (NA , m* 2) , m , 2)
f o r (j in 1 : m ) {

Delta_2 [ j , ] <− mvrnorm (n = 1 , mu = c ( delta0 , delta1 ) , Sigma= matrix (
c (2 /n2_cop [ j ] , 2/n2_cop [ j ] , 2/n2_cop [ j ] , 2/ (n2_cop [ j ] *p ) ) , 2 , 2) )

}

# subgroup
Z1_2 <− Delta_2 [ , 2 ] * s q r t (n2_cop*p/ 2)
p1_2 <− 1 − pnorm(Z1_2)
U1 <− s q r t ( t ) *Z1_1 + sqr t (1− t ) *Z1_2
p1 <− 1 − pnorm(U1 )

# t o t a l populat ion
Z0_2 <− Delta_2 [ , 1 ] * s q r t (n2_cop/ 2)
p0_2 <− 1 − pnorm(Z0_2)
U0 <− s q r t ( t ) *Z0_1 + sqr t (1− t ) *Z0_2
p0 <− 1 − pnorm(U0 )

# combination o f p−va lue s ( Closed Test ing Procedure )
p01_2 = apply ( cbind (2 *apply ( cbind (p0_2 , p1_2) , 1 , min ) , apply ( cbind (p0
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_2 , p1_2) , 1 , max) ) , 1 , min )
U01 = sqr t ( t ) *qnorm(1−p01_1) + sq r t (1− t ) *qnorm(1−p01_2)

i f ( adj == "ClosedTest ing " ) {
sig_cop = i f e l s e ( ( U01 > qnorm(1−alpha/ 2) & U0 > qnorm(1−alpha/ 2) ) |

( U01 > qnorm(1−alpha/ 2) & U1 > qnorm(1−alpha/ 2) ) , 1 , 0)
}
i f ( adj == "Bonfe r ron i " ) {

sig_cop = i f e l s e (p0 < alpha/4 | p1 < alpha/ 4 , 1 , 0)
}

# sample s i z e
n2_v <− i f e l s e ( selSub == 1 , n2_sub , n2_tot )
n2_v <− i f e l s e ( selCop == 1 , n2_cop , n2_v )
n2_v <− round ( i f e l s e ( selFut == 1 , 0 , n2_v ) )
n_v <− round (n1 + n2_v )

# S i gn i f i k an z
sig_a l l <− i f e l s e ( selSub == 1 , sig_sub , sig_tot )
sig_a l l <− i f e l s e ( selCop == 1 , sig_cop , sig_a l l )
sig_a l l <− i f e l s e ( selFut == 1 , 0 , sig_a l l )
poweri <− mean( sig_a l l )
i f ( poweri >= 0 . 8 ) break

}

return ( l i s t ( data . frame ( selSub = selSub , selTot = selTot , selCop = selCop

, selFut = selFut ,
sig_a l l = sig_a l l , n2 = n2_v , n = n_v ) ,

data . frame (p = p , t = t , delta1 = delta1 , delta2 = delta2 , m

= m , c0 = c0 , c1 = c1 ,
beta = beta , alpha = alpha , CP = CP , n_f i x = n_

f ix , conP = 1 − beta_CP , sel_rule = 2) ) )

}

##############################################################
# Function that saves r e s u l t s o f Samples ize_Se l1 / Samples ize_Se l2
# f o r d i f f e r e n t t in a matrix
##############################################################

##############################################################
# Parameters to s p e c i f y :
# same as f o r amples i ze_Se l1 / Samples ize_Sel2 , but :
# t = vecto r o f in te r im ana l y s i s t iming
##############################################################

Samplesize_Sel1_t <− f unc t i on (p , t , delta1 , delta2 , m , c , beta , alpha , CP ,
adj , seed ) {

sim <− as . numeric ( )

f o r (ti in t ) {
sim <− rbind (sim , Samplesize_Sel1 (p , ti , delta1 , delta2 , m , c , beta ,

alpha , CP , adj , seed ) )
}
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sim

}

Samplesize_Sel2_t <− f unc t i on (p , t , delta1 , delta2 , m , c0 , c1 , beta ,
alpha , CP , adj , seed ) {

sim <− as . numeric ( )
f o r (ti in t ) {

sim <− rbind (sim , Samplesize_Sel2 (p , ti , delta1 , delta2 , m , c0 , c1 ,
beta , alpha , CP , adj , seed ) )

}
sim

}

##############################################################
# Function to p l o t sample s i z e d i s t r i b u t i o n ( histogram plus boxplot )
# f o r both s e l e c t i o n r u l e s
##############################################################

##############################################################
# Parameters to s p e c i f y :
# sim = s imu la t i on r e s u l t s r e c e i v ed from func t i on Samples ize_Se l1_t or
# Samples ize_Se l2_t
##############################################################

Plot_Samplesize <− f unc t i on ( sim ) {

simm <− as . numeric ( )
f o r (i in 1 : dim( sim ) [ 1 ] ) {

simm <− rbind (simm , cbind ( sim [ [ i , 1 ] ] , t = sim [ [ i , 2 ] ] $ t ) )
}

sel_rule <− sim [ [ 1 , 2 ] ] $sel_rule

i f ( sel_rule == 1) {
selection <− as . f a c t o r ( simm$selSub )
selection <− r e l e v e l ( selection , "1" )
c o l <− brewer . pal (5 , " Set1 " ) [ 1 : 2 ]

}

i f ( sel_rule == 2) {
selection <− rep (0 , dim( simm ) [ 1 ] )
selection <− i f e l s e ( simm$selSub == 1 , 1 , selection )
selection <− i f e l s e ( simm$selTot == 1 , 2 , selection )
selection <− i f e l s e ( simm$selCop == 1 , 3 , selection )
selection <− as . f a c t o r ( selection )
c o l <− brewer . pal (5 , " Set1 " )
col2 <− brewer . pal (6 , " Set2 " )
c o l <− c ( col2 [ 6 ] , c o l [ 1 : 3 ] )

}

n_f i x <− as . numeric ( sim [ [ 1 , 2 ] ] [ "n_f i x " ] )
m <− sim [ [ 1 , 2 ] ] $m

P <− ggplot (simm , aes (x = simm$n , fill = selection ) ) +
geom_histogram ( position = " stack " , binwidth = round (n_f i x / 100) * 2 ,
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alpha = 0 . 7 ) +
facet_gr id ( simm$ t ~ . , scales = " f r e e " ) +
xlab ( "n" ) +
ylab ( "" ) +
theme_bw ( ) +
s c a l e_y_continuous ( breaks = NULL ) +
theme ( l egend . position = "none" , t ex t = element_text ( size = 25) ) +
s c a l e_fill_manual ( values = co l )

# draw boxplot
means <− as . numeric ( )
medians <− as . numeric ( )
b <− boxplot ( simm$n ~ simm$t , p l o t = FALSE )
box_s t a t <− b$stats
mh <− as . numeric ( )
wu <− as . numeric ( )
wo <− as . numeric ( )
bu <− as . numeric ( )
bo <− as . numeric ( )
bb <− as . numeric ( )
m_middle <− as . numeric ( )
m_up <− as . numeric ( )
m_low <− as . numeric ( )
r <− 0 .3 # width o f the boxplot in r e l a t i o n to p l o t h ight

panel <− 0
f o r (k in l e v e l s ( as . f a c t o r ( simm$ t ) ) ) {

panel <− panel + 1

# mean
me <− rep (mean( simm$n [ which ( simm$ t == k ) ] ) , m )
means <− c ( means , me )

# median
md <− rep (median ( simm$n [ which ( simm$ t == k ) ] ) , m )
medians <− c ( medians , md )

# box width
maxh <− max( ggplot_build (P ) $data [ [ 1 ] ] $ymax [ ggplot_build (P ) $data [ [ 1 ] ] $

PANEL == panel ] )
mh_ <− rep ( maxh*r , m )
mh_[ 1 ] <− maxh*(1−r )
mh <− c (mh , mh_)

# middle o f box
m_middle_ <− rep ( maxh * 0 . 5 , m )
m_middle <− c (m_middle , m_middle_)

# upper and lower end o f box
m_up_ <− rep ( maxh * (1−r ) , m )
m_up <− c (m_up , m_up_)
m_low_ <− rep ( maxh * r , m )
m_low <− c (m_low , m_low_)

# whisker
wu_ <− box_s t a t [ 1 , panel ]
wu_ <− rep (wu_, m )
wu_[ 1 ] <− box_s t a t [ 2 , panel ]
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wu <− c (wu , wu_)

wo_ <− box_s t a t [ 4 , panel ]
wo_ <− rep (wo_, m )
wo_[ 1 ] <− box_s t a t [ 5 , panel ]
wo <− c (wo , wo_)

# box he ight
bb_ <− box_s t a t [ 2 , panel ]
bb_ <− rep (bb_, m )
bb_[ 1 ] <− box_s t a t [ 4 , panel ]
bb <− c (bb , bb_)

# box ( f i r s t and th i rd q u a r t i l e )
bu_ <− rep ( box_s t a t [ 2 , panel ] , m )
bu <− c (bu , bu_)
bo_ <− rep ( box_s t a t [ 4 , panel ] , m )
bo <− c (bo , bo_)

}

P <− P + geom_point ( aes (x=means , y = m_middle ) , size = 2 , shape = 19) +
geom_line ( aes (x = medians , y = mh ) , size = 1 . 5 ) +
geom_line ( aes (x = wu , y = m_middle ) , size = 1 , lineend = " square " ) +
geom_line ( aes (x = wo , y = m_middle ) , size = 1 , lineend = " square " ) +
geom_line ( aes (x = bb , y = m_up ) , size = 1 , lineend = " square " ) +
geom_line ( aes (x = bb , y = m_low ) , size = 1 , lineend = " square " ) +
geom_line ( aes (x = bu , y = mh ) , size = 1 , lineend = " square " ) +
geom_line ( aes (x = bo , y = mh ) , size = 1 , lineend = " square " )

p l o t (P )

}
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